WorldWideScience

Sample records for absorbed dose rates

  1. Absorbed dose thresholds and absorbed dose rate limitations for studies of electron radiation effects on polyetherimides

    Science.gov (United States)

    Long, Edward R., Jr.; Long, Sheila Ann T.; Gray, Stephanie L.; Collins, William D.

    1989-01-01

    The threshold values of total absorbed dose for causing changes in tensile properties of a polyetherimide film and the limitations of the absorbed dose rate for accelerated-exposure evaluation of the effects of electron radiation in geosynchronous orbit were studied. Total absorbed doses from 1 kGy to 100 MGy and absorbed dose rates from 0.01 MGy/hr to 100 MGy/hr were investigated, where 1 Gy equals 100 rads. Total doses less than 2.5 MGy did not significantly change the tensile properties of the film whereas doses higher than 2.5 MGy significantly reduced elongation-to-failure. There was no measurable effect of the dose rate on the tensile properties for accelerated electron exposures.

  2. Absorbed dose rate produced by patients with I-131

    International Nuclear Information System (INIS)

    Gonzalez-Vila, V.; Luis-Simon, J.; Gomez-Puerto, A.; Rodriguez, J.R.

    1992-01-01

    This paper shows the values of absorbed dose rates per unit of activity produced by patients treated with Iodine 131 due to Thyroid cancer. Average values related to disease extension, age and sex are established according to out current schedule of Radiological Protection Measures. From this data we have obtained a more accurate calculation for the value used in clinical emergency : 1471 nGy/>MBq over the relevant tissue. 40 treatment performed during 14 months are studied and comments are made on the Iodine retention by thyroideal tissue related to patient's clinical conditions as well size and site of thyroideal tissue and/or TSH simulation. (author)

  3. Calibration procedure for thermoluminescent dosemeters in water absorbed doses for Iridium-192 high dose rate sources

    International Nuclear Information System (INIS)

    Reyes Cac, Franky Eduardo

    2004-10-01

    Thermoluminescent dosimeters are used in brachytherapy services quality assurance programs, with the aim of guaranteeing the correct radiation dose supplied to cancer patients, as well as with the purpose of evaluating new clinical procedures. This work describes a methodology for thermoluminescent dosimeters calibration in terms of absorbed dose to water for 192 Ir high dose rate sources. The reference dose used is measured with an ionization chamber previously calibrated for 192 Ir energy quality, applying the methodology proposed by Toelli. This methodology aims to standardizing the procedure, in a similar form to that used for external radiotherapy. The work evolves the adaptation of the TRS-277 Code of the International Atomic Energy Agency, for small and big cavities, through the introduction for non-uniform experimental factor, for the absorbed dose in the neighborhood of small brachytherapy sources. In order to simulate a water medium around the source during the experimental work, an acrylic phantom was used. It guarantees the reproducibility of the ionization chamber and the thermoluminescent dosimeter's location in relation to the radiation source. The values obtained with the ionization chamber and the thermoluminescent dosimeters, exposed to a 192 Ir high dose rate source, were compared and correction factors for different source-detector distances were determined for the thermoluminescent dosimeters. A numeric function was generated relating the correction factors and the source-detector distance. These correction factors are in fact the thermoluminescent dosimeter calibration factors for the 192 Ir source considered. As a possible application of this calibration methodology for thermoluminescent dosimeters, a practical range of source-detector distances is proposed for quality control of 192 Ir high dose rate sources. (author)

  4. Simple approximation for estimating centerline gamma absorbed dose rates due to a continuous Gaussian plume

    International Nuclear Information System (INIS)

    Overcamp, T.J.; Fjeld, R.A.

    1987-01-01

    A simple approximation for estimating the centerline gamma absorbed dose rates due to a continuous Gaussian plume was developed. To simplify the integration of the dose integral, this approach makes use of the Gaussian cloud concentration distribution. The solution is expressed in terms of the I1 and I2 integrals which were developed for estimating long-term dose due to a sector-averaged Gaussian plume. Estimates of tissue absorbed dose rates for the new approach and for the uniform cloud model were compared to numerical integration of the dose integral over a Gaussian plume distribution

  5. Absorbed dose rate in air in metropolitan Tokyo before the Fukushima Daiichi Nuclear Power Plant accident.

    Science.gov (United States)

    Inoue, K; Hosoda, M; Fukushi, M; Furukawa, M; Tokonami, S

    2015-11-01

    The monitoring of absorbed dose rate in air has been carried out continually at various locations in metropolitan Tokyo after the accident of the Fukushima Daiichi Nuclear Power Plant. While the data obtained before the accident are needed to more accurately assess the effects of radionuclide contamination from the accident, detailed data for metropolitan Tokyo obtained before the accident have not been reported. A car-borne survey of the absorbed dose rate in air in metropolitan Tokyo was carried out during August to September 2003. The average absorbed dose rate in air in metropolitan Tokyo was 49±6 nGy h(-1). The absorbed dose rate in air in western Tokyo was higher compared with that in central Tokyo. Here, if the absorbed dose rate indoors in Tokyo is equivalent to that outdoors, the annual effective dose would be calculated as 0.32 mSv y(-1). © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Whole-body absorbed dose rate in a worker carrying a can with contaminated liquid on his back

    International Nuclear Information System (INIS)

    Le Grand, J.; Roux, Y.

    1990-01-01

    The method used is briefly described: geometrical parametrization by a set of planes and photon transport simulation by Monte Carlo techniques. The whole-body absorbed dose rate and the maximum absorbed dose rate in the phantom representing the worker are calculated for five photon initial energies. In order to illustrate the dose variation in the phantom, the absorbed dose rates are also given at the head, at the breast and at the gonads [fr

  7. Assessment of absorbed dose rate from terrestrial gamma radiation in Red Sea State

    International Nuclear Information System (INIS)

    Abdalrahman, H. E. K.

    2012-09-01

    This study is primarily conducted to contribute in the overall strategic objective of producing Sudan radiation map which will include natural radiation levels and the resultant absorbed dose rate in air. The part covered by this study is the Red Sea State. Soil samples were collected from locations lie between latitudes 17.03 ° and the 20.18 ° N and longitudes 36.06 ° E during September 2007. Activity concentrations of the primordial radionuclides, 226 Ra, 232 Th, and 40 K in the samples were measured using gamma-ray spectrometry equipped with Nal (Tl) detector. Absorbed dose rates in air a height of 1 from the ground level and the corresponding annual effective doses were calculated from the measured activities using Dose Rate Conversion Factors (DRCFs). On the average, the activity concentrations were 19.22±13.13 Bq kg -1 ( 232 Th), 17.91±15.44 Bq kg -1 ( 226 Ra) and (507.13±161.67) Bq kg -1 for 40 K. The obtained results were found to be within the global values reported in the UNSCEAR publication for normal background areas with the exception of the samples taken from Arbaat area. The absorbed dose rate in air as calculated using UNSCEAR conversion factor averaged 40.93 n Gy h -1 which corresponds to annual effective dose of 50.23 μSvy -1 . The major contribution to the total absorbed dose rate comes from 40 K, which amounts to 53.36%. Using Geographical Information System (GIS), predication maps for activity concentrations levels of the measured radionuclides in the Red Sea state was prepared to show their respective spatial distributions. Similarly, GIS predictive map was produced for annual effective dose.(Author)

  8. Primordial radionuclides in soil and their contributions to absorbed dose rate in air

    International Nuclear Information System (INIS)

    Moriones, C.R.; Duran, E.B.; Cruz, F.M. de la

    1989-01-01

    The predominant primordial radionuclides in soil which give rise to terrestrial radiation (external irradiation) were analyzed by gamma spectrometry. 40 K has the highest average activity mass concentration, i.e. 212 Bq kg -1 . 238 U and 232 Th concentrations are much lower and are only 14 and 16 Bq kg -1 respectively. Based on conversion factors given in the UNSCEAR Report (1988), the absorbed dose rates in air at one meter above the ground surface per unit activity mass concentration of primordial radionuclides were calculated. The average per caput absorbed dose rate in air received by Filipinos due to terrestrial radiation is 23 nGy h -1 . The relative contribution of 232 Th series to the total absorbed dose rate is highest, followed closely by 40 K. The contribution of 238 U series is only about one-half that of the 232 Th series. Based on the results obtained, the terrestrial component of the average per caput exposure dose rate due to natural radiation sources is 2.64 μR h -1 or roughly 3 μR h -1 . This leads to an annual average effective dose equivalent to 202 μSv. (Author). 5 annexes; 4 figs.; 3 tabs.; 6 refs

  9. Measuring the absorbed dose in critical organs during low rate dose brachytherapy with 137 Cs using thermoluminescent dosemeters

    International Nuclear Information System (INIS)

    Torres, A.; Gonzalez, P.R.; Furetta, C.; Azorin, J.; Andres, U.; Mendez, G.

    2003-01-01

    Intracavitary Brachytherapy is one of the most used methods for the treatment of the cervical-uterine cancer. This treatment consists in the insertion of low rate dose 137 Cs sources into the patient. The most used system for the treatment dose planning is that of Manchester. This planning is based on sources, which are considered fixed during the treatment. However, the experience has shown that, during the treatment, the sources could be displaced from its initial position, changing the dose from that previously prescribed. For this reason, it is necessary to make measurements of the absorbed dose to the surrounding organs (mainly bladder and rectum). This paper presents the results of measuring the absorbed dose using home-made LiF: Mg, Cu, P + Ptfe thermoluminescent dosimeters (TLD). Measurements were carried out in-vivo during 20 minutes at the beginning and at the end of the treatments. Results showed that the absorbed dose to the critical organs vary significantly due to the movement of the patient during the treatment. (Author)

  10. Electrical behavior research of silicon photo-cell used in online monitoring absorbed dose rate of γ-ray

    International Nuclear Information System (INIS)

    Yang Guixia; Li Xiaoyan; Fu Lan; Wu Wenhao; An You; Zeng Fansong

    2015-01-01

    The real-time online monitoring system for γ-ray absorbed dose rate was established to study the relationship between the photocurrent of semi-conductive silicon photo-cell BBZSGD-4 and γ-ray absorbed dose rate under the open circuit. The radioactive experiments in 60 Co γ radiation field show that photo-cell BBZSGD-4 has good response to 60 Co γ-ray, and their relationship accords with the linear law. The photocurrent of photo-cell can be up to 1.26 μA when the absorbed dose rate is 94.54 Gy/min. The relationship between photocurrent and the absorbed dose accords with exponential law when absorbed dose rate is 50 Gy/min, and the attenuation of photocurrent is 1% when the absorbed dose is 5445.8 Gy. Thus photo-cell BBZSGD-4 has the potential to be a real-time detector to detect low absorbed dose rate in 60 Co γ radiation field. (authors)

  11. Radiation-Induced Color Centers in LiF for Dosimetry at High Absorbed Dose Rates

    DEFF Research Database (Denmark)

    McLaughlin, W. L.; Miller, Arne; Ellis, S. C.

    1980-01-01

    Color centers formed by irradiation of optically clear crystals of pure LiF may be analyzed spectrophotometrically for dosimetry in the absorbed dose range from 102 to 107 Gy. Routine monitoring of intense electron beams is an important application. Both 6LiF and 7LiF forms are commercially...... available, and when used with filters as albedo dosimeters in pairs, they provide discrimination of neutron and gamma-ray doses....

  12. Verification of absorbed dose rates in reference beta radiation fields: measurements with an extrapolation chamber and radiochromic film

    Energy Technology Data Exchange (ETDEWEB)

    Reynaldo, S. R. [Development Centre of Nuclear Technology, Posgraduate Course in Science and Technology of Radiations, Minerals and Materials / CNEN, Av. Pte. Antonio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais (Brazil); Benavente C, J. A.; Da Silva, T. A., E-mail: sirr@cdtn.br [Development Centre of Nuclear Technology / CNEN, Av. Pte. Antonio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais (Brazil)

    2015-10-15

    Beta Secondary Standard 2 (Bss 2) provides beta radiation fields with certified values of absorbed dose to tissue and the derived operational radiation protection quantities. As part of the quality assurance, metrology laboratories are required to verify the reliability of the Bss-2 system by performing additional verification measurements. In the CDTN Calibration Laboratory, the absorbed dose rates and their angular variation in the {sup 90}Sr/{sup 90}Y and {sup 85}Kr beta radiation fields were studied. Measurements were done with a 23392 model PTW extrapolation chamber and with Gafchromic radiochromic films on a PMMA slab phantom. In comparison to the certificate values provided by the Bss-2, absorbed dose rates measured with the extrapolation chamber differed from -1.4 to 2.9% for the {sup 90}Sr/{sup 90}Y and -0.3% for the {sup 85}Kr fields; their angular variation showed differences lower than 2% for incidence angles up to 40-degrees and it reached 11% for higher angles, when compared to ISO values. Measurements with the radiochromic film showed an asymmetry of the radiation field that is caused by a misalignment. Differences between the angular variations of absorbed dose rates determined by both dosimetry systems suggested that some correction factors for the extrapolation chamber that were not considered should be determined. (Author)

  13. Transcriptional Response in Mouse Thyroid Tissue after 211At Administration: Effects of Absorbed Dose, Initial Dose-Rate and Time after Administration.

    Directory of Open Access Journals (Sweden)

    Nils Rudqvist

    Full Text Available 211At-labeled radiopharmaceuticals are potentially useful for tumor therapy. However, a limitation has been the preferential accumulation of released 211At in the thyroid gland, which is a critical organ for such therapy. The aim of this study was to determine the effect of absorbed dose, dose-rate, and time after 211At exposure on genome-wide transcriptional expression in mouse thyroid gland.BALB/c mice were i.v. injected with 1.7, 7.5 or 100 kBq 211At. Animals injected with 1.7 kBq were killed after 1, 6, or 168 h with mean thyroid absorbed doses of 0.023, 0.32, and 1.8 Gy, respectively. Animals injected with 7.5 and 100 kBq were killed after 6 and 1 h, respectively; mean thyroid absorbed dose was 1.4 Gy. Total RNA was extracted from pooled thyroids and the Illumina RNA microarray platform was used to determine mRNA levels. Differentially expressed transcripts and enriched GO terms were determined with adjusted p-value 1.5, and p-value <0.05, respectively.In total, 1232 differentially expressed transcripts were detected after 211At administration, demonstrating a profound effect on gene regulation. The number of regulated transcripts increased with higher initial dose-rate/absorbed dose at 1 or 6 h. However, the number of regulated transcripts decreased with mean absorbed dose/time after 1.7 kBq 211At administration. Furthermore, similar regulation profiles were seen for groups administered 1.7 kBq. Interestingly, few previously proposed radiation responsive genes were detected in the present study. Regulation of immunological processes were prevalent at 1, 6, and 168 h after 1.7 kBq administration (0.023, 0.32, 1.8 Gy.

  14. Preliminary survey of absorbed dose rates in air at Guarapari and Meaipe in Brazil

    International Nuclear Information System (INIS)

    Fujinami, Naoto; Koga, Taeko; Morishima, Hiroshige

    1999-01-01

    A preliminary survey of the gamma-ray exposure rate was carried out at Guarapari and Meaipe in Brazil in September 1998. In those areas, exposure rates in the streets ranged from 0.1 to 0.4 μGy/h except for a few places such as near the beaches. Exposure rates inside houses were lower than 0.2 μGy/h except for two houses where an exposure rate of 0.4 μGy/h was measured. Our effective dose rate from external terrestrial irradiation was 0.17 μSv/h on the average during the period of our three-day stay in Guarapari (outdoors and indoors). These values are lower than those observed in the 1960s, which were cited in UNSCEAR reports. This fact suggests that the natural radiation environment of Guarapari has varied with urbanization, which brought paved streets, and changes in the structure and building materials of houses. A detailed survey is necessary in order to evaluate the present exposure rates in these areas. (author)

  15. Evaluation of absorbed radiation dose rate in a didactic X-ray equipment

    International Nuclear Information System (INIS)

    Costa, Phelipe Amaral Ferreira; Perini, Ana Paula; Neves, Lucio Pereira

    2016-01-01

    This work was performed in order to create a new didactic experiment in the X-ray apparatus of PHYWE, where the saturation current was obtained through a free air ionization chamber. The values of saturation currents were obtained in two ways. Initially, the anodic DDP was kept constant and the anodic current was varied. In the second way, the anodic current was kept constant while the anodic DDP was varied. Therefore, we were able to evaluate the dependence of the absolved dose rate in relation to the DDP and the tube current. (author)

  16. Real time monitoring automation of dose rate absorbed in air due to environmental gamma radiation

    International Nuclear Information System (INIS)

    Dominguez Ley, Orlando; Capote Ferrera, Eduardo; Carrazana Gonzalez, Jorge A.; Manzano de Armas, Jose F.; Alonso Abad, Dolores; Prendes Alonso, Miguel; Tomas Zerquera, Juan; Caveda Ramos, Celia A.; Kalber, Olof; Fabelo Bonet, Orlando; Montalvan Estrada, Adelmo; Cartas Aguila, Hector; Leyva Fernandez, Julio C.

    2005-01-01

    The Center of Radiation Protection and Hygiene (CPHR) as the head institution of the National Radiological Environmental Surveillance Network (RNVRA) has strengthened its detection and response capacity for a radiological emergency situation. The measurements of gamma dose rate at the main point of the RNVRA are obtained in real time and the CPHR receives the data coming from those points in a short time. To achieve the operability of the RNVRA it was necessary to complete the existent monitoring facilities using 4 automatic gamma probes, implementing in this way a real time measurement system. The software, GenitronProbe for obtaining the data automatically from the probe, Data Mail , for sending the data via e-mail, and Gamma Red , for receiving and processing the data in the head institution ,were developed

  17. Comparison of absorbed dose in the cervix carcinoma therapy by brachytherapy of high dose rate using the conventional planning and Monte Carlo simulation

    International Nuclear Information System (INIS)

    Silva, Aneli Oliveira da

    2010-01-01

    This study aims to compare the doses received for patients submitted to brachytherapy High Dose Rate (HDR) brachytherapy, a method of treatment of the cervix carcinoma, performed in the planning system PLATO BPS with the doses obtained by Monte Carlo simulation using the radiation transport code MCNP 5 and one female anthropomorphic phantom based on voxel, the FAX. The implementation of HDR brachytherapy treatment for the cervix carcinoma consists of the insertion of an intrauterine probe and an intravaginal probe (ring or ovoid) and then two radiographs are obtained, anteroposterior (AP) and lateral (LAT) to confirm the position of the applicators in the patient and to allow the treatment planning and the determination of the absorbed dose at points of interest: rectum, bladder, sigmoid and point A, which corresponds anatomically to the crossings of the uterine arteries with ureters The absorbed doses obtained with the code MCNP 5, with the exception of the absorbed dose in the rectum and sigmoid for the simulation considering a point source of 192 Ir, are lower than the absorbed doses from PLATO BPS calculations because the MCNP 5 considers the chemical compositions and densities of FAX body, not considering the medium as water. When considering the Monte Carlo simulation for a source with dimensions equal to that used in the brachytherapy irradiator used in this study, the values of calculated absorbed dose to the bladder, to the rectum, to the right point A and to the left point A were respectively lower than those determined by the treatment planning system in 33.29, 5.01, 22.93 and 19.04%. These values are almost all larger than the maximum acceptable deviation between patient planned and administered doses (5 %). With regard to the rectum and bladder, which are organs that must be protected, the present results are in favor of the radiological protection of patients. The point A, that is on the isodose of 100%, used to tumor treatment, the results indicate

  18. Calculations radiobiological using the quadratic lineal model in the use of the medium dose rate absorbed in brachytherapy. Pt. 3

    International Nuclear Information System (INIS)

    2002-01-01

    Calculations with the quadratic lineal model for medium rate using the equation dose-effect. Several calculations for system of low dose rate brachytherapy plus teletherapy, calculations for brachytherapy with medium dose rate together with teletherapy, dose for fraction and the one numbers of fractions in medium rate

  19. CALCULATION STUDIES OF SPATIAL DISTRIBUTION OF THE ABSORBED DOSE RATE FOR VARIOUS SEEDS

    Directory of Open Access Journals (Sweden)

    N. A. Nerozin

    2015-01-01

    Full Text Available Purpose. Conducting computational studies of dosimetric characteristics of microsources with the radionuclide I‑125, pilot production of which is established in the research and production complex of isotope and radiopharmaceuticals, JSC “State Scientific Centre of the Russian Federation — Institute for Physics and Power Engineering named after A. I. Leypunsky” (SSC RF IPPE. Sources of production IPPE are similar to the model 6711 of the company Nicomed Amersham, dosimetric characteristics of which are standardized in accordance with the TG43 AAPM formalism.Materials and methods. Microsourse «SEED No. 6711» (model of the company Nicomed Amersham is hermetically sealed in a titanium capsule silver rod covered with a thin layer of radioactive I‑125. The half-life of iodine‑125 is 59,43 days. In the process of decay of I‑125 is converted into the Te‑125.Calculation of parameters of microsources and their comparison with the standard model 6711 is carried out with use of the computer code MCNP.Results. The method of calculation of the basic dosimetric characteristics of the microsourse SSC RF-IPPE in accordance with the TG43 formalism is developed. A comparative analysis of experimental data and calculated results by MCNP code, which allowed to identify possible reasons for differences, is performed. The estimated dose characteristics and recommended standard data for dose characteristics of micro «SEED No. 6711» are compared.Conclusions. There are two possible reasons for the differences between experimental and calculated results. The first one may be the roughness of the surface of a silver rod or diffusion of radioactive iodine in silver. The second reason might be the difference of the cross sections of the characteristic radiation of silver used in MCNP code. In the comparison of calculated dose characteristics and recommended standard the role of the application activity is very important. In compliance with the standard

  20. The use of the TL and OSL phenomena for determination of absorbed dose rates of 90Sr + 90Y sources by a postal method

    International Nuclear Information System (INIS)

    Antonio, Patrícia L.; Pinto, Teresa C.N.O.; Silva, Rogério M.V.; Souza, Divanizia N.; Caldas, Linda V.E.

    2014-01-01

    International recommendations establish that 90 Sr + 90 Y clinical applicators have to be calibrated in order to determine the absorbed dose rates in the case of the sources that do not have original calibration certificates, or to update the absorbed dose rates presented in the source certificates. Following these recommendations, a postal dosimetric system was developed to calibrate clinical applicators using two luminescent techniques: thermoluminescence (TL) and optically stimulated luminescence (OSL). In this work, Al 2 O 3 :C commercial detectors were characterized and their TL and OSL responses were analyzed. The results showed the efficiency and the optimal behavior of this material in beta radiation beams. After characterization, the system was sent to the Federal University of Sergipe (UFS), Brazil, for calibration of five 90 Sr + 90 Y clinical applicators, where the detectors were irradiated and returned to IPEN, for their evaluation and determination of the absorbed dose rates. A comparison between these absorbed dose rates and those adopted by the UFS as original was made; the differences obtained were within those of other studies, and they demonstrated the usefulness of the system. - Highlights: • A postal dosimetric system was developed to calibrate clinical applicators. • Al 2 O 3 :C samples were characterized in relation to their TL and OSL response. • The clinical applicators from UFS were calibrated. • The absorbed dose rates were compared with those provided on the certificates

  1. Estimation of organ-absorbed radiation doses during 64-detector CT coronary angiography using different acquisition techniques and heart rates: a phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Matsubara, Kosuke; Koshida, Kichiro; Kawashima, Hiroko (Dept. of Quantum Medical Technology, Faculty of Health Sciences, Kanazawa Univ., Kanazawa (Japan)), email: matsuk@mhs.mp.kanazawa-u.ac.jp; Noto, Kimiya; Takata, Tadanori; Yamamoto, Tomoyuki (Dept. of Radiological Technology, Kanazawa Univ. Hospital, Kanazawa (Japan)); Shimono, Tetsunori (Dept. of Radiology, Hoshigaoka Koseinenkin Hospital, Hirakata (Japan)); Matsui, Osamu (Dept. of Radiology, Faculty of Medicine, Kanazawa Univ., Kanazawa (Japan))

    2011-07-15

    Background: Though appropriate image acquisition parameters allow an effective dose below 1 mSv for CT coronary angiography (CTCA) performed with the latest dual-source CT scanners, a single-source 64-detector CT procedure results in a significant radiation dose due to its technical limitations. Therefore, estimating the radiation doses absorbed by an organ during 64-detector CTCA is important. Purpose: To estimate the radiation doses absorbed by organs located in the chest region during 64-detector CTCA using different acquisition techniques and heart rates. Material and Methods: Absorbed doses for breast, heart, lung, red bone marrow, thymus, and skin were evaluated using an anthropomorphic phantom and radiophotoluminescence glass dosimeters (RPLDs). Electrocardiogram (ECG)-gated helical and ECG-triggered non-helical acquisitions were performed by applying a simulated heart rate of 60 beats per minute (bpm) and ECG-gated helical acquisitions using ECG modulation (ECGM) of the tube current were performed by applying simulated heart rates of 40, 60, and 90 bpm after placing RPLDs on the anatomic location of each organ. The absorbed dose for each organ was calculated by multiplying the calibrated mean dose values of RPLDs with the mass energy coefficient ratio. Results: For all acquisitions, the highest absorbed dose was observed for the heart. When the helical and non-helical acquisitions were performed by applying a simulated heart rate of 60 bpm, the absorbed doses for heart were 215.5, 202.2, and 66.8 mGy for helical, helical with ECGM, and non-helical acquisitions, respectively. When the helical acquisitions using ECGM were performed by applying simulated heart rates of 40, 60, and 90 bpm, the absorbed doses for heart were 178.6, 139.1, and 159.3 mGy, respectively. Conclusion: ECG-triggered non-helical acquisition is recommended to reduce the radiation dose. Also, controlling the patients' heart rate appropriately during ECG-gated helical acquisition with

  2. SU-E-T-516: Measurement of the Absorbed Dose Rate in Water Under Reference Conditions in a CyberKnife Unit

    Energy Technology Data Exchange (ETDEWEB)

    Aragon-Martinez, N; Hernandez-Guzman, A [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Mexico City, DF (Mexico); Gomez-Munoz, A [Centro Medico Nacional Siglo XXI, Mexico City, DF (Mexico); Massillon-JL, G

    2014-06-01

    Purpose: This paper aims to measure the absorbed-dose-rate in a CyberKnife unit reference-field (6cm diameter) using three ionization chambers (IC) following the new IAEA/AAPM formalism and Gafchromic film (MD-V3-55 and EBT3) protocol according to our work reported previously. Methods: The absorbed-dose-rates were measured at 90cm and 70cm SSD in a 10cmx10cm field and at 70cm SSD in a 5.4cmx5.4cm equivalent to 6cm diameter field using a linac Varian iX. All measurements were performed at 10cm depth in water. The correction factors that account for the difference between the IC response on the reference field and the CyberKnife reference field, k-(Q-msr,Q)^(f-msr,f-ref), were evaluated and Gafchromic film were calibrated using the results obtained above. Under the CyberKnife reference conditions, the factors were used to measure the absorbed-dose-rate with IC according to the new formalism and the calibrated film was irradiated in water. The film calibration curve was used to evaluate the absorbed-dose-rate in the CyberKnife unit. Results: Difference up to 2.56% is observed between dose-rate measured with IC in the reference 10cmx10cm field, depending where the chamber was calibrated, which was not reflected in the correction factor k-(Q-msr,Q)^(f-msr,f-ref ) where variations of ~0.15%-0.5% were obtained. Within measurements uncertainties, maximum difference of 1.8% on the absorbed-dose-rate in the CyberKnife reference field is observed between all IC and the films Conclusion: Absorbed-dose-rate to water was measured in a CyberKnife reference field with acceptable accuracy (combined uncertainties ~1.32%-1.73%, k=1) using three IC and films. The MD-V3-55 film as well as the new IAEA/AAPM formalism can be considered as a suitable dosimetric method to measure absorbed-dose-rate to water in small and non-standard CyberKnife fields used in clinical treatments However, the EBT3 film is not appropriated due to the high uncertainty provided (combined uncertainty ~9%, k=1

  3. Absorbed Dose Rate Due to Intake of Natural Radionuclides by Tilapia Fish (Tilapia nilotica,Linnaeus, 1758) Estimated Near Uranium Mining at Caetité, Bahia, Brazil

    Science.gov (United States)

    Pereira, Wagner de S.; Kelecom, Alphonse; Py Júnior, Delcy de Azevedo

    2008-08-01

    The uranium mining at Caetité (Uranium Concentrate Unit—URA) is in its operational phase. Aiming to estimate the radiological environmental impact of the URA, a monitoring program is underway. In order to preserve the biota of the deleterious effects from radiation and to act in a pro-active way as expected from a licensing body, the present work aims to use an environmental protection methodology based on the calculation of absorbed dose rate in biota. Thus, selected target organism was the Tilapia fish (Tilapia nilotica, Linnaeus, 1758) and the radionuclides were: uranium (U-238), thorium (Th-232), radium (Ra-226 and Ra-228) and lead (Pb-210). As, in Brazil there are no radiation exposure limits adopted for biota the value proposed by the Department of Energy (DOE) of the United States of 3.5×103 μGy y-1 has been used. The derived absorbed dose rate calculated for Tilapia was 2.51×100 μGy y-1, that is less than 0.1% of the dose limit established by DOE. The critical radionuclide was Ra-226, with 56% of the absorbed dose rate, followed by U-238 with 34% and Th-232 with 9%. This value of 0.1% of the limit allows to state that, in the operational conditions analyzed, natural radionuclides do not represent a radiological problem to biota.

  4. Absorbed Dose Rate Due to Intake of Natural Radionuclides by Tilapia Fish (Tilapia nilotica,Linnaeus, 1758) Estimated Near Uranium Mining at Caetite, Bahia, Brazil

    International Nuclear Information System (INIS)

    Pereira, Wagner de S; Kelecom, Alphonse; Azevedo Py Junior, Delcy de

    2008-01-01

    The uranium mining at Caetite (Uranium Concentrate Unit--URA) is in its operational phase. Aiming to estimate the radiological environmental impact of the URA, a monitoring program is underway. In order to preserve the biota of the deleterious effects from radiation and to act in a pro-active way as expected from a licensing body, the present work aims to use an environmental protection methodology based on the calculation of absorbed dose rate in biota. Thus, selected target organism was the Tilapia fish (Tilapia nilotica, Linnaeus, 1758) and the radionuclides were: uranium (U-238), thorium (Th-232), radium (Ra-226 and Ra-228) and lead (Pb-210). As, in Brazil there are no radiation exposure limits adopted for biota the value proposed by the Department of Energy (DOE) of the United States of 3.5x10 3 μGy y -1 has been used. The derived absorbed dose rate calculated for Tilapia was 2.51x10 0 μGy y -1 , that is less than 0.1% of the dose limit established by DOE. The critical radionuclide was Ra-226, with 56% of the absorbed dose rate, followed by U-238 with 34% and Th-232 with 9%. This value of 0.1% of the limit allows to state that, in the operational conditions analyzed, natural radionuclides do not represent a radiological problem to biota

  5. Absorbed dose rate due to intake of natural radionuclides by Tilapia fish (Tilapia nilotica, Linnaeus, 1758) estimated near uranium anomaly at Santa Quiteria, Ceara, Brazil

    International Nuclear Information System (INIS)

    Pereira, Wagner de; Kelecom, Alphonse; Py Junior, Delcy de Azevedo

    2007-01-01

    The uranium mining at Santa Quiteria (Santa Quiteria Unit - USQ) is in its environmental licensing phase. Aiming to estimate the radiological environmental impact of the USQ, a monitoring program is underway. However, radioprotection of biota is not explicitly mentioned in Brazilian norms. In order to preserve the biota of the deleterious effects from radiation and to behave in a pro-active way as expected by licensing organs, the present work aims to use an environmental protection methodology, based on the calculation of absorbed dose rate in biota. Thus, selected biomarker was the fish tilapia (Tilapia nilotica, Linnaeus, 1758) and the radionuclides were: uranium (U-238), thorium (Th-232), radium (Ra-226 and Ra-228) and lead (Pb-210). Since there are no exposition limits for biota, in Brazil, the value proposed by the Department of Energy (DOE) of the United States of 3.5 x 10 3 μGy/y has been used. The derived absorbed dose rate calculated for tilapia was 2.76 x 10 0 μGy/y, that is less than 0.1 % of the limit established by DOE. The critical radionuclide was U-238, with 99% of the absorbed dose rate. This value of 0.1% of the limit allows to state that in pre-operational conditions analyzed natural radionuclides do not represent a radiological problem to the biota. (author)

  6. Absorbed dose rate due to intake of natural radionuclides by Tilapia fish (Tilapia nilotica, Linnaeus, 1758) estimated near uranium anomaly at Santa Quiteria, Ceara, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Wagner de [Industrias Nucleares do Brasil S.A. (INB), Pocos de Caldas, MG (Brazil). Coordenacao de Protecao Radiologica. Unidade de Tratamento de Minerios], E-mail: wspereira@inb.gov.br; Kelecom, Alphonse [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Programa de Pos-graduacao em Ciencia Ambiental; Py Junior, Delcy de Azevedo [Industrias Nucleares do Brasil S.A. (INB), Caetite, BA (Brazil). Coordenacao de Protecao Radiologica. Unidade de Concentrado de Uranio], E-mail: Delcy@inb.gov.br

    2007-07-01

    The uranium mining at Santa Quiteria (Santa Quiteria Unit - USQ) is in its environmental licensing phase. Aiming to estimate the radiological environmental impact of the USQ, a monitoring program is underway. However, radioprotection of biota is not explicitly mentioned in Brazilian norms. In order to preserve the biota of the deleterious effects from radiation and to behave in a pro-active way as expected by licensing organs, the present work aims to use an environmental protection methodology, based on the calculation of absorbed dose rate in biota. Thus, selected biomarker was the fish tilapia (Tilapia nilotica, Linnaeus, 1758) and the radionuclides were: uranium (U-238), thorium (Th-232), radium (Ra-226 and Ra-228) and lead (Pb-210). Since there are no exposition limits for biota, in Brazil, the value proposed by the Department of Energy (DOE) of the United States of 3.5 x 10{sup 3} {mu}Gy/y has been used. The derived absorbed dose rate calculated for tilapia was 2.76 x 10{sup 0} {mu}Gy/y, that is less than 0.1 % of the limit established by DOE. The critical radionuclide was U-238, with 99% of the absorbed dose rate. This value of 0.1% of the limit allows to state that in pre-operational conditions analyzed natural radionuclides do not represent a radiological problem to the biota. (author)

  7. Absorbed radiation dose on LHC interconnects

    CERN Document Server

    Versaci, R; Vlachoudis, V; CERN. Geneva. ATS Department

    2011-01-01

    Here we present the results of our FLUKA simulations devoted to the evaluation of the peak dose absorbed by the busbar insulator in the LHC Interaction Region 7 interconnects. The peak dose absorbed by the cold magnet coils are also presented.

  8. Absorbed Dose and Dose Equivalent Calculations for Modeling Effective Dose

    Science.gov (United States)

    Welton, Andrew; Lee, Kerry

    2010-01-01

    While in orbit, Astronauts are exposed to a much higher dose of ionizing radiation than when on the ground. It is important to model how shielding designs on spacecraft reduce radiation effective dose pre-flight, and determine whether or not a danger to humans is presented. However, in order to calculate effective dose, dose equivalent calculations are needed. Dose equivalent takes into account an absorbed dose of radiation and the biological effectiveness of ionizing radiation. This is important in preventing long-term, stochastic radiation effects in humans spending time in space. Monte carlo simulations run with the particle transport code FLUKA, give absorbed and equivalent dose data for relevant shielding. The shielding geometry used in the dose calculations is a layered slab design, consisting of aluminum, polyethylene, and water. Water is used to simulate the soft tissues that compose the human body. The results obtained will provide information on how the shielding performs with many thicknesses of each material in the slab. This allows them to be directly applicable to modern spacecraft shielding geometries.

  9. Absorbed dose uncertainty estimation for proton therapy

    Directory of Open Access Journals (Sweden)

    Spasić-Jokić Vesna

    2012-01-01

    Full Text Available Successful radiotherapy treatment depends on the absorbed dose evaluation and the possibility to define metrological characteristics of the therapy beam. Radiotherapy requires tumor dose delivery with expanded uncertainty less than ±5 %. It is particularly important to reduce uncertainty during therapy beam calibration as well as to apply all necessary ionization chamber correction factors. Absorbed dose to water was determined using ionometric method. Calibration was performed in reference cobalt beam. Combined standard uncertainty of the calculated absorbed dose to water in 65 MeV proton beam was ±1.97% while the obtained expanded uncertainty of absorbed dose for the same beam quality was ±5.02%. The uncertainty estimation method has been developed within the project TESLA.

  10. Methodology for setting the reference levels in the measurements of the dose rate absorbed in air due to the environmental gamma radiation

    International Nuclear Information System (INIS)

    Dominguez Ley, Orlando; Capote Ferrera, Eduardo; Caveda Ramos, Celia; Alonso Abad, Dolores

    2008-01-01

    Full text: The methodology for setting the reference levels of the measurements of the gamma dose rate absorbed in the air is described. The registration level was obtained using statistical methods. To set the alarm levels, it was necessary to begin with certain affectation level, which activates the investigation operation mode when being reached. It is was necessary to transform this affectation level into values of the indicators selected to set the appearance of an alarm in the network, allowing its direct comparison and at the same time a bigger operability of this one. The affectation level was assumed as an effective dose of 1 mSv/y, which is the international dose limit for public. The conversion factor obtained in a practical way as a consequence of the Chernobyl accident was assumed, converting the value of annual effective dose into values of effective dose rate in air. These factors are the most important in our work, since the main task of the National Network of Environmental Radiological Surveillance of the Republic of Cuba is detecting accidents with a situations regional affectation, and this accident is precisely an example of pollution at this scale. The alarm level setting was based on the results obtained in the first year of the Chernobyl accident. For this purpose, some transformations were achieved. In the final results, a correction factor was introduced depending on the year season the measurement was made. It was taken into account the influence of different meteorological events on the measurement of this indicator. (author)

  11. Application of a new style silicon absorbed dose calorimeter

    International Nuclear Information System (INIS)

    An Jinxia; Ba Weizhen; Wu Qinzhi; He Chengfa; Chen Zhaoyang

    2000-01-01

    The structure and electrical calibration and measurement principle of a new style silicon absorbed dose calorimeter are described. The distribution of dose rate with the distance in a 60 Co radiation room is given, and the dose during lifting-falling 60 Co radiation is also measured. Its results show that dose during lifting-falling 60 Co radiation can not be ignored, especially the radiation for the short time, for short distance or for little dose

  12. Absorbed dose determination in water. I

    International Nuclear Information System (INIS)

    Novotny, J.

    1991-01-01

    The use of new values of physical parameters as recommended by international organizations has consequences in radiotherapy, e.g. in the determination of absorbed doses in water based on ionometric measurements. A procedure is proposed for the determination of the conversion factor K w,u between kerma in air and absorbed dose in water, and of the factor C w,u between exposure measured and absorbed dose in water, for ionization chambers and high-energy photon beams. The conversion factors depend not only on the radiation quality but also on the dimensions and composition of the chamber and of the cup used in the calibrations. Numerical values are given for conventional kinds of ionization chambers. (author). 3 tabs., 16 refs

  13. Absorbed dose determination in water. II

    International Nuclear Information System (INIS)

    Novotny, J.; Hobzova, L.; Kindlova, A.

    1991-01-01

    The use of new values of physical parameters as recommended by international organizations has consequences in radiotherapy, e.g. in the determination of absorbed doses in water based on ionometric measurements. A procedure is proposed for the determination of the conversion factor K w,e from kerma in air to absorbed dose in water, and of the conversion factor C w,e from exposure measured to dose absorbed in water, this for ionization chambers and high-energy electron beams. The conversion factors depend not only on the radiation quality and measurement depth in the phantom but also on the dimensions and composition of the chamber and of the cup used in the calibrations. Numerical values are given for two conventional kinds of ionization chambers. (author). 3 tabs., 9 refs

  14. Multilayer detector for skin absorbed dose measuring

    International Nuclear Information System (INIS)

    Osanov, D.P.; Panova, V.P.; Shaks, A.I.

    1985-01-01

    A method for skin dosimetry based on utilization of multilayer detectors and permitting to estimate distribution of absorbed dose by skin depth is described. The detector represents a set of thin sensitive elements separated by tissue-equivalent absorbers. Quantitative evaluation and forecasting the degree of radiation injury of skin are determined by the formula based on determination of the probability of the fact that cells are not destroyed and they can divide further on. The given method ensures a possibility of quantitative evaluation of radiobiological effect and forecasting clinical consequences of skin irradiation by results of corresponding measurements of dose by means of the miultilayer detector

  15. Evaluation of absorbed radiation dose rate in a didactic X-ray equipment; Avaliacao da taxa de dose absorvida em um equipamento de raios-X didatico

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Phelipe Amaral Ferreira; Perini, Ana Paula; Neves, Lucio Pereira, E-mail: lucio.neves@ufu.br [Universidade Federal de Uberlandia (UFU), MG (Brazil). Instituto de Fisica

    2016-07-01

    This work was performed in order to create a new didactic experiment in the X-ray apparatus of PHYWE, where the saturation current was obtained through a free air ionization chamber. The values of saturation currents were obtained in two ways. Initially, the anodic DDP was kept constant and the anodic current was varied. In the second way, the anodic current was kept constant while the anodic DDP was varied. Therefore, we were able to evaluate the dependence of the absolved dose rate in relation to the DDP and the tube current. (author)

  16. Organ absorbed doses in intraoral dental radiography.

    Science.gov (United States)

    Lecomber, A R; Faulkner, K

    1993-11-01

    A dental radiography unit operating at 70 kV (nominal) and 20 cm focus-skin distance was used to irradiate an anthropomorphic phantom loaded with lithium fluoride thermoluminescent dosemeters, in order to assess the variation in organ absorbed dose with intraoral periapical radiographic view. 14 views using the bisecting-angle technique and four views using the paralleling technique were studied. The results are presented and the doses and dose distributions examined. Doses for the paralleling and bisecting-angle techniques are compared, and the effects of focus-skin distance and beam collimation upon patient dosimetry discussed. Sources of uncertainty in dental dosimetry studies using phantoms are also considered.

  17. Automation of the monitoring in real time of the absorbed dose rate in air due to the environmental gamma radiation in Cuba

    International Nuclear Information System (INIS)

    Dominguez L, O.; Capote F, E.; Carrazana G, J.A.; Manzano de Armas, J.F.; Alonso A, D.; Prendes A, M.; Zerquera, J.T.; Caveda R, C.A.; Kalberg, O.; Fabelo B, O.; Montalvan E, A.; Cartas A, H.; Leyva F, J.C.

    2006-01-01

    The Center of Protection and Hygiene of the Radiations (CPHR) like center rector of the National Net of Environmental Radiological Surveillance (RNVRA), it has strengthened their detection capacity and of answer before a situation of radiological emergency. The measurements of the absorbed dose rate in air due to the environmental gamma radiation in the main stations of the Net are obtained in real time and the CPHR receives the data coming from these posts at one time relatively short. To improve the operability of the RNVRA it was necessary to complete the facilities of existent monitoring using 4 automatic measurement stations with probes of gamma detection, implementing in this way a measurement system on real time. On the other hand the software were developed: GenironProbeFech, to obtain the data of the probes, DataMail for the shipment of the same ones by electronic mail and GammaRed that receives and processes the data in the rector center. (Author)

  18. Absorbed dose from traversing spherically symmetric, Gaussian radioactive clouds

    International Nuclear Information System (INIS)

    Thompson, J.M.; Poston, J.W.

    1999-01-01

    If a large radioactive cloud is produced, sampling may require that an airplane traverse the cloud. A method to predict the absorbed dose to the aircrew from penetrating the radioactive cloud is needed. Dose rates throughout spherically symmetric Gaussian clouds of various sizes, and the absorbed doses from traversing the clouds, were calculated. Cloud size is a dominant parameter causing dose to vary by orders of magnitude for a given dose rate measured at some distance. A method to determine cloud size, based on dose rate readings at two or more distances from the cloud center, was developed. This method, however, failed to resolve the smallest cloud sizes from measurements made at 1,000 m to 2,000 m from the cloud center

  19. Absorbed Doses to Patients in Nuclear Medicine

    International Nuclear Information System (INIS)

    Leide-Svegborn, Sigrid; Mattsson, Soeren; Nosslin, Bertil; Johansson, Lennart

    2004-09-01

    The work with a Swedish catalogue of radiation absorbed doses to patients undergoing nuclear medicine investigations has continued. After the previous report in 1999, biokinetic data and dose estimates (mean absorbed dose to various organs and tissues and effective dose) have been produced for a number of substances: 11 C- acetate, 11 C- methionine, 18 F-DOPA, whole antibody labelled with either 99m Tc, 111 In, 123 I or 131 I, fragment of antibody, F(ab') 2 labelled with either 99m Tc, 111 In, 123 I or 131 I and fragment of antibody, Fab' labelled with either 99m Tc, 111 In, 123 I or 131 I. The absorbed dose estimates for these substances have been made from published biokinetic information. For other substances of interest, e.g. 14 C-urea (children age 3-6 years), 14 C-glycocholic acid, 14 C-xylose and 14 C-triolein, sufficient literature data have not been available. Therefore, a large number of measurements on patients and volunteers have been carried out, in order to determine the biokinetics and dosimetry for these substances. Samples of breast milk from 50 mothers, who had been subject to nuclear medicine investigations, have been collected at various times after administration of the radiopharmaceutical to the mother. The activity concentration in the breast milk samples has been measured. The absorbed dose to various organs and tissues and the effective dose to the child who ingests the milk have been determined for 17 different radiopharmaceuticals. Based on these results revised recommendations for interruption of breast-feeding after nuclear medicine investigations are suggested

  20. Fishes of water bodies within the Ukrainian part of the Chernobyl exclusion zone: current levels of radioactive contamination and absorbed dose rate

    Energy Technology Data Exchange (ETDEWEB)

    Kaglyan, Alexander Ye.; Gudkov, Dmitri I. [Institute of Hydrobiology of the NAS of Ukraine, Geroyiv Stalingrada Ave. 12, UA- 04210, Kyiv (Ukraine)

    2014-07-01

    The results of studies of radioactive contamination of ichthyofauna of water bodies of the Chernobyl exclusion zone (ChEZ) during 2012-2013 are presented. The fish sampled from water bodies with different hydrological mode was used: (1) stagnant lakes (Vershyna, Glyboke, Azbuchyn, Daleke); (2) reservoir with slow water exchange (cooling pond of the Chernobyl NPP); (3) conditionally stagnant water bodies (separated from the main riverbed of the Pripyat River - Yanovsky and Novoshepelichesky Crawls and part of the Krasnensky former river bed); (4) semi-flowing water body (Krasnensky former river bed located outside of the dammed territory); (5) open crawls of the Pripyat river ('Schepochka' and Chernobylsky) and (6) waterway (riverbed sites of the Pripyat River). The highest levels of radionuclide concentrations were determined in fish of the stagnant water objects - 937-25907 Bq/kg (w.w.) of {sup 137}Cs and 1845-101220 Bq/kg of {sup 90}Sr. In fish of cooling pond the concentration of {sup 137}Cs registered in range 750-4200 and {sup 90}Sr - 41-512 Bq/kg. In ichthyofauna of water bodies which concern to the third group, specific activity of {sup 137}Cs and {sup 90}Sr fluctuated accordingly within range of 520-3385 and 722-6210, and in a semi-flowing reservoir - 573-2948 and 97-4484 Bq/kg. The concentrations of {sup 137}Cs in fish of the fifth and sixth groups were accordingly 25-159 and 11-224 as well as {sup 90}Sr - 36-174 and 3-14 Bq/kg. The ratio of specific activity of {sup 90}Sr/{sup 137}Cs for pray fish from all studied groups of water bodies, except the second and the sixth ones, was in range 1.5-39.7. Thus intensity of water exchange is one of the defining factors, influencing on level of radionuclide specific activity in fish, especially {sup 90}Sr - the higher the flow age, the lower the level of radioactive contamination of fish inhabiting it. Calculation of the absorbed dose rate has shown that highest radiation dose was in fish inhabiting lake

  1. An absorbed dose calorimeter for IMRT dosimetry

    International Nuclear Information System (INIS)

    Duane, S.; Aldehaybes, M.; Bailey, M.; Lee, N.D.; Thomas, C.G.; Palmans, H.

    2012-01-01

    A new calorimeter for dosimetry in small and complex fields has been built. The device is intended for the direct determination of absorbed dose to water in moderately small fields and in composite fields such as IMRT treatments, and as a transfer instrument calibrated against existing absorbed dose standards in conventional reference conditions. The geometry, materials and mode of operation have been chosen to minimize detector perturbations when used in a water phantom, to give a reasonably isotropic response and to minimize the effects of heat transfer when the calorimeter is used in non-reference conditions in a water phantom. The size of the core is meant to meet the needs of measurement in IMRT treatments and is comparable to the size of the air cavity in a type NE2611 ionization chamber. The calorimeter may also be used for small field dosimetry. Initial measurements in reference conditions and in an IMRT head and neck plan, collapsed to gantry angle zero, have been made to estimate the thermal characteristics of the device, and to assess its performance in use. The standard deviation (estimated repeatability) of the reference absorbed dose measurements was 0.02 Gy (0.6%). (authors)

  2. Problems in radiation absorbed dose estimation from positron emitters

    International Nuclear Information System (INIS)

    Powell, G.F.; Harper, P.V.; Reft, C.S.; Chen, C.T.; Lathrop, K.A.

    1986-01-01

    The positron emitters commonly used in clinical imaging studies for the most part are short-lived, so that when they are distributed in the body the radiation absorbed dose is low even though most of the energy absorbed is from the positrons themselves rather than the annihilation radiation. These considerations do not apply to the administration pathway for a radiopharmaceutical where the activity may be highly concentrated for a brief period rather than distributed in the body. Thus, high local radiation absorbed doses to the vein for an intravenous administration and to the upper airways during administration by inhalation can be expected. For these geometries, beta point source functions (FPS's) have been employed to estimate the radiation absorbed dose in the present study. Physiologic measurements were done to determine other exposure parameters for intravenous administration of O-15 and Rb-82 and for administration of O-15-CO 2 by continuous breathing. Using FPS's to calculate dose rates to the vein wall from O-15 and Rb-82 injected into a vein having an internal radius of 1.5 mm yielded dose rates of 0.51 and 0.46 (rad x g/μCi x h), respectively. The dose gradient in the vein wall and surrounding tissues was also determined using FPS's. Administration of O-15-CO 2 by continuous breathing was also investigated. Using ultra-thin thermoluninescent dosimeters (TLD's) having the effective thickness of normal tracheal mucosa, experiments were performed in which 6 dosimeters were exposed to known concentrations of O-15 positrons in a hemicylindrical tracheal phantom having an internal radius of 0.96 cm and an effective length of 14 cm. The dose rate for these conditions was 3.4 (rads/h)/(μCi/cm 3 ). 15 references, 7 figures, 6 tables

  3. Space radiation absorbed dose distribution in a human phantom

    Science.gov (United States)

    Badhwar, G. D.; Atwell, W.; Badavi, F. F.; Yang, T. C.; Cleghorn, T. F.

    2002-01-01

    The radiation risk to astronauts has always been based on measurements using passive thermoluminescent dosimeters (TLDs). The skin dose is converted to dose equivalent using an average radiation quality factor based on model calculations. The radiological risk estimates, however, are based on organ and tissue doses. This paper describes results from the first space flight (STS-91, 51.65 degrees inclination and approximately 380 km altitude) of a fully instrumented Alderson Rando phantom torso (with head) to relate the skin dose to organ doses. Spatial distributions of absorbed dose in 34 1-inch-thick sections measured using TLDs are described. There is about a 30% change in dose as one moves from the front to the back of the phantom body. Small active dosimeters were developed specifically to provide time-resolved measurements of absorbed dose rates and quality factors at five organ locations (brain, thyroid, heart/lung, stomach and colon) inside the phantom. Using these dosimeters, it was possible to separate the trapped-proton and the galactic cosmic radiation components of the doses. A tissue-equivalent proportional counter (TEPC) and a charged-particle directional spectrometer (CPDS) were flown next to the phantom torso to provide data on the incident internal radiation environment. Accurate models of the shielding distributions at the site of the TEPC, the CPDS and a scalable Computerized Anatomical Male (CAM) model of the phantom torso were developed. These measurements provided a comprehensive data set to map the dose distribution inside a human phantom, and to assess the accuracy and validity of radiation transport models throughout the human body. The results show that for the conditions in the International Space Station (ISS) orbit during periods near the solar minimum, the ratio of the blood-forming organ dose rate to the skin absorbed dose rate is about 80%, and the ratio of the dose equivalents is almost one. The results show that the GCR model dose-rate

  4. Neutron absorbed dose in a pacemaker CMOS

    Energy Technology Data Exchange (ETDEWEB)

    Borja H, C. G.; Guzman G, K. A.; Valero L, C. Y.; Banuelos F, A.; Hernandez D, V. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Paredes G, L., E-mail: candy_borja@hotmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2011-11-15

    The absorbed dose due to neutrons by a Complementary Metal Oxide Semiconductor (CMOS) has been estimated using Monte Carlo methods. Eventually a person with a pacemaker becomes a patient that must be treated by radiotherapy with a linear accelerator; the pacemaker has integrated circuits as CMOS that are sensitive to intense and pulsed radiation fields. When the Linac is working in Bremsstrahlung mode an undesirable neutron field is produced due to photoneutron reactions; these neutrons could damage the CMOS putting the patient at risk during the radiotherapy treatment. In order to estimate the neutron dose in the CMOS a Monte Carlo calculation was carried out where a full radiotherapy vault room was modeled with a W-made spherical shell in whose center was located the source term of photoneutrons produced by a Linac head operating in Bremsstrahlung mode at 18 MV. In the calculations a phantom made of tissue equivalent was modeled while a beam of photoneutrons was applied on the phantom prostatic region using a field of 10 x 10 cm{sup 2}. During simulation neutrons were isotropically transported from the Linac head to the phantom chest, here a 1 {theta} x 1 cm{sup 2} cylinder made of polystyrene was modeled as the CMOS, where the neutron spectrum and the absorbed dose were estimated. Main damages to CMOS are by protons produced during neutron collisions protective cover made of H-rich materials, here the neutron spectrum that reach the CMOS was calculated showing a small peak around 0.1 MeV and a larger peak in the thermal region, both connected through epithermal neutrons. (Author)

  5. Comparison of absorbed dose in the cervix carcinoma therapy by brachytherapy of high dose rate using the conventional planning and Monte Carlo simulation; Comparacao da dose absorvida no tratamento do cancer ginecologico por braquiterapia de alta taxa de dose utilizando o planejamento convencional do tratamento e simulacao de Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Aneli Oliveira da

    2010-07-01

    This study aims to compare the doses received for patients submitted to brachytherapy High Dose Rate (HDR) brachytherapy, a method of treatment of the cervix carcinoma, performed in the planning system PLATO BPS with the doses obtained by Monte Carlo simulation using the radiation transport code MCNP 5 and one female anthropomorphic phantom based on voxel, the FAX. The implementation of HDR brachytherapy treatment for the cervix carcinoma consists of the insertion of an intrauterine probe and an intravaginal probe (ring or ovoid) and then two radiographs are obtained, anteroposterior (AP) and lateral (LAT) to confirm the position of the applicators in the patient and to allow the treatment planning and the determination of the absorbed dose at points of interest: rectum, bladder, sigmoid and point A, which corresponds anatomically to the crossings of the uterine arteries with ureters The absorbed doses obtained with the code MCNP 5, with the exception of the absorbed dose in the rectum and sigmoid for the simulation considering a point source of {sup 192}Ir, are lower than the absorbed doses from PLATO BPS calculations because the MCNP 5 considers the chemical compositions and densities of FAX body, not considering the medium as water. When considering the Monte Carlo simulation for a source with dimensions equal to that used in the brachytherapy irradiator used in this study, the values of calculated absorbed dose to the bladder, to the rectum, to the right point A and to the left point A were respectively lower than those determined by the treatment planning system in 33.29, 5.01, 22.93 and 19.04%. These values are almost all larger than the maximum acceptable deviation between patient planned and administered doses (5 %). With regard to the rectum and bladder, which are organs that must be protected, the present results are in favor of the radiological protection of patients. The point A, that is on the isodose of 100%, used to tumor treatment, the results

  6. The Australian Commonwealth standard of measurement for absorbed radiation dose

    International Nuclear Information System (INIS)

    Sherlock, S.L.

    1990-06-01

    This report documents the absorbed dose standard for photon beams in the range from 1 to 25 MeV. Measurements of absorbed dose in graphite irradiated by a beam of cobalt-60 gamma rays from an Atomic Energy of Canada Limited (AECL) E1 Dorado 6 teletherapy unit are reported. The measurements were performed using a graphite calorimeter, which is the primary standard for absorbed dose. The measurements are used to calibrate a working standard ion chamber in terms of absorbed dose in graphite. Details of the methods, results and correction factors applied are given in Appendices. 13 refs., 6 tabs., 6 figs

  7. Dose and dose rate monitor

    International Nuclear Information System (INIS)

    Novakova, O.; Ryba, J.; Slezak, V.; Svobodova, B.; Viererbl, L.

    1984-10-01

    The methods are discussea of measuring dose rate or dose using a scintillation counte. A plastic scintillator based on polystyrene with PBD and POPOP activators and coated with ZnS(Ag) was chosen for the projected monitor. The scintillators were cylindrical and spherical in shape and of different sizes; black polypropylene tubes were chosen as the best case for the probs. For the counter with different plastic scintillators, the statistical error 2σ for natural background was determined. For determining the suitable thickness of the ZnS(Ag) layer the energy dependence of the counter was measured. Radioisotopes 137 Cs, 241 Am and 109 Cd were chosen as radiation sources. The best suited ZnS(Ag) thickness was found to be 0.5 μm. Experiments were carried out to determine the directional dependence of the detector response and the signal to noise ratio. The temperature dependence of the detector response and its compensation were studied, as were the time stability and fatigue manifestations of the photomultiplier. The design of a laboratory prototype of a dose rate and dose monitor is described. Block diagrams are given of the various functional parts of the instrument. The designed instrument is easiiy portable, battery powered, measures dose rates from natural background in the range of five orders, i.e., 10 -2 to 10 3 nGy/s, and allows to determine a dose of up to 10 mGy. Accouracy of measurement in the energy range of 50 keV to 1 MeV is better than +-20%. (E.S.)

  8. Absorbed Dose Distribution in a Pulse Radiolysis Optical Cell

    DEFF Research Database (Denmark)

    Miller, Arne; McLaughlin, W. L.

    1975-01-01

    When a liquid solution in an optical cell is irradiated by an intense pulsed electron beam, it may be important in the chemical analysis of the solution to know the distribution of energy deposited throughout the cell. For the present work, absorbed dose distributions were measured by thin...... radiochromic dye film dosimeters placed at various depths in a quartz glass pulse radiolysis cell. The cell was irradiated with 30 ns pulses from a field-emission electron accelerator having a broad spectrum with a maximum energy of ≈MeV. The measured three-dimensional dose distributions showed sharp gradients...... in dose at the largest penetration depths in the cell and at the extreme lateral edges of the cell interior near the optical windows. This method of measurement was convenient because of the high spatial resolution capability of the detector and the linearity and absence of dose-rate dependence of its...

  9. Determination of Absorbed Dose Using a Dosimetric Film

    International Nuclear Information System (INIS)

    Scarlat, F.; Scarisoreanu, A.; Oane, M.; Badita, E.; Mitru, E.

    2009-01-01

    This paper presents the absorbed dose measurements by means of the irradiated dosimetric reference films. The dose distributions were made by MULTIDATA film densitometer using RTD-4 software, in INFLPR Linear Accelerator Department

  10. The absorbed dose to blood from blood-borne activity

    International Nuclear Information System (INIS)

    Hänscheid, H; Fernández, M; Lassmann, M

    2015-01-01

    The radiation absorbed dose to blood and organs from activity in the blood is relevant for nuclear medicine dosimetry and for research in biodosimetry. The present study provides coefficients for the average absorbed dose rates to the blood from blood-borne activity for radionuclides frequently used in targeted radiotherapy and in PET diagnostics. The results were deduced from published data for vessel radius-dependent dose rate coefficients and reasonable assumptions on the blood-volume distribution as a function of the vessel radius. Different parts of the circulatory system were analyzed separately. Vessel size information for heart chambers, aorta, vena cava, pulmonary artery, and capillaries was taken from published results of morphometric measurements. The remaining blood not contained in the mentioned vessels was assumed to reside in fractal-like vascular trees, the smallest branches of which are the arterioles or venules. The applied vessel size distribution is consistent with recommendations of the ICRP on the blood-volume distribution in the human. The resulting average absorbed dose rates to the blood per nuclear disintegration per milliliter (ml) of blood are (in 10 −11  Gy·s −1 ·Bq −1 ·ml) Y-90: 5.58, I-131: 2.49, Lu-177: 1.72, Sm-153: 2.97, Tc-99m: 0.366, C-11: 4.56, F-18: 3.61, Ga-68: 5.94, I-124: 2.55. Photon radiation contributes 1.1–1.2·10 −11  Gy·s −1 ·Bq −1 ·ml to the total dose rate for positron emitters but significantly less for the other nuclides. Blood self-absorption of the energy emitted by ß-particles in the whole blood ranges from 37% for Y-90 to 80% for Tc-99m. The correspondent values in vascular trees, which are important for the absorbed dose to organs, range from 30% for Y-90 to 82% for Tc-99m. (paper)

  11. Radiation sensitive medium for recording an absorbed dose distribution

    DEFF Research Database (Denmark)

    2017-01-01

    The invention relates to a radiation sensitive medium for recording an absorbed dose distribution from an external radiation source such as e.g. a linear particle accelerator used for e.g. cancer treatment or radiation processing. The invention further relates to a method for measuring the absorbed...... doses distribution in a radiation sensitive medium....

  12. Effect of Bilirubin concentration on radiation absorbed dose ...

    African Journals Online (AJOL)

    Results indicate that at low concentrations (25 mol/L to 76 mol/L) absorbed doses decreased with increase in bilirubin concentration. At higher bilirubin concentrations (76 mol/L to 460 mol/L) and beyond, there was an increase in absorption with a strong positive correlation (r = 0.92) between dose absorbed and ...

  13. Experimental measures of the energy rate absorbed in the aluminium and the comparison with the calculation using factors of dose and carrier of electrons by means of MCNP code

    International Nuclear Information System (INIS)

    Federico, Claudio A.; Vieira, Wilson J.; Rigolon, Leda S.Y.; Geraldo, Luiz P.

    2000-01-01

    In this paper are presented the results of a Monte Carlo calculation for the energy deposition rate in aluminum plates, when a collimated beam of gamma-rays produced by thermal neutrons capture in nickel target passes through them. The absorbed dose rate as a function of the aluminum thickness crossed by the gamma beam has been measured by using CaSO e :Dy thermoluminescent dosimeters. The capture gamma ray beam was extracted from a tangential beam tube of the IPEN's IEA-R1 2MW research reactor. The absorbed dose calculation was performed employing the Monte Carlo N-particle transport code (MCNP) and two methods of calculation: the simulated gamma ray flux multiplied by a dose conversion factor, and the simulated electron flux multiplied by the collision linear energy loss. The calculation results obtained by the electron transport have shown a good agreement with the experimental measurements. For deeper layers (more than 10 mm aluminum thickness), the calculation using the gamma ray flux multiplied by dose conversion factors, as well the calculation employing the electron transport, exhibit the same decreasing trade observed in experimental data, differing by a normalization factor of approximately 1.4. However, for layers nearer the material surface, the calculation using photon flux produces an overestimation of that using the electron transport as well as of the experimental results. (author)

  14. Fetal absorbed doses by radiopharmaceutical administration

    International Nuclear Information System (INIS)

    Rojo, Ana M; Gomez Parada, Ines M.; Di Trano, Jose L.

    2000-01-01

    The radiopharmaceutical administration with diagnostic or therapeutic purpose during pregnancy implies a prenatal radiation dose. The dose assessment and the evaluation of the radiological risks become relevant due to the great radiosensitivity of the fetal tissues in development. This paper is a revision of the available data for estimating fetal doses in the cases of the more frequently used radiopharmaceuticals in nuclear medicine, taking into account recent investigation in placental crossover. The more frequent diagnostic and therapeutic procedures were analyzed according to the radiation doses implied. (author)

  15. Specification of absorbed dose for reporting a therapeutic irradiation

    International Nuclear Information System (INIS)

    Wambersie, A.; Chassagne, D.

    1981-01-01

    The problem of dose specification in external beam therapy with photons and electrons has been dealt with in ICRU Report 29 (1978). This problem arises from the fact that the absorbed dose distribution is usually not uniform in the target volume and that for the purpose of treatment reporting a nominal absorbed dose - which will be called target absorbed dose - has to be selected. When comparing the clinical results obtained between radiotherapy centres, the differences in the reported target absorbed doses which can be introduced by differences in the methods of dose specification often are much larger than the differences related to the dosimetric procedures themselves. This shows the importance of the problem. In this paper, some definitions of terms and concepts currently used in radiotherapy are first recalled: tumour volume, target volume, treatment volume, etc. These definitions have been proposed in ICRU Report 29 for photon and electron beams; they can be extended to any kind of irradiation. For external beam therapy with photons and electrons, the target absorbed dose is defined as the absorbed dose at selected point(s) (specification point(s)) having a meaningful relation to the target volume and/or the irradiation beams. Examples are discussed for typical cases. As far as interstitial and intracavitary therapy is concerned, the problem is more complex and no recommendations have so far been made by the ICRU Commission. A major difficulty arises from the sharp dose gradient as a function of the distance to the sources. The particular case of the treatment of cervix carcinoma is considered and some possible methods of specification are discussed: (1) the indication of the sources (in adequate units) and the duration of the application, (2) the absorbed doses at selected reference points (bladder, rectum, bony structures) and (3) the description of the tissue volume (height, width, thickness) encompassed by a given isodose surface (60Gy). (author)

  16. Comparison of absorbed doses resulting from various intraoral periapical radiography

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Mi Ae; Park, Tae Won [Dept. of Oral and Maxillofacial Radiology, Graduate School, Seoul National University, Seoul (Korea, Republic of)

    1995-08-15

    This study was designed to measure the absorbed dose to organs of special interest from full mouth with intraoral film (14 films) and to compare the five periapical techniques. Thermoluminescent crystals (TLD-100 chip) were located in brain, orbit, bone marrow of mandibular ramus, bone marrow of mandibular body, bone marrow of 4th cervical spine, parotid gland, submandibular gland and thyroid gland. X-ray machine was operated at 70 kVp and round collimating film holding device (XCP) and rectangular collimating film holding device (Precision Instrument) were used. The distance from the X-ray focus to the open end of the collimator was 8 inch, 12 inch and 16 inch. The following results obtained; 1. The absorbed dose was the highest in bone marrow of mandibular body (5.656 mGy) and the lowest in brain (0.050 mGy). 2. Generally, the lowest absorbed dose was measured from 16 inch cylinder, rectangular collimating film holding device with paralleling technique. But, in bone marrow of mandibular body and the floor of mouth, the highest absorbed dose was measured from 12 inch cylinder, rectangular collimating film holding device with paralleling techniques. 3. Comparing of five intraoral radiographic techniques, it was appeared statistically significant reduction of the absorbed doses measured with rectangualr collimating film holding device compared to XCP film holding device (p<0.05). 4. No statistically significant reduction in the absorbed dose was found as cylinder length was change (p>0.05).

  17. High-temperature absorbed dose measurements in the megagray range

    International Nuclear Information System (INIS)

    Balian, P.; Ardonceau, J.; Zuppiroli, L.

    1988-01-01

    Organic conductors of the tetraselenotetracene family have been tested as ''high-temperature'' absorbed dose dosimeters. They were heated up to 120 0 C and irradiated at this temperature with 1-MeV electrons in order to simulate, in a short time, a much longer γ-ray irradiation. The electric resistance increase of the crystal can be considered a good measurement of the absorbed dose in the range 10 6 Gy to a few 10 8 Gy and presumably one order of magnitude more. This dosimeter also permits on-line (in-situ) measurements of the absorbed dose without removing the sensor from the irradiation site. The respective advantages of organic and inorganic dosimeters at these temperature and dose ranges are also discussed. In this connection, we outline new, but negative, results concerning the possible use of silica as a high-temperature, high-dose dosimeter. (author)

  18. An international intercomparison of absorbed dose measurements for radiation therapy

    International Nuclear Information System (INIS)

    Taiman Kadni; Noriah Mod Ali

    2002-01-01

    Dose intercomparison on an international basis has become an important component of quality assurance measurement i.e. to check the performance of absorbed dose measurements in radiation therapy. The absorbed dose to water measurements for radiation therapy at the SSDL, MINT have been regularly compared through international intercomparison programmes organised by the IAEA Dosimetry Laboratory, Seibersdorf, Austria such as IAEA/WHO TLD postal dose quality audits and the Intercomparison of therapy level ionisation chamber calibration factors in terms of air kerma and absorbed dose to water calibration factors. The results of these intercomparison in terms of percentage deviations for Cobalt 60 gamma radiation and megavoltage x-ray from medical linear accelerators participated by the SSDL-MINT during the year 1985-2001 are within the acceptance limit. (Author)

  19. Absorbed doses to patients from angioradiology

    International Nuclear Information System (INIS)

    Rodriguez-Romero, R.; Hernandez-Armas, J.; Diaz-Romero, F.

    2001-01-01

    The aim of study was to know patients doses exposes when three different procedures of angioradiology were carried out. The explorations considered were drainage biliary, varicocele embolization and dacriocistography made in the Radiodiagnostic Service at the University Hospital of Canary Islands, Tenerife (Spain). In total 14 patients were studied. The measurements were made using large area transmission ionisation chamber which gives the values of Dose Area Product (DAP). In addition, thermoluminescent dosimeters type TLD-100 were used in anthropomorphic phantom in order to obtain values of organ doses when the phantom was submitted to the same procedures rather than the actual patients. Furthermore, the Effdose program was used to estimate the effective doses in the procedures conditions. The values for DAP were in the range of 70-300 for drainage biliary, 43-180 for varicocele embolization and 1.4-9 for dacriocistography. The organ doses measured with TLD-100 were higher than the corresponding values estimated by Effdose program. The results for varicocele embolization were higher than other published data. In the case of drainage biliary procedure, the values were closed to other published results. It was not possible to find data for dacriocistography from other authors. (author)

  20. Depth absorbed dose distributions for electrons

    International Nuclear Information System (INIS)

    Fregene, A.O.

    1980-01-01

    There is controversy over the comparative depth dose distributions produced by 10 MeV microtron and linear accelerator electron beams. The arguments produced by Brahme and Svensson in their rejection of silicon diode and LiF depth dose measurements (1976, Phys. Med. Biol., vol. 21, 304; 1978, Phys. Med. Biol., vol. 23, 788) have been shown to be insubstantial. These depth dose measurements in fact confirm that the two types of electron beam are not significantly different at 10 MeV. The significant differences originally reported by Brahme et al. on the basis of liquid ionisation chamber measurements (Brahme, A., Hulten, G., and Svensson, H., 1975, Phys. Med. Biol., vol. 20, 39), and the implied clinical advantage of the microtron, therefore both remain in doubt. (UK)

  1. Comparison of absorbed doses resulting from various intraoral periapical radiography

    International Nuclear Information System (INIS)

    Kang, Mi Ae; Park, Tae Won

    1995-01-01

    This study was designed to measure the absorbed dose to organs of special interest from full mouth with intraoral film (14 films) and to compare the five periapical techniques. Thermoluminescent crystals (TLD-100 chip) were located in brain, orbit, bone marrow of mandibular ramus, bone marrow of mandibular body, bone marrow of 4th cervical spine, parotid gland, submandibular gland and thyroid gland. X-ray machine was operated at 70 kVp and round collimating film holding device (XCP) and rectangular collimating film holding device (Precision Instrument) were used. The distance from the X-ray focus to the open end of the collimator was 8 inch, 12 inch and 16 inch. The following results obtained; 1. The absorbed dose was the highest in bone marrow of mandibular body (5.656 mGy) and the lowest in brain (0.050 mGy). 2. Generally, the lowest absorbed dose was measured from 16 inch cylinder, rectangular collimating film holding device with paralleling technique. But, in bone marrow of mandibular body and the floor of mouth, the highest absorbed dose was measured from 12 inch cylinder, rectangular collimating film holding device with paralleling techniques. 3. Comparing of five intraoral radiographic techniques, it was appeared statistically significant reduction of the absorbed doses measured with rectangualr collimating film holding device compared to XCP film holding device (p 0.05).

  2. Time improvement of photoelectric effect calculation for absorbed dose estimation

    International Nuclear Information System (INIS)

    Massa, J M; Wainschenker, R S; Doorn, J H; Caselli, E E

    2007-01-01

    Ionizing radiation therapy is a very useful tool in cancer treatment. It is very important to determine absorbed dose in human tissue to accomplish an effective treatment. A mathematical model based on affected areas is the most suitable tool to estimate the absorbed dose. Lately, Monte Carlo based techniques have become the most reliable, but they are time expensive. Absorbed dose calculating programs using different strategies have to choose between estimation quality and calculating time. This paper describes an optimized method for the photoelectron polar angle calculation in photoelectric effect, which is significant to estimate deposited energy in human tissue. In the case studies, time cost reduction nearly reached 86%, meaning that the time needed to do the calculation is approximately 1/7 th of the non optimized approach. This has been done keeping precision invariant

  3. Absorbed bone marrow dose in certain dental radiographic techniques

    International Nuclear Information System (INIS)

    White, S.C.; Rose, T.C.

    1979-01-01

    The absorbed dose of radiation in the bone marrow of the region of the head and neck was measured during intraoral, panoramic, and cephalometric radiography. Panoramic radiography results in a dose a fifth or less than that from an intraoral survey. The use of rectangular collimation reduces the bone marrow absorbed dose from an intraoral survey by about 60%. Comparison of the doses from dental radiography with natural environmental radiation shows that an intraoral set of films results in the same total dose to the bone marrow as 65 days of background exposure. The use of rectangular collimation reduces this value to 25 days. Panoramic radiography results in significantly less irradiation, as it reduces the value to 14 days or fewer. Dental radiography thus involves exposures in the range of variation of natural environmental background values

  4. Radiographic fallopian tube recanalization: Absorbed ovarian radiation dose

    International Nuclear Information System (INIS)

    Hedgpeth, P.L.; Thurmond, A.S.; Fry, R.; Schmidgall, J.R.; Roesch, J.

    1991-01-01

    Absorbed radiation dose to the ovaries during radiographic fallopian tube recanalization was estimated in 29 patients with use of thermoluminescent dosimeters placed in the vaginal fornix. With an average fluoroscopic time of 8.5 minutes ± 5.5 and an average of 14 ± 5 105-mm spot radiographs obtained, the average absorbed dose to the ovaries was 8.5 mGy ± 5.6 (0.85 rad ± 0.56). Technical guidelines for keeping patient radiation exposure to a minimum during this new interventional procedure are suggested

  5. Radiographic fallopian tube recanalization: Absorbed ovarian radiation dose

    Energy Technology Data Exchange (ETDEWEB)

    Hedgpeth, P.L.; Thurmond, A.S.; Fry, R.; Schmidgall, J.R.; Roesch, J. (Department of Diagnostic Radiology, Oregon Health Sciences University, Portland (USA))

    1991-07-01

    Absorbed radiation dose to the ovaries during radiographic fallopian tube recanalization was estimated in 29 patients with use of thermoluminescent dosimeters placed in the vaginal fornix. With an average fluoroscopic time of 8.5 minutes {plus minus} 5.5 and an average of 14 {plus minus} 5 105-mm spot radiographs obtained, the average absorbed dose to the ovaries was 8.5 mGy {plus minus} 5.6 (0.85 rad {plus minus} 0.56). Technical guidelines for keeping patient radiation exposure to a minimum during this new interventional procedure are suggested.

  6. Measuring the absorbed dose in critical organs during low rate dose brachytherapy with {sup 137} Cs using thermoluminescent dosemeters; Medicion de la dosis absorbida en organos criticos durante braquiterapia de baja tasa de dosis con {sup 137} Cs usando dosimetros termoluminiscentes

    Energy Technology Data Exchange (ETDEWEB)

    Torres, A. [UAEM, Fac. de Medicina, 50180 Toluca, Estado de Mexico (Mexico); Gonzalez, P.R. [ININ, A.P. 18-1027, 11801 Mexico D.F. (Mexico); Furetta, C.; Azorin, J. [UAM-I, 09340 Mexico D.F. (Mexico); Andres, U.; Mendez, G. [Centro Estatal de Cancerologia de Tabasco, A. Gregorio Mendez No. 2838, Col. Atasta, 86100 Villahermosa, Tabasco (Mexico)

    2003-07-01

    Intracavitary Brachytherapy is one of the most used methods for the treatment of the cervical-uterine cancer. This treatment consists in the insertion of low rate dose {sup 137}Cs sources into the patient. The most used system for the treatment dose planning is that of Manchester. This planning is based on sources, which are considered fixed during the treatment. However, the experience has shown that, during the treatment, the sources could be displaced from its initial position, changing the dose from that previously prescribed. For this reason, it is necessary to make measurements of the absorbed dose to the surrounding organs (mainly bladder and rectum). This paper presents the results of measuring the absorbed dose using home-made LiF: Mg, Cu, P + Ptfe thermoluminescent dosimeters (TLD). Measurements were carried out in-vivo during 20 minutes at the beginning and at the end of the treatments. Results showed that the absorbed dose to the critical organs vary significantly due to the movement of the patient during the treatment. (Author)

  7. Absorbed Doses to Patients in Nuclear Medicine; Doskatalogen foer nukleaermedicin

    Energy Technology Data Exchange (ETDEWEB)

    Leide-Svegborn, Sigrid; Mattsson, Soeren; Nosslin, Bertil [Universitetssjukhuset MAS, Malmoe (Sweden). Avd. foer radiofysik; Johansson, Lennart [Norrlands Universitetssjukhus, Umeaa (Sweden). Avd. foer radiofysik

    2004-09-01

    The work with a Swedish catalogue of radiation absorbed doses to patients undergoing nuclear medicine investigations has continued. After the previous report in 1999, biokinetic data and dose estimates (mean absorbed dose to various organs and tissues and effective dose) have been produced for a number of substances: {sup 11}C- acetate, {sup 11}C- methionine, {sup 18}F-DOPA, whole antibody labelled with either {sup 99m}Tc, {sup 111}In, {sup 123}I or {sup 131}I, fragment of antibody, F(ab'){sub 2} labelled with either {sup 99m}Tc, {sup 111}In, {sup 123}I or {sup 131}I and fragment of antibody, Fab' labelled with either {sup 99m}Tc, {sup 111}In, {sup 123}I or {sup 131}I. The absorbed dose estimates for these substances have been made from published biokinetic information. For other substances of interest, e.g. {sup 14}C-urea (children age 3-6 years), {sup 14}C-glycocholic acid, {sup 14}C-xylose and {sup 14}C-triolein, sufficient literature data have not been available. Therefore, a large number of measurements on patients and volunteers have been carried out, in order to determine the biokinetics and dosimetry for these substances. Samples of breast milk from 50 mothers, who had been subject to nuclear medicine investigations, have been collected at various times after administration of the radiopharmaceutical to the mother. The activity concentration in the breast milk samples has been measured. The absorbed dose to various organs and tissues and the effective dose to the child who ingests the milk have been determined for 17 different radiopharmaceuticals. Based on these results revised recommendations for interruption of breast-feeding after nuclear medicine investigations are suggested.

  8. Photon spectrum and absorbed dose in brain tumor

    Energy Technology Data Exchange (ETDEWEB)

    Silva S, A. [General Electric Healthcare, Antonio Dovali Jaime 70, Torre A 3er. piso, Col. Santa Fe, 01210 Mexico D. F. (Mexico); Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas, Zac. (Mexico); Rivera M, T. [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Av. Legaria No. 694, 11500 Mexico D. F. (Mexico)

    2015-10-15

    Using Monte Carlo methods a BOMAB phantom inside a treatment hall with a brain tumor nearby the pituitary gland was treated with photons produced by a Varian 6 MV linac. The photon spectrum and the absorbed dose were calculated in the tumor, pituitary gland and the head. The treatment beam was collimated to illuminate only the tumor volume; however photons were noticed in the gland. Photon fluence reaching the tumor is 78.1 times larger than the fluence in the pituitary gland, on the other hand the absorbed dose in the tumor is 188 times larger than the dose in the gland because photons that reach the pituitary gland are scattered, by the head and the tumor, through Compton effect. (Author)

  9. Calculation of absorbed dose in water by chemical Fricke dosimetry

    International Nuclear Information System (INIS)

    Rodrigues, Adenilson Paiva; Meireles, Ramiro Conceicao

    2016-01-01

    This work is the result of a laboratory activity performed in Radiological Sciences Laboratory (CRL), linked to the State University of Rio de Janeiro (UERJ). This practice aimed to determine the absorbed dose to water, through the primary calibration method called dosimetry Fricke, which consists of ferrous ions (Fe + 2) to ferric (Fe + 3), generated by water radiolysis products which is the structural change of water molecule caused by ionizing radiation. A spectrophotometer was used to extract data for analysis at a wavelength (λ) 304 and 224 nm with function of measuring the absorbance using bottles with irradiated and nonirradiated Fricke solution. (author)

  10. Absorbed dose assessment in newborns during x-ray examinations

    Science.gov (United States)

    Taipe, Patricia K.; Berrocal, Mariella J.; Carita, Raúl F.

    2012-02-01

    Often a newborn presents breathing problems during the early days of life, i.e. bronchopneumonia, wich are caused in most of cases, by aspirating a mixture of meconium and amniotic fluid. In these cases, it is necessary to make use of a radiograph, requested by the physician to reach a diagnosis. This paper seeks to evaluate the absorbed doses in neonates undergoing a radiograph. For this reason we try to simulate the real conditions in a X-ray room from Lima hospitals. With this finality we perform a simulation made according a questionnaire related to technical data of X-ray equipment, distance between the source and the neonate, and its position to be irradiated. The information obtained has been used to determine the absorbed dose by infants, using the MCNP code. Finally, the results are compared with reference values of international health agencies.

  11. Radiation absorbed dose estimate for rubidium-82 determined from in vivo measurements in human subjects

    International Nuclear Information System (INIS)

    Ryan, J. W.; Harper, P.V.; Stark, V.S.; Peterson, E.L.; Lathrop, K.A.

    1986-01-01

    Radiation absorbed doses from rubidium-82 injected intravenously were determined in two young men, aged 23 and 27, using a dynamic conjugate counting technique to provide data for the net organ integrated time-activity curves in five organs: kidneys, lungs, liver, heart, and testes. This technique utilized a tungsten collimated Anger camera and the accuracy was validated in a prestwood phantom. The data for each organ were compared with conjugate count rates of a reference Ge-68/Ga-68 standard which had been calibrated against the Rb-82 injected. The effects of attenuation in the body were eliminated. The MIRD method was used to calculate the organ self absorbed doses and the total organ absorbed doses. The mean total absorbed doses were as follows (mrads/mCi injected): kidneys 30.9, heart walls 7.5, lungs 6.0, liver 3.0, testes 2.0 (one subject only), red marrow 1.3, remainder of body 1.3 and, extrapolating to women, ovaries 1.2. This absorbed dose to the kidney is significantly less than the pessimistic estimate of 59.4 mrads/mCi, made assuming instantaneous uptake and complete extraction of activity with no excretion by the kidneys, which receive 20% of the cardiac output. Further, in a 68 year old man the renal self absorbed dose was approximately 40% less than the mean renal self absorbed dose of the younger men. This decrease is probably related to the decline in renal blood flow which occurs with advancing age but other factors may also contribute to the observed difference. 14 references, 4 figures, 2 tables

  12. Sensors of absorbed dose of ionizing radiation based on mosfet

    Directory of Open Access Journals (Sweden)

    Perevertaylo V. L.

    2010-10-01

    Full Text Available The requirements to technology and design of p-channel and n-channel MOS transistors with a thick oxide layer designed for use in the capacity of integral dosimeters of absorbed dose of ionizing radiation are defined. The technology of radiation-sensitive MOS transistors with a thick oxide in the p-channel and n-channel version is created.

  13. Absorbed dose in fibrotic microenvironment models employing Monte Carlo simulation

    International Nuclear Information System (INIS)

    Zambrano Ramírez, O.D.; Rojas Calderón, E.L.; Azorín Vega, E.P.; Ferro Flores, G.; Martínez Caballero, E.

    2015-01-01

    The presence or absence of fibrosis and yet more, the multimeric and multivalent nature of the radiopharmaceutical have recently been reported to have an effect on the radiation absorbed dose in tumor microenvironment models. Fibroblast and myofibroblast cells produce the extracellular matrix by the secretion of proteins which provide structural and biochemical support to cells. The reactive and reparative mechanisms triggered during the inflammatory process causes the production and deposition of extracellular matrix proteins, the abnormal excessive growth of the connective tissue leads to fibrosis. In this work, microenvironment (either not fibrotic or fibrotic) models composed of seven spheres representing cancer cells of 10 μm in diameter each with a 5 μm diameter inner sphere (cell nucleus) were created in two distinct radiation transport codes (PENELOPE and MCNP). The purpose of creating these models was to determine the radiation absorbed dose in the nucleus of cancer cells, based on previously reported radiopharmaceutical retain (by HeLa cells) percentages of the 177 Lu-Tyr 3 -octreotate (monomeric) and 177 Lu-Tyr 3 -octreotate-AuNP (multimeric) radiopharmaceuticals. A comparison in the results between the PENELOPE and MCNP was done. We found a good agreement in the results of the codes. The percent difference between the increase percentages of the absorbed dose in the not fibrotic model with respect to the fibrotic model of the codes PENELOPE and MCNP was found to be under 1% for both radiopharmaceuticals. (authors)

  14. National absorbed dose to water references for radiotherapy medium energy X-rays by water calorimetry

    International Nuclear Information System (INIS)

    Perichon, N.

    2012-01-01

    LNE-LNHB current references for medium energy X-rays are established in terms of air kerma. Absorbed dose to water, which is the quantity of interest for radiotherapy, is obtained by transfer dosimetric techniques following a methodology described in international protocols. The aim of the thesis is to establish standards in terms of absorbed dose to water in the reference protocol conditions by water calorimetry. The basic principle of water calorimetry is to measure the absorbed dose from the rise in temperature of water under irradiation. A calorimeter was developed to perform measurements at a 2 cm depth in water according to IAEA TRS-398 protocol for medium energy x-rays. Absorbed dose rates to water measured by calorimetry were compared to the values established using protocols based on references in terms of air kerma. A difference lower than 2.1% was reported. Standard uncertainty of water calorimetry being 0.8%, the one associated to the values from protocols being around 3.0%, results are consistent considering the uncertainties. Thanks to these new standards, it will be possible to use IAEA TRS-398 protocol to determine absorbed dose to water: a significant reduction of uncertainties is obtained (divided by 3 by comparison with the application of the IAEA TRS-277 protocol). Currently, none of the counterparts' laboratories own such an instrument allowing direct determination of standards in the reference conditions recommended by the international radiotherapy protocols. (author) [fr

  15. Determination of the absorbed dose rate to a person exposed to a spent source of {sup 60}Co for radiotherapy; Determinacion de la rapidez de dosis absorbida a una persona expuesta a una fuente gastada de {sup 60}Co para radioterapia

    Energy Technology Data Exchange (ETDEWEB)

    Garcia M, T.; Angeles C, A.; Benitez, J. A.; Ruiz C, M. A., E-mail: teodoro.garcia@inin.gob.mx [ININ, Departamento de Proteccion Radiologica, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2016-09-15

    In this work the analysis of absorbed dose rate to a person in made due to the exposure to a spent source of {sup 60}Co of radiotherapy, which has been removed from its shielding clandestinely to sell the shielding as scrap. During the removal of the source of their shielding the people were necessarily exposed to the field of gamma radiation. The activity of the source is considered to be 2595 Ci at the exposure time and to determine the rate of absorbed dose to different organs and the velocity of effective absorbed dose to which the person (s) who manipulated the source of {sup 60}Co were considered three plausible scenarios of manipulation of the source , through modeling with MCNP5. For the execution of the scenarios and the determination of the absorbed doses, two different phantoms are considered. The results obtained for each scenario show that the dose rates to which the people who manipulated the source without the shielding were exposed are extremely high, and in short time the lethal dose is reached. (Author)

  16. Absorbed dose by thyroid in case of nuclear accidents

    International Nuclear Information System (INIS)

    Campos, Laelia; Attie, Marcia Regina Pereira; Amaral, Ademir

    2011-01-01

    Radioisotopes of iodine are produced in abundance in nuclear fission reactions, and great amounts of radioiodine may be released into the environment in case of a nuclear reactor accident. Thyroid gland is among the most radiosensitive organs due to its capacity to concentrate iodine. The aim of this work was to evaluate the importance of contributions of internally deposited iodines ( 131 I, 132 I, 133 I, 134 I and 135 I) to the dose absorbed to thyroid follicle and to the whole organ, after internal contamination by those isotopes. For internal dose calculation, the code of particles transport MCNP4C was employed. The results showed that, in case of nuclear accidents, the contribution of short-lived iodines for total dose is about 45% for thyroid of newborn and about 40% for thyroid of adult. Thus, these contributions should not be neglected in a prospective evaluation of risks associated to internal contamination by radioactive iodine. (author)

  17. Spatial distribution of absorbed dose onboard of International Space Station

    International Nuclear Information System (INIS)

    Jadrnickova, I.; Spumy, F.; Tateyama, R.; Yasuda, N.; Kawashima, H.; Kurano, M.; Uchihori, Y.; Kitamura, H.; Akatov, Yu.; Shurshakov, V.; Kobayashi, I.; Ohguchi, H.; Koguchi, Y.

    2009-01-01

    The passive detectors (LD and PNTD) were exposed onboard of Russian Service Module Qn the International Space Station (ISS) from August 2004 to October 2005 (425 days). The detectors were located at 6 different positions inside the Service Module and also in 32 pockets on the surface of the spherical tissue-equivalent phantom located in crew cabin. Distribution of absorbed doses and dose equivalents measured with passive detectors, as well as LET spectra of fluences of registered particles, are presented as the function of detectors' location. The variation of dose characteristics for different locations can be up to factor of 2. In some cases, data measured with passive detectors are also compared with the data obtained by means of active instruments. (authors)

  18. 3D calculation of absorbed dose for 131I-targeted radiotherapy: A Monte Carlo study

    International Nuclear Information System (INIS)

    Saeedzadeh, E.; Sarkar, S.; Abbaspour Tehrani-Fard, A.; Ay, M. R.; Khosravi, H. R.; Loudos, G.

    2008-01-01

    Various methods, such as those developed by the Medical Internal Radiation Dosimetry (MIRD) Committee of the Society of Nuclear Medicine or employing dose point kernels, have been applied to the radiation dosimetry of 131 I radionuclide therapy. However, studies have not shown a strong relationship between tumour absorbed dose and its overall therapeutic response, probably due in part to inaccuracies in activity and dose estimation. In the current study, the GATE Monte Carlo computer code was used to facilitate voxel-level radiation dosimetry for organ activities measured in an. 131 I-treated thyroid cancer patient. This approach allows incorporation of the size, shape and composition of organs (in the current study, in the Zubal anthropomorphic phantom) and intra-organ and intra-tumour inhomogeneities in the activity distributions. The total activities of the tumours and their heterogeneous distributions were measured from the SPECT images to calculate the dose maps. For investigating the effect of activity distribution on dose distribution, a hypothetical homogeneous distribution of the same total activity was considered in the tumours. It was observed that the tumour mean absorbed dose rates per unit cumulated activity were 0.65 E-5 and 0.61 E-5 mGY MBq -1 s -1 for the uniform and non-uniform distributions in the tumour, respectively, which do not differ considerably. However, the dose-volume histograms (DVH) show that the tumour non-uniform activity distribution decreases the absorbed dose to portions of the tumour volume. In such a case, it can be misleading to quote the mean or maximum absorbed dose, because overall response is likely limited by the tumour volume that receives low (i.e. non-cytocidal) doses. Three-dimensional radiation dosimetry, and calculation of tumour DVHs, may lead to the derivation of clinically reliable dose-response relationships and therefore may ultimately improve treatment planning as well as response assessment for radionuclide

  19. Calibration of ionization chambers and determination of the absorbed doses

    International Nuclear Information System (INIS)

    RANDRIANTSEHENO, H.F

    1996-01-01

    In order to further improve the accuracy of dosimetric measurements in radiation therapy, the IAEA and WHO supported the establishment of Secondary Standard Dosimetry Laboratory (SSDLs). These SSDLs bridge the gap between the primary measurement standards and the user of ionizing radiation by providing the latter with calibrations against the SSDLs' secondary standards and by giving technical advice and assistance. However, a properly calibrated dosimeter is just necessary first condition for the determination of the dose. It has been demonstrated that the success or failure of radiation treatment depends on the absorbed dose delivered to the tumour and that this should not vary by more than a few per cent from described values. [fr

  20. Absorbed dose determination in photon fields using the tandem method

    International Nuclear Information System (INIS)

    Marques Pachas, J.F.

    1999-01-01

    The purpose of this work is to develop an alternative method to determine the absorbed dose and effective energy of photons with unknown spectral distributions. It includes a 'tandem' system that consists of two thermoluminescent dosemeters with different energetic dependence. LiF: Mg, Ti, CaF 2 : Dy thermoluminescent dosemeters and a Harshaw 3500 reading system are employed. Dosemeters are characterized with 90 Sr- 90 Y, calibrated with the energy of 60 Co and irradiated with seven different qualities of x-ray beams, suggested by ANSI No. 13 and ISO 4037. The answers of each type of dosemeter are adjusted to a function that depends on the effective energy of photons. The adjustment is carried out by means of the Rosenbrock minimization algorithm. The mathematical model used for this function includes five parameters and has a gauss and a straight line. Results show that the analytical functions reproduce the experimental data of the answers, with a margin of error of less than 5%. The reason of the answers of the CaF 2 : Dy and LiF: Mg, Ti, according to the energy of the radiation, allows us to establish the effective energy of photons and the absorbed dose, with a margin of error of less than 10% and 20% respectively

  1. Diamond detector in absorbed dose measurements in high-energy linear accelerator photon and electron beams.

    Science.gov (United States)

    Ravichandran, Ramamoorthy; Binukumar, John Pichy; Al Amri, Iqbal; Davis, Cheriyathmanjiyil Antony

    2016-03-08

    Diamond detectors (DD) are preferred in small field dosimetry of radiation beams because of small dose profile penumbras, better spatial resolution, and tissue-equivalent properties. We investigated a commercially available 'microdiamond' detector in realizing absorbed dose from first principles. A microdiamond detector, type TM 60019 with tandem electrometer is used to measure absorbed doses in water, nylon, and PMMA phantoms. With sensitive volume 0.004 mm3, radius 1.1mm, thickness 1 x10(-3) mm, the nominal response is 1 nC/Gy. It is assumed that the diamond detector could collect total electric charge (nC) developed during irradiation at 0 V bias. We found that dose rate effect is less than 0.7% for changing dose rate by 500 MU/min. The reproducibility in obtaining readings with diamond detector is found to be ± 0.17% (1 SD) (n = 11). The measured absorbed doses for 6 MV and 15 MV photons arrived at using mass energy absorption coefficients and stop-ping power ratios compared well with Nd, water calibrated ion chamber measured absorbed doses within 3% in water, PMMA, and nylon media. The calibration factor obtained for diamond detector confirmed response variation is due to sensitivity due to difference in manufacturing process. For electron beams, we had to apply ratio of electron densities of water to carbon. Our results qualify diamond dosimeter as a transfer standard, based on long-term stability and reproducibility. Based on micro-dimensions, we recommend these detectors for pretreatment dose verifications in small field irradiations like stereotactic treatments with image guidance.

  2. Sediment distribution coefficients (KD) and concentration factors (CF) in fish for natural radionuclides in a pond of a tropical region and their contributions to estimations of internal absorbed dose rate in fish

    International Nuclear Information System (INIS)

    Souza Pereira, Wagner de; Kelecom, Alphonse

    2008-01-01

    Attention has been paid only recently to the protection of biota against radiation effects. Protection is being considered through modeling of the calculation of absorbed dose rate. In these models, the inputs are the fluxes of radionuclides of environmental concern and their resulting distribution between environmental compartments. Such distribution is estimated for dispersion models. In freshwater systems and when fish is used as biomaker, relevant environmental transfer parameters are transfer between sediment and water (sediment distribution coefficients KD, in l kg -1 ), and between water and fish (concentration factor CF, in l kg -1 ). These coefficients are under the influence of a number o physical, chemical and biological factors, and display following the literature a great variability. The present work establishes the KD's and CF's for uranium, thorium, radium and lead for two ponds: one that receives treated effluents from an ore treatment unit (UTM) situated at Pocos de Caldas, Minas Gerais, Brazil and the other pond from the uranium concentration unit (URA) situated at Caetite, Bahia, Brazil, and for fish used as biomarker. It intends also to compare these parameters with the values recommended by IAEA. Depending on considered radionuclide and on the site, CF's (l kg -1 ) observed values were of the same magnitude as, or one order of magnitude lower than recommended by IAEA. KD's (l kg -1 ) observed values were found of the same magnitude as those recommended by IAEA, approximately 10 times lower or up to 100 times higher than recommended by IAEA, again depending on the radionuclides and on the site. It can be concluded that local parameters should be established in order to obtain a more accurate estimative of biota exposition from man activities. (author)

  3. The absorbed dose and the effective dose of panoramic temporo mandibular joint radiography

    International Nuclear Information System (INIS)

    Matsuo, Ayae; Gotoh, Kenichi; Yokoi, Midori; Hirukawa, Akiko; Okumura, Shinji; Okano, Tsuneichi; Koyama, Syuji

    2011-01-01

    This study measured the radiation doses absorbed by the patient during Panoramic temporo mandibular joint radiography (Panoramic TMJ), Schullers method and Orbitoramus projection. The dose of the frontal view in Panoramic TMJ was compared to that with Orbitoramus projection and the lateral view in Panoramic TMJ was compared to that with Schuellers method. We measured the doses received by various organs and calculated the effective doses using the guidelines of the International Commission on Radiological Protection in Publication 103. Organ absorbed doses were measured using an anthropomorphic phantom, loaded with thermoluminescent dosimeters (TLD), located at 160 sensitive sites. The dose shows the sum value of irradiation on both the right and left sides. In addition, we set a few different exposure field sizes. The effective dose for a frontal view in Panoramic TMJ was 11 μSv, and that for the lateral view was 14 μSv. The lens of the Orbitoramus projection was 40 times higher than the frontal view in Panoramic TMJ. Although the effective dose of the lateral view in Panoramic TMJ was 3 times higher than that of the small exposure field (10 x 10 cm on film) in Schueller's method, it was the same as that of a mid-sized exposure field. When the exposure field in the inferior 1/3 was reduced during panoramic TMJ, the effective doses could be decreased. Therefore we recommend that the size of the exposure field in Panoramic TMJ be decreased. (author)

  4. Calibration of film dosimeters by means of absorbed dose calorimeters

    International Nuclear Information System (INIS)

    Nikolaev, S.M.; Vanyushkin, B.M.; Kon'kov, N.G.

    1980-01-01

    Methods of graduating film dosimeters by means of calorimeters of absorbed doses, are considered. Graduating of film dosimeters at the energies of accelerated electrons from 4 to 10 MeV can be carried out by means of quasiadiabatic calorimeter of local absorption, the absorber thickness of which should not exceed 5-10% of Rsub(e) value, where Rsub(e) - free electron path of the given energy. In this case film is located inside the calorimeter. For graduating films with thickness not less than (0.1-0.2)Rsub(e) it is suggested to use calorimeter of full absorption; then the graduated dosimeters are located in front of the calorimeter. Graduation of films at small energies of electrons is exercised by means of a package of films, approximately Rsub(e) thick. A design of quasiadiabatic calorimeter, intended for graduating dosimeters within the energy range of electron beam from 4 to 10 MeV, is considered. The quasiadiabatic calorimeter is a thin graphite tablet with heater and thermocouple, surrounded by foam plastic thermostating case. Electricity quantity, accumulated during the radiation field pass, is measured in the case of using the quasiadiabatic calorimeter for film graduating. The results of graduating film dosimeters, obtained using film package with Rsub(e) thickness, are presented. The obtained results coincide within 5% limits with the data known beforehand [ru

  5. establishment of background radiation dose rate in the vicinity

    African Journals Online (AJOL)

    nb

    ABSTRACT. The absorbed dose rate in air in the vicinity of the proposed Manyoni uranium mining project located in Singida region, Tanzania, was determined so as to establish the baseline data for background radiation dose rate data prior to commencement of uranium mining activities. Twenty stations in seven villages ...

  6. Pain and Mean Absorbed Dose to the Pubic Bone After Radiotherapy Among Gynecological Cancer Survivors

    International Nuclear Information System (INIS)

    Waldenstroem, Ann-Charlotte; Olsson, Caroline; Wilderaeng, Ulrica; Dunberger, Gail; Lind, Helena; Al-Abany, Massoud; Palm, Asa; Avall-Lundqvist, Elisabeth; Johansson, Karl-Axel; Steineck, Gunnar

    2011-01-01

    Purpose: To analyze the relationship between mean absorbed dose to the pubic bone after pelvic radiotherapy for gynecological cancer and occurrence of pubic bone pain among long-term survivors. Methods and Materials: In an unselected, population-based study, we identified 823 long-term gynecological cancer survivors treated with pelvic radiotherapy during 1991-2003. For comparison, we used a non-radiation-treated control population of 478 matched women from the Swedish Population Register. Pain, intensity of pain, and functional impairment due to pain in the pubic bone were assessed with a study-specific postal questionnaire. Results: We analyzed data from 650 survivors (participation rate 79%) with median follow-up of 6.3 years (range, 2.3-15.0 years) along with 344 control women (participation rate, 72 %). Ten percent of the survivors were treated with radiotherapy; ninety percent with surgery plus radiotherapy. Brachytherapy was added in 81%. Complete treatment records were recovered for 538/650 survivors, with dose distribution data including dose-volume histograms over the pubic bone. Pubic bone pain was reported by 73 survivors (11%); 59/517 (11%) had been exposed to mean absorbed external beam doses <52.5 Gy to the pubic bone and 5/12 (42%) to mean absorbed external beam doses ≥52.5 Gy. Thirty-three survivors reported pain affecting sleep, a 13-fold increased prevalence compared with control women. Forty-nine survivors reported functional impairment measured as pain walking indoors, a 10-fold increased prevalence. Conclusions: Mean absorbed external beam dose above 52.5 Gy to the pubic bone increases the occurrence of pain in the pubic bone and may affect daily life of long-term survivors treated with radiotherapy for gynecological cancer.

  7. Analysis of uncertainties in the measurements of absorbed dose to water in a secondary standard dosimetry laboratory (SSDL) 60Cobalt

    International Nuclear Information System (INIS)

    Silva, Cosme Norival Mello da; Rosado, Paulo Henrique Goncalves

    2011-01-01

    The National Metrology Laboratory of Ionizing Radiation (LNMRI) is the laboratory designated by INMETRO in the field of Metrology of ionizing radiation and is a Secondary Standard Dosimetry Laboratory (SSDL). One of its guidelines is to maintain and disseminate LNMRI absorbed dose in water used as a national standard dosimetry in radiotherapy. For this pattern is metrologically acceptable accuracy and uncertainties should be assessed over time. The objective of this study is to analyze the uncertainties involved in determining the absorbed dose rate in water and standard uncertainty of absorbed dose calibration in water from a clinical dosimeter. The largest sources of uncertainty in determining the rate of absorbed dose in water are due to: calibration coefficient of the calibration certificate supplied by the BIPM, electrometer calibration, camber stability over time, variation of pressure and humidity, strong dependence and non-uniformity of the field. The expanded uncertainty is 0.94% for k = 2. For the calibration standard uncertainty of absorbed dose in water of a dosimeter in a clinical a major source of uncertainty is due to the absorbed dose rate in water (0.94%). The value of expanded uncertainty of calibrating a clinical dosimeter is 1.2% for k = 2. (author)

  8. Irradiation of ferrous ammonium sulfate for its use as high absorbed dose and low-temperature dosimeter

    International Nuclear Information System (INIS)

    Juarez-Calderon, J.M.; Negron-Mendoza, A.; Ramos-Bernal, S.

    2007-01-01

    In the present paper, we study the response of crystalline ammonium ferrous sulfate as a function of the irradiation dose and temperature. The dose studied ranged from 33.5 to 546 kGy. The temperature regimen varied from 77 K (liquid nitrogen) to 311 K. The analysis of the samples was made by UV spectroscopy and EPR. The results show that the change in absorbance of the dosimeter was linear with respect to the absorbed dose in the range studied. There is a small influence of the irradiation temperature in the response of the iron salt. The dose rate and storage time after irradiation was of no importance in this application

  9. Plastic film materials for dosimetry of very large absorbed doses

    DEFF Research Database (Denmark)

    McLaughlin, W.L.; Miller, Arne; Abdel-Rahim, F.

    1985-01-01

    , polystyrene, dyed and undyed polyhalostyrenes, dyed aromatic polyamides, and polyvinylidene fluoride. Although most of these systems have fairly stable absorption spectra after irradiation, tests of dependence on dose rate and on temperature during irradiation show that only polystyrene and some...... of the polyhalostyrenes have essentially rate-independent and moderately temperature-dependent responses to such large doses of ionizing radiation. While radiation-induced optical absorption in the ultraviolet for polystyrene is unstable following irradiation, thus leading to an intrinsic low-intensity rate dependence......, the dyed polychlorostyrenes show essentially the same response to radiation-processing gamma-ray fields and to very high-intensity electron beams, and a relatively stable absorption spectrum at wavelengths for dosimetry analysis in the visible spectral region of ≈430 nm....

  10. Graves' disease radioiodine-therapy: Choosing target absorbed doses for therapy planning

    Energy Technology Data Exchange (ETDEWEB)

    Willegaignon, J., E-mail: j.willegaignon@gmail.com; Sapienza, M. T.; Coura-Filho, G. B.; Buchpiguel, C. A. [Cancer Institute of São Paulo State (ICESP), Clinical Hospital, School of Medicine, University of São Paulo, São Paulo 01246-000 (Brazil); Nuclear Medicine Service, Department of Radiology, School of Medicine, University of São Paulo, Sao Paulo 01246-000 (Brazil); Watanabe, T. [Nuclear Medicine Service, Department of Radiology, School of Medicine, University of São Paulo, São Paulo 01246-000 (Brazil); Traino, A. C. [Unit of Medical Physics, Azienda Ospedaliero-Universitaria Pisana, Pisa 56126 (Italy)

    2014-01-15

    Purpose: The precise determination of organ mass (m{sub th}) and total number of disintegrations within the thyroid gland (A{sup ~}) are essential for thyroid absorbed-dose calculations for radioiodine therapy. Nevertheless, these parameters may vary according to the method employed for their estimation, thus introducing uncertainty in the estimated thyroid absorbed dose and in any dose–response relationship derived using such estimates. In consideration of these points, thyroid absorbed doses for Graves’ disease (GD) treatment planning were calculated using different approaches to estimating the m{sub th} and the A{sup ~}. Methods: Fifty patients were included in the study. Thyroid{sup 131}I uptake measurements were performed at 2, 6, 24, 48, 96, and 220 h postadministration of a tracer activity in order to estimate the effective half-time (T{sub eff}) of {sup 131}I in the thyroid; the thyroid cumulated activity was then estimated using the T{sub eff} thus determined or, alternatively, calculated by numeric integration of the measured time-activity data. Thyroid mass was estimated by ultrasonography (USG) and scintigraphy (SCTG). Absorbed doses were calculated with the OLINDA/EXM software. The relationships between thyroid absorbed dose and therapy response were evaluated at 3 months and 1 year after therapy. Results: The average ratio (±1 standard deviation) betweenm{sub th} estimated by SCTG and USG was 1.74 (±0.64) and that between A{sup ~} obtained by T{sub eff} and the integration of measured activity in the gland was 1.71 (±0.14). These differences affect the calculated absorbed dose. Overall, therapeutic success, corresponding to induction of durable hypothyroidism or euthyroidism, was achieved in 72% of all patients at 3 months and in 90% at 1 year. A therapeutic success rate of at least 95% was found in the group of patients receiving doses of 200 Gy (p = 0.0483) and 330 Gy (p = 0.0131) when m{sub th} was measured by either USG or SCTG and A

  11. Absorbed doses behind bones with MR image-based dose calculations for radiotherapy treatment planning.

    Science.gov (United States)

    Korhonen, Juha; Kapanen, Mika; Keyrilainen, Jani; Seppala, Tiina; Tuomikoski, Laura; Tenhunen, Mikko

    2013-01-01

    Magnetic resonance (MR) images are used increasingly in external radiotherapy target delineation because of their superior soft tissue contrast compared to computed tomography (CT) images. Nevertheless, radiotherapy treatment planning has traditionally been based on the use of CT images, due to the restrictive features of MR images such as lack of electron density information. This research aimed to measure absorbed radiation doses in material behind different bone parts, and to evaluate dose calculation errors in two pseudo-CT images; first, by assuming a single electron density value for the bones, and second, by converting the electron density values inside bones from T(1)∕T(2)∗-weighted MR image intensity values. A dedicated phantom was constructed using fresh deer bones and gelatine. The effect of different bone parts to the absorbed dose behind them was investigated with a single open field at 6 and 15 MV, and measuring clinically detectable dose deviations by an ionization chamber matrix. Dose calculation deviations in a conversion-based pseudo-CT image and in a bulk density pseudo-CT image, where the relative electron density to water for the bones was set as 1.3, were quantified by comparing the calculation results with those obtained in a standard CT image by superposition and Monte Carlo algorithms. The calculations revealed that the applied bulk density pseudo-CT image causes deviations up to 2.7% (6 MV) and 2.0% (15 MV) to the dose behind the examined bones. The corresponding values in the conversion-based pseudo-CT image were 1.3% (6 MV) and 1.0% (15 MV). The examinations illustrated that the representation of the heterogeneous femoral bone (cortex denser compared to core) by using a bulk density for the whole bone causes dose deviations up to 2% both behind the bone edge and the middle part of the bone (diameter bones). This study indicates that the decrease in absorbed dose is not dependent on the bone diameter with all types of bones. Thus

  12. Radiochromic Plastic Films for Accurate Measurement of Radiation Absorbed Dose and Dose Distributions

    DEFF Research Database (Denmark)

    McLaughlin, W. L.; Miller, Arne; Fidan, S.

    1977-01-01

    of many polymeric systems in industrial radiation processing. The result is that errors due to energy dependence of response of the radiation sensor are effectively reduced, since the spectral sensitivity of the dose meter matches that of the polymer of interest, over a wide range of photon and electron......Thin radiochromic dye films are useful for measuring large radiation absorbed doses (105–108 rads) and for high-resolution imaging of dose patterns produced by penetrating radiation beams passing through non-homogeneous media. Certain types of amino-substituted triarylmethane cyanides dissolved...... in polymeric solutions can be cast into flexible free-standing thin films of uniform thickness and reproducible response to ultraviolet and ionizing radiation. The increase in optical density versus energy deposited by radiation is linear over a wide range of doses and is for practical purposes independent...

  13. Referent 3D solid tumour model and absorbed dose calculations at cellular level in radionuclide therapy

    International Nuclear Information System (INIS)

    Spaic, R.; Ilic, R.; Petrovic, B.; Dragovic, M.; Toskovic, F.

    2007-01-01

    An average absorbed dose of the tumour calculated by the MIRD formalism has not always a good correlation with the clinical response. The basic assumption of the MIRD schema is that a uniform spatial dose distribution is opposite to heterogeneity of intratumoral distribution of the administered radionuclide which can lead to a spatial nonuniformity of the absorbed dose. Therefore, in clinical practice, an absorbed dose of the tumour at the cellular level has to be calculated. The aim of this study is to define a referent 3D solid tumour model and using the direct Monte Carlo radiation transport method to calculate: a) absorbed fraction, b) spatial 3D absorbed dose distribution, c) absorbed dose and relative absorbed dose of cells or clusters of cells, and d) differential and accumulated dose volume histograms. A referent 3D solid tumour model is defined as a sphere which is randomly filled with cells and necrosis with defined radii and volumetric density. Radiolabelling of the tumour is defined by intracellular to extracellular radionuclide concentration and radio-labelled cell density. All these parameters are input data for software which generates a referent 3D solid tumour model. The modified FOTELP Monte Carlo code was used on this model for simulation study with beta emitters which were applied on the tumour. The absorbed fractions of Cu-67, I- 131, Re-188 and Y-90 were calculated for different tumour sphere masses and radii. Absorbed doses of cells and spatial distributions of the absorbed doses in the referent 3D solid tumour were calculated for radionuclides I-131 and Y-90. Dose scintigram or voxel presentation of absorbed dose distributions showed higher homogeneity for Y-90 than for I-131. A differential dose volume histogram, or spectrum, of the relative absorbed dose of cells, was much closer to the average absorbed dose of the tumour for Y-90 than I-131. An accumulated dose volume histogram showed that most tumour cells received a lower dose than

  14. Dosimetric systems of high dose, dose rate and dose uniformity in food and medical products

    International Nuclear Information System (INIS)

    Vargas, J.; Vivanco, M.; Castro, E.

    2014-08-01

    In the Instituto Peruano de Energia Nuclear (IPEN) we use the chemical dosimetry Astm-E-1026 Fricke as a standard dosimetric system of reference and different routine dosimetric systems of high doses, according to the applied doses to obtain the desired effects in the treated products and the doses range determined for each type of dosimeter. Fricke dosimetry is a chemical dosimeter in aqueous solution indicating the absorbed dose by means an increase in absorbance at a specific wavelength. A calibrated spectrophotometer with controlled temperature is used to measure absorbance. The adsorbed dose range should cover from 20 to 400 Gy, the Fricke solution is extremely sensitive to organic impurities, to traces of metal ions, in preparing chemical products of reactive grade must be used and the water purity is very important. Using the referential standard dosimetric system Fricke, was determined to March 5, 2013, using the referential standard dosimetric system Astm-1026 Fricke, were irradiated in triplicate Fricke dosimeters, to 5 irradiation times (20; 30; 40; 50 and 60 seconds) and by linear regression, the dose rate of 5.400648 kGy /h was determined in the central point of the irradiation chamber (irradiator Gamma cell 220 Excel), applying the decay formula, was compared with the obtained results by manufacturers by means the same dosimetric system in the year of its manufacture, being this to the date 5.44691 kGy /h, with an error rate of 0.85. After considering that the dosimetric solution responds to the results, we proceeded to the irradiation of a sample of 200 g of cereal instant food, 2 dosimeters were placed at the lateral ends of the central position to maximum dose and 2 dosimeters in upper and lower ends as minimum dose, they were applied same irradiation times; for statistical analysis, the maximum dose rate was 6.1006 kGy /h and the minimum dose rate of 5.2185 kGy /h; with a dose uniformity of 1.16. In medical material of micro pulverized bone for

  15. Blood compounds irradiation process: assessment of absorbed dose using Fricke and Thermoluminescent dosimetric systems

    International Nuclear Information System (INIS)

    Soares, Gabriela de Amorim; Squair, Peterson Lima; Pinto, Fausto Carvalho; Belo, Luiz Claudio Meira; Grossi, Pablo Andrade

    2009-01-01

    The assessment of gamma absorbed doses in irradiation facilities allows the quality assurance and control of the irradiation process. The liability of dose measurements is assign to the metrological procedures adopted including the uncertainty evaluation. Fricke and TLD 800 dosimetric systems were used to measure absorbed dose in the blood compounds using the methodology presented in this paper. The measured absorbed doses were used for evaluating the effectiveness of the irradiation procedure and the gamma dose absorption inside the irradiation room of a gamma irradiation facility. The radiation eliminates the functional and proliferative capacities of donor T-lymphocytes, preventing Transfusion associated graft-versus-host disease (TA-GVHD), a possible complication of blood transfusions. The results show the applicability of such dosimetric systems in quality assurance programs, assessment of absorbed doses in blood compounds and dose uniformity assign to the blood compounds irradiation process by dose measurements in a range between 25 Gy and 100 Gy. (author)

  16. Blood compounds irradiation process: assessment of absorbed dose using Fricke and Thermoluminescent dosimetric systems

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Gabriela de Amorim; Squair, Peterson Lima; Pinto, Fausto Carvalho; Belo, Luiz Claudio Meira; Grossi, Pablo Andrade [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN-CNEN/MG), Belo Horizonte, MG (Brazil)], e-mail: gas@cdtn.br, e-mail: pls@cdtn.br, e-mail: fcp@cdtn.br, e-mail: lcmb@cdtn.br, e-mail: pabloag@cdtn.br

    2009-07-01

    The assessment of gamma absorbed doses in irradiation facilities allows the quality assurance and control of the irradiation process. The liability of dose measurements is assign to the metrological procedures adopted including the uncertainty evaluation. Fricke and TLD 800 dosimetric systems were used to measure absorbed dose in the blood compounds using the methodology presented in this paper. The measured absorbed doses were used for evaluating the effectiveness of the irradiation procedure and the gamma dose absorption inside the irradiation room of a gamma irradiation facility. The radiation eliminates the functional and proliferative capacities of donor T-lymphocytes, preventing Transfusion associated graft-versus-host disease (TA-GVHD), a possible complication of blood transfusions. The results show the applicability of such dosimetric systems in quality assurance programs, assessment of absorbed doses in blood compounds and dose uniformity assign to the blood compounds irradiation process by dose measurements in a range between 25 Gy and 100 Gy. (author)

  17. Absorbed and effective dose in direct and indirect digital panoramic radiography

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Gun Sun; Kim, Jin Soo; Kim, Jae Duk [Department of Oral and Maxilloficial Radiology School of Dentistry, Oral Biology Research Institute, Chosun University, Gwangju (Korea, Republic of)

    2010-03-15

    We evaluated the absorbed doses to the organs and calculated the effective doses when using the digital panoramic radiography. The absorbed dose averages in major organs of oral and maxillofacial region were measured using the Dental head phantom (CIRS Co., USA), nLi2B4O7 TLD chip and UD-716AGL dosimeter (Matsushita Electric Industrial Co., JPN) when performing indirect and direct digital panoramic radiography. Effective doses were calculated from correspond to ICRP 2007 recommendations for two panoramic radiography. The absorbed dose average on indirect and direct digital panoramic radiography was highest in parotid glands as measured 1259.6 mGy and 680.7 mGy respectively. Absorbed dose average in another organs were high in order of esophagus, submandibular gland, tongue and thyroid gland on both types of digital panoramic radiography. The absorbed dose average was higher on indirect type than direct one (p?0.05). The effective dose was higher on indirect type than direct one as measured 13.28 mSv and 8.70 mSv respectively. The absorbed doses in salivary gland and oral mucosa were high. However, thyroid gland also demands the attention on radiography due to high tissue weighting factor in spite of the low absorbed dose.

  18. Absorbed and effective dose in direct and indirect digital panoramic radiography

    International Nuclear Information System (INIS)

    Lee, Gun Sun; Kim, Jin Soo; Kim, Jae Duk

    2010-01-01

    We evaluated the absorbed doses to the organs and calculated the effective doses when using the digital panoramic radiography. The absorbed dose averages in major organs of oral and maxillofacial region were measured using the Dental head phantom (CIRS Co., USA), nLi2B4O7 TLD chip and UD-716AGL dosimeter (Matsushita Electric Industrial Co., JPN) when performing indirect and direct digital panoramic radiography. Effective doses were calculated from correspond to ICRP 2007 recommendations for two panoramic radiography. The absorbed dose average on indirect and direct digital panoramic radiography was highest in parotid glands as measured 1259.6 mGy and 680.7 mGy respectively. Absorbed dose average in another organs were high in order of esophagus, submandibular gland, tongue and thyroid gland on both types of digital panoramic radiography. The absorbed dose average was higher on indirect type than direct one (p?0.05). The effective dose was higher on indirect type than direct one as measured 13.28 mSv and 8.70 mSv respectively. The absorbed doses in salivary gland and oral mucosa were high. However, thyroid gland also demands the attention on radiography due to high tissue weighting factor in spite of the low absorbed dose.

  19. X-ray absorbed doses evaluation on patients under radiological studies

    International Nuclear Information System (INIS)

    Medeiros, Regina Bitelli; Daros, Kellen A.C.

    1996-01-01

    The skin absorbed doses were evaluated on patient submitted to the following x-ray exams : chest, facial sinus, lumbar spine. Thermoluminescent dosimetry was used and a variety of irradiation techniques performed. The results shown considerable differences on the absorbed dose for the various alternative technical conditions

  20. Characterization of the exradin A18 chamber ionization according to the IEC70631 standards. This work aims at the characterization of the Exradin model (Standard Imaging) A18 ionization chamber, according to the international standard IEC 607311. Intends to use the camera Exradin A18 for the quality control of a linear accelerator VARIAN model TrueBeam with capacity to produce beams of photons of high energy, unfiltered flatter (in later FFF) with high dose absorbed by pulse rate, why is verified, according to the mentioned standard IEC 60731, even under conditions of high dose absorbed by pulse rate, the efficiency of ion collection from this camera is within tolerances; Caracterizacion de la camara de ionizacion exradin A18 segun el estandar IEC70631. Estudio para haces de fotones sin filtro aplanador

    Energy Technology Data Exchange (ETDEWEB)

    Onses Segarra, A.; Puxeu Vaque, J.; Sancho Kolster, I.; Lizuain Arroyo, M. C.; Picon Olmos, C.

    2013-07-01

    This work aims at the characterization of the Exradin model (Standard Imaging) A18 ionization chamber, according to the international standard IEC 607311. Intends to use the camera Exradin A18 for the quality control of a linear accelerator VARIAN model TrueBeam with capacity to produce beams of photons of high energy, unfiltered flatter (in later FFF) with high dose absorbed by pulse rate, why is verified, according to the mentioned standard IEC 60731, even under conditions of high dose absorbed by pulse rate, the efficiency of ion collection from this camera is within tolerances. (Author)

  1. Determination of absorbed dose to the lens of eye from external sources

    International Nuclear Information System (INIS)

    Chen Lishu

    1993-01-01

    The methods of determining absorbed dose distributions in human eyeball by means of the experiments and available theories have been reported. A water phantom was built up. The distributions of beta dose were measured by an extrapolation ionization chamber at some depths corresponding to components of human eyeball such as cornea, sclera, anterior chamber and the lens of eye. The ratios among superficial absorbed dose (at 0.07 mm) and average absorbed doses at the depths 1,2,3 mm are obtained. They can be used for confining the deterministic effects of superficial tissues and organs such as the lens of eye for weakly penetrating radiations

  2. Status of air kerma and absorbed dose standards in India

    International Nuclear Information System (INIS)

    Vijayam, M.; Ramanathan, G.; Patki, V.S.; Soman, A.T.; Shigwan, J.B.; Vinatha, S.P.; Jadhavgaonkar, P.S.; Kadam, V.D.; Shaha, V.V.; Abani, M.C.

    2002-01-01

    -rays, chambers of the type Exradin A2, NE 2571, NE2577, Victoreen 415 B, Victoreen 415, Exradin A3 and NE 2581 are maintained. These chambers have been calibrated against the primary standards and have been used in the international intercomparison experiments. The future programme of development of standards include i) Development of graphite/water calorimeters as absorbed dose standards, ii) Establishment of extrapolation chamber as primary standard for absorbed dose for beta and soft x-ray beams and iii) Development of energy-independent plastic scintillators as reference standard for low energy low activity brachytherapy sources. (author)

  3. Dose rate modelled for the outdoors of a gamma irradiation

    International Nuclear Information System (INIS)

    Mangussi, J

    2012-01-01

    A model for the absorbed dose rate calculation on the surroundings of a gamma irradiation plant is developed. In such plants, a part of the radiation emitted upwards reach's the outdoors. The Compton scatterings on the wall of the exhausting pipes through de plant roof and on the outdoors air are modelled. The absorbed dose rate generated by the scattered radiation as far as 200 m is calculated. The results of the models, to be used for the irradiation plant design and for the environmental studies, are showed on graphics (author)

  4. Mercury exposure from dental amalgam fillings: absorbed dose and the potential for adverse health effects.

    Science.gov (United States)

    Mackert, J R; Berglund, A

    1997-01-01

    This review examines the question of whether adverse health effects are attributable to amalgam-derived mercury. The issue of absorbed dose of mercury from amalgam is addressed first. The use of intra-oral Hg vapor measurements to estimate daily uptake must take into account the differences between the collection volume and flow rate of the measuring instrument and the inspiratory volume and flow rate of air through the mouth during inhalation of a single breath. Failure to account for these differences will result in substantial overestimation of the absorbed dose. Other factors that must be considered when making estimates of Hg uptake from amalgam include the accurate measurement of baseline (unstimulated) mercury release rates and the greater stimulation of Hg release afforded by chewing gum relative to ordinary food. The measured levels of amalgam-derived mercury in brain, blood, and urine are shown to be consistent with low absorbed doses (1-3 micrograms/day). Published relationships between the number of amalgam surfaces and urine levels are used to estimate the number of amalgam surfaces that would be required to produce the 30 micrograms/g creatinine urine mercury level stated by WHO to be associated with the most subtle, pre-clinical effects in the most sensitive individuals. From 450 to 530 amalgam surfaces would be required to produce the 30 micrograms/g creatinine urine mercury level for people without any excessive gum-chewing habits. The potential for adverse health effects and for improvement in health following amalgam removal is also addressed. Finally, the issue of whether any material can ever be completely exonerated of claims of producing adverse health effects is considered.

  5. Assessment of human effective absorbed dose of 67 Ga-ECC based on biodistribution rat data.

    Science.gov (United States)

    Shanehsazzadeh, Saeed; Yousefnia, Hassan; Lahooti, Afsaneh; Zolghadri, Samaneh; Jalilian, Amir Reza; Afarideh, Hossien

    2015-02-01

    In a diagnostic context, determination of absorbed dose is required before the introduction of a new radiopharmaceutical to the market to obtain marketing authorization from the relevant agencies. In this work, the absorbed dose of [67 Ga]-ethylenecysteamine cysteine [(67 Ga)ECC] to human organs was determined by using distribution data for rats. For biodistribution data, the animals were sacrificed by CO2 asphyxiation at selected times after injection (0.5, 2 and 48 h, n = 3 for each time interval), then the tissue (blood, heart, lung, brain, intestine, feces, skin, stomach, kidneys, liver, muscle and bone) were removed. The absorbed dose was determined by Medical Internal Radiation Dose (MIRD) method after calculating cumulated activities in each organ. Our prediction shows that a 185-MBq injection of (67)Ga-ECC into the humans might result in an estimated absorbed dose of 0.029 mGy in the whole body. The highest absorbed doses are observed in the spleen and liver with 33.766 and 16.847 mGy, respectively. The results show that this radiopharmaceutical can be a good SPECT tracer since it can be produced easily and also the absorbed dose in each organ is less than permitted absorbed dose.

  6. Determination of Absorbed Dose in Large 60-Co Fields Radiotherapy

    International Nuclear Information System (INIS)

    Hrsak, H.

    2003-01-01

    Radiation in radiotherapy has selective impact on ill and healthy tissue. During the therapy the healthy tissue receives certain amount of dose. Therefore dose calculations in outer radiotherapy must be accurate because too high doses produce damage in healthy tissue and too low doses cannot ensure efficient treatment of cancer cells. A requirement on accuracy in the dose calculations has lead to improvement of detectors, and development of absolute and relative dosimetry. Determination of the dose distribution with use of computer is based on data provided by the relative dosimetry. This paper compares the percentage depth doses in cubic water phantoms of various dimensions with percentage depth doses calculated with use of Mayneord factor from the experimental depth doses measured in water phantom of large dimension. Depth doses in water phantoms were calculated by the model of empirical dosimetrical functions. The calculations were based on the assumption that large 6 0C o photon field exceeds the phantom's limits. The experimental basis for dose calculations by the model of empirical dosimetrical functions were exposure doses measured in air and dose reduction factors because of finite phantom dimensions. Calculations were performed by fortran 90 software. It was found that the deviation of dosimetric model was small in comparison to the experimental data. (author)

  7. Ageing effects of polymers at very low dose-rates

    International Nuclear Information System (INIS)

    Chenion, J.; Armand, X.; Berthet, J.; Carlin, F.; Gaussens, G.; Le Meur, M.

    1987-10-01

    The equipment irradiation dose-rate into the containment is variable from 10 -6 to 10 -4 gray per second for the most exposed materials. During qualification, safety equipments are submitted in France to dose-rates around 0.28 gray per second. This study purpose is to now if a so large irradiation dose-rate increase is reasonable. Three elastomeric materials used in electrical cables, o'rings seals and connectors, are exposed to a very large dose-rates scale between 2.1.10 -4 and 1.4 gray per second, to 49 KGy dose. This work was carried out during 3.5 years. Oxygen consumption measurement of the air in contact with polymer materials, as mechanical properties measurement show that: - at very low dose-rate, oxygen consumption is maximum at the same time (1.4 year) for the three elastomeric samples. Also, mechanical properties simultaneously change with oxygen consumption. At very low dose-rate, for the low irradiation doses, oxygen consumption is at least 10 times more important that it is showed when irradiation is carried out with usual material qualification dose-rate. At very low dose-rate, oxygen consumption decreases when absorbed irradiation dose by samples increases. The polymer samples irradiation dose is not still sufficient (49 KGy) to certainly determine, for the three chosen polymer materials, the reasonable irradiation acceleration boundary during nuclear qualification tests [fr

  8. Absorbed dose measurements of insulating material for TRISTAN magnets by IR spectrometry

    International Nuclear Information System (INIS)

    Endo, Kuninori; Ohsawa, Yasunobu; Michikawa, Taichi.

    1995-01-01

    Absorbed dose measurements of the insulating material for 29GeV TRISTAN Main-Ring magnets were carried out with the Infrared spectrometry. From the fact that carbonyl radical is induced in epoxy resin by irradiation, infrared absorbance in the range of 1705-1720 cm -1 due to carbonyl radicals was applied to the estimations of the absorbed dose of the epoxy resin. Relationship between absorbance of carbonyl band and absorbed dose was investigated exposing the epoxy resin in two irradiation fields, TRISTAN MR and irradiation facility of 3kCi 60 Co source. From this work, it was found that IR absorbance method could be applied to the absorbed dose measurements from 10 3 to 10 7 Gy and that absorbed doses obtained from 31 specimens of epoxy resin shaved from coils of TRISTAN MR magnets had a distribution extending from 2.6 x 10 3 to 1.07 x 10 7 Gy, mostly order of 10 4 to 10 5 Gy. (author)

  9. Atmospheric radiation flight dose rates

    Science.gov (United States)

    Tobiska, W. K.

    2015-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the domains that are affected by space weather, the coupling between the solar and galactic high-energy particles, the magnetosphere, and atmospheric regions can significantly affect humans and our technology as a result of radiation exposure. Space Environment Technologies (SET) has been conducting space weather observations of the atmospheric radiation environment at aviation altitudes that will eventually be transitioned into air traffic management operations. The Automated Radiation Measurements for Aerospace Safety (ARMAS) system and Upper-atmospheric Space and Earth Weather eXperiment (USEWX) both are providing dose rate measurements. Both activities are under the ARMAS goal of providing the "weather" of the radiation environment to improve aircraft crew and passenger safety. Over 5-dozen ARMAS and USEWX flights have successfully demonstrated the operation of a micro dosimeter on commercial aviation altitude aircraft that captures the real-time radiation environment resulting from Galactic Cosmic Rays and Solar Energetic Particles. The real-time radiation exposure is computed as an effective dose rate (body-averaged over the radiative-sensitive organs and tissues in units of microsieverts per hour); total ionizing dose is captured on the aircraft, downlinked in real-time, processed on the ground into effective dose rates, compared with NASA's Langley Research Center (LaRC) most recent Nowcast of Atmospheric Ionizing Radiation System (NAIRAS) global radiation climatology model runs, and then made available to end users via the web and smart phone apps. Flight altitudes now exceed 60,000 ft. and extend above commercial aviation altitudes into the stratosphere. In this presentation we describe recent ARMAS and USEWX results.

  10. Absorbed Dose Distributions in Irradiated Plastic Tubing and Wire Insulation

    DEFF Research Database (Denmark)

    Miller, Arne; McLaughlin, W. L.

    1979-01-01

    Plastic tubing and wire insulation were simulated by radiochromic dye dosimeter films having electron absorbing properties similar to the materials of interest (polyethylene and PVC). A 400-keV electron accelerator was used to irradiate from 1, 2, 3 and 4 sides simulating possible industrial...

  11. Validity of the concept of absorbed dose as a physical quantity

    International Nuclear Information System (INIS)

    Tada, Jun-Ichiro; Katoh, Kazuaki.

    1995-01-01

    The concept of the 'absorbed dose' of ionizing radiation is scrutinized from physical point of view. It is shown that the concept and definition of the quantity in the ICRU system is disqualified as a physical quantity and the absorbed dose can not always be a 'measure of cause' in describing causality relation between radiation and effects on matter. The current absorbed dose depends even on the energy that have already been brought out from the matter, contrary to the intention of introducing the quantity. Trials to remove these difficulties are made. However, it is also shown there still exists an essential problem that cannot be solved by improving the formulation. (author)

  12. Isoeffective dose: a concept for biological weighting of absorbed dose in proton and heavier-ion therapies

    CERN Document Server

    Wambersie, A; Menzel, H G; Gahbauer, R; DeLuca, P M; Hendry, J H; Jones, D T L

    2011-01-01

    When reporting radiation therapy procedures, International Commission on Radiation Units and Measurements (ICRU) recommends specifying absorbed dose at/in all clinically relevant points and/or volumes. In addition, treatment conditions should be reported as completely as possible in order to allow full understanding and interpretation of the treatment prescription. However, the clinical outcome does not only depend on absorbed dose but also on a number of other factors such as dose per fraction, overall treatment time and radiation quality radiation biology effectiveness (RBE). Therefore, weighting factors have to be applied when different types of treatments are to be compared or to be combined. This had led to the concept of `isoeffective absorbed dose', introduced by ICRU and International Atomic Energy Agency (IAEA). The isoeffective dose D(IsoE) is the dose of a treatment carried out under reference conditions producing the same clinical effects on the target volume as those of the actual treatment. It i...

  13. Absorbed dose determination in kilovoltage X-ray synchrotron radiation using alanine dosimeters.

    Science.gov (United States)

    Butler, D J; Lye, J E; Wright, T E; Crossley, D; Sharpe, P H G; Stevenson, A W; Livingstone, J; Crosbie, J C

    2016-12-01

    Alanine dosimeters from the National Physical Laboratory (NPL) in the UK were irradiated using kilovoltage synchrotron radiation at the imaging and medical beam line (IMBL) at the Australian Synchrotron. A 20 × 20 mm 2 area was irradiated by scanning the phantom containing the alanine through the 1 mm × 20 mm beam at a constant velocity. The polychromatic beam had an average energy of 95 keV and nominal absorbed dose to water rate of 250 Gy/s. The absorbed dose to water in the solid water phantom was first determined using a PTW Model 31014 PinPoint ionization chamber traceable to a graphite calorimeter. The alanine was read out at NPL using correction factors determined for 60 Co, traceable to NPL standards, and a published energy correction was applied to correct for the effect of the synchrotron beam quality. The ratio of the doses determined by alanine at NPL and those determined at the synchrotron was 0.975 (standard uncertainty 0.042) when alanine energy correction factors published by Waldeland et al. (Waldeland E, Hole E O, Sagstuen E and Malinen E, Med. Phys. 2010, 37, 3569) were used, and 0.996 (standard uncertainty 0.031) when factors by Anton et al. (Anton M, Büermann L., Phys Med Biol. 2015 60 6113-29) were used. The results provide additional verification of the IMBL dosimetry.

  14. Kinetics of the absorbed dose formation and the effect of chronic β-irradiation on the cytogenetic characteristics and harvest of barley plants

    International Nuclear Information System (INIS)

    Zyablitskaya, E.Ya.; Kal'chenko, V.A.; Aleksakhin, R.M.; Zuev, N.D.

    1984-01-01

    A study was made of the kinetics of the absorbed dose formation, of the cytogenetic effects and the yield of barley plants growing in the experimental fields artificially contaminated with 90 Sr- 90 Y. It was shown that 70% of the dose absorbed during the vegetation period fall on the 1st and the and stages of organogenesis. The dose absorbed was shown to increase the cytogenetic effects. As calculated per 1 Gy the cytogenetic effects had an inverse relation to the dose rate

  15. Aspects of pre-dose and other luminescence phenomena in quartz absorbed dose estimation

    International Nuclear Information System (INIS)

    Adamiec, G.

    2000-01-01

    The understanding of all luminescence processes occurring in quartz is of paramount importance in the further development of robust absorbed dose estimation techniques (for the purpose of dating and retrospective dosimetry). The findings presented in this thesis, aid future improvements of absorbed dose estimation techniques using quartz by presenting investigations in the following areas: 1) interpretation of measurement results, 2) numerical modelling of luminescence in quartz, 3) phenomena needing inclusion in future physical models of luminescence. In the first part, the variability of properties of single quartz grains is examined. Through empirical and theoretical considerations, investigations are made of various problems of measurements of luminescence using multi-grain aliquots, and specifically areas where the heterogeneity of the sample at the inter-grain level may be misinterpreted at the multi-grain-aliquot level. The results obtained suggest that the heterogeneity of samples is often overlooked, and that such differences can have a profound influence on the interpretation of measurement results. Discussed are the shape of TL glow curves, OSL decay curves, dose response curves (including consequences for using certain signals as proxies for others), normalisation procedures and D E estimation techniques. Further, a numerical model of luminescence is proposed, which includes multiple R-centres and is used to describe the pre-dose sensitisation in quartz. The numerical model exhibits a broad-scale behaviour observed experimentally in a sample of annealed quartz. The shapes of TAC for lower (20 Gy) and higher doses (1 kGy) and the evolution with temperature of the isothermal sensitisation curves are qualitatively matched for the empirical and numerical systems. In the third area, a preliminary investigation of the properties of the '110 deg. C peak' in the 550 nm emission band, in annealed quartz is presented. These properties are in sharp contrast with

  16. Measuring absorbed dose for i-CAT CBCT examinations in child, adolescent and adult phantoms.

    Science.gov (United States)

    Choi, E; Ford, N L

    2015-01-01

    Design and construct child and adolescent head phantoms to measure the absorbed doses imparted during dental CBCT and compare with the absorbed dose measured in an adult phantom. A child phantom was developed to represent the smallest patients receiving CBCT, usually for craniofacial developmental concerns, and an adolescent phantom was developed to represent healthy orthodontic patients. Absorbed doses were measured using a thimble ionization chamber for the custom-built child and adolescent phantoms and compared with measurements using a commercially available adult phantom. Imaging was performed with an i-CAT Next Generation (Imaging Sciences International, Hatfield, PA) CBCT using two different fields of view covering the craniofacial complex (130 mm high) or maxilla/mandible (60 mm high). Measured absorbed doses varied depending on the location of the ionization chamber within the phantoms. For CBCT images obtained using the same protocol for all phantoms, the highest absorbed dose was measured in all locations of the small child phantom. The lowest absorbed dose was measured in the adult phantom. Images were obtained with the same protocol for the adult, adolescent and child phantoms. A consistent trend was observed with the highest absorbed dose being measured in the smallest phantom (child), while the lowest absorbed dose was measured in the largest phantom (adult). This study demonstrates the importance of child-sizing the dose by using dedicated paediatric protocols optimized for the imaging task, which is critical as children are more sensitive to harmful effects of radiation and have a longer life-span post-irradiation for radiation-induced symptoms to develop than do adults.

  17. Absorbed dose evaluations in retrospective dosimetry: Methodological developments using quartz

    DEFF Research Database (Denmark)

    Bailiff, I.K.; Bøtter-Jensen, L.; Correcher, V.

    2000-01-01

    -300 mGy were obtained using TL (210 degreesC TL and pre-dose) and OSL (single and multiple aliquot) procedures. Overall, good inter-laboratory concordance of dose evaluations was achieved, with a variance (1 sigma) of similar to+/-10 mGy for the samples examined. (C) 2000 Elsevier Science Ltd. All...

  18. Electron scattering effects on absorbed dose measurements with LiF-dosemeters

    International Nuclear Information System (INIS)

    Bertilsson, G.

    1975-10-01

    The investigation deals with absorbed dose measurements with solid wall-less dosemeters. Electron scattering complicates both measurement of absorbed dose and its theoretical interpretation. The introduction of the dosemeter in a medium causes perturbations of the radiation field. This perturbation and its effect on the distribution of the absorbed dose inside the dosemeter is studied. Plane-parallel LiF-teflon dosemeters (0.005 - 0.1 g.cm -2 ) are irradiated by a photon beam ( 137 Cs) in different media. The investigation shows that corrections must be made for perturbations caused by electron scattering phenomena. Correction factors are given for use in accurate absorbed dose determinations with thermoluminescent dosemeters. (Auth.)

  19. Advances in absorbed dose measurement standards at the australian radiation laboratory

    International Nuclear Information System (INIS)

    Boas, J.F.; Hargrave, N.J.; Huntley, R.B.; Kotler, L.H.; Webb, D.V.; Wise, K.N.

    1996-01-01

    The applications of ionising radiation in the medical and industrial fields require both an accurate knowledge of the amount of ionising radiation absorbed by the medium in question and the capability of relating this to National and International standards. The most useful measure of the amount of radiation is the absorbed dose which is defined as the energy absorbed per unit mass. For radiotherapy, the reference medium is water, even though the measurement of the absorbed dose to water is not straightforward. Two methods are commonly used to provide calibrations in absorbed dose to water. The first is the calibration of the chamber in terms of exposure in a Cobalt-60 beam, followed by the conversion by a protocol into dose to water in this and higher energy beams. The other route is via the use of a graphite calorimeter as a primary standard device, where the conversion from absorbed dose to graphite to absorbed dose in water is performed either by theoretical means making use of cavity ionisation theory, or by experiment where the graphite calorimeter and secondary standard ionisation chamber are placed at scaled distances from the source of the radiation beam (known as the Dose-Ratio method). Extensive measurements have been made at Cobalt-60 at ARL using both the exposure and absorbed dose to graphite routes. Agreement between the ARL measurements and those based on standards maintained by ANSTO and NPL is within ± 0.3%. Absorbed dose measurements have also been performed at ARL with photon beams of nominal energy 16 and 19 MeV obtained from the ARL linac. The validity of the protocols at high photon energies, the validity of the methods used to convert from absorbed dose in graphite to absorbed dose in water and the validity of the indices used to specify the beams are discussed. Brief mention will also be made of the establishment of a calibration facility for neutron monitors at ARL and of progress in the development of ERP dosimetry

  20. Genetic effects induced by neutrons in Drosophila melanogaster I. Determination of absorbed dose

    International Nuclear Information System (INIS)

    Delfin, A.; Paredes, L.C.; Zambrano, F.; Guzman-Rincon, J.; Urena-Nunez, F.

    2001-01-01

    A method to obtain the absorbed dose in Drosophila melanogaster irradiated in the thermal column facility of the Triga Mark III Reactor has been developed. The method is based on the measurements of neutron activation of gold foils produced by neutron capture to obtain the neutron fluxes. These fluxes, combined with the calculations of kinetic energy released per unit mass, enables one to obtain the absorbed doses in Drosophila melanogaster

  1. Parotid-Absorbed Doses: A Comparison Between Spiral Tomography and Panoramic

    Directory of Open Access Journals (Sweden)

    Ehsan Hekmatian

    2016-07-01

    Full Text Available Background Jaws spiral tomography and panoramic radiography have wide applications in dentistry, and the parotid gland is one of the most sensitive organs of the head and neck. Objectives The aim of this study was to evaluate and compare the parotid-absorbed dose in spiral tomography and panoramic radiographs using a thermoluminescent dosimeter. Materials and Methods A radiation analog dosimetry phantom was placed in a Cranex Tome radiograph device, and a parotid absorbed dose was measured in both techniques. Thermoluminescent dosimeters were placed bilaterally in the parotid region (on the tube side and the opposite side. Spiral tomography dosimetry was done for the upper and lower jaws in the anterior and posterior regions. Each region contained four slices of 2 mm and four slices of 4 mm in thickness. The results were analyzed by a Wilcoxon test. Results For the tube side parotid, the average absorbed doses in spiral tomography of the anterior and posterior parts of the maxilla and mandible, with the 2 mm slice thickness, were 1.70/1.40 and 1.65/1.60 mGy, respectively. The average absorbed doses with the 4mm slices were 1.65/1.70 and 1.75/1.57 mGy, respectively. For the opposite parotid, the average absorbed dose in spiral tomography of the anterior and posterior parts of the maxilla and mandible, with the 2 mm slice thickness, were 1.40/1.30 and 1.40/1.67 mGy, respectively. The average absorbed doses with the 4mm slices were 1.50/1.66 and 1.40/1.50 mGy, respectively. The average absorbed dose of the panoramic radiograph was 1.40 mGy. Conclusions There was no statistically significant difference in the parotid absorbed dose between spiral tomography and a panoramic radiograph (P value = 0.18. The overall results of this study were similar to other studies.

  2. Control of absorbed dose in radiotherapy with 60 Co units

    International Nuclear Information System (INIS)

    Penchev, V.; Constantinov, B.; Buchakliev, Z.

    2000-01-01

    A Network for External Quality Audit has been developed and established in Bulgaria by the Secondary Standard Dosimetry Laboratory (SSDL) - Sofia. The results prove the usefulness of the TL Postal Dose programme in helping Bulgarian radiotherapy departments improve and maintain the consistency of patient doses in clinically acceptable level. The participation of the SSDL-Sofia in the IAEA Quality Audit Programme confirms the quite satisfactory accuracy of the therapy level dose measurements and determination achieved. The role of the SSDL is critical in providing traceable calibration to hospitals

  3. Biological indicators for radiation absorbed dose: a review

    International Nuclear Information System (INIS)

    Paul, S.F.D.; Venkatachalam, P.; Jeevanram, R.K.

    1996-01-01

    Biological dosimetry has an important role to play in assessing the cumulative radiation exposure of persons working with radiation and also in estimating the true dose received during accidents involving external and internal exposure. Various biodosimetric methods have been tried to estimate radiation dose for the above purposes. Biodosimetric methods include cytogenetic, immunological and mutational assays. Each technique has certain advantages and disadvantages. We present here a review of each technique, the actual method used for detection of dose, the sensitivity of detection and its use in long term studies. (author)

  4. Modeling the absorbed dose to the common carotid arteries following radioiodine treatment of benign thyroid disease

    International Nuclear Information System (INIS)

    La Cour, Jeppe Lerche; Jensen, Lars Thorbjorn; Hedemann-Jensen, Per; Sogaard-Hansen, Jens; Nygaard, Birte

    2013-01-01

    External fractionated radiotherapy of cancer increases the risk of cardio- and cerebrovascular events, but less attention has been paid to the potential side effects on the arteries following internal radiotherapy with radioactive iodine (RAI), i.e. 131-iodine. About 279 per million citizens in the western countries are treated each year with RAI for benign thyroid disorders (about 140,000 a year in the EU), stressing that it is of clinical importance to be aware of even rare radiation-induced side effects. In order to induce or accelerate atherosclerosis, the dose to the carotid arteries has to exceed 2 Gy which is the known lower limit of ionizing radiation to affect the endothelial cells and thereby to induce atherosclerosis. To estimate the radiation dose to the carotid arteries following RAI therapy of benign thyroid disorders. Assuming that the lobes of the thyroid gland are ellipsoid, that the carotid artery runs through a part of the lobes, that there is a homogeneous distribution of RAI in the lobes, and that the 24 h RAI uptake in the thyroid is 35% of the 131 I orally administrated, we used integrated modules for bioassay analysis and Monte Carlo simulations to calculate the dose in Gy/GBq of administrated RAI. The average radiation dose along the arteries is 4-55 Gy/GBq of the 131 I orally administrated with a maximum dose of approximately 25-85 Gy/GBq. The maximum absorbed dose rate to the artery is 4.2 Gy/day per GBq 131 I orally administrated. The calculated radiation dose to the carotid arteries after RAI therapy of benign thyroid disorder clearly exceeds the 2 Gy known to affect the endothelial cells and properly induce atherosclerosis. This simulation indicates a relation between the deposited dose in the arteries following RAI treatment and an increased risk of atherosclerosis and subsequent cerebrovascular events such as stroke. (author)

  5. Absorbed dose to the urinary bladder wall for different radiopharmaceuticals using dynamic S-values

    International Nuclear Information System (INIS)

    Andersson, M.; Minarik, D.; Mattsson, S.; Leide-Svegborn; Johansson, L.

    2015-01-01

    Full text of publication follows. Aim and background: the urinary bladder wall is a radiosensitive organ that can receive a high absorbed dose from radiopharmaceuticals used in diagnostic nuclear medicine. Current dynamic models estimate the photon and electron absorbed dose at the inner surface of the bladder wall. The aim of this work has been to create a more realistic estimation of the mean absorbed dose to the urinary bladder wall from different radiopharmaceuticals. This calculation also uses dynamic specific absorption fractions (SAF) that changes with bladder volume and are gender specific. Materials and Methods: the volume of the urinary bladder content was calculated using a spherical approximation with a urinary inflow of 1.0 ml/min and 0.5 ml/min during day and night time, respectively. The activity in the bladder content was described using a bi-exponential extraction from the body. The absorbed dose to the bladder wall was estimated using linear interpolation of SAF values from different bladder volumes, ranging from 10 ml to 800 ml. Administration of the activity was assumed to start at 09:00 with an initial voiding after 40 minutes and a voiding interval of 3.5 hours during the day. A six hour night gap, starting at midnight, with a voiding right before and after the night period, was used. Calculations were made, with the same assumptions, for an earlier dynamic bladder model and with a static SAF value from the ICRP/ICRU adult reference computational phantoms for a bladder containing 200 ml. Values for the absorbed dose per unit administered activity for 19 commonly used radiopharmaceuticals were calculated, e.g. 18 F-FDG, 99m Tc-pertechnetate, 99m Tc-MAG3 and 123 I-NaI. Results and conclusion: the results of the estimates of the absorbed doses to the inner bladder wall were a factor of ten higher than the estimates mean absorbed doses. The mean absorbed doses to the bladder wall were slightly higher for females than males, due to a smaller female

  6. Tank Z-361 dose rate calculations

    International Nuclear Information System (INIS)

    Richard, R.F.

    1998-01-01

    Neutron and gamma ray dose rates were calculated above and around the 6-inch riser of tank Z-361 located at the Plutonium Finishing Plant. Dose rates were also determined off of one side of the tank. The largest dose rate 0.029 mrem/h was a gamma ray dose and occurred 76.2 cm (30 in.) directly above the open riser. All other dose rates were negligible. The ANSI/ANS 1991 flux to dose conversion factor for neutrons and photons were used in this analysis. Dose rates are reported in units of mrem/h with the calculated uncertainty shown within the parentheses

  7. Evaluation of the absorbed dose in odontological computerized tomography; Avaliacao da dose absorvida em tomografia computadorizada odontologica

    Energy Technology Data Exchange (ETDEWEB)

    Legnani, Adriano; Schelin, Hugo R.; Rocha, Anna Silvia P.S. da, E-mail: schelin@utfpr.edu.b, E-mail: anna@utfpr.edu.b [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil); Khoury, Helen J., E-mail: khoury@ufpe.b [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil)

    2011-10-26

    This paper evaluated the absorbed dose at the surface entry known as 'cone beam computed tomography' (CBCT) in odontological computerized tomography. Examination were simulated with CBCT for measurements of dose. A phantom were filled with water, becoming scatter object of radiation. Thermoluminescent dosemeters were positioned on points correspondent to eyes and salivary glands

  8. Evaluation of the absorbed dose to the lungs due to Xe133 and Tc99m (MAA)

    International Nuclear Information System (INIS)

    Vazquez A, M.; Murillo C, F.; Castillo D, C.; Sifuentes D, Y.; Sanchez S, P.; Rojas P, E.; Marquez P, F.

    2015-10-01

    The absorbed dose in lungs of an adult patient has been evaluated using the biokinetics of radiopharmaceuticals containing Xe 133 or Tc 99m (MAA). The absorbed dose was calculated using the MIRD formalism, and the Cristy-and Eckerman lungs model. The absorbed dose in the lungs due to 133 Xe is 0.00104 mGy/MBq. Here, the absorbed dose due to remaining tissue, included in the 133 Xe biokinetics is not significant. The absorbed dose in the lungs, due Tc 99m (MAA), is 0.065 mGy/MBq. Approximately, 4.6% of the absorbed dose is due to organs like liver, kidneys, bladder, and the rest of tissues, included in the Tc 99m biokinetics. Here, the absorbed dose is very significant to be overlooked. The dose contribution is mainly due to photons emitted by the liver. (Author)

  9. Radiation dose rate measuring device

    International Nuclear Information System (INIS)

    Sorber, R.

    1987-01-01

    A portable device is described for in-field usage for measuring the dose rate of an ambient beta radiation field, comprising: a housing, substantially impervious to beta radiation, defining an ionization chamber and having an opening into the ionization chamber; beta radiation pervious electrically-conductive window means covering the opening and entrapping, within the ionization chamber, a quantity of gaseous molecules adapted to ionize upon impact with beta radiation particles; electrode means disposed within the ionization chamber and having a generally shallow concave surface terminating in a generally annular rim disposed at a substantially close spacing to the window means. It is configured to substantially conform to the window means to define a known beta radiation sensitive volume generally between the window means and the concave surface of the electrode means. The concave surface is effective to substantially fully expose the beta radiation sensitive volume to the radiation field over substantially the full ambient area faced by the window means

  10. Dose absorbed in the fetus by radioactive drugs prescribed

    International Nuclear Information System (INIS)

    Rojo, A.M.; Gomez Parada, I.; Di Trano, J.L.

    1998-01-01

    This work aims to review existing guidelines on the hypothesis that must be taken into account when calculating impact from the dose on the fetus for widely employed radioactive drugs. Recent research is added giving data on placenta transference linked to pregnancy term. The most widely used diagnostic and therapeutic practices are analyzed comparing the dose impact on the fetus with limits internationally accepted. This will allow having the necessary tools to answer questions concerning radiological risks due to the administration of radioactive drugs to pregnant women

  11. Absorbed dose in polymers during a positron annihilation experiment

    International Nuclear Information System (INIS)

    Suzuki, T.; Namito, Y.; Oki, Y.; Numajiri, M.; Miura, T.; Hirayama, H.; Kondo, K.; Ito, Y.

    1994-01-01

    A positron annihilation lifetime (PAL) technique has been recognized as being a useful method to study the characteristics of polymers. However, radiation effects due to positrons used as a probe have been raised as being a problem, since positrons emitted from 22 Na have sufficient energy to induce radiation damage in polymers. In this study, the radiation dose induced by positrons emitted from 22 Na was estimated for such polymers like polyethylenes and polypropylenes using the EGS4 code. The radiation damage during PAL measurements is also discussed. It has been shown that the calculated dose is consistent with that estimated from an empirical equation of the mass-attenuation coefficient. (author)

  12. Absorbed dose distributions from ophthalmic106Ru/106Rh plaques measured in water with radiochromic film.

    Science.gov (United States)

    Hermida-López, Marcelino; Brualla, Lorenzo

    2018-02-05

    Brachytherapy with 106 Ru/ 106 Rh plaques offers good outcomes for small-to-medium choroidal melanomas and retinoblastomas. The dose measurement of the plaques is challenging, due to the small range of the emitted beta particles and steep dose gradients involved. The scarce publications on film dosimetry of 106 Ru/ 106 Rh plaques used solid phantoms. This work aims to develop a practical method for measuring the absorbed dose distribution in water produced by 106 Ru/ 106 Rh plaques using EBT3 radiochromic film. Experimental setups were developed to determine the dose distribution at a plane perpendicular to the symmetry axis of the plaque and at a plane containing the symmetry axis. One CCA and two CCX plaques were studied. The dose maps were obtained with the FilmQA Pro 2015 software, using the triple-channel dosimetry method. The measured dose distributions were compared to published Monte Carlo simulation and experimental data. A good agreement was found between measurements and simulations, improving upon published data. Measured reference dose rates agreed within the experimental uncertainty with data obtained by the manufacturer using a scintillation detector, with typical differences below 5%. The attained experimental uncertainty was 4.1% (k = 1) for the perpendicular setup, and 7.9% (k = 1) for the parallel setup. These values are similar or smaller than those obtained by the manufacturer and other authors, without the need of solid phantoms that are not available to most users. The proposed method may be useful to the users to perform quality assurance preclinical tests of 106 Ru/ 106 Rh plaques. © 2018 American Association of Physicists in Medicine.

  13. Plastic film materials for dosimetry of very large absorbed doses

    DEFF Research Database (Denmark)

    McLaughlin, W.L.; Miller, Arne; Abdel-Rahim, F.

    1985-01-01

    Most plastic films have limited response ranges for dosimetry because of radiation-induced brittleness, degradation, or saturation of the signal used for analysis (e.g. spectrophotometry) at high doses. There are, however, a few types of thin plastic films showing linearity of response even up...

  14. Studies of absorbed dose determinations and spatial dose distributions for high energy proton beams

    International Nuclear Information System (INIS)

    Hiraoka, Takeshi

    1982-01-01

    Absolute dose determinations were made with three types of ionization chamber and a Faraday cup. Methane based tissue equivalent (TE) gas, nitrogen, carbon dioxide, air were used as an ionizing gas with flow rate of 10 ml per minute. Measurements were made at the entrance position of unmodulated beams and for a beam of a spread out Bragg peak at a depth of 17.3 mm in water. For both positions, the mean value of dose determined by the ionization chambers was 0.993 +- 0.014 cGy for which the value of TE gas was taken as unity. The agreement between the doses estimated by the ionization chambers and the Faraday cup was within 5%. Total uncertainty estimated in the ionization chamber and the Faraday cup determinations is 6 and 4%, respectively. Common sources of error in calculating the dose from ionization chamber measurements are depend on the factors of ion recombination, W value, and mass stopping power ratio. These factors were studied by both experimentally and theoretically. The observed values for the factors show a good agreement to the predicted one. Proton beam dosimetry intercomparison between Japan and the United States was held. Good agreement was obtained with standard deviation of 1.6%. The value of the TE calorimeter is close to the mean value of all. In the proton spot scanning system, lateral dose distributions at any depth for one spot beam can be simulated by the Gaussian distribution. From the Gaussian distributions and the central axis depth doses for one spot beam, it is easy to calculate isodose distributions in the desired field by superposition of dose distribution for one spot beam. Calculated and observed isodose curves were agreed within 1 mm at any dose levels. (J.P.N.)

  15. Mathematical models of tumor growth: translating absorbed dose to tumor control probability

    International Nuclear Information System (INIS)

    Sgouros, G.

    1996-01-01

    Full text: The dose-rate in internal emitter therapy is low and time-dependent as compared to external beam radiotherapy. Once the total absorbed dose delivered to a target tissue is calculated, however, most dosimetric analyses of radiopharmaceuticals are considered complete. To translate absorbed dose estimates obtained for internal emitter therapy to biologic effect, the growth characteristics, repair capacity, and radiosensitivity of the tumor must be considered. Tumor growth may be represented by the Gompertz equation in which tumor cells increase at an exponential growth rate that is itself decreasing at an exponential rate; as the tumor increases in size, the growth rate diminishes. The empirical Gompertz expression for tumor growth may be derived from a mechanistic model in which growth is represented by a balance between tumor-cell birth and loss. The birth rate is assumed to be fixed, while the cell loss rate is time-dependent and increases with tumor size. The birth rate of the tumors may be related to their potential doubling time. Multiple biopsies of individual tumors have demonstrated a heterogeneity in the potential doubling time of tumors. By extending the mechanistic model described above to allow for sub-populations of tumor cells with different birth rates, the effect of kinetic heterogeneity within a tumor may be examined. Model simulations demonstrate that the cell kinetic parameters of a tumor are predicted to change over time and measurements obtained using a biopsy are unlikely to reflect the kinetics of the tumor throughout its growth history. A decrease in overall tumor mass, in which each sub-population is reduced in proportion to its cell number, i.e., the log-kill assumption, leads to re-growth of a tumor that has a greater proliferation rate. Therapy that is linked to the potential doubling time or to the effective proliferation rate of the tumor may lead to re-growth of a tumor that is kinetically unchanged. The simplest model of

  16. Terrestrial gamma radiation dose rate in Cienfuegos (Cuba))

    International Nuclear Information System (INIS)

    Alonso-Hernandez, C.M.; Sanchez-Llull, M.; Cartas-Aguila, H.; Diaz-Asencio, M.; Munoz-Caravaca, A.; Morera-Gomez, Y.; Acosta-Melian, R.

    2016-01-01

    This study assesses the level of background radiation for Cienfuegos Province, Cuba. Measurements of outdoor gamma radiation (of terrestrial and cosmic origin) in air were performed at 198 locations using a GPS navigator and a dose meter (SRP-68-01, 30 x 25 mm NaI detector). The average absorbed dose was found to be 73.9 nGy h -1 (17.2-293.9 nGy h -1 ), corresponding to an annual effective dose of 74.7 μSv (21-324 μSv). When compared with the data available for other places, the absorbed gamma doses obtained in this study indicate a background radiation level that falls within natural limits for the Damuji, Salado and Caonao watersheds; however, the Arimao and Gavilanes watersheds present levels of the absorbed dose and annual effective dose comparable with high background radiation areas. An isodose map of the terrestrial gamma dose rate in Cienfuegos was drawn using the GIS application 'Arc View'. This study provides important baseline data of radiation exposure in the area. (authors)

  17. Transit dose calculation in high dose rate brachytherapy (HDR ...

    African Journals Online (AJOL)

    Transit doses around a high dose rate 192Ir brachytherapy source were calculated using Sievert Integral at positions where the moving source was located exactly between two adjacent dwell positions. The correspond-ing transit dose rates were obtained by using energy absorption coefficients. Discrete step sizes of 0.25 ...

  18. Hematological toxicity in radioimmunotherapy is predicted both by the computed absorbed whole body dose (cGy) and by the administered dose (mCi)

    International Nuclear Information System (INIS)

    Marquez, Sheri D.; Knox, Susan J.; Trisler, Kirk D.; Goris, Michael L.

    1997-01-01

    Purpose/Objective: Radioimmunotherapy (RIT) has yielded encouraging response rates in patients with recurrent non-Hodgkin's lymphoma, but myelotoxicity remains the dose limiting factor. Dose optimization is theoretically possible, since a pretreatment biodistribution study with tracer doses allows for a fairly accurate estimate of the whole body (and by implication the bone marrow) dose in patients. It has been shown that the radiation dose as a function of the administered dose varies widely from patient to patient. The pretreatment study could therefore be used to determine the maximum tolerable dose for each individual patient. The purpose of this study was to examine whether the administered dose or the estimated whole body absorbed radiation dose were indeed predictors of bone marrow toxicity. Materials and Methods: We studied two cohorts of patients to determine if the computed integral whole body or marrow dose is predictive of myelotoxicity. The first cohort consisted of 13 patients treated with Yttrium-90 labeled anti-CD20 (2B8) monoclonal antibody. Those patients were treated in a dose escalation protocol, based on the administered dose, without correction for weight or body surface. The computed whole body dose varied from 41 to 129 cGy. The second cohort (6 patients) were treated with Iodine-131 labeled anti-CD20 (B1) antibody. In this group the administered dose was tailored to deliver an estimated 75 cGy whole body dose. The administered dose varied from 54 to 84 mCi of Iodine-131. For each patient, white blood cell count with differential, hemoglobin, hematocrit, and platelet levels were measured before and at regular intervals after RIT was administered. Using linear regression analysis, a relationship between administered dose, absorbed dose and myelotoxicity was determined for each patient cohort. Results: Marrow toxicity was measured by the absolute decrease in white blood cell (DWBC), platelet (DPLAT), and neutrophil (DN) values. In the Yttrium

  19. Radiation absorbed dose to the human fetal thyroid

    International Nuclear Information System (INIS)

    Watson, E.E.

    1992-01-01

    The embryo/fetus is recognized to be particularly susceptible to damage from exposure to radiation. Many advisory groups have studied available information concerning radiation doses and radiation effects with the goal of reducing the risk to the embryo/fetus. Of particular interest are radioactive isotopes of iodine. Radioiodine taken into the body of a pregnant woman presents a possible hazard for the embryo/fetus. The fetal thyroid begins to concentrate iodine at about 13 weeks after conception and continues to do so throughout gestation. At term, the organic iodine concentration in the fetal blood is about 75% of that in the mother's blood. This paper presents a review the models that have been proposed for the calculation of the dose to the fetal thyroid from radioisotopes of iodine taken into the body of the pregnant woman as sodium iodide. A somewhat different model has been proposed, and estimates of the radiation dose to the fetal thyroid calculated from this model are given for each month of pregnancy from 123 I , 124 I , 125 I , and 131 I

  20. Patient absorbed dose and radiation risk in nuclear medicine

    International Nuclear Information System (INIS)

    Hetherington, E.; Cochrane, P.

    1992-01-01

    Since the introduction of technetium-99m labelled radiopharmaceuticals used as imaging agents in the nuclear medicine departments of Australian hospitals, patients have voiced concern about the effect of having radioactive materials injected into their bodies. The danger of X-ray exposure is widely known and well accepted, as is exposure to ultrasound, computed tomography scans and other imaging techniques. However, radioactivity is an unknown, and fear of the unknown can occasionally lead to patients refusing to undergo a nuclear medicine procedure. The authors emphasised that the radiation dose to a patient from a typical procedure would depend on the patient's medical history and treatment; the average dose being approximately 50 times the exposure received from the natural environmental background radiation. Furthermore, over an extended period the body can repair most minor damage caused by radiation, just as the body can repair the damage caused by sunburn resulting from too much exposure to sunlight. The risk of genetic effects as a result of a medical radiation dose is than very small

  1. Dose-rate dependence of thermoluminescence response

    International Nuclear Information System (INIS)

    McKeever, S.W.S.; Chen, R.; Groom, P.J.; Durrani, S.A.

    1980-01-01

    The previously observed dose-rate effect of thermoluminescence in quartz at high dose-rates is given at theoretical formulation. Computer calculations simulating the experimental conditions yield similar results to the experimental ones. (orig.)

  2. Absorbed dose calculations to blood and blood vessels for internally deposited radionuclides

    International Nuclear Information System (INIS)

    Akabani, G.; Poston, J.W. Sr.

    1992-01-01

    At present, absorbed dose calculations for radionuclides in the human circulatory system use relatively simple models and are restricted in their applications. To determine absorbed doses to the blood and to the surface of the blood vessel wall, Monte Carlo calculations were performed using the code Electron Gamma Shower (EGS4). Absorbed doses were calculated for the blood and the blood vessel wall (lumen) for different blood vessel sizes. The radionuclides chosen for this study were those commonly used in nuclear medicine. No diffusion of the radionuclide into the blood vessel was or cross fire between blood vessels was assumed. Results are useful in assessing the doses to blood and blood vessel walls for different nuclear medicine procedures

  3. Absorbed dose calculations to blood and blood vessels for internally deposited radionuclides

    International Nuclear Information System (INIS)

    Akabani, G.; Poston, J.W.

    1991-05-01

    At present, absorbed dose calculations for radionuclides in the human circulatory system used relatively simple models and are restricted in their applications. To determine absorbed doses to the blood and to the surface of the blood vessel wall, EGS4 Monte Carlo calculations were performed. Absorbed doses were calculated for the blood and the blood vessel wall (lumen) for different blood vessels sizes. The radionuclides chosen for this study were those commonly used in nuclear medicine. No diffusion of the radionuclide into the blood vessel was assumed nor cross fire between vessel was assumed. Results are useful in assessing the dose in blood and blood vessel walls for different nuclear medicine procedures. 6 refs., 6 figs., 5 tabs

  4. Comparison of the Absorbed Dose of Target Organs between Conventional and Digital Panoramic Radiography

    Directory of Open Access Journals (Sweden)

    Zohre Reyhani

    2016-09-01

    Full Text Available The purpose of this study was to measure and compare target organ’s exposure by direct digital and conventional panoramic radiography. Dose measurements were carried out on a RANDO phantom, which TLDs were placed into 5 target area: thyroid gland, left and right submandibular and parotid salivary glands. Panoramic radiographs were taken with two conventional (CRANEX Tome, Soredex, Tusula Finland and direct digital devices (CRANEX D, Soredex, Tusula Finland.In total, the phantom was irradiated 30 times in the two systems. The TLDs were then coded and analyzed. T-test of statistical analysis was used to find the correlation. We found statistically significant reduction in absorbed dose of target organs in digital panoramic radiography(P<0.01. The highest absorbed dose was for submandibular gland and the lowest was for thyroid gland. We concluded that can reduce absorbed dose in vital organs.

  5. Patient absorbed radiation doses estimation related to irradiation anatomy; Estimativa de dose absorvida pelo paciente relacionada a anatomia irradiada

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Flavio Augusto Penna; Soares, Amanda Anastacio; Kahl, Gabrielly Gomes, E-mail: prof.flavio@gmail.com, E-mail: amanda-a-soares@hotmail.com, E-mail: gabriellygkahl@gmail.com [Instituto Federal de Eduacao, Ciencia e Tecnologia de Santa Catarina (IFSC), Florianopolis, SC (Brazil)

    2014-07-01

    Developed a direct equation to estimate the absorbed dose to the patient in x-ray examinations, using electric, geometric parameters and filtering combined with data from irradiated anatomy. To determine the absorbed dose for each examination, the entrance skin dose (ESD) is adjusted to the thickness of the patient's specific anatomy. ESD is calculated from the estimated KERMA greatness in the air. Beer-Lambert equations derived from power data mass absorption coefficients obtained from the NIST / USA, were developed for each tissue: bone, muscle, fat and skin. Skin thickness was set at 2 mm and the bone was estimated in the central ray of the site, in the anteroposterior view. Because they are similar in density and attenuation coefficients, muscle and fat are treated as a single tissue. For evaluation of the full equations, we chose three different anatomies: chest, hand and thigh. Although complex in its shape, the equations simplify direct determination of absorbed dose from the characteristics of the equipment and patient. The input data is inserted at a single time and total absorbed dose (mGy) is calculated instantly. The average error, when compared with available data, is less than 5% in any combination of device data and exams. In calculating the dose for an exam and patient, the operator can choose the variables that will deposit less radiation to the patient through the prior analysis of each combination of variables, using the ALARA principle in routine diagnostic radiology sector.

  6. Absorbed Doses to Patients in Nuclear Medicine; Doskatalogen foer nukleaermedicin

    Energy Technology Data Exchange (ETDEWEB)

    Leide-Svegborn, Sigrid; Mattsson, Soeren; Johansson, Lennart; Fernlund, Per; Nosslin, Bertil

    2007-04-15

    The Swedish radiation protection authority, (SSI), has supported work on estimates of radiation doses to patients from nuclear medicine examinations since more than 20 years. A number of projects have been reported. The results are put together and published under the name 'Doskatalogen' which contains data on doses to different organs and tissues from radiopharmaceuticals used for diagnostics and research. This new report contains data on: {sup 11}C-labelled substances (realistic maximum model), amino acids labelled with {sup 11}C, {sup 18}F or {sup 75}Se, {sup 99m}Tc-apcitide, {sup 123}I-labelled fatty acids ({sup 123}I- BMIPP and {sup 123}I-IPPA) and revised models for previously reported {sup 15}O-labelled water, {sup 99m}Tc-tetrofosmin (rest as well as exercise) and {sup 201}Tl-ion Data for almost 200 substances and radionuclides are included in the 'Doskatalogen' today. Since the year 2001 the 'Doskatalogen' is available on the authority's home page (www.ssi.se)

  7. Evaluation of the distribution of absorbed dose in child phantoms exposed to diagnostic medical x rays

    Energy Technology Data Exchange (ETDEWEB)

    Chen, W. L.; Poston, J. W.; Warner, G. G.

    1978-04-01

    The purpose of this study was to determine, by theoretical calculation and experimental measurement, the absorbed dose distributions in two heterogeneous phantoms representing one-year- and five-year-old children from typical radiographic examinations for those ages. Theoretical work included the modification of an existing internal dose code which uses Monte Carlo methods to determine doses within the Snyder-Fisher mathematical phantom. A Ge(Li) detector and a pinhole collimator were used to measure x-ray spectra which served as input to the modified Monte Carlo codes which were used to calculate organ doses in children. The calculated and measured tissue-air values were compared for a number of organs. For most organs, the results of the calculated absorbed doses agreed with the measured absorbed doses within twice the coefficient of variation of the calculated value. The absorbed dose to specific organs for several selected radiological examinations are given for one-year-old, five-year-old, and adult phantoms.

  8. Evaluation of the distribution of absorbed dose in child phantoms exposed to diagnostic medical x rays

    International Nuclear Information System (INIS)

    Chen, W.L.; Poston, J.W.; Warner, G.G.

    1978-04-01

    The purpose of this study was to determine, by theoretical calculation and experimental measurement, the absorbed dose distributions in two heterogeneous phantoms representing one-year- and five-year-old children from typical radiographic examinations for those ages. Theoretical work included the modification of an existing internal dose code which uses Monte Carlo methods to determine doses within the Snyder-Fisher mathematical phantom. A Ge(Li) detector and a pinhole collimator were used to measure x-ray spectra which served as input to the modified Monte Carlo codes which were used to calculate organ doses in children. The calculated and measured tissue-air values were compared for a number of organs. For most organs, the results of the calculated absorbed doses agreed with the measured absorbed doses within twice the coefficient of variation of the calculated value. The absorbed dose to specific organs for several selected radiological examinations are given for one-year-old, five-year-old, and adult phantoms

  9. Absorbed dose calculations using mesh-based human phantoms and Monte Carlo methods

    International Nuclear Information System (INIS)

    Kramer, Richard

    2010-01-01

    Full text. Health risks attributable to ionizing radiation are considered to be a function of the absorbed dose to radiosensitive organs and tissues of the human body. However, as human tissue cannot express itself in terms of absorbed dose, exposure models have to be used to determine the distribution of absorbed dose throughout the human body. An exposure model, be it physical or virtual, consists of a representation of the human body, called phantom, plus a method for transporting ionizing radiation through the phantom and measuring or calculating the absorbed dose to organ and tissues of interest. Female Adult meSH (FASH) and the Male Adult meSH (MASH) virtual phantoms have been developed at the University of Pernambuco in Recife/Brazil based on polygon mesh surfaces using open source software tools. Representing standing adults, FASH and MASH have organ and tissue masses, body height and mass adjusted to the anatomical data published by the International Commission on Radiological Protection for the reference male and female adult. For the purposes of absorbed dose calculations the phantoms have been coupled to the EGSnrc Monte Carlo code, which transports photons, electrons and positrons through arbitrary media. This presentation reports on the development of the FASH and the MASH phantoms and will show dosimetric applications for X-ray diagnosis and for prostate brachytherapy. (author)

  10. In-phantom measurement of absorbed dose to water in medium energy x-ray beams

    International Nuclear Information System (INIS)

    Hohlfeld, K.

    1996-01-01

    Absorbed dose values in a water phantom derived by the formalism of the IAEA Code of Practice of Absorbed Dose Determination in Photon and Electron Beams are a few per cent higher than those based on the procedure following e.g. ICRU Report 23. The maximum deviation exceeds 10% at 100 kV tube potential. The correction factor needed to take into account the differences at the calibration in terms of air kerma free in air and at the measurement in the water phantom can be determined in different ways: In comparing the result of the absorbed dose measurement by means of the ionization chambers with an other, preferably fundamental method of measurement of absorbed dose in the water phantom or by evaluating all component parts of the correction factor separately. The values of the perturbation correction factor in the IAEA Code were determined in the former way by comparing against a graphite extrapolation chamber. A review is given on a recent re-evaluation using former values of the extrapolation chamber measurements and on new determinations using an absorbed dose water calorimeter, a method based on calculated and measured air kerma values and a method of combining the component factors to the overall correction factor. Recent results achieved by the different methods are compared and a change of the data of the IAEA Code is recommended. (author). 31 refs, 14 figs, 3 tabs

  11. Absorbed dose calculations using mesh-based human phantoms and Monte Carlo methods

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, Richard [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil)

    2010-07-01

    Full text. Health risks attributable to ionizing radiation are considered to be a function of the absorbed dose to radiosensitive organs and tissues of the human body. However, as human tissue cannot express itself in terms of absorbed dose, exposure models have to be used to determine the distribution of absorbed dose throughout the human body. An exposure model, be it physical or virtual, consists of a representation of the human body, called phantom, plus a method for transporting ionizing radiation through the phantom and measuring or calculating the absorbed dose to organ and tissues of interest. Female Adult meSH (FASH) and the Male Adult meSH (MASH) virtual phantoms have been developed at the University of Pernambuco in Recife/Brazil based on polygon mesh surfaces using open source software tools. Representing standing adults, FASH and MASH have organ and tissue masses, body height and mass adjusted to the anatomical data published by the International Commission on Radiological Protection for the reference male and female adult. For the purposes of absorbed dose calculations the phantoms have been coupled to the EGSnrc Monte Carlo code, which transports photons, electrons and positrons through arbitrary media. This presentation reports on the development of the FASH and the MASH phantoms and will show dosimetric applications for X-ray diagnosis and for prostate brachytherapy. (author)

  12. Absorbed Doses to Embryo from Intravenous Urography at Selected Radiological Departments in Slovakia

    International Nuclear Information System (INIS)

    Karkus, R.; Nikodemova, D.; Horvathova, M.

    2003-01-01

    Actual legislation used in radiological protection requires quality assurance program for decreasing radiation load of patients from radiological examinations. The information about irradiation of pregnant women is very important, because the embryo is more radiosensitive as adult organism. On the basis of absence of unified calculations or measurements of absorbed doses to embryo from various radiological examinations in Slovakia we present in this study the values of absorbed doses to embryo from intravenous urography at selected radiological departments in Slovakia. Absorbed doses to embryo were obtained by measurement and calculation using the simulation of irradiation of pregnant woman by intravenous urography. The results of our study indicate, that absorbed doses to embryo were at various radiological departments considerably different, depending on type of X-ray machine and different settings of technical parameters of X-ray machine. In accordance with worldwide trend it is necessary to decrease radiation load of patients as low as possible level. Differences in radiation load between radiological departments indicate, that it is necessary to continue in solving of this problem and perform measurements and calculations of absorbed doses to embryo at different types of X-ray machines and at different examinations, where the embryo is in direct beam of X-ray. (author)

  13. The Norwegian system for implementing the IAEA code of practice based on absorbed dose to water

    International Nuclear Information System (INIS)

    Bjerke, H.

    2002-01-01

    The Norwegian Radiation Protection Authority (NRPA) SSDL recommended in 2000 the use of absorbed dose to water as the quality for calibration and code of practice in radiotherapy. The absorbed dose to water standard traceable to BIPM was established in Norway in 1995. The international code of practice, IAEA TRS 398 was under preparation. As a part of the implementation of the new dosimetry system the SSDL went to radiotherapy departments in Norway in 2001. The aim of the visit was to: Prepare and support the users in the implementation of TRS 398 by teaching, discussions and measurements on-site; Gain experience for NRPA in the practical implementation of TRS 398 and perform comparisons between TRS 277 and TRS 398 for different beam qualities; Report experience from implementation of TRS 398 to IAEA. The NRPA 30x30x30 cm 3 water phantom is equal to the BIPM calibration phantom. This was used for the photon measurements in 16 different beams. NRPA used three chambers: NE 2571, NE 2611 and PR06C for the photon measurements. As a quality control the set-up was compared with the Finnish site-visit equipment at University Hospital of Helsinki, and the measured absorbed dose to water agreed within 0.6%. The Finnish SSDL calibrated the Norwegian chambers and the absorbed dose to water calibration factors given by the two SSDLs for the three chambers agreed within 0.3%. The local clinical dosimetry in Norway was based on TRS 277. For the site-visit the absorbed dose to water was determined by NRPA using own equipment including the three chambers and the hospitals reference chamber. The hospital determined the dose the same evening using their local equipment. For the 16 photon beams the deviations between the two absorbed dose to water determinations for TRS 277 were in the range -1,7% to +4.0%. The uncertainty in the measurements was 1% (k=1). The deviation was explained in local implementation of TRS 277, the use of plastic phantoms, no resent calibration of

  14. Dose Rate Effects in Linear Bipolar Transistors

    Science.gov (United States)

    Johnston, Allan; Swimm, Randall; Harris, R. D.; Thorbourn, Dennis

    2011-01-01

    Dose rate effects are examined in linear bipolar transistors at high and low dose rates. At high dose rates, approximately 50% of the damage anneals at room temperature, even though these devices exhibit enhanced damage at low dose rate. The unexpected recovery of a significant fraction of the damage after tests at high dose rate requires changes in existing test standards. Tests at low temperature with a one-second radiation pulse width show that damage continues to increase for more than 3000 seconds afterward, consistent with predictions of the CTRW model for oxides with a thickness of 700 nm.

  15. Absorbed and effective dose from periapical radiography by portable intraoral x-ray machine

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jeong Yeon; Han, Won Jeong; Kim, Eun Kyung [Dankook Univ. School of Dentistry, Seoul (Korea, Republic of)

    2007-09-15

    The purpose of this study was to measure the absorbed dose and to calculate the effective dose for periapical radiography done by portable intraoral x-ray machines. 14 full mouth, upper posterior and lower posterior periapical radiographs were taken by wall-type 1 and portable type 3 intraoral x-ray machines. Thermoluminescent dosemeters were placed at 23 sites at the layers of the tissue-equivalent ART woman phantom for dosimetry. Average tissue absorbed dose and radiation weighted dose were calculated for each major anatomical site. Effective dose was calculated using 2005 ICRP tissue weighted factors. On 14 full mouth periapical radiographs, the effective dose for wall-type x-ray machine was 30 Sv; for portable x-ray machines were 30 Sv, 22 Sv, 36 Sv. On upper posterior radiograph, the effective dose for wall-type x-ray machine was 4 Sv; for portable x-ray machines doses were 4 Sv, 3 Sv, 5 Sv. On lower posterior radiograph, the effective dose for wall type x-ray machine was 5 Sv; for portable x-ray machines doses were 4 Sv, 4 Sv, 5 Sv. Effective doses for periapical radiographs performed by portable intraoral x-ray machines were similar to doses for periapical radiographs taken by wall type intraoral x-ray machines.

  16. Absorbed and effective dose from periapical radiography by portable intraoral x-ray machine

    International Nuclear Information System (INIS)

    Cho, Jeong Yeon; Han, Won Jeong; Kim, Eun Kyung

    2007-01-01

    The purpose of this study was to measure the absorbed dose and to calculate the effective dose for periapical radiography done by portable intraoral x-ray machines. 14 full mouth, upper posterior and lower posterior periapical radiographs were taken by wall-type 1 and portable type 3 intraoral x-ray machines. Thermoluminescent dosemeters were placed at 23 sites at the layers of the tissue-equivalent ART woman phantom for dosimetry. Average tissue absorbed dose and radiation weighted dose were calculated for each major anatomical site. Effective dose was calculated using 2005 ICRP tissue weighted factors. On 14 full mouth periapical radiographs, the effective dose for wall-type x-ray machine was 30 Sv; for portable x-ray machines were 30 Sv, 22 Sv, 36 Sv. On upper posterior radiograph, the effective dose for wall-type x-ray machine was 4 Sv; for portable x-ray machines doses were 4 Sv, 3 Sv, 5 Sv. On lower posterior radiograph, the effective dose for wall type x-ray machine was 5 Sv; for portable x-ray machines doses were 4 Sv, 4 Sv, 5 Sv. Effective doses for periapical radiographs performed by portable intraoral x-ray machines were similar to doses for periapical radiographs taken by wall type intraoral x-ray machines

  17. Peculiarities of absorbed dose forming in some wild animals in Chornobyl exclusion zone

    Directory of Open Access Journals (Sweden)

    V. A. Gaychenko

    2015-10-01

    Full Text Available Based on field researches conducted in the exclusion zone of the Chernobyl nuclear power plant in the years after the accident, the peculiarities are identified of formation of absorbed doses in animals of different taxonomic and ecological groups that live in conditions of radioactive contamination of ecosystems. It was shown importance of consideration of radiation features on wild animals according to their life cycle, conditions and ways of life. Data were displayed about the importance of different types of irradiation according to the period of stay of the animals in the ground, in burrows and nests. The questions were reviewed about value of external and internal radiation in absorbed dose of different types of wildlife. Results of the calculation of the absorbed dose of bird embryos from egg shell were shown.

  18. Contribution to the determination of a standard of absorbed dose in water for cobalt 60 photons

    International Nuclear Information System (INIS)

    Zitouni, Y.

    1986-07-01

    A new standard, expressed in terms of absorbed dose at a depth of 5g/cm 2 in a water phantom irradiated by cobalt 60 gamma photons, is determined. The procedure developed is based on a transfer method using two dosimetric techniques: Fricke dosimetry and ionometry (0.6 cm 3 NE 2571 radiotherapy ionization chamber). Their calibration is performed with the primary calibration standard of absorbed dose: the graphite calorimeter. The relative discrepancy between the values of absorbed dose in water determined by the chemical dosimeter and the ionization chamber is equal to 1%. The ionization chamber has been also calibrated near the Cobalt 60 reference beam characterized in terms of air kerma [fr

  19. Absorbed dose in the full-mouth periapical radiography, panoramic radiography, and zonography

    International Nuclear Information System (INIS)

    Choi, Soon Chul; Choi, Hang Moon

    1999-01-01

    The objective of this study was to evaluate the possibility of substitution of the zonography for the full-mouth periapical radiography in aspect of radiation protection. Rando phantom and LiF TLD chips were used for dosimetry. The absorbed doses at brain, skin above the TMJ, parotid gland, bone marrow in the mandibular body, and thyroid gland during the full-mouth periapical radiography, panoramic radiography, and zonography were measured. From the zonography, the absorbed doses to the brain, the skin over the TMJ, and the parotid gland were relatively high, but the absorbed doses to the bone marrow in the mandibular body and, especially, the thyroid gland were very low. The zonography can be an alternative to the full-mouth periapical radiography in aspect of radiation protection.

  20. Absorbed dose in the full-mouth periapical radiography, panoramic radiography, and zonography

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Soon Chul; Choi, Hang Moon [Dept. of Oral and Maxillofacial Radiology and Dental Research Institute, College of Dentistry, Seoul National University, Seoul (Korea, Republic of)

    1999-02-15

    The objective of this study was to evaluate the possibility of substitution of the zonography for the full-mouth periapical radiography in aspect of radiation protection. Rando phantom and LiF TLD chips were used for dosimetry. The absorbed doses at brain, skin above the TMJ, parotid gland, bone marrow in the mandibular body, and thyroid gland during the full-mouth periapical radiography, panoramic radiography, and zonography were measured. From the zonography, the absorbed doses to the brain, the skin over the TMJ, and the parotid gland were relatively high, but the absorbed doses to the bone marrow in the mandibular body and, especially, the thyroid gland were very low. The zonography can be an alternative to the full-mouth periapical radiography in aspect of radiation protection.

  1. Comparision between the IAEA's protocols (TRS-277 and TRS-398) for absorbed dose determination

    International Nuclear Information System (INIS)

    Bero, M.; Anjak, O.

    2007-12-01

    The aim of this study is to compare between two IAEA's Protocols [IAEA-TRS-277 (1987) and IAEA-TRS-398 (2000)] for Absorbed Dose Determination. Five types (5 Chamber) of commonly used cylindrical ionization chambers (Farmer type, 0.6 cc) were used to check the difference in absorbed dose to water determination for Co-60 beams under reference condition. TLD dosimeter was also used for inter-comparison with IAEA's SSDL. The mean values of the measured absorbed dose were found to be similar in both cases and the relative error D (TRS-398)/D (TRS-277) is found to be approximately less than 0.5% for all chambers used in this study.(authors)

  2. Extension of the Commonwealth standard of absorbed dose from cobalt-60 energy to 25 MV

    International Nuclear Information System (INIS)

    Sherlock, S.L.

    1986-01-01

    With the introduction of high energy linear accelerators in hospitals, there is a need for direct measurement of absorbed dose for energies to 25 MV for photons and 20 MeV electrons. The present Australian standard for absorbed dose at cobalt-60 energy is a graphite micro-calorimeter maintained at the AAEC Lucas Heights Research Laboratories. A thorough theoretical analysis of calorimeter operation suggests that computer control and monitoring techniques are appropriate. Solution of Newton's law of cooling for a four-body calorimeter allows development of a computer simulation model. Different temperature control algorithms may then be run and assessed using this model. In particular, the application of a simple differencer is examined. Successful implementation of the calorimeter for energies up to 25 MV could lead to the introduction of an Australian absorbed dose protocol based on calorimetry, therby reducing the uncertainties associated with exposure-based protocols

  3. Uncertainty analysis in the determination of absorbed dose in water by Fricke chemical dosimetry

    International Nuclear Information System (INIS)

    Vasconcelos, Fabia; Aguirre, Eder Aguirre

    2016-01-01

    This work studies the calculations of uncertainties and the level of confidence that involves the process for obtaining the dose absorbed in water using the method of Fricke dosimetry, developed at Laboratorio de Ciencias Radiologicas (LCR). Measurements of absorbance of samples Fricke, irradiated and non-irradiated is going to use in order to calculate the respective sensitivity coefficients, along with the expressions of the calculation of Fricke dose and the absorbed dose in water. Those expressions are used for calculating the others sensitivity coefficients from the input variable. It is going to use the combined uncertainty and the expanded uncertainty, with a level of confidence of 95.45%, in order to report the uncertainties of the measurement. (author)

  4. Absorbed dose distribution analyses in irradiation with adjacent fields

    International Nuclear Information System (INIS)

    Cudalbu, C.; Onuc, C.; Andrada, S.

    2002-01-01

    Because the special irradiation technique with adjacent fields is the most used in the case of medulloblastoma treatment, we consider very important to specify some general information about medulloblastoma. This malignant disease has a large incidence in children with age between 5-7 years. This tumor usually originates in the cerebellum and is referred to as primitive undifferentiated tumor. It may spread contiguously to the cerebellar peduncle, floor of the fourth ventricle, into the cervical spine. In addition, it may spread via the cerebrospinal fluid intracranially and/or to the spinal cord. For this purpose it is necessary to perform a treatment technique with cranial tangential fields combined with adjacent fields for the entire spinal cord to achieve a perfect coverage of the zones with malignant cells. The treatment in this case is an association between surgery-radio-chemotherapy, where the radiotherapy has a very important roll and a curative purpose. This is due to the fact that the migration of malignant cells in the body can't be controlled by surgery. Because of this special irradiation technique used in medulloblastoma treatment, we chase to describe in this paper this complex type of irradiation where the implications of the beams divergence in doses distribution are essentials

  5. Evaluation of the distribution of absorbed dose in child phantoms exposed to diagnostic medical x rays

    International Nuclear Information System (INIS)

    Chen, W.L.

    1977-01-01

    The purpose of the study was to determine, by theoretical calculation and experimental measurement, the absorbed dose distributions in two heterogeneous phantoms representing one-year- and five-year-old children from typical radiographic examinations for those ages. Theoretical work included the modification of an existing internal dose code which used Monte Carlo methods to determine doses within the Snyder-Fisher mathematical phantom. A Ge(Li) detector and a pinhole collimator were used to measure x-ray spectra which served as input (i.e., the source routine) to the modified Monte Carlo codes which were used to calculate organ doses in children. Experimental work included the fabrication of child phantoms to match the existing mathematical models. These phantoms were constructed of molded lucite shells filled with differing materials to simulate lung, skeletal, and soft-tissue regions. The skeleton regions of phantoms offered the opportunity to perform meaningful measurements of absorbed dose to bone marrow and bone. Thirteen to fourteen sites in various bones of the skeleton were chosen for placement of TLDs. These sites represented important regions in which active bone marrow is located. Sixteen typical radiographic examinations were performed representing common pediatric diagnostic procedures. The calculated and measured tissue-air values were compared for a number of organs. For most organs, the results of the calculated absorbed doses agreed with the measured absorbed doses within twice the coefficient of variation of the calculated value. The absorbed dose to specific organs for several selected radiological examinations are given for one-year-old, five-year-old, and adult phantoms. For selected radiological exposures, the risk factors of leukemia, thyroid cancer, and genetic death are estimated for one-year- and five-year-old children

  6. Absorbed Dose in the Uterus of a Three Months Pregnant Woman Due to 131I

    Science.gov (United States)

    Vega-Carrillo, Héctor René; Manzanares-Acuña, Eduardo; Hernández-Dávila, Víctor Martín; Arcos-Pichardo, Areli; Barquero, Raquel; Iñiguez, M. Pilar

    2006-09-01

    The use of 131I is widely used in diagnostic and treatment of patients. If the patient is pregnant the 131I presence in the thyroid it becomes a source of constant exposition to other organs and the fetus. In this study the absorbed dose in the uterus of a 3 months pregnant woman with 131I in her thyroid gland has been calculated. The dose was determined using Monte Carlo methods in which a detailed model of the woman has been developed. The dose was also calculated using a simple procedure that was refined including the photons' attenuation in the woman organs and body. To verify these results an experiment was carried out using a neck phantom with 131I. Comparing the results it was found that the simple calculation tend to overestimate the absorbed dose, by doing the corrections due to body and organs photon attenuation the dose is 0.14 times the Monte Carlo estimation.

  7. Absorbed Dose in the Uterus of a Three Months Pregnant Woman Due to 131I

    International Nuclear Information System (INIS)

    Vega-Carrillo, Hector Rene; Manzanares-Acuna, Eduardo; Hernandez-Davila, Victor Martin; Arcos-Pichardo, Areli; Barquero, Raquel; Iniguez, M. Pilar

    2006-01-01

    The use of 131I is widely used in diagnostic and treatment of patients. If the patient is pregnant the 131I presence in the thyroid it becomes a source of constant exposition to other organs and the fetus. In this study the absorbed dose in the uterus of a 3 months pregnant woman with 131I in her thyroid gland has been calculated. The dose was determined using Monte Carlo methods in which a detailed model of the woman has been developed. The dose was also calculated using a simple procedure that was refined including the photons' attenuation in the woman organs and body. To verify these results an experiment was carried out using a neck phantom with 131I. Comparing the results it was found that the simple calculation tend to overestimate the absorbed dose, by doing the corrections due to body and organs photon attenuation the dose is 0.14 times the Monte Carlo estimation

  8. Optical fibre temperature sensor technology and potential application in absorbed dose calorimetry

    International Nuclear Information System (INIS)

    Allen, P.D.; Hargrave, N.J.

    1992-09-01

    Optical fibre based sensors are proposed as a potential alternative to the thermistors traditionally used as temperature sensors in absorbed dose calorimetry. The development of optical fibre temperature sensor technology over the last ten years is reviewed. The potential resolution of various optical techniques is assessed with particular reference to the requirements of absorbed dose calorimetry. Attention is drawn to other issues which would require investigation before the development of practical optical fibre sensors for this purpose could occur. 192 refs., 5 tabs., 4 figs

  9. The 1997 determination of the Australian standards of exposure and absorbed dose at 60Co

    International Nuclear Information System (INIS)

    Huntley, R.B.; Boas, J.F.; Van der Gaast, H.

    1998-05-01

    The arrangements for the maintenance of the Australian standards for 60 Co are described in detail. The primary standards are a graphite cavity chamber for exposure/air kerma and a graphite calorimeter for absorbed dose. These secondary standards are described and their responses in corresponding 90 Sr reference sources are reported. Accurate ratios between the Australian Radiation Laboratory (ARL) and Australian Nuclear Science and Technology (ANSTO) 90 Sr reference sources are derived for use in future calibrations. The value of 28.8 years for the half-life of 90 Sr is confirmed. The usefulness of 90 Sr reference source measurements in quality assurance is discussed. The charge sensitivity and linearity of the ANSTO electrometers are reported by two different methods and are compared with previous results. Calibration factors for all the secondary standard ionization chambers are given, in terms of exposure, air kerma and absorbed dose to water. Calibration factors are also given for most of the chambers in terms of absorbed dose to graphite. The methods of deriving the calibration factors are explained in detail, including all the corrections applied to both the primary and secondary standard measurements. Three alternative methods of deriving the absorbed dose to water calibration factors are compared. The reported calibration factors are compared with previous results. Changes in the Australian units of exposure, air kerma and absorbed dose to graphite and water are derived from changes in the corresponding calibration factors. The Australian units of exposure and air kerma have not changed significantly since 1990. The Australian unit of absorbed dose to graphite is now 1.1 % smaller than in 1993 and 1.3 % smaller than in 1990. The Australian unit of absorbed dose to water is now 1.4 % smaller than in 1993, but is only 0.9 % smaller than in 1990. Comparisons of the Australian standards of exposure/air kerma and absorbed dose with those of the Bureau

  10. Model of the absorbed dose on a small sphere into a gamma irradiation field

    International Nuclear Information System (INIS)

    Mangussi, J.

    2009-01-01

    Several models of the absorbed dose calculated as the energy deposited by the secondary electrons on a small volume sphere are presented. The calculations use the Compton scattering of a uniform photon beam in water, the photon attenuation and the electron stopping power are included. The sphere total absorbed dose is due to the stopping of the electrons generated in three regions: into the sphere volume, ahead and behind the sphere volume. Calculations are performed for spheres of different radius and placed at various depth of the vacuum - water interface. (author)

  11. The 1997 determination of the Australian standards of exposure and absorbed dose at {sup 60}Co

    Energy Technology Data Exchange (ETDEWEB)

    Huntley, R.B.; Boas, J.F. [Australian Radiation Laboratory, Yallambie, VIC (Australia); Van der Gaast, H. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1998-05-01

    The arrangements for the maintenance of the Australian standards for {sup 60}Co are described in detail. The primary standards are a graphite cavity chamber for exposure/air kerma and a graphite calorimeter for absorbed dose. These secondary standards are described and their responses in corresponding {sup 90}Sr reference sources are reported. Accurate ratios between the Australian Radiation Laboratory (ARL) and Australian Nuclear Science and Technology (ANSTO) {sup 90}Sr reference sources are derived for use in future calibrations. The value of 28.8 years for the half-life of {sup 90}Sr is confirmed. The usefulness of {sup 90}Sr reference source measurements in quality assurance is discussed. The charge sensitivity and linearity of the ANSTO electrometers are reported by two different methods and are compared with previous results. Calibration factors for all the secondary standard ionization chambers are given, in terms of exposure, air kerma and absorbed dose to water. Calibration factors are also given for most of the chambers in terms of absorbed dose to graphite. The methods of deriving the calibration factors are explained in detail, including all the corrections applied to both the primary and secondary standard measurements. Three alternative methods of deriving the absorbed dose to water calibration factors are compared. The reported calibration factors are compared with previous results. Changes in the Australian units of exposure, air kerma and absorbed dose to graphite and water are derived from changes in the corresponding calibration factors. The Australian units of exposure and air kerma have not changed significantly since 1990. The Australian unit of absorbed dose to graphite is now 1.1 % smaller than in 1993 and 1.3 % smaller than in 1990. The Australian unit of absorbed dose to water is now 1.4 % smaller than in 1993, but is only 0.9 % smaller than in 1990. Comparisons of the Australian standards of exposure/air kerma and absorbed dose with

  12. Automation of the monitoring in real time of the absorbed dose rate in air due to the environmental gamma radiation in Cuba; Automatizacion del monitoreo en tiempo real de la tasa de dosis absorbida en aire debido a la radiacion gamma ambiental en Cuba

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez L, O.; Capote F, E.; Carrazana G, J.A.; Manzano de Armas, J.F.; Alonso A, D.; Prendes A, M.; Zerquera, J.T.; Caveda R, C.A. [CPHR, Calle 20, No. 4113 e/41 y 47, Playa, La Habana, 11300, A.P. 6195 C.P. 10600 (Cuba); Kalberg, O. [Swedish Radiation Protection Institute (SSI) (Sweden); Fabelo B, O.; Montalvan E, A. [CIAC, Camaguey (Cuba); Cartas A, H. [CEAC, Cienfuegos (Cuba); Leyva F, J.C. [CISAT (Cuba)]. e-mail: orlando@cphr.edu.cu

    2006-07-01

    The Center of Protection and Hygiene of the Radiations (CPHR) like center rector of the National Net of Environmental Radiological Surveillance (RNVRA), it has strengthened their detection capacity and of answer before a situation of radiological emergency. The measurements of the absorbed dose rate in air due to the environmental gamma radiation in the main stations of the Net are obtained in real time and the CPHR receives the data coming from these posts at one time relatively short. To improve the operability of the RNVRA it was necessary to complete the facilities of existent monitoring using 4 automatic measurement stations with probes of gamma detection, implementing in this way a measurement system on real time. On the other hand the software were developed: GenironProbeFech, to obtain the data of the probes, DataMail for the shipment of the same ones by electronic mail and GammaRed that receives and processes the data in the rector center. (Author)

  13. Evaluation of bismuth shielding effectiveness in reducing breast absorbed dose during thoracic CT scan

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, T. C.; Mourao, A. P.; Santana, P. C.; Silva, T. A. [Federal University of Minas Gerais, Program of Nuclear Science and Techniques, Av. Pte. Antonio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais (Brazil)

    2015-10-15

    Computed Tomography (CT) is an essential method for tracking neoplasia and efficiently diagnosing a wide variety of thoracic diseases. CT is generally considered the most accurate choice for lung examination. Due to the growing use of CT, breast and other superficial and radiosensitive organs are unnecessarily irradiated during radiological procedures, thus requiring the development of strategies appropriate to optimize and, if possible, to reduce the radiation dose. The use of bismuth shielding to reduce radiation dose absorbed by breast during thoracic CT examinations has been the subject of many studies recently published by Brazilian and foreign authors of various fields. The purpose of this paper is both to accurately determine the glandular dose when breast is exposed to radiation and to assess the reduction in absorbed dose during thoracic CT examinations, using a set of Thermoluminescent Dosimeters, an anthropomorphic phantom and bismuth shielding. (Author)

  14. Evaluation of bismuth shielding effectiveness in reducing breast absorbed dose during thoracic CT scan

    International Nuclear Information System (INIS)

    Alonso, T. C.; Mourao, A. P.; Santana, P. C.; Silva, T. A.

    2015-10-01

    Computed Tomography (CT) is an essential method for tracking neoplasia and efficiently diagnosing a wide variety of thoracic diseases. CT is generally considered the most accurate choice for lung examination. Due to the growing use of CT, breast and other superficial and radiosensitive organs are unnecessarily irradiated during radiological procedures, thus requiring the development of strategies appropriate to optimize and, if possible, to reduce the radiation dose. The use of bismuth shielding to reduce radiation dose absorbed by breast during thoracic CT examinations has been the subject of many studies recently published by Brazilian and foreign authors of various fields. The purpose of this paper is both to accurately determine the glandular dose when breast is exposed to radiation and to assess the reduction in absorbed dose during thoracic CT examinations, using a set of Thermoluminescent Dosimeters, an anthropomorphic phantom and bismuth shielding. (Author)

  15. Methods to verify absorbed dose of irradiated containers and evaluation of dosimeters

    International Nuclear Information System (INIS)

    Gao Meixu; Wang Chuanyao; Tang Zhangxong; Li Shurong

    2001-01-01

    The research on dose distribution in irradiated food containers and evaluation of several methods to verify absorbed dose were carried out. The minimum absorbed dose of treated five orange containers was in the top of the highest or in the bottom of lowest container. D max /D min in this study was 1.45 irradiated in a commercial 60 Co facility. The density of orange containers was about 0.391g/cm 3 . The evaluation of dosimeters showed that the PMMA-YL and clear PMMA dosimeters have linear relationship with dose response, and the word NOT in STERIN-125 and STERIN-300 indicators were covered completely at the dosage of 125 and 300 Gy respectively. (author)

  16. Leuco-crystal-violet micelle gel dosimeters: Component effects on dose-rate dependence

    Science.gov (United States)

    Xie, J. C.; Katz, E. A. B.; Alexander, K. M.; Schreiner, L. J.; McAuley, K. B.

    2017-05-01

    Designed experiments were performed to produce empirical models for the dose sensitivity, initial absorbance, and dose-rate dependence respectively for leucocrystal violet (LCV) micelle gel dosimeters containing cetyltrimethylammonium bromide (CTAB) and 2,2,2-trichloroethanol (TCE). Previous gels of this type showed dose-rate dependent behaviour, producing an ∼18% increase in dose sensitivity between dose rates of 100 and 600 cGy min-1. Our models predict that the dose rate dependence can be reduced by increasing the concentration of TCE, CTAB and LCV. Increasing concentrations of LCV and CTAB produces a significant increase in dose sensitivity with a corresponding increase in initial absorbance. An optimization procedure was used to determine a nearly dose-rate independent gel which maintained high sensitivity and low initial absorbance. This gel which contains 33 mM CTAB, 1.25 mM LCV, and 96 mM TCE in 25 mM trichloroacetic acid and 4 wt% gelatin showed an increase in dose sensitivity of only 4% between dose rates of 100 and 600 cGy min-1, and provides an 80% greater dose sensitivity compared to Jordan’s standard gels with similar initial absorbance.

  17. Absorbed doses in salivary and thyroid glands from panoramic radiography and cone beam computed tomography

    Directory of Open Access Journals (Sweden)

    Katia Regina Heiden

    2018-02-01

    Full Text Available Abstract Introduction: Panoramic radiography and cone beam computed tomography (CBCT are very important in the diagnosis of oral diseases, however patients are exposed to the risk of ionizing radiation. This paper describes our study aimed at comparing absorbed doses in the salivary glands and thyroid due to panoramic radiography and CBCT and estimating radiation induced cancer risk associated with those methods. Methods Absorbed doses of two CBCT equipment (i-CAT® Next Generation and SCANORA® 3D and a digital panoramic device (ORTHOPANTOMOGRAPH® OP200D were measured using thermoluminescent dosimeters loaded in an anthropomorphic phantom on sublingual, submandibular, parotid and thyroid glands. Results Absorbed doses in the i-CAT® device ranged between 0.02 (+/-0.01 and 2.23 mGy (+/-0.03, in the SCANORA™ device ranged from 0.01 (+/-0.01 to 2.96 mGy (+/-0.29 and in the ORTHOPANTOMOGRAPH® OP200D ranged between 0.04 mGy and 0.78 mGy. The radiation induced cancer risk was highlighted in the salivary glands, which received higher doses. The protocols that offer the highest risk of cancer are the high resolution protocols of CBCT equipment. Conclusion CBCT exposes patients to higher levels of radiation than panoramic radiography, so the risks and benefits of each method should be considered. The doses in CBCT were dependent on equipment and exposure parameters, therefore adequate selection minimizes the radiation dose.

  18. Calculation of absorbed dose in water by chemical Fricke dosimetry; Calculo de dose absorvida na agua por dosimetria quimica Fricke

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Adenilson Paiva, E-mail: adenilson-fisica@hotmail.com.br [Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ (Brazil); Meireles, Ramiro Conceicao [Fundacao do Cancer, Rio de Janeiro, RJ (Brazil)

    2016-07-01

    This work is the result of a laboratory activity performed in Radiological Sciences Laboratory (CRL), linked to the State University of Rio de Janeiro (UERJ). This practice aimed to determine the absorbed dose to water, through the primary calibration method called dosimetry Fricke, which consists of ferrous ions (Fe + 2) to ferric (Fe + 3), generated by water radiolysis products which is the structural change of water molecule caused by ionizing radiation. A spectrophotometer was used to extract data for analysis at a wavelength (λ) 304 and 224 nm with function of measuring the absorbance using bottles with irradiated and nonirradiated Fricke solution. (author)

  19. Endorectal high dose rate brachytherapy quality assurance

    International Nuclear Information System (INIS)

    Devic, S.; Vuong, T.; Evans, M.; Podgorsak, E.

    2008-01-01

    We describe our quality assurance method for preoperative high dose rate (HDR) brachytherapy of endorectal tumours. Reproduction of the treatment planning dose distribution on a daily basis is crucial for treatment success. Due to the cylindrical symmetry, two types of adjustments are necessary: applicator rotation and dose distribution shift along the applicator axis. (author)

  20. Comparative determination of absorbed doses for high-energy photon beam with different cylindrical chambers

    International Nuclear Information System (INIS)

    Yao Xinghong; Chen Lixin; Jin Guanghua

    2012-01-01

    Objective: To study the difference between the IAEA code of practice TRS-277 and TRS-398 in the determination of the absorbed dose to water for high-energy photon beams using several cylindrical chambers. Methods: For 6 different types of cylindrical chambers,the calibration factors N D,W,Q0 in terms of absorbed dose to water were calculated from the air exposure calibration factors N x , and were compared with the N D,W,Q0 measured in European standard laboratory. Accurate measurements were performed in Varian 6 MV photon beam using 6 cylindrical chambers according to TRS-277 and TRS-398. The beam quality correction factors k Q,Q0 as well as the water absorbed doses were compared. Results: For the set of chambers, the difference between N D,W,Q0 computed from N x and N D,W,Q0 obtained in European standard laboratory was 0.13%∼ 1.30%. The difference of beam quality correction factors for TRS-277 and TRS-398 was 0.09%∼0.45%. The distinction of the water absorbed doses obtained according to the two different protocols was 0.27%∼1.40%, and was primarily due to their different calibration factors. Conclusions: The discrepancy in absorbed doses determined according to two protocols using different cylindrical chambers is clinically acceptable. However, TRS-398 allows a more convenient localization of chambers,provides a more simple formulation, and offers the reduced uncertainty in the dosimetry of radiotherapy beams. (authors)

  1. Low doses effects and gamma radiations low dose rates

    International Nuclear Information System (INIS)

    Averbeck, D.

    1999-01-01

    This expose wishes for bringing some definitions and base facts relative to the problematics of low doses effects and low dose rates effects. It shows some already used methods and some actual experimental approaches by focusing on the effects of ionizing radiations with a low linear energy transfer. (N.C.)

  2. Skin Absorbed Doses from Full Mouth Standard Intraoral Radiography in Bisecting Angle and Paralleling techniques

    Energy Technology Data Exchange (ETDEWEB)

    Nah, Kyung Soo; Kim, Ae Ji [Dept. of Oral Radiology, College of Dentistry, Pusan National University, Pusan (Korea, Republic of); Doh, Shi Hong [Dept. of Applied physics . National Fisheries University of Pusan Department of Radiotherapy, Pusan (Korea, Republic of); Kim, Hyun Ja [Dept. of Oral Radiology, Baptist Hospital, Pusan (Korea, Republic of); Yoo, Meong Jin [Dept. of Radiology, College of Dentistry, Pusan National University, Pusan (Korea, Republic of)

    1990-08-15

    This study was performed to measure the skin absorbed doses from full mouth standard intraoral radiography(14 exposures) in bisecting angle and paralleling techniques. Thermoluminescent dosimeters were used in a phantom. Circular tube collimator (60 mm in diameter, 20 cm in length) and rectangular collimator (35 mm X 44 mm, 40 cm in length) were set for bisecting angle and paralleling techniques respectively. All measurement sites were classified into 8 groups according to distance from each point of central rays. The results were as follows: 1. The skin absorbed doses from the paralleling technique were significantly decreased than those from the bisecting technique in both points at central ray and points away from central ray. The percentage rats of decrease were greater at points away from central ray than those at central ray. 2. The skin absorbed doses at the lens of eye, parotid gland, submandibular gland and thyroid region were significantly decreased in paralleling technique, but those of the midline of palate remained similar in both techniques. 3. The highest doses were measured at the site 20 mm above the point of central ray for the mandibular premolars in bisecting angle technique and at the point of central ray for the mandibular premolars in paralleling techniques. The lowest doses were measured at the thyroid region in both techniques.

  3. Intercomparison Programme of Absorbed Dose for Megavoltage X-ray Teletherapy Units in Malaysia

    International Nuclear Information System (INIS)

    Norhayati Abdullah; Taiman Kadni; Siti Sara Deraman

    2016-01-01

    The objective of this study is to perform a thermoluminescent dosimetry (TLD) postal dose quality audit for megavoltage X-ray teletherapy units in Malaysia. This audit is essential to be carried out to ensure adequate precision in the dosimetry of clinical beams before being delivered to the patients. Through this work, participating centres were requested to irradiate three capsules of TLD-100 powder with an absorbed dose to water of 2 Gy for 6 MV and 10 MV photon beams. The International Atomic Energy Agency (IAEA)s Technical Report Series No. 398 is used as a reference standard for TLD irradiation. A total of 22 photon beams from ten radiotherapy centres comprising one government hospital and nine private medical centres were evaluated. The percentage deviation of users measured absorbed dose relative to Secondary Standard Dosimetry Laboratory (SSDL) mean absorbed dose was calculated. The results showed that all photon beams are within the IAEA acceptance limit of ±5 % except six photon beams. These centres were followed up with a second round of TLD irradiation which resulted in a better compliance. As a conclusion, regular audits should be performed to ensure consistency of radiotherapy treatment unit performances thus maintaining the accuracy of dose delivered to patients in all radiotherapy centres in Malaysia. (author)

  4. The Effect of Diagnostic Absorbed Doses from 131I on Human Thyrocytes in Vitro

    Directory of Open Access Journals (Sweden)

    Zbigniew Adamczewski

    2015-06-01

    Full Text Available Background: Administration of diagnostic activities of 131I, performed in order to detect thyroid remnants after surgery and/or thyroid cancer recurrence/metastases, may lead to reduction of iodine uptake. This phenomenon is called “thyroid stunning”. We estimated radiation absorbed dose-dependent changes in genetic material, in particular in sodium iodide symporter (NIS gene promoter, and NIS protein level in human thyrocytes (HT. Materials and Methods: We used unmodified HT isolated from patients subjected to thyroidectomy exposed to 131I in culture. The different 131I activities applied were calculated to result in absorbed doses of 5, 10, and 20 Gy. Results: According to flow cytometry analysis and comet assay, 131I did not influence the HT viability in culture. Temporary increase of 8-oxo-dG concentration in HT directly after 24 h (p < 0.05 and increase in the number of AP-sites 72 h after termination of exposition to 20 Gy dose (p < 0.0001 were observed. The signs of dose-dependent DNA damage were not associated with essential changes in the NIS expression on mRNA and protein levels. Conclusions: Our observation constitutes a first attempt to evaluate the effect of the absorbed dose of 131I on HT. The results have not confirmed the theory that the “thyroid stunning” reduces the NIS protein synthesis.

  5. Skin Absorbed Doses from Full Mouth Standard Intraoral Radiography in Bisecting Angle and Paralleling techniques

    International Nuclear Information System (INIS)

    Nah, Kyung Soo; Kim, Ae Ji; Doh, Shi Hong; Kim, Hyun Ja; Yoo, Meong Jin

    1990-01-01

    This study was performed to measure the skin absorbed doses from full mouth standard intraoral radiography(14 exposures) in bisecting angle and paralleling techniques. Thermoluminescent dosimeters were used in a phantom. Circular tube collimator (60 mm in diameter, 20 cm in length) and rectangular collimator (35 mm X 44 mm, 40 cm in length) were set for bisecting angle and paralleling techniques respectively. All measurement sites were classified into 8 groups according to distance from each point of central rays. The results were as follows: 1. The skin absorbed doses from the paralleling technique were significantly decreased than those from the bisecting technique in both points at central ray and points away from central ray. The percentage rats of decrease were greater at points away from central ray than those at central ray. 2. The skin absorbed doses at the lens of eye, parotid gland, submandibular gland and thyroid region were significantly decreased in paralleling technique, but those of the midline of palate remained similar in both techniques. 3. The highest doses were measured at the site 20 mm above the point of central ray for the mandibular premolars in bisecting angle technique and at the point of central ray for the mandibular premolars in paralleling techniques. The lowest doses were measured at the thyroid region in both techniques.

  6. Biological dosimetry for the reconstruction of doses absorbed during accidents in radiotherapy

    International Nuclear Information System (INIS)

    Wojcik, A.; Stephan, G.; Sommer, S.; Urbanik, W.; Kukolowicz, P.; Kuszewski, T.; Gozdz, S.

    2002-01-01

    Medical radiation represents by far the largest man-made source of radiation exposure. The recent accident in a radiotherapy unit in Bialystok, Poland, clearly showed the necessity to develop biological methods allowing a reconstruction of the absorbed dose in case of an accidental exposure. We are currently analysing the frequencies of micronuclei in lymphocytes of patients undergoing radiotherapy of tumors localized in different parts of the body. The aim of the studies in the setting up to appropriate calibration curves with the help of which a dose absorbed during an accident could be estimated. In addition, the applicability of such calibration curves for quality assurance of teleradiotherapy will be considered. In order to calculate the expected frequencies of aberrations and micronuclei in lymphocytes of patients undergoing teleradiotherapy a mathematical model was developed. The modeled dose-response curves agree well with the majority of published experimental results and will serve as a basis for ongoing studies. (author)

  7. Calculation of absorbed dose of anchorage-dependent cells from internal beta-rays irradiation

    International Nuclear Information System (INIS)

    Chen Jianwei; Huang Gang; Li Shijun

    2001-01-01

    Objective: To elicit the formula of internal dosimetry in anchorage-dependent cells by beta-emitting radionuclides from uniformly distributed volume sources. Methods: By means of the definition of absorbed dose and the MIRD (Medical International Radiation Dose) scheme the formula of internal dosimetry was reasonably deduced. Firstly, studying the systems of suspension culture cells. Then, taking account of the speciality of the systems of the anchorage-dependent cells and the directions of irradiation, the absorbed dose of anchorage -dependent cells was calculated by the accumulated radioactivity, beta-ray energy, and the volume of the cultured systems. Results: The formula of internal dosimetry of suspension culture cells and anchorage-dependent cells were achieved. At the same time, the formula of internal dosimetry of suspension culture cells was compared with that of MIRD and was confirmed accurate. Conclusion: The formula of internal dosimetry is concise, reliable and accurate

  8. Absorbed doses received by infants subjected to panoramic dental and cephalic radiographs

    International Nuclear Information System (INIS)

    Carrizales, L.; Carreno, S.

    1998-01-01

    The IAEA Report No. 115 recommends that each country or region can establish levels of absorbed doses for each radiographic technique employed in diagnostic. assuming the extended and expensive of this purpose, we have been to begin in a first step with the dentistry area, in order to estimate the dose levels received at crystalline and thyroid level in infants that go to an important public institution in our country to realize panoramic and cephalic radiographs. This work will serve to justify and impel a quality assurance program in Venezuela on the dentistry area which includes aspects such as training for the medical lap referring the justification of the radiological practice, optimization of X-ray units to produce an adequate image quality that delivers to patient an absorbed dose as much lower as reasonably it can be reached without diagnostic detriment. (Author)

  9. Reduced radiation-absorbed dose to tissues with partial panoramic radiography for evaluation of third molars

    International Nuclear Information System (INIS)

    Kircos, L.T.; Eakle, W.S.; Smith, R.A.

    1986-01-01

    The radiation-absorbed doses from panoramic radiography, distal molar radiography, and a partial panoramic radiographic technique that exposes only the third molar region to radiation are compared. Doses of radiation to the submandibular salivary gland were comparable by all three techniques, but doses of radiation to the head and neck were reduced greatly by the partial panoramic radiographic technique. Partial panoramic radiography is a diagnostically satisfactory and a radiologically safer technique for evaluation of third molar pathosis than is panoramic or distal molar radiography

  10. Absorbed doses for internal radiotherapy from 22 beta-emitting radionuclides: beta dosimetry of small spheres

    Energy Technology Data Exchange (ETDEWEB)

    Bardies, Manuel; Chatal, J.-F. (Institut National de la Sante et de la Recherche Medicals (INSERM), 44 - Nantes (France). Group Biophysique-Cancerologie)

    1994-06-01

    We calculated the mean absorbed fractions, specific absorbed fractions and mean doses per unit of cumulated activity in source spheres 10 [mu]m-2 cm in radius for 22 beta-emitting radionuclides potentially useful in radioimmunotherapy. We considered two models of radionuclide distribution, either uniform at the surface of the source or throughout its volume. For each model, we calculated both the absorbed fractions in the spherical segments composing the source and the mean absorbed fractions. For surface distribution, we calculated the mean dose per unit of cumulated activity for a concentric sphere with a small radius (5 [mu]m) in order to determine the minimal dose delivered to the target. Calculations were performed using point kernels for monoenergetic emissions and then integrated into the beta spectra of the different emitters ([sup 32]P, [sup 33]P, [sup 47]Sc, [sup 67]Cu, [sup 77]As, [sup 90]Y, [sup 105]Rh, [sup 109]Pd, [sup 111]Ag, [sup 121]Sn, [sup 131]I, [sup 142]Pr, [sup 143]Pr, [sup 149]Pm, [sup 153]Sm, [sup 159]Gd, [sup 166]Ho, [sup 177]Lu, [sup 186]Re, [sup 188]Re, [sup 194]Ir and [sup 199]Au). Monoenergetic emissions were taken into account. (author).

  11. Absorbed doses for internal radiotherapy from 22 beta-emitting radionuclides: beta dosimetry of small spheres.

    Science.gov (United States)

    Bardiès, M; Chatal, J F

    1994-06-01

    We calculated the mean absorbed fractions, specific absorbed fractions and mean doses per unit of cumulated activity in source spheres 10 microm-2 cm in radius for 22 beta-emitting radionuclides potentially useful in radioimmunotherapy. We considered two models of radionuclide distribution, either uniform at the surface of the source or throughout its volume. For each model, we calculated both the absorbed fractions in the spherical segments composing the source and the mean absorbed fractions. For surface distribution, we calculated the mean dose per unit of cumulated activity for a concentric sphere with a small radius (5 microm) in order to determine the minimal dose delivered to the target. Calculations were performed using point kernels for monoenergetic emissions and then integrated into the beta spectra of the different emitters (32p, 33p, 47Sc, 67Cu, 77As, 90Y, 105Rh, 109Pd, 111Ag, 121Sn, 131I, 142Pr, 143Pr, 149Pm, 153Sm, 159Gd, 166Ho, 177Lu, 186Re, 188Re, 194Ir and 199Au). Monoenergetic emissions were taken into account. Results are reported in the form of tables to facilitate use during dosimetric studies for radioimmunotherapy. An application is presented showing the potential utility of associating emitters with different energies in order to sterilize a range of tumour targets of variable size.

  12. A fibre optic scintillator dosemeter for absorbed dose measurements of low-energy X-ray-emitting brachytherapy sources

    International Nuclear Information System (INIS)

    Sliski, A.; Soares, C.; Mitch, M. G.

    2006-01-01

    A newly developed dosemeter using a 0.5 mm diameter x 0.5 mm thick cylindrical plastic scintillator coupled to the end of a fibre optic cable is capable of measuring the absorbed dose rate in water around low-activity, low-energy X-ray emitters typically used in prostate brachytherapy. Recent tests of this dosemeter showed that it is possible to measure the dose rate as a function of distance in water from 2 to 30 mm of a 103 Pd source of air-kerma strength 3.4 U (1 U = 1 μGy m 2 h -1 ), or 97 MBq (2.6 mCi) apparent activity, with good signal-to-noise ratio. The signal-to-noise ratio is only dependent on the integration time and background subtraction. The detector volume is enclosed in optically opaque, nearly water-equivalent materials so that there is no polar response other than that due to the shape of the scintillator volume chosen, in this case cylindrical. The absorbed dose rate very close to commercial brachytherapy sources can be mapped in an automated water phantom, providing a 3-D dose distribution with sub-millimeter spatial resolution. The sensitive volume of the detector is 0.5 mm from the end of the optically opaque waterproof housing, enabling measurements at very close distances to sources. The sensitive detector electronics allow the measurement of very low dose rates, as exist at centimeter distances from these sources. The detector is also applicable to mapping dose distributions from more complex source geometries such as eye applicators for treating macular degeneration. (authors)

  13. Effect of dose rate on radical and property of gelatin

    International Nuclear Information System (INIS)

    Geng Shengrong; Chen Yuxia; Zu Xiaoyan; Li Xin; Jiang Hongyou

    2015-01-01

    The gelatin was irradiated respectively in the range of 0-32 kGy by dose rates of 60 Gy/min 60 Co, 480 Gy/min 60 Co and 12000 Gy/min accelerator, and the relationships of the radical character and gelatin property with dose rate were investigated through electron spin resonance (ESR) and gelatin permeation chromatogram. The results show that there is weak ESR signal from unirradiated gelatin, but irradiated one presents typical double peak. The order of ESR signal intensity of gelatin with the same absorbed dosage from high to low is 60 Gy/min 60 Co, 480 Gy/min 60 Co and 12000 Gy/min accelerator. The linear relationship between ESR signal intensity from 60 Co irradiated gelatin and absorbed dose is y= 26.983x 2 +1 641.8x-205.69. The intrinsic viscosity, average relative molecular weight, gelatin strength and breaking elongation of irradiated gelatin from high to low are 480 Gy/min 60 Co, 12000 Gy/min accelerator and 60 Gy/min 60 Co. The protection mechanism of high dose rate radiation on gelatin degradation is that the production of effective long life free radicals reduces. (authors)

  14. Fetus absorbed dose evaluation in head and neck radiotherapy procedures of pregnant patients

    Energy Technology Data Exchange (ETDEWEB)

    Camargo da C, E.; Ribeiro da R, L. A.; Santos B, D. V., E-mail: etieli@ird.gov.br [Instituto de Radioprotecao e Dosimetria / CNEN, Av. Salvador Allende s/n, Barra de Tijuca, 22783-127 Rio de Janeiro (Brazil)

    2014-08-15

    Each year a considerable amount of pregnant women needs to be submitted to radiotherapeutic procedures to combat malignant tumors. Radiation therapy is often a treatment of choice for these patients. It is possible to use shielding and beam positioning such that the potential dose to the fetus can be minimized. In this work the head and neck cancer treatment of a pregnant patient was experimentally simulated. The patient was simulated by an anthropomorphic Alderson phantom and the absorbed dose to the fetus was evaluated using micro-rod TLD-100 detectors in two conditions, namely protecting the patients abdomen with a 7 cm lead layer and using no abdomen shielding. The aim of this experiment was to evaluate the efficiency of the abdomen protection in reducing the fetus absorbed dose. Irradiations were performed with a Trilogy linear accelerator using x-rays of 6 MV. A total dose of 50 Gy to the target volume was delivered. The fetus doses evaluated with and without the lead shielding were, respectively, 0.52±0.039 and (0.88±0.052) c Gy, corresponding to a dose reduction of 59%. The dose (0.52±0.039) c Gy is within the zone of biological tolerance for the fetus. (Author)

  15. Establishment of background radiation dose rate in the vicinity of the ...

    African Journals Online (AJOL)

    Establishment of background radiation dose rate in the vicinity of the proposed Manyoni Uranium Project, Singida. ... Tanzania Journal of Science ... The absorbed dose rate in air in the vicinity of the proposed Manyoni uranium mining project located in Singida region, Tanzania, was determined so as to establish the ...

  16. Leukocyte DNA damage after reduced and conventional absorbed radiation doses using 3rd generation dual-source CT technology

    Directory of Open Access Journals (Sweden)

    Henning D. Popp

    2016-01-01

    Conclusion: Our results provide evidence that reduced absorbed doses mediated by adjusted tube current in 3rd generation DSCT induce lower levels of DNA damage in PBMC compared to conventional absorbed doses suggesting a lower genotoxic risk for state-of-the-art tube current reduced CT protocols.

  17. Biodistribution and estimation of radiation-absorbed doses in humans for 13N-ammonia PET.

    Science.gov (United States)

    Yi, Chang; Yu, Donglan; Shi, Xinchong; He, Qiao; Zhang, Xuezhen; Zhang, Xiangsong

    2015-11-01

    To evaluate the biodistribution of radiation-absorbed doses of (13)N-ammonia in healthy people. Five healthy human subjects underwent whole-body PET and CT scans after injection of 555-740 MBq of (13)N-ammonia. Five serial dynamic emission scans in each healthy volunteer were acquired. Regions of interest were drawn on the CT image and transferred to the corresponding transverse PET slice. Estimates of the radiation-absorbed doses were calculated using the medical internal radiation dosimetry method. The highest concentrations of (13)N-ammonia were found in the heart and liver, followed by pancreas, brain, spleen and stomach. The highest absorbed organ doses were to the heart wall (7.14E-03 ± 3.63E-03 mGy/MBq) and kidneys (6.02E-03 ± 3.53E-03 mGy/MBq). The effective dose (ED) was 6.58E-03 ± 1.23E-03 mSv/MBq. With these new estimates for (13)N-ammonia dosimetry, the results for Chinese people were not appreciably different from those of the previous study performed with old devices. As one of the most important myocardial perfusion PET tracers, the whole-body (13)N-ammonia PET appears to be safe for humans, yielding a relatively modest radiation burden that would allow multiple PET studies on the same subject per year.

  18. Absorbed radiation doses in women undergone to PET-CT exams for cancer diagnosis

    International Nuclear Information System (INIS)

    Santana, Priscila do Carmo; Bernardes, Felipe Dias; Mamede, Marcelo; Oliveira, Paulo Marcio Campos de; Silva, Teogenes Augusto da; Mourao FIlho, Arnaldo Prata

    2014-01-01

    The absorbed dose in several organs and the effective dose in patients submitted to PET-CT exams with the radiopharmaceutical 18 F-FDG were assessed. The ICRP-106 biokinetic model and thermoluminescent detectors in a anthropomorphic phantom were used. The use of the PET-CT image acquisition protocol, with the CT protocol for anatomical mapping, showed that 60% of effective dose was from the radiotracer administration, being the effective dose values for a female patient of (5.80 ± 1.57) mSv. In conclusion, patient doses can be reduced by using appropriate imaging acquisition in 18 F-FDG PET-CT examinations and promoting the compliance with the radiation protection principles. (author)

  19. Analysis of surface absorbed dose in X-ray grating interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhili, E-mail: wangnsrl@ustc.edu.cn [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026 (China); Wu, Zhao; Gao, Kun; Wang, Dajiang; Chen, Heng; Wang, Shenghao [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026 (China); Wu, Ziyu, E-mail: wuzy@ustc.edu.cn [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026 (China); Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2014-10-15

    Highlights: • Theoretical framework for dose estimation in X-ray grating interferometry. • Potential dose reduction of X-ray grating interferometry compared to conventional radiography. • Guidelines for optimization of X-ray grating interferometry for dose-sensitive applications. • Measure to compare various existing X-ray phase contrast imaging techniques. - Abstract: X-ray phase contrast imaging using grating interferometry has shown increased contrast over conventional absorption imaging, and therefore the great potential of dose reduction. The extent of the dose reduction depends on the geometry of grating interferometry, the photon energy, the properties of the sample under investigation and the utilized detector. These factors also determine the capability of grating interferometry to distinguish between different tissues with a specified statistical certainty in a single raw image. In this contribution, the required photon number for imaging and the resulting surface absorbed dose are determined in X-ray grating interferometry, using a two-component imaging object model. The presented results confirm that compared to conventional radiography, phase contrast imaging using grating interferometry indeed has the potential of dose reduction. And the extent of dose reduction is strongly dependent on the imaging conditions. Those results provide a theoretical framework for dose estimation under given imaging conditions before experimental trials, and general guidelines for optimization of grating interferometry for those dose-sensitive applications.

  20. Analysis of surface absorbed dose in X-ray grating interferometry

    International Nuclear Information System (INIS)

    Wang, Zhili; Wu, Zhao; Gao, Kun; Wang, Dajiang; Chen, Heng; Wang, Shenghao; Wu, Ziyu

    2014-01-01

    Highlights: • Theoretical framework for dose estimation in X-ray grating interferometry. • Potential dose reduction of X-ray grating interferometry compared to conventional radiography. • Guidelines for optimization of X-ray grating interferometry for dose-sensitive applications. • Measure to compare various existing X-ray phase contrast imaging techniques. - Abstract: X-ray phase contrast imaging using grating interferometry has shown increased contrast over conventional absorption imaging, and therefore the great potential of dose reduction. The extent of the dose reduction depends on the geometry of grating interferometry, the photon energy, the properties of the sample under investigation and the utilized detector. These factors also determine the capability of grating interferometry to distinguish between different tissues with a specified statistical certainty in a single raw image. In this contribution, the required photon number for imaging and the resulting surface absorbed dose are determined in X-ray grating interferometry, using a two-component imaging object model. The presented results confirm that compared to conventional radiography, phase contrast imaging using grating interferometry indeed has the potential of dose reduction. And the extent of dose reduction is strongly dependent on the imaging conditions. Those results provide a theoretical framework for dose estimation under given imaging conditions before experimental trials, and general guidelines for optimization of grating interferometry for those dose-sensitive applications

  1. Tyrosol and hydroxytyrosol are absorbed from moderate and sustained doses of virgin olive oil in humans.

    Science.gov (United States)

    Miró-Casas, E; Covas, M-I; Fitó, M; Farré-Albadalejo, M; Marrugat, J; de la Torre, R

    2003-01-01

    To investigate the absorption of tyrosol and hydroxytyrosol from moderate and sustained doses of virgin olive oil consumption. The study also aimed to investigate whether these phenolic compounds could be used as biomarkers of virgin olive oil intake. Ingestion of a single dose of virgin olive oil (50 ml). Thereafter, for a week, participants followed their usual diet which included 25 ml/day of the same virgin olive oil as the source of raw fat. Unitat de Recerca en Farmacologia. Institut Municipal d'Investigació Mèdica (IMIM). Seven healthy volunteers. An increase in 24 h urine of tyrosol and hydroxytyrosol, after both a single-dose ingestion (50 ml) and short-term consumption (one week, 25 ml/day) of virgin olive oil (P<0.05) was observed. Urinary recoveries for tyrosol were similar after a single dose and after sustained doses of virgin olive oil. Mean recovery values for hydroxytyrosol after sustained doses were 1.5-fold those obtained after a single 50 ml dose. Tyrosol and hydroxytyrosol are absorbed from realistic doses of virgin olive oil. With regard to the dose-effect relationship, 24 h urinary tyrosol seems to be a better biomarker of sustained and moderate doses of virgin olive oil consumption than hydroxytyrosol.

  2. Radiation absorbed dose estimates for [1-carbon-11]-glucose in adults: The effects of hyperinsulinemia

    International Nuclear Information System (INIS)

    Powers, W.J.

    1996-01-01

    As preparation for studies of blood-brain glucose transport in diabetes mellitus, radiation absorbed dose estimates from intravenous administration of [1- 11 C]-glucose for 24 internal organs, lens, blood and total body were calculated for three physiologic conditions: euinsulinemic euglycemia, hyperinsulinemic euglycemia and hyperinsulinemic hyperglycemia. Cumulated activities in blood, insulin-independent and insulin-dependent compartments were calculated from blood time-activity curves in normal human volunteers and macaques. Apportionment of cumulated activity to individual organs in insulin-dependent and insulin-independent compartments was based on previously published data. Absorbed doses were calculated with the computer program MIRDOSE 3 for the 70-kg adult phantom. S for blood was calculated separately. The heart wall, lungs and spleen were the organs receiving the highest dose. The effect of hyperinsulinemia was demonstrated by the increase in adsorbed dose to the muscle, heart and blood with a decrease to other internal organs. This effect was more pronounced during hyperinsulinemic hyperglycemia. Hyperinsulinemia produced a decrease in effective dose due to the decrease in cumulated activity in organs with specified weighting factors greater than 0.05. The effective dose per study for [1- 11 C]-glucose is comparable to that reported for 2-deoxy-[2- 18 F]-glucose. 43 refs., 1 fig., 4 tabs

  3. Absorbed dose evaluation based on a computational voxel model incorporating distinct cerebral structures

    Energy Technology Data Exchange (ETDEWEB)

    Brandao, Samia de Freitas; Trindade, Bruno; Campos, Tarcisio P.R. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)]. E-mail: samiabrandao@gmail.com; bmtrindade@yahoo.com; campos@nuclear.ufmg.br

    2007-07-01

    Brain tumors are quite difficult to treat due to the collateral radiation damages produced on the patients. Despite of the improvements in the therapeutics protocols for this kind of tumor, involving surgery and radiotherapy, the failure rate is still extremely high. This fact occurs because tumors can not often be totally removed by surgery since it may produce some type of deficit in the cerebral functions. Radiotherapy is applied after the surgery, and both are palliative treatments. During radiotherapy the brain does not absorb the radiation dose in homogeneous way, because the various density and chemical composition of tissues involved. With the intention of evaluating better the harmful effects caused by radiotherapy it was developed an elaborated cerebral voxel model to be used in computational simulation of the irradiation protocols of brain tumors. This paper presents some structures function of the central nervous system and a detailed cerebral voxel model, created in the SISCODES program, considering meninges, cortex, gray matter, white matter, corpus callosum, limbic system, ventricles, hypophysis, cerebellum, brain stem and spinal cord. The irradiation protocol simulation was running in the MCNP5 code. The model was irradiated with photons beam whose spectrum simulates a linear accelerator of 6 MV. The dosimetric results were exported to SISCODES, which generated the isodose curves for the protocol. The percentage isodose curves in the brain are present in this paper. (author)

  4. Proceedings of the workshop 'Absorbed dose in water and air'

    International Nuclear Information System (INIS)

    Rapp, Benjamin; Bordy, Jean-Marc; Camacho Caldeira, Margarida Isabela; Sochor, Vladimir; Celarel, Aurelia; Cenusa, Constentin; Cenusa, Ioan; Donois, Marc; Dusciac, Dorin; Iliescu, Elena; Ostrowsky, Aime; Bercea, Sorin; Blideanu, Valentin; Bordy, Jean-Marc; Steurer, Andrea; Tiefenboeck, Wilhelm

    2017-05-01

    The project 'Absorbed dose in water and air' (Absorb) is aimed at sharing and improving the knowledge on the design of Primary Standards (calorimeter, cavity ionization chambers, free air ionization chambers) for 'dose' measurements in radiation therapy and diagnostic, the harmonization of calibration procedures, the determination of uncertainty and harmonization of uncertainty budgets. Within the framework of this project a workshop was organized at the LNE (Laboratoire National de metrologie et d'Essais) in Paris from February, 29 to March, 2 2016. This report is the proceeding of this workshop. It includes a state of the art of two bilateral collaborations, launched to go beyond the framework of Absorb, between CEA LIST (LNE) LNHB and in one hand IFIN-HH (Romania), and in the other hand IST-LPSR-LMRI (Portugal) to build primary cavity ionization chambers for photons emitted by cobalt-60 and Cesium-137. Absorb is a Joint Research Project of the European Metrology Programme for Innovation and Research (EMPIR) which is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

  5. Deterministic absorbed dose estimation in computed tomography using a discrete ordinates method

    International Nuclear Information System (INIS)

    Norris, Edward T.; Liu, Xin; Hsieh, Jiang

    2015-01-01

    Purpose: Organ dose estimation for a patient undergoing computed tomography (CT) scanning is very important. Although Monte Carlo methods are considered gold-standard in patient dose estimation, the computation time required is formidable for routine clinical calculations. Here, the authors instigate a deterministic method for estimating an absorbed dose more efficiently. Methods: Compared with current Monte Carlo methods, a more efficient approach to estimating the absorbed dose is to solve the linear Boltzmann equation numerically. In this study, an axial CT scan was modeled with a software package, Denovo, which solved the linear Boltzmann equation using the discrete ordinates method. The CT scanning configuration included 16 x-ray source positions, beam collimators, flat filters, and bowtie filters. The phantom was the standard 32 cm CT dose index (CTDI) phantom. Four different Denovo simulations were performed with different simulation parameters, including the number of quadrature sets and the order of Legendre polynomial expansions. A Monte Carlo simulation was also performed for benchmarking the Denovo simulations. A quantitative comparison was made of the simulation results obtained by the Denovo and the Monte Carlo methods. Results: The difference in the simulation results of the discrete ordinates method and those of the Monte Carlo methods was found to be small, with a root-mean-square difference of around 2.4%. It was found that the discrete ordinates method, with a higher order of Legendre polynomial expansions, underestimated the absorbed dose near the center of the phantom (i.e., low dose region). Simulations of the quadrature set 8 and the first order of the Legendre polynomial expansions proved to be the most efficient computation method in the authors’ study. The single-thread computation time of the deterministic simulation of the quadrature set 8 and the first order of the Legendre polynomial expansions was 21 min on a personal computer

  6. Absorbed dose assessment in particle-beam irradiated metal-oxide and metal-nonmetal memristors

    Directory of Open Access Journals (Sweden)

    Knežević Ivan D.

    2012-01-01

    Full Text Available Absorbed dose was estimated after Monte Carlo simulation of proton and ion beam irradiation on metal-oxide and metal-nonmetal memristors. A memristive device comprises two electrodes, each of a nanoscale width, and a double-layer active region disposed between and in electrical contact with electrodes. Following materials were considered for the active region: titanium dioxide, zirconium dioxide, hafnium dioxide, strontium titanium trioxide and galium nitride. Obtained results show that significant amount of oxygen ion - oxygen and nonmetal ion - nonmetal vacancy pairs is to be generated. The loss of such vacancies from the device is believed to deteriorate the device performance over time. Estimated absorbed dose values in the memristor for different constituting materials are of the same order of magnitude because of the close values of treshold displacement energies for the investigated materials.

  7. Experimental verification of the air kerma to absorbed dose conversion factor Cw,u.

    Science.gov (United States)

    Mijnheer, B J; Wittkämper, F W; Aalbers, A H; van Dijk, E

    1987-01-01

    In a recently published code of practice for the dosimetry of high-energy photon beams, the absorbed dose to water is determined using an ionization chamber having an air kerma calibration factor and applying the air kerma to absorbed dose conversion factor Cw,u. The consistency of these Cw,u values has been determined for four commonly employed types of ionization chambers in photon beams with quality varying between 60Co gamma-rays and 25 MV X-rays. Using a graphite calorimeter, Cw,u has been determined for a graphite-walled ionization chamber (NE 2561) for the same qualities. The values of Cw,u determined with the calorimeter are within the experimental uncertainty equal to Cw,u values determined according to any of the recent dosimetry protocols.

  8. Concrete spent fuel storage casks dose rates

    International Nuclear Information System (INIS)

    Bace, M.; Jecmenica, R.; Trontl, K.

    1998-01-01

    Our intention was to model a series of concrete storage casks based on TranStor system storage cask VSC-24, and calculate the dose rates at the surface of the casks as a function of extended burnup and a prolonged cooling time. All of the modeled casks have been filled with the original multi-assembly sealed basket. The thickness of the concrete shield has been varied. A series of dose rate calculations for different burnup and cooling time values have been performed. The results of the calculations show rather conservative original design of the VSC-24 system, considering only the dose rate values, and appropriate design considering heat rejection.(author)

  9. Using RADFET for the real-time measurement of gamma radiation dose rate

    Science.gov (United States)

    Andjelković, Marko S.; Ristić, Goran S.; Jakšić, Aleksandar B.

    2015-02-01

    RADFETs (RADiation sensitive Field Effect Transistors) are integrating ionizing radiation dosimeters operating on the principle of conversion of radiation-induced threshold voltage shift into absorbed dose. However, one of the major drawbacks of RADFETs is the inability to provide the information on the dose rate in real-time using the conventional absorbed dose measurement technique. The real-time monitoring of dose rate and absorbed dose can be achieved with the current mode dosimeters such as PN and PIN diodes/photodiodes, but these dosimeters have some limitations as absorbed dose meters and hence they are often not a suitable replacement for RADFETs. In that sense, this paper investigates the possibility of using the RADFET as a real-time dose rate meter so that it could be applied for simultaneous online measurement of the dose rate and absorbed dose. A RADFET sample, manufactured by Tyndall National Institute, Cork, Ireland, was tested as a dose rate meter under gamma irradiation from a Co-60 source. The RADFET was configured as a PN junction, such that the drain, gate and source terminals were grounded, while the radiation-induced current was measured at the bulk terminal, whereby the bulk was successively biased with 0 , 10 , 20  and 30 V. In zero-bias mode the radiation-induced current was unstable, but in the biased mode the current response was stable for the investigated dose rates from 0.65  to 32.1 Gy h-1 and up to the total absorbed dose of 25 Gy. The current increased with the dose rate in accordance with the power law, whereas the sensitivity of the current read-out was linear with respect to the applied bias voltage. Comparison with previously analyzed PIN photodiodes has shown that the investigated RADFET is competitive with PIN photodiodes as a gamma radiation dose rate meter and therefore has the potential to be employed for the real-time monitoring of the dose rate and absorbed dose.

  10. The analysis of impact of irregularity in radionuclide coating of scaffold on the distribution of absorbed dose produced by grid of microsources

    Directory of Open Access Journals (Sweden)

    N. A. Nerosin

    2015-01-01

    Full Text Available The impact of irregularity in radionuclide coating of scaffold on the distribution of absorbed dose produced by grid of microsources was analyzed. On engineering software MATHCAD the program for calculation of absorbed dose produced by grid of microsources was created. To verify this algorithm the calculation model for MCNP code was established and represented the area consisted of soft biological tissue or any other tissue in which the grid of microsources was incorporated. Using the developed system the value of possible systematic irregular coating of radioactivity on the microsource’s core was analyzed. The distribution of activity along the surface of microsource was simulated to create distribution of absorbed dose rate corresponding to experimental data on radiation injury. The obtained model of microsource with irregular distribution of activity was compared to conventional microsource with core coated regularly along the entire area of the silver stem by main dosimetry characteristics. The results showed that even for extremely irregular distribution of activity the distribution of dose rate produced by microsource in the tumor area was not substantially different from dose-rate field obtained for microsource with regularly coated activity. The differences in dose rates (up to 10% in areas which were the nearest to the center of the grid were significantly lower than its decline from center to periphery of the grid. For spatial distribution of absorbed dose for specific configuration of microsource set and tracing of curves of equal level by selected cut-off the program SEEDPLAN was developed. The developed program represents precisely enough the spatial distribution of selected configuration set of microsources using results of calculation data for absorbed dose around the single microsource as basic data and may be used for optimal planning of brachytherapy with microsources. 

  11. Effects of proton radiation dose, dose rate and dose fractionation on hematopoietic cells in mice

    International Nuclear Information System (INIS)

    Ware, J.H.; Rusek, A.; Sanzari, J.; Avery, S.; Sayers, C.; Krigsfeld, G.; Nuth, M.; Wan, X.S.; Kennedy, A.R.

    2010-01-01

    The present study evaluated the acute effects of radiation dose, dose rate and fractionation as well as the energy of protons in hematopoietic cells of irradiated mice. The mice were irradiated with a single dose of 51.24 MeV protons at a dose of 2 Gy and a dose rate of 0.05-0.07 Gy/min or 1 GeV protons at doses of 0.1, 0.2, 0.5, 1, 1.5 and 2 Gy delivered in a single dose at dose rates of 0.05 or 0.5 Gy/min or in five daily dose fractions at a dose rate of 0.05 Gy/min. Sham-irradiated animals were used as controls. The results demonstrate a dose-dependent loss of white blood cells (WBCs) and lymphocytes by up to 61% and 72%, respectively, in mice irradiated with protons at doses up to 2 Gy. The results also demonstrate that the dose rate, fractionation pattern and energy of the proton radiation did not have significant effects on WBC and lymphocyte counts in the irradiated animals. These results suggest that the acute effects of proton radiation on WBC and lymphocyte counts are determined mainly by the radiation dose, with very little contribution from the dose rate (over the range of dose rates evaluated), fractionation and energy of the protons.

  12. Effects of proton radiation dose, dose rate and dose fractionation on hematopoietic cells in mice.

    Science.gov (United States)

    Ware, J H; Sanzari, J; Avery, S; Sayers, C; Krigsfeld, G; Nuth, M; Wan, X S; Rusek, A; Kennedy, A R

    2010-09-01

    The present study evaluated the acute effects of radiation dose, dose rate and fractionation as well as the energy of protons in hematopoietic cells of irradiated mice. The mice were irradiated with a single dose of 51.24 MeV protons at a dose of 2 Gy and a dose rate of 0.05-0.07 Gy/min or 1 GeV protons at doses of 0.1, 0.2, 0.5, 1, 1.5 and 2 Gy delivered in a single dose at dose rates of 0.05 or 0.5 Gy/min or in five daily dose fractions at a dose rate of 0.05 Gy/min. Sham-irradiated animals were used as controls. The results demonstrate a dose-dependent loss of white blood cells (WBCs) and lymphocytes by up to 61% and 72%, respectively, in mice irradiated with protons at doses up to 2 Gy. The results also demonstrate that the dose rate, fractionation pattern and energy of the proton radiation did not have significant effects on WBC and lymphocyte counts in the irradiated animals. These results suggest that the acute effects of proton radiation on WBC and lymphocyte counts are determined mainly by the radiation dose, with very little contribution from the dose rate (over the range of dose rates evaluated), fractionation and energy of the protons.

  13. Optimization algorithm for absorbed dose calculation during single intake of 131І to rats

    Directory of Open Access Journals (Sweden)

    I. P. Drozd

    2016-02-01

    Full Text Available Original calculation algorithms are proposed for absorbed doses in the thyroid gland and thymus of rats at single income of 131I that enable to simplify the calculations and at the same time ensure high reliability of results in the range of input activities of 1 - 115000 Bq. According to the algorithms, the program is developed in the MATLAB environment, adapted for use on Windows running PC. Relative error of calculations is ±2 %.

  14. Measurement of absorbed doses in a homogeneous β rays fields with an extrapolation chamber

    International Nuclear Information System (INIS)

    1983-07-01

    The main characteristics of a variable cavity ionization chamber are described. Using the ionization current of the detector irradiated in homogeneous β rays fields, the tissue absorbed dose is determined. The corrective factors required to compute this quantity are analysed. Finally, international recommandations (ISO standards) relating to β rays reference fields are given, with the characteristics of β sources required for the energy response study of radiation protection instruments [fr

  15. Absorbed doses for patients undergoing panoramic radiography, cephalometric radiography and CBCT.

    OpenAIRE

    Wrzesien, Małgorzata; Olszewski, Jerzy

    2017-01-01

    Objectives: Contemporary dental radiology offers a wide spectrum of imaging methods but it also contributes to an increase in the participation of dental radiological diagnosis in the patient’s exposure to ionizing radiation. The aim of this study is to determine the absorbed doses of the brain, spinal column, thyroid and eye lens for patients during panoramic radiography, cephalometric radiography and cone beam computed tomography (CBCT). Material and Methods: The thermoluminescent dosimetry...

  16. Distribution of absorbed dose in human eye simulated by SRNA-2KG computer code

    International Nuclear Information System (INIS)

    Ilic, R.; Pesic, M.; Pavlovic, R.; Mostacci, D.

    2003-01-01

    Rapidly increasing performances of personal computers and development of codes for proton transport based on Monte Carlo methods will allow, very soon, the introduction of the computer planning proton therapy as a normal activity in regular hospital procedures. A description of SRNA code used for such applications and results of calculated distributions of proton-absorbed dose in human eye are given in this paper. (author)

  17. Analyse of the international recommendations on the calculation of absorbed dose in the biota

    International Nuclear Information System (INIS)

    Pereira, Wagner de S.; Py Junior, Delcy de A.; Universidade Federal Fluminense; Kelecom, Alphonse

    2011-01-01

    This paper evaluates the recommendations of ICRP which has as objective the environmental radioprotection. It was analysed the recommendations 26, 60, 91, 103 and 108 of the ICRP. The ICRP-103 defined the concept of animal and plant of reference (APR) to be used in the RAP based on the calculation of absorbed dose based on APR concept. This last view allows to build a legal framework of environmental protection with a etic, moral and scientific visualization, more defensible than the anthropomorphic concept

  18. Global shutdown dose rate maps for a DEMO conceptual design

    Energy Technology Data Exchange (ETDEWEB)

    Leichtle, D., E-mail: dieter.leichtle@f4e.europa.eu [Karlsruhe Institute of Technology KIT, Institute for Neutron Physics and Reactor Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Pereslavtsev, P. [Karlsruhe Institute of Technology KIT, Institute for Neutron Physics and Reactor Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Sanz, J.; Catalan, J.P.; Juarez, R. [Universidad Nacional de Educación a Distancia(UNED), E.T.S. Ingenieros Industriales, C/ Juan del Rosal 12, 28040 Madrid (Spain)

    2015-10-15

    Highlights: • Application of R2S-method on high-resolution full torus sector mesh for DEMO. • Absorbed dose rates after shutdown for a variely of RH equipment at typical locations. • Idenification of radiation levels at several port based locations. - Abstract: For the calculations of highly reliable shutdown dose rate (SDR) maps in fusion devices like a DEMO plant, the Rigorous-2-step (R2S) method is nowadays routinely applied using high-resolution decay gamma sources from initial high-resolution neutron flux meshes activating all materials in the system. This approach has been utilized in the present paper with the objective to provide SDR results relevant for RH systems of a conceptual DEMO design developed in the EU. The primary objective was to assess specific locations of interest for RH equipment inside the vessel and along the extension of maintenance ports. To this end, a provisional DEMO MCNP model has been used, featuring HCLL-type blankets, tungsten/copper divertor, manifolds, vacuum vessel with ports and toroidal field coils. The operational scenario assumed 2.1 GW fusion power and a life-time of 20 years with plant availability of 30%, where removable parts will be extracted after 5.2 years. Results of absorbed dose rate distributions for several relevant materials are presented and discussed in terms of the different contributions from the various activated components.

  19. Utilization of radiation protection gear for absorbed dose reduction: an integrative literature review

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Flavio Augusto Penna; Flor, Rita de Cassia [Instituto Federal de Santa Catarina (IFSC), Florianopolis, SC (Brazil); Pereira, Aline Garcia, E-mail: aalinegp@gmail.co [Sinan Project - Sistema de Informacao de Agravos de Notificacao, Florianopolis, SC (Brazil)

    2011-03-15

    Objective: The present study was aimed at evaluating the relation between the use of radiation protection gear and the decrease in absorbed dose of ionizing radiation, thereby reinforcing the efficacy of its use by both the patients and occupationally exposed personnel. Materials and Methods: The integrative literature review method was utilized to analyze 21 articles, 2 books, 1 thesis, 1 monograph, 1 computer program, 4 pieces of database research (Instituto Brasileiro de Geografia e Estatistica and Departamento de Informatica do Sistema Unico de Saude) and 2 sets of radiological protection guidelines. Results: Theoretically, a reduction of 86% to 99% in the absorbed dose is observed with the use of radiation protection gear. In practice, however, the reduction may achieve 88% in patients submitted to conventional radiology, and 95% in patients submitted to computed tomography. In occupationally exposed individuals, the reduction is around 90% during cardiac catheterization, and 75% during orthopedic surgery. Conclusion: According to findings of several previous pieces of research, the use of radiation protection gear is a low-cost and effective way to reduce absorbed dose both for patients and occupationally exposed individuals. Thus, its use is necessary for the implementation of effective radioprotection programs in radiodiagnosis centers. (author)

  20. The Australian Commonwealth standard of measurement for absorbed radiation dose. Part 1

    International Nuclear Information System (INIS)

    Sherlock, S.L.

    1989-08-01

    As an agent for the Commonwealth Scientific and Industrial Research Organisation, the Australian Nuclear Science and Technology Organisation is responsible for maintenance of the Australian Commonwealth standard of absorbed dose. This standard of measurement has application in radiation therapy dosimetry, which is required for the treatment of cancer patients. This report is the first in a series of reports documenting the absorbed dose standard for photon beams in the range from 1 to 25 MeV. The Urquhart graphite micro-calorimeters, which is used for the determination of absorbed dose under high energy photon beams, has been now placed under computer control. Accordingly, a complete upgrade of the calorimeter systems was performed to allow operation in the hospital. In this report, control and monitoring techniques have been described, with an assessment of the performance achieved being given for 6 and 18 MeV bremsstrahlung beams. Random errors have been reduced to near negligible proportions, while systematic errors have been minimized by achieving true quasi-adiabatic operation. 16 refs., 9 tabs., 11 figs

  1. Determination of absorbed dose in a proton beam for purposes of charged-particle radiation therapy

    International Nuclear Information System (INIS)

    Verhey, L.J.; Koehler, A.M.; McDonald, J.C.; Goitein, M.; Ma, I.C.; Schneider, R.J.; Wagner, M.

    1979-01-01

    Four methods are described by which absorbed dose has been measured in a proton beam extracted from the 160-MeV Harvard cyclotron. The standard dosimetry, used to determine doses for patient treatments, is based upon an absolute measurement of particle flux using a Faraday cup. Measurements have also been made using a parallel-plate ionization chamber; a thimble ionization chamber carying a 60 Co calibration traceable to NBS; and a tissue-equivalent calorimeter. The calorimeter, which provides an independent check of the dosimetry, agreed with the standard dosimetry at five widely different depths within a range from 0.8 to 2.6%

  2. Absorbed doses and energy imparted from radiographic examination of velopharyngeal function during speech

    International Nuclear Information System (INIS)

    Isberg, A.; Julin, P.; Kraepelien, T.; Henrikson, C.O.

    1989-01-01

    Absorbed doses of radiation were measured by thermoluminescent dosimeters (TLDs) using a skull phantom during simulated cinefluorographic and videofluorographic examination of velopharyngeal function in frontal and lateral projections. Dosages to the thyroid gland, the parotid gland, the pituitary gland, and ocular lens were measured. Radiation dosage was found to be approximately 10 times less for videofluoroscopy when compared with that of cinefluoroscopy. In addition, precautionary measures were found to reduce further the exposure of radiation-sensitive tissues. Head fixation and shielding resulted in dose reduction for both video- and cinefluoroscopy. Pulsing exposure for cinefluoroscopy also reduced the dosage

  3. Absorbed Dose Calculations Using Mesh-based Human Phantoms And Monte Carlo Methods

    International Nuclear Information System (INIS)

    Kramer, Richard

    2011-01-01

    Health risks attributable to the exposure to ionizing radiation are considered to be a function of the absorbed or equivalent dose to radiosensitive organs and tissues. However, as human tissue cannot express itself in terms of equivalent dose, exposure models have to be used to determine the distribution of equivalent dose throughout the human body. An exposure model, be it physical or computational, consists of a representation of the human body, called phantom, plus a method for transporting ionizing radiation through the phantom and measuring or calculating the equivalent dose to organ and tissues of interest. The FASH2 (Female Adult meSH) and the MASH2 (Male Adult meSH) computational phantoms have been developed at the University of Pernambuco in Recife/Brazil based on polygon mesh surfaces using open source software tools and anatomical atlases. Representing standing adults, FASH2 and MASH2 have organ and tissue masses, body height and body mass adjusted to the anatomical data published by the International Commission on Radiological Protection for the reference male and female adult. For the purposes of absorbed dose calculations the phantoms have been coupled to the EGSnrc Monte Carlo code, which can transport photons, electrons and positrons through arbitrary media. This paper reviews the development of the FASH2 and the MASH2 phantoms and presents dosimetric applications for X-ray diagnosis and for prostate brachytherapy.

  4. Absorbed Dose Calculations Using Mesh-based Human Phantoms And Monte Carlo Methods

    Science.gov (United States)

    Kramer, Richard

    2011-08-01

    Health risks attributable to the exposure to ionizing radiation are considered to be a function of the absorbed or equivalent dose to radiosensitive organs and tissues. However, as human tissue cannot express itself in terms of equivalent dose, exposure models have to be used to determine the distribution of equivalent dose throughout the human body. An exposure model, be it physical or computational, consists of a representation of the human body, called phantom, plus a method for transporting ionizing radiation through the phantom and measuring or calculating the equivalent dose to organ and tissues of interest. The FASH2 (Female Adult meSH) and the MASH2 (Male Adult meSH) computational phantoms have been developed at the University of Pernambuco in Recife/Brazil based on polygon mesh surfaces using open source software tools and anatomical atlases. Representing standing adults, FASH2 and MASH2 have organ and tissue masses, body height and body mass adjusted to the anatomical data published by the International Commission on Radiological Protection for the reference male and female adult. For the purposes of absorbed dose calculations the phantoms have been coupled to the EGSnrc Monte Carlo code, which can transport photons, electrons and positrons through arbitrary media. This paper reviews the development of the FASH2 and the MASH2 phantoms and presents dosimetric applications for X-ray diagnosis and for prostate brachytherapy.

  5. Quantification of micronuclei in blood lymphocytes of patients exposed to gamma radiation for dose absorbed assessment

    International Nuclear Information System (INIS)

    Barbosa, Isvania Maria Serafim da Silva

    2003-02-01

    Dose assessment in an important step to evaluate biological effects as a result of individual exposure to ionizing radiation. The use of cytogenetic dosimetry based on the quantification of micronuclei in lymphocytes is very important to complement physical dosimetry, since the measurement of absorbed dose cannot be always performed. In this research, the quantification of micronuclei was carried out in order to evaluate absorbed dose as a result of radiotherapy with 60 Co, using peripheral blood samples from 5 patients with cervical uterine cancer. For this purpose, an aliquot of whole blood from the individual patients was added in culture medium RPMI 1640 supplemented with fetal calf serum and phytohaemagglutinin. The culture was incubated for 44 hours. Henceforth, cytochalasin B was added to block the dividing lymphocytes in cytokinesis. The culture was returned to the incubator for further of 28 hours. Thus, cells were harvested, processed and analyzed. Values obtained considering micronuclei frequency after pelvis irradiation with absorption of 0,08 Gy and 1,8 Gy were, respectively, 0,0021 and 0,052. These results are in agreement with some recent researches that provided some standard values related to micronuclei frequency induced by gamma radiation exposure in different exposed areas for the human body. The results presented in this report emphasizes biological dosimetry as an important tool for dose assessment of either total or partial-body exposure to ionizing radiation, mainly in retrospective dose investigation. (author)

  6. Regression models in the determination of the absorbed dose with extrapolation chamber for ophthalmological applicators

    International Nuclear Information System (INIS)

    Alvarez R, J.T.; Morales P, R.

    1992-06-01

    The absorbed dose for equivalent soft tissue is determined,it is imparted by ophthalmologic applicators, ( 90 Sr/ 90 Y, 1850 MBq) using an extrapolation chamber of variable electrodes; when estimating the slope of the extrapolation curve using a simple lineal regression model is observed that the dose values are underestimated from 17.7 percent up to a 20.4 percent in relation to the estimate of this dose by means of a regression model polynomial two grade, at the same time are observed an improvement in the standard error for the quadratic model until in 50%. Finally the global uncertainty of the dose is presented, taking into account the reproducibility of the experimental arrangement. As conclusion it can infers that in experimental arrangements where the source is to contact with the extrapolation chamber, it was recommended to substitute the lineal regression model by the quadratic regression model, in the determination of the slope of the extrapolation curve, for more exact and accurate measurements of the absorbed dose. (Author)

  7. Development of fluorescent, oscillometric and photometric methods to determine absorbed dose in irradiated fruits and nuts

    International Nuclear Information System (INIS)

    Kovacs, A.; Foeldiak, G.; Hargittai, P.; Miller, S.D.

    2001-01-01

    To ensure suitable quality control at food irradiation technologies and for quarantine authorities, simple routine dosimetry methods are needed for absorbed dose control. Taking into account the requirements at quarantine locations these methods would require nondestructive analysis for repeated measurements. Different dosimetry systems with different analytical evaluation methods have been tested and/or developed for absorbed dose measurements in the dose range of 0.1-10 kGy. In order to use the well accepted ethanolmonochlorobenzene dosimeter solution and the recently developed aqueous alanine solution in small volume sealed vials, a new portable, digital, and programmable oscillometric reader was developed. To make use of the availability of the very sensitive fluorimetric evaluation method, liquid and solid inorganic and organic dosimetry systems were developed for dose control using a new routine, portable, and computer controlled fluorimeter. Absorption or transmission photometric methods were also applied for dose measurements of solid or liquid phase dosimeter systems containing radiochromic dye agents, which change colour upon irradiation. (author)

  8. Absorbed doses for patients undergoing panoramic radiography, cephalometric radiography and CBCT.

    Science.gov (United States)

    Wrzesień, Małgorzata; Olszewski, Jerzy

    2017-07-17

    Contemporary dental radiology offers a wide spectrum of imaging methods but it also contributes to an increase in the participation of dental radiological diagnosis in the patient's exposure to ionizing radiation. The aim of this study is to determine the absorbed doses of the brain, spinal column, thyroid and eye lens for patients during panoramic radiography, cephalometric radiography and cone beam computed tomography (CBCT). The thermoluminescent dosimetry and anthropomorphic phantom was used for measuring the doses. The 15 panoramic, 4 cephalometric and 4 CBCT exposures were performed by placing high-sensitivity thermoluminescent detectors (TLD) in 18 anatomical points of the phantom. The maximum absorbed dose recorded during performed measurements corresponds to the point representing the brainstem and it is 10 mGy. The dose value recorded by the TLD placed in the thyroid during CBCT imaging in relation to the panoramic radiography differs by a factor of 13.5. Cone beam computed tomography, in comparison with panoramic or cephalometric imaging technique, provides higher radiation doses to the patients. Int J Occup Med Environ Health 2017;30(5):705-713. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  9. Absorbed doses for patients undergoing panoramic radiography, cephalometric radiography and CBCT

    Directory of Open Access Journals (Sweden)

    Małgorzata Wrzesień

    2017-10-01

    Full Text Available Objectives: Contemporary dental radiology offers a wide spectrum of imaging methods but it also contributes to an increase in the participation of dental radiological diagnosis in the patient’s exposure to ionizing radiation. The aim of this study is to determine the absorbed doses of the brain, spinal column, thyroid and eye lens for patients during panoramic radiography, cephalometric radiography and cone beam computed tomography (CBCT. Material and Methods: The thermoluminescent dosimetry and anthropomorphic phantom was used for measuring the doses. The 15 panoramic, 4 cephalometric and 4 CBCT exposures were performed by placing high-sensitivity thermoluminescent detectors (TLD in 18 anatomical points of the phantom. Results: The maximum absorbed dose recorded during performed measurements corresponds to the point representing the brainstem and it is 10 mGy. The dose value recorded by the TLD placed in the thyroid during CBCT imaging in relation to the panoramic radiography differs by a factor of 13.5. Conclusions: Cone beam computed tomography, in comparison with panoramic or cephalometric imaging technique, provides higher radiation doses to the patients. Int J Occup Med Environ Health 2017;30(5:705–713

  10. Standard Guide for Absorbed-Dose Mapping in Radiation Processing Facilities

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2003-01-01

    1.1 This document provides guidance in determining absorbed-dose distributions in products, materials or substances irradiated in gamma, X-ray (bremsstrahlung) and electron beam facilities. Note 1—For irradiation of food and the radiation sterilization of health care products, other specific ISO and ISO/ASTM standards containing dose mapping requirements exist. For food irradiation, see ISO/ASTM 51204, Practice for Dosimetry in Gamma Irradiation Facilities for Food Processing and ISO/ASTM 51431, Practice for Dosimetry in Electron and Bremsstrahlung Irradiation Facilities for Food Processing. For the radiation sterilization of health care products, see ISO 11137: 1995, Sterilization of Health Care Products Requirements for Validation and Routine Control Radiation Sterilization. In those areas covered by ISO 11137, that standard takes precedence. ISO/ASTM Practice 51608, ISO/ASTM Practice 51649, and ISO/ASTM Practice 51702 also contain dose mapping requirements. 1.2 Methods of analyzing the dose map data ar...

  11. Concomitant chemoradiotherapy with high dose rate brachytherapy ...

    African Journals Online (AJOL)

    Concomitant chemoradiotherapy with high dose rate brachytherapy as a definitive treatment modality for locally advanced cervical cancer. T Refaat, A Elsaid, N Lotfy, K Kiel, W Small Jr, P Nickers, E Lartigau ...

  12. Dose equivalent rate calculation tool for FBFC

    International Nuclear Information System (INIS)

    Porte, R.; Lengele, C.; Favier, Th.; Duval, A.

    2010-01-01

    The authors present the results obtained by a software designed to compute dose equivalent rate for the critical workstations of the FBFC plant in Romans, France, which will have to deal with an uranium more heavily loaded with U 232 . The uranium spectrum and the ageing time can be varied in order to visualize the evolution of the dose equivalent rate in different locations with respect to the ageing time

  13. Dose rate effect in food irradiation

    International Nuclear Information System (INIS)

    Singh, H.

    1991-08-01

    It has been suggested that the minor losses of nutrients associated with radiation processing may be further reduced by irradiating foods at the high dose rates generally associated with electron beams from accelerators, rather than at the low dose rates typical of gamma irradiation (e.g. 60 Co). This review briefly examines available comparative data on gamma and electron irradiation of foods to evaluate these suggestions. (137 refs., 27 tabs., 11 figs.)

  14. Absorbed dose by thyroid in case of nuclear accidents; Dose absorvida pela tireoide em casos de acidentes nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Laelia; Attie, Marcia Regina Pereira [Universidade Federal de Sergipe (UFS), Sao Cristovao, SE (Brazil). Dept. de Fisica; Lima, Fernando Roberto de Andrade, E-mail: falima@cnen.gov.b [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil); Amaral, Ademir [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear

    2011-07-01

    Radioisotopes of iodine are produced in abundance in nuclear fission reactions, and great amounts of radioiodine may be released into the environment in case of a nuclear reactor accident. Thyroid gland is among the most radiosensitive organs due to its capacity to concentrate iodine. The aim of this work was to evaluate the importance of contributions of internally deposited iodines ({sup 131}I, {sup 132}I, {sup 133}I, {sup 134}I and {sup 135}I) to the dose absorbed to thyroid follicle and to the whole organ, after internal contamination by those isotopes. For internal dose calculation, the code of particles transport MCNP4C was employed. The results showed that, in case of nuclear accidents, the contribution of short-lived iodines for total dose is about 45% for thyroid of newborn and about 40% for thyroid of adult. Thus, these contributions should not be neglected in a prospective evaluation of risks associated to internal contamination by radioactive iodine. (author)

  15. Radiation Leukemogenesis at Low Dose Rates

    Energy Technology Data Exchange (ETDEWEB)

    Weil, Michael; Ullrich, Robert

    2013-09-25

    The major goals of this program were to study the efficacy of low dose rate radiation exposures for the induction of acute myeloid leukemia (AML) and to characterize the leukemias that are caused by radiation exposures at low dose rate. An irradiator facility was designed and constructed that allows large numbers of mice to be irradiated at low dose rates for protracted periods (up to their life span). To the best of our knowledge this facility is unique in the US and it was subsequently used to study radioprotectors being developed for radiological defense (PLoS One. 7(3), e33044, 2012) and is currently being used to study the role of genetic background in susceptibility to radiation-induced lung cancer. One result of the irradiation was expected; low dose rate exposures are ineffective in inducing AML. However, another result was completely unexpected; the irradiated mice had a very high incidence of hepatocellular carcinoma (HCC), approximately 50%. It was unexpected because acute exposures are ineffective in increasing HCC incidence above background. This is a potential important finding for setting exposure limits because it supports the concept of an 'inverse dose rate effect' for some tumor types. That is, for the development of some tumor types low dose rate exposures carry greater risks than acute exposures.

  16. Absorbed dose/melting heat dependence studies for the PVDF homopolymer

    International Nuclear Information System (INIS)

    Batista, Adriana S.M.; Gual, Maritza R.; Pereira, Claubia

    2013-01-01

    Differential Scanning Calorimetry (DSC) of gamma irradiated Poly (vinylidene Fluoride) [PVDF] homopolymer has been studied in connection with the use of material in industrial high gamma dose measurement. Interaction between gamma radiation and PVDF leads to the radio-induction of C=O and conjugated C=C bonds, as it can be inferred from previous infrared (FTIR) and ultraviolet-visible (UV-Vis) spectrometric data. These induced defects result in a decrease of the polymer crystallinity that can be followed with DSC scans, by measuring the latent heat during the melting transition (Hmelt). After a systematic investigation, we have found that Hmelt is unambiguously related to the delivered doses ranging from 100 to 2,000 kGy of gamma radiation. One the other hand, further fading investigation analysis has proved that the Hmelt x Dose relationship can be fitted by an exponential function that remains constant for several months. Both the very large range of dose measurement and also the possibility of evaluating high gamma doses until five months after irradiation make PVDF homopolymers very good candidates to be investigated as commercial high gamma dose dosimeters. The high gamma dose irradiation facilities in Brazil used to develop high dose dosimeters are all devoted to industrial and medical purposes. Therefore, in view of the uncertainties involved in the dose measurements related to the electronic equilibrium correction factors and backscattering in the isodose curves used at the irradiation setup, a validation process is required to correctly evaluate the delivered absorbed doses. The sample irradiations were performed with a Co-60 source, at 12kGy/h and 2,592 kGy/h, in the high gamma dose facilities at Centro de Desenvolvimento da Tecnologia Nuclear CDTN/CNEN, Belo Horizonte, Brazil. The comparison of the curve of the Hmelt vs Dose is presented in this paper. (author)

  17. Model of the dose rate for a semi industrial irradiation plant. Pt. 2

    International Nuclear Information System (INIS)

    Mangusi, Josefina

    2004-01-01

    The second stage of the model for the absorbed dose rate in air for the enclosure of a half-industrialist irradiation plant operating with cobalt-60 sources holden in plan geometry is presented. The sensibility of the model with the treatment of the support structure of the irradiator is analyzed and verified with experimental measurements with good accord. The model of the absorbed dose rate in air in the case of an interposed material between the radioactive sources and the point of interest includes in its calculation a set of secondary radioactive sources created by the Compton scattering of the primary radiation. The accord of the calculated absorbed dose rate and the experimental measured ones is good. The transit dose due to the irradiator moving until its dwell position is also modeled. The isodose curves for a set of irradiator parallel planes are also generated. (author) [es

  18. Three-dimensional absorbed dose determinations by N.M.R. analysis of phantom-dosemeters

    International Nuclear Information System (INIS)

    Gambarini, G.; Birattari, C.; Fumagalli, M.L.; Vai, A.; Monti, D.; Salvadori, P.; Facchielli, L.; Sichirollo, A.E.

    1996-01-01

    Magnetic resonance imaging of a tissue-equivalent phantom is a promising technique for three-dimensional determination of absorbed dose from ionizing radiation. A reliable method of determining the spatial distribution of absorbed dose is indispensable for the planning of treatment in the presently developed radiotherapy techniques aimed at obtaining high energy selectively delivered to cancerous tissues, with low dose delivered to the surrounding healthy tissue. Aqueous gels infused with the Fricke dosemeter (i.e. with a ferrous sulphate solution), as proposed in 1984 by Gore et al., have shown interesting characteristics and, in spite of some drawbacks that cause a few limitations to their utilisation, they have shown the feasibility of three-dimensional dose determinations by nuclear magnetic resonance (NMR) imaging. Fricke-infused agarose gels with various compositions have been analysed, considering the requirements of the new radiotherapy techniques, in particular Boron Neutron Capture Therapy (B.N.C.T.) and proton therapy. Special attention was paid to obtain good tissue equivalence for every radiation type of interest. In particular, the tissue equivalence for thermal neutrons, which is a not simple problem, has also been satisfactorily attained. The responses of gel-dosemeters having the various chosen compositions have been analysed, by mean of NMR instrumentation. Spectrophotometric measurements have also been performed, to verify the consistence of the results. (author)

  19. Comparison of the standards for absorbed dose to water of the ARPANSA and the BIPM for 60Co γ radiation

    International Nuclear Information System (INIS)

    Allisy-Roberts, P.J.; Burns, D.T.; Boas, J.F.; Huntley, R.B.; Wise, K.N.

    2000-10-01

    A comparison of the standards for absorbed dose to water of the Australian Radiation Protection and Nuclear Safety Agency and of the Bureau International des Poids et Mesures (BIPM) has been carried out in 60 Co gamma radiation. The Australian standard is based on a graphite calorimeter and the subsequent conversion from absorbed dose to graphite to absorbed dose to water using the photon fluence scaling theorem. The BIPM standard is ionometric using a graphite-walled cavity ionization chamber. The comparison result is 1.0024 (standard uncertainty 0.0029). (authors)

  20. Evaluation of 99Mo/99mTc generator columns after irradiation with different absorbed doses

    International Nuclear Information System (INIS)

    Fukumori, Neuza T.O.; Mengatti, Jair; Matsuda, Margareth M.N.

    2017-01-01

    The 99 Mo/ 99m Tc generator is widely used in nuclear medicine and it consists of a glass column containing Teflon® strips and alumina in which 99 Mo produced by 235 U fission is adsorbed. The 99 mTcO4- eluate shall meet the sterile and pyrogen free conditions for injectable radiopharmaceuticals as determined by the Good Manufacturing Practices. The purpose of this study was to evaluate the feasibility of using gamma radiation in the sterilization of the 99 Mo/ 99m Tc generator column and the influence on the elution efficiency. Alumina-containing columns were irradiated with 10, 15, 25 and 50 kGy absorbed doses. Alumina samples and control (non-irradiated) were submitted to X-ray diffraction and the combined use of scanning electron microscopy and elemental analysis. Teflon® samples were evaluated by thermogravimetry (TGA) and differential scanning calorimetry (DSC). X-ray diffractograms and micrographies with elemental analysis showed no significant changes in the crystalline structure of the alumina because it was stable α-Al 2 O 3 . TGA demonstrated that higher doses showed changes in lower temperatures and times than the control material. For DSC the higher the absorbed dose, the greater the polymer chain breakage and crosslinking in the material. The generator system without radioactivity was set up with the irradiated columns and the eluates demonstrated to be sterile and pyrogen free. The effects of different absorbed doses on the generator column, although some reported changes in the materials, demonstrated that the sterilization of the columns by irradiation with gamma rays as an alternative to wet heat sterilization is feasible from a technical and financial point of view. (author)

  1. The effect of backscattering on the beta dose absorbed by individual quartz grains

    DEFF Research Database (Denmark)

    Autzen, Martin; Guérin, G.; Murray, A. S.

    2017-01-01

    We describe the effect on dose rates and over-dispersion (OD) of changing the spectrum of energies to which grains of various shapes and volumes are exposed during beta irradiation, either by changing the backscattering medium or attenuating the incident spectrum. Dose rates are found to increase...

  2. Biodistribution parameters and radiation absorbed dose estimates for radiolabeled human low density lipoprotein

    International Nuclear Information System (INIS)

    Hay, R.V.; Ryan, J.W.; Williams, K.A.; Atcher, R.W.; Brechbiel, M.W.; Gansow, O.A.; Fleming, R.M.; Stark, V.J.; Lathrop, K.A.; Harper, P.V.

    1992-01-01

    The authors propose a model to generate radiation absorbed dose estimates for radiolabeled low density lipoprotein (LDL), based upon eight studies of LDL biodistribution in three adult human subjects. Autologous plasma LDL was labeled with Tc-99m, I-123, or In-111 and injected intravenously. Biodistribution of each LDL derivative was monitored by quantitative analysis of scintigrams and direct counting of excreta and of serial blood samples. Assuming that transhepatic flux accounts for the majority of LDL clearance from the bloodstream, they obtained values of cumulated activity (A) and of mean dose per unit administered activity (D) for each study. In each case highest D values were calculated for liver, with mean doses of 5 rads estimated at injected activities of 27 mCi, 9 mCi, and 0.9 mCi for Tc-99m-LDL, I-123-LDL, and In-111-LDL, respectively

  3. Evaluation of variation of voltage (kV) absorbed dose in chest CT scans

    International Nuclear Information System (INIS)

    Mendonca, Bruna G.A.; Mourao, Arnaldo P.

    2013-01-01

    Computed tomography (CT) is one of the most important diagnostic techniques images today. The increasing utilization of CT implies a significant increase of population exposure to ionizing radiation. Optimization of practice aims to reduce doses to patients because the image quality is directly related to the diagnosis. You can decrease the amount of dose to the patient, and maintain the quality of the image. There are several parameters that can be manipulated in a CT scan and these parameters can be used to reduce the energy deposited in the patient. Based on this, we analyzed the variation of dose deposited in the lungs, breasts and thyroid, by varying the supply voltage of the tube. Scans of the thorax were performed following the protocol of routine chest with constant and variable current for the same applied voltage. Moreover, a female phantom was used and thermoluminescent dosimeters (TLD-100), model bat, were used to record the specific organ doses. Scans were performed on a GE CT scanner, model 64 Discovery channels. Higher doses were recorded for the voltage of 120 kV with 200 mAs in the lungs (22.46 mGy) and thyroid (32.22 mGy). For scans with automatic mAs, variable between 100 and 440, this same tension contributed to the higher doses. The best examination in terms of the dose that was used with automatic 80 kV mAs, whose lungs and thyroid received lower dose. For the best breast exam was 100 kV. Since the increase in the 80 kV to 100 kV no impact so much the dose deposited in the lungs, it can be concluded that lowering the applied voltage to 100 kV resulted in a reduction in the dose absorbed by the patient. These results can contribute to optimizing scans of the chest computed tomography

  4. Quality control of diagnostic radiology to reduce absorbed dose of patients in Iran

    International Nuclear Information System (INIS)

    Aghahadi, Bahman.

    1996-01-01

    In order to reduce absorbed dose, to increase the image quality and to reduce the numbers of rejected films various quality control parameters were applied to X ray machines. These parameter are Kilo Volt peak, Milli Ampere, Exposure Time Focal Film Distance, Inherent Filters, Additional Filters Half Value Layer, Processor Condition, Cassettes. To evaluate and to apply these parameters in diagnostic radiological centers, ten hospitals were selected and a total number of 12 X ray machines were kept under quality control program. Considering different kinds of diagnostic radiology examination and to compare the dose before and after implementation of a quality control program, two kinds of examinations include in chest and abdomen examinations were considered. For each X ray machine, ten patients and for all selected centers, 120 patients were selected for chest examination and 120 patients for abdomen examinations; before and after implementation of quality control program, a total of 480 patients were selected randomly to be controlled. Base on different examinations carried out, it was concluded that both exposure conditions and general situations in radiological centers were not acceptable. The dosimetry results show that the average ski dose for chest and abdomen examinations were 0.28 m Gy and 4.23 Gy respectively. Before implementation of quality control step to reduce the surface skin dose, quality control parameters were applied and the exposure conditions were imposed. On average the absorbed doses for chest and abdomen examination were decreased to 79% and 61% respectively after the implementation of the program. From dose reduction point of view, the results of a part of this project which made by co-operation of International Atomic Energy Agency showed that Iran acquired the first grade for chest examination and second grade for abdomen examination. Base on the results obtained, the number of patients under chest and abdomen examination were 4041588 and

  5. Calculation of absorbed doses in sphere volumes around the Mammosite using the Monte Carlo simulation code MCNPX; Calculo de dosis absorbida en volumenes esfericos alrededor del Mammosite utilizando el codigo de simulacion Monte Carlo MCNPX

    Energy Technology Data Exchange (ETDEWEB)

    Rojas C, E. L. [ININ, Carretera Mexico-Toluca s/n, Ocoyoacac 52750, Estado de Mexico (Mexico)

    2008-07-01

    The objective of this study is to investigate the changes observed in the absorbed doses in mammary gland tissue when irradiated with a equipment of high dose rate known as Mammosite and introducing material resources contrary to the tissue that constitutes the mammary gland. The modeling study is performed with the code MCNPX, 2005 version, the equipment and the mammary gland and calculating the absorbed doses in tissue when introduced small volumes of air or calcium in the system. (Author)

  6. Absorbed dose determination using experimental and analytical predictions of x-ray spectra

    Science.gov (United States)

    Edwards, David Lee

    1999-10-01

    Electron beam welding in a vacuum is a technology that NASA is investigating as a joining technique for manufacture of space structures. The interaction of energetic electrons with metal produces x-rays. This investigation characterizes the x-ray environment due to operation of an in-vacuum electron beam welding tool and provides recommendations for adequate radiation shielding for astronauts performing the in-vacuum electron beam welding. NASA, in a joint venture with the Russian Space Agency, was scheduled to perform a series of welding in space experiments on board the United States Space Shuttle. This series of experiments was named the International Space Welding Experiment (ISWE). The hardware associated with the ISWE was leased to NASA, by the Paton Welding Institute (PWI) in Ukraine, for ground based welding experiments in preparation for flight. Two ground tests were scheduled, using the ISWE electron beam welding tool, to characterize the radiation exposure to an astronaut during the operation of the ISWE. These radiation exposure tests used Thermoluminescence Dosimeters (TLD's) shielded with material currently used by astronauts during Extra Vehicular Activities (EVA) to measure the radiation dose. The TLD's were exposed to x- ray radiation generated by operation of the ISWE in- vacuum electron beam welding tool. This investigation was the first known application of TLD's to measure absorbed dose from x-rays of energy less than 10 keV. The ISWE hardware was returned to Ukraine before the issue of adequate shielding for the astronauts was completely verified. Therefore alternate experimental and analytical methods were developed to measure and predict the x-ray spectral and intensity distribution generated by ISWE electron beam impact with metal. These x-ray spectra were normalized to an equivalent ISWE exposure then used to calculate the absorbed radiation dose to astronauts. These absorbed dose values were compared to TLD measurements obtained during

  7. An approach to calculating absorbed doses to organs of high radiation sensitivity in diagnostic radioisotope examinations in vivo

    International Nuclear Information System (INIS)

    Staniszewska, M.A.; Jankowski, J.

    1984-01-01

    A method is presented of dose calculations for internal exposures of organ-sources and organ-targets. Variations of absorbed doses depending on sex and age of the patients investigated with the use of radionuclides are discussed. Definitions of the effective and collective dose equivalents are also given. 8 refs., 1 tab. (author)

  8. Comparison of absorbed dose of two protocols of tomographic scanning in PET/CT exams

    International Nuclear Information System (INIS)

    Paiva, F.G.

    2017-01-01

    Positron Emission Tomography (PET) associated with Computed Tomography (CT) allows the fusion of functional and anatomical images. When compared to other diagnostic techniques, PET-CT subjects patients to higher levels of radiation, because two modalities are used in a single exam. In this study, the doses absorbed in 19 patient organs from the tomographic scan were evaluated. Radiochromic films were correctly positioned in the Alderson anthropomorphic simulator, male version. For evaluation, two whole body scan protocols were compared. For evaluation, two whole body scan protocols were compared. An increase of up to 600% in the absorbed dose in the pituitary was observed when the protocols were compared, with the lowest observed increase of approximately 160% for the liver. It is concluded that the dose from CT in patients submitted to PET-CT scanning is higher in the protocol used for diagnosis. Considering the high cost of PET-CT exam, in many cases it is preferable that the CT examination is of diagnostic quality, and not only for anatomical mapping, an argument based on the Principle of Justification

  9. Technique-dependent decrease in thyroid absorbed dose for dental radiography.

    Science.gov (United States)

    Wood, R E; Bristow, R G; Clark, G M; Nussbaum, C; Taylor, K W

    1989-06-01

    A LiF thermoluminescent dosimetry (TLD) system, calibrated in the tissue of interest with the beam used for experimentation, was employed to investigate dosages (muGy) to the thyroid region of an anthropomorphic phantom resultant from two dental complete-mouth radiographic procedures. Both techniques were compared in terms of dosages associated with combinations of lead apron and thyroid collar shielding while using a 70-kVp or 90-kVp x-ray beam for a 20-film complete-mouth series. Lead shielding significantly decreased the dose to the thyroid using both techniques (p less than 0.05). The use of the 90-kVp beam resulted in a significant reduction in the thyroid absorbed dose when using the bisecting angle technique (p less than 0.05) but caused a significant increase in the thyroid absorbed dose when the paralleling technique was used (p less than 0.05). The implementation of higher kilovoltage techniques in dental offices must therefore be dependent on the radiographic technique employed.

  10. Technique-dependent decrease in thyroid absorbed dose for dental radiography

    Energy Technology Data Exchange (ETDEWEB)

    Wood, R.E.; Bristow, R.G.; Clark, G.M.; Nussbaum, C.; Taylor, K.W.

    1989-06-01

    A LiF thermoluminescent dosimetry (TLD) system, calibrated in the tissue of interest with the beam used for experimentation, was employed to investigate dosages (muGy) to the thyroid region of an anthropomorphic phantom resultant from two dental complete-mouth radiographic procedures. Both techniques were compared in terms of dosages associated with combinations of lead apron and thyroid collar shielding while using a 70-kVp or 90-kVp x-ray beam for a 20-film complete-mouth series. Lead shielding significantly decreased the dose to the thyroid using both techniques (p less than 0.05). The use of the 90-kVp beam resulted in a significant reduction in the thyroid absorbed dose when using the bisecting angle technique (p less than 0.05) but caused a significant increase in the thyroid absorbed dose when the paralleling technique was used (p less than 0.05). The implementation of higher kilovoltage techniques in dental offices must therefore be dependent on the radiographic technique employed.

  11. Selective fallopian tube catheterisation in female infertility: clinical results and absorbed radiation dose

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, K. [Department of Radiology, Nagoya University School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466 (Japan); Ishiguchi, T. [Department of Radiology, Nagoya University School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466 (Japan); Maekoshi, H. [Department of Radiological Technology, Nagoya University College of Medical Technology, Nagoya (Japan); Ando, Y. [Department of Radiology, Nagoya University School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466 (Japan); Tsuzaka, M. [Department of Radiological Technology, Nagoya University College of Medical Technology, Nagoya (Japan); Tamiya, T. [Department of Radiological Technology, Nagoya University College of Medical Technology, Nagoya (Japan); Suganuma, N. [Department of Obstetrics and Gynecology, Branch Hospital, Nagoya University School of Medicine, Nagoya (Japan); Ishigaki, T. [Department of Radiology, Nagoya University School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466 (Japan)

    1996-08-01

    Clinical results of fluoroscopic fallopian tube catheterisation and absorbed radiation doses during the procedure were evaluated in 30 infertility patients with unilateral or bilateral tubal obstruction documented on hysterosalpingography. The staged technique consisted of contrast injection through an intrauterine catheter with a vacuum cup device, ostial salpingography with the wedged catheter, and selective salpingography with a coaxial microcatheter. Of 45 fallopian tubes examined, 35 (78 %) were demonstrated by the procedure, and at least one tube was newly demonstrated in 26 patients (87 %). Six of these patients conceived spontaneously in the follow-up period of 1-11 months. Four pregnancies were intrauterine and 2 were ectopic. This technique provided accurate and detailed information in the diagnosis and treatment of tubal obstruction in infertility patients. The absorbed radiation dose to the ovary in the average standardised procedure was estimated to be 0.9 cGy. Further improvement in the X-ray equipment and technique is required to reduce the radiation dose. (orig.). With 3 figs., 3 tabs.

  12. Absorbed-dose beam quality conversion factors for cylindrical chambers in high energy photon beams.

    Science.gov (United States)

    Seuntjens, J P; Ross, C K; Shortt, K R; Rogers, D W

    2000-12-01

    Recent working groups of the AAPM [Almond et al., Med. Phys. 26, 1847 (1999)] and the IAEA (Andreo et al., Draft V.7 of "An International Code of Practice for Dosimetry based on Standards of Absorbed Dose to Water," IAEA, 2000) have described guidelines to base reference dosimetry of high energy photon beams on absorbed dose to water standards. In these protocols use is made of the absorbed-dose beam quality conversion factor, kQ which scales an absorbed-dose calibration factor at the reference quality 60Co to a quality Q, and which is calculated based on state-of-the-art ion chamber theory and data. In this paper we present the measurement and analysis of beam quality conversion factors kQ for cylindrical chambers in high-energy photon beams. At least three chambers of six different types were calibrated against the Canadian primary standard for absorbed dose based on a sealed water calorimeter at 60Co [TPR10(20)=0.572, %dd(10)x=58.4], 10 MV [TPR10(20)=0.682, %dd(10)x=69.6), 20 MV (TPR10(20)=0.758, %dd(10)x= 80.5] and 30 MV [TPR10(20) = 0.794, %dd(10)x= 88.4]. The uncertainty on the calorimetric determination of kQ for a single chamber is typically 0.36% and the overall 1sigma uncertainty on a set of chambers of the same type is typically 0.45%. The maximum deviation between a measured kQ and the TG-51 protocol value is 0.8%. The overall rms deviation between measurement and the TG-51 values, based on 20 chambers at the three energies, is 0.41%. When the effect of a 1 mm PMMA waterproofing sleeve is taken into account in the calculations, the maximum deviation is 1.1% and the overall rms deviation between measurement and calculation 0.48%. When the beam is specified using TPR10(20), and measurements are compared with kQ values calculated using the version of TG-21 with corrected formalism and data, differences are up to 1.6% when no sleeve corrections are taken into account. For the NE2571 and the NE2611A chamber types, for which the most literature data are

  13. Dose rate calculations for a reconnaissance vehicle

    International Nuclear Information System (INIS)

    Grindrod, L.; Mackey, J.; Salmon, M.; Smith, C.; Wall, S.

    2005-01-01

    A Chemical Nuclear Reconnaissance System (CNRS) has been developed by the British Ministry of Defence to make chemical and radiation measurements on contaminated terrain using appropriate sensors and recording equipment installed in a land rover. A research programme is under way to develop and validate a predictive capability to calculate the build-up of contamination on the vehicle, radiation detector performance and dose rates to the occupants of the vehicle. This paper describes the geometric model of the vehicle and the methodology used for calculations of detector response. Calculated dose rates obtained using the MCBEND Monte Carlo radiation transport computer code in adjoint mode are presented. These address the transient response of the detectors as the vehicle passes through a contaminated area. Calculated dose rates were found to agree with the measured data to be within the experimental uncertainties, thus giving confidence in the shielding model of the vehicle and its application to other scenarios. (authors)

  14. Standard Guide for Selection and Use of Mathematical Methods for Calculating Absorbed Dose in Radiation Processing Applications

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This guide describes different mathematical methods that may be used to calculate absorbed dose and criteria for their selection. Absorbed-dose calculations can determine the effectiveness of the radiation process, estimate the absorbed-dose distribution in product, or supplement or complement, or both, the measurement of absorbed dose. 1.2 Radiation processing is an evolving field and annotated examples are provided in Annex A6 to illustrate the applications where mathematical methods have been successfully applied. While not limited by the applications cited in these examples, applications specific to neutron transport, radiation therapy and shielding design are not addressed in this document. 1.3 This guide covers the calculation of radiation transport of electrons and photons with energies up to 25 MeV. 1.4 The mathematical methods described include Monte Carlo, point kernel, discrete ordinate, semi-empirical and empirical methods. 1.5 General purpose software packages are available for the calcul...

  15. Reference Dose Rates for Fluoroscopy Guided Interventions

    International Nuclear Information System (INIS)

    Geleijns, J.; Broerse, J.J.; Hummel, W.A.; Schalij, M.J.; Schultze Kool, L.J.; Teeuwisse, W.; Zoetelief, J.

    1998-01-01

    The wide diversity of fluoroscopy guided interventions which have become available in recent years has improved patient care. They are being performed in increasing numbers, particularly at departments of cardiology and radiology. Some procedures are very complex and require extended fluoroscopy times, i.e. longer than 30 min, and radiation exposure of patient and medical staff is in some cases rather high. The occurrence of radiation-induced skin injuries on patients has shown that radiation protection for fluoroscopy guided interventions should not only be focused on stochastic effects, i.e. tumour induction and hereditary risks, but also on potential deterministic effects. Reference dose levels are introduced by the Council of the European Communities as an instrument to achieve optimisation of radiation protection in radiology. Reference levels in conventional diagnostic radiology are usually expressed as entrance skin dose or dose-area product. It is not possible to define a standard procedure for complex interventions due to the large inter-patient variations with regard to the complexity of specific interventional procedures. Consequently, it is not realistic to establish a reference skin dose or dose-area product for complex fluoroscopy guided interventions. As an alternative, reference values for fluoroscopy guided interventions can be expressed as the entrance dose rates on a homogeneous phantom and on the image intensifier. A protocol has been developed and applied during a nationwide survey of fluoroscopic dose rate during catheter ablations. From this survey reference entrance dose rates of respectively 30 mGy.min -1 on a polymethylmethacrylate (PMMA) phantom with a thickness of 21 cm, and of 0.8 μGy.s -1 on the image intensifier have been derived. (author)

  16. Absorbed and effective dose from spiral and computed tomography for the dental implant planning

    International Nuclear Information System (INIS)

    Hong, Beong Hee; Han, Won Jeong; Kim, Eun Kyung

    2001-01-01

    To evaluate the absorbed and effective doses of spiral and computed tomography for the dental implant planning. For radiographic projection. TLD chips were placed in 22 sites of humanoid phantom to record the exposure to skin and the mean absorbed dose to bone marrow, thyroid, pituitary, parotid and submandibular glands and nesophages. Effective dose was calculated, using the method suggested by Frederiksen at al.. Patient situations of a single tooth gap in upper and lower midline region, edentulous maxilla and mandible were simulated for spiral tomography. 35 axial slices (maxilla) and 40 axial slices (mandible) with low and standard dose setting were used for computed tomography. All the radiographic procedures were repeated three times. The mean effective dose in case of maxilla was 0.865 mSv, 0.452 mSv, 0.136 mSv and 0.025 mSv, in spiral tomography of complete edentulous maxilla, computed tomography with standard mAs, computed tomography with low mAs and spiral tomography of a single tooth gap (p<0.05). That in case of mandible was 0.614 mSv, 0.448 mSv, 0.137 mSv and 0.036 mSv, in spiral tomography of complete edentulous mandible, computed tomography with standard mAs, computed tomography with low mAs and spiral tomography of a single tooth gap (p<0.05). Based on these results, it can be concluded that low mAs computed tomography is recommended instead of spiral tomography for the complete edentulous maxilla and mandible dental implant treatment planning

  17. Supplemental computational phantoms to estimate out-of-field absorbed dose in photon radiotherapy

    Science.gov (United States)

    Gallagher, Kyle J.; Tannous, Jaad; Nabha, Racile; Feghali, Joelle Ann; Ayoub, Zeina; Jalbout, Wassim; Youssef, Bassem; Taddei, Phillip J.

    2018-01-01

    The purpose of this study was to develop a straightforward method of supplementing patient anatomy and estimating out-of-field absorbed dose for a cohort of pediatric radiotherapy patients with limited recorded anatomy. A cohort of nine children, aged 2-14 years, who received 3D conformal radiotherapy for low-grade localized brain tumors (LBTs), were randomly selected for this study. The extent of these patients’ computed tomography simulation image sets were cranial only. To approximate their missing anatomy, we supplemented the LBT patients’ image sets with computed tomography images of patients in a previous study with larger extents of matched sex, height, and mass and for whom contours of organs at risk for radiogenic cancer had already been delineated. Rigid fusion was performed between the LBT patients’ data and that of the supplemental computational phantoms using commercial software and in-house codes. In-field dose was calculated with a clinically commissioned treatment planning system, and out-of-field dose was estimated with a previously developed analytical model that was re-fit with parameters based on new measurements for intracranial radiotherapy. Mean doses greater than 1 Gy were found in the red bone marrow, remainder, thyroid, and skin of the patients in this study. Mean organ doses between 150 mGy and 1 Gy were observed in the breast tissue of the girls and lungs of all patients. Distant organs, i.e. prostate, bladder, uterus, and colon, received mean organ doses less than 150 mGy. The mean organ doses of the younger, smaller LBT patients (0-4 years old) were a factor of 2.4 greater than those of the older, larger patients (8-12 years old). Our findings demonstrated the feasibility of a straightforward method of applying supplemental computational phantoms and dose-calculation models to estimate absorbed dose for a set of children of various ages who received radiotherapy and for whom anatomies were largely missing in their original

  18. The 1998 calibration of Australian secondary standards of exposure and absorbed dose at 60Co

    International Nuclear Information System (INIS)

    Huntley, R.B.; Van der Gaast, H.

    1998-10-01

    New calibration factors are reported for several of the ionization chambers maintained at the Australian Radiation Laboratory (ARL) and at the Australian Nuclear Science and Technology Organisation (ANSTO) as Australian secondary standards of exposure/air kerma and absorbed dose at 60 Co. These calibration factors supplement or replace the calibration factors given in earlier reports. Updated 90 Sr reference source data are given for the ARL chambers, and for two of the ANSTO chambers. These results confirm the stability of the secondary standards. A re-calibration of the ANSTO reference electrometer is reported. This was carried out using an improved method, which is fully described

  19. Spontaneous mutation rates and the rate-doubling dose

    International Nuclear Information System (INIS)

    Von Borstel, R.C.; Moustaccki, E.; Latarjet, R.

    1978-01-01

    The amount of radiation required to double the frequency of mutations or tumours over the rate of those that occur spontaneously is called the rate-doubling dose. An equivalent concept has been proposed for exposure to other environmental mutagens. The doubling dose concept is predicated on the assumption that all human populations have the same spontaneous mutation rate, and that this spontaneous mutation rate is known. It is now established for prokaryotes and lower eukaryotes that numerous genes control the spontaneous mutation rate, and it is likely that the same is true for human cells as well. Given that the accepted mode of evolution of human populatons is from small, isolated groups of individuals, it seems likely that each population would have a different spontaneous mutation rate. Given that a minimum of twenty genes control or affect the spontaneous mutation rate, and that each of these in turn is susceptible to spontaneously arising or environmentally induced mutations, it seems likely that every individual within a population (except for siblings from identical multiple births) will have a unique spontaneous mutation rate. If each individual in a population does have a different spontaneous mutation rate, the doubling dose concept, in rigorous terms, is fallacious. Therefore, as with other concepts of risk evaluation, the doubling dose concept is subject to criticism. Nevertheless, until we know individual spontaneous mutation rates with precision, and can evaluate risks based on this information, the doubling dose concept has a heuristic value and is needed for practical assessment of risks for defined populations. (author)

  20. Dose rate to the inner ear during Moessbauer experiments

    International Nuclear Information System (INIS)

    Kliauga, P.; Khanna, S.M.

    1983-01-01

    The most widely used technique for studying vibrations of the inner ear utilises the Moessbauer effect; this requires placement of a radioactive source on the basilar membrane. This source, although small in size and less than 37 MBq(1 mCi) in strength, is placed in close proximity to sensitive receptor cells. Using a series solution for the radiation field of a rectangular source the absorbed dose rate delivered to receptor cells at various depths and at points off-axis from the centre of the source is calculated. It is concluded that the dose delivered during the course of a Moessbauer experiment may well be sufficient to damage receptor cells and cause a loss of response. (author)

  1. {sup 99m}Tc Auger electrons - Analysis on the effects of low absorbed doses by computational methods

    Energy Technology Data Exchange (ETDEWEB)

    Tavares, Adriana Alexandre S., E-mail: adriana_tavares@msn.co [Faculdade de Engenharia da Universidade do Porto (FEUP), Rua Dr. Roberto Frias, S/N, 4200-465 Porto (Portugal); Tavares, Joao Manuel R.S., E-mail: tavares@fe.up.p [Faculdade de Engenharia da Universidade do Porto (FEUP), Rua Dr. Roberto Frias, S/N, 4200-465 Porto (Portugal)

    2011-03-15

    We describe here the use of computational methods for evaluation of the low dose effects on human fibroblasts after irradiation with Technetium-99m ({sup 99m}Tc) Auger electrons. The results suggest a parabolic relationship between the irradiation of fibroblasts with {sup 99m}Tc Auger electrons and the total absorbed dose. Additionally, the results on very low absorbed doses may be explained by the bystander effect, which has been implicated on the cell's effects at low doses. Further in vitro evaluation will be worthwhile to clarify these findings.

  2. Absorbed doses to the main parts of eyeball due to use 90Sr + 90Y ophthalmic applicator

    International Nuclear Information System (INIS)

    Chen Lishu

    1993-05-01

    The ophthalmic radiotherapy dosimetry and some affecting factors are introduced. The distributions of absorbed doses to the main parts of a fresh eyeball such as the cornea, sclera, lens and anterior chamber, during the radiotherapy by using a 90 Sr + 90 Y ophthalmic applicator are presented. An tissue-equivalent extrapolation ionization chamber was used in the dose measurement. The reasonable doses during ophthalmic radiotherapy for different depths have been obtained. Therefore, the absorbed dose to the lens, the most sensitive organ, can be given. These data are useful for radiation protection in ophthalmic radiotherapy

  3. FLUKA predictions of the absorbed dose in the HCAL Endcap scintillators using a Run1 (2012) CMS FLUKA model

    CERN Document Server

    CMS Collaboration

    2016-01-01

    Estimates of absorbed dose in HCAL Endcap (HE) region as predicted by FLUKA Monte Carlo code. Dose is calculated in an R-phi-Z grid overlaying HE region, with resolution 1cm in R, 1mm in Z, and a single 360 degree bin in phi. This allows calculation of absorbed dose within a single 4mm thick scintillator layer without including other regions or materials. This note shows estimates of the cumulative dose in scintillator layers 1 and 7 during the 2012 run.

  4. Radiation chemistry of water at low dose rates with emphasis on the energy balance

    International Nuclear Information System (INIS)

    Fletcher, J.W.

    1982-09-01

    There has been considerable interest in absorbed dose water calorimetry. In order to accurately relate the temperature change to the absorbed dose, the energy balance of the overall chemistry of the system must be known. The radiolytic products and their yields are affected by dose rate, dose and added solutes. The yields of the radiolytic products have been calculated using a computer program developed at Atomic Energy of Canada. The chemical energy balance was determined as a function of dose for various dose rates and initial concentrations of hydrogen (H 2 ), oxygen (O 2 ), and hydrogen peroxide (H 2 O 2 ). In solutions containing H 2 O 2 or O 2 and H 2 the chemical reactions were exothermic; in other cases they were endothermic. Approach to equilibrium and equilbrium conditions are discussed

  5. Development of the 60Co gamma-ray standard field for therapy-level dosimeter calibration in terms of absorbed dose to water (ND,W)

    International Nuclear Information System (INIS)

    Fukumura, Akifumi; Mizuno, Hideyuki; Fukahori, Mai; Sakata, Suoh

    2013-01-01

    A primary standard for the absorbed dose rate to water in a 60 Co gamma-ray field was established at National Metrology Institute of Japan (NMIJ) in fiscal year 2011. Then, a 60 Co gamma-ray standard field for therapy-level dosimeter calibration in terms of absorbed dose to water was developed at National Institute of Radiological Sciences (NIRS) as a secondary standard dosimetry laboratory (SSDL). The results of an International Atomic Energy Agency (IAEA)/World Health Organization (WHO) TLD SSDL audit demonstrated that there was good agreement between NIRS stated absorbed dose to water and IAEA measurements. The IAEA guide based on the International Organization for Standardization (ISO) standard was used to estimate the relative expanded uncertainty of the calibration factor for a therapy-level Farmer type ionization chamber in terms of absorbed dose to water (N D,W ) with the new field. The uncertainty of N D,W was estimated to be 1.1% (k=2), which corresponds to approximately one third of the value determined in the existing air kerma field. The dissemination of traceability of the calibration factor determined in the new field is expected to diminish the uncertainty of dose delivered to patients significantly. (author)

  6. Absorbed dose measurements in mammography using Monte Carlo method and ZrO2+PTFE dosemeters

    International Nuclear Information System (INIS)

    Duran M, H. A.; Hernandez O, M.; Salas L, M. A.; Hernandez D, V. M.; Vega C, H. R.; Pinedo S, A.; Ventura M, J.; Chacon, F.; Rivera M, T.

    2009-10-01

    Mammography test is a central tool for breast cancer diagnostic. In addition, programs are conducted periodically to detect the asymptomatic women in certain age groups; these programs have shown a reduction on breast cancer mortality. Early detection of breast cancer is achieved through a mammography, which contrasts the glandular and adipose tissue with a probable calcification. The parameters used for mammography are based on the thickness and density of the breast, their values depend on the voltage, current, focal spot and anode-filter combination. To achieve an image clear and a minimum dose must be chosen appropriate irradiation conditions. Risk associated with mammography should not be ignored. This study was performed in the General Hospital No. 1 IMSS in Zacatecas. Was used a glucose phantom and measured air Kerma at the entrance of the breast that was calculated using Monte Carlo methods and ZrO 2 +PTFE thermoluminescent dosemeters, this calculation was completed with calculating the absorbed dose. (author)

  7. On a Possibility of Nondisturbing Monitoring of Electron-Radiation Absorbed Dose in Radiation-Technological Processes

    International Nuclear Information System (INIS)

    Karasev, S.P.; Nikiforov, V.I.; Pomatsalyuk, R.I.; Tenishev, A.Eh.; Uvarov, V.L.; Shevchenko, V.A.; Shlyakhov, I.N.; Malets, E.B.

    2006-01-01

    Great deals of present day radiation technologies that use electron accelerators involve the procedure of transporting the products under treatment across the irradiation zone normally to the beam scanning plane. The main controlled characteristic of the process is the electron radiation dose absorbed in the object under treatment. The present paper offers the method of nonperturbing real-time dose and electron energy monitoring. The method is based on the analysis of distribution of currents from the plates of a sectionalised beam charge absorber. The absorber is placed behind the conveyor and is periodically shut off from the beam by the object under irradiation. The method was preliminary analyzed through computer simulation

  8. Thyroid absorbed dose for people at Rongelap, Utirik, and Sifo on March 1, 1954

    Energy Technology Data Exchange (ETDEWEB)

    Lessard, E.T.; Miltenberger, R.P.; Conrad, R.A.; Musoline, S.V.; Naidu, J.R.; Moorthy, A.; Schopfer, C.J.

    1985-03-01

    A study was undertaken to reexamine thyroid absorbed dose estimates for people accidentally exposed to fallout at Rongelap, Sifo, and Utirik Islands from the Pacific weapon test known as Operation Castle BRAVO. The study included: (1) reevaluation of radiochemical analysis, to relate results from pooled urine to intake, retention, and excretion functions; (2) analysis of neutron-irradiation studies of archival soil samples, to estimate areal activities of the iodine isotopes; (3) analysis of source term, weather data, and meteorological functions used in predicting atmospheric diffusion and fallout deposition, to estimate airborne concentrations of the iodine isotopes; and (4) reevaluation of radioactive fallout, which contaminated a Japanese fishing vessel in the vicinity of Rongelap Island on March 1, 1954, to determine fallout components. The conclusions of the acute exposure study were that the population mean thyroid absorbed doses were 21 gray (2100 rad) at Rongelap, 6.7 gray (670 rad) at Sifo, and 2.8 gray (280 rad) at Utirik. The overall thyroid cancer risk we estimated was in agreement with results published on the Japanese exposed at Nagasaki and Hiroshima. We now postulate that the major route for intake of fallout was by direct ingestion of food prepared and consumed outdoors. 66 refs., 13 figs., 25 tabs.

  9. Thyroid absorbed dose for people at Rongelap, Utirik, and Sifo on March 1, 1954

    International Nuclear Information System (INIS)

    Lessard, E.T.; Miltenberger, R.P.; Conrad, R.A.; Musoline, S.V.; Naidu, J.R.; Moorthy, A.; Schopfer, C.J.

    1985-03-01

    A study was undertaken to reexamine thyroid absorbed dose estimates for people accidentally exposed to fallout at Rongelap, Sifo, and Utirik Islands from the Pacific weapon test known as Operation Castle BRAVO. The study included: (1) reevaluation of radiochemical analysis, to relate results from pooled urine to intake, retention, and excretion functions; (2) analysis of neutron-irradiation studies of archival soil samples, to estimate areal activities of the iodine isotopes; (3) analysis of source term, weather data, and meteorological functions used in predicting atmospheric diffusion and fallout deposition, to estimate airborne concentrations of the iodine isotopes; and (4) reevaluation of radioactive fallout, which contaminated a Japanese fishing vessel in the vicinity of Rongelap Island on March 1, 1954, to determine fallout components. The conclusions of the acute exposure study were that the population mean thyroid absorbed doses were 21 gray (2100 rad) at Rongelap, 6.7 gray (670 rad) at Sifo, and 2.8 gray (280 rad) at Utirik. The overall thyroid cancer risk we estimated was in agreement with results published on the Japanese exposed at Nagasaki and Hiroshima. We now postulate that the major route for intake of fallout was by direct ingestion of food prepared and consumed outdoors. 66 refs., 13 figs., 25 tabs

  10. ESR spectroscopy for detecting gamma-irradiated dried vegetables and estimating absorbed doses

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Joong-Ho; Chung, Hyung-Wook; Byun, Myung-Woo

    2000-03-01

    In view of an increasing demand for food irradiation technology, the development of a reliable means of detection for the control of irradiated foods has become necessary. Various vegetable food materials (dried cabbage, carrot, chunggyungchae, garlic, onion, and green onion), which can be legally irradiated in Korea, were subjected to a detection study using ESR spectroscopy. Correlation coefficients (R{sup 2}) between absorbed doses (2.5-15 kGy) and their corresponding ESR signals were identified from ESR signals. Pre-established threshold values were successfully applied to the detection of 54 coded unknown samples of dried clean vegetables (chunggyungchae, Brassica camestris var. chinensis), both non-irradiated and irradiated. The ESR signals of irradiated chunggyungchae decreased over a longer storage time, however, even after 6 months of ambient storage, these signals were still distinguishable from those of non-irradiated samples. The most successful estimates of absorbed dose (5 and 8 kGy) were obtained immediately after irradiation using a quadratic fit with average values of 4.85 and 8.65 kGy being calculated. (author)

  11. Theoretical estimation of absorbed dose to organs in radioimmunotherapy using radionuclides with multiple unstable daughters

    International Nuclear Information System (INIS)

    Hamacher, K.A.; Sgouros, G.

    2001-01-01

    The toxicity and clinical utility of long-lived alpha emitters such as Ac-225 and Ra-223 will depend upon the fate of alpha-particle emitting unstable intermediates generated after decay of the conjugated parent. For example, decay of Ac-225 to a stable element yields four alpha particles and seven radionuclides. Each of these progeny has its own free-state biodistribution and characteristic half-life. Therefore, their inclusion for a more accurate prediction of absorbed dose and potential toxicity requires a formalism that takes these factors into consideration as well. To facilitate the incorporation of such intermediates into the dose calculation, a previously developed methodology (model 1) has been extended. Two new models (models 2 and 3) for allocation of daughter products are introduced and are compared with the previously developed model. Model 1 restricts the transport to a function that yields either the place of origin or the place(s) of biodistribution depending on the half-life of the parent radionuclide. Model 2 includes the transient time within the bloodstream and model 3 incorporates additional binding at or within the tumor. This means that model 2 also allows for radionuclide decay and further daughter production while moving from one location to the next and that model 3 relaxes the constraint that the residence time within the tumor is solely based on the half-life of the parent. The models are used to estimate normal organ absorbed doses for the following parent radionuclides: Ac-225, Pb-212, At-211, Ra-223, and Bi-213. Model simulations are for a 0.1 g rapidly accessible tumor and a 10 g solid tumor. Additionally, the effects of varying radiolabled carrier molecule purity and amount of carrier molecules, as well as tumor cell antigen saturation are examined. The results indicate that there is a distinct advantage in using parent radionuclides such as Ac-225 or Ra-223, each having a half-life of more than 10 days and yielding four alpha

  12. Evaluation of patient absorbed dose in a PET-CT test

    International Nuclear Information System (INIS)

    Guerra P, F.; Mourao F, A. P.; Santana, P. C.

    2017-10-01

    Images of PET-CT has important diagnostic applications, especially in oncology. This equipment allows overlapping of functional images obtained from the administration of radionuclides and anatomical, generated by X-rays. The PET-CT technique may generate higher doses in patients due to the fact that two diagnostic modalities are used in a single examination. A whole body CT scan is performed and in sequence, a capture of the signal generated by the photons emitted is done. In this study, the absorbed and effective doses generated by the CT scan and incorporated by the administration of the radionuclide were evaluated in 19 organs. To evaluate the CT dose, 32 radiochromic film strips were correctly positioned into the anthropomorphic male phantom. The CT protocol performed was whole-body scanning and a high-resolution lung scan. This protocol is currently used in most services. The calculation of the effective dose from the injected activity in the patient was performed using the ICRP 106 Biokinetic model (ICRP 106, 2008). The activity to be injected may vary according to the patients body mass and with the sensitivity of the detector. The mass of the simulator used is 73.5 kg, then the simulation with and injected activity of 244.76 MBq was used. It was observed that 87.4% of the effective dose in examination PET/CT comes from the CT scans, being 63.8% of the whole body scan and 23.6% of high resolution lung scan. Using activity of 0.09 mCi x kg 18 F-FDG radiopharmaceutical contributes only 12.6% of the final effective dose. As a conclusion, it was observed that the dose in patients submitted to the 18 F-FDG PET-CT examination is high, being of great value efforts for its reduction, such as the use of appropriate image acquisition techniques and promoting the application of the principle of optimization of practice. (Author)

  13. Evaluation of absorbed radiation dose in mammography using Monte Carlo simulation; Avaliacao da dose absorvida em mamografia usando simulacao Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Bruno L.; Tomal, Alessandra [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Instituto de Fisica Gleb Wataghin

    2016-07-01

    Mammography is the main tool for breast cancer diagnosis, and it is based on the use of X-rays to obtain images. However, the glandular tissue present within the breast is highly sensitive to ionizing radiation, and therefore requires strict quality control in order to minimize the absorbed dose. The quantification of the absorbed dose in the breast tissue can be done by using Monte Carlo simulation, which allows a detailed study of the deposition of energy in different regions of the breast. Besides, the results obtained from the simulation can be associated with experimental data and provide values of dose interest, such as the dose deposited in glandular tissue. (author)

  14. Genotoxic effects of high dose rate X-ray and low dose rate gamma radiation in ApcMin/+ mice.

    Science.gov (United States)

    Graupner, Anne; Eide, Dag M; Brede, Dag A; Ellender, Michele; Lindbo Hansen, Elisabeth; Oughton, Deborah H; Bouffler, Simon D; Brunborg, Gunnar; Olsen, Ann Karin

    2017-10-01

    Risk estimates for radiation-induced cancer in humans are based on epidemiological data largely drawn from the Japanese atomic bomb survivor studies, which received an acute high dose rate (HDR) ionising radiation. Limited knowledge exists about the effects of chronic low dose rate (LDR) exposure, particularly with respect to the application of the dose and dose rate effectiveness factor. As part of a study to investigate the development of colon cancer following chronic LDR vs. acute HDR radiation, this study presents the results of genotoxic effects in blood of exposed mice. CBAB6 F1 Apc +/+ (wild type) and Apc Min/+ mice were chronically exposed to estimated whole body absorbed doses of 1.7 or 3.2 Gy 60 Co-γ-rays at a LDR (2.2 mGy h -1 ) or acutely exposed to 2.6 Gy HDR X-rays (1.3 Gy min -1 ). Genotoxic endpoints assessed in blood included chromosomal damage (flow cytometry based micronuclei (MN) assay), mutation analyses (Pig-a gene mutation assay), and levels of DNA lesions (Comet assay, single-strand breaks (ssb), alkali labile sites (als), oxidized DNA bases). Ionising radiation (ca. 3 Gy) induced genotoxic effects dependent on the dose rate. Chromosomal aberrations (MN assay) increased 3- and 10-fold after chronic LDR and acute HDR, respectively. Phenotypic mutation frequencies as well as DNA lesions (ssb/als) were modulated after acute HDR but not after chronic LDR. The Apc Min/+ genotype did not influence the outcome in any of the investigated endpoints. The results herein will add to the scant data available on genotoxic effects following chronic LDR of ionising radiation. Environ. Mol. Mutagen. 58:560-569, 2017. © 2017 The Authors Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society. © 2017 The Authors Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.

  15. Biology of dose rate in brachytherapy

    International Nuclear Information System (INIS)

    Brenner, David J.

    1995-01-01

    Purpose: This course is designed for practitioners and beginners in brachytherapy. The aim is to review biological principles underlying brachytherapy, to understand why current treatment regimes are the way they are, and to discuss what the future may hold in store. Brachytherapy has a long history. It was suggested as long ago as 1903 by Alexander Graham Bell, and the optimal application of this technique has been a subject of debate ever since. 'Brachy' means 'short', and the essential features of conventional brachytherapy are: positioning of the source a short distance from, or in, the tumor, allowing good dose distributions; short overall treatment times, to counter tumor repopulation; low dose rate, enabling a good therapeutic advantage between tumor control and damage to late-responding tissue. The advantages of good dose distributions speak for themselves; in some situations, as we shall see, computer-based dose optimization can be used to improve them still further. The advantages of short overall times stem from the fact that accelerated repopulation of the tumor typically begins a few weeks after the start of a radiation treatment. If all the radiation can be crammed in before that time, the risks of tumor repopulation can be considerably reduced. In fact even external-beam radiotherapy is moving in this direction, with the use of highly accelerated protocols. The advantages of low dose rate stem from the differential response to fractionation of early- and late-responding tissues. Essentially, lowering the dose rate spares late-responding tissue more than it does early-responding tissue such as tumors. We shall also discuss some recent innovations in the context of the general principles that have been outlined. For example, High dose rate brachytherapy, particularly for the uterine cervix: Does it work? If so, when and why? Use of Ir-192 sources, with a half life of 70 days: Should corrections be made for changing biological effectiveness as the dose

  16. Comparison of ESD and major organ absorbed doses of 5 year old standard guidekines and clinical exposure conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kang, A Ram; Ahn, Sung Min [Dept. of Radiological Science, The Graduate School, Gachon University, Incheon (Korea, Republic of); Lee, In Ja [Dept. of Radiologic technology, Dongnam health University, Suwon (Korea, Republic of)

    2017-09-15

    Pediatrics are more sensibility to radiation than adults and because they are organs that are not completely grown, they have a life expectancy that can be adversely affected by exposure. Therefore, the management of exposure dose is more important than the case of adult. The purpose of this study was to determine the suitability of the 10 year old phantom for the 5 year old pediatric's recommendation and the incident surface dose, and to measure the organ absorbed dose. This study is compared the organ absorbed dose and the entrance surface dose in the clinical conditions at 5 and 10 years old pediatric. Clinical 5 year old condition was slightly higher than recommendation condition and 10 year old condition was very high. In addition, recommendation condition ESD was found to be 43% higher than the ESD of the 5 year old group and the ESD of the 10 year old group was 126% higher than that of the 5 year old group. The recommended ESD at 5 years old and the ESD according to clinical imaging conditions were 31.6%. There was no significant difference between the 5 year old recommended exposure conditions and the organ absorbed dose due to clinical exposure conditions, but there was a large difference between the Chest and Pelvic. However, it was found that there was a remarkable difference when comparing the organ absorbed dose by 10 year clinical exposure conditions. Therefore, more detailed standard exposure dose for the recommended dose of pediatric should be studied.

  17. Dose rate on the environment generated by a gamma irradiation plant

    International Nuclear Information System (INIS)

    Mangussi, J.

    2011-01-01

    A model for the absorbed dose rate calculation on the surroundings of a gamma irradiation plant is developed. In such plants, a part of the radiation emitted upwards reach the outdoors. The Compton scatterings on the wall of the exhausting pipes through de plant roof and on the outdoors air are modelled. The absorbed dose rate generated by the scattered radiation reaching the outdoors floor is calculated. The results of the models, to be used for the irradiation plant design and for the environmental studies, are showed on tables and graphics. (author) [es

  18. Control letters and uncertainties of the kerma patterns in air, dose absorbed in water and dose absorbed in air of the LSCD

    International Nuclear Information System (INIS)

    Alvarez R, M.T.; Tovar M, V.M.; Cejudo A, J.

    2005-12-01

    With the purpose of characterizing the component of uncertainty of long term of the patron ionization chambers of the LSCD, for the magnitudes: speed of kerma in air Κ α· , dose speed absorbed in water Dα · , and speed absorbed dose in air Dα · , it use the technique of letters of control l-MR/S. This statistical technique it estimates the component of uncertainty of short term by means of the deviation standard inside groups σ ω and that of long term by means of the standard deviation among groups σ β , being this it finishes an estimator of the stability of the patterns.The letters of control l-MR/S it construct for: i) Κ α· , in radiation field of 60 Co for patterns: primary CC01 series 131, secondary NE 2611 series 176, secondary PTW TN30031 series 578 and Third PTW W30001 series 365. ii) Dα),en radiation field of 60 Co for patterns: primary CC01 series 131, Secondary PTW TN30031 series 578 and tertiary PTW W30001 series 365. iii) I-MR/S with extrapolation chamber PTW primary pattern, measurement realizes in secondary patron fields of 90 Sr- 90 Y. The expanded uncertainty U it is calculated of agreement with the Guide of the ISO/BIPM being observed the following thing: a. In some the cases σ β , is the component of the U that more contributed to this. Therefore, it is necessary to settle down technical of sampling in those mensurations that allow to reduce the value of σ β . For example with sizes of subgroup η ∼ 30 data, or with a number of subgroups κ ≥ . That which is achieved automating the mensuration processes. b.The component of the temperature is also one of those that but they contribute to the U, of there the necessity of: to recover the tracking for this magnitude of it influences and to increase the precision in the determinations of the temperature to diminish their influence in the U. c. The percentage difference of the magnitudes dosemeters carried out by it patterns are consistent with U certain. However, it is necessary

  19. Intercomparison of absorbed dose to water measurements for 60Co gamma rays using Fricke, alanine and radiochromic dye film dosimetry

    International Nuclear Information System (INIS)

    Villarreal-Barajas, J.E.; Gonzalez-Martinez, P.R.; Urena-Nunez, F.; Martinez-Ayala, L.; Tovar-Munoz, V.M.

    2002-01-01

    Measurements of absorbed dose at 5 cm depth in a 30 x 30 x 30 cm 3 water phantom have been performed using three independent dosimetric techniques: Fricke, alanine and radiochromic dye film (GafChromic HD-810). The measurements were carried out in the secondary standard dosimetry laboratory at ININ Mexico using a collimated 60 Co gamma source with a radiation field of 10 x 10 cm 2 at the phantom front surface. The source to phantom distance was set at 100 cm. The reference absorbed dose at 5 cm depth in the water phantom was obtained using a 0.6 cm 3 ionisation chamber. The absorbed dose to water for the test dosimetry techniques was around 100 Gy. The deviations of the dose obtained from these dosimetry techniques were within 4%. The reasons for these deviations are discussed. (author)

  20. Low dose irradiation reduces cancer mortality rates

    International Nuclear Information System (INIS)

    Luckey, T.D.

    2000-01-01

    Low doses of ionizing radiation stimulate development, growth, memory, sensual acuity, fecundity, and immunity (Luckey, T.D., ''Radiation Hormesis'', CRC Press, 1991). Increased immune competence reduces cancer mortality rates and provides increased average lifespan in animals. Decreased cancer mortality rates in atom bomb victims who received low dose irradiation makes it desirable to examine populations exposed to low dose irradiation. Studies with over 300,000 workers and 7 million person-years provide a valid comparison of radiation exposed and control unclear workers (Luckey, T.D., Nurture with Ionizing Radiation, Nutrition and Cancer, 34:1-11, 1999). Careful selection of controls eliminated any ''healthy worker effect''. The person-year corrected average indicated the cancer mortality rate of exposed workers was only 51% that of control workers. Lung cancer mortality rates showed a highly significant negative correlation with radon concentrations in 272,000 U.S. homes (Cohen, B.L., Health Physics 68:157-174, 1995). In contrast, radon concentrations showed no effect on lung cancer rates in miners from different countries (Lubin, J.H. Am. J. Epidemiology 140:323-332, 1994). This provides evidence that excessive lung cancer in miners is caused by particulates (the major factor) or toxic gases. The relative risk for cancer mortality was 3.7% in 10,000 Taiwanese exposed to low level of radiation from 60 Co in their steel supported homes (Luan, Y.C. et al., Am. Nuclear Soc. Trans. Boston, 1999). This remarkable finding needs further study. A major mechanism for reduced cancer mortality rates is increased immune competence; this includes both cell and humoral components. Low dose irradiation increases circulating lymphocytes. Macrophage and ''natural killer'' cells can destroy altered (cancer) cells before the mass becomes too large. Low dose irradiation also kills suppressor T-cells; this allows helper T-cells to activate killer cells and antibody producing cells

  1. Determination of Radiation Absorbed Dose to Primary Liver Tumors and Normal Liver Tissue Using Post Radioembolization 90Y PET

    Directory of Open Access Journals (Sweden)

    Shyam Mohan Srinivas

    2014-10-01

    Full Text Available Background: Radioembolization with Yttrium-90 (90Y microspheres is becoming a more widely used transcatheter treatment for unresectable hepatocellular carcinoma (HCC. Using post-treatment 90Y PET/CT scans,the distribution of microspheres within the liver can be determined and quantitatively assessesed . We studied the radiation dose of 90Y delivered to liver and treated tumors.Methods: This retrospective study of 56 patients with HCC, including analysis of 98 liver tumors, measured and correlated the dose of radiation delivered to liver tumors and normal liver tissue using glass microspheres (TheraSpheres® to the frequency of complications with mRECIST. 90Y PET/CT and triphasic liver CT scans were used to contour treated tumor and normal liver regions and determine their respective activity concentrations. An absorbed dose factor was used to convert the measured activity concentration (Bq/mL to an absorbed dose (Gy.Results: The 98 studied tumors received a mean dose of 169 Gy (mode 90-120 Gy;range 0-570 Gy. Tumor response by mRECIST criteria was performed for 48 tumors that had follow up scans. There were 21 responders (mean dose 215 Gy and 27 nonresponders (mean dose 167 Gy. The association between mean tumor absorbed dose and response suggests a trend but did not reach statistical significance (p=0.099. Normal liver tissue received a mean dose of 67 Gy (mode 60-70 Gy; range 10-120 Gy. There was a statistically significant association between absorbed dose to normal liver and the presence of two or more severe complications (p=0.036.Conclusion: Our cohort of patients showed a possible dose response trend for the tumors. Collateral dose to normal liver is nontrivial and can have clinical implications. These methods help us understand whether patient adverse events, treatment success, or treatment failure can be attributed to the dose which the tumor or normal liver received.

  2. Measurements of spatial distribution of absorbed dose in proton therapy with Gafchromic EBT3

    Energy Technology Data Exchange (ETDEWEB)

    Gambarini, G.; Regazzoni, V.; Grisotto, S.; Artuso, E.; Giove, D. [Universita degli Studi di Milano, Department of Physics, via Celoria 16, 20133 Milano (Italy); Borroni, M.; Carrara, M.; Pignoli, E. [Fondazione IRCCS, Istituto Nazionale dei Tumori di Milano, Medical Physics Unit, via Giacomo Venezian 16, 20133 Milano (Italy); Mirandola, A.; Ciocca, M., E-mail: grazia.gambarini@mi.infn.it [Centro Nazionale Adroterapia Oncologica, Medical Physics Unit, Strada Campeggi 53, 27100 Pavia (Italy)

    2014-08-15

    A study of the response of EBT3 films has been carried out. Light transmittance images (around 630 nm) were acquired by means of a Ccd camera. The difference of optical density was assumed as dosimeter response. Calibration was performed by means of {sup 60}Co photons, at a radiotherapy facility. A study of the response variation during the time after exposure has been carried out. EBT3 films were exposed, in a solid-water phantom, to proton beams of various energies and the obtained depth-dose profiles were compared with those measured with a ionization chamber. As expected, in the Bragg peak region the values obtained with EBT3 films were lower than those obtained with the ionization chamber. The ratio of such values was evaluated, along dose profiles, for each utilized energy. A method for correcting the data measured with EBT3 has been proposed and tested. The results confirm that the method can be advantageously applied for obtaining spatial distribution of the absorbed dose in proton therapy. (author)

  3. Verification of absorbed dose calculation with XIO Radiotherapy Treatment Planning System

    International Nuclear Information System (INIS)

    Bokulic, T.; Budanec, M.; Frobe, A.; Gregov, M.; Kusic, Z.; Mlinaric, M.; Mrcela, I.

    2013-01-01

    Modern radiotherapy relies on computerized treatment planning systems (TPS) for absorbed dose calculation. Most TPS require a detailed model of a given machine and therapy beams. International Atomic Energy Agency (IAEA) recommends acceptance testing for the TPS (IAEA-TECDOC-1540). In this study we present customization of those tests for measurements with the purpose of verification of beam models intended for clinical use in our department. Elekta Synergy S linear accelerator installation and data acquisition for Elekta CMS XiO 4.62 TPS was finished in 2011. After the completion of beam modelling in TPS, tests were conducted in accordance with the IAEA protocol for TPS dose calculation verification. The deviations between the measured and calculated dose were recorded for 854 points and 11 groups of tests in a homogenous phantom. Most of the deviations were within tolerance. Similar to previously published results, results for irregular L shaped field and asymmetric wedged fields were out of tolerance for certain groups of points.(author)

  4. Physics and quality assurance for brachytherapy - Part II: Low dose rate and pulsed dose rate

    International Nuclear Information System (INIS)

    Williamson, Jeffrey F.

    1996-01-01

    Purpose: A number of recent developments have revitalized brachytherapy including remote afterloading, implant optimization, increasing use of 3D imaging, and advances in dose specification and basic dosimetry. However, the core physical principles underlying the classical methods of dose calculation and arrangement of multiple sources remain unchanged. The purpose of this course is to review these principles and their applications to low dose-rate interstitial and intracavitary brachytherapy. Emphasis will be placed upon the classical implant systems along with classical and modern methods of dose specification. The level of presentation is designed for radiation oncology residents and beginning clinical physicists. A. Basic Principles (1) Radium-substitute vs. low-energy sealed sources (2) Dose calculation principles (3) The mysteries of source strength specification revealed: mgRaEq, mCi and air-kerma strength B. Interstitial Brachytherapy (1) Target volume, implanted volume, dose specification in implants and implant optimization criteria (2) Classical implant systems: Manchester Quimby and Paris a) Application of the Manchester system to modern brachytherapy b) Comparison of classical systems (3) Permanent interstitial implants a) Photon energy and half life b) Dose specification and pre-operative planning (4) The alphabet soup of dose specification: MCD (mean central dose), minimum dose, MPD (matched peripheral dose), MPD' (minimum peripheral dose) and DVH (dose-volume histogram) quality indices C. Intracavitary Brachytherapy for Carcinoma of the Cervix (1) Basic principles a) Manchester System: historical foundation of U.S. practice patterns b) Principles of applicator design (2) Dose specification and treatment prescription a) mg-hrs, reference points, ICRU Report 38 reference volume --Point A dose vs mg-hrs and IRAK (Integrated Reference Air Kerma) --Tissue volume treated vs mg-hrs and IRAK b) Practical methods of treatment specification and prescription

  5. Physics and quality assurance for brachytherapy - Part II: Low dose rate and pulsed dose rate

    International Nuclear Information System (INIS)

    Williamson, Jeffrey F.

    1997-01-01

    Purpose: A number of recent developments have revitalized brachytherapy including remote afterloading, implant optimization, increasing use of 3D imaging, and advances in dose specification and basic dosimetry. However, the core physical principles underlying the classical methods of dose calculation and arrangement of multiple sources remain unchanged. The purpose of this course is to review these principles and their applications to low dose-rate interstitial and intracavitary brachytherapy. Emphasis will be placed upon the classical implant systems along with classical and modern methods of dose specification. The level of presentation is designed for radiation oncology residents and beginning clinical physicists. A. Basic Principles (1) Radium-substitute vs. low-energy sealed sources (2) Dose calculation principles (3) The mysteries of source strength specification revealed: mgRaEq, mCi and air-kerma strength B. Interstitial Brachytherapy (1) Target volume, implanted volume, dose specification in implants and implant optimization criteria (2) Classical implant systems: Manchester Quimby and Paris a) Application of the Manchester system to modern brachytherapy b) Comparison of classical systems (3) Permanent interstitial implants a) Photon energy and half life b) Dose specification and pre-operative planning (4) The alphabet soup of dose specification: MCD (mean central dose), minimum dose, MPD (matched peripheral dose), MPD' (minimum peripheral dose) and DVH (dose-volume histogram) quality indices C. Intracavitary Brachytherapy for Carcinoma of the Cervix (1) Basic principles a) Manchester System: historical foundation of U.S. practice patterns b) Principles of applicator design (2) Dose specification and treatment prescription a) mg-hrs, reference points, ICRU Report 38 reference volume -- Point A dose vs mg-hrs and IRAK (Integrated Reference Air Kerma) -- Tissue volume treated vs mg-hrs and IRAK b) Practical methods of treatment specification and prescription

  6. Environmental and biological monitoring in the estimation of absorbed doses of pesticides.

    Science.gov (United States)

    Aprea, Maria Cristina

    2012-04-25

    Exposure to pesticides affects most of the population, not only persons occupationally exposed. In a context of high variability of exposure, biological monitoring is important because of the various routes by which exposure can occur and because it assesses both occupational and non-occupational exposure. The main aim of this paper was to critically compare estimates of absorbed dose measured by environmental and biological monitoring in situations in which they could both be applied. The combination of exposure measurements and biological monitoring was found to provide extremely important information on the behaviour of employees, and on the proper use and effectiveness of personal protection equipment. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  7. Radioactive caesium in a boreal forest ecosystem and internally absorbed dose to man

    International Nuclear Information System (INIS)

    Bergman, R.; Johansson, L.

    1989-01-01

    Different aspects dealing with water-soil, soil-plant and plant-herbivore interactions are studied. The study area is located to the Forest Research Station at Svartberget 50 km west of Umea in Vaesterbotten. An important topic in this study concerns the transport of caesium in food chains to man. Consumption of forest products by man i.e. game (primarily moose) and berries constitutes the major pathway of radioactive caesium to man. Moose meat contributes to about 30% of the total meat consumption in Vaesterbotten and the average over the Swedish population has remained at the level of 5-10% during the present decade. In order to assess the absorbed dose resulting from intake via these food products over a long period of time, knowledge about the long term behaviour of caesium in the biotic community is studied. (orig./HP)

  8. Influence of exposure and geometric parameters on absorbed doses associated with common neuro-interventional procedures.

    Science.gov (United States)

    Safari, Mohammad Javad; Wong, Jeannie Hsiu Ding; Jong, Wei Loong; Thorpe, Nathan; Cutajar, Dean; Rosenfeld, Anatoly; Ng, Kwan Hoong

    2017-03-01

    The purpose of this study was to investigate the effects of routine exposure parameters on patient's dose during neuro-interventional radiology procedures. We scrutinized the routine radiological exposure parameters during 58 clinical neuro-interventional procedures such as, exposure direction, magnification, frame rate, and distance between image receptor to patient's body and evaluate their effects on patient's dose using an anthropomorphic phantom. Radiation dose received by the occipital region, ears and eyes of the phantom were measured using MOSkin detectors. DSA imaging technique is a major contributor to patient's dose (80.9%) even though they are used sparingly (5.3% of total frame number). The occipital region of the brain received high dose largely from the frontal tube constantly placed under couch (73.7% of the total KAP). When rotating the frontal tube away from under the couch, the radiation dose to the occipital reduced by 40%. The use of magnification modes could increase radiation dose by 94%. Changing the image receptor to the phantom surface distance from 10 to 40cm doubled the radiation dose received by the patient's skin at the occipital region. Our findings provided important insights into the contribution of selected fluoroscopic exposure parameters and their impact on patient's dose during neuro-interventional radiology procedures. This study showed that the DSA imaging technique contributed to the highest patient's dose and judicial use of exposure parameters might assist interventional radiologists in effective skin and eye lens dose reduction for patients undergoing neuro-interventional procedures. Copyright © 2017 Associazione Italiana di Fisica Medica. All rights reserved.

  9. Evaluation of absorbed dose-distribution in the X-ray or gamma-irradiator for blood products

    International Nuclear Information System (INIS)

    Moriyama, Satoshi; Kurihara, Katsuhiko; Yokokawa, Nobuhiko; Satake, Masahiro; Juji, Takeo

    2001-01-01

    Irradiation of blood products abrogates the proliferation of lymphocytes present in cellular component, which is currently the only accepted methodology to prevent transfusion-associated graft versus host disease (TA-GVHD). A range of irradiation dose levels between 15 Gy and 50 Gy is being used, but the majority of facilities are employing 15 Gy. It should, however, be recognized that the delivered dose in the instrument canister might differ from the actual dose absorbed by the blood bag. This study have evaluated the actual dose distribution under practical conditions where a container was loaded with blood products or water bags, or filled with distilled water. This approach provides data that the maximum attenuation occurred when the container was completely filled with a blood-compatible material. Thus, an error of approximately 20 percent should be considered in the dose measured in the in-air condition. A dose calibration in an in-air condition may lead to substantial underexposure of the blood products. A dose distribution study using adequately prearranged exposure period verified that the absorbed dose of 15 Gy was attained at any point in the container for both linear accelerator and gamma-irradiator. The maximal difference in the absorbed dose between measured points was 1.5- and 1.6-fold for linear accelerator and gamma-irradiator, respectively. In conclusion, using blood-compatible materials, a careful dose calibration study should be employed in which the absorbed dose of 15 Gy is obtained at the point where the lowest dose could be expected. (author)

  10. RESPONSE FUNCTIONS FOR COMPUTING ABSORBED DOSE TO SKELETAL TISSUES FROM NEUTRON IRRADIATION

    Science.gov (United States)

    Bahadori, Amir A.; Johnson, Perry; Jokisch, Derek W.; Eckerman, Keith F.; Bolch, Wesley E.

    2016-01-01

    Spongiosa in the adult human skeleton consists of three tissues - active marrow (AM), inactive marrow (IM), and trabecularized mineral bone (TB). Active marrow is considered to be the target tissue for assessment of both long-term leukemia risk and acute marrow toxicity following radiation exposure. The total shallow marrow (TM50), defined as all tissues laying within the first 50 μm the bone surfaces, is considered to be the radiation target tissue of relevance for radiogenic bone cancer induction. For irradiation by sources external to the body, kerma to homogeneous spongiosa has been used as a surrogate for absorbed dose to both of these tissues, as direct dose calculations are not possible using computational phantoms with homogenized spongiosa. Recent microCT imaging of a 40-year-old male cadaver has allowed for the accurate modeling of the fine microscopic structure of spongiosa in many regions of the adult skeleton [Hough et al PMB (2011)]. This microstructure, along with associated masses and tissue compositions, was used to compute specific absorbed fractions (SAF) values for protons originating in axial and appendicular bone sites [Jokisch et al PMB (submitted)]. These proton SAFs, bone masses, tissue compositions, and proton production cross-sections, were subsequently used to construct neutron dose response functions (DRFs) for both AM and TM50 targets in each bone of the reference adult male. Kerma conditions were assumed for other resultant charged particles. For comparison, active marrow, total shallow marrow, and spongiosa kerma coefficients were also calculated. At low incident neutron energies, AM kerma coefficients for neutrons correlate well with values of the AM DRF, while total marrow (TM) kerma coefficients correlate well with values of the TM50 DRF. At high incident neutron energies, all kerma coefficients and DRFs tend to converge as charged particle equilibrium (CPE) is established across the bone site. In the range of 10 eV to 100 Me

  11. Effect of pyrophyllite filler treatment toward water absorbance rate of SAPC and its application test

    International Nuclear Information System (INIS)

    Jadigia Ginting

    2015-01-01

    An optimization treatment to pyrophyllite filler has been done to synthesis super absorbent polymers composite (SAPC) with copolymerization of acrylic. Pyrophyllite is one of a silicate mineral with chemical formula Al 2 Si 4 O 10 (OH) 2 having a reactive functional group -OH that easily making a bonding and therefore it is suitable for water absorbance materials. The pyrophyllite were studied as its weight composition and its powder-size in the SAPC preparation. To obtain the fine-size, the filler pyrophyllite were milled with high energy mechanical milling (HEMM) into divers hours of milling. The syntheses were carried out by using the settle method from Chemicals Engineering group of ITB Bandung. The samples of SAPC-prflt were then characterized with fourier-transform infra red spectroscopy (FTIR), Xray diffraction (XRD) and scanning electron microscopy(SEM). Effect of filler treatment toward water absorbance rate is the SAPC-prflt with 0.5 gr filler having the highest gradient absorbance 1,610; SAPC prflt which milled for 9 hours has gradient absorbance 1,526; SAPC-prflt after hot water test at 40°C has gradient absorbence 2,241 and SAPC-prflt as pampers test has the gradient absorbance 1,607. XRD data analysis showed a broad peak 2 θ at scale 5 w which correspond to the micrographs picture of the sample which has 0.5 gr filler pyrophyllite and sample after milled for 9 hours, that proposed increase the sample strength and stability which induce the increasing of its water absorbance.

  12. A Monte Carlo program converting activity distribution to absorbed dose distributions in a radionuclide treatment planning system

    International Nuclear Information System (INIS)

    Tagesson, M.; Ljungberg, M.; Strand, S.E.

    1996-01-01

    In systemic radiation therapy, the absorbed dose distribution must be calculated from the individual activity distribution. A computer code has been developed for the conversion of an arbitrary activity distribution to a 3-D absorbed dose distribution. The activity distribution can be described either analytically or as a voxel based distribution, which comes from a SPECT acquisition. Decay points are sampled according to the activity map, and particles (photons and electrons) from the decay are followed through the tissue until they either escape the patient or drop below a cut off energy. To verify the calculated results, the mathematically defined MIRD phantom and unity density spheres have been included in the code. Also other published dosimetry data were used for verification. Absorbed fraction and S-values were calculated. A comparison with simulated data from the code with MIRD data shows good agreement. The S values are within 10-20% of published MIRD S values for most organs. Absorbed fractions for photons and electrons in spheres (masses between 1 g and 200 kg) are within 10-15% of those published. Radial absorbed dose distributions in a necrotic tumor show good agreement with published data. The application of the code in a radionuclide therapy dose planning system, based on quantitative SPECT, is discussed. (orig.)

  13. Absorbed doses profiles vs Synovia tissue depth for the Y-90 and P-32 used in radiosynoviortesis treatment

    International Nuclear Information System (INIS)

    Torres B, M.B.; Ayra P, F.E.; Garcia R, E.; Cornejo D, N.; Yoriyaz, H.

    2006-01-01

    The radiosynoviortesis treatment has been used during more of 40 years as an alternative to the chemical and surgical synovectomy to alleviate the pain and to reduce the inflammation in suffered patients of rheumatic arthropathies, haemophilic arthropathies and other articulation disorders. It consists on the injection of radioactive isotopes inside a synovial cavity. For to evaluate the dosimetry of the radiosynoviortesis treatment is of great interest to know the absorbed dose in the volume of the target (synovia). The precise calculation of the absorbed dose in the inflamed synovia it is difficult, for numerous reasons, since the same one will depend on the thickness of the synovial membrane, the size of the articular space, the structure of the synovial membrane, the distribution in the articulation, the nature of the articular liquid, etc. Also the presence of the bone and the articular cartilage, components also of the articulation, it even complicated more the calculations. The method used to evaluate the dosimetry in radioactive synovectomy is known as the Monte Carlo method. The objective of our work consists on estimating with the Monte Carlo code MCNP4B the absorbed dose of the Y-90 and the P-32 in the depth of the synovial tissue. The results are presented as absorbed dose for injected millicurie (Gy/mCi) versus depth of synovial tissue. The simulation one carries out keeping in mind several synovia areas, of 50 cm 2 to 250 cm 2 keeping in mind three states of progression of the illness. Those obtained values of absorbed dose using the MCNP4B code will allow to introduce in our country an optimized method of dose prescription to the patient, to treat the rheumatic arthritis in medium and big articulations using the Y-90 and the P-32, eliminating the fixed doses and fixed radionuclides for each articulation like it happens in many clinics of Europe, as well as the empiric doses. (Author)

  14. Monte Carlo analysis of pion contribution to absorbed dose from Galactic cosmic rays

    International Nuclear Information System (INIS)

    Aghara, S.K.; Blattnig, S.R.; Norbury, J.W.; Singleterry, R.C.

    2009-01-01

    Accurate knowledge of the physics of interaction, particle production and transport is necessary to estimate the radiation damage to equipment used on spacecraft and the biological effects of space radiation. For long duration astronaut missions, both on the International Space Station and the planned manned missions to Moon and Mars, the shielding strategy must include a comprehensive knowledge of the secondary radiation environment. The distribution of absorbed dose and dose equivalent is a function of the type, energy and population of these secondary products. Galactic cosmic rays (GCR) comprised of protons and heavier nuclei have energies from a few MeV per nucleon to the ZeV region, with the spectra reaching flux maxima in the hundreds of MeV range. Therefore, the MeV-GeV region is most important for space radiation. Coincidentally, the pion production energy threshold is about 280 MeV. The question naturally arises as to how important these particles are with respect to space radiation problems. The space radiation transport code, HZETRN (High charge (Z) and Energy TRaNsport), currently used by NASA, performs neutron, proton and heavy ion transport explicitly, but it does not take into account the production and transport of mesons, photons and leptons. In this paper, we present results from the Monte Carlo code MCNPX (Monte Carlo N-Particle eXtended), showing the effect of leptons and mesons when they are produced and transported in a GCR environment.

  15. Monte Carlo analysis of pion contribution to absorbed dose from Galactic cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Aghara, S.K. [Prairie View A and M University, Chemical Engineering (Nuclear Program), P.O. Box 519, MS 2505, Prairie View, TX 77446 (United States)], E-mail: Sukesh.K.Aghara@nasa.gov; Blattnig, S.R.; Norbury, J.W.; Singleterry, R.C. [NASA Langley Research Center, Hampton, VA 23681 (United States)

    2009-04-15

    Accurate knowledge of the physics of interaction, particle production and transport is necessary to estimate the radiation damage to equipment used on spacecraft and the biological effects of space radiation. For long duration astronaut missions, both on the International Space Station and the planned manned missions to Moon and Mars, the shielding strategy must include a comprehensive knowledge of the secondary radiation environment. The distribution of absorbed dose and dose equivalent is a function of the type, energy and population of these secondary products. Galactic cosmic rays (GCR) comprised of protons and heavier nuclei have energies from a few MeV per nucleon to the ZeV region, with the spectra reaching flux maxima in the hundreds of MeV range. Therefore, the MeV-GeV region is most important for space radiation. Coincidentally, the pion production energy threshold is about 280 MeV. The question naturally arises as to how important these particles are with respect to space radiation problems. The space radiation transport code, HZETRN (High charge (Z) and Energy TRaNsport), currently used by NASA, performs neutron, proton and heavy ion transport explicitly, but it does not take into account the production and transport of mesons, photons and leptons. In this paper, we present results from the Monte Carlo code MCNPX (Monte Carlo N-Particle eXtended), showing the effect of leptons and mesons when they are produced and transported in a GCR environment.

  16. MO-AB-BRA-03: Calorimetry-Based Absorbed Dose to Water Measurements Using Interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Flores-Martinez, E; Malin, M; DeWerd, L [University of WI-Madison/ADCL, Madison, WI (United States)

    2015-06-15

    Purpose: Interferometry-based calorimetry is a novel technique to measure radiation-induced temperature changes allowing the measurement of absorbed dose to water (ADW). There are no mechanical components in the field. This technique also has the possibility of obtaining 2D dose distributions. The goal of this investigation is to calorimetrically-measure doses between 2.5 and 5 Gy over a single projection in a photon beam using interferometry and compare the results with doses calculated using the TG-51 linac calibration. Methods: ADW was determined by measuring radiation-induced phase shifts (PSs) of light passing through water irradiated with a 6 MV photon beam. A 9×9×9 cm{sup 3} glass phantom filled with water and placed in an arm of a Michelson interferometer was irradiated with 300, 400, 500 and 600 monitor units. The whole system was thermally insulated to achieve sufficient passive temperature control. The depth of measurement was 4.5 cm with a field size of 7×7 cm{sup 2}. The intensity of the fringe pattern was monitored with a photodiode and used to calculate the time-dependent PS curve. Data was acquired 60 s before and after the irradiation. The radiation-induced PS was calculated by taking the difference in the pre- and post-irradiation drifts extrapolated to the midpoint of the irradiation. Results were compared to computed doses. Results: Average comparison of calculated ADW values with interferometry-measured values showed an agreement to within 9.5%. k=1 uncertainties were 4.3% for calculations and 14.7% for measurements. The dominant source of uncertainty for the measurements was a temperature drift of about 30 µK/s caused by heat conduction from the interferometer’s surroundings. Conclusion: This work presented the first absolute ADW measurements using interferometry in the dose range of linac-based radiotherapy. Future work to improve measurements’ reproducibility includes the implementation of active thermal control techniques.

  17. Automatic dose-rate controlling equipment

    International Nuclear Information System (INIS)

    Szasz, T.; Nagy Czirok, Cs.; Batki, L.; Antal, S.

    1977-01-01

    The patent of a dose-rate controlling equipment that can be attached to X-ray image-amplifiers is presented. In the new equipment the current of the photocatode of the image-amplifier is led into the regulating unit, which controls the X-ray generator automatically. The advantages of the equipment are the following: it can be simply attached to any type of X-ray image-amplifier, it accomplishes fast and sensitive regulation, it makes possible the control of both the mA and the kV values, it is attached to the most reliable point of the image-transmission chain. (L.E.)

  18. Dose rate correction in medium dose rate brachytherapy for carcinoma cervix

    International Nuclear Information System (INIS)

    Patel, F.D.; Negi, P.S.; Sharma, S.C.; Kapoor, R.; Singh, D.P.; Ghoshal, S.

    1998-01-01

    Purpose: To establish the magnitude of brachytherapy dose reduction required for stage IIB and III carcinoma cervix patients treated by external radiation and medium dose rate (MDR) brachytherapy at a dose rate of 220±10 cGy/h at point A.Materials and methods: In study-I, at the time of MDR brachytherapy application at a dose rate of 220±10 cGy/h at point A, patients received either 3060 cGy, a 12.5% dose reduction (MDR-12.5), or 2450 cGy, a 30% dose reduction (MDR-30), to point A and they were compared to a group of previously treated LDR patients who received 3500 cGy to point A at a dose rate of 55-65 cGy/h. Study-II was a prospective randomized trial and patients received either 2450 cGy, a 30% dose reduction (MDR-II (30)) or 2800 cGy, a 20% dose reduction (MDR-II (20)), at point A. Patients were evaluated for local control of disease and morbidity. Results: In study-I the 5-year actuarial local control rate in the MDR-30 and MDR-12.5 groups was 71.7±10% and 70.5±10%, respectively, compared to 63.4±10% in the LDR group. However, the actuarial morbidity (all grades) in the MDR-12.5 group was 58.5±14% as against 34.9±9% in the LDR group (P 3 developed complication as against 62.5% of those receiving a rectal BED of (140 3 (χ 2 =46.43; P<0.001). Conclusion: We suggest that at a dose rate of 220±10 cGy/h at point A the brachytherapy dose reduction factor should be around 30%, as suggested by radiobiological data, to keep the morbidity as low as possible without compromising the local control rates. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  19. Uncertainty analysis in the determination of absorbed dose in water by Fricke chemical dosimetry; Analise das incertezas na determinacao da dose absorvida na agua por dosimetria quimica Fricke

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcelos, Fabia; Aguirre, Eder Aguirre, E-mail: fabiavasco@hotmail.com, E-mail: ederuni01@gmail.com [Fundacao do Cancer, Rio de Janeiro, RJ (Brazil); Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil)

    2016-07-01

    This work studies the calculations of uncertainties and the level of confidence that involves the process for obtaining the dose absorbed in water using the method of Fricke dosimetry, developed at Laboratorio de Ciencias Radiologicas (LCR). Measurements of absorbance of samples Fricke, irradiated and non-irradiated is going to use in order to calculate the respective sensitivity coefficients, along with the expressions of the calculation of Fricke dose and the absorbed dose in water. Those expressions are used for calculating the others sensitivity coefficients from the input variable. It is going to use the combined uncertainty and the expanded uncertainty, with a level of confidence of 95.45%, in order to report the uncertainties of the measurement. (author)

  20. A graphite calorimeter for absolute measurements of absorbed dose to water: application in medium-energy x-ray filtered beams.

    Science.gov (United States)

    Pinto, M; Pimpinella, M; Quini, M; D'Arienzo, M; Astefanoaei, I; Loreti, S; Guerra, A S

    2016-02-21

    The Italian National Institute of Ionizing Radiation Metrology (ENEA-INMRI) has designed and built a graphite calorimeter that, in a water phantom, has allowed the determination of the absorbed dose to water in medium-energy x-rays with generating voltages from 180 to 250 kV. The new standard is a miniaturized three-bodies calorimeter, with a disc-shaped core of 21 mm diameter and 2 mm thickness weighing 1.134 g, sealed in a PMMA waterproof envelope with air-evacuated gaps. The measured absorbed dose to graphite is converted into absorbed dose to water by means of an energy-dependent conversion factor obtained from Monte Carlo simulations. Heat-transfer correction factors were determined by FEM calculations. At a source-to-detector distance of 100 cm, a depth in water of 2 g cm(-2), and at a dose rate of about 0.15 Gy min(-1), results of calorimetric measurements of absorbed dose to water, D(w), were compared to experimental determinations, D wK, obtained via an ionization chamber calibrated in terms of air kerma, according to established dosimetry protocols. The combined standard uncertainty of D(w) and D(wK) were estimated as 1.9% and 1.7%, respectively. The two absorbed dose to water determinations were in agreement within 1%, well below the stated measurement uncertainties. Advancements are in progress to extend the measurement capability of the new in-water-phantom graphite calorimeter to other filtered medium-energy x-ray qualities and to reduce the D(w) uncertainty to around 1%. The new calorimeter represents the first implementation of in-water-phantom graphite calorimetry in the kilovoltage range and, allowing independent determinations of D(w), it will contribute to establish a robust system of absorbed dose to water primary standards for medium-energy x-ray beams.

  1. RBE/absorbed dose relationship of d(50)-Be neutrons determined for early intestinal tolerance in mice

    International Nuclear Information System (INIS)

    Gueulette, J.; Wambersie, A.

    1978-01-01

    RBE/absorbed dose relationship of d(50)-Be neutrons (ref.: 60 Co) was determined using intestinal tolerance in mice (LD50) after single and fractionated irradiation. RBE is 1.8 for a single fraction (about 1000 rad 60 Co dose); it increases when decreasing dose and reaches the plateau value of 2.8 for a 60 Co dose of about 200 rad. This RBE value is used for the clinical applications with the cyclotron 'Cyclone' at Louvain-la-Neuve [fr

  2. Study of the influence of gold particles on the absorbed dose in soft tissue using polymer gel dosimetry

    International Nuclear Information System (INIS)

    Afonso, Luciana Caminha

    2011-01-01

    The presence of high-Z material adjacent to soft tissue, when submitted to irradiation, enhances locally the absorbed dose in these soft tissues. Such effect occurs due to the outscattering of photoelectrons from the high-Z material. Polymer gel dosimeters have been used to investigate this effect. Analytic calculations to estimate the dose enhancement and Monte Carlo simulations have been performed. Samples containing polymer gel (PG) with 0.005 gAu/gPG and pure polymer gel have been irradiated using an X-rays beam produced by 150 kV, filtered with 4 mm Al and 5 mm Cu, which resulted in an approximately 20% higher absorbed dose in the samples with gold in comparison to those with pure polymer gel. The analytic calculations and the Monte Carlo simulation resulted in a dose enhancement factor of approximately 30%. (author)

  3. Effect of absorbed dose and storage length on electron paramagnetic resonance (EPR) signal strength in irradiated alfalfa seeds

    International Nuclear Information System (INIS)

    Li Naining

    2006-01-01

    A kind of alfalfa seeds was irradiated by 1, 2, 3, 4 and 5 kGy at a dose rate of 6.288 kGy·h -1 in a self-shielded irradiator of 137 Cs gamma rays. The EPR spectra, which were measured subsequently between 0.3401 and 0.3501 T, showed that there was a direct proportional relationship between the EPR signal strength of free radicals produced by gamma irradiation in the alfalfa seeds and absorbed dose. The first derivative EPR spectra of the alfalfa seeds were very clear and easy to identify. However, the EPR signal strength of the peak-to-peak amplitude decreased rapidly and most of them decayed beyond 50% within 3 days after the seeds were irradiated. It tended to stabilize after half a month since the seeds were irradiated. the differences of the EPR signal strength between the irradiated and unirradiated alfalfa seeds still remained. All seeds were stored at ambient temperature for more than 3 months. Therefore, using EPR spectrometry technique to measure free radicals in alfalfa seeds as a means to determine whether the seeds have been irradiated or not is feasible, relatively fast and simple. (authors)

  4. Dose absorbed in x-rays toraxicas executed in hospitals of the city of Sao Paulo Brazil

    International Nuclear Information System (INIS)

    Freitas, M.B.; Yoshimura, E.M.

    1998-01-01

    With the objective of evaluating the contribution of radiography exams in the dose received by the population of the city of Sao Paulo (Brazil), we made mensurations of the doses absorbed in toraxicas x-rays (projections PA and LAT) taken in several teams of rays X used in hospitals. The work is supplemented with demography data and the knowledge of the quantity of exams executed in each team

  5. The provision of national standards of absorbed dose for radiation processing. The role of NPL in the United Kingdom

    International Nuclear Information System (INIS)

    Ellis, S.C.

    1981-01-01

    The system of national and international standardization is examined, particularly with respect to the problems of standardizing high absorbed dose measurements required in processing with photons from cobalt-60 and electrons. The need for development of primary standards specifically dedicated to this application versus the possibility of extrapolation from standards in use at lower dose levels is considered together with means for dissemination and intercomparison. The present status of standards at NPL and the future programme are outlined. (author)

  6. Radiation-absorbed doses and energy imparted from panoramic tomography, cephalometric radiography, and occlusal film radiography in children

    International Nuclear Information System (INIS)

    Bankvall, G.; Hakansson, H.A.

    1982-01-01

    The absorbed doses and energy imparted from radiographic examinations of children, using panoramic tomography (PTG), cephalometric radiography (CPR), and maxillary frontal occlusal overview (FOO), were examined. The absorbed dose at various sites of the head were measured with TL dosimeters in a phantom and in patients. The energy imparted was calculated from measurements of areal exposure using a planparallel ionization chamber. The maximum absorbed doses for panoramic tomography were located around the lateral rotation center, for cephalometric radiography in the left (tube side) parotid region, and for frontal occlusal radiography in the nose. The absorbed doses in the eyes, thyroid gland, and skin are discussed and compared with previous reports and, for the most part, are found to be in agreement. The mean energy imparted from all three examination methods is 5 mJ with about 57 percent from panoramic, 33 percent from cephalometric, and 10 percent from frontal occlusal examinations. The energy imparted from cephalometric radiography can be reduced to about 10 percent with the use of an improved examination technique, leaving panoramic tomography responsible for contributing about 80 percent of the total energy imparted

  7. Cartography of absorbed doses by dosimetric textile. Testing in (n,γ) or β,γ) mixed field

    International Nuclear Information System (INIS)

    Benabdesselam, M.; Lacconi, P.; Lapraz, D.; Serbat, A.; Dhermain, J.

    1998-01-01

    When an accident due to ionising radiations occurs, it is very important to be able to map the surface cartography and to have an estimation of the dose absorbed by the irradiated persons. Since the importance of these informations, a cotton textile coated with a dosimetric alumina has been settled and studied by thermoluminescence. (author)

  8. Perspectives in absorbed dose metrology with regard to the technical evolutions of external beam radiotherapy

    International Nuclear Information System (INIS)

    Chauvenet, B.; Bordy, J.M.; Barthe, J.

    2009-01-01

    This paper presents several R and D axes in absorbed close metrology to meet the needs resulting from the technical evolutions of external beam radiotherapy. The facilities in operation in France have considerably evolved under the impulse of the plan Cancer launched in 2003: replacements and increase of the number of accelerators, substitution of accelerators for telecobalt almost completed and acquisition of innovative facilities for tomo-therapy and stereotaxy. The increasing versatility of facilities makes possible the rapid evolution of treatment modalities, allowing to better delimit irradiation to tumoral tissues and spare surrounding healthy tissues and organs at risk. This leads to a better treatment efficacy through dose escalation. National metrology laboratories must offer responses adapted to the new need, i.e. not restrict themselves to the establishment of references under conventional conditions defined at international level, contribute to the improvement of uncertainties at all levels of reference transfer to practitioners: primary measurements under conditions as close as possible to those of treatment, characterization of transfer and treatment control dosimeters., metrological validation of treatment planning tools... Those axes have been identified as priorities for the next years in ionizing radiation metrology at the European level and included in the European. Metrology Research Programme. A project dealing with some of those topics has been selected in the frame of the Eranet+ Call EMRP 2007 and is now starting. The LNE-LAM is strongly engaged in it. (authors)

  9. Absorbed organ and effective doses from digital intra-oral and panoramic radiography applying the ICRP 103 recommendations for effective dose estimations.

    Science.gov (United States)

    Granlund, Christina; Thilander-Klang, Anne; Ylhan, Betȕl; Lofthag-Hansen, Sara; Ekestubbe, Annika

    2016-10-01

    During dental radiography, the salivary and thyroid glands are at radiation risk. In 2007, the International Commission on Radiological Protection (ICRP) updated the methodology for determining the effective dose, and the salivary glands were assigned tissue-specific weighting factors for the first time. The aims of this study were to determine the absorbed dose to the organs and to calculate, applying the ICRP publication 103 tissue-weighting factors, the effective doses delivered during digital intraoral and panoramic radiography. Thermoluminescent dosemeter measurements were performed on an anthropomorphic head and neck phantom. The organ-absorbed doses were measured at 30 locations, representing different radiosensitive organs in the head and neck, and the effective dose was calculated according to the ICRP recommendations. The salivary glands and the oral mucosa received the highest absorbed doses from both intraoral and panoramic radiography. The effective dose from a full-mouth intraoral examination was 15 μSv and for panoramic radiography, the effective dose was in the range of 19-75 μSv, depending on the panoramic equipment used. The effective dose from a full-mouth intraoral examination is lower and that from panoramic radiography is higher than previously reported. Clinicians should be aware of the higher effective dose delivered during panoramic radiography and the risk-benefit profile of this technique must be assessed for the individual patient. The effective dose of radiation from panoramic radiography is higher than previously reported and there is large variability in the delivered radiation dosage among the different types of equipment used.

  10. CCRI supplementary comparison of standards for absorbed dose to water in {sup 60}Co gamma radiation at radiation processing dose levels

    Energy Technology Data Exchange (ETDEWEB)

    Burns, D.T. [Bureau International des Poids et Mesures, Pavillon de Breteuil, F-92312 Sevres Cedex (France)]. E-mail: dburns@bipm.org; Allisy-Roberts, P.J. [Bureau International des Poids et Mesures, Pavillon de Breteuil, F-92312 Sevres Cedex (France); Desrosiers, M.F. [National Institute of Standards and Technology, Gaithersburg, MD (United States); Nagy, V.Yu. [National Institute of Standards and Technology, Gaithersburg, MD (United States); Sharpe, P.H.G. [National Physical Laboratory, Teddington, Middlesex (United Kingdom); Laitano, R.F. [Istituto Nazionale di Metrologia delle Radiazioni Ionizzanti, Rome (Italy); Mehta, K. [International Atomic Energy Agency, Vienna (Austria); Schneider, M.K.H. [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany); Zhang, Y.L. [National Institute of Metrology, Beijing (China)

    2006-09-15

    Six national standards for absorbed dose to water in {sup 60}Co gamma radiation at the dose levels used in radiation processing have been compared over the range from 5 to 30 kGy using the alanine dosimeters of the NIST and the NPL as the transfer dosimeters. The standards are in agreement at the level of around 0.5%, which is significantly smaller than the stated standard uncertainties.

  11. Consequences of the exposure at low dose rates-contribution of animal experimentation

    International Nuclear Information System (INIS)

    Masse, R.

    1990-01-01

    The exposure of laboratory animals to the various types of radiations will induce cancers in relation with the tissue absorbed doses. The shape of the dose-effet relationship is most variable. It is important to distinguish which tumours are comparable to human tumours. Those showing more analogies answer but seldom to the classical lineo-quadratic relationship; however, a strong attenuation of induction is demonstrated at low dose rates. Quasi-threshold relationships are seen after the exposure of some tissues to high-LET radiations. These observations question the validity of generalizing the radiobiologists' dual action theory, setting the origin of the dose-effect relationship in the induction of events within the DNA molecule. There is an alternative in the cellular collaboration events; it assumes that the effectiveness per dose unit decreases constantly as an inverse function of the dose rate [fr

  12. OEDIPE, a software for personalized Monte Carlo dosimetry and treatment planning optimization in nuclear medicine: absorbed dose and biologically effective dose considerations

    International Nuclear Information System (INIS)

    Petitguillaume, A.; Broggio, D.; Franck, D.; Desbree, A.; Bernardini, M.; Labriolle Vaylet, C. de

    2014-01-01

    For targeted radionuclide therapies, treatment planning usually consists of the administration of standard activities without accounting for the patient-specific activity distribution, pharmacokinetics and dosimetry to organs at risk. The OEDIPE software is a user-friendly interface which has an automation level suitable for performing personalized Monte Carlo 3D dosimetry for diagnostic and therapeutic radionuclide administrations. Mean absorbed doses to regions of interest (ROIs), isodose curves superimposed on a personalized anatomical model of the patient and dose-volume histograms can be extracted from the absorbed dose 3D distribution. Moreover, to account for the differences in radiosensitivity between tumoral and healthy tissues, additional functionalities have been implemented to calculate the 3D distribution of the biologically effective dose (BED), mean BEDs to ROIs, isoBED curves and BED-volume histograms along with the Equivalent Uniform Biologically Effective Dose (EUD) to ROIs. Finally, optimization tools are available for treatment planning optimization using either the absorbed dose or BED distributions. These tools enable one to calculate the maximal injectable activity which meets tolerance criteria to organs at risk for a chosen fractionation protocol. This paper describes the functionalities available in the latest version of the OEDIPE software to perform personalized Monte Carlo dosimetry and treatment planning optimization in targeted radionuclide therapies. (authors)

  13. Effects of available energy and impact rate on Charpy absorbed energy in the upper shelf

    Energy Technology Data Exchange (ETDEWEB)

    Xu, S.; Bouchard, R.; Tyson, W.R.

    2005-07-01

    This study formed part of a project on ductile fracture control in pipelines. It examined whether the amount of excess energy affects the Charpy absorbed energy in the upper shelf. Two structural steels equivalent to linepipe X80 were used. One was an experimental steel, the other a commercial steel, both with bainite/ferrite microstructures but with different toughnesses. Tests were carried out at room temperature using both a conventional Charpy pendulum machine and a vertical drop-weight impact machine. The effect of excess energy on the absorbed energy was discussed in terms of initial and final impact velocities and their effect on strain rate and flow strength. The strain distribution in the Charpy test was modeled by 3D finite element analysis. The opening strain was found to be concentrated at the notch tip and decreased rapidly away from the notch tip. At an impact rate of 5.1 m/s, the highest strain rate reached at the notch tip during deformation was 991 per second. The yield strength in the vicinity of the notch tip between the impact rate velocities of 5.1 m/s and 2.28 m/s was predicted to decrease by only about 3 per cent. The results support the requirement stated in ASTM E 23, and confirm the acceptability of absorbed energy values up to 80 per cent of the machine capacity. 7 refs., 4 tabs., 5 figs.

  14. SU-G-TeP2-05: Development of a Thimble Calorimeter for Absorbed Dose to Water Characterized in MV Photons

    International Nuclear Information System (INIS)

    Chen-Mayer, H; Bateman, F; Tosh, R; Bergstrom, P

    2016-01-01

    Purpose: To develop a thimble sized polystyrene calorimeter for use from kV to MV photons, as a primary reference standard for applications from diagnostic CT imaging to therapy beam dose determination. Methods: A polystyrene calorimeter about 1.5 cm diameter embedded with small thermistors was characterized in a 6 MV photon beam from a clinical accelerator at 5 nominal dose rates from 0.8 to 4 Gy/min. Irradiations were delivered with beam on/off cycles first at 60 s and then at 20 s. Two sets of phantom conditions were evaluated: 1) in a 30 cm diameter polyethylene cylinder, and 2) in 10 cm depth of a 30 cm water phantom. The temperature waveforms were recorded and analyzed for temperature rise, arriving at a dose to polystyrene. This value is compared with the result of measurements under identical conditions using an ionization chamber calibrated for absorbed dose to water. Monte Carlo simulations were performed on the measurement systems to estimate such a ratio. Results: The ratio of the dose determined by the calorimeter to the dose reported by the ionization chamber was aggregated from all 5 dose rates. The 60 s results show a much elevated response in both phantoms compared to their respective expected results based on simulation. This deviation was reduced when the on/off cycles were shortened to 20 s. This behavior was possibly due to the heat conduction effects in the small calorimeter body. Finite element modeling is being conducted to simulate this effect. Conclusion: A small solid plastic calorimeter offers the convenience of a portable absorbed dose standard based on direct measurement of energy deposition, but comes at the expense of heat transfer complications which need to be characterized. This work offers preliminary evidence of the behavior and quantitative assessment of the issues to be resolved in future investigations.

  15. Measurement of absorbed dose for high energy electron using CaSO4: Tm-PTFE TLD

    International Nuclear Information System (INIS)

    Park, Myeong Hwan; Kim, Do Sung

    2000-01-01

    In this study, the highly sensitive CaSO 4 : Tm-PTFE TLDs has been fabricated for the purpose of measurement of high energy electron. CaSO 4 : Tm phosphor powder was mixed with polytetrafluoroethylene(PTFE) powder and moulded in a disk type(diameter 8.5mm, thickness 90mg/cm 2 ) by cold pressing. The absorbed dose distribution and ranges for high energy electron were measured by using the CaSO 4 : Tm-PTFE TLDs. The ranges determined were R 100 =3D14.5mm, R 50 =3D24.1mm and R p =3D31.8mm, respectively and the beam flatness, the variation of relative dose in 80% of the field size, was 4.5%. The fabricated CaSO 4 : Tm-PTFE TLDs may be utilized in radiation dosimetry for personal, absorbed dose and environmental monitoring.=20

  16. A new gel using super absorbent polymer for mapping the spatial dose distributions of electron beams by MR imager.

    Science.gov (United States)

    Hiraoka, T; Hoshino, K; Kawashima, K; Kato, H; Tateno, Y

    1993-01-01

    A technique for mapping the spatial dose distribution with a magnetic resonance imager is presented. A ferrous sulphate solution with sulfuric acid was used as the detecting medium for radiation dose. To make a gel of the solution for filling up a cubic phantom, we developed a new gel component that is combined with a super absorbent polymer (Sumikagel N-100) and a cross-linked dextran gel (Sephadex G-200). In order to make the application for radiation treatment planning, mapping of the dose distribution was carried out using a Unix computer.

  17. Characterization of an absorbed dose standard in water through ionometric methods

    International Nuclear Information System (INIS)

    Vargas V, M.X.

    2003-01-01

    In this work the unit of absorbed dose at the Secondary Standard Dosimetry Laboratory (SSDL) of Mexico, is characterized by means of the development of a primary standard of absorbed dose to water, D agua . The main purpose is to diminish the uncertainty in the service of dosimetric calibration of ionization chambers (employed in radiotherapy of extemal beams) that offers this laboratory. This thesis is composed of seven chapters: In Chapter 1 the position and justification of the problem is described, as well as the general and specific objectives. In Chapter 2, a presentation of the main quantities and units used in dosimetry is made, in accordance with the recommendations of the International Commission on Radiation Units and Measurements (ICRU) that establish the necessity to have a coherent system with the international system of units and dosimetric quantities. The concepts of equilibrium and transient equilibrium of charged particles (TCPE) are also presented, which are used later in the quantitative determination of D agua . Finally, since the proposed standard of D agua is of ionometric type, an explanation of the Bragg-Gray and Spencer-Attix cavity theories is made. These theories are the foundation of this type of standards. On the other hand, to guarantee the complete validity of the conditions demanded by these theories it is necessary to introduce correction factors. These factors are determined in Chapters 5 and 6. Since for the calculation of the correction factors Monte Carlo (MC) method is used in an important way, in Chapter 3 the fundamental concepts of this method are presented; in particular the principles of the code MCNP4C [Briesmeister 2000] are detailed, making emphasis on the basis of electron transport and variance reduction techniques used in this thesis. Because a phenomenological approach is carried out in the development of the standard of D agua , in Chapter 4 the characteristics of the Picker C/9 unit, the ionization chamber type

  18. A volume-equivalent spherical necrosis-tumor-normal liver model for estimating absorbed dose in yttrium-90 microsphere therapy.

    Science.gov (United States)

    Wu, Chin-Hui; Liao, Yi-Jen; Lin, Tzung-Yi; Chen, Yu-Cheng; Sun, Shung-Shung; Liu, Yen-Wan Hsueh; Hsu, Shih-Ming

    2016-11-01

    Primary hepatocellular carcinoma and metastatic liver tumors are highly malignant tumors in Asia. The incidence of fatal liver cancer is also increasing in the United States. The aim of this study was to establish a spherical tumor model and determine its accuracy in predicting the absorbed dose in yttrium-90 (Y-90) microsphere therapy for liver cancer. Liver morphology can be approximated by a spherical model comprising three concentric regions representing necrotic, tumor, and normal liver tissues. The volumes of these three regions represent those in the actual liver. A spherical tumor model was proposed to calculate the absorbed fractions in the spherical tumor, necrotic, and normal tissue regions. The THORplan treatment planning system and Monte Carlo N-particle extended codes were used for this spherical tumor model. Using the volume-equivalent method, a spherical tumor model was created to calculate the total absorbed fraction [under different tumor-to-healthy-liver ratios (TLRs)]. The patient-specific model (THORplan) results were used to verify the spherical tumor model results. The results for both the Y-90 spectrum and the Y-90 mean energy indicated that the absorbed fraction was a function of the tumor radius and mass. The absorbed fraction increased with tumor radius. The total absorbed fractions calculated using the spherical tumor model for necrotic, liver tumor, and normal liver tissues were in good agreement with the THORplan results, with differences of less than 3% for TLRs of 2-5. The results for the effect of TLR indicate that for the same tumor configuration, the total absorbed fraction decreased with increasing TLR; for the same shell tumor thickness and TLR, the total absorbed fraction was approximately constant; and for tumors with the same radius, the total fraction absorbed by the tumor increased with the shell thickness. The results from spherical tumor models with different tumor-to-healthy-liver ratios were highly consistent with the

  19. Estimation of yttrium-90 Zevalin tumor-absorbed dose in ocular adnexal lymphoma using quantitative indium-111 Zevalin radionuclide imaging.

    Science.gov (United States)

    Erwin, William D; Esmaeli, Bita

    2009-09-01

    The purpose of this investigation was to estimate radiation-absorbed dose in orbital tumors from yttrium-90 ibritumomab tiuxetan (Zevalin) radioimmunotherapy of ocular adnexal lymphoma. Three patients participating in a prospective research protocol involving treatment of ocular adnexal lymphoma with yttrium-90 Zevalin consented to quantitative radionuclide imaging to estimate tumor radiation-absorbed doses. Each patient received 185 MBq of indium-111 Zevalin, followed by serial planar whole-body scanning, to derive an activity versus time curve for the tumor. Single photon emission computed tomography (SPECT) and computed tomography (CT) imaging, including a calibration source, were performed at 24 h on a SPECT/CT scanner, to obtain a SPECT estimate of the radioactivity (in megabequerels) in the tumor and correct the planar curve, as well as estimate the tumor mass (M) from CT. The curve was then converted to that for yttrium-90 at the prescribed activity, and absorbed dose estimated from the area under the curve multiplied by the Medical Internal Radiation Dose S value (Gy per MBq-h) for a sphere of mass M. A right orbital tumor in one patient was visualized in both the planar and SPECT/CT images, with an estimated absorbed dose of 3.57 Gy. Tumor uptake in the other two patients was not visualized. The radiation dose to the orbit and ocular structures during radioimmunotherapy of ocular adnexal lymphoma is well below the threshold for significant radiation-induced ocular toxicity and about 10 times lower than that delivered during external beam radiotherapy.

  20. An estimate by two methods of thyroid absorbed doses due to BRAVO fallout in several northern Marshall Islands

    International Nuclear Information System (INIS)

    Musolino, S.V.; Hull, A.P.; Greenhouse, N.A.

    1997-01-01

    Estimates of the thyroid absorbed doses due to fallout originating from the 1 March 1954 BRAVO thermonuclear test on Bikini Atoll have been made for several inhabited locations in the Northern Marshall Islands. Rongelap, Utirik, Rongerik and Ailinginae Atolls were also inhabited on 1 March 1954, where retrospective thyroid absorbed doses have previously been reconstructed. Current estimates are based primarily on external exposure data, which were recorded shortly after each nuclear test in the Castle Series, and secondarily on soil concentrations of 137 Cs in samples collected in 1978 and 1988, along with aerial monitoring done in 1978. External exposures and 137 Cs Soil concentrations were representative of the atmospheric transport and deposition patterns of the entire Castle Series tests and show that the BRAVO test was the major contributor to fallout exposure during the Castle series and other test series which were carried out in the Marshall Islands. These data have been used as surrogates for fission product radioiodines and telluriums in order to estimate the range of thyroid absorbed doses that may have occurred throughout the Marshall Islands. Dosimetry based on these two sets of estimates agreed within a factor of 4 at the locations where BRAVO was the dominant contributor to the total exposure and deposition. Both methods indicate that thyroid absorbed doses in the range of 1 Gy (100 rad) may have been incurred in some of the northern locations, whereas the doses at southern locations did not significantly exceed levels comparable to those from worldwide fallout. The results of these estimates indicate that a systematic medical survey for thyroid disease should be conducted, and that a more definitive dose reconstruction should be made for all the populated atolls and islands in the Northern Marshall Islands beyond Rongelap, Utirik, Rongerik and Ailinginae, which were significantly contaminated by BRAVO fallout. 30 refs., 2 figs., 10 tabs

  1. Dose rate in a deactivated uranium mine

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Wagner S.; Kelecom, Alphonse G.A.C.; Silva, Ademir X.; Marques, José M.; Carmo, Alessander S. do; Dias, Ayandra O., E-mail: pereiraws@gmail.com, E-mail: wspereira@inb.gov.br, E-mail: lararapls@hotmail.com, E-mail: Ademir@nuclear.ufrj.br, E-mail: marqueslopes@yahoo.com.br [Universidade Veiga de Almeida (UVA), Rio de Janeiro, RJ (Brazil); Indústrias Nucleares do Brasil (COMAP.N/FCN/INB), Resende RJ (Brazil). Fábrica de Combustível Nuclear. Coordenação de Meio Ambiente e Proteção Radiológica Ambiental; Universidade Federal Fluminense (LARARA-PLS/UFF), Niterói, RJ (Brazil). Laboratório de Radiobiologia e Radiometria; Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear

    2017-07-01

    The Ore Treatment Unit is a deactivated uranium mine and milling situated in Caldas, MG, BR. Although disabled, there are still areas considered controlled and supervised from the radiological point of view. In these areas, it is necessary to keep an occupational monitoring program to ensure the workers' safety and to prevent the dispersion of radioactive material. For area monitoring, the dose rate, in μSv∙h{sup -1}, was measured with Geiger Müller (GM) area monitors or personal electronic monitors type GM and thermoluminescence dosimetry (TLD), in mSv∙month{sup -1}, along the years 2013 to 2016. For area monitoring, 577 samples were recorded; for personal dosimeters monitoring, 2,656; and for TLD monitoring type, 5,657. The area monitoring showed a mean dose rate of 6.42 μSv∙h{sup -1} associated to a standard deviation of 48 μSv∙h{sup -1} with a maximum recorded value of 685 μSv∙h{sup -1}. 96 % of the samples were below the derived limit per hour for workers (10 μSv∙h{sup -1}). For the personal electronic monitoring, the average of the data sampled was 15.86 μSv∙h{sup -1}, associated to a standard deviation of 61.74 μSv∙h{sup -1}. 80 % of the samples were below the derived limit and the maximum recorded was 1,220 μSv∙h{sup -1}. Finally, the TLD showed a mean of 0.01 mSv∙h{sup -1} (TLD detection limit is 0.2 mSv∙month{sup -1}), associated to a standard deviation of 0.08 mSv∙h{sup -1}. 98% of the registered values were below 0.2 mSv and less than 2 % of the measurements had values above the limit of detection. The samples show areas with low risk of external exposure, as can be seen by the TLD evaluation. Specific areas with greater risk of contamination have already been identified, as well as operations at higher risks. In these cases, the use of the individual electronic dosimeter is justified for a more effective monitoring. Radioprotection identified all risks and was able to extend individual electronic monitoring to all

  2. Secondary neutron dose measurement for proton eye treatment using an eye snout with a borated neutron absorber

    Science.gov (United States)

    2013-01-01

    Background We measured and assessed ways to reduce the secondary neutron dose from a system for proton eye treatment. Methods Proton beams of 60.30 MeV were delivered through an eye-treatment snout in passive scattering mode. Allyl diglycol carbonate (CR-39) etch detectors were used to measure the neutron dose in the external field at 0.00, 1.64, and 6.00 cm depths in a water phantom. Secondary neutron doses were measured and compared between those with and without a high-hydrogen–boron-containing block. In addition, the neutron energy and vertices distribution were obtained by using a Geant4 Monte Carlo simulation. Results The ratio of the maximum neutron dose equivalent to the proton absorbed dose (H(10)/D) at 2.00 cm from the beam field edge was 8.79 ± 1.28 mSv/Gy. The ratio of the neutron dose equivalent to the proton absorbed dose with and without a high hydrogen-boron containing block was 0.63 ± 0.06 to 1.15 ± 0.13 mSv/Gy at 2.00 cm from the edge of the field at depths of 0.00, 1.64, and 6.00 cm. Conclusions We found that the out-of-field secondary neutron dose in proton eye treatment with an eye snout is relatively small, and it can be further reduced by installing a borated neutron absorbing material. PMID:23866307

  3. Absorbed photon dose measurement and calculation for some patient organs examined by computed tomography

    Science.gov (United States)

    Shousha, Hany A.

    Patient doses from computed tomography (CT) examinations are usually expressed in terms of dose index, organ doses, and effective dose. The CT dose index (CTDI) can be measured free-in-air or in a CT dosimetry phantom. Organ doses can be measured directly in anthropomorphic Rando phantoms using thermoluminescent detectors. Organ doses can also be calculated by the Monte Carlo method utilizing measured CTDI values. In this work, organ doses were assessed for three main CT examinations: head, chest, and abdomen, using the different mentioned methods. Results of directly measured doses were compared with calculated doses for different organs in the study, and also compared with published international studies.

  4. Estimation of kidney depth effective renal plasmatic flux and absorbed dose, from a radio isotopic renogram

    International Nuclear Information System (INIS)

    Carvalho Pinto Ribela, M.T. de.

    1979-01-01

    A technique for the estimation of kidney depth is described. It is based on a comparison between the measurements obtained in a radioisotopic renogram carried out for two specific energies and the same measurements made with a phanto-kidney at different depths. Experiments performed with kidney and abdomen phantoms provide calibration curves which are obtained by plotting the photopeak to scatter ratio for 131 I pulse height spectrum against depth. Through this technique it is possible to obtain the Hippuran- 131 I kidney uptake with external measurements only. In fact it introduces a correction in the measurements for the depth itself and for the attenuation and scattering effects due to the tissues interposed between the kidney and the detector. When the two kidneys are not equidistant from the detector, their respective renograms are different and it is therefore very important to introduce a correction to the measurements according to the organ depth in order to obtain the exact information on Hippuran partition between the kidneys. The significative influence of the extrarenal activity is analyzed in the renogram by monitoring the praecordial region after 131 I-human serum albumin injection and establishing a calibration factor relating the radioactivity level of this area to that present in each kidney area. It is shown that it is possible to obtain the values for the clearance of each kidney from the renogram once the alteration in efficiency due to the organ depth and to non-renal tissue interference in the renal area is considered. This way, values for the effective renal plasma flow were obtained, which are comparable to those obtained with other techniques, estimating the total flow of the kidneys. Finally the mean absorbed dose of the kidneys in a renography is also estimated. (Author) [pt

  5. Determination of absorbed dose calibration factors for therapy level electron beam ionization chambers.

    Science.gov (United States)

    McEwen, M R; Williams, A J; DuSautoy, A R

    2001-03-01

    Over several years the National Physical Laboratory (NPL) has been developing an absorbed dose calibration service for electron beam radiotherapy. To test this service, a number of trial calibrations of therapy level electron beam ionization chambers have been carried out during the last 3 years. These trials involved 17 UK radiotherapy centres supplying a total of 46 chambers of the NACP, Markus, Roos and Farmer types. Calibration factors were derived from the primary standard calorimeter at seven energies in the range 4 to 19 MeV with an estimated uncertainty of +/-1.5% at the 95% confidence level. Investigations were also carried out into chamber perturbation, polarity effects, ion recombination and repeatability of the calibration process. The instruments were returned to the radiotherapy centres for measurements to be carried out comparing the NPL direct calibration with the 1996 IPEMB air kerma based Code of Practice. It was found that, in general, all chambers of a particular type showed the same energy response. However, it was found that polarity and recombination corrections were quite variable for Markus chambers-differences in the polarity correction of up to 1% were seen. Perturbation corrections were obtained and were found to agree well with the standard data used in the IPEMB Code. The results of the comparison between the NPL calibration and IPEMB Code show agreement between the two methods at the +/-1% level for the NACP and Farmer chambers, but there is a significant difference for the Markus chambers of around 2%. This difference between chamber types is most likely to be due to the design of the Markus chamber.

  6. Aerial gamma spectrometry of the uranium province of Lagoa Real (Caetite, BA, Brazil): go environmental aspects and distribution of the absorbed dose in the air

    International Nuclear Information System (INIS)

    Santos, Esau Francisco Sena

    2006-01-01

    In the present study, it was analyzed the surface concentrations of the natural radioelements K, U and Th, as well as the absorbed dose rate in air caused by gamma radiation from the Lagoa Real uranium province, which is located at the center southern portion of Bahia State and comprises an area of approximately 4.600 Km 2 . Data from the airborne gamma ray spectrometric survey of the region (Sao Timoeo Project) carried out in 1979, was used in this study. Besides, recent data of U, Th and absorbed dose rates from the Environmental Monitoring Program of the uranium concentration plant (URA), operated in the region by the Brazilian Nuclear Industries (INB), were used with the aim of inter compare the sampling points in the same geo referenced area. Imaging geo processing software's give support to frame maps of surface concentrations and ternary maps, as well as allow the integration of these with other themes (e.g. hydrology, geology, pedology) favouring the interpretation of geo environmental process from the radioactive cartography. Considering the whole study area, it was obtained the following mean values: absorbed dose rate in air (61,08 nGy.h -1 ), Potassium (1,65 % K) , Uranium (3,02 ppm eU) and thorium (18,26 ppm eTh). The geological unities bounding the uranium anomalies were placed in the areas characterized by the highest values of radioelements and, as expected, the major dose levels. The use of ternary maps coupled with the geology and hydrology allowed distinguishing the relationship between the surface distribution of natural radioelements and the geo environmental aspects, including the influence of the catchment in their transport and migration. (author)

  7. Modeling for Dose Rate Calculation of the External Exposure to Gamma Emitters in Soil

    International Nuclear Information System (INIS)

    Allam, K. A.; El-Mongy, S. A.; El-Tahawy, M. S.; Mohsen, M. A.

    2004-01-01

    Based on the model proposed and developed in Ph.D thesis of the first author of this work, the dose rate conversion factors (absorbed dose rate in air per specific activity of soil in nGy.hr - 1 per Bq.kg - 1) are calculated 1 m above the ground for photon emitters of natural radionuclides uniformly distributed in the soil. This new and simple dose rate calculation software was used for calculation of the dose rate in air 1 m above the ground. Then the results were compared with those obtained by five different groups. Although the developed model is extremely simple, the obtained results of calculations, based on this model, show excellent agreement with those obtained by the above-mentioned models specially that one adopted by UNSCEAR. (authors)

  8. Brachytherapy treatment with high dose rate

    International Nuclear Information System (INIS)

    Santana Rodriguez, Sergio Marcelino; Rodriguez Rodriguez, Lissi Lisbet; Ciscal Chiclana, Onelio Alberto

    2009-01-01

    Retrospectively analyze results and prognostic factors of cervical cancer patients treated with radio concomitant cisplatin-based chemotherapy, radiation therapy combined modality. Methods: From January 2003 to December 2007, 198 patients with invasive cervical cancer were treated at the Oncology Department of Hospital Robau Celestino Hernandez (brachytherapy performed at INOR). The most common age group was 31 to 40 years. The histology in squamous cell carcinoma accounted for 84.3% of cases. The treatment consisted of external pelvic irradiation and vaginal brachytherapy, high dose rate. Concomitant chemotherapy consisted of cisplatin 40 mg/m2 weekly with a maximum of 70 mg for 5 weeks. Results: 66.2% of patients completed 5 cycles of chemotherapy. The median overall survival was 39 months, overall survival, disease-free survival and survival free of locoregional recurrence at 5 years of 78%, 76% and 78.6% respectively .. We found that clinical stage, histological type (adenocarcinoma worst outcome) were statistically related to level of response. Conclusions: Treatment with external pelvic radiation, brachytherapy and concurrent weekly cisplatin in patients with stage IIIB cervical cancer is feasible in the Chilean public health system, well tolerated and results comparable to international literature. (Author)

  9. In phantom calibration of a high dose rate remote afterloading device

    International Nuclear Information System (INIS)

    Alfonso, R.; Tolede, P.; Pich, V.

    1995-01-01

    The high dose-rate (HDR) brachytherapy in Cuba is based on soviet made devices type AGAT-V. In order to calibration one of these for clinical use a method based of the different measurement of absorbed dose at the reference point B in a paraffin phantom was developed. The results of the calibration are shown. From these results an analysis was made of the effective doses to prescription point a considering the Lineal-Quadratic model. The clinical results by using the AGAT-V device are displayed in a comparative way

  10. MONTEC, an interactive fortran program to simulate radiation dose and dose-rate responses of populations

    International Nuclear Information System (INIS)

    Perry, K.A.; Szekely, J.G.

    1983-09-01

    The computer program MONTEC was written to simulate the distribution of responses in a population whose members are exposed to multiple radiation doses at variable dose rates. These doses and dose rates are randomly selected from lognormal distributions. The individual radiation responses are calculated from three equations, which include dose and dose-rate terms. Other response-dose/rate relationships or distributions can be incorporated by the user as the need arises. The purpose of this documentation is to provide a complete operating manual for the program. This version is written in FORTRAN-10 for the DEC system PDP-10

  11. Renal function affects absorbed dose to the kidneys and haematological toxicity during {sup 177}Lu-DOTATATE treatment

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Johanna; Berg, Gertrud [Sahlgrenska University Hospital, Department of Oncology, Goeteborg (Sweden); Waengberg, Bo [Sahlgrenska University Hospital, Department of Surgery, Goeteborg (Sweden); Larsson, Maria [University of Gothenburg, Department of Radiation Physics, Institute of Clinical Sciences, The Sahlgrenska Academy, Goeteborg (Sweden); Forssell-Aronsson, Eva; Bernhardt, Peter [University of Gothenburg, Department of Radiation Physics, Institute of Clinical Sciences, The Sahlgrenska Academy, Goeteborg (Sweden); Sahlgrenska University Hospital, Department of Medical Physics and Medical Bioengineering, Goeteborg (Sweden)

    2015-05-01

    Peptide receptor radionuclide therapy (PRRT) has become an important treatment option in the management of advanced neuroendocrine tumours. Long-lasting responses are reported for a majority of treated patients, with good tolerability and a favourable impact on quality of life. The treatment is usually limited by the cumulative absorbed dose to the kidneys, where the radiopharmaceutical is reabsorbed and retained, or by evident haematological toxicity. The aim of this study was to evaluate how renal function affects (1) absorbed dose to the kidneys, and (2) the development of haematological toxicity during PRRT treatment. The study included 51 patients with an advanced neuroendocrine tumour who received {sup 177}Lu-DOTATATE treatment during 2006 - 2011 at Sahlgrenska University Hospital in Gothenburg. An average activity of 7.5 GBq (3.5 - 8.2 GBq) was given at intervals of 6 - 8 weeks on one to five occasions. Patient baseline characteristics according to renal and bone marrow function, tumour burden and medical history including prior treatment were recorded. Renal and bone marrow function were then monitored during treatment. Renal dosimetry was performed according to the conjugate view method, and the residence time for the radiopharmaceutical in the whole body was calculated. A significant correlation between inferior renal function before treatment and higher received renal absorbed dose per administered activity was found (p < 0.01). Patients with inferior renal function also experienced a higher grade of haematological toxicity during treatment (p = 0.01). The residence time of {sup 177}Lu in the whole body (range 0.89 - 3.0 days) was correlated with grade of haematological toxicity (p = 0.04) but not with renal absorbed dose (p = 0.53). Patients with inferior renal function were exposed to higher renal absorbed dose per administered activity and developed a higher grade of haematological toxicity during {sup 177}Lu-DOTATATE treatment. The study confirms the

  12. Developing point of care and high-throughput biological assays for determining absorbed radiation dose

    International Nuclear Information System (INIS)

    Joiner, Michael C.; Thomas, Robert A.; Grever, William E.; Smolinski, Joseph M.; Divine, George W.; Konski, Andre A.; Auner, Gregory W.; Tucker, James D.

    2011-01-01

    Background and purpose: Systems are being developed to assess radiation exposure based on leukocyte mRNA levels obtained by finger-stick sampling. The goal is to provide accurate detection of dose exposures up to 10 Gy for up to 1 week following exposure. We previously showed that specific mRNA sequences increase expression within an hour of exposure, and some genes continue to show elevated expression for at least 24 h. Full duration and dose-dependence of this persistence remain to be determined. In the present study, real-time quantitative PCR (qPCR) was used to determine changes in gene expression. qPCR can rapidly analyze small blood samples and could be adopted into a field-portable instrument that provides a radiation dose readout within 30 min. Materials and methods: From previous microarray analysis of 21,000 genes expressed in human lymphoblastoid cells 4 h post-irradiation (0–4 Gy), 118 genes were selected for evaluation by qPCR of gene expression in the leukocytes of human blood irradiated in vitro with doses of 0–10 Gy from a Co-60 gamma source at a dose rate of 30 cGy/min. Results: Blood from 20 normal healthy human donors yielded many mRNA sequences that could be used for radiation dosimetry. We observed four genes with large and persistent responses following exposure: ASTN2, CDKN1A, GADD45A, and GDF15. Five genes were identified as reliably non-responsive and were suitable for use as endogenous controls: DPM1, ITFG1, MAP4, PGK1, and SLC25A36; of these, ITFG1 was used for the analyses presented here. A significant dose-responsive increase in expression occurred for CDKN1A that was >16-fold at 10 Gy and 3-fold at 0.5 Gy compared to pre-irradiation values. Conclusions: These data show large, selective increases in mRNA transcript levels that persist for at least 48 h after single exposures between 0.5 and 10 Gy. Stable, non-responsive mRNA sequences for use as endogenous controls were also identified. These results indicate that following further

  13. DOSEFACTOR-DOE, Dose Rate Conversion Factors for Photon and Electron Exposure

    International Nuclear Information System (INIS)

    1993-01-01

    1 - Description of program or function: DOSFACTER-DOE is a revision of the DOSFACTER-II code. It estimates dose-rate conversion factors for exposure to photons and electrons emitted by radionuclides dispersed in the environment. The exposure modes considered are immersion in contaminated air, immersion in contaminated water, and irradiation at a height of 1 m above a contaminated ground surface. The source region for each exposure mode is assumed to be effectively infinite or semi-infinite in extent with a uniform radionuclide concentration throughout the source region. The dose-rate factors are computed for a dose to 23 body organs and for an effective dose. The present code differs from DOSEFACTER-II as follows: no body surface factors, 'total body' factors replaced by 'effective' (weighted) factors, electron dose factors for the skin calculated for several depths, and output format. Non-SI units are used. 2 - Method of solution: For air and water immersion, the body-surface dose-rate factors were based on the conservation of energy requirement that all of the emitted energy is absorbed in the infinite medium. For ground-surface exposure, the body-surface dose-rate factors were calculated at a point 1 m above the ground using a point-kernel integration method and known specific absorbed fractions for photons and electrons in air. For photons only, the dose-rate factors for 23 body organs were calculated for each exposure mode using the organ dose-rate factors for immersion estimated by Eckerman et al. The radioactive decay data are taken from the data library DLC-80/DRALIST which is available from RSIC. 3 - Restrictions on the complexity of the problem: The code is known to compile correctly only with a FORTRAN IV compiler

  14. Comparison of measurements of absorbed dose to water using a water calorimeter and ionization chambers for clinical radiotherapy photon and electron beams

    International Nuclear Information System (INIS)

    Marles, A.E.M.

    1981-01-01

    With the development of the water calorimeter direct measurement of absorbed dose in water becomes possible. This could lead to the establishment of an absorbed dose rather than an exposure related standard for ionization chambers for high energy electrons and photons. In changing to an absorbed dose standard it is necessary to investigate the effect of different parameters, among which are the energy dependence, the air volume, wall thickness and material of the chamber. The effect of these parameters is experimentally studied and presented for several commercially available chambers and one experimental chamber, for photons up to 25 MV and electrons up to 20 MeV, using a water calorimeter as the absorbed dose standard and the most recent formalism to calculate the absorbed dose with ion chambers. For electron beams, the dose measured with the calorimeter was 1% lower than the dose calculated with the chambers, independent of beam energy and chamber. For photon beams, the absorbed dose measured with the calorimeter was 3.8% higher than the absorbed dose calculated from the chamber readings. Such differences were found to be chamber and energy independent. The results for the photons were found to be statistically different from the results with the electron beams. Such difference could not be attributed to a difference in the calorimeter response

  15. SU-F-207-05: Excess Heat Corrections in a Prototype Calorimeter for Direct Realization of CT Absorbed Dose to Phantom

    International Nuclear Information System (INIS)

    Chen-Mayer, H; Tosh, R

    2015-01-01

    Purpose: To reconcile air kerma and calorimetry measurements in a prototype calorimeter for obtaining absorbed dose in diagnostic CT beams. While corrections for thermal artifacts are routine and generally small in calorimetry of radiotherapy beams, large differences in relative stopping powers of calorimeter materials at the lower energies typical of CT beams greatly magnify their effects. Work-to-date on the problem attempts to reconcile laboratory measurements with modeling output from Monte Carlo and finite-element analysis of heat transfer. Methods: Small thermistor beads were embedded in a polystyrene (PS) core element of 1 cm diameter, which was inserted into a cylindrical HDPE phantom of 30 cm diameter and subjected to radiation in a diagnostic CT x-ray imaging system. Resistance changes in the thermistors due to radiation heating were monitored via lock-in amplifier. Multiple 3-second exposures were recorded at 8 different dose-rates from the CT system, and least-squares fits to experimental data were compared to an expected thermal response obtained by finite-element analysis incorporating source terms based on semi-empirical modeling and Monte Carlo simulation. Results: Experimental waveforms exhibited large thermal artifacts with fast time constants, associated with excess heat in wires and glass, and smaller steps attributable to radiation heating of the core material. Preliminary finite-element analysis follows the transient component of the signal qualitatively, but predicts a slower decay of temperature spikes. This was supplemented by non-linear least-squares fits incorporating semi-empirical formulae for heat transfer, which were used to obtain dose-to-PS in reasonable agreement with the output of Monte Carlo calculations that converts air kerma to absorbed dose. Conclusion: Discrepancies between the finite-element analysis and our experimental data testify to the very significant heat transfer correction required for absorbed dose calorimetry of

  16. Assessment of Absorbed Dose in Persons close to the Patients during 192Ir brachytherapy for Cervical Cancer

    International Nuclear Information System (INIS)

    Jung, Joo Young; Kang, Se Sik

    2010-01-01

    According to the 2007 Annual Report of the National Cancer Registry, cervical cancer showed an occurring frequency of 7th in female cancers and 4rd in females with an age of 35-64 years. Both radiotherapy and chemotherapy are mainly used for the treatment of cervical cancer. In case of radiotherapy, brachytherapy using radioisotopes in conjunction with external-beam radiation therapy (EBRT) using a linear accelerator is used in most cases to improve the outcome of cancer treatment. Brachytherapy, one of the cervical cancer radiotherapies, is a method that can minimize the damage of normal tissues restricting absorbed dose to uterus. It is, however, necessary to conduct a quantitative assessment on brachytherapy because it may cause radiation exposure to medical care providers during the radiotherapy. Therefore, the study provides the basic research data regarding brachytherapy for cervical cancer, estimating the absorbed dose in persons close to the patients using a mathematical phantom during 192Ir brachytherapy for cervical cancer

  17. Development of standardized methods to verify absorbed dose of irradiated fresh and dried fruits, tree nuts in trade

    International Nuclear Information System (INIS)

    Siddiqui, A.K.; Amin, M.R.; Chowdhury, N.A.; Begum, F.; Mollah, A.S.; Mollah, R.A.; Chowdhury, A.H.

    2001-01-01

    Investigations were carried out on standardization of desired process control parameters such as dose distribution in trade containers, container standardization and development of 'label' dosimeters. A prototype 'label' dose indicators Sterins for threshold doses of 125 Gy and 300 Gy was studied. Dose distribution was studied using fresh fruits and tree nuts in trade and standardized containers with varying product densities. The distribution of absorbed doses was measured by Fricke, Gammachrome YR, clear Polymethylmethacrylate (PMMA), EthanolChlorobenzene (ECB) and Sterin 300. These values are given as Dmax/Dmin ratios in relation to product bulk densities. It was observed that bulk densities varied greatly among different products depending on the types of fruits, containers and pattern of loading which also affected dose distribution. Dmax/Dmin obtained by proper dose mapping could be kept low by arranging proper irradiation conditions which ensured uniform dose distribution. Prototype 'label' dose indicators like Sterins and clear PMMA were used for dose mapping along with the standard primary and secondary dosimeters. Sterins and clear PMMA were also studied for their dosimetric properties, particularly for use in label dosimetry. Sterins 125 and 300 evaluated visually showed their integrity at their threshold doses. The word NOT on Sterin 125 eclipsed after 115 Gy and on Sterin 300 after 270 Gy dose. Clear PMMA samples of 410 mm thickness irradiated at 200-1000 Gy showed linear response and had postirradiation stability for over a month storage at normal temperatures (21-35 deg. C) and humidities. These could be investigated further for developing as 'label' dosimeters in insect control quarantine treatment. Other low dose indicators studied such as coloured perspex, dye solutions were not found useful at quarantine dose levels. Further investigations are required for developing a 'label' dosimeter for commercial use. (author)

  18. Interlaboratory comparisons in kerma in the air measures and absorbed dose in water using 60Co beams in radiotherapy

    International Nuclear Information System (INIS)

    Rosado, Paulo Henrique Goncalves; Silva, Cosme Norival Mello da

    2013-01-01

    In order to ensure that the measures of a quantity have high reliability and traceability interlaboratory comparisons are performed. The LNMRI has participated in several these interlaboratory comparisons. In the period 2000-2013 the LNMRI participated in 5 interlaboratory comparisons for measurement of kerma coefficients in the air and absorbed dose coefficients in the water. The results of interlaboratory comparisons indicate that the measures taken are appropriate to the LNMRI regarding the accuracy and precision measuring of these quantities

  19. A graphical review of radiogenic animal cancer data using the 'dose and dose-rate map'

    International Nuclear Information System (INIS)

    Yoshida, Kazuo; Hoshi, Yuko; Sakai, Kazuo

    2008-01-01

    We have been investigating the effects of low dose or low dose rate irradiation on mice, using our low dose-rate irradiation facilities. In these studies, we found that the effects were highly dependent on both total dose and dose rate. To show this visually, we proposed the 'dose/dose rate map', and plotted the results of our laboratory and our co-workers. The map demonstrated that dose/dose rate plane could be divided into three areas; 1) An area where harmful effects are observed, 2) An area where no harmful effects are observed, and 3) Another area, between previous two areas, where certain protective functions are enhanced. As this map would be a powerful tool to find some trend among the vast numbers of data relating the biological effects of ionizing radiation, we have developed a computer program which plots the collected data on the dose/dose rate map sorting by experimental conditions. In this study, we graphically reviewed and analyzed the data relating to the lifespan studies of animals with a view to determining the relationships between doses and dose rates of ionizing radiation and cancer incidence. The data contains about 800 sets of experiments, which concerns 187,000 animals exposed to gamma ray or X-ray and their 112,000 controls, and total of about 30,000 cancers in exposed animals and 14,000 cancers in controls. About 800 points of data were plotted on the dose/dose rate map. The plot showed that 1) The divided three areas in the dose/dose rate map were generally confirmed by these 800 points of data, and 2) In some particular conditions, e.g. sarcoma by X-rays, the biologically effective area is extended to relatively high dose/dose rate area. (author)

  20. INFLUENCE OF RADON PROGENY ON DOSE RATE MEASUREMENTS STUDIED AT PTB'S RADON REFERENCE CHAMBER.

    Science.gov (United States)

    Kessler, P; Camp, A; Dombrowski, H; Neumaier, S; Röttger, A; Vargas, A

    2017-12-01

    The responses of electronic dose rate meters were investigated in a large volume radon chamber at PTB in a wide range of radon activity concentrations. The measurements were conducted under controlled laboratory conditions and measured dose rate data are compared with Monte-Carlo simulations. Consequences concerning environmental monitoring are described. A further result is that the direct measurement of the dose rates produced by radon progeny in air is hardly possible in radon atmospheres with high activity concentrations, because the major contribution of measured dose rates is produced by radon progeny on the housing of the dose rate instruments. The latter effect largely depends on the ability of surfaces to absorb radon progeny. The Monte-Carlo simulations revealed quantitative results on the height of the single contributions to the total dose rate measured in the radon chamber. When environmental dose rate measurements are performed, the plate-out on detectors can be neglected. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Supplementary comparison CCRI(I)-S2 of standards for absorbed dose to water in 60Co gamma radiation at radiation processing dose levels

    DEFF Research Database (Denmark)

    Burns, D. T.; Allisy-Roberts, P. J.; Desrosiers, M. F.

    2011-01-01

    Eight national standards for absorbed dose to water in 60Co gamma radiation at the dose levels used in radiation processing have been compared over the range from 1 kGy to 30 kGy using the alanine dosimeters of the NIST and the NPL as the transfer dosimeters. The comparison was organized by the B......Eight national standards for absorbed dose to water in 60Co gamma radiation at the dose levels used in radiation processing have been compared over the range from 1 kGy to 30 kGy using the alanine dosimeters of the NIST and the NPL as the transfer dosimeters. The comparison was organized...... by the Bureau International des Poids et Mesures, who also participated at the lowest dose level using their radiotherapy-level standard for the same quantity. The national standards are in general agreement within the standard uncertainties, which are in the range from 1 to 2 parts in 102. Evidence of a dose...

  2. Model of the contribution of the compton generated radiation to the dose rate for an experiment in a semi industrial irradiation plant

    International Nuclear Information System (INIS)

    Mangussi, Josefina

    2007-01-01

    The model of the build up contribution to the absorbed dose rate in a semi industrial irradiation plant is presented. A static irradiation of a lucite phantom with and without water is modeled. The absorbed dose was measured with silver and potassium dichromate dosemeters. Two approximations are used, the first one is a global adjustment of the attenuation coefficient and the second one consists in a detailed description of the Compton scattering. A specific numerical model is developed for each approximation and the absorbed dose rates calculated are compared with the experimental measurements. The achievements and limitations of both models are discussed. (author) [es

  3. Analyse of the international recommendations on the calculation of absorbed dose in the biota; Analise das recomendacoes internacionais sobre calculo de dose absorvida na biota

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Wagner de S.; Py Junior, Delcy de A., E-mail: wspereira@inb.gov.b, E-mail: delcy@inb.gov.b [Industrias Nucleares do Brasil (UTM/INB), Pocos de Caldas, MG (Brazil). Unidade de Tratamento de Minerios; Universidade Federal Fluminense (LARARA/UFF), Niteroi, RJ (Brazil). Lab. de Radiobiologia e Radiometria; Kelecom, Alphonse [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Programa de Pos-Graduacao em Ciencia Ambiental

    2011-10-26

    This paper evaluates the recommendations of ICRP which has as objective the environmental radioprotection. It was analysed the recommendations 26, 60, 91, 103 and 108 of the ICRP. The ICRP-103 defined the concept of animal and plant of reference (APR) to be used in the RAP based on the calculation of absorbed dose based on APR concept. This last view allows to build a legal framework of environmental protection with a etic, moral and scientific visualization, more defensible than the anthropomorphic concept

  4. Absorbed doses received by patients submitted to chest radiographs in hospitals of the city of Sao Paulo, Brazil

    International Nuclear Information System (INIS)

    Freitas, Marcelo Baptista de

    2000-01-01

    Medical irradiation contributes with a significant amount to the dose received by the population. Here, this contribution was evaluated in a survey of absorbed doses received by patients submitted to chest radiological examinations (postero-anterior (PA) and lateral (LAT) projections) in hospitals of the city of Sao Paulo. Due to the variety of equipment and procedures used in radiological examinations, a selection of hospitals was made (12, totalizing 27 X-ray facilities), taking into account their representativeness as medical institutions in the city, in terms of characteristics and number of radiographs carried out. An anthropomorphic phantom, provided with thermoluminescent dosemeters (TLD-1 00), was irradiated simulating the patient, and the radiographic image quality was evaluated. Absorbed doses were determined to the thoracic region (entrance and exit skin and lung doses), and to some important organs from the radiation protection point of view (lens of the eye, thyroid and gonads). The great variation on the exposure parameters (kV, mA.s, beam size) leads to a large interval of entrance skin doses-ESD (coefficients of variation, CV, of 60% and 76%, for PA and LAT projections, respectively, were found) and of organ doses (CV of 60% and 46%. for thyroid and lung respectively). Mean values of ESD for LAT and PA projections were 0.22 and 0.98 mGy, respectively. The average absorbed doses per exam (PA and LAT) to thyroid and lung, 0.15 and 0.24 mGy respectively,showed that the thyroid was irradiated by the primary beam in many cases. Values of lens of the eye and gonad absorbed doses were below 30 μGy. Comparison of the lung doses obtained in this study with values in the literature, calculated by Monte Carlo simulation, showed good agreement. On the other hand, the comparison shows significant differences in the dose values to organs outside the chest region (thyroid, lens of eye and gonads). The effective dose calculated for a chest examination, PA and LAT

  5. Incase of Same Region Treatment by using a Tomotherapy and a Linear Accelerator Absorbed Dose Evaluation of Normal Tissues and a Tumor

    International Nuclear Information System (INIS)

    Cheon, Geum Seong; Kim, Chang Uk; Kim, Hoi Nam; Heo, Gyeong Hun; Song, Jin Ho; Hong, Joo Yeong; Jeong, Jae Yong

    2010-01-01

    Treating same region with different modalities there is a limit to evaluate the total absorbed dose of normal tissues. The reason is that it does not support to communication each modalities yet. In this article, it evaluates absorbed dose of the patients who had been treated same region by a tomotherapy and a linear accelerator. After reconstructing anatomic structure with a anthropomorphic phantom, administrate 45 Gy to a tumor in linac plan system as well as prescribe 15 Gy in tomotherapy plan system for make an ideal treatment plan. After the plan which made by tomoplan system transfers to the oncentra plan system for reproduce plan under the same condition and realize total treatment plan with summation 45 Gy linac treatment plan. To evaluate the absorbed dose of two different modalities, do a comparative study both a simple summation dose values and integration dose values. Then compare and analyze absorbed dose of normal tissues and a tumor with the patients who had been exposured radiation by above two different modalities. The result of compared data, in case of minimum dose, there are big different dose values in spleen (12.4%). On the other hand, in case of the maximum dose, it reports big different in a small bowel (10.2%) and a cord (5.8%) in head and neck cancer patients, there presents that oral (20.3%), right lens (7.7%) in minimum dose value. About maximum dose, it represents that spinal (22.5), brain stem (12%), optic chiasm (8.9%), Rt lens (11.5%), mandible (8.1%), pituitary gland (6.2%). In case of Rt abdominal cancer patients, there represents big different minimum dose as Lt kidney (20.3%), stomach (8.1%) about pelvic cancer patients, it reports there are big different in minimum dose as a bladder (15.2%) as well as big different value in maximum dose as a small bowel (5.6%), a bladder (5.5%) in addition, making treatment plan it is able us to get. In case of comparing both simple summation absorbed dose and integration absorbed dose, the

  6. Incase of Same Region Treatment by using a Tomotherapy and a Linear Accelerator Absorbed Dose Evaluation of Normal Tissues and a Tumor

    Energy Technology Data Exchange (ETDEWEB)

    Cheon, Geum Seong; Kim, Chang Uk; Kim, Hoi Nam; Heo, Gyeong Hun; Song, Jin Ho; Hong, Joo Yeong [Dept. of Radiation Oncology, Catholic University Seoul St. Mary' s Hospital, Seoul (Korea, Republic of); Jeong, Jae Yong [Dept. of Radiation Oncology, Inje University Sanggye Paik Hospital, Seoul (Korea, Republic of)

    2010-09-15

    Treating same region with different modalities there is a limit to evaluate the total absorbed dose of normal tissues. The reason is that it does not support to communication each modalities yet. In this article, it evaluates absorbed dose of the patients who had been treated same region by a tomotherapy and a linear accelerator. After reconstructing anatomic structure with a anthropomorphic phantom, administrate 45 Gy to a tumor in linac plan system as well as prescribe 15 Gy in tomotherapy plan system for make an ideal treatment plan. After the plan which made by tomoplan system transfers to the oncentra plan system for reproduce plan under the same condition and realize total treatment plan with summation 45 Gy linac treatment plan. To evaluate the absorbed dose of two different modalities, do a comparative study both a simple summation dose values and integration dose values. Then compare and analyze absorbed dose of normal tissues and a tumor with the patients who had been exposured radiation by above two different modalities. The result of compared data, in case of minimum dose, there are big different dose values in spleen (12.4%). On the other hand, in case of the maximum dose, it reports big different in a small bowel (10.2%) and a cord (5.8%) in head and neck cancer patients, there presents that oral (20.3%), right lens (7.7%) in minimum dose value. About maximum dose, it represents that spinal (22.5), brain stem (12%), optic chiasm (8.9%), Rt lens (11.5%), mandible (8.1%), pituitary gland (6.2%). In case of Rt abdominal cancer patients, there represents big different minimum dose as Lt kidney (20.3%), stomach (8.1%) about pelvic cancer patients, it reports there are big different in minimum dose as a bladder (15.2%) as well as big different value in maximum dose as a small bowel (5.6%), a bladder (5.5%) in addition, making treatment plan it is able us to get. In case of comparing both simple summation absorbed dose and integration absorbed dose, the

  7. Monetary policy and exchange rate dynamics: the exchange rate as a shock absorber

    Czech Academy of Sciences Publication Activity Database

    Audzei, Volha; Brázdik, F.

    2015-01-01

    Roč. 65, č. 5 (2015), s. 391-410 ISSN 0015-1920 Institutional support: PRVOUK-P23 Keywords : Czech Republic * exchange rates * sign restrictions Subject RIV: AH - Economics Impact factor: 0.449, year: 2015 http://journal.fsv.cuni.cz/storage/1340_audzei.pdf

  8. Sci-Sat AM: Brachy - 03: Feasibility study of the determination of absorbed dose to water using a fricke based system.

    Science.gov (United States)

    Gamal, I El; Cojocaru, C; Ross, C; Marchington, D; McEwen, M

    2012-07-01

    By measuring the dose to water directly a metrology standard, independent of air kerma, can be developed to make the basis of HDR brachytherapy dosimetry consistent with current dosimetry methods for external radiation beams. The Fricke dosimeter system, a liquid chemical dosimeter, provides a means of measuring the absorbed dose rate to water directly by measuring the radiation-induced change in absorption of the Fricke solution. In an attempt to measure the absorbed dose to water directly for a 192 Ir HDR brachytherapy source a ring shaped Fricke holder was constructed from PMMA, essentially following the work of Austerlitz et al. (Med. Phys. 2008). Benchmark measurements conducted in a 60 Co beam yielded a standard uncertainty in the absorption reading of 0.16 %, comparable with previous results in the literature. Measurements of the standard uncertainty of the control (unirradiated) solution using the holder yielded 0.2 %, indicating good process control and minimal contamination from the holder itself. However, it was found that the holder sealing method (to allow measurements in a water phantom) significantly contaminated the Fricke solution, resulting in an excessive background reading. Irradiations were therefore conducted in air to determine the feasibility of the procedure. Irradiations with a 17 GBq source gave a standard uncertainty of approximately 0.5 %, indicating that the target uncertainty of 1.5% for the measurement of absorbed dose to water using a Fricke-based primary standard is achievable. This would be comparable with calorimeter-based systems currently being developed. © 2012 American Association of Physicists in Medicine.

  9. Concomitant chemoradiotherapy with high dose rate brachytherapy ...

    African Journals Online (AJOL)

    Tamer Refaat

    2011-06-12

    Jun 12, 2011 ... from common iliac nodes. The following borders were used: 2.3.2. AP-PA portals. Superior: One centimeter above the inferior aspect of the sacro- iliac joints, extended ... Based on linear quadratic model, bio- logic effective dose ..... tive evidence suggests that this protein functions as a mediator of cellular ...

  10. Dosimetry in high dose rate endoluminal brachytherapy

    International Nuclear Information System (INIS)

    Uno, Takashi; Kotaka, Kikuo; Itami, Jun

    1994-01-01

    In endoluminal brachytherapy for the tracheobronchial tree, esophagus, and bile duct, a reference point for dose calculation has been often settled at 1 cm outside from the middle of source travel path. In the current study, a change in the ratio of the reference point dose on the convex to concave side (Dq/Dp) was calculated, provided the source travel path bends as is the case in most endoluminal brachytherapies. Point source was presumed to move stepwise at 1 cm interval from 4 to 13 locations. Retention time at each location was calculated by personal computer so as to deliver equal dose at 1 cm from the linear travel path. With the retention time remaining constant, the change of Dq/Dp was assessed by bending the source travel path. Results indicated that the length of the source travel path and radius of its curve influenced the pattern of change in Dq/Dp. Therefore, it was concluded that the difference in reference dose on the convex and concave side of the curved path is not negligible under certain conditions in endoluminal brachytherapy. In order to maintain the ratio more than 0.9, relatively greater radius was required when the source travel path was decreased. (author)

  11. Dose Rate Determination from Airborne Gamma-ray Spectra

    DEFF Research Database (Denmark)

    Bargholz, Kim

    1996-01-01

    The standard method for determination of ground level dose rates from airborne gamma-ray is the integral count rate which for a constant flying altitude is assumed proportional to the dose rate. The method gives reasonably results for natural radioactivity which almost always has the same energy...

  12. Absorbed dose to active red bone marrow from diagnostic and therapeutic uses of radiation

    International Nuclear Information System (INIS)

    Solomon, S.B.

    1980-06-01

    The bone-marrow dose arising from radiological procedures as carried out in Australia have been determined as part of a survey of population doses. This paper describes the method of calculation of the radiation doses to the active bone marrow from diagnostic radiography, fluoroscopy and radiotherapy. The results of the calculations are compared with the results of other models of bone-marrow dose for a number of diagnostic X-ray procedures

  13. Estimation of human absorbed dose for (166)Ho-PAM: comparison with (166)Ho-DOTMP and (166)Ho-TTHMP.

    Science.gov (United States)

    Vaez-Tehrani, Mahdokht; Zolghadri, Samaneh; Yousefnia, Hassan; Afarideh, Hossein

    2016-10-01

    In this study, the human absorbed dose of holmium-166 ((166)Ho)-pamidronate (PAM) as a potential agent for the management of multiple myeloma was estimated. (166)Ho-PAM complex was prepared at optimized conditions and injected into the rats. The equivalent and effective absorbed doses to human organs after injection of the complex were estimated by radiation-absorbed dose assessment resource and methods proposed by Sparks et al based on rat data. The red marrow to other organ absorbed dose ratios were compared with these data for (166)Ho-DOTMP, as the only clinically used (166)Ho bone marrow ablative agent, and (166)Ho-TTHMP. The highest absorbed dose amounts are observed in the bone surface and bone marrow with 1.11 and 0.903 mGy MBq(-1), respectively. Most other organs would receive approximately insignificant absorbed dose. While (166)Ho-PAM demonstrated a higher red marrow to total body absorbed dose ratio than (166)Ho-1,4,7,10-tetraazacyclo dodecane-1,4,7,10 tetra ethylene phosphonic acid (DOTMP) and (166)Ho-triethylene tetramine hexa (methylene phosphonic acid) (TTHMP), the red marrow to most organ absorbed dose ratios for (166)Ho-TTHMP and (166)Ho-PAM are much higher than the ratios for (166)Ho-DOTMP. The result showed that (166)Ho-PAM has significant characteristics than (166)Ho-DOTMP and therefore, this complex can be considered as a good agent for bone marrow ablative therapy. In this work, two separate points have been investigated: (1) human absorbed dose of (166)Ho-PAM, as a potential bone marrow ablative agent, has been estimated; and (2) the complex has been compared with (166)Ho-DOTMP, as the only clinically used bone marrow ablative radiopharmaceutical, showing significant characteristics.

  14. Radiation dose rates from UF{sub 6} cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Friend, P.J. [Urenco, Capenhurst (United Kingdom)

    1991-12-31

    This paper describes the results of many studies, both theoretical and experimental, which have been carried out by Urenco over the last 15 years into radiation dose rates from uranium hexafluoride (UF{sub 6}) cylinders. The contents of the cylinder, its history, and the geometry all affect the radiation dose rate. These factors are all examined in detail. Actual and predicted dose rates are compared with levels permitted by IAEA transport regulations.

  15. Effect of dose and dosing rate on the mutagenesis of nitric oxide in ...

    African Journals Online (AJOL)

    Purpose: To determine how the dose and rate of NO• treatment affects mutagenic responses. Methods: Shuttle vector ... Conclusion: These results provide important clues to how dose and dosing rate of introducing NO• may contribute to potential ..... Arroyo PL, Hatch-Pigott V, Mower HF, Cooney RV. Mutagenicity of nitric ...

  16. Reconstruction of Absorbed Doses to Fibroglandular Tissue of the Breast of Women undergoing Mammography (1960 to the Present)

    Science.gov (United States)

    Thierry-Chef, Isabelle; Simon, Steven L.; Weinstock, Robert M.; Kwon, Deukwoo; Linet, Martha S.

    2013-01-01

    The assessment of potential benefits versus harms from mammographic examinations as described in the controversial breast cancer screening recommendations of the U.S. Preventive Task Force included limited consideration of absorbed dose to the fibroglandular tissue of the breast (glandular tissue dose), the tissue at risk for breast cancer. Epidemiological studies on cancer risks associated with diagnostic radiological examinations often lack accurate information on glandular tissue dose, and there is a clear need for better estimates of these doses. Our objective was to develop a quantitative summary of glandular tissue doses from mammography by considering sources of variation over time in key parameters including imaging protocols, x-ray target materials, voltage, filtration, incident air kerma, compressed breast thickness, and breast composition. We estimated the minimum, maximum, and mean values for glandular tissue dose for populations of exposed women within 5-year periods from 1960 to the present, with the minimum to maximum range likely including 90% to 95% of the entirety of the dose range from mammography in North America and Europe. Glandular tissue dose from a single view in mammography is presently about 2 mGy, about one-sixth the dose in the 1960s. The ratio of our estimates of maximum to minimum glandular tissue doses for average-size breasts was about 100 in the 1960s compared to a ratio of about 5 in recent years. Findings from our analysis provide quantitative information on glandular tissue doses from mammographic examinations which can be used in epidemiologic studies of breast cancer. PMID:21988547

  17. Electron dose rate and photon contamination in electron arc therapy

    International Nuclear Information System (INIS)

    Pla, M.; Podgorsak, E.B.; Pla, C.

    1989-01-01

    The electron dose rate at the depth of dose maximum dmax and the photon contamination are discussed as a function of several parameters of the rotational electron beam. A pseudoarc technique with an angular increment of 10 degrees and a constant number of monitor units per each stationary electron field was used in our experiments. The electron dose rate is defined as the electron dose at a given point in phantom divided by the number of monitor units given for any one stationary electron beam. For a given depth of isocenter di the electron dose rates at dmax are linearly dependent on the nominal field width w, while for a given w the dose rates are inversely proportional to di. The dose rates for rotational electron beams with different di are related through the inverse square law provided that the two beams have (di,w) combinations which give the same characteristic angle beta. The photon dose at the isocenter depends on the arc angle alpha, field width w, and isocenter depth di. For constant w and di the photon dose at isocenter is proportional to alpha, for constant alpha and w it is proportional to di, and for constant alpha and di it is inversely proportional to w. The w and di dependence implies that for the same alpha the photon dose at the isocenter is inversely proportional to the electron dose rate at dmax

  18. Comparison of mathematical models for red marrow and blood absorbed dose estimation in the radioiodine treatment of advanced differentiated thyroid carcinoma.

    Science.gov (United States)

    Miranti, A; Giostra, A; Richetta, E; Gino, E; Pellerito, R E; Stasi, M

    2015-02-07

    Metastatic and recurrent differentiated thyroid carcinoma is preferably treated with (131)I, whose administered activity is limited by red marrow (RM) toxicity, originally correlated by Benua to a blood absorbed dose higher than 2 Gy. Afterward a variety of dosimetric approaches has been proposed. The aim of this work is to compare the results of the Benua formula with the ones of other three blood and RM absorbed dose formulae. Materials and methods have been borrowed by the dosimetric protocol of the Italian Internal Dosimetry group and adapted to the routine of our centre. Wilcoxon t-tests and percentage differences have been applied for comparison purposes. Results are significantly different (p < 0.05) from each other, with an average percentage difference between Benua versus other results of -22%. The dosimetric formula applied to determine blood or RM absorbed dose may contribute significantly to increase heterogeneity in absorbed dose and dose-response results. Standardization should be a major objective.

  19. The status of low dose rate and future of high dose rate Cf-252 brachytherapy

    International Nuclear Information System (INIS)

    Rivard, M.J.; Wierzbicki, J.G.; Van den Heuvel, F.; Chuba, P.J.; Fontanesi, J.

    1997-12-01

    This work describes the current status of the US low dose rate (LDR) Cf-252 brachytherapy program. The efforts undertaken towards development of a high dose rate (HDR) remotely after loaded Cf-252 source, which can accommodate 1 mg or greater Cf-252, are also described. This HDR effort is a collaboration between Oak Ridge National Laboratory (ORNL), commercial remote after loader manufactures, the Gershenson Radiation Oncology Center (ROC), and Wayne State University. To achieve this goal, several advances in isotope chemistry and source preparation at ORNL must be achieved to yield a specific material source loading of greater than or equal 1 mg Cf-252 per mm3. Development work with both radioactive and non-radioactive stand-ins for Cf-252 have indicated the feasibility of fabricating such sources. As a result, the decreased catheter diameter and computer controlled source placement will permit additional sites (e.g. brain, breast, prostate, lung, parotid, etc.) to be treated effectively with Cf-252 sources. Additional work at the Radiochemical Engineering and Development Center (REDC) remains in source fabrication, after loader modification, and safe design. The current LDR Cf-252 Treatment Suite at the ROC is shielded and licensed to hold up to 1 mg of Cf-252. This was designed to maintain cumulative personnel exposure, both external to the room and in direct isotope handling, at less than 20 microSv/hr. However, cumulative exposure may be greatly decreased if a Cf-252 HDR unit is employed which would eliminate direct isotope handling and decrease treatment times from tilde 3 hours to an expected range of 3 to 15 minutes. Such a Cf-252 HDR source will also demonstrate improved dose distributions over current LDR treatments due to the ability to step the point-like source throughout the target volume and weight the dwell time accordingly

  20. Comparison between Radiology Science Laboratory, Brazil (LCR) and National Research Council, Canada (NRC) of the absorbed dose in water using Fricke dosimetry

    International Nuclear Information System (INIS)

    Salata, Camila; David, Mariano Gazineu; Almeida, Carlos Eduardo de

    2014-01-01

    The absorbed dose to water standards for HDR brachytherapy dosimetry developed by the Radiology Science Laboratory, Brazil (LCR) and the National Research Council, Canada (NRC), were compared. The two institutions have developed absorbed dose standards based on the Fricke dosimetry system. There are significant differences between the two standards as far as the preparation and readout of the Fricke solution and irradiation geometry of the holder. Measurements were done at the NRC laboratory using a single Ir-192 source. The comparison of absorbed dose measurements was expressed as the ratio Dw(NRC)/Dw(LCR), which was found to be 1.026. (author)

  1. Low - level doses and exposure rating issues

    International Nuclear Information System (INIS)

    Nosovskij, A.V.

    2003-01-01

    An analysis is carried out of current state of the issue regarding biological effects of low - level irradiation doses in order to evaluate impact of low irradiation levels onto human health, which is required to generally understand the problem as a whole. Some proposals are offered to the state officials on developing general approaches related to preparation of a radiation safety concept for the population of Ukraine

  2. On the suitability of ultrathin detectors for absorbed dose assessment in the presence of high-density heterogeneities

    Energy Technology Data Exchange (ETDEWEB)

    Bueno, M., E-mail: marta.bueno@upc.edu; Duch, M. A. [Institut de Tècniques Energètiques, Universitat Politècnica de Catalunya, 08028 Barcelona (Spain); Carrasco, P.; Jornet, N. [Servei de Radiofísica i Radioprotecció, Hospital de la Santa Creu i de Sant Pau, 08025 Barcelona (Spain); Muñoz-Montplet, C. [Servei de Física Mèdica i Protecció Radiològica, Institut Català d’Oncologia—Girona, 17007 Girona (Spain)

    2014-08-15

    Purpose: The aim of this study was to evaluate the suitability of several detectors for the determination of absorbed dose in bone. Methods: Three types of ultrathin LiF-based thermoluminescent dosimeters (TLDs)—two LiF:Mg,Cu,P-based (MCP-Ns and TLD-2000F) and a{sup 7}Li-enriched LiF:Mg,Ti-based (MTS-7s)—as well as EBT2 Gafchromic films were used to measure percentage depth-dose distributions (PDDs) in a water-equivalent phantom with a bone-equivalent heterogeneity for 6 and 18 MV and a set of field sizes ranging from 5×5 cm{sup 2} to 20×20 cm{sup 2}. MCP-Ns, TLD-2000F, MTS-7s, and EBT2 have active layers of 50, 20, 50, and 30 μm, respectively. Monte Carlo (MC) dose calculations (PENELOPE code) were used as the reference and helped to understand the experimental results and to evaluate the potential perturbation of the fluence in bone caused by the presence of the detectors. The energy dependence and linearity of the TLDs’ response was evaluated. Results: TLDs exhibited flat energy responses (within 2.5%) and linearity with dose (within 1.1%) within the range of interest for the selected beams. The results revealed that all considered detectors perturb the electron fluence with respect to the energy inside the bone-equivalent material. MCP-Ns and MTS-7s underestimated the absorbed dose in bone by 4%–5%. EBT2 exhibited comparable accuracy to MTS-7s and MCP-Ns. TLD-2000F was able to determine the dose within 2% accuracy. No dependence on the beam energy or field size was observed. The MC calculations showed that a50 μm thick detector can provide reliable dose estimations in bone regardless of whether it is made of LiF, water or EBT’s active layer material. Conclusions: TLD-2000F was found to be suitable for providing reliable absorbed dose measurements in the presence of bone for high-energy x-ray beams.

  3. Evaluation of {sup 99}Mo/{sup 99m}Tc generator columns after irradiation with different absorbed doses

    Energy Technology Data Exchange (ETDEWEB)

    Fukumori, Neuza T.O.; Mengatti, Jair; Matsuda, Margareth M.N., E-mail: ntfukumo@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNE-SP), Sao Paulo, SP (Brazil)

    2017-07-01

    The {sup 99}Mo/{sup 99m}Tc generator is widely used in nuclear medicine and it consists of a glass column containing Teflon® strips and alumina in which {sup 99}Mo produced by {sup 235}U fission is adsorbed. The {sup 99}mTcO4- eluate shall meet the sterile and pyrogen free conditions for injectable radiopharmaceuticals as determined by the Good Manufacturing Practices. The purpose of this study was to evaluate the feasibility of using gamma radiation in the sterilization of the {sup 99}Mo/{sup 99m}Tc generator column and the influence on the elution efficiency. Alumina-containing columns were irradiated with 10, 15, 25 and 50 kGy absorbed doses. Alumina samples and control (non-irradiated) were submitted to X-ray diffraction and the combined use of scanning electron microscopy and elemental analysis. Teflon® samples were evaluated by thermogravimetry (TGA) and differential scanning calorimetry (DSC). X-ray diffractograms and micrographies with elemental analysis showed no significant changes in the crystalline structure of the alumina because it was stable α-Al{sub 2}O{sub 3}. TGA demonstrated that higher doses showed changes in lower temperatures and times than the control material. For DSC the higher the absorbed dose, the greater the polymer chain breakage and crosslinking in the material. The generator system without radioactivity was set up with the irradiated columns and the eluates demonstrated to be sterile and pyrogen free. The effects of different absorbed doses on the generator column, although some reported changes in the materials, demonstrated that the sterilization of the columns by irradiation with gamma rays as an alternative to wet heat sterilization is feasible from a technical and financial point of view. (author)

  4. Difference in average absorbed doses for dogs irradiated with 60Co γ-rays at various angles

    International Nuclear Information System (INIS)

    Wang Yuexing; Ma Xiaolin; Lu Yongjie

    1987-01-01

    The experiments including irradiation at 14 angles have been made in tissue-equivalent dog phantoms. The formula for calculating the average absorbed dose D-bar with relation to whole-body irradiation was estabilished. The D-bar depends on d, L, θ, ψ, R and X-bar, where, d signifies the width between shoulders of the irradiated dog, L the length of the dog from os parietale to os ischii,, θ, φ the angles at which the dog is irradiated, R the distance from radiation source to the centre of gravity of the dog, and X-bar the average exposure dose in air at the space where the dog's trunk is irradiated. The average doses D-bar measured by thermoluminescence dosemeter(TLD) and ionization chamber were in good agreement with the calculated data using the formula. the results of the experiments show that the D-bar correlates with θ and φ closely

  5. Dose absorbed in adults and children thyroid due to the I123 using the dosimetry MIRD and Marinelli

    International Nuclear Information System (INIS)

    Vasquez, M.; Castillo, C.; Cabrera, C.; Sarachaga, R.; Castaneda, J.; Diaz, E.

    2014-08-01

    Using the dosimetry MIRD, and representation Cristy-Eckerman in the thyroid gland and organs of their bio-kinetics when I 123 (Iodine) is used, the study demonstrates that the absorbed dose by the gland of an adult, children, and newly born, is their auto-dose, independent of the compartments number of their bio-kinetics. The dosimetric contributions of the organs of their bio-kinetics are insignificant. Their results are not significantly different to those obtained by the formalism MARINELLI (auto-dose) when it uses a sphere like glandular representation. In consequence, the kinetic model corresponding to the glandular representation decreases to a compartment, where the gland can also be represented like a sphere. (Author)

  6. Total skin high-dose-rate electron therapy dosimetry using TG-51

    International Nuclear Information System (INIS)

    Gossman, Michael S.; Sharma, Subhash C.

    2004-01-01

    An approach to dosimetry for total skin electron therapy (TSET) is discussed using the currently accepted TG-51 high-energy calibration protocol. The methodology incorporates water phantom data for absolute calibration and plastic phantom data for efficient reference dosimetry. The scheme is simplified to include the high-dose-rate mode conversion and provides support for its use, as it becomes more available on newer linear accelerators. Using a 6-field, modified Stanford technique, one may follow the process for accurate determination of absorbed dose

  7. Monte Carlo calculations and measurements of absorbed dose per monitor unit for the treatment of uveal melanoma with proton therapy

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Nicholas; Newhauser, Wayne D; Titt, Uwe; Starkschall, George [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030 (United States); Gombos, Dan [Section of Ophthalmology, Department of Head and Neck Surgery MDACC Unit 441 (United States); Coombes, Kevin [Graduate School of Biomedical Sciences, University of Texas Health Science Center, 6767 Bertner Avenue, Houston, TX 77030 (United States)], E-mail: kochn@musc.edu

    2008-03-21

    The treatment of uveal melanoma with proton radiotherapy has provided excellent clinical outcomes. However, contemporary treatment planning systems use simplistic dose algorithms that limit the accuracy of relative dose distributions. Further, absolute predictions of absorbed dose per monitor unit are not yet available in these systems. The purpose of this study was to determine if Monte Carlo methods could predict dose per monitor unit (D/MU) value at the center of a proton spread-out Bragg peak (SOBP) to within 1% on measured values for a variety of treatment fields relevant to ocular proton therapy. The MCNPX Monte Carlo transport code, in combination with realistic models for the ocular beam delivery apparatus and a water phantom, was used to calculate dose distributions and D/MU values, which were verified by the measurements. Measured proton beam data included central-axis depth dose profiles, relative cross-field profiles and absolute D/MU measurements under several combinations of beam penetration ranges and range-modulation widths. The Monte Carlo method predicted D/MU values that agreed with measurement to within 1% and dose profiles that agreed with measurement to within 3% of peak dose or within 0.5 mm distance-to-agreement. Lastly, a demonstration of the clinical utility of this technique included calculations of dose distributions and D/MU values in a realistic model of the human eye. It is possible to predict D/MU values accurately for clinical relevant range-modulated proton beams for ocular therapy using the Monte Carlo method. It is thus feasible to use the Monte Carlo method as a routine absolute dose algorithm for ocular proton therapy.

  8. Dose and Dose-Rate Effectiveness Factor (DDREF); Der Dosis- und Dosisleistungs-Effektivitaetsfaktor (DDREF)

    Energy Technology Data Exchange (ETDEWEB)

    Breckow, Joachim [Fachhochschule Giessen-Friedberg, Giessen (Germany). Inst. fuer Medizinische Physik und Strahlenschutz

    2016-08-01

    For practical radiation protection purposes it is supposed that stochastic radiation effects a determined by a proportional dose relation (LNT). Radiobiological and radiation epidemiological studies indicated that in the low dose range a dependence on dose rates might exist. This would trigger an overestimation of radiation risks based on the LNT model. OCRP had recommended a concept to combine all effects in a single factor DDREF (dose and dose-Rate effectiveness factor). There is still too low information on cellular mechanisms of low dose irradiation including possible repair and other processes. The Strahlenschutzkommission cannot identify a sufficient scientific justification for DDREF and recommends an adaption to the actual state of science.

  9. Recommended de minimis radiation dose rates for Canada

    International Nuclear Information System (INIS)

    1990-07-01

    A de minimis dose or dose rate as used in this report represents a level of risk which is generally accepted as being of no significance to an individual, or in the case of a population, of no significance to society. The doses corresponding to these levels of risk are based on current scientific knowledge. Dose rates recommended in this report are as follows: a de minimis individual dose rate of 10 μSv a -1 , based on a risk level that would generally be regarded as negligible in comparison with other risks; and a de minimis collective dose rate of 1 person-Sv a -1 , based on an imperceptible increase above the normal incidences of cancer and genetic defects in the exposed population. The concept of de minimis is to be distinguished from 'exempt from regulation' (below regulatory concern). The latter involves broader social and economic factors which encompass but are not limited to the purely risk-based factors addressed by the de minimis dose. De minimis is one of the factors that determine the exemption of sources or practices that may result in doses below or above the de minimis level. Although these de minimis dose rates should be considered in developing criteria and guidelines for deriving quantities and concentrations of radioactive substances that may be exempted from regulation, this document is only concerned with establishing de minimis dose rates, not with exempting sources and practices

  10. Absorbed dose at subcellular level by Monte Carlo simulation for a {sup 99m}Tc-peptide with nuclear internalization

    Energy Technology Data Exchange (ETDEWEB)

    Rojas C, E. L.; Ferro F, G. [ININ, Carretera Mexico-Toluca s/n, Ocoyoacac 52750, Estado de Mexico (Mexico); Santos C, C. L., E-mail: leticia.rojas@inin.gob.m [Universidad Autonoma del Estado de Mexico, Paseo Tollocan esquina Paseo Colon s/n, Toluca 50120, Estado de Mexico (Mexico)

    2010-10-15

    The utility of radiolabeled peptides for the early and specific diagnosis of cancer is being investigated around the world. Recent investigations have demonstrated the specificity of {sup 99m}Tc-bombesin conjugates to target breast and prostate cancer cells. The novel idea of adding the Tat (49-57) peptide to the radiopharmaceutical in order to penetrate the cell nucleus is a new proposal for therapy at cellular level. {sup 99m}Tc radionuclide produces Auger energy of 0.9 keV/decay and internal conversion electron energy of 15.4 keV/decay, which represent 11.4% of the total {sup 99m}Tc energy released per decay. It is expected that the dose delivered at specific microscopic levels in cancer cells induce a therapeutic effect. The aim of this research was to assess in vitro internalization kinetics in breast and prostate cancer cells of {sup 99m}Tc-Tat(49-57)-bombesin and to evaluate the radiation absorbed dose at subcellular level simulating the electron transport. The pen main program from the 2006 version of the Penelope code was used to simulate and calculate the absorbed dose by Auger and internal conversion electron contribution in the membrane, cytoplasm and nucleus of Pc-3 prostate cancer and MCF7 and MDA human breast cancer cell lines. Nuclear data were obtained from the 2002 BNM-LNHB {sup 99m}Tc decay scheme. The spatial distribution of the absorbed doses to the membrane, cytoplasm and nucleus were calculated using a geometric model built from real images of cancer cells. The elemental cell composition was taken from the literature. The biokinetic data were obtained evaluating total disintegrations in each subcellular compartment by integration of the time-activity curves acquired from experimental data. Results showed that 61, 63 and 46% of total disintegrations per cell-bound {sup 99m}Tc-Tat-Bn activity unit occurred in the nucleus of Pc-3, MCF7 and MDA-MB231 respectively. {sup 99m}Tc--Tat-Bn absorbed doses were 1.78, 5.76 and 2.59 Gy/Bq in the nucleus of

  11. Methodology for estimating radiation dose rates to freshwater biota exposed to radionuclides in the environment

    International Nuclear Information System (INIS)

    Blaylock, B.G.; Frank, M.L.; O'Neal, B.R.

    1993-08-01

    The purpose of this report is to present a methodology for evaluating the potential for aquatic biota to incur effects from exposure to chronic low-level radiation in the environment. Aquatic organisms inhabiting an environment contaminated with radioactivity receive external radiation from radionuclides in water, sediment, and from other biota such as vegetation. Aquatic organisms receive internal radiation from radionuclides ingested via food and water and, in some cases, from radionuclides absorbed through the skin and respiratory organs. Dose rate equations, which have been developed previously, are presented for estimating the radiation dose rate to representative aquatic organisms from alpha, beta, and gamma irradiation from external and internal sources. Tables containing parameter values for calculating radiation doses from selected alpha, beta, and gamma emitters are presented in the appendix to facilitate dose rate calculations. The risk of detrimental effects to aquatic biota from radiation exposure is evaluated by comparing the calculated radiation dose rate to biota to the U.S. Department of Energy's (DOE's) recommended dose rate limit of 0.4 mGy h -1 (1 rad d -1 ). A dose rate no greater than 0.4 mGy h -1 to the most sensitive organisms should ensure the protection of populations of aquatic organisms. DOE's recommended dose rate is based on a number of published reviews on the effects of radiation on aquatic organisms that are summarized in the National Council on Radiation Protection and Measurements Report No. 109 (NCRP 1991). DOE recommends that if the results of radiological models or dosimetric measurements indicate that a radiation dose rate of 0. 1 mGy h -1 will be exceeded, then a more detailed evaluation of the potential ecological consequences of radiation exposure to endemic populations should be conducted

  12. Methodology for estimating radiation dose rates to freshwater biota exposed to radionuclides in the environment

    Energy Technology Data Exchange (ETDEWEB)

    Blaylock, B.G.; Frank, M.L.; O`Neal, B.R.

    1993-08-01

    The purpose of this report is to present a methodology for evaluating the potential for aquatic biota to incur effects from exposure to chronic low-level radiation in the environment. Aquatic organisms inhabiting an environment contaminated with radioactivity receive external radiation from radionuclides in water, sediment, and from other biota such as vegetation. Aquatic organisms receive internal radiation from radionuclides ingested via food and water and, in some cases, from radionuclides absorbed through the skin and respiratory organs. Dose rate equations, which have been developed previously, are presented for estimating the radiation dose rate to representative aquatic organisms from alpha, beta, and gamma irradiation from external and internal sources. Tables containing parameter values for calculating radiation doses from selected alpha, beta, and gamma emitters are presented in the appendix to facilitate dose rate calculations. The risk of detrimental effects to aquatic biota from radiation exposure is evaluated by comparing the calculated radiation dose rate to biota to the U.S. Department of Energy`s (DOE`s) recommended dose rate limit of 0.4 mGy h{sup {minus}1} (1 rad d{sup {minus}1}). A dose rate no greater than 0.4 mGy h{sup {minus}1} to the most sensitive organisms should ensure the protection of populations of aquatic organisms. DOE`s recommended dose rate is based on a number of published reviews on the effects of radiation on aquatic organisms that are summarized in the National Council on Radiation Protection and Measurements Report No. 109 (NCRP 1991). DOE recommends that if the results of radiological models or dosimetric measurements indicate that a radiation dose rate of 0. 1 mGy h{sup {minus}1} will be exceeded, then a more detailed evaluation of the potential ecological consequences of radiation exposure to endemic populations should be conducted.

  13. Dose rate analysis for Tank 101 AZ (Project W151)

    International Nuclear Information System (INIS)

    Schwarz, R.A.; Hillesland, K.E.; Carter, L.L.

    1994-11-01

    This document describes the expected dose rates for modification to tank 101 AZ including modifications to the steam coil, mixer pump, and temperature probes. The thrust of the effort is to determine dose rates from: modification of a steam coil and caisson; the installation of mixer pumps; the installation of temperature probes; and estimates of dose rates that will be encountered while making these changes. Because the dose rates for all of these configurations depend upon the photon source within the supernate and sludge, comparisons were also made between measured dose rates within a drywell and the corresponding calculated dose rates. The calculational tool used is a Monte Carlo (MCNP 2 ) code since complicated three dimensional geometries are involved. A summary of the most important results of the entire study is given in Section 2. The basic calculational geometry model of the tank is discussed in Section 3, along with a tabulation of the photon sources that were used within the supernate and the sludge, and a discussion of uncertainties. The calculated dose rates around the steam coil and caisson before and after modification are discussed in Section 4. The configuration for the installation of the mixer pumps and the resulting dose rates are given in Section 5. The predicted changes in dose rates due to a possible dilution of the supernate source are given in Section 6. The calculational configuration used to model the installation of temperature probes and the resulting predicted dose rates are discussed in Section 7. Finally, comparisons of measured to calculated dose rates within a drywell are summarized in Section 8. Extended discussions of calculational models and Monte Carlo optimization techniques used are included in Appendix A

  14. Recurrence rate after absorbable tack fixation of mesh in laparoscopic incisional hernia repair

    DEFF Research Database (Denmark)

    Christoffersen, Mette W; Brandt, E; Helgstrand, F

    2015-01-01

    absorbable or non-absorbable tacks for mesh fixation. METHODS: This was a nationwide consecutive cohort study based on data collected prospectively concerning perioperative information and clinical follow-up. Patients undergoing primary, elective, laparoscopic incisional hernia repair with absorbable or non...

  15. Radionuclide content in some building materials and gamma dose rate in dwellings in Cuba

    International Nuclear Information System (INIS)

    Brigido, Oslvaldo; Montalvan, Adelmo; Rosa, Ramon; Hernandez, Alberto

    2008-01-01

    Naturally occurring radionuclides in building materials are one of the sources of radiation exposure of the population. This study was undertaken with the purpose of determining radioactivity in some Cuban building materials and for assessing the annual effective dose to Cuban population due external gamma exposure in dwellings for typical Cuban room model. Forty four samples of raw materials and building products were collected in some Cuban provinces. The activity concentrations of natural radionuclides were determined by gamma ray spectrometry using a p-type coaxial high purity germanium detector and their mean values are in the ranges: 9 to 857 Bq.kg -1 for 40 K; 6 to 57 Bq.kg -1 for 226 Ra; and 1.2 to 22 Bq.kg -1 for 232 Th. The radium equivalent activity in the 44 samples varied from 4 Bq.kg -1 (wood) to 272 Bq.kg -1 (brick). A high pressure ionisation chamber was used for measuring of the indoor absorbed dose rate in 543 dwellings and workplaces in five Cuban provinces. The average absorbed dose rates in air ranged from 43 n Gy.h -1 (Holguin) to 73 n Gy.h -1 (Camaguey) and the corresponding population-weighted annual effective dose due to terrestrial gamma radiation was estimated to be 145 ± 40 μSv. This dose value is 16% higher than the calculated value for typical room geometry of Cuban house. (author)

  16. Terrestrial gamma dose rate in Pahang state Malaysia

    International Nuclear Information System (INIS)

    Gabdo, H.T.; Federal College of Education, Yola; Ramli, A.T.; Sanusi, M.S.; Saleh, M.A.; Garba, N.N.; Ahmadu Bello University, Zaria

    2014-01-01

    Environmental terrestrial gamma radiations (TGR) were measured in Pahang state Malaysia between January and April 2013. The TGR dose rates ranged from 26 to 750 nGy h -1 . The measurements were done based on geology and soil types of the area. The mean TGR dose rate was found to be 176 ± 5 nGy h -1 . Few areas of relatively enhanced activity were located in Raub, Temerloh, Bentong and Rompin districts. These areas have external gamma dose rates of between 500 and 750 nGy h -1 . An Isodose map of the state was produced using ArcGIS9 software version 9.3. To evaluate the radiological hazard due to terrestrial gamma dose, the annual effective dose equivalent and the mean population weighted dose rate were calculated and found to be 0.22 mSv year -1 and 168 nGy h -1 respectively. (author)

  17. Radiation absorbed doses in the event of balloon rupture (BR) during endovascular brachytherapy (EB) using 188Re-perrhenate

    International Nuclear Information System (INIS)

    Angelides, S.; Hetherington, E.; Karolis, C.; Walker, B.; Jackson, T.; Knittel, T.; Friend, C.; Pitney, M.; Jepson, N.; Milross, C.; Lonergan, D.

    2000-01-01

    Full text: endovascular brachytherapy (EB) using liquid or solid radiation sources, is an effective emerging therapy for coronary artery disease. Liquid sources provide uniform radiation dose to the vessel wall. However the radiation burden in the unlikely event of BR is not insignificant. The aims of this study were to determine i) absorbed dose for various 188 Re radiopharmaceuticals in the event of BR, and ii) effects of thyroid uptake blocking agent, Lugol's iodine (Ll) and/or bladder catheterisation (BC). Dose calculations were based on MIRDOSE 3.1 with dynamic bladder model and MIRD Dose Estimate Report No.8 for 99 Tc m -pertechnetate, which has similar biokinetic properties to 188 Re-perrhenate. Normal renal function and a bladder voiding interval of 4.8h (1 minute with catheter) were assumed. BR was simulated ex-vivo by puncturing a Solaris angioplasty balloon filled with normal saline at 4 atm. LI, MAG3 and DTPA substantially reduces the radiation dose following BR, particularly to the thyroid, and BC reduces the bladder wall dose. Only the contents of the balloon leaked; 0.4 ml of the total volume of 1.8ml. As binding of 188 Re to ligands is cumbersome, we opted to use LI. Twenty five patients with in-stent re-stenosis have been treated using 188 Re-perrhenate (8 GBq/ml), with no BR. Copyright (2000) The Australian and New Zealand Society of Nuclear Medicine Inc

  18. Absorbed dose due to radioiodine therapy by organs of patients with hyperthyroidism; Dose absorvida em orgaos de pacientes com hipertiroidismo devido a radioiodoterapia

    Energy Technology Data Exchange (ETDEWEB)

    Lima, F.F.; Khoury, H.J.; Bertelli Neto, L. [Pernambuco Univ., Recife, PE (Brazil); Laboratorios CERPE, Recife, PE (Brazil); Bertelli Neto, L. [Instituto de Radioprotecao e Dosimetria (IRD), Rio de Janeiro, RJ (Brazil)

    1999-07-01

    The dose absorbed by organs of patients with hyperthyroidism treated with {sup 131} I was estimated by using the MIRDOSE computer program and data from ICRP-53. The calculation were performed using effective half-life and uptake average values, which were determined for 17 patients treated with 370 MBq and 555MBq of {sup 131} I. The results shown that the dose in the thyroid, for a 370 MBq administrated activity, was of 99 Gy and 49.5 Gy for 60 g and 80 g thyroid respectively. The average dose estimated in other organs were relatively low, presenting values lower than 0.1 Gy in the kidneys, bone marrow and ovaries and 0.19 Gy in the stomach.

  19. Measurement and modeling of gamma-absorbed doses due to atmospheric releases from Los Alamos Meson Physics Facility

    International Nuclear Information System (INIS)

    Bowen, B.M.; Chen, A.I.; Olsen, W.A.; Van Etten, D.M.

    1985-01-01

    Short-term gamma-absorbed doses were measured by one high-pressure ionization chamber (HPIC) at an azimuth of 12 0 from the Los Alamos Meson Physics Facility (LAMPF) stack during the January 1 through February 8 operating cycle. Two HPICs were in the field during the September 8 through December 31 operating cycle, one north and the other north-northeast of the LAMPF stack, but they did not provide reliable data. Meteorological data were also measured at both East Gate and LAMPF. Airborne emission data were taken at the stack. Daily model predictions, based on the integration of modeled 15-min periods, were made for the first LAMPF operating cycle and were compared with the measured data. A comparison of the predicted and measured daily gamma doses due to LAMPF emissions is presented. There is very good correlation between measured and predicted values. During 39-day operating cycles, the model predicted an absorbed dose of 10.3 mrad compared with the 8.8 mrad that was measured, an overprediction of 17%

  20. Creation of ORNL NURBS-based phantoms: evaluation of the voxel effect on absorbed doses from radiopharmaceuticals.

    Science.gov (United States)

    Gardumi, Anna; Farah, Jad; Desbrée, Aurélie

    2013-03-01

    Doses from radiopharmaceuticals absorbed by organs can be assessed using Monte Carlo simulations and computational phantoms. Patient-based voxel phantoms improve the realism of organ topology but present unrealistic stair-stepped surfaces. The goal of this research was to study the voxel effect on the basis of creation and voxelisation of a series of non-uniform rational B-spline (NURBS) reference phantoms issued from the publication of the Oak Ridge National Laboratory (ORNL). Absorbed doses from various radiopharmaceuticals were calculated and compared with the values obtained for the corresponding analytical phantoms for models of an adult male and a 5-y-old child. Dose differences lower than 12.5 % were observed when the critical structure of the skin was excluded. Moreover, the highest differences were noted for small organs and walls. Finally, all NURBS phantoms of the ORNL series, their voxelised version and the corresponding Monte Carlo N-Particle eXtended input files were programmed and are available for further simulations.

  1. COMPARISON BETWEEN ABSORBED DOSES IN TARGET ORGANS IN PANORAMIC RADIOGRAPHY, USING SINGLE EMULSION AND DOUBLE EMULSION FILMS

    Directory of Open Access Journals (Sweden)

    A. R. Talaeipour

    2007-07-01

    Full Text Available "nThe use of panoramic radiography, due to its numerous advantages, is increasing. Radiographic films used in this technique are of double emulsion (DE type which are used with intensifying screens. Single emulsion (SE films can also be used. The purpose of this study was to determine the exposure parameters to achieve an appropriate optical density in these two types of films, and to estimate under such parameters, radiation doses to mandibular bone marrow (MBM, thyroid gland and parotid gland. This study was performed through a tissue equivalent phantom. First, with various tube voltage and tube current, 128 radiographs were taken of phantom with these two types of films. After examining the optical densities, the exposure parameters under which both films have the same density, were determined. Then, phantom again was exposed and MBM, thyroid gland and parotid gland absorbed doses were measured, using TLDs. It was demonstrated that: 1 SE films, in order to provide appropriate optical density, require two times radiation in comparison with double emulsion film; 2 using SE films increases MBM dose, up to 2-2.5 times, thyroid gland dose up to 1.7-2 times and parotid gland dose up to 1.3 times, in comparison with DE films; 3 in DE films, under lower exposure parameters and desirable processing, MBM dose up to 3.5 times, thyroid gland dose up to 1.5 times and parotid gland dose up to 2.5 times will increase. Considering that the risk of radiation induced cancers increases with repeated radiation doses, using SE films is not recommended.

  2. The choice of food consumption rates for radiation dose assessments

    International Nuclear Information System (INIS)

    Simmonds, J.R.; Webb, G.A.M.

    1981-01-01

    The practical problem in estimating radiation doses due to radioactive contamination of food is the choice of the appropriate food intakes. To ensure compliance or to compare with dose equivalent limits, higher than average intake rates appropriate to critical groups should be used. However for realistic estimates of health detriment in the whole exposed population, average intake rates are more appropriate. (U.K.)

  3. The international protocol for the dosimetry of external radiotherapy beams based on standards of absorbed dose to water

    International Nuclear Information System (INIS)

    Andreo, P.

    2001-01-01

    An International Code of Practice (CoP, or dosimetry protocol) for external beam radiotherapy dosimetry based on standards of absorbed dose to water has been published by the IAEA on behalf of IAEA, WHO, PAHO and ESTRO. The CoP provides a systematic and internationally unified approach for the determination of the absorbed dose to water in reference conditions with radiotherapy beams. The development of absorbed-dose-to-water standards for high-energy photons and electrons offers the possibility of reducing the uncertainty in the dosimetry of radiotherapy beams. Many laboratories already provide calibrations at the radiation quality of 60Co gamma-rays and some have extended calibrations to high-energy photon and electron beams. The dosimetry of kilovoltage x-rays, as well as that of proton and ion beams can also be based on these standards. Thus, a coherent dosimetry system based on the same formalism is achieved for practically all radiotherapy beams. The practical use of the CoP as simple. The document is formed by a set of different CoPs for each radiation type, which include detailed procedures and worksheets. All CoPs are based on ND,w chamber calibrations at a reference beam quality Qo, together with radiation beam quality correction factors kQ preferably measured directly for the user's chamber in a standards laboratory. Calculated values of kQ are provided together with their uncertainty estimates. Beam quality specifiers are 60Co, TPR20,10 (high-energy photons), R50 (electrons), HVL and kV (x-rays) and Rres (protons and ions) [es

  4. Radiation Absorbed Dose to the Basal Ganglia from Dopamine Transporter Radioligand 18F-FPCIT

    Directory of Open Access Journals (Sweden)

    William Robeson

    2014-01-01

    Full Text Available Our previous dosimetry studies have demonstrated that for dopaminergic radiotracers, 18F-FDOPA and 18F-FPCIT, the urinary bladder is the critical organ. As these tracers accumulate in the basal ganglia (BG with high affinity and long residence times, radiation dose to the BG may become significant, especially in normal control subjects. We have performed dynamic PET measurements using 18F-FPCIT in 16 normal adult subjects to determine if in fact the BG, although not a whole organ, but a well-defined substructure, receives the highest dose. Regions of interest were drawn over left and right BG structures. Resultant time-activity curves were generated and used to determine residence times for dosimetry calculations. S-factors were computed using the MIRDOSE3 nodule model for each caudate and putamen. For 18F-FPCIT, BG dose ranged from 0.029 to 0.069 mGy/MBq. In half of all subjects, BG dose exceeded 85% of the published critical organ (bladder dose, and in three of those, the BG dose exceeded that for the bladder. The BG can become the dose-limiting organ in studies using dopamine transporter ligands. For some normal subjects studied with F-18 or long half-life radionuclide, the BG may exceed bladder dose and become the critical structure.

  5. Dose rate evaluation of body phantom behind ITER bio-shield wall using Monte Carlo method

    International Nuclear Information System (INIS)

    Beheshti, A.; Jabbari, I.; Karimian, A.; Abdi, M.

    2012-01-01

    One of the most critical risks to humans in reactors environment is radiation exposure. Around the tokamak hall personnel are exposed to a wide range of particles, including neutrons and photons. International Thermonuclear Experimental Reactor (ITER) is a nuclear fusion research and engineering project, which is the most advanced experimental tokamak nuclear fusion reactor. Dose rates assessment and photon radiation due to the neutron activation of the solid structures in ITER is important from the radiological point of view. Therefore, the dosimetry considered in this case is based on the Deuterium-Tritium (DT) plasma burning with neutrons production rate at 14.1 MeV. The aim of this study is assessment the amount of radiation behind bio-shield wall that a human received during normal operation of ITER by considering neutron activation and delay gammas. To achieve the aim, the ITER system and its components were simulated by Monte Carlo method. Also to increase the accuracy and precision of the absorbed dose assessment a body phantom were considered in the simulation. The results of this research showed that total dose rates level near the outside of bio-shield wall of the tokamak hall is less than ten percent of the annual occupational dose limits during normal operation of ITER and It is possible to learn how long human beings can remain in that environment before the body absorbs dangerous levels of radiation. (authors)

  6. The influence of calculated CT X-ray spectra on organ absorbed dose to a human phantom

    International Nuclear Information System (INIS)

    Ferreira, C.C.; Vieira, J.W.; Maia, A.F.

    2009-01-01

    We have evaluated the utilization of five X-ray spectra codes for Monte Carlo (MC) simulations of computed tomography (CT) examinations. Four codes (Xcomp5r, X-raytbc, X-rayb and m and Srs-78) are semi-empiricals and one is based on MC methods (EGSnrc/BEAM Monte Carlo code). The X-ray spectra calculated by the semi-empirical codes were compared with the X-ray spectrum calculated by the EGSnrc/BEAM MC code. The absorbed doses to each organ or tissue were also compared. The calculated doses, and its respective organs, for which occurs the greatest disagreement, as well as the calculated doses for the testes and red bone marrow (two important organs used for calculating effective dose) were presented. The results obtained in this work are in good agreement with those obtained by Ay [M.R. Ay, S. Sarkar, M. Shahriari, D. Sardari, H. Zaidi, Assessment of different computational models for generation of X-ray spectra in diagnostic radiology and mammography, Med. Phys. 32 (2005) 1660], mainly for the bremsstrahlung distribution. Also, it was noted that the total characteristic X-rays produced by the EGSnrc/BEAM MC code increases with the increase of voltage more intensely than with the Xcomp5r, X-raytbc and Srs-78 codes. Comparison between the absorbed dose to each organ or tissue showed that, for X-ray spectra with additional filtration, the code based on Tucker et al. is in agreement with EGSnrc/BEAM MC code. But, for X-ray spectra without additional filtration the code based on Tucker et al. model presented the strong disagreement with EGSnrc/BEAM MC code.

  7. The influence of calculated CT X-ray spectra on organ absorbed dose to a human phantom

    Science.gov (United States)

    Ferreira, C. C.; Vieira, J. W.; Maia, A. F.

    2009-10-01

    We have evaluated the utilization of five X-ray spectra codes for Monte Carlo (MC) simulations of computed tomography (CT) examinations. Four codes (Xcomp5r, X-raytbc, X-rayb&m and Srs-78) are semi-empiricals and one is based on MC methods (EGSnrc/BEAM Monte Carlo code). The X-ray spectra calculated by the semi-empirical codes were compared with the X-ray spectrum calculated by the EGSnrc/BEAM MC code. The absorbed doses to each organ or tissue were also compared. The calculated doses, and its respective organs, for which occurs the greatest disagreement, as well as the calculated doses for the testes and red bone marrow (two important organs used for calculating effective dose) were presented. The results obtained in this work are in good agreement with those obtained by Ay [M.R. Ay, S. Sarkar, M. Shahriari, D. Sardari, H. Zaidi, Assessment of different computational models for generation of X-ray spectra in diagnostic radiology and mammography, Med. Phys. 32 (2005) 1660], mainly for the bremsstrahlung distribution. Also, it was noted that the total characteristic X-rays produced by the EGSnrc/BEAM MC code increases with the increase of voltage more intensely than with the Xcomp5r, X-raytbc and Srs-78 codes. Comparison between the absorbed dose to each organ or tissue showed that, for X-ray spectra with additional filtration, the code based on Tucker et al. is in agreement with EGSnrc/BEAM MC code. But, for X-ray spectra without additional filtration the code based on Tucker et al. model presented the strong disagreement with EGSnrc/BEAM MC code.

  8. Hormone regulation system and cyclic nucleotids in the Chernobyl accident liquidators with doses absorbed less then 1 Gy

    International Nuclear Information System (INIS)

    Kovalenko, A.N.

    1997-01-01

    During 6 years after the accident (1987-1992) a functional state of endocrine system that regulate the adaptation, reproduction, metabolism, vessels tonicity and water-electrolyte balance were investigated in 249 liquidators with doses absorbed less then 1 Gy. The changes of these systems activity in state of basal secretion and peculiarities of their reactions under influence of perturbation (adrenaline, insulin) were revealed. Post-irradiation endocrinopathy was characterized and its role in decrease of the organism's adaptation and in mechanism of sanogenesis and pathogenesis was found. (author)

  9. Methodology for calibration of ionization chambers for X-ray of low energy in absorbed dose to water

    International Nuclear Information System (INIS)

    Oliveira, C.T.; Vivolo, V.; Potiens, M.P.A.

    2015-01-01

    The beams of low energy X-ray (10 to 150 kV) are used in several places in the world to treat a wide variety of surface disorders, and between these malignancies. As in Brazil, at this moment, there is no calibration laboratory providing the control service or calibration of parallel plate ionization chambers, the aim of this project was to establish a methodology for calibration of this kind of ionization chambers at low energy X-ray beams in terms of absorbed dose to water using simulators in the LCI. (author)

  10. Selective Internal Radiation Therapy With Yttrium-90 Glass Microspheres: Biases and Uncertainties in Absorbed Dose Calculations Between Clinical Dosimetry Models.

    Science.gov (United States)

    Mikell, Justin K; Mahvash, Armeen; Siman, Wendy; Baladandayuthapani, Veera; Mourtada, Firas; Kappadath, S Cheenu

    2016-11-15

    To quantify differences that exist between dosimetry models used for 90 Y selective internal radiation therapy (SIRT). Retrospectively, 37 tumors were delineated on 19 post-therapy quantitative 90 Y single photon emission computed tomography/computed tomography scans. Using matched volumes of interest (VOIs), absorbed doses were reported using 3 dosimetry models: glass microsphere package insert standard model (SM), partition model (PM), and Monte Carlo (MC). Univariate linear regressions were performed to predict mean MC from SM and PM. Analysis was performed for 2 subsets: cases with a single tumor delineated (best case for PM), and cases with multiple tumors delineated (typical clinical scenario). Variability in PM from the ad hoc placement of a single spherical VOI to estimate the entire normal liver activity concentration for tumor (T) to nontumoral liver (NL) ratios (TNR) was investigated. We interpreted the slope of the resulting regression as bias and the 95% prediction interval (95%PI) as uncertainty. MC NL single represents MC absorbed doses to the NL for the single tumor patient subset; other combinations of calculations follow a similar naming convention. SM was unable to predict MC T single or MC T multiple (p>.12, 95%PI >±177 Gy). However, SM single was able to predict (p<.012) MC NL single , albeit with large uncertainties; SM single and SM multiple yielded biases of 0.62 and 0.71, and 95%PI of ±40 and ± 32 Gy, respectively. PM T single and PM T multiple predicted (p<2E-6) MC T single and MC T multiple with biases of 0.52 and 0.54, and 95%PI of ±38 and ± 111 Gy, respectively. The TNR variability in PM T single increased the 95%PI for predicting MC T single (bias = 0.46 and 95%PI = ±103 Gy). The TNR variability in PM T multiple modified the bias when predicting MC T multiple (bias = 0.32 and 95%PI = ±110 Gy). The SM is unable to predict mean MC tumor absorbed dose. The PM is statistically correlated with mean MC, but the

  11. Spectra and absorbed dose by photo-neutrons in a solid water mannequin exposed to a Linac of 15 MV

    International Nuclear Information System (INIS)

    Benites R, J.; Vega C, H. R.; Velazquez F, J.

    2012-10-01

    Using Monte Carlo methods was modeled a solid water mannequin; according to the ICRU 44 (1989), Tissue substitutes in radiation dosimetry and measurements, of the International Commission on Radiation Units and Measurements; Report 44. This material Wt 1 is made of H (8.1%), C (67.2%), N (2.4%), O (19.9%), Cl (0.1%), Ca (2.3%) and its density is of 1.02 gr/cm 3 . The mannequin was put instead of the patient, inside the treatment room and the spectra and absorbed dose were determined by photo-neutrons exposed to a Linac of 15 MV. (Author)

  12. Evaluation of a deterministic grid-based Boltzmann solver (GBBS) for voxel-level absorbed dose calculations in nuclear medicine

    Science.gov (United States)

    Mikell, Justin; Cheenu Kappadath, S.; Wareing, Todd; Erwin, William D.; Titt, Uwe; Mourtada, Firas

    2016-06-01

    To evaluate the 3D Grid-based Boltzmann Solver (GBBS) code ATTILA ® for coupled electron and photon transport in the nuclear medicine energy regime for electron (beta, Auger and internal conversion electrons) and photon (gamma, x-ray) sources. Codes rewritten based on ATTILA are used clinically for both high-energy photon teletherapy and 192Ir sealed source brachytherapy; little information exists for using the GBBS to calculate voxel-level absorbed doses in nuclear medicine. We compared DOSXYZnrc Monte Carlo (MC) with published voxel-S-values to establish MC as truth. GBBS was investigated for mono-energetic 1.0, 0.1, and 0.01 MeV electron and photon sources as well as 131I and 90Y radionuclides. We investigated convergence of GBBS by analyzing different meshes ({{M}0},{{M}1},{{M}2} ), energy group structures ({{E}0},{{E}1},{{E}2} ) for each radionuclide component, angular quadrature orders (≤ft. {{S}4},{{S}8},{{S}16}\\right) , and scattering order expansions ({{P}0} -{{P}6} ); higher indices imply finer discretization. We compared GBBS to MC in (1) voxel-S-value geometry for soft tissue, lung, and bone, and (2) a source at the interface between combinations of lung, soft tissue, and bone. Excluding Auger and conversion electrons, MC agreed within  ≈5% of published source voxel absorbed doses. For the finest discretization, most GBBS absorbed doses in the source voxel changed by less than 1% compared to the next finest discretization along each phase space variable indicating sufficient convergence. For the finest discretization, agreement with MC in the source voxel ranged from  -3% to  -20% with larger differences at lower energies (-3% for 1 MeV electron in lung to  -20% for 0.01 MeV photon in bone); similar agreement was found for the interface geometries. Differences between GBBS and MC in the source voxel for 90Y and 131I were  -6%. The GBBS ATTILA was benchmarked against MC in the nuclear medicine regime. GBBS can be a viable

  13. Conversion Factors for Predicting Unshielded Dose Rates in Shielded Waste

    International Nuclear Information System (INIS)

    Clapham, M.; Seamans Jr, J.V.; Arbon, R.E.

    2009-01-01

    This document describes the methodology developed and used by the Advanced Mixed Waste Treatment Project for determining the activity content and the unshielded surface dose rate for lead lined containers contaminated with transuranic waste. Several methods were investigated: - Direct measurement of the dose rate after removing the shielding. - Use of a MicroShield R derived dose conversion factor, (mRem/hr unshielded )/(mRem/hr shielded ), applied to the measured surface dose rate to estimate the unshielded surface dose rate. - Use of a MicroShield R derived activity conversion factor, mRem/hr unshielded /Ci, applied to the measured activity to estimate the unshielded dose rate. - Use of an empirically derived activity conversion factor, mRem/hr unshielded /Ci, applied to the measured activity to estimate the unshielded dose rate. The last approach proved to be the most efficacious by using a combination of nondestructive assay and empirically defined dose rate conversion factors. Empirically derived conversion factors were found to be highly dependent upon the matrix of the waste. Use of conversion factors relied on activity values corrected to address the presence of a lead liner. (authors)

  14. Absorbed and effective dose from newly developed cone beam computed tomography in Korea

    International Nuclear Information System (INIS)

    Lee, Jong Nyeong; Han, Won Jeong; Kim, Eun Kyung

    2007-01-01

    Cone beam computed tomography (CBCT) provides a lower dose and cost alternative to conventional CT, promising to revolutionize the practice of oral and maxillofacial radiology. The purpose of this study was to evaluate the absolved and effective doses of Implagraphy and VCT (Vatech Co., Hwasung, Korea) and compare them with those of panoramic radiography. Thermoluminescent dosimeter (TLD) chips were placed at 27 sites throughout the layers of Female ART Head and Neck Phantom for dosimetry. Implagraphy, VCT units, and Planmeca Proline XC panoramic unit were used for radiation exposure. Radiation weighted doses and effective doses were measured and calculated using 1990 and 2005 ICRP tissue weighting factors. Effective doses in Sv (ICRP 2005, ICRP 1990) were 90.19, 61.62 for Implagraphy at maxillay molar area, 123.20, 90.02 for Implagraphy at mandibular molar area, 183.55, 139.26 for VCT and 40.92, 27.16 for panoramic radiography. Effective doses for VCT and Implagraphy were only about 2.2 to 4.5 times greater than those for panoramic radiography. VCT and Implagraphy, CBCT machines recently developed in Korea, showed moderately low effective doses

  15. Absorbed and effective dose from newly developed cone beam computed tomography in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Nyeong; Han, Won Jeong; Kim, Eun Kyung [Dankook Univ. School of Dentistry, Seoul (Korea, Republic of)

    2007-06-15

    Cone beam computed tomography (CBCT) provides a lower dose and cost alternative to conventional CT, promising to revolutionize the practice of oral and maxillofacial radiology. The purpose of this study was to evaluate the absolved and effective doses of Implagraphy and VCT (Vatech Co., Hwasung, Korea) and compare them with those of panoramic radiography. Thermoluminescent dosimeter (TLD) chips were placed at 27 sites throughout the layers of Female ART Head and Neck Phantom for dosimetry. Implagraphy, VCT units, and Planmeca Proline XC panoramic unit were used for radiation exposure. Radiation weighted doses and effective doses were measured and calculated using 1990 and 2005 ICRP tissue weighting factors. Effective doses in Sv (ICRP 2005, ICRP 1990) were 90.19, 61.62 for Implagraphy at maxillay molar area, 123.20, 90.02 for Implagraphy at mandibular molar area, 183.55, 139.26 for VCT and 40.92, 27.16 for panoramic radiography. Effective doses for VCT and Implagraphy were only about 2.2 to 4.5 times greater than those for panoramic radiography. VCT and Implagraphy, CBCT machines recently developed in Korea, showed moderately low effective doses.

  16. Analysis of thyroid absorbed dose in cervical CT scan with the use of bismuth shielding

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Fernanda S.; Gómez, Álvaro M.L.; Mourão, Arnaldo P., E-mail: fernanda.stephaniebh@yahoo.com.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Santana, Priscila C. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Anatomia e Imagem

    2017-07-01

    The Computed Tomography (CT) has become an important tool to diagnose cancer and to obtain additional information for different clinical questions. Today, it is a very fast, painless and noninvasive test that can be performed high quality images. However, CT scan usually requires a higher radiation exposure dose than a conventional radiography examination. The aim of this study is to determine the dose variation deposited in thyroid and in nearby radiosensitive organs, such as: lenses, pharynx, hypophysis, salivary gland and spinal cord with and without the use of bismuth shielded. A cervical CT scan was performed on anthropomorphic male phantom model Alderson Rando, from the occipital to the first thoracic vertebra, using a GE scanner, Discovery model with 64 channels. Dose measurements have been performed by using radiochromic film strips to register the individual doses in the organs of interest. After the phantom cervical CT scan the radiochromic film strips were processed for obtaining digital images. Digital images were worked to obtain the dose variation profiles for each film. With the data obtained, it was found the organ dose variation. The results show that the thyroid received the highest dose, 40.9 mGy, in the phantom, according to the incidence of the primary X-ray beam. (author)

  17. Estimate of the absorbed dose in the mouse organs and tissues after tritium administration

    International Nuclear Information System (INIS)

    Saito, Masahiro

    2000-01-01

    Chronic and accidental release of tritium from future fusion facilities may cause some extent of hazardous effect to the public health. Various experiments using small animals such as mice have been performed to mimic the dose accumulation due to tritium intake by the human body. An difficulty in such animal experiments using small animals is that it is rather difficult to administer tritium orally and estimate the dose to small organs or tissues. In the course of our study, a simple method to administer THO and T-labeled amino acids orally to the mouse was dictated and dose accumulation in various organs and tissues was determined. The tritium retention in the bone marrow was also determined using the micro-centrifuge method. Throughout our experiment, colony-bred DDY mice were used. The 8-10 week old male mice were orally and intraperitoneally administered THO water or T-amino acids mixture solution. For the purpose of oral administration, a 10 μl aliquot of T-containing saline solution was placed on the tongue of the mice using an automatic micropipette. At various times after tritium administration, the animals were sacrificed and the amount of tritium in various tissues and organs including bone marrow was examined. Dose accumulation pattern after THO intake and T-amino acids was compared between intraperitoneal injection and oral administration. The accumulated dose after oral administration of THO exhibited a tendency to be 10-20% higher than after intraperitoneal injection. The bone marrow dose after oral intake of THO was found to be lower than the doses to urine, blood, liver and testis. In contrast, the blood dose gave a conservative estimate for the dose to the other tissues and organs. (author)

  18. Evaluation of the absorbed dose to the kidneys due to Tc99m (DTPA) / Tc99m (Mag3) and Tc99m (Dmsa)

    International Nuclear Information System (INIS)

    Vasquez A, M.; Murillo C, F.; Castillo D, C.; Rocha J, J.; Sifuentes D, Y.; Sanchez S, P.; Idrogo C, J.; Marquez P, F.

    2015-10-01

    The absorbed dose in the kidneys of adult patients has been assessed using the biokinetics of radiopharmaceuticals containing Tc 99m (DTPA) / Tc 99m (Mag3) or Tc 99m (Dmsa).The absorbed dose was calculated using the formalism MIRD and the Cristy-Eckerman representation for the kidneys. The absorbed dose to the kidneys due to Tc 99m (DTPA) / Tc 99m (Mag3), are given by 0.00466 mGy.MBq -1 / 0.00339 mGy.MBq -1 . Approximately 21.2% of the absorbed dose is due to the bladder (content) and the remaining tissue, included in biokinetics of Tc 99m (DTPA) / Tc 99m (Mag3). The absorbed dose to the kidneys due to Tc 99m (Dmsa) is 0.17881 mGy.MBq -1 . Here, 1.7% of the absorbed dose is due to the bladder, spleen, liver and the remaining tissue, included in biokinetics of Tc 99m (Dmsa). (Author)

  19. Proton absorbed dose distribution in human eye simulated by SRNA-2KG code

    International Nuclear Information System (INIS)

    Ilic, R. D.; Pavlovic, R.

    2004-01-01

    The model of Monte Carlo SRNA code is described together with some numerical experiments to show feasibility of this code to be used in proton therapy, especially for tree dimensional proton absorption dose calculation in human eye. (author) [sr

  20. Absorbed dose measurements in mammography using Monte Carlo method and ZrO{sub 2}+PTFE dosemeters

    Energy Technology Data Exchange (ETDEWEB)

    Duran M, H. A.; Hernandez O, M. [Departamento de Investigacion en Polimeros y Materiales, Universidad de Sonora, Blvd. Luis Encinas y Rosales s/n, Col. Centro, 83190 Hermosillo, Sonora (Mexico); Salas L, M. A.; Hernandez D, V. M.; Vega C, H. R. [Unidad Academica de Estudios Nucleares, Universidad Autonoma de Zacatecas, Cipres 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Pinedo S, A.; Ventura M, J.; Chacon, F. [Hospital General de Zona No. 1, IMSS, Interior Alameda 45, 98000 Zacatecas (Mexico); Rivera M, T. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, IPN, Av. Legaria 694, Col. Irrigacion, 11500 Mexico D. F.(Mexico)], e-mail: hduran20_1@hotmail.com

    2009-10-15

    Mammography test is a central tool for breast cancer diagnostic. In addition, programs are conducted periodically to detect the asymptomatic women in certain age groups; these programs have shown a reduction on breast cancer mortality. Early detection of breast cancer is achieved through a mammography, which contrasts the glandular and adipose tissue with a probable calcification. The parameters used for mammography are based on the thickness and density of the breast, their values depend on the voltage, current, focal spot and anode-filter combination. To achieve an image clear and a minimum dose must be chosen appropriate irradiation conditions. Risk associated with mammography should not be ignored. This study was performed in the General Hospital No. 1 IMSS in Zacatecas. Was used a glucose phantom and measured air Kerma at the entrance of the breast that was calculated using Monte Carlo methods and ZrO{sub 2}+PTFE thermoluminescent dosemeters, this calculation was completed with calculating the absorbed dose. (author)

  1. Assessment of breast absorbed doses during thoracic computed tomography scan to evaluate the effectiveness of bismuth shielding.

    Science.gov (United States)

    Alonso, Thessa C; Mourão, Arnaldo P; Santana, Priscila C; da Silva, Teógenes A

    2016-11-01

    During a lung computed tomography (CT) examination, breast and nearby radiosensitive organs are unnecessarily irradiated because they are in the path of the primary beam. The purpose of this paper is to determine the absorbed dose in breast and nearby organs for unshielded and shielded exposures with bismuth. The experiment was done with a female anthropomorphic phantom undergoing a typical thoracic CT scan, with TLD-100 thermoluminescent detectors insert at breast, lung and thyroid positions. Results showed that dose reduction due to bismuth shielding was approximately 30% and 50% for breast and thyroid, respectively; however, the influence of the bismuth on the image quality needs to be considered. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Methodology for Estimating Radiation Dose Rates to Freshwater Biota Exposed to Radionuclides in the Environment

    Energy Technology Data Exchange (ETDEWEB)

    Blaylock, B.G.

    1993-01-01

    The purpose of this report is to present a methodology for evaluating the potential for aquatic biota to incur effects from exposure to chronic low-level radiation in the environment. Aquatic organisms inhabiting an environment contaminated with radioactivity receive external radiation from radionuclides in water, sediment, and from other biota such as vegetation. Aquatic organisms receive internal radiation from radionuclides ingested via food and water and, in some cases, from radionuclides absorbed through the skin and respiratory organs. Dose rate equations, which have been developed previously, are presented for estimating the radiation dose rate to representative aquatic organisms from alpha, beta, and gamma irradiation from external and internal sources. Tables containing parameter values for calculating radiation doses from selected alpha, beta, and gamma emitters are presented in the appendix to facilitate dose rate calculations. The risk of detrimental effects to aquatic biota from radiation exposure is evaluated by comparing the calculated radiation dose rate to biota to the U.S. Department of Energy's (DOE's) recommended dose rate limit of 0.4 mGy h{sup -1} (1 rad d{sup -1}). A dose rate no greater than 0.4 mGy h{sup -1} to the most sensitive organisms should ensure the protection of populations of aquatic organisms. DOE's recommended dose rate is based on a number of published reviews on the effects of radiation on aquatic organisms that are summarized in the National Council on Radiation Protection and Measurements Report No. 109 (NCRP 1991). The literature identifies the developing eggs and young of some species of teleost fish as the most radiosensitive organisms. DOE recommends that if the results of radiological models or dosimetric measurements indicate that a radiation dose rate of 0.1 mGy h{sup -1} will be exceeded, then a more detailed evaluation of the potential ecological consequences of radiation exposure to endemic

  3. Dose rate effects on the radiation induced oxidation of polyethylene

    International Nuclear Information System (INIS)

    Buttafava, A.; Tavares, A.; Arimondi, M.; Zaopo, A.; Nesti, S.; Dondi, D.; Mariani, M.; Faucitano, A.

    2007-01-01

    The yields and spatial distribution of the products arising from the in source oxidation of 50 μm LDPE films induced by 60-Co gamma radiations and by 300 kev electrons have been investigated as a function of the dose rate. The dose rate was found to have a strong influence on the reaction, the hydroperoxides and carbonyls yields at the lowest gamma dose rate of 0.04 kGy/h being decreased by a factor of about three with increasing the gamma dose rate up to 0.69 kGy/h and by a factor of about 30 when operating at the e-beam dose rate of 1.5 kGy/s. The carbonyls depth concentration profiles, the EPR measurements on radicals intermediates and the experiments of post-irradiation oxidation are consistent with the conclusion that, as far as the gamma irradiation is concerned, the observed dose rate effects cannot be imputed to oxygen diffusion control and/or to the chain branching via hydroperoxides decomposition coupled to the longer times between the initiation events. The hypothesis of the dose rate acting on the kinetic chain length of the radioxidation which in turn implies a substantially uniform distribution of radicals in the amorphous phase attained through spur expansion is proposed

  4. Development of modern approach to absorbed dose assessment in radionuclide therapy, based on Monte Carlo method simulation of patient scintigraphy

    Science.gov (United States)

    Lysak, Y. V.; Klimanov, V. A.; Narkevich, B. Ya

    2017-01-01

    One of the most difficult problems of modern radionuclide therapy (RNT) is control of the absorbed dose in pathological volume. This research presents new approach based on estimation of radiopharmaceutical (RP) accumulated activity value in tumor volume, based on planar scintigraphic images of the patient and calculated radiation transport using Monte Carlo method, including absorption and scattering in biological tissues of the patient, and elements of gamma camera itself. In our research, to obtain the data, we performed modeling scintigraphy of the vial with administered to the patient activity of RP in gamma camera, the vial was placed at the certain distance from the collimator, and the similar study was performed in identical geometry, with the same values of activity of radiopharmaceuticals in the pathological target in the body of the patient. For correct calculation results, adapted Fisher-Snyder human phantom was simulated in MCNP program. In the context of our technique, calculations were performed for different sizes of pathological targets and various tumors deeps inside patient’s body, using radiopharmaceuticals based on a mixed β-γ-radiating (131I, 177Lu), and clear β- emitting (89Sr, 90Y) therapeutic radionuclides. Presented method can be used for adequate implementing in clinical practice estimation of absorbed doses in the regions of interest on the basis of planar scintigraphy of the patient with sufficient accuracy.

  5. Dose rate effect on low-dose hyper-radiosensitivity with cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Geon-Min; Kim, Eun-Hee [Seoul National University, Seoul (Korea, Republic of)

    2016-10-15

    Low-dose hyper-radiosensitivity (HRS) is the phenomenon that mammalian cells exhibit higher sensitivity to radiation at low doses (< 0.5 Gy) than expected by the linear-quadratic model. At doses above 0.5Gy, the cellular response is recovered to the level expected by the linear-quadratic model. This transition is called the increased radio-resistance (IRR). HRS was first verified using Chinese hamster V79 cells in vitro by Marples and has been confirmed in studies with other cell lines including human normal and tumor cells. HRS is known to be induced by inactivation of ataxia telangiectasia-mutated (ATM), which plays a key role in repairing DNA damages. Considering the connection between ATM and HRS, one can infer that dose rate may affect cellular response regarding HRS at low doses. In this study, we quantitated the effect of dose rate on HRS by clonogenic assay with normal and tumor cells. The HRS of cells at low dose exposures is a phenomenon already known. In this study, we observed HRS of rat normal diencephalon cells and rat gliosarcoma cells at doses below 1 Gy. In addition, we found that dose rate mattered. HRS occurred at low doses, but only when total dose was delivered at a rate below certain level.

  6. Absorbed Internal Dose Conversion Coefficients for Domestic Reference Animals and Plant

    International Nuclear Information System (INIS)

    Keum, Dong Kwon; Jun, In; Lim, Kwang Muk; Choi, Yong Ho

    2010-01-01

    This paper describes the methodology of calculating the internal dose conversion coefficient in order to assess the radiological impact on non-human species. This paper also presents the internal dose conversion coefficients of 25 radionuclides ( 3 H, 7 Be, 14 C, 40 K, 51 Cr, 54 Mn, 59 Fe, 58 Co, 60 Co, 65 Zn, 90 Sr, '9 5 Zr, 95 Nb, 99 Tc, 106 Ru, 129 I, 131 I, 136 Cs, 137 Cs, 140 Ba, 140 La, 144 Ce, 238 U, 239 Pu, 240 Pu) for domestic seven reference animals (roe deer, rat, frog, snake, Chinese minnow, bee, and earthworm) and one reference plant (pine tree). The uniform isotropic model was applied in order to calculate the internal dose conversion coefficients. The calculated internal dose conversion coefficient (μGyd -1 per Bqkg -1 ) ranged from 10 -6 to 10 -2 according to the type of radionuclides and organisms studied. It turns out that the internal does conversion coefficient was higher for alpha radionuclides, such as 238 U, 239 Pu, and 240 Pu, and for large organisms, such as roe deer and pine tree. The internal dose conversion coefficients of 239 Pu, 240 Pu, 238 U, 14 C, 3 H and 99 Tc were independent of the organism

  7. Absorbed Internal Dose Conversion Coefficients for Domestic Reference Animals and Plant

    Energy Technology Data Exchange (ETDEWEB)

    Keum, Dong Kwon; Jun, In; Lim, Kwang Muk; Choi, Yong Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-02-15

    This paper describes the methodology of calculating the internal dose conversion coefficient in order to assess the radiological impact on non-human species. This paper also presents the internal dose conversion coefficients of 25 radionuclides ({sup 3}H, {sup 7}Be, {sup 14}C, {sup 40}K, {sup 51}Cr, {sup 54}Mn, {sup 59}Fe, {sup 58}Co, {sup 60}Co, {sup 65}Zn, {sup 90}Sr, '9{sup 5}Zr, {sup 95}Nb, {sup 99}Tc, {sup 106}Ru, {sup 129}I, {sup 131}I, {sup 136}Cs, {sup 137}Cs, {sup 140}Ba, {sup 140}La, {sup 144}Ce, {sup 238}U, {sup 239}Pu, {sup 240}Pu) for domestic seven reference animals (roe deer, rat, frog, snake, Chinese minnow, bee, and earthworm) and one reference plant (pine tree). The uniform isotropic model was applied in order to calculate the internal dose conversion coefficients. The calculated internal dose conversion coefficient (muGyd{sup -1} per Bqkg{sup -1}) ranged from 10{sup -6} to 10{sup -2} according to the type of radionuclides and organisms studied. It turns out that the internal does conversion coefficient was higher for alpha radionuclides, such as {sup 238}U, {sup 239}Pu, and {sup 240}Pu, and for large organisms, such as roe deer and pine tree. The internal dose conversion coefficients of {sup 239}Pu, {sup 240}Pu, {sup 238}U, {sup 14}C, {sup 3}H and {sup 99}Tc were independent of the organism

  8. Risks to health from radiation at low dose rates

    International Nuclear Information System (INIS)

    Gentner, N.E.; Osborne, R.V.

    1997-01-01

    Our focus is on whether, using a balance-of-evidence approach, it is possible to say that at a low enough dose, or at a sufficiently low dose rate, radiation risk reduces to zero in a population. We conclude that insufficient evidence exists at present to support such a conclusion. In part this reflects statistical limitations at low doses, and in part (although mechanisms unquestionably exist to protect us against much of the damage induced by ionizing radiation) the biological heterogeneity of human populations, which means these mechanisms do not act in all members of the population at all times. If it is going to be possible to demonstrate that low doses are less dangerous than we presently assume, the evidence, paradoxically, will likely come from studies of higher dose and dose rate scenarios than are encountered occupationally. (author)

  9. Location of radiosensitive organs, measurement of absorbed dose to radiosensitive organs and use of bismuth shields in paediatric anthropomorphic phantoms

    International Nuclear Information System (INIS)

    Inkoom, S.

    2014-08-01

    thyroid organ dose was reduced to 46% (10-y-old). The combined use of single shield and AEC reduced the thyroid surface dose to a maximum of 70% (5-y-old); whilst the thyroid organ dose was reduced to 62% (10-y-old). The use of double shields and AEC activation further reduced the surface / organ dose to 76% / 65% (5-y-old). The maximum dose to the eye lenses due to neck CT was 7.0 mGy / 6.2 mGy (10-y-old) for FTC / AEC. The maximum breast dose attributable to neck CT was 0.6 mGy for 5-, and 10-y-old phantoms for all protocols. For thorax CT scans, the use of AEC induced a significant increase in the thyroid organ dose by a maximum value of 70% (1-y-old), and thyroid surface dose by 70% (newborn), and mean breast surface dose by 69% (newborn). The maximum increase of the effective dose as a result of application of AEC was 54% (newborn). In conclusion, the production of charts of radiosensitive organs inside paediatric anthropomorphic phantoms for dosimetric purposes was feasible. In-plane bismuth thyroid shielding decreases radiation dose in MDCT with/without deteriorating image quality. AEC was more effective in thyroid dose reduction than in-plane bismuth shields (head and neck CT, neck CT). AEC increased the absorbed dose to both the thyroid and the breast, as well as the effective dose in thorax CT. Thus, AEC should be abandoned as a dose optimisation tool during thoracic MDCT, especially in neonates, infants and children younger than 10-years-old. Placement of the spacer between shield and surface had no significant impact on the measured doses, but significantly decreased the image noise. (au)

  10. Monte Carlo dosimetry of the IRAsource high dose rate 192Ir brachytherapy source

    International Nuclear Information System (INIS)

    Sarabiasl, Akbar; Ayoobian, Navid; Jabbari, Iraj; Poorbaygi, Hossein; Javanshir, Mohammad Reza

    2016-01-01

    High-dose-rate (HDR) brachytherapy is a common method for cancer treatment in clinical brachytherapy. Because of the different source designs, there is a need for specific dosimetry data set for each HDR model. The purpose of this study is to obtain detailed dose rate distributions in water phantom for a first prototype HDR 192 Ir brachytherapy source model, IRAsource, and compare with the other published works. In this study, Monte Carlo N-particle (MCNP version 4C) code was used to simulate the dose rate distributions around the HDR source. A full set of dosimetry parameters reported by the American Association of Physicists in Medicine Task Group No. 43U1 was evaluated. Also, the absorbed dose rate distributions in water, were obtained in an along-away look-up table. The dose rate constant, Λ, of the IRAsource was evaluated to be equal to 1.112 ± 0.005 cGy h −1 U −1 . The results of dosimetry parameters are presented in tabulated and graphical formats and compared with those reported from other commercially available HDR 192 Ir sources, which are in good agreement. This justifies the use of specific data sets for this new source. The results obtained in this study can be used as input data in the conventional treatment planning systems.

  11. Estimation of absorbed dose by newborn patients subjected to chest radiographs

    International Nuclear Information System (INIS)

    Bunick, Ana P.; Schelin, Hugo R.; Denyak, Valeriy

    2016-01-01

    The aim of this study is to present an estimate of the effective dose received by newborn patients hospitalized in NICU and subjected to X-ray examinations of the chest in the AP projection. Initially, were followed examinations chest X-rays performed on newborn patients and subsequently, simulated in a newborn simulator object. The ESAK values obtained by TLDs were used to calculate the effective dose obtained at each examination by Caldose X software. The estimated values for the effective dose in the simulated exams in this study range from 2,3μSv the 10,7μSv. The results achieved are, generally, inferior to those reported for similar previous studies. (author)

  12. Measurement of high dose rates of 60Co by gamma activation of115In and 111Cd foils

    International Nuclear Information System (INIS)

    Haddad, Kh; Qattan, M.; Taleb, A.

    2009-12-01

    The high gamma dose rate measurement technique using nuclear reaction (γ,(γ ' ') was introduced in this work. This technique is cheap, easy, reliable, and independent of chemical and physical factors, which affect other techniques. The response to the absorbed dose in this technique is linear and can be used for high dose. Cd and In foils were irradiated using 60 Co source and the resulted isomer activities were measured using gamma spectrometer. These foils were calibrated to be used as dosemeter and its results were compared with conventional one. The dose distribution in the irradiation field was determined using In foils. (authors)

  13. Design of movable fixed area γ dose rate monitor

    International Nuclear Information System (INIS)

    Li Dongyu; Cheng Wen; Li Jikai; Huang Hong; Shen Qiming; Zhang Qiang; Liu Zhengshan

    2005-10-01

    Movable fixed area γ dose rate monitor has not only the characteristics of fixed area γ dose rate monitor, but that of portable meter as well. Its main function is to monitor the areas where dose rate would change without orderliness to prevent unplanned radiation exposure accidents from happening. The design way of the monitor, the main indicators description, the working principle and the comprising of software and hardware are briefly introduced. The monitor has the characteristics of simple installation, easy maintenance, little power consumption, wide range, notability of visual and audible alarm and so on. Its design and technique have novelty and advancement. (authors)

  14. Thyroid dose of I-131 absorbed by the internal organs of a pregnant woman

    International Nuclear Information System (INIS)

    Arcos P, A.; Manzanares A, E.; Vega C, H.R.; Leon, C.L. de

    2007-01-01

    The use of nuclear techniques, for diagnosis or treatment, generates stress in the patient and its relatives. During the pregnancy some sufferings related with the thyroid gland can be presented. If the patient is pregnant, OEP or NOEP, the stress comes from the fear to that the product can it turns affected. The dose is calculated that the Iodine 131, captured by the thyroid of a woman with three months of pregnancy, it deposits in the brain, stomach, heart, kidneys, liver, lungs, ovaries, pancreas, thymus, spleen and in the uterus. The thymus is the organ that receives the biggest dose. (Author)

  15. Effects of differents gamma radiation doses absorbed for postharvest tomato fruits

    International Nuclear Information System (INIS)

    Silva Abreu, Toneypson da; Jesus, Edgar F.O. de; Soares, Antonio G.

    1997-01-01

    Postharvest tomato fuits Santa Cruz were submitted to prestorage gamma irradiation treatment with different doses range zero (unirradiated fruits) to 1000 Gy. The aim of this study is to evaluate the postharvest quality parameters: Hunter colour values for light transmittance analysis, pH, total titratable acidity, total soluble solids, maximum firmness and maturity stage. The fruits were stored under (25±1) 0 C with (93±3) relative humidity. The results obtained from the different irradiated treatments showed 600 Gy as the best dose to increase the shelf-life of tomato fruits and to decay its ripening. (author). 5 refs., 12 figs., 1 tab

  16. Absorbed dose to water reference dosimetry using various water-equivalent solid phantoms in high-energy photon beams

    International Nuclear Information System (INIS)

    Araki, Fujio; Hanyu, Yuji; Okumura, Masahiko

    2007-01-01

    Most recent megavoltage dosimetry protocols (e.g., the Japan Society of Medical Physics (JSMP) (JSMP-01), the American Association of Physicists in Medicine (AAPM) (TG-51), and the International Atomic Energy Agency (IAEA) (TRS-398)) have limited to the use of liquid water as a phantom material for reference dose measurements. This is because water is well-defined and reproducibly available compared to water-equivalent solid phantoms. This study presents methods to determine absorbed dose to water using ionization chambers calibrated in terms of absorbed dose to water but irradiated in solid phantoms. Achieving solid phantom measurements on an absolute basis has distinct advantages in verification measurements and quality assurance. We provide a depth scaling factor that transfers a depth in the solid phantom to a water equivalent depth and an ionization conversion factor (ionization ratio) that converts a chamber reading in the solid phantom to that in water. The absorbed dose to water under reference conditions can be obtained from the solid phantom measurements by using the two factors. We calculated the depth scaling factor for four solid phantoms (Solid Water RMI457, Tough Water WE211, RW3, and MixDP) for photon energies between 4 and 18 MV. The calculated average scaling factor for each phantom agreed within 1.5% compared with the relative electron density. For various Farmer-type cylindrical chambers, we also calculated and measured the ionization conversion factor for the four solid phantoms. The solid phantom measurements were performed at many hospitals. For RMI457 and WE211, the differences between measured and calculated factors varied between -0.5% and 0.7% with the average ionization conversion factor 0.3% lower than the calculation, whereas RW3 agreed within 0.5% after one phantom examination. Similarly, the differences for MixDP ranged from -0.2% to -1.5% with the average 1.0% lower than the calculation. The composition of commercial plastic

  17. Dose rate effect on micronuclei induction in human blood lymphocytes exposed to single pulse and multiple pulses of electrons.

    Science.gov (United States)

    Acharya, Santhosh; Bhat, N N; Joseph, Praveen; Sanjeev, Ganesh; Sreedevi, B; Narayana, Y

    2011-05-01

    The effects of single pulses and multiple pulses of 7 MV electrons on micronuclei (MN) induction in cytokinesis-blocked human peripheral blood lymphocytes (PBLs) were investigated over a wide range of dose rates per pulse (instantaneous dose rate). PBLs were exposed to graded doses of 2, 3, 4, 6, and 8 Gy of single electron pulses of varying pulse widths at different dose rates per pulse, ranging from 1 × 10(6) Gy s(-1) to 3.2 × 10(8) Gy s(-1). Different dose rates per pulse were achieved by changing the dose per electron pulse by adjusting the beam current and pulse width. MN yields per unit absorbed dose after irradiation with single electron pulses were compared with those of multiple pulses of electrons. A significant decrease in the MN yield with increasing dose rates per pulse was observed, when dose was delivered by a single electron pulse. However, no reduction in the MN yield was observed when dose was delivered by multiple pulses of electrons. The decrease in the yield at high dose rates per pulse suggests possible radical recombination, which leads to decreased biological damage. Cellular response to the presence of very large numbers of chromosomal breaks may also alter the damage.

  18. Reduction of Absorbed Dose in Storage Phosphor Urography by Significant Lowering of Tube Voltage and Adjustment of Image Display Parameters

    International Nuclear Information System (INIS)

    Wiltz, H.J.; Petersen, U.; Axelsson, B.

    2005-01-01

    Purpose: To investigate whether image quality in storage phosphor urography can be maintained when the X-ray tube voltage is significantly lowered to give a lower patient dose. Material and Methods: Initial phantom studies were used to establish exposure settings at 53 kV that gave signal-to-noise ratios for contrast media structures equivalent to those obtained at the reference kilovoltage of 69 kV. Dose area product and image quality, assessed by image quality criteria and visual grading, were then recorded for 44 patients drawn at random to be examined by either the standard or modified technique. Results: Absorbed dose could be reduced by more than 30% without any significant change in image quality in manually controlled exposures and by 3% in exposures controlled by AEC. Conclusion: It might be possible to lower the tube voltage in digital examinations involving contrast media as a means of lowering patient dose. The image display parameters need to be adjusted to maintain image quality

  19. Contrast-enhanced radiotherapy: feasibility and characteristics of the physical absorbed dose distribution for deep-seated tumors

    Energy Technology Data Exchange (ETDEWEB)

    Garnica-Garza, H M [Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional Unidad Monterrey, Via del Conocimiento 201 Parque de Investigacion e Innovacion Tecnologica, Apodaca NL C.P. 66600 (Mexico)], E-mail: hgarnica@cinvestav.mx

    2009-09-21

    Radiotherapy using kilovoltage x-rays in conjunction with contrast agents incorporated into the tumor, gold nanoparticles in particular, could represent a potential alternative to current techniques based on high-energy linear accelerators. In this paper, using the voxelized Zubal phantom in conjunction with the Monte Carlo code PENELOPE to model a prostate cancer treatment, it is shown that in combination with a 360 deg. arc delivery technique, tumoricidal doses of radiation can be delivered to deep-seated tumors while still providing acceptable doses to the skin and other organs at risk for gold concentrations in the tumor within the range of 7-10 mg-Au per gram of tissue. Under these conditions and using a x-ray beam with 90% of the fluence within the range of 80-200 keV, a 72 Gy physical absorbed dose to the prostate can be delivered, while keeping the rectal wall, bladder, skin and femoral heads below 65 Gy, 55 Gy, 40 Gy and 30 Gy, respectively. However, it is also shown that non-uniformities in the contrast agent concentration lead to a severe degradation of the dose distribution and that, therefore, techniques to locally quantify the presence of the contrast agent would be necessary in order to determine the incident x-ray fluence that best reproduces the dosimetry obtained under conditions of uniform contrast agent distribution.

  20. The Effects on Absorbed Dose Distribution in Intraoral X-ray Imaging When Using Tube Voltages of 60 and 70 kV for Bitewing Imaging

    Directory of Open Access Journals (Sweden)

    Kristina Hellén-Halme

    2013-10-01

    Full Text Available Objectives: Efforts are made in radiographic examinations to obtain the best image quality with the lowest possible absorbed dose to the patient. In dental radiography, the absorbed dose to patients is very low, but exposures are relatively frequent. It has been suggested that frequent low-dose exposures can pose a risk for development of future cancer. It has previously been reported that there was no significant difference in the diagnostic accuracy of approximal carious lesions in radiographs obtained using tube voltages of 60 and 70 kV. The aim of this study was, therefore, to evaluate the patient dose resulting from exposures at these tube voltages to obtain intraoral bitewing radiographs.Material and Methods: The absorbed dose distributions resulting from two bitewing exposures were measured at tube voltages of 60 and 70 kV using Gafchromic® film and an anatomical head phantom. The dose was measured in the occlusal plane, and ± 50 mm cranially and caudally to evaluate the amount of scattered radiation. The same entrance dose to the phantom was used. The absorbed dose was expressed as the ratio of the maximal doses, the mean doses and the integral doses at tube voltages of 70 and 60 kV.Results: The patient receives approximately 40 - 50% higher (mean and integral absorbed dose when a tube voltage of 70 kV is used.Conclusions: The results of this study clearly indicate that 60 kV should be used for dental intraoral radiographic examinations for approximal caries detection.

  1. Modeling the absorbed dose to the common carotid arteries following radioiodine treatment of benign thyroid disease

    DEFF Research Database (Denmark)

    la Cour, Jeppe Lerche; Hedemann-Jensen, Per; Søgaard-Hansen, Jens

    2013-01-01

    in the western countries are treated each year with RAI for benign thyroid disorders (about 140,000 a year in the EU), stressing that it is of clinical importance to be aware of even rare radiation-induced side effects. In order to induce or accelerate atherosclerosis, the dose to the carotid arteries has...

  2. Dose determination with nitro blue tetrazolium containing radiochromic dye films by measuring absorbed and reflected light

    DEFF Research Database (Denmark)

    Kovács, A.; Baranyai, M.; Wojnárovits, L.

    2000-01-01

    Tetrazolium salts as heterocyclic organic compounds are known to form highly coloured, water insoluble formazans by reduction, which can be utilized in radiation processing dosimetry. Radiochromic films containing nitro blue tetrazolium dissolved in a polymer matrix were found suitable for dose...

  3. Effect of Dose Rate Variation on Dose Distribution in IMRT with a Dynamic Multileaf Collimator

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Kyoung Dal; Jae, Young Wan; Yoon, Il Kyu; Lee, Jae Hee; Yoo, Suk Hyun [Dept. of Radiation Oncology, Seoul National University Hospital, Seoul (Korea, Republic of)

    2012-03-15

    To evaluate dose distribution differences when the dose rates are randomly changed in intensity-modulated radiation therapy using a dynamic multileaf collimator. Two IMRT treatment plans including small-field and large-field plans were made using a commercial treatment planning system (Eclipse, Varian, Palo Alto, CA). Each plan had three sub-plans according to various dose rates of 100, 400, and 600 MU/min. A chamber array (2D-Array Seven729, PTW-Freiburg) was positioned between solid water phantom slabs to give measurement depth of 5 cm and backscattering depth of 5 cm. Beam deliveries were performed on the array detector using a 6 MV beam of a linear accelerator (Clinac 21EX, Varian, Palo Alto, CA) equipped with 120-leaf MLC (Millenium 120, Varian). At first, the beam was delivered with same dose rates as planned to obtain reference values. After the standard measurements, dose rates were then changed as follows: 1) for plans with 100 MU/min, dose rate was varied to 200, 300, 400, 500 and 600 MU/min, 2) for plans with 400 MU/min, dose rate was varied to 100, 200, 300, 500 and 600 MU/min, 3) for plans with 600 MU/min, dose rate was varied to 100, 200, 300, 400 and 500 MU/min. Finally, using an analysis software (Verisoft 3.1, PTW-Freiburg), the dose difference and distribution between the reference and dose-rate-varied measurements was evaluated. For the small field plan, the local dose differences were -0.8, -1.1, -1.3, -1.5, and -1.6% for the dose rate of 200, 300, 400, 500, 600 MU/min, respectively (for 100 MU/min reference), +0.9, +0.3, +0.1, -0.2, and -0.2% for the dose rate of 100, 200, 300, 500, 600 MU/min, respectively (for 400 MU/min reference) and +1.4, +0.8, +0.5, +0.3, and +0.2% for the dose rate of 100, 200, 300, 400, 500 MU/min, respectively (for 600 MU/min reference). On the other hand, for the large field plan, the pass-rate differences were -1.3, -1.6, -1.8, -2.0, and -2.4% for the dose rate of 200, 300, 400, 500, 600 MU/min, respectively (for 100

  4. Monte Carlo calculation of dose rate conversion factors for external exposure to photon emitters in soil

    CERN Document Server

    Clouvas, A; Antonopoulos-Domis, M; Silva, J

    2000-01-01

    The dose rate conversion factors D/sub CF/ (absorbed dose rate in air per unit activity per unit of soil mass, nGy h/sup -1/ per Bq kg/sup -1/) are calculated 1 m above ground for photon emitters of natural radionuclides uniformly distributed in the soil. Three Monte Carlo codes are used: 1) The MCNP code of Los Alamos; 2) The GEANT code of CERN; and 3) a Monte Carlo code developed in the Nuclear Technology Laboratory of the Aristotle University of Thessaloniki. The accuracy of the Monte Carlo results is tested by the comparison of the unscattered flux obtained by the three Monte Carlo codes with an independent straightforward calculation. All codes and particularly the MCNP calculate accurately the absorbed dose rate in air due to the unscattered radiation. For the total radiation (unscattered plus scattered) the D/sub CF/ values calculated from the three codes are in very good agreement between them. The comparison between these results and the results deduced previously by other authors indicates a good ag...

  5. Development and comparison of computational models for estimation of absorbed organ radiation dose in rainbow trout (Oncorhynchus mykiss) from uptake of iodine-131

    International Nuclear Information System (INIS)

    Martinez, N.E.; Johnson, T.E.; Capello, K.; Pinder, J.E.

    2014-01-01

    This study develops and compares different, increasingly detailed anatomical phantoms for rainbow trout (Oncorhynchus mykiss) for the purpose of estimating organ absorbed radiation dose and dose rates from 131 I uptake in multiple organs. The models considered are: a simplistic geometry considering a single organ, a more specific geometry employing additional organs with anatomically relevant size and location, and voxel reconstruction of internal anatomy obtained from CT imaging (referred to as CSUTROUT). Dose Conversion Factors (DCFs) for whole body as well as selected organs of O. mykiss were computed using Monte Carlo modeling, and combined with estimated activity concentrations, to approximate dose rates and ultimately determine cumulative radiation dose (μGy) to selected organs after several half-lives of 131 I. The different computational models provided similar results, especially for source organs (less than 30% difference between estimated doses), and whole body DCFs for each model (∼3 × 10 −3 μGy d −1 per Bq kg −1 ) were comparable to DCFs listed in ICRP 108 for 131 I. The main benefit provided by the computational models developed here is the ability to accurately determine organ dose. A conservative mass-ratio approach may provide reasonable results for sufficiently large organs, but is only applicable to individual source organs. Although CSUTROUT is the more anatomically realistic phantom, it required much more resource dedication to develop and is less flexible than the stylized phantom for similar results. There may be instances where a detailed phantom such as CSUTROUT is appropriate, but generally the stylized phantom appears to be the best choice for an ideal balance between accuracy and resource requirements. - Highlights: • Computational models (phantoms) are developed for rainbow trout internal dosimetry. • Phantoms are combined with empirical models for 131 I uptake to estimate dose. • Voxel and stylized phantoms predict

  6. Absorbed Dose and Effective Dose for Lung Cancer Image Guided Radiation Therapy(IGRT) using CBCT and 4D-CBCT

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae Yong; Lee, Woo Suk; Koo, Ki Lae; Kim, Joo Seob; Lee, Sang Hyeon [Dept. of Radiation Oncology, GangNeung Asan Hospital, Gangneung (Korea, Republic of)

    2016-06-15

    To evaluate the results of absorbed and effective doses using CBCT and 4D-CBCT settings for lung cancer. This experimental study. Measurements were performed using a Anderson rando phantom with OSLD(optically stimulated luminescent dosimeters). It was performed computed tomography(Lightspeed GE, USA) in order to express the major organs of the human body. Measurements were obtained a mean value is repeated three times each. Evaluations of effective dose and absorbed dose were performed the CL-IX-Thorax mode and Truebeam-Thorax mode CBCT. Additionally, compared Truebeam-Thorax mode CBCT with Truebeam-Thorax mode 4D-CBCT(Four-dimensional Cone Beam Computed Tomography). Average absorbed dose in the CBCT of CL-IX was measured in lung 2.505cGy, heart 2.595cGy, liver 2.145cGy, stomach 1.934cGy, skin 2.233cGy, in case of Truebeam, It was measured lung 1.725cGy, heart 2.034cGy, liver 1.616cGy, stomach 1.470cGy, skin 1.445cGy. In case of 4D-CBCT, It was measured lung 3.849cGy, heart 4.578cGy, liver 3.497cGy, stomach 3.179cGy, skin 3.319cGy Average effective dose, considered tissue weighting and radiation weighting, in the CBCT of CL-IX was measured lung 2.164mSv, heart 2.241mSVv, liver 0.136mSv, stomach 1.668mSv, skin 0.009mSv, in case of Turebeam, it was measured lung 1.725mSv, heart 1.757mSv, liver 0.102mSv, stomach 1.270mSv, skin 0.005mSv, In case of 4D-CBCT, It was measured lung 3.326mSv, heart 3.952mSv, liver 0.223mSv, stomach 2.747mSv, skin 0.013mSv. As a result, absorbed dose and effective Dose in the CL-IX than Truebeam was higher about 1.3 times and in the 4D-CBCT Truebeam than CBCT of Truebeam was higher about 2.2times However, a large movement of the patient and respiratory gated radiotherapy may be more accurate treatment in 4D-CBCT. Therefore, it will be appropriate to selectively used.

  7. Microfluidic thrombosis under multiple shear rates and antiplatelet therapy doses.

    Directory of Open Access Journals (Sweden)

    Melissa Li

    Full Text Available The mainstay of treatment for thrombosis, the formation of occlusive platelet aggregates that often lead to heart attack and stroke, is antiplatelet therapy. Antiplatelet therapy dosing and resistance are poorly understood, leading to potential incorrect and ineffective dosing. Shear rate is also suspected to play a major role in thrombosis, but instrumentation to measure its influence has been limited by flow conditions, agonist use, and non-systematic and/or non-quantitative studies. In this work we measured occlusion times and thrombus detachment for a range of initial shear rates (500, 1500, 4000, and 10000 s(-1 and therapy concentrations (0-2.4 µM for eptifibatide, 0-2 mM for acetyl-salicylic acid (ASA, 3.5-40 Units/L for heparin using a microfluidic device. We also measured complete blood counts (CBC and platelet activity using whole blood impedance aggregometry. Effects of shear rate and dose were analyzed using general linear models, logistic regressions, and Cox proportional hazards models. Shear rates have significant effects on thrombosis/dose-response curves for all tested therapies. ASA has little effect on high shear occlusion times, even at very high doses (up to 20 times the recommended dose. Under ASA therapy, thrombi formed at high shear rates were 4 times more prone to detachment compared to those formed under control conditions. Eptifibatide reduced occlusion when controlling for shear rate and its efficacy increased with dose concentration. In contrast, the hazard of occlusion from ASA was several orders of magnitude higher than that of eptifibatide. Our results show similar dose efficacy to our low shear measurements using whole blood aggregometry. This quantitative and statistically validated study of the effects of a wide range of shear rate and antiplatelet therapy doses on occlusive thrombosis contributes to more accurate understanding of thrombosis and to models for optimizing patient treatment.

  8. Absorbed dose estimates from a single measurement one to three days after the administration of 177Lu-DOTATATE/-TOC.

    Science.gov (United States)

    Hänscheid, Heribert; Lapa, Constantin; Buck, Andreas K; Lassmann, Michael; Werner, Rudolf A

    2017-01-01

    To retrospectively analyze the accuracy of absorbed dose estimates from a single measurement of the activity concentrations in tumors and relevant organs one to three days after the administration of 177 Lu-DOTA-TATE/TOC assuming tissue specific effective half-lives. Activity kinetics in 54 kidneys, 30 neuroendocrine tumor lesions, 25 livers, and 27 spleens were deduced from series of planar images in 29 patients. After adaptation of mono- or bi-exponential fit functions to the measured data, it was analyzed for each fit function how precise the time integral can be estimated from fixed tissue-specific half-lives and a single measurement at 24, 48, or 72 h after the administration. For the kidneys, assuming a fixed tissue-specific half-life of 50 h, the deviations of the estimate from the actual integral were median (5 % percentile, 95 % percentile): -3 °% (-15 %>; +16 °%) for measurements after 24 h, +2 %> (-9 %>; +12 %>) for measurements after 48 h, and 0 % (-2 %; +12 %) for measurements after 72 h. The corresponding values for the other tissues, assuming fixed tissue-specific half-lives of 67 h for liver and spleen and 77 h for tumors, were +2 % (-25 %; +20 %) for measurements after 24 h, +2 °% (-16 %>; +17 %>) for measurements after 48 h, and +2 %> (-11 %>; +10 %>) for measurements after 72 h. Especially for the kidneys, which often represent the dose limiting organ, but also for liver, spleen, and neuroendocrine tumors, a meaningful absorbed dose estimate is possible from a single measurement after 2, more preferably 3 days after the administration of 177 Lu-DOTA-TATE/-TOC assuming fixed tissue specific effective half-lives. Schattauer GmbH.

  9. Estimating average glandular dose by measuring glandular rate in mammograms

    International Nuclear Information System (INIS)

    Goto, Sachiko; Azuma, Yoshiharu; Sumimoto, Tetsuhiro; Eiho, Shigeru

    2003-01-01

    The glandular rate of the breast was objectively measured in order to calculate individual patient exposure dose (average glandular dose) in mammography. By employing image processing techniques and breast-equivalent phantoms with various glandular rate values, a conversion curve for pixel value to glandular rate can be determined by a neural network. Accordingly, the pixel values in clinical mammograms can be converted to the glandular rate value for each pixel. The individual average glandular dose can therefore be calculated using the individual glandular rates on the basis of the dosimetry method employed for quality control in mammography. In the present study, a data set of 100 craniocaudal mammograms from 50 patients was used to evaluate our method. The average glandular rate and average glandular dose of the data set were 41.2% and 1.79 mGy, respectively. The error in calculating the individual glandular rate can be estimated to be less than ±3%. When the calculation error of the glandular rate is taken into consideration, the error in the individual average glandular dose can be estimated to be 13% or less. We feel that our method for determining the glandular rate from mammograms is useful for minimizing subjectivity in the evaluation of patient breast composition. (author)

  10. Dose Rate Calculations for Rotary Mode Core Sampling Exhauster

    CERN Document Server

    Foust, D J

    2000-01-01

    This document provides the calculated estimated dose rates for three external locations on the Rotary Mode Core Sampling (RMCS) exhauster HEPA filter housing, per the request of Characterization Field Engineering.

  11. Treatment of the prostate cancer with high dose rate brachytherapy

    International Nuclear Information System (INIS)

    Martinez, Alvaro; Torres Silva, Felipe

    2002-01-01

    The prostate cancer treatment in early stages is controversial. The high dose rate brachytherapy has been used like monotherapy or boost with external beam radiotherapy in advanced disease. This paper describes the technique and the advantages over other modalities

  12. Dose Rate Calculations for Rotary Mode Core Sampling Exhauster

    International Nuclear Information System (INIS)

    FOUST, D.J.

    2000-01-01

    This document provides the calculated estimated dose rates for three external locations on the Rotary Mode Core Sampling (RMCS) exhauster HEPA filter housing, per the request of Characterization Field Engineering

  13. Development of methodology for assessment of absorbed dose and stopping power for low energy conversion electrons; Desenvolvimento de uma metodologia para estimativa da dose absorvida e do poder de freamento para eletrons de conversao de baixa energia

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Ivan Pedro Salati de

    1995-08-01

    The evaluation of absorbed dose in the case of external and internalcontamination due to radionuclides is sometimes hard, because of the difficulties in the assessment of the absorbed dose caused by electrons with energy less than 100 KeV in mucous membrane. In this work, a methodology for assessment of absorbed dose and stopping power in VYNS (co-polymer of polivinyl chloride - acetate) absorbers, for the 62.5 KeV and 84-88 KeV energy {sup 109} Cd conversion electrons, working with a 4 {pi} proportional pressurized detector, is presented. In order to assure the reproducibility of measurement conditions, one of the detector halves has been used to obtain a spectrum of a thin {sup 109} Cd source, without absorber. The other half of the detector was used in concomitance to obtain spectra with different thicknesses if absorber. The absorbed energy was obtained subtracting each spectrum with absorber from the spectrum without absorber, which were stored in a microcomputer connected to signal processing systems by ACE type interface. The VYNS weight and thickness were evaluated using common radionuclide metrology procedures. As VYNS has characteristics similar to a tissue equivalent material, the results obtained are consistent with dosimetric concepts and have a good agreement with those of the literature. (author)

  14. Dose rate from the square volume radiation source

    International Nuclear Information System (INIS)

    Karpov, V.I.

    1978-01-01

    The expression for determining the dose rate from a three-dimensional square flat-parallel source of any dimensions is obtained. A simplified method for integrating the resultant expression is proposed. A comparison of the calculation results with the results by the Monte Carlo method has shown them to coincide within 6-8%. Since buildings and structures consist of rectangular elements, the method is recommended for practical calculations of dose rates in residential buildings

  15. Comparison of the Absorbed Dose of Target Organs between Conventional and Digital Panoramic Radiography

    OpenAIRE

    Zohre Reyhani; Nadia Nil Avar; Mohamad Ali Moghadam

    2016-01-01

    The purpose of this study was to measure and compare target organ’s exposure by direct digital and conventional panoramic radiography. Dose measurements were carried out on a RANDO phantom, which TLDs were placed into 5 target area: thyroid gland, left and right submandibular and parotid salivary glands. Panoramic radiographs were taken with two conventional (CRANEX Tome, Soredex, Tusula Finland) and direct digital devices (CRANEX D, Soredex, Tusula Finland).In total, the phantom was ir...

  16. Simulations of absorbed dose on the phantom surface of MATROSHKA-R experiment at the ISS

    Czech Academy of Sciences Publication Activity Database

    Kolísková, Zlata; Sihver, L.; Ambrožová, Iva; Sato, T.; Spurný, František; Shurshakov, V. A.

    2012-01-01

    Roč. 49, č. 2 (2012), s. 230-236 ISSN 0273-1177 R&D Projects: GA ČR GA205/09/0171; GA AV ČR KJB100480901; GA ČR GD202/09/H086 Institutional research plan: CEZ:AV0Z10480505 Keywords : MATROSHKA-R * PHITS * Simulations * Space radiation * Dose estimation Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.183, year: 2012

  17. The generation of absorbed dose profiles of proton beam in water using Geant4 code

    International Nuclear Information System (INIS)

    Christovao, Marilia T.; Campos, Tarcisio Passos R. de

    2007-01-01

    The present article approaches simulations on the proton beam radiation therapy, using an application based on the code GEANT4, with Open GL as a visualization drive and JAS3 (Java Analysis Studio) analysis data tools systems, implementing the AIDA interfaces. The proton radiotherapy is adapted to treat cancer or other benign tumors that are close to sensitive structures, since it allows precise irradiation of the target with high doses, while the health tissues adjacent to vital organs and tissues are preserved, due to physical property of dose profile. GEANT4 is a toolkit for simulating the transport of particles through matter, in complex geometries. Taking advantage of the object-oriented project features, the user can adapt or extend the tool in all domain, due to the flexibility of the code, providing a subroutine's group for materials definition, geometries and particles properties in agreement with the user's needs to generate the Monte Carlo simulation. In this paper, the parameters of beam line used in the simulation possess adjustment elements, such as: the range shifter, composition and dimension; the beam line, energy, intensity, length, according with physic processes applied. The simulation result is the depth dose profiles on water, dependent on the various incident beam energy. Starting from those profiles, one can define appropriate conditions for proton radiotherapy in ocular region. (author)

  18. Tumoral fibrosis effect on the radiation absorbed dose of 177Lu–Tyr3-octreotate and 177Lu–Tyr3-octreotate conjugated to gold nanoparticles

    International Nuclear Information System (INIS)

    Azorín-Vega, E.P.; Zambrano-Ramírez, O.D.; Rojas-Calderón, E.L.; Ocampo-García, B.E.; Ferro-Flores, G.

    2015-01-01

    The aim of this work was to evaluate the tumoral fibrosis effect on the radiation absorbed dose of the radiopharmaceuticals 177 Lu–Tyr 3 -octreotate (monomeric) and 177 Lu–Tyr 3 -octreotate–gold nanoparticles (multimeric) using an experimental HeLa cells tumoral model and the Monte Carlo PENELOPE code. Experimental and computer micro-environment models with or without fibrosis were constructed. Results showed that fibrosis increases up to 33% the tumor radiation absorbed dose, although the major effect on the dose was produced by the type of radiopharmaceutical (112 Gy-multimeric vs. 43 Gy-monomeric). - Highlights: • Fibrosis increases the radiation absorbed dose to the tumor. • Fibrosis increases the radiopharmaceutical residence time in the tumor. • The multimeric nature of the radiopharmaceuticals enhances the radiopharmaceutical retention

  19. Effects of trapped proton flux anisotropy on dose rates in low Earth orbit

    International Nuclear Information System (INIS)

    Badhwar, G.D.; Kushin, V.V.; Akatov, Yu A.; Myltseva, V.A.

    1999-01-01

    Trapped protons in the South Atlantic Anomaly (SAA) have a rather narrow pitch angle distribution and exhibit east-west anisotropy. In low Earth orbits, the E-W effect results in different amounts of radiation dose received by different sections of the spacecraft. This effect is best studied on missions in which the spacecraft flies in a fixed orientation. The magnitude of the effect depends on the particle energy and altitude through the SAA. In this paper, we describe a clear example of this effect from measurements of radiation dose rates and linear energy transfer spectra made on Space Shuttle flight STS-94 (28.5 deg. inclination x 296 km altitude). The ratio of dose rates from the two directions at this location in the mid-deck was 2.7. As expected from model calculations, the spectra from the two directions are different, that is the ratio is energy dependent. The data can be used to distinguish the anisotropy models. The flight carried an active tissue equivalent proportional counter (TEPC), and passive thermoluminscent detectors (TLDs), and two types of nuclear emulsions. Using nuclear emulsions, charged particles and secondary neutron energy spectra were measured. The combined galactic cosmic radiation+trapped charged particle lineal energy spectra measured by the TEPC and the linear energy transfer spectrum measured by nuclear emulsions are in good agreement. The charged particle absorbed dose rates varied from 112 to 175 μGy/day, and dose equivalent rates from 264.3 to 413 μSv/day. Neutrons in the 1-10 MeV contributed a dose rate of 3.7 μGy/day and dose equivalent rate of 30.8 μSv/day, respectively

  20. Effects of trapped proton flux anisotropy on dose rates in low Earth orbit.

    Science.gov (United States)

    Badhwar, G D; Kushin, V V; Akatov YuA; Myltseva, V A

    1999-06-01

    Trapped protons in the South Atlantic Anomaly (SAA) have a rather narrow pitch angle distribution and exhibit east-west anisotropy. In low Earth orbits, the E-W effect results in different amounts of radiation dose received by different sections of the spacecraft. This effect is best studied on missions in which the spacecraft flies in a fixed orientation. The magnitude of the effect depends on the particle energy and altitude through the SAA. In this paper, we describe a clear example of this effect from measurements of radiation dose rates and linear energy transfer spectra made on Space Shuttle flight STS-94 (28.5 degree inclination x 296 km altitude). The ratio of dose rates from the two directions at this location in the mid-deck was 2.7. As expected from model calculations, the spectra from the two directions are different, that is the ratio is energy dependent. The data can be used to distinguish the anisotropy models. The flight carried an active tissue equivalent proportional counter (TEPC), and passive thermoluminscent detectors (TLDs), and two types of nuclear emulsions. Using nuclear emulsions, charged particles and secondary neutron energy spectra were measured. The combined galactic cosmic radiation+trapped charged particle lineal energy spectra measured by the TEPC and the linear energy transfer spectrum measured by nuclear emulsions are in good agreement. The charged particle absorbed dose rates varied from 112 to 175 microGy/day, and dose equivalent rates from 264.3 to 413 microSv/day. Neutrons in the 1-10 MeV contributed a dose rate of 3.7 microGy/day and dose equivalent rate of 30.8 microSv/day, respectively.

  1. Optimization of Parameters in 16-slice CT-‌‌scan Protocols for Reduction of the Absorbed Dose

    Directory of Open Access Journals (Sweden)

    Shahrokh Naseri

    2014-08-01

    Full Text Available Introduction In computed tomography (CT technology, an optimal radiation dose can be achieved via changing radiation parameters such as mA, pitch factor, rotation time and tube voltage (kVp for diagnostic images. Materials and Methods In this study, the brain, abdomen, and thorax scaning was performed using Toshiba 16-slice scannerand standard AAPM and CTDI phantoms. AAPM phantom was used for the measurement of image-related parameters and CTDI phantom was utilized for the calculation of absorbed dose to patients. Imaging parameters including mA (50-400 mA, pitch factor (1 and 1.5 and rotation time (range of 0.5, 0.75, 1, 1.5 and 2 seconds were considered as independent variables. The brain, abdomen and chest imaging was performed multi-slice and spiral modes. Changes in image quality parameters including contrast resolution (CR and spatial resolution (SR in each condition were measured and determined by MATLAB software. Results After normalizing data by plotting the full width at half maximum (FWHM of point spread function (PSF in each condition, it was observed that image quality was not noticeably affected by each cases. Therefore, in brain scan, the lowest patient dose was in 150 mA and rotation time of 1.5 seconds. Based on results of scanning of the abdomen and chest, the lowest patient dose was obtained by 100 mA and pitch factors of 1 and 1.5. Conclusion It was found that images with acceptable quality and reliable detection ability could be obtained using smaller doses of radiation, compared to protocols commonly used by operators.

  2. Numerical absorbed dose distributions inside principal organs of a mathematical anthropomorphic phantom irradiated by monoenergetic photon fields

    International Nuclear Information System (INIS)

    Furstoss, C.; Menard, S.

    2005-01-01

    Full text: Personnel can be exposed to photon or mixed (neutrons and photons) radiations at workplaces for various activities (nuclear fuel cycle, medical sector, research... ). The passive and active personal dosimeters worn on the trunk evaluate the personal dose equivalent Hp(10), defined by ICRP 601 to be an estimator of the effective dose E. However, the angular and energy distributions of the radiations encountered could generate an over or under-estimation of the protection quantity E because of the response of the dosimeters or/and because of the definition of Hp(10) itself. The Institute of Radiological Protection and Nuclear Safety (IRSN) is evaluating the possibility of the measurement of the effective dose E using an instrumented anthropomorphic phantom at workplaces. Such an instrument would allow the control of the suitability of the radiological protection instrumentation used at workplaces for radiation fields which can appreciably differ from the reference ISO radiation fields used to calibrate dosimeters. The objectives of this study are to determine key positions for the future detectors inside and on the phantom, as well as their needed technical characteristics. The simulations of the organ absorbed dose distributions performed using the Monte Carlo code MCNPX2 and the MIRD phantom3 model will allow the determination of the detector locations. This paper will present the first numerical results obtained for monoenergetic parallel photon fields. The effective doses E calculated in an energy range from 15 keV to 10 MeV will be presented and compared with the results of M. Zankl et al., published in the GSF report Bericht 8/974. (author)

  3. Study of the heterogeneity effects of lung in the evaluation of absorbed dose in radiotherapy

    International Nuclear Information System (INIS)

    Campos, Luciana Tourinho

    2006-02-01

    The main objective of radiotherapy is to deliver the highest possible dose to the tumour, in order to destroy it, reducing as much as possible the doses to healthy tissues adjacent to the target volume. Therefore, it is necessary to do a planning of the treatment. The more complex is the treatment, the more difficult the planning will be, demanding computation sophisticated methods in its execution, in order to consider the heterogeneities present in the human body. Additionally, with the appearing of new radiotherapeutic techniques, that used irradiation fields of small area, for instance, the intensity modulated radiotherapy, the difficulties for the execution of a reliable treatment planning, became still larger. In this work it was studied the influence of the lung heterogeneity in the planning of the curves of percentage depth dose, PDP, obtained with the Eclipse R planning system for different sizes of irradiation fields, using the correction algorithms for heterogeneities available in the planning system: modified Batho, general Batho and equivalent tissue-air ratio. A thorax phantom, manufactured in acrylic, containing a region made of cork to simulate the lung tissue, was used. The PDP curves generated by the planning system were compared to those obtained by Monte Carlo simulation and with the use of thermoluminescent, TL, dosimetry. It was verified that the algorithms used by the Eclipse R system for the correction of heterogeneity effects are not able to generate correct results for PDP curves in the case of small fields, occurring differences of up to 100%, when the 1x1 cm 2 treatment field is considered. These differences can cause a considerable subdosage in the lung tissue, reducing the possibility of the patient cure. (author)

  4. SU-E-T-120: Minimum Absorbed Dose Limit for Gafchromic EBT2 Film Response after Exposure to Low-Energy Photons.

    Science.gov (United States)

    Massillon-Jl, G; Domingo-Muñoz, I; Díaz-Aguirre, P

    2012-06-01

    To investigate the accuracy of the absorbed dose measured with Gafchromic EBT2 film in low-energy photon radiation fieldsMethods: Six EBT2 film (lot # F06110901) pieces (1cm 2 ) per dose were exposed to x-rays of 50 kV, 80 kV, 120 kV and 60Co gamma rays from a Leksell Gamma Knife at dose values from 50 mGy to 100 Gy. The x-ray beams were calibrated following the AAPMTG-61 protocol using ionization chambers calibrated at NIST or Wisconsin University depending on the beam quality, while the 60Co gamma was calibrated in water using MD-V2-55 film. Each film piece was scanned once using a HP Scanjet 7650 document flatbed scanner in transmission mode, 48-bit color at 300 dpi spatial-resolution. The data analysis was made through the ImageJ. The measured light intensity for the red channel with its associate standard deviation was used to evaluate the netOD and its standard combined uncertainty. The absorbed dose as a function of the netOD was fitted using the logistic model and the relative combined uncertainties were evaluated for each energy photon beam. EBT2 film response curve depends on the low-energy photons and the degree of energy-dependence is a function of absorbed dose. The absorbed dose relative combined uncertainty as a function of the absorbed dose indicates that the minimum absorbed dose limit is also energy dependent. Lower is the energy photon; more accurate is the measurement at low dose value. This can be explain by the fact that comparing to high energy photons, low energy photons can produce locally enough ionization density to create more color centre in the same film area. Minimum absorbed dose limit of Gafchromic EBT2 films were found to be energy dependent. The response curve depends on the low-energy photons and the degree of energy-dependence is a function of absorbed dose This work is partially supported by DGAPA-UNAM grant IN102610 and Conacyt Mexico grant 127409. © 2012 American Association of Physicists in Medicine.

  5. Dose rate effects during damage accumulation in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Caturla, M.J.; Diaz de la Rubia, T.

    1997-01-01

    We combine molecular dynamics and Monte Carlo simulations to study damage accumulation and dose rate effects during irradiation of Silicon. We obtain the initial stage of the damage produced by heavy and light ions using classical molecular dynamics simulations. While heavy ions like As or Pt induce amorphization by single ion impact, light ions like B only produce point defects or small clusters of defects. The amorphous pockets generated by heavy ions are stable below room temperature and recrystallize at temperatures below the threshold for recrystallization of a planar amorphous-crystalline interface. The damage accumulation during light ion irradiation is simulated using a Monte Carlo model for defect diffusion. In this approach, we study the damage in the lattice as a function of dose and dose rate. A strong reduction in the total number of defects left in the lattice is observed for lower dose rates.

  6. Influence of the electron energy and number of beams on the absorbed dose distributions in radiotherapy of deep seated targets.

    Science.gov (United States)

    Garnica-Garza, H M

    2014-12-01

    With the advent of compact laser-based electron accelerators, there has been some renewed interest on the use of such charged particles for radiotherapy purposes. Traditionally, electrons have been used for the treatment of fairly superficial lesions located at depths of no more than 4cm inside the patient, but lately it has been proposed that by using very high energy electrons, i.e. those with an energy in the order of 200-250MeV it should be possible to safely reach deeper targets. In this paper, we used a realistic patient model coupled with detailed Monte Carlo simulations of the electron transport in such a patient model to examine the characteristics of the resultant absorbed dose distributions as a function of both the electron beam energy as well as the number of beams for a particular type of treatment, namely, a prostate radiotherapy treatment. Each treatment is modeled as consisting of nine, five or three beam ports isocentrically distributed around the patient. An optimization algorithm is then applied to obtain the beam weights in each treatment plan. It is shown that for this particularly challenging case, both excellent target coverage and critical structure sparing can be obtained for energies in the order of 150MeV and for as few as three treatment ports, while significantly reducing the total energy absorbed by the patient with respect to a conventional megavoltage x-ray treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Dose volume assessment of high dose rate 192IR endobronchial implants

    International Nuclear Information System (INIS)

    Cheng, B. Saw; Korb, Leroy J.; Pawlicki, Todd; Wu, Andrew

    1996-01-01

    Purpose: To study the dose distributions of high dose rate (HDR) endobronchial implants using the dose nonuniformity ratio (DNR) and three volumetric irradiation indices. Methods and Materials: Multiple implants were configured by allowing a single HDR 192 Ir source to step through a length of 6 cm along an endobronchial catheter. Dwell times were computed to deliver a dose of 5 Gy to points 1 cm away from the catheter axis. Five sets of source configurations, each with different dwell position spacings from 0.5 to 3.0 cm, were evaluated. Three-dimensional (3D) dose distributions were then generated for each source configuration. Differential and cumulative dose-volume curves were generated to quantify the degree of target volume coverage, dose nonuniformity within the target volume, and irradiation of tissues outside the target volume. Evaluation of the implants were made using the DNR and three volumetric irradiation indices. Results: The observed isodose distributions were not able to satisfy all the dose constraints. The ability to optimally satisfy the dose constraints depended on the choice of dwell position spacing and the specification of the dose constraint points. The DNR and irradiation indices suggest that small dwell position spacing does not result in a more homogeneous dose distribution for the implant. This study supports the existence of a relationship between the dwell position spacing and the distance from the catheter axis to the reference dose or dose constraint points. Better dose homogeneity for an implant can be obtained if the spacing of the dwell positions are about twice the distance from the catheter axis to the reference dose or dose constraint points

  8. Biological effects of low doses of radiation at low dose rate

    International Nuclear Information System (INIS)

    1996-05-01

    The purpose of this report was to examine available scientific data and models relevant to the hypothesis that induction of genetic changes and cancers by low doses of ionizing radiation at low dose rate is a stochastic process with no threshold or apparent threshold. Assessment of the effects of higher doses of radiation is based on a wealth of data from both humans and other organisms. 234 refs., 26 figs., 14 tabs

  9. Radiation damage in single-particle cryo-electron microscopy: effects of dose and dose rate

    International Nuclear Information System (INIS)

    Karuppasamy, Manikandan; Karimi Nejadasl, Fatemeh; Vulovic, Milos; Koster, Abraham J.; Ravelli, Raimond B. G.

    2011-01-01

    The effects of dose and dose-rate were investigated for single-particle cryo-electron microscopy using stroboscopic data collection. A dose-rate effect was observed favoring lower flux densities. Radiation damage is an important resolution limiting factor both in macromolecular X-ray crystallography and cryo-electron microscopy. Systematic studies in macromolecular X-ray crystallography greatly benefited from the use of dose, expressed as energy deposited per mass unit, which is derived from parameters including incident flux, beam energy, beam size, sample composition and sample size. In here, the use of dose is reintroduced for electron microscopy, accounting for the electron energy, incident flux and measured sample thickness and composition. Knowledge of the amount of energy deposited allowed us to compare doses with experimental limits in macromolecular X-ray crystallography, to obtain an upper estimate of radical concentrations that build up in the vitreous sample, and to translate heat-transfer simulations carried out for macromolecular X-ray crystallography to cryo-electron microscopy. Stroboscopic exposure series of 50–250 images were collected for different incident flux densities and integration times from Lumbricus terrestris extracellular hemoglobin. The images within each series were computationally aligned and analyzed with similarity metrics such as Fourier ring correlation, Fourier ring phase residual and figure of merit. Prior to gas bubble formation, the images become linearly brighter with dose, at a rate of approximately 0.1% per 10 MGy. The gradual decomposition of a vitrified hemoglobin sample could be visualized at a series of doses up to 5500 MGy, by which dose the sample was sublimed. Comparison of equal-dose series collected with different incident flux densities showed a dose-rate effect favoring lower flux densities. Heat simulations predict that sample heating will only become an issue for very large dose rates (50 e − Å −2 s

  10. The development of early pediatric models and their application to radiation absorbed dose calculations

    International Nuclear Information System (INIS)

    Poston, J.W.

    1989-01-01

    This presentation will review and describe the development of pediatric phantoms for use in radiation dose calculations . The development of pediatric models for dose calculations essentially paralleled that of the adult. In fact, Snyder and Fisher at the Oak Ridge National Laboratory reported on a series of phantoms for such calculations in 1966 about two years before the first MIRD publication on the adult human phantom. These phantoms, for a newborn, one-, five-, ten-, and fifteen-year old, were derived from the adult phantom. The ''pediatric'' models were obtained through a series of transformations applied to the major dimensions of the adult, which were specified in a Cartesian coordinate system. These phantoms suffered from the fact that no real consideration was given to the influence of these mathematical transformations on the actual organ sizes in the other models nor to the relation of the resulting organ masses to those in humans of the particular age. Later, an extensive effort was invested in designing ''individual'' pediatric phantoms for each age based upon a careful review of the literature. Unfortunately, the phantoms had limited use and only a small number of calculations were made available to the user community. Examples of the phantoms, their typical dimensions, common weaknesses, etc. will be discussed

  11. Use of PET Images in Assessment of Brain Absorbed Dose of Patients Undergoing [C-11] Raclopride Positron Emission Tomography

    International Nuclear Information System (INIS)

    Park, Jong O

    2005-08-01

    The positron emission tomography (PET) in combination with [C-11] raclopride is commonly used for early detection of the Parkinson's disease. Injection of considerable amount of radioactivity, typically 300∼500 MBq of [C-11] at a time, for the examination calls for attention to doses to tissues of the patient, particularly to the brain. Since [C-11] raclopride is not a common radiopharmaceutical, dosimetric data for internal dose evaluation are rare yet. In this study, an attempt was made to determine doses to the brain and the striatum of patients by use of the PET images obtained for the clinical purposes. Four informed patients suffering Parkinson's disease participated in this study. Time series of 18 frames, 35 slices in each frame, of PET images of the head were obtained. By transforming the pixel intensity in the assigned region of interests into radioactivity contents, the retention curves were constructed to evaluate the residence times. Absorbed doses to the target tissues were calculated by applying the S-values given in the MIRDOSE3.1 code. The resulting dose coefficients for the whole brain and the striatum were 0.0110±0.0016 mGy/MBq and 0.0664±0.0238 mGy/MBq, respectively. The brain dose coefficient is considerably higher than the corresponding values in other studies employing healthy subjects. This may be attributed to probable enhanced capture of [C-11] raclopride by the dopamine D 2 receptors in case of subjects with Parkinson's disease. The transcrianial magnetic stimulation (TMS) procedures are often used in treatment of Parkinson's disease. If the procedure stimulates secretion of dopamine, less retention of [C-11] raclopride is expected due to competition. So the similar assessments were made for the same patients after TMS treatments. Disappointingly, the ratios of residence time without TMS to that with TMS were 0.943±0.074 and 0.98±0.14 for the brain and the striatum, respectively. For the striatum, the ratios for three patients were

  12. Absorbed body dose simulation in Thyroid cancer therapy using MCNP4Cand ITScodes and comparison to experimental results

    International Nuclear Information System (INIS)

    Hadad, K.; Gorji, Y.

    2004-01-01

    Two standard particle transport codes of MCNP4C and integrated tiger series were used to estimate the total body dose in a thyroid cancer therapy study, with I-131 as the radionuclide source. Human body was modeled by water and soft tissue ellipsoids. Phantoms' dimensions were selected according to Brow nell recommendation. Absorbed fractions were calculated by both codes for different phantoms and for gammas with 0.364 MeV energy, which has the highest fraction in I-131 emitting gammas. Results were compared to the data published by Brow nell et.al.. Figure 1 shows the results of MCNP4C and Integrated Tiger Series with results published by Brow nell et. al.

  13. Development of computerized dose planning system and applicator for high dose rate remote afterloading irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Choi, T. J. [Keimyung Univ., Taegu (Korea); Kim, S. W. [Fatima Hospital, Taegu (Korea); Kim, O. B.; Lee, H. J.; Won, C. H. [Keimyung Univ., Taegu (Korea); Yoon, S. M. [Dong-a Univ., Pusan (Korea)

    2000-04-01

    To design and fabricate of the high dose rate source and applicators which are tandem, ovoids and colpostat for OB/Gyn brachytherapy includes the computerized dose planning system. Designed the high dose rate Ir-192 source with nuclide atomic power irradiation and investigated the dose characteristics of fabricated brachysource. We performed the effect of self-absorption and determining the gamma constant and output factor and determined the apparent activity of designed source. he automated computer planning system provided the 2D distribution and 3D includes analysis programs. Created the high dose rate source Ir-192, 10 Ci(370GBq). The effective attenuation factor from the self-absorption and source wall was examined to 0.55 of the activity of bare source and this factor is useful for determination of the apparent activity and gamma constant 4.69 Rcm{sup 2}/mCi-hr. Fabricated the colpostat was investigated the dose distributions of frontal, axial and sagittal plane in intra-cavitary radiation therapy for cervical cancer. The reduce dose at bladder and rectum area was found about 20 % of original dose. The computerized brachytherapy planning system provides the 2-dimensional isodose and 3-D include the dose-volume histogram(DVH) with graphic-user-interface mode. emoted afterloading device was built for experiment of created Ir-192 source with film dosimetry within {+-}1 mm discrepancy. 34 refs., 25 figs., 11 tabs. (Author)

  14. Influence of the electron energy and number of beams on the absorbed dose distributions in radiotherapy of deep seated targets

    International Nuclear Information System (INIS)

    Garnica-Garza, H.M.

    2014-01-01

    With the advent of compact laser-based electron accelerators, there has been some renewed interest on the use of such charged particles for radiotherapy purposes. Traditionally, electrons have been used for the treatment of fairly superficial lesions located at depths of no more than 4 cm inside the patient, but lately it has been proposed that by using very high energy electrons, i.e. those with an energy in the order of 200–250 MeV it should be possible to safely reach deeper targets. In this paper, we used a realistic patient model coupled with detailed Monte Carlo simulations of the electron transport in such a patient model to examine the characteristics of the resultant absorbed dose distributions as a function of both the electron beam energy as well as the number of beams for a particular type of treatment, namely, a prostate radiotherapy treatment. Each treatment is modeled as consisting of nine, five or three beam ports isocentrically distributed around the patient. An optimization algorithm is then applied to obtain the beam weights in each treatment plan. It is shown that for this particularly challenging case, both excellent target coverage and critical structure sparing can be obtained for energies in the order of 150 MeV and for as few as three treatment ports, while significantly reducing the total energy absorbed by the patient with respect to a conventional megavoltage x-ray treatment. - Highlights: • Technical requirements to be met in VHEET are established for the irradiation of prostate tumors. • Optimization of beam energy as a function of number of beams is provided. • Behavior of the non-tumor integral dose as a function of both energy and number of beams is examined

  15. Enhanced activity of deoxycytidine kinase after pulsed low dose rate and single dose gamma irradiation

    NARCIS (Netherlands)

    Sigmond, J.; Haveman, J.; Kreder, N. Castro; Loves, W. J.; van Bree, C.; Franken, N. A.; Peters, G. J.

    2006-01-01

    In both pulsed low dose rate (LDR) and single high dose radiation schedules, gemcitabine pretreatment sensitizes tumor cells to radiation. These radiosensitizing effects could be the result of decreased DNA repair. In this study, the effect of irradiation on the deoxycytidine kinase (dCK) needed for

  16. Dose rates evaluation of HiPER facility

    Energy Technology Data Exchange (ETDEWEB)

    Juarez, Rafael, E-mail: rafael.juarez@upm.es [Instituto de Fusion Nuclear/UPM, Calle Jose Gutierrez Abascal 2, Madrid (Spain); Sanz, Javier [Instituto de Fusion Nuclear/UPM, Calle Jose Gutierrez Abascal 2, Madrid (Spain); Dept. Ingenieria Energetica UNED, Madrid (Spain); Perlado, Jose M. [Instituto de Fusion Nuclear/UPM, Calle Jose Gutierrez Abascal 2, Madrid (Spain); Le Garrec, Bruno [CEA-CESTA, Le Barp (France)

    2011-10-15

    During the operation of the HiPER first engineering facility, up to 1.2 x 10{sup 5} MJ/yr of fusion neutrons yields are foreseen. This irradiation level could be distributed in 100 MJ detonations, accounting up to 100 detonations in a single burst, with 10 Hz repetition rate. A burst would take place every month. The dose rates are computed and different concrete shields are evaluated within the target bay. During the operation of the facility the entrance is forbidden inside the bioshield. Between bursts, manual maintenance might be performed inside the bioshield but outside the final optics assembly (FOA) shield. Inside the FOA shield the residual dose rates are so high that only remote maintenance is allowed. The FOA shield reduces the delivered dose rate to optics in a factor of 30.3.

  17. Calibration of GafChromic EBT3 for absorbed dose measurements in 5 MeV proton beam and 60Co γ-rays

    International Nuclear Information System (INIS)

    Vadrucci, M.; Ronsivalle, C.; Marracino, F.; Montereali, R. M.; Picardi, L.; Piccinini, M.; Vincenti, M. A.; Esposito, G.; De Angelis, C.; Cherubini, R.; Pimpinella, M.

    2015-01-01

    Purpose: To study EBT3 GafChromic film in low-energy protons, and for comparison purposes, in a reference 60 Co beam in order to use it as a calibrated dosimetry system in the proton irradiation facility under construction within the framework of the Oncological Therapy with Protons (TOP)-Intensity Modulated Proton Linear Accelerator for RadioTherapy (IMPLART) Project at ENEA-Frascati, Italy. Methods: EBT3 film samples were irradiated at the Istituto Nazionale di Fisica Nucleare—Laboratori Nazionali di Legnaro, Italy, with a 5 MeV proton beam generated by a 7 MV Van de Graaff CN accelerator. The nominal dose rates used were 2.1 Gy/min and 40 Gy/min. The delivered dose was determined by measuring the particle fluence and the energy spectrum in air with silicon surface barrier detector monitors. A preliminary study of the EBT3 film beam quality dependence in low-energy protons was conducted by passively degrading the beam energy. EBT3 films were also irradiated at ENEA-National Institute of Ionizing Radiation Metrology with gamma radiation produced by a 60 Co source characterized by an absorbed dose to water rate of 0.26 Gy/min as measured by a calibrated Farmer type ionization chamber. EBT3 film calibration curves were determined by means of a set of 40 film pieces irradiated to various doses ranging from 0.5 Gy to 30 Gy absorbed dose to water. An EPSON Expression 11000XL color scanner in transmission mode was used for film analysis. Scanner response stability, intrafilm uniformity, and interfilm reproducibility were verified. Optical absorption spectra measurements were performed on unirradiated and irradiated EBT3 films to choose the most sensitive color channel to the dose range used. Results: EBT3 GafChromic films show an under response up to about 33% for low-energy protons with respect to 60 Co gamma radiation, which is consistent with the linear energy transfer dependence already observed with higher energy protons, and a negligible dose-rate dependence in

  18. SU-F-J-56: The Connection Between Cherenkov Light Emission and Radiation Absorbed Dose in Proton Irradiated Phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Darafsheh, A; Kassaee, A; Finlay, J [University of Pennsylvania, Philadelphia, PA (United States); Taleei, R [UT Southwestern Medical Center, Dallas, TX (United States)

    2016-06-15

    Purpose: Range verification in proton therapy is of great importance. Cherenkov light follows the photon and electron energy deposition in water phantom. The purpose of this study is to investigate the connection between Cherenkov light generation and radiation absorbed dose in a water phantom irradiated with proton beams. Methods: Monte Carlo simulation was performed by employing FLUKA Monte Carlo code to stochastically simulate radiation transport, ionizing radiation dose deposition, and Cherenkov radiation in water phantoms. The simulations were performed for proton beams with energies in the range 50–600 MeV to cover a wide range of proton energies. Results: The mechanism of Cherenkov light production depends on the initial energy of protons. For proton energy with 50–400 MeV energy that is below the threshold (∼483 MeV in water) for Cherenkov light production directly from incident protons, Cherenkov light is produced mainly from the secondary electrons liberated as a result of columbic interactions with the incident protons. For proton beams with energy above 500 MeV, in the initial depth that incident protons have higher energy than the Cherenkov light production threshold, the light has higher intensity. As the slowing down process results in lower energy protons in larger depths in the water phantom, there is a knee point in the Cherenkov light curve vs. depth due to switching the Cherenkov light production mechanism from primary protons to secondary electrons. At the end of the depth dose curve the Cherenkov light intensity does not follow the dose peak because of the lack of high energy protons to produce Cherenkov light either directly or through secondary electrons. Conclusion: In contrast to photon and electron beams, Cherenkov light generation induced by proton beams does not follow the proton energy deposition specially close to the end of the proton range near the Bragg peak.

  19. Effective dose rate coefficients for exposure to contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Veinot, K.G. [Easterly Scientific, Knoxville, TN (United States); Y-12 National Security Complex, Oak Ridge, TN (United States); Eckerman, K.F.; Easterly, C.E. [Easterly Scientific, Knoxville, TN (United States); Bellamy, M.B.; Hiller, M.M.; Dewji, S.A. [Oak Ridge National Laboratory, Center for Radiation Protection Knowledge, Oak Ridge, TN (United States); Hertel, N.E. [Oak Ridge National Laboratory, Center for Radiation Protection Knowledge, Oak Ridge, TN (United States); Georgia Institute of Technology, Atlanta, GA (United States); Manger, R. [University of California San Diego, Department of Radiation Medicine and Applied Sciences, La Jolla, CA (United States)

    2017-08-15

    The Oak Ridge National Laboratory Center for Radiation Protection Knowledge has undertaken calculations related to various environmental exposure scenarios. A previous paper reported the results for submersion in radioactive air and immersion in water using age-specific mathematical phantoms. This paper presents age-specific effective dose rate coefficients derived using stylized mathematical phantoms for exposure to contaminated soils. Dose rate coefficients for photon, electron, and positrons of discrete energies were calculated and folded with emissions of 1252 radionuclides addressed in ICRP Publication 107 to determine equivalent and effective dose rate coefficients. The MCNP6 radiation transport code was used for organ dose rate calculations for photons and the contribution of electrons to skin dose rate was derived using point-kernels. Bremsstrahlung and annihilation photons of positron emission were evaluated as discrete photons. The coefficients calculated in this work compare favorably to those reported in the US Federal Guidance Report 12 as well as by other authors who employed voxel phantoms for similar exposure scenarios. (orig.)

  20. Precedents For Authorization Of Contents Using Dose Rate Measurements

    International Nuclear Information System (INIS)

    Abramczyk, G.; Bellamy, S.; Nathan, S.; Loftin, B.

    2012-01-01

    For the transportation of Radioactive Material (RAM) packages, the requirements for the maximum allowed dose rate at the package surface and in its vicinity are given in Title 10 of the Code of Federal Regulations, Section 71.47. The regulations are based on the acceptable dose rates to which the public, workers, and the environment may be exposed. As such, the regulations specify dose rates, rather than quantity of radioactive isotopes and require monitoring to confirm the requirements are met. 10CFR71.47 requires that each package of radioactive materials offered for transportation must be designed and prepared for shipment so that under conditions normally incident to transportation the radiation level does not exceed 2 mSv/h (200 mrem/h) at any point on the external Surface of the package, and the transport index does not exceed 10. Before shipment, the dose rate of the package is determined by measurement, ensuring that it conforms to the regulatory limits, regardless of any analyses. This is the requirement for all certified packagings. This paper discusses the requirements for establishing the dose rates when shipping RAM packages and the precedents for meeting these requirements by measurement.

  1. Study of dose levels absorbed by members of the public in the nuclear medicine departments

    International Nuclear Information System (INIS)

    Cabral, Geovanna Oliveira de Mello

    2001-03-01

    In nuclear Medicine, radioisotopes are bound to various compounds (called radiopharmaceuticals) for use in various diagnostic and therapeutic applications. These unsealed sources are administered in various forms to patients, who remain radioactive for hours or days, and represent a source of potential radiation exposure for others. Thus, in nuclear medicine departments, radiation protection of workers and members of the public, especially persons accompanying patients, must consider, this exposure. In Brazil, the Comissao Nacional de Energia Nuclear (CNEN) establishes that, in nuclear medicine departments, the patients and persons accompanying should be separated each other. However, this rule is not always followed due to many factors such as physical and emotional conditions of patients. In this context, the aim of this study was the investigation of dose levels, which the persons accompanying patients are exposed to. For monitoring, thermoluminescent dosimeters were employed. The dosimeters were given to 380 persons who were accompanying patients in nuclear medicine departments. Exposure results were lower than 1 mSv. On the basis of CNEN rules, issues regarding stay conditions for members of the public in these departments are discussed. (author)

  2. Measurement of the absorbed dose in the very small size photon beams used in stereotactic radiotherapy

    International Nuclear Information System (INIS)

    Derreumaux, S.; Huet, C.; Robbes, I.; Trompier, F.; Boisserie, G.; Brunet, G.; Buchheit, I.; Sarrazin, T.; Chea, M.

    2008-01-01

    After the radiotherapy accident in Toulouse, the French authority of nuclear safety and the French agency of health products safety have asked the IR.S.N. to establish, together with experts from the French society of medical physics and the French society of radiotherapy and oncology, a national protocol on dose calibration for the very small beams used in stereotactic radiotherapy. The research and reflexions of the working group 'GT minifaisceaux ' set up by the I.R.S.N. are presented in this final report. A review of the international literature has been performed. A national survey has been done to know the present practices in the dosimetry of small fields. A campaign of measurements of the data needed to characterize the small beams for the different stereotactic systems has started, using different types of detectors acquired by the I.R.S.N.. In this report are presented a deep synthesis on the problems related to the dosimetry of small fields, the results of the national survey, the first results of the campaign of measurements and the recommendations of the GT. (authors)

  3. Dose escalation using conformal high-dose-rate brachytherapy improves outcome in unfavorable prostate cancer

    International Nuclear Information System (INIS)

    Martinez, Alvaro A.; Gustafson, Gary; Gonzalez, Jose; Armour, Elwood; Mitchell, Chris; Edmundson, Gregory; Spencer, William; Stromberg, Jannifer; Huang, Raywin; Vicini, Frank

    2002-01-01

    Purpose: To overcome radioresistance for patients with unfavorable prostate cancer, a prospective trial of pelvic external beam irradiation (EBRT) interdigitated with dose-escalating conformal high-dose-rate (HDR) prostate brachytherapy was performed. Methods and Materials: Between November 1991 and August 2000, 207 patients were treated with 46 Gy pelvic EBRT and increasing HDR brachytherapy boost doses (5.50-11.5 Gy/fraction) during 5 weeks. The eligibility criteria were pretreatment prostate-specific antigen level ≥10.0 ng/mL, Gleason score ≥7, or clinical Stage T2b or higher. Patients were divided into 2 dose levels, low-dose biologically effective dose 93 Gy (149 patients). No patient received hormones. We used the American Society for Therapeutic Radiology and Oncology definition for biochemical failure. Results: The median age was 69 years. The mean follow-up for the group was 4.4 years, and for the low and high-dose levels, it was 7.0 and 3.4 years, respectively. The actuarial 5-year biochemical control rate was 74%, and the overall, cause-specific, and disease-free survival rate was 92%, 98%, and 68%, respectively. The 5-year biochemical control rate for the low-dose group was 52%; the rate for the high-dose group was 87% (p<0.001). Improvement occurred in the cause-specific survival in favor of the brachytherapy high-dose level (p=0.014). On multivariate analysis, a low-dose level, higher Gleason score, and higher nadir value were associated with increased biochemical failure. The Radiation Therapy Oncology Group Grade 3 gastrointestinal/genitourinary complications ranged from 0.5% to 9%. The actuarial 5-year impotency rate was 51%. Conclusion: Pelvic EBRT interdigitated with transrectal ultrasound-guided real-time conformal HDR prostate brachytherapy boost is both a precise dose delivery system and a very effective treatment for unfavorable prostate cancer. We demonstrated an incremental beneficial effect on biochemical control and cause

  4. Determination of the dose rate to the center of the irradiation chamber of the Gamma cell 220 AECL

    International Nuclear Information System (INIS)

    Zuazua G, M.P.

    1991-11-01

    To determine the dose rate at the center of the irradiation chamber of the Gamma cell 220 AECL, two different spectrophotometers for to measure the absorbency of the irradiated dosemeters were used. In the first one dosimetry, the absorbency of the irradiated Fricke solution was read in the Varian-UV-visible spectrophotometer Series 634 of the Applied Research Management. For the second dosimetry it was used the Shimadzu UV-visible spectrophotometer belonging to the Special Projects Department. The obtained results in this study are presented. (Author)

  5. Absorbed dose evaluation of Auger electron-emitting radionuclides: impact of input decay spectra on dose point kernels and S-values.

    Science.gov (United States)

    Falzone, Nadia; Lee, Boon Q; Fernández-Varea, José M; Kartsonaki, Christiana; Stuchbery, Andrew E; Kibédi, Tibor; Vallis, Katherine A

    2017-03-21

    The aim of this study was to investigate the impact of decay data provided by the newly developed stochastic atomic relaxation model BrIccEmis on dose point kernels (DPKs - radial dose distribution around a unit point source) and S-values (absorbed dose per unit cumulated activity) of 14 Auger electron (AE) emitting radionuclides, namely 67 Ga, 80m Br, 89 Zr, 90 Nb, 99m Tc, 111 In, 117m Sn, 119 Sb, 123 I, 124 I, 125 I, 135 La, 195m Pt and 201 Tl. Radiation spectra were based on the nuclear decay data from the medical internal radiation dose (MIRD) RADTABS program and the BrIccEmis code, assuming both an isolated-atom and condensed-phase approach. DPKs were simulated with the PENELOPE Monte Carlo (MC) code using event-by-event electron and photon transport. S-values for concentric spherical cells of various sizes were derived f