WorldWideScience

Sample records for absorbable polymer membrane

  1. Absorbable and biodegradable polymers

    CERN Document Server

    Shalaby, Shalaby W

    2003-01-01

    INTRODUCTION NOTES: Absorbable/Biodegradable Polymers: Technology Evolution. DEVELOPMENT AND APPLICATIONOF NEW SYSTEMS: Segmented Copolyesters with Prolonged Strength Retention Profiles. Polyaxial Crystalline Fiber-Forming Copolyester. Polyethylene Glycol-Based Copolyesters. Cyanoacrylate-Based Systems as Tissue Adhesives. Chitosan-Based Systems. Hyaluronic Acid-Based Systems. DEVELOPMENTS IN PREPARATIVE, PROCESSING, AND EVALUATION METHODS: New Approaches to the Synthesis of Crystalline. Fiber-Forming Aliphatic Copolyesters. Advances in Morphological Development to Tailor the Performance of Me

  2. Electrochemical polymer electrolyte membranes

    CERN Document Server

    Fang, Jianhua; Wilkinson, David P

    2015-01-01

    Electrochemical Polymer Electrolyte Membranes covers PEMs from fundamentals to applications, describing their structure, properties, characterization, synthesis, and use in electrochemical energy storage and solar energy conversion technologies. Featuring chapters authored by leading experts from academia and industry, this authoritative text: Discusses cutting-edge methodologies in PEM material selection and fabricationPoints out important challenges in developing PEMs and recommends mitigation strategies to improve PEM performanceAnalyzes the cur

  3. POLYMER ELECTROLYTE MEMBRANE FUEL CELLS

    DEFF Research Database (Denmark)

    2001-01-01

    A method for preparing polybenzimidazole or polybenzimidazole blend membranes and fabricating gas diffusion electrodes and membrane-electrode assemblies is provided for a high temperature polymer electrolyte membrane fuel cell. Blend polymer electrolyte membranes based on PBI and various...... thermoplastic polymers for high temperature polymer electrolyte fuel cells have also been developed. Miscible blends are used for solution casting of polymer membranes (solid electrolytes). High conductivity and enhanced mechanical strength were obtained for the blend polymer solid electrolytes....... With the thermally resistant polymer, e.g., polybenzimidazole or a mixture of polybenzimidazole and other thermoplastics as binder, the carbon-supported noble metal catalyst is tape-cast onto a hydrophobic supporting substrate. When doped with an acid mixture, electrodes are assembled with an acid doped solid...

  4. Absorbency of Superabsorbent Polymers in Cementitious Environments

    DEFF Research Database (Denmark)

    Esteves, Luis Pedro; Jensen, Ole Mejlhede

    2012-01-01

    Optimal use of superabsorbent polymers (SAP) in cement-based materials relies on knowledge on how SAP absorbency is influenced by different physical and chemical parameters. These parameters include salt concentration in the pore fluid, temperature of the system and SAP particle size. The present...... work shows experimental results on this and presents a new technique to measure the swelling of SAP particles. This new technique is compared with existing techniques that have been recently proposed for the measurement of pore fluid absorption by superabsorbent polymers. It is seen...

  5. Layered plasma polymer composite membranes

    Science.gov (United States)

    Babcock, Walter C.

    1994-01-01

    Layered plasma polymer composite fluid separation membranes are disclosed, which comprise alternating selective and permeable layers for a total of at least 2n layers, where n is .gtoreq.2 and is the number of selective layers.

  6. Preparation and characterization of super absorbent polymer from sugarcane bagasse

    International Nuclear Information System (INIS)

    Wiwien Andriyanti; Suyanti; Ngasifudin

    2012-01-01

    Sugarcane bagasse is a source of biomass which large enough numbers and has not been fully exploited. At this time has developed a super absorbent polymer material of sugarcane bagasse that can absorb water up to several times of its own weight and keep this water. Super absorbent polymers can be used as a soil conditioner that can be used as an absorber and storage of ground water, the giver of nutrients for plants, and can improve soil properties. The purpose of this study is to make and characterization of super absorbent polymer (PCS) from sugarcane bagasse. Preparation of super absorbent polymers (PCS) has been done by grafting method using ionizing radiation from Electron Beam Engineering (MBE) 350 mA keV/10. Irradiation process carried out with a dose variation of 20, 35, and 50 kGy. Increasing doses of radiation will increase the percentage fraction of transplantation (grafting) and the fraction of water absorption ability (swelling ratio). (author)

  7. New urea-absorbing polymers for artificial kidney machines

    Science.gov (United States)

    Mueller, W. A.; Hsu, G. C.; Marsh, H. E., Jr.

    1975-01-01

    Etherified polymer is made from modified cellulose derivative which is reacted with periodate. It will absorb 2 grams of urea per 100 grams of polymer. Indications are that polymers could be used to help remove uremic wastes in artificial kidneys, or they could be administered orally as therapy for uremia.

  8. Microwave absorbing properties of activated carbon fibre polymer ...

    Indian Academy of Sciences (India)

    cations in the field of radar and electromagnetic compatibility. (Singh et al ... fibres have irregular-shaped cross sections (shown in fig- ure 1) ... Microwave absorbing properties of activated carbon fibre polymer composites. 77. 2. 4. 6. 8. 10. 12.

  9. Diffusion in inhomogeneous polymer membranes

    Science.gov (United States)

    Kasargod, Sameer S.; Adib, Farhad; Neogi, P.

    1995-10-01

    The dual mode sorption solubility isotherms assume, and in instances Zimm-Lundberg analysis of the solubilities show, that glassy polymers are heterogeneous and that the distribution of the solute in the polymer is also inhomogeneous. Under some conditions, the heterogeneities cannot be represented as holes. A mathematical model describing diffusion in inhomogeneous polymer membranes is presented using Cahn and Hilliard's gradient theory. The fractional mass uptake is found to be proportional to the fourth root of time rather than the square root, predicted by Fickian diffusion. This type of diffusion is classified as pseudo-Fickian. The model is compared with one experimental result available. A negative value of the persistence factor is obtained and the results are interpreted.

  10. RF electromagnetic wave absorbing properties of ferrite polymer composite materials

    International Nuclear Information System (INIS)

    Dosoudil, Rastislav; Usakova, Marianna; Franek, Jaroslav; Slama, Jozef; Olah, Vladimir

    2006-01-01

    The frequency dispersion of complex initial (relative) permeability (μ * =μ ' -jμ ' ') and the electromagnetic wave absorbing properties of composite materials based on NiZn sintered ferrite and a polyvinylchloride (PVC) polymer matrix have been studied in frequency range from 1MHz to 1GHz. The complex permeability of the composites was found to increase as the ferrite content increased, and was characterized by frequency dispersion localized above 50MHz. The variation of return loss (RL) of single-layer RF absorbers using the prepared composite materials has been investigated as a function of frequency, ferrite content and the thickness of the absorbers

  11. Nanostructured polymer membranes for proton conduction

    Science.gov (United States)

    Balsara, Nitash Pervez; Park, Moon Jeong

    2013-06-18

    Polymers having an improved ability to entrain water are characterized, in some embodiments, by unusual humidity-induced phase transitions. The described polymers (e.g., hydrophilically functionalized block copolymers) have a disordered state and one or more ordered states (e.g., a lamellar state, a gyroid state, etc.). In one aspect, the polymers are capable of undergoing a disorder-to-order transition while the polymer is exposed to an increasing temperature at a constant relative humidity. In some aspects the polymer includes a plurality of portions, wherein a first portion forms proton-conductive channels within the membrane and wherein the channels have a width of less than about 6 nm. The described polymers are capable of entraining and preserving water at high temperature and low humidity. Surprisingly, in some embodiments, the polymers are capable of entraining greater amounts of water with the increase of temperature. The polymers can be used in Polymer Electrolyte Membranes in fuel cells.

  12. Studies with Water Absorbing Polymers: II Nitrogen Retention ...

    African Journals Online (AJOL)

    Agrogel is a water absorbing polymer that swells and forms gelatinous mass with water. The mass can retain water and nutrients and release it slowly over time. These characteristics have stimulated interest in their use, especially for greenhouse crop production, where watering is frequent resulting in leaching of soil ...

  13. Integrated polymer waveguides for absorbance detection in chemical analysis systems

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo; El-Ali, Jamil; Wolff, Anders

    2003-01-01

    A chemical analysis system for absorbance detection with integrated polymer waveguides is reported for the first time. The fabrication procedure relies on structuring of a single layer of the photoresist SU-8, so both the microfluidic channel network and the optical components, which include planar....... The emphasis of this paper is on the signal-to-noise ratio of the detection and its relation to the sensitivity. Two absorbance cells with an optical path length of 100 μm and 1000 μm were characterized and compared in terms of sensitivity, limit of detection and effective path length for measurements...

  14. Quantitative Fractal Evaluation of Herbicide Effects on the Water-Absorbing Capacity of Superabsorbent Polymers

    Directory of Open Access Journals (Sweden)

    Renkuan Liao

    2014-01-01

    Full Text Available The water absorption capacity of superabsorbent polymers (SAPs is important for agricultural drought resistance. However, herbicides may leach into the soil and affect water absorption by damaging the SAP three-dimensional membrane structures. We used 100-mesh sieves, electron microscopy, and fractal theory to study swelling and water absorption in SAPs in the presence of three common herbicides (atrazine, alachlor, and tribenuron-methyl at concentrations of 0.5, 1.0, and 2.0 mg/L. In the sieve experiments it was found that 2.0 mg/L atrazine reduces the capacity by 9.64–23.3% at different swelling points; no significant diminution was observed for the other herbicides or for lower atrazine concentrations. We found that the hydrogel membrane pore distributions have fractal characteristics in both deionized water and atrazine solution. The 2.0 mg/L atrazine destroyed the water-retaining polymer membrane pores and reduced the water-absorbing mass by modifying its three-dimensional membrane structure. A linear correlation was observed between the fractal analysis and the water-absorbing mass. Multifractal analysis characterized the membrane pore distribution by using the range of singularity indexes Δα (relative distinguishing range of 16.54–23.44%, which is superior to single-fractal analysis that uses the fractal dimension D (relative distinguishing range of 2.5–4.0%.

  15. Biocatalytic Self-Cleaning Polymer Membranes

    Directory of Open Access Journals (Sweden)

    Agnes Schulze

    2015-09-01

    Full Text Available Polymer membrane surfaces have been equipped with the digestive enzyme trypsin. Enzyme immobilization was performed by electron beam irradiation in aqueous media within a one-step method. Using this method, trypsin was covalently and side-unspecific attached to the membrane surface. Thus, the use of preceding polymer functionalization and the use of toxic solvents or reagents can be avoided. The resulting membranes showed significantly improved antifouling properties as demonstrated by repeated filtration of protein solutions. Furthermore, the biocatalytic membrane can be simply “switched on” to actively degrade a fouling layer on the membrane surface and regain the initial permeability. The membrane pore structure (pore size and porosity was neither damaged by the electron beam treatment nor blocked by the enzyme loading, ensuring a stable membrane performance.

  16. Fuel cell electrolyte membrane with basic polymer

    Science.gov (United States)

    Larson, James M.; Pham, Phat T.; Frey, Matthew H.; Hamrock, Steven J.; Haugen, Gregory M.; Lamanna, William M.

    2012-12-04

    The present invention is an electrolyte membrane comprising an acid and a basic polymer, where the acid is a low-volatile acid that is fluorinated and is either oligomeric or non-polymeric, and where the basic polymer is protonated by the acid and is stable to hydrolysis.

  17. Anion-conducting polymer, composition, and membrane

    Science.gov (United States)

    Pivovar, Bryan S [Los Alamos, NM; Thorn, David L [Los Alamos, NM

    2009-09-01

    Anion-conducing polymers and membranes with enhanced stability to aqueous alkali include a polymer backbone with attached sulfonium, phosphazenium, phosphazene, and guanidinium residues. Compositions also with enhanced stability to aqueous alkali include a support embedded with sulfonium, phosphazenium, and guanidinium salts.

  18. Polymer Inclusion Membranes with Strip Dispersion

    Directory of Open Access Journals (Sweden)

    Yueh-Hsien Li

    2017-06-01

    Full Text Available The present work investigated the permeation of indium ions through a polymer inclusion membrane (PIM, prepared with cellulose triacetate (CTA as the base polymer, tris(2-butoxyethyl phosphate (TBEP as the plasticizer and di-(2-ethylhexylphosphoric acid (D2EHPA as the extractant. With 5 M HCl aqueous solution as the strip solution, we observed an initial indium permeability of 2.4 × 10−4 m/min. However, the permeability decreases with time, dropping to about 3.4 × 10−5 m/min after 200 min of operation. Evidence was obtained showing that hydrolysis of CTA occurred, causing a dramatic decrease in the feed pH (protons transported from strip to feed solutions and a loss of extractant and plasticizer from the membrane, and then leading to the loss of indium permeability. To alleviate the problem of hydrolysis, we proposed an operation scheme called polymer inclusion membranes with strip dispersion: dispersing the strip solution in extractant-containing oil and then bringing the dispersion to contact with the polymer membrane. Since the strong acid was dispersed in oil, the membrane did not directly contact the strong acid at all times, and membrane hydrolysis was thus alleviated and the loss of indium permeability was effectively prevented. With the proposed scheme, a stable indium permeability of 2.5 × 10−4 m/min was obtained during the whole time period of the permeation experiment.

  19. Light Responsive Polymer Membranes: A Review

    Directory of Open Access Journals (Sweden)

    Fiore Pasquale Nicoletta

    2012-03-01

    Full Text Available In recent years, stimuli responsive materials have gained significant attention in membrane separation processes due to their ability to change specific properties in response to small external stimuli, such as light, pH, temperature, ionic strength, pressure, magnetic field, antigen, chemical composition, and so on. In this review, we briefly report recent progresses in light-driven materials and membranes. Photo-switching mechanisms, valved-membrane fabrication and light-driven properties are examined. Advances and perspectives of light responsive polymer membranes in biotechnology, chemistry and biology areas are discussed.

  20. Attosecond control of electron beams at dielectric and absorbing membranes

    Science.gov (United States)

    Morimoto, Yuya; Baum, Peter

    2018-03-01

    Ultrashort electron pulses are crucial for time-resolved electron diffraction and microscopy of the fundamental light-matter interaction. In this work, we study experimentally and theoretically the generation and characterization of attosecond electron pulses by optical-field-driven compression and streaking at dielectric or absorbing interaction elements. The achievable acceleration and deflection gradient depends on the laser-electron angle, the laser's electric and magnetic field directions, and the foil orientation. Electric and magnetic fields have similar contributions to the final effect and both need to be considered. Experiments and theory agree well and reveal the optimum conditions for highly efficient, velocity-matched electron-field interactions in the longitudinal or transverse direction. We find that metallic membranes are optimum for light-electron control at mid-infrared or terahertz wavelengths, but dielectric membranes are excellent in the visible and near-infrared regimes and are therefore ideal for the formation of attosecond electron pulses.

  1. Polymer microcapsules with "foamed" membranes.

    Science.gov (United States)

    Lavergne, Fleur-Marie; Cot, Didier; Ganachaud, François

    2007-06-05

    This article describes the preparation of capsules displaying craters at their surfaces and independent holes inside their membranes. These poly(methylmethacrylate) capsules of 20 to 200 microm diameter are prepared by a solvent evaporation process and typically contain a dispersant, polyvinyl alcohol, and an excipient, namely, a fatty acid triglyceride (miglyol 812). Spectroscopic methods showed that, depending on the miglyol content, the craters at the surface exhibited sizes of about 1 to 2 microm, whereas the core structure of the membrane changed significantly, typically from "soft-part-of-bread" up to "foamed"-like aspects. Among several spectroscopy techniques, confocal fluorescence microscopy confirmed that the capsules retained the miglyol in their core and not in the craters or holes, even after centrifugation and handling. This technique also showed that holes in the membrane are filled with water. A possible analysis of the "foaming" phenomenon based on the surface tensions of different oils, as well as their optimal hydrophile-lipophile balance (HLBO), is added to generalize the concept.

  2. The properties of two starch super absorbent polymers synthesized by gamma radiation

    International Nuclear Information System (INIS)

    Wang Changbao; Zhao Yongfu; Li Lili; Ji Ping; Shi Yan; Ge Cailin; Wang Zhidong

    2013-01-01

    Two types of super absorbent polymers were synthesized from corn starch, wheat starch and acrylic acid under gamma irradiation, without any initiator. The water absorption capacity of the super absorbent products were studied. The results indicated that the prepared polymer from wheat starch per gram could absorb 755 g distilled water, 249 g tap water, and 80 g 0.9% NaCl; and the polymer from corn starch per gram could absorb 747 g distilled water, 238 g tap water, and 84 g 0.9% NaCl. The absorption capacity of the two polymers was decreased quickly at first and then slow down with the concentration of NaCl solutions increased. The two polymers have similar absorption capacity in pH value between 4 and 11 for distilled water and at temperature between 4 and 60℃ for distilled water. The two polymers have good water retention properties in high temperature and pressure conditions. (authors)

  3. Treatability study of absorbent polymer waste form for mixed waste treatment

    International Nuclear Information System (INIS)

    Herrmann, S. D.; Lehto, M. A.; Stewart, N. A.; Croft, A. D.; Kern, P. W.

    2000-01-01

    A treatability study was performed to develop and characterize an absorbent polymer waste form for application to low level (LLW) and mixed low level (MLLW) aqueous wastes at Argonne National Laboratory-West (ANL-W). In this study absorbent polymers proved effective at immobilizing aqueous liquid wastes in order to meet Land Disposal Restrictions for subsurface waste disposal. Treatment of aqueous waste with absorbent polymers provides an alternative to liquid waste solidification via high-shear mixing with clays and cements. Significant advantages of absorbent polymer use over clays and cements include ease of operations and waste volume minimization. Absorbent polymers do not require high-shear mixing as do clays and cements. Granulated absorbent polymer is poured into aqueous solutions and forms a gel which passes the paint filter test as a non-liquid. Pouring versus mixing of a solidification agent not only eliminates the need for a mixing station, but also lessens exposure to personnel and the potential for spread of contamination from treatment of radioactive wastes. Waste minimization is achieved as significantly less mass addition and volume increase is required of and results from absorbent polymer use than that of clays and cements. Operational ease and waste minimization translate into overall cost savings for LLW and MLLW treatment

  4. Radar absorbing properties of carbon nanotubes/polymer ...

    Indian Academy of Sciences (India)

    This research is devoted to the study of radar absorbing properties of the composites, based on the epoxy binder and ... Radar absorbing materials; carbon nanotubes; nanocomposites; reflection loss. 1. ..... So, for example, the papers of [3–5 ...

  5. From polymer chemistry to membrane elaboration

    Energy Technology Data Exchange (ETDEWEB)

    Iojoiu, C. [ERAS-Labo, 222 RN 90, F-38330 St. Nazaire-les-Eymes (France); Chabert, F.; Marechal, M.; Guindet, J.; Sanchez, J.-Y. [LEPMI ENSEEG, Domaine Universitaire, BP 75, F-38402 St. Martin d' Heres Cedex (France); Kissi, N.El. [Laboratoire de Rheologie, ENSHMG, Domaine Universitaire, BP 95, F-38402 St. Martin d' Heres Cedex (France)

    2006-02-28

    The paper tries to make a critical inventory of Ionomers, free of fluorine or fluorine less, which can be used as alternatives to Nafion{sup R} in polymer electrolytes fuel cells, as Ionomer is indisputably one of the main bolts of these technologies. All the Ionomer families are discussed, with their main advantages and drawbacks, in particular in terms of their possible industrial scale-up. Special attention has been paid to the discussions about the choice of the ionic functions and that of polymeric backbones of the Ionomers, with regard to the required electrochemical properties and also to their thermomechanical behaviour. It has been emphasized that a global approach of the polymer electrolytes is essential to progress. This must involve (i) a control of the syntheses up to the pilot scale, (ii) thorough characterizations, (iii) attention to the membrane and the MEA assembly and (iv) durability investigations, including post-mortem characterizations. (author)

  6. EFFICIENCY OF THE CAPACITY-TYPE SOLAR WATER HEATER WITH THE FLEXIBLE POLYMER ABSORBER.

    Directory of Open Access Journals (Sweden)

    Ermuratschii V.V.

    2008-08-01

    Full Text Available Energetic indexes of solar capacity-type water heaters with flexible polymer absorbers and different constructions of enclosures using the refined method of calculus were obtained.

  7. Incorporation of tritium contaminated oil in cement using an absorbent polymer

    International Nuclear Information System (INIS)

    Goes, Marcos Maciel de; Marumo, Julio Takehiro; Isiki, Vera Lucia Keiko

    2002-01-01

    This paper describes a study carried out to determine whether a absorbent polymer can be used to pretreat tritiated vacuum pump oils, before solidification in cement matrix. The experiments were conducted with samples prepared with simulated waste, absorbent polymer, portland cement and silica fume, in some cases, and evaluating the performance according to compressive strength, workability and bleeding. Despite the low quantity of oil incorporated, this study showed that it can be a feasible method, since it provided a stable product. (author)

  8. PVDF-HFP-based porous polymer electrolyte membranes for lithium-ion batteries

    DEFF Research Database (Denmark)

    Miao, Ruiying; Liu, Bowen; Zhu, Zhongzheng

    2008-01-01

    As a potential electrolyte for lithium-ion batteries, a porous polymer electrolyte membrane based on poly(vinylidenefluoride-hexafluoropropylene) (PVDF-HFP) was prepared by a phase inversion method. The casting solution, effects of the solvent and non-solvent and addition of micron scale TiO2...... particles were investigated. The membranes were characterized by SEM, XRD, AC impedance, and charge/discharge tests. By using acetone as the solvent and water as the non-solvent, the prepared membranes showed good ability to absorb and retain the lithium ion containing electrolyte. Addition of micron TiO2...

  9. Solid polymer electrolyte composite membrane comprising laser micromachined porous support

    Science.gov (United States)

    Liu, Han [Waltham, MA; LaConti, Anthony B [Lynnfield, MA; Mittelsteadt, Cortney K [Natick, MA; McCallum, Thomas J [Ashland, MA

    2011-01-11

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a rigid, non-electrically-conducting support, the support preferably being a sheet of polyimide having a thickness of about 7.5 to 15 microns. The support has a plurality of cylindrical pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores, which preferably have a diameter of about 5 microns, are made by laser micromachining and preferably are arranged in a defined pattern, for example, with fewer pores located in areas of high membrane stress and more pores located in areas of low membrane stress. The pores are filled with a first solid polymer electrolyte, such as a perfluorosulfonic acid (PFSA) polymer. A second solid polymer electrolyte, which may be the same as or different than the first solid polymer electrolyte, may be deposited over the top and/or bottom of the first solid polymer electrolyte.

  10. Interaction of multiple biomimetic antimicrobial polymers with model bacterial membranes

    Energy Technology Data Exchange (ETDEWEB)

    Baul, Upayan, E-mail: upayanb@imsc.res.in; Vemparala, Satyavani, E-mail: vani@imsc.res.in [The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113 (India); Kuroda, Kenichi, E-mail: kkuroda@umich.edu [Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan 48109 (United States)

    2014-08-28

    Using atomistic molecular dynamics simulations, interaction of multiple synthetic random copolymers based on methacrylates on prototypical bacterial membranes is investigated. The simulations show that the cationic polymers form a micellar aggregate in water phase and the aggregate, when interacting with the bacterial membrane, induces clustering of oppositely charged anionic lipid molecules to form clusters and enhances ordering of lipid chains. The model bacterial membrane, consequently, develops lateral inhomogeneity in membrane thickness profile compared to polymer-free system. The individual polymers in the aggregate are released into the bacterial membrane in a phased manner and the simulations suggest that the most probable location of the partitioned polymers is near the 1-palmitoyl-2-oleoyl-phosphatidylglycerol (POPG) clusters. The partitioned polymers preferentially adopt facially amphiphilic conformations at lipid-water interface, despite lacking intrinsic secondary structures such as α-helix or β-sheet found in naturally occurring antimicrobial peptides.

  11. Computational simulation of lithium ion transport through polymer nanocomposite membranes

    International Nuclear Information System (INIS)

    Moon, P.; Sandi, G.; Kizilel, R.; Stevens, D.

    2003-01-01

    We think of membranes as simple devices to facilitate filtration. In fact, membranes play a role in chemical, biological, and engineering processes such as catalysis, separation, and sensing by control of molecular transport and recognition. Critical factors that influence membrane discrimination properties include composition, pore size (as well as homogeneity), chemical functionalization, and electrical transport properties. There is increasing interest in using nanomaterials for the production of novel membranes due to the unique selectivity that can be achieved. Clay-polymer nanocomposites show particular promise due to their ease of manufacture (large sheets), their rigidity (self supporting), and their excellent mechanical properties. However, the process of lithium ion transport through the clay-polymer nanocomposite and mechanisms of pore size selection are poorly understood at the ionic and molecular level. In addition, manufacturing of clay-polymer nanocomposite membranes with desirable properties has proved challenging. We have built a general membrane-modeling tool (simulation system) to assist in developing improved membranes for selection, electromigration, and other electrochemical applications. Of particular interest are the recently formulated clay-polymer membranes. The transport mechanisms of the lithium ions membranes are not well understood and, therefore, they make an interesting test case for the model. In order to validate the model, we synthesized polymer nanocomposites membranes.

  12. Recommended method for measurement of absorbency of superabsorbent polymers in cement-based materials

    DEFF Research Database (Denmark)

    Esteves, Luis Pedro

    2015-01-01

    —laser diffraction particle size analysis, and it allows an easy and reliable measurement of the absorbency of superabsorbent polymers. It is shown in detail how both the definition of the exposure liquid and the definition of the system of SAP particles can be selected so that absorbency can be experimentally...... so that the properties of concrete with superabsorbent polymers can be better controlled in practice. In this paper, a technique that can be potentially used as a standard method is developed. The method is based on a measurement technique validated through an international standard procedure...

  13. Mechanisms of proton conductance in polymer electrolyte membranes

    DEFF Research Database (Denmark)

    Eikerling, M.; Kornyshev, A. A.; Kuznetsov, A. M.

    2001-01-01

    We provide a phenomenological description of proton conductance in polymer electrolyte membranes, based on contemporary views of proton transfer processes in condensed media and a model for heterogeneous polymer electrolyte membrane structure. The description combines the proton transfer events...... in a single pore with the total pore-network performance and, thereby, relates structural and kinetic characteristics of the membrane. The theory addresses specific experimentally studied issues such as the effect of the density of proton localization sites (equivalent weight) of the membrane material...

  14. Intrinsically Microporous Polymer Membranes for High Performance Gas Separation

    KAUST Repository

    Swaidan, Raja

    2014-01-01

    This dissertation addresses the rational design of intrinsically microporous solutionprocessable polyimides and ladder polymers for highly permeable and highly selective gas transport in cornerstone applications of membrane-based gas separation

  15. Research on ration selection of mixed absorbent solution for membrane air-conditioning system

    International Nuclear Information System (INIS)

    Li, Xiu-Wei; Zhang, Xiao-Song; Wang, Fang; Zhao, Xiao; Zhang, Zhuo

    2015-01-01

    Highlights: • We derive models of the membrane air-conditioning system with mixed absorbents. • We make analysis on system COP, cost-effectiveness and economy. • The paper provides a new method for ideal absorbent selection. • The solutes concentration of 50% achieves the best cost-effectiveness and the economy. - Abstract: Absorption air-conditioning system is a good alternative to vapor compression system for developing low carbon society. To improve the performance of the traditional absorption system, the membrane air-conditioning system is configured and its COP can reach as high as 6. Mixed absorbents are potential for cost reduction of the membrane system while maintaining a high COP. On the purpose of finding ideal mixed absorbent groups, this paper makes analysis on COP, cost-effectiveness and economy of the membrane system with mixed LiBr–CaCl 2 absorbent solution. The models of the system have been developed for the analysis. The results show the COP is higher for the absorbent groups with lower concentration of the total solute and higher concentration ratio of LiBr. It also reveals when the total solutes concentration is about 50%, it achieves the best cost-effectiveness and the economy. The process of the analysis provides a useful method for mixed absorbents selection

  16. Preparation and characterization of functional poly(vinylidene fluoride) (PVDF) membranes with ultraviolet-absorbing property

    Science.gov (United States)

    Dong, Li; Liu, Xiangdong; Xiong, Zhengrong; Sheng, Dekun; Lin, Changhong; Zhou, Yan; Yang, Yuming

    2018-06-01

    We first reported a strategy to prepare functional poly(vinylidene fluoride) (PVDF) membranes with excellent ultraviolet-absorbing property through chemically induced grafting. Herein, the polymerizable ultraviolet (UV) absorber 2-hydroxy-4-(3-methacryloxy-2-hydroxylpropoxy) benzophenone (BPMA) made by ourselves was grafted onto the PVDF chains that have been pretreated with tetraethylammonium hydroxide (TEAH) alkaline solution. Moreover, the effect of experiment conditions such as the alkali and monomer concentrations, alkali treatment time on the UV-absorbing property of the obtained PVDF-g-PBPMA membranes were studied in detail. The chemical structure of the modified membranes was confirmed by 1H NMR, FT-IR and XPS measurements. Meanwhile, the thermal and UV-absorbing properties were characterized by TGA, DSC and UV-Vis spectrophotometer, respectively. The results indicated that BPMA side chains were successfully introduced onto PVDF backbones. Most importantly, the obtained PVDF-g-PBPMA membranes exhibited excellent UV-absorbing property. The transmittance of UV light at 300 nm decreased to as low as 0.02% and the UV light below 388 nm could be completely absorbed by the PVDF-g-PBPMA membrane made under optimal condition.

  17. Novel polybenzimidazole derivatives for high temperature polymer electrolyte membrane fuel cell applications

    Science.gov (United States)

    Xiao, Lixiang

    Recent advances have made polymer electrolyte membrane fuel cells (PEMFCs) a leading alternative to internal combustion engines for both stationary and transportation applications. In particular, high temperature polymer electrolyte membranes operational above 120°C without humidification offer many advantages including fast electrode kinetics, high tolerance to fuel impurities and simple thermal and water management systems. A series of polybenzimidazole (PBI) derivatives including pyridine-based PBI (PPBI) and sulfonated PBI (SPBI) homopolymers and copolymers have been synthesized using polyphosphoric acid (PPA) as both solvent and polycondensation agent. High molecular weight PBI derivative polymers were obtained with well controlled backbone structures in terms of pyridine ring content, polymer backbone rigidity and degree of sulfonation. A novel process, termed the PPA process, has been developed to prepare phosphoric acid (PA) doped PBI membranes by direct-casting of the PPA polymerization solution without isolation or re-dissolution of the polymers. The subsequent hydrolysis of PPA to PA by moisture absorbed from the atmosphere usually induced a transition from the solution-like state to a gel-like state and produced PA doped PBI membranes with a desirable suite of physiochemical properties characterized by the PA doping levels, mechanical properties and proton conductivities. The effects of the polymer backbone structure on the polymer characteristics and membrane properties, i.e., the structure-property relationships of the PBI derivative polymers have been studied. The incorporation of additional basic nitrogen containing pyridine rings and sulfonic acid groups enhanced the polymer solubility in acid and dipolar solvents while retaining the inherently high thermal stability of the PBI heteroaromatic backbone. In particular, the degradation of the SPBI polymers with reasonable high molecular weights commenced above 450°C, notably higher than other

  18. Impact Energy Absorbing Capability of Metal/Polymer Hybrid Sheets

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Kyungil; Kwon, O Bum; Park, Hyung Wook [Ulsan Nat’l Institute of Science and Technology, Ulsan (Korea, Republic of)

    2017-02-15

    Recently, the reduction of vehicle weight has been increasingly studied, in order to enhance the fuel efficiency of passenger cars. In particular, the seat frame is being studied actively, owing to considerations of driver safety from external impact damage. Therefore, this study focuses on high strength steel sheet (SPFC980)/polymer heterojunction hybrid materials, and their performance in regards to impact energy absorption. The ratio of impact energy absorption was observed to be relatively higher in the SPFC980/polymer hybrid materials under the impact load. This was found by calculating the equivalent flexural rigidity, which is the bending effect, according to the Castigliano theorem. An efficient wire-web structure was investigated through the simulation of different wire-web designs such as triangular, rectangular, octagonal, and hexagonal structures. The hexagonal wire-web structure was shown to have the least impact damage, according to the simulations. This study can be utilized for seat frame design for passengers’ safety, owing to efficient impact absorption.

  19. Radiolytic preparation of PFA-g-PVBSA membranes as a polymer electrolyte membrane

    Energy Technology Data Exchange (ETDEWEB)

    Fei Geng [Department of Chemistry and Materials Engineering, Changshu Institute of Technology, Nansanhuan Road 99, Changshu, Jiangsu 215-500 (China); Hwang, Mi-Lim; Sohn, Joon-Yong; Nho, Young Chang [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of); Shin, Junhwa, E-mail: shinj@kaeri.re.kr [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of)

    2012-03-01

    In this study, a polymer electrolyte membrane, PFA-g-PVBSA was prepared through the radiation-induced graft copolymerization of vinylbenzyl chloride (VBC) monomer onto a poly(tetrafluoroethylene-co-perfluoropropylvinyl ether) (PFA) film and subsequent sulfonation processes. The IEC values and water uptakes of the prepared membranes increased when increasing the contents of the poly(vinylbenzyl sulfonic acid) (PVBSA) graft polymers in the membranes. Compared with Nafion 212, the degree of grafting (DOG) of membranes of 50% and 70% showed higher proton conductivity with significantly lower methanol permeability. The combination of these properties suggests that the prepared membranes are promising for future application in direct methanol fuel cells.

  20. Polybenzimidazole and sulfonated polyhedral oligosilsesquioxane composite membranes for high temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    Aili, David; Allward, Todd; Alfaro, Silvia Martinez

    2014-01-01

    Composite membranes based on poly(2,2′(m-phenylene)-5,5́bibenzimidazole) (PBI) and sulfonated polyhedral oligosilsesquioxane (S-POSS) with S-POSS contents of 5 and 10wt.% were prepared by solution casting as base materials for high temperature polymer electrolyte membrane fuel cells. With membranes...

  1. Nafion and modified-Nafion membranes for polymer electrolyte fuel

    Indian Academy of Sciences (India)

    Polymer electrolyte fuel cells (PEFCs) employ membrane electrolytes for proton transport during the cell reaction. The membrane forms a key component of the PEFC and its performance is controlled by several physical parameters, viz. water up-take, ion-exchange capacity, proton conductivity and humidity. The article ...

  2. Toughness of membranes applied in polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kiefer, J; Brack, H P; Scherer, G G [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Since several years we apply the radiation-grafting technique to prepare polymeric membranes for application in polymer electrolyte fuel cells (PEFCs). Our investigations presented here focus on changes in toughness of these materials after the various synthesis steps and the importance of membrane toughness for their application in PEFCs. (author) 2 figs., 4 refs.

  3. Polymer and Membrane Design for Low Temperature Catalytic Reactions

    KAUST Repository

    Villalobos, Luis Francisco

    2016-02-29

    Catalytically active asymmetric membranes have been developed with high loadings of palladium nanoparticles located solely in the membrane\\'s ultrathin skin layer. The manufacturing of these membranes requires polymers with functional groups, which can form insoluble complexes with palladium ions. Three polymers have been synthesized for this purpose and a complexation/nonsolvent induced phase separation followed by a palladium reduction step is carried out to prepare such membranes. Parameters to optimize the skin layer thickness and porosity, the palladium loading in this layer, and the palladium nanoparticles size are determined. The catalytic activity of the membranes is verified with the reduction of a nitro-compound and with a liquid phase Suzuki-Miyaura coupling reaction. Very low reaction times are observed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Evaluation of polyacrylonitrile (PAN) as a binding polymer for absorbers used to treat liquid radioactive wastes

    International Nuclear Information System (INIS)

    Sebesta, F.; John, J.; Motl, A.; Stamberg, K.

    1995-11-01

    The chemical and radiation stability of polyacrylonitrile (PAN) in the form of beads (B-PAN), similar to the beads of composite absorbers, and one selected composite absorber (ammonium molybdophosphate, the active component in PAN binder [AMP-PAN], a prospective candidate for the treatment of acidic wastes) were studied. Aqueous 1M HNO 3 + 1M NaNO 3 , 1M NaOH + 1M NaNO 3 , and 1M NaOH were chosen as simulants of DOE acidic and alkaline wastes. In addition,radiation stability was determined indistilled water. The chemical stability of B-PAN and AMP-PAN beads was tested for a period up to one month of contact with the solution at ambient temperature. The radiation stability of the beads was checked in a radiation dose range 10 3 --10 6 Gy (10 5 --10 8 rads). In acidic solutions the stability of PAN binder was proved not to be limited by either chemical or radiation decomposition. PAN binder may thus be used for preparing composite absorbers for treatment of acid wastes from DOE facilities. The same conclusion is valid for alkaline solutions with pH up to 13. In highly alkaline solutions (concentration of NAOH higher than I M) and in the presence of NaNO 3 , the stability of the tested polyacrylonitrile polymer was sufficient for applications not extending over 10 days. Cross-linking of the polymer caused by ionizing radiation was found to have a positive influence on chemical stability. This effect enables a longer period of applicability of PAN-based composite absorbers. Because of the high sorption rate achievable with PAN-based absorbers, the stability achieved is sufficient for most applications in the DOE complex. The chemical stability of binding polymer may also be further improved by testing another, more suitable type of polymer from the broad family of polyacrylonitrile polymers

  5. POROUS MEMBRANE TEMPLATED SYNTHESIS OF POLYMER PILLARED LAYER

    Institute of Scientific and Technical Information of China (English)

    Zhong-wei Niu; Dan Li; Zhen-zhong Yang

    2003-01-01

    The anodic porous alumina membranes with a definite pore diameter and aspect ratio were used as templates to synthesize polymer pillared layer structures. The pillared polymer was produced in the template membrane pores, and the layer on the template surfaces. Rigid cured epoxy resin, polystyrene and soft hydrogel were chosen to confirm the methodology. The pillars were in the form of either tubes or fibers, which were controlled by the alumina membrane pore surface wettability. The structural features were confirmed by scanning electron microscopy results.

  6. Design of UV-absorbing PVDF membrane via surface-initiated AGET ATRP

    Science.gov (United States)

    Dong, Li; Liu, Xiangdong; Xiong, Zhengrong; Sheng, Dekun; Zhou, Yan; Lin, Changhong; Yang, Yuming

    2018-03-01

    Herein, PVDF membranes with excellent UV-absorbing property were first synthesized through grafting the polymerizable low-molecular-weight organic UV-absorber 2-hydroxy-4-(3-methacryloxy-2-hydroxylpropoxy) benzophenone (BPMA) onto α-bromoester-functionalized PVDF membranes via the surface-initiated activator generated by electron transfer atom transfer radical polymerization (SI-AGET ATRP). The surface initiators were immobilized by the reaction between 2-bromoisobutyryl bromide (BIBB) and the hydroxylated PVDF membranes. PVDF-g-PBPMA membranes with different grafting densities were obtained by tuning the polymerization time and the modified membranes were characterized by 1H-NMR, FT-IR, XPS, SEM, UV-vis Spectrophotometer, TGA and DSC. The experimental results indicated that PBPMA chains were successfully introduced onto PVDF membranes. Most importantly, the PVDF-g-PBPMA membranes exhibited outstanding UV-shielding property. UV-vis transmittance spectra showed that most UV light below 360 nm could be absorbed by PVDF-g-PBPMA membranes and the whole UV light region (200-400 nm) can be blocked with the reaction time increased.

  7. Styrene-Based Copolymer for Polymer Membrane Modifications

    OpenAIRE

    Harsha Srivastava; Harshad Lade; Diby Paul; G. Arthanareeswaran; Ji Hyang Kweon

    2016-01-01

    Poly(vinylidene fluoride) (PVDF) was modified with a styrene-based copolymer. The crystalline behavior, phase, thermal stability, and surface morphology of the modified membranes were analyzed. The membrane surface roughness showed a strong dependence on the styrene-acrylonitrile content and was reduced to 34% for a PVDF/styrene-acrylonitrile blend membrane with a 40/60 ratio. The thermal and crystalline behavior confirmed the blend miscibility of both polymers. It was observed in X-ray diffr...

  8. Ecological concepts in recent polymer technology. Part4. Eco-friendly water-absorbing polymer; Kankyo ni chowa shita kyusuisei kobunshi

    Energy Technology Data Exchange (ETDEWEB)

    Kunioka, M.

    1997-07-01

    As an application example of water-absorbing polymers with biodegradability, it was expected to be applied to soil improvement agents used in planting trees in deserts, besides physiological napkins, paper diapers and medical materials. In this paper, water-absorbing polymers with biodegradability such as natural polymers, petroleum-made polymers and polymers synthesized by radiation cross-linking and chemical cross-linking were introduced. Moreover, a kind of water-absorbing polymers developed by the authors, made from polyamino acid synthesized by microbes, was introduced. In the method developed by the authors, the cross-linking structure could be made by combining PGA carboxyl groups and various amino groups of diamine using carbimide with water solubility. As for this method, all of reactions could be conducted in water and catalytic replacement was not necessary, moreover, hydrogel with the water-absorbing rate of 200 to 1500 times could be produced. 44 refs., 3 figs., 1 tab.

  9. Solid polymer electrolyte composite membrane comprising plasma etched porous support

    Science.gov (United States)

    Liu, Han; LaConti, Anthony B.

    2010-10-05

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a rigid, non-electrically-conducting support, the support preferably being a sheet of polyimide having a thickness of about 7.5 to 15 microns. The support has a plurality of cylindrical pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores, which preferably have a diameter of about 0.1 to 5 microns, are made by plasma etching and preferably are arranged in a defined pattern, for example, with fewer pores located in areas of high membrane stress and more pores located in areas of low membrane stress. The pores are filled with a first solid polymer electrolyte, such as a perfluorosulfonic acid (PFSA) polymer. A second solid polymer electrolyte, which may be the same as or different than the first solid polymer electrolyte, may be deposited over the top and/or bottom of the first solid polymer electrolyte.

  10. Polymer and Membrane Design for Low Temperature Catalytic Reactions

    KAUST Repository

    Villalobos, Luis Francisco; Xie, Yihui; Nunes, Suzana Pereira; Peinemann, Klaus-Viktor

    2016-01-01

    Catalytically active asymmetric membranes have been developed with high loadings of palladium nanoparticles located solely in the membrane's ultrathin skin layer. The manufacturing of these membranes requires polymers with functional groups, which can form insoluble complexes with palladium ions. Three polymers have been synthesized for this purpose and a complexation/nonsolvent induced phase separation followed by a palladium reduction step is carried out to prepare such membranes. Parameters to optimize the skin layer thickness and porosity, the palladium loading in this layer, and the palladium nanoparticles size are determined. The catalytic activity of the membranes is verified with the reduction of a nitro-compound and with a liquid phase Suzuki-Miyaura coupling reaction. Very low reaction times are observed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Recent developments of smart electromagnetic absorbers based polymer-composites at gigahertz frequencies

    International Nuclear Information System (INIS)

    Idris, Fadzidah Mohd.; Hashim, Mansor; Abbas, Zulkifly; Ismail, Ismayadi; Nazlan, Rodziah; Ibrahim, Idza Riati

    2016-01-01

    The rapid increase in electromagnetic interference has received a serious attention from researchers who responded by producing a variety of radar absorbing materials especially at high gigahertz frequencies. Ongoing investigation is being carried out in order to find the best absorbing materials which can fulfill the requirements for smart absorbing materials which are lightweight, broad bandwidth absorption, stronger absorption etc. Thus, to improve the absorbing capability, several important parameters need to be taken into consideration such as filler type, loading level, type of polymer matrix, physical thickness, grain sizes, layers and bandwidth. Therefore, this article introduces the electromagnetic wave absorption mechanisms and then reveals and reviews those parameters that enhance the absorption performance. - Highlights: • Development variety of radar absorbing materials especially at high gigahertz frequencies. • Best absorbing materials which can fulfill the requirements for smart absorbing materials which are lightweight, broad bandwidth absorption, stronger absorption etc. • Important parameters need to be taken into consideration to obtain stronger absorption and better performances.

  12. Ultrafiltration by gyroid nanoporous polymer membranes

    DEFF Research Database (Denmark)

    Li, Li; Szewczykowski, Piotr Przemyslaw; Clausen, Lydia D.

    2011-01-01

    the effect of membrane fouling on the flux decline and rejection profiles. Significant fouling occurred in the case of hydrophobic membranes in contact with water solutions, while in the presence of high concentration of ethanol in the filtration solution and in the case of hydrophilized membranes...... the fouling was reduced. The observed rejection of PEG was compared with theoretic predictions, as described by the Bungay–Brenner model. The model satisfactorily described the rejection profile of PEG up to 12kg/mol through hydrophobic membranes in the presence of excess ethanol. A significantly reduced......Gyroid nanoporous cross-linked 1,2-polybutadiene membranes with uniform pores were developed for ultrafiltration applications. The gyroid porosity has the advantage of isotropic percolation with no need for structure pre-alignment. The effects of solvent and surface photo...

  13. Synthesis and characterization of UV-absorbing fluorine-silicone acrylic resin polymer

    Science.gov (United States)

    Lei, Huibin; He, Deliang; Guo, Yanni; Tang, Yining; Huang, Houqiang

    2018-06-01

    A series of UV-absorbing fluorine-silicone acrylic resin polymers containing different amount of UV-absorbent were successfully prepared by solution polymerization, with 2-[3-(2H-Benzotriazol-2-yl)-4-hydroxyphenyl] ethyl methacrylate (BHEM), vinyltrimethoxysilane (VTMS) and hexafluorobutyl methacrylate (HFMA) as modifying monomers. The acrylic polymers and the coatings thereof were characterized by Fourier transform infrared spectrum (FT-IR), X-ray photoelectron spectroscopy (XPS), Ultraviolet-visible (UV-vis) absorption spectrum, thermogravimetric analysis (TGA), water contact angle (CA) and Xenon lamp artificial accelerated aging tests. Results indicated that the resin exhibited high UV absorption performance as well as good thermal stability. The hydrophobicity of the coatings was of great improvement because of the bonded fluorine and silicone. Meanwhile, the weather-resistance was promoted through preferably colligating the protective effects of BHEM, organic fluorine and silicone. Also, a fitting formula about the weatherability with the BMHE content was tentatively proposed.

  14. Performance of super-absorbent polymer as an internal curing agent for self-compacting concrete

    Directory of Open Access Journals (Sweden)

    Al-Hubboubi Suhair

    2018-01-01

    Full Text Available Internal curing agent by using super-absorbent polymer was present in this study, its effect on the properties of self-compacting concrete was evaluated .The SAP content in the concrete mix was 0.5 % by weight of cement. Three procedures for curing were adopted; curing in water, curing in water and air and curing in polyethylene sealed bags. Fresh concrete tests conducted to assess the self-compactability of the produced concrete. Moreover, compressive and splitting strength tests were carried out. The testing program had been extended to the age of 90 days.The use of super-absorbent polymer did not affect the fresh state characteristics of the studied SCC and achieved an increase in both compressive and tensile strengths as compared to the reference concrete mix.

  15. Development of Nanoporous Polymer Membranes by Swift Heavy Ion Irradiation

    Science.gov (United States)

    Dinesh, Divya; Predeep, P.

    2011-10-01

    This study reveals the preparation of conical pores in polyethylene terephthalate (PET) by track etching. The polymer membrane is etched from one side by keeping between the clamps of conductivity cell followed by irradiation with swift heavy ion of 197Au. Electrical stopping supports chemical stopping. During etching process current is measured as a function of time till a sharp increase -breakthrough-observed. After etching membranes are thoroughly washed with stopping solution and water. Resultant films are characterized using Optical microscope and field emission scanning electron microscopy. Polymer films with uniform pores can be a cheaper templating material in the fields of photonic crystals and micro- electronics.

  16. Modification of electrical properties of polymer membranes by ion implantation

    International Nuclear Information System (INIS)

    Dworecki, K.; Hasegawa, T.; Sudlitz, K.; Wasik, S.

    2000-01-01

    This paper presents an experimental study of the electrical properties of polymer ion irradiated polyethylene terephthalate (PET) membranes. The polymer samples have been implanted with a variety of ions (O 5+ , N 4+ , Kr 9+ ) by the energy of 10 keV/q up to doses of 10 15 ions/cm 2 and then they were polarized in an electric field of 4.16x10 6 V/m at non-isothermal conditions. The electrical properties and the changes in the chemical structure of implanted membrane were measured by conductivity and discharge currents and FTIR spectra. Electrical conductivity of the membranes PET increases to 1-3 orders of magnitude after implantation and is determined by the charge transport caused by free space charge and by thermal detrapping of charge carriers. The spectra of thermally induced discharge current (TDC) shows that ion irradiated PET membranes are characterized by high ability to accumulate charge

  17. Microwave Absorbent Packaging Material from Composites Chitosan-Polyvinyl Alcohol Polymer

    Directory of Open Access Journals (Sweden)

    Bambang - Riyanto

    2014-11-01

    Full Text Available Microwave absorbent packaging materials currently tend to biomaterial. Chitosan is a dielectric biomaterial with polycationic properties. The aim of this study was to analyze characteristics of microwave absorbing packaging material made from composite chitosan-polyvinyl alcohol (PVA polymer. The ability of the packaging material to absorb microwave was determined by reflection loss measurement. Formed packaging prototype resembles as a thin transparent yellowish plastic with thickness (0.11-0.22 mm and the tensile strength (106.33±2.82-143.00±2.59 kPa. SEM analysis showed homogenous structure characterized by interaction between chitosan and PVA. Optimum absorption value was obtained from chitosan concentration of 1%, with average value of reflection loss was (-31.9289±4.0094 dB.Keywords: chitosan, material packaging, microwave, reflection loss

  18. Microwave Absorbent Packaging Material from Composites Chitosan-Polyvinyl Alcohol Polymer

    Directory of Open Access Journals (Sweden)

    Bambang - Riyanto

    2015-07-01

    Full Text Available Microwave absorbent packaging materials currently tend to biomaterial. Chitosan is a dielectric biomaterial with polycationic properties. The aim of this study was to analyze characteristics of microwave absorbing packaging material made from composite chitosan-polyvinyl alcohol (PVA polymer. The ability of the packaging material to absorb microwave was determined by reflection loss measurement. Formed packaging prototype resembles as a thin transparent yellowish plastic with thickness (0.11-0.22 mm and the tensile strength (106.33±2.82-143.00±2.59 kPa. SEM analysis showed homogenous structure characterized by interaction between chitosan and PVA. Optimum absorption value was obtained from chitosan concentration of 1%, with average value of reflection loss was (-31.9289±4.0094 dB.Keywords: chitosan, material packaging, microwave, reflection loss

  19. Characterization of load dependent creep behavior in medically relevant absorbable polymers.

    Science.gov (United States)

    Dreher, Maureen L; Nagaraja, Srinidhi; Bui, Hieu; Hong, Danny

    2014-01-01

    While synthetic absorbable polymers have a substantial history of use in medical devices, their use is expanding and becoming more prevalent for devices where long term loading and structural support is required. In addition, there is evidence that current absorbable medical devices may experience permanent deformations, warping (out of plane twisting), and geometric changes in vivo. For clinical indications with long term loading or structural support requirements, understanding the material's viscoelastic properties becomes increasingly important whereas these properties have not been used historically as preclinical indications of performance or design considerations. In this study we measured the static creep, creep recovery and cyclic creep responses of common medically relevant absorbable materials (i.e., poly(l-lactide, PLLA) and poly(l-co-glycolide, PLGA) over a range of physiologically relevant loading magnitudes. The results indicate that both PLLA and PLGA exhibit creep behavior and failure at loads significantly less than the yield or ultimate properties of the material and that significant material specific responses to loading exist. In addition, we identified a strong correlation between the extent of creep in the material and its crystallinity. Results of the study provide new information on the creep behavior of PLLA and PLGA and support the use of viscoelastic properties of absorbable polymers as part of the material selection process. © 2013 Published by Elsevier Ltd.

  20. Bio-Inspired Polymer Membrane Surface Cleaning

    Directory of Open Access Journals (Sweden)

    Agnes Schulze

    2017-03-01

    Full Text Available To generate polyethersulfone membranes with a biocatalytically active surface, pancreatin was covalently immobilized. Pancreatin is a mixture of digestive enzymes such as protease, lipase, and amylase. The resulting membranes exhibit self-cleaning properties after “switching on” the respective enzyme by adjusting pH and temperature. Thus, the membrane surface can actively degrade a fouling layer on its surface and regain initial permeability. Fouling tests with solutions of protein, oil, and mixtures of both, were performed, and the membrane’s ability to self-clean the fouled surface was characterized. Membrane characterization was conducted by investigation of the immobilized enzyme concentration, enzyme activity, water permeation flux, fouling tests, porosimetry, X-ray photoelectron spectroscopy, and scanning electron microscopy.

  1. Nanoporous polymer--clay hybrid membranes for gas separation.

    Science.gov (United States)

    Defontaine, Guillaume; Barichard, Anne; Letaief, Sadok; Feng, Chaoyang; Matsuura, Takeshi; Detellier, Christian

    2010-03-15

    Nanohybrid organo-inorgano clay mineral-polydimethylsiloxane (PDMS) membranes were prepared by the reaction of pure and/or modified natural clay minerals (Sepiolite and montmorillonite) with PDMS in hexane, followed by evaporation of the solvent at 70 degrees C. The membranes were characterized by means of XRD, SEM, ATD-TG and solid state (29)Si magic angle spinning (MAS) and cross-polarization (CP) CP/MAS NMR. The morphology of the membranes depends on the content loading of clay mineral. For low content, the membrane composition is homogeneous, with well dispersed nanoparticles of clay into the polymer matrix, whereas for higher clay content, the membranes are constituted also of a mixture of well dispersed nanoparticles into the polymer, but in the presence of agglomerations of small clay particles. Quantitative (29)Si MAS NMR demonstrated a strong correlation between the clay content of the membrane and the average length of the PDMS chain, indicating that the nanohybrid material is made of clay particles covalently linked to the PDMS structure. This is particularly the case for Sepiolite with has a high density of Q(2) silanol sites. The separation performances of the prepared membranes were tested for CO(2)/CH(4) and O(2)/N(2) mixtures. The observed separation factors showed an increase of the selectivity in the case of CO(2)/CH(4) in comparison with membranes made from PDMS alone under the same conditions. 2009 Elsevier Inc. All rights reserved.

  2. Modification of chitosan membranes with nanosilica particles as polymer electrolyte membranes

    Energy Technology Data Exchange (ETDEWEB)

    Kusumastuti, Ella, E-mail: ella.kusuma@gmail.com; Siniwi, Widasari Trisna, E-mail: wsiniwi@gmail.com; Mahatmanti, F. Widhi; Jumaeri [Department of Chemistry, Faculty of Mathematics and Natural Sciences, State University of Semarang D6 Building 2" n" d floor, Sekaran Unnes Campus, Gunungpati, Semarang (Indonesia); Atmaja, Lukman; Widiastuti, Nurul [Department of Chemistry, Faculty of Mathematics and Natural Sciences, Tenth November Institute of Technology Keputih ITS Campus, Sukolilo, Surabaya (Indonesia)

    2016-04-19

    Chitosan has been widely used as polymer matrix for Polymer Electrolyte Membrane (PEM) application replacing Nafion which has shortcomings in terms of high methanol permeability that degrades the performance of fuel cells. Chitosan membranes modification is performed by adding nanosilica to prevent methanol transport through the membrane. Nanosilica is synthesized by sol-gel method and the particle diameter is obtained by analysis using Breunner Emmet Teller (BET) that is 6.59 nm. Nanosilica is mixed with chitosan solution to obtain nanosilica-chitosan as polymer electrolyte membrane. The membranes are synthesized through phase inversion method with nanosilica composition including 0; 0.5; 1; 2; 3; 5; and 10% w/w of chitosan. Characterization of the membranes indicate that the results of water swelling, proton conductivity and methanol permeability of the membrane with 3% nanosilica respectively were 49.23%, 0.231 S/cm, and 5.43 x 10{sup −7} cm{sup 2}/s. Based on the results of membrane selectivity calculation, the optimum membrane is the composition of 3% nanosilica with value 5.91 x 105 S s cm{sup −3}. The results of functional groups analysis with FTIR showed that it was only physical interaction that occurred between chitosan and nanosilica since no significant changes found in peak around the wave number 1000-1250 cm{sup −-1}.

  3. Hybrid waste filler filled bio-polymer foam composites for sound absorbent materials

    Science.gov (United States)

    Rus, Anika Zafiah M.; Azahari, M. Shafiq M.; Kormin, Shaharuddin; Soon, Leong Bong; Zaliran, M. Taufiq; Ahraz Sadrina M. F., L.

    2017-09-01

    Sound absorption materials are one of the major requirements in many industries with regards to the sound insulation developed should be efficient to reduce sound. This is also important to contribute in economically ways of producing sound absorbing materials which is cheaper and user friendly. Thus, in this research, the sound absorbent properties of bio-polymer foam filled with hybrid fillers of wood dust and waste tire rubber has been investigated. Waste cooking oil from crisp industries was converted into bio-monomer, filled with different proportion ratio of fillers and fabricated into bio-polymer foam composite. Two fabrication methods is applied which is the Close Mold Method (CMM) and Open Mold Method (OMM). A total of four bio-polymer foam composite samples were produce for each method used. The percentage of hybrid fillers; mixture of wood dust and waste tire rubber of 2.5 %, 5.0%, 7.5% and 10% weight to weight ration with bio-monomer. The sound absorption of the bio-polymer foam composites samples were tested by using the impedance tube test according to the ASTM E-1050 and Scanning Electron Microscope to determine the morphology and porosity of the samples. The sound absorption coefficient (α) at different frequency range revealed that the polymer foam of 10.0 % hybrid fillers shows highest α of 0.963. The highest hybrid filler loading contributing to smallest pore sizes but highest interconnected pores. This also revealed that when highly porous material is exposed to incident sound waves, the air molecules at the surface of the material and within the pores of the material are forced to vibrate and loses some of their original energy. This is concluded that the suitability of bio-polymer foam filled with hybrid fillers to be used in acoustic application of automotive components such as dashboards, door panels, cushion and etc.

  4. Water Soluble Polymers as Proton Exchange Membranes for Fuel Cells

    Directory of Open Access Journals (Sweden)

    Bing-Joe Hwang

    2012-03-01

    Full Text Available The relentless increase in the demand for useable power from energy-hungry economies continues to drive energy-material related research. Fuel cells, as a future potential power source that provide clean-at-the-point-of-use power offer many advantages such as high efficiency, high energy density, quiet operation, and environmental friendliness. Critical to the operation of the fuel cell is the proton exchange membrane (polymer electrolyte membrane responsible for internal proton transport from the anode to the cathode. PEMs have the following requirements: high protonic conductivity, low electronic conductivity, impermeability to fuel gas or liquid, good mechanical toughness in both the dry and hydrated states, and high oxidative and hydrolytic stability in the actual fuel cell environment. Water soluble polymers represent an immensely diverse class of polymers. In this comprehensive review the initial focus is on those members of this group that have attracted publication interest, principally: chitosan, poly (ethylene glycol, poly (vinyl alcohol, poly (vinylpyrrolidone, poly (2-acrylamido-2-methyl-1-propanesulfonic acid and poly (styrene sulfonic acid. The paper then considers in detail the relationship of structure to functionality in the context of polymer blends and polymer based networks together with the effects of membrane crosslinking on IPN and semi IPN architectures. This is followed by a review of pore-filling and other impregnation approaches. Throughout the paper detailed numerical results are given for comparison to today’s state-of-the-art Nafion® based materials.

  5. Radiation Grafted Polymer Membranes for Fuel Cell Applications

    International Nuclear Information System (INIS)

    Scherer, G.G.; Wallasch, F.; Ben Youcef, H.; Gubler, L.

    2012-01-01

    Partially fluorinated proton exchange membranes prepared via radiation induced graft copolymerization ('radiation grafting') offer the prospect of cost-effective and tailor made membrane electrolytes for the polymer electrolyte fuel cell (PEFC). The composition and structure of radiation grafted membranes can be adjusted in a broad range to balance the different requirements of proton transport and mechanical robustness. Based on the earlier work on Styrene grafting, the novel monomer combination α-methyl-styrene/methacrylonitrile (AMS/MAN) is introduced for improved stability in the prevailing fuel cell environment. Successful fuel cell experiments proved the concept. (author)

  6. Radiation Grafted Polymer Membranes for Fuel Cell Applications

    Energy Technology Data Exchange (ETDEWEB)

    Scherer, G G; Wallasch, F; Ben Youcef, H; Gubler, L [Electrochemistry Laboratory, Paul Scherrer Institut, CH-5232 Villigen (Switzerland)

    2012-09-15

    Partially fluorinated proton exchange membranes prepared via radiation induced graft copolymerization ('radiation grafting') offer the prospect of cost-effective and tailor made membrane electrolytes for the polymer electrolyte fuel cell (PEFC). The composition and structure of radiation grafted membranes can be adjusted in a broad range to balance the different requirements of proton transport and mechanical robustness. Based on the earlier work on Styrene grafting, the novel monomer combination {alpha}-methyl-styrene/methacrylonitrile (AMS/MAN) is introduced for improved stability in the prevailing fuel cell environment. Successful fuel cell experiments proved the concept. (author)

  7. Fundamental and Applied Studies of Polymer Membranes

    Science.gov (United States)

    Imbrogno, Joseph

    Four major areas have been studied in this research: 1) synthesizing novel monomers, e.g. chiral monomers, to produce new types of functionalized membranes for the biotechnology and pharmaceutical industries, 2) hydrophobic brush membranes for desalinating brackish water, sea water, and separating organics, 3) fundamental studies of water interactions at surfaces using sum frequency generation (SFG), and 4) discovering new surface chemistries that will control the growth and differentiation of stem cells. We have developed a novel synthesis method in order to increase the breadth of our high throughput screening library. This library was generated using maleimide chemistry to react a common methacrylate linker with a variety of different functions groups (R groups) in order to form new monomers that were grafted from the surface of PES ultrafiltration membranes. From this work, we discovered that the chirality of a membrane can affect performance when separating chiral feed streams. This effect was observed when filtering bovine serum albumin (BSA) and ovalbumin in a high salt phosphate buffered saline (PBS, 150 mM salt). The Phe grafted membranes showed a large difference in performance when filtering BSA with selectivity of 1.13 and 1.00 for (S) and (R) Phe, respectively. However, when filtering ovalbumin, the (S) and (R) modified surfaces showed selectivity of 2.06 and 2.31, respectively. The higher selectivity enantiomer switched for the two different proteins. Permeability when filtering BSA was 3.06 LMH kPa-1 and 4.31 LMH kPa -1 for (S)- and (R)- Phe, respectively, and 2.65 LMH kPa -1 and 2.10 LMH kPa-1 when filtering ovalbumin for (S)- and (R)- Phe, respectively. Additionally, these effects were no longer present when using a low salt phosphate buffer (PB, 10 mM salt). Since, to our knowledge, membrane chirality is not considered in current industrial systems, this discovery could have a large impact on the pharmaceutical and biotechnology industries. We

  8. based anion exchange membrane for alkaline polymer electrolyte

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Hydroxyl ion (OH–) conducting anion exchange membranes based on modified poly (phenylene oxide) are fabricated for their application in alkaline polymer electrolyte fuel cells (APEFCs). In the present study, chloromethylation of poly(phenylene oxide) (PPO) is performed by aryl substitution rather than benzyl.

  9. The defouling of membranes using polymer beads containing ...

    African Journals Online (AJOL)

    Methods of physical cleaning of the polymer membranes, which do not require the plant to be shut down for lengthy periods, are very attractive and also do not generate any waste fluids. This paper reports on an investigation into the possibility of obtaining flux enhancement during the filtration process, as well as the ...

  10. Novel Ceramic Materials for Polymer Electrolyte Membrane Water Electrolysers' Anodes

    DEFF Research Database (Denmark)

    Polonsky, J.; Bouzek, K.; Prag, Carsten Brorson

    2012-01-01

    Tantalum carbide was evaluated as a possible new support for the IrO2 for use in anodes of polymer electrolyte membrane water electrolysers. A series of supported electrocatalysts varying in mass content of iridium oxide was prepared. XRD, powder conductivity measurements and cyclic and linear...

  11. Polymers application in proton exchange membranes for fuel cells (PEMFCs)

    Science.gov (United States)

    Walkowiak-Kulikowska, Justyna; Wolska, Joanna; Koroniak, Henryk

    2017-07-01

    This review presents the most important research on alternative polymer membranes with ionic groups attached, provides examples of materials with a well-defined chemical structure that are described in the literature. Furthermore, it elaborates on the synthetic methods used for preparing PEMs, the current status of fuel cell technology and its application. It also briefly discusses the development of the PEMFC market.

  12. Polymer Nanocomposite Membranes for Antifouling Nanofiltration.

    Science.gov (United States)

    Kamal, Tahseen; Ali, Nauman; Naseem, Abbas A; Khan, Sher B; Asiri, Abdullah M

    2016-01-01

    Fouling refers to the unwanted and undesirable attachment of biological macromolecules, inorganic, organic matter, and microorganisms on water contact surfaces. Fouling reduces the performance of devices involving these submerged surfaces and is considered the bottle-neck issue for various applications in the biomedical industry, food processing, and water treatment, especially in reverse osmosis (RO) desalination. Investigations have proven that nanocomposite membranes can exhibit enhanced antifouling performances and can be used for longer life times. The nanocomposite means addition of nanomaterials to main matrix at low loadings, exhibiting better properties compared to virgin matrix. In this review, a summarized description about related methods and their mechanisms for the fabrication of nanocomposite membranes with antifouling properties has been documented. Around 87 manuscripts including 10 patents were used to demonstrate the antifouling applications of of various nanocomposite membranes.

  13. Stabilization of Lipid Membranes With Dendritic Polymers

    Science.gov (United States)

    2004-12-01

    Langmuir - Blodgett (Takamato, et al., 2001) and solution techniques (Johnson, et al., 2002). However, BLMs are too unstable to be used to make effective...J.A., Ivanova, A.T., Schwartz, D.K., Yang, T., and Cremer, P.S., 2001: Stable Ordering in Langmuir - Blodgett Films, Science, 293, 1292-1295. Tully...Various dendrimers and hyperbranched polymers were evaluated. In addition, lipids with different head groups were used to probe the underlying

  14. Hybrid polymer composite membrane for an electromagnetic (EM) valveless micropump

    Science.gov (United States)

    Said, Muzalifah Mohd; Yunas, Jumril; Bais, Badariah; Azlan Hamzah, Azrul; Yeop Majlis, Burhanuddin

    2017-07-01

    In this paper, we report on a hybrid membrane used as an actuator in an electromagnetically driven valveless micropump developed using MEMS processes. The membrane structure consists of the combination of a magnetic polymer composite membrane and an attached bulk permanent magnet which is expected to have a compact structure and a strong magnetic force with maintained membrane flexibility. A soft polymeric material made of polydimethylsiloxane (PDMS) is initially mixed with neodymium magnetic particles (NdFeB) to form a magnetic polymer composite membrane. The membrane is then bonded with the PDMS based microfluidic part, developed using soft lithography process. The developed micropump was tested in terms of the actuator membrane deflection capability and the fluidic flow of the injected fluid sample through the microfluidic channel. The experimental results show that the magnetic composite actuator membrane with an attached bulk permanent magnet is capable of producing a maximum membrane deflection of up to 106 µm. The functionality test of the electromagnetic (EM) actuator for fluid pumping purposes was done by supplying an AC voltage with various amplitudes, signal waves and frequencies. A wide range of sample injection rates from a few µl min-1 to tens of nl min-1 was achieved with a maximum flow rate of 6.6 µl min-1. The injection flow rate of the EM micropump can be controlled by adjusting the voltage amplitude and frequency supplied to the EM coil, to control the membrane deflection in the pump chamber. The designed valveless EM micropump has a very high potential to enhance the drug delivery system capability in biomedical applications.

  15. Cell-Culture Reactor Having a Porous Organic Polymer Membrane

    Science.gov (United States)

    Koontz, Steven L. (Inventor)

    2000-01-01

    A method for making a biocompatible polymer article using a uniform atomic oxygen treatment is disclosed. The substrate may be subsequently optionally grated with a compatibilizing compound. Compatibilizing compounds may include proteins, phosphory1choline groups, platelet adhesion preventing polymers, albumin adhesion promoters, and the like. The compatibilized substrate may also have a living cell layer adhered thereto. The atomic oxygen is preferably produced by a flowing afterglow microwave discharge, wherein the substrate resides in a sidearm out of the plasma. Also, methods for culturing cells for various purposes using the various membranes are disclosed as well. Also disclosed are porous organic polymers having a distributed pore chemistry (DPC) comprising hydrophilic and hydrophobic regions, and a method for making the DPC by exposing the polymer to atomic oxygen wherein the rate of hydrophilization is greater than the rate of mass loss.

  16. Dendronized Polymer Architectures for Fuel Cell Membranes

    DEFF Research Database (Denmark)

    Nielsen, Mads Møller; Dimitrov, Ivaylo; Takamuku, S.

    2013-01-01

    Multi‐step synthetic pathways to low‐ion exchange capacity (IEC) polysulfone (PSU) with sulfonic acid functionalized aliphatic dendrons and sulfonated comb‐type PSU structures are developed and investigated in a comparative study as non‐fluorinated proton exchange membrane (PEM) candidates. In each...... case the side chains are synthesized and introduced in their sulfonated form onto an azide‐functionalized PSU via click chemistry. Three degrees of substitution of each architecture were prepared in order to evaluate the dependence on number of sulfonated side chains. Solution cast membranes were...... evaluated as PEMs for use in fuel cells by proton conductivity measurements, and in the case of dendronized architectures: thermal stability. The proposed synthetic strategy facilitates exploration of a non‐fluorous system with various flexible side chains where IEC is tunable by the degree of substitution....

  17. The effect of porosity on performance of phosphoric acid doped polybenzimidazole polymer electrolyte membrane fuel cell

    Directory of Open Access Journals (Sweden)

    Celik Muhammet

    2016-01-01

    Full Text Available A polybenzimidazole (PBI based polymer electrolyte fuel cells, which called high temperature polymer electrolyte fuel cells (HT-PEMS, operate at higher temperatures (120-200°C than conventional PEM fuel cells. Although it is known that HT-PEMS have some of the significant advantages as non-humidification requirements for membrane and the lack of liquid water at high temperature in the fuel cell, the generated water as a result of oxygen reduction reaction causes in the degradation of these systems. The generated water absorbed into membrane side interacts with the hydrophilic PBI matrix and it can cause swelling of membrane, so water transport mechanism in a membrane electrode assembly (MEA needs to be well understood and water balance must be calculated in MEA. Therefore, the water diffusion transport across the electrolyte should be determined. In this study, various porosity values of gas diffusion layers are considered in order to investigate the effects of porosity on the water management for two phase flow in fuel cell. Two-dimensional fuel cell with interdigitated flow-field is modelled using COMSOL Multiphysics 4.2a software. The operating temperature and doping level is selected as 160°C and 6.75mol H3PO4/PBI, respectively.

  18. Polymer membranes as separators for supercapacitors

    Science.gov (United States)

    Szubzda, Bronisław; Szmaja, Aleksandra; Ozimek, Mariusz; Mazurkiewicz, Sławomir

    2014-12-01

    The purpose of the studies described was to examine the influence of low-energy plasma modification of polyamide and polypropylene polymer nonwoven fabrics on the usable properties of supercapacitors when using these fabrics as the separator material. To achieve this goal the following investigations were carried out: testing the time required for electrolyte saturation of separators and the conductivity of the electrolyte contained in the separator, as well as electrochemical examinations of supercapacitor models in which the modified fabric separators were used. The tests conducted fully confirm the usability of this modification for cleaning the surface and improving the wettability of separators by the electrolyte, which in turn results in a significant decrease of the internal resistance of the supercapacitor, thus increasing the usable power of the device.

  19. Etched ion track polymer membranes for sustained drug delivery

    International Nuclear Information System (INIS)

    Rao, Vijayalakshmi; Amar, J.V.; Avasthi, D.K.; Narayana Charyulu, R.

    2003-01-01

    The method of track etching has been successfully used for the production of polymer membranes with capillary pores. In the present paper, micropore membranes have been prepared by swift heavy ion irradiation of polycarbonate (PC). PC films were irradiated with ions of gold, silicon and oxygen of varying energies and fluence. The ion tracks thus obtained were etched chemically for various time intervals to get pores and these etched films were used as membranes for the drug release. Ciprofloxacine hydrochloride was used as model drug for the release studies. The drug content was estimated spectrophotometrically. Pore size and thus the drug release is dependent on the etching conditions, ions used, their energy and fluence. Sustained drug release has been observed in these membranes. The films can be selected for practical utilization by optimizing the irradiation and etching conditions. These films can be used as transdermal patches after medical treatment

  20. Radiation Synthesis and Characterization of Natural and Natural-Synthetic Hybrid Super Absorbent Polymers for Agricultural Applications. Chapter 19

    Energy Technology Data Exchange (ETDEWEB)

    Şen, M.; Hayrabolulu, H.; Güven, O. [Hacettepe University Department of Chemistry, Beytepe, Ankara (Turkey)

    2014-07-15

    The experimental studies carried out in Hacettepe University, Laboratories of Radiation and Polymers Science (LRPS) in the past ten years, which focused mainly on the synthesis of synthetic and natural-synthetic super absorbent polymers in various irradiation conditions, are summarized in the first part of the presentation. Studies conducted on the following areas: (1) the controlled release of fertilizers and herbicides and the effect of the natural polymer type, (2) the neutralization degree of poly(acrylic acid), (3) the temperature and pressure on the swelling kinetics, and (4) the maximum water absorption capacity of the potential soil conditional hydrogels, were explained. The results were then compared with those obtained from commercial super absorbent polymers prepared through conventional techniques. In the third part of the presentation, basic and advanced techniques in the characterization of the network structure of super water absorbents were presented. (author)

  1. Pyro-electrification of polymer membranes for cell patterning

    Energy Technology Data Exchange (ETDEWEB)

    Rega, R.; Gennari, O.; Mecozzia, L.; Grilli, S.; Pagliarulo, V.; Ferraro, P. [National Council of Research, Institute of Applied Science & Intelligent Systems (ISASI) ‘E. Caianiello’, Via Campi Flegrei 34, 80078 Pozzuoli (Italy)

    2016-05-18

    In the recent years, much attention has been devoted to the possibility of charging polymer-based materials, due to their potential in developing large-scale and inexpensive flexible thin-film technology. The availability of localized electrostatic fields is in of great interest for a huge amount of applications such as distribution of biomolecules and cells from the liquid phase. Here we report a voltage-free pyro-electrification (PE) process able to induce permanent dipoles into polymer layers; the lithium niobate (LN) crystal is the key component that plays the multi-purpose role of sustaining, heating and poling the polymer layer that is then peeled-off easily in order to have a free-standing charged membrane. The results show the fascinating application for the living cell patterning. It well known that cell behaviour is affected by chemical and topographical cues of substrate. In fact, polymers, such as polystyrene (PS) and poly(methyl methacrylate) (PMMA), are naturally cytophobic and require specific functionalization treatments in order to promote cell adhesion. Through our proposal technique, it’s possible to obtain spontaneous organization and a driven growth of SH-SY5Y cells that is solely dictated by the nature of the charge polymer surface, opening, in this way, the innovative chance to manipulate and transfer biological samples on a free-standing polymer layer [1].

  2. Functionalized polymer nanofibre membranes for protection from chemical warfare stimulants

    International Nuclear Information System (INIS)

    Ramaseshan, Ramakrishnan; Sundarrajan, Subramanian; Liu, Yingjun; Barhate, R S; Lala, Neeta L; Ramakrishna, S

    2006-01-01

    A catalyst for the detoxification of nerve agents is synthesized from β-cyclodextrin (β-CD) and o-iodosobenzoic acid (IBA). Functionalized polymer nanofibre membranes from PVC polymer are fabricated with β-CD, IBA, a blend of β-CD+IBA, and the synthesized catalyst. These functionalized nanofibres are then tested for the decontamination of paraoxon, a nerve agent stimulant, and it is observed that the stimulant gets hydrolysed. The kinetics of hydrolysis is investigated using UV spectroscopy. The rates of hydrolysis for different organophosphate hydrolyzing agents are compared. The reactivity and amount of adsorption of these catalysts are of higher capacity than the conventionally used activated charcoal. A new design for protective wear is proposed based on the functionalized nanofibre membrane

  3. Functionalized polymer nanofibre membranes for protection from chemical warfare stimulants

    Science.gov (United States)

    Ramaseshan, Ramakrishnan; Sundarrajan, Subramanian; Liu, Yingjun; Barhate, R. S.; Lala, Neeta L.; Ramakrishna, S.

    2006-06-01

    A catalyst for the detoxification of nerve agents is synthesized from β-cyclodextrin (β-CD) and o-iodosobenzoic acid (IBA). Functionalized polymer nanofibre membranes from PVC polymer are fabricated with β-CD, IBA, a blend of β-CD+IBA, and the synthesized catalyst. These functionalized nanofibres are then tested for the decontamination of paraoxon, a nerve agent stimulant, and it is observed that the stimulant gets hydrolysed. The kinetics of hydrolysis is investigated using UV spectroscopy. The rates of hydrolysis for different organophosphate hydrolyzing agents are compared. The reactivity and amount of adsorption of these catalysts are of higher capacity than the conventionally used activated charcoal. A new design for protective wear is proposed based on the functionalized nanofibre membrane.

  4. Functionalized polymer nanofibre membranes for protection from chemical warfare stimulants

    Energy Technology Data Exchange (ETDEWEB)

    Ramaseshan, Ramakrishnan [Nanoscience and Nanotechnology Initiative, National University of Singapore, 2 Engineering Drive 3, Singapore 117576, Singapore (Singapore); Sundarrajan, Subramanian [Nanoscience and Nanotechnology Initiative, National University of Singapore, 2 Engineering Drive 3, Singapore 117576, Singapore (Singapore); Liu, Yingjun [Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore (Singapore); Barhate, R S [Nanoscience and Nanotechnology Initiative, National University of Singapore, 2 Engineering Drive 3, Singapore 117576, Singapore (Singapore); Lala, Neeta L [Nanoscience and Nanotechnology Initiative, National University of Singapore, 2 Engineering Drive 3, Singapore 117576, Singapore (Singapore); Ramakrishna, S [Nanoscience and Nanotechnology Initiative, National University of Singapore, 2 Engineering Drive 3, Singapore 117576, Singapore (Singapore)

    2006-06-28

    A catalyst for the detoxification of nerve agents is synthesized from {beta}-cyclodextrin ({beta}-CD) and o-iodosobenzoic acid (IBA). Functionalized polymer nanofibre membranes from PVC polymer are fabricated with {beta}-CD, IBA, a blend of {beta}-CD+IBA, and the synthesized catalyst. These functionalized nanofibres are then tested for the decontamination of paraoxon, a nerve agent stimulant, and it is observed that the stimulant gets hydrolysed. The kinetics of hydrolysis is investigated using UV spectroscopy. The rates of hydrolysis for different organophosphate hydrolyzing agents are compared. The reactivity and amount of adsorption of these catalysts are of higher capacity than the conventionally used activated charcoal. A new design for protective wear is proposed based on the functionalized nanofibre membrane.

  5. The Characteristic Thickness of Polymer Electrolyte Membrane and the

    Czech Academy of Sciences Publication Activity Database

    Němec, Tomáš; Maršík, František; Mičan, O.

    2009-01-01

    Roč. 30, č. 7 (2009), s. 574-581 ISSN 0145-7632 R&D Projects: GA AV ČR KJB400760701; GA MŠk(CZ) 1M06031; GA ČR(CZ) GA101/07/1612 Institutional research plan: CEZ:AV0Z20760514 Keywords : hydrogen fuel cell * polymer electrolyte membrane * irreversible thermodynamics Subject RIV: BJ - Thermodynamics Impact factor: 0.841, year: 2009 http://dx.doi.org/10.1080/01457630802594978

  6. Analisis Pengendalian Kualitas Super Absorbent Polymer Dengan Menggunakan Metode Six Sigma

    Directory of Open Access Journals (Sweden)

    Rosihin Rosihin

    2017-07-01

    Full Text Available Quality control is an effort to increase customer satisfaction and minimize damage. Super Absorbent Polymer which is a product as a raw material for making baby diapers / elderly and sanitary napkins. In Super Absorbent Polymer, defects usually found in the colour contamination that there is a dark colour on the product, print labels mistakes and packaging defects. This study aims to determine the value of DPMO and sigma level, identify the efforts which is taken to reduce disability, identify the types of disability, and find the main factors causing disability. Six Sigma method is used to analyze data with define, measure, analyze, improve and control. The quantitative data obtained by direct observation of quality problems. By using the method of six sigma can be seen that the quality of the resulting product is quite good that is 3.07 sigma with a damage rate of 58,624 for a million production (DPMO. The three highest defect product causes are color contamination of 93.34%, misprint of 3.55%, and packaging damage as much as 3.11%. The main factor causing defects is the engine factor for the type of colour contamination defect,. The type of improper defects in the packaging labels and main factor for the packaging defects is the human factor.kecacatan rusaknya kemasan faktor utama ialah faktor manusia.

  7. Synthesis and Characterization of Super absorbent Hydrogels Based on Natural Polymers Using Ionizing Radiations

    International Nuclear Information System (INIS)

    Deghiedy, N.M.A.

    2010-01-01

    Radiation processing technology is a useful tool for modification of polymer material including grafting of monomer onto polymer. In this study, novel super absorbent hydrogels was prepared with biodegradable and eco-friendly properties by graft copolymerization of chitosan and different synthetic monomers (AAc, DEAEMA, HEMA, HPMA and HEA) using gamma irradiation to examine the potential use of these hydrogels in the controlled drug release systems. The different chitosan hydrogels were characterized using FTIR spectroscopy, scanning electron microscopy and thermal analysis techniques. The effects of the preparation conditions on the gelation process of the synthesized copolymer were investigated. The influence of variables such as feed concentration, irradiation dose, composition ratio, ph and temperature on the swelling of the prepared hydrogels was also examined. The water absorbency of these hydrogels in various ph and salt solutions was studied. The swelling kinetics of the prepared hydrogels and in vitro release dynamics of model drug (Chlortetracycline hydrochloride) from these hydrogels has been studied for the evaluation of swelling mechanism and drug release mechanism from the hydrogels. The adsorption and in vitro release profiles of Chlortetracycline HCl from the prepared gels were also estimated in different ph buffers. The amount of drug released from CS/ (AAc-DEAEMA) hydrogels was higher than that released from other modified CS/AAc hydrogels. This preliminary investigation of chitosan based hydrogels showed that they may be exploited to expand the utilization of these systems in drug delivery applications

  8. A computational model for heterogeneous heating during pulsed laser irradiation of polymers doped with light-absorbing microparticles

    DEFF Research Database (Denmark)

    Marla, Deepak; Zhang, Yang; Jabbaribehnam, Mirmasoud

    2016-01-01

    characteristics. This work presents a study based on a computational model of laser heating of polymer doped with light-absorbing microparticles accounting for the heterogeneous nature of heating. The work aims at gaining a fundamental insight into the nature of the heating process and to understand the role......Doping of polymers with light-absorbing microparticles to increase their optical properties is a commonly used pre-treatment technique in laser processing of polymers. The presence of these particles plays an important role during laser heating of the polymer that influences its surface...... of microparticles. The results suggest that apart from the laser intensity and pulse duration, the properties of the microparticles including their size and distribution also play an important role during the laser heating of polymers....

  9. Performance enhancement of membrane electrode assemblies with plasma etched polymer electrolyte membrane in PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yong-Hun; Yoon, Won-Sub [School of Advanced Materials Engineering, Kookmin University, 861-1 Jeongneung-dong, Seongbuk-gu, Seoul 136-702 (Korea); Bae, Jin Woo; Cho, Yoon-Hwan; Lim, Ju Wan; Ahn, Minjeh; Jho, Jae Young; Sung, Yung-Eun [World Class University (WCU) program of Chemical Convergence for Energy and Environment (C2E2), School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), 599 Gwanak-Ro, Gwanak-gu, Seoul 151-744 (Korea); Kwon, Nak-Hyun [Fuel Cell Vehicle Team 3, Advanced Technology Center, Corporate Research and Development Division, Hyundai-Kia Motors, 104 Mabuk-dong, Giheung-gu, Yongin-si, Gyeonggi-do 446-912 (Korea)

    2010-10-15

    In this work, a surface modified Nafion 212 membrane was fabricated by plasma etching in order to enhance the performance of a membrane electrode assembly (MEA) in a polymer electrolyte membrane fuel cell. Single-cell performance of MEA at 0.7 V was increased by about 19% with membrane that was etched for 10 min compared to that with untreated Nafion 212 membrane. The MEA with membrane etched for 20 min exhibited a current density of 1700 mA cm{sup -2} at 0.35 V, which was 8% higher than that of MEA with untreated membrane (1580 mA cm{sup -2}). The performances of MEAs containing etched membranes were affected by complex factors such as the thickness and surface morphology of the membrane related to etching time. The structural changes and electrochemical properties of the MEAs with etched membranes were characterized by field emission scanning electron microscopy, Fourier transform-infrared spectrometry, electrochemical impedance spectroscopy, and cyclic voltammetry. (author)

  10. Transferable coarse-grained model for perfluorosulfonic acid polymer membranes

    Science.gov (United States)

    Kuo, An-Tsung; Okazaki, Susumu; Shinoda, Wataru

    2017-09-01

    Perfluorosulfonic acid (PFSA) polymer membranes are widely used as proton exchange membranes. Because the structure of the aqueous domain within the PFSA membrane is expected to directly influence proton conductance, many coarse-grained (CG) simulation studies have been performed to investigate the membrane morphology; these studies mostly used phenomenological models, such as dissipative particle dynamics. However, a chemically accurate CG model is required to investigate the morphology in realistic membranes and to provide a concrete molecular design. Here, we attempt to construct a predictive CG model for the structure and morphology of PFSA membranes that is compatible with the Sinoda-DeVane-Klein (SDK) CG water model [Shinoda et al., Mol. Simul. 33, 27 (2007)]. First, we extended the parameter set for the SDK CG force field to examine a hydrated PFSA membrane based on thermodynamic and structural data from experiments and all-atom (AA) molecular dynamics (MD) simulations. However, a noticeable degradation of the morphology motivated us to improve the structural properties by using the iterative Boltzmann inversion (IBI) approach. Thus, we explored a possible combination of the SDK and IBI approaches to describe the nonbonded interaction. The hybrid SDK/IBI model improved the structural issues of SDK, showing a better agreement with AA-MD in the radial distribution functions. The hybrid SDK/IBI model was determined to reasonably reproduce both the thermodynamic and structural properties of the PFSA membrane for all examined water contents. In addition, the model demonstrated good transferability and has considerable potential for application to realistic long-chained PFSA membranes.

  11. A Quaternary Polybenzimidazole Membrane for Intermediate Temperature Polymer Electrolyte Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Xu, C.; Scott, K.; Li, Qingfeng

    2013-01-01

    at 150 °C with the PA acid loading level of 3.5 PRU (amount of H3PO4 per repeat unit of polymer QPBI). The QPBI membrane was characterized in terms of composition, structure and morphology by NMR, FTIR, SEM, and EDX. The fuel cell performance with the membrane gave peak power densities of 440 and 240 m......A quaternary ammonium polybenzimidazole (QPBI) membrane was synthesized for applications in intermediate temperature (100–200 °C) hydrogen fuel cells. The QPBI membrane was imbibed with phosphoric acid to provide suitable proton conductivity. The proton conductivity of the membrane was 0.051 S cm–1......W cm–2 using oxygen and air, respectively, at 175 °C....

  12. Polymer-SnO2 composite membranes

    DEFF Research Database (Denmark)

    Nørgaard, Casper Frydendal; Skou, Eivind Morten

    . This work utilizes the latter approach and makes use of particles of tin dioxide (SnO2). Polymer-SnO2 composite membranes were successfully prepared using an ion-exchange method. SnO2 was incorporated into membranes by ion-exchange in solutions of SnCl2 ∙ 2 H2O in methanol, followed by oxidation to SnO2...... in air. The content of SnO2 proved controllable by adjusting the concentration of the ion-exchange solution. The prepared nanocomposite membranes were characterized by powder XRD, 119Sn MAS NMR, electrochemical impedance spectroscopy, water uptake and tensile stress-strain measurements. For Nafion 117...

  13. Tethered and Polymer Supported Bilayer Lipid Membranes: Structure and Function

    Directory of Open Access Journals (Sweden)

    Jakob Andersson

    2016-05-01

    Full Text Available Solid supported bilayer lipid membranes are model systems to mimic natural cell membranes in order to understand structural and functional properties of such systems. The use of a model system allows for the use of a wide variety of analytical tools including atomic force microscopy, impedance spectroscopy, neutron reflectometry, and surface plasmon resonance spectroscopy. Among the large number of different types of model membranes polymer-supported and tethered lipid bilayers have been shown to be versatile and useful systems. Both systems consist of a lipid bilayer, which is de-coupled from an underlying support by a spacer cushion. Both systems will be reviewed, with an emphasis on the effect that the spacer moiety has on the bilayer properties.

  14. Intrinsically Microporous Polymer Membranes for High Performance Gas Separation

    KAUST Repository

    Swaidan, Raja

    2014-11-01

    This dissertation addresses the rational design of intrinsically microporous solutionprocessable polyimides and ladder polymers for highly permeable and highly selective gas transport in cornerstone applications of membrane-based gas separation – that is, air enrichment, hydrogen recovery and natural gas sweetening. By virtue of rigid and contorted chains that pack inefficiently in the solid state, polymers of intrinsic microporosity (PIMs) have the potential to unite the solution-processability, mechanical flexibility and organic tunability of commercially relevant polymers with the microporosity characteristics of porous crystalline materials. The performance enhancements of PIMs over conventional low-free-volume polymers have been primarily permeability-driven, compromising the selectivity essential to commercial viability. An approach to unite high permeability with high selectivity for performance transcending the state-of-the-art in air and hydrogen separations was demonstrated via a fused-ring integration of a three-dimensional, shape persistent triptycene moiety optimally substituted with short, branched isopropyl chains at the 9,10-bridgeheads into a highly inflexible backbone. The resulting polymers exhibited selectivities (i.e., O2/N2, H2/N2, H2/CH4) similar to or higher than commercial materials matched with permeabilities up to three hundred times higher. However, the intra-chain rigidity central to such conventional PIM-design principles was not a singular solution to suppression of CO2-induced plasticization in CO2/CH4 mixedgas separations. Plasticization diminishes the sieving capacity of the membrane, resulting in costly hydrocarbon losses that have significantly limited the commercialization of new polymers. Unexpectedly, the most permeable and selective PIMs designed for air and hydrogen separations strongly plasticized in 50:50 CO2/CH4 mixtures, enduring up to three-fold increases in mixed-gas CH4 permeability by 30 bar and strong drops in

  15. Optimization of a bolometer detector for ITER based on Pt absorber on SiN membrane

    Energy Technology Data Exchange (ETDEWEB)

    Meister, H.; Eich, T.; Endstrasser, N.; Giannone, L.; Kannamueller, M.; Kling, A.; Koll, J.; Trautmann, T. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmannstr. 2, D-85748 Garching (Germany); Detemple, P.; Schmitt, S. [Institut fuer Mikrotechnik Mainz GmbH, Carl-Zeiss-Str. 18-20, D-55129 Mainz (Germany); Collaboration: ASDEX Upgrade Team

    2010-10-15

    Any plasma diagnostic in ITER must be able to operate at temperatures in excess of 200 deg. C and neutron loads corresponding to 0.1 dpa over its lifetime. To achieve this aim for the bolometer diagnostic, a miniaturized metal resistor bolometer detector based on Pt absorbers galvanically deposited on SiN membranes is being developed. The first two generations of detectors featured up to 4.5 {mu}m thick absorbers. Results from laboratory tests are presented characterizing the dependence of their calibration constants under thermal loads up to 450 deg. C. Several detectors have been tested in ASDEX Upgrade providing reliable data but also pointing out the need for further optimization. A laser trimming procedure has been implemented to reduce the mismatch in meander resistances below 1% for one detector and the thermal drifts from this mismatch.

  16. Better Proton-Conducting Polymers for Fuel-Cell Membranes

    Science.gov (United States)

    Narayan, Sri; Reddy, Prakash

    2012-01-01

    Polyoxyphenylene triazole sulfonic acid has been proposed as a basis for development of improved proton-conducting polymeric materials for solid-electrolyte membranes in hydrogen/air fuel cells. Heretofore, the proton-conducting membrane materials of choice have been exemplified by a family of perfluorosulfonic acid-based polymers (Nafion7 or equivalent). These materials are suitable for operation in the temperature of 75 to 85 C, but in order to reduce the sizes and/or increase the energy-conversion efficiencies of fuel-cell systems, it would be desirable to increase temperatures to as high as 120 C for transportation applications, and to as high as 180 C for stationary applications. However, at 120 C and at relative humidity values below 50 percent, the loss of water from perfluorosulfonic acid-based polymer membranes results in fuel-cell power densities too low to be of practical value. Therefore, membrane electrolyte materials that have usefully high proton conductivity in the temperature range of 180 C at low relative humidity and that do not rely on water for proton conduction at 180 C would be desirable. The proposed polyoxyphenylene triazole sulfonic acid-based materials have been conjectured to have these desirable properties. These materials would be free of volatile or mobile acid constituents. The generic molecular structure of these materials is intended to exploit the fact, demonstrated in previous research, that materials that contain ionizable acid and base groups covalently attached to thermally stable polymer backbones exhibit proton conduction even in the anhydrous state.

  17. Study of the influence of gold particles on the absorbed dose in soft tissue using polymer gel dosimetry

    International Nuclear Information System (INIS)

    Afonso, Luciana Caminha

    2011-01-01

    The presence of high-Z material adjacent to soft tissue, when submitted to irradiation, enhances locally the absorbed dose in these soft tissues. Such effect occurs due to the outscattering of photoelectrons from the high-Z material. Polymer gel dosimeters have been used to investigate this effect. Analytic calculations to estimate the dose enhancement and Monte Carlo simulations have been performed. Samples containing polymer gel (PG) with 0.005 gAu/gPG and pure polymer gel have been irradiated using an X-rays beam produced by 150 kV, filtered with 4 mm Al and 5 mm Cu, which resulted in an approximately 20% higher absorbed dose in the samples with gold in comparison to those with pure polymer gel. The analytic calculations and the Monte Carlo simulation resulted in a dose enhancement factor of approximately 30%. (author)

  18. CO2-Philic polymer membrane with extremely high separation performance

    KAUST Repository

    Yave, Wilfredo

    2010-01-12

    Polymeric membranes are attractive for CO2 separation and concentration from different gas streams because of their versatility and energy efficiency; they can compete with, and they may even replace, traditional absorption processes. Here we describe a simple and powerful method for developing nanostructured and CO2-philic polymer membranes for CO2 separation. A poly(ethylene oxide)-poly(butylene terephthalate) multiblock copolymer is used as membrane material. Smart additives such as polyethylene glycol dibutyl ether are incorporated as spacers or fillers for producing nanostructured materials. The addition of these specific additives produces CO2-philic membranes and increases the CO2 permeability (750 barrer) up to five-fold without the loss of selectivity. The membranes present outstanding performance for CO2 separation, and the measured CO2 flux is extremely high ( > 2 m3 m -2 h-1 bar-1) with selectivity over H2 and N2 of 10 and 40, respectively, making them attractive for CO 2 capture. © 2009 American Chemical Society.

  19. High-throughput screening of ionic conductivity in polymer membranes

    International Nuclear Information System (INIS)

    Zapata, Pedro; Basak, Pratyay; Carson Meredith, J.

    2009-01-01

    Combinatorial and high-throughput techniques have been successfully used for efficient and rapid property screening in multiple fields. The use of these techniques can be an advantageous new approach to assay ionic conductivity and accelerate the development of novel materials in research areas such as fuel cells. A high-throughput ionic conductivity (HTC) apparatus is described and applied to screening candidate polymer electrolyte membranes for fuel cell applications. The device uses a miniature four-point probe for rapid, automated point-to-point AC electrochemical impedance measurements in both liquid and humid air environments. The conductivity of Nafion 112 HTC validation standards was within 1.8% of the manufacturer's specification. HTC screening of 40 novel Kynar poly(vinylidene fluoride) (PVDF)/acrylic polyelectrolyte (PE) membranes focused on varying the Kynar type (5x) and PE composition (8x) using reduced sample sizes. Two factors were found to be significant in determining the proton conducting capacity: (1) Kynar PVDF series: membranes containing a particular Kynar PVDF type exhibited statistically identical mean conductivity as other membranes containing different Kynar PVDF types that belong to the same series or family. (2) Maximum effective amount of polyelectrolyte: increments in polyelectrolyte content from 55 wt% to 60 wt% showed no statistically significant effect in increasing conductivity. In fact, some membranes experienced a reduction in conductivity.

  20. CO2-Philic polymer membrane with extremely high separation performance

    KAUST Repository

    Yave, Wilfredo; Car, Anja; Funari, S.; Nunes, Suzana Pereira; Peinemann, Klaus-Viktor

    2010-01-01

    Polymeric membranes are attractive for CO2 separation and concentration from different gas streams because of their versatility and energy efficiency; they can compete with, and they may even replace, traditional absorption processes. Here we describe a simple and powerful method for developing nanostructured and CO2-philic polymer membranes for CO2 separation. A poly(ethylene oxide)-poly(butylene terephthalate) multiblock copolymer is used as membrane material. Smart additives such as polyethylene glycol dibutyl ether are incorporated as spacers or fillers for producing nanostructured materials. The addition of these specific additives produces CO2-philic membranes and increases the CO2 permeability (750 barrer) up to five-fold without the loss of selectivity. The membranes present outstanding performance for CO2 separation, and the measured CO2 flux is extremely high ( > 2 m3 m -2 h-1 bar-1) with selectivity over H2 and N2 of 10 and 40, respectively, making them attractive for CO 2 capture. © 2009 American Chemical Society.

  1. Modeling and Simulation for Fuel Cell Polymer Electrolyte Membrane

    Directory of Open Access Journals (Sweden)

    Takahiro Hayashi

    2013-01-01

    Full Text Available We have established methods to evaluate key properties that are needed to commercialize polyelectrolyte membranes for fuel cell electric vehicles such as water diffusion, gas permeability, and mechanical strength. These methods are based on coarse-graining models. For calculating water diffusion and gas permeability through the membranes, the dissipative particle dynamics–Monte Carlo approach was applied, while mechanical strength of the hydrated membrane was simulated by coarse-grained molecular dynamics. As a result of our systematic search and analysis, we can now grasp the direction necessary to improve water diffusion, gas permeability, and mechanical strength. For water diffusion, a map that reveals the relationship between many kinds of molecular structures and diffusion constants was obtained, in which the direction to enhance the diffusivity by improving membrane structure can be clearly seen. In order to achieve high mechanical strength, the molecular structure should be such that the hydrated membrane contains narrow water channels, but these might decrease the proton conductivity. Therefore, an optimal design of the polymer structure is needed, and the developed models reviewed here make it possible to optimize these molecular structures.

  2. Improving Hemocompatibility of Membranes for Extracorporeal Membrane Oxygenators by Grafting Nonthrombogenic Polymer Brushes.

    Science.gov (United States)

    Obstals, Fabian; Vorobii, Mariia; Riedel, Tomáš; de Los Santos Pereira, Andres; Bruns, Michael; Singh, Smriti; Rodriguez-Emmenegger, Cesar

    2018-03-01

    Nonthrombogenic modifications of membranes for extracorporeal membrane oxygenators (ECMOs) are of key interest. The absence of hemocompatibility of these membranes and the need of anticoagulation of patients result in severe and potentially life-threatening complications during ECMO treatment. To address the lack of hemocompatibility of the membrane, surface modifications are developed, which act as barriers to protein adsorption on the membrane and, in this way, prevent activation of the coagulation cascade. The modifications are based on nonionic and zwitterionic polymer brushes grafted directly from poly(4-methyl-1-pentene) (TPX) membranes via single electron transfer-living radical polymerization. Notably, this work introduces the first example of well-controlled surface-initiated radical polymerization of zwitterionic brushes. The antifouling layers markedly increase the recalcification time (a proxy of initiation of coagulation) compared to bare TPX membranes. Furthermore, platelet and leukocyte adhesion is drastically decreased, rendering the ECMO membranes hemocompatible. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. PE-g-MMA polymer electrolyte membrane for lithium polymer battery

    Energy Technology Data Exchange (ETDEWEB)

    Gao Kun [Departments of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China)]. E-mail: gaokun@hit.edu.cn; Hu Xinguo [Departments of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China); Yi Tingfeng [Departments of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China); Dai Changsong [Departments of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China)

    2006-10-25

    PE-g-MMA membranes with different degrees of grafting (DG) were prepared by electron beam radiation-induced graft copolymerization of methylmethacrylate (MMA) monomer onto polyethylene (PE) separator. The grafted membranes (GMs) were characterized using SEM, FTIR. The new polymer electrolytes based on GMs were prepared through immersion in a solution of LiPF{sub 6}-EC/DMC (1:1 by volume). It was found that the GMs with different DG exhibited the different uptake and retention ability of liquid electrolyte. Moreover, the ion conductivities of activated polymer electrolytes (APEs) were also found to vary with the different DG and reached a magnitude of 10{sup -3} S cm{sup -1} at the DG of 42%. Compared with those containing PE separators, the LiCoO{sub 2}-MCMB coin cells containing GMs demonstrated better cycle life and excellent rate performance.

  4. PE-g-MMA polymer electrolyte membrane for lithium polymer battery

    International Nuclear Information System (INIS)

    Gao Kun; Hu Xinguo; Yi Tingfeng; Dai Changsong

    2006-01-01

    PE-g-MMA membranes with different degrees of grafting (DG) were prepared by electron beam radiation-induced graft copolymerization of methylmethacrylate (MMA) monomer onto polyethylene (PE) separator. The grafted membranes (GMs) were characterized using SEM, FTIR. The new polymer electrolytes based on GMs were prepared through immersion in a solution of LiPF 6 -EC/DMC (1:1 by volume). It was found that the GMs with different DG exhibited the different uptake and retention ability of liquid electrolyte. Moreover, the ion conductivities of activated polymer electrolytes (APEs) were also found to vary with the different DG and reached a magnitude of 10 -3 S cm -1 at the DG of 42%. Compared with those containing PE separators, the LiCoO 2 -MCMB coin cells containing GMs demonstrated better cycle life and excellent rate performance

  5. PE-g-MMA polymer electrolyte membrane for lithium polymer battery

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Kun; Hu, Xinguo; Yi, Tingfeng; Dai, Changsong [Departments of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China)

    2006-10-25

    PE-g-MMA membranes with different degrees of grafting (DG) were prepared by electron beam radiation-induced graft copolymerization of methylmethacrylate (MMA) monomer onto polyethylene (PE) separator. The grafted membranes (GMs) were characterized using SEM, FTIR. The new polymer electrolytes based on GMs were prepared through immersion in a solution of LiPF{sub 6}-EC/DMC (1:1 by volume). It was found that the GMs with different DG exhibited the different uptake and retention ability of liquid electrolyte. Moreover, the ion conductivities of activated polymer electrolytes (APEs) were also found to vary with the different DG and reached a magnitude of 10{sup -3}Scm{sup -1} at the DG of 42%. Compared with those containing PE separators, the LiCoO{sub 2}-MCMB coin cells containing GMs demonstrated better cycle life and excellent rate performance. (author)

  6. Experimental study of a hybrid electro-acoustic nonlinear membrane absorber

    Science.gov (United States)

    Bryk, P. Y.; Bellizzi, S.; Côte, R.

    2018-06-01

    A hybrid electro-acoustic nonlinear membrane absorber working as a nonlinear energy sink (here after named EA-NES) is described. The device is composed of a thin circular visco-elastic membrane working as an essentially cubic oscillator. One face of the membrane is coupled to the acoustic field to be reduced and the other face is enclosed. The enclosure includes a loudspeaker for the control of the acoustic pressure felt by the rear face of the membrane through proportional feedback control. An experimental set-up has been developed where the EA-NES is weakly coupled to a linear acoustic system. The linear acoustic system is an open-ended tube, coupled on one side to the EA-NES by a box, and on the other side to a source loudspeaker by another box. Only sinusoidal forcing is considered. It is shown that the EA-NES is able to perform resonance capture with the acoustic field, resulting in noise reduction by targeted energy transfer, and to operate in a large frequency band, tuning itself passively to any linear system. We demonstrate the ability of the feedback gain defining the active loop to modify the resonance frequency of the EA-NES, which is a key factor to tune the triggering threshold of energy pumping. The novelty of this work is to use active control combined to passive nonlinear transfer energy to improve it. In this paper, only experimental results are analyzed.

  7. Composite polymer membranes for proton exchange membrane fuel cells operating at elevated temperatures and reduced humidities

    Science.gov (United States)

    Zhang, Tao

    Proton Exchange Membrane Fuel Cells (PEMFCs) are the leading candidate in the fuel cell technology due to the high power density, solid electrolyte, and low operational temperature. However, PEMFCs operating in the normal temperature range (60-80°C) face problems including poor carbon monoxide tolerance and heat rejection. The poisoning effect can be significantly relieved by operating the fuel cell at elevated temperature, which also improves the heat rejection and electrochemical kinetics. Low relative humidity (RH) operation is also desirable to simplify the reactant humidification system. However, at elevated temperatures, reduced RH PEMFC performance is seriously impaired due to irreversible water loss from presently employed state-of-the-art polymer membrane, Nafion. This thesis focuses on developing polymer electrolyte membranes with high water retention ability for operation in elevated temperature (110-150°C), reduced humidity (˜50%RH) PEMFCs. One approach is to alter Nafion by adding inorganic particles such as TiO2, SiO2, Zr(HPO 4)2, etc. While the presence of these materials in Nafion has proven beneficial, a reduction or no improvement in the PEMFC performance of Nafion/TiO2 and Nafion/Zr(HPO4)2 membranes is observed with reduced particle sizes or increased particle loadings in Nafion. It is concluded that the PEMFC performance enhancement associated with addition of these inorganic particles was not due to the particle hydrophilicity. Rather, the particle, partially located in the hydrophobic region of the membrane, benefits the cell performance by altering the membrane structure. Water transport properties of some Nafion composite membranes were investigated by NMR methods including pulsed field gradient spin echo diffusion, spin-lattice relaxation, and spectral measurements. Compared to unmodified Nafion, composite membranes materials exhibit longer longitudinal relaxation time constant T1. In addition to the Nafion material, sulfonated styrene

  8. Brown Coal Dewatering Using Poly (Acrylamide-Co-Potassium Acrylic Based Super Absorbent Polymers

    Directory of Open Access Journals (Sweden)

    Sheila Devasahayam

    2015-09-01

    Full Text Available With the rising cost of energy and fuel oils, clean coal technologies will continue to play an important role during the transition to a clean energy future. Victorian brown coals have high oxygen and moisture contents and hence low calorific value. This paper presents an alternative non evaporative drying technology for high moisture brown coals based on osmotic dewatering. This involves contacting and mixing brown coal with anionic super absorbent polymers (SAP which are highly crossed linked synthetic co-polymers based on a cross-linked copolymer of acryl amide and potassium acrylate. The paper focuses on evaluating the water absorption potential of SAP in contact with 61% moisture Loy Yang brown coal, under varying SAP dosages for different contact times and conditions. The amount of water present in Loy Yang coal was reduced by approximately 57% during four hours of SAP contact. The extent of SAP brown coal drying is directly proportional to the SAP/coal weight ratio. It is observed that moisture content of fine brown coal can readily be reduced from about 59% to 38% in four hours at a 20% SAP/coal ratio.

  9. New materials for polymer electrolyte membrane fuel cell current collectors

    Science.gov (United States)

    Hentall, Philip L.; Lakeman, J. Barry; Mepsted, Gary O.; Adcock, Paul L.; Moore, Jon M.

    Polymer Electrolyte Membrane Fuel cells for automotive applications need to have high power density, and be inexpensive and robust to compete effectively with the internal combustion engine. Development of membranes and new electrodes and catalysts have increased power significantly, but further improvements may be achieved by the use of new materials and construction techniques in the manufacture of the bipolar plates. To show this, a variety of materials have been fabricated into flow field plates, both metallic and graphitic, and single fuel cell tests were conducted to determine the performance of each material. Maximum power was obtained with materials which had lowest contact resistance and good electrical conductivity. The performance of the best material was characterised as a function of cell compression and flow field geometry.

  10. Dynamic water management of polymer electrolyte membrane fuel cells using intermittent RH control

    KAUST Repository

    Hussaini, I.S.; Wang, C.Y.

    2010-01-01

    A novel method of water management of polymer electrolyte membrane (PEM) fuel cells using intermittent humidification is presented in this study. The goal is to maintain the membrane close to full humidification, while eliminating channel flooding

  11. A NOVEL HYDROPHILIC POLYMER MEMBRANE FOR THE DEHYDRATION OF ORGANIC SOLVENTS

    Science.gov (United States)

    Novel hydrophilic polymer membranes based on polyallylamine ydrochloride- polyvinylalcohol are developed. The high selectivity and flux characteristics of these membranes for the dehydration of organic solvents are evaluated using pervaporation technology and are found to be ver...

  12. Investigation of cobalt porphyrin doped polymer membrane films for the optical sensing of imidazole and its derivatives

    Directory of Open Access Journals (Sweden)

    Yueyang Tan

    2015-03-01

    Full Text Available A cobalt(II porphyrin was successfully incorporated into polymer membranes for the optical sensing of imidazole and its derivatives. This research has led to a better understanding of the behavior of Co(II porphyrin in solution and in polymeric membranes. In aprotic dichloromethane (DCM, the Co(II tetraphenylporphyrin (CoTPP and Co(II octaethylporphyrin (CoOEP show a sensitive response to imidazole due to the strong ligation of the N-3 on the imidazole ring to the Co(II center, which induces an absorbance change to the Soret band. However, when doped in polymeric films, only the CoTPP exhibits moderate sensitivity towards aqueous imidazole, histamine and histidine. This weakened coordination ability of CoTPP towards imidazole in the polymer films may be due to the coordination of the plasticizer, the impurities from the THF and polymer matrix at the Co(II center. The selectivity of the polymer films towards imidazole over common anions is high. Lifetime of the cobalt(II porphyrin incorporated polymer film was relatively short.

  13. Water absorbent polymer in sugarcane crop Polímeros hidroabsorventes em cultura canavieira

    Directory of Open Access Journals (Sweden)

    Tadeu A. Marques

    2013-02-01

    Full Text Available The water absorbent polymer effect on vegetative growth and production of Theoretical Recovery Sugar (TRS of sugarcane cv. RB 86 7515 was evaluated on two field tests installed in randomized blocks, with four treatments and five repetitions. The polymer doses were 0; 4; 8 and 12 g m-1 of furrow (test 1 and 0; 1.4; 2.8 and 4.2 g m-1 of furrow (test 2. Test 1 (dec/2007 to may/2009 was implanted in a Distroferric Red Argisol soil in Presidente Prudente - State of São Paulo (SP, Brazil; and the test 2 (Aug/2008 to Aug/2009 was implanted in a Red Yellow Argisol soil in Lucélia - State of São Paulo (SP, Brazil. In test 2, there were no significant differences for any evaluated parameters. In both tests the polymer doses equal to or less than 4 g m-1 of furrow showed no significant effect on the evaluated parameters. In test 1, the polymer doses of 8 and 12 g m-1 of the conditioning polymer increased the number of tillers in stage II of development and led to the largest amount of straw. The gross income per hectare has positive relation with the polymer doses. The polymer had no significant effect on the sugarcane stems productivity and technological parameters.Avaliou-se o efeito de um polímero hidroabsorvente no crescimento vegetativo e na produção de açúcares teoricamente recuperáveis (ATR de cana-de-açúcar cv. RB 86 7515, em dois ensaios de campo instalados em blocos inteiramente casualizados, com quatro tratamentos e cinco repetições. As doses do polímero foram 0; 4; 8 e 12 g m-1 sulco (ensaio 1 e 0; 1,4; 2,8 e 4,2 g m-1 sulco (ensaio 2. O ensaio 1 (dez/2007 a maio/2009 foi implantado em Argissolo Vermelho Distroférrico, em Presidente Prudente - SP, e o ensaio 2 (ago./2008 a ago./2009 em Argissolo Vermelho-Amarelo, em Lucélia - SP. No ensaio 2, não houve diferenças significativas para nenhum dos parâmetros avaliados. Em ambos os ensaios, doses do polímero iguais ou inferiores a 4 g m-1 de sulco não apresentaram efeito

  14. Development of Novel Absorbents and Membranes by Radiation-Induced Grafting for Selective Purposes

    Energy Technology Data Exchange (ETDEWEB)

    Hegazy, E A; Abdel-Rehim, H; Hegazy, D; Ali, A A; Kamal, H; Sayed, A [National Center for Radiation Research and Technology, Atomic Energy Egypt, P.O.Box 29, Nasr City, Cairo (Egypt)

    2012-09-15

    The direct radiation grafting technique was used to graft glycidyl methacrylate (GMA) monomer containing epoxy ring, onto polypropylene fibres. The ring opening of the epoxy ring in GMA by different amino groups was studied to introduce various chelating agents. Some properties of grafted fibres were studied and the possibility of its practical use for water treatment from iron and manganese metals was investigated. The radiation initiated grafting of acrylic acid (AAc) or acrylamide (AAm) monomers onto poly(vinyl alcohol) (PVA), a 2-acrylamide-2-methyl propane sulfonic acid (AMPS) polymer was studied. Cationic/anionic membranes were also prepared by radiation-induced grafting of styrene/methacrylic acid (Sty/MAA) binary monomers onto LDPE films. To impart reactive cationic/anionic characters in the grafted membranes, sulfonation and alkaline treatments for styrene and carboxylic acid groups, respectively, were carried out. The possibility of their applications in the selective removal of some heavy metals was studied. The prepared grafted materials had a great ability to recover the metal ions such as: Ni{sup 2+}, Co{sup 2+}, Cu{sup 2+}, Cd{sup 2+}, Mg{sup 2+}, Zn{sup 2+}, Mn{sup 2+} and Cr{sup 3+} from their solutions. It was found that AMPS content in the grafted copolymers is the main parameter for the selectivity of the copolymer towards metal ions. The higher the AMPS content the higher the selectivity towards Co and Ni ions. In case of LDPE-g-P(STY/MAA), the sulfonation and alkaline treatments are the most effective methods to influence metal absorption and swelling behaviour of the prepared membranes. Graft composition, dose and pH have also a great influence on the membrane characteristics and applicability in wastewater treatments from heavy and toxic metals. Results revealed that the prepared grafted materials with different functionalized groups are promising as ion selective membranes and could be used for wastewater treatment. (author)

  15. Polymeric molecular sieve membranes via in situ cross-linking of non-porous polymer membrane templates.

    Science.gov (United States)

    Qiao, Zhen-An; Chai, Song-Hai; Nelson, Kimberly; Bi, Zhonghe; Chen, Jihua; Mahurin, Shannon M; Zhu, Xiang; Dai, Sheng

    2014-04-16

    High-performance polymeric membranes for gas separation are attractive for molecular-level separations in industrial-scale chemical, energy and environmental processes. Molecular sieving materials are widely regarded as the next-generation membranes to simultaneously achieve high permeability and selectivity. However, most polymeric molecular sieve membranes are based on a few solution-processable polymers such as polymers of intrinsic microporosity. Here we report an in situ cross-linking strategy for the preparation of polymeric molecular sieve membranes with hierarchical and tailorable porosity. These membranes demonstrate exceptional performance as molecular sieves with high gas permeabilities and selectivities for smaller gas molecules, such as carbon dioxide and oxygen, over larger molecules such as nitrogen. Hence, these membranes have potential for large-scale gas separations of commercial and environmental relevance. Moreover, this strategy could provide a possible alternative to 'classical' methods for the preparation of porous membranes and, in some cases, the only viable synthetic route towards certain membranes.

  16. Polybenzimidazole/Mxene composite membranes for intermediate temperature polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Fei, Mingming; Lin, Ruizhi; Deng, Yuming; Xian, Hongxi; Bian, Renji; Zhang, Xiaole; Cheng, Jigui; Xu, Chenxi; Cai, Dongyu

    2018-01-01

    This report demonstrated the first study on the use of a new 2D nanomaterial (Mxene) for enhancing membrane performance of intermediate temperature (>100 °C) polymer electrolyte membrane fuel cells (ITPEMFCs). In this study, a typical Ti3C2T x -MXene was synthesized and incorporated into polybenzimidazole (PBI)-based membranes by using a solution blending method. The composite membrane with 3 wt% Ti3C2T x -MXene showed the proton conductivity more than 2 times higher than that of pristine PBI membrane at the temperature range of 100 °C-170 °C, and led to substantial increase in maximum power density of fuel cells by ˜30% tested at 150 °C. The addition of Ti3C2T x -MXene also improved the mechanical properties and thermal stability of PBI membranes. At 3 wt% Ti3C2T x -MXene, the elongation at break of phosphoric acid doped PBI remained unaffected at 150 °C, and the tensile strength and Young’s modulus was increased by ˜150% and ˜160%, respectively. This study pointed out promising application of MXene in ITPEMFCs.

  17. Polymer Electrolyte Membranes for Water Photo-Electrolysis

    Science.gov (United States)

    Aricò, Antonino S.; Girolamo, Mariarita; Siracusano, Stefania; Sebastian, David; Baglio, Vincenzo; Schuster, Michael

    2017-01-01

    Water-fed photo-electrolysis cells equipped with perfluorosulfonic acid (Nafion® 115) and quaternary ammonium-based (Fumatech® FAA3) ion exchange membranes as separator for hydrogen and oxygen evolution reactions were investigated. Protonic or anionic ionomer dispersions were deposited on the electrodes to extend the interface with the electrolyte. The photo-anode consisted of a large band-gap Ti-oxide semiconductor. The effect of membrane characteristics on the photo-electrochemical conversion of solar energy was investigated for photo-voltage-driven electrolysis cells. Photo-electrolysis cells were also studied for operation under electrical bias-assisted mode. The pH of the membrane/ionomer had a paramount effect on the photo-electrolytic conversion. The anionic membrane showed enhanced performance compared to the Nafion®-based cell when just TiO2 anatase was used as photo-anode. This was associated with better oxygen evolution kinetics in alkaline conditions compared to acidic environment. However, oxygen evolution kinetics in acidic conditions were significantly enhanced by using a Ti sub-oxide as surface promoter in order to facilitate the adsorption of OH species as precursors of oxygen evolution. However, the same surface promoter appeared to inhibit oxygen evolution in an alkaline environment probably as a consequence of the strong adsorption of OH species on the surface under such conditions. These results show that a proper combination of photo-anode and polymer electrolyte membrane is essential to maximize photo-electrolytic conversion. PMID:28468242

  18. Low-loss saturable absorbers based on tapered fibers embedded in carbon nanotube/polymer composites

    Science.gov (United States)

    Martinez, Amos; Al Araimi, Mohammed; Dmitriev, Artemiy; Lutsyk, Petro; Li, Shen; Mou, Chengbo; Rozhin, Alexey; Sumetsky, Misha; Turitsyn, Sergei

    2017-12-01

    The emergence of low-dimensional materials has opened new opportunities in the fabrication of compact nonlinear photonic devices. Single-walled carbon nanotubes were among the first of those materials to attract the attention of the photonics community owing to their high third order susceptibility, broadband operation, and ultrafast response. Saturable absorption, in particular, has become a widespread application for nanotubes in the mode-locking of a fiber laser where they are used as nonlinear passive amplitude modulators to initiate pulsed operation. Numerous approaches have been proposed for the integration of nanotubes in fiber systems; these can be divided into those that rely on direct interaction (where the nanotubes are sandwiched between fiber connectors) and those that rely on lateral interaction with the evanescence field of the propagating wave. Tapered fibers, in particular, offer excellent flexibility to adjust the nonlinearity of nanotube-based devices but suffer from high losses (typically exceeding 50%) and poor saturable to non-saturable absorption ratios (typically above 1:5). In this paper, we propose a method to fabricate carbon nanotube saturable absorbers with controllable saturation power, low-losses (as low as 15%), and large saturable to non-saturable loss ratios approaching 1:1. This is achieved by optimizing the procedure of embedding tapered fibers in low-refractive index polymers. In addition, this study sheds light in the operation of these devices, highlighting a trade-off between losses and saturation power and providing guidelines for the design of saturable absorbers according to their application.

  19. Low-loss saturable absorbers based on tapered fibers embedded in carbon nanotube/polymer composites

    Directory of Open Access Journals (Sweden)

    Amos Martinez

    2017-12-01

    Full Text Available The emergence of low-dimensional materials has opened new opportunities in the fabrication of compact nonlinear photonic devices. Single-walled carbon nanotubes were among the first of those materials to attract the attention of the photonics community owing to their high third order susceptibility, broadband operation, and ultrafast response. Saturable absorption, in particular, has become a widespread application for nanotubes in the mode-locking of a fiber laser where they are used as nonlinear passive amplitude modulators to initiate pulsed operation. Numerous approaches have been proposed for the integration of nanotubes in fiber systems; these can be divided into those that rely on direct interaction (where the nanotubes are sandwiched between fiber connectors and those that rely on lateral interaction with the evanescence field of the propagating wave. Tapered fibers, in particular, offer excellent flexibility to adjust the nonlinearity of nanotube-based devices but suffer from high losses (typically exceeding 50% and poor saturable to non-saturable absorption ratios (typically above 1:5. In this paper, we propose a method to fabricate carbon nanotube saturable absorbers with controllable saturation power, low-losses (as low as 15%, and large saturable to non-saturable loss ratios approaching 1:1. This is achieved by optimizing the procedure of embedding tapered fibers in low-refractive index polymers. In addition, this study sheds light in the operation of these devices, highlighting a trade-off between losses and saturation power and providing guidelines for the design of saturable absorbers according to their application.

  20. Lowering the platinum loading of high temperature polymer electrolyte membrane fuel cells with acid doped polybenzimidazole membranes

    DEFF Research Database (Denmark)

    Fernandez, Santiago Martin; Li, Qingfeng; Jensen, Jens Oluf

    2015-01-01

    Membrane electrode assemblies (MEAs) with ultra-low Pt loading electrodes were prepared for high temperature polymer electrolyte membrane fuel cells (HT-PEMFCs) based on acid doped polybenzimidazole. With no electrode binders or ionomers, the triple phase boundary of the catalyst layer was establ......Membrane electrode assemblies (MEAs) with ultra-low Pt loading electrodes were prepared for high temperature polymer electrolyte membrane fuel cells (HT-PEMFCs) based on acid doped polybenzimidazole. With no electrode binders or ionomers, the triple phase boundary of the catalyst layer...

  1. Thermally rearranged (TR) bismaleimide-based network polymers for gas separation membranes.

    Science.gov (United States)

    Do, Yu Seong; Lee, Won Hee; Seong, Jong Geun; Kim, Ju Sung; Wang, Ho Hyun; Doherty, Cara M; Hill, Anita J; Lee, Young Moo

    2016-11-15

    Highly permeable, thermally rearranged polymer membranes based on bismaleimide derivatives that exhibit excellent CO 2 permeability up to 5440 Barrer with a high BET surface area (1130 m 2 g -1 ) are reported for the first time. In addition, the membranes can be easily used to form semi-interpenetrating networks with other polymers endowing them with superior gas transport properties.

  2. NEW POLYMER ELECTROLYTE MEMBRANES FOR FUEL CELLS OPERATING ABOVE 100°C

    DEFF Research Database (Denmark)

    Li, Qingfeng; Jensen, Jens Oluf; He, Ronghuan

    2003-01-01

    The state-of-the-art of PEMFC technology is based on perfluorosulfonic acid (PFSA) polymer membranes operating at a typical temperature of 80°C. The newest development in the field is alternative polymer electrolytes for operation above 100°C. This paper is devoted to a review on the development......, which is classified into three groups: modified PFSA membranes, alternative sulfonated polymer and their inorganic composite membranes and acid-base complex membranes. High temperature PEMFC has been demonstrated with advanced features such as fast electrode kinetics, high CO tolerance, simple thermal...

  3. Coupling Metallic Nanostructures to Thermally Responsive Polymers Allows the Development of Intelligent Responsive Membranes

    Directory of Open Access Journals (Sweden)

    J. Rubén Morones-Ramírez

    2014-01-01

    Full Text Available Development of porous membranes capable of controlling flow or changing their permeability to specific chemical entities, in response to small changes in environmental stimuli, is an area of appealing research, since these membranes present a wide variety of applications. The synthesis of these membranes has been mainly approached through grafting of environmentally responsive polymers to the surface walls of polymeric porous membranes. This synergizes the chemical stability and mechanical strength of the polymer membrane with the fast response times of the bonded polymer chains. Therefore, different composite membranes capable of changing their effective pore size with environmental triggers have been developed. A recent interest has been the development of porous membranes responsive to light, since these can achieve rapid, remote, noninvasive, and localized flow control. This work describes the synthesis pathway to construct intelligent optothermally responsive membranes. The method followed involved the grafting of optothermally responsive polymer-metal nanoparticle nanocomposites to polycarbonate track-etched porous membranes (PCTEPMs. The nanoparticles coupled to the polymer grafts serve as the optothermal energy converters to achieve optical switching of the pores. The results of the paper show that grafting of the polymer and in situ synthesis of the metallic particles can be easily achieved. In addition, the composite membranes allow fast and reversible switching of the pores using both light and heat permitting control of fluid flow.

  4. Mass Spectrometry of Polymer Electrolyte Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Viktor Johánek

    2016-01-01

    Full Text Available The chemical analysis of processes inside fuel cells under operating conditions in either direct or inverted (electrolysis mode and their correlation with potentiostatic measurements is a crucial part of understanding fuel cell electrochemistry. We present a relatively simple yet powerful experimental setup for online monitoring of the fuel cell exhaust (of either cathode or anode side downstream by mass spectrometry. The influence of a variety of parameters (composition of the catalyst, fuel type or its concentration, cell temperature, level of humidification, mass flow rate, power load, cell potential, etc. on the fuel cell operation can be easily investigated separately or in a combined fashion. We demonstrate the application of this technique on a few examples of low-temperature (70°C herein polymer electrolyte membrane fuel cells (both alcohol- and hydrogen-fed subjected to a wide range of conditions.

  5. Toxic vessel reaction to an absorbable polymer-based paclitaxel-eluting stent in pig coronary arteries.

    Science.gov (United States)

    Jabara, Refat; Chronos, Nicolas; Tondato, Fernando; Conway, Damian; Molema, Warner; Park, Kenneth; Mabin, Tom; King, Spencer; Robinson, Keith

    2006-08-01

    The goal of this study was to evaluate a new drug-eluting stent (DES) comprising a bioabsorbable polymer eluting a moderate dose of paclitaxel in a clinically relevant animal model. Although DES limit restenosis, adverse vascular pathologies and toxicities continue to be of major concern. Optimization of DES components, especially completely absorbable polymers, may reduce these toxicities. Bare-metal (BM), absorbable polymer coating only (POLY), and polymer-based paclitaxel-eluting (PACL) stents were implanted in porcine coronary arteries using intravascular ultrasound (IVUS) to optimize stent apposition. The dose density of paclitaxel was 0.30-0.35 mcg/mm2, with in vitro elution studies demonstrating a gradual elution over 6-8 weeks. The animals were terminated at 1 week, 1 month and 3 months. Histopathologic and histomorphometric analyses were perform. The arteries with PACL showed extensive smooth muscle cell necrosis at 1 week and poor apposition of stent struts at 1 month (malapposition measured as gap width between strut and internal elastic lamina), with greater gap width compared to the BM and POLY groups (0.22 mm +/- 0.02 vs. 0.03 mm +/- 0.02 and 0.02 mm +/- 0.01, respectively; p stent malapposition and late neointimal thickening. Since the therapeutic window for paclitaxel may be narrower than currently inferred, thorough preclinical testing coupled with the polymer development process for stents eluting paclitaxel is needed.

  6. Arterial healing following primary PCI using the Absorb everolimus-eluting bioresorbable vascular scaffold (Absorb BVS) versus the durable polymer everolimus-eluting metallic stent (XIENCE) in patients with acute ST-elevation myocardial infarction

    DEFF Research Database (Denmark)

    Räber, Lorenz; Onuma, Yoshinobu; Brugaletta, Salvatore

    2015-01-01

    Aims: The Absorb bioresorbable vascular scaffold (Absorb BVS) provides similar clinical outcomes compared with a durable polymer-based everolimus-eluting metallic stent (EES) in stable coronary artery disease patients. ST-elevation myocardial infarction (STEMI) lesions have been associated with d...

  7. Solid Polymer Fuel Cells. Electrode and membrane performance studies

    Energy Technology Data Exchange (ETDEWEB)

    Moeller-Holst, S.

    1996-12-31

    This doctoral thesis studies aspects of fuel cell preparation and performance. The emphasis is placed on preparation and analysis of low platinum-loading solid polymer fuel cell (SPEC) electrodes. A test station was built and used to test cells within a wide range of real operating conditions, 40-150{sup o}C and 1-10 bar. Preparation and assembling equipment for single SPFCs was designed and built, and a new technique of spraying the catalyst layer directly onto the membrane was successfully demonstrated. Low Pt-loading electrodes (0.1 mg Pt/cm{sup 2}) prepared by the new technique exhibited high degree of catalyst utilization. The performance of single cells holding these electrodes is comparable to state-of-the-art SPFCs. Potential losses in single cell performance are ascribed to irreversibilities by analysing the efficiency of the Solid Oxide Fuel Cell by means of the second law of thermodynamics. The water management in membranes is discussed for a model system and the results are relevant to fuel cell preparation and performance. The new spray deposition technique should be commercially interesting as it involves few steps as well as techniques that are adequate for larger scale production. 115 refs., 43 figs., 18 tabs.

  8. Solid Polymer Fuel Cells. Electrode and membrane performance studies

    Energy Technology Data Exchange (ETDEWEB)

    Moeller-Holst, S

    1997-12-31

    This doctoral thesis studies aspects of fuel cell preparation and performance. The emphasis is placed on preparation and analysis of low platinum-loading solid polymer fuel cell (SPEC) electrodes. A test station was built and used to test cells within a wide range of real operating conditions, 40-150{sup o}C and 1-10 bar. Preparation and assembling equipment for single SPFCs was designed and built, and a new technique of spraying the catalyst layer directly onto the membrane was successfully demonstrated. Low Pt-loading electrodes (0.1 mg Pt/cm{sup 2}) prepared by the new technique exhibited high degree of catalyst utilization. The performance of single cells holding these electrodes is comparable to state-of-the-art SPFCs. Potential losses in single cell performance are ascribed to irreversibilities by analysing the efficiency of the Solid Oxide Fuel Cell by means of the second law of thermodynamics. The water management in membranes is discussed for a model system and the results are relevant to fuel cell preparation and performance. The new spray deposition technique should be commercially interesting as it involves few steps as well as techniques that are adequate for larger scale production. 115 refs., 43 figs., 18 tabs.

  9. Polymer-Induced Swelling of Solid-Supported Lipid Membranes

    Directory of Open Access Journals (Sweden)

    Martin Kreuzer

    2015-12-01

    Full Text Available In this paper, we study the interaction of charged polymers with solid-supported 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC membranes by in-situ neutron reflectivity. We observe an enormous swelling of the oligolamellar lipid bilayer stacks after incubation in solutions of poly(allylamine hydrochloride (PAH in D2O. The positively charged polyelectrolyte molecules interact with the lipid bilayers and induce a drastic increase in their d-spacing by a factor of ~4. Temperature, time, and pH influence the swollen interfacial lipid linings. From our study, we conclude that electrostatic interactions introduced by the adsorbed PAH are the main cause for the drastic swelling of the lipid coatings. The DMPC membrane stacks do not detach from their solid support at T > Tm. Steric interactions, also introduced by the PAH molecules, are held responsible for the stabilizing effect. We believe that this novel system offers great potential for fundamental studies of biomembrane properties, keeping the membrane’s natural fluidity and freedom, decoupled from a solid support at physiological conditions.

  10. Structure/property relationships in polymer membranes for water purification and energy applications

    Science.gov (United States)

    Geise, Geoffrey

    Providing sustainable supplies of purified water and energy is a critical global challenge for the future, and polymer membranes will play a key role in addressing these clear and pressing global needs for water and energy. Polymer membrane-based processes dominate the desalination market, and polymer membranes are crucial components in several rapidly developing power generation and storage applications that rely on membranes to control rates of water and/or ion transport. Much remains unknown about the influence of polymer structure on intrinsic water and ion transport properties, and these relationships must be developed to design next generation polymer membrane materials. For desalination applications, polymers with simultaneously high water permeability and low salt permeability are desirable in order to prepare selective membranes that can efficiently desalinate water, and a tradeoff relationship between water/salt selectivity and water permeability suggests that attempts to prepare such materials should rely on approaches that do more than simply vary polymer free volume. One strategy is to functionalize hydrocarbon polymers with fixed charge groups that can ionize upon exposure to water, and the presence of charged groups in the polymer influences transport properties. Additionally, in many emerging energy applications, charged polymers are exposed to ions that are very different from sodium and chloride. Specific ion effects have been observed in charged polymers, and these effects must be understood to prepare charged polymers that will enable emerging energy technologies. This presentation discusses research aimed at further understanding fundamental structure/property relationships that govern water and ion transport in charged polymer films considered for desalination and electric potential field-driven applications that can help address global needs for clean water and energy.

  11. A novel catalytic ceramic membrane fabricated with CuMn2O4 particles for emerging UV absorbers degradation from aqueous and membrane fouling elimination.

    Science.gov (United States)

    Guo, Yang; Song, Zilong; Xu, Bingbing; Li, Yanning; Qi, Fei; Croue, Jean-Philippe; Yuan, Donghai

    2018-02-15

    A novel catalytic ceramic membrane (CM) for improving ozonation and filtration performance was fabricated by surface coating CuMn 2 O 4 particles on a tubular CM. The degradation of ultraviolet (UV) absorbers, reduction of toxicity, elimination of membrane fouling and catalytic mechanism were investigated. The characterization results suggested the particles were well-fixed on membrane surface. The modified membrane showed improved benzophenone-3 removal performance (from 28% to 34%), detoxification (EC 50 as 12.77%) and the stability of catalytic activity. In the degradation performance of model UV absorbers, the developed membrane significantly decreased the UV254 and DOC values in effluent. Compared with a virgin CM, this CM ozonation increased water flux as 29.9% by in-situ degrade effluent organic matters. The CuMn 2 O 4 modified membrane enhanced the ozone self-decompose to generate O 2 - and initiated the chain reaction of ozone decomposition, and subsequently reacted with molecule ozone to produce OH. Additionally, CM was able to promote the interaction between ozone and catalyst/organic chemicals to form H 2 O 2 that promoted the formation of OH. This catalytic ceramic membrane combining with ozonation showed potential applications in emerging pollutant degradation and membrane fouling elimination, and acted as a novel ternary technology for wastewater treatment and water reuse. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Nafion/silane nanocomposite membranes for high temperature polymer electrolyte membrane fuel cell.

    Science.gov (United States)

    Ghi, Lee Jin; Park, Na Ri; Kim, Moon Sung; Rhee, Hee Woo

    2011-07-01

    The polymer electrolyte membrane fuel cell (PEMFC) has been studied actively for both potable and stationary applications because it can offer high power density and be used only hydrogen and oxygen as environment-friendly fuels. Nafion which is widely used has mechanical and chemical stabilities as well as high conductivity. However, there is a drawback that it can be useless at high temperatures (> or = 90 degrees C) because proton conducting mechanism cannot work above 100 degrees C due to dehydration of membrane. Therefore, PEMFC should be operated for long-term at high temperatures continuously. In this study, we developed nanocomposite membrane using stable properties of Nafion and phosphonic acid groups which made proton conducting mechanism without water. 3-Aminopropyl triethoxysilane (APTES) was used to replace sulfonic acid groups of Nafion and then its aminopropyl group was chemically modified to phosphonic acid groups. The nanocomposite membrane showed very high conductivity (approximately 0.02 S/cm at 110 degrees C, <30% RH).

  13. Polymer-metal organic frameworks (MOFs) mixed matrix membranes for gas separation applications

    NARCIS (Netherlands)

    Shahid, S.

    2015-01-01

    The performance of polymeric membranes is often limited by a trade-off between membrane permeability and selectivity, the so-called Robeson upper bound. Additionally, in high pressure CO2 capture applications, excessive swelling of the polymer membrane often leads to plasticization resulting in

  14. Protic Salt Polymer Membranes: High-Temperature Water-Free Proton-Conducting Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Gervasio, Dominic Francis [Univ. of Arizona, Tucson, AZ (United States)

    2010-09-30

    This research on proton-containing (protic) salts directly addresses proton conduction at high and low temperatures. This research is unique, because no water is used for proton ionization nor conduction, so the properties of water do not limit proton fuel cells. A protic salt is all that is needed to give rise to ionized proton and to support proton mobility. A protic salt forms when proton transfers from an acid to a base. Protic salts were found to have proton conductivities that are as high as or higher than the best aqueous electrolytes at ambient pressures and comparable temperatures without or with water present. Proton conductivity of the protic salts occurs providing two conditions exist: i) the energy difference is about 0.8 eV between the protic-salt state versus the state in which the acid and base are separated and 2) the chemical constituents rotate freely. The physical state of these proton-conducting salts can be liquid, plastic crystal as well as solid organic and inorganic polymer membranes and their mixtures. Many acids and bases can be used to make a protic salt which allows tailoring of proton conductivity, as well as other properties that affect their use as electrolytes in fuel cells, such as, stability, adsorption on catalysts, environmental impact, etc. During this project, highly proton conducting (~ 0.1S/cm) protic salts were made that are stable under fuel-cell operating conditions and that gave highly efficient fuel cells. The high efficiency is attributed to an improved oxygen electroreduction process on Pt which was found to be virtually reversible in a number of liquid protic salts with low water activity (< 1% water). Solid flexible non-porous composite membranes, made from inorganic polymer (e.g., 10%indium 90%tin pyrophosphate, ITP) and organic polymer (e.g., polyvinyl pyridinium phosphate, PVPP), were found that give conductivity and fuel cell performances similar to phosphoric acid electrolyte with no need for hydration at

  15. Water purification by reverse osmosis using heterocyclic polymer membranes

    Science.gov (United States)

    Scott, H.

    1972-01-01

    Pyrrone (polyimidazopyrrolone) polymers are a new class of thermally stable, radiation and chemical resistant aromatic-heterocyclic polymers featuring a greater chemical and mechanical durability than cellulose acetate.

  16. Preparation of dual-layer coated polyester membranes with nuclear tracks and their wave-absorbing property

    International Nuclear Information System (INIS)

    Liu Cunxiong; Hu Lian; Ni Bangfa; Tian Weizhi; Fan Qiwen; Xiao Caijin; Nie Peng; Wang Pingsheng; Zhang Guiying; Huang Donghui

    2010-01-01

    Nanometer materials are of importance in developing electromagnetic-wave-absorbing materials. In this work, 16 μm thick polyester membranes were bombarded by 140 MeV 32 S ions from the HI-13 tandem accelerator to produce latent tracks. The bombarded samples were sensitized by DMF and UV light at 360 nm wavelength, before chemical etching by NaOH solution to develop latent tracks into pores in sizes of nanometers or micrometers in full depth of the membrane. The samples were coated with thin layers of barium ferrite and magnesium fluoride by vacuum evaporation. The reflectivity indices were measured at 2-18 GHz. The results indicate that the modified polyester membrane can effectively absorb 8-18 GHz radar waves.(authors)

  17. Surface-Modified Membrane as A Separator for Lithium-Ion Polymer Battery

    Directory of Open Access Journals (Sweden)

    Jun Young Kim

    2010-04-01

    Full Text Available This paper describes the fabrication of novel modified polyethylene (PE membranes using plasma technology to create high-performance and cost-effective separator membranes for practical applications in lithium-ion polymer batteries. The modified PE membrane via plasma modification process plays a critical role in improving wettability and electrolyte retention, interfacial adhesion between separators and electrodes, and cycle performance of lithium-ion polymer batteries. This paper suggests that the performance of lithium-ion polymer batteries can be greatly enhanced by the plasma modification of commercial separators with proper functional materials for targeted application.

  18. A Comparison of Water Diffusion in Polymer Based Fuel Cell and Reverse Osmosis Membrane Materials

    Science.gov (United States)

    Soles, Christopher; Frieberg, Bradley; Tarver, Jacob; Tyagi, Madhusudan; Jeong, Cheol; Chan, Edwin; Stafford, Christopher

    Hydrated polymer membranes are critical in both fuel cells and water filtration and desalination. In both of these applications the membrane function (selectively transporting or separating ions) is coupled with the transport of water through the membrane. There is a significant need to understand the nature by which the water and ions distribute and move through these membranes. This presentation compares the transport mechanisms in in an ion containing block copolymer alkaline fuel cell membrane with that of a polyamide membrane that is used as the active layer in a reverse osmosis water desalination membrane. Small angle neutron scattering measurements are used to locally probe how water swells the different materials and quantitatively describe the distribution of water within the membrane microstructures. Quasielastic neutron scattering measurements are then used to separate the polymer dynamics of the host membranes from the dynamics of the water inside the membranes. This reveals that water moves at least an order of magnitude slower through the ion containing fuel cell membrane materials, consistent with a solution-diffusion model, while the water in the polyamide membranes moves faster, consistent with a pore-flow diffusion mechanism. These insights will be discussed in terms of a coupling of the water and polymer dynamics and design cues for high performance membrane materials.

  19. Preparation and properties of the magnetic absorbent polymer via the chemical transformation process

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shengyu, E-mail: liusytyut@sina.com [Department of Mineral Processing, College of Mining Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Key Laboratory of In-situ Property-improving Mining of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China); Zhang, Suhong, E-mail: zhangsh04@sina.com [Department of Mineral Processing, College of Mining Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Guo, Jianying; Wen, Jing; Qiao, Yan [Department of Mineral Processing, College of Mining Engineering, Taiyuan University of Technology, Taiyuan 030024 (China)

    2017-01-15

    Magnetic polyacrylic acid sodium polymer (MPAAS) was prepared by chemical transformation method. Key parameters were investigated in the synthesis process of the magnetic polymer and an optimum preparation condition was gained. The structure of the magnetic polymer was characterized by X-ray diffraction (XRD), Fourier transform infrared spectrosocopy (FTIR) and scanning electron microscope (SEM). Magnetic property of the magnetic polymer was measured by the magnet and superconducting quantum interference device (SQUID). Both the swelling ratio and kinetics and the water retention ratio and kinetics were investigated. Based on the results, it can be gained that both swelling rate and equilibrium swelling rate were lowered after magnetization while the water retention ability of the magnetic polymer is stronger than that of the polymer. - Highlights: • The preparation mechanism of the magnetic polymer was proposed. • The magnetic property of the magnetic polymer was related to reaction conditions. • Swelling ratio and kinetics of polymer and magnetic polymer were studied. • Water retention ratio and kinetics of polymer and magnetic polymer were studied.

  20. Preparation and properties of the magnetic absorbent polymer via the chemical transformation process

    International Nuclear Information System (INIS)

    Liu, Shengyu; Zhang, Suhong; Guo, Jianying; Wen, Jing; Qiao, Yan

    2017-01-01

    Magnetic polyacrylic acid sodium polymer (MPAAS) was prepared by chemical transformation method. Key parameters were investigated in the synthesis process of the magnetic polymer and an optimum preparation condition was gained. The structure of the magnetic polymer was characterized by X-ray diffraction (XRD), Fourier transform infrared spectrosocopy (FTIR) and scanning electron microscope (SEM). Magnetic property of the magnetic polymer was measured by the magnet and superconducting quantum interference device (SQUID). Both the swelling ratio and kinetics and the water retention ratio and kinetics were investigated. Based on the results, it can be gained that both swelling rate and equilibrium swelling rate were lowered after magnetization while the water retention ability of the magnetic polymer is stronger than that of the polymer. - Highlights: • The preparation mechanism of the magnetic polymer was proposed. • The magnetic property of the magnetic polymer was related to reaction conditions. • Swelling ratio and kinetics of polymer and magnetic polymer were studied. • Water retention ratio and kinetics of polymer and magnetic polymer were studied.

  1. Electrolytic membrane formation of fluoroalkyl polymer using a UV-radiation-based grafting technique and sulfonation

    Energy Technology Data Exchange (ETDEWEB)

    Shironita, Sayoko; Mizoguchi, Satoko; Umeda, Minoru, E-mail: mumeda@vos.nagaokaut.ac.jp [Department of Materials Science and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka 940-2188, Niigata (Japan)

    2011-03-15

    A sulfonated fluoroalkyl graft polymer (FGP) membrane was prepared as a polymer electrolyte. First, the FGP membrane was grafted with styrene under UV irradiation. The grafted FGP was then sulfonated to functionalize it for proton conductivity. The grafting degree of the membrane increased with increasing grafting time during UV irradiation. The proton conductivity of the membrane increased with increasing grafting degree. The swelling ratio was independent of the grafting time, however, the water uptake increased with increasing grafting degree. Based on these results, it was found that the UV-initiated styrene grafting occurred along the membrane thickness direction. Moreover, the membrane was embedded within the glass fibers of the composite. This composite electrolytic membrane had 1.15 times the proton conductivity of a Nafion 117 membrane.

  2. Selective transport of Fe(III) using ionic imprinted polymer (IIP) membrane particle

    Science.gov (United States)

    Djunaidi, Muhammad Cholid; Jumina, Siswanta, Dwi; Ulbricht, Mathias

    2015-12-01

    The membrane particles was prepared from polyvinyl alcohol (PVA) and polymer IIP with weight ratios of 1: 2 and 1: 1 using different adsorbent templates and casting thickness. The permeability of membrane towards Fe(III) and also mecanism of transport were studied. The selectivity of the membrane for Fe(III) was studied by performing adsorption experiments also with Cr(III) separately. In this study, the preparation of Ionic Imprinted Polymer (IIP) membrane particles for selective transport of Fe (III) had been done using polyeugenol as functional polymer. Polyeugenol was then imprinted with Fe (III) and then crosslinked with PEGDE under alkaline condition to produce polyeugenol-Fe-PEGDE polymer aggregates. The agrregates was then crushed and sieved using mesh size of 80 and the powder was then used to prepare the membrane particles by mixing it with PVA (Mr 125,000) solution in 1-Methyl-2-pyrrolidone (NMP) solvent. The membrane was obtained after casting at a speed of 25 m/s and soaking in NaOH solution overnight. The membrane sheet was then cut and Fe(III) was removed by acid to produce IIP membrane particles. Analysis of the membrane and its constituent was done by XRD, SEM and size selectivity test. Experimental results showed the transport of Fe(III) was faster with the decrease of membrane thickness, while the higher concentration of template ion correlates with higher Fe(III) being transported. However, the transport of Fe(III) was slower for higher concentration of PVA in the membrane. IImparticles works through retarded permeation mechanism, where Fe(III) was bind to the active side of IIP. The active side of IIP membrane was dominated by the -OH groups. The selectivity of all IIP membranes was confirmed as they were all unable to transport Cr (III), while NIP (Non-imprinted Polymer) membrane was able transport Cr (III).

  3. Characteristics of Subfreezing Operation of Polymer Electrolyte Membrane Fuel Cells

    Science.gov (United States)

    Mishler, Jeffrey Harris

    Polymer Electrolyte Membrane (PEM) Fuel Cells are capable of high efficiency operation, and are free of NOx, SOx, and CO2 emissions when using hydrogen fuel, and ideally suited for use in transportation applications due to their high power density and low operating temperatures. However, under subfreezing conditions which may be encountered during winter seasons in some areas, product water will freeze within the membrane, cathode side catalyst layer and gas diffusion media, leading to voltage loss and operation failure. Experiments were undertaken in order to characterize the amount and location of water during fuel cell operation. First, in-situ neutron radiography was undertaken on the fuel cells at a normal operating temperature for various operating current densities, inlet relative humidities, and diffusion media hydrophobicities. It was found that more hydrophobic cathode microporous layer (MPL) or hydrophilic anode MPL may result in a larger amount of water transporting back to the anode. The water profiles along the channels were measured and the point of liquid water emergence, where two phase flow begins, was compared to previous models. Secondly, under subfreezing temperatures, neutron imaging showed that water ice product accumulates because of lack of a water removal mechanism. Water was observed under both the lands and channels, and increased almost linearly with time. It is found that most ice exists in the cathode side. With evidence from experimental observation, a cold start model was developed and explained, following existing approaches in the literature. Three stages of cold start are explained: membrane saturation, ice storage in catalyst layer pores, and then ice melting. The voltage losses due to temperature change, increased transport resistance, and reduced electrochemical surface area. The ionic conductivity of the membrane at subfreezing temperatures was modeled. Voltage evolution over time for isothermal cold starts was predicted and

  4. Novel Ceramic-Polymer Composite Membranes for the Separation of Hazardous Liquid Waste

    Energy Technology Data Exchange (ETDEWEB)

    Yoram Cohen

    2001-12-01

    The present project was conceived to address the need for robust yet selective membranes suitable for operating in harsh ph, solvent, and temperature environments. An important goal of the project was to develop a membrane chemical modification technology that would allow one to tailor-design membranes for targeted separation tasks. The method developed in the present study is based on the process of surface graft polymerization. Using essentially the same base technology of surface modification the research was aimed at demonstrating that improved membranes can be designed for both pervaporation separation and ultrafiltration. In the case of pervaporation, the present study was the first to demonstrate that pervaporation can be achieved with ceramic support membranes modified with an essentially molecular layer of terminally anchored polymer chains. The main advantage of the above approach, relative to other proposed membranes, is that the separating polymer layer is covalently attached to the ceramic support. Therefore, such membranes have a potential use in organic-organic separations where the polymer can swell significantly yet membrane robustness is maintained due to the chemical linkage of the chains to be inorganic support. The above membrane technology was also useful in developing fouling resistant ultrafiltration membranes. The prototype membrane developed in the project was evaluated for the treatment of oil-in-water microemulsions, demonstrating lack of irreversible fouling common with commercial membranes.

  5. Low Permeable Hydrocarbon Polymer Electrolyte Membrane for Vanadium Redox Flow Battery.

    Science.gov (United States)

    Jung, Ho-Young; Moon, Geon-O; Jung, Seunghun; Kim, Hee Tak; Kim, Sang-Chai; Roh, Sung-Hee

    2017-04-01

    Polymer electrolyte membrane (PEM) confirms the life span of vanadium redox flow battery (VRFB). Products from Dupont, Nafion membrane, is mainly used for PEM in VRFB. However, permeation of vanadium ion occurs because of Nafion’s high permeability. Therefore, the efficiency of VRFB decreases and the prices becomes higher, which hinders VRFB’s commercialization. In order to solve this problem, poly(phenylene oxide) (PPO) is sulfonated for the preparation of low-priced hydrocarbon polymer electrolyte membrane. sPPO membrane is characterized by fundamental properties and VRFB cell test.

  6. Electrospun polymer membrane activated with room temperature ionic liquid: Novel polymer electrolytes for lithium batteries

    Science.gov (United States)

    Cheruvally, Gouri; Kim, Jae-Kwang; Choi, Jae-Won; Ahn, Jou-Hyeon; Shin, Yong-Jo; Manuel, James; Raghavan, Prasanth; Kim, Ki-Won; Ahn, Hyo-Jun; Choi, Doo Seong; Song, Choong Eui

    A new class of polymer electrolytes (PEs) based on an electrospun polymer membrane incorporating a room-temperature ionic liquid (RTIL) has been prepared and evaluated for suitability in lithium cells. The electrospun poly(vinylidene fluoride- co-hexafluoropropylene) P(VdF-HFP) membrane is activated with a 0.5 M solution of LiTFSI in 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (BMITFSI) or a 0.5 M solution of LiBF 4 in 1-butyl-3-methylimidazolium tetrafluoroborate (BMIBF 4). The resulting PEs have an ionic conductivity of 2.3 × 10 -3 S cm -1 at 25 °C and anodic stability at >4.5 V versus Li +/Li, making them suitable for practical applications in lithium cells. A Li/LiFePO 4 cell with a PE based on BMITFSI delivers high discharge capacities when evaluated at 25 °C at the 0.1 C rate (149 mAh g -1) and the 0.5 C rate (132 mAh g -1). A very stable cycle performance is also exhibited at these low current densities. The properties decrease at the higher, 1 C rate, when operated at 25 °C. Nevertheless, improved properties are obtained at a moderately elevated temperature of operation, i.e. 40 °C. This is attributed to enhanced conductivity of the electrolyte and faster reaction kinetics at higher temperatures. At 40 °C, a reversible capacity of 140 mAh g -1 is obtained at the 1 C rate.

  7. Proton Conducting Polymer Membrane Comprised of 2-Acrylamido-2-Methylpropanesulfonic Acid

    National Research Council Canada - National Science Library

    Walker, Charles

    2002-01-01

    In order to identify a proton-conducting polymer membrane suitable for replacing Nafion 117 in direct methanol fuel cells, we prepared a cross-linked copolymer of hydrophilic 2-acrylamido-2-methylpropanesulfonic acid (AMPS...

  8. Improved antifouling properties of polymer membranes using a ‘layer-by-layer’ mediated method

    KAUST Repository

    Chen, Lin; Thé rien-Aubin, Hé loï se; Wong, Mavis C. Y.; Hoek, Eric M. V.; Ober, Christopher K.

    2013-01-01

    Polymeric reverse osmosis membranes were modified with antifouling polymer brushes through a 'layer by layer' (LBL) mediated method. Based on pure physical electrostatic interaction, the attachment of LBL films did not alter separation performance

  9. Investigation of dominant loss mechanisms in low-temperature polymer electrolyte membrane fuel cells

    OpenAIRE

    Gerteisen, D.

    2010-01-01

    This thesis deals with the analysis of dominant loss mechanisms in direct methanol fuel cells (DMFC) and hydrogen fed polymer electrolyte membrane fuel cells (PEFC) by means of experimental characterization and modeling work.

  10. Steric Pressure among Membrane-Bound Polymers Opposes Lipid Phase Separation.

    Science.gov (United States)

    Imam, Zachary I; Kenyon, Laura E; Carrillo, Adelita; Espinoza, Isai; Nagib, Fatema; Stachowiak, Jeanne C

    2016-04-19

    Lipid rafts are thought to be key organizers of membrane-protein complexes in cells. Many proteins that interact with rafts have bulky polymeric components such as intrinsically disordered protein domains and polysaccharide chains. Therefore, understanding the interaction between membrane domains and membrane-bound polymers provides insights into the roles rafts play in cells. Multiple studies have demonstrated that high concentrations of membrane-bound polymeric domains create significant lateral steric pressure at membrane surfaces. Furthermore, our recent work has shown that lateral steric pressure at membrane surfaces opposes the assembly of membrane domains. Building on these findings, here we report that membrane-bound polymers are potent suppressors of membrane phase separation, which can destabilize lipid domains with substantially greater efficiency than globular domains such as membrane-bound proteins. Specifically, we created giant vesicles with a ternary lipid composition, which separated into coexisting liquid ordered and disordered phases. Lipids with saturated tails and poly(ethylene glycol) (PEG) chains conjugated to their head groups were included at increasing molar concentrations. When these lipids were sparse on the membrane surface they partitioned to the liquid ordered phase. However, as they became more concentrated, the fraction of GUVs that were phase-separated decreased dramatically, ultimately yielding a population of homogeneous membrane vesicles. Experiments and physical modeling using compositions of increasing PEG molecular weight and lipid miscibility phase transition temperature demonstrate that longer polymers are the most efficient suppressors of membrane phase separation when the energetic barrier to lipid mixing is low. In contrast, as the miscibility transition temperature increases, longer polymers are more readily driven out of domains by the increased steric pressure. Therefore, the concentration of shorter polymers required

  11. Application of Photocured Polymer Ion Selective Membranes for Solid-State Chemical Sensors

    Directory of Open Access Journals (Sweden)

    Natalia Abramova

    2015-06-01

    Full Text Available Application of conducting polymers with additional functional groups for a solid contact formation and photocurable membranes as sensitive elements of solid-state chemical sensors is discussed. Problems associated with application of UV-curable polymers for sensors are analyzed. A method of sensor fabrication using copolymerized conductive layer and sensitive membrane is presented and the proof of concept is confirmed by two examples of solid-contact electrodes for Ca ions and pH.

  12. Recent progress in electrocatalysts with mesoporous structures for application in polymer electrolyte membrane fuel cells

    OpenAIRE

    Xing, Wei; Wu, Zucheng; Tao, Shanwen

    2016-01-01

    Recently mesoporous materials have drawn great attention in fuel cell related applications, such as preparation of polymer electrolyte membranes and catalysts, hydrogen storage and purification. In this mini-review, we focus on recent developments in mesoporous electrocatalysts for polymer electrolyte membrane fuel cells, including metallic and metal-free catalysts for use as either anode or cathode catalysts. Mesoporous Pt-based metals have been synthesized as anode catalysts with improved a...

  13. Processing and Dynamic Failure Characterization of Novel Impact Absorbing Transparent Interpenetrating Polymer Networks (t-IPN)

    Science.gov (United States)

    2014-02-01

    samples were placed into the oven for the same curing treatment as before. The scanning electron microscope (SEM) photo in Figure 19 shows a typical...Interpenetrating Polymer Networks with Polyurethane and Methacrylate-based Polymers,’ S. A . Bird , PhD Dissertation, Department of Polymer and Fiber Engineering...Jajam, H. V. Tippur, S. A . Bird , and M. L. Auad, Proceedings of the 50th SES Annual Technical Meeting and ASME-AMD Summer Meeting, Providence, RI

  14. Surface modification of polyacrylonitrile co-polymer membranes using pulsed direct current nitrogen plasma

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Dipankar; Neogi, Sudarsan; De, Sirshendu, E-mail: sde@che.iitkgp.ernet.in

    2015-12-31

    Low temperature plasma treatment using pulsed direct current discharge of nitrogen gas was employed to enhance hydrophilicity of the polyacrylonitrile co-polymer membranes. The membranes were characterized in terms of morphology, structure, hydrophilicity, and membrane performance. Properties and functional groups on the surface of polyacrylonitrile co-polymer membranes were investigated by contact angle, scanning electron microscopy, Fourier transform infrared and X-ray photoelectron spectroscopy. Effects of plasma conditions, namely, pulsed voltage, duty cycle and treatment time on increase in membrane hydrophilicity were studied. Permeability of treated membrane was increased by 47% and it was retained up to 70 days. Surface etching due to plasma treatment was confirmed by weight loss of the treated membranes. Due to surface etching, average pore size increased and rejection of 200 kDa polyethylene glycol decreased to about 70% for the treated membrane. Oxygen and nitrogen functional groups were responsible for surface hydrophilicity. - Highlights: • Surface modification of polyacrylonitrile co-polymer membranes by pulsed direct current nitrogen plasma • Hydrophilic functional groups incorporated on the membrane surface • Significant enhancement of the permeability and wettability of the membranes • Water contact angle increased with storage time and finally stabilized.

  15. Surface modification of polyacrylonitrile co-polymer membranes using pulsed direct current nitrogen plasma

    International Nuclear Information System (INIS)

    Pal, Dipankar; Neogi, Sudarsan; De, Sirshendu

    2015-01-01

    Low temperature plasma treatment using pulsed direct current discharge of nitrogen gas was employed to enhance hydrophilicity of the polyacrylonitrile co-polymer membranes. The membranes were characterized in terms of morphology, structure, hydrophilicity, and membrane performance. Properties and functional groups on the surface of polyacrylonitrile co-polymer membranes were investigated by contact angle, scanning electron microscopy, Fourier transform infrared and X-ray photoelectron spectroscopy. Effects of plasma conditions, namely, pulsed voltage, duty cycle and treatment time on increase in membrane hydrophilicity were studied. Permeability of treated membrane was increased by 47% and it was retained up to 70 days. Surface etching due to plasma treatment was confirmed by weight loss of the treated membranes. Due to surface etching, average pore size increased and rejection of 200 kDa polyethylene glycol decreased to about 70% for the treated membrane. Oxygen and nitrogen functional groups were responsible for surface hydrophilicity. - Highlights: • Surface modification of polyacrylonitrile co-polymer membranes by pulsed direct current nitrogen plasma • Hydrophilic functional groups incorporated on the membrane surface • Significant enhancement of the permeability and wettability of the membranes • Water contact angle increased with storage time and finally stabilized.

  16. Characterization of Hydrophobic Interactions of Polymers with Water and Phospholipid Membranes Using Molecular Dynamics Simulations

    Science.gov (United States)

    Drenscko, Mihaela

    Polymers and lipid membranes are both essential soft materials. The structure and hydrophobicity/hydrophilicity of polymers, as well as the solvent they are embedded in, ultimately determines their size and shape. Understating the variation of shape of the polymer as well as its interactions with model biological membranes can assist in understanding the biocompatibility of the polymer itself. Computer simulations, in particular molecular dynamics, can aid in characterization of the interaction of polymers with solvent, as well as polymers with model membranes. In this thesis, molecular dynamics serve to describe polymer interactions with a solvent (water) and with a lipid membrane. To begin with, we characterize the hydrophobic collapse of single polystyrene chains in water using molecular dynamics simulations. Specifically, we calculate the potential of mean force for the collapse of a single polystyrene chain in water using metadynamics, comparing the results between all atomistic with coarse-grained molecular simulation. We next explore the scaling behavior of the collapsed globular shape at the minimum energy configuration, characterized by the radius of gyration, as a function of chain length. The exponent is close to one third, consistent with that predicted for a polymer chain in bad solvent. We also explore the scaling behavior of the Solvent Accessible Surface Area (SASA) as a function of chain length, finding a similar exponent for both all-atomistic and coarse-grained simulations. Furthermore, calculation of the local water density as a function of chain length near the minimum energy configuration suggests that intermediate chain lengths are more likely to form dewetted states, as compared to shorter or longer chain lengths. Next, in order to investigate the molecular interactions between single hydrophobic polymer chains and lipids in biological membranes and at lipid membrane/solvent interface, we perform a series of molecular dynamics simulations of

  17. Self-positioning of polymer membranes driven by thermomechanically induced plastic deformation

    DEFF Research Database (Denmark)

    Häfliger, Daniel; Hansen, Ole; Boisen, Anja

    2006-01-01

    Stress in polymeric resins is tailored by a thermomechanical process. It allows for controlled self-positioning of membranes in microdevices (see Figure). The process makes specific use of plastic deformation that results from the low viscosity of the polymer. This demonstrates that polymers offer...... new approaches to microfabrication that cannot be realized for common semiconductor materials without severe difficulties....

  18. TCT-584 Nine Month Imaging and Twelve Month Clinical Results from the DESSOLVE II Randomized Trial of the MiStent® SES with Absorbable Polymer

    OpenAIRE

    Wijns, William; Vrolix, Mathias; Verheye, Stefan; Schoors, Danny; Slagboom, Ton; Gosselink, Marcel; Benit, Edouard; Desmet, Walter; Chowdhary, Saquib; Lansky, Alexandra; Bezerra, Hiram; Fitzgerald, Peter; Kandzari, David; Ormiston, John

    2012-01-01

    Background : The MiStent SES (Micell Technologies, Durham, NC) is an investigational drug-eluting stent (DES) developed to adress unfavorable late-term outcomes such as stent thrombosis. These events are hypothesized to be associated in part with durable polymers of current DES. The MiStent SES uses a unique combination of components, a crystalline formulation of sirolimus and a fully absorbable polymer on a thinstrut, cobalt chromium stent platform. The polymer coating is eliminated from the...

  19. Regeneration performance of CO2-rich solvents by using membrane vacuum regeneration technology: Relationships between absorbent structure and regeneration efficiency

    International Nuclear Information System (INIS)

    Yan, Shuiping; Fang, Mengxiang; Wang, Zhen; Luo, Zhongyang

    2012-01-01

    Highlights: ► MVR may be viable to successfully use less valuable heat to replace high grade steam. ► Increasing OH and amine groups will increase the regeneration efficiency. ► Absorbents with a four carbon chain length will be more attractive to MVR. ► Amino acid salts will be more appropriate for MVR. ► HRM conducted at ambient pressure and low temperature is inferior to MVR. -- Abstract: In order to give a better understanding for the selection of suitable absorbents for the novel membrane vacuum regeneration technology (MVR) which has the potential to reduce CO 2 energy requirement by utilizing the waste heat or low-grade energy, an experimental study to determine the relationships between chemical structure and vacuum regeneration behavior of CO 2 absorbents at 70 °C and 10 kPa was performed. Eleven typical absorbents with different functional groups in their chemical structures were investigated in terms of vacuum regeneration efficiencies. Results showed that the regeneration efficiency decreased with an increase of number of activated hydrogen atom in amine group and decreased with the number of hydroxyl group. Especially, more attention should be paid to these alkanolamines with one hydrogen atom in amine group and two or more hydroxyl groups in the structures due to their better comprehensive performance in regeneration, absorbent loss and CO 2 absorption aspects. Increasing the carbon chain length and amine groups in the absorbent structure contributed to the improvement of regeneration performance and reduction of absorbent volatile loss. These absorbents with a four carbon chain length bonded at amine group might be more attractive to MVR. Furthermore, polyamines were superior to monoamines in terms of higher regeneration efficiencies and lower absorbent losses. Additionally, the individual effects of the potassium carboxylate group and hydroxymethylene group were also compared in this study. Results showed that amino acid salts were more

  20. Multilayer affinity adsorption of albumin on polymer brushes modified membranes in a continuous-flow system.

    Science.gov (United States)

    Hu, Meng-Xin; Li, Xiang; Li, Ji-Nian; Huang, Jing-Jing; Ren, Ge-Rui

    2018-02-23

    Polymer brushes modified surfaces have been widely used for protein immobilization and isolation. Modification of membranes with polymer brushes increases the surface concentration of affinity ligands used for protein binding. Albumin is one of the transporting proteins and shows a high affinity to bile acids. In this work, the modified membranes with cholic acid-containing polymer brushes can be facilely prepared by the immobilization of cholic acid on the poly(2-hydroxyethyl methacrylate) grafted microporous polypropylene membranes (MPPMs) for affinity adsorption of albumin. ATR/FT-IR and X-ray photoelectron spectroscopy were used to characterize the chemical composition of the modified membranes. Water contact angle measurements were used to analyze the hydrophilic/hydrophobic properties of the membrane surface. The modified MPPMs show a high affinity to albumin and have little non-specific adsorption of hemoglobin. The dynamic binding capacity of albumin in the continous-flow system increases with the cycle number and feed rate as the binding degree of cholic acid is moderate. The highest binding capacity of affinity membranes is about 52.49 g/m 2 membrane, which is about 24 times more than the monolayer binding capacity. These results reveal proteins could be captured in multilayers by the polymer brushes containing affinity ligands similar to the polymer brushes containing ion-exchange groups, which open up the potential of the polymer brushes containing affinity ligands in protein or another components separation. And the cholic acid containing polymer brushes modified membranes has the promising potential for albumin separation and purification rapidly from serum or fermented solution in medical diagnosis and bioseparation. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Enhanced drug delivery capabilities from stents coated with absorbable polymer and crystalline drug

    OpenAIRE

    Carlyle, Wenda C.; McClain, James B.; Tzafriri, Abraham R.; Bailey, Lynn; Zani, Brett G.; Markham, Peter M.; Stanley, James R.L.; Edelman, Elazer R.

    2012-01-01

    Current drug eluting stent (DES) technology is not optimized with regard to the pharmacokinetics of drug delivery. A novel, absorbable-coating sirolimus-eluting stent (AC-SES) was evaluated for its capacity to deliver drug more evenly within the intimal area rather than concentrating drug around the stent struts and for its ability to match coating erosion with drug release. The coating consisted of absorbable poly-lactide-co-glycolic acid (PLGA) and crystalline sirolimus deposited by a dry-p...

  2. Sodium ion conducting polymer electrolyte membrane prepared by phase inversion technique

    Science.gov (United States)

    Harshlata, Mishra, Kuldeep; Rai, D. K.

    2018-04-01

    A mechanically stable porous polymer membrane of Poly(vinylidene fluoride-hexafluoropropylene) has been prepared by phase inversion technique using steam as a non-solvent. The membrane possesses semicrystalline network with enhanced amorphicity as observed by X-ray diffraction. The membrane has been soaked in an electrolyte solution of 0.5M NaPF6 in Ethylene Carbonate/Propylene Carbonate (1:1) to obtain the gel polymer electrolyte. The porosity and electrolyte uptake of the membrane have been found to be 67% and 220% respectively. The room temperature ionic conductivity of the membrane has been obtained as ˜ 0.3 mS cm-1. The conductivity follows Arrhenius behavior with temperature and gives activation energy as 0.8 eV. The membrane has been found to possess significantly large electrochemical stability window of 5.0 V.

  3. Polymer sulfonation- a versatile route to prepare proton-conducting membrane material for advanced technologies

    International Nuclear Information System (INIS)

    Zaidi, S.M.J.

    2003-01-01

    Sulfonation of polymers is a viable method for making proton exchange membranes used in electrochemical devices. Polyether-ether ketone was modified by using concentrated sulfuric acid (97.4%) to produce ion-containing polymers bearing HSO3 groups. The sulfonated polymer was characterized for IEC, HNMR, DSC and water uptake etc. The degree of sulfonation of sulfonated PEEK was found to vary from 40 to 80 mol%. The PEEK became amorphous after sufonation (as evidenced from DSC and WXRD), which enhanced its solubility in organic solvents such as DMF. The glass transition temperature, Tg increased from 151C for pure PEEK to 217C upon sulfonation. The water uptake was also increased with sulfonation level, which provides formation of water-mediated pathways for protons involving SO3H groups. The membranes from these polymers have a high potential for use in electrochemical devices such as polymer fuel cell and electrodialysis. (author)

  4. A Systematic Approach to the Design Optimization of Light-Absorbing Indenofluorene Polymers for Organic Photovoltaics

    KAUST Repository

    Kirkpatrick, James; Nielsen, Christian B.; Zhang, Weimin; Bronstein, Hugo; Ashraf, R. Shahid; Heeney, Martin; McCulloch, Iain

    2012-01-01

    measured by UV-vis spectroscopy and of the ionization potentials measured by photoelectron spectroscopy in air. Comparing measured photovoltaic performance of the polymer series to the trend in efficiencies predicted by computation confirms the validity

  5. Sulfonation and characterization of styrene-indene copolymers for the development of proton conducting polymer membranes

    Directory of Open Access Journals (Sweden)

    Cristiane M. Becker

    2012-01-01

    Full Text Available The aim of this work is to obtain polymer precursors based on styrene copolymers with distinct degrees of sulfonation, as an alternative material for fuel cell membranes. Acetyl sulfate was used to carry out the sulfonation and the performance of the polyelectrolyte was evaluated based on the content of acid polar groups incorporated into the macromolecular chain. Polymeric films were produced by blending the sulfonated styrene-indene copolymer with poly(vinylidene fluoride. The degree of sulfonation of the polymer was strongly affected by the sulfonation reaction parameters, with a direct impact on the ionic exchange capacity and the ionic conductivity of the sulfonated polymers and the membranes obtained from them. The films produced with the blends showed more suitable mechanical properties, although the conductivity of the membranes was still lower than that of commercially available membranes used in fuel cells.

  6. Catalytic molecularly imprinted polymer membranes: development of the biomimetic sensor for phenols detection.

    Science.gov (United States)

    Sergeyeva, T A; Slinchenko, O A; Gorbach, L A; Matyushov, V F; Brovko, O O; Piletsky, S A; Sergeeva, L M; Elska, G V

    2010-02-05

    Portable biomimetic sensor devices for the express control of phenols content in water were developed. The synthetic binding sites mimicking active site of the enzyme tyrosinase were formed in the structure of free-standing molecularly imprinted polymer membranes. Molecularly imprinted polymer membranes with the catalytic activity were obtained by co-polymerization of the complex Cu(II)-catechol-urocanic acid ethyl ester with (tri)ethyleneglycoldimethacrylate, and oligourethaneacrylate. Addition of the elastic component oligourethaneacrylate provided formation of the highly cross-linked polymer with the catalytic activity in a form of thin, flexible, and mechanically stable membrane. High accessibility of the artificial catalytic sites for the interaction with the analyzed phenol molecules was achieved due to addition of linear polymer (polyethyleneglycol Mw 20,000) to the initial monomer mixture before the polymerization. As a result, typical semi-interpenetrating polymer networks (semi-IPNs) were formed. The cross-linked component of the semi-IPN was represented by the highly cross-linked catalytic molecularly imprinted polymer, while the linear one was represented by polyethyleneglycol Mw 20,000. Extraction of the linear polymer from the fully formed semi-IPN resulted in formation of large pores in the membranes' structure. Concentration of phenols in the analyzed samples was detected using universal portable device oxymeter with the oxygen electrode in a close contact with the catalytic molecularly imprinted polymer membrane as a transducer. The detection limit of phenols detection using the developed sensor system based on polymers-biomimics with the optimized composition comprised 0.063 mM, while the linear range of the sensor comprised 0.063-1 mM. The working characteristics of the portable sensor devices were investigated. Storage stability of sensor systems at room temperature comprised 12 months (87%). As compared to traditional methods of phenols

  7. Ultrathin self-assembled anionic polymer membranes for superfast size-selective separation

    Science.gov (United States)

    Deng, Chao; Zhang, Qiu Gen; Han, Guang Lu; Gong, Yi; Zhu, Ai Mei; Liu, Qing Lin

    2013-10-01

    Nanoporous membranes with superior separation performance have become more crucial with increasing concerns in functional nanomaterials. Here novel ultrahigh permeable nanoporous membranes have been fabricated on macroporous supports by self-assembly of anionic polymer on copper hydroxide nanostrand templates in organic solution. This facile approach has a great potential for the fabrication of ultrathin anionic polymer membranes as a general method. The as-fabricated self-assembled membranes have a mean pore size of 5-12 nm and an adjustable thickness as low as 85 nm. They allow superfast permeation of water, and exhibit excellent size-selective separation properties and good fouling resistance for negatively-charged solutes during filtration. The 85 nm thick membrane has an ultrahigh water flux (3306 l m-2 h-1 bar-1) that is an order of magnitude larger than commercial membranes, and can highly efficiently separate 5 and 15 nm gold nanoparticles from their mixtures. The newly developed nanoporous membranes have a wide application in separation and purification of biomacromolecules and nanoparticles.Nanoporous membranes with superior separation performance have become more crucial with increasing concerns in functional nanomaterials. Here novel ultrahigh permeable nanoporous membranes have been fabricated on macroporous supports by self-assembly of anionic polymer on copper hydroxide nanostrand templates in organic solution. This facile approach has a great potential for the fabrication of ultrathin anionic polymer membranes as a general method. The as-fabricated self-assembled membranes have a mean pore size of 5-12 nm and an adjustable thickness as low as 85 nm. They allow superfast permeation of water, and exhibit excellent size-selective separation properties and good fouling resistance for negatively-charged solutes during filtration. The 85 nm thick membrane has an ultrahigh water flux (3306 l m-2 h-1 bar-1) that is an order of magnitude larger than

  8. The Effect of Platinum Electrocatalyst on Membrane Degradation in Polymer Electrolyte Fuel Cells.

    Science.gov (United States)

    Bodner, Merit; Cermenek, Bernd; Rami, Mija; Hacker, Viktor

    2015-12-08

    Membrane degradation is a severe factor limiting the lifetime of polymer electrolyte fuel cells. Therefore, obtaining a deeper knowledge is fundamental in order to establish fuel cells as competitive product. A segmented single cell was operated under open circuit voltage with alternating relative humidity. The influence of the catalyst layer on membrane degradation was evaluated by measuring a membrane without electrodes and a membrane-electrode-assembly under identical conditions. After 100 h of accelerated stress testing the proton conductivity of membrane samples near the anode and cathode was investigated by means of ex situ electrochemical impedance spectroscopy. The membrane sample near the cathode inlet exhibited twofold lower membrane resistance and a resulting twofold higher proton conductivity than the membrane sample near the anode inlet. The results from the fluoride ion analysis have shown that the presence of platinum reduces the fluoride emission rate; which supports conclusions drawn from the literature.

  9. Plasma-modified polyethylene membrane as a separator for lithium-ion polymer battery

    International Nuclear Information System (INIS)

    Kim, Jun Young; Lee, Yongbeom; Lim, Dae Young

    2009-01-01

    The surface of polyethylene (PE) membranes as a separator for lithium-ion polymer battery was modified with acrylonitrile (AN) using the plasma technology. The plasma-induced acrylonitrile coated PE (PiAN-PE) membrane was characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and contact angle measurement. The electrochemical performance of the lithium-ion polymer cell fabricated with the PE and the PiAN-PE membranes were also analyzed. The surface characterization demonstrates that the enhanced adhesion of the PiAN-PE membrane resulted from the increased polar component of surface energy for the PiAN-PE membrane. The presence of the PiAN induced onto the surface of the membrane via the plasma modification plays a critical role in improving the wettability and electrolyte retention, the interfacial adhesion between the electrodes and the separator, the cycle performance of the resulting lithium-ion polymer cell assembly. The PiAN-PE membrane modified by the plasma treatment holds a great potential to be used as a high-performance and cost-effective separator for lithium-ion polymer battery.

  10. Nanostructured Block Polymer Membranes as High Capacity Adsorbers for the Capture of Metal Ions from Water

    Science.gov (United States)

    Boudouris, Bryan; Weidman, Jacob; Mulvenna, Ryan; Phillip, William

    The efficient removal of metal ions from aqueous streams is of significant import in applications ranging from industrial waste treatment to the purification of drinking water. An emerging paradigm associated with this separation is one that utilizes membrane adsorbers as a means by which to bind metal salt contaminants. Here, we demonstrate that the casting of an A-B-C triblock polymer using the self-assembly and non-solvent induced phase separation (SNIPS) methodology results in a nanoporous membrane geometry. The nature of the triblock polymer affords an extremely high density of binding sites within the membrane. As such, we demonstrate that the membranes with binding capacities equal to that of state-of-the-art packed bed columns. Moreover, because the affinity of the C moiety can be tuned, highly selective binding events can occur based solely on the chemistry of the block polymer and the metal ions in solution (i.e., in a manner that is independent of the size of the metal ions). Due to these combined facts, these membranes efficiently remove heavy metal (e.g., lead- and cadmium-based) salts from contaminated water streams with greater than 95% efficiency. Finally, we show that the membranes can be regenerated through a simple treatment in order to provide long-lasting adsorber systems as well. Thus, it is anticipated that these nanostructured triblock polymer membranes are a platform by which to obtain next-generation water purification processes.

  11. Performance of Hollow Fiber Membrane Gas-Liquid Contactors to Absorb CO2 Using Diethanolamine (Dea as a Solvent

    Directory of Open Access Journals (Sweden)

    Sutrasno Kartohardjono

    2010-10-01

    Full Text Available This study uses DEA solution to absorb CO2 from the gas flow through the hollow fiber membrane contactors. This study aims to evaluate the performance of hollow fiber membrane contactors to absorb CO2 gas using DEA solution as solvent through mass transfer and hydrodynamics studies. The use of DEA solution is to reduce the mass transfer resistance in the liquid phase, and on the other side, the large contact area of the membrane surface can cover the disadvantage of membrane contactors; additional mass transfer resistance in the membrane phase. During experiments, CO2 feed flows through the fiber lumens, while the 0.01 M DEA solution flows in the shell side of membrane contactors. Experimental results show that the mass transfer coefficients and fluxes of CO2 increase with an increase in both water and DEA solution flow rates. Increasing the amount of fibers in the contactors will decrease the mass transfer and fluxes at the same DEA solution flow rate. Mass transfer coefficients and CO2 fluxes using DEA solution can achieve 28,000 and 7.6 million times greater than using water as solvent, respectively. Hydrodynamics studies show that the liquid pressure drops in the contactors increase with increasing liquid flow rate and number of fibers in the contactors. The friction between water and the fibers in the contactor was more pronounced at lower velocities, and therefore, the value of the friction factor is also higher at lower velocities.

  12. New Polymer Electrolyte Membranes Based on Acid Doped PBI For Fuel Cells Operating above 100°C

    DEFF Research Database (Denmark)

    Li, Qingfeng

    2003-01-01

    The technical achievement and challenges for the PEMFC technology based on perfluorosulfonic acid (PFSA) polymer membranes (e.g. Nafion®) are briefly discussed. The newest development for alternative polymer electrolytes for operation above 100°C. As one of the successful approaches to high...... operational temperatures, the development and evaluation of acid doped PBI membranes are reviewed, covering polymer synthesis, membrane casting, acid doping, physiochemical characterization and fuel cell tests....

  13. Crystal nuclei templated nanostructured membranes prepared by solvent crystallization and polymer migration

    Science.gov (United States)

    Wang, Bo; Ji, Jing; Li, Kang

    2016-09-01

    Currently, production of porous polymeric membranes for filtration is predominated by the phase-separation process. However, this method has reached its technological limit, and there have been no significant breakthrough over the last decade. Here we show, using polyvinylidene fluoride as a sample polymer, a new concept of membrane manufacturing by combining oriented green solvent crystallization and polymer migration is able to obtain high performance membranes with pure water permeation flux substantially higher than those with similar pore size prepared by conventional phase-separation processes. The new manufacturing procedure is governed by fewer operating parameters and is, thus, easier to control with reproducible results. Apart from the high water permeation flux, the prepared membranes also show excellent stable flux after fouling and superior mechanical properties of high pressure load and better abrasion resistance. These findings demonstrate the promise of a new concept for green manufacturing nanostructured polymeric membranes with high performances.

  14. Quaternized poly(vinyl alcohol)/alumina composite polymer membranes for alkaline direct methanol fuel cells

    Science.gov (United States)

    Yang, Chun-Chen; Chiu, Shwu-Jer; Chien, Wen-Chen; Chiu, Sheng-Shin

    The quaternized poly(vinyl alcohol)/alumina (designated as QPVA/Al 2O 3) nanocomposite polymer membrane was prepared by a solution casting method. The characteristic properties of the QPVA/Al 2O 3 nanocomposite polymer membranes were investigated using thermal gravimetric analysis (TGA), scanning electron microscopy (SEM), dynamic mechanical analysis (DMA), micro-Raman spectroscopy, and AC impedance method. Alkaline direct methanol fuel cell (ADMFC) comprised of the QPVA/Al 2O 3 nanocomposite polymer membrane were assembled and examined. Experimental results indicate that the DMFC employing a cheap non-perfluorinated (QPVA/Al 2O 3) nanocomposite polymer membrane shows excellent electrochemical performances. The peak power densities of the DMFC with 4 M KOH + 1 M CH 3OH, 2 M CH 3OH, and 4 M CH 3OH solutions are 28.33, 32.40, and 36.15 mW cm -2, respectively, at room temperature and in ambient air. The QPVA/Al 2O 3 nanocomposite polymer membranes constitute a viable candidate for applications on alkaline DMFC.

  15. CO2 Selective, Zeolitic Imidazolate Framework-7 Based Polymer Composite Mixed-Matrix Membranes

    KAUST Repository

    Chakrabarty, Tina; Neelakanda, Pradeep; Peinemann, Klaus-Viktor

    2018-01-01

    CO2 removal is necessary to mitigate the effects of global warming but it is a challenging process to separate CO2 from natural gas, biogas, and other gas streams. Development of hybrid membranes by use of polymers and metal-organic framework (MOF) particles is a viable option to overcome this challenge. A ZIF-7 nano-filler that was synthesized in our lab was embedded into a designed polymer matrix at various loadings and the performance of the mixed matrix membranes was evaluated in terms of gas permeance and selectivity. Hybrid membranes with various loadings (20, 30 and 40 wt%) were developed and tested at room temperature by a custom made time lag equipment and a jump in selectivity was observed when compared with the pristine polymer. A commercially attractive region for the selectivity CO2 over CH4 was achieved with a selectivity of 39 for 40 wt% particle loading. An increase in selectivity was observed with the increase of ZIF-7 loadings. Best performance was seen at 40% ZIF-7 loaded membrane with an ideal selectivity of 39 for CO2 over CH4. The obtained selectivity was 105% higher for CO2 over CH4 than the selectivity of the pristine polymer with a slight decrease in permeance. Morphological characterization of such developed membranes showed an excellent compatibility between the polymer and particle adhesion.

  16. CO2 Selective, Zeolitic Imidazolate Framework-7 Based Polymer Composite Mixed-Matrix Membranes

    KAUST Repository

    Chakrabarty, Tina

    2018-05-17

    CO2 removal is necessary to mitigate the effects of global warming but it is a challenging process to separate CO2 from natural gas, biogas, and other gas streams. Development of hybrid membranes by use of polymers and metal-organic framework (MOF) particles is a viable option to overcome this challenge. A ZIF-7 nano-filler that was synthesized in our lab was embedded into a designed polymer matrix at various loadings and the performance of the mixed matrix membranes was evaluated in terms of gas permeance and selectivity. Hybrid membranes with various loadings (20, 30 and 40 wt%) were developed and tested at room temperature by a custom made time lag equipment and a jump in selectivity was observed when compared with the pristine polymer. A commercially attractive region for the selectivity CO2 over CH4 was achieved with a selectivity of 39 for 40 wt% particle loading. An increase in selectivity was observed with the increase of ZIF-7 loadings. Best performance was seen at 40% ZIF-7 loaded membrane with an ideal selectivity of 39 for CO2 over CH4. The obtained selectivity was 105% higher for CO2 over CH4 than the selectivity of the pristine polymer with a slight decrease in permeance. Morphological characterization of such developed membranes showed an excellent compatibility between the polymer and particle adhesion.

  17. Effects of Super-Absorbent Polymer Application on Yield and Yield Components of Rapeseed (Brassica napus L.

    Directory of Open Access Journals (Sweden)

    Fariborz SHEKARI

    2015-09-01

    Full Text Available Limitation of water resources and its great impact on agricultural and natural resources play a crucial role in the efficiency of water use. Applying super absorbent polymer to the soil may be one of the methods to minimize the stress of weather dryness in arid and semi-arid regions. In order to evaluate the effects of hydrophilic polymer application on yield and water use efficiency of rapeseed plants, an experiment was conducted under field condition in 2012 at the Research Farm of the Faculty of Agriculture, University of Maragheh. Treatments’ factors were: (i 3 super absorbent polymers (SAP (Taravat A200 levels of 0 (without application, 75 and 150 kg ha-1 A200 application, (ii three irrigation levels of 80, 120 and 180 mm evaporation from class A basin in main plots, (iii two cultivars ʻHyola 401ʼ and ʻRVSʼ in sub plots as factorial split plot combination based on completely randomized block design with three replications. The results showed that in all of the measured traits within the experiment there were significant differences between SAP levels. Furthermore, increasing irrigation interval led to an increase in a thousand seeds’ weight, but decreased seed yield. Increasing water stress raised seed oil percent and infertile silique and subsequently resulted in reduced oil yield. ʻHyola 401ʼ was more susceptible to embryo abortion compared with ʻRVSʼ. As a conclusion of the research, SAP (A200 application in quantities smaller than 75 kg ha-1 may be recommended for rapeseed production under field condition.

  18. Ionic Liquid Confined in Mesoporous Polymer Membrane with Improved Stability for CO2/N2 Separation

    Directory of Open Access Journals (Sweden)

    Ming Tan

    2017-09-01

    Full Text Available Supported ionic liquid membranes (SILMs have a promising prospect of application in flue gas separation, owing to its high permeability and selectivity of CO2. However, existing SILMs have the disadvantage of poor stability due to the loss of ionic liquid from the large pores of the macroporous support. In this study, a novel SILM with high stability was developed by confining ionic liquid in a mesoporous polymer membrane. First, a mesoporous polymer membrane derived from a soluble, low-molecular-weight phenolic resin precursor was deposited on a porous Al2O3 support, and then 1-ethyl-3-methylimidazolium tetrafluoroborate ([emim][BF4] was immobilized inside mesopores of phenolic resin, forming the SILM under vacuum. Effects of trans-membrane pressure difference on the SILM separation performance were investigated by measuring the permeances of CO2 and N2. The SILM exhibits a high ideal CO2/N2 selectivity of 40, and an actual selectivity of approximately 25 in a mixed gas (50% CO2 and 50% N2 at a trans-membrane pressure difference of 2.5 bar. Compared to [emim][BF4] supported by polyethersulfone membrane with a pore size of around 0.45 μm, the [emim][BF4] confined in a mesoporous polymer membrane exhibits an improved stability, and its separation performance remained stable for 40 h under a trans-membrane pressure difference of 1.5 bar in a mixed gas before the measurement was intentionally stopped.

  19. Grafting of molecularly imprinted polymer to porous polyethylene filtration membranes by plasma polymerization.

    Science.gov (United States)

    Cowieson, D; Piletska, E; Moczko, E; Piletsky, S

    2013-08-01

    An application of plasma-induced grafting of polyethylene membranes with a thin layer of molecularly imprinted polymer (MIP) was presented. High-density polyethylene (HDPE) membranes, "Vyon," were used as a substrate for plasma grafting modification. The herbicide atrazine, one of the most popular targets of the molecular imprinting, was chosen as a template. The parameters of the plasma treatment were optimized in order to achieve a good balance between polymerization and ablation processes. Modified HDPE membranes were characterized, and the presence of the grafted polymeric layer was confirmed based on the observed weight gain, pore size measurements, and infrared spectrometry. Since there was no significant change in the porosity of the modified membranes, it was assumed that only a thin layer of the polymer was introduced on the surface. The experiments on the re-binding of the template atrazine to the membranes modified with MIP and blank polymers were performed. HDPE membranes which were grafted with polymer using continuous plasma polymerization demonstrated the best result which was expressed in an imprinted factor equal to 3, suggesting that molecular imprinting was successfully achieved.

  20. Increased Water Retention in Polymer Electrolyte Membranes at Elevated Temperatures Assisted by Capillary Condensation

    International Nuclear Information System (INIS)

    Park, M.J.; Downing, K.H.; Jackson, A.; Gomez, E.D.; Minor, A.M.; Cookson, D.; Weber, A.Z.; Balsara, N.P.

    2007-01-01

    We establish a new systematic methodology for controlling the water retention of polymer electrolyte membranes. Block copolymer membranes comprising hydrophilic phases with widths ranging from 2 to 5 nm become wetter as the temperature of the surrounding air is increased at constant relative humidity. The widths of the moist hydrophilic phases were measured by cryogenic electron microscopy experiments performed on humid membranes. Simple calculations suggest that capillary condensation is important at these length scales. The correlation between moisture content and proton conductivity of the membranes is demonstrated.

  1. Increased water retention in polymer electrolyte membranes at elevated temperatures assisted by capillary condensation.

    Science.gov (United States)

    Park, Moon Jeong; Downing, Kenneth H; Jackson, Andrew; Gomez, Enrique D; Minor, Andrew M; Cookson, David; Weber, Adam Z; Balsara, Nitash P

    2007-11-01

    We establish a new systematic methodology for controlling the water retention of polymer electrolyte membranes. Block copolymer membranes comprising hydrophilic phases with widths ranging from 2 to 5 nm become wetter as the temperature of the surrounding air is increased at constant relative humidity. The widths of the moist hydrophilic phases were measured by cryogenic electron microscopy experiments performed on humid membranes. Simple calculations suggest that capillary condensation is important at these length scales. The correlation between moisture content and proton conductivity of the membranes is demonstrated.

  2. Evaluation of a membrane based carbon dioxide absorber for spacecraft ECLS applications

    NARCIS (Netherlands)

    Feron, P.H.M.; Eckhard, F.; Witt, J.

    1996-01-01

    In an on-going harmonized ESA/NIVR project, performed by Stork Comprimo and TNO-MEP, the removal of the carbon dioxide with membranes is studied. The use of membrane gas absorption for carbon dioxide removal is currently hampered by the fact that the commonly used alkanolamines result in leakage

  3. Enhanced gas separation factors of microporous polymer constrained in the channels of anodic alumina membranes.

    Science.gov (United States)

    Chernova, Ekaterina; Petukhov, Dmitrii; Boytsova, Olga; Alentiev, Alexander; Budd, Peter; Yampolskii, Yuri; Eliseev, Andrei

    2016-08-08

    New composite membranes based on porous anodic alumina films and polymer of intrinsic microporosity (PIM-1) have been prepared using a spin-coating technique. According to scanning electron microscopy, partial penetration of polymer into the pores of alumina supports takes place giving rise to selective polymeric layers with fiber-like microstructure. Geometric confinement of rigid PIM-1 in the channels of anodic alumina causes reduction of small-scale mobility in polymeric chains. As a result, transport of permanent gases, such as CH4, becomes significantly hindered across composite membranes. Contrary, the transport of condensable gases (CO2, С4H10), did not significantly suffer from the confinement due to high solubility in the polymer matrix. This strategy enables enhancement of selectivity towards CO2 and C4H10 without significant loss of the membrane performance and seems to be prospective for drain and sweetening of natural gas.

  4. Enhanced drug delivery capabilities from stents coated with absorbable polymer and crystalline drug.

    Science.gov (United States)

    Carlyle, Wenda C; McClain, James B; Tzafriri, Abraham R; Bailey, Lynn; Zani, Brett G; Markham, Peter M; Stanley, James R L; Edelman, Elazer R

    2012-09-28

    Current drug eluting stent (DES) technology is not optimized with regard to the pharmacokinetics of drug delivery. A novel, absorbable-coating sirolimus-eluting stent (AC-SES) was evaluated for its capacity to deliver drug more evenly within the intimal area rather than concentrating drug around the stent struts and for its ability to match coating erosion with drug release. The coating consisted of absorbable poly-lactide-co-glycolic acid (PLGA) and crystalline sirolimus deposited by a dry-powder electrostatic process. The AC-SES demonstrated enhanced drug stability under simulated use conditions and consistent drug delivery balanced with coating erosion in a porcine coronary implant model. The initial drug burst was eliminated and drug release was sustained after implantation. The coating was absorbed within 90 days. Following implantation into porcine coronary arteries the AC-SES coating is distributed in the surrounding intimal tissue over the course of several weeks. Computational modeling of drug delivery characteristics demonstrates how distributed coating optimizes the load of drug immediately around each stent strut and extends drug delivery between stent struts. The result was a highly efficient arterial uptake of drug with superior performance to a clinical bare metal stent (BMS). Neointimal thickness (0.17±0.07 mm vs. 0.28±0.11 mm) and area percent stenosis (22±9% vs. 35±12%) were significantly reduced (pstent implantation in an overlap configuration in porcine coronary arteries. Inflammation was significantly reduced in the AC-SES compared to the BMS at both 30 and 90 days after implantation. Biocompatible, rapidly absorbable stent coatings enable the matching of drug release with coating erosion and provide for the controlled migration of coating material into tissue to reduce vicissitudes in drug tissue levels, optimizing efficacy and reducing potential toxicity. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Development of microwave absorbing materials prepared from a polymer binder including Japanese lacquer and epoxy resin

    Science.gov (United States)

    Iwamaru, T.; Katsumata, H.; Uekusa, S.; Ooyagi, H.; Ishimura, T.; Miyakoshi, T.

    Microwave absorption composites were synthesized from a poly urushiol epoxy resin (PUE) mixed with one of microwave absorbing materials; Ni-Zn ferrite, Soot, Black lead, and carbon nano tube (CNT) to investigate their microwave absorption properties. PUE binders were specially made from Japanese lacquer and epoxy resin, where Japanese lacquer has been traditionally used for bond and paint because it has excellent beauty. Japanese lacquer solidifies with oxygen contained in air's moisture, which has difficulty in making composite, but we improved Japanese lacquer's solidification properties by use of epoxy resin. We made 10 mm thickness composite samples and cut them into toroidal shape to measure permittivity, permeability, and reflection loss in frequencies ranging from 50 Hz to 20 GHz. Electric magnetic absorber's composites synthesized from a PUE binders mixed either with Soot or CNT showed significantly higher wave absorption over -27 dB than the others at frequencies around 18 GHz, although Japanese lacquer itself doesn't affect absorption. This means Japanese lacquer can be used as binder materials for microwave absorbers.

  6. Polymer-inorganic hybrid proton conductive membranes: Effect of the interfacial transfer pathways

    International Nuclear Information System (INIS)

    Chen, Pingping; Hao, Lie; Wu, Wenjia; Li, Yifan; Wang, Jingtao

    2016-01-01

    Highlights: • A series of hybrid membranes are prepared using fillers with different structures. • The fillers (0-D, 1-D, and 2-D) are sulfonated to ensure close surface component. • The effect of filler’s structure on microstructure of hydrid membrane is explored. • For single-kind filler series, 2-D filler has the strongest conduction promotion. • The synergy effect of different kinds of fillers is systematacially investigated. - Abstract: For hybrid membrane, the polymer-inorganic interface along filler surface can be facilely created to be distinctive and controllable pathway for mass transfer. Herein, three kinds of fillers are used as inorganic additives including zero-dimensional silica (0-D, SiO_2), one-dimensional halloysite nanotube (1-D, HNT), and two-dimensional graphene oxide (2-D, GO), which are functionalized by sulfonated polymer layer to ensure close surface component. Then the fillers are incorporated into two types of polymer matrixes (phase-separated sulfonated poly(ether ether ketone) and non-phase-separated chitosan) to prepare three series of hybrid membranes with single-kind filler, double-kinds fillers, or triple-kinds fillers, respectively. The microstructures, physicochemical properties, and proton conduction properties (under hydrated and anhydrous conditions) of the membranes are extensively investigated. It is found that (i) for the single-kind filler-filled membranes, 2-D filler has the strongest promotion ability for proton conductivity of membrane due to the constructed wide and long-range pathways for proton transfer; (ii) while for the hybrid membranes with double-kinds fillers, instead of synergistic promotion effect, the fillers cause more tortuous transfer pathways within membranes and then decrease proton conductivity; (iii) the hybrid membranes with triple-kinds fillers exhibit similar behavior but a little higher conductivity than the membranes with double-kinds fillers.

  7. Incorporating Graphene Oxide into Alginate Polymer with a Cationic Intermediate To Strengthen Membrane Dehydration Performance.

    Science.gov (United States)

    Guan, Kecheng; Liang, Feng; Zhu, Haipeng; Zhao, Jing; Jin, Wanqin

    2018-04-25

    Two-dimensional graphene oxide (GO) in hybrid membranes provides fast water transfer across its surface due to the abundant oxygenated functional groups to afford water sorption and the hydrophobic basal plane to create fast transporting pathways. To establish more compatible and efficient interactions for GO and sodium alginate (SA) polymer chains, cations sourced from lignin are employed to decorate GO (labeled as cation-functionalized GO (CG)) nanosheets via cation-π and π-π interactions, providing more interactive sites to confer synergetic benefits with polymer matrix. Cations from CG are also functional to partially interlock SA chains and intensify water diffusion. And with the aid of two-dimensional pathways of CG, fast selective water permeation can be realized through hybrid membranes with CG fillers. In dehydrating aqueous ethanol solution, the hybrid membrane exhibits considerable performance compared with bare SA polymer membrane (long-term stable permeation flux larger than 2500 g m -2 h -1 and water content larger than 99.7 wt %, with feed water content of 10 wt % under 70 °C). The effects of CG content in SA membrane were investigated, and the transport mechanism was correspondingly studied through varying operation conditions and membrane materials. In addition, such a membrane possesses long-term stability and almost unchanged high dehydration capability.

  8. Synthesis and characterization of modified κ-carrageenan for enhanced proton conductivity as polymer electrolyte membrane.

    Directory of Open Access Journals (Sweden)

    Joy Wei Yi Liew

    Full Text Available Polymer electrolyte membranes based on the natural polymer κ-carrageenan were modified and characterized for application in electrochemical devices. In general, pure κ-carrageenan membranes show a low ionic conductivity. New membranes were developed by chemically modifying κ-carrageenan via phosphorylation to produce O-methylene phosphonic κ-carrageenan (OMPC, which showed enhanced membrane conductivity. The membranes were prepared by a solution casting method. The chemical structure of OMPC samples were characterized using Fourier transform infrared spectroscopy (FTIR, 1H nuclear magnetic resonance (1H NMR spectroscopy and 31P nuclear magnetic resonance (31P NMR spectroscopy. The conductivity properties of the membranes were investigated by electrochemical impedance spectroscopy (EIS. The characterization demonstrated that the membranes had been successfully produced. The ionic conductivity of κ-carrageenan and OMPC were 2.79 × 10-6 S cm-1 and 1.54 × 10-5 S cm-1, respectively. The hydrated membranes showed a two orders of magnitude higher ionic conductivity than the dried membranes.

  9. Crosslinked wholly aromatic polyether membranes based on quinoline derivatives and their application in high temperature polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Kallitsis, K. J.; Nannou, R.; Andreopoulou, A. K.; Daletou, M. K.; Papaioannou, D.; Neophytides, S. G.; Kallitsis, J. K.

    2018-03-01

    An AB type difunctional quinoline based monomer bearing a pentafluorophenyl unit combined with a phenol functionality is being synthesized and homopolymerized to create linear aromatic polyethers as polymer electrolytes for HT-PEM FCs applications. Several conditions are tested for the optimized synthesis of the monomer and homopolymer. Additionally, covalent crosslinking through aromatic polyether bond formation enables the creation of wholly aromatic crosslinked polymeric electrolyte membranes. More specifically, the perfluorophenyl units are crosslinked with other hydroxyl end functionalized moieties, providing membranes with enhanced chemical and mechanical properties that are moreover easily doped with phosphoric acid even at ambient temperatures. All membranes are evaluated for their structural and thermal characteristics and their doping ability with phosphoric acid. Selected crosslinked membranes are further tested in terms of their single cell performance at the temperature range 160 °C-200 °C showing promising performance and high conductivity values even up to 0.2 S cm-1 in some cases.

  10. A Systematic Approach to the Design Optimization of Light-Absorbing Indenofluorene Polymers for Organic Photovoltaics

    KAUST Repository

    Kirkpatrick, James

    2012-01-09

    The synthesis and optimization of new photovoltaic donor polymers is a time-consuming process. Computer-based molecular simulations can narrow the scope of materials choice to the most promising ones, by identifying materials with desirable energy levels and absorption energies. In this paper, such a retrospective analysis is presented of a series of fused aromatic push-pull copolymers. It is demonstrated that molecular calculations do indeed provide good estimates of the absorption energies measured by UV-vis spectroscopy and of the ionization potentials measured by photoelectron spectroscopy in air. Comparing measured photovoltaic performance of the polymer series to the trend in efficiencies predicted by computation confirms the validity of this approach. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Dependency of non-homogeneity energy dispersion on absorbance line-shape of luminescent polymers

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Marcelo Castanheira da, E-mail: mar_castanheira@yahoo.com.br [Centro de Ciências Biológicas e da Natureza, Universidade Federal do Acre, CP 500, 69915-900 Rio Branco, AC (Brazil); Instituto de Física, Universidade Federal de Uberlândia, CP 593, 38400-902 Uberlândia, MG (Brazil); Santos Silva, H.; Silva, R.A.; Marletta, Alexandre [Instituto de Física, Universidade Federal de Uberlândia, CP 593, 38400-902 Uberlândia, MG (Brazil)

    2013-01-16

    In this paper, we study the importance of the non-homogeneity energy dispersion on absorption line-shape of luminescent polymers. The optical transition probability was calculated based on the molecular exciton model, Franck–Condon states, Gaussian distribution of non-entangled chains with conjugate degree n, semi-empirical parameterization of energy gap, electric dipole moment, and electron-vibrational mode coupling. Based on the approach of the energy gap functional dependence 1/n, the inclusion of the non-homogeneity energy dispersion 1/n{sup 2} is essential to obtain good experimental data agreement, mainly, where the absorption spectra display peaks width of about 65 meV. For unresolved absorption spectra, such as those observed for a large number of conjugated polymers processed via spin-coating technique, for example, the non-homogeneity energy dispersion parameterization is not significant. Results were supported by the application of the model for poly (p-phenylene vinylene) films.

  12. Approaches and Recent Development of Polymer Electrolyte Membranes For Fuel Cells Operational Above 100°C

    DEFF Research Database (Denmark)

    Li, Qingfeng; He, Ronghuan; Jensen, Jens Oluf

    2003-01-01

    The state-of-the-art of polymer electrolyte membrane fuel cell (PEMFC) technology is based on perfluorosulfonic acid (PFSA) polymer membranes operating at a typical temperature of 80 °C. Some of the key issues and shortcomings of the PFSA-based PEMFC technology are briefly discussed. These include...... water management, CO poisoning, hydrogen, reformate and methanol as fuels, cooling, and heat recovery. As a means to solve these shortcomings, hightemperature polymer electrolyte membranes for operation above 100 °C are under active development. This treatise is devoted to a review of the area...... encompassing modified PFSA membranes, alternative sulfonated polymer and their composite membranes, and acidbase complex membranes. PFSA membranes have been modified by swelling with nonvolatile solvents and preparing composites with hydrophilic oxides and solid proton conductors. DMFC and H2/O2(air) cells...

  13. New NIR Absorbing DPP-based Polymer for Thick Organic Solar Cells

    KAUST Repository

    Oklem, Gulce

    2018-02-05

    infrared region (NIR) for better photon harvesting in organic solar cells. It has been shown that copolymers compromising diketopyrrolopyrrole based acceptors and simple donors (thiophene or furan) achieve absorption maximum around 800 nm. In this study, the selenophene based donor units coupled with diketopyrrolopyrrole acceptor unit based polymer (PFDPPSe) was synthesized with an absorption maximum at 830 nm and absorption onset of 930 nm. The optimized organic solar cells with PFDDPSe: PC71BM active layer blends of 210 nm showed maximum PCE of 6.16 % (ave. 6.02 %) via solvent additive engineering with inverted device structure. Charge transport, recombination loss mechanism, and morphology are systematically studied. These results demonstrate that highly efficient NIR polymer can be achieved by the introduction of selenophene and a suitable solvent additive process suitable for NIR organic solar cells. PFDPPSe is also one of the rare examples of a polymer with a PCE over 6% that does not contain any thiophene-based unit in its backbone.

  14. All-solid-state ion-selective silicone rubber membrane electrodes with a new conducting polymer

    International Nuclear Information System (INIS)

    Park, Eun Rang; Chung, Yeon Joon; Hwang, Sun Woo

    2012-01-01

    New conducting polymers containing heterocyclic rings with carbazole, ethylene dioxythiophene (EDOT) and benzobisthiazole were synthesized and the characterized by using organic spectroscopic methods. Potentiometric ion-selective membrane electrodes (ISMEs) have been extensively used for ion analysis in clinical, environmental, and industrial fields owing to their wide response range (4 to 7 orders of magnitude), no effect of sample turbidity, fast response time, and ease of miniaturization. Considerable attention has been given to alternative use of room-temperature vulcanizing (RTV)-type silicone rubber (SR) owing to its strong adhesion and high thermal durability. Unfortunately, the high membrane resistance of SR-based ion-selective membranes (ISMs) (2 to 3 higher orders of magnitude compared to those of poly(vinyl chloride)(PVC)-based ones) has significantly restricted their application. Herein, we demonstrate a new method to reduce the membrane resistance via addition of a new conducting polymer into the SR-based ISMs.

  15. Analysis of a Lipid/Polymer Membrane for Bitterness Sensing with a Preconditioning Process

    Directory of Open Access Journals (Sweden)

    Rui Yatabe

    2015-09-01

    Full Text Available It is possible to evaluate the taste of foods or medicines using a taste sensor. The taste sensor converts information on taste into an electrical signal using several lipid/polymer membranes. A lipid/polymer membrane for bitterness sensing can evaluate aftertaste after immersion in monosodium glutamate (MSG, which is called “preconditioning”. However, we have not yet analyzed the change in the surface structure of the membrane as a result of preconditioning. Thus, we analyzed the change in the surface by performing contact angle and surface zeta potential measurements, Fourier transform infrared spectroscopy (FTIR, X-ray photon spectroscopy (XPS and gas cluster ion beam time-of-flight secondary ion mass spectrometry (GCIB-TOF-SIMS. After preconditioning, the concentrations of MSG and tetradodecylammonium bromide (TDAB, contained in the lipid membrane were found to be higher in the surface region than in the bulk region. The effect of preconditioning was revealed by the above analysis methods.

  16. Hexavalent Chromium Removal from Model Water and Car Shock Absorber Factory Effluent by Nanofiltration and Reverse Osmosis Membrane

    Directory of Open Access Journals (Sweden)

    Amine Mnif

    2017-01-01

    Full Text Available Nanofiltration and reverse osmosis are investigated as a possible alternative to the conventional methods of Cr(VI removal from model water and industrial effluent. The influences of feed concentration, water recovery, pH, and the coexisting anions were studied. The results have shown that retention rates of hexavalent chromium can reach 99.7% using nanofiltration membrane (NF-HL and vary from 85 to 99.9% using reverse osmosis membrane (RO-SG depending upon the composition of the solution and operating conditions. This work was also extended to investigate the separation of Cr(VI from car shock absorber factory effluent. The use of these membranes is very promising for Cr(VI water treatment and desalting industry effluent. Spiegler-Kedem model was applied to experimental results in the aim to determine phenomenological parameters, the reflection coefficient of the membrane (σ, and the solute permeability coefficient (Ps. The convective and diffusive parts of the mass transfer were quantified with predominance of the diffusive contribution.

  17. High resolution neutron imaging of water in the polymer electrolyte fuel cell membrane

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Partha P [Los Alamos National Laboratory; Makundan, Rangachary [Los Alamos National Laboratory; Spendelow, Jacob S [Los Alamos National Laboratory; Borup, Rodney L [Los Alamos National Laboratory; Hussey, D S [NIST; Jacobson, D L [NIST; Arif, M [NIST

    2009-01-01

    Water transport in the ionomeric membrane, typically Nafion{reg_sign}, has profound influence on the performance of the polymer electrolyte fuel cell, in terms of internal resistance and overall water balance. In this work, high resolution neutron imaging of the Nafion{reg_sign} membrane is presented in order to measure water content and through-plane gradients in situ under disparate temperature and humidification conditions.

  18. Covalent attachment of phospholipid analogous polymers to modify a polymeric membrane surface: a novel approach.

    Science.gov (United States)

    Xu, Zhi-Kang; Dai, Qing-Wen; Wu, Jian; Huang, Xiao-Jun; Yang, Qian

    2004-02-17

    A novel method for the surface modification of a microporous polypropylene membrane by tethering phospholipid analogous polymers (PAPs) is given, which includes the photoinduced graft polymerization of N,N-dimethylaminoethyl methacrylate (DMAEMA) and the ring-opening reaction of grafted poly-(DMAEMA) with 2-alkyloxy-2-oxo-1,3,2-dioxaphospholanes. Five 2-alkyloxy-2-oxo-1,3,2-dioxaphospholanes, containing octyloxy, dodecyloxy, tetradecyloxy, hexadecyloxy, and octadecyloxy groups in the molecular structure, were used to fabricate the PAP-modified polypropylene membranes. The attenuated total reflectance FT-IR spectra of the original, poly(DMAEMA)-grafted, and PAP-modified membranes confirmed the chemical changes on the membrane surface. Scanning electron microscope pictures showed that, compared with the original membrane, the surface porosities ofpoly(DMAEMA)-grafted and PAP-modified membranes were somewhat reduced. Water contact angles measured by the sessile drop method on PAP-modified membranes were slightly lower than that on the original polypropylene membrane, but higher than those on poly(DMAEMA)-grafted membranes with the exception of octyloxy-containing PAP-modified membranes. However, BSA adsorption experiments indicated that the five PAP-modified membranes had a much better protein-resistant property than the original polypropylene membrane and the poly(DMAEMA)-grafted membranes. For hexadecyloxy- and octadecyloxy-containing PAP-modified membranes, almost no protein adsorption was observed when the grafting degree was above 6 wt %. It was also found that the platelet adhesion was remarkably suppressed on the PAP-modified membranes. All these results demonstrate that the described approach is an effective way to improve the surface biocompatibility for polymeric membranes.

  19. (Meth)acrylate liquid crystalline polymers for membrane applications

    Czech Academy of Sciences Publication Activity Database

    Rabie, F.; Sedláková, Zdeňka; Sheth, S.; Marand, E.; Martin, S. M.; Poláková, Lenka

    2015-01-01

    Roč. 132, č. 43 (2015), 42694_1-42694_8 ISSN 0021-8995 Institutional support: RVO:61389013 Keywords : copolymers * liquid crystals * membranes Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.866, year: 2015

  20. Responsive Amphiphilic Polymers and Membranes for Water Remediation

    National Research Council Canada - National Science Library

    McCormick, Charles

    1998-01-01

    .... The foulant is solubilized within the micellar hydrophobic core and the stream is then passed through a microporous membrane, such that most of the organic solute and surfactant remain in the retentate...

  1. Morphologies and separation characteristics of polyphenyl sulfone-based solvent resistant nanofiltration membranes: Effect of polymer concentration in casting solution and membrane pretreatment condition

    International Nuclear Information System (INIS)

    Sani, Nur Aimie Abdullah; Lau, Woei Jye; Ismail, Ahmad Fauzi

    2015-01-01

    The performance of polyphenylsulfone (PPSU) solvent resistant nanofiltration (SRNF)-based flat sheet membranes prepared from phase inversion method was investigated by varying the concentration of polymer in the dope solution and condition of membrane pretreatment process. The membrane properties were characterized by SEM, FTIR, AFM and contact angle goniometer, while their performance was evaluated by measuring methanol flux and rejection of different molecular weight of dyes (ranging from 269 to 1,470 g/mol) in methanol. The experimental results showed that the polymer concentration has great impact not only on the final membrane morphology but also its separation characteristics. Increasing polymer concentration from 17 to 25wt% tended to suppress finger-like structure and more pear-like pores were developed, causing methanol flux to decrease. This can be explained by the decrease in molecular weight cut off (MWCO) of the membrane prepared at high polymer concentration. With respect to the effect of membrane pretreatment conditions, the rejection of membrane was negatively affected with longer immersion period in methanol solution prior to filtration experiment. The variation in membrane rejection can be attributed to the rearrangement of the polymer chain, which results in membrane swelling and/or change of membrane surface hydrophilicity

  2. Morphologies and separation characteristics of polyphenyl sulfone-based solvent resistant nanofiltration membranes: Effect of polymer concentration in casting solution and membrane pretreatment condition

    Energy Technology Data Exchange (ETDEWEB)

    Sani, Nur Aimie Abdullah; Lau, Woei Jye; Ismail, Ahmad Fauzi [Universiti Teknologi Malaysia, Skudai (Malaysia)

    2015-04-15

    The performance of polyphenylsulfone (PPSU) solvent resistant nanofiltration (SRNF)-based flat sheet membranes prepared from phase inversion method was investigated by varying the concentration of polymer in the dope solution and condition of membrane pretreatment process. The membrane properties were characterized by SEM, FTIR, AFM and contact angle goniometer, while their performance was evaluated by measuring methanol flux and rejection of different molecular weight of dyes (ranging from 269 to 1,470 g/mol) in methanol. The experimental results showed that the polymer concentration has great impact not only on the final membrane morphology but also its separation characteristics. Increasing polymer concentration from 17 to 25wt% tended to suppress finger-like structure and more pear-like pores were developed, causing methanol flux to decrease. This can be explained by the decrease in molecular weight cut off (MWCO) of the membrane prepared at high polymer concentration. With respect to the effect of membrane pretreatment conditions, the rejection of membrane was negatively affected with longer immersion period in methanol solution prior to filtration experiment. The variation in membrane rejection can be attributed to the rearrangement of the polymer chain, which results in membrane swelling and/or change of membrane surface hydrophilicity.

  3. Exploring Alkaline Stable Organic Cations for Polymer Hydroxide Exchange Membranes

    Science.gov (United States)

    2015-04-29

    1   1.1.2   Proton exchange membrane fuel cells ( PEMFCs ) ......................... 3   1.1.3   Alkaline fuel cells (AFCs...160   xi LIST OF FIGURES Figure 1.1:   Schematic diagram of a PEMFC ...according to the type of electrolyte they use. Nowadays, there are six major types of fuel cells: proton-exchange membrane fuel cells ( PEMFCs ), hydroxide

  4. Improved antifouling properties of polymer membranes using a ‘layer-by-layer’ mediated method

    KAUST Repository

    Chen, Lin

    2013-01-01

    Polymeric reverse osmosis membranes were modified with antifouling polymer brushes through a \\'layer by layer\\' (LBL) mediated method. Based on pure physical electrostatic interaction, the attachment of LBL films did not alter separation performance of the membranes. In addition, the incorporation of an LBL film also helped to amplify the number of potential reaction sites on the membrane surfaces for attachment of antifouling polymer brushes, which were then attached to the surface. Attachment of the brushes included two different approaches, grafting to and grafting from. Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and water contact angle measurements showed successful growth of the LBL films and subsequently the polymer brushes. Using this method to modify reverse osmosis membranes, preliminary performance testing showed the antifouling properties of the as-modified membranes were much better than the virgin membrane with no significant loss in water flux and salt rejection. © 2013 The Royal Society of Chemistry.

  5. Control of biofouling on reverse osmosis polyamide membranes modified with biocidal nanoparticles and antifouling polymer brushes

    KAUST Repository

    Rahaman, Md. Saifur

    2014-01-01

    Thin-film composite (TFC) polyamide reverse osmosis (RO) membranes are prone to biofouling due to their inherent physicochemical surface properties. In order to address the biofouling problem, we have developed novel surface coatings functionalized with biocidal silver nanoparticles (AgNPs) and antifouling polymer brushes via polyelectrolyte layer-by-layer (LBL) self-assembly. The novel surface coating was prepared with polyelectrolyte LBL films containing poly(acrylic acid) (PAA) and poly(ethylene imine) (PEI), with the latter being either pure PEI or silver nanoparticles coated with PEI (Ag-PEI). The coatings were further functionalized by grafting of polymer brushes, using either hydrophilic poly(sulfobetaine) or low surface energy poly(dimethylsiloxane) (PDMS). The presence of both LBL films and sulfobetaine polymer brushes at the interface significantly increased the hydrophilicity of the membrane surface, while PDMS brushes lowered the membrane surface energy. Overall, all surface modifications resulted in significant reduction of irreversible bacterial cell adhesion. In microbial adhesion tests with E. coli bacteria, a normalized cell adhesion in the range of only 4 to 16% on the modified membrane surfaces was observed. Modified surfaces containing silver nanoparticles also exhibited strong antimicrobial activity. Membranes coated with LBL films of PAA/Ag-PEI achieved over 95% inactivation of bacteria attached to the surface within 1 hour of contact time. Both the antifouling and antimicrobial results suggest the potential of using these novel surface coatings in controlling the fouling of RO membranes. © The Royal Society of Chemistry 2014.

  6. Patents on Membranes Based on Non-Fluorinated Polymers for Vanadium Redox Flow Batteries.

    Science.gov (United States)

    Choi, So-Won; Kim, Tae-Ho; Cha, Sang-Ho

    2017-07-10

    Vanadium redox flow batteries (VRFBs) have received considerable attention as large-scale electrochemical energy storage systems. In particular, VRFBs offer a higher power and energy density than other RFBs and mitigate undesirable performance fading, such as inevitable ion crossover, because of the unique advantage that only the vanadium ion is employed as the active species in the two electrolytes. The key constituent of VRFBs is a separator to conduct protons and prevent cross-mixing of the positive and negative electrolytes. For this purpose, ion exchange membranes like sulfonated polymer membranes can be used. Although this type of membrane does not have ion exchange groups, it can achieve an ion exchange capacity by the formation of pores. This review highlights the patents on the preparation of non-fluorinated membranes (sulfonated aromatic polymer membranes and porous membranes) as alternatives to high-cost perfluorinated polymers and their VRFB performance. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Reactive decontamination of absorbing thin film polymer coatings: model development and parameter determination

    Science.gov (United States)

    Varady, Mark; Mantooth, Brent; Pearl, Thomas; Willis, Matthew

    2014-03-01

    A continuum model of reactive decontamination in absorbing polymeric thin film substrates exposed to the chemical warfare agent O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate (known as VX) was developed to assess the performance of various decontaminants. Experiments were performed in conjunction with an inverse analysis method to obtain the necessary model parameters. The experiments involved contaminating a substrate with a fixed VX exposure, applying a decontaminant, followed by a time-resolved, liquid phase extraction of the absorbing substrate to measure the residual contaminant by chromatography. Decontamination model parameters were uniquely determined using the Levenberg-Marquardt nonlinear least squares fitting technique to best fit the experimental time evolution of extracted mass. The model was implemented numerically in both a 2D axisymmetric finite element program and a 1D finite difference code, and it was found that the more computationally efficient 1D implementation was sufficiently accurate. The resulting decontamination model provides an accurate quantification of contaminant concentration profile in the material, which is necessary to assess exposure hazards.

  8. Functionalization of a Hydrophilic Commercial Membrane Using Inorganic-Organic Polymers Coatings for Membrane Distillation

    Directory of Open Access Journals (Sweden)

    Lies Eykens

    2017-06-01

    Full Text Available Membrane distillation is a thermal separation technique using a microporous hydrophobic membrane. One of the concerns with respect to the industrialization of the technique is the development of novel membranes. In this paper, a commercially available hydrophilic polyethersulfone membrane with a suitable structure for membrane distillation was modified using available hydrophobic coatings using ORMOCER® technology to obtain a hydrophobic membrane that can be applied in membrane distillation. The surface modification was performed using a selection of different components, concentrations, and application methods. The resulting membranes can have two hydrophobic surfaces or a hydrophobic and hydrophilic surface depending on the application method. An extensive characterization procedure confirmed the suitability of the coating technique and the obtained membranes for membrane distillation. The surface contact angle of water could be increased from 27° up to 110°, and fluxes comparable to membranes commonly used for membrane distillation were achieved under similar process conditions. A 100 h test demonstrated the stability of the coating and the importance of using sufficiently stable base membranes.

  9. Permeation of Mixed Penetrants through Glassy Polymer Membranes.

    Science.gov (United States)

    1985-03-15

    and LOPE. Also, ESCA was used in conjunction with plasma etching to determine the effects of the gas phase fluorine concentration and fluorination...at 35 3C. ARD-AISS5 65 PERMEATION OF MIXED PENETRANTS THROUGH GLASSY POLYMER 213 MENBRANES (U) NORTH CAROLINA STATE UNIV AT RALEIGH R T CHERN ET AL. 15

  10. Panchromatic response composed of hybrid visible-light absorbing polymers and near-IR absorbing dyes for nanocrystalline TiO{sub 2}-based solid-state solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyo Joong; Graetzel, Michael; Nazeeruddin, Md. Khaja [Laboratory for Photonics and Interfaces, Institute of Chemical Sciences and Engineering, School of Basic Sciences, Swiss Federal Institute of Technology, CH-1015 Lausanne (Switzerland); Leventis, Henry C.; Haque, Saif A. [Department of Chemistry, Imperial College of Science Technology and Medicine, London SW72AZ (United Kingdom); Torres, Tomas [Departamento de Quimica Organica, Universidad Autonoma de Madrid (UAM), 28049 Madrid (Spain)

    2011-01-01

    In pursuit of panchromatic sensitizers for mesoporous TiO{sub 2}-based solid-state solar cells, a near-IR absorbing zinc phthalocyanine dye (coded TT1) was firstly adsorbed over relatively thin ({proportional_to}1 {mu}m) TiO{sub 2} mesoporous films and then a visible-light absorbing polymer [regioregular poly(3-hexylthiophene), P3HT] was incorporated into the mesopores as both a second sensitizer and a solid hole conductor. After optimizing some experimental parameters, these hybrid solid-state cells exhibited a clear panchromatic response, and an overall conversion efficiency of around 1% at full sun intensity. (author)

  11. Potentiometric measurement of polymer-membrane electrodes based on lanthanum

    Energy Technology Data Exchange (ETDEWEB)

    Saefurohman, Asep, E-mail: saefurohman.asep78@Gmail.com; Buchari,, E-mail: saefurohman.asep78@Gmail.com; Noviandri, Indra, E-mail: saefurohman.asep78@Gmail.com [Department of Chemistry, Bandung Institute of Technology (Indonesia); Syoni [Department of Metallurgy Engineering, Bandung Institute of Technology (Indonesia)

    2014-03-24

    Quantitative analysis of rare earth elements which are considered as the standard method that has a high accuracy, and detection limits achieved by the order of ppm is inductively coupled plasma atomic emission spectroscopy (ICPAES). But these tools are expensive and valuable analysis of the high cost of implementation. In this study be made and characterized selective electrode for the determination of rare earth ions is potentiometric. Membrane manufacturing techniques studied is based on immersion (liquid impregnated membrane) in PTFE 0.5 pore size. As ionophores to be used tri butyl phosphate (TBP) and bis(2-etylhexyl) hydrogen phosphate. There is no report previously that TBP used as ionophore in polymeric membrane based lanthanum. Some parameters that affect the performance of membrane electrode such as membrane composition, membrane thickness, and types of membrane materials studied in this research. Manufacturing of Ion Selective Electrodes (ISE) Lanthanum (La) by means of impregnation La membrane in TBP in kerosene solution has been done and showed performance for ISE-La. FTIR spectrum results for PTFE 0.5 pore size which impregnated in TBP and PTFE blank showed difference of spectra in the top 1257 cm{sup −1}, 1031 cm{sup −1} and 794.7 cm{sup −1} for P=O stretching and stretching POC from group −OP =O. The result showed shift wave number for P =O stretching of the cluster (−OP=O) in PTFE-TBP mixture that is at the peak of 1230 cm{sup −1} indicated that no interaction bond between hydroxyl group of molecules with molecular clusters fosforil of TBP or R{sub 3}P = O. The membrane had stable responses in pH range between 1 and 9. Good responses were obtained using 10{sup −3} M La(III) internal solution, which produced relatively high potential. ISE-La showed relatively good performances. The electrode had a response time of 29±4.5 second and could be use for 50 days. The linear range was between 10{sup −5} and 10{sup −1} M.

  12. Trypsin immobilization in ordered porous polymer membranes for effective protein digestion

    International Nuclear Information System (INIS)

    Qiao, Juan; Kim, Jin Yong; Wang, Yuan Yuan; Qi, Li; Wang, Fu Yi; Moon, Myeong Hee

    2016-01-01

    Fast and effective protein digestion is a vital process for mass spectrometry (MS) based protein analysis. This study introduces a porous polymer membrane enzyme reactor (PPMER) coupled to nanoflow liquid chromatography-tandem MS (nLC-ESI-MS/MS) for on-line digestion and analysis of proteins. Poly (styrene-co-maleic anhydride) (PS-co-MAn) was fabricated by the breath figure method to make a porous polymer membrane in which the MAn group was covalently bound to enzyme. Based on this strategy, microscale PPMER (μPPMER) was constructed for on-line connection with the nLC-ESI-MS/MS system. Its capability for enzymatic digestion with bovine serum albumin (BSA) was evaluated with varied digestion periods. The on-line proteolysis of BSA and subsequent analysis with μPPMER-nLC-ESI-MS/MS revealed that peptide sequence coverage increased from 10.3% (digestion time 10 min) to 89.1% (digestion time 30 min). μPPMER can efficiently digest proteins due to the microscopic confinement effect, showing its potential application in fast protein identification and protease immobilization. Applications of on-line digestion using μPPMER with human plasma and urinary proteome samples showed that the developed on-line method yielded equivalent or better performance in protein coverage and identified more membrane proteins than the in-solution method. This may be due to easy accommodation of hydrophobic membrane proteins within membrane pores. - Highlights: • A porous polymer membrane enzyme reactor was developed. • Breath figure method was used for the fabrication of porous polymer membrane. • The enzyme reactor was coupled to nLC-ESI-MS/MS for proteins on-line digestion.

  13. Trypsin immobilization in ordered porous polymer membranes for effective protein digestion

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Juan [Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun Beiyijie, Beijing 100190 (China); Kim, Jin Yong [Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seoul 120-749 (Korea, Republic of); Wang, Yuan Yuan [Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun Beiyijie, Beijing 100190 (China); Qi, Li, E-mail: qili@iccas.ac.cn [Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun Beiyijie, Beijing 100190 (China); Wang, Fu Yi [Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun Beiyijie, Beijing 100190 (China); Moon, Myeong Hee, E-mail: mhmoon@yonsei.ac.kr [Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seoul 120-749 (Korea, Republic of)

    2016-02-04

    Fast and effective protein digestion is a vital process for mass spectrometry (MS) based protein analysis. This study introduces a porous polymer membrane enzyme reactor (PPMER) coupled to nanoflow liquid chromatography-tandem MS (nLC-ESI-MS/MS) for on-line digestion and analysis of proteins. Poly (styrene-co-maleic anhydride) (PS-co-MAn) was fabricated by the breath figure method to make a porous polymer membrane in which the MAn group was covalently bound to enzyme. Based on this strategy, microscale PPMER (μPPMER) was constructed for on-line connection with the nLC-ESI-MS/MS system. Its capability for enzymatic digestion with bovine serum albumin (BSA) was evaluated with varied digestion periods. The on-line proteolysis of BSA and subsequent analysis with μPPMER-nLC-ESI-MS/MS revealed that peptide sequence coverage increased from 10.3% (digestion time 10 min) to 89.1% (digestion time 30 min). μPPMER can efficiently digest proteins due to the microscopic confinement effect, showing its potential application in fast protein identification and protease immobilization. Applications of on-line digestion using μPPMER with human plasma and urinary proteome samples showed that the developed on-line method yielded equivalent or better performance in protein coverage and identified more membrane proteins than the in-solution method. This may be due to easy accommodation of hydrophobic membrane proteins within membrane pores. - Highlights: • A porous polymer membrane enzyme reactor was developed. • Breath figure method was used for the fabrication of porous polymer membrane. • The enzyme reactor was coupled to nLC-ESI-MS/MS for proteins on-line digestion.

  14. A sacrificial process for fabrication of biodegradable polymer membranes with submicron thickness.

    Science.gov (United States)

    Beardslee, Luke A; Stolwijk, Judith; Khaladj, Dimitrius A; Trebak, Mohamed; Halman, Justin; Torrejon, Karen Y; Niamsiri, Nuttawee; Bergkvist, Magnus

    2016-08-01

    A new sacrificial molding process using a single mask has been developed to fabricate ultrathin 2-dimensional membranes from several biocompatible polymeric materials. The fabrication process is similar to a sacrificial microelectromechanical systems (MEMS) process flow, where a mold is created from a material that can be coated with a biodegradable polymer and subsequently etched away, leaving behind a very thin polymer membrane. In this work, two different sacrificial mold materials, silicon dioxide (SiO2 ) and Liftoff Resist (LOR) were used. Three different biodegradable materials; polycaprolactone (PCL), poly(lactic-co-glycolic acid) (PLGA), and polyglycidyl methacrylate (PGMA), were chosen as model polymers. We demonstrate that this process is capable of fabricating 200-500 nm thin, through-hole polymer membranes with various geometries, pore-sizes and spatial features approaching 2.5 µm using a mold fabricated via a single contact photolithography exposure. In addition, the membranes can be mounted to support rings made from either SU8 or PCL for easy handling after release. Cell culture compatibility of the fabricated membranes was evaluated with human dermal microvascular endothelial cells (HDMECs) seeded onto the ultrathin porous membranes, where the cells grew and formed confluent layers with well-established cell-cell contacts. Furthermore, human trabecular meshwork cells (HTMCs) cultured on these scaffolds showed similar proliferation as on flat PCL substrates, further validating its compatibility. All together, these results demonstrated the feasibility of our sacrificial fabrication process to produce biocompatible, ultra-thin membranes with defined microstructures (i.e., pores) with the potential to be used as substrates for tissue engineering applications. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1192-1201, 2016. © 2015 Wiley Periodicals, Inc.

  15. Biomolecule-recognition gating membrane using biomolecular cross-linking and polymer phase transition.

    Science.gov (United States)

    Kuroki, Hidenori; Ito, Taichi; Ohashi, Hidenori; Tamaki, Takanori; Yamaguchi, Takeo

    2011-12-15

    We present for the first time a biomolecule-recognition gating system that responds to small signals of biomolecules by the cooperation of biorecognition cross-linking and polymer phase transition in nanosized pores. The biomolecule-recognition gating membrane immobilizes the stimuli-responsive polymer, including the biomolecule-recognition receptor, onto the pore surface of a porous membrane. The pore state (open/closed) of this gating membrane depends on the formation of specific biorecognition cross-linking in the pores: a specific biomolecule having multibinding sites can be recognized by several receptors and acts as the cross-linker of the grafted polymer, whereas a nonspecific molecule cannot. The pore state can be distinguished by a volume phase transition of the grafted polymer. In the present study, the principle of the proposed system is demonstrated using poly(N-isopropylacrylamide) as the stimuli-responsive polymer and avidin-biotin as a multibindable biomolecule-specific receptor. As a result of the selective response to the specific biomolecule, a clear permeability change of an order of magnitude was achieved. The principle is versatile and can be applied to many combinations of multibindable analyte-specific receptors, including antibody-antigen and lectin-sugar analogues. The new gating system can find wide application in the bioanalytical field and aid the design of novel biodevices.

  16. Permeation of a H2 + HD + D2 gas mixture through a polymer membrane

    International Nuclear Information System (INIS)

    Mercea, P.; Cuna, S.; Kreibik, S.; Ursu, I.

    1990-01-01

    The selective permeation of a H 2 + HD + D 2 gas mixture through a polyethylene terephthalate membrane was studied at T 20 0 C. It was found that the permeation of the HD through the membrane leads to a smaller overall hydrogen-deuterium separation factor than that determined in the permeation experiments with pure H 2 and D 2 . On the other hand, a process of isotopic exchange between deuterium atoms from the penetrant gas stream and hydrogen atoms from the polymer membrane is assumed and discussed in order to explain temporal variations of the H 2 , HD and D 2 concentrations of the permanent gas stream. (author)

  17. Polymer Inclusion Membrane Containing a Tripodal Diglycolamide Ligand: Actinide Ion Uptake and Transport Studies

    NARCIS (Netherlands)

    Mahanty, B.; Mohapatra, P.K.; Raut, D.R.; Das, D.K.; Behere, P.G.; Afzal, M.; Verboom, Willem

    2016-01-01

    A cellulose triacetate (CTA)-based polymer inclusion membrane (PIM) containing a C-pivot tripodal diglycolamide (T-DGA) as the carrier extractant and 2-nitrophenyl octyl ether (NPOE) as the plasticizer shows potential for the uptake of actinides from acidic feed solutions. The uptake of actinides

  18. New Approach for Description of Sorption and Swelling phenomena in Liquid + Polymer Membrane Systems.

    Czech Academy of Sciences Publication Activity Database

    Randová, A.; Bartovská, L.; Hovorka, Š.; Bartovský, T.; Izák, Pavel; Kárászová, Magda; Vopička, O.; Lindnerová, V.

    2017-01-01

    Roč. 179, MAY (2017), s. 475-485 ISSN 1383-5866 R&D Projects: GA MŠk(CZ) LD14094 Institutional support: RVO:67985858 Keywords : description of sorption * polymer membranes systems * new method Subject RIV: CI - Industrial Chemistry, Chemical Engineering OBOR OECD: Chemical process engineering Impact factor: 3.359, year: 2016

  19. Viscoelastic characterization of polymer melts with a new membrane inflation rheometer

    DEFF Research Database (Denmark)

    Rasmussen, Henrik K.; Christensen, Jens Horslund; Gøttsche, Søren

    1999-01-01

    The constitutive equation of high impact polystyrene (HIPS) has been obtained from experimental measurements of membrane inflation in a cylinder using finite element simulations, based on the 3D Lagrangian Integral Method. The polymer melt rheology of HIPS is modelled as a single integral model...

  20. PEGDA/PVdF/F127 gel type polymer electrolyte membranes for lithium secondary batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yan-Jie; Kim, Dukjoon [Department of Chemical Engineering, Polymer Technology Institute, Sungkyunkwan University, Suwon, Kyunggi 440-746 (Korea)

    2007-03-30

    A novel porous gel polymer electrolyte (GPE) membrane based on poly(ethylene glycol) diacrylate (PEGDA), poly(vinylidene fluoride) (PVdF), and polyethylene oxide-co-polypropylene oxide-co-polyethylene oxide (PEO-PPO-PEO, F127) was fabricated by a phase inversion technique. The PEGDA cross-linking oligomer could be randomly mixed with unraveled PVdF polymer chains to form the interpenetrating polymer network (IPN) structure. Several experimental techniques including infrared (IR) spectra, differential scanning calorimetry (DSC), thermogravimetric analyzer (TGA), scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and potentiostat/galvanostat were employed to investigate the characteristics of the polymer membranes. PEGDA and F127 influenced the porous size and structure. The mechanical strength and flexibility of the membrane were controlled by its composition. The membrane with the composition of PEGDA/PVdF/F127 (0/4/4) showed the highest electrolyte uptake of 152.6% and the maximum ionic conductivity of 2.0 x 10{sup -3} S cm{sup -1} at room temperature. All GPEs prepared in this study were electrochemically stable up to 4.5 V. (author)

  1. Magnetic properties of the magnetic hybrid membranes based on various polymer matrices and inorganic fillers

    International Nuclear Information System (INIS)

    Rybak, Aleksandra; Kaszuwara, Waldemar

    2015-01-01

    Magnetic hybrid membranes based on ethylcellulose (EC), poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) and various magnetic praseodymium and neodymium powder microparticles as fillers were obtained. Permeability, diffusion and sorption coefficients of O 2 , N 2 and synthetic air components were estimated for homogeneous and heterogeneous membranes using the Time Lag method based on constant pressure permeation technique. The microstructure studies and the phase analysis of magnetic membranes were also performed using SEM and XRD. The influence of magnetic parameters, like coercivity, remanence and saturation magnetization of created membranes on the gas transport properties was studied. The results showed that their coercivity depended on composition and microstructure of the magnetic powder. On the other hand, remanence and saturation magnetization increased with the increase of the powder addition in the membrane. It was found that the magnetic membrane's gas transport properties were improved with the increase of membrane's remanence, saturation magnetization and magnetic particle filling. The decrease in powder particle size and associated increase of the membrane's coercivity also positively influenced the gas transport and separation properties of investigated membranes. It was observed that the magnetic ethylcellulose and poly(2,6-dimethyl-1,4-phenylene oxide) membranes had higher gas permeability, while their permselectivity and solubility coefficient values were rather maintained or slightly increased. The results also showed that the magnetic powder content enhanced significantly gas diffusivity in EC and PPO membranes. It was also analyzed the dependence of the drift coefficient w on the magnetic parameters of investigated membranes. The correlation between the membrane selectivity, permeability and magnetic properties with their XRD characteristics was stated. - Highlights: • Membrane's production consisting of EC or PPO polymers and

  2. Magnetic properties of the magnetic hybrid membranes based on various polymer matrices and inorganic fillers

    Energy Technology Data Exchange (ETDEWEB)

    Rybak, Aleksandra, E-mail: Aleksandra.Rybak@polsl.pl [Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice (Poland); Kaszuwara, Waldemar [Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warszawa (Poland)

    2015-11-05

    polymers and various magnetic powders. • Polymer hybrid membranes with the magnetic powder for air separation. • Experimental studies of transport processes through magnetic hybrid membranes. • Correlation between gas transport and magnetic properties with XRD characteristics. • Positive effect of the remanence growth on separation properties of membranes.

  3. A polymer electrolyte membrane for high temperature fuel cells to fit vehicle applications

    International Nuclear Information System (INIS)

    Li Mingqiang; Scott, Keith

    2010-01-01

    Poly(tetrafluoroethylene) PTFE/PBI composite membranes doped with H 3 PO 4 were fabricated to improve the performance of high temperature polymer electrolyte membrane fuel cells (HT-PEMFC). The composite membranes were fabricated by immobilising polybenzimidazole (PBI) solution into a hydrophobic porous PTFE membrane. The mechanical strength of the membrane was good exhibiting a maximum load of 35.19 MPa. After doping with the phosphoric acid, the composite membrane had a larger proton conductivity than that of PBI doped with phosphoric acid. The PTFE/PBI membrane conductivity was greater than 0.3 S cm -1 at a relative humidity 8.4% and temperature of 180 deg. C with a 300% H 3 PO 4 doping level. Use of the membrane in a fuel cell with oxygen, at 1 bar overpressure gave a peak power density of 1.2 W cm -2 at cell voltages >0.4 V and current densities of 3.0 A cm -2 . The PTFE/PBI/H 3 PO 4 composite membrane did not exhibit significant degradation after 50 h of intermittent operation at 150 deg. C. These results indicate that the composite membrane is a promising material for vehicles driven by high temperature PEMFCs.

  4. Nanomaterials for Polymer Electrolyte Membrane Fuel Cells; Materials Challenges Facing Electrical Energy Storate

    Energy Technology Data Exchange (ETDEWEB)

    Gopal Rao, MRS Web-Editor; Yury Gogotsi, Drexel University; Karen Swider-Lyons, Naval Research Laboratory

    2010-08-05

    Symposium T: Nanomaterials for Polymer Electrolyte Membrane Fuel Cells Polymer electrolyte membrane (PEM) fuel cells are under intense investigation worldwide for applications ranging from transportation to portable power. The purpose of this seminar is to focus on the nanomaterials and nanostructures inherent to polymer fuel cells. Symposium topics will range from high-activity cathode and anode catalysts, to theory and new analytical methods. Symposium U: Materials Challenges Facing Electrical Energy Storage Electricity, which can be generated in a variety of ways, offers a great potential for meeting future energy demands as a clean and efficient energy source. However, the use of electricity generated from renewable sources, such as wind or sunlight, requires efficient electrical energy storage. This symposium will cover the latest material developments for batteries, advanced capacitors, and related technologies, with a focus on new or emerging materials science challenges.

  5. Direct dimethyl ether high temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    Vassiliev, Anton; Jensen, Jens Oluf; Li, Qingfeng

    and suffers from low DME solubility in water. When the DME - water mixture is fed as vapour miscibility is no longer a problem. The increased temperature is more beneficial for the kinetics of the direct oxidation of DME than of methanol. The Open Circuit Voltage (OCV) with DME operation was 50 to 100 m......A high temperature polybenzimidazole (PBI) polymer fuel cell was fed with dimethyl ether (DME) and water vapour mixture on the anode at ambient pressure with air as oxidant. A peak power density of 79 mW/cm2 was achieved at 200°C. A conventional polymer based direct DME fuel cell is liquid fed......V higher than that of methanol, indicating less fuel crossover....

  6. Gas Separation Membranes Derived from High-Performance Immiscible Polymer Blends Compatibilized with Small Molecules.

    Science.gov (United States)

    Panapitiya, Nimanka P; Wijenayake, Sumudu N; Nguyen, Do D; Huang, Yu; Musselman, Inga H; Balkus, Kenneth J; Ferraris, John P

    2015-08-26

    An immiscible polymer blend comprised of high-performance copolyimide 6FDA-DAM:DABA(3:2) (6FDD) and polybenzimidazole (PBI) was compatibilized using 2-methylimidazole (2-MI), a commercially available small molecule. Membranes were fabricated from blends of 6FDD:PBI (50:50) with and without 2-MI for H2/CO2 separations. The membranes demonstrated a matrix-droplet type microstructure as evident with scanning electron microscopy (SEM) imaging where 6FDD is the dispersed phase and PBI is the continuous phase. In addition, membranes with 2-MI demonstrated a uniform microstructure as observed by smaller and more uniformly dispersed 6FDD domains in contrast to 6FDD:PBI (50:50) blend membranes without 2-MI. This compatibilization effect of 2-MI was attributed to interfacial localization of 2-MI that lowers the interfacial energy similar to a surfactant. Upon the incorporation of 2-MI, the H2/CO2 selectivity improved remarkably, compared to the pure blend, and surpassed the Robeson's upper bound. To our knowledge, this is the first report of the use of a small molecule to compatibilize a high-performance immiscible polymer blend. This approach could afford a novel class of membranes in which immiscible polymer blends can be compatibilized in an economical and convenient fashion.

  7. Interaction of Dendritic Polymers with Synthetic Lipid and Cell Membranes

    Science.gov (United States)

    Mecke, Almut; Hong, Seungpyo; Bielinska, Anna U.; Banaszak Holl, Mark M.; Orr, Bradford G.; Baker, James R., Jr.

    2004-03-01

    Polyamidoamine (PAMAM) dendrimers are promising candidates for the development of nanoscale therapeutic transport agents. Here we present studies on dendrimer-membrane interactions leading to a better understanding of possible uptake mechanisms into cells. Using synthetic lipid and natural cell membranes as model systems it is shown that the effect of PAMAM dendrimers on a membrane strongly depends on the dendrimer generation, architecture and chemical properties of the branch end groups. Atomic force microscopy data indicates that generation 7 dendrimers have the ability to form small ( 10-100 nm) holes in a lipid bilayer. When dendrimers with otherwise identical chemical properties are arranged in a covalently linked cluster, no hole formation occurs. Dendrimer-lipid micelle formation is proposed and investigated as a possible mechanism for this behavior. Smaller dendrimers (generation 5) have a greatly reduced ability to remove lipid molecules from a bilayer. In addition to the size of the dendrimer, the charge of the branch end groups plays a significant role for dendrimer-membrane interactions. These results agree well with biological studies using cultured cells and point to a new mechanism of specific targeting and uptake into cells.

  8. Robust and Elastic Polymer Membranes with Tunable Properties for Gas Separation.

    Science.gov (United States)

    Cao, Peng-Fei; Li, Bingrui; Hong, Tao; Xing, Kunyue; Voylov, Dmitry N; Cheng, Shiwang; Yin, Panchao; Kisliuk, Alexander; Mahurin, Shannon M; Sokolov, Alexei P; Saito, Tomonori

    2017-08-09

    Polymer membranes with the capability to process a massive volume of gas are especially attractive for practical applications of gas separation. Although much effort has been devoted to develop novel polymer membranes with increased selectivity, the overall gas-separation performance and lifetime of membrane are still negatively affected by the weak mechanical performance, low plasticization resistance and poor physical aging tolerance. Recently, elastic polymer membranes with tunable mechanical properties have been attracting significant attentions due to their tremendous potential applications. Herein, we report a series of urethane-rich PDMS-based polymer networks (U-PDMS-NW) with improved mechanical performance for gas separation. The cross-link density of U-PDMS-NWs is tailored by varying the molecular weight (M n ) of PDMS. The U-PDMS-NWs show up to 400% elongation and tunable Young's modulus (1.3-122.2 MPa), ultimate tensile strength (1.1-14.3 MPa), and toughness (0.7-24.9 MJ/m 3 ). All of the U-PDMS-NWs exhibit salient gas-separation performance with excellent thermal resistance and aging tolerance, high gas permeability (>100 Barrer), and tunable gas selectivity (up to α[P CO 2 /P N 2 ] ≈ 41 and α[P CO 2 /P CH 4 ] ≈ 16). With well-controlled mechanical properties and gas-separation performance, these U-PDMS-NW can be used as a polymer-membrane platform not only for gas separation but also for other applications such as microfluidic channels and stretchable electronic devices.

  9. Preparation and DMFC performance of a sulfophenylated poly(arylene ether ketone) polymer electrolyte membrane

    Energy Technology Data Exchange (ETDEWEB)

    Liu Baijun, E-mail: liubj@jlu.edu.c [College of Chemistry, Jilin University, Changchun 130012 (China); Hu Wei [College of Chemistry, Jilin University, Changchun 130012 (China); Kim, Yu Seung [Los Alamos National Laboratory, Electronic and Electrochemical Materials and Devices, Los Alamos, NM 87545 (United States); Zou Haifeng [College of Chemistry, Jilin University, Changchun 130012 (China); Robertson, Gilles P. [Institute for Chemical Process and Environmental Technology, National Research Council, Ottawa, Ontario K1A 0R6 (Canada); Jiang Zhenhua [College of Chemistry, Jilin University, Changchun 130012 (China); Guiver, Michael D. [Institute for Chemical Process and Environmental Technology, National Research Council, Ottawa, Ontario K1A 0R6 (Canada); Department of Energy Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of)

    2010-04-15

    A sulfonated poly(aryl ether ether ketone ketone) (PEEKK) having a well-defined rigid homopolymer-like chemical structure was synthesized from a readily prepared PEEKK by post-sulfonation with concentrated sulfuric acid at room temperature within several hours. The polymer electrolyte membrane (PEM) cast from the resulting polymer exhibited an excellent combination of thermal resistance, oxidative and dimensional stability, low methanol fuel permeability and high proton conductivity. Furthermore, membrane electrode assemblies (MEAs) were successfully fabricated and good direct methanol fuel cell (DMFC) performance was observed. At 2 M MeOH feed, the current density at 0.5 V reached 165 mA/cm, which outperformed our reported similarly structured analogues and MEAs derived from comparative Nafion membranes.

  10. The casting and mechanism of formation of semi-permeable polymer membranes in a microgravity environment

    Science.gov (United States)

    Vera, I.

    The National Electric Company of Venezuela, C.A.D.A.F.E., is sponsoring the development of this experiment which represents Venezuela's first scientific experiment in space. The apparatus for the automatic casting of polymer thin films will be contained in NASA's payload No. G-559 of the Get Away Special program for a future orbital space flight in the U.S. Space Shuttle. Semi-permeable polymer membranes have important applications in a variety of fields, such as medecine, energy, and pharmaceuticals, and in general fluid separation processes such as reverse osmosis, ultra-filtration, and electro-dialysis. The casting of semi-permeable membranes in space will help to identify the roles of convection in determining the strucutre of these membranes.

  11. Study the effect of ion-complex on the properties of composite gel polymer electrolyte based on Electrospun PVdF nanofibrous membrane

    International Nuclear Information System (INIS)

    Li, Weili; Xing, Yujin; Wu, Yuhui; Wang, Jiawei; Chen, Lizhuang; Yang, Gang; Tang, Benzhong

    2015-01-01

    In this paper, nanofibrous membranes based on poly(vinylidene fluoride) (PVdF) doped with ion-complex (SiO 2 -PAALi) were prepared by electrospinning technique and the corresponding composite gel-polymer electrolytes (CGPEs) were obtained after being activated in liquid electrolyte. The microstructure, physical and electrochemical performances of the nanofibrous membranes and the corresponding CGPEs were studied by various measurements such as Fourier Transform Infrared Spectroscopy(FTIR), Scanning Electron Microscope (SEM), Differential Scanning Calorimetry (DSC), Thermal Gravimetric Analysis (TGA), Stress-strain test, Linear Sweep Voltammetry (LSV), AC impedance measurement and Charge/discharge cycle test. As to the ion-complex doped nanofibrous membranes, PVdF can provide mechanical support with network structure composed of fully interconnection; while the ion-complexes are absorbed onto the surface of the PVdF nanofibers evenly instead of being aggregated. With the help of doped ion-complex, the prepared nanofibrous membranes present good liquid electrolyte absorbability, excellent mechanical performance, and high decomposition temperature. For the corresponding CGPEs, they possess high ionic conductivity, wide electrochemical window, and good charge/discharge cycle performance

  12. Comparative Experimental Study on Ionic Polymer Mental Composite based on Nafion and Aquivion Membrane as Actuators

    Science.gov (United States)

    Luo, B.; Chen, Z.

    2017-11-01

    Most ionic polymer mental composites employ Nafion as the polymer matrix, Aquivion can also manufactured as ionic polymer mental composite while research was little. This paper researched on two kinds of ionic polymer mental composite based on Aquivion and Nafion matrix with palladium electrode called Aquivion-IPMC and Nafion-IPMC. The samples were fabricated by the same preparation process. The current and deformation responses of the samples were measured at voltage to characterize the mechano-electrical properties. The experimental observations revealed that shorter flexible side chains in Aquivion-IPMC provide a larger force than Nafion-IPMC, while the displacement properties were similar in two different samples. The results also showed that Aquivion membrane can also replace Nafion to reproduce IPMC application in soft robots, MEMS, and so on.

  13. “Nanofiltration” Enabled by Super-Absorbent Polymer Beads for Concentrating Microorganisms in Water Samples

    Science.gov (United States)

    Xie, Xing; Bahnemann, Janina; Wang, Siwen; Yang, Yang; Hoffmann, Michael R.

    2016-01-01

    Detection and quantification of pathogens in water is critical for the protection of human health and for drinking water safety and security. When the pathogen concentrations are low, large sample volumes (several liters) are needed to achieve reliable quantitative results. However, most microbial identification methods utilize relatively small sample volumes. As a consequence, a concentration step is often required to detect pathogens in natural waters. Herein, we introduce a novel water sample concentration method based on superabsorbent polymer (SAP) beads. When SAP beads swell with water, small molecules can be sorbed within the beads, but larger particles are excluded and, thus, concentrated in the residual non-sorbed water. To illustrate this approach, millimeter-sized poly(acrylamide-co-itaconic acid) (P(AM-co-IA)) beads are synthesized and successfully applied to concentrate water samples containing two model microorganisms: Escherichia coli and bacteriophage MS2. Experimental results indicate that the size of the water channel within water swollen P(AM-co-IA) hydrogel beads is on the order of several nanometers. The millimeter size coupled with a negative surface charge of the beads are shown to be critical in order to achieve high levels of concentration. This new concentration procedure is very fast, effective, scalable, and low-cost with no need for complex instrumentation. PMID:26876979

  14. Very Low Surface Energy (Membrane Separations: An Integrated Polymer Chemistry/Engineering Approach and The Influence of Backpulsing on Fouling Properties of Novel Nanofiltration Membranes for Wastewater Remediation

    National Research Council Canada - National Science Library

    Freeman, Benny

    1998-01-01

    ...: An Integrated Polymer Chemistry/Engineering Approach, is to explore several new classes of polymeric materials to identify promising routes for developing low-fouling nanofiltration membranes for wastewater remediation...

  15. Phase 2 report on the evaluation of polyacrylonitrile (PAN) as a binding polymer for absorbers used to treat liquid radioactive wastes

    International Nuclear Information System (INIS)

    Sebesta, F.; John, J.; Motl, A.

    1996-05-01

    The performance of PAN-based composite absorbers was evaluated in dynamic experiments at flow rates ranging from 25--100 bed volumes (BV) per hour. Composite absorbers with active components of ammonium molybdophosphate (AMP) PAN and K-Co ferrocyanide (KCoFC) PAN were used for separating Cs from a 1 M HNO 3 + 1 M NaNO 3 + 2 x 10 -5 M CsCl acidic simulant solution. KCoFC-PAN and two other FC-based composite absorbers were tested for separating Cs from alkaline simulant solutions containing 0.01 M to 1 M NaOH and 1 M NaNO 3 + x x 10 -4 M CsCl. The efficiency of the Cs sorption on the AMP-PAN absorber from acidic simulant solutions was negatively influenced by the dissolution of the AMP active component. At flow rates of 50 BV/hr, the decontamination factor of about 10 3 could be maintained for treatment of 380 BV of the feed. With the KCoFC-PAN absorber, the decontamination factor of about 10 3 could be maintained for a feed volume as great as 1,800 BV. In alkaline simulant solutions, significant decomposition of the active components was observed, and the best performance was exhibited by the KCoFC-PAN absorber. Introductory experiments confirmed that Cs may be washed out of the composite absorbers. Regeneration of both absorbers for repetitive use was also found to be possible. The main result of the study is that PAN was proven to be a versatile polymer capable of forming porous composite absorbers with a large number of primary absorbers. The composite absorbers proved to be capable of withstanding the harsh acidic and alkaline conditions and significant radiation doses that may be expected in the treatment of US DOE wastes. A field demonstration is proposed as a follow-on activity

  16. Studies on as separation behaviour of polymer blending PI/PES hybrid mixed membrane: Effect of polymer concentration and zeolite loading

    Directory of Open Access Journals (Sweden)

    Ahmad Fauzi Ismail

    2014-04-01

    Full Text Available This study is performed primarily to investigate the effect of polymer concentration of polyimide/polyethersulfone (PI/PES blending on the gas separation performance of hybrid mixed matrix membrane. In this study, PI/ (PES–zeolite 4A mixed matrix membranes were casted using dry/wet phase inversion technique. The efefct of PI/PES concentrations and zeolite loading on the dope solution were investigated for gas separation performance. The results from the Field Emission Scanning Electron Microscopy (FESEM analysis confirmed that polymer concentration and zeolite loading was affected the morphology of membrane and gas separation performance. ‘Sieve-in-a-cage’ morphology observed the poor adhesion between polymer and zeolite at higher zeolite loading. The gas separation performance of the mixed matrix membranes were relatively higher compared to that of the neat polymeric membrane.

  17. Eggshell and Bacterial Cellulose Composite Membrane as Absorbent Material in Active Packaging

    Directory of Open Access Journals (Sweden)

    S. Ummartyotin

    2016-01-01

    Full Text Available Bacterial cellulose and eggshell composite was successfully developed. Eggshell was mixed with bacterial cellulose suspension and it was casted as a composite film. CaCO3 derived from eggshell was compared with its commercial availability. It can be noted that good dispersion of eggshell particle was prepared. Eggshell particle was irregular in shape with a variation in size. It existed in bacterial cellulose network. Characterization on composite was focused on thermal and mechanical properties. It showed that flexibility and thermal stability of composite were enhanced. No significant effect of mechanical properties was therefore observed. The thermal stability of composite was stable up to 300°C. The adsorption experiment on water and vegetable oil capacity was performed. The enhancement on adsorption was due to the existence of eggshell in bacterial cellulose composite. It exhibited the potential to be a good candidate for absorbent material in active packaging.

  18. The effect of silica toward polymer membrane for water separation process

    Science.gov (United States)

    Jamalludin, Mohd Riduan; Rosli, M. U.; Ishak, Muhammad Ikman; Khor, C. Y.; Shahrin, Suhaimi; Ismail, Ras Izzati; Lailina N., M.; Leng Y., L.; Jahidi, H.

    2017-09-01

    The aim of this present work was to investigate the effect of different percentage rice husk silica (RHS) particles composition towards polymer mixed matrix membrane microstructure and performance in water separation process. The polymer membranes were prepared by a phase inversion method using polysulfone (PSf), N-methyl-2-pyrrolidone (NMP) as solvent, distilled water as non-solvent and fixed RHS at 400°C as an additive. The microstructures of PSf/PEG/RHS sample were characterized by performing scanning electron microscope (SEM). The performance was measured by using pure water flux and humic acid for the rejection test. The analyzed result of SEM analysis revealed that the addition of RHS obviously improved the microstructure of the membrane especially at the top and sub layer at the range of 1 until 3 wt. %. This was proven by the pure water flux (PWF) value measured from 114.47 LMH to 154.04 LMH and rejection from value 83% to 96% at this specified range substantially higher than the mixed matrix membrane with synthetic silica. In fact, the presence of RHS particles not only improved the properties and performance of membrane but also possess biodegradable properties which can minimize the pollution and provide a membrane green technology system.

  19. Durability and degradation analysis of hydrocarbon ionomer membranes in polymer electrolyte fuel cells accelerated stress evaluation

    Science.gov (United States)

    Shimizu, Ryo; Tsuji, Junichi; Sato, Nobuyuki; Takano, Jun; Itami, Shunsuke; Kusakabe, Masato; Miyatake, Kenji; Iiyama, Akihiro; Uchida, Makoto

    2017-11-01

    The chemical durabilities of two proton-conducting hydrocarbon polymer electrolyte membranes, sulfonated benzophenone poly(arylene ether ketone) (SPK) semiblock copolymer and sulfonated phenylene poly(arylene ether ketone) (SPP) semiblock copolymer are evaluated under accelerated open circuit voltage (OCV) conditions in a polymer electrolyte fuel cell (PEFC). Post-test characterization of the membrane electrodes assemblies (MEAs) is carried out via gel permeation chromatography (GPC) and nuclear magnetic resonance (NMR) spectroscopy. These results are compared with those of the initial MEAs. The SPP cell shows the highest OCV at 1000 h, and, in the post-test analysis, the SPP membrane retains up to 80% of the original molecular weight, based on the GPC results, and 90% of the hydrophilic structure, based on the NMR results. The hydrophilic structure of the SPP membrane is more stable after the durability evaluation than that of the SPK. From these results, the SPP membrane, with its simple hydrophilic structure, which does not include ketone groups, is seen to be significantly more resistant to radical attack. This structure leads to high chemical durability and thus impedes the chemical decomposition of the membrane.

  20. A Review on the Fabrication of Electro spun Polymer Electrolyte Membrane for Direct Methanol Fuel Cell

    International Nuclear Information System (INIS)

    Junoh, H.; Jaafar, J.; Norddin, M.N.A.M.; Ismail, A.F.; Othman, M.H.D.; Rahman, M.A.; Yusof, N.; Salleh, W.N.W.; Junoh, H.; Jaafar, J.; Norddin, M.N.A.M.; Ismail, A.F.; Othman, M.H.D.; Rahman, M.A.; Yusof, N.; Salleh, W.N.W.; Hamid Ilbeygi, H.

    2014-01-01

    Proton exchange membrane (PEM) is an electrolyte which behaves as important indicator for fuel cell’s performance. Research and development (R and D) on fabrication of desirable PEM have burgeoned year by year, especially for direct methanol fuel cell (DMFC). However, most of the R and Ds only focus on the parent polymer electrolyte rather than polymer inorganic composites. This might be due to the difficulties faced in producing good dispersion of inorganic filler within the polymer matrix, which would consequently reduce the DMFC’s performance. Electro spinning is a promising technique to cater for this arising problem owing to its more widespread dispersion of inorganic filler within the polymer matrix, which can reduce the size of the filler up to nano scale. There has been a huge development on fabricating electrolyte nano composite membrane, regardless of the effect of electro spun nano composite membrane on the fuel cell’s performance. In this present paper, issues regarding the R and D on electro spun sulfonated poly (ether ether ketone) (SPEEK)/inorganic nano composite fiber are addressed.

  1. A Review on the Fabrication of Electrospun Polymer Electrolyte Membrane for Direct Methanol Fuel Cell

    Directory of Open Access Journals (Sweden)

    Hazlina Junoh

    2015-01-01

    Full Text Available Proton exchange membrane (PEM is an electrolyte which behaves as important indicator for fuel cell’s performance. Research and development (R&D on fabrication of desirable PEM have burgeoned year by year, especially for direct methanol fuel cell (DMFC. However, most of the R&Ds only focus on the parent polymer electrolyte rather than polymer inorganic composites. This might be due to the difficulties faced in producing good dispersion of inorganic filler within the polymer matrix, which would consequently reduce the DMFC’s performance. Electrospinning is a promising technique to cater for this arising problem owing to its more widespread dispersion of inorganic filler within the polymer matrix, which can reduce the size of the filler up to nanoscale. There has been a huge development on fabricating electrolyte nanocomposite membrane, regardless of the effect of electrospun nanocomposite membrane on the fuel cell’s performance. In this present paper, issues regarding the R&D on electrospun sulfonated poly (ether ether ketone (SPEEK/inorganic nanocomposite fiber are addressed.

  2. Novel Zeolitic Imidazolate Framework/Polymer Membranes for Hydrogen Separations in Coal Processing

    Energy Technology Data Exchange (ETDEWEB)

    Musselman, Inga H.

    2013-01-31

    Nanoparticles of zeolitic imidazolate frameworks and other related hybrid materials were prepared by modifying published synthesis procedures by introducing bases, changing stoichiometric ratios, or adjusting reaction conditions. These materials were stable at temperatures >300 °C and were compatible with the polymer matrices used to prepare mixed-matrix membranes (MMMs). MMMs tested at 300 °C exhibited a >30 fold increase in permeability, compared to those measured at 35 °C, while maintaining H{sub 2}/CO{sub 2} selectivity. Measurements at high pressure (up to 30 atm) and high temperature (up to 300 °C) resulted in an increase in gas flux across the membrane with retention of selectivity. No variations in permeability were observed at high pressures at either 35 or 300 °C. CO{sub 2}-induced plasticization was not observed for Matrimid®, VTEC, and PBI polymers or their MMMs at 30 atm and 300 °C. Membrane surface modification by cross-linking with ethylenediamine resulted in an increase in H{sub 2}/CO{sub 2} selectivity at 35 °C. Spectrometric analysis showed that the cross-linking was effective to temperatures <150 °C. At higher temperatures, the cross-linked membranes exhibit a H2/CO2 selectivity similar to the uncrosslinked polymer.

  3. Influence of lipid membranes rigidity on properties of supporting polymer

    Energy Technology Data Exchange (ETDEWEB)

    Majewski, Jaroslaw [Los Alamos National Laboratory; Singh, Saurabh [Los Alamos National Laboratory; Dubey, Manish [Intel, Pheonix, AZ

    2012-06-18

    The motivation of this study is: (1) Controllable release of cultured cell sheets - (a) NIPAAm is non-toxic and collapsed at physiological Temp, (b) good platform for cell adherence and growth, (c) below polymer transition temp, cultured sheets are released, (d) hydration of matrix possible cause of cell attachment/detachment, (e) need for understanding hydration of underlying support; (2) Matrix elasticity plays an important role in cell lineage specification - (a) matrices of known stiffness are utilized as supports to understand physical effect of in-vivo tissue microenvironment for therapeutic uses of stem cells, (b) it is believed that stem cells 'sense' the elasticity and transduce the information into morphological changes, (c) Imperative to consider the changes induced in matrix as a result of immobilized cells.

  4. Mass and Heat Transfer in Ion-Exchange Membranes Applicable to Solid Polymer Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Otteroey, M

    1996-04-01

    In this doctoral thesis, an improved emf method for determination of transference numbers of two counter ions in ion-exchange membranes is presented. Transference numbers were obtained as a continuous function of the composition. The method avoids problems with diffusion by using a stack of membranes. Water transference coefficients in ion-exchange membranes is discussed and reversible and irreversible water transfer is studied by emf methods. Efforts were made to get data relevant to the solid polymer fuel cell. The results support the findings of other researchers that the reversible water transfer is lower than earlier predicted. A chapter on the conductivity of ion-exchange membranes establishes a method to separate the very thin liquid layers surrounding the membranes in a stack. Using the method it was found that the conductivity is obtained with high accuracy and that the liquid layer in a membrane stack can contribute significantly to the total measured resistance. A four point impedance method was tested to measure the conductivity of membranes under fuel cell conditions. Finally, there is a discussion of reversible heat effects and heat transfer in ion-exchange membranes. 155 refs., 45 figs., 13 tabs.

  5. A quasi-direct methanol fuel cell system based on blend polymer membrane electrolytes

    DEFF Research Database (Denmark)

    Li, Qingfeng; Hjuler, Hans Aage; Hasiotis, C.

    2002-01-01

    , compared to less than 100 ppm CO for the Nafion-based technology at 80degrees C. The high CO tolerance makes it possible to use the reformed hydrogen directly from a simple methanol reformer without further CO removal. That both the fuel cell and the methanol reformer operate at temperatures around 200......On the basis of blend polymer electrolytes of polybenzimidazole and sulfonated polysulfone, a polymer electrolyte membrane fuel cell was developed with an operational temperature up to 200degrees C. Due to the high operational temperature, the fuel cell can tolerate 1.0-3.0 vol % CO in the fuel...

  6. Effects on Brassica napus L. Yield and Yield Components of Super Absorbent Polymer under Different Irrigation Regimes

    Directory of Open Access Journals (Sweden)

    Alireza PIRZAD

    2014-09-01

    Full Text Available For evaluation of the effects of super absorbent polymer under different irrigation regimes on the yield and yield components of Brassica napus L., a factorial experiment was carried out, based on randomized complete block design with four replicas. Treatments included super absorbent polymer (0, 1, 2, 3, 4 and 5 g/kg soil and induced drought stress (irrigation at 25, 50 and 75 mm evaporation from class A pan. The experiment was conducted in pots with 5 kg of soil. Data analysis of variance showed the significant interaction effect between polymer and irrigation on the stem length, width and weight, the number of seeds per sheath, number of seeds per plant, the number of sterile and fertile sheath per plant, fertile sheath percentage (fertile sheath/ total sheath ×100, 1000 seeds weight, seed weight per plant, sheath weight per plant and the number of total sheath. The present study revealed that indifferent from the applied amounts of the super absorbent polymer, in all cases the measured characters have been more affected by induced drought stress.

  7. Synthesis of Thin Film Composite Metal-Organic Frameworks Membranes on Polymer Supports

    KAUST Repository

    Barankova, Eva

    2017-06-01

    Since the discovery of size-selective metal-organic frameworks (MOF) researchers have tried to manufacture them into gas separation membranes. ZIF-8 became the most studied MOF for membrane applications mainly because of its simple synthesis, good chemical and thermal stability, recent commercial availability and attractive pore size. The aim of this work is to develop convenient methods for growing ZIF thin layers on polymer supports to obtain defect-free ZIF membranes with good gas separation properties. We present new approaches for ZIF membranes preparation on polymers. We introduce zinc oxide nanoparticles in the support as a secondary metal source for ZIF-8 growth. Initially the ZnO particles were incorporated into the polymer matrix and later on the surface of the polymer by magnetron sputtering. In both cases, the ZnO facilitated to create more nucleation opportunities and improved the ZIF-8 growth compared to the synthesis without using ZnO. By employing the secondary seeded growth method, we were able to obtain thin (900 nm) ZIF-8 layer with good gas separation performance. Next, we propose a metal-chelating polymer as a suitable support for growing ZIF layers. Defect-free ZIF-8 films with a thickness of 600 nm could be obtained by a contra-diffusion method. ZIF-8 membranes were tested for permeation of hydrogen and hydrocarbons, and one of the highest selectivities reported so far for hydrogen/propane, and propylene/propane was obtained. Another promising method to facilitate the growth of MOFs on polymeric supports is the chemical functionalization of the support surface with functional groups, which can complex metal ions and which can covalently bond the MOF crystals. We functionalized the surface of a common porous polymeric membrane with amine groups, which took part in the reaction to form ZIF-8 nanocrystals. We observed an enhancement in adhesion between the ZIF layer and the support. The effect of parameters of the contra-diffusion experiment

  8. Study of microporous PVA/PVC composite polymer membrane and it application to MnO2 capacitors

    International Nuclear Information System (INIS)

    Yang, C.-C.; Wu, G.M.

    2009-01-01

    A microporous poly(vinyl alcohol)/poly(vinyl chloride) (PVA/PVC) composite polymer membrane was successfully synthesized by a solution casting method and a preferential dissolution method. The characteristic properties of PVA/PVC composite polymer membranes were systematically studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), thermal gravimetric analysis (TGA), micro-Raman spectroscopy and AC impedance spectroscopy. The PVA/PVC composite polymer membrane shows excellent thermal property, dimensional stability, and the ionic conductivity; it is due to the addition of secondary PVC polymer fillers. The MnO 2 capacitors with the PVA/PVC composite polymer membrane with 1 M Na 2 SO 4 was assembled and examined. It was found that the MnO 2 capacitor based on a microporous PVA/5 wt.%PVC composite polymer electrolyte membrane exhibited the maximum specific capacitance of 238 F g -1 and the current efficiency of 99% at 25 mV s -1 after 1000 cycle test. The result demonstrates that the novel microporous PVA/PVC composite polymer membrane is a potential candidate for use on the capacitors

  9. Two-Phase Contiguous Supported Lipid Bilayer Model for Membrane Rafts via Polymer Blotting and Stenciling.

    Science.gov (United States)

    Richards, Mark J; Daniel, Susan

    2017-02-07

    The supported lipid bilayer has been portrayed as a useful model of the cell membrane compatible with many biophysical tools and techniques that demonstrate its appeal in learning about the basic features of the plasma membrane. However, some of its potential has yet to be realized, particularly in the area of bilayer patterning and phase/composition heterogeneity. In this work, we generate contiguous bilayer patterns as a model system that captures the general features of membrane domains and lipid rafts. Micropatterned polymer templates of two types are investigated for generating patterned bilayer formation: polymer blotting and polymer lift-off stenciling. While these approaches have been used previously to create bilayer arrays by corralling bilayers patches with various types of boundaries impenetrable to bilayer diffusion, unique to the methods presented here, there are no physical barriers to diffusion. In this work, interfaces between contiguous lipid phases define the pattern shapes, with continuity between them allowing transfer of membrane-bound biomolecules between the phases. We examine effectors of membrane domain stability including temperature and cholesterol content to investigate domain dynamics. Contiguous patterning of supported bilayers as a model of lipid rafts expands the application of the SLB to an area with current appeal and brings with it a useful toolset for characterization and analysis. These combined tools should be helpful to researchers investigating lipid raft dynamics and function and biomolecule partitioning studies. Additionally, this patterning technique may be useful for applications such as bioseparations that exploit differences in lipid phase partitioning or creation of membranes that bind species like viruses preferentially at lipid phase boundaries, to name a few.

  10. Performance enhancement of polymer electrolyte membrane fuel cells by dual-layered membrane electrode assembly structures with carbon nanotubes.

    Science.gov (United States)

    Jung, Dong-Won; Kim, Jun-Ho; Kim, Se-Hoon; Kim, Jun-Bom; Oh, Eun-Suok

    2013-05-01

    The effect of dual-layered membrane electrode assemblies (d-MEAs) on the performance of a polymer electrolyte membrane fuel cell (PEMFC) was investigated using the following characterization techniques: single cell performance test, electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV). It has been shown that the PEMFC with d-MEAs has better cell performance than that with typical mono-layered MEAs (m-MEAs). In particular, the d-MEA whose inner layer is composed of multi-walled carbon nanotubes (MWCNTs) showed the best fuel cell performance. This is due to the fact that the d-MEAs with MWCNTs have the highest electrochemical surface area and the lowest activation polarization, as observed from the CV and EIS test.

  11. Performance of polymer nano composite membrane electrode assembly using Alginate as a dopant in polymer electrolyte membrane fuel cell [Journal of Physics. Conference Series (Online), v. 795(1)

    International Nuclear Information System (INIS)

    Mulijani, S.

    2017-01-01

    Polymer membrane and composite polymer for membrane electrode assembly (MEAs) are synthesized and studied for usage in direct methanol fuel cell (DMFC). In this study, we prepared 3 type of MEAs, polystyrene (PS), sulfonated polystyrene (SPS) and composite polymer SPS-alginat membrane via catalyst hot pressed method. The performance and properties of prepared MEAs were evaluated and analyzed by impedance spectrometry and scanning electron microscopy (SEM). The result showed that, water up take of MEA composite polymer SPS-alginate was obtained higher than that in SPS and PS. The proton conductivity of MEA-SPS-alginate was also higher than that PS and PSS. SEM characterization revealed that the intimate contact between the carbon catalyst layers (CL) and the membranes, and the uniformly porous structure correlate positively with the MEAs prepared by hot pressed method, exhibiting high performances for DMFC. (paper)

  12. Biodegradation test of SPS-LS blends as polymer electrolyte membrane fuel cells

    International Nuclear Information System (INIS)

    Putri, Zufira; Arcana, I Made

    2014-01-01

    Sulfonated polystyrene (SPS) can be applied as a proton exchange membrane fuel cell due to its fairly good chemical stability. In order to be applied as polymer electrolyte membrane fuel cells (PEMFCs), membrane polymer should have a good ionic conductivity, high proton conductivity, and high mechanical strength. Lignosulfonate (LS) is a complex biopolymer which has crosslinks and sulfonate groups. SPS-LS blends with addition of SiO 2 are used to increase the proton conductivity and to improve the mechanical properties and thermal stability. However, the biodegradation test of SPS-LS blends is required to determine whether the application of these membranes to be applied as an environmentally friendly membrane. In this study, had been done the synthesis of SPS, biodegradability test of SPS-LS blends with variations of LS and SiO 2 compositions. The biodegradation test was carried out in solid medium of Luria Bertani (LB) with an activated sludge used as a source of microorganism at incubation temperature of 37°C. Based on the results obtained indicated that SPS-LS-SiO 2 blends are more decomposed by microorganism than SPS-LS blends. This result is supported by analysis of weight reduction percentage, functional groups with Fourier Transform Infrared (FTIR) Spectroscopy, and morphological surface with Scanning Electron Microscopy (SEM)

  13. Aquatic biofouling prevention by electrically charged nanocomposite polymer thin film membranes.

    Science.gov (United States)

    de Lannoy, Charles-François; Jassby, David; Gloe, Katie; Gordon, Alexander D; Wiesner, Mark R

    2013-03-19

    Electrically conductive polymer-nanocomposite (ECPNC) tight nanofiltration (NF) thin film membranes were demonstrated to have biofilm-preventing capabilities under extreme bacteria and organic material loadings. A simple route to the creation and application of these polyamide-carbon nanotube thin films is also reported. These thin films were characterized with SEM and TEM as well as FTIR to demonstrate that the carbon nanotubes are embedded within the polyamide and form ester bonds with trimesoyl chloride, one of the monomers of polyamide. These polymer nanocomposite thin film materials boast high electrical conductivity (∼400 S/m), good NaCl rejection (>95%), and high water permeability. To demonstrate these membranes' biofouling capabilities, we designed a cross-flow water filtration vessel with insulated electrical leads connecting the ECPNC membranes to an arbitrary waveform generator. In all experiments, conducted in highly bacterially contaminated LB media, flux tests were run until fluxes decreased by 45 ± 3% over initial flux. Biofilm-induced, nonreversible flux decline was observed in all control experiments and a cross-flow rinse with the feed solution failed to induce flux recovery. In contrast, flux decrease for the ECPNC membranes with an electric potential applied to their surface was only caused by deposition of bacteria rather than bacterial attachment, and flux was fully recoverable following a short rinse with the feed solution and no added cleaning agents. The prevention of biofilm formation on the ECPNC membranes was a long-term effect, did not decrease with use, and was highly reproducible.

  14. Synthesis and properties of imidazole-grafted hybrid inorganic-organic polymer membranes

    International Nuclear Information System (INIS)

    Li Siwen; Zhou Zhen; Liu Meilin; Li Wen; Ukai, Junzo; Hase, Kohei; Nakanishi, Masatsugu

    2006-01-01

    Imidazole rings were grafted on alkoxysilane with a simple nucleophilic substitute reaction to form hybrid inorganic-organic polymers with imidazole rings. Proton exchange membranes (PEM) based on these hybrid inorganic-organic polymers and H 3 PO 4 exhibit high proton conductivity and high thermal stability in an atmosphere of low relative humidity. The grafted imidazole rings improved the proton conductivity of the membranes in the high temperature range. It is found that the proton conductivities increase with H 3 PO 4 content and temperature, reaching 3.2 x 10 -3 S/cm at 110 deg. C in a dry atmosphere for a membrane with 1 mole of imidazole ring and 7 moles of H 3 PO 4 . The proton conductivity increases with relative humidity (RH) as well, reaching 4.3 x 10 -2 S/cm at 110 deg. C when the RH is increased to about 20%. Thermogravimetric analysis (TGA) indicates that these membranes are thermally stable up to 250 deg. C in dry air, implying that they have a good potential to be used as the membranes for high-temperature PEM fuel cells

  15. Biodegradation test of SPS-LS blends as polymer electrolyte membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Putri, Zufira, E-mail: zufira.putri@gmail.com, E-mail: arcana@chem.itb.ac.id; Arcana, I Made, E-mail: zufira.putri@gmail.com, E-mail: arcana@chem.itb.ac.id [Inorganic and Physical Chemistry Research Groups, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung (Indonesia)

    2014-03-24

    Sulfonated polystyrene (SPS) can be applied as a proton exchange membrane fuel cell due to its fairly good chemical stability. In order to be applied as polymer electrolyte membrane fuel cells (PEMFCs), membrane polymer should have a good ionic conductivity, high proton conductivity, and high mechanical strength. Lignosulfonate (LS) is a complex biopolymer which has crosslinks and sulfonate groups. SPS-LS blends with addition of SiO{sub 2} are used to increase the proton conductivity and to improve the mechanical properties and thermal stability. However, the biodegradation test of SPS-LS blends is required to determine whether the application of these membranes to be applied as an environmentally friendly membrane. In this study, had been done the synthesis of SPS, biodegradability test of SPS-LS blends with variations of LS and SiO{sub 2} compositions. The biodegradation test was carried out in solid medium of Luria Bertani (LB) with an activated sludge used as a source of microorganism at incubation temperature of 37°C. Based on the results obtained indicated that SPS-LS-SiO{sub 2} blends are more decomposed by microorganism than SPS-LS blends. This result is supported by analysis of weight reduction percentage, functional groups with Fourier Transform Infrared (FTIR) Spectroscopy, and morphological surface with Scanning Electron Microscopy (SEM)

  16. Theoretical voltammetric response of electrodes coated by solid polymer electrolyte membranes.

    Science.gov (United States)

    Gómez-Marín, Ana M; Hernández-Ortíz, Juan P

    2014-09-24

    A model for the differential capacitance of metal electrodes coated by solid polymer electrolyte membranes, with acid/base groups attached to the membrane backbone, and in contact with an electrolyte solution is developed. With proper model parameters, the model is able to predict a limit response, given by Mott-Schottky or Gouy-Chapman-Stern theories depending on the dissociation degree and the density of ionizable acid/base groups. The model is also valid for other ionic membranes with proton donor/acceptor molecules as membrane counterions. Results are discussed in light of the electron transfer rate at membrane-coated electrodes for electrochemical reactions that strongly depend on the double layer structure. In this sense, the model provides a tool towards the understanding of the electro-catalytic activity on modified electrodes. It is shown that local maxima and minima in the differential capacitance as a function of the electrode potential may occur as consequence of the dissociation of acid/base molecular species, in absence of specific adsorption of immobile polymer anions on the electrode surface. Although the model extends the conceptual framework for the interpretation of cyclic voltammograms for these systems and the general theory about electrified interfaces, structural features of real systems are more complex and so, presented results only are qualitatively compared with experiments. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. The Effect of Covalently-Attached ATRP-Synthesized Polymers on Membrane Stability and Cytoprotection in Human Erythrocytes.

    Science.gov (United States)

    Clafshenkel, William P; Murata, Hironobu; Andersen, Jill; Creeger, Yehuda; Koepsel, Richard R; Russell, Alan J

    2016-01-01

    Erythrocytes have been described as advantageous drug delivery vehicles. In order to ensure an adequate circulation half-life, erythrocytes may benefit from protective enhancements that maintain membrane integrity and neutralize oxidative damage of membrane proteins that otherwise facilitate their premature clearance from circulation. Surface modification of erythrocytes using rationally designed polymers, synthesized via atom-transfer radical polymerization (ATRP), may further expand the field of membrane-engineered red blood cells. This study describes the fate of ATRP-synthesized polymers that were covalently attached to human erythrocytes as well as the effect of membrane engineering on cell stability under physiological and oxidative conditions in vitro. The biocompatible, membrane-reactive polymers were homogenously retained on the periphery of modified erythrocytes for at least 24 hours. Membrane engineering stabilized the erythrocyte membrane and effectively neutralized oxidative species, even in the absence of free-radical scavenger-containing polymers. The targeted functionalization of Band 3 protein by NHS-pDMAA-Cy3 polymers stabilized its monomeric form preventing aggregation in the presence of the crosslinking reagent, bis(sulfosuccinimidyl)suberate (BS3). A free radical scavenging polymer, NHS-pDMAA-TEMPO˙, provided additional protection of surface modified erythrocytes in an in vitro model of oxidative stress. Preserving or augmenting cytoprotective mechanisms that extend circulation half-life is an important consideration for the use of red blood cells for drug delivery in various pathologies, as they are likely to encounter areas of imbalanced oxidative stress as they circuit the vascular system.

  18. The Effect of Covalently-Attached ATRP-Synthesized Polymers on Membrane Stability and Cytoprotection in Human Erythrocytes.

    Directory of Open Access Journals (Sweden)

    William P Clafshenkel

    Full Text Available Erythrocytes have been described as advantageous drug delivery vehicles. In order to ensure an adequate circulation half-life, erythrocytes may benefit from protective enhancements that maintain membrane integrity and neutralize oxidative damage of membrane proteins that otherwise facilitate their premature clearance from circulation. Surface modification of erythrocytes using rationally designed polymers, synthesized via atom-transfer radical polymerization (ATRP, may further expand the field of membrane-engineered red blood cells. This study describes the fate of ATRP-synthesized polymers that were covalently attached to human erythrocytes as well as the effect of membrane engineering on cell stability under physiological and oxidative conditions in vitro. The biocompatible, membrane-reactive polymers were homogenously retained on the periphery of modified erythrocytes for at least 24 hours. Membrane engineering stabilized the erythrocyte membrane and effectively neutralized oxidative species, even in the absence of free-radical scavenger-containing polymers. The targeted functionalization of Band 3 protein by NHS-pDMAA-Cy3 polymers stabilized its monomeric form preventing aggregation in the presence of the crosslinking reagent, bis(sulfosuccinimidylsuberate (BS3. A free radical scavenging polymer, NHS-pDMAA-TEMPO˙, provided additional protection of surface modified erythrocytes in an in vitro model of oxidative stress. Preserving or augmenting cytoprotective mechanisms that extend circulation half-life is an important consideration for the use of red blood cells for drug delivery in various pathologies, as they are likely to encounter areas of imbalanced oxidative stress as they circuit the vascular system.

  19. Fuel cell membrane preparation: effects of base polymer

    Energy Technology Data Exchange (ETDEWEB)

    Brack, H P; Scherer, G G [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    Radiation grafted films and membranes prepared from the partially fluorinated base copolymer poly(ethylene-alt-tetrafluoroethylene) or ETFE have better mechanical properties than those prepared from poly(tetrafluoroethylene-co-hexafluoropropylene) or FEP. The influence of the base copolymer film type on the grafting rate and yields is reported in the present investigation. An understanding of the effects of these parameters is important so that the grafting process can be carried out reproducibly in as short a time as possible. The grafting rate and yield as a function of the irradiation dose has been found to be much higher for the partially fluorinated base copolymer ETFE. (author) 2 figs., 1 tab., 5 refs.

  20. High temperature polymer electrolyte membrane fuel cells: Approaches, status, and perspectives

    DEFF Research Database (Denmark)

    This book is a comprehensive review of high-temperature polymer electrolyte membrane fuel cells (PEMFCs). PEMFCs are the preferred fuel cells for a variety of applications such as automobiles, cogeneration of heat and power units, emergency power and portable electronics. The first 5 chapters...... of and motivated extensive research activity in the field. The last 11 chapters summarize the state-of-the-art of technological development of high temperature-PEMFCs based on acid doped PBI membranes including catalysts, electrodes, MEAs, bipolar plates, modelling, stacking, diagnostics and applications....

  1. Modelling multiphase flow inside the porous media of a polymer electrolyte membrane fuel cell

    DEFF Research Database (Denmark)

    Berning, Torsten; Kær, Søren Knudsen

    2011-01-01

    Transport processes inside polymer electrolyte membrane fuel cells (PEMFC’s) are highly complex and involve convective and diffusive multiphase, multispecies flow through porous media along with heat and mass transfer and electrochemical reactions in conjunction with water transport through...... an electrolyte membrane. We will present a computational model of a PEMFC with focus on capillary transport of water through the porous layers and phase change and discuss the impact of the liquid phase boundary condition between the porous gas diffusion layer and the flow channels, where water droplets can...

  2. Ionic liquids and their hosting by polymers for HT-PEMFC membranes

    Energy Technology Data Exchange (ETDEWEB)

    Hana, M.; Martinez, M.; Cointeaux, L.; Lepretre, J.C. [LEPMI-ELSA, PHELMA, UMR 5631, CNRS, Grenoble INP, UJF, Saint-Martin-d' Heres (France); Molmeret, Y.; El Kissi, N. [Laboratoire de Rheologie, UMR 5520 CNRS-INPG-UJF, ENSHMG, Grenoble (France); Teles, J.; Judeinstein, P. [Institut de Chimie Moleculaire et des Materiaux d' Orsay, CNRS 8182, Orsay (France); Iojoiu, C.; Sanchez, J.Y.

    2010-10-15

    The paper deals with proton-conducting ionic liquids (PCILs) for use, in combination with functional polymers, in membranes operating in high temperature PEMFC. Monoammoniums derived from monoamines and half-neutralised diamines were investigated in the form of triflates. Promising results were obtained with the half-neutralised diamine-based PCIL, its conduction being governed by both Grotthuss-like and vehicular mechanisms, the respective contributions of which depend on temperature. In addition, their blending with Nafion results in a distinct reinforcement of the membrane. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  3. Influence of graphene oxide on mechanical, morphological, barrier, and electrical properties of polymer membranes

    Directory of Open Access Journals (Sweden)

    Ali Ammar

    2016-03-01

    Full Text Available This paper expresses a short review of research on the effects of graphene oxide (GO as a nanocomposite element on polymer morphology and resulting property modifications including mechanical, barrier, and electrical conductivity. The effects on mechanical enhancement related to stress measurements in particular are a focus of this review. To first order, varying levels of aggregation of GO in different polymer matrices as a result of their weak inter-particle attractive interactions mainly affect the nanocomposite mechanical properties. The near surface dispersion of GO in polymer/GO nanocomposites can be investigated by studying the surface morphology of these nanocomposites using scanning probe microscopy such as atomic force microscope (AFM and scanning electron microscope (SEM. In the bulk, GO dispersion can be studied by wide-angle X-ray scattering (WAXD by analyzing the diffraction peaks corresponding to the undispersed GO fraction in the polymer matrix. In terms of an application, we review how the hydrophilicity of graphene oxide and its hydrogen bonding potential can enhance water flux of these nanocomposite materials in membrane applications. Likewise, the electrical conductivity of polymer films and bulk polymers can be advantageously enhanced via the percolative dispersion of GO nanoparticles, but this typically requires some additional chemical treatment of the GO nanoparticles to transform it to reduced GO.

  4. Ionic Liquids as the MOFs/Polymer Interfacial Binder for Efficient Membrane Separation.

    Science.gov (United States)

    Lin, Rijia; Ge, Lei; Diao, Hui; Rudolph, Victor; Zhu, Zhonghua

    2016-11-23

    Obtaining strong interfacial affinity between filler and polymer is critical to the preparation of mixed matrix membranes (MMMs) with high separation efficiency. However, it is still a challenge for micron-sized metal organic frameworks (MOFs) to achieve excellent compatibility and defect-free interface with polymer matrix. Thin layer of ionic liquid (IL) was immobilized on micron-sized HKUST-1 to eliminate the interfacial nonselective voids in MMMs with minimized free ionic liquid (IL) in polymer matrix, and then the obtained IL decorated HKUST-1 was incorporated into 4,4'-(hexafluoroisopropylidene)diphthalic anhydride-2,3,5,6-tetramethyl-1,3-phenyldiamine (6FDA-Durene) to fabricate MMMs. Acting as a filler/polymer interfacial binder, the favorable MOF/IL and IL/polymer interaction can facilitate the enhancement of MOF/polymer affinity. Compared to MMM with only HKUST-1 incorporation, MMM with IL decorated HKUST-1 succeeded in restricting the formation of nonselective interfacial voids, leading to an increment in CO 2 selectivity. The IL decoration method can be an effective approach to eliminate interfacial voids in MMMs, extending the filler selection to a wide range of large-sized fillers.

  5. Synthesis of polymer electrolyte membranes from cellulose acetate/poly(ethylene oxide)/LiClO{sub 4} for lithium ion battery application

    Energy Technology Data Exchange (ETDEWEB)

    Nurhadini,, E-mail: nur-chem@yahoo.co.id; Arcana, I Made, E-mail: arcana@chem.itb.ac.id [Inorganic and Physical Chemistry Research Division, Faculty of Mathematics and Natural Sciences, Institiut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132 (Indonesia)

    2015-09-30

    This study was conducted to determine the effect of cellulose acetate on poly(ethylene oxide)-LiClO{sub 4} membranes as the polymer electrolyte. Cellulose acetate is used as an additive to increase ionic conductivity and mechanical property of polymer electrolyte membranes. The increase the percentage of cellulose acetate in membranes do not directly effect on the ionic conductivity, and the highest ionic conductivity of membranes about 5,7 × 10{sup −4} S/cm was observed in SA/PEO/LiClO{sub 4} membrane with cellulose ratio of 10-25% (w/w). Cellulose acetate in membranes increases mechanical strength of polymer electrolyte membranes. Based on TGA analysis, this polymer electrolyte thermally is stable until 270 °C. The polymer electrolyte membrane prepared by blending the cellulose acetate, poly(ethylene oxide), and lithium chlorate could be potentially used as a polymer electrolyte for lithium ion battery application.

  6. Further Improvement and System Integration of High Temperature Polymer Electrolyte Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Li, Qingfeng; Jensen, Jens Oluf

    The new development in the field of polymer electrolyte membrane fuel cell (PEMFC) is high temperature PEMFC for operation above 100°C, which has been successfully demonstrated through the previous EC Joule III and the 5th framework programme. New challenges are encountered, bottlenecks for the new...... technology have been identified, and new concepts and solutions have been provisionally identified. FURIM is directed at tackling these key issues by concentrating on the further materials development, compatible technologies, and system integration of the high temperature PEMFC. The strategic developments...... of the FURIM are in three steps: (1) further improvement of the high temperature polymer membranes and related materials; (2) development of technological units including fuel cell stack, hydrocarbon reformer and afterburner, that are compatible with the HT-PEMFC; and (3) integration of the HT-PEMFC stack...

  7. Experimental Evaluation of a Total Heat Recovery Unit with Polymer Membrane Foils

    DEFF Research Database (Denmark)

    Fang, Lei; Yuan, Shu; Nie, Jinzhe

    2014-01-01

    A laboratory experimental study was conducted to investigate the energy performance of a total heat recovery unit using a polymer membranes heat exchanger. The study was conducted in twin climate chambers. One of the chambers simulated outdoor climate conditions and the other simulated the climate...... condition indoors. The airflows taken from the two chambers were connected into the total heat recovery unit and exchange heat in a polymer membrane foil heat exchanger installed inside the unit. The temperature and humidity of the air upstream and downstream of the heat exchanger were measured. Based...... on the measured temperature and humidity values, the temperature, humidity, and enthalpy efficiencies of the total heat recovery unit were calculated. The experiment was conducted in different combinations of outdoor climate conditions simulating warm and humid outdoor climates and air-conditioned indoor climate...

  8. Fabrication and flow characterization of vertically aligned carbon-nanotube/polymer membranes

    Science.gov (United States)

    Castellano, Richard; Meshot, Eric; Fornasiero, Francesco; Shan, Jerry

    2017-11-01

    Membranes with well-controlled nanopores are of interest for applications as diverse as chemical separations, water purification, and ``green'' power generation. In particular, membranes incorporating carbon nanotubes (CNTs) as through-pores have been shown to pass fluids at rates orders-of-magnitude faster than predicted by continuum theory. However, cost-effective and scalable solutions for fabricating such membranes are still an area of research. We describe a solution-based fabrication technique for creating polymer composite membranes from bulk nanotubes using electric-field alignment and electrophoretic concentration. We then focus on flow characterization of membranes with single-wall nanotube (SWNT) pores. We demonstrate membrane quality by size-exclusion testing and showing that the flowrate of different gasses scales as the square root of molecular weight. The gas flowrates and moisture-vapor-transmission rates are compared with theoretical predictions and with composite membranes -fabricated from CVD-grown SWNT arrays. Funded by DTRA Grant BA12PHM123.

  9. Colorimetric test-systems for creatinine detection based on composite molecularly imprinted polymer membranes.

    Science.gov (United States)

    Sergeyeva, T A; Gorbach, L A; Piletska, E V; Piletsky, S A; Brovko, O O; Honcharova, L A; Lutsyk, O D; Sergeeva, L M; Zinchenko, O A; El'skaya, A V

    2013-04-03

    An easy-to-use colorimetric test-system for the efficient detection of creatinine in aqueous samples was developed. The test-system is based on composite molecularly imprinted polymer (MIP) membranes with artificial receptor sites capable of creatinine recognition. A thin MIP layer was created on the surface of microfiltration polyvinylidene fluoride (PVDF) membranes using method of photo-initiated grafting polymerization. The MIP layer was obtained by co-polymerization of a functional monomer (e.g. 2-acrylamido-2-methyl-1-propanesulfonic acid, itaconic acid or methacrylic acid) with N, N'-methylenebisacrylamide as a cross-linker. The choice of the functional monomer was based on the results of computational modeling. The creatinine-selective composite MIP membranes were used for measuring creatinine in aqueous samples. Creatinine molecules were selectively adsorbed by the MIP membranes and quantified using color reaction with picrates. The intensity of MIP membranes staining was proportional to creatinine concentration in an analyzed sample. The colorimetric test-system based on the composite MIP membranes was characterized with 0.25 mM detection limit and 0.25-2.5mM linear dynamic range. Storage stability of the MIP membranes was estimated as at least 1 year at room temperature. As compared to the traditional methods of creatinine detection the developed test-system is characterized by simplicity of operation, small size and low cost. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Al2O3 Disk Supported Si3N4 Hydrogen Purification Membrane for Low Temperature Polymer Electrolyte Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Xiaoteng Liu

    2013-12-01

    Full Text Available Reformate gas, a commonly employed fuel for polymer electrolyte membrane fuel cells (PEMFCs, contains carbon monoxide, which poisons Pt-containing anodes in such devices. A novel, low-cost mesoporous Si3N4 selective gas separation material was tested as a hydrogen clean-up membrane to remove CO from simulated feed gas to single-cell PEMFC, employing Nafion as the polymer electrolyte membrane. Polarization and power density measurements and gas chromatography showed a clear effect of separating the CO from the gas mixture; the performance and durability of the fuel cell was thereby significantly improved.

  11. Al2O3 Disk Supported Si3N4 Hydrogen Purification Membrane for Low Temperature Polymer Electrolyte Membrane Fuel Cells.

    Science.gov (United States)

    Liu, Xiaoteng; Christensen, Paul A; Kelly, Stephen M; Rocher, Vincent; Scott, Keith

    2013-12-05

    Reformate gas, a commonly employed fuel for polymer electrolyte membrane fuel cells (PEMFCs), contains carbon monoxide, which poisons Pt-containing anodes in such devices. A novel, low-cost mesoporous Si3N4 selective gas separation material was tested as a hydrogen clean-up membrane to remove CO from simulated feed gas to single-cell PEMFC, employing Nafion as the polymer electrolyte membrane. Polarization and power density measurements and gas chromatography showed a clear effect of separating the CO from the gas mixture; the performance and durability of the fuel cell was thereby significantly improved.

  12. Influence of Ionic Liquid Content on Properties of Dense Polymer Membranes

    Czech Academy of Sciences Publication Activity Database

    Kohoutová, Marie; Sikora, Antonín; Hovorka, Š.; Randová, A.; Schauer, Jan; Tišma, J.; Setničková, Kateřina; Petričkovič, Roman; Guernik, S.; Greenspoon, N.; Izák, Pavel

    2009-01-01

    Roč. 45, č. 3 (2009), s. 813-819 ISSN 0014-3057 R&D Projects: GA ČR GA104/08/0600; GA ČR GA203/08/0465 Grant - others:MERG(XE) CT/2006/44737 Institutional research plan: CEZ:AV0Z40720504; CEZ:AV0Z40500505 Keywords : dense polymer membranes * biofuel * fermentation Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.310, year: 2009

  13. DETERMINATION OF THE MASS TRANSFER CHARACTERIZATION OF A CERAMIC-POLYMER COMPOSITE MEMBRANE IN THE PERVAPORATION MODE

    Science.gov (United States)

    The effect of the coating layer thickness on VOC extraction performance of a ceramic polymer composite membrane has been investigated. It was found, under experimental condiitons representing typical field operation, the overall mass transfer rates of feed components were control...

  14. Large enhancement in neurite outgrowth on a cell membrane-mimicking conducting polymer

    Science.gov (United States)

    Zhu, Bo; Luo, Shyh-Chyang; Zhao, Haichao; Lin, Hsing-An; Sekine, Jun; Nakao, Aiko; Chen, Chi; Yamashita, Yoshiro; Yu, Hsiao-Hua

    2014-07-01

    Although electrically stimulated neurite outgrowth on bioelectronic devices is a promising means of nerve regeneration, immunogenic scar formation can insulate electrodes from targeted cells and tissues, thereby reducing the lifetime of the device. Ideally, an electrode material capable of electrically interfacing with neurons selectively and efficiently would be integrated without being recognized by the immune system and minimize its response. Here we develop a cell membrane-mimicking conducting polymer possessing several attractive features. This polymer displays high resistance towards nonspecific enzyme/cell binding and recognizes targeted cells specifically to allow intimate electrical communication over long periods of time. Its low electrical impedance relays electrical signals efficiently. This material is capable to integrate biochemical and electrical stimulation to promote neural cellular behaviour. Neurite outgrowth is enhanced greatly on this new conducting polymer; in addition, electrically stimulated secretion of proteins from primary Schwann cells can also occur on it.

  15. Determination of membrane degradation products in the product water of polymer electrolyte membrane fuel cells using liquid chromatography mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zedda, Marco

    2011-05-12

    The predominant long term failure of polymer electrolyte membranes (PEM) is caused by hydroxyl radicals generated during fuel cell operation. These radicals attack the polymer, leading to chain scission, unzipping and consequently to membrane decomposition products. The present work has investigated decomposition products of novel sulfonated aromatic hydrocarbon membranes on the basis of a product water analysis. Degradation products from the investigated membrane type and the possibility to detect these compounds in the product water for diagnostic purposes have not been discovered yet. This thesis demonstrates the potential of solid phase extraction and liquid chromatography tandem mass spectrometry (SPE-LC-MS/MS) for the extraction, separation, characterization, identification and quantification of membrane degradation products in the product water of fuel cells. For this purpose, several polar aromatic hydrocarbons with different functional groups were selected as model compounds for the development of reliable extraction, separation and detection methods. The results of this thesis have shown that mixed mode sorbent materials with both weak anion exchange and reversed phase retention properties are well suited for reproducible extraction of both molecules and ions from the product water. The chromatographic separation of various polar aromatic hydrocarbons was achieved by means of phase optimized liquid chromatography using a solvent gradient and on a C18 stationary phase. Sensitive and selective detection of model compounds could be successfully demonstrated by the analysis of the product water using tandem mass spectrometry. The application of a hybrid mass spectrometer (Q Trap) for the characterization of unknown polar aromatic hydrocarbons has led to the identification and confirmation of 4-hydroxybenzoic acid in the product water. In addition, 4-HBA could be verified as a degradation product resulting from PEM decomposition by hydroxyl radicals using an

  16. Fabrication of cell outer membrane mimetic polymer brush on polysulfone surface via RAFT technique

    International Nuclear Information System (INIS)

    Ma Qian; Zhang Hui; Zhao Jiang; Gong Yongkuan

    2012-01-01

    Highlights: ► Cell membrane mimetic antifouling polymer brush was grown on polysulfone surface. ► Graft density and polymerization degree were calculated from XPS results. ► Water contact angle measurements showed an extremely hydrophilic surface. ► Platelet adhesion and protein adsorption results suggested excellent antifouling ability. - Abstract: Cell membrane mimetic antifouling polymer brush was grown on polysulfone (PSF) membrane by surface-induced reversible addition–fragmentation chain transfer (RAFT) polymerization of 2-methacryloyloxyethyl phosphorylcholine (MPC). The RAFT agent immobilized PSF substrate was prepared by successive chloromethylation, amination with ethylenediamine (EDA) and amidation of the amine group of grafted EDA with the carboxylic group of 4-cyanopentanoic acid dithiobenzoate (CPAD). The surface RAFT polymerization of MPC was initiated in aqueous solution by 4,4′-azobis-4-cyanopentanoic acid (ACPA). The formation of PMPC brush coating is evidenced by X-ray photoelectron spectroscopy and water contact angle measurements. The degree of polymerization of PMPC and the polymer grafting density were calculated from the high resolution XPS spectra. The platelet adhesion and protein adsorption results showed that the PMPC-grafted PSF surface has excellent antifouling ability to resist platelet adhesion completely and suppress protein adsorption significantly. This biomimetic and bio-friendly surface RAFT polymerization strategy could be promising for a variety of biomedical applications.

  17. Novel cellulose reinforcement for polymer electrolyte membranes with outstanding mechanical properties

    International Nuclear Information System (INIS)

    Nair, Jijeesh R.; Chiappone, A.; Gerbaldi, C.; Ijeri, Vijaykumar S.; Zeno, E.; Bongiovanni, R.; Bodoardo, S.; Penazzi, N.

    2011-01-01

    Highlights: ► UV-cured methacrylic-based composite gel-polymer electrolyte membranes for rechargeable lithium batteries. ► Excellent mechanical stability by reinforcement with classical cellulose handsheets. ► Fast and environmentally friendly preparation process, green and low cost cellulose reinforcement. ► Good electrochemical behaviour, stable cyclability and long-term performances in real battery configuration. - Abstract: Methacrylic-based thermo-set gel-polymer electrolytes obtained by an easy and reliable free radical photo-polymerisation process demonstrate good behaviour in terms of ionic conductivity, interfacial stability with the Li-metal electrode and cyclability in lithium cells. Though the obtained membranes are flexible, self standing and easy to handle, there is room for improving mechanical strength. In this respect, a novel approach is adopted in this work, in which a cellulose hand-sheet (paper), specifically designed for the specific application, is used as a composite reinforcing agent. To enhance its compatibility with the polymer matrix, cellulose is modified by UV-grafting of poly(ethylene glycol) methyl ether methacrylate on it. Excellent mechanical properties are obtained and good overall electrochemical performances are maintained; highlighting that such specific approach would make these hybrid organic, green, cellulose-based composite polymer electrolyte systems a strong contender in the field of thin and flexible Li-based power sources.

  18. Bioinspired porous membranes containing polymer nanoparticles for wound healing.

    Science.gov (United States)

    Ferreira, Ana M; Mattu, Clara; Ranzato, Elia; Ciardelli, Gianluca

    2014-12-01

    Skin damages covering a surface larger than 4 cm(2) require a regenerative strategy based on the use of appropriate wound dressing supports to facilitate the rapid tissue replacement and efficient self-healing of the lost or damaged tissue. In the present work, A novel biomimetic approach is proposed for the design of a therapeutic porous construct made of poly(L-lactic acid) (PLLA) fabricated by thermally induced phase separation (TIPS). Biomimicry of ECM was achieved by immobilization of type I collagen through a two-step plasma treatment for wound healing. Anti-inflammatory (indomethacin)-containing polymeric nanoparticles (nps) were loaded within the porous membranes in order to minimize undesired cell response caused by post-operative inflammation. The biological response to the scaffold was analyzed by using human keratinocytes cell cultures. In this work, a promising biomimetic construct for wound healing and soft tissue regeneration with drug-release properties was fabricated since it shows (i) proper porosity, pore size, and mechanical properties, (ii) biomimicry of ECM, and (iii) therapeutic potential. © 2014 Wiley Periodicals, Inc.

  19. Polybenzimidazole Membranes Containing Benzimidazole Side Groups for High Temprature Polymer Electrolyte Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Yang, Jingshuai; Li, Xueyuan; Xu, Yizin

    2013-01-01

    Polybenzimidazole (PBI) with a high molecular weight of 69,000 was first synthesized. It was afterwards grafted with benzimidazole pendant groups on the backbones. The acid doped benzimidaozle grafted PBI membranes were investigated and characterized including fuel cell tests at elevated temperat......Polybenzimidazole (PBI) with a high molecular weight of 69,000 was first synthesized. It was afterwards grafted with benzimidazole pendant groups on the backbones. The acid doped benzimidaozle grafted PBI membranes were investigated and characterized including fuel cell tests at elevated...... temperatures without humidification. At an acid doping level of 13.1 mol H3PO4 per average molar repeat unit, the PBI membranes with a benzimidazole grafting degree of 10.6% demonstrated a conductivity of 0.15 S cm-1 and a H2-air fuel cell peak power density of 378 mW cm-2 at 180 oC at ambient pressure without...

  20. Fabrication of carbon-polymer composite bipolar plates for polymer electrolyte membrane fuel cells by compression moulding

    International Nuclear Information System (INIS)

    Raza, M.A.; Ahmed, R.; Saleem, A.; Din, R.U.

    2009-01-01

    Fuel cells are considered as one of the most important technologies to address the future energy and environmental pollution problems. These are the most promising power sources for road transportation and portable devices. A fuel cell is an electrochemical device that converts chemical energy into electrical energy. A fuel cell stack consists of bipolar plates and membrane electrode assemblies (MEA). The bipolar plate is by weight, volume and cost one of the most significant components of a fuel cell stack. Major functions of bipolar plates are to separate oxidant and fuel gas, provide flow channels, conduct electricity and provide heat transfer. Bipolar plates can be made from various materials including graphite, metals, carbon / carbon and carbon/ polymer composites. Materials for carbon-polymer composites are relatively inexpensive, less corrosive, strong and channels can be formed by means of a moulding process. Carbon-polymer composites are of two type i.e; thermosetting and thermoplastic. For thermosetting composite a bulk molding compound (BMC) was prepared by adding graphite, vinyl ester resin, methyl ethyl ketone peroxide and cobalt naphthalate. The BMC was thoroughly mixed, poured into a die mould of a bipolar plate with channels and hot pressed at a specific temperature and pressure. A bipolar plate was formed according to the die mould. Design of the mould is also discussed. Conducting polymers were also added to BMC to increase the conductivity of bipolar plates. Particle size of the graphite has also a significant effect on the conductivity of the bipolar plates. Thermoplastic composites were also prepared using polypropylene and graphite.

  1. Catalytic phosphonation of high performance polymers and POSS. Novel components for polymer blend and nanocomposite fuel cell membranes

    Energy Technology Data Exchange (ETDEWEB)

    Bock, T.R.

    2006-10-15

    Aim of this thesis was the preparation and evaluation of phosphonated high performance (HP) polyelectrolytes and polyhedral oligomeric silsesquioxanes (POSS) for polyelectrolyte membrane fuel cell (PEMFC) application. Brominated derivatives of the commercial high performance (HP) polymers poly(ethersulfone) (PES), poly(etheretherketone) (PEEK), poly(phenylsulfone) (PPSu), poly(sulfone) (PSU) and of octaphenyl-POSS of own production were phosphonated by Ni-catalysed Arbuzov reaction. Phosphonated PSU was cast into pure and blend films with sulfonated PEEK (s-PEEK) to investigate H+-conductivity, water uptake and film morphology. Blend films' properties were referenced to films containing unmodified blend partners. Solution-compounding of phosphonated octaphenyl-POSS and s-PEEK was used to produce novel nanocomposite films. An in-situ zirconisation method was assessed as convenient strategy for novel ionically crosslinked membranes of enhanced swelling resistance. Dibromo isocyanuric acid (DBI) and N-bromo succinimide (NBS) as brominating agents allowed polymer analogous preparation of the novel brominated PES and PEEK with precise reaction control. A random distribution of functional groups, i.e. polyelectrolytes' microstructural homogeneity was revealed as decisive factor concerning solubility of phosphonated PSU. Brominated phT8 was prepared with Br2 by a high temperature approach in tetrachloroethane (TCE). Brominated polymers were phosphonated by Ni-catalysis in non-coordinating high temperature solvents, such as diphenylether, benzophenone and diphenylsulfone without notable solvent influence. The lack of solvent - catalyst complexes and high reaction temperatures of 180-200 C led to halogen-free phosphonates with unprecedented high functionalities. Polymer analogous application of P(OSiMe3)3 offered a novel direct access to easily cleavable disilyl ester derivatives. These were obtained from PEEK and PSU in near quantitative yields at NiCl2-loads as

  2. Membranes of Polymers of Intrinsic Microporosity (PIM-1) Modified by Poly(ethylene glycol).

    Science.gov (United States)

    Bengtson, Gisela; Neumann, Silvio; Filiz, Volkan

    2017-06-05

    Until now, the leading polymer of intrinsic microporosity PIM-1 has become quite famous for its high membrane permeability for many gases in gas separation, linked, however, to a rather moderate selectivity. The combination with the hydrophilic and low permeable poly(ethylene glycol) (PEG) and poly(ethylene oxides) (PEO) should on the one hand reduce permeability, while on the other hand enhance selectivity, especially for the polar gas CO₂ by improving the hydrophilicity of the membranes. Four different paths to combine PIM-1 with PEG or poly(ethylene oxide) and poly(propylene oxide) (PPO) were studied: physically blending, quenching of polycondensation, synthesis of multiblock copolymers and synthesis of copolymers with PEO/PPO side chain. Blends and new, chemically linked polymers were successfully formed into free standing dense membranes and measured in single gas permeation of N₂, O₂, CO₂ and CH₄ by time lag method. As expected, permeability was lowered by any substantial addition of PEG/PEO/PPO regardless the manufacturing process and proportionally to the added amount. About 6 to 7 wt % of PEG/PEO/PPO added to PIM-1 halved permeability compared to PIM-1 membrane prepared under similar conditions. Consequently, selectivity from single gas measurements increased up to values of about 30 for CO₂/N₂ gas pair, a maximum of 18 for CO₂/CH₄ and 3.5 for O₂/N₂.

  3. Modification of electrical properties of polymer membranes by ion implantation (II)

    International Nuclear Information System (INIS)

    Dworecki, K.; Hasegawa, T.; Sudlitz, K.; Slezak, A.; Wasik, S.

    2001-01-01

    In the present work we report on the results of an experimental study of the electrical properties of polymer ion irradiated polyethylene terephthalate (PET) membranes. The polymer samples have been implanted under vacuum at room temperature with a variety of ions (C 4+ , O 6+ , S 7+ ) at energy of 10 keV/q up to the dose of 10 15 ions/cm 2 and then they were polarized in an electric field of 4.16x10 6 V/m at non-isothermal conditions. The electrical properties and changes in chemical structure of ion implanted membranes were studied by the conductivity and discharge currents measurements, FTIR spectra and differential thermal analysis. The electrical conductivity of the PET membranes is determined by the charge transport caused by free space charge and by thermal releasing of charge carriers. The spectra of thermally induced discharge current (TDC) shows that ion irradiated PET membranes are characterized by high ability of charge accumulation

  4. Preparation of polymer electrolyte membranes for lithium batteries by radiation-induced graft copolymerization

    Energy Technology Data Exchange (ETDEWEB)

    Nasef, Mohamed Mahmoud [Business and Advanced Technology Centre, Universiti Teknologi Malaysia, Jalan Semarak, 54100 Kuala Lumpur (Malaysia); Suppiah, Raja Rajeswary [Chemical Engineering Program, Universiti Teknologi Petronas, Bandar Seri Iskandar, 37150 Tronoh, Perak (Malaysia); Dahlan, Khairul Zaman Mohd [Malaysian Institute for Nuclear Technology Research, Bangi, 43000 Kajang (Malaysia)

    2004-07-30

    Polymer electrolyte membranes with different degrees of grafting were prepared by radiation-induced graft copolymerization of styrene monomer onto poly(vinylidene fluoride) (PVDF) films and subsequent chemical activation with liquid electrolyte consisting of lithium hexafluorophosphate (LiPF{sub 6}) in a mixture of ethylene carbonate/diethylene carbonate (EC/DEC). The chemical changes in the PVDF films after styrene grafting and subsequent chemical activation were monitored by FTIR spectroscopic analysis and the crystallinity was evaluated using differential scanning calorimetric (DSC) analysis. The swelling in electrolyte solution (electrolyte uptake) and the ionic conductivity of the membranes were determined at various degrees of grafting. The conductivity of the membranes was found to increase with the increase in the degree of grafting and reached a magnitude of 10{sup -3} S/cm at a degree of grafting of 50%. The results of this work suggest that radiation-induced graft polymerization provides an alternative method to substitute blending in preparation of polymer electrolyte membranes for application in lithium batteries.

  5. Electrospun polyimide-based fiber membranes as polymer electrolytes for lithium-ion batteries

    International Nuclear Information System (INIS)

    Wang, Qiujun; Song, Wei-Li; Wang, Luning; Song, Yu; Shi, Qiao; Fan, Li-Zhen

    2014-01-01

    Polymer electrolytes based on electrospun polyimide (PI) membranes are incorporated with electrolyte solution containing 1 mol L −1 LiPF 6 /ethylene carbonate/ethylmethyl carbonate/dimethyl carbonate to examine their potential application for lithium ion batteries. The as-electrospun non-woven membranes demonstrate a uniformly interconnected structure with an average fiber diameter of 800 nm. The membranes, showing superior thermal stability and flame retardant property compared to the commercial Celgard® membranes, exhibit high porosity and high uptake when activated with the liquid electrolyte. The resulting PI electrolytes (PIs) have a high ionic conductivity up to 2.0 × 10 −3 S cm −1 at 25 °C, and exhibit a high electrochemical stability potential more than 5.0 V (vs. Li/Li + ). They also possess excellent charge/discharge performance and capacity retention. The initial discharge capacities of the Li/PIs/Li 4 Ti 5 O 12 cells are 178.4, 167.4, 160.3, 148.3 and 135.9 mAh g −1 at the charge/discharge rates of 0.2 C, 1 C, 2 C, 5 C and 10 C, respectively. After 200 cycles at 5 C, a capacity around ∼146.8 mAh g −1 can be still achieved. The PI-based polymer electrolytes with strong mechanical properties and good electrochemical performance are proved to be promising electrolytes for lithium ion batteries

  6. Introduction of functionalizable groups via radiation grafting into polymer electrolyte membranes for fuel cells

    International Nuclear Information System (INIS)

    Buchmueller, Y.; Scherer, G.G.; Wokaun, A.; Gubler, L.

    2011-01-01

    Complete text of publication follows. Our work is focused on the introduction of functionalizable groups, so called linkers, to polymer electrolyte membranes. The aim is to attach antioxidant groups to the linkers to enhance the durability of the proton conducting membrane in a fuel cell. The synthetic route we chose is radiation cografting of functionalizable monomers and precursor monomers of a protogenic group into ETFE base film (thickness 25 μm) with subsequent amination. Typically, we performed cografting of styrene with different linkers, such as acryloyl chloride, vinylbenzyl chloride, and glycidyl methacrylate. Styrene is readily sulfonated to introduce proton conductivity. The cografting behavior of the linkers and styrene was investigated to target the desired molar fraction of the monomers in the grafted polymer. All films were characterized by Fourier transform infrared (FTIR) spectroscopy and elemental analysis. Using these data the graft polymerization kinetics of these systems have been determined. The cografted films were first functionalized with amines, such as thyramine and dopamine, and then sulfonated or vice-versa, depending on the stability of the compounds in acidic environment. The synthesized membranes were characterized for conductivity and ion exchange capacity (IEC). Promising membranes were tested in a fuel cell.

  7. Research on the Changes to the Lipid/Polymer Membrane Used in the Acidic Bitterness Sensor Caused by Preconditioning

    Directory of Open Access Journals (Sweden)

    Yuhei Harada

    2016-02-01

    Full Text Available A taste sensor that uses lipid/polymer membranes can evaluate aftertastes felt by humans using Change in membrane Potential caused by Adsorption (CPA measurements. The sensor membrane for evaluating bitterness, which is caused by acidic bitter substances such as iso-alpha acid contained in beer, needs an immersion process in monosodium glutamate (MSG solution, called “MSG preconditioning”. However, what happens to the lipid/polymer membrane during MSG preconditioning is not clear. Therefore, we carried out three experiments to investigate the changes in the lipid/polymer membrane caused by the MSG preconditioning, i.e., measurements of the taste sensor, measurements of the amount of the bitterness substance adsorbed onto the membrane and measurements of the contact angle of the membrane surface. The CPA values increased as the preconditioning process progressed, and became stable after 3 d of preconditioning. The response potentials to the reference solution showed the same tendency of the CPA value change during the preconditioning period. The contact angle of the lipid/polymer membrane surface decreased after 7 d of MSG preconditioning; in short, the surface of the lipid/polymer membrane became hydrophilic during MSG preconditioning. The amount of adsorbed iso-alpha acid was increased until 5 d preconditioning, and then it decreased. In this study, we revealed that the CPA values increased with the progress of MSG preconditioning in spite of the decrease of the amount of iso-alpha acid adsorbed onto the lipid/polymer membrane, and it was indicated that the CPA values increase because the sensor sensitivity was improved by the MSG preconditioning.

  8. Dynamic water management of polymer electrolyte membrane fuel cells using intermittent RH control

    KAUST Repository

    Hussaini, I.S.

    2010-06-01

    A novel method of water management of polymer electrolyte membrane (PEM) fuel cells using intermittent humidification is presented in this study. The goal is to maintain the membrane close to full humidification, while eliminating channel flooding. The entire cycle is divided into four stages: saturation and de-saturation of the gas diffusion layer followed by de-hydration and hydration of membrane. By controlling the duration of dry and humid flows, it is shown that the cell voltage can be maintained within a narrow band. The technique is applied on experimental test cells using both plain and hydrophobic materials for the gas diffusion layer and an improvement in performance as compared to steady humidification is demonstrated. Duration of dry and humid flows is determined experimentally for several operating conditions. © 2010 Elsevier B.V. All rights reserved.

  9. Protein permeation through polymer membranes for hybrid-type artificial pancreas

    Energy Technology Data Exchange (ETDEWEB)

    Burczak, K; Fujisato, Toshiya; Ikada, Yoshito [Kyoto Univ. (Japan); Hatada, Motoyoshi

    1991-05-01

    Hydrogel membranes were prepared by radiation crosslinking of poly (vinyl alcohol) (PVA) in aqueous solutions. Effects of PVA concentration, PVA molecular weight, and radiation dose on the permeation of insulin and immunoglobulin through the membranes were investigated. Glucose permeation was also studied. The crosslinking density affected the size of macromolecular mesh of hydrogel network as well as the water content of membrane responsible for the diffusion of the solutes. The diffusion coefficient linearly increased for all the solutes with the increasing water content in PVA hydrogels, indicating that diffusion occurs primarily through the water hydrating the polymer network. The increase in crosslinking density of hydrogels by changing PVA molecular weight brought about the decrease in mesh size of the hydrogels, which, in turn, had an influence on the diffusion of immunoglobulin, but not of insulin and glucose. (author).

  10. Asymmetric Hybrid Polymer-Lipid Giant Vesicles as Cell Membrane Mimics.

    Science.gov (United States)

    Peyret, Ariane; Ibarboure, Emmanuel; Le Meins, Jean-François; Lecommandoux, Sebastien

    2018-01-01

    Lipid membrane asymmetry plays an important role in cell function and activity, being for instance a relevant signal of its integrity. The development of artificial asymmetric membranes thus represents a key challenge. In this context, an emulsion-centrifugation method is developed to prepare giant vesicles with an asymmetric membrane composed of an inner monolayer of poly(butadiene)- b -poly(ethylene oxide) (PBut- b -PEO) and outer monolayer of 1-palmitoyl-2-oleoyl- sn -glycero-3-phosphocholine (POPC). The formation of a complete membrane asymmetry is demonstrated and its stability with time is followed by measuring lipid transverse diffusion. From fluorescence spectroscopy measurements, the lipid half-life is estimated to be 7.5 h. Using fluorescence recovery after photobleaching technique, the diffusion coefficient of 1,2-dioleoyl- sn -glycero-3-phosphoethanolamine- N -(lissamine rhodamine B sulfonyl) (DOPE-rhod, inserted into the POPC leaflet) is determined to be about D = 1.8 ± 0.50 μm 2 s -1 at 25 °C and D = 2.3 ± 0.7 μm 2 s -1 at 37 °C, between the characteristic values of pure POPC and pure polymer giant vesicles and in good agreement with the diffusion of lipids in a variety of biological membranes. These results demonstrate the ability to prepare a cell-like model system that displays an asymmetric membrane with transverse and translational diffusion properties similar to that of biological cells.

  11. Nafion-TiO{sub 2} hybrid membranes for medium temperature polymer electrolyte fuel cells (PEFCs)

    Energy Technology Data Exchange (ETDEWEB)

    Sacca, A.; Carbone, A.; Passalacqua, E. [CNR-ITAE, Via Salita S. Lucia Sopra Contesse, 98126 Messina (Italy); D' Epifanio, A.; Licoccia, S.; Traversa, E. [Department of Chemical Science and Technology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome (Italy); Sala, E.; Traini, F.; Ornelas, R. [Nuvera Fuel Cells, Via Bistolfi 35, 20134 Milan (Italy)

    2005-12-01

    A nanocomposite re-cast Nafion hybrid membrane containing titanium oxide calcined at T=400{sup o}C as an inorganic filler was developed in order to work at medium temperature in polymer electrolyte fuel cells (PEFCs) maintaining a suitable membrane hydration under fuel cell operative critical conditions. Nanometre TiO{sub 2} powder was synthesized via a sol-gel procedure by a rapid hydrolysis of Ti(OiPr){sub 4}. The membrane was prepared by mixing a Nafion-dimethylacetammide (DMAc) dispersion with a 3wt% of TiO{sub 2} powder and casting the mixture by Doctor Blade technique. The resulting film was characterised in terms of water uptake and ion exchange capacity (IEC). The membrane was tested in a single cell from 80 to 130{sup o}C in humidified H{sub 2}/air. The obtained results were compared with the commercial Nafion115 and a home-made recast Nafion membrane. Power density values of 0.514 and 0.256Wcm{sup -2} at 0.56V were obtained at 110 and 130{sup o}C, respectively, for the composite Nafion-Titania membrane. Preliminary tests carried out using steam reforming (SR) synthetic fuel at about 110{sup o}C have highlighted the benefit of the inorganic filler introduction when PEFC operates at medium temperature and with processed hydrogen. (author)

  12. Synthesis of modified polymer inclusion membranes for photo-electrodeposition of cadmium using polarized electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Yahia Cherif, Asma [Laboratory of Hydrometallurgy and Inorganic Molecular Chemistry, Faculty of Chemistry, USTHB, BP 32 El Alia, 16111, Algiers (Algeria); Arous, Omar, E-mail: omararous@yahoo.fr [Laboratory of Hydrometallurgy and Inorganic Molecular Chemistry, Faculty of Chemistry, USTHB, BP 32 El Alia, 16111, Algiers (Algeria); Center of Research in Physical and Chemical Analysis CRAPC, BP 248 Algiers, RP 16004, Algiers (Algeria); Amara, Mourad [Laboratory of Hydrometallurgy and Inorganic Molecular Chemistry, Faculty of Chemistry, USTHB, BP 32 El Alia, 16111, Algiers (Algeria); Omeiri, Said [Center of Research in Physical and Chemical Analysis CRAPC, BP 248 Algiers, RP 16004, Algiers (Algeria); Laboratory of Storage and Valorization of Renewable Energies, Faculty of Chemistry, USTHB, BP 32 El Alia, 16111, Algiers (Algeria); Kerdjoudj, Hacene [Laboratory of Hydrometallurgy and Inorganic Molecular Chemistry, Faculty of Chemistry, USTHB, BP 32 El Alia, 16111, Algiers (Algeria); Trari, Mohamed [Laboratory of Storage and Valorization of Renewable Energies, Faculty of Chemistry, USTHB, BP 32 El Alia, 16111, Algiers (Algeria)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Homogeneous PIM membranes containing water soluble polymers have been obtained under new experimental conditions. Black-Right-Pointing-Pointer Photoelectrodeposition of 'Cd' has been carried out using WO{sub 3} and CuFeO{sub 2} as electrode. Black-Right-Pointing-Pointer Using both photo-polarized electrodes enhances transference of cadmium compared to one. Black-Right-Pointing-Pointer Membrane with poly-phosphoric acid (PPA) give a rise of transferred amount of Cd. - Abstract: In this work, we have developed a novel class of polymeric inclusion membranes (PIMs) for the cations separation. The membrane is made up of cellulose triacetate modified by poly-electrolytes (poly-phosphoric acid, polyvinyl pyrolidone, polyacrylic acid, polyvinyl alcohol and poly-anetholsulfonic acid) using 2-hydroxy-5-dodecylbenzaldehyde incorporated into the polymer as carrier and tris ethyl hexyl phosphate or glycerine as plasticizers. Different PIMs are synthesized and characterized by the Fourier transform infrared, X-ray diffraction, thermal analysis and scanning electron microscopy. The influence of the membrane nature is studied using supports with different physical characteristics (porosity, thickness, hydrophobia). As application, the transport of Cd{sup 2+} using PIMs coupled with photo-electrodes is investigated. The photo-catalytic results indicate that the combined system p-CuFeO{sub 2}/membrane/n-WO{sub 3} enhances considerably the electrons transfer toward the delafossite CuFeO{sub 2}. The position of the conduction band of CuFeO{sub 2} is looked to be the key issue for the photo electrochemical Cd{sup 2+} reduction.

  13. Three-dimensional dynamic modelling of Polymer-Electrolyte-Membrane-Fuel-Cell-Systems; Dreidimensionale dynamische Modellierung und Berechnung von Polymer-Elektrolyt-Membran-Brennstoffzellen

    Energy Technology Data Exchange (ETDEWEB)

    Vath, Andreas

    2008-12-15

    This thesis deals with dynamic and multi-dimensional modelling of Polymer- Electrolyte-Membrane-Fuel-Cells (PEMFC). The developed models include all the different layers of the fuel cell e.g. flow field, gas diffusion layer, catalyst layer and membrane with their particular physical, chemical and electrical characteristics. The simulation results have been verified by detailed measurements performed at the research centre for hydrogen and solar energy in Ulm (ZSW Ulm). The developed three dimensional model describes the time- and spatial-dependent charge and mass transport in a fuel cell. Additionally, this model allows the analysis of critical operating conditions. For example, the current density distribution for different membranes is shown during insufficient humidification which results in local overstraining and degradation. The model also allows to analyse extreme critical operating conditions, e.g. short time breakdown of the humidification. Furthermore, the model shows the available potential of improvement opportunities in power density and efficiency of PEMFC due to optimisation of the gas diffusion layer, the catalyst and membrane. In the second part of the work the application of PEMFC systems for combined heat and power units is described by one-dimensional models for an electrical power range between 1 kW and 5 kW. This model contains the necessary components, e.g. gas processing, humidification, gas supply, fuel cell stack, heat storage, pumps, auxiliary burner, power inverter und additional aggregates. As a main result, it is possible to distinctly reduce the energy demand and the carbon dioxide exhaust for different load profiles. Today the costs for fuel cell systems are considerably higher than that of the conventional electrical energy supply. (orig.)

  14. Investigation of Cross-Linked and Additive Containing Polymer Materials for Membranes with Improved Performance in Pervaporation and Gas Separation

    Directory of Open Access Journals (Sweden)

    Karl Kleinermanns

    2012-10-01

    Full Text Available Pervaporation and gas separation performances of polymer membranes can be improved by crosslinking or addition of metal-organic frameworks (MOFs. Crosslinked copolyimide membranes show higher plasticization resistance and no significant loss in selectivity compared to non-crosslinked membranes when exposed to mixtures of CO2/CH4 or toluene/cyclohexane. Covalently crosslinked membranes reveal better separation performances than ionically crosslinked systems. Covalent interlacing with 3-hydroxypropyldimethylmaleimide as photocrosslinker can be investigated in situ in solution as well as in films, using transient UV/Vis and FTIR spectroscopy. The photocrosslinking yield can be determined from the FTIR-spectra. It is restricted by the stiffness of the copolyimide backbone, which inhibits the photoreaction due to spatial separation of the crosslinker side chains. Mixed-matrix membranes (MMMs with MOFs as additives (fillers have increased permeabilities and often also selectivities compared to the pure polymer. Incorporation of MOFs into polysulfone and Matrimid® polymers for MMMs gives defect-free membranes with performances similar to the best polymer membranes for gas mixtures, such as O2/N2 H2/CH4, CO2/CH4, H2/CO2, CH4/N2 and CO2/N2 (preferentially permeating gas is named first. The MOF porosity, its particle size and content in the MMM are factors to influence the permeability and the separation performance of the membranes.

  15. Investigation of cross-linked and additive containing polymer materials for membranes with improved performance in pervaporation and gas separation.

    Science.gov (United States)

    Hunger, Katharina; Schmeling, Nadine; Jeazet, Harold B Tanh; Janiak, Christoph; Staudt, Claudia; Kleinermanns, Karl

    2012-10-22

    Pervaporation and gas separation performances of polymer membranes can be improved by crosslinking or addition of metal-organic frameworks (MOFs). Crosslinked copolyimide membranes show higher plasticization resistance and no significant loss in selectivity compared to non-crosslinked membranes when exposed to mixtures of CO2/CH4 or toluene/cyclohexane. Covalently crosslinked membranes reveal better separation performances than ionically crosslinked systems. Covalent interlacing with 3-hydroxypropyldimethylmaleimide as photocrosslinker can be investigated in situ in solution as well as in films, using transient UV/Vis and FTIR spectroscopy. The photocrosslinking yield can be determined from the FTIR-spectra. It is restricted by the stiffness of the copolyimide backbone, which inhibits the photoreaction due to spatial separation of the crosslinker side chains. Mixed-matrix membranes (MMMs) with MOFs as additives (fillers) have increased permeabilities and often also selectivities compared to the pure polymer. Incorporation of MOFs into polysulfone and Matrimid® polymers for MMMs gives defect-free membranes with performances similar to the best polymer membranes for gas mixtures, such as O2/N2 H2/CH4, CO2/CH4, H2/CO2, CH4/N2 and CO2/N2 (preferentially permeating gas is named first). The MOF porosity, its particle size and content in the MMM are factors to influence the permeability and the separation performance of the membranes.

  16. Solid polymer electrolyte composite membrane comprising a porous support and a solid polymer electrolyte including a dispersed reduced noble metal or noble metal oxide

    Science.gov (United States)

    Liu, Han; Mittelsteadt, Cortney K; Norman, Timothy J; Griffith, Arthur E; LaConti, Anthony B

    2015-02-24

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a thin, rigid, dimensionally-stable, non-electrically-conducting support, the support having a plurality of cylindrical, straight-through pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores are unevenly distributed, with some or no pores located along the periphery and more pores located centrally. The pores are completely filled with a solid polymer electrolyte, the solid polymer electrolyte including a dispersed reduced noble metal or noble metal oxide. The solid polymer electrolyte may also be deposited over the top and/or bottom surfaces of the support.

  17. Comparison of different cells for resistance determination of freely standing polymer membranes developed for direct methanol fuel cell (DMFC) applications

    Czech Academy of Sciences Publication Activity Database

    Mohr, R.; Kůdela, Vlastimil; Schauer, Jan; Richau, K.

    2002-01-01

    Roč. 147, 1-3 (2002), s. 191-196 ISSN 0011-9164. [International Congress on Membranes and Membrane Processes. Toulouse, 07.07.2002-12.07.2002] R&D Projects: GA MŠk ME 366 Grant - others:GA-(DE) WTZ CZE 028/00 Institutional research plan: CEZ:AV0Z4050913 Keywords : conducting polymer membranes * impedance spectroscopy * sulfonated poly(phenylene oxide) Subject RIV: CG - Electrochemistry Impact factor: 0.517, year: 2002

  18. Functionalized carbon nanotubes mixed matrix membranes of polymers of intrinsic microporosity for gas separation.

    Science.gov (United States)

    Khan, Muntazim Munir; Filiz, Volkan; Bengtson, Gisela; Shishatskiy, Sergey; Rahman, Mushfequr; Abetz, Volker

    2012-09-06

    The present work reports on the gas transport behavior of mixed matrix membranes (MMM) which were prepared from multi-walled carbon nanotubes (MWCNTs) and dispersed within polymers of intrinsic microporosity (PIM-1) matrix. The MWCNTs were chemically functionalized with poly(ethylene glycol) (PEG) for a better dispersion in the polymer matrix. MMM-incorporating functionalized MWCNTs (f-MWCNTs) were fabricated by dip-coating method using microporous polyacrylonitrile membrane as a support and were characterized for gas separation performance. Gas permeation measurements show that MMM incorporated with pristine or functionalized MWCNTs exhibited improved gas separation performance compared to pure PIM-1. The f-MWCNTs MMM show better performance in terms of permeance and selectivity in comparison to pristine MWCNTs. The gas permeances of the derived MMM are increased to approximately 50% without sacrificing the selectivity at 2 wt.% of f-MWCNTs' loading. The PEG groups on the MWCNTs have strong interaction with CO2 which increases the solubility of polar gas and limit the solubility of nonpolar gas, which is advantageous for CO2/N2 selectivity. The addition of f-MWCNTs inside the polymer matrix also improved the long-term gas transport stability of MMM in comparison with PIM-1. The high permeance, selectivity, and long term stability of the fabricated MMM suggest that the reported approach can be utilized in practical gas separation technology.

  19. The use of radiation-induced graft polymerization for modification of polymer track membranes

    International Nuclear Information System (INIS)

    Shtanko, N.I.; Kabanov, V.Ya.; Apel, P.Yu.; Yoshida, M.

    1999-01-01

    Track membranes (TM) made of poly(ethylene terephtalate) (PET) and polypropylene (PP) films have a number of peculiarities as compared with other ones. They have high mechanical strength at a low thickness, narrow pore size distribution, low content of extractables. However, TM have some disadvantages such as low chemical resistance in alkaline media (PET TM), the low water flow rate due to the hydrophobic nature of their surface. The use of radiation-induced graft polymerization makes it possible to improve the basic characteristics of TM. In this communication our results on the modification of PET and PP TM are presented. The modified membranes were prepared by radiation-induced graft polymerization from the liquid phase. Three methods of grafting were used: (a) the direct method in argon atmosphere; (b) the pre-irradiation of TM in air followed by grafting in argon atmosphere; (c) pre-irradiation in vacuum followed by grafting in vacuum without contacting oxygen. The aim of the work was to investigate some properties of TM modified by grafted poly(methylvinyl pyridine) (PMVP) and poly(N-isopropylacrylamide) (PNIPAAM). It was shown that the modification of TM with hydrophilic polymer results in the growth of the water flow rate. In the past few years many works have been devoted to the synthesis of new polymers - the so-called 'intelligent' materials - such as PNIPAAM. However, it is very difficult to make thin membranes of this polymer. Recently, it has been proposed to manufacture composite membranes by grafting stimulus-responsive polymers onto TM. Following this principle, we prepared thermosensitive membranes by the radiation-induced graft polymerization of N-isopropylacrylamide (NIPAAM) onto PET TM. PET TM with the pore size of about 1 μm and pore density of 10 6 cm -2 were first inserted into a solution of NIPAAM containing inhibitor of homopolymerization (CuCl 2 ) and then exposed to the γ-rays from a 60 Co source. The transport properties of the

  20. The use of radiation-induced graft polymerization for modification of polymer track membranes

    Science.gov (United States)

    Shtanko, N. I.; Kabanov, V. Ya.; Apel, P. Yu.; Yoshida, M.

    1999-05-01

    Track membranes (TM) made of poly(ethylene terephtalate) (PET) and polypropylene (PP) films have a number of peculiarities as compared with other ones. They have high mechanical strength at a low thickness, narrow pore size distribution, low content of extractables. However, TM have some disadvantages such as low chemical resistance in alkaline media (PET TM), the low water flow rate due to the hydrophobic nature of their surface. The use of radiation-induced graft polymerization makes it possible to improve the basic characteristics of TM. In this communication our results on the modification of PET and PP TM are presented. The modified membranes were prepared by radiation-induced graft polymerization from the liquid phase. Three methods of grafting were used: (a) the direct method in argon atmosphere; (b) the pre-irradiation of TM in air followed by grafting in argon atmosphere; (c) pre-irradiation in vacuum followed by grafting in vacuum without contacting oxygen. The aim of the work was to investigate some properties of TM modified by grafted poly(methylvinyl pyridine) (PMVP) and poly(N-isopropylacrylamide) (PNIPAAM). It was shown that the modification of TM with hydrophilic polymer results in the growth of the water flow rate. In the past few years many works have been devoted to the synthesis of new polymers - the so-called "intelligent" materials - such as PNIPAAM. However, it is very difficult to make thin membranes of this polymer. Recently, it has been proposed to manufacture composite membranes by grafting stimulus-responsive polymers onto TM. Following this principle, we prepared thermosensitive membranes by the radiation-induced graft polymerization of N-isopropylacrylamide (NIPAAM) onto PET TM. PET TM with the pore size of about 1 μm and pore density of 10 6 cm -2 were first inserted into a solution of NIPAAM containing inhibitor of homopolymerization (CuCl 2) and then exposed to the γ-rays from a 60Co source. The transport properties of the grafted

  1. Use of gamma and UV radiation in grafting hydrogel polymers to membranes

    International Nuclear Information System (INIS)

    Baker, L.; Hill, D.J.T.; Whittaker, A.; Hunter, D.; Davis, T.P.

    1998-01-01

    Full text: Dimethylacrylamide and N-isopropylacrylamide hydrogels are useful for their ability to absorb large amounts of water and for their thermotropic response. However as membranes they do not have the mechanical properties to be applicable in industry. Therefore these hydrogels have been grafted to polyvinylidinedifluoride (PVDF) membranes using radiation. Both UV and gamma irradiation were used. In the first method the PVDF membranes were first hydroxylated by immersion in a aqueous solution of potassium peroxydisulfate (10% w/v), with nitrogen purging for two hours at 80 deg C. This was followed by immersion in an aqueous solution of riboflavine (4mg/L) and monomer (10% v/v), degassing with nitrogen and irradiation under a Mercury UV light (wavelength 240 nm) at room temperature for 15 minutes. Membranes were washed by soxhlet extraction in distilled water and oven dried. The second method of grafting hydrogels to membranes involved immersing the membrane in 10 mL of distilled water containing monomer and CuSO 4 to prevent homopolymerisation. The solution was degassed with N 2 for 3 minutes then irradiated under nitrogen using a 60 Co source for various time periods. The effect of varying monomer and CuSO 4 concentration as well as dose rate and dose were studied. Membranes were rinsed in distilled water for 24 hours and dried in an oven before characterisation. Grafting was characterised by mass change (Mettler AC 100 balance), XPS (PHI Model 560 XPS/SAM/SIMA1 multitechnique surface analysis system), SEM (Hitachi S-900 Field Emission SEM) and FTIR-ATR (Perkn Elmer System 2000 FTIR with MIRMCT detector)

  2. Molecularly imprinted polymer (MIP) membrane assisted direct spray ionization mass spectrometry for agrochemicals screening in foodstuffs.

    Science.gov (United States)

    Pereira, Igor; Rodrigues, Marcella Ferreira; Chaves, Andréa Rodrigues; Vaz, Boniek Gontijo

    2018-02-01

    Paper spray ionization (PSI) has some limitations such as low sensitivity and ionization suppression when complex samples are analyzed. The use of sample preparation devices directly coupled to MS can avoid these restrictions. Molecularly imprinted polymers (MIPs) are materials widely used as adsorbent in sample preparation methods such as solid-phase extraction and solid-phase microextraction, and they can provide specifics cavities with affinity to a target molecule. Here, we introduce a new MIP membrane spray ionization method combining MIP and PSI. MIP was synthesized directly on a cellulose membrane. Monuron and 2,4,5-T (2,4,5-trichlorophenoxyacetic acid) were used as template molecules in MIP synthesis for diuron and 2,4-D (2,4-dichlorophenoxyacetic acid) analyte sequesters, respectively. Apple, banana and grape methanolic extracts were used as matrices. The MIP membrane spray showed signal intensities of diuron and 2,4-D that were much higher compared to those obtained by non-imprinted polymers(NIP). Calibration curves exhibited R 2 > 0.99 for diuron and 2,4-D in all fruit extracts analyzed. LODs were found less than 0.60µgL -1 and LLOQs were found less than 2.00µgL -1 . The coefficients of variation and relative errors were less than 15% for almost all analyses. The apparent recovery test results ranged between 92,5% and 116.9%. Finally, the MIP membrane spray method was employed for the quantification of diuron and 2,4-D in real samples. Diuron contents were only found in three bananas (4.0, 6.5, and 9.9µgL -1 ). The proposed MIP membrane spray ionization method was straightforward, fast to carry out and provided satisfactory results for analyses of diuron and 2,4-D in apple, banana and grape samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Theoretical voltammetric response of electrodes coated by solid polymer electrolyte membranes

    International Nuclear Information System (INIS)

    Gómez-Marín, Ana M.; Hernández-Ortíz, Juan P.

    2014-01-01

    Highlights: • Discretized model for an interface of covered electrodes. • Two limiting behaviors are capture: double-layer and conductive interfaces. • Additional phenomena are included easily: acid/base equilibrium, ion mobility. • The model provides explanations to observed phenomena that is vaguely explained in the literature. • Implications on electrodes in fuel cells are given and it opens avenues to understand and design such systems. - Abstract: A model for the differential capacitance of metal electrodes coated by solid polymer electrolyte membranes, with acid/base groups attached to the membrane backbone, and in contact with an electrolyte solution is developed. With proper model parameters, the model is able to predict a limit response, given by Mott–Schottky or Gouy–Chapman–Stern theories depending on the dissociation degree and the density of ionizable acid/base groups. The model is also valid for other ionic membranes with proton donor/acceptor molecules as membrane counterions. Results are discussed in light of the electron transfer rate at membrane-coated electrodes for electrochemical reactions that strongly depend on the double layer structure. In this sense, the model provides a tool towards the understanding of the electro-catalytic activity on modified electrodes. It is shown that local maxima and minima in the differential capacitance as a function of the electrode potential may occur as consequence of the dissociation of acid/base molecular species, in absence of specific adsorption of immobile polymer anions on the electrode surface. Although the model extends the conceptual framework for the interpretation of cyclic voltammograms for these systems and the general theory about electrified interfaces, structural features of real systems are more complex and so, presented results only are qualitatively compared with experiments

  4. Synthesis and Characterization of Molecularly Imprinted Polymer Membrane for the Removal of 2,4-Dinitrophenol

    Directory of Open Access Journals (Sweden)

    Md. Jelas Haron

    2013-02-01

    Full Text Available Molecularly imprinted polymers (MIPs were prepared by bulk polymerization in acetonitrile using 2,4-dinitrophenol, acrylamide, ethylene glycol dimethacrylate, and benzoyl peroxide, as the template, functional monomer, cross-linker, and initiator, respectively. The MIP membrane was prepared by hybridization of MIP particles with cellulose acetate (CA and polystyrene (PS after being ground and sieved. The prepared MIP membrane was characterized using Fourier transform infrared spectroscopy and scanning electron microscopy. The parameters studied for the removal of 2,4-dinitrophenol included the effect of pH, sorption kinetics, and the selectivity of the MIP membrane. Maximum sorption of 2,4-nitrophenol by the fabricated CA membrane with MIP (CA-MIP and the PS membrane with MIP (PS-MIP was observed at pH 7.0 and pH 5.0, respectively. The sorption of 2,4-dinitrophenol by CA-MIP and PS-MIP followed a pseudo–second-order kinetic model. For a selectivity study, 2,4-dichlorophenol, 3-chlorophenol, and phenol were selected as potential interferences. The sorption capability of CA-MIP and PS-MIP towards 2,4-dinitrophenol was observed to be higher than that of 2,4-dichlorophenol, 3-chlorophenol, or phenol.

  5. Further Improvement and System Integration of High Temperature Polymer Electrolyte Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Li, Qingfeng

    Polymer electrolyte membrane fuel cell (PEMFC) technology based on Nafion membranes can operate at temperatures around 80°C. The new development in the field is high temperature PEMFC for operation above 100°C, which has been successfully demonstrated through the previous EC Joule III and the 5th......, and system integration of the high temperature PEMFC. The strategic developments of the FURIM are in three steps: (1) further improvement of the high temperature polymer membranes and related materials; (2) development of technological units including fuel cell stack, hydrocarbon reformer, afterburner...... and power management system, that are compatible with the HT-PEMFC; and (3) integration of the HT-PEMFC stack with these compatible subunits. The main goal of the project is a 2kWel HT-PEMFC stack operating in a temperature range of 120-220°C, with a single cell performance target of 0.7 A/cm² at a cell...

  6. Development of a Portable Taste Sensor with a Lipid/Polymer Membrane

    Directory of Open Access Journals (Sweden)

    Kiyoshi Toko

    2013-01-01

    Full Text Available We have developed a new portable taste sensor with a lipid/polymer membrane and conducted experiments to evaluate the sensor’s performance. The fabricated sensor consists of a taste sensor chip (40 mm × 26 mm × 2.2 mm with working and reference electrodes and a portable sensor device (80 mm × 25 mm × 20 mm. The working electrode consists of a taste-sensing site comprising a poly(hydroxyethylmethacrylate (pHEMA hydrogel layer with KCl as the electrolyte layer and a lipid/polymer membrane as the taste sensing element. The reference electrode comprises a polyvinyl chloride (PVC membrane layer with a small hole and a pHEMA layer with KCl. The whole device is the size of a USB memory stick, making it suitable for portable use. The sensor’s response to tannic acid as the standard astringency substance showed good accuracy and reproducibility, and was comparable with the performance of a commercially available taste sensing system. Thus, it is possible for this sensor to be used for in-field evaluations and it can make a significant contribution to the food industry, as well as in various fields of research.

  7. Novel Inorganic/Polymer Composite Membranes for CO2 Capture

    Energy Technology Data Exchange (ETDEWEB)

    Ho, W.S. Winston [The Ohio State Univ., Columbus, OH (United States). Depts. of Chemical and Biomolecular Engineering, Chemistry, and Materials Science and Engineering; Dutta, Prabir K. [The Ohio State Univ., Columbus, OH (United States). Depts. of Chemical and Biomolecular Engineering, Chemistry, and Materials Science and Engineering; Schmit, Steve J. [Gradient Technology, Elk River, MN (United States)

    2016-10-01

    The objective of this project is to develop a cost-effective design and manufacturing process for new membrane modules that capture CO2 from flue gas in coal-fired power plants. The membrane consisted of a thin selective layer including inorganic (zeolite) embedded in a polymer structure so that it can be made in a continuous manufacturing process. The membrane was incorporated in spiral-wound modules for the field test with actual flue gas at the National Carbon Capture Center (NCCC) in Wilsonville, AL and bench scale tests with simulated flue gas at the Ohio State University (OSU). Using the modules for post-combustion CO2 capture is expected to achieve the DOE target of $40/tonne CO2 captured (in 2007 dollar) for 2025. Membranes with the amine-containing polymer cover layer on zeolite-Y (ZY) nanoparticles deposited on the polyethersulfone (PES) substrate were successfully synthesized. The membranes showed a high CO2 permeance of about 1100 GPU (gas permeation unit, 1 GPU = 10-6 cm3 (STP)/(cm2 • s • cm Hg), 3000 GPU = 10-6 mol/(m2 • s • Pa)) with a high CO2/N2 selectivity of > 200 at the typical flue gas conditions at 57°C (about 17% water vapor in feed gas) and > 1400 GPU CO2 permeance with > 500 CO2/N2 selectivity at 102°C (~ 80% water vapor). The synthesis of ZY nanoparticles was successfully scaled up, and the pilot-scale membranes were also successfully fabricated using the continuous membrane machine at OSU. The transport performance of the pilot-scale membranes agreed reasonably well with the lab-scale membranes. The results from both the lab-scale and scale-up membranes were used for the techno-economic analysis. The scale-up membranes were fabricated into prototype spiral-wound membrane modules for continuous testing with simulated or real flue gas. For real flue gas testing, we worked with NCCC, in

  8. Experimental elucidation on rate-determining process of water transport in polymer electrolyte fuel cell membrane by magnetic resonance imaging

    International Nuclear Information System (INIS)

    Takita, Shinpei; Tsushima, Shohji; Hirai, Shuichiro; Kubo, Norio; Aotani, Koichiro

    2007-01-01

    We examined rate-determining process of water transport in polymer electrolyte membrane (PEM) used in fuel cells by using magnetic resonance imaging (MRI). We measured transversal water content distributions of the membrane by MRI and through-plane mass flux of water by hygrometers. Through place water flux has taken place in the membrane when relative humidify of supplied gas is not equal in both side of the membrane. MRI results revealed that diffusion coefficient of water in the membrane increases with water content of membrane, λ, whilst it shows intensive peak at λ=3-4. Diffusion resistance and mass transfer resistance involving evaporation and condensation on the interface are almost in the same order and thus water transport process in the membrane is determined by either concentration diffusion or mass transfer, depending on water content of membrane. (author)

  9. The role of polymer nanolayer architecture on the separation performance of anion-exchange membrane adsorbers: I. Protein separations.

    Science.gov (United States)

    Bhut, Bharat V; Weaver, Justin; Carter, Andrew R; Wickramasinghe, S Ranil; Husson, Scott M

    2011-11-01

    This contribution describes the preparation of strong anion-exchange membranes with higher protein binding capacities than the best commercial resins. Quaternary amine (Q-type) anion-exchange membranes were prepared by grafting polyelectrolyte nanolayers from the surfaces of macroporous membrane supports. A focus of this study was to better understand the role of polymer nanolayer architecture on protein binding. Membranes were prepared with different polymer chain graft densities using a newly developed surface-initiated polymerization protocol designed to provide uniform and variable chain spacing. Bovine serum albumin and immunoglobulin G were used to measure binding capacities of proteins with different size. Dynamic binding capacities of IgG were measured to evaluate the impact of polymer chain density on the accessibility of large size protein to binding sites within the polyelectrolyte nanolayer under flow conditions. The dynamic binding capacity of IgG increased nearly linearly with increasing polymer chain density, which suggests that the spacing between polymer chains is sufficient for IgG to access binding sites all along the grafted polymer chains. Furthermore, the high dynamic binding capacity of IgG (>130 mg/mL) was independent of linear flow velocity, which suggests that the mass transfer of IgG molecules to the binding sites occurs primarily via convection. Overall, this research provides clear evidence that the dynamic binding capacities of large biologics can be higher for well-designed macroporous membrane adsorbers than commercial membrane or resin ion-exchange products. Specifically, using controlled polymerization leads to anion-exchange membrane adsorbers with high binding capacities that are independent of flow rate, enabling high throughput. Results of this work should help to accelerate the broader implementation of membrane adsorbers in bioprocess purification steps. Copyright © 2011 Wiley Periodicals, Inc.

  10. Sonication-induced Ostwald ripening of ZIF-8 nanoparticles and formation of ZIF-8/polymer composite membranes

    KAUST Repository

    Thompson, Joshua A.

    2012-08-01

    The effect of typical membrane processing conditions on the structure, interfacial morphology, and gas separation performance of MOF/polymer nanocomposite membranes is investigated. In particular, the ZIF-8/Matrimid® nanocomposite membrane system is examined, and it is shown that ultrasonication - a commonly employed particle dispersion method - induces significant changes in the shape, size distribution, and structure of ZIF-8 particles suspended in an organic solvent during membrane processing. Dynamic light scattering and electron microscopy reveal that ZIF-8 nanoparticles undergo substantial Ostwald ripening when subjected to high intensity ultrasonication as often required in the formation of MOF/polymer nanocomposite membranes. Other characterization techniques reveal that the ripened particles exhibit lower pore volumes and lower surface areas compared to the as-made material. ZIF-8/Matrimid® composite membranes fabricated using two sonication methods show significant differences in microstructure. Permeation measurements show significant enhancement in permeability of CO 2 and increased CO 2/CH 4 selectivity in membranes fabricated with high-intensity sonication. In contrast, composite membranes prepared with low-intensity sonication are found to be defective. A careful evaluation of MOF membrane processing conditions, as well as knowledge of the properties of the MOF material after these membrane processing steps, are necessary to develop reliable processing-structure-property relations for MOF-containing membranes. © 2012 Elsevier Inc. All rights reserved.

  11. Biodegradable polymer nanofiber membrane for the repair of cutaneous wounds in dogs - two case reports

    Directory of Open Access Journals (Sweden)

    Lívia Gomes Amaral

    2016-12-01

    Full Text Available The study of wound healing and its treatment is extremely important in veterinary medicine due to the high frequency of wounds and the difficulty in treating wounds by second intention. Thus, the objective of this study was to evaluate the use of a nanofiber membrane made of biodegradable polymers as a method of wound treatment in dogs. This study comprised two dogs with bite wounds. Debridement and cleaning was performed followed by the application of the membrane. In one dog, the wound was in the left proximal calcaneal region with clinical signs of infection, necrotic tissue, and muscle and the gastrocnemius tendon were exposed. The wound displayed rapid formation of granulation tissue which became excessive, so it was necessary to debride several times. However, with the suspension of the use of the membrane, formation of this tissue was not observed, and the wound evolved to epithelialization and fast contraction. In the second dog, there was a deep wound on the medial aspect of the proximal right hind limb, with clinical signs of infection, with muscle exposure. Once the membrane was placed, granulation tissue formed, and the membrane was used until the level of this tissue reached the skin. The wound underwent rapid epithelialization and contraction, without developing exuberant granulation tissue. Efficient wound repair was observed and the dogs exhibited greater comfort during application and use of the membrane. More studies should be conducted in dogs focusing on the application of this membrane until the appearance of healthy granulation tissue, as continued use seems to stimulate the formation of exuberant granulation tissue.

  12. 35-We polymer electrolyte membrane fuel cell system for notebook computer using a compact fuel processor

    Science.gov (United States)

    Son, In-Hyuk; Shin, Woo-Cheol; Lee, Yong-Kul; Lee, Sung-Chul; Ahn, Jin-Gu; Han, Sang-Il; kweon, Ho-Jin; Kim, Ju-Yong; Kim, Moon-Chan; Park, Jun-Yong

    A polymer electrolyte membrane fuel cell (PEMFC) system is developed to power a notebook computer. The system consists of a compact methanol-reforming system with a CO preferential oxidation unit, a 16-cell PEMFC stack, and a control unit for the management of the system with a d.c.-d.c. converter. The compact fuel-processor system (260 cm 3) generates about 1.2 L min -1 of reformate, which corresponds to 35 We, with a low CO concentration (notebook computers.

  13. 35-We polymer electrolyte membrane fuel cell system for notebook computer using a compact fuel processor

    Energy Technology Data Exchange (ETDEWEB)

    Son, In-Hyuk; Shin, Woo-Cheol; Lee, Sung-Chul; Ahn, Jin-Gu; Han, Sang-Il; kweon, Ho-Jin; Kim, Ju-Yong; Park, Jun-Yong [Energy 1 Group, Energy Laboratory at Corporate R and D Center in Samsung SDI Co., Ltd., 575, Shin-dong, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-731 (Korea); Lee, Yong-Kul [Department of Chemical Engineering, Dankook University, Youngin 448-701 (Korea); Kim, Moon-Chan [Department of Environmental Engineering, Chongju University, Chongju 360-764 (Korea)

    2008-10-15

    A polymer electrolyte membrane fuel cell (PEMFC) system is developed to power a notebook computer. The system consists of a compact methanol-reforming system with a CO preferential oxidation unit, a 16-cell PEMFC stack, and a control unit for the management of the system with a d.c.-d.c. converter. The compact fuel-processor system (260 cm{sup 3}) generates about 1.2 L min{sup -1} of reformate, which corresponds to 35 We, with a low CO concentration (<30 ppm, typically 0 ppm), and is thus proven to be capable of being targetted at notebook computers. (author)

  14. Novel ceramic-polymer composite membranes for the separation of hazardous liquid waste. 1998 annual progress report

    International Nuclear Information System (INIS)

    Cohen, Y.

    1998-01-01

    'This report summarizes the work progress over the last 1.75 years of a 3 year project. The objectives of the project have been to develop a new class of ceramic-supported polymeric membranes that could be tailored-designed for a wide-range of applications in remediation and pollution prevention. To date, a new class of chemically-modified ceramic membranes was developed for the treatment of oil-in-water emulsions and for the pervaporation removal of volatile organics from aqueous systems. These new ceramic-supported polymer (CSP) membranes are fabricated by modifying the pore surface of a ceramic membrane support by a graft polymerization process (Chaimberg and Cohen, 1994). The graft polymerization process consists of activating the membrane surface with alkoxy vinyl silanes onto which vinyl monomers are added via free-radical graft polymerization resulting in a thin surface layer of terminally anchored polymer chains. Reaction conditions are selected based on knowledge of the graft polymerization kinetics for the specific polymer/substrate system. The resultant ceramic-supported polymer (CSP) membrane is a composite structure in which mechanical strength is provided by the ceramic support and the selectivity is determined by the covalently bonded polymer brush layer. Thus, one of the unique attributes of the CSP membrane is that it can be used in environments where the polymer layer is swollen (or even completely miscible) in the mixture to be separated (Castro et al., 1993). It is important to note that the above modification process is carried out under mild conditions (e.g., temperature of about 70 C) and is well suited for large scale commercial application. In a series of studies, the applicability of a polyvinylpyrrolidone CSP membrane was demonstrated for the treatment of oil-in-water emulsion under a variety of flow conditions (Castro et al.,1996). Improved membrane performance was achieved due to minimization of surface adsorption of the oil components

  15. Analysis of cerium-composite polymer-electrolyte membranes during and after accelerated oxidative-stability test

    Science.gov (United States)

    Shin, Dongwon; Han, Myungseong; Shul, Yong-Gun; Lee, Hyejin; Bae, Byungchan

    2018-02-01

    The oxidative stability of membranes constructed from a composite of pristine sulfonated poly(arylene ether sulfone) and cerium was investigated by conducting an accelerated oxidative-stability test at the open-circuit voltage (OCV). The membranes were analyzed in situ through OCV and impedance measurements, cyclic voltammetry, and linear-sweep voltammetry to monitor the electrochemical properties during the stability test. Although the high-frequency resistance of a composite membrane was slightly higher than that of a pristine membrane because of the exchange of protons from the sulfonic acid with cerium ions, the composite membrane maintained its potential for much longer than the pristine membrane. The effect of the cerium ions as radical scavengers was confirmed by analyzing the drain water and chemical structure after operation. These post-operation analyses confirmed that cerium ions improved the oxidative stability of the hydrocarbon-based polymer during fuel-cell operation. It is clear that the cerium-based radical scavengers prevented chemical degradation of the polymer membrane as well as the electrode in terms of hydrogen cross-over, polymer-chain scission, and the electrochemical surface area, while they rarely diffused outward from the membrane.

  16. Materials Genomics Screens for Adaptive Ion Transport Behavior by Redox-Switchable Microporous Polymer Membranes in Lithium-Sulfur Batteries.

    Science.gov (United States)

    Ward, Ashleigh L; Doris, Sean E; Li, Longjun; Hughes, Mark A; Qu, Xiaohui; Persson, Kristin A; Helms, Brett A

    2017-05-24

    Selective ion transport across membranes is critical to the performance of many electrochemical energy storage devices. While design strategies enabling ion-selective transport are well-established, enhancements in membrane selectivity are made at the expense of ionic conductivity. To design membranes with both high selectivity and high ionic conductivity, there are cues to follow from biological systems, where regulated transport of ions across membranes is achieved by transmembrane proteins. The transport functions of these proteins are sensitive to their environment: physical or chemical perturbations to that environment are met with an adaptive response. Here we advance an analogous strategy for achieving adaptive ion transport in microporous polymer membranes. Along the polymer backbone are placed redox-active switches that are activated in situ, at a prescribed electrochemical potential, by the device's active materials when they enter the membrane's pore. This transformation has little influence on the membrane's ionic conductivity; however, the active-material blocking ability of the membrane is enhanced. We show that when used in lithium-sulfur batteries, these membranes offer markedly improved capacity, efficiency, and cycle-life by sequestering polysulfides in the cathode. The origins and implications of this behavior are explored in detail and point to new opportunities for responsive membranes in battery technology development.

  17. An optical sensor for the determination of digoxin in serum samples based on a molecularly imprinted polymer membrane

    International Nuclear Information System (INIS)

    Paniagua Gonzalez, Gema; Fernandez Hernando, Pilar; Durand Alegria, J. S.

    2009-01-01

    This paper reports the synthesis and testing of a molecularly imprinted polymer membrane for digoxin analysis. Digoxin-specific bulk polymer was obtained by the UV initiated co-polymerisation of methacrylic acid and ethylene glycol dimethacrylate in acetonitrile as porogen. After extracting the template analyte, the ground polymer particles were mixed with plasticizer polyvinyl chloride to form a MIP membrane. A reference polymer membrane was prepared from the same mixture of monomers but with no template. The resultant membrane morphologies were examined by scanning electron microscopy. The imprinted membrane was tested as the recognition element in a digoxin-sensitive fluorescence sensor; sensor response was measured using standard solutions of digoxin at concentrations of up to 4 x 10 -3 mg L -1 . The detection limit was 3.17 x 10 -5 mg L -1 . Within- and between-day relative standard deviations RSD (n = 5) were in the range 4.5-5.5% and 5.5-6.5% respectively for 0 and 1 x 10 -3 mg L -1 digoxin concentrations. A selectivity study showed that compounds of similar structure to digoxin did not significantly interfere with detection for interferent concentrations at 10, 30 and 100 times higher than the digoxin concentration. This simply manufactured MIP membrane showed good recognition characteristics, a high affinity for digoxin, and provided satisfactory results in analyses of this analyte in human serum.

  18. An optical sensor for the determination of digoxin in serum samples based on a molecularly imprinted polymer membrane

    Energy Technology Data Exchange (ETDEWEB)

    Paniagua Gonzalez, Gema [Departamento de Ciencias Analiticas, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia (UNED), 28040 Madrid (Spain); Fernandez Hernando, Pilar, E-mail: pfhernando@ccia.uned.es [Departamento de Ciencias Analiticas, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia (UNED), 28040 Madrid (Spain); Durand Alegria, J. S. [Departamento de Ciencias Analiticas, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia (UNED), 28040 Madrid (Spain)

    2009-04-13

    This paper reports the synthesis and testing of a molecularly imprinted polymer membrane for digoxin analysis. Digoxin-specific bulk polymer was obtained by the UV initiated co-polymerisation of methacrylic acid and ethylene glycol dimethacrylate in acetonitrile as porogen. After extracting the template analyte, the ground polymer particles were mixed with plasticizer polyvinyl chloride to form a MIP membrane. A reference polymer membrane was prepared from the same mixture of monomers but with no template. The resultant membrane morphologies were examined by scanning electron microscopy. The imprinted membrane was tested as the recognition element in a digoxin-sensitive fluorescence sensor; sensor response was measured using standard solutions of digoxin at concentrations of up to 4 x 10{sup -3} mg L{sup -1}. The detection limit was 3.17 x 10{sup -5} mg L{sup -1}. Within- and between-day relative standard deviations RSD (n = 5) were in the range 4.5-5.5% and 5.5-6.5% respectively for 0 and 1 x 10{sup -3} mg L{sup -1} digoxin concentrations. A selectivity study showed that compounds of similar structure to digoxin did not significantly interfere with detection for interferent concentrations at 10, 30 and 100 times higher than the digoxin concentration. This simply manufactured MIP membrane showed good recognition characteristics, a high affinity for digoxin, and provided satisfactory results in analyses of this analyte in human serum.

  19. Desalination of Sea Water Using Polymer Inclusion Membran (PIM With Aliquat 336-TBP (Tributhyl Phosphate as Carrier Compound

    Directory of Open Access Journals (Sweden)

    Cholid Djunaidi Muhammad

    2018-01-01

    Full Text Available Desalination of Sea Water using Polymer Inclusion Membrane has been done. PIM is known has high stability membrane to overcome the instability of liquid membrane. PIM was placed among two phase : source phases was sea water and feed phases was aquadest. Efficiency of desalination is known by determining salinity concentration and ion Na+ in feed phases and stripping phases using refractometer and AAS. while membrane characterization is done using FTIR. SEM and UV-Vis spectroscopy. The PIM membrane that is produced has thin. transparent. clear and flexible properties. The result showed that PIM transport for 24 hours give the highest of salinity transport. there are 92.68% is transported from feed phases and 84.87% in stripping phases. Membrane characterization result by FTIR and UV spectroscopy showed that PIM membrane is stable enough.

  20. Photochemical stability of conjugated polymers, electron acceptors and blends for polymer solar cells resolved in terms of film thickness and absorbance

    DEFF Research Database (Denmark)

    Tromholt, Thomas; Vesterager Madsen, Morten; Carlé, Jon Eggert

    2012-01-01

    Photochemical degradation at 1 sun under AM1.5G illumination was performed on six conjugated polymers and five different electron acceptors. Additionally, the respective polymer:PC60BM and P3HT:electron acceptor blends were studied, and all degradations were resolved in terms of film thickness...... within each material group were found to vary for both the pure polymers and the blends. The stability ranking between the materials of the pure polymers was found to be similar to the ranking for their respective blends, implying that the photochemical stability of a pure polymer is a good measure...... of its associated blend stability. Different electron acceptors were found to stabilize P3HT decreasingly with decreasing donor–acceptor LUMO–LUMO gap. Destabilization of P3HT was observed in the case of the electron acceptor ICBA. Additionally, the decreased stabilization of P3HT by high LUMO electron...

  1. Study to determine the technical and economic feasibility of reclaiming chemicals used in micellar polymer and low tension surfactant flooding. Final report. [Ultrafiltration membranes and reverse osmosis membranes

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, R.H.; Himmelblau, A.; Donnelly, R.G.

    1978-02-01

    Energy Resources Company has developed a technology for use with enhanced oil recovery to achieve emulsion breaking and surfactant recovery. By using ultrafiltration membranes, the Energy Resources Company process can dewater an oil-in-water type emulsion expected from enhanced oil recovery projects to the point where the emulsion can be inverted and treated using conventional emulsion-treating equipment. By using a tight ultrafiltration membrane or a reverse osmosis membrane, the Energy Resources Company process is capable of recovering chemicals such as surfactants used in micellar polymer flooding.

  2. Touch-mode capacitive pressure sensor with graphene-polymer heterostructure membrane

    Science.gov (United States)

    Berger, Christian; Phillips, Rory; Pasternak, Iwona; Sobieski, Jan; Strupinski, Wlodek; Vijayaraghavan, Aravind

    2018-01-01

    We describe the fabrication and characterisation of a touch-mode capacitive pressure sensor (TMCPS) with a robust design that comprises a graphene-polymer heterostructure film, laminated onto the silicon dioxide surface of a silicon wafer, incorporating a SU-8 spacer grid structure. The spacer grid structure allows the flexible graphene-polymer film to be partially suspended above the substrate, such that a pressure on the membrane results in a reproducible deflection, even after exposing the membrane to pressures over 10 times the operating range. Sensors show reproducible pressure transduction in water submersion at varying depths under static and dynamic loading. The measured capacitance change in response to pressure is in good agreement with an analytical model of clamped plates in touch mode. The device shows a pressure sensitivity of 27.1 +/- 0.5 fF Pa-1 over a pressure range of 0.5 kPa-8.5 kPa. In addition, we demonstrate the operation of this device as a force-touch sensor in air.

  3. Ion transport property studies on PEO-PVP blended solid polymer electrolyte membranes

    International Nuclear Information System (INIS)

    Chandra, Angesh; Agrawal, R C; Mahipal, Y K

    2009-01-01

    The ion transport property studies on Ag + ion conducting PEO-PVP blended solid polymer electrolyte (SPE) membranes, (1 - x)[90PEO : 10AgNO 3 ] : xPVP, where x = 0, 1, 2, 3, 5, 7, 10 (wt%), are reported. SPE films were caste using a novel hot-press technique instead of the traditional solution cast method. The conventional solid polymeric electrolyte (SPE) film, (90PEO : 10AgNO 3 ), also prepared by the hot-press method and identified as the highest conducting composition at room temperature on the basis of PEO-AgNO 3 -salt concentration dependent conductivity studies, was used as the first-phase polymer electrolyte host into which PVP were dispersed as second-phase dispersoid. A two-fold conductivity enhancement from that of the PEO host could be achieved at room temperature for PVP blended SPE film composition: 98(90PEO : 10AgNO 3 ) : 2PVP. This has been referred to as optimum conducting composition (OCC). The formation of SPE membranes and material characterizations were done with the help of the XRD and DSC techniques. The ion transport mechanism in this SPE OCC has been characterized with the help of basic ionic parameters, namely ionic conductivity (σ), ionic mobility (μ), mobile ion concentration (n) and ionic transference number (t ion ). Solid-state polymeric batteries were fabricated using OCC as electrolyte and the cell-potential discharge characteristics were studied under different load conditions.

  4. Tröger’s Base Ladder Polymer for Membrane-Based Hydrocarbon Separation

    KAUST Repository

    Alhazmi, Abdulrahman

    2017-05-01

    The use of polymeric membranes for natural gas separation has rapidly increased during the past three decades, particularly for carbon dioxide separation from natural gas. Another valuable application is the separation of heavy hydrocarbons from methane (fuel gas conditioning), more importantly for remote area and off-shore applications. A new potential polymeric membrane that might be utilized for natural gas separations is a Tröger’s base ladder polymer (PIM-Trip-TB-2). This glassy polymeric membrane was synthesized by the polymerization reaction of 9, 10-dimethyl-2,6 (7) diaminotriptycene with dimethoxymethane. In this research, the polymer was selected due to its high surface area and highly interconnected microporous structure. Sorption isotherms of nitrogen (N2), oxygen (O¬2), methane (CH4), carbon dioxide (CO2), ethane (C2H6), propane (C3H8), and n-butane (n-C4H10) were measured at 35 °C over a range of pressures using a Hiden Intelligent Gravimetric Analyzer, IGA. The more condensable gases (C2H6, CO2, C3H8, and n-C4H10) showed high solubility due to their high affinity to the polymer matrix. The permeation coefficients were determined for various gases at 35 °C and pressure difference of 5 bar via the constant-pressure/variable-volume method. The PIM-Trip-TB-2 film exhibited high performance for several high-impact applications, such as O2/N2, H2/N2 and H2/CH4. Also, physical aging for several gases was examined by measuring the permeability coefficients at different periods of time. Moreover, a series of mixed-gas permeation tests was performed using 2 vol.% n-C4H10/98 vol.% CH4 and the results showed similar transport characteristics to other microporous polymers with pores of less than 2 nm. The work performed in this research suggested that PIM-Trip-TB-2 is suitable for the separation of: (i) higher hydrocarbons from methane and (ii) small, non-condensable gases such as O2/N2 and H2/CH4.

  5. Polymer electrolyte membranes for fuel cells by radiation induced grafting with electron beam irradiation: state-of-the-art

    International Nuclear Information System (INIS)

    Nasef, M.M.; Nasef, M.M.

    2010-01-01

    Polymer electrolyte membranes have generated considerable interest in various fields of industrial interest due to their wide spread applications in fuel cells, batteries, electrolyzers sensors and actuators. Such diversity in applications implies a strong demand to architect the membranes towards particular properties for specific applications. Radiation induced grafting of vinyl and acrylic monomers into polymeric films, is an appealing method for producing various polymer electrolyte membranes. This method has the advantages of simplicity, controllability over the composition leading to tailored membrane properties and absence of shaping problem as preparation starts with substrate in a film form. It also has the flexibility of using various types of radiation sources such as gamma-rays and electron beam. Of all, electron beam (EB) accelerator is an advantageous source of high energy radiation that can initiate grafting reactions required for preparation of the membranes particularly when pilot scale production and commercial applications are sought. The grafting penetration can be varied from surface to bulk of membranes depending on the acceleration energy. This lecture reviews the-state of- the-art in the use of EB irradiation in preparation of composite and grafted polymer electrolyte membranes for fuel cell applications by radiation induced grafting with simultaneous irradiation and preirradiation methods. The use of simultaneous EB irradiation method was found to simplify the process and reduce the reaction time as well as the monomer consumption whereas the use of preirradiation method in a single-step route provides a shorter route to prepare polymer electrolyte membranes with improved properties and reduced cost in addition of setting basis for designing a continuous line to produce these membranes with dedicated EB facilities

  6. A Novel Method for the Determination of Membrane Hydration Numbers of Cations in Conducting Polymers

    DEFF Research Database (Denmark)

    Jafeen, M.J.M.; Careem, M.A.; Skaarup, Steen

    2012-01-01

    Polypyrrole polymer films doped with the large, immobile dodecy lbenzene sulfonate anions operating in alkali halide aqueous electroly tes has beenused as a novel physico-chemical environment to develop a more direct way of obtaining reliable values for the hydration numbers of cations. Simultane......Polypyrrole polymer films doped with the large, immobile dodecy lbenzene sulfonate anions operating in alkali halide aqueous electroly tes has beenused as a novel physico-chemical environment to develop a more direct way of obtaining reliable values for the hydration numbers of cations....... The number of water moleculesentering the polymer during the initial part of the first reduction was found to be constant and independent of the concentration of the electrolyte below ∼1 M. This well-defined value can be considered as the primarymembrane hydration number of the cation involved...... in the reduction process. The goal was to investigate both the effects of cation size and of cation charge. The membrane hydration number values obtained by this simple and direct method for a number of cations are: The hydration number for all of these cations seems to follow the same simple relation....

  7. Mixed Matrix Membranes of Boron Icosahedron and Polymers of Intrinsic Microporosity (PIM-1) for Gas Separation.

    Science.gov (United States)

    Khan, Muntazim Munir; Shishatskiy, Sergey; Filiz, Volkan

    2018-01-02

    This work reports on the preparation and gas transport performance of mixed matrix membranes (MMMs) based on the polymer of intrinsic microporosity (PIM-1) and potassium dodecahydrododecaborate (K₂B 12 H 12 ) as inorganic particles (IPs). The effect of IP loading on the gas separation performance of these MMMs was investigated by varying the IP content (2.5, 5, 10 and 20 wt %) in a PIM-1 polymer matrix. The derived MMMs were characterized by scanning electron microscopy (SEM), thermogravimetric analysis (TGA), single gas permeation tests and sorption measurement. The PIM1/K₂B 12 H 12 MMMs show good dispersion of the IPs (from 2.5 to 10 wt %) in the polymer matrix. The gas permeability of PIM1/K₂B 12 H 12 MMMs increases as the loading of IPs increases (up to 10 wt %) without sacrificing permselectivity. The sorption isotherm in PIM-1 and PIM1/K₂B 12 H 12 MMMs demonstrate typical dual-mode sorption behaviors for the gases CO₂ and CH₄.

  8. A Cation-containing Polymer Anion Exchange Membrane based on Poly(norbornene)

    Science.gov (United States)

    Beyer, Frederick; Price, Samuel; Ren, Xiaoming; Savage, Alice

    Cation-containing polymers are being studied widely for use as anion exchange membranes (AEMs) in alkaline fuel cells (AFCs) because AEMs offer a number of potential benefits including allowing a solid state device and elimination of the carbonate poisoning problem. The successful AEM will combine high performance from several orthogonal properties, having robust mechanical strength even when wet, high hydroxide conductivity, and the high chemical stability required for long device lifetimes. In this study, we have synthesized a model cationic polymer that combines three of the key advantages of Nafion. The polymer backbone based on semicrystalline atactic poly(norbornene) offers good mechanical properties. A flexible, ether-based tether between the backbone and fixed cation charged species (quaternary ammonium) should provide the low-Tg, hydrophilic environment required to facilitate OH- transport. Finally, methyl groups have been added at the beta position relative to the quaternary ammonium cation to prevent Hoffman elimination, one mechanism by which AEMs are neutralized in a high pH environment. In this poster, we will present our findings on mechanical properties, morphology, charge transport, and chemical stability of this material.

  9. Evaluation of a polymer inclusion membrane containing a C-pivot tripodal diglycolamide for Am(III) extraction

    International Nuclear Information System (INIS)

    Mahanty, B.N.; Das, D.K.; Afzal, Md; Raut, D.R.; Mohapatra, P.K.; Behere, P.G.; Verboom, W.

    2014-01-01

    The instability of supported liquid membrane (SLM), being used for laboratory scale metal ion separation, can be avoided using Polymer inclusion membranes (PIM). We have been carrying out studies on diglycolamide based extractants including a C-pivot tripodal diglycolamide (T-DGA) for actinide ion separation from acidic feed solution. It was thought of interest to study the properties of T-DGA based PIM containing cellulose triacetate (CTA) as polymer and 2-nitrophenyl octyl ether (NPOE) as the plasticizer for Am(III) uptake and transport

  10. Experimental evaluation of enthalpy efficiency and gas-phase contaminant transfer in an enthalpy recovery unit with polymer membrane foils

    DEFF Research Database (Denmark)

    Nie, Jinzhe; Yang, Jianrong; Fang, Lei

    2015-01-01

    Experimental studies were conducted in a laboratory setting to investigate the enthalpy efficiency and gas-phase contaminant transfer in a polymer membrane enthalpy recovery unit. One commercially available polymer membrane enthalpy recovery unit was used as a reference unit. Simulated indoor air...... and outdoor air by twin chambers was connected to the unit. Three chemical gases were dosed to the indoor exhaust air to mimic indoor air contaminants. Based on the measurements of temperature, humidity ratio, and contaminant concentrations of the indoor exhaust air and outdoor air supply upstream...

  11. Novel ceramic-polymer composite membranes for the separation of liquid waste. Annual progress report, September 15, 1996 - September 14, 1997

    International Nuclear Information System (INIS)

    Cohen, Y.

    1997-01-01

    'The project on ceramic-supported polymer membranes focuses on the development of a novel class of membranes for the separation of organics from both organic-aqueous and organic-organic mixtures, Theses membranes are fabricated by a graft polymerization process where polymer chains are grown onto the surface of a ceramic support membrane. The surface graft polymerization process, developed at UCLA, results in the formation of a thin polymer layer covalently bonded to the membrane pore surface as a layer of terminally anchored polymeric chains. Through the selection of the polymer most appropriate for the desired separation task, the graft polymerized surface layer can be synthesized to impart specific separation properties to the membrane. It is expected that this project will lead to the demonstration of a new technology for the tailor design of a new class of selective and robust ceramic-supported polymer membranes. This new approach will allow the rapid deployment of task-specific membranes for the separation of waste constituents for subsequent recovery, treatment or disposal. Progress to date includes the preparation of successful silica-polyvinylpyrrolidone (PVP) membrane for the treatment of oil-in-water emulsions and a silica-polyvinylacetate (PVAc) pervaporation membrane for the separation of organics from water. Current work is ongoing to study the performance of the pervaporation membrane for the removal of chlorinated organics from water and to develop a pervaporation membrane for organic-organic separation. In another aspect of the study, the authors are studying the hydrophilic PVP CSP membrane for oil-in-water emulsion treatment with the goal of determining the optimal membrane polymer surface structure as a function of various operating conditions (e.g., tube-side Reynolds number and transmembrane pressure), Work is also in progress to characterize the polymer layer by AFM and internal reflection FTIR, and to model the conformation of the polymer

  12. A liquid crystal polymer membrane MEMS sensor for flow rate and flow direction sensing applications

    International Nuclear Information System (INIS)

    Kottapalli, A G P; Tan, C W; Olfatnia, M; Miao, J M; Barbastathis, G; Triantafyllou, M

    2011-01-01

    The paper reports the design, fabrication and experimental results of a liquid crystal polymer (LCP) membrane-based pressure sensor for flow rate and flow direction sensing applications. Elaborate experimental testing results demonstrating the sensors' performance as an airflow sensor have been illustrated and validated with theory. MEMS sensors using LCP as a membrane structural material show higher sensitivity and reliability over silicon counterparts. The developed device is highly robust for harsh environment applications such as atmospheric wind flow monitoring and underwater flow sensing. A simple, low-cost and repeatable fabrication scheme has been developed employing low temperatures. The main features of the sensor developed in this work are a LCP membrane with integrated thin film gold piezoresistors deposited on it. The sensor developed demonstrates a good sensitivity of 3.695 mV (ms −1 ) −1 , large operating range (0.1 to >10 ms −1 ) and good accuracy in measuring airflow with an average error of only 3.6% full-scale in comparison with theory. Various feasible applications of the developed sensor have been demonstrated with experimental results. The sensor was tested for two other applications—in clinical diagnosis for breath rate, breath velocity monitoring, and in underwater applications for object detection by sensing near-field spatial flow pressure

  13. Preparation and Characterization of Nanocomposite Polymer Membranes Containing Functionalized SnO2 Additives

    Directory of Open Access Journals (Sweden)

    Roberto Scipioni

    2014-03-01

    Full Text Available In the research of new nanocomposite proton-conducting membranes, SnO2 ceramic powders with surface functionalization have been synthesized and adopted as additives in Nafion-based polymer systems. Different synthetic routes have been explored to obtain suitable, nanometer-sized sulphated tin oxide particles. Structural and morphological characteristics, as well as surface and bulk properties of the obtained oxide powders, have been determined by means of X-ray diffraction (XRD, scanning electron microscopy (SEM, Fourier Transform Infrared (FTIR and Raman spectroscopies, N2 adsorption, and thermal gravimetric analysis (TGA. In addition, dynamic mechanical analysis (DMA, atomic force microscopy (AFM, thermal investigations, water uptake (WU measurements, and ionic exchange capacity (IEC tests have been used as characterization tools for the nanocomposite membranes. The nature of the tin oxide precursor, as well as the synthesis procedure, were found to play an important role in determining the morphology and the particle size distribution of the ceramic powder, this affecting the effective functionalization of the oxides. The incorporation of such particles, having sulphate groups on their surface, altered some peculiar properties of the resulting composite membrane, such as water content, thermo-mechanical, and morphological characteristics.

  14. Performance of a polymer electrolyte membrane fuel cell with thin film catalyst electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Young Gab; Kim, Chang Soo; Peck, Dong Hyun; Shin, Dong Ryul [Korea Institute of Energy Research, Taejon (Korea, Republic of)

    1998-03-15

    In order to develop a kW-class polymer electrolyte membrane fuel cell (PEMFC), several electrodes have been fabricated by different catalyst layer preparation procedures and evaluated based on the cell performance. Conventional carbon paper and carbon cloth electrodes were fabricated using a ptfe-bonded Pt/C electrol catalyst by coating and rolling methods. Thin-film catalyst/ionomer composite layers were also formed on the membrane by direct coating and transfer printing techniques. The performance evaluation with catalyst layer preparation methods was carried out using a large or small electrode single cell. Conventional and thin film membrane and electrode assemblies (MEAs) with small electrode area showed a performance of 350 and 650 mA/cm{sup 2} at 0.6 V, respectively. The performance of direct coated thin film catalyst layer with 300 cm{sup 2} MEAs was higher than those of the conventional and transfer printing technique MEAs. The influence of some characteristic parameters of the thin film electrode on electrochemical performance was examined. Various other aspects of overall operation of PEMFC stacks were also discussed. (orig.)

  15. Fine-scale tribological performance of zeolitic imidazolate framework (ZIF-8 based polymer nanocomposite membranes

    Directory of Open Access Journals (Sweden)

    Nay Win Khun

    2014-12-01

    Full Text Available We combined zeolitic imidazolate framework nanoparticles (ZIF-8: ˜150 nm diameter with Matrimid® 5218 polymer to form permeable mixed matrix membranes, featuring different weight fractions of nanoparticles (up to 30 wt. % loading. We used ball-on-disc micro-tribological method to measure the frictional coefficient of the nanocomposite membranes, as a function of nanoparticle loading and annealing heat treatment. The tribological results reveal that the friction and wear of the unannealed samples rise steadily with greater nanoparticle loading because ZIF-8 is relatively harder than the matrix, thus promoting abrasive wear mechanism. After annealing, however, we discover that the nanocomposites display an appreciably lower friction and wear damage compared with the unannealed counterparts. Evidence shows that the major improvement in tribological performance is associated with the greater amounts of wear debris derived from the annealed nanocomposite membranes. We propose that detached Matrimid-encapsulated ZIF-8 nanoparticles could function as “spacers,” which are capable of not only reducing direct contact between two rubbing surfaces but also enhancing free-rolling under the action of lateral forces.

  16. Effects of the operational conditions on the membrane and electrode properties of a polymer electrolyte fuel cell

    Directory of Open Access Journals (Sweden)

    Passos Raimundo R.

    2002-01-01

    Full Text Available The effects of the operational conditions on the membrane and electrode properties on a polymer electrolyte fuel cell (PEFC were investigated as a function of the cell and the gas humidifiers temperatures, the thickness of the membrane, the impregnation with phosphotungstic acid (PWA, and the variation of the Nafion and Teflon contents in the gas diffusion electrodes. An increase of the membrane resistance was observed when the PEFC is operated at temperatures equal or higher than those of the gas humidifiers, and this is more apparent for thicker electrolyte films. In the presence of PWA, the physicochemical properties of the membrane do not appreciably change with temperature. However, in this case, a lower humidification temperature affects the electrode performance. Changes on the Nafion loading in the electrodes do not lead to any significant effect in the electrode and membrane properties. For high Teflon contents there is a small lowering of the membrane conductivity.

  17. Materials Genomics Screens for Adaptive Ion Transport Behavior by Redox-Switchable Microporous Polymer Membranes in Lithium–Sulfur Batteries

    Science.gov (United States)

    2017-01-01

    Selective ion transport across membranes is critical to the performance of many electrochemical energy storage devices. While design strategies enabling ion-selective transport are well-established, enhancements in membrane selectivity are made at the expense of ionic conductivity. To design membranes with both high selectivity and high ionic conductivity, there are cues to follow from biological systems, where regulated transport of ions across membranes is achieved by transmembrane proteins. The transport functions of these proteins are sensitive to their environment: physical or chemical perturbations to that environment are met with an adaptive response. Here we advance an analogous strategy for achieving adaptive ion transport in microporous polymer membranes. Along the polymer backbone are placed redox-active switches that are activated in situ, at a prescribed electrochemical potential, by the device’s active materials when they enter the membrane’s pore. This transformation has little influence on the membrane’s ionic conductivity; however, the active-material blocking ability of the membrane is enhanced. We show that when used in lithium–sulfur batteries, these membranes offer markedly improved capacity, efficiency, and cycle-life by sequestering polysulfides in the cathode. The origins and implications of this behavior are explored in detail and point to new opportunities for responsive membranes in battery technology development. PMID:28573201

  18. CORRELATION BETWEEN POLYMER PACKING AND GAS TRANSPORT PROPERTIES FOR CO2/N2 SEPARATION IN GLASSY FLUORINATED POLYIMIDE MEMBRANE

    Directory of Open Access Journals (Sweden)

    P. C. TAN

    2016-07-01

    Full Text Available Gas separation performance of a membrane highly hinges on its physical properties. In this study, the interplay between polymer packing of a membrane and its gas transport behaviours (permeability and selectivity was investigated through a series of 6FDA-DAM:DABA (3:2 polyimide membranes with different polymer compactness. The chemical structure and the polymer packing of the resulting membrane were characterized using attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR and packing density measurement, respectively. CO2/N2 separation efficiency of the membrane was evaluated at 25oC with feed pressure up to 6 bar. N2 permeability was found to rely on the membrane’s packing density, which signified its greater dependence on molecular sieving. In contrast, sorption showed a more vital role in determining the CO2 permeability. In this work, the membrane with a final thickness of 97±2 µm had successfully surpassed the Robeson’s 2008 upper bound plot with a CO2 permeability of 83 Barrer and CO2/N2 selectivity of 97 at 3 bar permeation.

  19. Effects of Super-Absorbent Polymer Application on Yield and Yield Components of Rapeseed (Brassica napus L.

    Directory of Open Access Journals (Sweden)

    Fariborz SHEKARI

    2015-09-01

    Full Text Available Limitation of water resources and its great impact on agricultural and natural resources play a crucial role in the efficiency of water use. Applying super absorbent polymer to the soil may be one of the methods to minimize the stress of weather dryness in arid and semi-arid regions. In order to evaluate the effects of hydrophilic polymer application on yield and water use efficiency of rapeseed plants, an experiment was conducted under field condition in 2012 at the Research Farm of the Faculty of Agriculture, University of Maragheh. Treatments’ factors were: (i 3 super absorbent polymers (SAP (Taravat A200 levels of 0 (without application, 75 and 150 kg ha-1 A200 application, (ii three irrigation levels of 80, 120 and 180 mm evaporation from class A basin in main plots, (iii two cultivars ʻHyola 401ʼ and ʻRVSʼ in sub plots as factorial split plot combination based on completely randomized block design with three replications. The results showed that in all of the measured traits within the experiment there were significant differences between SAP levels. Furthermore, increasing irrigation interval led to an increase in a thousand seeds’ weight, but decreased seed yield. Increasing water stress raised seed oil percent and infertile silique and subsequently resulted in reduced oil yield. ʻHyola 401ʼ was more susceptible to embryo abortion compared with ʻRVSʼ. As a conclusion of the research, SAP (A200 application in quantities smaller than 75 kg ha-1 may be recommended for rapeseed production under field condition.

  20. A Review of Water Management in Polymer Electrolyte Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Zidong Wei

    2009-11-01

    Full Text Available At present, despite the great advances in polymer electrolyte membrane fuel cell (PEMFC technology over the past two decades through intensive research and development activities, their large-scale commercialization is still hampered by their higher materials cost and lower reliability and durability. In this review, water management is given special consideration. Water management is of vital importance to achieve maximum performance and durability from PEMFCs. On the one hand, to maintain good proton conductivity, the relative humidity of inlet gases is typically held at a large value to ensure that the membrane remains fully hydrated. On the other hand, the pores of the catalyst layer (CL and the gas diffusion layer (GDL are frequently flooded by excessive liquid water, resulting in a higher mass transport resistance. Thus, a subtle equilibrium has to be maintained between membrane drying and liquid water flooding to prevent fuel cell degradation and guarantee a high performance level, which is the essential problem of water management. This paper presents a comprehensive review of the state-of-the-art studies of water management, including the experimental methods and modeling and simulation for the characterization of water management and the water management strategies. As one important aspect of water management, water flooding has been extensively studied during the last two decades. Herein, the causes, detection, effects on cell performance and mitigation strategies of water flooding are overviewed in detail. In the end of the paper the emphasis is given to: (i the delicate equilibrium of membrane drying vs. water flooding in water management; (ii determining which phenomenon is principally responsible for the deterioration of the PEMFC performance, the flooding of the porous electrode or the gas channels in the bipolar plate, and (iii what measures should be taken to prevent water flooding from happening in PEMFCs.

  1. Increasing the operation temperature of polymer electrolyte membranes for fuel cells: From nanocomposites to hybrids

    Science.gov (United States)

    Licoccia, Silvia; Traversa, Enrico

    Among the possible systems investigated for energy production with low environmental impact, polymeric electrolyte membrane fuel cells (PEMFCs) are very promising as electrochemical power sources for application in portable technology and electric vehicles. For practical applications, operating FCs at temperatures above 100 °C is desired, both for hydrogen and methanol fuelled cells. When hydrogen is used as fuel, an increase of the cell temperature produces enhanced CO tolerance, faster reaction kinetics, easier water management and reduced heat exchanger requirement. The use of methanol instead of hydrogen as a fuel for vehicles has several practical benefits such as easy transport and storage, but the slow oxidation kinetics of methanol needs operating direct methanol fuel cells (DMFCs) at intermediate temperatures. For this reason, new membranes are required. Our strategy to achieve the goal of operating at temperatures above 120 °C is to develop organic/inorganic hybrid membranes. The first approach was the use of nanocomposite class I hybrids where nanocrystalline ceramic oxides were added to Nafion. Nanocomposite membranes showed enhanced characteristics, hence allowing their operation up to 130 °C when the cell was fuelled with hydrogen and up to 145 °C in DMFCs, reaching power densities of 350 mW cm -2. The second approach was to prepare Class II hybrids via the formation of covalent bonds between totally aromatic polymers and inorganic clusters. The properties of such covalent hybrids can be modulated by modifying the ratio between organic and inorganic groups and the nature of the chemical components allowing to reach high and stable conductivity values up to 6.4 × 10 -2 S cm -1 at 120 °C.

  2. Control and experimental characterization of a methanol reformer for a 350W high temperature polymer electrolyte membrane fuel cell system

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen; Jensen, Hans-Christian Becker

    suited for reformer systems, where high CO tolerance is required. This enables the use fuels based on e.g. liquid alcohols. This work presents the control strategies of a methanol refoermer for a 350W HTPEM FC system. The system examined is the Serenergy H3-350 Mobile Battery Charger, an integrated......High temperature polymer electrolyte membrane(HTPEM) fuel cells offer many advantages due to their increased operating tempera-tures compared to similar Nafion-based membrane tech-nologies, that rely on the conductive abilities of liquid water. The polybenzimidazole (PBI) membranes are especially...

  3. Membrane-Based Technologies in the Pharmaceutical Industry and Continuous Production of Polymer-Coated Crystals/Particles.

    Science.gov (United States)

    Chen, Dengyue; Sirkar, Kamalesh K; Jin, Chi; Singh, Dhananjay; Pfeffer, Robert

    2017-01-01

    Membrane technologies are of increasing importance in a variety of separation and purification applications involving liquid phases and gaseous mixtures. Although the most widely used applications at this time are in water treatment including desalination, there are many applications in chemical, food, healthcare, paper and petrochemical industries. This brief review is concerned with existing and emerging applications of various membrane technologies in the pharmaceutical and biopharmaceutical industry. The goal of this review article is to identify important membrane processes and techniques which are being used or proposed to be used in the pharmaceutical and biopharmaceutical operations. How novel membrane processes can be useful for delivery of crystalline/particulate drugs is also of interest. Membrane separation technologies are extensively used in downstream processes for bio-pharmaceutical separation and purification operations via microfiltration, ultrafiltration and diafiltration. Also the new technique of membrane chromatography allows efficient purification of monoclonal antibodies. Membrane filtration techniques of reverse osmosis and nanofiltration are being combined with bioreactors and advanced oxidation processes to treat wastewaters from pharmaceutical plants. Nanofiltration with organic solvent-stable membranes can implement solvent exchange and catalyst recovery during organic solvent-based drug synthesis of pharmaceutical compounds/intermediates. Membranes in the form of hollow fibers can be conveniently used to implement crystallization of pharmaceutical compounds. The novel crystallization methods of solid hollow fiber cooling crystallizer (SHFCC) and porous hollow fiber anti-solvent crystallization (PHFAC) are being developed to provide efficient methods for continuous production of polymer-coated drug crystals in the area of drug delivery. This brief review provides a general introduction to various applications of membrane technologies in

  4. Application of the Sensor Selection Approach in Polymer Electrolyte Membrane Fuel Cell Prognostics and Health Management

    Directory of Open Access Journals (Sweden)

    Lei Mao

    2017-09-01

    Full Text Available In this paper, the sensor selection approach is investigated with the aim of using fewer sensors to provide reliable fuel cell diagnostic and prognostic results. The sensitivity of sensors is firstly calculated with a developed fuel cell model. With sensor sensitivities to different fuel cell failure modes, the available sensors can be ranked. A sensor selection algorithm is used in the analysis, which considers both sensor sensitivity to fuel cell performance and resistance to noise. The performance of the selected sensors in polymer electrolyte membrane (PEM fuel cell prognostics is also evaluated with an adaptive neuro-fuzzy inference system (ANFIS, and results show that the fuel cell voltage can be predicted with good quality using the selected sensors. Furthermore, a fuel cell test is performed to investigate the effectiveness of selected sensors in fuel cell fault diagnosis. From the results, different fuel cell states can be distinguished with good quality using the selected sensors.

  5. Determination of membrane hydration numbers of alkali metal ions by insertion in a conducting polymer

    DEFF Research Database (Denmark)

    Skaarup, Steen; Junaid Mohamed Jafeen, Mohamed; Careem, M.A.

    2010-01-01

    , and a secondary (or outer) solvation shell, consisting of all other water molecules whose properties are still influenced significantly by the cation. Knowing the hydration number is important when considering, for instance, the transport of Na+ and K+ in biological cell membranes, since their different behavior...... may depend on the details of ion hydration. Although the solvation of alkali metal ions in aqueous solution has been discussed for many years, there is still no clear consensus. Part of the discrepancy is simply that different methods measure over different time scales, and therefore do...... not necessarily define the same hydration shell. This work presents a systematic study of one special variant of the hydration numbers of the 5 alkali metal ions, using the electrochemical insertion of the ions in a conducting polymer (polypyrrole containing the large immobile anion DBS-). The technique...

  6. Carbon nanostructures as catalyst support for polymer electrolyte membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Natarajan, S.K.; Hamelin, J. [Quebec Univ., Trois Rivieres, PQ (Canada). Inst. de recherche sur l' hydrogene

    2008-07-01

    This paper reported on a study that investigated potential alternatives to Vulcan XC-72 as a catalyst supports for polymer electrolyte membrane fuel cells (PEMFCs). These included carbon nanostructures (CNS) prepared by high energy ball milling of graphite and transition metal catalysts, followed by heat treatment. Among the key factors discussed were the graphitic content, high surface area, microporous structure, good electrical conductivity and the ability of the material to attach functional groups. Some graphic results supporting the usage of CNS as catalyst support for PEMFCs were presented. Upon chemical oxidation, surface functional groups such as carbonyl, carboxyl, and hydroxyl were populated on the surface of CNS. Nanosized platinum particles with particle size distribution between 3 nm and 5 nm were reduced on the functionalized sites of CNS in a colloidal medium. The paper also presented cyclic voltammograms, XPS, HRTEM and PSD results. 3 refs.

  7. Performance of diagonal control structures at different operating conditions for polymer electrolyte membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Serra, Maria; Husar, Attila; Feroldi, Diego; Riera, Jordi [Institut de Robotica i Informatica Industrial, Universitat Politecnica de Catalunya, Consejo Superior de Investigaciones Cientificas, C. Llorens i Artigas 4, 08028 Barcelona (Spain)

    2006-08-25

    This work is focused on the selection of operating conditions in polymer electrolyte membrane fuel cells. It analyses efficiency and controllability aspects, which change from one operating point to another. Specifically, several operating points that deliver the same amount of net power are compared, and the comparison is done at different net power levels. The study is based on a complex non-linear model, which has been linearised at the selected operating points. Different linear analysis tools are applied to the linear models and results show important controllability differences between operating points. The performance of diagonal control structures with PI controllers at different operating points is also studied. A method for the tuning of the controllers is proposed and applied. The behaviour of the controlled system is simulated with the non-linear model. Conclusions indicate a possible trade-off between controllability and optimisation of hydrogen consumption. (author)

  8. Further Improvement and System Integration of High Temperature Polymer Electrolyte Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Li, Qingfeng; Jensen, Jens Oluf

    The strategic developments of the FURIM are in three steps: (1) further improvement of the high temperature polymer membranes and related materials; (2) development of technological units including fuel cell stack, hydrocarbon reformer and afterburner, that are compatible with the HT-PEMFC; and (3......) integration of the HT-PEMFC stack with these compatible subunits. The main goal of the project is a 2kWel HT-PEMFC stack operating in a temperature range of 150-200°C, with a single cell performance target of 0.7 A/cm² at a cell voltage around 0.6 V. The target durability is more than 5,000 hours...

  9. Effect of time-varying humidity on the performance of a polymer electrolyte membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Noorani, Shamsuddin [Department of Mechanical Engineering, University of Michigan-Dearborn (United States); Shamim, Tariq [Mechanical Engineering, Masdar Institute of Science and Technology (United Arab Emirates)], E-mail: tshamim@masdar.ac.ae

    2011-07-01

    In the energy sector, fuel cells constitute a promising solution for the future due to their energy-efficient and environment-friendly characteristics. However, the performance of fuel cells is very much affected by the humidification level of the reactants, particularly in hot regions. The aim of this paper is to develop a better understanding of the effect of driving conditions on the performance of fuel cells. A macroscopic single-fuel-cell-based, one dimensional, isothermal model was used on a polymer electrolyte membrane fuel cell to carry out a computational study of the impact of humidity conditions which vary over time. It was found that the variation of humidity has a significant effect on water distribution but a much lower impact on power and current densities. This paper provided useful information on fuel cells' performance under varying conditions which could be used to improve their design for mobile applications.

  10. Experimental study on mass transfer of contaminants through an enthalpy recovery unit with polymer membrane foils

    DEFF Research Database (Denmark)

    Nie, Jinzhe; Fang, Lei

    2014-01-01

    Laboratory experimental studies were conducted to investigate the mass transfer of contaminants through a total heat recovery unit with polymer membranes foils. The studies were conducted in twin climate chambers which simulated outdoor and indoor thermal climates. One manufacturd total heat...... chemical gases were used to simulate air contaminants. The concentrations of dosed contaminants in the supply and exhaust air upstream and downstream of the total heat recovery unit were measured with Multi-Gas Monitor Innova 1316 in real time. Experiment results showed that 5% to 9% of dosed contaminants...... could transfer from exhaust air to supply air through the enthalpy recovery unit. The mass transfer efficiency of contaminants was independent of the hygro-thermal differences between indoor and outdoor climate conditions. The mass transfer ratio of the chemical contaminants in the total heat recovery...

  11. Liquid water breakthrough location distances on a gas diffusion layer of polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Yu, Junliang; Froning, Dieter; Reimer, Uwe; Lehnert, Werner

    2018-06-01

    The lattice Boltzmann method is adopted to simulate the three dimensional dynamic process of liquid water breaking through the gas diffusion layer (GDL) in the polymer electrolyte membrane fuel cell. 22 micro-structures of Toray GDL are built based on a stochastic geometry model. It is found that more than one breakthrough locations are formed randomly on the GDL surface. Breakthrough location distance (BLD) are analyzed statistically in two ways. The distribution is evaluated statistically by the Lilliefors test. It is concluded that the BLD can be described by the normal distribution with certain statistic characteristics. Information of the shortest neighbor breakthrough location distance can be the input modeling setups on the cell-scale simulations in the field of fuel cell simulation.

  12. Membrane protein extraction and purification using styrene-maleic acid (SMA) copolymer: effect of variations in polymer structure.

    Science.gov (United States)

    Morrison, Kerrie A; Akram, Aneel; Mathews, Ashlyn; Khan, Zoeya A; Patel, Jaimin H; Zhou, Chumin; Hardy, David J; Moore-Kelly, Charles; Patel, Roshani; Odiba, Victor; Knowles, Tim J; Javed, Masood-Ul-Hassan; Chmel, Nikola P; Dafforn, Timothy R; Rothnie, Alice J

    2016-12-01

    The use of styrene-maleic acid (SMA) copolymers to extract and purify transmembrane proteins, while retaining their native bilayer environment, overcomes many of the disadvantages associated with conventional detergent-based procedures. This approach has huge potential for the future of membrane protein structural and functional studies. In this investigation, we have systematically tested a range of commercially available SMA polymers, varying in both the ratio of styrene and maleic acid and in total size, for the ability to extract, purify and stabilise transmembrane proteins. Three different membrane proteins (BmrA, LeuT and ZipA), which vary in size and shape, were used. Our results show that several polymers, can be used to extract membrane proteins, comparably to conventional detergents. A styrene:maleic acid ratio of either 2:1 or 3:1, combined with a relatively small average molecular mass (7.5-10 kDa), is optimal for membrane extraction, and this appears to be independent of the protein size, shape or expression system. A subset of polymers were taken forward for purification, functional and stability tests. Following a one-step affinity purification, SMA 2000 was found to be the best choice for yield, purity and function. However, the other polymers offer subtle differences in size and sensitivity to divalent cations that may be useful for a variety of downstream applications. © 2016 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  13. Fabrication of novel nanomaterials for polymer electrolyte membrane fuel cells and self-cleaning applications

    Science.gov (United States)

    Zhang, Lei

    Materials scientists have embraced nanoscale materials as allowing new degrees of freedom in materials design, as well as producing completely new and enhanced properties compared with conventional materials. However, most nanofabrication methods are tedious and expensive, or require extreme conditions. This thesis presents efficient methods for generating nanostructured materials under relatively mild chemistry and experimental conditions. The basis of most of this work is porous anodic aluminum oxide (p-AAO) membranes, which have hexagonally close-packed pores and were fabricated following a two-step aluminum anodization procedure. Partially removing the barrier layer of a p-AAO membrane enabled the preparation of silver nanorod arrays using a very simple electrodepostition procedure. One dimensional (1-D) alumina nanostructures were also electrochemically synthesized on the surface of a p-AAO membrane by carefully controlling the anodization parameters. Polyacrylonitrile nanofibers containing platinum salt were fabricated by polymerization of acrylonitrile in p-AAO templates. Subsequent pyrolysis resulted in carbon nanofibers wherein the platinum salt is reduced in-situ to elemental Pt. The Pt nanoparticles are dispersed throughout the carbon nanofibers, have a narrow size range, and are single crystals. Rotating disc electrode voltammetry suggests that the dispersion of Pt nanocrystals in the carbon nanofiber matrix should exhibit excellent electrocatalytic activity. The preparation of catalyst ink and the construction of membrane-electrode-assembly need to be optimized to get better performance in polymer electrolyte membrane fuel cells. Platinum nanoparticles embedded in carbon fibers were also prepared using electrospinning. The prepared platinum nanoparticles are narrowly distributed in size and well dispersed in the carbon matrix. This method can provide a large yield of products with a simple setup and procedure. 2-D arrays of nanopillars made from

  14. In-situ radiation grafting of polymer films and degradation studies of monomers for applications in fuel cell membranes

    Energy Technology Data Exchange (ETDEWEB)

    Mitov, S.

    2007-02-15

    The present work consists of three parts which deal with the optimization of the properties of polymers finding application as proton exchange membranes in PEMFCs. The focus is the oxidative and photochemical stability of non-fluorinated polymer membranes, as well as the radiation-induced grafting of commercially available fluoropolymer films. The use of the ESR technique is common for the first two parts of the dissertation. ESR spectroscopy is the major method of study, because of its sensitivity and specificity for the detection of radical intermediates. It is a suitable spectroscopic technique to identify the nature of radiation generated radicals in organic polymers, and to monitor their concentration in-situ during the grafting process. The third part comprises the results and discussions of DFT calculations for non-fluorinated and fluorinated fragments.

  15. FTIR Spectroscopic and DC Ionic conductivity Studies of PVDF-HFP: LiBF4: EC Plasticized Polymer Electrolyte Membrane

    Science.gov (United States)

    Sangeetha, M.; Mallikarjun, A.; Jaipal Reddy, M.; Siva Kumar, J.

    2017-08-01

    In the present paper; the FTIR and Temperature dependent DC Ionic conductivity studies of polymer (80 Wt% PVDF-HFP) with inorganic lithium tetra fluoroborate salt (20 Wt% LiBF4) as ionic charge carrier and plasticized with various weight ratios of Ethylene carbonate plasticizer (10 Wt% to 70 Wt% EC) as gel polymer electrolytes. Solution casting method is used for the preparation of plasticized polymer-salt electrolyte films. FTIR analysis shows the good complexation between PVDF-HFP: LiBF4 and the presence of functional groups in the plasticized polymer-salt electrolyte membrane. Also the analysis and results show that the highest DC ionic conductivity of 1.66 × 10-3 SCm -1 was found at 373 K for a particular concentration of 80 Wt% PVDF-HFP: 20 Wt% LiBF4: 40 Wt% EC porous gel type polymer-salt plasticized porous membrane. Increase of temperature results expansion and segmental motion of polymer chain that generates free volume in turn promotes hopping of the lithium ions satisfying Vogel-Tammann-Fulcher equation.

  16. Biofunctionalization of aqueous dispersed, alumina membrane-templated polymer nanorods for use in enzymatic chemiluminescence assays.

    Science.gov (United States)

    Mark, Sonny S; Stolper, Samuel I; Baratti, Carla; Park, Jason Y; Kricka, Larry J

    2008-09-01

    The noncovalent immobilization of alkaline phosphatase (ALP) onto aqueous dispersed nylon 6 nanorods ( approximately 310 nm mean diameter; approximately 6 microm mean length) prepared by anodic aluminum oxide (AAO) membrane templating was studied. Using multi-stacked layer-by-layer (LBL) assembly with the cationic quaternary ammonium polymer Sapphire II , the amount of ALP enzyme loaded onto the polymer nanostructures was found to be 115+/-7 microg mg(-1) nanorod. The biofunctionalized nanorods were also characterized for their chemiluminescent activity with the dioxetane substrate, CSPD . The results indicate that the kinetic parameters, K(m) and V(max), for the catalytic activity of the nanostructure-bound ALP enzyme are different from those of soluble ('free') ALP. While the K(m) value was measured to be 156 microM for free ALP, the apparent K(m) value determined for the LBL-immobilized ALP is approximately 20% lower (122 microM). Furthermore, despite the relatively high enzyme loading capacity of the nanorods, the specific activity of the bound ALP enzyme was found to be almost nine times lower than that measured for free ALP. Finally, additional experiments revealed that the catalytic activities of both free ALP and nanorod-conjugated ALP are affected similarly by changes in pH, with optimal performance levels occurring under conditions of pH 9.5. To the best of our knowledge, this study represents the first report examining the preparation of aqueous dispersed, AAO-templated polymer nanorods for potential application as enzyme scaffolds in chemiluminescent-based assay systems.

  17. An Untrodden Path: Versatile Fabrication of Self-Supporting Polymer-Stabilized Percolation Membranes (PSPMs) for Gas Separation.

    Science.gov (United States)

    Friebe, Sebastian; Mundstock, Alexander; Schneider, Daniel; Caro, Jürgen

    2017-05-11

    The preparation and scalability of zeolite or metal organic framework (MOF) membranes remains a major challenge, and thus prevents the application of these materials in large-scale gas separation. Additionally, several zeolite or MOF materials are quite difficult or nearly impossible to grow as defect-free layers, and require expensive macroporous ceramic or polymer supports. Here, we present new self-supporting zeolite and MOF composite membranes, called Polymer-Stabilized Percolation Membranes (PSPMs), consisting of a pressed gas selective percolation network (in our case ZIF-8, NaX and MIL-140) and a gas-impermeable infiltrated epoxy resin for cohesion. We demonstrate the performance of these PSPMs by separating binary mixtures of H 2 /CO 2 and H 2 /CH 4 . We report the brickwork-like architecture featuring selective percolation pathways and the polymer as a stabilizer, compare the mechanical stability of said membranes with competing materials, and give an outlook on how economic these membranes may become. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Development of nano-structure controlled polymer electrolyte fuel-cell membranes by high-energy heavy ion irradiation

    International Nuclear Information System (INIS)

    Yamaki, Tetsuya; Asano, Masaharu; Maekawa, Yasunari; Yoshida, Masaru; Kobayashi, Misaki; Nomura, Kumiko; Takagi, Shigeharu

    2008-01-01

    There is increasing interest in polymer electrolyte fuel cells (PEFCs) together with recent worldwide energy demand and environmental issues. In order to develop proton-conductive membranes for PEFCs, we have been using high-energy heavy ion beams from the cyclotron accelerator of Takasaki Ion Accelerators for Advanced Radiation Application (TIARA), JAEA. Our strategic focus is centered on using nano-scale controllability of the ion-beam processing; the membrane preparation involves (1) the irradiation of commercially-available base polymer films with MeV ions, (2) graft polymerization of vinyl monomers into electronically-excited parts along the ion trajectory, called latent tracks, and (3) sulfonation of the graft polymers. Interestingly, the resulting membranes exhibited anisotropic proton transport, i.e., higher conductivity in the thickness direction. According to microscopic observations, this is probably because the columnar electrolyte phase extended, with a width of tens-to-hundreds nanometers, through the membrane. Other excellent membrane properties, e.g., sufficient mechanical strength, high dimensional stability, and low gas permeability should be due to such a controlled structure. (author)

  19. Control and experimental characterization of a methanol reformer for a 350 W high temperature polymer electrolyte membrane fuel cell system

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen; Sahlin, Simon Lennart

    2013-01-01

    is the water and methanol mixture fuel flow and the burner fuel/air ratio and combined flow. An experimental setup is presented capable of testing the methanol reformer used in the Serenergy H3 350 Mobile Battery Charger; a high temperature polymer electrolyte membrane (HTPEM) fuel cell system......This work presents a control strategy for controlling the methanol reformer temperature of a 350 W high temperature polymer electrolyte membrane fuel cell system, by using a cascade control structure for reliable system operation. The primary states affecting the methanol catalyst bed temperature....... The experimental system consists of a fuel evaporator utilizing the high temperature waste gas from the cathode air cooled 45 cell HTPEM fuel cell stack. The fuel cells used are BASF P1000 MEAs which use phosphoric acid doped polybenzimidazole membranes. The resulting reformate gas output of the reformer system...

  20. An all-aromatic polypyridine: Monomer and polymer synthesis; Film formation and crosslinking; A candidate fuel cell membrane

    Science.gov (United States)

    Sikkema, Doetze J.; Versteegen, Ron M.; Pouderoijen, Maarten J.; Janssen, Henk M.; Boere, Ben; Brands, Ferry; Kemperman, GerJan; Rewinkel, Jos B. M.; Koeman, Menno

    2018-03-01

    2,6-di (3-pyridyl)phenol and the title polymer are synthesized at 1 kg scale. Polymer is processed and crosslinked without the introduction of non-aromatic moieties after shaping into membranes. Attractive proton conduction, at high temperature (140-180 °C: 300 mS cm-1) and at room temperature (60 mS cm-1) are recorded in the dry state (higher numbers at modest humidity) and excellent retention of properties after challenge by humidity (in contrast with state-of-the-art PBI membranes). Functional fuel cells are made and tested. In prolonged use the membrane is plasticized and this seems attributable to curing reversal at the hydrogen electrode. For high temperature fuel cell use, another curing scheme (again without the introduction of aliphatic character) must be found.

  1. High-performance membrane-electrode assembly with an optimal polytetrafluoroethylene content for high-temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    Jeong, Gisu; Kim, MinJoong; Han, Junyoung

    2016-01-01

    Although high-temperature polymer electrolyte membrane fuel cells (HT-PEMFCs) have a high carbon monoxide tolerance and allow for efficient water management, their practical applications are limited due to their lower performance than conventional low-temperature PEMFCs. Herein, we present a high......-performance membrane-electrode assembly (MEA) with an optimal polytetrafluoroethylene (PTFE) content for HT-PEMFCs. Low or excess PTFE content in the electrode leads to an inefficient electrolyte distribution or severe catalyst agglomeration, respectively, which hinder the formation of triple phase boundaries...

  2. Systematic approach to development of pressure sensors using dielectric electro-active polymer membranes

    International Nuclear Information System (INIS)

    York, A; Seelecke, S; Dunn, J

    2013-01-01

    Dielectric electro-active polymers (DEAPs) have become attractive materials for various actuation and sensing applications due to their high energy and power density, high efficiency, light weight, and fast response speed. However, commercial development has been hindered due to a variety of constraints such as reliability, non-linear behavior, cost of driving electronics, and form factor requirements. This paper presents the systematic development from laboratory concept to commercial readiness of a novel pressure sensing system using a DEAP membrane. The pressure sensing system was designed for in-line pressure measurements for low pressure applications such as health systems monitoring. A first generation sensor was designed, built and tested with a focus on the qualitative capabilities of EAP membranes as sensors. Experimental measurements were conducted that demonstrated the capability of the sensor to output a voltage signal proportional to a changing pressure. Several undesirable characteristics were observed during these initial tests such as strong hysteresis, non-linearity, very limited pressure range, and low fatigue life. A second generation prototype was then designed to remove or compensate for these undesirable characteristics. This prototype was then built and tested. The new design showed an almost complete removal of hysteretic non-linear effects and was capable of operating at 10 × the pressure range of the initial generation. This new design is the framework for a novel DEAP based pressure sensor ready for commercial applications. (paper)

  3. Amorphous metallic alloys for oxygen reduction reaction in a polymer electrolyte membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Huerta, R.; Guerra-Martinez, I.; Lopez, J.S. [Inst. Politecnico Nacional, ESIQIE, Mexico City (Mexico). Lab. de Electroquimica; Pierna, A.R. [Basque Country Univ., San Sebastian (Spain). Dept. of Chemical Engineering and Environment; Solorza-Feria, O. [Inst. Politenico Nacional, Centro de Investigacion y de Estudios Avanzados, Mexico City (Mexico). Dept. de Quimica

    2010-07-15

    Direct methanol fuel cells (DMFC) and polymer electrolyte membrane fuel cells (PEMFC) represent an important, environmentally clean energy source. This has motivated extensive research on the synthesis, characterization and evaluation of novel and stable oxygen reduction electrocatalysts for the direct four-electron transfer process to water formation. Studies have shown that amorphous alloyed compounds can be used as electrode materials in electrochemical energy conversion devices. Their use in PEMFCs can optimize the electrocatalyst loading in the membrane electrode assembly (MEA). In this study, amorphous metallic PtSn, PtRu and PtRuSn alloys were synthesized by mechanical milling and used as cathodes for the oxygen reduction reaction (ORR) in sulphuric acid and in a single PEM fuel cell. Two different powder morphologies were observed before and after the chemical activation in a hydrofluoric acid (HF) solution at 25 degrees C. The kinetics of the ORR on the amorphous catalysts were investigated. The study showed that the amorphous metallic PtSn electrocatalyst was the most active of the 3 electrodes for the cathodic reaction. Fuel cell experiments were conducted at various temperatures at 30 psi for hydrogen (H{sub 2}) and at 34 psi for oxygen (O{sub 2}). MEAs made of Nafion 115 and amorphous metallic PtSn dispersed on carbon powder in a PEMFC had a power density of 156 mW per cm{sup 2} at 0.43V and 80 degrees C. 12 refs., 1 tab., 5 figs.

  4. Current collector design for closed-plenum polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Daniels, F. A.; Attingre, C.; Kucernak, A. R.; Brett, D. J. L.

    2014-03-01

    This work presents a non-isothermal, single-phase, three-dimensional model of the effects of current collector geometry in a 5 cm2 closed-plenum polymer electrolyte membrane (PEM) fuel cell constructed using printed circuit boards (PCBs). Two geometries were considered in this study: parallel slot and circular hole designs. A computational fluid dynamics (CFD) package was used to account for species, momentum, charge and membrane water distribution within the cell for each design. The model shows that the cell can reach high current densities in the range of 0.8 A cm-2-1.2 A cm-2 at 0.45 V for both designs. The results indicate that the transport phenomena are significantly governed by the flow field plate design. A sensitivity analysis on the channel opening ratio shows that the parallel slot design with a 50% opening ratio shows the most promising performance due to better species, heat and charge distribution. Modelling and experimental analysis confirm that flooding inhibits performance, but the risk can be minimised by reducing the relative humidity of the cathode feed to 50%. Moreover, overheating is a potential problem due to the insulating effect of the PCB base layer and as such strategies should be implemented to combat its adverse effects.

  5. Understanding Graphics on a Scalable Latching Assistive Haptic Display Using a Shape Memory Polymer Membrane.

    Science.gov (United States)

    Besse, Nadine; Rosset, Samuel; Zarate, Juan Jose; Ferrari, Elisabetta; Brayda, Luca; Shea, Herbert

    2018-01-01

    We present a fully latching and scalable 4 × 4 haptic display with 4 mm pitch, 5 s refresh time, 400 mN holding force, and 650 μm displacement per taxel. The display serves to convey dynamic graphical information to blind and visually impaired users. Combining significant holding force with high taxel density and large amplitude motion in a very compact overall form factor was made possible by exploiting the reversible, fast, hundred-fold change in the stiffness of a thin shape memory polymer (SMP) membrane when heated above its glass transition temperature. Local heating is produced using an addressable array of 3 mm in diameter stretchable microheaters patterned on the SMP. Each taxel is selectively and independently actuated by synchronizing the local Joule heating with a single pressure supply. Switching off the heating locks each taxel into its position (up or down), enabling holding any array configuration with zero power consumption. A 3D-printed pin array is mounted over the SMP membrane, providing the user with a smooth and room temperature array of movable pins to explore by touch. Perception tests were carried out with 24 blind users resulting in 70 percent correct pattern recognition over a 12-word tactile dictionary.

  6. The use of a polymer inclusion membrane for separation and preconcentration of orthophosphate in flow analysis

    International Nuclear Information System (INIS)

    Nagul, Edward A.; Fontàs, Clàudia; McKelvie, Ian D.; Cattrall, Robert W.; Kolev, Spas D.

    2013-01-01

    Graphical abstract: -- Highlights: •A flow analysis system determines phosphate at trace levels as molybdenum blue. •The flow system can operate under flow injection or continuous flow conditions. •On-line membrane-based separation and preconcentration is applied. •A polymer inclusion membrane composed of 70 wt% PVC and 30 wt% Aliquat 336 is used. •The flow system was successfully applied to a number of pristine water samples. -- Abstract: A highly sensitive flow analysis system has been developed for the trace determination of reactive phosphate in natural waters, which uses a polymer inclusion membrane (PIM) with Aliquat 336 as the carrier for on-line analyte separation and preconcentration. The system operates under flow injection (FI) and continuous flow (CF) conditions. Under optimal FI conditions the system is characterised by a linear concentration range between 0.5 and 1000 μg L −1 P, a sampling rate of 10 h −1 , a limit of detection of 0.5 μg L −1 P and RSDs of 3.2% (n = 10, 100 μg L −1 ) and 7.7% (n = 10, 10 μg L −1 ). Under CF conditions with 10 min stop-flow time and sample solution flow rate of 1.32 mL min −1 the flow system offers a limit of detection of 0.04 μg L −1 P, a sampling rate of 5 h −1 and an RSD of 3.4% (n = 5, 2.0 μg L −1 ). Interference studies revealed that anions commonly found in natural waters did not interfere when in excess of at least one order of magnitude. The flow system, operating under CF conditions, was successfully applied to the analysis of natural water samples containing concentrations of phosphate in the low μg L −1 P range, using the multipoint standard addition method

  7. New polymer material for CO_2 capture by membrane separation process

    International Nuclear Information System (INIS)

    Solimando, Xavier

    2016-01-01

    In this PhD thesis, two types of membrane materials were developed for CO_2 separation. The first ones associate a reference polymer material (Pebax) with new pseudo-peptidic bio-conjugates additives. These pseudo-peptide-polymer bio-conjugates were obtained by a 'grafting-to' synthetical pathway from alkyne-functionalized 1:1[a/a-Na-Bn-hydrazino] dimer and tetramer pseudopeptides. Poly(diethylene glycol acrylate) (PEDEGA) oligomeric part was synthesized under controlled conditions using Single Electron Transfer Living Radical Polymerization (SET-LRP) from an azido-functionalized initiator allowing direct coupling via CuAAC 'click' chemistry. The influence of these additives on CO_2 sorption and separation properties was analyzed in terms of properties-morphology-structure relationships. These original additives allowed to enhance CO_2 separation performances of the reference membrane, increasing CO_2 permeability by 46%, and maintaining good selectivities aCO_2/N_2 = 44 et aCO_2/CH_4 = 13. In another work, two families of poly(urethane-imide)s (PUIs) with controlled architecture were developed for obtaining membrane materials with high content in ethylene-oxide units while avoiding their crystallization. Linear multi-blocks PUIs were first synthesized by polycondensation with different sizes of Jeff amine polyether soft block, corresponding to soft block contents varying from 40 to 70%wt. To further increase the soft phase content until a very high level (85%wt), grafted multi-blocks PUIs were obtained by a 'grafting-to' strategy from an alkyne-functionalized precursor PUI and azido-PEDEGA oligomers with different molar weights. The evolution of their CO_2 separation performances were correlated to their soft phase content, morphology and CO_2 sorption ability. For the maximum soft phase content (85%wt), high performances were obtained for CO_2 separation (PCO_2 = 196 Barrer; aCO_2/N_2 = 39 et aCO_2/CH_4 = 12). Compared to the precursor PUI, the grafting strategy

  8. The use of a polymer inclusion membrane for separation and preconcentration of orthophosphate in flow analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nagul, Edward A. [School of Chemistry, The University of Melbourne, Victoria 3010 (Australia); Centre for Aquatic Pollution Identification and Management (CAPIM), The University of Melbourne, Victoria 3010 (Australia); Fontàs, Clàudia [Department of Chemistry, University of Girona, Campus Montilivi, 17071 Girona (Spain); McKelvie, Ian D. [School of Chemistry, The University of Melbourne, Victoria 3010 (Australia); School of Geography, Earth and Environmental Sciences, Plymouth University, Plymouth PL48AA (United Kingdom); Cattrall, Robert W. [School of Chemistry, The University of Melbourne, Victoria 3010 (Australia); Kolev, Spas D., E-mail: s.kolev@unimelb.edu.au [School of Chemistry, The University of Melbourne, Victoria 3010 (Australia); Centre for Aquatic Pollution Identification and Management (CAPIM), The University of Melbourne, Victoria 3010 (Australia)

    2013-11-25

    Graphical abstract: -- Highlights: •A flow analysis system determines phosphate at trace levels as molybdenum blue. •The flow system can operate under flow injection or continuous flow conditions. •On-line membrane-based separation and preconcentration is applied. •A polymer inclusion membrane composed of 70 wt% PVC and 30 wt% Aliquat 336 is used. •The flow system was successfully applied to a number of pristine water samples. -- Abstract: A highly sensitive flow analysis system has been developed for the trace determination of reactive phosphate in natural waters, which uses a polymer inclusion membrane (PIM) with Aliquat 336 as the carrier for on-line analyte separation and preconcentration. The system operates under flow injection (FI) and continuous flow (CF) conditions. Under optimal FI conditions the system is characterised by a linear concentration range between 0.5 and 1000 μg L{sup −1} P, a sampling rate of 10 h{sup −1}, a limit of detection of 0.5 μg L{sup −1} P and RSDs of 3.2% (n = 10, 100 μg L{sup −1}) and 7.7% (n = 10, 10 μg L{sup −1}). Under CF conditions with 10 min stop-flow time and sample solution flow rate of 1.32 mL min{sup −1} the flow system offers a limit of detection of 0.04 μg L{sup −1} P, a sampling rate of 5 h{sup −1} and an RSD of 3.4% (n = 5, 2.0 μg L{sup −1}). Interference studies revealed that anions commonly found in natural waters did not interfere when in excess of at least one order of magnitude. The flow system, operating under CF conditions, was successfully applied to the analysis of natural water samples containing concentrations of phosphate in the low μg L{sup −1} P range, using the multipoint standard addition method.

  9. Liquid anion exchangers (LAE) as novel receptors for plutonium pertraction across polymer immobilized liquid membranes

    International Nuclear Information System (INIS)

    Sonawane, J.V.; Anil Kumar; Sawant, S.R.; Singh, R.K.; Bajpai, D.D.; Shukla, J.P.

    1999-03-01

    The diffusion-limited and amine-facilitated Pu 4+ cation permeation in nitric acid media across a polymer immobilized liquid membrane (PILM) has been investigated to quantify the membrane carrier type effects on its transport. Primene JM-T (JMT) as primary, Amberlite LA-2 (Amb LA-2) as secondary, trilaurylamine (TLA] and triiso-octyl amine (TIOA) as tertiary and Adogen-464 (Ado-464) and Aliquat-336 (Ali-336) as quaternary amines as typical examples of nitrogen containing basic extractants are tested as the carriers. After suitable dilutions, the receptors are immobilized on a microporous polymeric support which are held within the pores by capillary forces. Both the composition of the organic membrane solvents and type of amine carriers exert a marked effect on plutonium permeation. Recovery of Pu steadily increases from primary to quaternary amines; its permeability across PILM roughly follows the order quaternary > tertiary > secondary > primary, similar to that generally observed in liquid-liquid distribution experiments. More than 95% pertraction of Pu(IV) is easily accomplished using tertiary or quaternary amine as ionophores across PILM in single run employing a feed solution containing about 5 mg dm -3 Pu in 4 M nitric acid solution while the receiving phase is 0.1M NH 2 OH.HCl prepared in 0.3M HNO 3 . On the other hand, plutonium permeation at 4M HNO 3 under similar experimental conditions using other types of amines as carriers namely primary amine, Pri JM-T afforded only 19% and 49% by Amb LA-2 in 6-7h runs. Results of the detailed study to evaluate the effect of other contaminants on Pu transport are also discussed. (author)

  10. U.S. DOE Progress Towards Developing Low-Cost, High Performance, Durable Polymer Electrolyte Membranes for Fuel Cell Applications.

    Science.gov (United States)

    Houchins, Cassidy; Kleen, Greg J; Spendelow, Jacob S; Kopasz, John; Peterson, David; Garland, Nancy L; Ho, Donna Lee; Marcinkoski, Jason; Martin, Kathi Epping; Tyler, Reginald; Papageorgopoulos, Dimitrios C

    2012-12-18

    Low cost, durable, and selective membranes with high ionic conductivity are a priority need for wide-spread adoption of polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs). Electrolyte membranes are a major cost component of PEMFC stacks at low production volumes. PEMFC membranes also impose limitations on fuel cell system operating conditions that add system complexity and cost. Reactant gas and fuel permeation through the membrane leads to decreased fuel cell performance, loss of efficiency, and reduced durability in both PEMFCs and DMFCs. To address these challenges, the U.S. Department of Energy (DOE) Fuel Cell Technologies Program, in the Office of Energy Efficiency and Renewable Energy, supports research and development aimed at improving ion exchange membranes for fuel cells. For PEMFCs, efforts are primarily focused on developing materials for higher temperature operation (up to 120 °C) in automotive applications. For DMFCs, efforts are focused on developing membranes with reduced methanol permeability. In this paper, the recently revised DOE membrane targets, strategies, and highlights of DOE-funded projects to develop new, inexpensive membranes that have good performance in hot and dry conditions (PEMFC) and that reduce methanol crossover (DMFC) will be discussed.

  11. Versatile antifouling polyethersulfone filtration membranes modified via surface grafting of zwitterionic polymers from a reactive amphiphilic copolymer additive.

    Science.gov (United States)

    Zhao, Yi-Fan; Zhang, Pei-Bin; Sun, Jian; Liu, Cui-Jing; Yi, Zhuan; Zhu, Li-Ping; Xu, You-Yi

    2015-06-15

    Here we describe the development of versatile antifouling polyethersulfone (PES) filtration membranes modified via surface grafting of zwitterionic polymers from a reactive amphiphilic copolymer additive. Amphiphilic polyethersulfone-block-poly(2-hydroxyethyl methacrylate) (PES-b-PHEMA) was beforehand designed and used as the blending additive of PES membranes prepared by phase inversion technique. The surface enriched PHEMA blocks on membrane surface acted as an anchor to immobilize the initiating site. Poly(sulfobetaine methacrylate) (PSBMA) were subsequently grafted onto the PES blend membranes by surface-initiated atom transfer radical polymerization (SI-ATRP). The analysis of surface chemistry confirmed the successful grafting of zwitterionic PSBMA brushes on PES membrane surface. The resulted PES-g-PSBMA membranes were capable of separating proteins from protein solution and oil from oil/water emulsion efficiently. Furthermore, the modified membranes showed high hydrophilicity and strongly antifouling properties due to the incorporation of well-defined PSBMA layer. In addition, the PES-g-PSBMA membranes exhibited excellent blood compatibility and durability during the washing process. The developed antifouling PES membranes are versatile and can find their applications in protein filtration, blood purification and oil/water separation, etc. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. U.S. DOE Progress Towards Developing Low-Cost, High Performance, Durable Polymer Electrolyte Membranes for Fuel Cell Applications

    Directory of Open Access Journals (Sweden)

    Dimitrios C. Papageorgopoulos

    2012-12-01

    Full Text Available Low cost, durable, and selective membranes with high ionic conductivity are a priority need for wide-spread adoption of polymer electrolyte membrane fuel cells (PEMFCs and direct methanol fuel cells (DMFCs. Electrolyte membranes are a major cost component of PEMFC stacks at low production volumes. PEMFC membranes also impose limitations on fuel cell system operating conditions that add system complexity and cost. Reactant gas and fuel permeation through the membrane leads to decreased fuel cell performance, loss of efficiency, and reduced durability in both PEMFCs and DMFCs. To address these challenges, the U.S. Department of Energy (DOE Fuel Cell Technologies Program, in the Office of Energy Efficiency and Renewable Energy, supports research and development aimed at improving ion exchange membranes for fuel cells. For PEMFCs, efforts are primarily focused on developing materials for higher temperature operation (up to 120 °C in automotive applications. For DMFCs, efforts are focused on developing membranes with reduced methanol permeability. In this paper, the recently revised DOE membrane targets, strategies, and highlights of DOE-funded projects to develop new, inexpensive membranes that have good performance in hot and dry conditions (PEMFC and that reduce methanol crossover (DMFC will be discussed.

  13. Modelling of a tubular membrane contactor for pre-combustion CO2 capture using ionic liquids: Influence of the membrane configuration, absorbent properties and operation parameters

    Directory of Open Access Journals (Sweden)

    Zhongde Dai

    2016-10-01

    Full Text Available A membrane contactor using ionic liquids (ILs as solvent for pre-combustion capture CO2 at elevated temperature (303–393 K and pressure (20 bar has been studied using mathematic model in the present work. A comprehensive two-dimensional (2D mass-transfer model was developed based on finite element method. The effects of liquid properties, membrane configurations, as well as operation parameters on the CO2 removal efficiency were systematically studied. The simulation results show that CO2 can be effectively removed in this process. In addition, it is found that the liquid phase mass transfer dominated the overall mass transfer. Membranes with high porosity and small thickness could apparently reduce the membrane resistance and thus increase the separation efficiency. On the other hand, the membrane diameter and membrane length have a relatively small influence on separation performance within the operation range. Keywords: CO2 capture, Pre-combustion, Membrane contactor, Ionic liquids, Modelling

  14. Application of Super Absorbent Polymers (SAP) in Concrete Construction State-of-the-Art Report Prepared by Technical Committee 225-SAP

    CERN Document Server

    Reinhardt, Hans-Wolf

    2012-01-01

    This is the state-of-the-art report prepared by the RILEM TC “Application of Super Absorbent Polymers (SAP) in concrete construction”. It gives a comprehensive overview of the properties of SAP, specific water absorption and desorption behaviour of SAP in fresh and hardening concrete, effects of the SAP addition on rheological properties of fresh concrete, changes of cement paste microstructure and mechanical properties of concrete. Furthermore, the key advantages of using SAP are described in detail: the ability of this material to act as an internal curing agent to mitigate autogenous shrinkage of high-performance concrete, the possibility to use SAP as an alternative to air-entrainment agents in order to increase the frost resistance of concrete, and finally, the benefit of steering the rheology of fresh cement-based materials. The final chapter describes the first existing and numerous prospective applications for this new concrete additive.

  15. Electrochemical Characterization of a Polymer Inclusion Membrane Made of Cellulose Triacetate and Aliquat 336 and Its Application to Sulfonamides Separation

    Directory of Open Access Journals (Sweden)

    Juana Benavente

    2018-01-01

    Full Text Available An electrochemical characterization of a polymer inclusion membrane (PIM fabricated with the ionic liquid (IL Aliquat 336 (26% and the polymer cellulose triacetate (CTA (76% is presented. Considering the use of PIMs in separation systems to remove pollutants from water, the characterization was performed with NaCl solutions by measuring membrane potential, electrochemical impedance spectroscopy, and salt diffusion and results were compared with those obtained from dry membranes. Results showed a significant reduction in the membrane diffusive permeability and electrical conductivity as well as the transport number of cation Na+ across the PIM when compared with solution values, which could be mainly related to the dense character of the membrane. Membrane application in the separation of different sulfonamides (sulfathiazole, sulfapyridine, sulfamethazine, and sulfamethoxazole from water, with 1 M NaCl solution as striping phase, was also considered. These results indicated that the different chemical characteristics of the compounds, as well as the compact structure of the PIM, limited the transport of the organic molecules though it.

  16. UV-Induced Radical Photo-Polymerization: A Smart Tool for Preparing Polymer Electrolyte Membranes for Energy Storage Devices

    Directory of Open Access Journals (Sweden)

    Claudio Gerbaldi

    2012-06-01

    Full Text Available In the present work, the preparation and characterization of quasi-solid polymer electrolyte membranes based on methacrylic monomers and oligomers, with the addition of organic plasticizers and lithium salt, are described. Noticeable improvements in the mechanical properties by reinforcement with natural cellulose hand-sheets or nanoscale microfibrillated cellulose fibers are also demonstrated. The ionic conductivity of the various prepared membranes is very high, with average values approaching 10-3 S cm-1 at ambient temperature. The electrochemical stability window is wide (anodic breakdown voltages > 4.5 V vs. Li in all the cases along with good cyclability in lithium cells at ambient temperature. The galvanostatic cycling tests are conducted by constructing laboratory-scale lithium cells using LiFePO4 as cathode and lithium metal as anode with the selected polymer electrolyte membrane as the electrolyte separator. The results obtained demonstrate that UV induced radical photo-polymerization is a well suited method for an easy and rapid preparation of easy tunable quasi-solid polymer electrolyte membranes for energy storage devices.

  17. UV-Induced Radical Photo-Polymerization: A Smart Tool for Preparing Polymer Electrolyte Membranes for Energy Storage Devices

    Directory of Open Access Journals (Sweden)

    Claudio Gerbaldi

    2012-10-01

    Full Text Available In the present work, the preparation and characterization of quasi-solid polymer electrolyte membranes based on methacrylic monomers and oligomers, with the addition of organic plasticizers and lithium salt, are described. Noticeable improvements in the mechanical properties by reinforcement with natural cellulose hand-sheets or nanoscale microfibrillated cellulose fibers are also demonstrated. The ionic conductivity of the various prepared membranes is very high, with average values approaching 10-3 S cm-1 at ambient temperature. The electrochemical stability window is wide (anodic breakdown voltages > 4.5 V vs. Li in all the cases along with good cyclability in lithium cells at ambient temperature. The galvanostatic cycling tests are conducted by constructing laboratory-scale lithium cells using LiFePO4 as cathode and lithium metal as anode with the selected polymer electrolyte membrane as the electrolyte separator. The results obtained demonstrate that UV induced radical photo-polymerization is a well suited method for an easy and rapid preparation of easy tunable quasi-solid polymer electrolyte membranes for energy storage devices.

  18. Isolation of plasma membranes from the nervous system by countercurrent distribution in aqueous polymer two-phase systems.

    Science.gov (United States)

    Schindler, Jens; Nothwang, Hans Gerd

    2009-01-01

    The plasma membrane separates the cell-interior from the cell's environment. To maintain homeostatic conditions and to enable transfer of information, the plasma membrane is equipped with a variety of different proteins such as transporters, channels, and receptors. The kind and number of plasma membrane proteins are a characteristic of each cell type. Owing to their location, plasma membrane proteins also represent a plethora of drug targets. Their importance has entailed many studies aiming at their proteomic identification and characterization. Therefore, protocols are required that enable their purification in high purity and quantity. Here, we report a protocol, based on aqueous polymer two-phase systems, which fulfils these demands. Furthermore, the protocol is time-saving and protects protein structure and function.

  19. Polymer-derived microporous ceramics for membranes and sensors for high temperature hydrogen purification and sensing

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Ravi Mohan

    2012-06-11

    The growing interest in the use of hydrogen as main fuel has increased the need for pure hydrogen (H{sub 2}) production and purification. There are several by-products (CO, H{sub 2}O, CO{sub 2}) associated with the production of hydrogen which might damage the production rate. Therefore, separation of hydrogen from other gases is an important step in the hydrogen production process. If H{sub 2} can be selectively removed from the product side during hydrogen production in membrane reactors, then it would be possible to achieve complete CO conversion in a single-step under high temperature conditions. The main goal of the present work is the high temperature H{sub 2} purification and sensing by applying polymer-derived ceramics. To prove the concept, the microporous SiBCN, Si{sub 3}N{sub 4} and SiCN ceramic membranes have been synthesized by the polymer-pyrolysis route and their performance for the hydrogen separation have been evaluated in tubular membranes as well as in planar chemiresistors. The synthesis of amorphous SiBCN ceramics has been realized through pyrolysis of poly(organoborosilazanes) in argon. Multilayered amorphous SiBCN/{gamma}-Al{sub 2}O{sub 3}/{alpha}-Al{sub 2}O{sub 3} membranes with gradient porosity have been realized and assessed with respect to the thermal stability, pore-size distribution and H{sub 2}/CO permeance. N{sub 2}-adsorption measurement indicates micropores in the range of 0.68-0.73 nm for three-fold SiBCN/{gamma}-Al{sub 2}O{sub 3}/{alpha}-Al{sub 2}O{sub 3} membrane. SEM characterization of three-fold SiBCN/{gamma}-Al{sub 2}O{sub 3}/{alpha}-Al{sub 2}O{sub 3} membrane shows the thickness of SiBCN membrane layer is 2.8 {mu}m; gas permeance measurements of the membrane shows H{sub 2}/CO selectivity of about 10.5 and the H{sub 2} permeance of about 1.05 x 10{sup -8} mol m{sup -2}s{sup -1}Pa{sup -1}. The observed gas permeation properties point out that the transportation of gas molecules through the membrane is governed by both

  20. Quantum-beam technology: A versatile tool for developing polymer electrolyte fuel-cell membranes

    Energy Technology Data Exchange (ETDEWEB)

    Yamaki, Tetsuya [Quantum Beam Science Directorate, Japan Atomic Energy Agency (JAEA), 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan)

    2010-09-15

    This paper describes the versatile application of quantum beam-based technology to the development of proton exchange membranes (PEMs) for fuel-cell applications. The {gamma}-ray or electron-beam induced radiation grafting offers a way to prepare PEMs; typically, the radical-initiated polymerization of a styrene or styrene-derivative monomer on a base polymer is followed by a sulfonation step. Novel PEMs were previously obtained using radiation-crosslinked fluoropolymers as the base material. Interestingly, combining this radiation-crosslinking process with the well-known chemical crosslinker method enabled one to obtain the ''multiply''-crosslinked PEMs, in which both the main and grafted chains have covalently bridged structures leading to a high durability. The bombardment of heavy ions accelerated to MeV or higher energies produces a continuous trail of excited and ionized molecules in polymers, which is known as a latent track. The approach using this ion-track technology is based on the chemical etching and/or modification of each track with diameters of tens to hundreds of nanometers. The resulting ''nano-structure controlled'' PEM was found to have perfect one-dimensional proton-conductive pathways parallel to its thickness direction, while, in contrast, other existing PEMs mostly exhibited proton transport in the three-dimensional random media. The hierarchical structures of the PEMs, ranging from nanometers to micrometers, were revealed by small-angle neutron scattering experiments using a cold or thermal neutron beam. The information in such a wide length scale led to a deep insight into the dynamic properties inside the PEM from a molecular to macroscopic level, which can provide feedback for the reconsideration and optimization of the preparation procedure. As demonstrated above in the author's studies, it is important to understand that every quantum beam is different, thereby making the right beam choice

  1. Transient response of a polymer electrolyte membrane fuel cell subjected to time-varying modulating conditions

    Energy Technology Data Exchange (ETDEWEB)

    Noorani, S.; Shamim, T. [Michigan-Dearborn Univ., Dearborn, MI (United States). Dept. of Mechanical Engineering

    2009-07-01

    In order for fuel cells to compete with internal combustion engines, they must have significant advantages in terms of overall efficiency, weight, packaging, safety and cost. A key requirement is its ability to operate under highly transient conditions during start-up, acceleration, and deceleration with stable performance. Therefore, a better understanding of fuel cell dynamic behaviour is needed along with better water management and distributions inside the cell. Therefore, this study investigated the effect of transient conditions on water distribution inside a polymer electrolyte membrane (PEM) cell. A macroscopic single-fuel cell based, one-dimensional, isothermal mathematical model was used to study the effect of modulating cell voltage on the water distribution of anode, cathode, catalyst layers, and membrane. Compared to other existing models, this model did not rely on the non-physical assumption of the uptake curve equilibrium between the pore vapour and ionomer water in the catalyst layers. Instead, the transition between the two phases was modeled as a finite-rate equilibration process. The modulating conditions were simulated by forcing the temporal variations in fuel cell voltage. The results revealed that cell voltage modulations cause a departure in the cell behaviour from its steady behaviour, and the finite-rate equilibration between the catalyst vapour and liquid water can be a factor in determining the cell response. The cell response is also affected by the modulating frequency and amplitude. The peak cell response was observed at low frequencies. Keywords: fuel cell, water transport, dynamic behaviour, numerical simulations. 9 refs., 1 tab., 5 figs.

  2. Colorimetric biomimetic sensor systems based on molecularly imprinted polymer membranes for highly-selective detection of phenol in environmental samples

    Directory of Open Access Journals (Sweden)

    Sergeyeva T. A.

    2014-05-01

    Full Text Available Aim. Development of an easy-to-use colorimetric sensor system for fast and accurate detection of phenol in envi- ronmental samples. Methods. Technique of molecular imprinting, method of in situ polymerization of molecularly imprinted polymer membranes. Results. The proposed sensor is based on free-standing molecularly imprinted polymer (MIP membranes, synthesized by in situ polymerization, and having in their structure artificial binding sites capable of selective phenol recognition. The quantitative detection of phenol, selectively adsorbed by the MIP membranes, is based on its reaction with 4-aminoantipyrine, which gives a pink-colored product. The intensity of staining of the MIP membrane is proportional to phenol concentration in the analyzed sample. Phenol can be detected within the range 50 nM–10 mM with limit of detection 50 nM, which corresponds to the concentrations that have to be detected in natural and waste waters in accordance with environmental protection standards. Stability of the MIP-membrane-based sensors was assessed during 12 months storage at room temperature. Conclusions. The sensor system provides highly-selective and sensitive detection of phenol in both mo- del and real (drinking, natural, and waste water samples. As compared to traditional methods of phenol detection, the proposed system is characterized by simplicity of operation and can be used in non-laboratory conditions.

  3. Comparison of the Absorbable Polymer Sirolimus-Eluting Stent (MiStent) to the Durable Polymer Everolimus-Eluting Stent (Xience) (from the DESSOLVE I/II and ISAR-TEST-4 Studies).

    Science.gov (United States)

    Lansky, Alexandra J; Kastrati, Adnan; Edelman, Elazer R; Parise, Helen; Ng, Vivian G; Ormiston, John; Wijns, William; Byrne, Robert A

    2016-02-15

    We compared the outcomes of a novel, thin-strut, cobalt-chromium, absorbable, polymer sirolimus-eluting stent (APSES; MiStent) to the durable polymer cobalt-chromium everolimus-eluting stent (EES; Xience). A propensity-matched analysis was performed comparing data from the DES With Sirolimus and a Bioabsorbable Polymer for the Treatment of Patients With De Novo Lesions in the Native Coronary Arteries (DESSOLVE) I and II studies, evaluating the APSES to the EES arm of the Intracoronary Stenting and Angiographic Results: Test Efficacy of 3 Limus-Eluting Stents-4 study. Target lesion failure (TLF) and its components were evaluated at 12 months and annually to 3 years; 805 patients (APSES = 153; EES = 652) were included with propensity matching in 204 patients (APSES = 102; EES = 102). APSES compared with EES had lower TLF at 1 year (3.0% vs 8.0%, p = 0.12) driven by a difference in target lesion revascularization (TLR; 1% vs 6%, p = 0.05), with no difference in target vessel myocardial infarction (p = 0.56) or stent thrombosis (p = 0.31). At 3 years, TLF (5.0% vs 12.5%, p = 0.07) and TLR (2.0% vs 8.4%, p = 0.04) remained lower with APSES. By landmark analysis, there was no significant difference in TLF between 1 and 3 years (p = 0.36). In conclusion, in a propensity-matched analysis, the APSES demonstrated reduced clinically indicated TLR rates at 1 and 3 years compared with the durable polymer EES, with minimal accrual of events between 1 and 3 years. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Spinning process variables and polymer solution effects in the die-swell phenomenon during hollow fiber membranes formation

    Directory of Open Access Journals (Sweden)

    Pereira C.C.

    2000-01-01

    Full Text Available During hollow fiber spinning many variables are involved whose effects are still not completely clear. However, its understanding is of great interest because the control of these variables may originate membranes with the desired morphologies and physical properties. In this work, the phase inversion process induced by the immersion precipitation technique was applied to prepare hollow fibers membranes. It was verified that some of the variables involved, can promote a visco-elastic polymer solution expansion, called die-swell phenomenon, which is undesired since it may lead to low reproducibility of the permeation properties. The effects of the distance between spinneret and precipitation bath, the bore liquid composition, and the polymer solution composition were analyzed and discussed in order to avoid this phenomenon. According to the results, it was verified that the parameters investigated might promote a delay precipitation, which restrained the visco-elastic expansion.

  5. Interplay of electrostatics and lipid packing determines the binding of charged polymer coated nanoparticles to model membranes.

    Science.gov (United States)

    Biswas, Nupur; Bhattacharya, Rupak; Saha, Arindam; Jana, Nikhil R; Basu, Jaydeep K

    2015-10-07

    Understanding of nanoparticle-membrane interactions is useful for various applications of nanoparticles like drug delivery and imaging. Here we report on the studies of interaction between hydrophilic charged polymer coated semiconductor quantum dot nanoparticles with model lipid membranes. Atomic force microscopy and X-ray reflectivity measurements suggest that cationic nanoparticles bind and penetrate bilayers of zwitterionic lipids. Penetration and binding depend on the extent of lipid packing and result in the disruption of the lipid bilayer accompanied by enhanced lipid diffusion. On the other hand, anionic nanoparticles show minimal membrane binding although, curiously, their interaction leads to reduction in lipid diffusivity. It is suggested that the enhanced binding of cationic QDs at higher lipid packing can be understood in terms of the effective surface potential of the bilayers which is tunable through membrane lipid packing. Our results bring forth the subtle interplay of membrane lipid packing and electrostatics which determine nanoparticle binding and penetration of model membranes with further implications for real cell membranes.

  6. Polymer electrolyte membrane water electrolysis: Restraining degradation in the presence of fluctuating power

    Science.gov (United States)

    Rakousky, Christoph; Reimer, Uwe; Wippermann, Klaus; Kuhri, Susanne; Carmo, Marcelo; Lueke, Wiebke; Stolten, Detlef

    2017-02-01

    Polymer electrolyte membrane (PEM) water electrolysis generates 'green' hydrogen when conducted with electricity from renewable - but fluctuating - sources like wind or solar photovoltaic. Unfortunately, the long-term stability of the electrolyzer performance is still not fully understood under these input power profiles. In this study, we contrast the degradation behavior of our PEM water electrolysis single cells that occurs under operation with constant and intermittent power and derive preferable operating states. For this purpose, five different current density profiles are used, of which two were constant and three dynamic. Cells operated at 1 A cm-2 show no degradation. However, degradation was observed for the remaining four profiles, all of which underwent periods of high current density (2 A cm-2). Hereby, constant operation at 2 A cm-2 led to the highest degradation rate (194 μV h-1). Degradation can be greatly reduced when the cells are operated with an intermittent profile. Current density switching has a positive effect on durability, as it causes reversible parts of degradation to recover and results in a substantially reduced degradation per mole of hydrogen produced. Two general degradation phenomena were identified, a decreased anode exchange current density and an increased contact resistance at the titanium porous transport layer (Ti-PTL).

  7. Thermal conductivity of catalyst layer of polymer electrolyte membrane fuel cells: Part 1 - Experimental study

    Science.gov (United States)

    Ahadi, Mohammad; Tam, Mickey; Saha, Madhu S.; Stumper, Jürgen; Bahrami, Majid

    2017-06-01

    In this work, a new methodology is proposed for measuring the through-plane thermal conductivity of catalyst layers (CLs) in polymer electrolyte membrane fuel cells. The proposed methodology is based on deconvolution of bulk thermal conductivity of a CL from measurements of two thicknesses of the CL, where the CLs are sandwiched in a stack made of two catalyst-coated substrates. Effects of hot-pressing, compression, measurement method, and substrate on the through-plane thermal conductivity of the CL are studied. For this purpose, different thicknesses of catalyst are coated on ethylene tetrafluoroethylene (ETFE) and aluminum (Al) substrates by a conventional Mayer bar coater and measured by scanning electron microscopy (SEM). The through-plane thermal conductivity of the CLs is measured by the well-known guarded heat flow (GHF) method as well as a recently developed transient plane source (TPS) method for thin films which modifies the original TPS thin film method. Measurements show that none of the studied factors has any effect on the through-plane thermal conductivity of the CL. GHF measurements of a non-hot-pressed CL on Al yield thermal conductivity of 0.214 ± 0.005 Wṡm-1ṡK-1, and TPS measurements of a hot-pressed CL on ETFE yield thermal conductivity of 0.218 ± 0.005 Wṡm-1ṡK-1.

  8. CoPd x oxygen reduction electrocatalysts for polymer electrolyte membrane and direct methanol fuel cells

    International Nuclear Information System (INIS)

    Mustain, William E.; Kepler, Keith; Prakash, Jai

    2007-01-01

    The electrochemical activity of carbon-supported cobalt-palladium alloy electrocatalysts of various compositions have been investigated for the oxygen reduction reaction in a 5 cm 2 single cell polymer electrolyte membrane fuel cell. The polarization experiments have been conducted at various temperatures between 30 and 60 deg. C and the reduction performance compared with data from a commercial Pt catalyst under identical conditions. Investigation of the catalytic activity of the CoPd x PEMFC system with varying composition reveals that a nominal cobalt-palladium atomic ratio of 1:3, CoPd 3 , exhibits the best performance of all studied catalysts, exhibiting a catalytic activity comparable to the commercial Pt catalyst. The ORR on CoPd 3 has a low activation energy, 52 kJ/mol, and a Tafel slope of approximately 60 mV/decade, indicating that the rate-determining step is a chemical step following the first electron transfer step and may involve the breaking of the oxygen bond. The CoPd 3 catalyst also exhibits excellent chemical stability, with the open circuit cell voltage decreasing by only 3% and the observed current decreasing by only 10% at 0.8 V over 25 h. The CoPd 3 catalyst also exhibits superior tolerance to methanol crossover poisoning than Pt

  9. Fine-Tuned Intrinsically Ultramicroporous Polymers Redefine the Permeability/Selectivity Upper Bounds of Membrane-Based Air and Hydrogen Separations

    KAUST Repository

    Swaidan, Raja; Ghanem, Bader; Pinnau, Ingo

    2015-01-01

    Intrinsically ultramicroporous (<7 Å) polymers represent a new paradigm in materials development for membrane-based gas separation. In particular, they demonstrate that uniting intrachain “rigidity”, the traditional design metric of highly permeable

  10. Exceptional durability enhancement of PA/PBI based polymer electrolyte membrane fuel cells for high temperature operation at 200°C

    DEFF Research Database (Denmark)

    Aili, David; Zhang, Jin; Jakobsen, Mark Tonny Dalsgaard

    2016-01-01

    The incorporation of phosphotungstic acid functionalized mesoporous silica in phosphoric acid doped polybenzimidazole (PA/PBI) substantially enhances the durability of PA/PBI based polymer electrolyte membrane fuel cells for high temperature operation at 200°C.......The incorporation of phosphotungstic acid functionalized mesoporous silica in phosphoric acid doped polybenzimidazole (PA/PBI) substantially enhances the durability of PA/PBI based polymer electrolyte membrane fuel cells for high temperature operation at 200°C....

  11. Rapid fabrication of microfluidic polymer electrolyte membrane fuel cell in PDMS by surface patterning of perfluorinated ion-exchange resin

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yong-Ak; Han, Jongyoon [Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139 (United States); Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139 (United States); Batista, Candy [Roxbury Community College, 1234 Columbus Ave., Roxbury Crossing, MA 02120 (United States); Sarpeshkar, Rahul [Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139 (United States)

    2008-09-01

    In this paper we demonstrate a simple and rapid fabrication method for a microfluidic polymer electrolyte membrane (PEM) fuel cell using polydimethylsiloxane (PDMS), which has become the de facto standard material in BioMEMS. Instead of integrating a Nafion sheet film between two layers of a PDMS device in a traditional ''sandwich format,'' we pattern a perfluorinated ion-exchange resin such as a Nafion resin on a glass substrate using a reversibly bonded PDMS microchannel to generate an ion-selective membrane between the fuel-cell electrodes. After this patterning step, the assembly of the microfluidic fuel cell is accomplished by simple oxygen plasma bonding between the PDMS chip and the glass substrate. In an example implementation, the planar PEM microfluidic fuel cell generates an open circuit voltage of 600-800 mV and delivers a maximum current output of nearly 4 {mu}A. To enhance the power output of the fuel cell we utilize self-assembled colloidal arrays as a support matrix for the Nafion resin. Such arrays allow us to increase the thickness of the ion-selective membrane to 20 {mu}m and increase the current output by 166%. Our novel fabrication method enables rapid prototyping of microfluidic fuel cells to study various ion-exchange resins for the polymer electrolyte membrane. Our work will facilitate the development of miniature, implantable, on-chip power sources for biomedical applications. (author)

  12. Development of vinylic and acetylenic functionalized structures based on high permeable glassy polymers as membrane materials for gas mixtures separation

    Science.gov (United States)

    Roizard, D.; Kiryukhina, Y.; Masalev, A.; Khotimskiy, V.; Teplyakov, V.; Barth, D.

    2013-03-01

    There are several challenging separation problems in industries which can be solved with the help of membrane technologies. It is the case for instance of the purification of gas energy carriers (i.e. H2, CH4) from CO2 as well as the CO2 recovery from flue gas. Glassy polymers containing trimethylsilyl residues like poly(1-trimethylsilyl-1-propyne) [PTMSP] and polyvinyltrimethylsilane [PVTMS] are known to exhibit good membrane properties for gas separation. This paper reports two ways of improving their performances based on the controlled introduction of selective groups - alkyl imidazomium salts (C4I) and polyethyleneglycol (M-PEG)- able to enhance CO2 selectivity. CO2 Isotherm sorption data and permeability measurements have shown that the membrane performances could be significantly improved when C4I and M-PEG were introduced as residues covalently bounded to the main polymer chain. Moreover the introduced bromine reactive centres could also be used to induce chemical crosslinking giving rise to more resistant and stable membranes to organic vapours. With the C4I groups, the CO2 sorption could be enhanced by a factor 4.4.

  13. Towards Acid-Tolerated Ethanol Dehydration: Chitosan-Based Mixed Matrix Membranes Containing Cyano-Bridged Coordination Polymer Nanoparticles.

    Science.gov (United States)

    Wu, C-W; Kang, Chao-Hsiang; Lin, Yi-Feng; Tung, Kuo-Lun; Deng, Yu-Heng; Ahamad, Tansir; Alshehri, Saad M; Suzuki, Norihiro; Yamauchi, Yusuke

    2016-04-01

    Prussian blue (PB) nanoparticles, one of many cyano-bridged coordination polymers, are successfully incorporated into chitosan (CS) polymer to prepare PB/CS mixed matrix membranes (MMMs). The PB nanoparticles are uniformly distributed in the MMMs without the collapse of the original PB structure. As-prepared PB/CS MMMs are used for ethanol dehydration at 25 °C in the pervaporation process. The effect of loading PB in CS matrix on pervaporation performance is carefully investigated. The PB/CS membrane with 30 wt% PB loading shows the best performance with a permeate flux of 614 g. m-2 . h-1 and a separation factor of 1472. The pervaporation using our PB/CS membranes exhibits outstanding performance in comparison with the previously reported CS-based membranes and MMMs. Furthermore, the addition of PB allows PB/CS MMMs to be tolerant of acidic environment. The present work demonstrates good pervaporation performance of PB/CS MMMs for the separation of an ethanol/water (90:10 in wt%) solution. Our new system provides an opportunity for dehydration of bioethanol in the future.

  14. Relationship between the Amount of Bitter Substances Adsorbed onto Lipid/Polymer Membrane and the Electric Response of Taste Sensors

    Directory of Open Access Journals (Sweden)

    Kiyoshi Toko

    2014-09-01

    Full Text Available The bitterness of bitter substances can be measured by the change in the membrane electric potential caused by adsorption (CPA using a taste sensor (electronic tongue. In this study, we examined the relationship between the CPA value due to an acidic bitter substance and the amount of the bitter substance adsorbed onto lipid/polymer membranes, which contain different lipid contents, used in the taste sensor. We used iso-α-acid which is an acidic bitter substance found in several foods and beverages. The amount of adsorbed iso-α-acid, which was determined by spectroscopy, showed a maximum at the lipid concentration 0.1 wt % of the membrane, and the same phenomenon was observed for the CPA value. At the higher lipid concentration, however, the amount adsorbed decreased and then remained constant, while the CPA value decreased monotonically to zero. This constant adsorption amount was observed when the membrane potential in the reference solution did not change with increasing lipid concentration. The decrease in CPA value in spite of the constant adsorption amount is caused by a decrease in the sensitivity of the membrane as the surface charge density increases. The reason why the peaks appeared in both the CPA value and adsorption amount is based on the contradictory adsorption properties of iso-α-acid. The increasing charged lipid concentration of the membrane causes an increasing electrostatic attractive interaction between iso-α-acid and the membrane, but simultaneously causes a decreasing hydrophobic interaction that results in decreasing adsorption of iso-α-acid, which also has hydrophobic properties, onto the membrane. Estimates of the amount of adsorption suggest that iso-α-acid molecules are adsorbed onto both the surface and interior of the membrane.

  15. Density functional theory calculations of H/D isotope effects on polymer electrolyte membrane fuel cell operations

    Energy Technology Data Exchange (ETDEWEB)

    Yanase, Satoshi; Oi, Takao [Sophia Univ., Tokyo (Japan). Faculty of Science and Technology

    2015-10-01

    To elucidate hydrogen isotope effects observed between fuel and exhaust hydrogen gases during polymer electrolyte membrane fuel cell operations, H-to-D reduced partition function ratios (RPFRs) for the hydrogen species in the Pt catalyst phase of the anode and the electrolyte membrane phase of the fuel cell were evaluated by density functional theory calculations on model species of the two phases. The evaluation yielded 3.2365 as the value of the equilibrium constant of the hydrogen isotope exchange reaction between the two phases at 39 C, which was close to the experimentally estimated value of 3.46-3.99 at the same temperature. It was indicated that H{sup +} ions on the Pt catalyst surface of the anode and H species in the electrolyte membrane phase were isotopically in equilibrium with one another during fuel cell operations.

  16. Characterization of Selected Parameters of Organic-Inorganic Hybrid Membranes Based on Various Polymers and Nd-Fe-B Fillers

    Directory of Open Access Journals (Sweden)

    Rybak A.

    2016-12-01

    Full Text Available In this paper magnetic organic-inorganic hybrid membranes based on EC, PPO polymer matrices and various magnetic powder microparticles were synthesized and studied. Constant pressure permeation technique and the Time Lag method were used to obtain the gas transport coefficients. The mechanical, rheological and magnetic parameters of magnetic hybrid membranes were examined. It was found that their separation and gas transport properties (D, P, S and α were improved with the decrease in powder particle size and the increase of membrane’s remanence, saturation magnetization and magnetic particle filling. The increase of the magnetic powder addition and a decrease of its granulation improved also mechanical and rheological parameters of the tested membranes. This improvement also had a positive effect on their gas separation properties and their potential usage in the future.

  17. Enhancing the Chemical and Mechanical Durability of Polymer Electrolyte Membranes for Fuel Cell Applications

    Science.gov (United States)

    Baker, Andrew M.

    Polymer electrolyte membrane (PEM) fuel cells are energy conversion devices which generate electricity from the electrochemical reaction of hydrogen and oxygen. Currently, widespread adoption of PEM fuel cell technology is hindered by low component durability and high costs. In this work, strategies were investigated to improve the mechanical and chemical durability of the ion conducting polymer, or ionomer, which comprises the PEM, in order to directly address these limitations. Owing to their exceptional mechanical properties, carbon nanotubes (CNTs) were investigated for mechanical reinforcement of the PEM. Because of their electronic conductivity, which diminishes cell performance, two strategies were developed to enable the use of CNTs as PEM reinforcement. These systems result in enhanced mechanical properties without sacrificing performance of the PEM during operation. Further, when coated with ceria (CeO2), which scavenges radicals that are generated during operation and cause PEM chemical degradation by attacking vulnerable chemical groups in the ionomer, MWCNTs further improved PEM chemical durability. During cell fabrication, conditioning, and discharge, Ce rapidly migrates between the PEM and catalyst layers (CLs), which reduces catalyst efficiency and leaves areas of the cell defenseless against radical attacks. Therefore, in order to stabilize Ce and localize it to areas of highest radical generation, it is critical to understand and identify the relative influences of different migration mechanisms. Using a novel elemental analysis technique, Ce migration was characterized due to potential and concentration gradients, water flux, and degradation of Ce-exchanged sulfonic acid groups within the PEM. Additionally, Zr-doped ceria was employed to resist migration due to ionomer degradation which improved cell durability, without reducing performance, resulting in PEM Ce stabilization near its initial concentrations after > 1,400 hours of testing. Ce was

  18. Asymmetric membranes for destabilization of oil droplets in produced water from alkaline-surfactant-polymer (ASP) flooding

    Science.gov (United States)

    Ramlee, Azierah; Chiam, Chel-Ken; Sarbatly, Rosalam

    2018-05-01

    This work presents a study of destabilization of oil droplets in the produced water from alkaline-surfactant-polymer (ASP) flooding by using four types of laboratory-fabricated polyvinylidene fluoride (PVDF) membranes. The PVDF membranes were fabricated via immersion precipitation method with ethanol (0 - 30 %, v/v) as the coagulant. The membranes with the effective area of 17.35 cm2 were tested with synthesized ASP solution as the feed in cross-flow microfiltration process. The ASP feed solution initially contained the oil droplets with radius ranged from 40 to 100 nm and the mean radius was 61 nm. Results have shown that the concentration of the ethanol in the coagulation bath affects the formation of the membrane structure and the corresponding porosity, while no significance influence on the membrane thickness. Coalescence of the oil droplets was occurred when the ASP solution permeated through the asymmetric PVDF membranes. Through the coalescence process, the oil droplets were destabilized where the radius of the oil droplets in the permeates increased to 1.5-4 µm with the corresponding mean radius ranged from 2.4 to 2.7 µm.

  19. meta-PBI/methylated PBI-OO blend membranes for acid doped HT PEMFC

    DEFF Research Database (Denmark)

    Cho, Hyeongrae; Hur, Eun; Henkensmeier, Dirk

    2014-01-01

    Methylation of polybenzimidazole leads to positively charged polymer backbones, and moveable anions. Ion exchange of methylated PBI-OO in phosphoric acid (PA) shows that the resulting polymers dissolve. meta-PBI, however, absorbs about 400wt% PA while remaining a self supported membrane. We inves...

  20. The effect of polymer size and charge of molecules on permeation through synovial membrane and accumulation in hyaline articular cartilage.

    Science.gov (United States)

    Sterner, B; Harms, M; Wöll, S; Weigandt, M; Windbergs, M; Lehr, C M

    2016-04-01

    The treatment of joint related diseases often involves direct intra-articular injections. For rational development of novel delivery systems with extended residence time in the joint, detailed understanding of transport and retention phenomena within the joint is mandatory. This work presents a systematic study on the in vitro permeation, penetration and accumulation of model polymers with differing charges and molecular weights in bovine joint tissue. Permeation experiments with bovine synovial membrane were performed with PEG polymers (6-200 kDa) and methylene blue in customized diffusion chambers. For polyethylene glycol, 2-fold (PEG 6 kDa), 3-fold (PEG 10 kDa) and 13-fold (PEG 35 kDa) retention by the synovial membrane in reference to the small molecule methylene blue was demonstrated. No PEG 200 kDa was found in the acceptor in detectable amounts after 48 h. This showed the potential for a distinct extension of joint residence times by increasing molecular weights. In addition, experiments with bovine cartilage tissue were conducted. The ability for positively charged, high molecular weight chitosans and HEMA-Co-TMAP (HCT) polymers (up to 233 kDa) to distribute throughout the entire cartilage matrix was demonstrated. In contrast, a distribution into cartilage was not observed for neutral PEG polymers (6-200 kDa). Furthermore, the positive charge density of different compounds (chitosan, HEMA-Co-TMAP, methylene blue, MSC C1 (neutral NCE) and MSC D1 (positively charged NCE) was found to correlate with their accumulation in bovine cartilage tissue. In summary, the results offer pre-clinical in vitro data, indicating that the modification of molecular size and charge of a substance has the potential to decelerate its clearance through the synovial membrane and to promote accumulation inside the cartilage matrix. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Novel composite membranes based on PBI and dicationic ionic liquids for high temperature polymer electrolyte membrane fuel cells

    International Nuclear Information System (INIS)

    Hooshyari, Khadijeh; Javanbakht, Mehran; Adibi, Mina

    2016-01-01

    Two types of innovative composite membranes based on polybenzimidazole (PBI) containing dicationic ionic liquid 1,3-di(3-methylimidazolium) propane bis (trifluoromethylsulfonyl) imide (PDC 3 ) and monocationic ionic liquid 1-hexyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide (PMC 6 ) are prepared as electrolyte for high temperature fuel cells applications under anhydrous conditions. The analyses of results display promising characteristics such as high proton conductivity and thermal stability. Moreover the fuel cell performance of PA doped PDC 3 composite membranes is enhanced in comparison with PA doped PMC 6 and PA doped PBI membranes at high temperatures. Dicationic ionic liquid with high number of charge carriers provides well-developed ionic channels which form facile pathways and considerably develop the anhydrous proton conductivity. The highest proton conductivity of 81 mS/cm is achieved for PA doped PDC 3 composite membranes with PBI/IL mole ratio: 4 at 180 °C. A power density of 0.44 W/cm 2 is obtained at 0.5 V and 180 °C for PA doped PDC 3 composite membranes, which proves that these developed composite membranes can be considered as most promising candidates for high temperature fuel cell applications with enhanced proton conductivity.

  2. [Development of a novel absorbable nanofiber chitosan-collagen membrane by electrospinning and the preliminary study on guided bone regeneration].

    Science.gov (United States)

    Gao, B; Li, X J; Lin, M; Li, Y Y; Dong, Y

    2018-02-09

    Objective: To evaluate the application effect of nanofiber chitosan-collagen membrane (NCM) on guided bone regeneration (GBR). Methods: The mixture of collagen, chitosan, polyethylene oxide was used to make up the NCM by electrospinning, then the NCM was crosslinked by glutaraldehyde vapor. The physical property of the NCM was measured by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). MC3T3-E1 osteoblasts were cultured on NCM to characterize the biocompatibility. The effectiveness of four groups [contrast group, Bio-gide membrane (BGM), compressed chitosan-collagen menbrane (CCM), NCM/CCM] on bone regeneration were evaluated in critical-sized defects (diameter = 5 mm) in SD rats. Results: When the mixed solution consists of 4.0% collagen, 1.0% chitosan and 3.5% polyethylene oxide, the NCM could be validly fabricated by electrospinning. After cross-linking by glutaraldehyde vapor, the tensile strength and the stability of NCM in damp was enhanced. No cytotoxicity of the NCM was detected on MC3T3-E1 osteoblasts. In vivo study showed that the new bone regeneration ratio of NCM/CCM group was [(43.10±1.49)%], and this was similar to that of the group of BGM [(41.36±2.60)%] ( P> 0.05), but higher than that of the CCM group [(33.10±1.41)%] and the contrast group [(7.22±2.46)%] ( P< 0.05). Conclusions: The NCM can promote new bone regeneration effectively in GBR procedure.

  3. Membrane contactors for CO2 capture processes - critical review

    Science.gov (United States)

    Nogalska, Adrianna; Trojanowska, Anna; Garcia-Valls, Ricard

    2017-07-01

    The use of membrane contactor in industrial processes is wide, and lately it started to be used in CO2 capture process mainly for gas purification or to reduce the emission. Use of the membrane contactor provides high contact surface area so the size of the absorber unit significantly decreases, which is an important factor for commercialization. The research has been caried out regarding the use of novel materials for the membrane production and absorbent solution improvements. The present review reveals the progress in membrane contactor systems for CO2 capture processes concerning solution for ceramic membrane wetting, comparison study of different polymers used for fabrication and methods of enzyme immobilization for biocomposite membrane. Also information about variety of absorbent solutions is described.

  4. Synthesis and characterization of sulfonated polymers for ionomeric membranes based on styrene copolymers; Sintese e caracterizacao de precursores sulfonados para membranas polimericas a base de copolimeros estirenicos

    Energy Technology Data Exchange (ETDEWEB)

    Becker, C.M.; Forte, M.M.C.; Amico, S.C. [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Escola de Engenharia. Lab. de Materiais Polimericos (LAPOL)], e-mail: crismbecker@yahoo.com.br, e-mail: mmcforte@ufrgs.br, e-mail: amico@ufrgs.br; Vargas, J.V.C. [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Dept. de Engenharia Mecanica], e-mail: jvargas@demec.ufpr.br

    2006-07-01

    Polymer electrolyte membrane fuel cell (PEMFC) have emerged strongly as a viable alternative for power source owing to their high energy efficiency and environmental friendliness. Currently, Nafion is the most frequently used membrane even though it has a high cost. The objective of this work is to synthesize sulfonated polymers, based on styrene copolymers, with different sulfonation degrees as an alternative material for fuel cell membranes. Acetyl sulfate was used to carry out the sulfonation and the resulting polymers were characterized by Fourier Transform Infra-red (FTIR), thermogravimetric analysis (TGA) and degree of substitution or sulfonation (DS). The polyelectrolytes were evaluated regarding their ion exchange capacity (IEC) and conductivity. The results demonstrated that increasing the sulfonic acid content of the polymer results in higher IEC, conductivity and water uptake. (author)

  5. Polymer confined in membrane phases: influences on stability, structure and dynamics

    International Nuclear Information System (INIS)

    Javierre, Isabelle

    1999-01-01

    The addition of a hydrosoluble polymer to the different structures obtained with mixtures of water/surfactant/alcohol/oil alters the thermodynamic stability of microemulsion and lamellar phases. The reverse sponge phase disappears while one can observe the occurrence of a new phase, labelled L5, at intermediate polymer concentration. In polymer-'doped' solvent lamellar phase, the polymer induces an attractive contribution to the interaction between bilayers while in polymer-'doped' bilayers lamellar phase, the polymer increases the flexibility. The L5 phase exhibits symmetric sponge properties and furthermore presents very strong symmetry fluctuations. The relaxation of these fluctuations were experimentally evidenced for the first time. This unusual dynamic behaviour was confronted to the one of other sponge phases, in a large range of concentrations. (author) [fr

  6. Influence of Filler Pore Structure and Polymer on the Performance of MOF-Based Mixed-Matrix Membranes for CO2 Capture

    KAUST Repository

    Sabetghadam, Anahid

    2018-03-24

    To gain insight into the influence of metal-organic framework (MOF) fillers and polymers on membrane performance, eight different composites were studied by combining four MOFs and two polymers. MOF materials (NH-MIL-53(Al), MIL-69(Al), MIL-96(Al) and ZIF-94) with various chemical functionalities, topologies, and dimensionalities of porosity were employed as fillers, and two typical polymers with different permeability-selectivity properties (6FDA-DAM and Pebax) were selected as matrices. The best-performing MOF-polymer composites were prepared by loading 25wt% of MIL-96(Al) as filler, which improved the permeability and selectivity of 6FDA-DAM to 32 and 10%, while for Pebax they were enhanced to 25 and 18%, respectively. The observed differences in membrane performance in the separation of CO from N are explained on the basis of gas solubility, diffusivity properties, and compatibility between the filler and polymer phases.

  7. Influence of Filler Pore Structure and Polymer on the Performance of MOF-Based Mixed-Matrix Membranes for CO2 Capture

    KAUST Repository

    Sabetghadam, Anahid; Liu, Xinlei; Benzaqui, Marvin; Gkaniatsou, Effrosyni; Orsi, Angelica; Lozinska, Magdalena M.; Sicard, Clemence; Johnson, Timothy; Steunou, Nathalie; Wright, Paul A.; Serre, Christian; Gascon, Jorge; Kapteijn, Freek

    2018-01-01

    To gain insight into the influence of metal-organic framework (MOF) fillers and polymers on membrane performance, eight different composites were studied by combining four MOFs and two polymers. MOF materials (NH-MIL-53(Al), MIL-69(Al), MIL-96(Al) and ZIF-94) with various chemical functionalities, topologies, and dimensionalities of porosity were employed as fillers, and two typical polymers with different permeability-selectivity properties (6FDA-DAM and Pebax) were selected as matrices. The best-performing MOF-polymer composites were prepared by loading 25wt% of MIL-96(Al) as filler, which improved the permeability and selectivity of 6FDA-DAM to 32 and 10%, while for Pebax they were enhanced to 25 and 18%, respectively. The observed differences in membrane performance in the separation of CO from N are explained on the basis of gas solubility, diffusivity properties, and compatibility between the filler and polymer phases.

  8. A membrane actuator based on an ionic polymer network and carbon nanotubes: the synergy of ionic transport and mechanical properties

    International Nuclear Information System (INIS)

    Dai, Chi-An; Hsiao, Chih-Chun; Weng, Shih-Chun; Kao, An-Cheng; Liu, Chien-Pan; Tsai, Wei-Bor; Chen, Wen-Shiang; Liu, Wei-Ming; Shih, Wen-Pin; Ma, Chien-Ching

    2009-01-01

    There is a growing interest in the development of ionic polymer–metal composites (IPMC) as sensors and actuators for biomedical applications due to their large deformation under low driving voltage. In this study, we employed poly(vinyl alcohol)/poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PVA/PAMPS) blend membranes as semi-interpenetrating polymer networks for ion exchange in IPMC construction. To improve the mechanical and electrical properties of the IPMC, multi-walled carbon nanotubes (MWNT) were added into PVA/PAMPS membranes. The actuator performance of the membranes was measured as a function of their water uptake, ion exchange capacity, ionic conductivity and the amount of MWNT in the membrane. The dispersion quality of the modified MWNT in the PVA/PAMPS membrane was measured using transmission electron microscopy. The cantilever-type IPMC actuator bends under applied voltage and its bending angle and the generative tip force were measured. Under an applied voltage, IPMC with ∼1 wt% MWNT showed the largest deflection and generated the largest blocking tip force compared with those of IPMC with other various amounts of MWNT. These results show that a small addition of MWNT can optimize the actuation performance of IPMC. The result indicates that IPMC with MWNT shows potential for use as biomimetic artificial muscle

  9. Unraveling micro- and nanoscale degradation processes during operation of high-temperature polymer-electrolyte-membrane fuel cells

    Science.gov (United States)

    Hengge, K.; Heinzl, C.; Perchthaler, M.; Varley, D.; Lochner, T.; Scheu, C.

    2017-10-01

    The work in hand presents an electron microscopy based in-depth study of micro- and nanoscale degradation processes that take place during the operation of high-temperature polymer-electrolyte-membrane fuel cells (HT-PEMFCs). Carbon supported Pt particles were used as cathodic catalyst material and the bimetallic, carbon supported Pt/Ru system was applied as anode. As membrane, cross-linked polybenzimidazole was used. Scanning electron microscopy analysis of cross-sections of as-prepared and long-term operated membrane-electrode-assemblies revealed insight into micrometer scale degradation processes: operation-caused catalyst redistribution and thinning of the membrane and electrodes. Transmission electron microscopy investigations were performed to unravel the nanometer scale phenomena: a band of Pt and Pt/Ru nanoparticles was detected in the membrane adjacent to the cathode catalyst layer. Quantification of the elemental composition of several individual nanoparticles and the overall band area revealed that they stem from both anode and cathode catalyst layers. The results presented do not demonstrate any catastrophic failure but rather intermediate states during fuel cell operation and indications to proceed with targeted HT-PEMFC optimization.

  10. Preparation and properties of hybrid direct methanol fuel cell membranes by embedding organophosphorylated titania submicrospheres into a chitosan polymer matrix

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hong [Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072 (China); Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072 (China); Hou, Weiqiang; Wang, Jingtao; Xiao, Lulu; Jiang, Zhongyi [Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072 (China)

    2010-07-01

    Organophosphorylated titania submicrospheres (OPTi) are prepared and incorporated into a chitosan (CS) matrix to fabricate hybrid membranes with enhanced methanol resistance and proton conductivity for application in direct methanol fuel cells (DMFC). The pristine monodispersed titania submicrospheres (TiO{sub 2}) of controllable particle size are synthesized through a modified sol-gel method and then phosphorylated by amino trimethylene phosphonic acid (ATMP) via chemical adsorption, which is confirmed by XPS, FTIR and TGA. The morphology and thermal property of the hybrid membranes are explored by SEM and TGA. The ionic cross-linking between the -PO{sub 3}H{sub 2} groups on OPTi and the -NH{sub 2} groups on CS lead to better compatibility between the inorganic fillers and the polymer matrix, as well as a decreased fractional free volume (FFV), which is verified by positron annihilation lifetime spectroscopy (PALS). The effects of particle size and content on the methanol permeability, proton conductivity, swelling and FFV of the membranes are investigated. Compared to pure CS membrane, the hybrid membranes exhibit an increased proton conductivity to an acceptable level of 0.01 S cm{sup -1} for DMFC application and a reduced methanol permeability of 5 x 10{sup -7} cm{sup 2} s{sup -1} at a 2 M methanol feed. (author)

  11. Preparation and properties of hybrid direct methanol fuel cell membranes by embedding organophosphorylated titania submicrospheres into a chitosan polymer matrix

    Science.gov (United States)

    Wu, Hong; Hou, Weiqiang; Wang, Jingtao; Xiao, Lulu; Jiang, Zhongyi

    Organophosphorylated titania submicrospheres (OPTi) are prepared and incorporated into a chitosan (CS) matrix to fabricate hybrid membranes with enhanced methanol resistance and proton conductivity for application in direct methanol fuel cells (DMFC). The pristine monodispersed titania submicrospheres (TiO 2) of controllable particle size are synthesized through a modified sol-gel method and then phosphorylated by amino trimethylene phosphonic acid (ATMP) via chemical adsorption, which is confirmed by XPS, FTIR and TGA. The morphology and thermal property of the hybrid membranes are explored by SEM and TGA. The ionic cross-linking between the -PO 3H 2 groups on OPTi and the -NH 2 groups on CS lead to better compatibility between the inorganic fillers and the polymer matrix, as well as a decreased fractional free volume (FFV), which is verified by positron annihilation lifetime spectroscopy (PALS). The effects of particle size and content on the methanol permeability, proton conductivity, swelling and FFV of the membranes are investigated. Compared to pure CS membrane, the hybrid membranes exhibit an increased proton conductivity to an acceptable level of 0.01 S cm -1 for DMFC application and a reduced methanol permeability of 5 × 10 -7 cm 2 s -1 at a 2 M methanol feed.

  12. Synthesis of Thin Film Composite Metal-Organic Frameworks Membranes on Polymer Supports

    KAUST Repository

    Barankova, Eva

    2017-01-01

    Since the discovery of size-selective metal-organic frameworks (MOF) researchers have tried to manufacture them into gas separation membranes. ZIF-8 became the most studied MOF for membrane applications mainly because of its simple synthesis, good

  13. Neutron absorbing article

    International Nuclear Information System (INIS)

    Naum, R.G.; Owens, D.P.; Dooher, G.I.

    1979-01-01

    A neutron absorbing article, in flat plate form and suitable for use in a storage rack for spent fuel, includes boron carbide particles, diluent particles and a solid, irreversibly cured phenolic polymer cured to a continuous matrix binding the boron carbide and diluent particles. The total conent of boron carbide and diluent particles is a major proportion of the article and the content of cured phenolic polymer present is a minor proportion. By regulation of the ratio of boron carbide particles to diluent particles, normally within the range of 1:9 and 9:1 and preferably within the range of 1:5 to 5:1, the neutron absorbing activity of the product may be controlled, which facilitates the manufacture of articles of particular absorbing activities best suitable for specific applications

  14. Electrochemical Impedance Spectroscopy—A Simple Method for the Characterization of Polymer Inclusion Membranes Containing Aliquat 336

    Science.gov (United States)

    O'Rourke, Michelle; Duffy, Noel; De Marco, Roland; Potter, Ian

    2011-01-01

    Electrochemical impedance spectroscopy (EIS) has been used to estimate the non-frequency dependent (static) dielectric constants of base polymers such as poly(vinyl chloride) (PVC), cellulose triacetate (CTA) and polystyrene (PS). Polymer inclusion membranes (PIMs) containing different amounts of PVC or CTA, along with the room temperature ionic liquid Aliquat 336 and plasticizers such as trisbutoxyethyl phosphate (TBEP), dioctyl sebecate (DOS) and 2-nitrophenyloctyl ether (NPOE) have been investigated. In this study, the complex and abstract method of EIS has been applied in a simple and easy to use way, so as to make the method accessible to membrane scientists and engineers who may not possess the detailed knowledge of electrochemistry and interfacial science needed for a rigorous interpretation of EIS results. The EIS data reported herein are internally consistent with a percolation threshold in the dielectric constant at high concentrations of Aliquat 336, which illustrates the suitability of the EIS technique since membrane percolation with ion exchangers is a well-known phenomenon. PMID:24957616

  15. Polymer solution, fiber mat, and nanofiber membrane-electrode-assembly therewith, and method of fabricating same

    DEFF Research Database (Denmark)

    2016-01-01

    of fibers. The fibers may further include particles of a catalyst. The fiber mat may be used to form an electrode or a membrane. In a further aspect, a fuel cell membrane-electrode-assembly has an anode electrode, a cathode electrode, and a membrane disposed between the anode electrode and the cathode...... electrode. Each of the anode electrode, the cathode electrode and the membrane may be formed with a fiber mat....

  16. Removal of phenol from aqueous solution using polymer inclusion membrane based on mixture of CTA and CA

    Science.gov (United States)

    Benosmane, Nadjib; Boutemeur, Baya; Hamdi, Safouane M.; Hamdi, Maamar

    2018-03-01

    Nowadays, there are increasingly stringent regulations requiring more and more treatment of industrial effluents to generate product waters which could be easily reused or disposed of to the environment without any harmful effects. In the present work, the removal of phenol from aqueous solution across polymer inclusion membrane (PIM), based on mixture of cellulose triacetate and cellulose acetate as support (75/25%), calix[4]resorcinarene derivative as a carrier and 2-nitrophenyl octyl ether (2-NPOE) as plasticizer was investigated. The experimental part of this investigation involved the influence of carrier nature, plasticizer concentration, pH phases, and phenol initial concentration on the removal efficiency of phenol from synthetic wastewater. A PIM containing 0.1 g (of mixture polymer), (0.15 g/g mixture of polymer) of carrier and (0.03 ml/g mixture of polymer) of 2-NPOE provided the highest percentage of phenol removal efficiency over a 6-day transport; the removal was found to be about 95%, indeed the removal was found to be highly dependent of pH phases. The feed solution in these transport experiments was at pH 2, while the stripping solution contained 0.20 M NaOH. This study claims that the PIM with a mixture of cellulose derivatives can be used effectively to remove phenols from wastewaters.

  17. Gas transport behavior of mixed-matrix membranes composed of silica nanoparticles in a polymer of intrinsic microporosity (PIM-1)

    KAUST Repository

    Ahn, Juhyeon; Chung, Wookjin; Pinnau, Ingo; Song, Jingshe; Du, Naiying; Robertson, Gilles P.; Guiver, Michael D.

    2010-01-01

    Recently, high-free volume, glassy ladder-type polymers, referred to as polymers of intrinsic microporosity (PIM), have been developed and their reported gas transport performance exceeded the Robeson upper bound trade-off for O2/N2 and CO2/CH4. The present work reports the gas transport behavior of PIM-1/silica nanocomposite membranes. The changes in free volume, as well as the presence and volume of the void cavities, were investigated by analyzing the density, thermal stability, and nano-structural morphology. The enhancement in gas permeability (e.g., He, H2, O2, N2, and CO2) with increasing filler content shows that the trend is related to the true silica volume and void volume fraction. Crown Copyright © 2009.

  18. Performance Degradation Tests of Phosphoric Acid Doped Polybenzimidazole Membrane Based High Temperature Polymer Electrolyte Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Zhou, Fan; Araya, Samuel Simon; Grigoras, Ionela

    2015-01-01

    Degradation tests of two phosphoric acid (PA) doped PBI membrane based HT-PEM fuel cells were reported in this paper to investigate the effects of start/stop and the presence of methanol in the fuel to the performance degradation of the HT-PEM fuel cell. Continuous tests with pure dry H2 and meth...

  19. Study on the Matching Relationship between Polymer Hydrodynamic Characteristic Size and Pore Throat Radius of Target Block S Based on the Microporous Membrane Filtration Method

    Directory of Open Access Journals (Sweden)

    Li Yiqiang

    2014-01-01

    Full Text Available The concept of the hydrodynamic characteristic size of polymer was proposed in this study, to characterize the size of aggregates of many polymer molecules in the polymer percolation process. The hydrodynamic characteristic sizes of polymers used in the target block S were examined by employing microporous membrane filtration method, and the factors were studied. Natural core flow experiments were conducted in order to set up the flow matching relationship plate. According to the flow matching plate, the relationship between the hydrodynamic characteristic size of polymer and pore throat radius obtained from core mercury injection data was found. And several suitable polymers for different reservoirs permeability were given. The experimental results of microporous membrane filtration indicated that the hydrodynamic characteristic size of polymer maintained a good nonlinear relationship with polymer viscosity; the value increased as the molecular weight and concentration of the polymer increased and increased as the salinity of dilution water decreased. Additionally, the hydrodynamic characteristic size decreased as the pressure increased, so the hydrodynamic characteristic size ought to be determined based on the pressure of the target block. In the core flow studies, good matching of polymer and formation was identified as polymer flow pressure gradient lower than the fracture pressure gradient of formation. In this case, good matching that was the pore throat radius should be larger than 10 times the hydrodynamic characteristic size of polymer in this study. Using relationship, more matching relationship between the hydrodynamic characteristic sizes of polymer solutions and the pore throat radius of target block was determined.

  20. Free-standing biomimetic polymer membrane imaged with atomic force microscopy

    DEFF Research Database (Denmark)

    Rein, Christian; Pszon-Bartosz, Kamila Justyna; Jensen, Karin Bagger Stibius

    2011-01-01

    Fluid polymeric biomimetic membranes are probed with atomic force microscopy (AFM) using probes with both normal tetrahedrally shaped tips and nanoneedle-shaped Ag2Ga rods. When using nanoneedle probes, the collected force volume data show three distinct membrane regions which match the expected...... membrane structure when spanning an aperture in a hydrophobic scaffold. The method used provides a general method for mapping attractive fluid surfaces. In particular, the nanoneedle probing allows for characterization of free-standing biomimetic membranes with thickness on the nanometer scale suspended...... over 300-μm-wide apertures, where the membranes are stable toward hundreds of nanoindentations without breakage. © 2010 American Chemical Society....

  1. Proton transport in additives to the polymer electrolyte membrane for fuel cell application

    Energy Technology Data Exchange (ETDEWEB)

    Toelle, Pia

    2011-03-21

    The enhancement of proton transport in polymer electrolyte membranes is an important issue for the development of fuel cell technology. The objective is a material providing proton transport at a temperature range of 350 K to 450 K independent from a purely water based mechanism. To enhance the PEM properties of standard polymer materials, a class of additives is studied by means of atomistic simulations consisting of functionalised mesoporous silicon dioxide particles. The functional molecules are imidazole or sulphonic acid, covalently bound to the surface via a carbon chain with a surface density of about 1.0 nm{sup -2} groups. At first, the proton transport mechanism is explored in a system of functional molecules in vacuum. The molecules are constrained by the terminal carbon groups according to the geometric arrangement in the porous silicon dioxide. The proton transport mechanism is characterised by structural properties obtained from classical molecular dynamics simulations and consists of the aggregation of two or more functional groups, a barrier free proton transport between these groups followed by the separation of the groups and formation of new aggregates due to fluctuations in the hydrogen bond network and movement of the carbon chain. For the different proton conducting groups, i.e. methyl imidazole, methyl sulphonic acid and water, the barrier free proton transport and the formation of protonated bimolecular complexes were addressed by potential energy calculations of the density functional based tight binding method (DFTB). For sulphonic acid even at a temperature of 450 K, relatively stable aggregates are formed, while most imidazole groups are isolated and the hydrogen bond fluctuations are high. However, high density of groups and elevated temperatures enhance the proton transport in both systems. Besides the anchorage and the density of the groups, the influence of the chemical environment on the proton transport was studied. Therefore, the

  2. Shock absorber

    International Nuclear Information System (INIS)

    Housman, J.J.

    1978-01-01

    A shock absorber is described for use in a hostile environment at the end of a blind passage for absorbing impact loads. The shock absorber includes at least one element which occupies the passage and which is comprised of a porous brittle material which is substantially non-degradable in the hostile environment. A void volume is provided in the element to enable the element to absorb a predetermined level of energy upon being crushed due to impact loading

  3. Can Plant-Based Natural Flax Replace Basalt and E-Glass for Fiber-Reinforced Polymer Tubular Energy Absorbers? A Comparative Study on Quasi-Static Axial Crushing

    Directory of Open Access Journals (Sweden)

    Libo Yan

    2017-12-01

    Full Text Available Using plant-based natural fibers to substitute glass fibers as reinforcement of composite materials is of particular interest due to their economic, technical, and environmental significance. One potential application of plant-based natural fiber reinforced polymer (FRP composites is in automotive engineering as crushable energy absorbers. Current study experimentally investigated and compared the energy absorption efficiency of plant-based natural flax, mineral-based basalt, and glass FRP (GFRP composite tubular energy absorbers subjected to quasi-static axial crushing. The effects of number of flax fabric layer, the use of foam filler and the type of fiber materials on the crashworthiness characteristics, and energy absorption capacities were discussed. In addition, the failure mechanisms of the hollow and foam-filled flax, basalt, and GFRP tubes in quasi-static axial crushing were analyzed and compared. The test results showed that the energy absorption capabilities of both hollow and foam-filled energy absorbers made of flax were superior to the corresponding energy absorbers made of basalt and were close to energy absorbers made of glass. This study, therefore, indicated that flax fiber has the great potential to be suitable replacement of basalt and glass fibers for crushable energy absorber application.

  4. Development of real-time measurement of methanol-concentration in polymer electrolyte membrane using a local NMR sensor

    International Nuclear Information System (INIS)

    Ogawa, Kuniyasu; Ito, Kohei; Haishi, Tomoyuki

    2007-01-01

    A real-time sensor to measure methanol concentration in polymer electrolyte membrane (PEM) was developed for reducing methanol cross-over in Direct Methanol Fuel Cell (DMFC). The principle of the methanol sensor is based on the chemical shift of CH and OH species under high magnetic field. The sensor consists of a planar surface coil of 1.3 mm outside diameter. NMR signal from PEM being exposed to CH3OH solvent was measured using NMR sensor. Time-dependence changes of methanol concentration in PEM were obtained from analyzing spectrum of NMR signal. (author)

  5. Cyclic voltammetric investigations of microstructured and platinum-covered glassy carbon electrodes in contact with a polymer electrolyte membrane

    Energy Technology Data Exchange (ETDEWEB)

    Scherer, G G; Veziridis, Z; Staub, M [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Freimuth, H [Inst. fuer Mikrotechnik Mainz IMM, Mainz (Germany)

    1997-06-01

    Model gas diffusion electrodes were prepared by microstructuring glassy carbon surfaces with high aspect ratios and subsequent deposition of platinum. These electrodes were characterized by hydrogen under-potential deposition (H-upd) in contact with a polymer electrolyte membrane employing cyclic voltametry. H-upd was found on platinum areas not in direct contact to the solid electrolyte, as long as a continuous platinum-path existed. A carbon surface between platinum acts as barrier for H-upd. (author) 4 figs., 5 refs.

  6. Preparation of poly(ether ether ketone)-based polymer electrolytes for fuel cell membranes using grafting technique

    International Nuclear Information System (INIS)

    Hasegawa, Shin; Suzuki, Yasuyuki; Maekawa, Yasunari

    2008-01-01

    Poly(ether ether ketone) (PEEK)-based polymer electrolyte membranes (PEMs) was successfully prepared by radiation grafting of a styrene monomer into PEEK films and the consequent selective sulfonation of the grafting chains in the film state. Using milder sulfonation, the sulfonation reactions proceeded at the grafted chains in preference to the phenylene rings of PEEK main chains; as a result, the grafted films could successfully transform to a PEM with conductivity of more than 0.1 S/cm. The ion exchange capacity (IEC) and conductivity of the grafted PEEK electrolyte membranes were controlled to the ranges of 1.2-2.9 mmol/g and 0.03-0.18 S/cm by changing the grafting degree. It should be noted that this is the first example of directly transforming super-engineering plastic films into a PEM using radiation grafting

  7. Study of poly(vinyl alcohol)/titanium oxide composite polymer membranes and their application on alkaline direct alcohol fuel cell

    Science.gov (United States)

    Yang, Chun-Chen; Chiu, Shwu-Jer; Lee, Kuo-Tong; Chien, Wen-Chen; Lin, Che-Tseng; Huang, Ching-An

    The novel poly(vinyl alcohol)/titanium oxide (PVA/TiO 2) composite polymer membrane was prepared using a solution casting method. The characteristic properties of the PVA/TiO 2 composite polymer membrane were investigated by thermal gravimetric analysis (TGA), a scanning electron microscopy (SEM), a micro-Raman spectroscopy, a methanol permeability measurement and the AC impedance method. An alkaline direct alcohol (methanol, ethanol and isopropanol) fuel cell (DAFC), consisting of an air cathode based on MnO 2/C inks, an anode based on PtRu (1:1) black and a PVA/TiO 2 composite polymer membrane, was assembled and examined for the first time. The results indicate that the alkaline DAFC comprised of a cheap, non-perfluorinated PVA/TiO 2 composite polymer membrane shows an improved electrochemical performances. The maximum power densities of alkaline DAFCs with 4 M KOH + 2 M CH 3OH, 2 M C 2H 5OH and 2 M isopropanol (IPA) solutions at room temperature and ambient air are 9.25, 8.00, and 5.45 mW cm -2, respectively. As a result, methanol shows the highest maximum power density among three alcohols. The PVA/TiO 2 composite polymer membrane with the permeability values in the order of 10 -7 to 10 -8 cm 2 s -1 is a potential candidate for use on alkaline DAFCs.

  8. Effect of sulphuric acid concentration on electroosmotic flow through polymer electrolyte membranes in PEM fuel cells. Paper no. IGEC-1-061

    International Nuclear Information System (INIS)

    Karimi, G.; Li, X.

    2005-01-01

    Polymer electrolyte membrane (PEM) fuel cells are highly efficient and environmentally clean, and hence one of the most promising power sources for both stationary and mobile applications. The operations of PEM fuel cells are complicated by the electroosmotic flow of water from anode to cathode through the polymer electrolyte membrane leading to the membrane dehydration and fuel cell performance degradations. In this study, electro osmotic flow in polymer electrolyte membranes is modeled by incorporating the electro kinetic effects in the presence of euphoric acid. The governing Poisson-Boatman and the Nervier-Stokes equations were solved numerically for a single membrane pore to determine the electro osmotic flow distributions through the membrane over a wide range of acid concentrations. The presence of euphoric acid modifies the protons distribution in the membrane and hence alters the driving force for electroosmotic drag. Numerical results indicate that the electro osmotic flow increases steadily with acid concentration. The water transport due to electro osmosis is almost doubled at 2 M acid concentration compared with that of non-doped membrane. The value of electroosmotic drag coefficient however falls steadily with acid concentration due to the presence of a larger number of protons in the electrolyte. (author)

  9. Sulfonated PEEK and fluorinated polymer based blends for fuel cell applications: Investigation of the effect of type and molecular weight of the fluorinated polymers on the membrane's properties

    Energy Technology Data Exchange (ETDEWEB)

    Inan, Tuelay Y.; Dogan, Hacer; Unveren, Elif E. [The Scientific and Technological Research Council of Turkey (TUBITAK), Marmara Research Center, Chemistry Institute, 41470 Gebze, Kocaeli (Turkey); Eker, Ersoy [Tuerk Demirdoekuem Fabrikalari A.S., 11300 Bozueyuek, Bilecik (Turkey)

    2010-11-15

    This work clearly demonstrates the effect of the type and molecular weight of the fluorinated polymer of SPEEK/Fluorinated polymer blends for low temperature (<80 C) Fuel Cell Applications. Comparisons with trademarks (e.g., Nafion {sup registered}) suggests that the membranes we have prepared in this study have good compatibility in all application respects. Membranes were prepared by solution casting method from four different fluorinated polymers; poly (vinylidene fluoride) with three different molecular weights (PVDF, M{sub w}: 180.000, M{sub w}: 275.000, M{sub w}: 530.000); Poli(vinylidene fluoride-co-Hexafluoro propylen) (PVDF-HFP M{sub n}:130.000) and sulfonated poly(ether ether ketone) (SPEEK) with sulfonation degree (SD) of 70. The sulfonation degree (SD) of SPEEK was determined by FTIR, {sup 1}H NMR and ion exchange capacity (IEC) measurements. Thermo-oxidative stability and proton conductivity of the membranes were determined by using thermal gravimetric analysis (TGA) and BT-512 BekkTech membrane test systems, respectively. Chemical degradation of SPEEK membranes was investigated via Fenton test. The morphology of the membranes were examined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Water uptake and proton conductivity values decreased with the addition of fluorinated polymers (PVDF, PVDF-HFP) as expected, but proton conductivity values were still comparable to that of Nafion 117 {sup registered} membrane. Addition of fluorinated polymers improved chemical degradation of the blend membranes in all ratios while addition of PVDF-HFP to the SPEEK70 caused phase separations in all ratios. Methanol permeability value of SPEEK70/PVDF(M{sub w} = 275.000) blend membrane (3.13E-07 (cm{sup 2}/s)) was much lower than Nafion 117 {sup registered} (1.21E-06 (cm{sup 2}/s)). PVDF addition to the SPEEK polymers caused increase in elongation of the membranes. Increase in the molecular weight of the PVDF did not show any effect on

  10. Oxygen permeation through Nafion 117 membrane and its impact on efficiency of polymer membrane ethanol fuel cell

    Science.gov (United States)

    Jablonski, Andrzej; Kulesza, Pawel J.; Lewera, Adam

    2011-05-01

    We investigate oxygen permeation through Nafion 117 membrane in a direct ethanol fuel cell and elucidate how it affects the fuel cell efficiency. An obvious symptom of oxygen permeation is the presence of significant amounts of acetaldehyde and acetic acid in the mixture leaving anode when no current was drawn from the fuel cell (i.e. under the open circuit conditions). This parasitic process severely lowers efficiency of the fuel cell because ethanol is found to be directly oxidized on the surface of catalyst by oxygen coming through membrane from cathode in the absence of electric current flowing in the external circuit. Three commonly used carbon-supported anode catalysts are investigated, Pt, Pt/Ru and Pt/Sn. Products of ethanol oxidation are determined qualitatively and quantitatively at open circuit as a function of temperature and pressure, and we aim at determining whether the oxygen permeation or the catalyst's activity limits the parasitic ethanol oxidation. Our results strongly imply the need to develop more selective membranes that would be less oxygen permeable.

  11. Polymer nanocomposite membranes with hierarchically structured catalysts for high throughput dehalogenation

    Science.gov (United States)

    Crock, Christopher A.

    Halogenated organics are categorized as primary pollutants by the Environmental Protection Agency. Trichloroethylene (TCE), which had broad industrial use in the past, shows persistence in the environment because of its chemical stability. The large scale use and poor control of TCE resulted in its prolonged release into the environment before the carcinogenic risk associated with TCE was fully understood. TCE pollution stemmed from industrial effluents and improper disposal of solvent waste. Membrane reactors are promising technology for treating TCE polluted groundwater because of the high throughput, relatively low cost of membrane fabrication and facile retrofitting of existing membrane based water treatment facilities with catalytic membrane reactors. Compared to catalytic fluidized or fixed bed reactors, catalytic membrane reactors feature minimal diffusional limitation. Additionally, embedding catalyst within the membrane avoids the need for catalyst recovery and can prevent aggregation of catalytic nanoparticles. In this work, Pd/xGnP, Pd-Au/xGnP, and commercial Pd/Al2O3 nanoparticles were employed in batch and flow-through membrane reactors to catalyze the dehalogenation of TCE in the presence of dissolved H2. Bimetallic Pd-Au/xGnP catalysts were shown to be more active than monometallic Pd/xGnP or commercial Pd/Al 2O3 catalysts. In addition to synthesizing nanocomposite membranes for high-throughput TCE dehalogenation, the membrane based dehalogenation process was designed to minimize the detrimental impact of common catalyst poisons (S2-, HS-, and H2S -) by concurrent oxidation of sulfide species to gypsum in the presence of Ca2+ and removal of gypsum through membrane filtration. The engineered membrane dehalogenation process demonstrated that bimetallic Pd-Au/xGnP catalysts resisted deactivation by residual sulfide species after oxidation, and showed complete removal of gypsum during membrane filtration.

  12. Nanostructured Ceramic Photocatalytic Membrane Modified with a Polymer Template for Textile Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Rizwan Ahmad

    2017-12-01

    Full Text Available Photocatalytic ceramic membranes have attracted considerable attention for industrial wastewater treatment. However, morphological control of the membrane surface to improve its photocatalytic reactivity for the degradation of organic pollutants remains a challenge. Herein, we report a new nanostructured TiO2/Al2O3 composite ceramic membrane prepared from a poly(oxyethylene methacrylate (POEM template through a sol–gel method and its photocatalytic performance in the treatment of a model dye compound. The POEM polymeric template allowed the homogeneous distribution of catalytic sites, i.e., the TiO2 layer, on the Al2O3 membrane surface, resulting in improved organic dye degradation along with effective fouling mitigation. The immobilization of a TiO2 layer on the Al2O3 membrane support also significantly enhanced the membrane adsorption capacity toward dye organic compounds. An organic removal efficiency of over 96% was achieved with the TiO2/Al2O3 composite membrane under Ultraviolet (UV irradiation. In addition, the self-cleaning efficiency of the TiO2/Al2O3 composite membrane was remarkably improved by the degradation of organic foulants on the membrane under UV illumination.

  13. A Generic Model for Prediction of Separation Performance of Olefin/Paraffin Mixture by Glassy Polymer Membranes

    Directory of Open Access Journals (Sweden)

    A.A. Ghoreyshi

    2008-02-01

    Full Text Available The separation of olefin/paraffin mixtures is an important process in petrochemical industries, which is traditionally performed by low temperature distillation with a high-energy consumption, or complex extractive distillationand adsorption techniques. Membrane separation process is emerging as an alternative for traditional separation processes with respect to low energy and simple operation. Investigations made by various researchers on polymeric membranes it is found that special glassy polymers render them as suitable materials for olefin/paraffin mixture separation. In this regard, having some knowledge on the possible transport mechanism of these processes would play a significant role in their design and applications. In this study, separation behavior of olefin/paraffin mixtures through glassy polymers was modeled by three different approaches: the so-called dual transport model, the basic adsorption-diffusion theory and the general Maxwell-Stefan formulation. The systems chosen to validate the developed transport models are separation of ethane-ethylene mixture by 6FDA-6FpDA polyimide membrane and propane-propylene mixture by 6FDA-TrMPD polyimide membrane for which the individual sorption and permeation data are available in the literature. Acritical examination of dual transport model shows that this model fails clearly to predict even the proper trend for selectivities. The adjustment of pemeabilities by accounting for the contribution of non-selective bulk flow in the transport model introduced no improvement in the predictability of the model. The modeling results based on the basic adsorption-diffusion theory revealed that in this approach only using mixed permeability data, an acceptable result is attainable which fades out the advantages of predictibility of multicomponent separation performance from pure component data. Finally, the results obtained from the model developed based on Maxwell-Stefan formulation approach show a

  14. Novel polymer inclusion membranes containing T2EHDGA as carrier extractant for actinide ion uptake from acidic feeds

    Energy Technology Data Exchange (ETDEWEB)

    Mahanty, Bholanath; Das, Dillip Kumar; Behere, Praveen Gajanan; Afzal, Mohammad [Bhabha Atomic Research Centre, Tarapur, Maharashtra (India). Advanced Fuel Fabrication Facility; Mohapatra, Prasanta Kumar; Raut, Dhaval Ramakant [Bhabha Atomic Research Centre, Trombay, Mumbai (India). Radiochemistry Div.

    2015-06-01

    Polymer inclusion membranes (PIM) containing N,N,N',N'-tetra(2-ethylhexyl) diglycolamide (T2EHDGA) were evaluated for the separation of actinide ions such as Am{sup 3+}, Pu{sup 4+}, UO{sub 2}{sup 2+} and Th{sup 4+} from acidic feeds. The PIMs were prepared using cellulose triacetate (CTA) as the polymer matrix, 2-nitrophenyloctyl ether (NPOE) as the plasticizer and T2EHDGA as the carrier extractant and the optimized membrane composition was found to be 68.4% T2EHDGA, 17.9% NPOE and 13.7% CTA which resulted in 74% Am{sup 3+} uptake at 1 M HNO{sub 3} in 2 h. The uptake studies were carried out using feed solutions containing varying concentrations of nitric acid (0.5-3.0 M) and showed the trend: Pu{sup 4+} > Am{sup 3+} > Th{sup 4+} > UO{sub 2}{sup 2+}. Quantitative stripping (> 99%) of the sorbed Am{sup 3+} was possible using a solution containing 0.01 M EDTA at pH 3.0. Reusability studies indicated deterioration of the PIM on continuous use.

  15. Preparation of CaTiO3 Asymmetric Membranes Using Polyetherimide as Binder Polymer

    Directory of Open Access Journals (Sweden)

    Endang Purwanti Setyaningsih

    2016-03-01

    Full Text Available Asymmetric dense and thin membranes have been prepared from powders of perovskite oxide-type CaTiO3 without cracking by phase inversion method. Polyetherimide was used as a polymeric binder in the method. The resulting green membranes, composed of CaTiO3 powder and polyetherimide binder, were sintered at 890, 1100 or 1200 °C. The crystal phase of CaTiO3 was analyzed using X-Ray Diffraction (XRD. The XRD pattern of the synthesized CaTiO3 powder was matched with the reference indicating the formation of CaTiO3 structure. Sintering at 890 °C fails to form a strong membrane. Scanning Electron Microscope (SEM images of the membranes showed that the membrane had the asymmetric structure with dense layer on one side and porous layer on the other side. The pores in the porous layer were both finger-like and sponge-like structure. The mechanical strength of the membranes, which were determined by Vickers micro hardness method, varied from 3.5 to 25.8 Hv. The strongest membrane without any crack was resulted from sintering at 1200°C with hardness values between 19.4 and 25.8 Hv. Thermal expansion coefficients of the asymmetric membranes sintered at 1100 and 1200 °C, measured with Thermomechanical Analyzer (TMA, were 10.82 × 10-6 and 12.78 × 10-6.C-1 respectively.

  16. Thin film composite membranes of glossy polymers for gas separation : preparation and characterization

    NARCIS (Netherlands)

    Ebert, Katrin

    1995-01-01

    The application of polymeric composite membranes can be very interesting in the field of gas separation. The two main parameters which determine the applicability of membranes are the selectivity and the permeability. Good selectivities can be achieved by developing proper materials, high permeation

  17. Study on CO2/ N2 separation: the effect of rubbery polymer coating on PVDF membrane

    Science.gov (United States)

    Zuwairi, M. Z.; Rahman, S. A.

    2017-06-01

    The emission of harmful gases such as carbon dioxide (CO2) via gas processing plant and daily human activities gave negative impacts to the environment and global inhabitant. Flat sheet asymmetric membranes were produced from homogenous solution of Poly(vinylideneflouride) (PVDF) via phase inversion method using N-methyl-2-pyrrolidone (NMP) as the solvent. While the poly ether b-amide (PEBAX) was dissolve by using of (70 ethanol and 30 water) as a solvent and and lithium chloride as a additives. The morphology and cross section of the produced membranes were observed by Scanning Electron Microscope (SEM). Then, the membranes were tested for chemical analysis to define the presence of PEBAX in the membrane by using Fourier Transform Infrared (FTIR) spectroscopy. The permeation performances of the membranes were evaluated in terms of permeability and selectivity of the membranes by using gas permeation test. Increasing the PEBAX content significantly increased the selectivity of the PVDF membrane to separate the CO2/N2 gases but decreased the amount of the gases that passed through the membrane.

  18. Binderless electrodes for high-temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    Fernandez, Santiago Martin; Li, Qingfeng; Steenberg, Thomas

    2014-01-01

    A new electrode concept was proved with no polymeric binder in the catalyst layer for acid-doped polybenzimidazole (PBI) membrane fuel cells. It shows that a stable interface between the membrane and the catalyst layer can be retained when a proton conducting acid phase is established. The absenc...

  19. Magnetically controlled permeability membranes

    KAUST Repository

    Kosel, Jurgen

    2013-10-31

    A bioactive material delivery system can include a thermoresponsive polymer membrane and nanowires distributed within the thermoresponsive polymer membrane. Magnetic activation of a thermoresponsive polymer membrane can take place via altering the magnetization or dimensions of nanowires dispersed or ordered within the membrane matrix.

  20. Magnetically controlled permeability membranes

    KAUST Repository

    Kosel, Jü rgen; Khashab, Niveen M.; Zaher, Amir

    2013-01-01

    A bioactive material delivery system can include a thermoresponsive polymer membrane and nanowires distributed within the thermoresponsive polymer membrane. Magnetic activation of a thermoresponsive polymer membrane can take place via altering the magnetization or dimensions of nanowires dispersed or ordered within the membrane matrix.

  1. Love Wave Sensor for Prostate-Specific Membrane Antigen Detection Based on Hydrophilic Molecularly-Imprinted Polymer

    Directory of Open Access Journals (Sweden)

    Pingping Tang

    2018-05-01

    Full Text Available Prostate-specific membrane antigen (PSMA is a biomarker for prostate cancer (PCa, and a specific and reliable detection technique of PSMA is urgently required for PCa early diagnosis. A Love wave sensor has been widely studied for real-time sensing and highly sensitive applications, but the sensing unit needs special handling for selective detection purpose. In this study, we prepared a versatile Love wave sensor functionalized with molecularly-imprinted polymers (MIP, PSMA as the template molecule. To enhance the specific template bindings of MIP in pure aqueous solutions, facile reversible addition/fragmentation chain transfer (RAFT precipitation polymerization (RAFTPP was used to produce surface hydrophilic polymer brushes on MIP. The presence of hydrophilic polymer brushes on MIP improved its surface hydrophilicity and significantly reduced their hydrophobic interactions with template molecules in pure aqueous media. In detection process, the acoustic delay-line is confederative to a microfluidic chip and inserted in an oscillation loop. The real-time resonance frequency of the MIP-based Love wave sensor to different concentrations of PSMA was investigated. The limit of detection (LOD for this Love SAW sensor was 0.013 ng mL−1, which demonstrates that this sensor has outstanding performance in terms of the level of detection.

  2. Synthesis of polymer membranes of different porosity and their application for phenol removal from liquid phase

    Energy Technology Data Exchange (ETDEWEB)

    Hofman-Bieniek, Magdalena; Jasiewicz, Katarzyna; Pietrzak, Robert [Adam Mickiewicz University in Poznan, Poznan (Poland)

    2014-02-15

    Preparation of polymeric membranes based on polyethersulfone (PES) modified by adding different amounts of a pore-forming agent (PVP) is presented, and potential application of the membranes obtained for removal of phenol from the liquid phase is examined. The addition of various amounts of PVP has been shown to bring about changes in the content of the surface oxygen groups, but has no significant effect on the chemical character of the groups and acidic groups dominate. Filtration by phenol solution leads to significant changes in the total content of surface oxides; however, the acidic groups remain dominant. Membranes characterized by higher porosity exhibited more stable and higher rejection ratio for phenol removal. Although all the membranes were characterized by similar rejection ratios for phenol removal, the cake resistance (Rc) and pore resistance (Rp) values were found to depend significantly on the structure and porosity of the membrane applied for filtration.

  3. Synthesis of polymer membranes of different porosity and their application for phenol removal from liquid phase

    International Nuclear Information System (INIS)

    Hofman-Bieniek, Magdalena; Jasiewicz, Katarzyna; Pietrzak, Robert

    2014-01-01

    Preparation of polymeric membranes based on polyethersulfone (PES) modified by adding different amounts of a pore-forming agent (PVP) is presented, and potential application of the membranes obtained for removal of phenol from the liquid phase is examined. The addition of various amounts of PVP has been shown to bring about changes in the content of the surface oxygen groups, but has no significant effect on the chemical character of the groups and acidic groups dominate. Filtration by phenol solution leads to significant changes in the total content of surface oxides; however, the acidic groups remain dominant. Membranes characterized by higher porosity exhibited more stable and higher rejection ratio for phenol removal. Although all the membranes were characterized by similar rejection ratios for phenol removal, the cake resistance (Rc) and pore resistance (Rp) values were found to depend significantly on the structure and porosity of the membrane applied for filtration

  4. Neutron absorbing article

    International Nuclear Information System (INIS)

    Naum, R.G.; Owens, D.P.; Dooker, G.I.

    1981-01-01

    A neutron-absorbing article suitable for use in spent fuel racks is described. It comprises boron carbide particles, diluent particles, and a phenolic polymer cured to a continuous matrix. The diluent may be silicon carbide, graphite, amorphous carbon, alumina, or silica. The combined boron carbide-diluent phase contains no more than 2 percent B 2 O 3 , and the neutron-absorbing article contains from 20 to 40 percent phenol resin. The ratio of boron carbide to diluent particles is in the range 1:9 to 9:1

  5. Post-modification by γ-radiation of VDF-based polymers: Electrochemical capacitor membrane application

    International Nuclear Information System (INIS)

    Dumas, L.

    2012-01-01

    This work deals with the modification of VDF-based polymer induced by γ-radiation as the polymer may be used in electrochemical super-capacitors. The main objective was to limit the swelling of the fluorinated matrix with a given electrolyte while a good wetting of the polymer by the liquid was also required. As the main basic process involved in polymer radiolysis is the formation of radicals, a part of the work was dedicated to the study of such species by using Electron Spin Resonance spectroscopy. A simulation model of ESR spectra was established in order to identify and quantify each radical species. The effect of several parameters such as radiation dose, annealing time or the nature of polymer matrix on the concentration of each species where investigated. A relation with the evolution of the crosslink density of the network formed during the radiolysis was proposed. In addition, one of the key steps of this work was to study the radiation crosslinking ability of VDF-based polymers and find a way to increase the crosslink density. This was achieved by incorporating, prior to the radiation process, a radiation sensitive cross linker: TAIC. Finally, a new strategy based on the modification of surface properties of PVDF was investigated. It consists in the radiation grafting of penta-fluor-styrene onto PVDF surface followed by the chemo-selective functionalization of the grafted segments. As a conclusion, the different approaches used in this thesis allowed us to understand the radiolysis of VDF-based polymers and take advantage of the elementary process involved in this type of chemistry, to build up robust and promising strategies for tuning properties. (author)

  6. Development and Application of a Sample Holder for In Situ Gaseous TEM Studies of Membrane Electrode Assemblies for Polymer Electrolyte Fuel Cells.

    Science.gov (United States)

    Kamino, Takeo; Yaguchi, Toshie; Shimizu, Takahiro

    2017-10-01

    Polymer electrolyte fuel cells hold great potential for stationary and mobile applications due to high power density and low operating temperature. However, the structural changes during electrochemical reactions are not well understood. In this article, we detail the development of the sample holder equipped with gas injectors and electric conductors and its application to a membrane electrode assembly of a polymer electrolyte fuel cell. Hydrogen and oxygen gases were simultaneously sprayed on the surfaces of the anode and cathode catalysts of the membrane electrode assembly sample, respectively, and observation of the structural changes in the catalysts were simultaneously carried out along with measurement of the generated voltages.

  7. Synthesis and characterization of PEFC membranes based on fluorinated-polymer-alloy using pre-soft-EB grafting method

    International Nuclear Information System (INIS)

    Muto, Fumihiro; Oshima, Akihiro; Kakigi, Tomoyuki; Mitani, Naohiro; Matsuura, Akio; Fujii, Kazuki; Sato, Yukiko; Li Jingye; Washio, Masakazu

    2007-01-01

    Polymer electrolyte fuel cell (PEFC) membranes based on thin film of crosslinked perfluorinated polymer-alloys (RX-FA) have been fabricated by soft electron beam (soft-EB) grafting with styrene monomers using soft-EB irradiation under nitrogen atmosphere at room temperature (RT). The characteristic properties of styrene-grafted materials (GRX-FA) and sulfonated materials (SRX-FA) have been measured by differential scanning calorimetry (DSC) and FT-IR spectroscopy, ionic conductivity and so on. The glass transition temperatures (dry state) of all obtained SRX-FA were about 105 ± 1 deg. C, which are higher than Nafion. The ion exchange capacities of SRX-FA have been achieved about 3.3 meq/g (dry). The ionic conductivity of obtained SRX-FA has showed about 0.17 S/cm at 60 deg. C with relative humidity (RH) of ∼95%. The ionic conductivities of the obtained SRX-FA were higher than that of conventional perfluoro-sulfonic acid membranes (PFSA). Fabricated membrane electrode assemblies (MEAs) based on the obtained SRX-FA have shown encouraging performance in the PEFC, compared with the conventional PFSA. The power density of obtained MEAs based on the SRX-FA was about 330-340 mW/cm 2 under 500 mA/cm 2 at 60 deg. C operation. Moreover, the maximum power densities of obtained MEAs based on the SRX-FA shows about 630 mW/cm 2 at 60 deg. C. On the other hand, the power density at 500 mA/cm 2 and maximum power density of MEA based on Nafion 112 were about 320 and 590 mW/cm 2 at 60 deg. C. Thus, the power density of the obtained SRX-FA was higher than that of conventional PFSA

  8. A numerical investigation of the effects of membrane swelling in polymer electrolyte fuel cells

    International Nuclear Information System (INIS)

    Tiss, Faysal; Chouikh, Ridha; Guizani, Amenallah

    2013-01-01

    Highlights: ► Membrane water content is controlled by the operating conditions in the cathode. ► When the membrane is in contact with water, only pore size varies. ► Membrane water content increase by increasing the functioning temperature. ► Good agreement between computational results and previous reported experimental data. - Abstract: A two-dimensional computational fluid dynamics model of PEM fuel cell is developed by taking into account the electrochemical, mass and heat transfer process occurring in the cathode compartment. Additionally, this model includes the effect of water content in the membrane swelling phenomenon. Several parameters such as gases temperature, inlet velocity and membrane characteristics are too investigated to establish their effect on the PEM fuel cell performance. The membrane water content and the air fraction variation in the gas channel are examined for diverse values of Reynolds number. In particular, the desirable inlet flow for enhancing the performance of the PEM fuel cell is determined by examining membrane water content patterns. The methodology in this study is useful to the control of water management and gas diffusion layer design

  9. Membranes of polyindene sulfonated and PVA for use as polymer electrolyte; Membranas mistas de poli(indeno) sulfonado e PVA para uso como eletrolito polimerico

    Energy Technology Data Exchange (ETDEWEB)

    Loser, N.; Silva, B.B.R. da; Brum, F.J.B.; Forte, M.M.C. [Universidade Federal do Rio Grande do Sul - Escola de Engenharia, Porto Alegre, RS (Brazil)

    2010-07-01

    This study is focused on developing polymer poly electrolytes for fuel cell PEM and aims to evaluate the efficiency of sulfonated polyindene as A polymer electrolyte in blends with poly (vinyl alcohol) (PVA). For this, polyindene synthesized in the lab was functionalized with sulfonic groups (-SO{sub 3}H), using as sulfonation agent acetyl sulfate in 1,2-dichloroethane. The membranes of sulfonated polyindene (SPInd) and PVA were prepared in aqueous medium, using glutaraldehyde as a PVA cross linker. The membranes SPInd/PVA were evaluated on the content of sulfonic groups, ion exchange capacity (IEC), degree of swelling in water and thermal stability (TGA). Electrochemical impedance analysis was used for ionic conductivity evaluation and DMA for the mechanical strength of the membranes. Preliminary results show that the membranes showed ion exchange capacity about 3.2 m equiv/g and degree of swelling in water of 550%. (author)

  10. Porous polymer composite membrane based nanogenerator: A realization of self-powered wireless green energy source for smart electronics applications

    Science.gov (United States)

    Ghosh, Sujoy Kumar; Sinha, Tridib Kumar; Mahanty, Biswajit; Jana, Santanu; Mandal, Dipankar

    2016-11-01

    An efficient, flexible and unvaryingly porous polymer composite membrane based nanogenerator (PPCNG) without any electrical poling treatment has been realised as wireless green energy source to power up smart electronic gadgets. Owing to self-polarized piezo- and ferro-electretic phenomenon of in situ platinum nanoparticles (Pt-NPs) doped porous poly(vinylidenefluoride-co-hexafluoropropylene)-membrane, a simple, inexpensive and scalable PPCNG fabrication is highlighted. The molecular orientations of the -CH2/-CF2 dipoles that cause self-polarization phenomenon has been realized by angular dependent near edge X-ray absorption fine structure spectroscopy. The square-like hysteresis loop with giant remnant polarization, Pr ˜ 68 μC/cm2 and exceptionally high piezoelectric charge coefficient, d33 ˜ - 836 pC/N promises a best suited ferro- and piezo-electretic membrane. The PPCNG exhibits a high electrical throughput such as, ranging from 2.7 V to 23 V of open-circuit voltage (Voc) and 2.9 μA to 24.7 μA of short-circuit current (Isc) under 0.5 MPa to 4.3 MPa of imparted stress amplitude by periodic human finger motion. The harvested mechanical and subsequent electrical energy by PPCNG is shown to transfer wirelessly via visible and infrared transmitter-receiver systems, where 17% and 49% of wireless power transfer efficiency, respectively, has been realized to power up several consumer electronics.

  11. Effect of polymer type on characterization and filtration performances of multi-walled carbon nanotubes (MWCNT)-COOH-based polymeric mixed matrix membranes.

    Science.gov (United States)

    Sengur-Tasdemir, Reyhan; Mokkapati, Venkata R S S; Koseoglu-Imer, Derya Y; Koyuncu, Ismail

    2018-05-01

    Multi-walled carbon nanotubes (MWCNTs) can be used for the fabrication of mixed matrix polymeric membranes that can enhance filtration perfomances of the membranes by modifying membrane surface properties. In this study, detailed characterization and filtration performances of MWCNTs functionalized with COOH group, blended into polymeric flat-sheet membranes were investigated using different polymer types. Morphological characterization was carried out using atomic force microscopy, scanning electron microscopy and contact angle measurements. For filtration performance tests, protein, dextran, E. coli suspension, Xanthan Gum and real activated sludge solutions were used. Experimental data and analyses revealed that Polyethersulfone (PES) + MWCNT-COOH mixed matrix membranes have superior performance abilities compared to other tested membranes.

  12. Tröger’s Base Ladder Polymer for Membrane-Based Hydrocarbon Separation

    KAUST Repository

    Alhazmi, Abdulrahman

    2017-01-01

    The use of polymeric membranes for natural gas separation has rapidly increased during the past three decades, particularly for carbon dioxide separation from natural gas. Another valuable application is the separation of heavy hydrocarbons from

  13. Proton-Conducting Sulfonated and Phosphonated Polymers and Fuel Cell Membranes by Chemical Modification of Polysulfones

    OpenAIRE

    Lafitte, Benoit

    2007-01-01

    The proton exchange membrane fuel cell (PEMFC) is currently emerging as an efficient and environmentally friendly power source. The technology is very complex and relies ultimately on materials and components which need further development. One of the major hurdles for advancing the PEMFC technology is currently the demand for new durable low-cost polymeric membranes that will allow fuel cell operation at high temperatures without extensive humidification requirements. Thus, the design and pr...

  14. Field tests of carbon dioxide removal from flue gases using polymer membranes

    Energy Technology Data Exchange (ETDEWEB)

    Daal, Ludwin [DNV KEMA the Netherlands, Arnhem (Netherlands). Dept. CES-PCW; Claassen, Linda [Parker Hannifin Manufacturing Netherlands (Filtration and Separation) B.V., Etten-Leur (Netherlands). domnick hunter Filtration and Separation Div.; Bruns, Ralf; Schallert, Bernd [E.ON, New Build and Technology GmbH, Gelsenkirchen (Germany). Div. Operational Support; Barbieri, Giuseppe; Brunetti, Adele [Calabria Univ., Rende (Italy). The Inst. on Membrane Technology; Nijmeijer, Kitty [Twente Univ., Entschede (Netherlands). Membrane Science and Technology, MESAplus Inst. for Nanotechnology

    2013-06-01

    For the capture of CO{sub 2} from flue gas, asymmetric hollow fibre poly phenylene oxide membranes are coated with sulphonated polyether etherketon. The membranes were integrated in an open and closed module and tested. The test results are presented. Since they are very promising, additional research is going to be supported in order to use the modules in a larger scale and over a longer period of time. (orig.)

  15. Smart coating process of proton-exchange membrane for polymer electrolyte fuel cell

    International Nuclear Information System (INIS)

    Leu, Hoang-Jyh; Chiu, Kuo-Feng; Lin, Chiu-Yue

    2013-01-01

    Highlights: ► Using oxygen plasma and smart coating technique for membrane modification. ► Oxygen plasma treatment can increase the reaction area of the membrane. ► AFM, SEM, FT-IR, XPS, EIS spectra can prove the surface treatment process. ► Nafion membrane modification can reduce Rct and enhance current density. - Abstract: The interfaces of electrolyte|catalyst|electrode play an important role in the performance of proton-exchange membrane fuel cells (PEMFCs). Increasing the interface effective area and lowering the charge transfer resistance of the interface are significant issues to promote the cell performance. In this study, oxygen plasma treatment was used to increase the surface roughness of Nafion®117 membrane, and then a smart coating process was applied to fabricate the initial Pt/C catalyst layer, which served to reduce the charge transfer resistance of the interface. The morphology and surface characteristics of membranes have been qualified by scanning electron microscopy, atomic force microscopy and X-ray photoelectron spectroscopy. These results show that the plasma treatments and smart coating processes were effective in reducing the interface charge transfer resistance. At optimal condition, the interface charge transfer resistance was 0.45 Ω/cm 2 which was 1–2 order less than the untreated ones

  16. Absorbant materials

    International Nuclear Information System (INIS)

    Quetier, Monique.

    1978-11-01

    Absorbants play a very important part in the nuclear industry. They serve for the control, shut-down and neutron shielding of reactors and increase the capacity of spent fuel storage pools and of special transport containers. This paper surveys the usual absorbant materials, means of obtainment, their essential characteristics relating to their use and their behaviour under neutron irradiation [fr

  17. Internal hydration H{sub 2}/O{sub 2} 100 cm{sup 2} polymer electrolyte membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Miachon, S [CEA, Dept. de Recherche Fondamentale sur la Matiere Condensee, SESAM/PCM, 38 - Grenoble (France); Aldebert, P [CEA, Dept. de Recherche Fondamentale sur la Matiere Condensee, SESAM/PCM, 38 - Grenoble (France)

    1995-07-01

    This work deals with a new arrangement of a polymer electrolyte membrane fuel cell (PEMFC) support which allows the operation of a 100 cm{sup 2} surface area fuel cell with cold and unhumidified gases. Hydrogen is not recycled. Both gases (pure hydrogen and oxygen) are heated and humidified internally, each one crossing a porous carbon block. This allows a simplified water management. Classical low platinum loading E-Tek{sup R} electrodes, hot-pressed on Nafion{sup R} 117 and 112 membranes, are used. Performances are then a little higher than those of comparable PEMFCs in the literature: 0.7 V at 0.7 A/cm{sup 2} for Nafion{sup R} 117, and 0.724 V at 1 A/cm{sup 2} for Nafion{sup R} 112, under 4/6 bar (absolute) of H{sub 2}/O{sub 2} at 100 C. The values of PEMFC resistance obtained in fitting the data were found to be R=0.254 (with Nafion{sup R} 117) and 0.108 {Omega} cm{sup 2} (with Nafion{sup R} 112). The membrane contribution to the cell resistance was then estimated to be R{sub m}=0.204 and 0.058 {Omega} cm{sup 2}, respectively (with Nafion{sup R} conductivity estimated at 0.103 S/cm at 100 C in working fuel cell conditions). This membrane is therefore the major contributor to the total cell resistance. (orig.)

  18. A bioartificial environment for kidney epithelial cells based on a supramolecular polymer basement membrane mimic and an organotypical culture system.

    Science.gov (United States)

    Mollet, Björne B; Bogaerts, Iven L J; van Almen, Geert C; Dankers, Patricia Y W

    2017-06-01

    Renal applications in healthcare, such as renal replacement therapies and nephrotoxicity tests, could potentially benefit from bioartificial kidney membranes with fully differentiated and functional human tubular epithelial cells. A replacement of the natural environment of these cells is required to maintain and study cell functionality cell differentiation in vitro. Our approach was based on synthetic supramolecular biomaterials to mimic the natural basement membrane (BM) on which these cells grow and a bioreactor to provide the desired organotypical culture parameters. The BM mimics were constructed from ureidopyrimidinone (UPy)-functionalized polymer and bioactive peptides by electrospinning. The resultant membranes were shown to have a hierarchical fibrous BM-like structure consisting of self-assembled nanofibres within the electrospun microfibres. Human kidney-2 (HK-2) epithelial cells were cultured on the BM mimics under organotypical conditions in a custom-built bioreactor. The bioreactor facilitated in situ monitoring and functionality testing of the cultures. Cell viability and the integrity of the epithelial cell barrier were demonstrated inside the bioreactor by microscopy and transmembrane leakage of fluorescently labelled inulin, respectively. Furthermore, HK-2 cells maintained a polarized cell layer and showed modulation of both gene expression of membrane transporter proteins and metabolic activity of brush border enzymes when subjected to a continuous flow of culture medium inside the new bioreactor for 21 days. These results demonstrated that both the culture and study of renal epithelial cells was facilitated by the bioartificial in vitro environment that is formed by synthetic supramolecular BM mimics in our custom-built bioreactor. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  19. Process design analyses of co/sub 2/ capture from natural gas by polymer membrane

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, A.; Nasir, H.; Ahsan, M. [National Univ. of Science and Technology, Islamabad (Pakistan). Dept. of Chemical Engineering

    2014-06-15

    Membrane-based natural gas separation has become one of the promising technologies due to its compactness, energy efficiency, environment friendliness and economic advantages. In this work, a three stage membrane process for the separation of CO/sub 2//CH/sub 4/ is proposed based on a novel fixed site carrier membrane which has the potential to meet the CO/sub 2//CH/sub 4/ separation and durability requirement. A simulation analysis, which utilizes the Aspen Hysys capabilities to calculate and couple energy balances in the process model, has been conducted to investigate the effect of process parameters on the gas processing cost. Two different natural gas mixtures containing 9.5% and 2.9% CO/sub 2/ have been simulated for various process conditions. This fixed site carrier membrane performs well when wetted with water. Therefore, natural gas feed streams are saturated with water. It is evident from the analysis that it is possible to maintain 2% CO/sub 2/ in retentate and methane loss in permeate below 2% by optimizing the process conditions. The analysis shows that fixed site carrier membrane offers a viable solution for natural gas sweetening. (author)

  20. Process design analyses of co/sub 2/ capture from natural gas by polymer membrane

    International Nuclear Information System (INIS)

    Hussain, A.; Nasir, H.; Ahsan, M.

    2014-01-01

    Membrane-based natural gas separation has become one of the promising technologies due to its compactness, energy efficiency, environment friendliness and economic advantages. In this work, a three stage membrane process for the separation of CO/sub 2//CH/sub 4/ is proposed based on a novel fixed site carrier membrane which has the potential to meet the CO/sub 2//CH/sub 4/ separation and durability requirement. A simulation analysis, which utilizes the Aspen Hysys capabilities to calculate and couple energy balances in the process model, has been conducted to investigate the effect of process parameters on the gas processing cost. Two different natural gas mixtures containing 9.5% and 2.9% CO/sub 2/ have been simulated for various process conditions. This fixed site carrier membrane performs well when wetted with water. Therefore, natural gas feed streams are saturated with water. It is evident from the analysis that it is possible to maintain 2% CO/sub 2/ in retentate and methane loss in permeate below 2% by optimizing the process conditions. The analysis shows that fixed site carrier membrane offers a viable solution for natural gas sweetening. (author)

  1. Preparation and characterization of polymer inclusion membrane based optode for determination of Al{sup 3+} ion

    Energy Technology Data Exchange (ETDEWEB)

    Suah, Faiz Bukhari Mohd, E-mail: fsuah@usm.my [School of Chemical Sciences, Universiti Sains Malaysia, 11800, Minden, Pulau Pinang (Malaysia); Ahmad, Musa [Faculty of Science & Technology, Universiti Sains Islam Malaysia, 71800, Bandar Baru Nilai, Negeri Sembilan (Malaysia)

    2017-01-25

    The use of a polymer inclusion membrane (PIM) as a sensing material is a new approach to overcome the selectivity and stability drawbacks of the optical chemical sensor (optode). In this study, non-plasticized PIM containing poly(vinyl chloride) as a support base, sodium morin-5-sulfonate (NaMSA) as a reagent and Aliquat 336 as a fixed carrier (ionophore) was prepared and its performance was tested for application in an optode to determine Al{sup 3+} ions. The results showed that PIM properties are greatly influenced by the membrane composition. The studies revealed that the optode response was dependent on film thickness, the presence of plasticizer, stirring effect, concentration of NaMSA, concentration of Aliquat 336 and pH of the aqueous solution used. The dynamic range of Al{sup 3+} ions concentration determined using this optode was linear from 5.19 × 10{sup −7} to 6.00 × 10{sup −5} mol L{sup −1} and the calculated limit of detection (L.O.D.) was found to be 4.07 × 10{sup −7} mol L{sup −1}. The maximum emission wavelength (λ{sub em}) for the PIM based optode was 512 nm. Scanning electron microscopy analysis of the PIM revealed that a dense texture was formed. Fourier transform infra-red and thermal gravimetry analysis characterizations proved that all of the constituents of the PIM remain within the membrane. The PIM developed in this work was found to be stable, has good mechanical strength, and is sensitive and reusable. Lastly, the PIM was successfully applied as an optical sensor for determination of Al{sup 3+} ions in an aqueous solution. - Highlights: • A novel non-plasticized polymer inclusion membrane (PIM) based optode has been developed for determination of Al{sup 3+} ions. • A novel use of sulphonated morin (NaMSA) for determination of Al{sup 3+} ions by using fluorescence technique. • The optode is fully reversible. • It shows good repeatability and reproducibility without significant decrease in fluorescence

  2. Effect of process parameters on the dynamic behavior of polymer electrolyte membrane fuel cells for electric vehicle applications

    Directory of Open Access Journals (Sweden)

    A.A. Abd El Monem

    2014-03-01

    Full Text Available This paper presents a dynamic mathematical model for Polymer Electrolyte Membrane “PEM” fuel cell systems to be used for electric vehicle applications. The performance of the fuel cell, depending on the developed model and taking the double layer charging effect into account, is investigated with different process parameters to evaluate their effect on the unit behavior. Thus, it will be easy to develop suitable controllers to regulate the unit operation, which encourages the use of fuel cells especially with electric vehicles applications. The steady-state performance of the fuel cell is verified using a comparison with datasheet data and curves provided by the manufacturer. The results and conclusions introduced in this paper provide a base for further investigation of fuel cells-driven dc motors for electric vehicle.

  3. In situ liquid water visualization in polymer electrolyte membrane fuel cells with high resolution synchrotron x-ray radiography

    Energy Technology Data Exchange (ETDEWEB)

    Chevalier, S.; Banerjee, R.; Lee, J.; Ge, N.; Lee, C.; Bazylak, A., E-mail: abazylak@mie.utoronto.ca [Dept. of Mechanical & Industrial Engineering, Faculty of Applied Science & Engineering, University of Toronto, Toronto, Ontario (Canada); Wysokinski, T. W.; Belev, G.; Webb, A.; Miller, D.; Zhu, N. [Canadian Light Source, Saskatoon, Saskatchewan (Canada); Tabuchi, Y.; Kotaka, T. [EV System Laboratory, Research Division 2, Nissan Motor Co., Ltd., Yokosuka, Kanagawa (Japan)

    2016-07-27

    In this work, we investigated the dominating properties of the porous materials that impact water dynamics in a polymer electrolyte membrane fuel cell (PEMFC). Visualizations of liquid water in an operating PEMFC were performed at the Canadian Light Source. A miniature fuel cell was specifically designed for X-ray imaging investigations, and an in-house image processing algorithm based on the Beer-Lambert law was developed to extract quantities of liquid water thicknesses (cm) from raw X-ray radiographs. The X-ray attenuation coefficient of water at 24 keV was measured with a calibration device to ensure accurate measurements of the liquid water thicknesses. From this experiment, the through plane distribution of the liquid water in the fuel cell was obtained.

  4. Polymer-immobilized liquid membrane transport of palladium (II) from nitric acid media using some thia extractants as novel receptors

    International Nuclear Information System (INIS)

    Shukla, J.P.

    1996-01-01

    Carrier-facilitated co-transport of Pd (II) from dilute acidic nitrate solutions was examined across a polymer-immobilized liquid membrane (PILM) deploying S 6 -pentano-36 (S 6 -P-36), bis-(2-ethylhexyl) sulfoxide (BESO) and bis (2, 4, 4 trimethyl pentyl) monothio phosphinic acid (Cyanex 302) as the novel receptors. The study carried out to distinguish the driving force between H + and NO 3 - ion for the cation transport across PILM, indicated that NO 3 - ion not the H + ion seems to be the driving force for Pd (II) transport under the present conditions for both BESO-PILM and S 6 -P-36-PILM systems. Recovery of palladium from acidic process effluents generated in Purex reprocessing of spent fuels was successfully achieved. 39 refs., 8 figs., 7 tabs

  5. Removal of some organic pollutants in water employing ceramic membranes impregnated with cross-linked silylated dendritic and cyclodextrin polymers.

    Science.gov (United States)

    Allabashi, Roza; Arkas, Michael; Hörmann, Gerold; Tsiourvas, Dimitris

    2007-01-01

    Triethoxysilylated derivatives of poly(propylene imine) dendrimer, polyethylene imine and polyglycerol hyperbranched polymers and beta-cyclodextrin have been synthesized and characterized. These compounds impregnated ceramic membranes made from Al(2)O(3), SiC and TiO(2) and subsequently sol-gel reaction led to their polymerization and chemical bond formation with the ceramic substrates. The resulting organic-inorganic filters were tested for the removal of a variety of organic pollutants from water. They were found to remove of polycyclic aromatic hydrocarbons (up to 99%), of monocyclic aromatic hydrocarbons (up to 93%), trihalogen methanes (up to 81%), pesticides (up to 43%) and methyl-tert-butyl ether (up to 46%).

  6. In situ liquid water visualization in polymer electrolyte membrane fuel cells with high resolution synchrotron x-ray radiography

    International Nuclear Information System (INIS)

    Chevalier, S.; Banerjee, R.; Lee, J.; Ge, N.; Lee, C.; Bazylak, A.; Wysokinski, T. W.; Belev, G.; Webb, A.; Miller, D.; Zhu, N.; Tabuchi, Y.; Kotaka, T.

    2016-01-01

    In this work, we investigated the dominating properties of the porous materials that impact water dynamics in a polymer electrolyte membrane fuel cell (PEMFC). Visualizations of liquid water in an operating PEMFC were performed at the Canadian Light Source. A miniature fuel cell was specifically designed for X-ray imaging investigations, and an in-house image processing algorithm based on the Beer-Lambert law was developed to extract quantities of liquid water thicknesses (cm) from raw X-ray radiographs. The X-ray attenuation coefficient of water at 24 keV was measured with a calibration device to ensure accurate measurements of the liquid water thicknesses. From this experiment, the through plane distribution of the liquid water in the fuel cell was obtained.

  7. Evaluation of the effect of reactant gases mass flow rates on power density in a polymer electrolyte membrane fuel cell

    Science.gov (United States)

    Kahveci, E. E.; Taymaz, I.

    2018-03-01

    In this study it was experimentally investigated the effect of mass flow rates of reactant gases which is one of the most important operational parameters of polymer electrolyte membrane (PEM) fuel cell on power density. The channel type is serpentine and single PEM fuel cell has an active area of 25 cm2. Design-Expert 8.0 (trial version) was used with four variables to investigate the effect of variables on the response using. Cell temperature, hydrogen mass flow rate, oxygen mass flow rate and humidification temperature were selected as independent variables. In addition, the power density was used as response to determine the combined effects of these variables. It was kept constant cell and humidification temperatures while changing mass flow rates of reactant gases. From the results an increase occurred in power density with increasing the hydrogen flow rates. But oxygen flow rate does not have a significant effect on power density within determined mass flow rates.

  8. Electrochemical performance of an air-breathing direct methanol fuel cell using poly(vinyl alcohol)/hydroxyapatite composite polymer membrane

    Science.gov (United States)

    Yang, Chun-Chen; Chiu, Shwu-Jer; Lin, Che-Tseng

    A novel composite polymer membrane based on poly(vinyl alcohol)/hydroxyapatite (PVA/HAP) was successfully prepared by a solution casting method. The characteristic properties of the PVA/HAP composite polymer membranes were examined by thermal gravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM), micro-Raman spectroscopy and AC impedance method. An air-breathing DMFC, comprised of an air cathode electrode with MnO 2/BP2000 carbon inks on Ni-foam, an anode electrode with PtRu black on Ti-mesh, and the PVA/HAP composite polymer membrane, was assembled and studied. It was found that this alkaline DMFC showed an improved electrochemical performance at ambient temperature and pressure; the maximum peak power density of an air-breathing DMFC in 8 M KOH + 2 M CH 3OH solution is about 11.48 mW cm -2. From the application point of view, these composite polymer membranes show a high potential for the DMFC applications.

  9. An experimental and simulation study of novel channel designs for open-cathode high-temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    Thomas, Sobi; Bates, Alex; Park, Sam

    2016-01-01

    A minimum balance of plant (BOP) is desired for an open-cathode high temperature polymer electrolyte membrane (HTPEM) fuel cell to ensure low parasitic losses and a compact design. The advantage of an open-cathode system is the elimination of the coolant plate and incorporation of a blower for ox...

  10. Describing the sorption characteristics of a ternary system of benzene (1) and alcohol (2) in a nonporous polymer membrane (3) by the Flory-Huggins model

    Czech Academy of Sciences Publication Activity Database

    Hovorka, Š.; Randová, A.; Sysel, P.; Brožová, Libuše; Žitka, Jan; Drašar, P.; Bartovská, L.; Storch, Jan; Červenková Šťastná, Lucie; Izák, Pavel

    2015-01-01

    Roč. 55, č. 5 (2015), s. 1187-1195 ISSN 0032-3888 R&D Projects: GA ČR(CZ) GAP106/12/0569 Institutional support: RVO:61389013 ; RVO:67985858 Keywords : membrane * separation * polymer Subject RIV: CD - Macromolecular Chemistry; CI - Industrial Chemistry, Chemical Engineering (UCHP-M) Impact factor: 1.719, year: 2015

  11. Electrochemical performance of an air-breathing direct methanol fuel cell using poly(vinyl alcohol)/hydroxyapatite composite polymer membrane

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chun-Chen; Chiu, Shwu-Jer; Lin, Che-Tseng [Department of Chemical Engineering, Mingchi University of Technology, Taipei Hsien 243 (China)

    2008-02-15

    A novel composite polymer membrane based on poly(vinyl alcohol)/hydroxyapatite (PVA/HAP) was successfully prepared by a solution casting method. The characteristic properties of the PVA/HAP composite polymer membranes were examined by thermal gravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM), micro-Raman spectroscopy and AC impedance method. An air-breathing DMFC, comprised of an air cathode electrode with MnO{sub 2}/BP2000 carbon inks on Ni-foam, an anode electrode with PtRu black on Ti-mesh, and the PVA/HAP composite polymer membrane, was assembled and studied. It was found that this alkaline DMFC showed an improved electrochemical performance at ambient temperature and pressure; the maximum peak power density of an air-breathing DMFC in 8 M KOH + 2 M CH{sub 3}OH solution is about 11.48 mW cm{sup -2}. From the application point of view, these composite polymer membranes show a high potential for the DMFC applications. (author)

  12. Polymer supported ZIF-8 membranes by conversion of sputtered zinc oxide layers

    KAUST Repository

    Neelakanda, Pradeep; Barankova, Eva; Peinemann, Klaus-Viktor

    2015-01-01

    ZIF-8 composite membranes were synthesized at room temperature from aqueous solution by a double-zinc-source method on polyacrylonitrile (PAN) porous supports. The support was coated with zinc oxide (ZnO) by magnetron sputtering prior to ZIF-8 growth to improve the nucleation as well as the adhesion between the ZIF-8 layer and support. By this method, we were able to grow a continuous, dense, very thin (900 nm) and defect free ZIF-8 layer on a polymeric support. The developed ZIF-8 membranes had a gas permeance of 1.23 x 10-7 mol m-2 sec-1 Pa-1 for hydrogen and a selectivity of 26 for hydrogen/propane gases which is 5 times higher than the Knudsen selectivity. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis were done to characterize the membranes.

  13. On water transport in polymer electrolyte membranes during the passage of current

    DEFF Research Database (Denmark)

    Berning, Torsten

    2011-01-01

    This article discusses an approach to model the water transport in the membranes of PEM fuel cells during operation. Starting from a frequently utilized equation the various transport mechanisms are analyzed in detail. It is shown that the commonly used approach to simply balance the electro......-osmotic drag (EOD) with counter diffusion and/or hydraulic permeation is flawed, and that any net transport of water through the membrane is caused by diffusion. Depending on the effective drag the cathode side of the membrane may experience a lower hydration than the anode side. The effect of a water......-uptake layer on the net water transport will also be pictured. Finally, the effect of EOD is visualized using “Newton’s cradle”....

  14. Polymer supported ZIF-8 membranes by conversion of sputtered zinc oxide layers

    KAUST Repository

    Neelakanda, Pradeep

    2015-09-05

    ZIF-8 composite membranes were synthesized at room temperature from aqueous solution by a double-zinc-source method on polyacrylonitrile (PAN) porous supports. The support was coated with zinc oxide (ZnO) by magnetron sputtering prior to ZIF-8 growth to improve the nucleation as well as the adhesion between the ZIF-8 layer and support. By this method, we were able to grow a continuous, dense, very thin (900 nm) and defect free ZIF-8 layer on a polymeric support. The developed ZIF-8 membranes had a gas permeance of 1.23 x 10-7 mol m-2 sec-1 Pa-1 for hydrogen and a selectivity of 26 for hydrogen/propane gases which is 5 times higher than the Knudsen selectivity. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis were done to characterize the membranes.

  15. Bacterial nanocellulose/Nafion composite membranes for low temperature polymer electrolyte fuel cells

    Science.gov (United States)

    Jiang, Gao-peng; Zhang, Jing; Qiao, Jin-li; Jiang, Yong-ming; Zarrin, Hadis; Chen, Zhongwei; Hong, Feng

    2015-01-01

    Novel nanocomposite membranes aimed for both proton-exchange membrane fuel cell (PEMFC) and direct methanol fuel cell (DMFC) are presented in this work. The membranes are based on blending bacterial nanocellulose pulp and Nafion (abbreviated as BxNy, where x and y indicates the mass ratio of bacterial cellulose to Nafion). The structure and properties of BxNy membranes are characterized by FTIR, SEM, TG, DMA and EIS, along with water uptake, swelling behavior and methanol permeability tests. It is found that the BxNy composite membranes with reinforced concrete-like structure show excellent mechanical and thermal stability regardless of annealing. The water uptake plus area and volume swelling ratios are all decreased compared to Nafion membranes. The proton conductivities of pristine and annealed B1N9 are 0.071 and 0.056 S cm-1, respectively, at 30 °C and 100% humidity. Specifically, annealed B1N1 exhibited the lowest methanol permeability of 7.21 × 10-7 cm2 s-1. Through the selectivity analysis, pristine and annealed B1N7 are selected to assemble the MEAs. The performances of annealed B1N7 in PEMFC and DMFC show the maximum power densities of 106 and 3.2 mW cm-2, respectively, which are much higher than those of pristine B1N7 at 25 °C. The performances of the pristine and annealed B1N7 reach a level as high as 21.1 and 20.4 mW cm-2 at 80 °C in DMFC, respectively.

  16. Development of a passive sampler based on a polymer inclusion membrane for total ammonia monitoring in freshwaters.

    Science.gov (United States)

    Almeida, M Inês G S; Silva, Adélia M L; Coleman, Rhys A; Pettigrove, Vincent J; Cattrall, Robert W; Kolev, Spas D

    2016-05-01

    A passive sampler for determining the time-weighted average total ammonia (i.e. molecular ammonia and the ammonium cation) concentration (C TWA) in freshwaters, which incorporated a polymer inclusion membrane (PIM) as a semi-permeable barrier separating the aqueous source solution from the receiving solution (i.e. 0.8 mol L(-1) HCl), was developed for the first time. The PIM was composed of dinonylnaphthalene sulfonic acid (DNNS) as a carrier, poly (vinyl chloride) (PVC) as a base polymer and 1-tetradecanol as a modifier. Its optimal composition was found to be 35 wt% commercial DNNS, 55 wt% PVC and 10 wt% 1-tetradecanol. The effect of environmental variables such as the water matrix, pH and temperature were also studied using synthetic freshwaters. The passive sampler was calibrated under laboratory conditions using synthetic freshwaters and exhibited a linear response within the concentration range 0.59-2.8 mg L(-1) NH4(+) (0.46-2.1 mg N L(-1)) at 20 °C. The performance of the sampler was further investigated under field conditions over 7 days. A strong correlation between spot sampling and passive sampling was achieved, thus providing a proof-of-concept for the passive sampler for reliably measuring the C(TWA) of total ammonia in freshwaters, which can be used as an indicator in tracking sources of faecal contamination in stormwater drains.

  17. Electrochromic absorbance changes in relation to electron transport and energy coupling in thylakoid membranes : [Electrochrome absorptie veranderingen in relatie tot elektronentransport en energiekoppeling in thylakoid membranen

    NARCIS (Netherlands)

    Ooms, J.J.J.

    1990-01-01

    This thesis deals mainly with the analysis and interpretation of the flash-induced electrochromic absorbance changes in isolated chloroplasts of spinach and pea plants. The amplitude and kinetics of the flash-induced absorbance changes at 518 nm (P515) are discussed in relation to the

  18. Synthesis and Characterization of Composite Membranes made of Graphene and Polymers of Intrinsic Microporosity

    Science.gov (United States)

    2016-02-16

    group of polymers with molecular sieve behaviour due to their rigid, contorted macromolecular backbones. They show great potential in organophilic...perva- poration, solvent-resistant nanofiltration and gas and vapour separations. However, they are susceptible to physical ageing, leading to a...simply by casting from solution [12]. Moreover, the microporous structure and the chemical func- tionalities of PIM-1 create a high capacity for gas

  19. Ultrafiltration-based degumming of crude rice bran oil using a polymer membrane

    Energy Technology Data Exchange (ETDEWEB)

    Sehn, G.A.R.; GonCalves, L.A.G.; Ming, C.C.

    2016-07-01

    Membrane technology has been gaining momentum in industrial processes, especially in food technology. It is believed to simplify processes, reduce energy consumption, and eliminate pollutants. The objective was to study the performance of polyvinylidene fluoride (PVDF) and polyethersulfone (PES) polymeric membranes in the degumming of the miscella of crude rice bran oil by using a bench-scale tangential filtration module. In addition, oil miscella filtration techniques using hexane and anhydrous ethyl alcohol solvents were compared. All membranes showed the retention of phospholipids and high flow rates. However, the best performance was observed using the 50-kDa PVDF membrane in miscella hexane solvent, with a 95.5% retention of the phosphorus concentration (by a factor of 1.4), resulting in a permeate with 29 mg·kg−1 of phosphorus and an average flow rate of 48.1 L·m−2·h−1. This technology can be used as a low-pollution, economical alternative for the de-gumming of crude rice bran oil, being effective in the removal of hydratable and non-hydratable phospholipids, resulting in oils with a low phosphorus content. (Author)

  20. Measuring the Extensional Properties of linear and branched Polymer Melts using Membrane Inflation into a Cylinder

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz; Eggen, Svein; Kjær, Erik Michael

    2001-01-01

    The bubble inflation technique has been used for some time as a rheological characterization method for polymeric materials. Recently, this technique has been modified to the inflation of a polymeric sheet into a circular cylinder. In this work, the experimental inflation of sheets (or membranes......) of polymeric melts into a circular cylinder is modelled numerically to obtain the general extensional properties of the material....

  1. Assessment of Blend PVDF Membranes, and the Effect of Polymer Concentration and Blend Composition.

    Science.gov (United States)

    Ali, Imtiaz; Bamaga, Omar A; Gzara, Lassaad; Bassyouni, M; Abdel-Aziz, M H; Soliman, M F; Drioli, Enrico; Albeirutty, Mohammed

    2018-03-05

    In this work, PVDF homopolymer was blended with PVDF-co-HFP copolymer and studied in terms of morphology, porosity, pore size, hydrophobicity, permeability, and mechanical properties. Different solvents, namely N-Methyl-2 pyrrolidone (NMP), Tetrahydrofuran (THF), and Dimethylformamide (DMF) solvents, were used to fabricate blended PVDF flat sheet membranes without the introduction of any pore forming agent, through a non-solvent induced phase separation (NIPS) technique. Furthermore, the performance of the fabricated membranes was investigated for pressure and thermal driven applications. The porosity of the membranes was slightly increased with the increase in the overall content of PVDF and by the inclusion of PVDF copolymer. Total PVDF content, copolymer content, and mixed-solvent have a positive effect on mechanical properties. The addition of copolymer increased the hydrophobicity when the total PVDF content was 20%. At 25% and with the inclusion of mixed-solvent, the hydrophobicity was adversely affected. The permeability of the membranes increased with the increase in the overall content of PVDF. Mixed-solvents significantly improved permeability.

  2. Reformate tolerant electrocatalysts in solid polymer fuel cell membrane electrode assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, S J; Gunner, A G; Thompsett, D; Hards, G A

    1998-12-31

    The aim of the project was to evaluate a series of platinum group metal catalysts which had previously been identified from a wide range of areas related to carbon monoxide (CO) activation, and to demonstrate superior intrinsic reformate tolerance to current platinum/ruthenium technology as anode catalysts for Proton Exchange Membrane Fuel Cells (PEMFC). (author)

  3. Fluorinated building blocks for next-generation polymer electrolyte membrane fuel cells

    NARCIS (Netherlands)

    Wadekar, M.N.

    2012-01-01

    The purpose of this thesis is to design, create and study basic building blocks for the construction of self-assembled nanostructured electrodes and membranes for PEMFC. The research described deals with the synthesis of polymerizable fluorosurfactant (1) and its non-polymerizable analogue (2) and

  4. Low stoichiometry operation of a polymer electrolyte membrane fuel cell employing the interdigitated flow field design

    DEFF Research Database (Denmark)

    Berning, Torsten; Odgaard, Madeleine; Kær, Søren Knudsen

    2011-01-01

    Fuel cell operation on dry reactant gases under low stoichiometry conditions employing the interdigitated flow field is investigated using a multi-fluid model. It is assumed that the MEA contains a water uptake layer which facilitates water absorption to the membrane and hence prevents the anode...

  5. Streaming potential investigations of polymer membranes developed for direct methanol fuel cell application

    Czech Academy of Sciences Publication Activity Database

    Richau, K.; Mohr, R.; Kůdela, Vlastimil; Schauer, Jan

    2003-01-01

    Roč. 14, - (2003), s. 201-204 ISSN 0915-860X. [International Conference on Ion Exchange. Kanazawa, 14.07.2003-18.07.2003] R&D Projects: GA MŠk ME 366 Institutional research plan: CEZ:AV0Z4050913 Keywords : streaming potential * ion-exchange membranes * specific conductivity Subject RIV: CG - Electrochemistry

  6. Assessment of Blend PVDF Membranes, and the Effect of Polymer Concentration and Blend Composition

    Directory of Open Access Journals (Sweden)

    Imtiaz Ali

    2018-03-01

    Full Text Available In this work, PVDF homopolymer was blended with PVDF-co-HFP copolymer and studied in terms of morphology, porosity, pore size, hydrophobicity, permeability, and mechanical properties. Different solvents, namely N-Methyl-2 pyrrolidone (NMP, Tetrahydrofuran (THF, and Dimethylformamide (DMF solvents, were used to fabricate blended PVDF flat sheet membranes without the introduction of any pore forming agent, through a non-solvent induced phase separation (NIPS technique. Furthermore, the performance of the fabricated membranes was investigated for pressure and thermal driven applications. The porosity of the membranes was slightly increased with the increase in the overall content of PVDF and by the inclusion of PVDF copolymer. Total PVDF content, copolymer content, and mixed-solvent have a positive effect on mechanical properties. The addition of copolymer increased the hydrophobicity when the total PVDF content was 20%. At 25% and with the inclusion of mixed-solvent, the hydrophobicity was adversely affected. The permeability of the membranes increased with the increase in the overall content of PVDF. Mixed-solvents significantly improved permeability.

  7. A POLYMER-CERAMIC COMPOSITE MEMBRANE FOR RECOVERING VOLATILE ORGANIC COMPOUNDS FROM WASTEWATERS BY PERVAPORATION

    Science.gov (United States)

    A composite membrane was constructed on a porous ceramic support from a block copolymer of styrene and butadiene (SBS). It was tested in a laboratory pervaporation apparatus for recovering volatile organic compounds (VOCs) such a 1,1,1-trichloroethane (TCA) and trichloroethylene ...

  8. Molecular Mechanisms of Ultrafiltration Membrane Fouling in Polymer-Flooding Wastewater Treatment: Role of Ions in Polymeric Fouling.

    Science.gov (United States)

    Liu, Guicai; Yu, Shuili; Yang, Haijun; Hu, Jun; Zhang, Yi; He, Bo; Li, Lei; Liu, Zhiyuan

    2016-02-02

    Polymer (i.e., anionic polyacrylamide (APAM)) fouling of polyvinylidene fluoride (PVDF) ultrafiltration (UF) membranes and its relationships to intermolecular interactions were investigated using atomic force microscopy (AFM). Distinct relations were obtained between the AFM force spectroscopy measurements and calculated fouling resistance over the concentration polarization layer (CPL) and gel layer (GL). The measured maximum adhesion forces (Fad,max) were closely correlated with the CPL resistance (Rp), and the proposed molecular packing property (largely based on the shape of AFM force spectroscopy curve) of the APAM chains was related to the GL resistance (Rg). Calcium ions (Ca(2+)) and sodium ions (Na(+)) caused more severe fouling. In the presence of Ca(2+), the large Rp corresponded to high foulant-foulant Fad,max, resulting in high flux loss. In addition, the Rg with Ca(2+) was minor, but the flux recovery rate after chemical cleaning was the lowest, indicating that Ca(2+) created more challenges in GL cleaning. With Na(+), the fouling behavior was complicated and concentration-dependent. The GL structures with Na(+), which might correspond to the proposed molecular packing states among APAM chains, played essential roles in membrane fouling and GL cleaning.

  9. Effects of heat and water transport on the performance of polymer electrolyte membrane fuel cell under high current density operation

    International Nuclear Information System (INIS)

    Tabuchi, Yuichiro; Shiomi, Takeshi; Aoki, Osamu; Kubo, Norio; Shinohara, Kazuhiko

    2010-01-01

    Key challenges to the acceptance of polymer electrolyte membrane fuel cells (PEMFCs) for automobiles are the cost reduction and improvement in its power density for compactness. In order to get the solution, the further improvement in a fuel cell performance is required. In particular, under higher current density operation, water and heat transport in PEMFCs has considerable effects on the cell performance. In this study, the impact of heat and water transport on the cell performance under high current density was investigated by experimental evaluation of liquid water distribution and numerical validation. Liquid water distribution in MEA between rib and channel area is evaluated by neutron radiography. In order to neglect the effect of liquid water in gas channels and reactant species concentration distribution in the flow direction, the differential cell was used in this study. Experimental results suggested that liquid water under the channel was dramatically changed with rib/channel width. From the numerical study, it is found that the change of liquid water distribution was significantly affected by temperature distribution in MEA between rib and channel area. In addition, not only heat transport but also water transport through the membrane also significantly affected the cell performance under high current density operation.

  10. A novel polymer inclusion membrane based method for continuous clean-up of thiocyanate from gold mine tailings water.

    Science.gov (United States)

    Cho, Youngsoo; Cattrall, Robert W; Kolev, Spas D

    2018-01-05

    Thiocyanate is present in gold mine tailings waters in concentrations up to 1000mgL -1 and this has a serious environmental impact by not allowing water reuse in the flotation of gold ore. This significantly increases the consumption of fresh water and the amount of wastewater discharged in tailings dams. At the same time thiocyanate in tailings waters often leads to groundwater contamination. A novel continuous membrane-based method for the complete clean-up of thiocyanate in concentrations as high as 1000mgL -1 from its aqueous solutions has been developed. It employs a flat sheet polymer inclusion membrane (PIM) of composition 70wt% PVC, 20wt% Aliquat 336 and 10wt% 1-tetradecanol which separates counter-current streams of a feed thiocyanate solution and a 1M NaNO 3 receiving solution. The PIM-based system has been operated continuously for 45days with 99% separation efficiency. The volume of the receiving solution has been drastically reduced by recirculating it and continuously removing thiocyanate by precipitating it with in-situ generated Cu(I). The newly developed PIM-based thiocyanate clean-up method is environmentally friendly in terms of reagent use and inexpensive with respect to both equipment and running costs. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Novel electrospun gas diffusion layers for polymer electrolyte membrane fuel cells: Part I. Fabrication, morphological characterization, and in situ performance

    Science.gov (United States)

    Chevalier, S.; Lavielle, N.; Hatton, B. D.; Bazylak, A.

    2017-06-01

    In this first of a series of two papers, we report an in-depth analysis of the impact of the gas diffusion layer (GDL) structure on the polymer electrolyte membrane (PEM) fuel cell performance through the use of custom GDLs fabricated in-house. Hydrophobic electrospun nanofibrous gas diffusion layers (eGDLs) are fabricated with controlled fibre diameter and alignment. The eGDLs are rendered hydrophobic through direct surface functionalization, and this molecular grafting is achieved in the absence of structural alteration. The fibre diameter, chemical composition, and electrical conductivity of the eGDL are characterized, and the impact of eGDL structure on fuel cell performance is analysed. We observe that the eGDL facilitates higher fuel cell power densities compared to a commercial GDL (Toray TGP-H-60) at highly humidified operating conditions. The ohmic resistance of the fuel cell is found to significantly increase with increasing inter-fiber distance. It is also observed that the addition of a hydrophobic treatment enhances membrane hydration, and fibres perpendicularly aligned to the channel direction may enhance the contact area between the catalyst layer and the GDL.

  12. Dual control of low concentration CO poisoning by anode air bleeding of low temperature polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Klages, Merle; Tjønnås, Johannes; Zenith, Federico; Halvorsen, Ivar J.; Scholta, Joachim

    2016-12-01

    Fuel impurities, fed to a polymer electrolyte membrane fuel cell, can affect stack performance by poisoning of catalyst layers. This paper describes the dynamic behaviour of a stack, including state-of-the-art membrane electrode assemblies (MEA) of three different manufacturers, at different operating conditions. The voltage transients of the step responses to CO poisoning as well as air bleed recovery are compared, revealing differences in performance loss: slow poisoning versus fast recovery, incomplete recovery and voltage oscillation. The recorded behaviour is used to develop a model, based on Tafel equation and first order dynamic response, which can be calibrated to each MEA type. Using this model to predict voltage response, a controller is built with the aim of reducing the total amount of air bleed and monitoring upstream stack processes without the need of sensors measuring the poisoning level. Two controllers are implemented in order to show the concept from a heuristic, easy to implement, and a more technical side allowing more detailed analysis of the synthesis. The heuristic algorithm, based on periodic perturbations of the manipulated variable (air-bleed), is validated on a real stack, revealing a stabilized performance without the need of detailed stack properties knowledge.

  13. Radiation Induced Preparation of Polymer Membranes Grafted with Basic and Acidic Monomers for Application in Wastewater Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Ajji, Z [Polymer Technology Division, Radiation Technology Department, Atomic Energy Commission of Syria (AECS), 17th Nissan Street, Kafar Sousah, Damascus (Syrian Arab Republic)

    2012-09-15

    Polymer membranes (PP and PE) had been grafted with basic and acidic functional groups using gamma radiation. Two binary mixtures had been used for the grafting reactions: acrylic acid/N-vinyl pyrrolidone, and acrylic acid/N-vinyl imidazole. The influence of different reaction parameters on the grafting yield had been investigated as: type of solvent and solvent composition, comonomer concentration and composition, addition of inhibitors, and dose. Water uptake with respect to the grafting yield had also been evaluated. The ability of PP films, grafted with acrylic acid/ vinyl pyrrolidone, to uptake heavy metal ions such as Hg{sup 2+}, Pb{sup 2+}, Cd{sup 2+}, Co{sup 2+}, Ni{sup 2+} and Cu{sup 2+} was elaborated. The uptake of the metal ions increases with increasing the grafting yield. Furthermore, the Pb{sup +2} uptake was much higher than the uptake of the Hg{sup 2+} and Cd{sup 2+} ions. The membranes may be considered for the separation of Pb{sup 2+} ions from Hg{sup 2+} or Cd{sup 2+} ions. Also the ability of PE films, grafted with acrylic acid/ N-vinyl imidazole to uptake heavy metal ions such as Pb{sup 2+}, Cd{sup 2+}, Co{sup 2+} and Ni{sup 2+} was elaborated. An increase in the uptake of the metal ions was observed as the grafting yield increased. (author)

  14. Development of methodology for assessment of absorbed dose and stopping power for low energy conversion electrons

    International Nuclear Information System (INIS)

    Almeida, Ivan Pedro Salati de

    1995-08-01

    The evaluation of absorbed dose in the case of external and internal contamination due to radionuclides is sometimes hard, because of the difficulties in the assessment of the absorbed dose caused by electrons with energy less than 100 KeV in mucous membrane. In this work, a methodology for assessment of absorbed dose and stopping power in VYNS (co-polymer of polivinyl chloride - acetate) absorbers, for the 62.5 KeV and 84-88 KeV energy 109 Cd conversion electrons, working with a 4 π proportional pressurized detector, is presented. In order to assure the reproducibility of measurement conditions, one of the detector halves has been used to obtain a spectrum of a thin 109 Cd source, without absorber. The other half of the detector was used in concomitance to obtain spectra with different thicknesses if absorber. The absorbed energy was obtained subtracting each spectrum with absorber from the spectrum without absorber, which were stored in a microcomputer connected to signal processing systems by ACE type interface. The VYNS weight and thickness were evaluated using common radionuclide metrology procedures. As VYNS has characteristics similar to a tissue equivalent material, the results obtained are consistent with dosimetric concepts and have a good agreement with those of the literature. (author)

  15. Novel Approaches to Immobilized Heteropoly Acid Systems for High Temperature, Low Relative Humidity Polymer-Type Membranes - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Herring, Andrew M; Horan, James L; Aieta, Niccolo V; Sachdeva, Sonny; Kuo, Mei-Chen; Ren, Hui; Lingutla, Anitha; Emery, Michael; Haugen, Gregory M; Yandrasits, Michael A; Sharma, Neeraj; Coggio, William D; Hamrock, Steven J; Frey, Matthew H

    2012-05-20

    Original research was carried out at the CSM and the 3M Company from March 2007 through September 2011. The research was aimed at developing new to the world proton electrolyte materials for use in hydrogen fuel cells, in particular with high proton conductivity under hot and dry conditions (>100mS/cm at 120°C and 50%RH). Broadly stated, the research at 3M and between 3M and CSM that led to new materials took place in two phases: In the first phase, hydrocarbon membranes that could be formed by photopolymerization of monomer mixtures were developed for the purpose of determining the technical feasibility of achieving the program's Go/No-Go decision conductivity target of >100mS/cm at 120°C and 50%RH. In the second phase, attempts were made to extend the achieved conductivity level to fluorinated material systems with the expectation that durability and stability would be improved (over the hydrocarbon material). Highlights included: Multiple lots of an HPA-immobilized photocurable terpolymer derived from di-vinyl-silicotungstic acid (85%), n-butyl acrylate, and hexanediol diacrylate were prepared at 3M and characterized at 3M to exhibit an initial conductivity of 107mS/cm at 120°C and 47%RH (PolyPOM85v) using a Bekktech LLC sample fixture and TestEquity oven. Later independent testing by Bekktech LLC, using a different preheating protocol, on the same material, yielded a conductivity value of approximately 20mS/cm at 120°C and 50%RH. The difference in measured values is likely to have been the result of an instability of properties for the material or a difference in the measurement method. A dispersed catalyst fuel cell was fabricated and tested using a 150¼m thick HPA-based photocurable membrane (above, PolyPOM75v), exhibiting a current density of greater than 300mA/cm2 at 0.5V (H2/Air 800/1800sccm 70°C/75%RH ambient outlet pressure). Multiple lots of a co-polymer based on poly-trifluorovinylether (TFVE) derived HPA were synthesized and fabricated into

  16. Superior thermal conductivity of transparent polymer nanocomposites with a crystallized alumina membrane

    Directory of Open Access Journals (Sweden)

    Md. Poostforush

    2014-04-01

    Full Text Available The properties of novel thermoconductive and optically transparent nanocomposites have been reported. The composites were prepared by the impregnation of thermoset resin into crystallized anodic aluminum oxide (AAO. Crystallized AAO synthesized by annealing amorphous AAO membrane at 1200°C. Although through-plane thermal conductivity of nanocomposites improved up to 1.13 W•m–1•K–1 (39 vol% alumina but their transparency was preserved (Tλ550 nm ~ 72%. Integrated annealed alumina phase, low refractive index mismatch between resin and alumina and formation of nano-optical fibers through the membrane resulted in such marvel combination. This report shows a great potential of these types of nanocomposites in ‘heat management’ of lightening devices.

  17. Polymer membranes modified by fullerene C-60 for pervaporation of organic mixtures

    Czech Academy of Sciences Publication Activity Database

    Polotskaya, G. A.; Penkova, A. V.; Pientka, Zbyněk; Toikka, A. M.

    2010-01-01

    Roč. 14, 1-3 (2010), s. 83-88 ISSN 1944-3994. [PERMEA 2009. Prague, 07.06.2009-11.06.2009] R&D Projects: GA ČR GA104/09/1165 Institutional research plan: CEZ:AV0Z40500505 Keywords : pervaporation * fullerene -containing membranes * poly(phenylene oxide) Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 0.752, year: 2010

  18. Superior thermal conductivity of transparent polymer nanocomposites with a crystallized alumina membrane

    OpenAIRE

    Md. Poostforush; H. Azizi

    2014-01-01

    The properties of novel thermoconductive and optically transparent nanocomposites have been reported. The composites were prepared by the impregnation of thermoset resin into crystallized anodic aluminum oxide (AAO). Crystallized AAO synthesized by annealing amorphous AAO membrane at 1200°C. Although through-plane thermal conductivity of nanocomposites improved up to 1.13 W•m–1•K–1 (39 vol% alumina) but their transparency was preserved (Tλ550 nm ~ 72%). Integrated annealed alumina phase, low ...

  19. Polymer electrolyte membrane fuel cell (PEMFC) flow field plate: design, materials and characterisation

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, P.J.; Pollet, B.G. [PEM Fuel Cell Research Group, School of Chemical Engineering, University of Birmingham, Edgbaston, B15 2TT (United Kingdom)

    2010-08-15

    This review describes some recent developments in the area of flow field plates (FFPs) for proton exchange membrane fuel cells (PEMFCs). The function, parameters and design of FFPs in PEM fuel cells are outlined and considered in light of their performance. FFP materials and manufacturing methods are discussed and current in situ and ex situ characterisation techniques are described. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  20. Preparation and investigation of cheap polymer electrolyte membranes for fuel cells

    DEFF Research Database (Denmark)

    Larsen, Mikkel Juul; Ma, Yue; Lund, Peter Brilner

    ­tro­ly­tic pro­per­ti­es. Grafting with a fraction of DVB in the order of 1-2 vol-% of the total mo­no­mers seems to be advantageous for both of the two grafting sys­tems as a com­pro­mise between high chemical stability and good proton con­duc­tivity of the final membrane. The use of methyl­sty­rene and t......-bu­tyl­styrene as grafting mo­no­mers instead of sty­rene gives the resulting membranes a significantly increased chem­i­cal stability, while a rea­son­able pro­ton conductivity can still be ob­tai­ned. Both membrane systems show a smaller methanol up­take than water uptake. [i] Kreuer, K.-D.; Paddison, S. J.; Spohr, E.......; Schuster, M.; Chemical Reviews 104 (2004) 4637-4678 [ii] Skou, E.; Kauranen, P.; Hentschel, J.; Solid State Ionics 97 (1997) 333-337 [iii] Fuel Cell Handbook; Seventh Edition; EG&G Technical Services, Inc.; 2004; p. 3.1-3.25 [iv] Doyle, M.; Rajendran, G. in Handbook of Fuel Cells - Fundamentals, Technology...