WorldWideScience

Sample records for absolutely continuous spectral

  1. Absolute continuity for operator valued completely positive maps on C∗-algebras

    Science.gov (United States)

    Gheondea, Aurelian; Kavruk, Ali Şamil

    2009-02-01

    Motivated by applicability to quantum operations, quantum information, and quantum probability, we investigate the notion of absolute continuity for operator valued completely positive maps on C∗-algebras, previously introduced by Parthasarathy [in Athens Conference on Applied Probability and Time Series Analysis I (Springer-Verlag, Berlin, 1996), pp. 34-54]. We obtain an intrinsic definition of absolute continuity, we show that the Lebesgue decomposition defined by Parthasarathy is the maximal one among all other Lebesgue-type decompositions and that this maximal Lebesgue decomposition does not depend on the jointly dominating completely positive map, we obtain more flexible formulas for calculating the maximal Lebesgue decomposition, and we point out the nonuniqueness of the Lebesgue decomposition as well as a sufficient condition for uniqueness. In addition, we consider Radon-Nikodym derivatives for absolutely continuous completely positive maps that, in general, are unbounded positive self-adjoint operators affiliated to a certain von Neumann algebra, and we obtain a spectral approximation by bounded Radon-Nikodym derivatives. An application to the existence of the infimum of two completely positive maps is indicated, and formulas in terms of Choi's matrices for the Lebesgue decomposition of completely positive maps in matrix algebras are obtained.

  2. Absolutely continuous spectrum and spectral transition for some ...

    Indian Academy of Sciences (India)

    Proc. Indian Acad. Sci. (Math. Sci.) Vol. 122, No. 2, May 2012, pp. 243–255. c Indian ... we also know the existence of dense pure point spectrum for some disorder thus exhibit- ing spectral .... When β varies from 1 to 0, the growth behaviour of N(R) changes from ...... Student Texts 37 (Cambridge University Press) (1997).

  3. First derivative versus absolute spectral reflectance of citrus varieties

    Science.gov (United States)

    Blazquez, Carlos H.; Nigg, H. N.; Hedley, Lou E.; Ramos, L. E.; Sorrell, R. W.; Simpson, S. E.

    1996-06-01

    Spectral reflectance measurements from 400 to 800 nm were taken from immature and mature leaves of grapefruit ('McCarty' and 'Rio Red'), 'Minneola' tangelo, 'Satsuma' mandarin, 'Dancy' tangerine, 'Nagami' oval kumquat, and 'Valencia' sweet orange, at the Florida Citrus Arboretum, Division of Plant Industry, Winter Haven, Florida. Immature and mature leaves of 'Minneola' tangelo had greater percent reflectance in the 400 to 800 nm range than the other varieties and leaf ages measured. The slope of the citrus spectral curves in the 800 nm range was not as sharp as conventional spectrometers, but had a much higher reflectance value than those obtained with a DK-2 spectrometer. Statistical analyses of absolute spectral data yielded significant differences between mature and immature leaves and between varieties. First derivative data analyses did not yield significant differences between varieties.

  4. Absolute continuity of autophage measures on finite-dimensional vector spaces

    Energy Technology Data Exchange (ETDEWEB)

    Raja, C R.E. [Stat-Math Unit, Indian Statistical Institute, Bangalore (India); [Abdus Salam International Centre for Theoretical Physics, Trieste (Italy)]. E-mail: creraja@isibang.ac.in

    2002-06-01

    We consider a class of measures called autophage which was introduced and studied by Szekely for measures on the real line. We show that the autophage measures on finite-dimensional vector spaces over real or Q{sub p} are infinitely divisible without idempotent factors and are absolutely continuous with bounded continuous density. We also show that certain semistable measures on such vector spaces are absolutely continuous. (author)

  5. Spectral Irradiance Calibration in the Infrared. XIV: the Absolute Calibration of 2MASS

    OpenAIRE

    Cohen, Martin; Wheaton, Wm. A.; Megeath, S. T.

    2003-01-01

    Element-by-element we have combined the optical components in the three 2MASS cameras, and incorporated detector quantum efficiency curves and site-specific atmospheric transmissions, to create three relative spectral response curves (RSRs). We provide absolute 2MASS attributes associated with "zero magnitude" in the JHKs bands so that these RSRs may be used for synthetic photometry. The RSRs tie 2MASS to the Cohen-Walker-Witteborn framework of absolute photometry and spectra for the purpose ...

  6. Long-term temporal stability of the National Institute of Standards and Technology spectral irradiance scale determined with absolute filter radiometers

    International Nuclear Information System (INIS)

    Yoon, Howard W.; Gibson, Charles E.

    2002-01-01

    The temporal stability of the National Institute of Standards and Technology (NIST) spectral irradiance scale as measured with broadband filter radiometers calibrated for absolute spectral irradiance responsivity is described. The working standard free-electron laser (FEL) lamps and the check standard FEL lamps have been monitored with radiometers in the ultraviolet and the visible wavelength regions. The measurements made with these two radiometers reveal that the NIST spectral irradiance scale as compared with an absolute thermodynamic scale has not changed by more than 1.5% in the visible from 1993 to 1999. Similar measurements in the ultraviolet reveal that the corresponding change is less than 1.5% from 1995 to 1999. Furthermore, a check of the spectral irradiance scale by six different filter radiometers calibrated for absolute spectral irradiance responsivity based on the high-accuracy cryogenic radiometer shows that the agreement between the present scale and the detector-based scale is better than 1.3% throughout the visible to the near-infrared wavelength region. These results validate the assigned spectral irradiance of the widely disseminated NIST or NIST-traceable standard sources

  7. Purely absolutely continuous spectrum for almost Mathieu operators

    International Nuclear Information System (INIS)

    Chulaevsky, V.; Delyon, F.

    1989-01-01

    Using a recent result of Sinai, the authors prove that the almost Mathieu operators acting on l 2 (Z), (H αλ Psi)(n) = Ψ(n + 1) + Ψ(n - 1) + λ cos(ωn + α) Ψ(n), have a purely absolutely continuous spectrum for almost all α provided that ω is a good irrational and λ is sufficiently small. Furthermore, the generalized eigenfunctions are quasiperiodic

  8. A rediscussion of the atmospheric extinction and the absolute spectral-energy distribution of Vega

    International Nuclear Information System (INIS)

    Hayes, D.S.; Latham, D.W.

    1975-01-01

    For both the Lick and the Palomar calibrations of the spectral-energy distribution of Vega, the atmospheric extinction was treated incorrectly. We present a model for extinction in the Earth's atmosphere and use this model to calculate corrections to the Lick and Palomar calibrations. We also describe a method that can be used to fabricate mean extinction coefficients for any mountain observatory. We combine selected portions of the corrected Lick and corrected Palomar calibrations with the new Mount Hopkins calibration to generate an absolute spectral-energy distibution of Vega over the wavelength range 3300--10,800 A. Until better measurements become available, we recommend the use of this calibration for all practical applications

  9. Spectral properties of almost-periodic Hamiltonians

    International Nuclear Information System (INIS)

    Lima, R.

    1983-12-01

    We give a description of some spectral properties of almost-periodic hamiltonians. We put the stress on some particular points of the proofs of the existence of absolutely continuous or pure point spectrum [fr

  10. Absolute continuity of the distribution of some Markov geometric series

    Institute of Scientific and Technical Information of China (English)

    Ai-hua; FAN; Ji-hong; ZHANG

    2007-01-01

    Let (∈n)≥0 be the Markov chain of two states with respect to the probability measure of the maximal entropy on the subshift space ∑A defined by Fibonacci incident matrix A.We consider the measure μλ of the probability distribution of the random series ∑∞n=0 εnλn (0 <λ< 1).It is proved that μλ is singular if λ∈ (0,√5-1/2) and that μλ is absolutely continuous for almost all λ∈ (√5-1/2,0.739).

  11. Spectra of random operators with absolutely continuous integrated density of states

    International Nuclear Information System (INIS)

    Rio, Rafael del

    2014-01-01

    The structure of the spectrum of random operators is studied. It is shown that if the density of states measure of some subsets of the spectrum is zero, then these subsets are empty. In particular follows that absolute continuity of the integrated density of states implies singular spectra of ergodic operators is either empty or of positive measure. Our results apply to Anderson and alloy type models, perturbed Landau Hamiltonians, almost periodic potentials, and models which are not ergodic

  12. Spectra of random operators with absolutely continuous integrated density of states

    Energy Technology Data Exchange (ETDEWEB)

    Rio, Rafael del, E-mail: delrio@iimas.unam.mx, E-mail: delriomagia@gmail.com [Departamento de Fisica Matematica, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, C.P. 04510, México D.F. (Mexico)

    2014-04-15

    The structure of the spectrum of random operators is studied. It is shown that if the density of states measure of some subsets of the spectrum is zero, then these subsets are empty. In particular follows that absolute continuity of the integrated density of states implies singular spectra of ergodic operators is either empty or of positive measure. Our results apply to Anderson and alloy type models, perturbed Landau Hamiltonians, almost periodic potentials, and models which are not ergodic.

  13. Absolutely continuous functions of two variables in the sense of Carathéodory

    Czech Academy of Sciences Publication Activity Database

    Šremr, Jiří

    2010-01-01

    Roč. 2010, č. 154 (2010), s. 1-11 ISSN 1072-6691 R&D Projects: GA ČR(CZ) GA201/06/0254 Institutional research plan: CEZ:AV0Z10190503 Keywords : absolutely continuous function * Carathéodory sense * integral representation * derivative of double integral Subject RIV: BA - General Mathematics

  14. Pure Absolutely Continuous Spectrum for Random Operators on $l^2(Z^d)$ at Low Disorder

    CERN Document Server

    Grinshpun, V

    2006-01-01

    Absence of singular continuous component, with probability one, in the spectra of random perturbations of multidimensional finite-difference Hamiltonians, is for the first time rigorously established under certain conditions ensuring either absence of point component, or absence of absolutely continuous component in the corresponding regions of spectra. The main technical tool involved is the rank-one perturbation theory of singular spectra. The respective new result (the non-mixing property) is applied to establish existence and bounds of the (non-empty) pure absolutely continuous component in the spectrum of the Anderson model with bounded random potential in dimension d=2 at low disorder (similar proof holds for d>4). The new result implies, via the trace-class perturbation analysis, Anderson model with the unbounded random potential having only pure point spectrum (complete system of localized wave-functions) with probability one in arbitrary dimension. The basic idea is to establish absence of the mixed,...

  15. Absolute sensitivity calibration from 20 A to 430 A of a grazing incidence spectrometer with a multi-element spectral detector

    International Nuclear Information System (INIS)

    Terry, J.L.; Manning, H.L.; Marmar, E.S.

    1986-07-01

    Two methods which together allow sensitivity calibration from 20 A to 430 A are described in detail. The first method, useful up to 120 A, uses a low power source to generate Kα x-rays which are alternately viewed by an absolute detector (a proportional counter) and the spectrometer. The second method extends that calibration to 430 A. It relies on the 2:1 brightness ratio of bright doublet lines from impurity ions which have a single outer shell electron and which are present in hot, magnetically confined plasmas. It requires that the absolute sensitivity of the spectrometer be known at one wavelength point, and in practice requires a multi-element spectral detector

  16. Large scale 2D spectral compressed sensing in continuous domain

    KAUST Repository

    Cai, Jian-Feng

    2017-06-20

    We consider the problem of spectral compressed sensing in continuous domain, which aims to recover a 2-dimensional spectrally sparse signal from partially observed time samples. The signal is assumed to be a superposition of s complex sinusoids. We propose a semidefinite program for the 2D signal recovery problem. Our model is able to handle large scale 2D signals of size 500 × 500, whereas traditional approaches only handle signals of size around 20 × 20.

  17. Large scale 2D spectral compressed sensing in continuous domain

    KAUST Repository

    Cai, Jian-Feng; Xu, Weiyu; Yang, Yang

    2017-01-01

    We consider the problem of spectral compressed sensing in continuous domain, which aims to recover a 2-dimensional spectrally sparse signal from partially observed time samples. The signal is assumed to be a superposition of s complex sinusoids. We propose a semidefinite program for the 2D signal recovery problem. Our model is able to handle large scale 2D signals of size 500 × 500, whereas traditional approaches only handle signals of size around 20 × 20.

  18. Absolute spectral characterization of silicon barrier diode: Application to soft X-ray fusion diagnostics at Tore Supra

    International Nuclear Information System (INIS)

    Vezinet, D.; Mazon, D.; Malard, P.

    2013-01-01

    This paper presents an experimental protocol for absolute calibration of photo-detectors. Spectral characterization is achieved by a methodology that unlike the usual line emissions-based method, hinges on the Bremsstrahlung radiation of a Soft X-Ray (SXR) tube only. Although the proposed methodology can be applied virtually to any detector, the application presented in this paper is based on Tore Supra's SXR diagnostics, which uses Silicon Surface Barrier Diodes. The spectral response of these n-p junctions had previously been estimated on a purely empirical basis. This time, a series of second-order effects, like the spatial distribution of the source radiated power or multi-channel analyser non linearity, are taken into account to achieve accurate measurements. Consequently, a parameterised physical model is fitted to experimental results and the existence of an unexpected dead layer (at least 5 μm thick) is evidenced. This contribution also echoes a more general on-going effort in favour of long-term quality of passive radiation measurements on Tokamaks

  19. Continuous non-invasive blood glucose monitoring by spectral image differencing method

    Science.gov (United States)

    Huang, Hao; Liao, Ningfang; Cheng, Haobo; Liang, Jing

    2018-01-01

    Currently, the use of implantable enzyme electrode sensor is the main method for continuous blood glucose monitoring. But the effect of electrochemical reactions and the significant drift caused by bioelectricity in body will reduce the accuracy of the glucose measurements. So the enzyme-based glucose sensors need to be calibrated several times each day by the finger-prick blood corrections. This increases the patient's pain. In this paper, we proposed a method for continuous Non-invasive blood glucose monitoring by spectral image differencing method in the near infrared band. The method uses a high-precision CCD detector to switch the filter in a very short period of time, obtains the spectral images. And then by using the morphological method to obtain the spectral image differences, the dynamic change of blood sugar is reflected in the image difference data. Through the experiment proved that this method can be used to monitor blood glucose dynamically to a certain extent.

  20. Quasi-periodic Schroedinger operators in one dimension, absolutely continuous spectra, Bloch waves, and integrable Hamiltonian systems

    International Nuclear Information System (INIS)

    Chierchia, L.

    1986-01-01

    In the first chapter, the eigenvalue problem for a periodic Schroedinger operator, Lf = (-d 2 /dx 2 + v)f = Ef, is viewed as a two-dimensional Hamiltonian system which is integrable in the sense of Arnold and Liouville. With the aid of the Floquet-BLoch theory, it is shown that such a system is conjugate to two harmonic oscillators with frequencies α and omega, being the rotation number for L and 2π/omega the period of the potential v. This picture is generalized in the second chapter, to quasi periodic Schroedinger operators, L/sub epsilon/, with highly irrational frequencies (omega 1 , ..., omega/sub d/), which are a small perturbation of periodic operators. In the last chapter, the absolutely continuous spectrum σ/sub ac/ of a general quasi-periodic Schroedinger operators is considered. The Radon-Nikodym derivatives (with respect to Lebesgue measure) of the spectral measures are computed in terms of special independent eigensolutions existing for almost ever E in σ/sub ac/. Finally, it is shown that weak Bloch waves always exist for almost ever E in σ/sub ac/ and the question of the existence of genuine Bloch waves is turned into a regularity problem for a certain nonlinear partial differential equation on a d-dimensional torus

  1. Absolute spectrophotometry of Nova Cygni 1975

    International Nuclear Information System (INIS)

    Kontizas, E.; Kontizas, M.; Smyth, M.J.

    1976-01-01

    Radiometric photoelectric spectrophotometry of Nova Cygni 1975 was carried out on 1975 August 31, September 2, 3. α Lyr was used as reference star and its absolute spectral energy distribution was used to reduce the spectrophotometry of the nova to absolute units. Emission strengths of Hα, Hβ, Hγ (in W cm -2 ) were derived. The Balmer decrement Hα:Hβ:Hγ was compared with theory, and found to deviate less than had been reported for an earlier nova. (author)

  2. Absolute measurement of subnanometer scale vibration of cochlear partition of an excised guinea pig cochlea using spectral-domain phase-sensitive optical coherence tomography

    Science.gov (United States)

    Subhash, Hrebesh M.; Choudhury, Niloy; Jacques, Steven L.; Wang, Ruikang K.; Chen, Fangyi; Zha, Dingjun; Nuttall, Alfred L.

    2012-01-01

    Direct measurement of absolute vibration parameters from different locations within the mammalian organ of Corti is crucial for understanding the hearing mechanics such as how sound propagates through the cochlea and how sound stimulates the vibration of various structures of the cochlea, namely, basilar membrane (BM), recticular lamina, outer hair cells and tectorial membrane (TM). In this study we demonstrate the feasibility a modified phase-sensitive spectral domain optical coherence tomography system to provide subnanometer scale vibration information from multiple angles within the imaging beam. The system has the potential to provide depth resolved absolute vibration measurement of tissue microstructures from each of the delay-encoded vibration images with a noise floor of ~0.3nm at 200Hz.

  3. Calibration with near-continuous spectral measurements

    DEFF Research Database (Denmark)

    Nielsen, Henrik Aalborg; Rasmussen, Michael; Madsen, Henrik

    2001-01-01

    In chemometrics traditional calibration in case of spectral measurements express a quantity of interest (e.g. a concentration) as a linear combination of the spectral measurements at a number of wavelengths. Often the spectral measurements are performed at a large number of wavelengths and in thi...... by an example in which the octane number of gasoline is related to near infrared spectral measurements. The performance is found to be much better that for the traditional calibration methods....

  4. Absolute continuity under time shift of trajectories and related stochastic calculus

    CERN Document Server

    Löbus, Jörg-Uwe

    2017-01-01

    The text is concerned with a class of two-sided stochastic processes of the form X=W+A. Here W is a two-sided Brownian motion with random initial data at time zero and A\\equiv A(W) is a function of W. Elements of the related stochastic calculus are introduced. In particular, the calculus is adjusted to the case when A is a jump process. Absolute continuity of (X,P) under time shift of trajectories is investigated. For example under various conditions on the initial density with respect to the Lebesgue measure, m, and on A with A_0=0 we verify \\frac{P(dX_{\\cdot -t})}{P(dX_\\cdot)}=\\frac{m(X_{-t})}{m(X_0)}\\cdot \\prod_i\\left|\

  5. Absolutely Continuous Spectrum for Random Schrödinger Operators on the Fibonacci and Similar Tree-strips

    Energy Technology Data Exchange (ETDEWEB)

    Sadel, Christian, E-mail: Christian.Sadel@ist.ac.at [University of British Columbia, Mathematics Department (Canada)

    2014-12-15

    We consider cross products of finite graphs with a class of trees that have arbitrarily but finitely long line segments, such as the Fibonacci tree. Such cross products are called tree-strips. We prove that for small disorder random Schrödinger operators on such tree-strips have purely absolutely continuous spectrum in a certain set.

  6. Absolute nuclear material assay

    Science.gov (United States)

    Prasad, Manoj K [Pleasanton, CA; Snyderman, Neal J [Berkeley, CA; Rowland, Mark S [Alamo, CA

    2010-07-13

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  7. Absolute spectrophotometry of the IC 2149, 4593, and NGC 6210 planetary nebulae in near infrared region

    International Nuclear Information System (INIS)

    Noskova, R.I.

    1976-01-01

    The absolute monochromatic energy flux (in ergs.cm -2 sec -1 ) was determined for the emission lines of the planetary nebulae IC2149, 4593 and NGC 6210 in the spectral interval lambda 6300-11000 A. The interstellar extinction Asub(β)=1.sup(m)3; O.sup(m)4; O.sup(m)6, accordingly, was estimated by using spectral lines HI of the Paschen and Balmer series. The energy distribution (in ergsxcm -2 xsec -1 1A -1 ) was found in summary continuous spectrum in the interval lambda 4000-10000 A. The attempt was made to separate the continuum of the nucleus and the nebula. The theoretical nebula continuous spectrum was calculated from lambda 3000 A to the radio range. The continuum, calibrated by menas of the flat part of the radiospectrum, linked well enough with the optical spectrum calculated here

  8. Advancing Absolute Calibration for JWST and Other Applications

    Science.gov (United States)

    Rieke, George; Bohlin, Ralph; Boyajian, Tabetha; Carey, Sean; Casagrande, Luca; Deustua, Susana; Gordon, Karl; Kraemer, Kathleen; Marengo, Massimo; Schlawin, Everett; Su, Kate; Sloan, Greg; Volk, Kevin

    2017-10-01

    We propose to exploit the unique optical stability of the Spitzer telescope, along with that of IRAC, to (1) transfer the accurate absolute calibration obtained with MSX on very bright stars directly to two reference stars within the dynamic range of the JWST imagers (and of other modern instrumentation); (2) establish a second accurate absolute calibration based on the absolutely calibrated spectrum of the sun, transferred onto the astronomical system via alpha Cen A; and (3) provide accurate infrared measurements for the 11 (of 15) highest priority stars with no such data but with accurate interferometrically measured diameters, allowing us to optimize determinations of effective temperatures using the infrared flux method and thus to extend the accurate absolute calibration spectrally. This program is integral to plans for an accurate absolute calibration of JWST and will also provide a valuable Spitzer legacy.

  9. Spectrally resolved, broadband frequency response characterization of photodetectors using continuous-wave supercontinuum sources

    Science.gov (United States)

    Choudhury, Vishal; Prakash, Roopa; Nagarjun, K. P.; Supradeepa, V. R.

    2018-02-01

    A simple and powerful method using continuous wave supercontinuum lasers is demonstrated to perform spectrally resolved, broadband frequency response characterization of photodetectors in the NIR Band. In contrast to existing techniques, this method allows for a simple system to achieve the goal, requiring just a standard continuous wave(CW) high-power fiber laser source and an RF spectrum analyzer. From our recent work, we summarize methods to easily convert any high-power fiber laser into a CW supercontinuum. These sources in the time domain exhibit interesting properties all the way down to the femtosecond time scale. This enables measurement of broadband frequency response of photodetectors while the wide optical spectrum of the supercontinuum can be spectrally filtered to obtain this information in a spectrally resolved fashion. The method involves looking at the RF spectrum of the output of a photodetector under test when incident with the supercontinuum. By using prior knowledge of the RF spectrum of the source, the frequency response can be calculated. We utilize two techniques for calibration of the source spectrum, one using a prior measurement and the other relying on a fitted model. Here, we characterize multiple photodetectors from 150MHz bandwidth to >20GHz bandwidth at multiple bands in the NIR region. We utilize a supercontinuum source spanning over 700nm bandwidth from 1300nm to 2000nm. For spectrally resolved measurement, we utilize multiple wavelength bands such as around 1400nm and 1600nm. Interesting behavior was observed in the frequency response of the photodetectors when comparing broadband spectral excitation versus narrower band excitation.

  10. Drug Treated Schizophrenia, Schizoaffective and Bipolar Disorder Patients Evaluated by qEEG Absolute Spectral Power and Mean Frequency Analysis.

    Science.gov (United States)

    Wix-Ramos, Richard; Moreno, Xiomara; Capote, Eduardo; González, Gilbert; Uribe, Ezequiel; Eblen-Zajjur, Antonio

    2014-04-01

    Research of electroencephalograph (EEG) power spectrum and mean frequency has shown inconsistent results in patients with schizophrenic, schizoaffective and bipolar disorders during medication when compared to normal subjects thus; the characterization of these parameters is an important task. We applied quantitative EEG (qEEG) to investigate 38 control, 15 schizophrenic, 7 schizoaffective and 11 bipolar disorder subjects which remaine under the administration of psychotropic drugs (except control group). Absolute spectral power (ASP), mean frequency and hemispheric electrical asymmetry were measured by 19 derivation qEEG. Group mean values were compared with non parametrical Mann-Whitney test and spectral EEG maps with z-score method at p Schizoaffective patients received neuroleptic+benzodiazepine (71.4%) and for bipolar disorder patients neuroleptic+antiepileptic (81.8%). Schizophrenic (at all derivations except for Fp1, Fp2, F8 and T6) and schizoaffective (only at C3) show higher values of ASP (+57.7% and +86.1% respectively) compared to control group. ASP of bipolar disorder patients did not show differences against control group. The mean frequency was higher at Fp1 (+14.2%) and Fp2 (+17.4%) in bipolar disorder patients than control group, but no differences were found in frequencies between schizophrenic or schizoaffective patients against the control group. Majority of spectral differences were found at the left hemisphere in schizophrenic and schizoaffective but not in bipolar disorder subjects. The present report contributes to characterize quantitatively the qEEG in drug treated schizophrenic, schizoaffective or bipolar disorder patients.

  11. Instrumental broadening of spectral line profiles due to discrete representation of a continuous physical quantity

    International Nuclear Information System (INIS)

    Dulov, E.N.; Khripunov, D.M.

    2008-01-01

    It is the usual situation in spectroscopy that a continuous physical quantity, which plays the role of a spectral function argument (i.e. the abscissa of a spectrum), is sampled electronically as discrete point clouds or channels. Each channel corresponds to the midpoint of a small interval of the continuous argument. The experimentally registered value of intensity in the channel describes the averaged spectral intensity in this interval. However, an approximation of spectra by a continuous theoretical model function often assumes that the interval is small enough, and tabulation of the theoretical model function may be used without appreciable disadvantages for the fitting results. At this point, a new type of approximation error appears, such as the error of midpoint approximation to a definite integral in the rectangle method of numeric integration. This paper aims at quantitative estimation of this error in the cases of a pure Lorentz lineshape and a generalized Voigt contour. It is shown that discrete representation of continuous spectral data leads to some non-physical broadening in comparison with the tabulated model function. As a first approximation it is normal broadening. We show that even in the case of a Lorentz true lineshape we must use the tabulated Voigt function measured in channels fixed Gauss linewidth rather than a tabulated Lorentzian. Application of the results of this paper is demonstrated on Moessbauer spectra

  12. On the spectral theory and dispersive estimates for a discrete Schroedinger equation in one dimension

    International Nuclear Information System (INIS)

    Pelinovsky, D. E.; Stefanov, A.

    2008-01-01

    Based on the recent work [Komech et al., 'Dispersive estimates for 1D discrete Schroedinger and Klein-Gordon equations', Appl. Anal. 85, 1487 (2006)] for compact potentials, we develop the spectral theory for the one-dimensional discrete Schroedinger operator, Hφ=(-Δ+V)φ=-(φ n+1 +φ n-1 -2φ n )+V n φ n . We show that under appropriate decay conditions on the general potential (and a nonresonance condition at the spectral edges), the spectrum of H consists of finitely many eigenvalues of finite multiplicities and the essential (absolutely continuous) spectrum, while the resolvent satisfies the limiting absorption principle and the Puiseux expansions near the edges. These properties imply the dispersive estimates parallel e itH P a.c. (H) parallel l σ 2 →l -σ 2 -3/2 for any fixed σ>(5/2) and any t>0, where P a.c. (H) denotes the spectral projection to the absolutely continuous spectrum of H. In addition, based on the scattering theory for the discrete Jost solutions and the previous results by Stefanov and Kevrekidis [''Asymptotic behaviour of small solutions for the discrete nonlinear Schroedinger and Klein-Gordon equations,'' Nonlinearity 18, 1841 (2005)], we find new dispersive estimates parallel e itH P a.c. (H) parallel l 1 →l ∞ -1/3 , which are sharp for the discrete Schroedinger operators even for V=0

  13. Description and performance of the OGSE for VNIR absolute spectroradiometric calibration of MTG-I satellites

    Science.gov (United States)

    Glastre, W.; Marque, J.; Compain, E.; Deep, A.; Durand, Y.; Aminou, D. M. A.

    2017-09-01

    The Meteosat Third Generation (MTG) Programme is being realised through the well-established and successful Cooperation between EUMETSAT and ESA. It will ensure the future continuity of MSG with the capabilities to enhance nowcasting, global and regional numerical weather prediction, climate and atmospheric chemistry monitoring data from Geostationary Orbit. This will be achieved through a series of 6 satellites named MTG-I and MTG-S to bring to the meteorological community continuous high spatial, spectral and temporal resolution observations and geophysical parameters of the Earth based on sensors from the geo-stationary orbit. In particular, the imagery mission MTG-I will bring an improved continuation of the MSG satellites series with the Flexible Combined Imager (FCI) a broad spectral range (from UV to LWIR) with better spatial and spectral resolutions. The FCI will be able to take high spatial resolution pictures of the Earth within 8 VNIR and 8 IR channels. As one of the mission of this instrument is to provide a quantitative analysis of atmosphere compounds, the absolute observed radiance needs to be known with a specified accuracy for VNIR as low as to 5% at k=3 over its full dynamic. While the FCI is regularly recalibrated every 6 month at equinoxes, it is however requiring initial ground calibration for the beginning of its mission. The Multi Optical Test Assembly (MOTA) is one of the Optical Ground Support Equipment (OGSE) dedicated to various missions necessary for the integration of the FCI . This equipment, provided by Bertin Technologies, will be delivered to TAS-F by the end of 2016. One of its mission, is the on-ground absolute calibration of VNIR channels. In order to handle this, the MOTA will be placed in front of the FCI under representative vacuum conditions and will be able to project a perfectly known, calibrated radiance level within the full dynamic of FCI instrument. The main difficulty is the very demanding calibration level with

  14. Examination of Spectral Transformations on Spectral Mixture Analysis

    Science.gov (United States)

    Deng, Y.; Wu, C.

    2018-04-01

    While many spectral transformation techniques have been applied on spectral mixture analysis (SMA), few study examined their necessity and applicability. This paper focused on exploring the difference between spectrally transformed schemes and untransformed scheme to find out which transformed scheme performed better in SMA. In particular, nine spectrally transformed schemes as well as untransformed scheme were examined in two study areas. Each transformed scheme was tested 100 times using different endmember classes' spectra under the endmember model of vegetation- high albedo impervious surface area-low albedo impervious surface area-soil (V-ISAh-ISAl-S). Performance of each scheme was assessed based on mean absolute error (MAE). Statistical analysis technique, Paired-Samples T test, was applied to test the significance of mean MAEs' difference between transformed and untransformed schemes. Results demonstrated that only NSMA could exceed the untransformed scheme in all study areas. Some transformed schemes showed unstable performance since they outperformed the untransformed scheme in one area but weakened the SMA result in another region.

  15. The Continued Spectral Evolution of the Neutron Star RX J0720.4-3125

    NARCIS (Netherlands)

    Vink, Jacco; de Vries, Cor P.; Méndez, Mariano; Verbunt, Frank

    2004-01-01

    We observed the isolated neutron star RX J0720.4-3125 with Chandra's Low Energy Transmission Grating Spectrometer, following the XMM-Newton discovery of the long-term spectral evolution of this source. The new observation shows that the spectrum of RX J0720.4-3125 has continued to change in the

  16. Mapping absolute tissue endogenous fluorophore concentrations with chemometric wide-field fluorescence microscopy

    Science.gov (United States)

    Xu, Zhang; Reilley, Michael; Li, Run; Xu, Min

    2017-06-01

    We report chemometric wide-field fluorescence microscopy for imaging the spatial distribution and concentration of endogenous fluorophores in thin tissue sections. Nonnegative factorization aided by spatial diversity is used to learn both the spectral signature and the spatial distribution of endogenous fluorophores from microscopic fluorescence color images obtained under broadband excitation and detection. The absolute concentration map of individual fluorophores is derived by comparing the fluorescence from "pure" fluorophores under the identical imaging condition following the identification of the fluorescence species by its spectral signature. This method is then demonstrated by characterizing the concentration map of endogenous fluorophores (including tryptophan, elastin, nicotinamide adenine dinucleotide, and flavin adenine dinucleotide) for lung tissue specimens. The absolute concentrations of these fluorophores are all found to decrease significantly from normal, perilesional, to cancerous (squamous cell carcinoma) tissue. Discriminating tissue types using the absolute fluorophore concentration is found to be significantly more accurate than that achievable with the relative fluorescence strength. Quantification of fluorophores in terms of the absolute concentration map is also advantageous in eliminating the uncertainties due to system responses or measurement details, yielding more biologically relevant data, and simplifying the assessment of competing imaging approaches.

  17. Absolute Soft X-ray Emission Measurements at the Nike Laser

    Science.gov (United States)

    Weaver, J.; Atkin, R.; Boyer, C.; Colombant, D.; Feldman, U.; Fielding, D.; Gardner, J.; Holland, G.; Klapisch, M.; Mostovych, A. N.; Obenscain, S.; Seely, J. F.

    2002-11-01

    Recent experiments at the Nike laser facility have demonstrated that, when a low intensity prepulse ( 2main laser intensity) is used to heat a thin Au or Pd coating on a planar CH target, the growth of non-uniformities due to laser imprint can be reduced from the growth observed for an uncoated CH target. The absolute radiation intensity in the soft x-ray region (0.1-1 keV) has a important role in the energy balance for layered targets. There is an ongoing effort to characterize the soft x-ray emission using an absolutely calibrated transmission grating spectrometer and filtered diode modules. Measurements of the angular distribution of the emission from unlayered solid targets (Au, Pd, CH) have recently been made using an array of moveable filtered diode modules. The data from the angular distribution studies will be presented. A new absolutely calibrated, time-resolving transmission grating spectrometer has been installed at the Nike. The new version has improved spectral resolution, selectable transmission filters, and the potential for simultaneous temporal, spatial, and spectral resolution. Preliminary data from the new spectrometer will be presented and future experiments will be briefly discussed. *Work was supported by DoE

  18. Absolute radiant power measurement for the Au M lines of laser-plasma using a calibrated broadband soft X-ray spectrometer with flat-spectral response.

    Science.gov (United States)

    Troussel, Ph; Villette, B; Emprin, B; Oudot, G; Tassin, V; Bridou, F; Delmotte, F; Krumrey, M

    2014-01-01

    CEA implemented an absolutely calibrated broadband soft X-ray spectrometer called DMX on the Omega laser facility at the Laboratory for Laser Energetics (LLE) in 1999 to measure radiant power and spectral distribution of the radiation of the Au plasma. The DMX spectrometer is composed of 20 channels covering the spectral range from 50 eV to 20 keV. The channels for energies below 1.5 keV combine a mirror and a filter with a coaxial photo-emissive detector. For the channels above 5 keV the photoemissive detector is replaced by a conductive detector. The intermediate energy channels (1.5 keV power measurements with the new MLM channel and with the usual channel composed of a thin titanium filter and a coaxial detector (without mirror) are compared. All elements of the channel have been calibrated in the laboratory of the Physikalisch-Technische Bundesanstalt, Germany's National Metrology Institute, at the synchrotron radiation facility BESSY II in Berlin using dedicated well established and validated methods.

  19. Contributed Review: Absolute spectral radiance calibration of fiber-optic shock-temperature pyrometers using a coiled-coil irradiance standard lamp

    Energy Technology Data Exchange (ETDEWEB)

    Fat’yanov, O. V., E-mail: fatyan1@gps.caltech.edu; Asimow, P. D., E-mail: asimow@gps.caltech.edu [Division of Geological and Planetary Sciences 252-21, California Institute of Technology, Pasadena, California 91125 (United States)

    2015-10-15

    We describe an accurate and precise calibration procedure for multichannel optical pyrometers such as the 6-channel, 3-ns temporal resolution instrument used in the Caltech experimental geophysics laboratory. We begin with a review of calibration sources for shock temperatures in the 3000-30 000 K range. High-power, coiled tungsten halogen standards of spectral irradiance appear to be the only practical alternative to NIST-traceable tungsten ribbon lamps, which are no longer available with large enough calibrated area. However, non-uniform radiance complicates the use of such coiled lamps for reliable and reproducible calibration of pyrometers that employ imaging or relay optics. Careful analysis of documented methods of shock pyrometer calibration to coiled irradiance standard lamps shows that only one technique, not directly applicable in our case, is free of major radiometric errors. We provide a detailed description of the modified Caltech pyrometer instrument and a procedure for its absolute spectral radiance calibration, accurate to ±5%. We employ a designated central area of a 0.7× demagnified image of a coiled-coil tungsten halogen lamp filament, cross-calibrated against a NIST-traceable tungsten ribbon lamp. We give the results of the cross-calibration along with descriptions of the optical arrangement, data acquisition, and processing. We describe a procedure to characterize the difference between the static and dynamic response of amplified photodetectors, allowing time-dependent photodiode correction factors for spectral radiance histories from shock experiments. We validate correct operation of the modified Caltech pyrometer with actual shock temperature experiments on single-crystal NaCl and MgO and obtain very good agreement with the literature data for these substances. We conclude with a summary of the most essential requirements for error-free calibration of a fiber-optic shock-temperature pyrometer using a high-power coiled tungsten halogen

  20. Total Synthesis and Absolute Configuration of the Marine Norditerpenoid Xestenone

    Directory of Open Access Journals (Sweden)

    Hiroaki Miyaoka

    2009-11-01

    Full Text Available Xestenone is a marine norditerpenoid found in the northeastern Pacific sponge Xestospongia vanilla. The relative configuration of C-3 and C-7 in xestenone was determined by NOESY spectral analysis. However the relative configuration of C-12 and the absolute configuration of this compound were not determined. The authors have now achieved the total synthesis of xestenone using their developed one-pot synthesis of cyclopentane derivatives employing allyl phenyl sulfone and an epoxy iodide as a key step. The relative and absolute configurations of xestenone were thus successfully determined by this synthesis.

  1. Electron cyclotron emission measurements on JET: Michelson interferometer, new absolute calibration, and determination of electron temperature.

    Science.gov (United States)

    Schmuck, S; Fessey, J; Gerbaud, T; Alper, B; Beurskens, M N A; de la Luna, E; Sirinelli, A; Zerbini, M

    2012-12-01

    At the fusion experiment JET, a Michelson interferometer is used to measure the spectrum of the electron cyclotron emission in the spectral range 70-500 GHz. The interferometer is absolutely calibrated using the hot/cold technique and, in consequence, the spatial profile of the plasma electron temperature is determined from the measurements. The current state of the interferometer hardware, the calibration setup, and the analysis technique for calibration and plasma operation are described. A new, full-system, absolute calibration employing continuous data acquisition has been performed recently and the calibration method and results are presented. The noise level in the measurement is very low and as a result the electron cyclotron emission spectrum and thus the spatial profile of the electron temperature are determined to within ±5% and in the most relevant region to within ±2%. The new calibration shows that the absolute response of the system has decreased by about 15% compared to that measured previously and possible reasons for this change are presented. Temperature profiles measured with the Michelson interferometer are compared with profiles measured independently using Thomson scattering diagnostics, which have also been recently refurbished and recalibrated, and agreement within experimental uncertainties is obtained.

  2. Absolute vibrational numbering from isotope shifts in fragmentary spectroscopic data

    Science.gov (United States)

    Pashov, A.; Kowalczyk, P.; Jastrzebski, W.

    2018-05-01

    We discuss application of the isotope effect to establish the absolute vibrational numbering in electronic states of diatomic molecules. This is illustrated by examples of states with potential energy curves of both regular and irregular shape, with one or two potential minima. The minimum number of spectroscopic data (either term values or spectral line positions) necessary to provide a unique numbering is considered. We show that at favourable conditions just four term energies (or spectral lines) in one isotopologue and one term energy in the other suffice.

  3. Performance evaluations of continuous glucose monitoring systems: precision absolute relative deviation is part of the assessment.

    Science.gov (United States)

    Obermaier, Karin; Schmelzeisen-Redeker, Günther; Schoemaker, Michael; Klötzer, Hans-Martin; Kirchsteiger, Harald; Eikmeier, Heino; del Re, Luigi

    2013-07-01

    Even though a Clinical and Laboratory Standards Institute proposal exists on the design of studies and performance criteria for continuous glucose monitoring (CGM) systems, it has not yet led to a consistent evaluation of different systems, as no consensus has been reached on the reference method to evaluate them or on acceptance levels. As a consequence, performance assessment of CGM systems tends to be inconclusive, and a comparison of the outcome of different studies is difficult. Published information and available data (as presented in this issue of Journal of Diabetes Science and Technology by Freckmann and coauthors) are used to assess the suitability of several frequently used methods [International Organization for Standardization, continuous glucose error grid analysis, mean absolute relative deviation (MARD), precision absolute relative deviation (PARD)] when assessing performance of CGM systems in terms of accuracy and precision. The combined use of MARD and PARD seems to allow for better characterization of sensor performance. The use of different quantities for calibration and evaluation, e.g., capillary blood using a blood glucose (BG) meter versus venous blood using a laboratory measurement, introduces an additional error source. Using BG values measured in more or less large intervals as the only reference leads to a significant loss of information in comparison with the continuous sensor signal and possibly to an erroneous estimation of sensor performance during swings. Both can be improved using data from two identical CGM sensors worn by the same patient in parallel. Evaluation of CGM performance studies should follow an identical study design, including sufficient swings in glycemia. At least a part of the study participants should wear two identical CGM sensors in parallel. All data available should be used for evaluation, both by MARD and PARD, a good PARD value being a precondition to trust a good MARD value. Results should be analyzed and

  4. Spectral Distortion in Lossy Compression of Hyperspectral Data

    Directory of Open Access Journals (Sweden)

    Bruno Aiazzi

    2012-01-01

    Full Text Available Distortion allocation varying with wavelength in lossy compression of hyperspectral imagery is investigated, with the aim of minimizing the spectral distortion between original and decompressed data. The absolute angular error, or spectral angle mapper (SAM, is used to quantify spectral distortion, while radiometric distortions are measured by maximum absolute deviation (MAD for near-lossless methods, for example, differential pulse code modulation (DPCM, or mean-squared error (MSE for lossy methods, for example, spectral decorrelation followed by JPEG 2000. Two strategies of interband distortion allocation are compared: given a target average bit rate, distortion may be set to be constant with wavelength. Otherwise, it may be allocated proportionally to the noise level of each band, according to the virtually lossless protocol. Comparisons with the uncompressed originals show that the average SAM of radiance spectra is minimized by constant distortion allocation to radiance data. However, variable distortion allocation according to the virtually lossless protocol yields significantly lower SAM in case of reflectance spectra obtained from compressed radiance data, if compared with the constant distortion allocation at the same compression ratio.

  5. Absolute transition probabilities for 559 strong lines of neutral cerium

    Energy Technology Data Exchange (ETDEWEB)

    Curry, J J, E-mail: jjcurry@nist.go [National Institute of Standards and Technology, Gaithersburg, MD 20899-8422 (United States)

    2009-07-07

    Absolute radiative transition probabilities are reported for 559 strong lines of neutral cerium covering the wavelength range 340-880 nm. These transition probabilities are obtained by scaling published relative line intensities (Meggers et al 1975 Tables of Spectral Line Intensities (National Bureau of Standards Monograph 145)) with a smaller set of published absolute transition probabilities (Bisson et al 1991 J. Opt. Soc. Am. B 8 1545). All 559 new values are for lines for which transition probabilities have not previously been available. The estimated relative random uncertainty of the new data is +-35% for nearly all lines.

  6. Absolute calibration of a hydrogen discharge lamp in the vacuum ultraviolet

    Science.gov (United States)

    Nealy, J. E.

    1975-01-01

    A low-pressure hydrogen discharge lamp was calibrated for radiant intensity in the vacuum ultraviolet spectral region on an absolute basis and was employed as a laboratory standard source in spectrograph calibrations. This calibration was accomplished through the use of a standard photodiode detector obtained from the National Bureau of Standards together with onsite measurements of spectral properties of optical components used. The stability of the light source for use in the calibration of vacuum ultraviolet spectrographs and optical systems was investigated and found to be amenable to laboratory applications. The lamp was studied for a range of operating parameters; the results indicate that with appropriate peripheral instrumentation, the light source can be used as a secondary laboratory standard source when operated under preset controlled conditions. Absolute intensity measurements were recorded for the wavelengths 127.7, 158.0, 177.5, and 195.0 nm for a time period of over 1 month, and the measurements were found to be repeatable to within 11 percent.

  7. Absolute instabilities of travelling wave solutions in a Keller-Segel model

    Science.gov (United States)

    Davis, P. N.; van Heijster, P.; Marangell, R.

    2017-11-01

    We investigate the spectral stability of travelling wave solutions in a Keller-Segel model of bacterial chemotaxis with a logarithmic chemosensitivity function and a constant, sublinear, and linear consumption rate. Linearising around the travelling wave solutions, we locate the essential and absolute spectrum of the associated linear operators and find that all travelling wave solutions have parts of the essential spectrum in the right half plane. However, we show that in the case of constant or sublinear consumption there exists a range of parameters such that the absolute spectrum is contained in the open left half plane and the essential spectrum can thus be weighted into the open left half plane. For the constant and sublinear consumption rate models we also determine critical parameter values for which the absolute spectrum crosses into the right half plane, indicating the onset of an absolute instability of the travelling wave solution. We observe that this crossing always occurs off of the real axis.

  8. A comparison of absolute calibrations of a radiation thermometer based on a monochromator and a tunable source

    Energy Technology Data Exchange (ETDEWEB)

    Keawprasert, T. [National Institute of Metrology Thailand, Pathum thani (Thailand); Anhalt, K.; Taubert, D. R.; Sperling, A.; Schuster, M.; Nevas, S. [Physikalisch Technische Bundesanstalt, Braunschweig and Berlin (Germany)

    2013-09-11

    An LP3 radiation thermometer was absolutely calibrated at a newly developed monochromator-based set-up and the TUneable Lasers in Photometry (TULIP) facility of PTB in the wavelength range from 400 nm to 1100 nm. At both facilities, the spectral radiation of the respective sources irradiates an integrating sphere, thus generating uniform radiance across its precision aperture. The spectral irradiance of the integrating sphere is determined via an effective area of a precision aperture and a Si trap detector, traceable to the primary cryogenic radiometer of PTB. Due to the limited output power from the monochromator, the absolute calibration was performed with the measurement uncertainty of 0.17 % (k= 1), while the respective uncertainty at the TULIP facility is 0.14 %. Calibration results obtained by the two facilities were compared in terms of spectral radiance responsivity, effective wavelength and integral responsivity. It was found that the measurement results in integral responsivity at the both facilities are in agreement within the expanded uncertainty (k= 2). To verify the calibration accuracy, the absolutely calibrated radiation thermometer was used to measure the thermodynamic freezing temperatures of the PTB gold fixed-point blackbody.

  9. A comparison of absolute calibrations of a radiation thermometer based on a monochromator and a tunable source

    International Nuclear Information System (INIS)

    Keawprasert, T.; Anhalt, K.; Taubert, D. R.; Sperling, A.; Schuster, M.; Nevas, S.

    2013-01-01

    An LP3 radiation thermometer was absolutely calibrated at a newly developed monochromator-based set-up and the TUneable Lasers in Photometry (TULIP) facility of PTB in the wavelength range from 400 nm to 1100 nm. At both facilities, the spectral radiation of the respective sources irradiates an integrating sphere, thus generating uniform radiance across its precision aperture. The spectral irradiance of the integrating sphere is determined via an effective area of a precision aperture and a Si trap detector, traceable to the primary cryogenic radiometer of PTB. Due to the limited output power from the monochromator, the absolute calibration was performed with the measurement uncertainty of 0.17 % (k= 1), while the respective uncertainty at the TULIP facility is 0.14 %. Calibration results obtained by the two facilities were compared in terms of spectral radiance responsivity, effective wavelength and integral responsivity. It was found that the measurement results in integral responsivity at the both facilities are in agreement within the expanded uncertainty (k= 2). To verify the calibration accuracy, the absolutely calibrated radiation thermometer was used to measure the thermodynamic freezing temperatures of the PTB gold fixed-point blackbody

  10. Absolute nuclear material assay using count distribution (LAMBDA) space

    Science.gov (United States)

    Prasad, Manoj K [Pleasanton, CA; Snyderman, Neal J [Berkeley, CA; Rowland, Mark S [Alamo, CA

    2012-06-05

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  11. The main sequence of NGC 6231 and the calibration of absolute magnitudes

    International Nuclear Information System (INIS)

    Garrison, R.F.

    1978-01-01

    The author presents a discussion of a new approach to the calibration of absolute magnitudes for MK spectral types. With the addition of the NGC 6231 main sequence down to A0, the material for the cluster fitting method using very carefully determined MK types is complete. (Auth.)

  12. Phase extracting algorithms analysis in the white-light spectral interferometry

    Science.gov (United States)

    Guo, Tong; Li, Bingtong; Li, Minghui; Chen, Jinping; Fu, Xing; Hu, Xiaotang

    2018-01-01

    As an optical testing method, white-light spectral interferometry has the characteristics of non-contact, high precision. The phase information can be obtained by analyzing the spectral interference signal of the tested sample, and then the absolute distance is calculated. Fourier transform method, temporal phase-shifting method, spatial phase-shifting method and envelope method can be used to extract the phase information of the spectral interference signal. In this paper, the performance of four methods to extract phase information is simulated and analyzed by using the ideal spectral interference signal. It turns out that temporal phase-shifting method has the performance of high precision, the results of Fourier transform method and envelop method are distorted at the edge of the signal, and spatial phase-shifting method has the worst precision. Adding different levels of white noise to the ideal signal, temporal phase-shifting method is most accurate, while Fourier transform method and envelope method are relatively poor. Finally, the absolute distance measurement experiment is carried out on the constructed test system, and the results are consistent with the simulation ones.

  13. Development of absolute radiometric response functions for HyPlant & G-LiHT using SIRCUS Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this project is to provide absolute radiometric and cross-calibrated spectral characterizations for G-LiHT and HyPlant.  The objectives are: (i) to...

  14. The UV-A and visible solar irradiance spectrum: inter-comparison of absolutely calibrated, spectrally medium resolution solar irradiance spectra from balloon- and satellite-borne measurements

    Directory of Open Access Journals (Sweden)

    W. Gurlit

    2005-01-01

    Full Text Available Within the framework of the ENVISAT/-SCIAMACHY satellite validation, solar irradiance spectra are absolutely measured at moderate resolution in the UV/visible spectral range (in the UV from 316.7-418 nm and the visible from 400-652 nm at a full width half maximum resolution of 0.55 nm and 1.48 nm, respectively from aboard the azimuth-controlled LPMA/DOAS balloon gondola at around 32 km balloon float altitude. After accounting for the atmospheric extinction due to Rayleigh scattering and gaseous absorption (O3 and NO2, the measured solar spectra are compared with previous observations. Our solar irradiance spectrum perfectly agrees within +0.03% with the re-calibrated Kurucz et al. (1984 solar spectrum (Fontenla et al., 1999, called MODTRAN 3.7 in the visible spectral range (415-650 nm, but it is +2.1% larger in the (370-415 nm wavelength interval, and -4% smaller in the UV-A spectral range (316.7-370 nm, when the Kurucz spectrum is convolved to the spectral resolution of our instrument. Similar comparisons of the SOLSPEC (Thuillier et al., 1997, 1998a, b and SORCE/SIM (Harder et al., 2000 solar spectra with MODTRAN 3.7 confirms our findings with the values being -0.5%, +2%, and -1.4% for SOLSPEC -0.33%, -0.47%, and -6.2% for SORCE/SIM, respectively. Comparison of the SCIAMACHY solar spectrum from channels 1 to 4 (- re-calibrated by the University of Bremen - with MODTRAN 3.7 indicates an agreement within -0.4% in the visible spectral range (415-585 nm, -1.6% within the 370-415 nm, and -5.7% within 325-370 nm wavelength interval, in agreement with the results of the other sensors. In agreement with findings of Skupin et al. (2002 our study emphasizes that the present ESA SCIAMACHY level 1 calibration is systematically +15% larger in the considered wavelength intervals when compared to all available other solar irradiance measurements.

  15. Characterization of weakly absorbing thin films by multiple linear regression analysis of absolute unwrapped phase in angle-resolved spectral reflectometry.

    Science.gov (United States)

    Dong, Jingtao; Lu, Rongsheng

    2018-04-30

    The simultaneous determination of t, n(λ), and κ(λ) of thin films can be a tough task for the high correlation of fit parameters. The strong assumptions about the type of dispersion relation are commonly used as a consequence to alleviate correlation concerns by reducing the free parameters before the nonlinear regression analysis. Here we present an angle-resolved spectral reflectometry for the simultaneous determination of weakly absorbing thin film parameters, where a reflectance interferogram is recorded in both angular and spectral domains in a single-shot measurement for the point of the sample being illuminated. The variations of the phase recovered from the interferogram as functions of t, n, and κ reveals that the unwrapped phase is monotonically related to t, n, and κ, thereby allowing the problem of correlation to be alleviated by multiple linear regression. After removing the 2π ambiguity of the unwrapped phase, the merit function based on the absolute unwrapped phase performs a 3D data cube with variables of t, n and κ at each wavelength. The unique solution of t, n, and κ can then be directly determined from the extremum of the 3D data cube at each wavelength with no need of dispersion relation. A sample of GaN thin film grown on a polished sapphire substrate is tested. The experimental data of t and [n(λ), κ(λ)] are confirmed by the scanning electron microscopy and the comparison with the results of other related works, respectively. The consistency of the results shows the proposed method provides a useful tool for the determination of the thickness and optical constants of weakly absorbing thin films.

  16. The cathode-fall of low-pressure hydrogen discharges: Absolute spectral emission and model

    Energy Technology Data Exchange (ETDEWEB)

    Jelenkovic, B. M. [JILA, National Institute of Standards and Technology and University of Colorado Boulder, Boulder, Colorado 80309-0440 (United States); Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Zenum Belgrade (Serbia); Phelps, A. V. [JILA, National Institute of Standards and Technology and University of Colorado Boulder, Boulder, Colorado 80309-0440 (United States)

    2011-10-15

    Absolute excitation probabilities from very low to moderate-current hydrogen discharges in parallel-plane geometry are measured and used to test models. Relative emission data are obtained for the H{sub {alpha}} line, the H{sub 2} (a{sup 3}{Sigma}{yields}b{sup 3}{Pi}) near-UV continuum, and the H{sub 2} (G{sup 1}{Sigma}{yields}B{sup 1}{Pi}{sub u}{sup +}) band at pressures of 0.5 and 2 Torr, a 1.05 cm gap, and voltages from 300 to 900 V. Electron behavior is traced using the first negative (A{sup 2}{Sigma}{sub g}{yields} X{sup 2}{Pi}{sub u}, {nu}'' = 0 {yields}{nu}' = 0) band of N{sub 2}{sup +} by adding 2% N{sub 2}. Relative measurements of H{sub {alpha}}, H{sub 2} near-UV, and N{sub 2} 1st negative emission are placed on a absolute scale by normalization to published measurements and Boltzmann calculations of electron excitation. Emission probabilities calculated using a multi-beam kinetics model for the electrons, H{sup +}, H{sub 2}{sup +}, H{sub 3}{sup +}, H{sup -}, H, and H{sub 2} are compared with the calibrated experiments. Fast H atoms are calculated to produce H{sub {alpha}} excitation that is comparable with that of electrons. The calculated emission intensities for H{sub {alpha}} and H{sub 2} near-UV continuum are within a factor of three of the absolute measurements for a range of 5000:1 in current and 4:1 in hydrogen pressure. Calculations at 2 Torr show that most of the space charge electric field responsible for the cathode fall is produced by H{sub 3}{sup +} ions.

  17. Cortical processes associated with continuous balance control as revealed by EEG spectral power.

    Science.gov (United States)

    Hülsdünker, T; Mierau, A; Neeb, C; Kleinöder, H; Strüder, H K

    2015-04-10

    Balance is a crucial component in numerous every day activities such as locomotion. Previous research has reported distinct changes in cortical theta activity during transient balance instability. However, there remains little understanding of the neural mechanisms underlying continuous balance control. This study aimed to investigate cortical theta activity during varying difficulties of continuous balance tasks, as well as examining the relationship between theta activity and balance performance. 37 subjects completed nine balance tasks with different levels of surface stability and base of support. Throughout the balancing task, electroencephalogram (EEG) was recorded from 32 scalp locations. ICA-based artifact rejection was applied and spectral power was analyzed in the theta frequency band. Theta power increased in the frontal, central, and parietal regions of the cortex when balance tasks became more challenging. In addition, fronto-central and centro-parietal theta power correlated with balance performance. This study demonstrates the involvement of the cerebral cortex in maintaining upright posture during continuous balance tasks. Specifically, the results emphasize the important role of frontal and parietal theta oscillations in balance control. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Spectrophotometry of Wolf-Rayet stars - Intrinsic colors and absolute magnitudes

    Science.gov (United States)

    Torres-Dodgen, Ana V.; Massey, Philip

    1988-01-01

    Absolute spectrophotometry of about 10-A resolution in the range 3400-7300 A have been obtained for southern Wolf-Rayet stars, and line-free magnitudes and colors have been constructed. The emission-line contamination in the narrow-band ubvr systems of Westerlund (1966) and Smith (1968) is shown to be small for most WN stars, but to be quite significant for WC stars. It is suggested that the more severe differences in intrinsic color from star to star of the same spectral subtype noted at shorter wavelengths are due to differences in atmospheric extent. True continuum absolute visual magnitudes and intrinsic colors are obtained for the LMC WR stars. The most visually luminous WN6-WN7 stars are found to be located in the core of the 30 Doradus region.

  19. Measurement of absolute neutron flux in LWSCR based on the nuclear track method

    International Nuclear Information System (INIS)

    Sadeghzadeh, J.; Nassiri Mofakham, N.; Khajehmiri, Z.

    2012-01-01

    Highlights: ► Up to now the spectral parameters of thermal neutrons are measured with activation foils that are not always reliable in low flux systems. ► We applied a solid state nuclear track detector to measure the absolute neutron flux in the light water sub-critical reactor (LWSCR). ► Experiments concerning fission track detecting were performed and were investigated using the Monte Carlo code MCNP. ► The neutron fluxes obtained in experiment are in fairly good agreement with the results obtained by MCNP. - Abstract: In the present paper, a solid state nuclear track detector is applied to measure the absolute neutron flux in the light water sub-critical reactor (LWSCR) in Nuclear Science and Technology Research Institute (NSTRI). Up to now, the spectral parameters of thermal neutrons have been measured with activation foils that are not always reliable in low flux systems. The method investigated here is the irradiation method. Experiments concerning fission track detecting were performed. The experiment including neutron flux calculation method has also been investigated using the Monte Carlo code MCNP. The analysis shows that the values of neutron flux obtained by experiment are in fairly good agreement with the results obtained by MCNP. Thus, this method may be able to predict the absolute value of neutron flux at LWSCR and other similar reactors.

  20. Asymptotic absolute continuity for perturbed time-dependent ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    We study the notion of asymptotic velocity for a class of perturbed time- ... for Mathematical Physics and Stochastics, funded by a grant from the Danish National Research Foun- .... Using (2.4) we can readily continue α(t) to the whole half-axis.

  1. Semiconductor lasers with a continuous tuning range above 100 nm in the nearest IR spectral region

    Energy Technology Data Exchange (ETDEWEB)

    Kostin, Yu O; Lobintsov, A A; Shramenko, M V [OOO ' Opton' , Moscow (Russian Federation); Ladugin, M A; Marmalyuk, A A [Open Joint-Stock Company M.F. Stel' makh Polyus Research Institute, Moscow (Russian Federation); Chamorovsky, A Yu [Superlum Ltd., Unit B3, Fota Point Enterprise Park, Carrigtwohill, Co Cork (Ireland); Yakubovich, S D [Moscow State Institute of Radio-Engineering, Electronics and Automation (Technical University), Moscow (Russian Federation)

    2015-08-31

    We have developed two new types of lasers based on quantum-confined semiconductor optical amplifiers with an acousto-optic tunable filter in an external fibre ring cavity. The lasers offer continuous wavelength tuning ranges from 780 to 885 and from 880 to 1010 nm, 20 mW of cw output power, and a tuning rate up to 10{sup 4} nm s{sup -1} at an instantaneous spectral linewidth less than 0.1 nm. (lasers)

  2. QEEG Spectral and Coherence Assessment of Autistic Children in Three Different Experimental Conditions

    Science.gov (United States)

    Machado, Calixto; Estévez, Mario; Leisman, Gerry; Melillo, Robert; Rodríguez, Rafael; DeFina, Phillip; Hernández, Adrián; Pérez-Nellar, Jesús; Naranjo, Rolando; Chinchilla, Mauricio; Garófalo, Nicolás; Vargas, José; Beltrán, Carlos

    2015-01-01

    We studied autistics by quantitative EEG spectral and coherence analysis during three experimental conditions: basal, watching a cartoon with audio (V-A), and with muted audio band (VwA). Significant reductions were found for the absolute power spectral density (PSD) in the central region for delta and theta, and in the posterior region for sigma…

  3. The use of absolute gravity data for the validation of Global Geopotential Models and for improving quasigeoid heights determined from satellite-only Global Geopotential Models

    Science.gov (United States)

    Godah, Walyeldeen; Krynski, Jan; Szelachowska, Malgorzata

    2018-05-01

    The objective of this paper is to demonstrate the usefulness of absolute gravity data for the validation of Global Geopotential Models (GGMs). It is also aimed at improving quasigeoid heights determined from satellite-only GGMs using absolute gravity data. The area of Poland, as a unique one, covered with a homogeneously distributed set of absolute gravity data, has been selected as a study area. The gravity anomalies obtained from GGMs were validated using the corresponding ones determined from absolute gravity data. The spectral enhancement method was implemented to overcome the spectral inconsistency in data being validated. The quasigeoid heights obtained from the satellite-only GGM as well as from the satellite-only GGM in combination with absolute gravity data were evaluated with high accuracy GNSS/levelling data. Estimated accuracy of gravity anomalies obtained from GGMs investigated is of 1.7 mGal. Considering omitted gravity signal, e.g. from degree and order 101 to 2190, satellite-only GGMs can be validated at the accuracy level of 1 mGal using absolute gravity data. An improvement up to 59% in the accuracy of quasigeoid heights obtained from the satellite-only GGM can be observed when combining the satellite-only GGM with absolute gravity data.

  4. Absolute instabilities of travelling wave solutions in a Keller-Segel model

    OpenAIRE

    Davis, P. N.; van Heijster, P.; Marangell, R.

    2016-01-01

    We investigate the spectral stability of travelling wave solutions in a Keller-Segel model of bacterial chemotaxis with a logarithmic chemosensitivity function and a constant, sublinear, and linear consumption rate. Linearising around the travelling wave solutions, we locate the essential and absolute spectrum of the associated linear operators and find that all travelling wave solutions have essential spectrum in the right half plane. However, we show that in the case of constant or sublinea...

  5. A first-order spectral phase transition in a class of periodically modulated Hermitian Jacobi matrices

    Directory of Open Access Journals (Sweden)

    Irina Pchelintseva

    2008-01-01

    Full Text Available We consider self-adjoint unbounded Jacobi matrices with diagonal \\(q_n = b_{n}n\\ and off-diagonal entries \\(\\lambda_n = n\\, where \\(b_{n}\\ is a \\(2\\-periodical sequence of real numbers. The parameter space is decomposed into several separate regions, where the spectrum of the operator is either purely absolutely continuous or discrete. We study the situation where the spectral phase transition occurs, namely the case of \\(b_{1}b_{2} = 4\\. The main motive of the paper is the investigation of asymptotics of generalized eigenvectors of the Jacobi matrix. The pure point part of the spectrum is analyzed in detail.

  6. Remote Sensing Image Fusion Based on the Combination Grey Absolute Correlation Degree and IHS Transform

    Directory of Open Access Journals (Sweden)

    Hui LIN

    2014-12-01

    Full Text Available An improved fusion algorithm for multi-source remote sensing images with high spatial resolution and multi-spectral capacity is proposed based on traditional IHS fusion and grey correlation analysis. Firstly, grey absolute correlation degree is used to discriminate non-edge pixels and edge pixels in high-spatial resolution images, by which the weight of intensity component is identified in order to combine it with high-spatial resolution image. Therefore, image fusion is achieved using IHS inverse transform. The proposed method is applied to ETM+ multi-spectral images and panchromatic image, and Quickbird’s multi-spectral images and panchromatic image respectively. The experiments prove that the fusion method proposed in the paper can efficiently preserve spectral information of the original multi-spectral images while enhancing spatial resolution greatly. By comparison and analysis, the proposed fusion algorithm is better than traditional IHS fusion and fusion method based on grey correlation analysis and IHS transform.

  7. A Bayesian approach to spectral quantitative photoacoustic tomography

    International Nuclear Information System (INIS)

    Pulkkinen, A; Kaipio, J P; Tarvainen, T; Cox, B T; Arridge, S R

    2014-01-01

    A Bayesian approach to the optical reconstruction problem associated with spectral quantitative photoacoustic tomography is presented. The approach is derived for commonly used spectral tissue models of optical absorption and scattering: the absorption is described as a weighted sum of absorption spectra of known chromophores (spatially dependent chromophore concentrations), while the scattering is described using Mie scattering theory, with the proportionality constant and spectral power law parameter both spatially-dependent. It is validated using two-dimensional test problems composed of three biologically relevant chromophores: fat, oxygenated blood and deoxygenated blood. Using this approach it is possible to estimate the Grüneisen parameter, the absolute chromophore concentrations, and the Mie scattering parameters associated with spectral photoacoustic tomography problems. In addition, the direct estimation of the spectral parameters is compared to estimates obtained by fitting the spectral parameters to estimates of absorption, scattering and Grüneisen parameter at the investigated wavelengths. It is shown with numerical examples that the direct estimation results in better accuracy of the estimated parameters. (papers)

  8. Absolute risk, absolute risk reduction and relative risk

    Directory of Open Access Journals (Sweden)

    Jose Andres Calvache

    2012-12-01

    Full Text Available This article illustrates the epidemiological concepts of absolute risk, absolute risk reduction and relative risk through a clinical example. In addition, it emphasizes the usefulness of these concepts in clinical practice, clinical research and health decision-making process.

  9. Continuing the Total and Spectral Solar Irradiance Climate Data Record

    Science.gov (United States)

    Coddington, O.; Pilewskie, P.; Kopp, G.; Richard, E. C.; Sparn, T.; Woods, T. N.

    2017-12-01

    Radiative energy from the Sun establishes the basic climate of the Earth's surface and atmosphere and defines the terrestrial environment that supports all life on the planet. External solar variability on a wide range of scales ubiquitously affects the Earth system, and combines with internal forcings, including anthropogenic changes in greenhouse gases and aerosols, and natural modes such as ENSO, and volcanic forcing, to define past, present, and future climates. Understanding these effects requires continuous measurements of total and spectrally resolved solar irradiance that meet the stringent requirements of climate-quality accuracy and stability over time. The current uninterrupted 39-year total solar irradiance (TSI) climate data record is the result of several overlapping instruments flown on different missions. Measurement continuity, required to link successive instruments to the existing data record to discern long-term trends makes this important climate data record susceptible to loss in the event of a gap in measurements. While improvements in future instrument accuracy will reduce the risk of a gap, the 2017 launch of TSIS-1 ensures continuity of the solar irradiance record into the next decade. There are scientific and programmatic motivations for addressing the challenges of maintaining the solar irradiance data record beyond TSIS-1. The science rests on well-founded requirements of establishing a trusted climate observing network that can monitor trends in fundamental climate variables. Programmatically, the long-term monitoring of solar irradiance must be balanced within the broader goals of NASA Earth Science. New concepts for a low-risk, cost efficient observing strategy is a priority. New highly capable small spacecraft, low-cost launch vehicles and a multi-decadal plan to provide overlapping TSI and SSI data records are components of a low risk/high reliability plan with lower annual cost than past implementations. This paper provides the

  10. Accurate and independent spectral response scale based on silicon trap detectors and spectrally invariant detectors

    International Nuclear Information System (INIS)

    Gran, Jarle

    2005-01-01

    The study aims to establish an independent high accuracy spectral response scale over a broad spectral range based on standard laboratory equipment at a moderate cost. This had to be done by a primary method, where the responsivity of the detector is linked to fundamental constants. Summary, conclusion and future directions: In this thesis it has been demonstrated that an independent spectral response scale from the visual to the IR based on simple relative measurements can be established. The accuracy obtained by the hybrid self-calibration method demonstrates that state of the art accuracy is obtained with self-calibration principles. A calculable silicon trap detector with low internal losses over a wide spectral range is needed to establish the scale, in addition to a linear, spectrally independent detector with a good signal to noise ratio. By fitting the parameters in the responsivity model to a purely relative measurement we express the spectral response in terms of fundamental constants with a known uncertainty This is therefore a primary method. By applying a digital filter on the relative measurements of the InGaAs detectors in the infrared reduces the standard deviation by 30 %. In addition, by optimising the necessary scaling constant converting the relative calibration to absolute values, we have managed to establish an accurate and cost efficient spectral response scale in the IR. The full covariance analysis, which takes into account the correlation in the absolute values of the silicon detector, the correlation caused by the filter and the scaling constant, shows that the spectral response scale established in the infrared with InGaAs detectors is done with high accuracy. A similar procedure can be used in the UV, though it has not been demonstrated here. In fig. 10 the responsitivities of the detectors (a) and their associated uncertainties (b) at the 1 sigma level of confidence is compared for the three publications. We see that the responsivity

  11. Electron cyclotron emission measurements on JET: Michelson interferometer, new absolute calibration, and determination of electron temperature

    NARCIS (Netherlands)

    Schmuck, S.; Fessey, J.; Gerbaud, T.; Alper, B.; Beurskens, M. N. A.; de la Luna, E.; Sirinelli, A.; Zerbini, M.

    2012-01-01

    At the fusion experiment JET, a Michelson interferometer is used to measure the spectrum of the electron cyclotron emission in the spectral range 70-500 GHz. The interferometer is absolutely calibrated using the hot/cold technique and, in consequence, the spatial profile of the plasma electron

  12. On the absolutely continuous and negative discrete spectra of Schrödinger operators on the line with locally integrable globally square summable potentials

    CERN Document Server

    Rybkin, A

    2003-01-01

    For one-dimensional Schrödinger operators with potentials $q$ subject to \\begin{equation*} \\sum_{n=-\\infty }^{\\infty }\\left( \\int_{n}^{n+1}\\left\\vert q\\left( x\\right) \\right\\vert dx\\right) ^{2}<\\infty \\end{equation*} we prove that the absolutely continuous spectrum is $[0,\\infty )$, extending the 1999 result due to Dieft-Killip. As a by-product we show that under the same condition the sequence of the negative eigenvalues is $3/2-$summable improving the relevant result by Lieb-Thirring.

  13. Design principles and field performance of a solar spectral irradiance meter

    Energy Technology Data Exchange (ETDEWEB)

    Tatsiankou, V.; Hinzer, K.; Haysom, J.; Schriemer, H.; Emery, K.; Beal, R.

    2016-08-01

    A solar spectral irradiance meter (SSIM), designed for measuring the direct normal irradiance (DNI) in six wavelength bands, has been combined with models to determine key atmospheric transmittances and the resulting spectral irradiance distribution of DNI under all sky conditions. The design principles of the SSIM, implementation of a parameterized transmittance model, and field performance comparisons of modeled solar spectra with reference radiometer measurements are presented. Two SSIMs were tested and calibrated at the National Renewable Energy Laboratory (NREL) against four spectroradiometers and an absolute cavity radiometer. The SSIMs' DNI was on average within 1% of the DNI values reported by one of NREL's primary absolute cavity radiometers. An additional SSIM was installed at the SUNLAB Outdoor Test Facility in September 2014, with ongoing collection of environmental and spectral data. The SSIM's performance in Ottawa was compared against a commercial pyrheliometer and a spectroradiometer over an eight month study. The difference in integrated daily spectral irradiance between the SSIM and the ASD spectroradiometer was found to be less than 1%. The cumulative energy density collected by the SSIM over this duration agreed with that measured by an Eppley model NIP pyrheliometer to within 0.5%. No degradation was observed.

  14. Global Absolute Poverty: Behind the Veil of Dollars

    NARCIS (Netherlands)

    Moatsos, M.

    2015-01-01

    The global absolute poverty rates of the World Bank demonstrate a continued decline of poverty in developing countries between 1983 and 2012. However, the methodology applied to derive these results has received extensive criticism by scholars for requiring the application of PPP exchange rates and

  15. Piecewise spectrally band-pass for compressive coded aperture spectral imaging

    International Nuclear Information System (INIS)

    Qian Lu-Lu; Lü Qun-Bo; Huang Min; Xiang Li-Bin

    2015-01-01

    Coded aperture snapshot spectral imaging (CASSI) has been discussed in recent years. It has the remarkable advantages of high optical throughput, snapshot imaging, etc. The entire spatial-spectral data-cube can be reconstructed with just a single two-dimensional (2D) compressive sensing measurement. On the other hand, for less spectrally sparse scenes, the insufficiency of sparse sampling and aliasing in spatial-spectral images reduce the accuracy of reconstructed three-dimensional (3D) spectral cube. To solve this problem, this paper extends the improved CASSI. A band-pass filter array is mounted on the coded mask, and then the first image plane is divided into some continuous spectral sub-band areas. The entire 3D spectral cube could be captured by the relative movement between the object and the instrument. The principle analysis and imaging simulation are presented. Compared with peak signal-to-noise ratio (PSNR) and the information entropy of the reconstructed images at different numbers of spectral sub-band areas, the reconstructed 3D spectral cube reveals an observable improvement in the reconstruction fidelity, with an increase in the number of the sub-bands and a simultaneous decrease in the number of spectral channels of each sub-band. (paper)

  16. Cosmic backgrounds of relic gravitons and their absolute normalization

    CERN Document Server

    Giovannini, Massimo

    2014-01-01

    Provided the consistency relations are not violated, the recent Bicep2 observations pin down the absolute normalization, the spectral slope and the maximal frequency of the cosmic graviton background produced during inflation. The properly normalized spectra are hereby computed from the lowest frequencies (of the order of the present Hubble rate) up to the highest frequency range in the GHz region. Deviations from the conventional paradigm cannot be excluded and are examined by allowing for different physical possibilities including, in particular, a running of the tensor spectral index, an explicit breaking of the consistency relations and a spike in the high-frequency tail of the spectrum coming either from a post-inflationary phase dominated by a stiff fluid of from the contribution of waterfall fields in a hybrid inflationary context. The direct determinations of the tensor to scalar ratio at low frequencies, if confirmed by the forthcoming observations, will also affect and constrain the high-frequencies...

  17. A Single Chiroptical Spectroscopic Method May Not Be Able To Establish the Absolute Configurations of Diastereomers: Dimethylesters of Hibiscus and Garcinia Acids

    Science.gov (United States)

    Polavarapu, Prasad L.; Donahue, Emily A.; Shanmugam, Ganesh; Scalmani, Giovanni; Hawkins, Edward K.; Rizzo, Carmelo; Ibnusaud, Ibrahim; Thomas, Grace; Habel, Deenamma; Sebastian, Dellamol

    2013-01-01

    Electronic circular dichroism (ECD), optical rotatory dispersion (ORD), and vibrational circular dichroism (VCD) spectra of hibiscus acid dimethyl ester have been measured and analyzed in combination with quantum chemical calculations of corresponding spectra. These results, along with those reported previously for garcinia acid dimethyl ester, reveal that none of these three (ECD, ORD, or VCD) spectroscopic methods, in isolation, can unequivocally establish the absolute configurations of diastereomers. This deficiency is eliminated when a combined spectral analysis of either ECD and VCD or ORD and VCD methods is used. It is also found that the ambiguities in the assignment of absolute configurations of diastereomers may also be overcome when unpolarized vibrational absorption is included in the spectral analysis. PMID:21568330

  18. Synesthesia and rhythm. The road to absolute cinema

    Directory of Open Access Journals (Sweden)

    Ricardo Roncero Palomar

    2017-05-01

    Full Text Available Absolute cinema, developed during the historical avant-garde, con-tinued with a long artistic tradition that linked musical with visual experience. Due to cinema as médium of expression, this filmmakers were able to work with the moving image to develop concepts such as rhythm, also with more complex figures than the colored spots that other devices could create at those time. This study starts with the published texts in 1704 by Newton about color, and provides an overview of those artistic highlights that link image and sound, and which creates the origins of absolute cinema. The connections and equivalences between the visual and sound experiences used by these filmmakers are also studied in order to know if there was a continuous line with the origins of these studies or if there was a rupture and other later investigations were able to have more repercussion in their works.

  19. Limiting absorption principle at low energies for a mathematical model of weak interaction: the decay of a boson; Proprietes spectrales et principe d'absorption limite a faible energie pour un modele mathematique d'interaction faible: la desintegration d'un boson

    Energy Technology Data Exchange (ETDEWEB)

    Barbarouxa, J.M. [Centre de Physique Theorique, 13 - Marseille (France); Toulon-Var Univ. du Sud, Dept. de Mathematiques, 83 - La Garde (France); Guillot, J.C. [Centre de Mathematiques Appliquees, UMR 7641, Ecole Polytechnique - CNRS, 91 - Palaiseau (France)

    2009-09-15

    We study the spectral properties of a Hamiltonian describing the weak decay of spin 1 massive bosons into the full family of leptons. We prove that the considered Hamiltonian is self-adjoint, with a unique ground state and we derive a Mourre estimate and a limiting absorption principle above the ground state energy and below the first threshold, for a sufficiently small coupling constant. As a corollary, we prove absence of eigenvalues and absolute continuity of the energy spectrum in the same spectral interval. (authors)

  20. Characterization of a digital camera as an absolute tristimulus colorimeter

    Science.gov (United States)

    Martinez-Verdu, Francisco; Pujol, Jaume; Vilaseca, Meritxell; Capilla, Pascual

    2003-01-01

    An algorithm is proposed for the spectral and colorimetric characterization of digital still cameras (DSC) which allows to use them as tele-colorimeters with CIE-XYZ color output, in cd/m2. The spectral characterization consists of the calculation of the color-matching functions from the previously measured spectral sensitivities. The colorimetric characterization consists of transforming the RGB digital data into absolute tristimulus values CIE-XYZ (in cd/m2) under variable and unknown spectroradiometric conditions. Thus, at the first stage, a gray balance has been applied over the RGB digital data to convert them into RGB relative colorimetric values. At a second stage, an algorithm of luminance adaptation vs. lens aperture has been inserted in the basic colorimetric profile. Capturing the ColorChecker chart under different light sources, the DSC color analysis accuracy indexes, both in a raw state and with the corrections from a linear model of color correction, have been evaluated using the Pointer'86 color reproduction index with the unrelated Hunt'91 color appearance model. The results indicate that our digital image capture device, in raw performance, lightens and desaturates the colors.

  1. Encasing the Absolutes

    Directory of Open Access Journals (Sweden)

    Uroš Martinčič

    2014-05-01

    Full Text Available The paper explores the issue of structure and case in English absolute constructions, whose subjects are deduced by several descriptive grammars as being in the nominative case due to its supposed neutrality in terms of register. This deduction is countered by systematic accounts presented within the framework of the Minimalist Program which relate the case of absolute constructions to specific grammatical factors. Each proposal is shown as an attempt of analysing absolute constructions as basic predication structures, either full clauses or small clauses. I argue in favour of the small clause approach due to its minimal reliance on transformations and unique stipulations. Furthermore, I propose that small clauses project a singular category, and show that the use of two cases in English absolute constructions can be accounted for if they are analysed as depictive phrases, possibly selected by prepositions. The case of the subject in absolutes is shown to be a result of syntactic and non-syntactic factors. I thus argue in accordance with Minimalist goals that syntactic case does not exist, attributing its role in absolutes to other mechanisms.

  2. Absolutely minimal extensions of functions on metric spaces

    International Nuclear Information System (INIS)

    Milman, V A

    1999-01-01

    Extensions of a real-valued function from the boundary ∂X 0 of an open subset X 0 of a metric space (X,d) to X 0 are discussed. For the broad class of initial data coming under discussion (linearly bounded functions) locally Lipschitz extensions to X 0 that preserve localized moduli of continuity are constructed. In the set of these extensions an absolutely minimal extension is selected, which was considered before by Aronsson for Lipschitz initial functions in the case X 0 subset of R n . An absolutely minimal extension can be regarded as an ∞-harmonic function, that is, a limit of p-harmonic functions as p→+∞. The proof of the existence of absolutely minimal extensions in a metric space with intrinsic metric is carried out by the Perron method. To this end, ∞-subharmonic, ∞-superharmonic, and ∞-harmonic functions on a metric space are defined and their properties are established

  3. General spectral flow formula for fixed maximal domain

    DEFF Research Database (Denmark)

    Booss-Bavnbek, Bernhelm; Zhu, Chaofeng

    2005-01-01

    of the resulting continuous family of (unbounded) self-adjoint Fredholm operators in terms of the Maslov index of two related curves of Lagrangian spaces. One curve is given by the varying domains, the other by the Cauchy data spaces. We provide rigorous definitions of the underlying concepts of spectral theory......We consider a continuous curve of linear elliptic formally self-adjoint differential operators of first order with smooth coefficients over a compact Riemannian manifold with boundary together with a continuous curve of global elliptic boundary value problems. We express the spectral flow...... and symplectic analysis and give a full (and surprisingly short) proof of our General Spectral Flow Formula for the case of fixed maximal domain. As a side result, we establish local stability of weak inner unique continuation property (UCP) and explain its role for parameter dependent spectral theory....

  4. Achieving Climate Change Absolute Accuracy in Orbit

    Science.gov (United States)

    Wielicki, Bruce A.; Young, D. F.; Mlynczak, M. G.; Thome, K. J; Leroy, S.; Corliss, J.; Anderson, J. G.; Ao, C. O.; Bantges, R.; Best, F.; hide

    2013-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission will provide a calibration laboratory in orbit for the purpose of accurately measuring and attributing climate change. CLARREO measurements establish new climate change benchmarks with high absolute radiometric accuracy and high statistical confidence across a wide range of essential climate variables. CLARREO's inherently high absolute accuracy will be verified and traceable on orbit to Système Internationale (SI) units. The benchmarks established by CLARREO will be critical for assessing changes in the Earth system and climate model predictive capabilities for decades into the future as society works to meet the challenge of optimizing strategies for mitigating and adapting to climate change. The CLARREO benchmarks are derived from measurements of the Earth's thermal infrared spectrum (5-50 micron), the spectrum of solar radiation reflected by the Earth and its atmosphere (320-2300 nm), and radio occultation refractivity from which accurate temperature profiles are derived. The mission has the ability to provide new spectral fingerprints of climate change, as well as to provide the first orbiting radiometer with accuracy sufficient to serve as the reference transfer standard for other space sensors, in essence serving as a "NIST [National Institute of Standards and Technology] in orbit." CLARREO will greatly improve the accuracy and relevance of a wide range of space-borne instruments for decadal climate change. Finally, CLARREO has developed new metrics and methods for determining the accuracy requirements of climate observations for a wide range of climate variables and uncertainty sources. These methods should be useful for improving our understanding of observing requirements for most climate change observations.

  5. Absolute spectrophotometry of the β Lyr

    International Nuclear Information System (INIS)

    Burnashev, V.I.; Skul'skij, M.Yu.

    1978-01-01

    In 1974 an absolute spectrophotometry of β Lyr was performed with the scanning spectrophotometer in the 3300-7400 A range. The energy distribution in the β Lyr spectrum is obtained. The β Lyr model is proposed. It is shown, that the continuous spectrum of the β Lyr radiation can be presented by the total radiation of the B8 3 and A5 3 two stars and of the gaseous envelope with Te =20000 K

  6. Absolute spectrophotometry of Titan, Uranus, and Neptune 3500-10,500 A

    Science.gov (United States)

    Neff, J. S.; Humm, D. C.; Bergstralh, J. T.; Cochran, A. L.; Cochran, W. D.; Barker, E. S.; Tull, R. G.

    1984-01-01

    The present absolute measurements of Titan, Uranus and Neptune geometric albedo spectra in the 3500-10,500 A range have a resolution of about 7 A, together with high SNR, in virtue of the exceptional effeciency of the spectrograph and Reticon detector employed. The high precision and spectral resolution of the data, which are in excellent agreement with the Uranus albedo measurements of Lockwood et al. (1983), make possible quantitative measurements of the effects of Raman scattering by H2 in the Uranus and Neptune atmospheres.

  7. Absolute advantage

    NARCIS (Netherlands)

    J.G.M. van Marrewijk (Charles)

    2008-01-01

    textabstractA country is said to have an absolute advantage over another country in the production of a good or service if it can produce that good or service using fewer real resources. Equivalently, using the same inputs, the country can produce more output. The concept of absolute advantage can

  8. Spectral purity and tunability of terahertz quantum cascade laser sources based on intracavity difference-frequency generation.

    Science.gov (United States)

    Consolino, Luigi; Jung, Seungyong; Campa, Annamaria; De Regis, Michele; Pal, Shovon; Kim, Jae Hyun; Fujita, Kazuue; Ito, Akio; Hitaka, Masahiro; Bartalini, Saverio; De Natale, Paolo; Belkin, Mikhail A; Vitiello, Miriam Serena

    2017-09-01

    Terahertz sources based on intracavity difference-frequency generation in mid-infrared quantum cascade lasers (THz DFG-QCLs) have recently emerged as the first monolithic electrically pumped semiconductor sources capable of operating at room temperature across the 1- to 6-THz range. Despite tremendous progress in power output, which now exceeds 1 mW in pulsed and 10 μW in continuous-wave regimes at room temperature, knowledge of the major figure of merits of these devices for high-precision spectroscopy, such as spectral purity and absolute frequency tunability, is still lacking. By exploiting a metrological grade system comprising a terahertz frequency comb synthesizer, we measure, for the first time, the free-running emission linewidth (LW), the tuning characteristics, and the absolute center frequency of individual emission lines of these sources with an uncertainty of 4 × 10 -10 . The unveiled emission LW (400 kHz at 1-ms integration time) indicates that DFG-QCLs are well suited to operate as local oscillators and to be used for a variety of metrological, spectroscopic, communication, and imaging applications that require narrow-LW THz sources.

  9. Multiwavelength Absolute Phase Retrieval from Noisy Diffractive Patterns: Wavelength Multiplexing Algorithm

    Directory of Open Access Journals (Sweden)

    Vladimir Katkovnik

    2018-05-01

    Full Text Available We study the problem of multiwavelength absolute phase retrieval from noisy diffraction patterns. The system is lensless with multiwavelength coherent input light beams and random phase masks applied for wavefront modulation. The light beams are formed by light sources radiating all wavelengths simultaneously. A sensor equipped by a Color Filter Array (CFA is used for spectral measurement registration. The developed algorithm targeted on optimal phase retrieval from noisy observations is based on maximum likelihood technique. The algorithm is specified for Poissonian and Gaussian noise distributions. One of the key elements of the algorithm is an original sparse modeling of the multiwavelength complex-valued wavefronts based on the complex-domain block-matching 3D filtering. Presented numerical experiments are restricted to noisy Poissonian observations. They demonstrate that the developed algorithm leads to effective solutions explicitly using the sparsity for noise suppression and enabling accurate reconstruction of absolute phase of high-dynamic range.

  10. Improved documentation of spectral lines for inductively coupled plasma emission spectrometry

    Science.gov (United States)

    Doidge, Peter S.

    2018-05-01

    An approach to improving the documentation of weak spectral lines falling near the prominent analytical lines used in inductively coupled plasma optical emission spectrometry (ICP-OES) is described. Measurements of ICP emission spectra in the regions around several hundred prominent lines, using concentrated solutions (up to 1% w/v) of some 70 elements, and comparison of the observed spectra with both recent published work and with the output of a computer program that allows calculation of transitions between the known energy levels, show that major improvements can be made in the coverage of spectral atlases for ICP-OES, with respect to "classical" line tables. It is argued that the atomic spectral data (wavelengths, energy levels) required for the reliable identification and documentation of a large majority of the weak interfering lines of the elements detectable by ICP-OES now exist, except for most of the observed lines of the lanthanide elements. In support of this argument, examples are provided from a detailed analysis of a spectral window centered on the prominent Pb II 220.353 nm line, and from a selected line-rich spectrum (W). Shortcomings in existing analyses are illustrated with reference to selected spectral interferences due to Zr. This approach has been used to expand the spectral-line library used in commercial ICP-ES instruments (Agilent 700-ES/5100-ES). The precision of wavelength measurements is evaluated in terms of the shot-noise limit, while the absolute accuracy of wavelength measurement is characterised through comparison with a small set of precise Ritz wavelengths for Sb I, and illustrated through the identification of Zr III lines; it is further shown that fractional-pixel absolute wavelength accuracies can be achieved. Finally, problems with the wavelengths and classifications of certain Au I lines are discussed.

  11. Spectral Irradiance Measurements Based on Detector

    International Nuclear Information System (INIS)

    Lima, M S; Menegotto, T; Duarte, I; Da Silva, T Ferreira; Alves, L C; Alvarenga, A D; Almeida, G B; Couceiro, I B; Teixeira, R N

    2015-01-01

    This paper presents the preliminary results of the realization of absolute spectral irradiance scale at INMETRO in the ultraviolet, visible and infrared regions using filter radiometers as secondary standards. In the construction of these instruments are used, at least, apertures, interference filters and a trap detector. In the assembly of the trap detectors it was necessary to characterize several photocells in spatial uniformity and shunt resistance. All components were calibrated and these results were analyzed to mount the filter radiometer

  12. Absolutely relative or relatively absolute: violations of value invariance in human decision making.

    Science.gov (United States)

    Teodorescu, Andrei R; Moran, Rani; Usher, Marius

    2016-02-01

    Making decisions based on relative rather than absolute information processing is tied to choice optimality via the accumulation of evidence differences and to canonical neural processing via accumulation of evidence ratios. These theoretical frameworks predict invariance of decision latencies to absolute intensities that maintain differences and ratios, respectively. While information about the absolute values of the choice alternatives is not necessary for choosing the best alternative, it may nevertheless hold valuable information about the context of the decision. To test the sensitivity of human decision making to absolute values, we manipulated the intensities of brightness stimuli pairs while preserving either their differences or their ratios. Although asked to choose the brighter alternative relative to the other, participants responded faster to higher absolute values. Thus, our results provide empirical evidence for human sensitivity to task irrelevant absolute values indicating a hard-wired mechanism that precedes executive control. Computational investigations of several modelling architectures reveal two alternative accounts for this phenomenon, which combine absolute and relative processing. One account involves accumulation of differences with activation dependent processing noise and the other emerges from accumulation of absolute values subject to the temporal dynamics of lateral inhibition. The potential adaptive role of such choice mechanisms is discussed.

  13. Spectral Unmixing of Forest Crown Components at Close Range, Airborne and Simulated Sentinel-2 and EnMAP Spectral Imaging Scale

    Directory of Open Access Journals (Sweden)

    Anne Clasen

    2015-11-01

    Full Text Available Forest biochemical and biophysical variables and their spatial and temporal distribution are essential inputs to process-orientated ecosystem models. To provide this information, imaging spectroscopy appears to be a promising tool. In this context, the present study investigates the potential of spectral unmixing to derive sub-pixel crown component fractions in a temperate deciduous forest ecosystem. However, the high proportion of foliage in this complex vegetation structure leads to the problem of saturation effects, when applying broadband vegetation indices. This study illustrates that multiple endmember spectral mixture analysis (MESMA can contribute to overcoming this challenge. Reference fractional abundances, as well as spectral measurements of the canopy components, could be precisely determined from a crane measurement platform situated in a deciduous forest in North-East Germany. In contrast to most other studies, which only use leaf and soil endmembers, this experimental setup allowed for the inclusion of a bark endmember for the unmixing of components within the canopy. This study demonstrates that the inclusion of additional endmembers markedly improves the accuracy. A mean absolute error of 7.9% could be achieved for the fractional occurrence of the leaf endmember and 5.9% for the bark endmember. In order to evaluate the results of this field-based study for airborne and satellite-based remote sensing applications, a transfer to Airborne Imaging Spectrometer for Applications (AISA and simulated Environmental Mapping and Analysis Program (EnMAP and Sentinel-2 imagery was carried out. All sensors were capable of unmixing crown components with a mean absolute error ranging between 3% and 21%.

  14. Absolute Configuration of 3-METHYLCYCLOHEXANONE by Chiral Tag Rotational Spectroscopy and Vibrational Circular Dichroism

    Science.gov (United States)

    Evangelisti, Luca; Holdren, Martin S.; Mayer, Kevin J.; Smart, Taylor; West, Channing; Pate, Brooks

    2017-06-01

    The absolute configuration of 3-methylcyclohexanone was established by chiral tag rotational spectroscopy measurements using 3-butyn-2-ol as the tag partner. This molecule was chosen because it is a benchmark measurement for vibrational circular dichroism (VCD). A comparison of the analysis approaches of chiral tag rotational spectroscopy and VCD will be presented. One important issue in chiral analysis by both methods is the conformational flexibility of the molecule being analyzed. The analysis of conformational composition of samples will be illustrated. In this case, the high spectral resolution of molecular rotational spectroscopy and potential for spectral simplification by conformational cooling in the pulsed jet expansion are advantages for chiral tag spectroscopy. The computational chemistry requirements for the two methods will also be discussed. In this case, the need to perform conformer searches for weakly bound complexes and to perform reasonably high level quantum chemistry geometry optimizations on these complexes makes the computational time requirements less favorable for chiral tag rotational spectroscopy. Finally, the issue of reliability of the determination of the absolute configuration will be considered. In this case, rotational spectroscopy offers a "gold standard" analysis method through the determination of the ^{13}C-subsitution structure of the complex between 3-methylcyclohexanone and an enantiopure sample of the 3-butyn-2-ol tag.

  15. THE ABSOLUTE MAGNITUDES OF TYPE Ia SUPERNOVAE IN THE ULTRAVIOLET

    International Nuclear Information System (INIS)

    Brown, Peter J.; Roming, Peter W. A.; Ciardullo, Robin; Gronwall, Caryl; Hoversten, Erik A.; Pritchard, Tyler; Milne, Peter; Bufano, Filomena; Mazzali, Paolo; Elias-Rosa, Nancy; Filippenko, Alexei V.; Li Weidong; Foley, Ryan J.; Hicken, Malcolm; Kirshner, Robert P.; Gehrels, Neil; Holland, Stephen T.; Immler, Stefan; Phillips, Mark M.; Still, Martin

    2010-01-01

    We examine the absolute magnitudes and light-curve shapes of 14 nearby (redshift z = 0.004-0.027) Type Ia supernovae (SNe Ia) observed in the ultraviolet (UV) with the Swift Ultraviolet/Optical Telescope. Colors and absolute magnitudes are calculated using both a standard Milky Way extinction law and one for the Large Magellanic Cloud that has been modified by circumstellar scattering. We find very different behavior in the near-UV filters (uvw1 rc covering ∼2600-3300 A after removing optical light, and u ∼ 3000-4000 A) compared to a mid-UV filter (uvm2 ∼2000-2400 A). The uvw1 rc - b colors show a scatter of ∼0.3 mag while uvm2-b scatters by nearly 0.9 mag. Similarly, while the scatter in colors between neighboring filters is small in the optical and somewhat larger in the near-UV, the large scatter in the uvm2 - uvw1 colors implies significantly larger spectral variability below 2600 A. We find that in the near-UV the absolute magnitudes at peak brightness of normal SNe Ia in our sample are correlated with the optical decay rate with a scatter of 0.4 mag, comparable to that found for the optical in our sample. However, in the mid-UV the scatter is larger, ∼1 mag, possibly indicating differences in metallicity. We find no strong correlation between either the UV light-curve shapes or the UV colors and the UV absolute magnitudes. With larger samples, the UV luminosity might be useful as an additional constraint to help determine distance, extinction, and metallicity in order to improve the utility of SNe Ia as standardized candles.

  16. UNBIASED MOMENT-RATE SPECTRA AND ABSOLUTE SITE EFFECTS IN THE KACHCHH BASIN, INDIA, FROM THE ANALYSIS OF THE AFTERSHOCKS OF THE 2001 Mw 7.6 BHUJ EARTHQUAKE

    Energy Technology Data Exchange (ETDEWEB)

    Malagnini, L; Bodin, P; Mayeda, K; Akinci, A

    2005-05-04

    What can be learned about absolute site effects on ground motions and about earthquake source spectra from recordings at temporary seismic stations, none of which could be considered a 'reference' (hard rock) site, for which no geotechnical information is available, in a very poorly instrumented region? This challenge motivated our current study of aftershocks of the 2001 Mw 7.6 Bhuj earthquake, in Western India. Crustal attenuation and spreading relationships based on the same data used here were determined in an earlier study. In this paper we decouple the ambiguity between absolute source radiation and site effects by first computing robust estimates of moment-rate spectra of about 200 aftershocks in each of two depth ranges. Using these new estimates of sourcespectra, and our understanding of regional wave propagation, we extract the absolute site terms of the sites of the temporary deployment. Absolute site terms (one for each component of the ground motion, for each station) are computed in an average sense, via an L{sub 1}-norm minimization, and results for each site are averaged over wide ranges of azimuths and takeoff angles. The Bhuj deployment is characterized by a variable shallow geology, mostly of soft sedimentary units. Vertical site terms in the region were observed to be almost featureless and slightly < 1.0 within wide frequency ranges. As a result, H/V spectral ratios mimic the absolute behaviors of absolute horizontal site terms, and they generally overpredict them. On the contrary, with respect to the results for sedimentary rock sites (limestone, dolomite) obtained by Malagnini et al. (2004), H/V spectral ratios in their study did not have much in common with absolute horizontal site terms. Spectral ratios between the vector sum of the computed horizontal site terms for the temporary deployment with respect to the same quantity computed at the hardest rock station available, BAC1, are seriously biased by its non-flat, non

  17. Absolute radiometric calibration of Landsat using a pseudo invariant calibration site

    Science.gov (United States)

    Helder, D.; Thome, K.J.; Mishra, N.; Chander, G.; Xiong, Xiaoxiong; Angal, A.; Choi, Tae-young

    2013-01-01

    Pseudo invariant calibration sites (PICS) have been used for on-orbit radiometric trending of optical satellite systems for more than 15 years. This approach to vicarious calibration has demonstrated a high degree of reliability and repeatability at the level of 1-3% depending on the site, spectral channel, and imaging geometries. A variety of sensors have used this approach for trending because it is broadly applicable and easy to implement. Models to describe the surface reflectance properties, as well as the intervening atmosphere have also been developed to improve the precision of the method. However, one limiting factor of using PICS is that an absolute calibration capability has not yet been fully developed. Because of this, PICS are primarily limited to providing only long term trending information for individual sensors or cross-calibration opportunities between two sensors. This paper builds an argument that PICS can be used more extensively for absolute calibration. To illustrate this, a simple empirical model is developed for the well-known Libya 4 PICS based on observations by Terra MODIS and EO-1 Hyperion. The model is validated by comparing model predicted top-of-atmosphere reflectance values to actual measurements made by the Landsat ETM+ sensor reflective bands. Following this, an outline is presented to develop a more comprehensive and accurate PICS absolute calibration model that can be Système international d'unités (SI) traceable. These initial concepts suggest that absolute calibration using PICS is possible on a broad scale and can lead to improved on-orbit calibration capabilities for optical satellite sensors.

  18. Resolving Differences in Absolute Irradiance Measurements Between the SOHO/CELIAS/SEM and the SDO/EVE.

    Science.gov (United States)

    Wieman, S R; Didkovsky, L V; Judge, D L

    The Solar EUV Monitor (SEM) onboard SOHO has measured absolute extreme ultraviolet (EUV) and soft X-ray solar irradiance nearly continuously since January 1996. The EUV Variability Experiment (EVE) on SDO, in operation since April of 2010, measures solar irradiance in a wide spectral range that encompasses the band passes (26 - 34 nm and 0.1 - 50 nm) measured by SOHO/SEM. However, throughout the mission overlap, irradiance values from these two instruments have differed by more than the combined stated uncertainties of the measurements. In an effort to identify the sources of these differences and eliminate them, we investigate in this work the effect of reprocessing the SEM data using a more accurate SEM response function (obtained from synchrotron measurements with a SEM sounding-rocket clone instrument taken after SOHO was already in orbit) and time-dependent, measured solar spectral distributions - i.e ., solar reference spectra that were unavailable prior to the launch of the SDO. We find that recalculating the SEM data with these improved parameters reduces mean differences with the EVE measurements from about 20 % to less than 5 % in the 26 - 34 nm band, and from about 35 % to about 15 % for irradiances in the 0.1 - 7 nm band extracted from the SEM 0.1 - 50 nm channel.

  19. Spectrally accurate contour dynamics

    International Nuclear Information System (INIS)

    Van Buskirk, R.D.; Marcus, P.S.

    1994-01-01

    We present an exponentially accurate boundary integral method for calculation the equilibria and dynamics of piece-wise constant distributions of potential vorticity. The method represents contours of potential vorticity as a spectral sum and solves the Biot-Savart equation for the velocity by spectrally evaluating a desingularized contour integral. We use the technique in both an initial-value code and a newton continuation method. Our methods are tested by comparing the numerical solutions with known analytic results, and it is shown that for the same amount of computational work our spectral methods are more accurate than other contour dynamics methods currently in use

  20. Polarized BRDF measurement of steel E235B in the near-infrared region: Based on a self-designed instrument with absolute measuring method

    Science.gov (United States)

    Liu, Yanlei; Yu, Kun; Liu, Zilong; Zhao, Yuejin; Liu, Yufang

    2018-06-01

    The spectral bidirectional reflectance distribution (BRDF) offers a complete description of the optical properties of the opaque material. Numerous studies on BRDF have been conducted for its important role in scientific research and industrial production. However, most of these studies focus on the visible region and unpolarized BRDF, and the spectral polarized BRDF in the near-infrared region is rarely reported. In this letter, we propose an absolute method to measure the spectral BRDF in the near-infrared region, and the detailed derivation is presented. A self-designed instrument is set up for the absolute measurement of BRDF. The reliability of this method is verified by comparing the experimental data of the three metal (aluminum, silver and gold) mirrors with the reference data. The in-plane polarized BRDF of steel E235B are measured, and the influence of incident angle and roughness on the BRDF are discussed. The degree of linear polarization (DOLP) are determined based on the polarized BRDF. The results indicate that both the roughness and incident angle have distinct influence on the BRDF and DOLP.

  1. The Burkill-Cesari Integral on Spaces of Absolutely Continuous Games

    Directory of Open Access Journals (Sweden)

    F. Centrone

    2014-01-01

    Full Text Available We prove that the Burkill-Cesari integral is a value on a subspace of AC and then discuss its continuity with respect to both the BV and the Lipschitz norm. We provide an example of value on a subspace of AC strictly containing pNA as well as an existence result of a Lipschitz continuous value, different from Aumann and Shapley’s one, on a subspace of AC∞.

  2. A lattice hierarchy and its continuous limits

    International Nuclear Information System (INIS)

    Fan Engui

    2008-01-01

    By introducing a discrete spectral problem, we derive a lattice hierarchy which is integrable in Liouville's sense and possesses a multi-Hamiltonian structure. It is show that the discrete spectral problem converges to the well-known AKNS spectral problem under a certain continuous limit. In particular, we construct a sequence of equations in the lattice hierarchy which approximates the AKNS hierarchy as a continuous limit

  3. Project STOP (Spectral Thermal Optimization Program)

    Science.gov (United States)

    Goldhammer, L. J.; Opjorden, R. W.; Goodelle, G. S.; Powe, J. S.

    1977-01-01

    The spectral thermal optimization of solar cell configurations for various solar panel applications is considered. The method of optimization depends upon varying the solar cell configuration's optical characteristics to minimize panel temperatures, maximize power output and decrease the power delta from beginning of life to end of life. Four areas of primary investigation are: (1) testing and evaluation of ultraviolet resistant coverslide adhesives, primarily FEP as an adhesive; (2) examination of solar cell absolute spectral response and corresponding cell manufacturing processes that affect it; (3) experimental work with solar cell manufacturing processes that vary cell reflectance (solar absorptance); and (4) experimental and theoretical studies with various coverslide filter designs, mainly a red rejection filter. The Hughes' solar array prediction program has been modified to aid in evaluating the effect of each of the above four areas on the output of a solar panel in orbit.

  4. The Infrared Telescope Facility (IRTF) Spectral Library: Cool Stars

    Science.gov (United States)

    Rayner, John T.; Cushing, Michael C.; Vacca, William D.

    2009-12-01

    We present a 0.8-5 μm spectral library of 210 cool stars observed at a resolving power of R ≡ λ/Δλ ~ 2000 with the medium-resolution infrared spectrograph, SpeX, at the 3.0 m NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii. The stars have well-established MK spectral classifications and are mostly restricted to near-solar metallicities. The sample not only contains the F, G, K, and M spectral types with luminosity classes between I and V, but also includes some AGB, carbon, and S stars. In contrast to some other spectral libraries, the continuum shape of the spectra is measured and preserved in the data reduction process. The spectra are absolutely flux calibrated using the Two Micron All Sky Survey photometry. Potential uses of the library include studying the physics of cool stars, classifying and studying embedded young clusters and optically obscured regions of the Galaxy, evolutionary population synthesis to study unresolved stellar populations in optically obscured regions of galaxies and synthetic photometry. The library is available in digital form from the IRTF Web site.

  5. ABSOLUTE NEUTRINO MASSES

    DEFF Research Database (Denmark)

    Schechter, J.; Shahid, M. N.

    2012-01-01

    We discuss the possibility of using experiments timing the propagation of neutrino beams over large distances to help determine the absolute masses of the three neutrinos.......We discuss the possibility of using experiments timing the propagation of neutrino beams over large distances to help determine the absolute masses of the three neutrinos....

  6. General spectral flow formula for fixed maximal domain

    DEFF Research Database (Denmark)

    Booss-Bavnbek, Bernhelm; Zhu, Chaofeng

    2005-01-01

    and symplectic analysis and give a full (and surprisingly short) proof of our General Spectral Flow Formula for the case of fixed maximal domain. As a side result, we establish local stability of weak inner unique continuation property (UCP) and explain its role for parameter dependent spectral theory....... of the resulting continuous family of (unbounded) self-adjoint Fredholm operators in terms of the Maslov index of two related curves of Lagrangian spaces. One curve is given by the varying domains, the other by the Cauchy data spaces. We provide rigorous definitions of the underlying concepts of spectral theory...

  7. Method for estimating effects of unknown correlations in spectral irradiance data on uncertainties of spectrally integrated colorimetric quantities

    Science.gov (United States)

    Kärhä, Petri; Vaskuri, Anna; Mäntynen, Henrik; Mikkonen, Nikke; Ikonen, Erkki

    2017-08-01

    Spectral irradiance data are often used to calculate colorimetric properties, such as color coordinates and color temperatures of light sources by integration. The spectral data may contain unknown correlations that should be accounted for in the uncertainty estimation. We propose a new method for estimating uncertainties in such cases. The method goes through all possible scenarios of deviations using Monte Carlo analysis. Varying spectral error functions are produced by combining spectral base functions, and the distorted spectra are used to calculate the colorimetric quantities. Standard deviations of the colorimetric quantities at different scenarios give uncertainties assuming no correlations, uncertainties assuming full correlation, and uncertainties for an unfavorable case of unknown correlations, which turn out to be a significant source of uncertainty. With 1% standard uncertainty in spectral irradiance, the expanded uncertainty of the correlated color temperature of a source corresponding to the CIE Standard Illuminant A may reach as high as 37.2 K in unfavorable conditions, when calculations assuming full correlation give zero uncertainty, and calculations assuming no correlations yield the expanded uncertainties of 5.6 K and 12.1 K, with wavelength steps of 1 nm and 5 nm used in spectral integrations, respectively. We also show that there is an absolute limit of 60.2 K in the error of the correlated color temperature for Standard Illuminant A when assuming 1% standard uncertainty in the spectral irradiance. A comparison of our uncorrelated uncertainties with those obtained using analytical methods by other research groups shows good agreement. We re-estimated the uncertainties for the colorimetric properties of our 1 kW photometric standard lamps using the new method. The revised uncertainty of color temperature is a factor of 2.5 higher than the uncertainty assuming no correlations.

  8. Thermodynamics of negative absolute pressures

    International Nuclear Information System (INIS)

    Lukacs, B.; Martinas, K.

    1984-03-01

    The authors show that the possibility of negative absolute pressure can be incorporated into the axiomatic thermodynamics, analogously to the negative absolute temperature. There are examples for such systems (GUT, QCD) processing negative absolute pressure in such domains where it can be expected from thermodynamical considerations. (author)

  9. Using an interference spectrum as a short-range absolute rangefinder with fiber and wideband source

    Science.gov (United States)

    Hsieh, Tsung-Han; Han, Pin

    2018-06-01

    Recently, a new type of displacement instrument using spectral-interference has been found, which utilizes fiber and a wideband light source to produce an interference spectrum. In this work, we develop a method that measures the absolute air-gap distance by taking wavelengths at two interference spectra minima. The experimental results agree with the theoretical calculations. It is also utilized to produce and control the spectral switch, which is much easier than other previous methods using other control mechanisms. A scanning mode of this scheme for stepped surface measurement is suggested, which is verified by a standard thickness gauge test. Our scheme is different to one available on the market that may use a curve-fitting method, and some comparisons are made between our scheme and that one.

  10. Absolute measurement of undulator radiation in the extreme ultraviolet

    International Nuclear Information System (INIS)

    Maezawa, H.; Kitamura, H.; Sasaki, T.; Mitani, S.; Osaka City Univ.; Suzuki, Y.; Kanamori, H.; Tamamushi, S.; Tokyo Univ.; Mikuni, A.; Tokyo Univ., Tanashi

    1983-01-01

    The spectral brightness of undulator radiation emitted by the model PMU-1 incorporated in the SOR-RING, the dedicated synchrotron radiation source in Tokyo, has been studied in the extreme ultraviolet region from 21.6 to 72.9 eV as a function of the electron energy #betta#, the field parameter K, and the angle of observation THETA in the absolute scale. A series of measurements covering the first and the second harmonic component of undulator radiation was compared with the fundamental formula lambdasub(n)=lambda 0 /2n#betta# 2 (1+K 2 /2+#betta# 2 THETA 2 ), and the effects of finite emittance were studied. The brightness at the first peak was smaller than the theoretical value, while an enhanced second harmonic component was observed. (orig.)

  11. THE INFRARED TELESCOPE FACILITY (IRTF) SPECTRAL LIBRARY: COOL STARS

    International Nuclear Information System (INIS)

    Rayner, John T.; Cushing, Michael C.; Vacca, William D.

    2009-01-01

    We present a 0.8-5 μm spectral library of 210 cool stars observed at a resolving power of R ≡ λ/Δλ ∼ 2000 with the medium-resolution infrared spectrograph, SpeX, at the 3.0 m NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii. The stars have well-established MK spectral classifications and are mostly restricted to near-solar metallicities. The sample not only contains the F, G, K, and M spectral types with luminosity classes between I and V, but also includes some AGB, carbon, and S stars. In contrast to some other spectral libraries, the continuum shape of the spectra is measured and preserved in the data reduction process. The spectra are absolutely flux calibrated using the Two Micron All Sky Survey photometry. Potential uses of the library include studying the physics of cool stars, classifying and studying embedded young clusters and optically obscured regions of the Galaxy, evolutionary population synthesis to study unresolved stellar populations in optically obscured regions of galaxies and synthetic photometry. The library is available in digital form from the IRTF Web site.

  12. ACCESS, Absolute Color Calibration Experiment for Standard Stars: Integration, Test, and Ground Performance

    Science.gov (United States)

    Kaiser, Mary Elizabeth; Morris, Matthew; Aldoroty, Lauren; Kurucz, Robert; McCandliss, Stephan; Rauscher, Bernard; Kimble, Randy; Kruk, Jeffrey; Wright, Edward L.; Feldman, Paul; Riess, Adam; Gardner, Jonathon; Bohlin, Ralph; Deustua, Susana; Dixon, Van; Sahnow, David J.; Perlmutter, Saul

    2018-01-01

    Establishing improved spectrophotometric standards is important for a broad range of missions and is relevant to many astrophysical problems. Systematic errors associated with astrophysical data used to probe fundamental astrophysical questions, such as SNeIa observations used to constrain dark energy theories, now exceed the statistical errors associated with merged databases of these measurements. ACCESS, “Absolute Color Calibration Experiment for Standard Stars”, is a series of rocket-borne sub-orbital missions and ground-based experiments designed to enable improvements in the precision of the astrophysical flux scale through the transfer of absolute laboratory detector standards from the National Institute of Standards and Technology (NIST) to a network of stellar standards with a calibration accuracy of 1% and a spectral resolving power of 500 across the 0.35‑1.7μm bandpass. To achieve this goal ACCESS (1) observes HST/ Calspec stars (2) above the atmosphere to eliminate telluric spectral contaminants (e.g. OH) (3) using a single optical path and (HgCdTe) detector (4) that is calibrated to NIST laboratory standards and (5) monitored on the ground and in-flight using a on-board calibration monitor. The observations are (6) cross-checked and extended through the generation of stellar atmosphere models for the targets. The ACCESS telescope and spectrograph have been designed, fabricated, and integrated. Subsystems have been tested. Performance results for subsystems, operations testing, and the integrated spectrograph will be presented. NASA sounding rocket grant NNX17AC83G supports this work.

  13. Spectral Irradiance Calibration in the Infrared 11: Comparison of (alpha) Boo and 1 Ceres with a Laboratory Standard

    Science.gov (United States)

    Witteborn, Fred C.; Cohen, Martin; Bregman, Jess D.; Wooden, Diane; Heere, Karen; Shirley, Eric L.

    1998-01-01

    Infrared spectra of two celestial objects frequently used as flux standards are calibrated against an absolute laboratory flux standard at a spectral resolving power of 100 to 200. The spectrum of the K1.5III star, alpha Boo, is measured from 3 microns to 30 microns and that of the C-type asteroid, 1 Ceres, from 5 microns to 30 microns. While these 'standard' spectra do not have the apparent precision of those based on calculated models, they do not require the assumptions involved in theoretical models of stars and asteroids. Specifically they provide a model-independent means of calibrating celestial flux in the spectral range from 12 microns to 30 microns where accurate absolute photometry is not available. The agreement found between the spectral shapes of alpha Boo and Ceres based on laboratory standards, and those based on observed ratios to alpha CMa (Sirius) and alpha Lyr (Vega), flux calibrated by theoretical modeling of these hot stars strengthens our confidence in the applicability of the stellar models as primary irradiance standards.

  14. Danish Towns during Absolutism

    DEFF Research Database (Denmark)

    This anthology, No. 4 in the Danish Urban Studies Series, presents in English recent significant research on Denmark's urban development during the Age of Absolutism, 1660-1848, and features 13 articles written by leading Danish urban historians. The years of Absolutism were marked by a general...

  15. The absolute flux of six hot stars in the ultraviolet (912-1600 A)

    Science.gov (United States)

    Woods, T. N.; Feldman, P. D.; Bruner, G. H.

    1985-01-01

    Six hot stars were observed on 1984 March 2 from a Black Brant V sounding rocket (NASA 21.085UG). The absolute fluxes from Gamma 2 Vel, Zeta Pup, Alpha CMa ,Gamma Ori, Beta Tau, and Epsilon Per were measured in the spectral region between 912 and 1600 A at 10 A resolution. Comparisons with revised Voyager 1 and Voyager 2 Ultraviolet Spectrometer data and previous sounding rocket data are evaluated. In general, the two sounding rocket experiments are in good agreement, and the revised Voyager data and the sounding rocket data are in agreement except at wavelengths below 1000 A.

  16. Power Spectral Analysis of Short-Term Heart Rate Variability in Healthy and Arrhythmia Subjects by the Adaptive Continuous Morlet Wavelet Transform

    Directory of Open Access Journals (Sweden)

    Ram Sewak SINGH

    2017-12-01

    Full Text Available Power spectral analysis of short-term heart rate variability (HRV can provide instant valuable information to understand the functioning of autonomic control over the cardiovascular system. In this study, an adaptive continuous Morlet wavelet transform (ACMWT method has been used to describe the time-frequency characteristics of the HRV using band power spectra and the median value of interquartile range. Adaptation of the method was based on the measurement of maximum energy concentration. The ACMWT has been validated on synthetic signals (i.e. stationary, non-stationary as slow varying and fast changing frequency with time modeled as closest to dynamic changes in HRV signals. This method has been also tested in the presence of additive white Gaussian noise (AWGN to show its robustness towards the noise. From the results of testing on synthetic signals, the ACMWT was found to be an enhanced energy concentration estimator for assessment of power spectral of short-term HRV time series compared to adaptive Stockwell transform (AST, adaptive modified Stockwell transform (AMST, standard continuous Morlet wavelet transform (CMWT and Stockwell transform (ST estimators at statistical significance level of 5%. Further, the ACMWT was applied to real HRV data from Fantasia and MIT-BIH databases, grouped as healthy young group (HYG, healthy elderly group (HEG, arrhythmia controlled medication group (ARCMG, and supraventricular tachycardia group (SVTG subjects. The global results demonstrate that spectral indices of low frequency power (LFp and high frequency power (HFp of HRV were decreased in HEG compared to HYG subjects (p<0.0001. While LFp and HFp indices were increased in ARCMG compared to HEG (p<0.00001. The LFp and HFp components of HRV obtained from SVTG were reduced compared to other group subjects (p<0.00001.

  17. Absolutely calibrated vacuum ultraviolet spectra in the 150-250-nm range from plasmas generated by the NIKE KrF laser

    International Nuclear Information System (INIS)

    Seely, J.F.; Feldman, Uri; Holland, G.E.; Weaver, J.L.; Mostovych, A.N.; Obenschain, S.P.; Schmitt, A.J.; Lehmberg, R.; Kjornarattanawanich, Benjawan; Back, C.A.

    2005-01-01

    High-resolution vacuum ultraviolet (VUV) spectra were recorded from plasmas generated by the NIKE KrF laser for the purpose of observing emission from the two-plasmon decay instability (TPDI) at 2/3 the NIKE wavelength (165 nm). The targets were irradiated by up to 43 overlapping beams with intensity up to ≅10 14 W/cm 2 and with beam smoothing by induced spatial incoherence (ISI). The targets consisted of planar foils of CH, BN, Al, Si, S, Ti, Pd, and Au. Titanium-doped silica aerogels in Pyrex cylinders were also irradiated. The spectra of the target elements were observed from charge states ranging from the neutral atoms to five times ionized. The spectrometer was absolutely calibrated using synchrotron radiation, and absolute VUV plasma emission intensities were determined. Emission from the TPDI at 165-nm wavelength was not observed from any of the irradiated targets. An upper bound on the possible TPDI emission was less than 4x10 -8 the incident NIKE laser energy. The NIKE laser radiation backscattered from the silica aerogel targets at 248 nm was typically 6x10 -6 the incident NIKE laser energy, and the spectral broadening corresponded to the 1-THz bandwidth of the ISI smoothing. The spectra from the moderately charged plasma ions (up to five times ionized), spectral linewidths, absolute continuum emission level, and slope of the continuum were consistent with plasma temperatures in the 100-300-eV range

  18. Atmospheric Sounder Spectrometer for Infrared Spectral Technology (ASSIST) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, Connor J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Atmospheric Radiation Measurement (ARM) Program

    2016-03-01

    The Atmospheric Sounder Spectrometer for Infrared Spectral Technology (ASSIST) measures the absolute infrared (IR) spectral radiance (watts per square meter per steradian per wavenumber) of the sky directly above the instrument. More information about the instrument can be found through the manufacturer’s website. The spectral measurement range of the instrument is 3300 to 520 wavenumbers (cm-1) or 3-19.2 microns for the normal-range instruments and 3300 to 400 cm-1 or 3-25 microns, for the extended-range polar instruments. Spectral resolution is 1.0 cm-1. Instrument field-of-view is 1.3 degrees. Calibrated sky radiance spectra are produced on cycle of about 141 seconds with a group of 6 radiance spectra zenith having dwell times of about 14 seconds each interspersed with 55 seconds of calibration and mirror motion. The ASSIST data is comparable to the Atmospheric Emitted Radiance Interferometer (AERI) data and can be used for 1) evaluating line-by-line radiative transport codes, 2) detecting/quantifying cloud effects on ground-based measurements of infrared spectral radiance (and hence is valuable for cloud property retrievals), and 3) calculating vertical atmospheric profiles of temperature and water vapor and the detection of trace gases.

  19. Spectral Approximation for Ergodic CMV Operators with an Application to Quantum Walks

    OpenAIRE

    Fillman, Jake; Ong, Darren C.; Vandenboom, Tom

    2017-01-01

    We establish concrete criteria for fully supported absolutely continuous spectrum for ergodic CMV matrices and purely absolutely continuous spectrum for limit-periodic CMV matrices. We proceed by proving several variational estimates on the measure of the spectrum and the vanishing set of the Lyapunov exponent for CMV matrices, which represent CMV analogues of results obtained for Schr\\"odinger operators due to Y.\\ Last in the early 1990s. Having done so, we combine those estimates with resul...

  20. Using absolute x-ray spectral measurements to infer stagnation conditions in ICF implosions

    Science.gov (United States)

    Patel, Pravesh; Benedetti, L. R.; Cerjan, C.; Clark, D. S.; Hurricane, O. A.; Izumi, N.; Jarrott, L. C.; Khan, S.; Kritcher, A. L.; Ma, T.; Macphee, A. G.; Landen, O.; Spears, B. K.; Springer, P. T.

    2016-10-01

    Measurements of the continuum x-ray spectrum emitted from the hot-spot of an ICF implosion can be used to infer a number thermodynamic properties at stagnation including temperature, pressure, and hot-spot mix. In deuterium-tritium (DT) layered implosion experiments on the National Ignition Facility (NIF) we field a number of x-ray diagnostics that provide spatial, temporal, and spectrally-resolved measurements of the radiated x-ray emission. We report on analysis of these measurements using a 1-D hot-spot model to infer thermodynamic properties at stagnation. We compare these to similar properties that can be derived from DT fusion neutron measurements. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  1. Color excesses, intrinsic colors, and absolute magnitudes of Galactic and Large Magellanic Cloud Wolf-Rayet stars

    International Nuclear Information System (INIS)

    Vacca, W.D.; Torres-Dodgen, A.V.

    1990-01-01

    A new method of determining the color excesses of WR stars in the Galaxy and the LMC has been developed and is used to determine the excesses for 44 Galactic and 32 LMC WR stars. The excesses are combined with line-free, narrow-band spectrophotometry to derive intrinsic colors of the WR stars of nearly all spectral subtypes. No correlation of UV spectral index or intrinsic colors with spectral subtype is found for the samples of single WN or WC stars. There is evidence that early WN stars in the LMC have flatter UV continua and redder intrinsic colors than early WN stars in the Galaxy. No separation is found between the values derived for Galactic WC stars and those obtained for LMC WC stars. The intrinsic colors are compared with those calculated from model atmospheres of WR stars and generally good agreement is found. Absolute magnitudes are derived for WR stars in the LMC and for those Galactic WR stars located in clusters and associations for which there are reliable distance estimates. 78 refs

  2. Production of highly polarized 3He using spectrally narrowed diode laser array bars

    International Nuclear Information System (INIS)

    Chann, B.; Babcock, E.; Anderson, L.W.; Walker, T.G.; Chen, W.C.; Smith, T.B.; Thompson, A.K.; Gentile, T.R.

    2003-01-01

    We have produced 70%-75% 3 He polarization by spin-exchange optical pumping in cells ≅100 cm 3 in volume. The polarization achieved is consistent with known spin-exchange and spin-relaxation rates, but only when the recently discovered temperature dependence of 3 He relaxation is included. Absolute 3 He polarization measurements were performed using two different methods in two different laboratories. The results were obtained with either a spectrally narrowed laser or one type of broadband laser. Based on tests of several larger cells at pressures near 1 bar, we find that the power required to reach the same polarization is typically three times lower for the spectrally narrowed laser. This last result indicates that spectrally narrowed lasers will be important for obtaining the highest polarization in large volume neutron spin filters. Polarization in excess of 55% as obtained in cells up to 640 cm 3 in volume and 70% polarization is anticipated with available increases in spectrally narrowed laser power

  3. Continuous and recurrent testing of acoustic emission sensors

    International Nuclear Information System (INIS)

    Sause, Markus G.R.; Schmitt, Stefan; Potstada, Philipp

    2017-01-01

    In many fields of application of acoustic emission, the testing can lead to a lasting change in the sensor characteristics. This can be caused by mechanical damage, thermal stress or use under aggressive environmental conditions. Irrespective of visually testable damages of the sensors, a shift in the spectral sensitivity, a reduction in the absolute sensitivity or a reduction in the signal-to-noise ratio can occur. During the test, this requires a possibility to periodically check the sensors, including the coupling aids used. For recurring testing, recommendations are given in Directive SE 02 ''Verification of acoustic emission sensors and their coupling in the laboratory''. This paper discusses possibilities for continuous monitoring of the sensors during the test and presents an application example for the partly automated recurring testing of acoustic emission sensors using Directive SE 02. For this purpose, a test stand for the supply of the sensors to be tested was constructed and the signal recording and data reduction implemented in freely available software programs. The operating principle is demonstrated using selected case studies. [de

  4. Planck 2013 results. IX. HFI spectral response

    CERN Document Server

    Ade, P A R; Armitage-Caplan, C; Arnaud, M; Ashdown, M; Atrio-Barandela, F; Aumont, J; Baccigalupi, C; Banday, A J; Barreiro, R B; Battaner, E; Benabed, K; Benoît, A; Benoit-Lévy, A; Bernard, J -P; Bersanelli, M; Bielewicz, P; Bobin, J; Bock, J J; Bond, J R; Borrill, J; Bouchet, F R; Boulanger, F; Bridges, M; Bucher, M; Burigana, C; Cardoso, J -F; Catalano, A; Challinor, A; Chamballu, A; Chary, R -R; Chen, X; Chiang, L -Y; Chiang, H C; Christensen, P R; Church, S; Clements, D L; Colombi, S; Colombo, L P L; Combet, C; Comis, B; Couchot, F; Coulais, A; Crill, B P; Curto, A; Cuttaia, F; Danese, L; Davies, R D; de Bernardis, P; de Rosa, A; de Zotti, G; Delabrouille, J; Delouis, J -M; Désert, F -X; Dickinson, C; Diego, J M; Dole, H; Donzelli, S; Doré, O; Douspis, M; Dupac, X; Efstathiou, G; Enßlin, T A; Eriksen, H K; Falgarone, E; Finelli, F; Forni, O; Frailis, M; Franceschi, E; Galeotta, S; Ganga, K; Giard, M; Giraud-Héraud, Y; González-Nuevo, J; Górski, K M; Gratton, S; Gregorio, A; Gruppuso, A; Hansen, F K; Hanson, D; Harrison, D; Henrot-Versillé, S; Hernández-Monteagudo, C; Herranz, D; Hildebrandt, S R; Hivon, E; Hobson, M; Holmes, W A; Hornstrup, A; Hovest, W; Huffenberger, K M; Hurier, G; Jaffe, T R; Jaffe, A H; Jones, W C; Juvela, M; Keihänen, E; Keskitalo, R; Kisner, T S; Kneissl, R; Knoche, J; Knox, L; Kunz, M; Kurki-Suonio, H; Lagache, G; Lamarre, J -M; Lasenby, A; Laureijs, R J; Lawrence, C R; Leahy, J P; Leonardi, R; Leroy, C; Lesgourgues, J; Liguori, M; Lilje, P B; Linden-Vørnle, M; López-Caniego, M; Lubin, P M; Macías-Pérez, J F; Maffei, B; Mandolesi, N; Maris, M; Marshall, D J; Martin, P G; Martínez-González, E; Masi, S; Matarrese, S; Matthai, F; Mazzotta, P; McGehee, P; Melchiorri, A; Mendes, L; Mennella, A; Migliaccio, M; Mitra, S; Miville-Deschênes, M -A; Moneti, A; Montier, L; Morgante, G; Mortlock, D; Munshi, D; Murphy, J A; Naselsky, P; Nati, F; Natoli, P; Netterfield, C B; Nørgaard-Nielsen, H U; North, C; Noviello, F; Novikov, D; Novikov, I; Osborne, S; Oxborrow, C A; Paci, F; Pagano, L; Pajot, F; Paoletti, D; Pasian, F; Patanchon, G; Perdereau, O; Perotto, L; Perrotta, F; Piacentini, F; Piat, M; Pierpaoli, E; Pietrobon, D; Plaszczynski, S; Pointecouteau, E; Polenta, G; Ponthieu, N; Popa, L; Poutanen, T; Pratt, G W; Prézeau, G; Prunet, S; Puget, J -L; Rachen, J P; Reinecke, M; Remazeilles, M; Renault, C; Ricciardi, S; Riller, T; Ristorcelli, I; Rocha, G; Rosset, C; Roudier, G; Rusholme, B; Santos, D; Savini, G; Shellard, E P S; Spencer, L D; Starck, J -L; Stolyarov, V; Stompor, R; Sudiwala, R; Sureau, F; Sutton, D; Suur-Uski, A -S; Sygnet, J -F; Tauber, J A; Tavagnacco, D; Terenzi, L; Tomasi, M; Tristram, M; Tucci, M; Umana, G; Valenziano, L; Valiviita, J; Van Tent, B; Vielva, P; Villa, F; Vittorio, N; Wade, L A; Wandelt, B D; Yvon, D; Zacchei, A; Zonca, A

    2014-01-01

    The Planck High Frequency Instrument (HFI) spectral response was determined through a series of ground based tests conducted with the HFI focal plane in a cryogenic environment prior to launch. The main goal of the spectral transmission tests was to measure the relative spectral response (including out-of-band signal rejection) of all HFI detectors. This was determined by measuring the output of a continuously scanned Fourier transform spectrometer coupled with all HFI detectors. As there is no on-board spectrometer within HFI, the ground-based spectral response experiments provide the definitive data set for the relative spectral calibration of the HFI. The spectral response of the HFI is used in Planck data analysis and component separation, this includes extraction of CO emission observed within Planck bands, dust emission, Sunyaev-Zeldovich sources, and intensity to polarization leakage. The HFI spectral response data have also been used to provide unit conversion and colour correction analysis tools. Ver...

  5. Assignment of absolute stereostructures through quantum mechanics electronic and vibrational circular dichroism calculations.

    Science.gov (United States)

    Dai, Peng; Jiang, Nan; Tan, Ren-Xiang

    2016-01-01

    Elucidation of absolute configuration of chiral molecules including structurally complex natural products remains a challenging problem in organic chemistry. A reliable method for assigning the absolute stereostructure is to combine the experimental circular dichroism (CD) techniques such as electronic and vibrational CD (ECD and VCD), with quantum mechanics (QM) ECD and VCD calculations. The traditional QM methods as well as their continuing developments make them more applicable with accuracy. Taking some chiral natural products with diverse conformations as examples, this review describes the basic concepts and new developments of QM approaches for ECD and VCD calculations in solution and solid states.

  6. Technical Note: Continuity of MIPAS-ENVISAT operational ozone data quality from full- to reduced-spectral-resolution operation mode

    Directory of Open Access Journals (Sweden)

    S. Ceccherini

    2008-04-01

    Full Text Available MIPAS (Michelson Interferometer for Passive Atmospheric Sounding is operating on the ENVIronmental SATellite (ENVISAT since March 2002. After two years of nearly continuous limb scanning measurements, at the end of March 2004, the instrument was stopped due to problems with the mirror drive of the interferometer. Operations with reduced maximum path difference, corresponding to both a reduced-spectral-resolution and a shorter measurement time, were resumed on January 2005. In order to exploit the reduction in measurement time, the measurement scenario was changed adopting a finer vertical limb scanning. The change of spectral resolution and of measurement scenario entailed an update of the data processing strategy. The aim of this paper is the assessment of the differences in the quality of the MIPAS ozone data acquired before and after the stop of the operations. Two sets of MIPAS ozone profiles acquired in 2003–2004 (full-resolution measurements and in 2005–2006 (reduced-resolution measurements are compared with collocated ozone profiles obtained by GOMOS (Global Ozone Monitoring by Occultation of Stars, itself also onboard ENVISAT. The continuity of the GOMOS data quality allows to assess a possible discontinuity of the MIPAS performances. The relative bias and precision of MIPAS ozone profiles with respect to the GOMOS ones have been compared for the measurements acquired before and after the stop of the MIPAS operations. The results of the comparison show that, in general, the quality of the MIPAS ozone profiles retrieved from reduced-resolution measurements is comparable or better than that obtained from the full-resolution dataset. The only significant change in MIPAS performances is observed at pressures around 2 unit{hPa}, where the relative bias of the instruments increases by a factor of 2 from the 2003–2004 to 2005–2006 measurements.

  7. Continuous exponential martingales and BMO

    CERN Document Server

    Kazamaki, Norihiko

    1994-01-01

    In three chapters on Exponential Martingales, BMO-martingales, and Exponential of BMO, this book explains in detail the beautiful properties of continuous exponential martingales that play an essential role in various questions concerning the absolute continuity of probability laws of stochastic processes. The second and principal aim is to provide a full report on the exciting results on BMO in the theory of exponential martingales. The reader is assumed to be familiar with the general theory of continuous martingales.

  8. Absolute measurements of the high-frequency magnetic dynamics in high-Tc superconductors

    International Nuclear Information System (INIS)

    Hayden, S.M.; Dai, P.; Mook, H.A.; Perring, T.G.; Cheong, S.W.; Fisk, Z.; Dogan, F.; Mason, T.E.

    1997-01-01

    The authors review recent measurements of the high-frequency dynamic magnetic susceptibility in the high-T c superconducting systems La 2-x Sr x CuO 4 and YBa 2 Cu 3 O 6+x . Experiments were performed using the chopper spectrometers HET and MARI at the ISIS spallation source. The authors have placed their measurements on an absolute intensity scale, this allows systematic trends to be seen and comparisons with theory to be made. They find that the insulating S = 1/2 antiferromagnetic parent compounds show a dramatic renormalization in the spin wave intensity. The effect of doping on the response is to cause broadenings in wave vector and large redistributions of spectral weight in frequency

  9. Early results from the Far Infrared Absolute Spectrophotometer (FIRAS)

    Science.gov (United States)

    Mather, J. C.; Cheng, E. S.; Shafer, R. A.; Eplee, R. E.; Isaacman, R. B.; Fixsen, D. J.; Read, S. M.; Meyer, S. S.; Weiss, R.; Wright, E. L.

    1991-01-01

    The Far Infrared Absolute Spectrophotometer (FIRAS) on the Cosmic Background Explorer (COBE) mapped 98 percent of the sky, 60 percent of it twice, before the liquid helium coolant was exhausted. The FIRAS covers the frequency region from 1 to 100/cm with a 7 deg angular resolution. The spectral resolution is 0.2/cm for frequencies less than 20/cm and 0.8/cm for higher frequencies. Preliminary results include: a limit on the deviations from a Planck curve of 1 percent of the peak brightness from 1 to 20/cm, a temperature of 2.735 +/- 0.06 K, a limit on the Comptonization parameter y of 0.001, on the chemical potential parameter mu of 0.01, a strong limit on the existence of a hot smooth intergalactic medium, and a confirmation that the dipole anisotropy spectrum is that of a Doppler shifted blackbody.

  10. The dual rod system of amphibians supports colour discrimination at the absolute visual threshold.

    Science.gov (United States)

    Yovanovich, Carola A M; Koskela, Sanna M; Nevala, Noora; Kondrashev, Sergei L; Kelber, Almut; Donner, Kristian

    2017-04-05

    The presence of two spectrally different kinds of rod photoreceptors in amphibians has been hypothesized to enable purely rod-based colour vision at very low light levels. The hypothesis has never been properly tested, so we performed three behavioural experiments at different light intensities with toads ( Bufo ) and frogs ( Rana ) to determine the thresholds for colour discrimination. The thresholds of toads were different in mate choice and prey-catching tasks, suggesting that the differential sensitivities of different spectral cone types as well as task-specific factors set limits for the use of colour in these behavioural contexts. In neither task was there any indication of rod-based colour discrimination. By contrast, frogs performing phototactic jumping were able to distinguish blue from green light down to the absolute visual threshold, where vision relies only on rod signals. The remarkable sensitivity of this mechanism comparing signals from the two spectrally different rod types approaches theoretical limits set by photon fluctuations and intrinsic noise. Together, the results indicate that different pathways are involved in processing colour cues depending on the ecological relevance of this information for each task.This article is part of the themed issue 'Vision in dim light'. © 2017 The Authors.

  11. Temporal dynamics of sand dune bidirectional reflectance characteristics for absolute radiometric calibration of optical remote sensing data

    Science.gov (United States)

    Coburn, Craig A.; Logie, Gordon S. J.

    2018-01-01

    Attempts to use pseudoinvariant calibration sites (PICS) for establishing absolute radiometric calibration of Earth observation (EO) satellites requires high-quality information about the nature of the bidirectional reflectance distribution function (BRDF) of the surfaces used for these calibrations. Past studies have shown that the PICS method is useful for evaluating the trend of sensors over time or for the intercalibration of sensors. The PICS method was not considered until recently for deriving absolute radiometric calibration. This paper presents BRDF data collected by a high-performance portable goniometer system to develop a temporal BRDF model for the Algodones Dunes in California. By sampling the BRDF of the sand surface at similar solar zenith angles to those normally encountered by EO satellites, additional information on the changing nature of the surface can improve models used to provide absolute radiometric correction. The results demonstrated that the BRDF of a reasonably simple sand surface was complex with changes in anisotropy taking place in response to changing solar zenith angles. For the majority of observation and illumination angles, the spectral reflectance anisotropy observed varied between 1% and 5% in patterns that repeat around solar noon.

  12. Near threshold absolute TDCS: First results

    International Nuclear Information System (INIS)

    Roesel, T.; Schlemmer, P.; Roeder, J.; Frost, L.; Jung, K.; Ehrhardt, H.

    1992-01-01

    A new method, and first results for an impact energy 2 eV above the threshold of ionisation of helium, are presented for the measurement of absolute triple differential cross sections (TDCS) in a crossed beam experiment. The method is based upon measurement of beam/target overlap densities using known absolute total ionisation cross sections and of detection efficiencies using known absolute double differential cross sections (DDCS). For the present work the necessary absolute DDCS for 1 eV electrons had also to be measured. Results are presented for several different coplanar kinematics and are compared with recent DWBA calculations. (orig.)

  13. Absolute entropy of ions in methanol

    International Nuclear Information System (INIS)

    Abakshin, V.A.; Kobenin, V.A.; Krestov, G.A.

    1978-01-01

    By measuring the initial thermoelectromotive forces of chains with bromo-silver electrodes in tetraalkylammonium bromide solutions the absolute entropy of bromide-ion in methanol is determined in the 298.15-318.15 K range. The anti Ssub(Brsup(-))sup(0) = 9.8 entropy units value is used for calculation of the absolute partial molar entropy of alkali metal ions and halogenide ions. It has been found that, absolute entropy of Cs + =12.0 entropy units, I - =14.0 entropy units. The obtained ion absolute entropies in methanol at 298.15 K within 1-2 entropy units is in an agreement with published data

  14. Spectral BRDF measurements of metallic samples for laser processing applications

    International Nuclear Information System (INIS)

    Vitali, L; Fustinoni, D; Gramazio, P; Niro, A

    2015-01-01

    The spectral bidirectional reflectance distribution function (BRDF) of metals plays an important role in industrial processing involving laser-surface interaction. In particular, in laser metal machining, absorbance is strongly dependent on the radiation incidence angle as well as on finishing and contamination grade of the surface, and in turn it can considerably affect processing results. Very recently, laser radiation is also used to structure metallic surfaces, in order to produce many particular optical effects, ranging from a high level polishing to angular color shifting. Of course, full knowledge of the spectral BRDF of these structured layers makes it possible to infer reflectance or color for any irradiation and viewing angles. In this paper, we present Vis-NIR spectral BRDF measurements of laser-polished metallic, opaque, flat samples commonly employed in such applications. The resulting optical properties seem to be dependent on the atmospheric composition during the polishing process in addition to the roughness. The measurements are carried out with a Perkin Elmer Lambda 950 double-beam spectrophotometer, equipped with the Absolute Reflectance/Transmittance Analyzer (ARTA) motorized goniometer. (paper)

  15. ARM Climate Research Facility Spectral Surface Albedo Value-Added Product (VAP) Report

    Energy Technology Data Exchange (ETDEWEB)

    McFarlane, S; Gaustad, K; Long, C; Mlawer, E

    2011-07-15

    This document describes the input requirements, output data products, and methodology for the Spectral Surface Albedo (SURFSPECALB) value-added product (VAP). The SURFSPECALB VAP produces a best-estimate near-continuous high spectral resolution albedo data product using measurements from multifilter radiometers (MFRs). The VAP first identifies best estimates for the MFR downwelling and upwelling shortwave irradiance values, and then calculates narrowband spectral albedo from these best-estimate irradiance values. The methodology for finding the best-estimate values is based on a simple process of screening suspect data and backfilling screened and missing data with estimated values when possible. The resulting best-estimate MFR narrowband spectral albedos are used to determine a daily surface type (snow, 100% vegetation, partial vegetation, or 0% vegetation). For non-snow surfaces, a piecewise continuous function is used to estimate a high spectral resolution albedo at 1 min temporal and 10 cm-1 spectral resolution.

  16. Continuous alcoholic fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Smidrkal, M; Nejedly, A

    1956-01-01

    Results are given of investigations on the continuous production of ethanol on a laboratory and on a semi-commercial scale. The suggested devices are particularly described. Under constant conditions the production cycle required 12 to 17 days, the acidity being 4.0 to 415 ml. 0.1 N NaOH/100 ml and the concentration of fermented wort 10.5 to 11%. The maximum production from 1 h of fermentation space during 24 h was 8.67 l of absolute alcohol when the efflux was divided into several basins; when the efflux of sweet wort was collected into one basin only, the maximum production was 7.20 l of absolute alcohol. The amount of alcohol produced was 62.20 l/100 kg sugar.

  17. Projective absoluteness for Sacks forcing

    NARCIS (Netherlands)

    Ikegami, D.

    2009-01-01

    We show that Sigma(1)(3)-absoluteness for Sacks forcing is equivalent to the nonexistence of a Delta(1)(2) Bernstein set. We also show that Sacks forcing is the weakest forcing notion among all of the preorders that add a new real with respect to Sigma(1)(3) forcing absoluteness.

  18. Forecasting Error Calculation with Mean Absolute Deviation and Mean Absolute Percentage Error

    Science.gov (United States)

    Khair, Ummul; Fahmi, Hasanul; Hakim, Sarudin Al; Rahim, Robbi

    2017-12-01

    Prediction using a forecasting method is one of the most important things for an organization, the selection of appropriate forecasting methods is also important but the percentage error of a method is more important in order for decision makers to adopt the right culture, the use of the Mean Absolute Deviation and Mean Absolute Percentage Error to calculate the percentage of mistakes in the least square method resulted in a percentage of 9.77% and it was decided that the least square method be worked for time series and trend data.

  19. Implementation and development of methods for quantification of cerebral blood flow in absolute units using single Photon Emission Tomography (SPECT)

    International Nuclear Information System (INIS)

    Diaz Moreno, Rogelio Manuel; Sanchez Catasus, Carlos; Aguila Ruiz, Angel; Samper, J; Llibre, J.

    2007-01-01

    The aim of this work was to implement the graphical and spectral methods of quantification of cerebral blood flow in absolute units with Single photon emission computered tomography and compare the results of its application. Also, a third method was developed to calculate blood flow, modifying the spectral method. The obtained flow values were 43.6 + 6.1 ml/min/100 g; 43.3+ 8.2 ml/min/100 g and 43.0+4.7 ml/min/100 g, respectively. We conclude that these methods are easy, non invasive and can be made in our country's technological conditions. The main innovation in this work was the modification of the spectral method, with which it is possible to avoid some of the difficulties arisen in the other methods. Also, the use of the software allows high reproducibility and efficiency on the process. These methods can become a valuable tool to enhance clinical diagnosis and important biomedical research. (Author)

  20. Absolute Radiometric Calibration of the GÖKTÜRK-2 Satellite Sensor Using Tuz GÖLÜ (landnet Site) from Ndvi Perspective

    Science.gov (United States)

    Sakarya, Ufuk; Hakkı Demirhan, İsmail; Seda Deveci, Hüsne; Teke, Mustafa; Demirkesen, Can; Küpçü, Ramazan; Feray Öztoprak, A.; Efendioğlu, Mehmet; Fehmi Şimşek, F.; Berke, Erdinç; Zübeyde Gürbüz, Sevgi

    2016-06-01

    TÜBİTAK UZAY has conducted a research study on the use of space-based satellite resources for several aspects of agriculture. Especially, there are two precision agriculture related projects: HASSAS (Widespread application of sustainable precision agriculture practices in Southeastern Anatolia Project Region (GAP) Project) and AKTAR (Smart Agriculture Feasibility Project). The HASSAS project aims to study development of precision agriculture practice in GAP region. Multi-spectral satellite imagery and aerial hyperspectral data along with ground measurements was collected to analyze data in an information system. AKTAR aims to develop models for irrigation, fertilization and spectral signatures of crops in Inner Anatolia. By the end of the project precision agriculture practices to control irrigation, fertilization, pesticide and estimation of crop yield will be developed. Analyzing the phenology of crops using NDVI is critical for the projects. For this reason, absolute radiometric calibration of the Red and NIR bands in space-based satellite sensors is an important issue. The Göktürk-2 satellite is an earth observation satellite which was designed and built in Turkey and was launched in 2012. The Göktürk-2 satellite sensor has a resolution 2.5 meters in panchromatic and 5 meters in R/G/B/NIR bands. The absolute radiometric calibration of the Göktürk-2 satellite sensor was performed via the ground-based measurements - spectra-radiometer, sun photometer, and meteorological station- in Tuz Gölü cal/val site in 2015. In this paper, the first ground-based absolute radiometric calibration results of the Göktürk-2 satellite sensor using Tuz Gölü is demonstrated. The absolute radiometric calibration results of this paper are compared with the published cross-calibration results of the Göktürk-2 satellite sensor utilizing Landsat 8 imagery. According to the experimental comparison results, the Göktürk-2 satellite sensor coefficients for red and NIR bands

  1. ABSOLUTE RADIOMETRIC CALIBRATION OF THE GÖKTÜRK-2 SATELLITE SENSOR USING TUZ GÖLÜ (LANDNET SITE FROM NDVI PERSPECTIVE

    Directory of Open Access Journals (Sweden)

    U. Sakarya

    2016-06-01

    Full Text Available TÜBİTAK UZAY has conducted a research study on the use of space-based satellite resources for several aspects of agriculture. Especially, there are two precision agriculture related projects: HASSAS (Widespread application of sustainable precision agriculture practices in Southeastern Anatolia Project Region (GAP Project and AKTAR (Smart Agriculture Feasibility Project. The HASSAS project aims to study development of precision agriculture practice in GAP region. Multi-spectral satellite imagery and aerial hyperspectral data along with ground measurements was collected to analyze data in an information system. AKTAR aims to develop models for irrigation, fertilization and spectral signatures of crops in Inner Anatolia. By the end of the project precision agriculture practices to control irrigation, fertilization, pesticide and estimation of crop yield will be developed. Analyzing the phenology of crops using NDVI is critical for the projects. For this reason, absolute radiometric calibration of the Red and NIR bands in space-based satellite sensors is an important issue. The Göktürk-2 satellite is an earth observation satellite which was designed and built in Turkey and was launched in 2012. The Göktürk-2 satellite sensor has a resolution 2.5 meters in panchromatic and 5 meters in R/G/B/NIR bands. The absolute radiometric calibration of the Göktürk-2 satellite sensor was performed via the ground-based measurements - spectra-radiometer, sun photometer, and meteorological station- in Tuz Gölü cal/val site in 2015. In this paper, the first ground-based absolute radiometric calibration results of the Göktürk-2 satellite sensor using Tuz Gölü is demonstrated. The absolute radiometric calibration results of this paper are compared with the published cross-calibration results of the Göktürk-2 satellite sensor utilizing Landsat 8 imagery. According to the experimental comparison results, the Göktürk-2 satellite sensor coefficients for

  2. Experimental benchmark for an improved simulation of absolute soft-X-ray emission from polystyrene targets irradiated with the Nike laser

    International Nuclear Information System (INIS)

    Weaver, J.L.; Colombant, D.G.; Mostovych, A.N.; Busquet, M.; Feldman, U.; Klapisch, M.; Seely, J.F.; Brown, C.; Holland, G.

    2005-01-01

    Absolutely calibrated, time-resolved spectral intensity measurements of soft-x-ray emission (hν∼0.1-1.0 keV) from laser-irradiated polystyrene targets are compared to radiation-hydrodynamic simulations that include our new postprocessor, Virtual Spectro. This new capability allows a unified, detailed treatment of atomic physics and radiative transfer in nonlocal thermodynamic equilibrium conditions for simple spectra from low-Z materials as well as complex spectra from high-Z materials. The excellent agreement (within a factor of ∼1.5) demonstrates the powerful predictive capability of the codes for the complex conditions in the ablating plasma. A comparison to data with high spectral resolution (E/δE∼1000) emphasizes the importance of including radiation coupling in the quantitative simulation of emission spectra

  3. Experimental benchmark for an improved simulation of absolute soft-x-ray emission from polystyrene targets irradiated with the Nike laser.

    Science.gov (United States)

    Weaver, J L; Busquet, M; Colombant, D G; Mostovych, A N; Feldman, U; Klapisch, M; Seely, J F; Brown, C; Holland, G

    2005-02-04

    Absolutely calibrated, time-resolved spectral intensity measurements of soft-x-ray emission (hnu approximately 0.1-1.0 keV) from laser-irradiated polystyrene targets are compared to radiation-hydrodynamic simulations that include our new postprocessor, Virtual Spectro. This new capability allows a unified, detailed treatment of atomic physics and radiative transfer in nonlocal thermodynamic equilibrium conditions for simple spectra from low-Z materials as well as complex spectra from high-Z materials. The excellent agreement (within a factor of approximately 1.5) demonstrates the powerful predictive capability of the codes for the complex conditions in the ablating plasma. A comparison to data with high spectral resolution (E/deltaE approximately 1000) emphasizes the importance of including radiation coupling in the quantitative simulation of emission spectra.

  4. Performance of Different Light Sources for the Absolute Calibration of Radiation Thermometers

    Science.gov (United States)

    Martín, M. J.; Mantilla, J. M.; del Campo, D.; Hernanz, M. L.; Pons, A.; Campos, J.

    2017-09-01

    The evolving mise en pratique for the definition of the kelvin (MeP-K) [1, 2] will, in its forthcoming edition, encourage the realization and dissemination of the thermodynamic temperature either directly (primary thermometry) or indirectly (relative primary thermometry) via fixed points with assigned reference thermodynamic temperatures. In the last years, the Centro Español de Metrología (CEM), in collaboration with the Instituto de Óptica of Consejo Superior de Investigaciones Científicas (IO-CSIC), has developed several setups for absolute calibration of standard radiation thermometers using the radiance method to allow CEM the direct dissemination of the thermodynamic temperature and the assignment of the thermodynamic temperatures to several fixed points. Different calibration facilities based on a monochromator and/or a laser and an integrating sphere have been developed to calibrate CEM's standard radiation thermometers (KE-LP2 and KE-LP4) and filter radiometer (FIRA2). This system is based on the one described in [3] placed in IO-CSIC. Different light sources have been tried and tested for measuring absolute spectral radiance responsivity: a Xe-Hg 500 W lamp, a supercontinuum laser NKT SuperK-EXR20 and a diode laser emitting at 6473 nm with a typical maximum power of 120 mW. Their advantages and disadvantages have been studied such as sensitivity to interferences generated by the laser inside the filter, flux stability generated by the radiant sources and so forth. This paper describes the setups used, the uncertainty budgets and the results obtained for the absolute temperatures of Cu, Co-C, Pt-C and Re-C fixed points, measured with the three thermometers with central wavelengths around 650 nm.

  5. The stars: an absolute radiometric reference for the on-orbit calibration of PLEIADES-HR satellites

    Science.gov (United States)

    Meygret, Aimé; Blanchet, Gwendoline; Mounier, Flore; Buil, Christian

    2017-09-01

    The accurate on-orbit radiometric calibration of optical sensors has become a challenge for space agencies who gather their effort through international working groups such as CEOS/WGCV or GSICS with the objective to insure the consistency of space measurements and to reach an absolute accuracy compatible with more and more demanding scientific needs. Different targets are traditionally used for calibration depending on the sensor or spacecraft specificities: from on-board calibration systems to ground targets, they all take advantage of our capacity to characterize and model them. But achieving the in-flight stability of a diffuser panel is always a challenge while the calibration over ground targets is often limited by their BDRF characterization and the atmosphere variability. Thanks to their agility, some satellites have the capability to view extra-terrestrial targets such as the moon or stars. The moon is widely used for calibration and its albedo is known through ROLO (RObotic Lunar Observatory) USGS model but with a poor absolute accuracy limiting its use to sensor drift monitoring or cross-calibration. Although the spectral irradiance of some stars is known with a very high accuracy, it was not really shown that they could provide an absolute reference for remote sensors calibration. This paper shows that high resolution optical sensors can be calibrated with a high absolute accuracy using stars. The agile-body PLEIADES 1A satellite is used for this demonstration. The star based calibration principle is described and the results are provided for different stars, each one being acquired several times. These results are compared to the official calibration provided by ground targets and the main error contributors are discussed.

  6. Evaluation of spectral libraries and sample preparation for DIA-LC-MS analysis of host cell proteins

    DEFF Research Database (Denmark)

    Heissel, Søren; Bunkenborg, Jakob; Kristiansen, Max Per

    2018-01-01

    in the field of tuberculosis and has not previously been studied by LC-MS. The developed method and acquired experiences served to develop a generalized strategy for HCP-characterization in our laboratory. We evaluated the use of different spectral libraries, recorded in data-dependent mode for obtaining...... the highest HCP coverage, combined with SWATH-based absolute quantification. The accuracy of two label-free absolute quantification strategies was evaluated using stable isotope peptides. Two different sample preparation workflows were evaluated for optimal HCP yield. . The label-free strategy produced...... accurate quantification across several orders of magnitude, and the calculated purity was found to be in agreement with previously obtained ELISA data....

  7. Variance computations for functional of absolute risk estimates.

    Science.gov (United States)

    Pfeiffer, R M; Petracci, E

    2011-07-01

    We present a simple influence function based approach to compute the variances of estimates of absolute risk and functions of absolute risk. We apply this approach to criteria that assess the impact of changes in the risk factor distribution on absolute risk for an individual and at the population level. As an illustration we use an absolute risk prediction model for breast cancer that includes modifiable risk factors in addition to standard breast cancer risk factors. Influence function based variance estimates for absolute risk and the criteria are compared to bootstrap variance estimates.

  8. Absolute determination of the deuterium content of heavy water, measurement of absolute density

    International Nuclear Information System (INIS)

    Ceccaldi, M.; Riedinger, M.; Menache, M.

    1975-01-01

    The absolute density of two heavy water samples rich in deuterium (with a grade higher than 99.9%) was determined with the hydrostatic method. The exact isotopic composition of this water (hydrogen and oxygen isotopes) was very carefully studied. A theoretical estimate enabled us to get the absolute density value of isotopically pure D 2 16 O. This value was found to be 1104.750 kg.m -3 at t 68 =22.3 0 C and under the pressure of one atmosphere. (orig.) [de

  9. Absolute coronary blood flow measurement and microvascular resistance in ST-elevation myocardial infarction in the acute and subacute phase

    Energy Technology Data Exchange (ETDEWEB)

    Wijnbergen, Inge; Veer, Marcel van ' t [Department of Cardiology, Catharina Hospital, Eindhoven (Netherlands); Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven (Netherlands); Lammers, Jeroen; Ubachs, Joey [Department of Cardiology, Catharina Hospital, Eindhoven (Netherlands); Pijls, Nico H.J., E-mail: nico.pijls@cze.nl [Department of Cardiology, Catharina Hospital, Eindhoven (Netherlands); Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven (Netherlands)

    2016-03-15

    Background/Purpose: In a number of patients with acute myocardial infarction (AMI), myocardial hypoperfusion, known as the no-reflow phenomenon, persists after primary percutaneous intervention (PPCI). The aim of this study was to evaluate the feasibility and safety of a new quantitative method of measuring absolute blood flow and resistance within the perfusion bed of an infarct-related artery. Furthermore, we sought to study no-reflow by correlating these measurements to the index of microvascular resistance (IMR) and the area at risk (AR) as determined by cardiac magnetic resonance imaging (CMR). Methods: Measurements of absolute flow and myocardial resistance were performed in 20 patients with ST-segment elevation myocardial infarction (STEMI), first immediately following PPCI and then again after 3–5 days. These measurements used the technique of thermodilution during a continuous infusion of saline. Flow was expressed in ml/min per gram of tissue within the area at risk. Results: The average time needed for measurement of absolute flow, resistance and IMR was 20 min, and all measurements could be performed without complication. A higher flow supplying the AR correlated with a lower IMR in the acute phase. Absolute flow increased from 3.14 to 3.68 ml/min/g (p = 0.25) and absolute resistance decreased from 1317 to 1099 dyne.sec.cm-5/g (p = 0.40) between the first day and fifth day after STEMI. Conclusions: Measurement of absolute flow and microvascular resistance is safe and feasible in STEMI patients and may allow for a better understanding of microvascular (dys)function in the early phase of AMI. - Highlights: • We measured absolute coronary blood flow and microvascular resistance in STEMI patients in the acute phase and in the subacute phase, using the technique of thermodilution with low grade intracoronary continuous infusion of saline. • These measurements are safe and feasible during PPCI in STEMI patients. • In STEMI patients, absolute flow

  10. The absolute environmental performance of buildings

    DEFF Research Database (Denmark)

    Brejnrod, Kathrine Nykjær; Kalbar, Pradip; Petersen, Steffen

    2017-01-01

    Our paper presents a novel approach for absolute sustainability assessment of a building's environmental performance. It is demonstrated how the absolute sustainable share of the earth carrying capacity of a specific building type can be estimated using carrying capacity based normalization factors....... A building is considered absolute sustainable if its annual environmental burden is less than its share of the earth environmental carrying capacity. Two case buildings – a standard house and an upcycled single-family house located in Denmark – were assessed according to this approach and both were found...... to exceed the target values of three (almost four) of the eleven impact categories included in the study. The worst-case excess was for the case building, representing prevalent Danish building practices, which utilized 1563% of the Climate Change carrying capacity. Four paths to reach absolute...

  11. Spectral Processing Analysis System (SPANS).

    Science.gov (United States)

    1980-11-01

    Approximately 750 pounds Temperature Range: 60 - 80 degrees Farenheit Humidity: 40 - 70 percent (relative) Duty Cycle: Continuous Power Requirements: 5 wire, 3...displayed per display frame, local or absolute scaling, number of display points per line and waveform av- A eraging. A typical display is shown in Figure 3...the waveform. In the case of white noise, a high degree of correlation is found at zero lag only with the remaining lags showing little correlation

  12. Absolute Summ

    Science.gov (United States)

    Phillips, Alfred, Jr.

    Summ means the entirety of the multiverse. It seems clear, from the inflation theories of A. Guth and others, that the creation of many universes is plausible. We argue that Absolute cosmological ideas, not unlike those of I. Newton, may be consistent with dynamic multiverse creations. As suggested in W. Heisenberg's uncertainty principle, and with the Anthropic Principle defended by S. Hawking, et al., human consciousness, buttressed by findings of neuroscience, may have to be considered in our models. Predictability, as A. Einstein realized with Invariants and General Relativity, may be required for new ideas to be part of physics. We present here a two postulate model geared to an Absolute Summ. The seedbed of this work is part of Akhnaton's philosophy (see S. Freud, Moses and Monotheism). Most important, however, is that the structure of human consciousness, manifest in Kenya's Rift Valley 200,000 years ago as Homo sapiens, who were the culmination of the six million year co-creation process of Hominins and Nature in Africa, allows us to do the physics that we do. .

  13. Absolute flux scale for radioastronomy

    International Nuclear Information System (INIS)

    Ivanov, V.P.; Stankevich, K.S.

    1986-01-01

    The authors propose and provide support for a new absolute flux scale for radio astronomy, which is not encumbered with the inadequacies of the previous scales. In constructing it the method of relative spectra was used (a powerful tool for choosing reference spectra). A review is given of previous flux scales. The authors compare the AIS scale with the scale they propose. Both scales are based on absolute measurements by the ''artificial moon'' method, and they are practically coincident in the range from 0.96 to 6 GHz. At frequencies above 6 GHz, 0.96 GHz, the AIS scale is overestimated because of incorrect extrapolation of the spectra of the primary and secondary standards. The major results which have emerged from this review of absolute scales in radio astronomy are summarized

  14. A global algorithm for estimating Absolute Salinity

    Science.gov (United States)

    McDougall, T. J.; Jackett, D. R.; Millero, F. J.; Pawlowicz, R.; Barker, P. M.

    2012-12-01

    The International Thermodynamic Equation of Seawater - 2010 has defined the thermodynamic properties of seawater in terms of a new salinity variable, Absolute Salinity, which takes into account the spatial variation of the composition of seawater. Absolute Salinity more accurately reflects the effects of the dissolved material in seawater on the thermodynamic properties (particularly density) than does Practical Salinity. When a seawater sample has standard composition (i.e. the ratios of the constituents of sea salt are the same as those of surface water of the North Atlantic), Practical Salinity can be used to accurately evaluate the thermodynamic properties of seawater. When seawater is not of standard composition, Practical Salinity alone is not sufficient and the Absolute Salinity Anomaly needs to be estimated; this anomaly is as large as 0.025 g kg-1 in the northernmost North Pacific. Here we provide an algorithm for estimating Absolute Salinity Anomaly for any location (x, y, p) in the world ocean. To develop this algorithm, we used the Absolute Salinity Anomaly that is found by comparing the density calculated from Practical Salinity to the density measured in the laboratory. These estimates of Absolute Salinity Anomaly however are limited to the number of available observations (namely 811). In order to provide a practical method that can be used at any location in the world ocean, we take advantage of approximate relationships between Absolute Salinity Anomaly and silicate concentrations (which are available globally).

  15. Spectral functions from Quantum Monte Carlo

    International Nuclear Information System (INIS)

    Silver, R.N.

    1989-01-01

    In his review, D. Scalapino identified two serious limitations on the application of Quantum Monte Carlo (QMC) methods to the models of interest in High T c Superconductivity (HTS). One is the ''sign problem''. The other is the ''analytic continuation problem'', which is how to extract electron spectral functions from QMC calculations of the imaginary time Green's functions. Through-out this Symposium on HTS, the spectral functions have been the focus for the discussion of normal state properties including the applicability of band theory, Fermi liquid theory, marginal Fermi liquids, and novel non-perturbative states. 5 refs., 1 fig

  16. Spectral gamuts and spectral gamut mapping

    Science.gov (United States)

    Rosen, Mitchell R.; Derhak, Maxim W.

    2006-01-01

    All imaging devices have two gamuts: the stimulus gamut and the response gamut. The response gamut of a print engine is typically described in CIE colorimetry units, a system derived to quantify human color response. More fundamental than colorimetric gamuts are spectral gamuts, based on radiance, reflectance or transmittance units. Spectral gamuts depend on the physics of light or on how materials interact with light and do not involve the human's photoreceptor integration or brain processing. Methods for visualizing a spectral gamut raise challenges as do considerations of how to utilize such a data-set for producing superior color reproductions. Recent work has described a transformation of spectra reduced to 6-dimensions called LabPQR. LabPQR was designed as a hybrid space with three explicit colorimetric axes and three additional spectral reconstruction axes. In this paper spectral gamuts are discussed making use of LabPQR. Also, spectral gamut mapping is considered in light of the colorimetric-spectral duality of the LabPQR space.

  17. A global algorithm for estimating Absolute Salinity

    Directory of Open Access Journals (Sweden)

    T. J. McDougall

    2012-12-01

    Full Text Available The International Thermodynamic Equation of Seawater – 2010 has defined the thermodynamic properties of seawater in terms of a new salinity variable, Absolute Salinity, which takes into account the spatial variation of the composition of seawater. Absolute Salinity more accurately reflects the effects of the dissolved material in seawater on the thermodynamic properties (particularly density than does Practical Salinity.

    When a seawater sample has standard composition (i.e. the ratios of the constituents of sea salt are the same as those of surface water of the North Atlantic, Practical Salinity can be used to accurately evaluate the thermodynamic properties of seawater. When seawater is not of standard composition, Practical Salinity alone is not sufficient and the Absolute Salinity Anomaly needs to be estimated; this anomaly is as large as 0.025 g kg−1 in the northernmost North Pacific. Here we provide an algorithm for estimating Absolute Salinity Anomaly for any location (x, y, p in the world ocean.

    To develop this algorithm, we used the Absolute Salinity Anomaly that is found by comparing the density calculated from Practical Salinity to the density measured in the laboratory. These estimates of Absolute Salinity Anomaly however are limited to the number of available observations (namely 811. In order to provide a practical method that can be used at any location in the world ocean, we take advantage of approximate relationships between Absolute Salinity Anomaly and silicate concentrations (which are available globally.

  18. FUNDAMENTAL PARAMETERS AND SPECTRAL ENERGY DISTRIBUTIONS OF YOUNG AND FIELD AGE OBJECTS WITH MASSES SPANNING THE STELLAR TO PLANETARY REGIME

    Energy Technology Data Exchange (ETDEWEB)

    Filippazzo, Joseph C.; Rice, Emily L. [Department of Engineering Science and Physics, College of Staten Island, City University of New York, 2800 Victory Blvd, Staten Island, NY 10314 (United States); Faherty, Jacqueline; Cruz, Kelle L. [Department of Astrophysics, American Museum of Natural History, New York, NY 10024 (United States); Van Gordon, Mollie M. [Department of Geography, University of California, Berkeley, CA 94720 (United States); Looper, Dagny L. [Tisch School of the Arts, New York University, New York, NY 10003 (United States)

    2015-09-10

    We combine optical, near-infrared, and mid-infrared spectra and photometry to construct expanded spectral energy distributions for 145 field age (>500 Myr) and 53 young (lower age estimate <500 Myr) ultracool dwarfs (M6-T9). This range of spectral types includes very low mass stars, brown dwarfs, and planetary mass objects, providing fundamental parameters across both the hydrogen and deuterium burning minimum masses for the largest sample assembled to date. A subsample of 29 objects have well constrained ages as probable members of a nearby young moving group. We use 182 parallaxes and 16 kinematic distances to determine precise bolometric luminosities (L{sub bol}) and radius estimates from evolutionary models give semi-empirical effective temperatures (T{sub eff}) for the full range of young and field age late-M, L, and T dwarfs. We construct age-sensitive relationships of luminosity, temperature, and absolute magnitude as functions of spectral type and absolute magnitude to disentangle the effects of degenerate physical parameters such as T{sub eff}, surface gravity, and clouds on spectral morphology. We report bolometric corrections in J for both field age and young objects and find differences of up to a magnitude for late-L dwarfs. Our correction in Ks shows a larger dispersion but not necessarily a different relationship for young and field age sequences. We also characterize the NIR–MIR reddening of low gravity L dwarfs and identify a systematically cooler T{sub eff} of up to 300 K from field age objects of the same spectral type and 400 K cooler from field age objects of the same M{sub H} magnitude.

  19. Creation of tunable absolute bandgaps in a two-dimensional anisotropic photonic crystal modulated by a nematic liquid crystal

    International Nuclear Information System (INIS)

    Liu Chenyang

    2008-01-01

    Photonic crystals (PCs) have many potential applications because of their ability to control light-wave propagation. We have investigated the tunable absolute bandgap in a two-dimensional anisotropic photonic crystal structures modulated by a nematic liquid crystal. The PC structure composed of an anisotropic-dielectric cylinder in the liquid crystal medium is studied by solving Maxwell's equations using the plane wave expansion method. The photonic band structures are found to exhibit absolute bandgaps for the square and triangular lattices. Numerical simulations show that the absolute bandgaps can be continuously tuned in the square and triangular lattices consisting of anisotropic-dielectric cylinders by infiltrating nematic liquid crystals. Such a mechanism of bandgap adjustment should open up a new application for designing components in photonic integrated circuits

  20. Spectral decomposition of MR spectroscopy signatures with use of eigenanalysis

    International Nuclear Information System (INIS)

    Hearshen, D.O.; Windham, J.P.; Roebuck, J.R.; Helpern, J.A.

    1989-01-01

    Partial-volume contamination and overlapping resonances are common problems in whole-body MR spectroscopy and can affect absolute or relative intensity and chemical-shift measurements. One technique, based on solution of constrained eigenvalue problems, treats spectra as N-dimensional signatures and minimizes contributions of undesired signatures while maximizing contributions of desired signatures in compromised spectra. Computer simulations and both high-resolution (400-MHz) and whole-body (63.8-MHz) phantom studies tested accuracy and reproducibility of spectral decomposition. Results demonstrated excellent decomposition and good reproducibility within certain constraints. The authors conclude that eigenanalysis may improve quantitation of spectra without introducing operator bias

  1. Spectral modeling of laser-produced underdense titanium plasmas

    Science.gov (United States)

    Chung, Hyun-Kyung; Back, Christina A.; Scott, Howard A.; Constantin, Carmen; Lee, Richard W.

    2004-11-01

    Experiments were performed at the NIKE laser to create underdense low-Z plasmas with a small amount of high-Z dopant in order to study non-LTE population kinetics. An absolutely calibrated spectra in 470-3000 eV was measured in time-resolved and time-averaged fashion from SiO2 aerogel target with 3% Ti dopant. K-shell Ti emission was observed as well as L-shell Ti emission. Time-resolved emission show that lower energy photons peak later than higher energy photons due to plasma cooling. In this work, we compare the measured spectra with non-LTE spectral calculations of titanium emission at relatively low temperatures distributions dominated by L-shell ions will be discussed.

  2. Spectral dependence efficiency and localization of non-inductive current-drive via helicity injection by global Alfven waves in Tokamak plasmas

    International Nuclear Information System (INIS)

    Komoshvili, K.; Cuperman, S.; Bruma, C.

    1996-01-01

    The non-inductive current drive via helicity injection by Global Alfven eigenmode (GAE) waves is studied. For illustration, the first radial mode of the discrete resonant GAE spectrum is considered. The following aspects are given special attention: spectral analysis, radial dependence and efficiency - all these as functions of the characteristics of the waves launched by an external, concentric antenna (i.e, wave frequency and poloidal and toroidal wave numbers). The results reveal the following conclusions. Generation of GAE waves. In the range of poloidal wave numbers -3 0 for m = -l, -2, -3 and -20 10; I-BAR < 0 for m = +1, +2, +3 and n < 10. (iv) The efficiency of the current drive, η = absolute I-BAR/absolute P-BAR, increases in the cases m = -1, -2, -3 with absolute m and absolute 1/n. (v) Detailed information on the relative direction and radial (core) localization of the current drive is obtained. (authors)

  3. Electrophysiological measurements of spectral sensitivities: a review

    Directory of Open Access Journals (Sweden)

    R.D. DeVoe

    1997-02-01

    Full Text Available Spectral sensitivities of visual systems are specified as the reciprocals of the intensities of light (quantum fluxes needed at each wavelength to elicit the same criterion amplitude of responses. This review primarily considers the methods that have been developed for electrophysiological determinations of criterion amplitudes of slow-wave responses from single retinal cells. Traditional flash methods can require tedious dark adaptations and may yield erroneous spectral sensitivity curves which are not seen in such modifications as ramp methods. Linear response methods involve interferometry, while constant response methods involve manual or automatic adjustments of continuous illumination to keep response amplitudes constant during spectral scans. In DC or AC computerized constant response methods, feedback to determine intensities at each wavelength is derived from the response amplitudes themselves. Although all but traditional flash methods have greater or lesser abilities to provide on-line determinations of spectral sensitivities, computerized constant response methods are the most satisfactory due to flexibility, speed and maintenance of a constant adaptation level

  4. The new Absolute Quantum Gravimeter (AQG): first results and perspectives

    Science.gov (United States)

    Bonvalot, Sylvain; Le Moigne, Nicolas; Merlet, Sebastien; Desruelle, Bruno; Lautier-Gaud, Jean; Menoret, Vincent; Vermeulen, Pierre

    2016-04-01

    Cold atom gravimetry represents one of the most innovative evolution in gravity instrumentation since the last 20 years. The concept of measuring the gravitational acceleration by dropping atoms and the development of the first instrumental devices during this last decade quickly revealed the promising perspectives of this new generation of gravity meters enabling accurate and absolute measurements of the Earth's gravity field for a wide range of applications (geophysics, geodesy, metrology, etc.). The Absolute Quantum Gravimeter (AQG) gravity meter, developed by MUQUANS (Talence, France - http://www.muquans.com/) with the support of RESIF, the French Seismologic and Geodetic Network (http://www.resif.fr/) belongs to this new generation of instruments. It also represents the first commercial device based on the utilization of advanced matter-wave interferometry techniques, which allow to characterize precisely the vertical acceleration experienced by a cloud of cold atoms. Recently, the first operational unit (AQG01) has been achieved as a compact transportable gravimeter with the aim of satisfying absolute gravity measurements in laboratory conditions under the following specifications: measurements the μGal level at a few Hz cycling frequency, sensitivity of 50μGal/√Hz, immunity to ground vibrations, easy and quickness of operation, automated continuous data acquisition for several months, etc. In order to evaluate the current performances of the AQG01, several experiments are carried out in collaboration between RESIF user's teams and the MUQUANS manufacturer on different reference gravity sites and laboratories in France. These measurements performed in indoor conditions including simultaneous observations with classical reference gravity instruments (corner-cube absolute gravity meters, relative superconducting meters) as well with the Cold Atom Gravity meter (CAG) developed by LNE-SYRTE, lead to a first objective characterization of the performances of

  5. Invariant and Absolute Invariant Means of Double Sequences

    Directory of Open Access Journals (Sweden)

    Abdullah Alotaibi

    2012-01-01

    Full Text Available We examine some properties of the invariant mean, define the concepts of strong σ-convergence and absolute σ-convergence for double sequences, and determine the associated sublinear functionals. We also define the absolute invariant mean through which the space of absolutely σ-convergent double sequences is characterized.

  6. New large-deviation local theorems for sums of independent and identically distributed random vectors when the limit distribution is α-stable

    OpenAIRE

    Nagaev, Alexander; Zaigraev, Alexander

    2005-01-01

    A class of absolutely continuous distributions in Rd is considered. Each distribution belongs to the domain of normal attraction of an α-stable law. The limit law is characterized by a spectral measure which is absolutely continuous with respect to the spherical Lebesgue measure. The large-deviation problem for sums of independent and identically distributed random vectors when the underlying distribution belongs to that class is studied. At the focus of attention are the deviations in the di...

  7. Absolute measurement of a tritium standard

    International Nuclear Information System (INIS)

    Hadzisehovic, M.; Mocilnik, I.; Buraei, K.; Pongrac, S.; Milojevic, A.

    1978-01-01

    For the determination of a tritium absolute activity standard, a method of internal gas counting has been used. The procedure involves water reduction by uranium and zinc further the measurement of the absolute disintegration rate of tritium per unit of the effective volume of the counter by a compensation method. Criteria for the choice of methods and procedures concerning the determination and measurement of gaseous 3 H yield, parameters of gaseous hydrogen, sample mass of HTO and the absolute disintegration rate of tritium are discussed. In order to obtain gaseous sources of 3 H (and 2 H), the same reversible chemical reaction was used, namely, the water - uranium hydride - hydrogen system. This reaction was proved to be quantitative above 500 deg C by measuring the yield of the gas obtained and the absolute activity of an HTO standard. A brief description of the measuring apparatus is given, as well as a critical discussion of the brass counter quality and the possibility of obtaining equal working conditions at the counter ends. (T.G.)

  8. Cryogenic, Absolute, High Pressure Sensor

    Science.gov (United States)

    Chapman, John J. (Inventor); Shams. Qamar A. (Inventor); Powers, William T. (Inventor)

    2001-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  9. A developmental study of latent absolute pitch memory.

    Science.gov (United States)

    Jakubowski, Kelly; Müllensiefen, Daniel; Stewart, Lauren

    2017-03-01

    The ability to recall the absolute pitch level of familiar music (latent absolute pitch memory) is widespread in adults, in contrast to the rare ability to label single pitches without a reference tone (overt absolute pitch memory). The present research investigated the developmental profile of latent absolute pitch (AP) memory and explored individual differences related to this ability. In two experiments, 288 children from 4 to12 years of age performed significantly above chance at recognizing the absolute pitch level of familiar melodies. No age-related improvement or decline, nor effects of musical training, gender, or familiarity with the stimuli were found in regard to latent AP task performance. These findings suggest that latent AP memory is a stable ability that is developed from as early as age 4 and persists into adulthood.

  10. Catheter-Based Measurements of Absolute Coronary Blood Flow and Microvascular Resistance: Feasibility, Safety, and Reproducibility in Humans.

    Science.gov (United States)

    Xaplanteris, Panagiotis; Fournier, Stephane; Keulards, Daniëlle C J; Adjedj, Julien; Ciccarelli, Giovanni; Milkas, Anastasios; Pellicano, Mariano; Van't Veer, Marcel; Barbato, Emanuele; Pijls, Nico H J; De Bruyne, Bernard

    2018-03-01

    The principle of continuous thermodilution can be used to calculate absolute coronary blood flow and microvascular resistance (R). The aim of the study is to explore the safety, feasibility, and reproducibility of coronary blood flow and R measurements as measured by continuous thermodilution in humans. Absolute coronary flow and R can be calculated by thermodilution by infusing saline at room temperature through a dedicated monorail catheter. The temperature of saline as it enters the vessel, the temperature of blood and saline mixed in the distal part of the vessel, and the distal coronary pressure were measured by a pressure/temperature sensor-tipped guidewire. The feasibility and safety of the method were tested in 135 patients who were referred for coronary angiography. No significant adverse events were observed; in 11 (8.1%) patients, bradycardia and concomitant atrioventricular block appeared transiently and were reversed immediately on interruption of the infusion. The reproducibility of measurements was tested in a subgroup of 80 patients (129 arteries). Duplicate measurements had a strong correlation both for coronary blood flow (ρ=0.841, P <0.001; intraclass correlation coefficient=0.89, P <0.001) and R (ρ=0.780, P <0.001; intraclass correlation coefficient=0.89, P <0.001). In Bland-Altman plots, there was no significant bias or asymmetry. Absolute coronary blood flow (in L/min) and R (in mm Hg/L/min or Wood units) can be safely and reproducibly measured with continuous thermodilution. This approach constitutes a new opportunity for the study of the coronary microcirculation. © 2018 American Heart Association, Inc.

  11. A calibration method for the measurement of IR detector spectral responses using a FTIR spectrometer equipped with a DTGS reference cell

    Science.gov (United States)

    Gravrand, Olivier; Wlassow, J.; Bonnefond, L.

    2014-07-01

    transfert function of the DTGS has to be qualified and taken into account. The usual way is to measure it directly by means of an optical shopper and a locking amplifier for different shopping frequencies. We present here an alternative method to estimate this DTGS transfer function, based on the fact that a FTIR continuous scan interfergram contains the different spectral frequencies of interest. Such a calibration method doesn't need a specific setup as it can be performed in standard configuration, playing only with spectrometer parameters. It allows for the precise estimation of detector spectral shapes. However, this measurement is not absolute and the peak response needs therefore to be estimated using a calibrated black body cavity. The method, its results and limits is presented and discussed for a set of different DTGS cells.

  12. Accuracy of flash glucose monitoring and continuous glucose monitoring technologies: Implications for clinical practice.

    Science.gov (United States)

    Ajjan, Ramzi A; Cummings, Michael H; Jennings, Peter; Leelarathna, Lalantha; Rayman, Gerry; Wilmot, Emma G

    2018-02-01

    Continuous glucose monitoring and flash glucose monitoring technologies measure glucose in the interstitial fluid and are increasingly used in diabetes care. Their accuracy, key to effective glycaemic management, is usually measured using the mean absolute relative difference of the interstitial fluid sensor compared to reference blood glucose readings. However, mean absolute relative difference is not standardised and has limitations. This review aims to provide a consensus opinion on assessing accuracy of interstitial fluid glucose sensing technologies. Mean absolute relative difference is influenced by glucose distribution and rate of change; hence, we express caution on the reliability of comparing mean absolute relative difference data from different study systems and conditions. We also review the pitfalls associated with mean absolute relative difference at different glucose levels and explore additional ways of assessing accuracy of interstitial fluid devices. Importantly, much data indicate that current practice of assessing accuracy of different systems based on individualised mean absolute relative difference results has limitations, which have potential clinical implications. Healthcare professionals must understand the factors that influence mean absolute relative difference as a metric for accuracy and look at additional assessments, such as consensus error grid analysis, when evaluating continuous glucose monitoring and flash glucose monitoring systems in diabetes care. This in turn will ensure that management decisions based on interstitial fluid sensor data are both effective and safe.

  13. The Absolute Reflectance and New Calibration Site of the Moon

    Science.gov (United States)

    Wu, Yunzhao; Wang, Zhenchao; Cai, Wei; Lu, Yu

    2018-05-01

    How bright the Moon is forms a simple but fundamental and important question. Although numerous efforts have been made to answer this question such as use of sophisticated electro-optical measurements and suggestions for calibration sites, the answer is still debated. An in situ measurement with a calibration panel on the surface of the Moon is crucial for obtaining the accurate absolute reflectance and resolving the debate. China’s Chang’E-3 (CE-3) “Yutu” rover accomplished this type of measurement using the Visible-Near Infrared Spectrometer (VNIS). The measurements of the VNIS, which were at large emission and phase angles, complement existing measurements for the range of photometric geometry. The in situ reflectance shows that the CE-3 landing site is very dark with an average reflectance of 3.86% in the visible bands. The results are compared with recent mission instruments: the Lunar Reconnaissance Orbiter Camera (LROC) Wide Angle Camera (WAC), the Spectral Profiler (SP) on board the SELENE, the Moon Mineralogy Mapper (M3) on board the Chandrayaan-1, and the Chang’E-1 Interference Imaging Spectrometer (IIM). The differences in the measurements of these instruments are very large and indicate inherent differences in their absolute calibration. The M3 and IIM measurements are smaller than LROC WAC and SP, and the VNIS measurement falls between these two pairs. When using the Moon as a radiance source for the on-orbit calibration of spacecraft instruments, one should be cautious about the data. We propose that the CE-3 landing site, a young and homogeneous surface, should serve as the new calibration site.

  14. X-ray spectral determination by detection of radiation scattered at different angles

    International Nuclear Information System (INIS)

    Barrea, Raul; Mainardi, R.T.

    1987-01-01

    A precise knowledge of the spectral content of an X-ray beam is of fundamental importance in areas such as X-ray fluorescence analysis by absolute methods, radiodiagnosis, radiotherapy, computed tomography, etc. A simple practical method was developed to determine X-ray spectra emitted by X-ray tubes. It is based on the scattering of the beam on a solid target and detection of this radiation at different angles. This methodology can easily be adapted to the successive attenuation of the beam procedure. Numerical parameter values of a proposed analytical function for the energy spectrum are found measuring the radiation intensity with a suitable detector (ionization chamber or plastic scintillation detector) and equating it with the convolution integral of the proposed spectrum with the incoherent scattering function. This procedure of spectra determination is enclosed in the same group of those generically referred as successive modifications of the irradiation set up used in absolute methods of X-ray fluorescence analysis. (Author) [es

  15. Ratioing methods for in-flight response calibration of space-based spectro-radiometers, operating in the solar spectral region

    Science.gov (United States)

    Lobb, Dan

    2017-11-01

    One of the most significant problems for space-based spectro-radiometer systems, observing Earth from space in the solar spectral band (UV through short-wave IR), is in achievement of the required absolute radiometric accuracy. Classical methods, for example using one or more sun-illuminated diffusers as reflectance standards, do not generally provide methods for monitoring degradation of the in-flight reference after pre-flight characterisation. Ratioing methods have been proposed that provide monitoring of degradation of solar attenuators in flight, thus in principle allowing much higher confidence in absolute response calibration. Two example methods are described. It is shown that systems can be designed for relatively low size and without significant additions to the complexity of flight hardware.

  16. Correction of spectral and temporal phases for ultra-intense lasers; Correction des phases spectrale et temporelle pour les lasers ultra-intenses

    Energy Technology Data Exchange (ETDEWEB)

    Salmon, E

    2000-12-15

    The discovery of new regimes of interaction between laser and matter requires to produce laser pulses presenting higher luminous flux density. The only solutions that allow us to reach important power (about ten peta-watts) imply the correction of non-linear effects before compressing the laser pulse so that we do not transfer the phase modulation to the amplitude modulation. The aim of this work is the correction of the spectral phase through the modulation of the temporal phase. The first chapter is dedicated to the review of the physical phenomena involved in the interaction of ultra-intense laser pulse with matter. The peta-watt laser operating on the LIL (integrated laser line), the prototype line of the Megajoule Laser, is described in the second chapter. The third chapter presents the method used and optimized for getting an absolute measurement of the spectral phase in our experimental configuration. The fourth chapter details the analogy existing between the spatial domain and the temporal domain particularly between diffraction and dispersion. This analogy has allowed us to benefit from the knowledge cumulated in the spatial domain, particularly the treatment of the aberrations and their impact on the focal spot and to use it in the temporal domain. The principle of the phase correction is exposed in the fifth chapter. We have formalized the correspondence of the phase modulation between temporal domain and the spectral domain for strongly stretched pulses. In this way a modulation of the temporal phase is turned into a modulation of the spectral phase. All the measurements concerning phases and modulation spectral phase correction are presented in the sixth chapter. In the last chapter we propose an extension of the temporal phase correction by correcting non-linear effects directly in the temporal phase. This correction will improve the performances of the peta-watt laser. Numerical simulations show that the temporal phase correction can lead to a

  17. STAR barrel electromagnetic calorimeter absolute calibration using 'minimum ionizing particles' from collisions at RHIC

    International Nuclear Information System (INIS)

    Cormier, T.M.; Pavlinov, A.I.; Rykov, M.V.; Rykov, V.L.; Shestermanov, K.E.

    2002-01-01

    The procedure for the STAR Barrel Electromagnetic Calorimeter (BEMC) absolute calibrations, using penetrating charged particle hits (MIP-hits) from physics events at RHIC, is presented. Its systematic and statistical errors are evaluated. It is shown that, using this technique, the equalization and transfer of the absolute scale from the test beam can be done to a percent level accuracy in a reasonable amount of time for the entire STAR BEMC. MIP-hits would also be an effective tool for continuously monitoring the variations of the BEMC tower's gains, virtually without interference to STAR's main physics program. The method does not rely on simulations for anything other than geometric and some other small corrections, and also for estimations of the systematic errors. It directly transfers measured test beam responses to operations at RHIC

  18. Normal incidence spectrophotometer using high density transmission grating technology and highly efficiency silicon photodiodes for absolute solar EUV irradiance measurements

    Science.gov (United States)

    Ogawa, H. S.; Mcmullin, D.; Judge, D. L.; Korde, R.

    1992-01-01

    New developments in transmission grating and photodiode technology now make it possible to realize spectrometers in the extreme ultraviolet (EUV) spectral region (wavelengths less than 1000 A) which are expected to be virtually constant in their diffraction and detector properties. Time dependent effects associated with reflection gratings are eliminated through the use of free standing transmission gratings. These gratings together with recently developed and highly stable EUV photodiodes have been utilized to construct a highly stable normal incidence spectrophotometer to monitor the variability and absolute intensity of the solar 304 A line. Owing to its low weight and compactness, such a spectrometer will be a valuable tool for providing absolute solar irradiance throughout the EUV. This novel instrument will also be useful for cross-calibrating other EUV flight instruments and will be flown on a series of Hitchhiker Shuttle Flights and on SOHO. A preliminary version of this instrument has been fabricated and characterized, and the results are described.

  19. Spectral Imaging of Portolan Charts

    Science.gov (United States)

    France, Fenella G.; Wilson, Meghan A.; Ghez, Anita

    2018-05-01

    Spectral imaging of Portolan Charts, early nautical charts, provided extensive new information about their construction and creation. The origins of the portolan chart style have been a continual source of perplexity to numerous generations of cartographic historians. The spectral imaging system utilized incorporates a 50 megapixel mono-chrome camera with light emitting diode (LED) illumination panels that cover the range from 365 nm to 1050 nm to capture visible and non-visible information. There is little known about how portolan charts evolved, and what influenced their creation. These early nautical charts began as working navigational tools of medieval mariners, initially made in the 1300s in Italy, Portugal and Spain; however the origin and development of the portolan chart remained shrouded in mystery. Questions about these early navigational charts included whether colorants were commensurate with the time period and geographical location, and if different, did that give insight into trade routes, or possible later additions to the charts? For example; spectral data showed the red pigment on both the 1320 portolan chart and the 1565 Galapagos Islands matched vermillion, an opaque red pigment used since antiquity. The construction of these charts was also of great interest. Spectral imaging with a range of illumination modes revealed the presence of a "hidden circle" often referred to in relation to their construction. This paper will present in-depth analysis of how spectral imaging of the Portolans revealed similarities and differences, new hidden information and shed new light on construction and composition.

  20. NGS Absolute Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NGS Absolute Gravity data (78 stations) was received in July 1993. Principal gravity parameters include Gravity Value, Uncertainty, and Vertical Gradient. The...

  1. On the existence of continuous selections of solution and reachable ...

    African Journals Online (AJOL)

    We prove that the map that associates to the initial value the set of solutions to the Lipschitzian Quantum Stochastic Differential Inclusion (QSDI) admits a selection continuous from the locally convex space of stochastic processes to the adapted and weakly absolutely continuous space of solutions. As a corollary, we show ...

  2. Asymptotic Value Distribution for Solutions of the Schroedinger Equation

    International Nuclear Information System (INIS)

    Breimesser, S. V.; Pearson, D. B.

    2000-01-01

    We consider the Dirichlet Schroedinger operator T=-(d 2 /d x 2 )+V, acting in L 2 (0,∞), where Vis an arbitrary locally integrable potential which gives rise to absolutely continuous spectrum. Without any other restrictive assumptions on the potential V, the description of asymptotics for solutions of the Schroedinger equation is carried out within the context of the theory of value distribution for boundary values of analytic functions. The large x asymptotic behaviour of the solution v(x,λ) of the equation Tf(x,λ)=λf(x,λ), for λ in the support of the absolutely continuous part μ a.c. of the spectral measure μ, is linked to the spectral properties of this measure which are determined by the boundary value of the Weyl-Titchmarsh m-function. Our main result (Theorem 1) shows that the value distribution for v'(N,λ)/v(N,λ) approaches the associated value distribution of the Herglotz function m N (z) in the limit N → ∞, where m N (z) is the Weyl-Titchmarsh m-function for the Schroedinger operator -(d 2 /d x 2 )+Vacting in L 2 (N,∞), with Dirichlet boundary condition at x=N. We will relate the analysis of spectral asymptotics for the absolutely continuous component of Schroedinger operators to geometrical properties of the upper half-plane, viewed as a hyperbolic space

  3. Absolute isotopic abundances of Ti in meteorites

    International Nuclear Information System (INIS)

    Niederer, F.R.; Papanastassiou, D.A.; Wasserburg, G.J.

    1985-01-01

    The absolute isotope abundance of Ti has been determined in Ca-Al-rich inclusions from the Allende and Leoville meteorites and in samples of whole meteorites. The absolute Ti isotope abundances differ by a significant mass dependent isotope fractionation transformation from the previously reported abundances, which were normalized for fractionation using 46 Ti/ 48 Ti. Therefore, the absolute compositions define distinct nucleosynthetic components from those previously identified or reflect the existence of significant mass dependent isotope fractionation in nature. We provide a general formalism for determining the possible isotope compositions of the exotic Ti from the measured composition, for different values of isotope fractionation in nature and for different mixing ratios of the exotic and normal components. The absolute Ti and Ca isotopic compositions still support the correlation of 50 Ti and 48 Ca effects in the FUN inclusions and imply contributions from neutron-rich equilibrium or quasi-equilibrium nucleosynthesis. The present identification of endemic effects at 46 Ti, for the absolute composition, implies a shortfall of an explosive-oxygen component or reflects significant isotope fractionation. Additional nucleosynthetic components are required by 47 Ti and 49 Ti effects. Components are also defined in which 48 Ti is enhanced. Results are given and discussed. (author)

  4. Tolerance of continuous NFT spectrum to the optical fiber channel impairments

    DEFF Research Database (Denmark)

    Gaiarin, Simone; Da Ros, Francesco; Sørensen, Mads Peter

    2016-01-01

    The impact of launch power, additive white Gaussian noise and fiber loss on the nonlinear Fourier transform (NFT) continuous spectrum is investigated. NFT is shown to undergo lower spectral distortion than the discrete Fourier transform.......The impact of launch power, additive white Gaussian noise and fiber loss on the nonlinear Fourier transform (NFT) continuous spectrum is investigated. NFT is shown to undergo lower spectral distortion than the discrete Fourier transform....

  5. Investigating Absolute Value: A Real World Application

    Science.gov (United States)

    Kidd, Margaret; Pagni, David

    2009-01-01

    Making connections between various representations is important in mathematics. In this article, the authors discuss the numeric, algebraic, and graphical representations of sums of absolute values of linear functions. The initial explanations are accessible to all students who have experience graphing and who understand that absolute value simply…

  6. Approach To Absolute Zero

    Indian Academy of Sciences (India)

    more and more difficult to remove heat as one approaches absolute zero. This is the ... A new and active branch of engineering ... This temperature is called the critical temperature, Te' For sulfur dioxide the critical ..... adsorbent charcoal.

  7. Continuity of integrated density of states – independent randomness

    Indian Academy of Sciences (India)

    Abstract. In this paper we discuss the continuity properties of the integrated density ... Density of states; Wegner estimate; Hölder continuous. 1. Introduction ..... and inverse spectral theory (Goa, 2000), Proc. Indian Acad. Sci. (Math. Sci.) 112(1).

  8. Direct Reflectance Measurements from Drones: Sensor Absolute Radiometric Calibration and System Tests for Forest Reflectance Characterization

    Science.gov (United States)

    Hakala, Teemu; Scott, Barry; Theocharous, Theo; Näsi, Roope; Suomalainen, Juha; Greenwell, Claire; Fox, Nigel

    2018-01-01

    Drone-based remote sensing has evolved rapidly in recent years. Miniaturized hyperspectral imaging sensors are becoming more common as they provide more abundant information of the object compared to traditional cameras. Reflectance is a physically defined object property and therefore often preferred output of the remote sensing data capture to be used in the further processes. Absolute calibration of the sensor provides a possibility for physical modelling of the imaging process and enables efficient procedures for reflectance correction. Our objective is to develop a method for direct reflectance measurements for drone-based remote sensing. It is based on an imaging spectrometer and irradiance spectrometer. This approach is highly attractive for many practical applications as it does not require in situ reflectance panels for converting the sensor radiance to ground reflectance factors. We performed SI-traceable spectral and radiance calibration of a tuneable Fabry-Pérot Interferometer -based (FPI) hyperspectral camera at the National Physical Laboratory NPL (Teddington, UK). The camera represents novel technology by collecting 2D format hyperspectral image cubes using time sequential spectral scanning principle. The radiance accuracy of different channels varied between ±4% when evaluated using independent test data, and linearity of the camera response was on average 0.9994. The spectral response calibration showed side peaks on several channels that were due to the multiple orders of interference of the FPI. The drone-based direct reflectance measurement system showed promising results with imagery collected over Wytham Forest (Oxford, UK). PMID:29751560

  9. Direct Reflectance Measurements from Drones: Sensor Absolute Radiometric Calibration and System Tests for Forest Reflectance Characterization.

    Science.gov (United States)

    Hakala, Teemu; Markelin, Lauri; Honkavaara, Eija; Scott, Barry; Theocharous, Theo; Nevalainen, Olli; Näsi, Roope; Suomalainen, Juha; Viljanen, Niko; Greenwell, Claire; Fox, Nigel

    2018-05-03

    Drone-based remote sensing has evolved rapidly in recent years. Miniaturized hyperspectral imaging sensors are becoming more common as they provide more abundant information of the object compared to traditional cameras. Reflectance is a physically defined object property and therefore often preferred output of the remote sensing data capture to be used in the further processes. Absolute calibration of the sensor provides a possibility for physical modelling of the imaging process and enables efficient procedures for reflectance correction. Our objective is to develop a method for direct reflectance measurements for drone-based remote sensing. It is based on an imaging spectrometer and irradiance spectrometer. This approach is highly attractive for many practical applications as it does not require in situ reflectance panels for converting the sensor radiance to ground reflectance factors. We performed SI-traceable spectral and radiance calibration of a tuneable Fabry-Pérot Interferometer -based (FPI) hyperspectral camera at the National Physical Laboratory NPL (Teddington, UK). The camera represents novel technology by collecting 2D format hyperspectral image cubes using time sequential spectral scanning principle. The radiance accuracy of different channels varied between ±4% when evaluated using independent test data, and linearity of the camera response was on average 0.9994. The spectral response calibration showed side peaks on several channels that were due to the multiple orders of interference of the FPI. The drone-based direct reflectance measurement system showed promising results with imagery collected over Wytham Forest (Oxford, UK).

  10. Absolute measurements of fluxes from Cassiopeia A, Cygnus A, Taurus A, Virgo A at seven wavelengths in the 1.8-4.2 cm band

    International Nuclear Information System (INIS)

    Dmitrenko, L.V.; Snegireva, V.V.; Turchin, V.I.; Tsejtlin, N.M.; Voronkov, L.A.; Dmitrenko, D.A.; Kuznetsova, N.A.; Kholodilov, N.N.

    1981-01-01

    Results of absolute measurements of fluxes from Cassiopeia A, Cygnus A, Taurus A, Virgo A at 1.8-4.17 cm wavelengths are presented. Spectra are built in the wave range of 1.8-100 cm with the use of results obtained earlier. Variability has been detected in radiation of Taurus A as well as ''steps'' in the spectrum of Taurus A with the spectral index α=0 in the region of 2 cm and 3-4 cm [ru

  11. The Pragmatics of "Unruly" Dative Absolutes in Early Slavic

    Directory of Open Access Journals (Sweden)

    Daniel E. Collins

    2011-08-01

    Full Text Available This chapter examines some uses of the dative absolute in Old Church Slavonic and in early recensional Slavonic texts that depart from notions of how Indo-European absolute constructions should behave, either because they have subjects coreferential with the (putative main-clause subjects or because they function as if they were main clauses in their own right. Such "noncanonical" absolutes have generally been written off as mechanistic translations or as mistakes by scribes who did not understand the proper uses of the construction. In reality, the problem is not with literalistic translators or incompetent scribes but with the definition of the construction itself; it is quite possible to redefine the Early Slavic dative absolute in a way that accounts for the supposedly deviant cases. While the absolute is generally dependent semantically on an adjacent unit of discourse, it should not always be regarded as subordinated syntactically. There are good grounds for viewing some absolutes not as dependent clauses but as independent sentences whose collateral character is an issue not of syntax but of the pragmatics of discourse.

  12. Results of Absolute Cavity Pyrgeometer and Infrared Integrating Sphere Comparisons

    Energy Technology Data Exchange (ETDEWEB)

    Reda, Ibrahim M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sengupta, Manajit [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dooraghi, Michael R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Grobner, Julian [Physikalisch-Meteorologisches Observatorium Davos (PMOD); Thomann, Christian [Physikalisch-Meteorologisches Observatorium Davos (PMOD); Long, Chuck [National Oceanic and Atmospheric Administration; McComiskey, Allison [National Oceanic and Atmospheric Administration; Hall, Emiel [National Oceanic and Atmospheric Administration; Wacker, Stefan [Deutscher Wetterdienst

    2018-03-05

    Accurate and traceable atmospheric longwave irradiance measurements are required for understanding radiative impacts on the Earth's energy budget. The standard to which pyrgeometers are traceable is the interim World Infrared Standard Group (WISG), maintained in the Physikalisch-Meteorologisches Observatorium Davos (PMOD). The WISG consists of four pyrgeometers that were calibrated using Rolf Philipona's Absolute Sky-scanning Radiometer [1]. The Atmospheric Radiation Measurement (ARM) facility has recently adopted the WISG to maintain the traceability of the calibrations of all Eppley precision infrared radiometer (PIR) pyrgeometers. Subsequently, Julian Grobner [2] developed the infrared interferometer spectrometer and radiometer (IRIS) radiometer, and Ibrahim Reda [3] developed the absolute cavity pyrgeometer (ACP). The ACP and IRIS were developed to establish a world reference for calibrating pyrgeometers with traceability to the International System of Units (SI). The two radiometers are unwindowed with negligible spectral dependence, and they are traceable to SI units through the temperature scale (ITS-90). The two instruments were compared directly to the WISG three times at PMOD and twice at the Southern Great Plains (SGP) facility to WISG-traceable pyrgeometers. The ACP and IRIS agreed within +/- 1 W/m2 to +/- 3 W/m2 in all comparisons, whereas the WISG references exhibit a 2-5 Wm2 low bias compared to the ACP/IRIS average, depending on the water vapor column, as noted in Grobner et al. [4]. Consequently, a case for changing the current WISG has been made by Grobner and Reda. However, during the five comparisons the column water vapor exceeded 8 mm. Therefore, it is recommended that more ACP and IRIS comparisons should be held under different environmental conditions and water vapor column content to better establish the traceability of these instruments to SI with established uncertainty.

  13. Pseudo-absolute quantitative analysis using gas chromatography – Vacuum ultraviolet spectroscopy – A tutorial

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Ling [Department of Chemistry & Biochemistry, The University of Texas at Arlington, Arlington, TX (United States); Smuts, Jonathan; Walsh, Phillip [VUV Analytics, Inc., Cedar Park, TX (United States); Qiu, Changling [Department of Chemistry & Biochemistry, The University of Texas at Arlington, Arlington, TX (United States); McNair, Harold M. [Department of Chemistry, Virginia Tech, Blacksburg, VA (United States); Schug, Kevin A., E-mail: kschug@uta.edu [Department of Chemistry & Biochemistry, The University of Texas at Arlington, Arlington, TX (United States)

    2017-02-08

    The vacuum ultraviolet detector (VUV) is a new non-destructive mass sensitive detector for gas chromatography that continuously and rapidly collects full wavelength range absorption between 120 and 240 nm. In addition to conventional methods of quantification (internal and external standard), gas chromatography - vacuum ultraviolet spectroscopy has the potential for pseudo-absolute quantification of analytes based on pre-recorded cross sections (well-defined absorptivity across the 120–240 nm wavelength range recorded by the detector) without the need for traditional calibration. The pseudo-absolute method was used in this research to experimentally evaluate the sources of sample loss and gain associated with sample introduction into a typical gas chromatograph. Standard samples of benzene and natural gas were used to assess precision and accuracy for the analysis of liquid and gaseous samples, respectively, based on the amount of analyte loaded on-column. Results indicate that injection volume, split ratio, and sampling times for splitless analysis can all contribute to inaccurate, yet precise sample introduction. For instance, an autosampler can very reproducibly inject a designated volume, but there are significant systematic errors (here, a consistently larger volume than that designated) in the actual volume introduced. The pseudo-absolute quantification capability of the vacuum ultraviolet detector provides a new means for carrying out system performance checks and potentially for solving challenging quantitative analytical problems. For practical purposes, an internal standardized approach to normalize systematic errors can be used to perform quantitative analysis with the pseudo-absolute method. - Highlights: • Gas chromatography diagnostics and quantification using VUV detector. • Absorption cross-sections for molecules enable pseudo-absolute quantitation. • Injection diagnostics reveal systematic errors in hardware settings. • Internal

  14. Pseudo-absolute quantitative analysis using gas chromatography – Vacuum ultraviolet spectroscopy – A tutorial

    International Nuclear Information System (INIS)

    Bai, Ling; Smuts, Jonathan; Walsh, Phillip; Qiu, Changling; McNair, Harold M.; Schug, Kevin A.

    2017-01-01

    The vacuum ultraviolet detector (VUV) is a new non-destructive mass sensitive detector for gas chromatography that continuously and rapidly collects full wavelength range absorption between 120 and 240 nm. In addition to conventional methods of quantification (internal and external standard), gas chromatography - vacuum ultraviolet spectroscopy has the potential for pseudo-absolute quantification of analytes based on pre-recorded cross sections (well-defined absorptivity across the 120–240 nm wavelength range recorded by the detector) without the need for traditional calibration. The pseudo-absolute method was used in this research to experimentally evaluate the sources of sample loss and gain associated with sample introduction into a typical gas chromatograph. Standard samples of benzene and natural gas were used to assess precision and accuracy for the analysis of liquid and gaseous samples, respectively, based on the amount of analyte loaded on-column. Results indicate that injection volume, split ratio, and sampling times for splitless analysis can all contribute to inaccurate, yet precise sample introduction. For instance, an autosampler can very reproducibly inject a designated volume, but there are significant systematic errors (here, a consistently larger volume than that designated) in the actual volume introduced. The pseudo-absolute quantification capability of the vacuum ultraviolet detector provides a new means for carrying out system performance checks and potentially for solving challenging quantitative analytical problems. For practical purposes, an internal standardized approach to normalize systematic errors can be used to perform quantitative analysis with the pseudo-absolute method. - Highlights: • Gas chromatography diagnostics and quantification using VUV detector. • Absorption cross-sections for molecules enable pseudo-absolute quantitation. • Injection diagnostics reveal systematic errors in hardware settings. • Internal

  15. Spectral distribution of radiation on plane and axial channeling of ultrarelativistic electrons

    International Nuclear Information System (INIS)

    Bazylev, V.A.; Glebov, V.I.; Zhevago, N.K.

    1980-01-01

    The spectral angular and polarization charactristics of the radiation from channeled ultrarelativistic electrons are calculated. Analytic expressions for the spectral-angular power density of the radiation are obtained for some realistic models of the continuous potential of the crystal planes and axes. A critical analysis is also presented of some existent results of the theory of radiation on channeling

  16. Absolutyzm i pluralizm (ABSOLUTISM AND PLURALISM

    Directory of Open Access Journals (Sweden)

    Renata Ziemińska

    2005-06-01

    Full Text Available Alethic absolutism is a thesis that propositions can not be more or less true, that they are true or false for ever (if true at all and that their truth is independent on any circumstances of their assertion. In negative version, easier to defend, alethic absolutism claims the very same proposition can not be both true and false relative to circumstances of its assertion. Simple alethic pluralism is a thesis that we have many concepts of truth. It is a very good way to dissolve the controversy between alethic relativism and absolutism. Many philosophical concepts of truth are the best reason for such pluralism. If concept is meaning of a name, we have many concepts of truth because the name 'truth' was understood in many ways. The variety of meanings however can be superficial. Under it we can find one idea of truth expressed in correspondence truism or schema (T. The content of the truism is too poor to be content of anyone concept of truth, so it usually is connected with some picture of the world (ontology and we have so many concepts of truth as many pictures of the world. The authoress proposes the hierarchical pluralism with privileged classic (or correspondence in weak sense concept of truth as absolute property.Other author's publications:

  17. Spectral factorization using the delta operator

    DEFF Research Database (Denmark)

    Rostgaard, Morten; Poulsen, Niels Kjølstad; Ravn, Ole

    1994-01-01

    In recent years many papers have been published abouth the gamma-operator, mostly caused by the better numerical properties and the rapprochement between continuous and discrete time. A major problem within the LQG-design of a delta-based input-output relation has been how to spectral-factorize...... solution to the spectral factorization problem. The key idea is to use the gamma-operator resembled by its behavior to the differential operator....... in an efficient way. The discrete-time method of Kuccera will not be applied since numerical word-length characteristics will be poor for fast sampling rates. In this paper a new approach is considered. A new gamma-operator (Tustin operator) is introduced, in order to make an iterative and numerical stable...

  18. Coulomb field strength measurement by electro-optic spectral decoding system at the CALIFES beam line

    CERN Document Server

    Pan, R; Lefevre, T; Gillepsie, WA; CERN. Geneva. ATS Department

    2016-01-01

    Electro-optic (EO) techniques are increasingly used for longitudinal bunch profile measurements. A bunch profile monitor, based on electro-optic spectral decoding(EOSD), has been developed and demonstrated on the CALIFES beam line at CERN. The EO response is analysed using a frequency domain description, and two methods for extraction of absolute Coulomb field strengths from the electron bunch are demonstrated. Measurements at field strengths up to 1.3 MV/m agree with the expectation based on independent charge measurements.

  19. Introducing the Mean Absolute Deviation "Effect" Size

    Science.gov (United States)

    Gorard, Stephen

    2015-01-01

    This paper revisits the use of effect sizes in the analysis of experimental and similar results, and reminds readers of the relative advantages of the mean absolute deviation as a measure of variation, as opposed to the more complex standard deviation. The mean absolute deviation is easier to use and understand, and more tolerant of extreme…

  20. An integrable coupling system of lattice hierarchy and its continuous limits

    International Nuclear Information System (INIS)

    Yu Fajun; Li Li

    2009-01-01

    In [E.G. Fan, Phys. Lett. A 372 (2008) 6368], Fan present a lattice hierarchy and its continuous limits. In this Letter, we extend this method, by introducing a complex discrete spectral problem, a coupling lattice hierarchy is derived. It is shown that a new sequence of combinations of complex lattice spectral problem converges to the integrable coupling couplings of soliton equation hierarchy, which has the integrable coupling system of AKNS hierarchy as a continuous limit.

  1. Continuous limits for an integrable coupling system of Toda equation hierarchy

    International Nuclear Information System (INIS)

    Li Li; Yu Fajun

    2009-01-01

    In this Letter, we present an integrable coupling system of lattice hierarchy and its continuous limits by using of Lie algebra sl(4). By introducing a complex discrete spectral problem, the integrable coupling system of Toda lattice hierarchy is derived. It is shown that a new complex lattice spectral problem converges to the integrable couplings of discrete soliton equation hierarchy, which has the integrable coupling system of C-KdV hierarchy as a new kind of continuous limit.

  2. Continuous limits for an integrable coupling system of Toda equation hierarchy

    Energy Technology Data Exchange (ETDEWEB)

    Li Li [College of Maths and Systematic Science, Shenyang Normal University, Shenyang 110034 (China); Yu Fajun, E-mail: yfajun@163.co [College of Maths and Systematic Science, Shenyang Normal University, Shenyang 110034 (China)

    2009-09-21

    In this Letter, we present an integrable coupling system of lattice hierarchy and its continuous limits by using of Lie algebra sl(4). By introducing a complex discrete spectral problem, the integrable coupling system of Toda lattice hierarchy is derived. It is shown that a new complex lattice spectral problem converges to the integrable couplings of discrete soliton equation hierarchy, which has the integrable coupling system of C-KdV hierarchy as a new kind of continuous limit.

  3. Absolute calibration in vivo measurement systems

    International Nuclear Information System (INIS)

    Kruchten, D.A.; Hickman, D.P.

    1991-02-01

    Lawrence Livermore National Laboratory (LLNL) is currently investigating a new method for obtaining absolute calibration factors for radiation measurement systems used to measure internally deposited radionuclides in vivo. Absolute calibration of in vivo measurement systems will eliminate the need to generate a series of human surrogate structures (i.e., phantoms) for calibrating in vivo measurement systems. The absolute calibration of in vivo measurement systems utilizes magnetic resonance imaging (MRI) to define physiological structure, size, and composition. The MRI image provides a digitized representation of the physiological structure, which allows for any mathematical distribution of radionuclides within the body. Using Monte Carlo transport codes, the emission spectrum from the body is predicted. The in vivo measurement equipment is calibrated using the Monte Carlo code and adjusting for the intrinsic properties of the detection system. The calibration factors are verified using measurements of existing phantoms and previously obtained measurements of human volunteers. 8 refs

  4. Incorrect Weighting of Absolute Performance in Self-Assessment

    Science.gov (United States)

    Jeffrey, Scott A.; Cozzarin, Brian

    Students spend much of their life in an attempt to assess their aptitude for numerous tasks. For example, they expend a great deal of effort to determine their academic standing given a distribution of grades. This research finds that students use their absolute performance, or percentage correct as a yardstick for their self-assessment, even when relative standing is much more informative. An experiment shows that this reliance on absolute performance for self-evaluation causes a misallocation of time and financial resources. Reasons for this inappropriate responsiveness to absolute performance are explored.

  5. Genetic Algorithm Based PID Controller Tuning Approach for Continuous Stirred Tank Reactor

    OpenAIRE

    A. Jayachitra; R. Vinodha

    2014-01-01

    Genetic algorithm (GA) based PID (proportional integral derivative) controller has been proposed for tuning optimized PID parameters in a continuous stirred tank reactor (CSTR) process using a weighted combination of objective functions, namely, integral square error (ISE), integral absolute error (IAE), and integrated time absolute error (ITAE). Optimization of PID controller parameters is the key goal in chemical and biochemical industries. PID controllers have narrowed down the operating r...

  6. Reconstruction of MODIS Spectral Reflectance under Cloudy-Sky Condition

    Directory of Open Access Journals (Sweden)

    Bo Gao

    2016-09-01

    Full Text Available Clouds usually cause invalid observations for sensors aboard satellites, which corrupts the spatio-temporal continuity of land surface parameters retrieved from remote sensing data (e.g., MODerate Resolution Imaging Spectroradiometer (MODIS data and prevents the fusing of multi-source remote sensing data in the field of quantitative remote sensing. Based on the requirements of spatio-temporal continuity and the necessity of methods to restore bad pixels, primarily resulting from image processing, this study developed a novel method to derive the spectral reflectance for MODIS band of cloudy pixels in the visual–near infrared (VIS–NIR spectral channel based on the Bidirectional Reflectance Distribution Function (BRDF and multi-spatio-temporal observations. The proposed method first constructs the spatial distribution of land surface reflectance based on the corresponding BRDF and the solar-viewing geometry; then, a geographically weighted regression (GWR is introduced to individually derive the spectral surface reflectance for MODIS band of cloudy pixels. A validation of the proposed method shows that a total root-mean-square error (RMSE of less than 6% and a total R2 of more than 90% are detected, which indicates considerably better precision than those exhibited by other existing methods. Further validation of the retrieved white-sky albedo based on the spectral reflectance for MODIS band of cloudy pixels confirms an RMSE of 3.6% and a bias of 2.2%, demonstrating very high accuracy of the proposed method.

  7. The absolute radiometric calibration of the advanced very high resolution radiometer

    Science.gov (United States)

    Slater, P. N.; Teillet, P. M.; Ding, Y.

    1988-01-01

    An increasing number of remote sensing investigations require radiometrically calibrated imagery from NOAA Advanced Very High Resolution Radiation (AVHRR) sensors. Although a prelaunch calibration is done for these sensors, there is no capability for monitoring any changes in the in-flight absolute calibration for the visible and near infrared spectral channels. Hence, the possibility of using the reflectance-based method developed at White Sands for in-orbit calibration of LANDSAT Thematic Mapper (TM) and SPOT Haute Resolution Visible (HVR) data to calibrate the AVHRR sensor was investigated. Three diffrent approaches were considered: Method 1 - ground and atmospheric measurements and reference to another calibrated satellite sensor; Method 2 - ground and atmospheric measurements with no reference to another sensor; and Method 3 - no ground and atmospheric measurements but reference to another satellite sensor. The purpose is to describe an investigation on the use of Method 2 to calibrate NOAA-9 AVHRR channels 1 and 2 with the help of ground and atmospheric measurements at Rogers (dry) Lake, Edwards Air Force Base (EAFB) in the Mojave desert of California.

  8. The absolute radiometric calibration of the advanced very high resolution radiometer

    Science.gov (United States)

    Slater, P. N.; Teillet, P. M.; Ding, Y.

    1988-10-01

    An increasing number of remote sensing investigations require radiometrically calibrated imagery from NOAA Advanced Very High Resolution Radiation (AVHRR) sensors. Although a prelaunch calibration is done for these sensors, there is no capability for monitoring any changes in the in-flight absolute calibration for the visible and near infrared spectral channels. Hence, the possibility of using the reflectance-based method developed at White Sands for in-orbit calibration of LANDSAT Thematic Mapper (TM) and SPOT Haute Resolution Visible (HVR) data to calibrate the AVHRR sensor was investigated. Three diffrent approaches were considered: Method 1 - ground and atmospheric measurements and reference to another calibrated satellite sensor; Method 2 - ground and atmospheric measurements with no reference to another sensor; and Method 3 - no ground and atmospheric measurements but reference to another satellite sensor. The purpose is to describe an investigation on the use of Method 2 to calibrate NOAA-9 AVHRR channels 1 and 2 with the help of ground and atmospheric measurements at Rogers (dry) Lake, Edwards Air Force Base (EAFB) in the Mojave desert of California.

  9. The US Geological Survey, digital spectral reflectance library: version 1: 0.2 to 3.0 microns

    Science.gov (United States)

    Clark, Roger N.; Swayze, Gregg A.; King, Trude V. V.; Gallagher, Andrea J.; Calvin, Wendy M.

    1993-01-01

    We have developed a digital reflectance spectral library, with management and spectral analysis software. The library includes 500 spectra of 447 samples (some samples include a series of grain sizes) measured from approximately 0.2 to 3.0 microns. The spectral resolution (Full Width Half Maximum) of the reflectance data is less than or equal to 4 nm in the visible (0.2-0.8 microns) and less than or equal 10 nm in the NIR (0.8-2.35 microns). All spectra were corrected to absolute reflectance using an NBS Halon standard. Library management software lets users search on parameters (e.g. chemical formulae, chemical analyses, purity of samples, mineral groups, etc.) as well as spectral features. Minerals from sulfide, oxide, hydroxide, halide, carbonate, nitrate, borate, phosphate, and silicate groups are represented. X-ray and chemical analyses are tabulated for many of the entries, and all samples have been evaluated for spectral purity. The library also contains end and intermediate members for the olivine, garnet, scapolite, montmorillonite, muscovite, jarosite, and alunite solid-solution series. We have included representative spectra of H2O ice, kerogen, ammonium-bearing minerals, rare-earth oxides, desert varnish coatings, kaolinite crystallinity series, kaolinite-smectite series, zeolite series, and an extensive evaporite series. Because of the importance of vegetation to climate-change studies we have include 17 spectra of tree leaves, bushes, and grasses.

  10. Absolute instrumental neutron activation analysis at Lawrence Livermore Laboratory

    International Nuclear Information System (INIS)

    Heft, R.E.

    1977-01-01

    The Environmental Science Division at Lawrence Livermore Laboratory has in use a system of absolute Instrumental Neutron Activation Analysis (INAA). Basically, absolute INAA is dependent upon the absolute measurement of the disintegration rates of the nuclides produced by neutron capture. From such disintegration rate data, the amount of the target element present in the irradiated sample is calculated by dividing the observed disintegration rate for each nuclide by the expected value for the disintegration rate per microgram of the target element that produced the nuclide. In absolute INAA, the expected value for disintegration rate per microgram is calculated from nuclear parameters and from measured values of both thermal and epithermal neutron fluxes which were present during irradiation. Absolute INAA does not depend on the concurrent irradiation of elemental standards but does depend on the values for thermal and epithermal neutron capture cross-sections for the target nuclides. A description of the analytical method is presented

  11. Comparing Absolute Error with Squared Error for Evaluating Empirical Models of Continuous Variables: Compositions, Implications, and Consequences

    Science.gov (United States)

    Gao, J.

    2014-12-01

    Reducing modeling error is often a major concern of empirical geophysical models. However, modeling errors can be defined in different ways: When the response variable is continuous, the most commonly used metrics are squared (SQ) and absolute (ABS) errors. For most applications, ABS error is the more natural, but SQ error is mathematically more tractable, so is often used as a substitute with little scientific justification. Existing literature has not thoroughly investigated the implications of using SQ error in place of ABS error, especially not geospatially. This study compares the two metrics through the lens of bias-variance decomposition (BVD). BVD breaks down the expected modeling error of each model evaluation point into bias (systematic error), variance (model sensitivity), and noise (observation instability). It offers a way to probe the composition of various error metrics. I analytically derived the BVD of ABS error and compared it with the well-known SQ error BVD, and found that not only the two metrics measure the characteristics of the probability distributions of modeling errors differently, but also the effects of these characteristics on the overall expected error are different. Most notably, under SQ error all bias, variance, and noise increase expected error, while under ABS error certain parts of the error components reduce expected error. Since manipulating these subtractive terms is a legitimate way to reduce expected modeling error, SQ error can never capture the complete story embedded in ABS error. I then empirically compared the two metrics with a supervised remote sensing model for mapping surface imperviousness. Pair-wise spatially-explicit comparison for each error component showed that SQ error overstates all error components in comparison to ABS error, especially variance-related terms. Hence, substituting ABS error with SQ error makes model performance appear worse than it actually is, and the analyst would more likely accept a

  12. Understanding Soliton Spectral Tunneling as a Spectral Coupling Effect

    DEFF Research Database (Denmark)

    Guo, Hairun; Wang, Shaofei; Zeng, Xianglong

    2013-01-01

    Soliton eigenstate is found corresponding to a dispersive phase profile under which the soliton phase changes induced by the dispersion and nonlinearity are instantaneously counterbalanced. Much like a waveguide coupler relying on a spatial refractive index profile that supports mode coupling...... between channels, here we suggest that the soliton spectral tunneling effect can be understood supported by a spectral phase coupler. The dispersive wave number in the spectral domain must have a coupler-like symmetric profile for soliton spectral tunneling to occur. We show that such a spectral coupler...

  13. Modeling Fire Severity in Black Spruce Stands in the Alaskan Boreal Forest Using Spectral and Non-Spectral Geospatial Data

    Science.gov (United States)

    Barrett, K.; Kasischke, E. S.; McGuire, A. D.; Turetsky, M. R.; Kane, E. S.

    2010-01-01

    Biomass burning in the Alaskan interior is already a major disturbance and source of carbon emissions, and is likely to increase in response to the warming and drying predicted for the future climate. In addition to quantifying changes to the spatial and temporal patterns of burned areas, observing variations in severity is the key to studying the impact of changes to the fire regime on carbon cycling, energy budgets, and post-fire succession. Remote sensing indices of fire severity have not consistently been well-correlated with in situ observations of important severity characteristics in Alaskan black spruce stands, including depth of burning of the surface organic layer. The incorporation of ancillary data such as in situ observations and GIS layers with spectral data from Landsat TM/ETM+ greatly improved efforts to map the reduction of the organic layer in burned black spruce stands. Using a regression tree approach, the R2 of the organic layer depth reduction models was 0.60 and 0.55 (pb0.01) for relative and absolute depth reduction, respectively. All of the independent variables used by the regression tree to estimate burn depth can be obtained independently of field observations. Implementation of a gradient boosting algorithm improved the R2 to 0.80 and 0.79 (pb0.01) for absolute and relative organic layer depth reduction, respectively. Independent variables used in the regression tree model of burn depth included topographic position, remote sensing indices related to soil and vegetation characteristics, timing of the fire event, and meteorological data. Post-fire organic layer depth characteristics are determined for a large (N200,000 ha) fire to identify areas that are potentially vulnerable to a shift in post-fire succession. This application showed that 12% of this fire event experienced fire severe enough to support a change in post-fire succession. We conclude that non-parametric models and ancillary data are useful in the modeling of the surface

  14. Absolute Navigation Information Estimation for Micro Planetary Rovers

    Directory of Open Access Journals (Sweden)

    Muhammad Ilyas

    2016-03-01

    Full Text Available This paper provides algorithms to estimate absolute navigation information, e.g., absolute attitude and position, by using low power, weight and volume Microelectromechanical Systems-type (MEMS sensors that are suitable for micro planetary rovers. Planetary rovers appear to be easily navigable robots due to their extreme slow speed and rotation but, unfortunately, the sensor suites available for terrestrial robots are not always available for planetary rover navigation. This makes them difficult to navigate in a completely unexplored, harsh and complex environment. Whereas the relative attitude and position can be tracked in a similar way as for ground robots, absolute navigation information, unlike in terrestrial applications, is difficult to obtain for a remote celestial body, such as Mars or the Moon. In this paper, an algorithm called the EASI algorithm (Estimation of Attitude using Sun sensor and Inclinometer is presented to estimate the absolute attitude using a MEMS-type sun sensor and inclinometer, only. Moreover, the output of the EASI algorithm is fused with MEMS gyros to produce more accurate and reliable attitude estimates. An absolute position estimation algorithm has also been presented based on these on-board sensors. Experimental results demonstrate the viability of the proposed algorithms and the sensor suite for low-cost and low-weight micro planetary rovers.

  15. Absolute-magnitude distributions of supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, Dean; Wright, John [Department of Physics, Xavier University of Louisiana, New Orleans, LA 70125 (United States); Jenkins III, Robert L. [Applied Physics Department, Richard Stockton College, Galloway, NJ 08205 (United States); Maddox, Larry, E-mail: drichar7@xula.edu [Department of Chemistry and Physics, Southeastern Louisiana University, Hammond, LA 70402 (United States)

    2014-05-01

    The absolute-magnitude distributions of seven supernova (SN) types are presented. The data used here were primarily taken from the Asiago Supernova Catalogue, but were supplemented with additional data. We accounted for both foreground and host-galaxy extinction. A bootstrap method is used to correct the samples for Malmquist bias. Separately, we generate volume-limited samples, restricted to events within 100 Mpc. We find that the superluminous events (M{sub B} < –21) make up only about 0.1% of all SNe in the bias-corrected sample. The subluminous events (M{sub B} > –15) make up about 3%. The normal Ia distribution was the brightest with a mean absolute blue magnitude of –19.25. The IIP distribution was the dimmest at –16.75.

  16. Calibration with Absolute Shrinkage

    DEFF Research Database (Denmark)

    Øjelund, Henrik; Madsen, Henrik; Thyregod, Poul

    2001-01-01

    In this paper, penalized regression using the L-1 norm on the estimated parameters is proposed for chemometric je calibration. The algorithm is of the lasso type, introduced by Tibshirani in 1996 as a linear regression method with bound on the absolute length of the parameters, but a modification...

  17. Athermal fiber laser for the SWARM absolute scalar magnetometer

    Science.gov (United States)

    Fourcault, W.; Léger, J.-M.; Costes, V.; Fratter, I.; Mondin, L.

    2017-11-01

    The Absolute Scalar Magnetometer (ASM) developed by CEA-LETI/CNES is an optically pumped 4He magnetic field sensor based on the Zeeman effect and an electronic magnetic resonance whose effects are amplified by a laser pumping process [1-2]. Consequently, the role of the laser is to pump the 4He atoms at the D0 transition as well as to allow the magnetic resonance signal detection. The ASM will be the scalar magnetic reference instrument of the three ESA Swarm satellites to be launched in 2012 in order to carry out the best ever survey of the Earth magnetic field and its temporal evolution. The sensitivity and accuracy of this magnetometer based on 4He optical pumping depend directly on the characteristics of its light source, which is the key sub-system of the sensor. We describe in this paper the selected fiber laser architecture and its wavelength stabilization scheme. Its main performance in terms of spectral emission, optical power at 1083 nm and intensity noise characteristics in the frequency bands used for the operation of the magnetometer, are then presented. Environmental testing results (thermal vacuum cycling, vibrations, shocks and ageing) are also reported at the end of this paper.

  18. Overlapping communities detection based on spectral analysis of line graphs

    Science.gov (United States)

    Gui, Chun; Zhang, Ruisheng; Hu, Rongjing; Huang, Guoming; Wei, Jiaxuan

    2018-05-01

    Community in networks are often overlapping where one vertex belongs to several clusters. Meanwhile, many networks show hierarchical structure such that community is recursively grouped into hierarchical organization. In order to obtain overlapping communities from a global hierarchy of vertices, a new algorithm (named SAoLG) is proposed to build the hierarchical organization along with detecting the overlap of community structure. SAoLG applies the spectral analysis into line graphs to unify the overlap and hierarchical structure of the communities. In order to avoid the limitation of absolute distance such as Euclidean distance, SAoLG employs Angular distance to compute the similarity between vertices. Furthermore, we make a micro-improvement partition density to evaluate the quality of community structure and use it to obtain the more reasonable and sensible community numbers. The proposed SAoLG algorithm achieves a balance between overlap and hierarchy by applying spectral analysis to edge community detection. The experimental results on one standard network and six real-world networks show that the SAoLG algorithm achieves higher modularity and reasonable community number values than those generated by Ahn's algorithm, the classical CPM and GN ones.

  19. Spectral/ hp element methods: Recent developments, applications, and perspectives

    Science.gov (United States)

    Xu, Hui; Cantwell, Chris D.; Monteserin, Carlos; Eskilsson, Claes; Engsig-Karup, Allan P.; Sherwin, Spencer J.

    2018-02-01

    The spectral/ hp element method combines the geometric flexibility of the classical h-type finite element technique with the desirable numerical properties of spectral methods, employing high-degree piecewise polynomial basis functions on coarse finite element-type meshes. The spatial approximation is based upon orthogonal polynomials, such as Legendre or Chebychev polynomials, modified to accommodate a C 0 - continuous expansion. Computationally and theoretically, by increasing the polynomial order p, high-precision solutions and fast convergence can be obtained and, in particular, under certain regularity assumptions an exponential reduction in approximation error between numerical and exact solutions can be achieved. This method has now been applied in many simulation studies of both fundamental and practical engineering flows. This paper briefly describes the formulation of the spectral/ hp element method and provides an overview of its application to computational fluid dynamics. In particular, it focuses on the use of the spectral/ hp element method in transitional flows and ocean engineering. Finally, some of the major challenges to be overcome in order to use the spectral/ hp element method in more complex science and engineering applications are discussed.

  20. Efficacy of intrahepatic absolute alcohol in unrespectable hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Farooqi, J.I.; Hameed, K.; Khan, I.U.; Shah, S.

    2001-01-01

    To determine efficacy of intrahepatic absolute alcohol injection in researchable hepatocellular carcinoma. A randomized, controlled, experimental and interventional clinical trial. Gastroenterology Department, PGMI, Hayatabad Medical Complex, Peshawar during the period from June, 1998 to June, 2000. Thirty patients were treated by percutaneous, intrahepatic absolute alcohol injection sin repeated sessions, 33 patients were not given or treated with alcohol to serve as control. Both the groups were comparable for age, sex and other baseline characteristics. Absolute alcohol therapy significantly improved quality of life of patients, reduced the tumor size and mortality as well as showed significantly better results regarding survival (P< 0.05) than the patients of control group. We conclude that absolute alcohol is a beneficial and safe palliative treatment measure in advanced hepatocellular carcinoma (HCC). (author)

  1. Spectral functions and transport coefficients from the functional renormalization group

    Energy Technology Data Exchange (ETDEWEB)

    Tripolt, Ralf-Arno

    2015-06-03

    In this thesis we present a new method to obtain real-time quantities like spectral functions and transport coefficients at finite temperature and density using the Functional Renormalization Group approach. Our non-perturbative method is thermodynamically consistent, symmetry preserving and based on an analytic continuation from imaginary to real time on the level of the flow equations. We demonstrate the applicability of this method by calculating mesonic spectral functions as well as the shear viscosity for the quark-meson model. In particular, results are presented for the pion and sigma spectral function at finite temperature and chemical potential, with a focus on the regime near the critical endpoint in the phase diagram of the quark-meson model. Moreover, the different time-like and space-like processes, which give rise to a complex structure of the spectral functions, are discussed. Finally, based on the momentum dependence of the spectral functions, we calculate the shear viscosity and the shear viscosity to entropy density ratio using the corresponding Green-Kubo formula.

  2. Planck absolute entropy of a rotating BTZ black hole

    Science.gov (United States)

    Riaz, S. M. Jawwad

    2018-04-01

    In this paper, the Planck absolute entropy and the Bekenstein-Smarr formula of the rotating Banados-Teitelboim-Zanelli (BTZ) black hole are presented via a complex thermodynamical system contributed by its inner and outer horizons. The redefined entropy approaches zero as the temperature of the rotating BTZ black hole tends to absolute zero, satisfying the Nernst formulation of a black hole. Hence, it can be regarded as the Planck absolute entropy of the rotating BTZ black hole.

  3. Hyperspectral interferometry for single-shot absolute measurement of 3-D shape and displacement fields

    Directory of Open Access Journals (Sweden)

    Ruiz P. D.

    2010-06-01

    Full Text Available We propose a method that we call Hyperspectral Interferometry (HSI to resolve the 2π phase unwrapping problem in the analysis of interferograms recorded with a narrow-band light source. By using a broad-band light source and hyperspectral imaging system, a set of interferograms at different wavenumbers are recorded simultaneously on a high resolution image sensor. These are then assembled to form a three-dimensional intensity distribution. By Fourier transformation along the wavenumber axis, an absolute optical path difference is obtained for each pixel independently of the other pixels in the field of view. As a result, interferograms with spatially distinct regions are analysed as easily as continuous ones. The approach is illustrated with a HSI system to measure 3-D profiles of optically smooth or rough surfaces. Compared to existing profilometers able to measure absolute path differences, the single shot nature of the approach provides greater immunity from environmental disturbance.

  4. ULTRAVIOLET RAMAN SPECTRAL SIGNATURE ACQUISITION: UV RAMAN SPECTRAL FINGERPRINTS.

    Energy Technology Data Exchange (ETDEWEB)

    SEDLACEK,III, A.J.FINFROCK,C.

    2002-09-01

    As a member of the science-support part of the ITT-lead LISA development program, BNL is tasked with the acquisition of UV Raman spectral fingerprints and associated scattering cross-sections for those chemicals-of-interest to the program's sponsor. In support of this role, the present report contains the first installment of UV Raman spectral fingerprint data on the initial subset of chemicals. Because of the unique nature associated with the acquisition of spectral fingerprints for use in spectral pattern matching algorithms (i.e., CLS, PLS, ANN) great care has been undertaken to maximize the signal-to-noise and to minimize unnecessary spectral subtractions, in an effort to provide the highest quality spectral fingerprints. This report is divided into 4 sections. The first is an Experimental section that outlines how the Raman spectra are performed. This is then followed by a section on Sample Handling. Following this, the spectral fingerprints are presented in the Results section where the data reduction process is outlined. Finally, a Photographs section is included.

  5. Absolute spectroscopy near 7.8 {\\mu} m with a comb-locked extended-cavity quantum-cascade-laser

    KAUST Repository

    Lamperti, Marco

    2017-07-31

    We report the first experimental demonstration of frequency-locking of an extended-cavity quantum-cascade-laser (EC-QCL) to a near-infrared frequency comb. The locking scheme is applied to carry out absolute spectroscopy of N2O lines near 7.87 {\\\\mu}m with an accuracy of ~60 kHz. Thanks to a single mode operation over more than 100 cm^{-1}, the comb-locked EC-QCL shows great potential for the accurate retrieval of line center frequencies in a spectral region that is currently outside the reach of broadly tunable cw sources, either based on difference frequency generation or optical parametric oscillation. The approach described here can be straightforwardly extended up to 12 {\\\\mu}m, which is the current wavelength limit for commercial cw EC-QCLs.

  6. High-speed multispectral videography with a periscope array in a spectral shaper.

    Science.gov (United States)

    Hashimoto, Kazuki; Mizuno, Hikaru; Nakagawa, Keiichi; Horisaki, Ryoichi; Iwasaki, Atsushi; Kannari, Fumihiko; Sakuma, Ichiro; Goda, Keisuke

    2014-12-15

    We present a simple method for continuous snapshot multispectral imaging or multispectral videography that achieves high-speed spectral video recording without the need for mechanical scanning and much computation for datacube construction. The enabling component of this method is an array of periscopes placed in a prism-based spectral shaper that spectrally separates the image without image deformation. As a proof-of-principle demonstration, we show five-color multispectral video recording in the visible range (200×200 pixels per spectral image frame) at a record high frame rate of at least 2800 frames per second. Our experimental results indicate that this method holds promise for various industrial and biomedical applications such as remote sensing, food inspection, and endoscopy.

  7. Spectral irradiance of singly and doubly ionized zinc in low-intensity laser-plasma ultraviolet light sources

    Science.gov (United States)

    Szilagyi, John; Parchamy, Homaira; Masnavi, Majid; Richardson, Martin

    2017-01-01

    The absolute spectral irradiances of laser-plasmas produced from planar zinc targets are determined over a wavelength region of 150 to 250 nm. Strong spectral radiation is generated using 60 ns full-width-at-half-maximum, 1.0 μm wavelength laser pulses with incident laser intensities as low as ˜5 × 108 W cm-2. A typical radiation conversion efficiency of ˜2%/2πsr is measured. Numerical calculations using a comprehensive radiation-hydrodynamics model reveal the strong experimental spectra to originate mainly from 3d94s4p-3d94s2, 3d94s4d-3d94s4p, and 3d94p-3d94s, 3d94d-3d94p unresolved-transition arrays in singly and doubly ionized zinc, respectively.

  8. Singular Spectrum Near a Singular Point of Friedrichs Model Operators of Absolute Type

    International Nuclear Information System (INIS)

    Iakovlev, Serguei I.

    2006-01-01

    In L 2 (R) we consider a family of self adjoint operators of the Friedrichs model: A m =|t| m +V. Here |t| m is the operator of multiplication by the corresponding function of the independent variable t element of R, and (perturbation) is a trace-class integral operator with a continuous Hermitian kernel ν(t,x) satisfying some smoothness condition. These absolute type operators have one singular point of order m>0. Conditions on the kernel ν(t,x) are found guaranteeing the absence of the point spectrum and the singular continuous one of such operators near the origin. These conditions are actually necessary and sufficient. They depend on the finiteness of the rank of a perturbation operator and on the order of singularity. The sharpness of these conditions is confirmed by counterexamples

  9. Broadband cavity-enhanced absorption spectroscopy in the ultraviolet spectral region for measurements of nitrogen dioxide and formaldehyde

    Science.gov (United States)

    Washenfelder, R. A.; Attwood, A. R.; Flores, J. M.; Zarzana, K. J.; Rudich, Y.; Brown, S. S.

    2016-01-01

    Formaldehyde (CH2O) is the most abundant aldehyde in the atmosphere, and it strongly affects photochemistry through its photolysis. We describe simultaneous measurements of CH2O and nitrogen dioxide (NO2) using broadband cavity-enhanced absorption spectroscopy in the ultraviolet spectral region. The light source consists of a continuous-wave diode laser focused into a Xenon bulb to produce a plasma that emits high-intensity, broadband light. The plasma discharge is optically filtered and coupled into a 1 m optical cavity. The reflectivity of the cavity mirrors is 0.99930 ± 0.00003 (1- reflectivity = 700 ppm loss) at 338 nm, as determined from the known Rayleigh scattering of He and zero air. This mirror reflectivity corresponds to an effective path length of 1.43 km within the 1 m cell. We measure the cavity output over the 315-350 nm spectral region using a grating monochromator and charge-coupled device array detector. We use published reference spectra with spectral fitting software to simultaneously retrieve CH2O and NO2 concentrations. Independent measurements of NO2 standard additions by broadband cavity-enhanced absorption spectroscopy and cavity ring-down spectroscopy agree within 2 % (slope for linear fit = 1.02 ± 0.03 with r2 = 0.998). Standard additions of CH2O measured by broadband cavity-enhanced absorption spectroscopy and calculated based on flow dilution are also well correlated, with r2 = 0.9998. During constant mixed additions of NO2 and CH2O, the 30 s measurement precisions (1σ) of the current configuration were 140 and 210 pptv, respectively. The current 1 min detection limit for extinction measurements at 315-350 nm provides sufficient sensitivity for measurement of trace gases in laboratory experiments and ground-based field experiments. Additionally, the instrument provides highly accurate, spectroscopically based trace gas detection that may complement higher precision techniques based on non-absolute detection methods. In addition to

  10. Absolute dual-comb spectroscopy at 1.55 μm by free-running Er:fiber lasers

    Science.gov (United States)

    Cassinerio, Marco; Gambetta, Alessio; Coluccelli, Nicola; Laporta, Paolo; Galzerano, Gianluca

    2014-06-01

    We report on a compact scheme for absolute referencing and coherent averaging for dual-comb based spectrometers, exploiting a single continuous-wave (CW) laser in a transfer oscillator configuration. The same CW laser is used for both absolute calibration of the optical frequency axis and the generation of a correction signal which is used for a real-time jitter compensation in a fully electrical feed-forward scheme. The technique is applied to a near-infrared spectrometer based on a pair of free-running mode-locked Er:fiber lasers, allowing to perform real-time absolute-frequency measurements over an optical bandwidth of more than 25 nm, with coherent interferogram averaging over 1-s acquisition time, leading to a signal-to-noise ratio improvement of 29 dB over the 50 μs single shot acquisition. Using 10-cm single pass cell, a value of 1.9 × 10-4 cm-1 Hz-0.5 noise-equivalent-absorption over 1 s integration time is obtained, which can be further scaled down with a multi-pass or resonant cavity. The adoption of a single CW laser, together with the absence of optical locks, and the full-fiber design makes this spectrometer a robust and compact system to be employed in gas-sensing applications.

  11. Approach to Absolute Zero

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 10. Approach to Absolute Zero Below 10 milli-Kelvin. R Srinivasan. Series Article Volume 2 Issue 10 October 1997 pp 8-16. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/002/10/0008-0016 ...

  12. Population-based absolute risk estimation with survey data

    Science.gov (United States)

    Kovalchik, Stephanie A.; Pfeiffer, Ruth M.

    2013-01-01

    Absolute risk is the probability that a cause-specific event occurs in a given time interval in the presence of competing events. We present methods to estimate population-based absolute risk from a complex survey cohort that can accommodate multiple exposure-specific competing risks. The hazard function for each event type consists of an individualized relative risk multiplied by a baseline hazard function, which is modeled nonparametrically or parametrically with a piecewise exponential model. An influence method is used to derive a Taylor-linearized variance estimate for the absolute risk estimates. We introduce novel measures of the cause-specific influences that can guide modeling choices for the competing event components of the model. To illustrate our methodology, we build and validate cause-specific absolute risk models for cardiovascular and cancer deaths using data from the National Health and Nutrition Examination Survey. Our applications demonstrate the usefulness of survey-based risk prediction models for predicting health outcomes and quantifying the potential impact of disease prevention programs at the population level. PMID:23686614

  13. Numerical evaluation of magnetic absolute measurements with arbitrarily distributed DI-fluxgate theodolite orientations

    Science.gov (United States)

    Brunke, Heinz-Peter; Matzka, Jürgen

    2018-01-01

    At geomagnetic observatories the absolute measurements are needed to determine the calibration parameters of the continuously recording vector magnetometer (variometer). Absolute measurements are indispensable for determining the vector of the geomagnetic field over long periods of time. A standard DI (declination, inclination) measuring scheme for absolute measurements establishes routines in magnetic observatories. The traditional measuring schema uses a fixed number of eight orientations (Jankowski et al., 1996).We present a numerical method, allowing for the evaluation of an arbitrary number (minimum of five as there are five independent parameters) of telescope orientations. Our method provides D, I and Z base values and calculated error bars of them.A general approach has significant advantages. Additional measurements may be seamlessly incorporated for higher accuracy. Individual erroneous readings are identified and can be discarded without invalidating the entire data set. A priori information can be incorporated. We expect the general method to also ease requirements for automated DI-flux measurements. The method can reveal certain properties of the DI theodolite which are not captured by the conventional method.Based on the alternative evaluation method, a new faster and less error-prone measuring schema is presented. It avoids needing to calculate the magnetic meridian prior to the inclination measurements.Measurements in the vicinity of the magnetic equator are possible with theodolites and without a zenith ocular.The implementation of the method in MATLAB is available as source code at the GFZ Data Center Brunke (2017).

  14. Numerical evaluation of magnetic absolute measurements with arbitrarily distributed DI-fluxgate theodolite orientations

    Directory of Open Access Journals (Sweden)

    H.-P. Brunke

    2018-01-01

    Full Text Available At geomagnetic observatories the absolute measurements are needed to determine the calibration parameters of the continuously recording vector magnetometer (variometer. Absolute measurements are indispensable for determining the vector of the geomagnetic field over long periods of time. A standard DI (declination, inclination measuring scheme for absolute measurements establishes routines in magnetic observatories. The traditional measuring schema uses a fixed number of eight orientations (Jankowski et al., 1996.We present a numerical method, allowing for the evaluation of an arbitrary number (minimum of five as there are five independent parameters of telescope orientations. Our method provides D, I and Z base values and calculated error bars of them.A general approach has significant advantages. Additional measurements may be seamlessly incorporated for higher accuracy. Individual erroneous readings are identified and can be discarded without invalidating the entire data set. A priori information can be incorporated. We expect the general method to also ease requirements for automated DI-flux measurements. The method can reveal certain properties of the DI theodolite which are not captured by the conventional method.Based on the alternative evaluation method, a new faster and less error-prone measuring schema is presented. It avoids needing to calculate the magnetic meridian prior to the inclination measurements.Measurements in the vicinity of the magnetic equator are possible with theodolites and without a zenith ocular.The implementation of the method in MATLAB is available as source code at the GFZ Data Center Brunke (2017.

  15. Absolute marine gravimetry with matter-wave interferometry.

    Science.gov (United States)

    Bidel, Y; Zahzam, N; Blanchard, C; Bonnin, A; Cadoret, M; Bresson, A; Rouxel, D; Lequentrec-Lalancette, M F

    2018-02-12

    Measuring gravity from an aircraft or a ship is essential in geodesy, geophysics, mineral and hydrocarbon exploration, and navigation. Today, only relative sensors are available for onboard gravimetry. This is a major drawback because of the calibration and drift estimation procedures which lead to important operational constraints. Atom interferometry is a promising technology to obtain onboard absolute gravimeter. But, despite high performances obtained in static condition, no precise measurements were reported in dynamic. Here, we present absolute gravity measurements from a ship with a sensor based on atom interferometry. Despite rough sea conditions, we obtained precision below 10 -5  m s -2 . The atom gravimeter was also compared with a commercial spring gravimeter and showed better performances. This demonstration opens the way to the next generation of inertial sensors (accelerometer, gyroscope) based on atom interferometry which should provide high-precision absolute measurements from a moving platform.

  16. Development of a Fast and Accurate PCRTM Radiative Transfer Model in the Solar Spectral Region

    Science.gov (United States)

    Liu, Xu; Yang, Qiguang; Li, Hui; Jin, Zhonghai; Wu, Wan; Kizer, Susan; Zhou, Daniel K.; Yang, Ping

    2016-01-01

    A fast and accurate principal component-based radiative transfer model in the solar spectral region (PCRTMSOLAR) has been developed. The algorithm is capable of simulating reflected solar spectra in both clear sky and cloudy atmospheric conditions. Multiple scattering of the solar beam by the multilayer clouds and aerosols are calculated using a discrete ordinate radiative transfer scheme. The PCRTM-SOLAR model can be trained to simulate top-of-atmosphere radiance or reflectance spectra with spectral resolution ranging from 1 cm(exp -1) resolution to a few nanometers. Broadband radiances or reflectance can also be calculated if desired. The current version of the PCRTM-SOLAR covers a spectral range from 300 to 2500 nm. The model is valid for solar zenith angles ranging from 0 to 80 deg, the instrument view zenith angles ranging from 0 to 70 deg, and the relative azimuthal angles ranging from 0 to 360 deg. Depending on the number of spectral channels, the speed of the current version of PCRTM-SOLAR is a few hundred to over one thousand times faster than the medium speed correlated-k option MODTRAN5. The absolute RMS error in channel radiance is smaller than 10(exp -3) mW/cm)exp 2)/sr/cm(exp -1) and the relative error is typically less than 0.2%.

  17. Spectral envelope sensitivity of musical instrument sounds.

    Science.gov (United States)

    Gunawan, David; Sen, D

    2008-01-01

    It is well known that the spectral envelope is a perceptually salient attribute in musical instrument timbre perception. While a number of studies have explored discrimination thresholds for changes to the spectral envelope, the question of how sensitivity varies as a function of center frequency and bandwidth for musical instruments has yet to be addressed. In this paper a two-alternative forced-choice experiment was conducted to observe perceptual sensitivity to modifications made on trumpet, clarinet and viola sounds. The experiment involved attenuating 14 frequency bands for each instrument in order to determine discrimination thresholds as a function of center frequency and bandwidth. The results indicate that perceptual sensitivity is governed by the first few harmonics and sensitivity does not improve when extending the bandwidth any higher. However, sensitivity was found to decrease if changes were made only to the higher frequencies and continued to decrease as the distorted bandwidth was widened. The results are analyzed and discussed with respect to two other spectral envelope discrimination studies in the literature as well as what is predicted from a psychoacoustic model.

  18. Geometrical Description in Binary Composites and Spectral Density Representation

    Directory of Open Access Journals (Sweden)

    Enis Tuncer

    2010-01-01

    -shaped distributions, with coinciding peak locations but different heights. It is speculated that the coincidence in the peak locations is an absolute illustration of the self-similar fractal nature of the mixture topology (structure created with the LLL expression. Consequently, the spectra are not altered significantly with increased filler concentration level—they exhibit a self-similar spectral density function for different concentration levels. Last but not least, the estimated percolation strengths also confirm the fractal nature of the systems characterized by the LLL mixture expression. It is concluded that the LLL expression is suitable for complex composite systems that have hierarchical order in their structure. These observations confirm the finding in the literature.

  19. Relative and absolute risk in epidemiology and health physics

    International Nuclear Information System (INIS)

    Goldsmith, R.; Peterson, H.T. Jr.

    1983-01-01

    The health risk from ionizing radiation commonly is expressed in two forms: (1) the relative risk, which is the percentage increase in natural disease rate and (2) the absolute or attributable risk which represents the difference between the natural rate and the rate associated with the agent in question. Relative risk estimates for ionizing radiation generally are higher than those expressed as the absolute risk. This raises the question of which risk estimator is the most appropriate under different conditions. The absolute risk has generally been used for radiation risk assessment, although mathematical combinations such as the arithmetic or geometric mean of both the absolute and relative risks, have also been used. Combinations of the two risk estimators are not valid because the absolute and relative risk are not independent variables. Both human epidemiologic studies and animal experimental data can be found to illustrate the functional relationship between the natural cancer risk and the risk associated with radiation. This implies that the radiation risk estimate derived from one population may not be appropriate for predictions in another population, unless it is adjusted for the difference in the natural disease incidence between the two populations

  20. Redetermination and absolute configuration of atalaphylline

    Directory of Open Access Journals (Sweden)

    Hoong-Kun Fun

    2010-02-01

    Full Text Available The title acridone alkaloid [systematic name: 1,3,5-trihydroxy-2,4-bis(3-methylbut-2-enylacridin-9(10H-one], C23H25NO4, has previously been reported as crystallizing in the chiral orthorhombic space group P212121 [Chantrapromma et al. (2010. Acta Cryst. E66, o81–o82] but the absolute configuration could not be determined from data collected with Mo radiation. The absolute configuration has now been determined by refinement of the Flack parameter with data collected using Cu radiation. All features of the molecule and its crystal packing are similar to those previously described.

  1. Absolute calibration of sniffer probes on Wendelstein 7-X

    International Nuclear Information System (INIS)

    Moseev, D.; Laqua, H. P.; Marsen, S.; Stange, T.; Braune, H.; Erckmann, V.; Gellert, F.; Oosterbeek, J. W.

    2016-01-01

    Here we report the first measurements of the power levels of stray radiation in the vacuum vessel of Wendelstein 7-X using absolutely calibrated sniffer probes. The absolute calibration is achieved by using calibrated sources of stray radiation and the implicit measurement of the quality factor of the Wendelstein 7-X empty vacuum vessel. Normalized absolute calibration coefficients agree with the cross-calibration coefficients that are obtained by the direct measurements, indicating that the measured absolute calibration coefficients and stray radiation levels in the vessel are valid. Close to the launcher, the stray radiation in the empty vessel reaches power levels up to 340 kW/m 2 per MW injected beam power. Furthest away from the launcher, i.e., half a toroidal turn, still 90 kW/m 2 per MW injected beam power is measured.

  2. Absolute calibration of sniffer probes on Wendelstein 7-X

    Science.gov (United States)

    Moseev, D.; Laqua, H. P.; Marsen, S.; Stange, T.; Braune, H.; Erckmann, V.; Gellert, F.; Oosterbeek, J. W.

    2016-08-01

    Here we report the first measurements of the power levels of stray radiation in the vacuum vessel of Wendelstein 7-X using absolutely calibrated sniffer probes. The absolute calibration is achieved by using calibrated sources of stray radiation and the implicit measurement of the quality factor of the Wendelstein 7-X empty vacuum vessel. Normalized absolute calibration coefficients agree with the cross-calibration coefficients that are obtained by the direct measurements, indicating that the measured absolute calibration coefficients and stray radiation levels in the vessel are valid. Close to the launcher, the stray radiation in the empty vessel reaches power levels up to 340 kW/m2 per MW injected beam power. Furthest away from the launcher, i.e., half a toroidal turn, still 90 kW/m2 per MW injected beam power is measured.

  3. Absolute calibration of sniffer probes on Wendelstein 7-X

    Energy Technology Data Exchange (ETDEWEB)

    Moseev, D., E-mail: dmitry.moseev@ipp.mpg.de; Laqua, H. P.; Marsen, S.; Stange, T.; Braune, H.; Erckmann, V. [Max-Planck-Institut für Plasmaphysik, Greifswald (Germany); Gellert, F. [Max-Planck-Institut für Plasmaphysik, Greifswald (Germany); Ernst-Moritz-Arndt-Universität Greifswald, Greifswald (Germany); Oosterbeek, J. W. [Eindhoven University of Technology, Eindhoven (Netherlands)

    2016-08-15

    Here we report the first measurements of the power levels of stray radiation in the vacuum vessel of Wendelstein 7-X using absolutely calibrated sniffer probes. The absolute calibration is achieved by using calibrated sources of stray radiation and the implicit measurement of the quality factor of the Wendelstein 7-X empty vacuum vessel. Normalized absolute calibration coefficients agree with the cross-calibration coefficients that are obtained by the direct measurements, indicating that the measured absolute calibration coefficients and stray radiation levels in the vessel are valid. Close to the launcher, the stray radiation in the empty vessel reaches power levels up to 340 kW/m{sup 2} per MW injected beam power. Furthest away from the launcher, i.e., half a toroidal turn, still 90 kW/m{sup 2} per MW injected beam power is measured.

  4. Spectral estimates of net radiation and soil heat flux

    International Nuclear Information System (INIS)

    Daughtry, C.S.T.; Kustas, W.P.; Moran, M.S.; Pinter, P.J. Jr.; Jackson, R.D.; Brown, P.W.; Nichols, W.D.; Gay, L.W.

    1990-01-01

    Conventional methods of measuring surface energy balance are point measurements and represent only a small area. Remote sensing offers a potential means of measuring outgoing fluxes over large areas at the spatial resolution of the sensor. The objective of this study was to estimate net radiation (Rn) and soil heat flux (G) using remotely sensed multispectral data acquired from an aircraft over large agricultural fields. Ground-based instruments measured Rn and G at nine locations along the flight lines. Incoming fluxes were also measured by ground-based instruments. Outgoing fluxes were estimated using remotely sensed data. Remote Rn, estimated as the algebraic sum of incoming and outgoing fluxes, slightly underestimated Rn measured by the ground-based net radiometers. The mean absolute errors for remote Rn minus measured Rn were less than 7%. Remote G, estimated as a function of a spectral vegetation index and remote Rn, slightly overestimated measured G; however, the mean absolute error for remote G was 13%. Some of the differences between measured and remote values of Rn and G are associated with differences in instrument designs and measurement techniques. The root mean square error for available energy (Rn - G) was 12%. Thus, methods using both ground-based and remotely sensed data can provide reliable estimates of the available energy which can be partitioned into sensible and latent heat under non advective conditions

  5. Cross-calibration of Medium Resolution Earth Observing Satellites by Using EO-1 Hyperion-derived Spectral Surface Reflectance from "Lunar Cal Sites"

    Science.gov (United States)

    Ungar, S.

    2017-12-01

    Over the past 3 years, the Earth Observing-one (EO-1) Hyperion imaging spectrometer was used to slowly scan the lunar surface at a rate which results in up to 32X oversampling to effectively increase the SNR. Several strategies, including comparison against the USGS RObotic Lunar Observatory (ROLO) mode,l are being employed to estimate the absolute and relative accuracy of the measurement set. There is an existing need to resolve discrepancies as high as 10% between ROLO and solar based calibration of current NASA EOS assets. Although the EO-1 mission was decommissioned at the end of March 2017, the development of a well-characterized exoatmospheric spectral radiometric database, for a range of lunar phase angles surrounding the fully illuminated moon, continues. Initial studies include a comprehensive analysis of the existing 17-year collection of more than 200 monthly lunar acquisitions. Specific lunar surface areas, such as a lunar mare, are being characterized as potential "lunar calibration sites" in terms of their radiometric stability in the presence of lunar nutation and libration. Site specific Hyperion-derived lunar spectral reflectance are being compared against spectrographic measurements made during the Apollo program. Techniques developed through this activity can be employed by future high-quality orbiting imaging spectrometers (such as HyspIRI and EnMap) to further refine calibration accuracies. These techniques will enable the consistent cross calibration of existing and future earth observing systems (spectral and multi-spectral) including those that do not have lunar viewing capability. When direct lunar viewing is not an option for an earth observing asset, orbiting imaging spectrometers can serve as transfer radiometers relating that asset's sensor response to lunar values through near contemporaneous observations of well characterized stable CEOS test sites. Analysis of this dataset will lead to the development of strategies to ensure more

  6. Absolute magnitudes by statistical parallaxes

    International Nuclear Information System (INIS)

    Heck, A.

    1978-01-01

    The author describes an algorithm for stellar luminosity calibrations (based on the principle of maximum likelihood) which allows the calibration of relations of the type: Msub(i)=sup(N)sub(j=1)Σqsub(j)Csub(ij), i=1,...,n, where n is the size of the sample at hand, Msub(i) are the individual absolute magnitudes, Csub(ij) are observational quantities (j=1,...,N), and qsub(j) are the coefficients to be determined. If one puts N=1 and Csub(iN)=1, one has q 1 =M(mean), the mean absolute magnitude of the sample. As additional output, the algorithm provides one also with the dispersion in magnitude of the sample sigmasub(M), the mean solar motion (U,V,W) and the corresponding velocity ellipsoid (sigmasub(u), sigmasub(v), sigmasub(w). The use of this algorithm is illustrated. (Auth.)

  7. Acquisition and visualization techniques for narrow spectral color imaging.

    Science.gov (United States)

    Neumann, László; García, Rafael; Basa, János; Hegedüs, Ramón

    2013-06-01

    This paper introduces a new approach in narrow-band imaging (NBI). Existing NBI techniques generate images by selecting discrete bands over the full visible spectrum or an even wider spectral range. In contrast, here we perform the sampling with filters covering a tight spectral window. This image acquisition method, named narrow spectral imaging, can be particularly useful when optical information is only available within a narrow spectral window, such as in the case of deep-water transmittance, which constitutes the principal motivation of this work. In this study we demonstrate the potential of the proposed photographic technique on nonunderwater scenes recorded under controlled conditions. To this end three multilayer narrow bandpass filters were employed, which transmit at 440, 456, and 470 nm bluish wavelengths, respectively. Since the differences among the images captured in such a narrow spectral window can be extremely small, both image acquisition and visualization require a novel approach. First, high-bit-depth images were acquired with multilayer narrow-band filters either placed in front of the illumination or mounted on the camera lens. Second, a color-mapping method is proposed, using which the input data can be transformed onto the entire display color gamut with a continuous and perceptually nearly uniform mapping, while ensuring optimally high information content for human perception.

  8. On the continuous selections of solution sets of Lipschitzian quantum stochastic differential inclusions

    International Nuclear Information System (INIS)

    Ayoola, E.O.

    2004-05-01

    We prove that a multifunction associated with the set of solutions of Lipschitzian quantum stochastic differential inclusion (QSDI) admits a selection continuous from some subsets of complex numbers to the space of the matrix elements of adapted weakly absolutely continuous quantum stochastic processes. In particular, we show that the solution set map as well as the reachable set of the QSDI admit some continuous representations. (author)

  9. Strongly nonlinear theory of rapid solidification near absolute stability

    Science.gov (United States)

    Kowal, Katarzyna N.; Altieri, Anthony L.; Davis, Stephen H.

    2017-10-01

    We investigate the nonlinear evolution of the morphological deformation of a solid-liquid interface of a binary melt under rapid solidification conditions near two absolute stability limits. The first of these involves the complete stabilization of the system to cellular instabilities as a result of large enough surface energy. We derive nonlinear evolution equations in several limits in this scenario and investigate the effect of interfacial disequilibrium on the nonlinear deformations that arise. In contrast to the morphological stability problem in equilibrium, in which only cellular instabilities appear and only one absolute stability boundary exists, in disequilibrium the system is prone to oscillatory instabilities and a second absolute stability boundary involving attachment kinetics arises. Large enough attachment kinetics stabilize the oscillatory instabilities. We derive a nonlinear evolution equation to describe the nonlinear development of the solid-liquid interface near this oscillatory absolute stability limit. We find that strong asymmetries develop with time. For uniform oscillations, the evolution equation for the interface reduces to the simple form f''+(βf')2+f =0 , where β is the disequilibrium parameter. Lastly, we investigate a distinguished limit near both absolute stability limits in which the system is prone to both cellular and oscillatory instabilities and derive a nonlinear evolution equation that captures the nonlinear deformations in this limit. Common to all these scenarios is the emergence of larger asymmetries in the resulting shapes of the solid-liquid interface with greater departures from equilibrium and larger morphological numbers. The disturbances additionally sharpen near the oscillatory absolute stability boundary, where the interface becomes deep-rooted. The oscillations are time-periodic only for small-enough initial amplitudes and their frequency depends on a single combination of physical parameters, including the

  10. Spectral and electronic measurements of solar radiation

    International Nuclear Information System (INIS)

    Suzuki, Mamoru; Hanyu, Mitsuhiro

    1977-01-01

    The spectral data of solar radiation are necessary if detailed discussion is intended in relation to the utilization of solar energy. Since those data have not been fully prepared so far, a measuring equipment developed in Electro-technical Laboratory to obtain those data is described. The laboratory is now continuing the measurement at the wavelength of 0.3 μm to 1.1 μm. The equipment employs the system to always calibrate with the standard light source, it can measure both the direct light of the sun only and the sun light including sky light, and it enables to obtain the value based on the secondary standard of spectral illumination intensity established by the laboratory. The solar spectral irradiance is determined with the current readings of photomultiplier in the standard light source and the sun-light measurements at a wavelength and with the spectral illumination intensity from the standard light source. In order to practice such measurement many times at various wavelengths, control of the equipment, data collection, computation, drawing and listing are performed by a microcomputer. As an example, the data on Sept. 10, 1976, are shown comparing the graphs at three different hours. It can be well observed that the transmissivity attenuates with shorter wavelength, and the transmissivity in near infra-red region changes greatly due to the absorption of radiation by water vapour. (Wakatsuki, Y.)

  11. [Study on the arc spectral information for welding quality diagnosis].

    Science.gov (United States)

    Li, Zhi-Yong; Gu, Xiao-Yan; Li, Huan; Yang, Li-Jun

    2009-03-01

    Through collecting the spectral signals of TIG and MIG welding arc with spectrometer, the arc light radiations were analyzed based on the basic theory of plasma physics. The radiation of welding arc distributes over a broad range of frequency, from infrared to ultraviolet. The arc spectrum is composed of line spectra and continuous spectra. Due to the variation of metal density in the welding arc, there is great difference between the welding arc spectra of TIG and MIG in both their intensity and distribution. The MIG welding arc provides more line spectra of metal and the intensity of radiation is greater than TIG. The arc spectrum of TIG welding is stable during the welding process, disturbance factors that cause the spectral variations can be reflected by the spectral line related to the corresponding element entering the welding arc. The arc spectrum of MIG welding will fluctuate severely due to droplet transfer, which produces "noise" in the line spectrum aggregation zone. So for MIG welding, the spectral zone lacking spectral line is suitable for welding quality diagnosis. According to the characteristic of TIG and MIG, special spectral zones were selected for welding quality diagnosis. For TIG welding, the selected zone is in ultraviolet zone (230-300 nm). For MIG welding, the selected zone is in visible zone (570-590 nm). With the basic theory provided for welding quality diagnosis, the integral intensity of spectral signal in the selected zone of welding process with disturbing factor was studied to prove the theory. The results show that the welding quality and disturbance factors can be diagnosed with good signal to noise ratio in the selected spectral zone compared with signal in other spectral zone. The spectral signal can be used for real-time diagnosis of the welding quality.

  12. Apparent wavelength shifts of H-like ions caused by the spectral fine structure observed in CHS plasmas

    International Nuclear Information System (INIS)

    Nishimura, Shin; Ida, Katsumi

    1998-01-01

    A new charge exchange spectroscopy (CXS) system viewing the plasma from the upside and the downside simultaneously was installed on the Compact Helical System (CHS) to detect the absolute value of Doppler shift due to poloidal rotation velocity ( i ∼ 100 eV) and in the after-glow recombining phase (T i ∼ 30 eV). The apparent Doppler shift is always red-shift regardless the direction of plasma rotation and is explained as the effect of the spectral fine structure of hydrogen-like ions. (author)

  13. Forcing absoluteness and regularity properties

    NARCIS (Netherlands)

    Ikegami, D.

    2010-01-01

    For a large natural class of forcing notions, we prove general equivalence theorems between forcing absoluteness statements, regularity properties, and transcendence properties over L and the core model K. We use our results to answer open questions from set theory of the reals.

  14. Spectral evolution of GRBs with negative spectral lag using Fermi GBM observations

    Science.gov (United States)

    Chakrabarti, Arundhati; Chaudhury, Kishor; Sarkar, Samir K.; Bhadra, Arunava

    2018-06-01

    The positive spectral lag of Gamma Ray Bursts (GRBs) is often explained in terms of hard-to-soft spectral evolution of GRB pulses. While positive lags of GRBs is very common, there are few GRB pulses that exhibits negative spectral lags. In the present work we examine whether negative lags of GRBs also can be interpreted in terms of spectral evolution of GRB pulses or not. Using Fermi-GBM data, we identify two GRBs, GRB 090426C and GRB 150213A, with clean pulses that exhibit negative spectral lag. An indication of soft to hard transition has been noticed for the negative spectral lag events from the spectral evolution study. The implication of the present findings on the models of GRB spectral lags are discussed.

  15. Automated computation of autonomous spectral submanifolds for nonlinear modal analysis

    Science.gov (United States)

    Ponsioen, Sten; Pedergnana, Tiemo; Haller, George

    2018-04-01

    We discuss an automated computational methodology for computing two-dimensional spectral submanifolds (SSMs) in autonomous nonlinear mechanical systems of arbitrary degrees of freedom. In our algorithm, SSMs, the smoothest nonlinear continuations of modal subspaces of the linearized system, are constructed up to arbitrary orders of accuracy, using the parameterization method. An advantage of this approach is that the construction of the SSMs does not break down when the SSM folds over its underlying spectral subspace. A further advantage is an automated a posteriori error estimation feature that enables a systematic increase in the orders of the SSM computation until the required accuracy is reached. We find that the present algorithm provides a major speed-up, relative to numerical continuation methods, in the computation of backbone curves, especially in higher-dimensional problems. We illustrate the accuracy and speed of the automated SSM algorithm on lower- and higher-dimensional mechanical systems.

  16. Absolute distance measurement with correction of air refractive index by using two-color dispersive interferometry.

    Science.gov (United States)

    Wu, Hanzhong; Zhang, Fumin; Liu, Tingyang; Li, Jianshuang; Qu, Xinghua

    2016-10-17

    Two-color interferometry is powerful for the correction of the air refractive index especially in the turbulent air over long distance, since the empirical equations could introduce considerable measurement uncertainty if the environmental parameters cannot be measured with sufficient precision. In this paper, we demonstrate a method for absolute distance measurement with high-accuracy correction of air refractive index using two-color dispersive interferometry. The distances corresponding to the two wavelengths can be measured via the spectrograms captured by a CCD camera pair in real time. In the long-term experiment of the correction of air refractive index, the experimental results show a standard deviation of 3.3 × 10-8 for 12-h continuous measurement without the precise knowledge of the environmental conditions, while the variation of the air refractive index is about 2 × 10-6. In the case of absolute distance measurement, the comparison with the fringe counting interferometer shows an agreement within 2.5 μm in 12 m range.

  17. Impurity identifications, concentrations and particle fluxes from spectral measurements of the EXTRAP T2R plasma

    Science.gov (United States)

    Menmuir, S.; Kuldkepp, M.; Rachlew, E.

    2006-10-01

    An absolute intensity calibrated 0.5 m spectrometer with optical multi-channel analyser detector was used to observe the visible-UV radiation from the plasma in the EXTRAP T2R reversed field pinch experiment. Spectral lines were identified indicating the presence of oxygen, chromium, iron and molybdenum impurities in the hydrogen plasma. Certain regions of interest were examined in more detail and at different times in the plasma discharge. Impurity concentration calculations were made using the absolute intensities of lines of OIV and OV measured at 1-2 ms into the discharge generating estimates of the order of 0.2% of ne in the central region rising to 0.7% of ne at greater radii for OIV and 0.3% rising to 0.6% for OV. Edge electron temperatures of 0.5-5 eV at electron densities of 5-10×1011 cm-3 were calculated from the measured relative intensities of hydrogen Balmer lines. The absolute intensities of hydrogen lines and of multiplets of neutral chromium and molybdenum were used to determine particle fluxes (at 4-5 ms into the plasma) of the order 1×1016, 7×1013 and 3×1013 particles cm-2 s-1, respectively.

  18. Absolute calibration of sniffer probes on Wendelstein 7-X

    NARCIS (Netherlands)

    Moseev, D.; Laqua, H.P.; Marsen, S.; Stange, T.; Braune, H.; Erckmann, V.; Gellert, F.J.; Oosterbeek, J.W.

    Here we report the first measurements of the power levels of stray radiation in the vacuum vessel of Wendelstein 7-X using absolutely calibrated sniffer probes. The absolute calibration is achieved by using calibrated sources of stray radiation and the implicit measurement of the quality factor of

  19. Absolute tense forms in Tswana | Pretorius | Journal for Language ...

    African Journals Online (AJOL)

    These views were compared in an attempt to put forth an applicable framework for the classification of the tenses in Tswana and to identify the absolute tenses of Tswana. Keywords: tense; simple tenses; compound tenses; absolute tenses; relative tenses; aspect; auxiliary verbs; auxiliary verbal groups; Tswana Opsomming

  20. Spectral combination of spherical gravitational curvature boundary-value problems

    Science.gov (United States)

    PitoÅák, Martin; Eshagh, Mehdi; Šprlák, Michal; Tenzer, Robert; Novák, Pavel

    2018-04-01

    Four solutions of the spherical gravitational curvature boundary-value problems can be exploited for the determination of the Earth's gravitational potential. In this article we discuss the combination of simulated satellite gravitational curvatures, i.e., components of the third-order gravitational tensor, by merging these solutions using the spectral combination method. For this purpose, integral estimators of biased- and unbiased-types are derived. In numerical studies, we investigate the performance of the developed mathematical models for the gravitational field modelling in the area of Central Europe based on simulated satellite measurements. Firstly, we verify the correctness of the integral estimators for the spectral downward continuation by a closed-loop test. Estimated errors of the combined solution are about eight orders smaller than those from the individual solutions. Secondly, we perform a numerical experiment by considering the Gaussian noise with the standard deviation of 6.5× 10-17 m-1s-2 in the input data at the satellite altitude of 250 km above the mean Earth sphere. This value of standard deviation is equivalent to a signal-to-noise ratio of 10. Superior results with respect to the global geopotential model TIM-r5 are obtained by the spectral downward continuation of the vertical-vertical-vertical component with the standard deviation of 2.104 m2s-2, but the root mean square error is the largest and reaches 9.734 m2s-2. Using the spectral combination of all gravitational curvatures the root mean square error is more than 400 times smaller but the standard deviation reaches 17.234 m2s-2. The combination of more components decreases the root mean square error of the corresponding solutions while the standard deviations of the combined solutions do not improve as compared to the solution from the vertical-vertical-vertical component. The presented method represents a weight mean in the spectral domain that minimizes the root mean square error

  1. Probative value of absolute and relative judgments in eyewitness identification.

    Science.gov (United States)

    Clark, Steven E; Erickson, Michael A; Breneman, Jesse

    2011-10-01

    It is well-accepted that eyewitness identification decisions based on relative judgments are less accurate than identification decisions based on absolute judgments. However, the theoretical foundation for this view has not been established. In this study relative and absolute judgments were compared through simulations of the WITNESS model (Clark, Appl Cogn Psychol 17:629-654, 2003) to address the question: Do suspect identifications based on absolute judgments have higher probative value than suspect identifications based on relative judgments? Simulations of the WITNESS model showed a consistent advantage for absolute judgments over relative judgments for suspect-matched lineups. However, simulations of same-foils lineups showed a complex interaction based on the accuracy of memory and the similarity relationships among lineup members.

  2. Positioning, alignment and absolute pointing of the ANTARES neutrino telescope

    International Nuclear Information System (INIS)

    Fehr, F; Distefano, C

    2010-01-01

    A precise detector alignment and absolute pointing is crucial for point-source searches. The ANTARES neutrino telescope utilises an array of hydrophones, tiltmeters and compasses for the relative positioning of the optical sensors. The absolute calibration is accomplished by long-baseline low-frequency triangulation of the acoustic reference devices in the deep-sea with a differential GPS system at the sea surface. The absolute pointing can be independently verified by detecting the shadow of the Moon in cosmic rays.

  3. From spectral holeburning memory to spatial-spectral microwave signal processing

    International Nuclear Information System (INIS)

    Babbitt, Wm Randall; Barber, Zeb W; Harrington, Calvin; Mohan, R Krishna; Sharpe, Tia; Bekker, Scott H; Chase, Michael D; Merkel, Kristian D; Stiffler, Colton R; Traxinger, Aaron S; Woidtke, Alex J

    2014-01-01

    Many storage and processing systems based on spectral holeburning have been proposed that access the broad bandwidth and high dynamic range of spatial-spectral materials, but only recently have practical systems been developed that exceed the performance and functional capabilities of electronic devices. This paper reviews the history of the proposed applications of spectral holeburning and spatial-spectral materials, from frequency domain optical memory to microwave photonic signal processing systems. The recent results of a 20 GHz bandwidth high performance spectrum monitoring system with the additional capability of broadband direction finding demonstrates the potential for spatial-spectral systems to be the practical choice for solving demanding signal processing problems in the near future. (paper)

  4. Does Absolute Synonymy exist in Owere-Igbo? | Omego | AFRREV ...

    African Journals Online (AJOL)

    Among Igbo linguistic researchers, determining whether absolute synonymy exists in Owere–Igbo, a dialect of the Igbo language predominantly spoken by the people of Owerri, Imo State, Nigeria, has become a thorny issue. While some linguistic scholars strive to establish that absolute synonymy exists in the lexical ...

  5. Moral absolutism and ectopic pregnancy.

    Science.gov (United States)

    Kaczor, C

    2001-02-01

    If one accepts a version of absolutism that excludes the intentional killing of any innocent human person from conception to natural death, ectopic pregnancy poses vexing difficulties. Given that the embryonic life almost certainly will die anyway, how can one retain one's moral principle and yet adequately respond to a situation that gravely threatens the life of the mother and her future fertility? The four options of treatment most often discussed in the literature are non-intervention, salpingectomy (removal of tube with embryo), salpingostomy (removal of embryo alone), and use of methotrexate (MXT). In this essay, I review these four options and introduce a fifth (the milking technique). In order to assess these options in terms of the absolutism mentioned, it will also be necessary to discuss various accounts of the intention/foresight distinction. I conclude that salpingectomy, salpingostomy, and the milking technique are compatible with absolutist presuppositions, but not the use of methotrexate.

  6. Quantitative Quantum Mechanical Spectral Analysis (qQMSA) of (1)H NMR spectra of complex mixtures and biofluids.

    Science.gov (United States)

    Tiainen, Mika; Soininen, Pasi; Laatikainen, Reino

    2014-05-01

    The quantitative interpretation of (1)H NMR spectra of mixtures like the biofluids is a demanding task due to spectral complexity and overlap. Complications may arise also from water suppression, T2-editing, protein interactions, relaxation differences of the species, experimental artifacts and, furthermore, the spectra may contain unknown components and macromolecular background which cannot be easily separated from baseline. In this work, tools and strategies for quantitative Quantum Mechanical Spectral Analysis (qQMSA) of (1)H NMR spectra from complex mixtures were developed and systematically assessed. In the present approach, the signals of well-defined, stoichiometric components are described by a QM model, while the background is described by a multiterm baseline function and the unknown signals using optimizable and adjustable lines, regular multiplets or any spectral structures which can be composed from spectral lines. Any prior knowledge available from the spectrum can also be added to the model. Fitting strategies for weak and strongly overlapping spectral systems were developed and assessed using two basic model systems, the metabolite mixtures without and with macromolecular (serum) background. The analyses show that if the spectra are measured in high-throughput manner, the consistent absolute quantification demands some calibration to compensate the different response factors of the protons and compounds. On the other hand, the results show that also the T2-edited spectra can be measured so that they obey well the QM rules. In general, qQMSA exploits and interprets the spectral information in maximal way taking full advantage from the QM properties of the spectra and, at the same time, offers chemical confidence which means that individual components can be identified with high confidence on the basis of their accurate spectral parameters. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Spectral Imaging by Upconversion

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Pedersen, Christian; Tidemand-Lichtenberg, Peter

    2011-01-01

    We present a method to obtain spectrally resolved images using upconversion. By this method an image is spectrally shifted from one spectral region to another wavelength. Since the process is spectrally sensitive it allows for a tailored spectral response. We believe this will allow standard...... silicon based cameras designed for visible/near infrared radiation to be used for spectral images in the mid infrared. This can lead to much lower costs for such imaging devices, and a better performance....

  8. Absolute configuration and enantiomeric composition of partially resolved mandelic, atrolactic and lactic acids by {sup 1}H NMR of their (S)-2-methylbutyl esters

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Francisco A. da C.; Mendes, Maricleide P. de L.; Fonseca, Neuracy C. da, E-mail: fandrade@ufba.br [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Instituto de Quimica. Departamento de Quimica Organica

    2013-06-15

    The mandelic, atrolactic and lactic acid esters of the (S)-2-methyl-1-butanol were examined as diastereomeric derivatives for the stereochemical analysis of the mentioned acids by {sup 1}H nuclear magnetic resonance (NMR) at 300 MHz. The diastereomeric esters showed distinctive signals in the methylenic absorption range (O-CH{sub 2}-CH) of the alcoholic moieties. By spectral analysis at this region, absolute configurations were attributed, chemical shifts of the correspondent pro-(R) and pro-(S) hydrogens from the methylene group of the alcohol moiety were assigned and enantiomeric compositions were determined for the original partially resolved acids. (author)

  9. Absolute and Relative Socioeconomic Health Inequalities across Age Groups.

    Science.gov (United States)

    van Zon, Sander K R; Bültmann, Ute; Mendes de Leon, Carlos F; Reijneveld, Sijmen A

    2015-01-01

    The magnitude of socioeconomic health inequalities differs across age groups. It is less clear whether socioeconomic health inequalities differ across age groups by other factors that are known to affect the relation between socioeconomic position and health, like the indicator of socioeconomic position, the health outcome, gender, and as to whether socioeconomic health inequalities are measured in absolute or in relative terms. The aim is to investigate whether absolute and relative socioeconomic health inequalities differ across age groups by indicator of socioeconomic position, health outcome and gender. The study sample was derived from the baseline measurement of the LifeLines Cohort Study and consisted of 95,432 participants. Socioeconomic position was measured as educational level and household income. Physical and mental health were measured with the RAND-36. Age concerned eleven 5-years age groups. Absolute inequalities were examined by comparing means. Relative inequalities were examined by comparing Gini-coefficients. Analyses were performed for both health outcomes by both educational level and household income. Analyses were performed for all age groups, and stratified by gender. Absolute and relative socioeconomic health inequalities differed across age groups by indicator of socioeconomic position, health outcome, and gender. Absolute inequalities were most pronounced for mental health by household income. They were larger in younger than older age groups. Relative inequalities were most pronounced for physical health by educational level. Gini-coefficients were largest in young age groups and smallest in older age groups. Absolute and relative socioeconomic health inequalities differed cross-sectionally across age groups by indicator of socioeconomic position, health outcome and gender. Researchers should critically consider the implications of choosing a specific age group, in addition to the indicator of socioeconomic position and health outcome

  10. Some things ought never be done: moral absolutes in clinical ethics.

    Science.gov (United States)

    Pellegrino, Edmund D

    2005-01-01

    Moral absolutes have little or no moral standing in our morally diverse modern society. Moral relativism is far more palatable for most ethicists and to the public at large. Yet, when pressed, every moral relativist will finally admit that there are some things which ought never be done. It is the rarest of moral relativists that will take rape, murder, theft, child sacrifice as morally neutral choices. In general ethics, the list of those things that must never be done will vary from person to person. In clinical ethics, however, the nature of the physician-patient relationship is such that certain moral absolutes are essential to the attainment of the good of the patient - the end of the relationship itself. These are all derivatives of the first moral absolute of all morality: Do good and avoid evil. In the clinical encounter, this absolute entails several subsidiary absolutes - act for the good of the patient, do not kill, keep promises, protect the dignity of the patient, do not lie, avoid complicity with evil. Each absolute is intrinsic to the healing and helping ends of the clinical encounter.

  11. On Properties of Impurity Spectrum in the Disordered Exactly Solvable Model

    CERN Document Server

    Grinshpun, V

    2006-01-01

    The random point interaction Hamiltonian (H) is considered on L^2(R^d), d=2, or d=3. Existence and certain bounds of the non-empty pure point component and exponential decay of the corresponding eigenfunctions with probability 1, within region of impurity spectrum of H, are rigorously established. In order to prove the localization result, the structure of the generalized eigenfunctions of H is explicitly described, and the relation between its spectral properties, and the properties of spectra of finite-difference infinite-order operators on l^2(Z^d), is established. The multiscale analysis scheme is applied to investigate the point spectrum of finite-difference operators. In addition, the generalized spectral theorem, and absolute continuity of the integrated density of states of H at the negative (impurity) part of the spectrum, rigorously proved. Applications of the new approximation scheme include straightforward analysis of absolutely continuous conductivity spectrum, subject to a possible separate publ...

  12. Relativistic Absolutism in Moral Education.

    Science.gov (United States)

    Vogt, W. Paul

    1982-01-01

    Discusses Emile Durkheim's "Moral Education: A Study in the Theory and Application of the Sociology of Education," which holds that morally healthy societies may vary in culture and organization but must possess absolute rules of moral behavior. Compares this moral theory with current theory and practice of American educators. (MJL)

  13. Effekten af absolut kumulation

    DEFF Research Database (Denmark)

    Kyvsgaard, Britta; Klement, Christian

    2012-01-01

    Som led i finansloven for 2011 blev regeringen og forligspartierne enige om at undersøge reglerne om strafudmåling ved samtidig pådømmelse af flere kriminelle forhold og i forbindelse hermed vurdere konsekvenserne af at ændre de gældende regler i forhold til kapacitetsbehovet i Kriminalforsorgens...... samlet bødesum ved en absolut kumulation i forhold til en modereret kumulation, som nu er gældende....

  14. Some absolutely effective product methods

    Directory of Open Access Journals (Sweden)

    H. P. Dikshit

    1992-01-01

    Full Text Available It is proved that the product method A(C,1, where (C,1 is the Cesàro arithmetic mean matrix, is totally effective under certain conditions concerning the matrix A. This general result is applied to study absolute Nörlund summability of Fourier series and other related series.

  15. Calculation of retention time tolerance windows with absolute confidence from shared liquid chromatographic retention data.

    Science.gov (United States)

    Boswell, Paul G; Abate-Pella, Daniel; Hewitt, Joshua T

    2015-09-18

    Compound identification by liquid chromatography-mass spectrometry (LC-MS) is a tedious process, mainly because authentic standards must be run on a user's system to be able to confidently reject a potential identity from its retention time and mass spectral properties. Instead, it would be preferable to use shared retention time/index data to narrow down the identity, but shared data cannot be used to reject candidates with an absolute level of confidence because the data are strongly affected by differences between HPLC systems and experimental conditions. However, a technique called "retention projection" was recently shown to account for many of the differences. In this manuscript, we discuss an approach to calculate appropriate retention time tolerance windows for projected retention times, potentially making it possible to exclude candidates with an absolute level of confidence, without needing to have authentic standards of each candidate on hand. In a range of multi-segment gradients and flow rates run among seven different labs, the new approach calculated tolerance windows that were significantly more appropriate for each retention projection than global tolerance windows calculated for retention projections or linear retention indices. Though there were still some small differences between the labs that evidently were not taken into account, the calculated tolerance windows only needed to be relaxed by 50% to make them appropriate for all labs. Even then, 42% of the tolerance windows calculated in this study without standards were narrower than those required by WADA for positive identification, where standards must be run contemporaneously. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Absolute measurement method of environment radon content

    International Nuclear Information System (INIS)

    Ji Changsong

    1989-11-01

    A portable environment radon content device with a 40 liter decay chamber based on the method of Thomas double filter radon content absolute measurement has been developed. The correctness of the method of Thomas double filter absolute measurement has been verified by the experiments to measure the sampling gas density of radon that the theoretical density has been known. In addition, the intrinsic uncertainty of this method is also determined in the experiments. The confidence of this device is about 95%, the sensitivity is better than 0.37 Bqm -3 and the intrinsic uncertainty is less than 10%. The results show that the selected measuring and structure parameters are reasonable and the experimental methods are acceptable. In this method, the influence on the measured values from the radioactive equilibrium of radon and its daughters, the ratio of combination daughters to the total daughters and the fraction of charged particles has been excluded in the theory and experimental methods. The formula of Thomas double filter absolute measuring radon is applicable to the cylinder decay chamber, and the applicability is also verified when the diameter of exit filter is much smaller than the diameter of inlet filter

  17. Study on absolute humidity influence of NRL-1 measuring apparatus for radon

    International Nuclear Information System (INIS)

    Shan Jian; Xiao Detao; Zhao Guizhi; Zhou Qingzhi; Liu Yan; Qiu Shoukang; Meng Yecheng; Xiong Xinming; Liu Xiaosong; Ma Wenrong

    2014-01-01

    The absolute humidity and temperature's effects on the NRL-1 measuring apparatus for radon were studied in this paper. By controlling the radon activity concentration of the radon laboratory in University of South China and improving the temperature and humidity adjust strategy, different correction factor values under different absolute humidities were obtained. Moreover, a correction curve between 1.90 and 14.91 g/m"3 was also attained. The results show that in the case of absolute humidity, when it is less than 2.4 g/m"3, collection efficiency of the NRL-1 measuring apparatus for radon tends to be constant, and the correction factor of the absolute humidity closes to 1. However, the correction factor increases nonlinearly along with the absolute humidity. (authors)

  18. Microfabricated Collector-Generator Electrode Sensor for Measuring Absolute pH and Oxygen Concentrations.

    Science.gov (United States)

    Dengler, Adam K; Wightman, R Mark; McCarty, Gregory S

    2015-10-20

    Fast-scan cyclic voltammetry (FSCV) has attracted attention for studying in vivo neurotransmission due to its subsecond temporal resolution, selectivity, and sensitivity. Traditional FSCV measurements use background subtraction to isolate changes in the local electrochemical environment, providing detailed information on fluctuations in the concentration of electroactive species. This background subtraction removes information about constant or slowly changing concentrations. However, determination of background concentrations is still important for understanding functioning brain tissue. For example, neural activity is known to consume oxygen and produce carbon dioxide which affects local levels of oxygen and pH. Here, we present a microfabricated microelectrode array which uses FSCV to detect the absolute levels of oxygen and pH in vitro. The sensor is a collector-generator electrode array with carbon microelectrodes spaced 5 μm apart. In this work, a periodic potential step is applied at the generator producing transient local changes in the electrochemical environment. The collector electrode continuously performs FSCV enabling these induced changes in concentration to be recorded with the sensitivity and selectivity of FSCV. A negative potential step applied at the generator produces a transient local pH shift at the collector. The generator-induced pH signal is detected using FSCV at the collector and correlated to absolute solution pH by postcalibration of the anodic peak position. In addition, in oxygenated solutions a negative potential step at the generator produces hydrogen peroxide by reducing oxygen. Hydrogen peroxide is detected with FSCV at the collector electrode, and the magnitude of the oxidative peak is proportional to absolute oxygen concentrations. Oxygen interference on the pH signal is minimal and can be accounted for with a postcalibration.

  19. Genomic DNA-based absolute quantification of gene expression in Vitis.

    Science.gov (United States)

    Gambetta, Gregory A; McElrone, Andrew J; Matthews, Mark A

    2013-07-01

    Many studies in which gene expression is quantified by polymerase chain reaction represent the expression of a gene of interest (GOI) relative to that of a reference gene (RG). Relative expression is founded on the assumptions that RG expression is stable across samples, treatments, organs, etc., and that reaction efficiencies of the GOI and RG are equal; assumptions which are often faulty. The true variability in RG expression and actual reaction efficiencies are seldom determined experimentally. Here we present a rapid and robust method for absolute quantification of expression in Vitis where varying concentrations of genomic DNA were used to construct GOI standard curves. This methodology was utilized to absolutely quantify and determine the variability of the previously validated RG ubiquitin (VvUbi) across three test studies in three different tissues (roots, leaves and berries). In addition, in each study a GOI was absolutely quantified. Data sets resulting from relative and absolute methods of quantification were compared and the differences were striking. VvUbi expression was significantly different in magnitude between test studies and variable among individual samples. Absolute quantification consistently reduced the coefficients of variation of the GOIs by more than half, often resulting in differences in statistical significance and in some cases even changing the fundamental nature of the result. Utilizing genomic DNA-based absolute quantification is fast and efficient. Through eliminating error introduced by assuming RG stability and equal reaction efficiencies between the RG and GOI this methodology produces less variation, increased accuracy and greater statistical power. © 2012 Scandinavian Plant Physiology Society.

  20. New vision technology for multidimensional quality monitoring of continuous frying of meat

    DEFF Research Database (Denmark)

    Daugaard, Søren Blond; Adler-Nissen, Jens; Carstensen, Jens Michael

    2010-01-01

    . The vision technology can also detect even slight increases in the agglutination of the fried minced meat during the process. This agglutination is undesirable, but very difficult to measure on-line. The results indicate that multi-spectral vision technology may partially or totally Substitute visual......The potential of using multi-spectral vision technology for quality control in a continuous frying process was investigated. canonical discriminant analysis of the multi-spectral images of samples of fried minced meat and diced turkey Could clearly visualise the effect of different heat treatments...

  1. Absolute measurement of 152Eu

    International Nuclear Information System (INIS)

    Baba, Hiroshi; Baba, Sumiko; Ichikawa, Shinichi; Sekine, Toshiaki; Ishikawa, Isamu

    1981-08-01

    A new method of the absolute measurement for 152 Eu was established based on the 4πβ-γ spectroscopic anti-coincidence method. It is a coincidence counting method consisting of a 4πβ-counter and a Ge(Li) γ-ray detector, in which the effective counting efficiencies of the 4πβ-counter for β-rays, conversion electrons, and Auger electrons were obtained by taking the intensity ratios for certain γ-rays between the single spectrum and the spectrum coincident with the pulses from the 4πβ-counter. First, in order to verify the method, three different methods of the absolute measurement were performed with a prepared 60 Co source to find excellent agreement among the results deduced by them. Next, the 4πβ-γ spectroscopic coincidence measurement was applied to 152 Eu sources prepared by irradiating an enriched 151 Eu target in a reactor. The result was compared with that obtained by the γ-ray spectrometry using a 152 Eu standard source supplied by LMRI. They agreed with each other within the error of 2%. (author)

  2. Absolute carrier phase effects in the two-color excitation of dipolar molecules

    International Nuclear Information System (INIS)

    Brown, Alex; Meath, W.J.; Kondo, A.E.

    2002-01-01

    The pump-probe excitation of a two-level dipolar (d≠0) molecule, where the pump frequency is tuned to the energy level separation while the probe frequency is extremely small, is examined theoretically as an example of absolute phase control of excitation processes. The state populations depend on the probe field's absolute carrier phase but are independent of the pump field's absolute carrier phase. Interestingly, the absolute phase effects occur for pulse durations much longer and field intensities much weaker than those required to see such effects in single pulse excitation

  3. Design of a modified endoscope illuminator for spectral imaging of colorectal tissues

    Science.gov (United States)

    Browning, Craig M.; Mayes, Samuel; Rich, Thomas C.; Leavesley, Silas J.

    2017-02-01

    The gold standard for locating colonic polyps is a white light endoscope in a colonoscopy, however, polyps smaller than 5 mm can be easily missed. Modified procedures such as narrow band imaging have shown only marginal increases in detection rates. Spectral imaging is a potential solution to improve the sensitivity and specificity of colonoscopies by providing the ability to distinguish molecular fluorescence differences in tissues. The goal of this work is to implement a spectral endoscopic light source to acquire spectral image data of colorectal tissues. A beta-version endoscope light source was developed, by retrofitting a white light endoscope light source (Olympus, CLK-4) with 16 narrow band LEDs. This redesigned, beta-prototype uses high-power LEDs with a minimum output of 500 mW to provide sufficient spectral output (0.5 mW) through the endoscope. A mounting apparatus was designed to provide sufficient heat dissipation. Here, we report recent results of our tests to characterize the intensity output through the light source and endoscope to determine the flat spectral output for imaging and intensity losses through the endoscope. We also report preliminary spectral imaging data from transverse pig colon that demonstrates the ability to result in working practical spectral data. Preliminary results of this revised prototype spectral endoscope system demonstrate that there is sufficient power to allow the imaging process to continue and potentially determine spectral differences in cancerous and normal tissue from imaging ex vivo pairs. Future work will focus on building a spectral library for the colorectal region and refining the user interface the system for in vivo use.

  4. SPECTRAL CHARACTERISTICS OF SELECTED HERMATYPIC CORALS FROM GULF OF KACHCHH, INDIA

    Directory of Open Access Journals (Sweden)

    N. Ray Chaudhury

    2012-07-01

    Full Text Available Hermatypic, scleractinian corals are the most important benthic substrates in a coral reef ecosystem. The existing, high (spatial resolution, broad-band, multi-spectral, space-borne sensors have limited capability to spatially detect and spectrally discriminate coral substrates. In situ hyperspectral signatures of eight coral targets were collected with the help of Analytical Spectral Devices FieldSpec spectroradiometer from Paga and Laku Point reefs of Gulf of Kachchh, India to study the spectral behaviour of corals. The eight coral targets consisted of seven live corals representing four distinct colony morphologies and one bleached coral target. The coral spectra were studied over a continuous range of 350 to 1350 nm. The corals strongly reflected in the NIR and MIR regions with regional central maximas located at 820 and 1070 nm respectively. In the visible region the live coral spectra conformed to "brown mode" of coral reflectance with triple-peaked pattern at 575, 600 and 650 nm. All coral spectra are characterized with two distinct absorption features: chlorophyll absorption at 675 nm and water absorption at 975 nm. The live and the bleached corals get distinguished in the visible region over 400 to 600 nm region. Water column over the targets modifies the spectral shape and magnitude. First and second-order derivatives help in identifying spectral windows to distinguish live and bleached corals.

  5. Determination of absolute detection efficiencies for detectors of interest in homeland security

    International Nuclear Information System (INIS)

    Ayaz-Maierhafer, Birsen; DeVol, Timothy A.

    2007-01-01

    The absolute total and absolute peak detection efficiencies of gamma ray detector materials NaI:Tl, CdZnTe, HPGe, HPXe, LaBr 3 :Ce and LaCl 3 :Ce were simulated and compared to that of polyvinyltoluene (PVT). The dimensions of the PVT detector were 188.82 cmx60.96 cmx5.08 cm, which is a typical size for a single-panel portal monitor. The absolute total and peak detection efficiencies for these detector materials for the point, line and spherical source geometries of 60 Co (1332 keV), 137 Cs (662 keV) and 241 Am (59.5 keV) were simulated at various source-to-detector distances using the Monte Carlo N-Particle software (MCNP5-V1.30). The comparison of the absolute total detection efficiencies for a point, line and spherical source geometry of 60 Co and 137 Cs at different source-to-detector distance showed that the absolute detection efficiency for PVT is higher relative to the other detectors of typical dimensions for that material. However, the absolute peak detection efficiency of some of these detectors are higher relative to PVT, for example the absolute peak detection efficiency of NaI:Tl (7.62 cm diameterx7.62 cm long), HPGe (7.62 cm diameterx7.62 cm long), HPXe (11.43 cm diameterx60.96 cm long), and LaCl 3 :Ce (5.08 cm diameterx5.08 cm long) are all greater than that of a 188.82 cmx60.96 cmx5.08 cm PVT detector for 60 Co and 137 Cs for all geometries studied. The absolute total and absolute peak detection efficiencies of a right circular cylinder of NaI:Tl with various diameters and thicknesses were determined for a point source. The effect of changing the solid angle on the NaI:Tl detectors showed that with increasing solid angle and detector thickness, the absolute efficiency increases. This work establishes a common basis for differentiating detector materials for passive portal monitoring of gamma ray radiation

  6. An absolute calibration system for millimeter-accuracy APOLLO measurements

    Science.gov (United States)

    Adelberger, E. G.; Battat, J. B. R.; Birkmeier, K. J.; Colmenares, N. R.; Davis, R.; Hoyle, C. D.; Huang, L. R.; McMillan, R. J.; Murphy, T. W., Jr.; Schlerman, E.; Skrobol, C.; Stubbs, C. W.; Zach, A.

    2017-12-01

    Lunar laser ranging provides a number of leading experimental tests of gravitation—important in our quest to unify general relativity and the standard model of physics. The apache point observatory lunar laser-ranging operation (APOLLO) has for years achieved median range precision at the  ∼2 mm level. Yet residuals in model-measurement comparisons are an order-of-magnitude larger, raising the question of whether the ranging data are not nearly as accurate as they are precise, or if the models are incomplete or ill-conditioned. This paper describes a new absolute calibration system (ACS) intended both as a tool for exposing and eliminating sources of systematic error, and also as a means to directly calibrate ranging data in situ. The system consists of a high-repetition-rate (80 MHz) laser emitting short (motivating continued work on model capabilities. The ACS provides the means to deliver APOLLO data both accurate and precise below the 2 mm level.

  7. Regional and site-specific absolute humidity data for use in tritium dose calculations

    International Nuclear Information System (INIS)

    Etnier, E.L.

    1980-01-01

    Due to the potential variability in average absolute humidity over the continental U.S., and the dependence of atmospheric 3 H specific activity on absolute humidity, availability of regional absolute humidity data is of value in estimating the radiological significance of 3 H releases. Most climatological data are in the form of relative humidity, which must be converted to absolute humidity for dose calculations. Absolute humidity was calculated for 218 points across the U.S., using the 1977 annual summary of U.S. Climatological Data, and is given in a table. Mean regional values are shown on a map. (author)

  8. Sharp Spectral Asymptotics and Weyl Formula for Elliptic Operators with Non-smooth Coefficients

    International Nuclear Information System (INIS)

    Zielinski, Lech

    1999-01-01

    The aim of this paper is to give the Weyl formula for eigenvalues of self-adjoint elliptic operators, assuming that first-order derivatives of the coefficients are Lipschitz continuous. The approach is based on the asymptotic formula of Hoermander''s type for the spectral function of pseudo differential operators having Lipschitz continuous Hamiltonian flow and obtained via a regularization procedure of nonsmooth coefficients

  9. Absolute decay parametric instability of high-temperature plasma

    International Nuclear Information System (INIS)

    Zozulya, A.A.; Silin, V.P.; Tikhonchuk, V.T.

    1986-01-01

    A new absolute decay parametric instability having wide spatial localization region is shown to be possible near critical plasma density. Its excitation is conditioned by distributed feedback of counter-running Langmuir waves occurring during parametric decay of incident and reflected pumping wave components. In a hot plasma with the temperature of the order of kiloelectronvolt its threshold is lower than that of a known convective decay parametric instability. Minimum absolute instability threshold is shown to be realized under conditions of spatial parametric resonance of higher orders

  10. Confidence-Accuracy Calibration in Absolute and Relative Face Recognition Judgments

    Science.gov (United States)

    Weber, Nathan; Brewer, Neil

    2004-01-01

    Confidence-accuracy (CA) calibration was examined for absolute and relative face recognition judgments as well as for recognition judgments from groups of stimuli presented simultaneously or sequentially (i.e., simultaneous or sequential mini-lineups). When the effect of difficulty was controlled, absolute and relative judgments produced…

  11. Influence of temperature on the spectral characteristics of semiconductor lasers in the visible range

    Science.gov (United States)

    Adamov, A. A.; Baranov, M. S.; Khramov, V. N.

    2018-04-01

    The results of studies on the effect of temperature on the output spectral characteristics of continuous semiconductor lasers of the visible range are presented. The paper presents the results of studying the spectral-optical radiation parameters of semiconductor lasers, their coherence lengths, and the dependence of the position of the spectral peak of the wavelength on temperature. This is necessary for the selection of the most optimal laser in order to use it for medical ophthalmologic diagnosis. The experiment was carried out using semiconductor laser modules based on a laser diode. The spectra were recorded by using a two-channel automated spectral complex based on the MDR-23 monochromator. Spectral dependences on the temperature of semiconductor lasers are obtained, in the range from 300 to 370 K. The possibility of determining the internal damage to the stabilization of laser modules without opening the case is shown, but only with the use of their spectral characteristics. The obtained data allow taking into account temperature characteristics and further optimization of parameters of such lasers when used in medical practice, in particular, in ophthalmologic diagnostics.

  12. Prediction of spectral acceleration response ordinates based on PGA attenuation

    Science.gov (United States)

    Graizer, V.; Kalkan, E.

    2009-01-01

    Developed herein is a new peak ground acceleration (PGA)-based predictive model for 5% damped pseudospectral acceleration (SA) ordinates of free-field horizontal component of ground motion from shallow-crustal earthquakes. The predictive model of ground motion spectral shape (i.e., normalized spectrum) is generated as a continuous function of few parameters. The proposed model eliminates the classical exhausted matrix of estimator coefficients, and provides significant ease in its implementation. It is structured on the Next Generation Attenuation (NGA) database with a number of additions from recent Californian events including 2003 San Simeon and 2004 Parkfield earthquakes. A unique feature of the model is its new functional form explicitly integrating PGA as a scaling factor. The spectral shape model is parameterized within an approximation function using moment magnitude, closest distance to the fault (fault distance) and VS30 (average shear-wave velocity in the upper 30 m) as independent variables. Mean values of its estimator coefficients were computed by fitting an approximation function to spectral shape of each record using robust nonlinear optimization. Proposed spectral shape model is independent of the PGA attenuation, allowing utilization of various PGA attenuation relations to estimate the response spectrum of earthquake recordings.

  13. Auditory working memory predicts individual differences in absolute pitch learning.

    Science.gov (United States)

    Van Hedger, Stephen C; Heald, Shannon L M; Koch, Rachelle; Nusbaum, Howard C

    2015-07-01

    Absolute pitch (AP) is typically defined as the ability to label an isolated tone as a musical note in the absence of a reference tone. At first glance the acquisition of AP note categories seems like a perceptual learning task, since individuals must assign a category label to a stimulus based on a single perceptual dimension (pitch) while ignoring other perceptual dimensions (e.g., loudness, octave, instrument). AP, however, is rarely discussed in terms of domain-general perceptual learning mechanisms. This is because AP is typically assumed to depend on a critical period of development, in which early exposure to pitches and musical labels is thought to be necessary for the development of AP precluding the possibility of adult acquisition of AP. Despite this view of AP, several previous studies have found evidence that absolute pitch category learning is, to an extent, trainable in a post-critical period adult population, even if the performance typically achieved by this population is below the performance of a "true" AP possessor. The current studies attempt to understand the individual differences in learning to categorize notes using absolute pitch cues by testing a specific prediction regarding cognitive capacity related to categorization - to what extent does an individual's general auditory working memory capacity (WMC) predict the success of absolute pitch category acquisition. Since WMC has been shown to predict performance on a wide variety of other perceptual and category learning tasks, we predict that individuals with higher WMC should be better at learning absolute pitch note categories than individuals with lower WMC. Across two studies, we demonstrate that auditory WMC predicts the efficacy of learning absolute pitch note categories. These results suggest that a higher general auditory WMC might underlie the formation of absolute pitch categories for post-critical period adults. Implications for understanding the mechanisms that underlie the

  14. Spectral-spatial classification of hyperspectral data with mutual information based segmented stacked autoencoder approach

    Science.gov (United States)

    Paul, Subir; Nagesh Kumar, D.

    2018-04-01

    Hyperspectral (HS) data comprises of continuous spectral responses of hundreds of narrow spectral bands with very fine spectral resolution or bandwidth, which offer feature identification and classification with high accuracy. In the present study, Mutual Information (MI) based Segmented Stacked Autoencoder (S-SAE) approach for spectral-spatial classification of the HS data is proposed to reduce the complexity and computational time compared to Stacked Autoencoder (SAE) based feature extraction. A non-parametric dependency measure (MI) based spectral segmentation is proposed instead of linear and parametric dependency measure to take care of both linear and nonlinear inter-band dependency for spectral segmentation of the HS bands. Then morphological profiles are created corresponding to segmented spectral features to assimilate the spatial information in the spectral-spatial classification approach. Two non-parametric classifiers, Support Vector Machine (SVM) with Gaussian kernel and Random Forest (RF) are used for classification of the three most popularly used HS datasets. Results of the numerical experiments carried out in this study have shown that SVM with a Gaussian kernel is providing better results for the Pavia University and Botswana datasets whereas RF is performing better for Indian Pines dataset. The experiments performed with the proposed methodology provide encouraging results compared to numerous existing approaches.

  15. Generic singular continuous spectrum for ergodic Schr\\"odinger operators

    OpenAIRE

    Avila, Artur; Damanik, David

    2004-01-01

    We consider Schr\\"odinger operators with ergodic potential $V_\\omega(n)=f(T^n(\\omega))$, $n \\in \\Z$, $\\omega \\in \\Omega$, where $T:\\Omega \\to \\Omega$ is a non-periodic homeomorphism. We show that for generic $f \\in C(\\Omega)$, the spectrum has no absolutely continuous component. The proof is based on approximation by discontinuous potentials which can be treated via Kotani Theory.

  16. Calibrating the absolute amplitude scale for air showers measured at LOFAR

    International Nuclear Information System (INIS)

    Nelles, A.; Hörandel, J. R.; Karskens, T.; Krause, M.; Corstanje, A.; Enriquez, J. E.; Falcke, H.; Rachen, J. P.; Rossetto, L.; Schellart, P.; Buitink, S.; Erdmann, M.; Krause, R.; Haungs, A.; Hiller, R.; Huege, T.; Link, K.; Schröder, F. G.; Norden, M. J.; Scholten, O.

    2015-01-01

    Air showers induced by cosmic rays create nanosecond pulses detectable at radio frequencies. These pulses have been measured successfully in the past few years at the LOw-Frequency ARray (LOFAR) and are used to study the properties of cosmic rays. For a complete understanding of this phenomenon and the underlying physical processes, an absolute calibration of the detecting antenna system is needed. We present three approaches that were used to check and improve the antenna model of LOFAR and to provide an absolute calibration of the whole system for air shower measurements. Two methods are based on calibrated reference sources and one on a calibration approach using the diffuse radio emission of the Galaxy, optimized for short data-sets. An accuracy of 19% in amplitude is reached. The absolute calibration is also compared to predictions from air shower simulations. These results are used to set an absolute energy scale for air shower measurements and can be used as a basis for an absolute scale for the measurement of astronomical transients with LOFAR

  17. New design and facilities for the International Database for Absolute Gravity Measurements (AGrav): A support for the Establishment of a new Global Absolute Gravity Reference System

    Science.gov (United States)

    Wziontek, Hartmut; Falk, Reinhard; Bonvalot, Sylvain; Rülke, Axel

    2017-04-01

    After about 10 years of successful joint operation by BGI and BKG, the International Database for Absolute Gravity Measurements "AGrav" (see references hereafter) was under a major revision. The outdated web interface was replaced by a responsive, high level web application framework based on Python and built on top of Pyramid. Functionality was added, like interactive time series plots or a report generator and the interactive map-based station overview was updated completely, comprising now clustering and the classification of stations. Furthermore, the database backend was migrated to PostgreSQL for better support of the application framework and long-term availability. As comparisons of absolute gravimeters (AG) become essential to realize a precise and uniform gravity standard, the database was extended to document the results on international and regional level, including those performed at monitoring stations equipped with SGs. By this it will be possible to link different AGs and to trace their equivalence back to the key comparisons under the auspices of International Committee for Weights and Measures (CIPM) as the best metrological realization of the absolute gravity standard. In this way the new AGrav database accommodates the demands of the new Global Absolute Gravity Reference System as recommended by the IAG Resolution No. 2 adopted in Prague 2015. The new database will be presented with focus on the new user interface and new functionality, calling all institutions involved in absolute gravimetry to participate and contribute with their information to built up a most complete picture of high precision absolute gravimetry and improve its visibility. A Digital Object Identifier (DOI) will be provided by BGI to contributors to give a better traceability and facilitate the referencing of their gravity surveys. Links and references: BGI mirror site : http://bgi.obs-mip.fr/data-products/Gravity-Databases/Absolute-Gravity-data/ BKG mirror site: http

  18. Absolute cross sections from the ''boomerang model'' for resonant electron-molecule scattering

    International Nuclear Information System (INIS)

    Dube, L.; Herzenberg, A.

    1979-01-01

    The boomerang model is used to calculate absolute cross sections near the 2 Pi/sub g/ shape resonance in e-N 2 scattering. The calculated cross sections are shown to satisfy detailed balancing. The exchange of electrons is taken into account. A parametrized complex-potential curve for the intermediate N 2 /sup ts-/ ion is determined from a small part of the experimental data, and then used to calculate other properties. The calculations are in good agreement with the absolute cross sections for vibrational excitation from the ground state, the absolute cross section v = 1 → 2, and the absolute total cross section

  19. A highly accurate absolute gravimetric network for Albania, Kosovo and Montenegro

    Science.gov (United States)

    Ullrich, Christian; Ruess, Diethard; Butta, Hubert; Qirko, Kristaq; Pavicevic, Bozidar; Murat, Meha

    2016-04-01

    The objective of this project is to establish a basic gravity network in Albania, Kosovo and Montenegro to enable further investigations in geodetic and geophysical issues. Therefore the first time in history absolute gravity measurements were performed in these countries. The Norwegian mapping authority Kartverket is assisting the national mapping authorities in Kosovo (KCA) (Kosovo Cadastral Agency - Agjencia Kadastrale e Kosovës), Albania (ASIG) (Autoriteti Shtetëror i Informacionit Gjeohapësinor) and in Montenegro (REA) (Real Estate Administration of Montenegro - Uprava za nekretnine Crne Gore) in improving the geodetic frameworks. The gravity measurements are funded by Kartverket. The absolute gravimetric measurements were performed from BEV (Federal Office of Metrology and Surveying) with the absolute gravimeter FG5-242. As a national metrology institute (NMI) the Metrology Service of the BEV maintains the national standards for the realisation of the legal units of measurement and ensures their international equivalence and recognition. Laser and clock of the absolute gravimeter were calibrated before and after the measurements. The absolute gravimetric survey was carried out from September to October 2015. Finally all 8 scheduled stations were successfully measured: there are three stations located in Montenegro, two stations in Kosovo and three stations in Albania. The stations are distributed over the countries to establish a gravity network for each country. The vertical gradients were measured at all 8 stations with the relative gravimeter Scintrex CG5. The high class quality of some absolute gravity stations can be used for gravity monitoring activities in future. The measurement uncertainties of the absolute gravity measurements range around 2.5 micro Gal at all stations (1 microgal = 10-8 m/s2). In Montenegro the large gravity difference of 200 MilliGal between station Zabljak and Podgorica can be even used for calibration of relative gravimeters

  20. Absolute and relative dosimetry for ELIMED

    Energy Technology Data Exchange (ETDEWEB)

    Cirrone, G. A. P.; Schillaci, F.; Scuderi, V. [INFN, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania, Italy and Institute of Physics Czech Academy of Science, ELI-Beamlines project, Na Slovance 2, Prague (Czech Republic); Cuttone, G.; Candiano, G.; Musumarra, A.; Pisciotta, P.; Romano, F. [INFN, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Carpinelli, M. [INFN Sezione di Cagliari, c/o Dipartimento di Fisica, Università di Cagliari, Cagliari (Italy); Leonora, E.; Randazzo, N. [INFN-Sezione di Catania, Via Santa Sofia 64, Catania (Italy); Presti, D. Lo [INFN-Sezione di Catania, Via Santa Sofia 64, Catania, Italy and Università di Catania, Dipartimento di Fisica e Astronomia, Via S. Sofia 64, Catania (Italy); Raffaele, L. [INFN, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania, Italy and INFN-Sezione di Catania, Via Santa Sofia 64, Catania (Italy); Tramontana, A. [INFN, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania, Italy and Università di Catania, Dipartimento di Fisica e Astronomia, Via S. Sofia 64, Catania (Italy); Cirio, R.; Sacchi, R.; Monaco, V. [INFN, Sezione di Torino, Via P.Giuria, 1 10125 Torino, Italy and Università di Torino, Dipartimento di Fisica, Via P.Giuria, 1 10125 Torino (Italy); Marchetto, F.; Giordanengo, S. [INFN, Sezione di Torino, Via P.Giuria, 1 10125 Torino (Italy)

    2013-07-26

    The definition of detectors, methods and procedures for the absolute and relative dosimetry of laser-driven proton beams is a crucial step toward the clinical use of this new kind of beams. Hence, one of the ELIMED task, will be the definition of procedures aiming to obtain an absolute dose measure at the end of the transport beamline with an accuracy as close as possible to the one required for clinical applications (i.e. of the order of 5% or less). Relative dosimetry procedures must be established, as well: they are necessary in order to determine and verify the beam dose distributions and to monitor the beam fluence and the energetic spectra during irradiations. Radiochromic films, CR39, Faraday Cup, Secondary Emission Monitor (SEM) and transmission ionization chamber will be considered, designed and studied in order to perform a fully dosimetric characterization of the ELIMED proton beam.

  1. New treatment of iliac artery disease: focus on the Absolute Pro® Vascular Self-Expanding Stent System

    Directory of Open Access Journals (Sweden)

    Gates L

    2013-09-01

    Full Text Available Lindsay Gates, Jeffrey Indes Vascular and Endovascular Surgery, Yale University School of Medicine, New Haven, CT, USA Abstract: Management of iliac artery disease has evolved over the years, from a surgical-only approach to a primarily endovascular-only approach as the first line treatment option. This has been continuously improved upon with the advent of new devices and applied technologies. Most recently in particular, the literature has shown good, reliable outcomes with the use of self-expandable stents in iliac artery atherosclerotic lesions. Nevertheless, no device is without its limitations, and the Absolute Pro® Vascular Self-Expanding Stent System was designed with the intent of overcoming some of the shortcomings of other available stents while maintaining acceptable postprocedural outcomes. Based on preliminary industry-acquired data, it has achieved these goals and appears to be an emergent competitor for the treatment of both focal and complex iliac artery lesions. Keywords: Absolute-Pro®, iliac stent, self-expanding stents, atherosclerotic disease

  2. Spectral image reconstruction using an edge preserving spatio-spectral Wiener estimation.

    Science.gov (United States)

    Urban, Philipp; Rosen, Mitchell R; Berns, Roy S

    2009-08-01

    Reconstruction of spectral images from camera responses is investigated using an edge preserving spatio-spectral Wiener estimation. A Wiener denoising filter and a spectral reconstruction Wiener filter are combined into a single spatio-spectral filter using local propagation of the noise covariance matrix. To preserve edges the local mean and covariance matrix of camera responses is estimated by bilateral weighting of neighboring pixels. We derive the edge-preserving spatio-spectral Wiener estimation by means of Bayesian inference and show that it fades into the standard Wiener reflectance estimation shifted by a constant reflectance in case of vanishing noise. Simulation experiments conducted on a six-channel camera system and on multispectral test images show the performance of the filter, especially for edge regions. A test implementation of the method is provided as a MATLAB script at the first author's website.

  3. Sharp Spectral Asymptotics and Weyl Formula for Elliptic Operators with Non-smooth Coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Zielinski, Lech [Universite Paris 7 (D. Diderot), Institut de Mathematiques de Paris-Jussieu UMR9994 (France)

    1999-09-15

    The aim of this paper is to give the Weyl formula for eigenvalues of self-adjoint elliptic operators, assuming that first-order derivatives of the coefficients are Lipschitz continuous. The approach is based on the asymptotic formula of Hoermander''s type for the spectral function of pseudo differential operators having Lipschitz continuous Hamiltonian flow and obtained via a regularization procedure of nonsmooth coefficients.

  4. Snapshot spectral and polarimetric imaging; target identification with multispectral video

    Science.gov (United States)

    Bartlett, Brent D.; Rodriguez, Mikel D.

    2013-05-01

    As the number of pixels continue to grow in consumer and scientific imaging devices, it has become feasible to collect the incident light field. In this paper, an imaging device developed around light field imaging is used to collect multispectral and polarimetric imagery in a snapshot fashion. The sensor is described and a video data set is shown highlighting the advantage of snapshot spectral imaging. Several novel computer vision approaches are applied to the video cubes to perform scene characterization and target identification. It is shown how the addition of spectral and polarimetric data to the video stream allows for multi-target identification and tracking not possible with traditional RGB video collection.

  5. Philosophy as Inquiry Aimed at the Absolute Knowledge

    Directory of Open Access Journals (Sweden)

    Ekaterina Snarskaya

    2017-09-01

    Full Text Available Philosophy as the absolute knowledge has been studied from two different but closely related approaches: historical and logical. The first approach exposes four main stages in the history of European metaphysics that marked out types of “philosophical absolutism”: the evolution of philosophy brought to light metaphysics of being, method, morals and logic. All of them are associated with the names of Aristotle, Bacon/Descartes, Kant and Hegel. Then these forms are considered in the second approach that defined them as subject-matter of philosophy as such. Due to their overall, comprehensive character, the focus of philosophy on them justifies its claim on absoluteness as far as philosophy is aimed at comprehension of the world’s unity regardless of the philosopher’s background, values and other preferences. And that is its prerogative since no other form of consciousness lays down this kind of aim. Thus, philosophy is defined as an everlasting attempt to succeed in conceiving the world in all its multifold manifestations. This article is to try to clarify the claim of philosophy on the absolute knowledge.

  6. The slightly-enriched spectral shift control reactor

    International Nuclear Information System (INIS)

    Martin, W.R.; Lee, J.C.; Edlund, M.C.

    1990-06-01

    An advanced converter reactor design utilizing mechanical spectral shift control rods in a conventional pressurized water reactor configuration is under investigation. The design is based on the principle that a harder spectrum during the early part of the fuel cycle will result in larger neutron captures in fertile 238 U, which can then be burned in situ in a softer spectrum later in the cycle. Preliminary design calculations performed during FY 89 show that the slightly-enriched spectral shift reactor design offers the benefit of substantially increased fuel resource utilization with the proven safety characteristics of the pressurized water reactor technology retained. Optimization of the fuel design and development of fuel management strategies have been carried out in FY 90, along with effort to develop and validate neutronic methodology for tight-lattice configurations with hard spectra. During FY 91, the final year of the grant, effort will focus on performing the final design calculations and continuing the research to develop improved methods for tight lattice analysis

  7. Spectral linewidth preservation in parametric frequency combs seeded by dual pumps.

    Science.gov (United States)

    Tong, Zhi; Wiberg, Andreas O J; Myslivets, Evgeny; Kuo, Bill P P; Alic, Nikola; Radic, Stojan

    2012-07-30

    We demonstrate new technique for generation of programmable-pitch, wideband frequency combs with low phase noise. The comb generation was achieved using cavity-less, multistage mixer driven by two tunable continuous-wave pump seeds. The approach relies on phase-correlated continuous-wave pumps in order to cancel spectral linewidth broadening inherent to parametric comb generation. Parametric combs with over 200-nm bandwidth were obtained and characterized with respect to phase noise scaling to demonstrate linewidth preservation over 100 generated tones.

  8. Absolute pitch: a case study.

    Science.gov (United States)

    Vernon, P E

    1977-11-01

    The auditory skill known as 'absolute pitch' is discussed, and it is shown that this differs greatly in accuracy of identification or reproduction of musical tones from ordinary discrimination of 'tonal height' which is to some extent trainable. The present writer possessed absolute pitch for almost any tone or chord over the normal musical range, from about the age of 17 to 52. He then started to hear all music one semitone too high, and now at the age of 71 it is heard a full tone above the true pitch. Tests were carried out under controlled conditions, in which 68 to 95 per cent of notes were identified as one semitone or one tone higher than they should be. Changes with ageing seem more likely to occur in the elasticity of the basilar membrane mechanisms than in the long-term memory which is used for aural analysis of complex sounds. Thus this experience supports the view that some resolution of complex sounds takes place at the peripheral sense organ, and this provides information which can be incorrect, for interpretation by the cortical centres.

  9. Absolute calibration technique for spontaneous fission sources

    International Nuclear Information System (INIS)

    Zucker, M.S.; Karpf, E.

    1984-01-01

    An absolute calibration technique for a spontaneously fissioning nuclide (which involves no arbitrary parameters) allows unique determination of the detector efficiency for that nuclide, hence of the fission source strength

  10. Absolute luminosity measurements with the LHCb detector at the LHC

    CERN Document Server

    Aaij, R; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amhis, Y; Anderson, J; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Arrabito, L; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Bachmann, S; Back, J J; Bailey, D S; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bates, A; Bauer, C; Bauer, Th; Bay, A; Bediaga, I; Belous, K; Belyaev, I; Ben-Haim, E; Benayoun, M; Bencivenni, G; Benson, S; Benton, J; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blanks, C; Blouw, J; Blusk, S; Bobrov, A; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Brisbane, S; Britsch, M; Britton, T; Brook, N H; Brown, H; Büchler-Germann, A; Burducea, I; Bursche, A; Buytaert, J; Cadeddu, S; Caicedo Carvajal, J M; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casse, G; Cattaneo, M; Charles, M; Charpentier, Ph; Chiapolini, N; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Collins, P; Constantin, F; Conti, G; Contu, A; Cook, A; Coombes, M; Corti, G; Cowan, G A; Currie, R; D'Almagne, B; D'Ambrosio, C; David, P; De Bonis, I; De Capua, S; De Cian, M; De Lorenzi, F; De Miranda, J M; De Paula, L; De Simone, P; Decamp, D; Deckenhoff, M; Degaudenzi, H; Deissenroth, M; Del Buono, L; Deplano, C; Deschamps, O; Dettori, F; Dickens, J; Dijkstra, H; Diniz Batista, P; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Dzhelyadin, R; Eames, C; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisele, F; Eisenhardt, S; Ekelhof, R; Eklund, L; Elsasser, Ch; d'Enterria, D G; Esperante Pereira, D; Estève, L; Falabella, A; Fanchini, E; Färber, C; Fardell, G; Farinelli, C; Farry, S; Fave, V; Fernandez Albor, V; Ferro-Luzzi, M; Filippov, S; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Frank, M; Frei, C; Frosini, M; Furcas, S; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garnier, J-C; Garofoli, J; Garra Tico, J; Garrido, L; Gaspar, C; Gauvin, N; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Gregson, S; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Haefeli, G; Haen, C; Haines, S C; Hampson, T; Hansmann-Menzemer, S; Harji, R; Harnew, N; Harrison, J; Harrison, P F; He, J; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicks, E; Hofmann, W; Holubyev, K; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Huston, R S; Hutchcroft, D; Hynds, D; Iakovenko, V; Ilten, P; Imong, J; Jacobsson, R; Jaeger, A; Jahjah Hussein, M; Jans, E; Jansen, F; Jaton, P; Jean-Marie, B; Jing, F; John, M; Johnson, D; Jones, C R; Jost, B; Kandybei, S; Karacson, M; Karbach, T M; Keaveney, J; Kerzel, U; Ketel, T; Keune, A; Khanji, B; Kim, Y M; Knecht, M; Koblitz, S; Koppenburg, P; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kruzelecki, K; Kucharczyk, M; Kukulak, S; Kumar, R; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leroy, O; Lesiak, T; Li, L; Li Gioi, L; Lieng, M; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; Lopes, J H; Lopez Asamar, E; Lopez-March, N; Luisier, J; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Magnin, J; Malde, S; Mamunur, R M D; Manca, G; Mancinelli, G; Mangiafave, N; Marconi, U; Märki, R; Marks, J; Martellotti, G; Martens, A; Martin, L; Martín Sánchez, A; Martinez Santos, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Matveev, M; Maurice, E; Maynard, B; Mazurov, A; McGregor, G; McNulty, R; Mclean, C; Meissner, M; Merk, M; Merkel, J; Messi, R; Miglioranzi, S; Milanes, D A; Minard, M-N; Monteil, S; Moran, D; Morawski, P; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Musy, M; Mylroie-Smith, J; Naik, P; Nakada, T; Nandakumar, R; Nardulli, J; Nasteva, I; Nedos, M; Needham, M; Neufeld, N; Nguyen-Mau, C; Nicol, M; Nies, S; Niess, V; Nikitin, N; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Pal, B; Palacios, J; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Paterson, S K; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perego, D L; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pessina, G; Petrella, A; Petrolini, A; Pie Valls, B; Pietrzyk, B; Pilar, T; Pinci, D; Plackett, R; Playfer, S; Plo Casasus, M; Polok, G; Poluektov, A; Polycarpo, E; Popov, D; Popovici, B; Potterat, C; Powell, A; du Pree, T; Prisciandaro, J; Pugatch, V; Puig Navarro, A; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Raven, G; Redford, S; Reid, M M; dos Reis, A C; Ricciardi, S; Rinnert, K; Roa Romero, D A; Robbe, P; Rodrigues, E; Rodrigues, F; Rodriguez Perez, P; Rogers, G J; Roiser, S; Romanovsky, V; Rouvinet, J; Ruf, T; Ruiz, H; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salzmann, C; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santinelli, R; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schleich, S; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M -H; Schwemmer, R; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shao, B; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Skottowe, H P; Skwarnicki, T; Smith, A C; Smith, N A; Sobczak, K; Soler, F J P; Solomin, A; Soomro, F; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Styles, N; Subbiah, V K; Swientek, S; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Topp-Joergensen, S; Tran, M T; Tsaregorodtsev, A; Tuning, N; Ubeda Garcia, M; Ukleja, A; Urquijo, P; Uwer, U; Vagnoni, V; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; Velthuis, J J; Veltri, M; Vervink, K; Viaud, B; Videau, I; Vilasis-Cardona, X; Visniakov, J; Vollhardt, A; Voong, D; Vorobyev, A; Voss, H; Wacker, K; Wandernoth, S; Wang, J; Ward, D R; Webber, A D; Websdale, D; Whitehead, M; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wishahi, J; Witek, M; Witzeling, W; Wotton, S A; Wyllie, K; Xie, Y; Xing, F; Yang, Z; Young, R; Yushchenko, O; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhong, L; Zverev, E; Zvyagin, A

    2012-01-01

    Absolute luminosity measurements are of general interest for colliding-beam experiments at storage rings. These measurements are necessary to determine the absolute cross-sections of reaction processes and are valuable to quantify the performance of the accelerator. LHCb has applied two methods to determine the absolute scale of its luminosity measurements for proton-proton collisions at the LHC with a centre-of-mass energy of 7 TeV. In addition to the classic ``van der Meer scan'' method a novel technique has been developed which makes use of direct imaging of the individual beams using beam-gas and beam-beam interactions. This beam imaging method is made possible by the high resolution of the LHCb vertex detector and the close proximity of the detector to the beams, and allows beam parameters such as positions, angles and widths to be determined. The results of the two methods have comparable precision and are in good agreement. Combining the two methods, an overall precision of 3.5\\% in the absolute lumi...

  11. Analytical continuation by numerical means in spectral analysis using the Fast Pade Transform (FPT)

    International Nuclear Information System (INIS)

    Belkic, Dzevad

    2004-01-01

    A numerical method is used to assess the practical usefulness of the Cauchy concept of analytical continuation of a formal power series T(z -1 )=Σ n c n z -n for a frequency spectrum, which is originally divergent i.e. undefined for vertical bar z vertical bar -1 ) in the expansion variable z -1 , we introduce a rational polynomial A + (z)/B + (z), not in the original, but rather in the reciprocal variable z. Nevertheless, the ansatz A + (z)/B + (z) is still recognised as a variant of the Pade approximant defined in the complementary convergence or stability region inside the unit circle (vertical bar z vertical bar 0, the rational polynomial A + (z)/B + (z) is equivalent to the causal z-transform whose inverse Fourier integral contains only the exponentially decaying components as the building blocks of generic time signals. Therefore, the response function A + (z)/B + (z) is very well suited for adequate physical representations of both Lorentzian and non-Lorentzian spectra. For the purpose of illustration, we presently perform parametric estimations by generating magnitude spectra |A + (z)/B + (z)| using experimentally measured in vivo time signals from Magnetic Resonance Spectroscopy. An equivalent parametric analysis is also done in the time domain. Many experimentally measured data stem from mechanisms that intrinsically describe the time evolution of the studied system. Such physical time functions have their customary meaning as probability amplitudes and, therefore, are expected to decay exponentially with the passage of time. The most prominent examples are auto-correlation functions in signal and image processing or activity curves in decays of radionuclides encountered in e.g. Positron Emission Tomography (PET), etc. For the given experimental data, the task is to retrieve the exact number of the constituent components of the measured time functions as well as the individual parameters of each exponential, i.e. the amplitudes and the time decaying

  12. Absolute calibration of TFTR helium proportional counters

    International Nuclear Information System (INIS)

    Strachan, J.D.; Diesso, M.; Jassby, D.; Johnson, L.; McCauley, S.; Munsat, T.; Roquemore, A.L.; Loughlin, M.

    1995-06-01

    The TFTR helium proportional counters are located in the central five (5) channels of the TFTR multichannel neutron collimator. These detectors were absolutely calibrated using a 14 MeV neutron generator positioned at the horizontal midplane of the TFTR vacuum vessel. The neutron generator position was scanned in centimeter steps to determine the collimator aperture width to 14 MeV neutrons and the absolute sensitivity of each channel. Neutron profiles were measured for TFTR plasmas with time resolution between 5 msec and 50 msec depending upon count rates. The He detectors were used to measure the burnup of 1 MeV tritons in deuterium plasmas, the transport of tritium in trace tritium experiments, and the residual tritium levels in plasmas following 50:50 DT experiments

  13. Spectral sum rule for time delay in R2

    International Nuclear Information System (INIS)

    Osborn, T.A.; Sinha, K.B.; Bolle, D.; Danneels, C.

    1985-01-01

    A local spectral sum rule for nonrelativistic scattering in two dimensions is derived for the potential class velement ofL 4 /sup // 3 (R 2 ). The sum rule relates the integral over all scattering energies of the trace of the time-delay operator for a finite region Σis contained inR 2 to the contributions in Σ of the pure point and singularly continuous spectra

  14. Modelling Perception of Structure and Affect in Music: Spectral Centroid and Wishart's Red Bird

    Directory of Open Access Journals (Sweden)

    Roger T. Dean

    2011-12-01

    Full Text Available Pearce (2011 provides a positive and interesting response to our article on time series analysis of the influences of acoustic properties on real-time perception of structure and affect in a section of Trevor Wishart’s Red Bird (Dean & Bailes, 2010. We address the following topics raised in the response and our paper. First, we analyse in depth the possible influence of spectral centroid, a timbral feature of the acoustic stream distinct from the high level general parameter we used initially, spectral flatness. We find that spectral centroid, like spectral flatness, is not a powerful predictor of real-time responses, though it does show some features that encourage its continued consideration. Second, we discuss further the issue of studying both individual responses, and as in our paper, group averaged responses. We show that a multivariate Vector Autoregression model handles the grand average series quite similarly to those of individual members of our participant groups, and we analyse this in greater detail with a wide range of approaches in work which is in press and continuing. Lastly, we discuss the nature and intent of computational modelling of cognition using acoustic and music- or information theoretic data streams as predictors, and how the music- or information theoretic approaches may be applied to electroacoustic music, which is ‘sound-based’ rather than note-centred like Western classical music.

  15. Stimulus Probability Effects in Absolute Identification

    Science.gov (United States)

    Kent, Christopher; Lamberts, Koen

    2016-01-01

    This study investigated the effect of stimulus presentation probability on accuracy and response times in an absolute identification task. Three schedules of presentation were used to investigate the interaction between presentation probability and stimulus position within the set. Data from individual participants indicated strong effects of…

  16. Absolute gravity measurements in California

    Science.gov (United States)

    Zumberge, M. A.; Sasagawa, G.; Kappus, M.

    1986-08-01

    An absolute gravity meter that determines the local gravitational acceleration by timing a freely falling mass with a laser interferometer has been constructed. The instrument has made measurements at 11 sites in California, four in Nevada, and one in France. The uncertainty in the results is typically 10 microgal. Repeated measurements have been made at several of the sites; only one shows a substantial change in gravity.

  17. Relational versus absolute representation in categorization.

    Science.gov (United States)

    Edwards, Darren J; Pothos, Emmanuel M; Perlman, Amotz

    2012-01-01

    This study explores relational-like and absolute-like representations in categorization. Although there is much evidence that categorization processes can involve information about both the particular physical properties of studied instances and abstract (relational) properties, there has been little work on the factors that lead to one kind of representation as opposed to the other. We tested 370 participants in 6 experiments, in which participants had to classify new items into predefined artificial categories. In 4 experiments, we observed a predominantly relational-like mode of classification, and in 2 experiments we observed a shift toward an absolute-like mode of classification. These results suggest 3 factors that promote a relational-like mode of classification: fewer items per group, more training groups, and the presence of a time delay. Overall, we propose that less information about the distributional properties of a category or weaker memory traces for the category exemplars (induced, e.g., by having smaller categories or a time delay) can encourage relational-like categorization.

  18. Spectrally selective glazings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-08-01

    Spectrally selective glazing is window glass that permits some portions of the solar spectrum to enter a building while blocking others. This high-performance glazing admits as much daylight as possible while preventing transmission of as much solar heat as possible. By controlling solar heat gains in summer, preventing loss of interior heat in winter, and allowing occupants to reduce electric lighting use by making maximum use of daylight, spectrally selective glazing significantly reduces building energy consumption and peak demand. Because new spectrally selective glazings can have a virtually clear appearance, they admit more daylight and permit much brighter, more open views to the outside while still providing the solar control of the dark, reflective energy-efficient glass of the past. This Federal Technology Alert provides detailed information and procedures for Federal energy managers to consider spectrally selective glazings. The principle of spectrally selective glazings is explained. Benefits related to energy efficiency and other architectural criteria are delineated. Guidelines are provided for appropriate application of spectrally selective glazing, and step-by-step instructions are given for estimating energy savings. Case studies are also presented to illustrate actual costs and energy savings. Current manufacturers, technology users, and references for further reading are included for users who have questions not fully addressed here.

  19. Binomial Distribution Sample Confidence Intervals Estimation 7. Absolute Risk Reduction and ARR-like Expressions

    Directory of Open Access Journals (Sweden)

    Andrei ACHIMAŞ CADARIU

    2004-08-01

    Full Text Available Assessments of a controlled clinical trial suppose to interpret some key parameters as the controlled event rate, experimental event date, relative risk, absolute risk reduction, relative risk reduction, number needed to treat when the effect of the treatment are dichotomous variables. Defined as the difference in the event rate between treatment and control groups, the absolute risk reduction is the parameter that allowed computing the number needed to treat. The absolute risk reduction is compute when the experimental treatment reduces the risk for an undesirable outcome/event. In medical literature when the absolute risk reduction is report with its confidence intervals, the method used is the asymptotic one, even if it is well know that may be inadequate. The aim of this paper is to introduce and assess nine methods of computing confidence intervals for absolute risk reduction and absolute risk reduction – like function.Computer implementations of the methods use the PHP language. Methods comparison uses the experimental errors, the standard deviations, and the deviation relative to the imposed significance level for specified sample sizes. Six methods of computing confidence intervals for absolute risk reduction and absolute risk reduction-like functions were assessed using random binomial variables and random sample sizes.The experiments shows that the ADAC, and ADAC1 methods obtains the best overall performance of computing confidence intervals for absolute risk reduction.

  20. A Spectral Algorithm for Envelope Reduction of Sparse Matrices

    Science.gov (United States)

    Barnard, Stephen T.; Pothen, Alex; Simon, Horst D.

    1993-01-01

    The problem of reordering a sparse symmetric matrix to reduce its envelope size is considered. A new spectral algorithm for computing an envelope-reducing reordering is obtained by associating a Laplacian matrix with the given matrix and then sorting the components of a specified eigenvector of the Laplacian. This Laplacian eigenvector solves a continuous relaxation of a discrete problem related to envelope minimization called the minimum 2-sum problem. The permutation vector computed by the spectral algorithm is a closest permutation vector to the specified Laplacian eigenvector. Numerical results show that the new reordering algorithm usually computes smaller envelope sizes than those obtained from the current standard algorithms such as Gibbs-Poole-Stockmeyer (GPS) or SPARSPAK reverse Cuthill-McKee (RCM), in some cases reducing the envelope by more than a factor of two.

  1. Adaptive Spectral Doppler Estimation

    DEFF Research Database (Denmark)

    Gran, Fredrik; Jakobsson, Andreas; Jensen, Jørgen Arendt

    2009-01-01

    . The methods can also provide better quality of the estimated power spectral density (PSD) of the blood signal. Adaptive spectral estimation techniques are known to pro- vide good spectral resolution and contrast even when the ob- servation window is very short. The 2 adaptive techniques are tested......In this paper, 2 adaptive spectral estimation techniques are analyzed for spectral Doppler ultrasound. The purpose is to minimize the observation window needed to estimate the spectrogram to provide a better temporal resolution and gain more flexibility when designing the data acquisition sequence...... and compared with the averaged periodogram (Welch’s method). The blood power spectral capon (BPC) method is based on a standard minimum variance technique adapted to account for both averaging over slow-time and depth. The blood amplitude and phase estimation technique (BAPES) is based on finding a set...

  2. Effect of Absolute From Hibiscus syriacus L. Flower on Wound Healing in Keratinocytes

    Science.gov (United States)

    Yoon, Seok Won; Lee, Kang Pa; Kim, Do-Yoon; Hwang, Dae Il; Won, Kyung-Jong; Lee, Dae Won; Lee, Hwan Myung

    2017-01-01

    Background: Proliferation and migration of keratinocytes are essential for the repair of cutaneous wounds. Hibiscus syriacus L. has been used in Asian medicine; however, research on keratinocytes is inadequate. Objective: To establish the dermatological properties of absolute from Hibiscus syriacus L. flower (HSF) and to provide fundamental research for alternative medicine. Materials and Methods: We identified the composition of HSF absolute using gas chromatography-mass spectrometry analysis. We also examined the effect of HSF absolute in HaCaT cells using the XTT assay, Boyden chamber assay, sprout-out growth assay, and western blotting. We conducted an in-vivo wound healing assay in rat tail-skin. Results: Ten major active compounds were identified from HSF absolute. As determined by the XTT assay, Boyden chamber assay, and sprout-out growth assay results, HSF absolute exhibited similar effects as that of epidermal growth factor on the proliferation and migration patterns of keratinocytes (HaCaT cells), which were significantly increased after HSF absolute treatment. The expression levels of the phosphorylated signaling proteins relevant to proliferation, including extracellular signal-regulated kinase 1/2 (Erk 1/2) and Akt, were also determined by western blot analysis. Conclusion: These results of our in-vitro and ex-vivo studies indicate that HSF absolute induced cell growth and migration of HaCaT cells by phosphorylating both Erk 1/2 and Akt. Moreover, we confirmed the wound-healing effect of HSF on injury of the rat tail-skin. Therefore, our results suggest that HSF absolute is promising for use in cosmetics and alternative medicine. SUMMARY Hisbiscus syriacus L. flower absolute increases HaCaT cell migration and proliferation.Hisbiscus syriacus L. flower absolute regulates phosphorylation of ERK 1/2 and Akt in HaCaT cell.Treatment with Hisbiscus syriacus L. flower induced sprout outgrowth.The wound in the tail-skin of rat was reduced by Hisbiscus syriacus

  3. Absolute and convective instability of a liquid sheet with transverse temperature gradient

    International Nuclear Information System (INIS)

    Fu, Qing-Fei; Yang, Li-Jun; Tong, Ming-Xi; Wang, Chen

    2013-01-01

    Highlights: • The spatial–temporal instability of a liquid sheet with thermal effects was studied. • The flow can transit to absolutely unstable with certain flow parameters. • The effects of non-dimensional parameters on the transition were studied. -- Abstract: The spatial–temporal instability behavior of a viscous liquid sheet with temperature difference between the two surfaces was investigated theoretically. The practical situation motivating this investigation is liquid sheet heated by ambient gas, usually encountered in industrial heat transfer and liquid propellant rocket engines. The existing dispersion relation was used, to explore the spatial–temporal instability of viscous liquid sheets with a nonuniform temperature profile, by setting both the wave number and frequency complex. A parametric study was performed in both sinuous and varicose modes to test the influence of dimensionless numbers on the transition between absolute and convective instability of the flow. For a small value of liquid Weber number, or a great value of gas-to-liquid density ratio, the flow was found to be absolutely unstable. The absolute instability was enhanced by increasing the liquid viscosity. It was found that variation of the Marangoni number hardly influenced the absolute instability of the sinuous mode of oscillations; however it slightly affected the absolute instability in the varicose mode

  4. The fading American dream: Trends in absolute income mobility since 1940.

    Science.gov (United States)

    Chetty, Raj; Grusky, David; Hell, Maximilian; Hendren, Nathaniel; Manduca, Robert; Narang, Jimmy

    2017-04-28

    We estimated rates of "absolute income mobility"-the fraction of children who earn more than their parents-by combining data from U.S. Census and Current Population Survey cross sections with panel data from de-identified tax records. We found that rates of absolute mobility have fallen from approximately 90% for children born in 1940 to 50% for children born in the 1980s. Increasing Gross Domestic Product (GDP) growth rates alone cannot restore absolute mobility to the rates experienced by children born in the 1940s. However, distributing current GDP growth more equally across income groups as in the 1940 birth cohort would reverse more than 70% of the decline in mobility. These results imply that reviving the "American dream" of high rates of absolute mobility would require economic growth that is shared more broadly across the income distribution. Copyright © 2017, American Association for the Advancement of Science.

  5. Novel search algorithms for a mid-infrared spectral library of cotton contaminants.

    Science.gov (United States)

    Loudermilk, J Brian; Himmelsbach, David S; Barton, Franklin E; de Haseth, James A

    2008-06-01

    During harvest, a variety of plant based contaminants are collected along with cotton lint. The USDA previously created a mid-infrared, attenuated total reflection (ATR), Fourier transform infrared (FT-IR) spectral library of cotton contaminants for contaminant identification as the contaminants have negative impacts on yarn quality. This library has shown impressive identification rates for extremely similar cellulose based contaminants in cases where the library was representative of the samples searched. When spectra of contaminant samples from crops grown in different geographic locations, seasons, and conditions and measured with a different spectrometer and accessories were searched, identification rates for standard search algorithms decreased significantly. Six standard algorithms were examined: dot product, correlation, sum of absolute values of differences, sum of the square root of the absolute values of differences, sum of absolute values of differences of derivatives, and sum of squared differences of derivatives. Four categories of contaminants derived from cotton plants were considered: leaf, stem, seed coat, and hull. Experiments revealed that the performance of the standard search algorithms depended upon the category of sample being searched and that different algorithms provided complementary information about sample identity. These results indicated that choosing a single standard algorithm to search the library was not possible. Three voting scheme algorithms based on result frequency, result rank, category frequency, or a combination of these factors for the results returned by the standard algorithms were developed and tested for their capability to overcome the unpredictability of the standard algorithms' performances. The group voting scheme search was based on the number of spectra from each category of samples represented in the library returned in the top ten results of the standard algorithms. This group algorithm was able to identify

  6. Slow ultrafiltration for continuous in vivo sampling : application for glucose and lactate in man

    NARCIS (Netherlands)

    Tiessen, RG; Kaptein, WA; Venema, K; Korf, J

    1999-01-01

    Background: An ultrafiltration (UF) technique was developed for continuous subcutaneous (s.c.) sampling and on-line analysis of absolute glucose and lactate concentrations in tissue. The relation between subcutaneous and blood concentrations was studied in men, because a subcutaneous monitoring

  7. Absolute total cross sections for noble gas systems

    International Nuclear Information System (INIS)

    Kam, P. van der.

    1981-01-01

    This thesis deals with experiments on the elastic scattering of Ar, Kr and Xe, using the molecular beam technique. The aim of this work was the measurement of the absolute value of the total cross section and the behaviour of the total cross section, Q, as function of the relative velocity g of the scattering partners. The author gives an extensive analysis of the glory structure in the total cross section and parametrizes the experimental results using a semiclassical model function. This allows a detailed comparison of the phase and amplitude of the predicted and measured glory undulations. He indicates how the depth and position of the potential well should be changed in order to come to an optimum description of the glory structure. With this model function he has also been able to separate the glory and attractive contribution to Q, and using the results from the extrapolation measurements he has obtained absolute values for Qsub(a). From these absolute values he has calculated the parameter C 6 that determines the strength of the attractive region of the potential. In two of the four investigated gas combinations the obtained values lie outside the theoretical bounds. (Auth.)

  8. Absolute photonic band gap in 2D honeycomb annular photonic crystals

    International Nuclear Information System (INIS)

    Liu, Dan; Gao, Yihua; Tong, Aihong; Hu, Sen

    2015-01-01

    Highlights: • A two-dimensional honeycomb annular photonic crystal (PC) is proposed. • The absolute photonic band gap (PBG) is studied. • Annular PCs show larger PBGs than usual air-hole PCs for high refractive index. • Annular PCs with anisotropic rods show large PBGs for low refractive index. • There exist optimal parameters to open largest band gaps. - Abstract: Using the plane wave expansion method, we investigate the effects of structural parameters on absolute photonic band gap (PBG) in two-dimensional honeycomb annular photonic crystals (PCs). The results reveal that the annular PCs possess absolute PBGs that are larger than those of the conventional air-hole PCs only when the refractive index of the material from which the PC is made is equal to 4.5 or larger. If the refractive index is smaller than 4.5, utilization of anisotropic inner rods in honeycomb annular PCs can lead to the formation of larger PBGs. The optimal structural parameters that yield the largest absolute PBGs are obtained

  9. Spectral interdependence of remote-sensing reflectance and its implications on the design of ocean color satellite sensors.

    Science.gov (United States)

    Lee, Zhongping; Shang, Shaoling; Hu, Chuanmin; Zibordi, Giuseppe

    2014-05-20

    Using 901 remote-sensing reflectance spectra (R(rs)(λ), sr⁻¹, λ from 400 to 700 nm with a 5 nm resolution), we evaluated the correlations of R(rs)(λ) between neighboring spectral bands in order to characterize (1) the spectral interdependence of R(rs)(λ) at different bands and (2) to what extent hyperspectral R(rs)(λ) can be reconstructed from multiband measurements. The 901 R(rs) spectra were measured over a wide variety of aquatic environments in which water color varied from oceanic blue to coastal green or brown, with chlorophyll-a concentrations ranging from ~0.02 to >100  mg  m⁻³, bottom depths from ~1  m to >1000  m, and bottom substrates including sand, coral reef, and seagrass. The correlation coefficient of R(rs)(λ) between neighboring bands at center wavelengths λ(k) and λ(l), r(Δλ)(λ(k), λ(l)), was evaluated systematically, with the spectral gap (Δλ=λ(l)-λ(k)) changing between 5, 10, 15, 20, 25, and 30 nm, respectively. It was found that r(Δλ) decreased with increasing Δλ, but remained >0.97 for Δλ≤20  nm for all spectral bands. Further, using 15 spectral bands between 400 and 710 nm, we reconstructed, via multivariant linear regression, hyperspectral R(rs)(λ) (from 400 to 700 nm with a 5 nm resolution). The percentage difference between measured and reconstructed R(rs) for each band in the 400-700 nm range was generally less than 1%, with a correlation coefficient close to 1.0. The mean absolute error between measured and reconstructed R(rs) was about 0.00002  sr⁻¹ for each band, which is significantly smaller than the R(rs) uncertainties from all past and current ocean color satellite radiometric products. These results echo findings of earlier studies that R(rs) measurements at ~15 spectral bands in the visible domain can provide nearly identical spectral information as with hyperspectral (contiguous bands at 5 nm spectral resolution) measurements. Such results provide insights for data

  10. Limiting absorption principle at low energies for a mathematical model of weak interaction: the decay of a boson

    International Nuclear Information System (INIS)

    Barbarouxa, J.M.; Guillot, J.C.

    2009-01-01

    We study the spectral properties of a Hamiltonian describing the weak decay of spin 1 massive bosons into the full family of leptons. We prove that the considered Hamiltonian is self-adjoint, with a unique ground state and we derive a Mourre estimate and a limiting absorption principle above the ground state energy and below the first threshold, for a sufficiently small coupling constant. As a corollary, we prove absence of eigenvalues and absolute continuity of the energy spectrum in the same spectral interval. (authors)

  11. Absolute Distance Measurements with Tunable Semiconductor Laser

    Czech Academy of Sciences Publication Activity Database

    Mikel, Břetislav; Číp, Ondřej; Lazar, Josef

    T118, - (2005), s. 41-44 ISSN 0031-8949 R&D Projects: GA AV ČR(CZ) IAB2065001 Keywords : tunable laser * absolute interferometer Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.661, year: 2004

  12. MEAN OF MEDIAN ABSOLUTE DERIVATION TECHNIQUE MEAN ...

    African Journals Online (AJOL)

    eobe

    development of mean of median absolute derivation technique based on the based on the based on .... of noise mean to estimate the speckle noise variance. Noise mean property ..... Foraging Optimization,” International Journal of. Advanced ...

  13. The relative and absolute speed of radiographic screen - film systems

    International Nuclear Information System (INIS)

    Lee, In Ja; Huh, Joon

    1993-01-01

    Recently, a large number of new screen-film systems have become available for use in diagnostic radiology. These new screens are made of materials generally known as rare - earth phosphors which have high x-ray absorption and high x-ray to light conversion efficiency compared to calcium tungstate phosphors. The major advantage of these new systems is reduction of patient exposure due to their high speed or high sensitivity. However, a system with excessively high speed can result in a significant degradation of radiographic image quality. Therefore, the speed is important parameters for users of these system. Our aim of in this was to determine accurately and precisely the absolute speed and relative speeds of both new and conventional screen - film system. We determined the absolute speed in condition of BRH phantom beam quality and the relative speed were measured by a split - screen technique in condition of BRH and ANSI phantom beam quality. The absolute and the relative speed were determined for 8 kinds of screen - 4 kinds of film in regular system and 7 kinds pf screen - 7 kinds of film in ortho system. In this study we could know the New Rx, T - MAT G has the highest film speed, also know Green system's standard deviation of relative speed larger than blue system. It was realized that there were no relationship between the absolute speed and the blue system. It was realized that there were no relationship between the absolute speed and the relative speed in ortho or regular system

  14. Calculus of the Power Spectral Density of Ultra Wide Band Pulse Position Modulation Signals Coded with Totally Flipped Code

    Directory of Open Access Journals (Sweden)

    DURNEA, T. N.

    2009-02-01

    Full Text Available UWB-PPM systems were noted to have a power spectral density (p.s.d. consisting of a continuous portion and a line spectrum, which is composed of energy components placed at discrete frequencies. These components are the major source of interference to narrowband systems operating in the same frequency interval and deny harmless coexistence of UWB-PPM and narrowband systems. A new code denoted as Totally Flipped Code (TFC is applied to them in order to eliminate these discrete spectral components. The coded signal transports the information inside pulse position and will have the amplitude coded to generate a continuous p.s.d. We have designed the code and calculated the power spectral density of the coded signals. The power spectrum has no discrete components and its envelope is largely flat inside the bandwidth with a maximum at its center and a null at D.C. These characteristics make this code suited for implementation in the UWB systems based on PPM-type modulation as it assures a continuous spectrum and keeps PPM modulation performances.

  15. Quantitative EEG in Children and Adults With Attention Deficit Hyperactivity Disorder: Comparison of Absolute and Relative Power Spectra and Theta/Beta Ratio.

    Science.gov (United States)

    Markovska-Simoska, Silvana; Pop-Jordanova, Nada

    2017-01-01

    In recent decades, resting state electroencephalographic (EEG) measures have been widely used to document underlying neurophysiological dysfunction in attention deficit hyperactivity disorder (ADHD). Although most EEG studies focus on children, there is a growing interest in adults with ADHD too. The aim of this study was to objectively assess and compare the absolute and relative EEG power as well as the theta/beta ratio in children and adults with ADHD. The evaluated sample comprised 30 male children and 30 male adults with ADHD diagnosed according to DSM-IV criteria. They were compared with 30 boys and 30 male adults matched by age. The mean age (±SD) of the children's group was 9 (±2.44) years and the adult group 35.8 (±8.65) years. EEG was recorded during an eyes-open condition. Spectral analysis of absolute (μV 2 ) and relative power (%) was carried out for 4 frequency bands: delta (2-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), and beta (13-21 Hz). The findings obtained for ADHD children are increased absolute power of slow waves (theta and delta), whereas adults exhibited no differences compared with normal subjects. For the relative power spectra there were no differences between the ADHD and control groups. Across groups, the children showed greater relative power than the adults in the delta and theta bands, but for the higher frequency bands (alpha and beta) the adults showed more relative power than children. Only ADHD children showed greater theta/beta ratio compared to the normal group. Classification analysis showed that ADHD children could be differentiated from the control group by the absolute theta values and theta/beta ratio at Cz, but this was not the case with ADHD adults. The question that should be further explored is if these differences are mainly due to maturation processes or if there is a core difference in cortical arousal between ADHD children and adults. © EEG and Clinical Neuroscience Society (ECNS) 2016.

  16. Spectral intensity dependence an isotropy of sources stronger than 0.1 Jy at 2700 MHz

    International Nuclear Information System (INIS)

    Balonek, T.J.; Broderick, J.J.; Condon, J.J.; Crawford, D.F.; Jauncey, D.L.

    1975-01-01

    The 1000-foot (305 m) telescope of the National Astronomy and Ionosphere Center was used to measure 430 MHz flux densities of sources stronger than 0.1 Jy at 2700 MHz. Distributions of the resulting two-point spectral indices α (430, 2700) of sources in the intensity range 0.1less than or equal toS<0.35 Jy were compared with α (318, 2700) distributions of sources stronger than 0.35 Jy at 2700 MHz. The median normal-component spectral index and fraction of flat-spectrum sources in the faintest sample do not continue the previously discovered trend toward increased spectral steepening of faint sources. This result differs from the prediction of simple evolutionary cosmological models and therefore favors the alternative explanation that local source-density inhomogeneities are responsible for the observed intensity dependence of spectral indices

  17. Det demokratiske argument for absolut ytringsfrihed

    DEFF Research Database (Denmark)

    Lægaard, Sune

    2014-01-01

    Artiklen diskuterer den påstand, at absolut ytringsfrihed er en nødvendig forudsætning for demokratisk legitimitet med udgangspunkt i en rekonstruktion af et argument fremsat af Ronald Dworkin. Spørgsmålet er, hvorfor ytringsfrihed skulle være en forudsætning for demokratisk legitimitet, og hvorfor...

  18. Thin-film magnetoresistive absolute position detector

    NARCIS (Netherlands)

    Groenland, J.P.J.

    1990-01-01

    The subject of this thesis is the investigation of a digital absolute posi- tion-detection system, which is based on a position-information carrier (i.e. a magnetic tape) with one single code track on the one hand, and an array of magnetoresistive sensors for the detection of the information on the

  19. Preliminary evidence for a change in spectral sensitivity of the circadian system at night

    Directory of Open Access Journals (Sweden)

    Parsons Robert H

    2005-12-01

    Full Text Available Abstract Background It is well established that the absolute sensitivity of the suprachiasmatic nucleus to photic stimulation received through the retino-hypothalamic tract changes throughout the 24-hour day. It is also believed that a combination of classical photoreceptors (rods and cones and melanopsin-containing retinal ganglion cells participate in circadian phototransduction, with a spectral sensitivity peaking between 440 and 500 nm. It is still unknown, however, whether the spectral sensitivity of the circadian system also changes throughout the solar day. Reported here is a new study that was designed to determine whether the spectral sensitivity of the circadian retinal phototransduction mechanism, measured through melatonin suppression and iris constriction, varies at night. Methods Human adult males were exposed to a high-pressure mercury lamp [450 lux (170 μW/cm2 at the cornea] and an array of blue light emitting diodes [18 lux (29 μW/cm2 at the cornea] during two nighttime experimental sessions. Both melatonin suppression and iris constriction were measured during and after a one-hour light exposure just after midnight and just before dawn. Results An increase in the percentage of melatonin suppression and an increase in pupil constriction for the mercury source relative to the blue light source at night were found, suggesting a temporal change in the contribution of photoreceptor mechanisms leading to melatonin suppression and, possibly, iris constriction by light in humans. Conclusion The preliminary data presented here suggest a change in the spectral sensitivity of circadian phototransduction mechanisms at two different times of the night. These findings are hypothesized to be the result of a change in the sensitivity of the melanopsin-expressing retinal ganglion cells to light during the night.

  20. Planck 2013 results. IX. HFI spectral response

    DEFF Research Database (Denmark)

    Planck Collaboration,; Ade, P. A. R.; Aghanim, N.

    2013-01-01

    -of-band signal rejection) of all HFI detectors to a known source of electromagnetic radiation individually. This was determined by measuring the output of all detection channels for radiation propagated through a continuously scanned polarizing Fourier transform spectrometer. As there is no on-board spectrometer......, dust emission, Sunyaev Zeldovich sources, and intensity to polarization leakage. The HFI spectral response data have also been used to provide unit conversion and colour correction analysis tools. While previous papers have already described the pre-flight experiments conducted on the Planck HFI...

  1. Singular continuous spectrum for palindromic Schroedinger operators

    International Nuclear Information System (INIS)

    Hof, A.; Knill, O.; Simon, B.

    1995-01-01

    We give new examples of discrete Schroedinger operators with potentials taking finitely many values that have purely singular continuous spectrum. If the hull X of the potential is strictly ergodic, then the existence of just one potential x in X for which the operator has no eigenvalues implies that there is a generic set in X for which the operator has purely singular continuous spectrum. A sufficient condition for the existence of such an x is that there is a z element of X that contains arbitrarily long palindromes. Thus we can define a large class of primitive substitutions for which the operators are purely singularly continuous for a generic subset in X. The class includes well-known substitutions like Fibonacci, Thue-Morse, Period Doubling, binary non-Pisot and ternary non-Pisot. We also show that the operator has no absolutely continuous spectrum for all x element of X if X derives from a primitive substitution. For potentials defined by circle maps, x n =l J (θ 0 +nα), we show that the operator has purely singular continuous spectrum for a generic subset in X for all irrational α and every half-open interval J. (orig.)

  2. DOES ABSOLUTE SYNONYMY EXIST IN OWERE-IGBO?

    African Journals Online (AJOL)

    USER

    The researcher also interviewed native speakers of the dialect. The study ... The word 'synonymy' means sameness of meaning, i.e., a relationship in which more ... whether absolute synonymy exists in Owere–Igbo or not. ..... 'close this book'.

  3. Spectral multitude and spectral dynamics reflect changing conjugation length in single molecules of oligophenylenevinylenes

    KAUST Repository

    Kobayashi, Hiroyuki; Tsuchiya, Kousuke; Ogino, Kenji; Vacha, Martin

    2012-01-01

    Single-molecule study of phenylenevinylene oligomers revealed distinct spectral forms due to different conjugation lengths which are determined by torsional defects. Large spectral jumps between different spectral forms were ascribed to torsional flips of a single phenylene ring. These spectral changes reflect the dynamic nature of electron delocalization in oligophenylenevinylenes and enable estimation of the phenylene torsional barriers. © 2012 The Owner Societies.

  4. The space-time model according to dimensional continuous space-time theory

    International Nuclear Information System (INIS)

    Martini, Luiz Cesar

    2014-01-01

    This article results from the Dimensional Continuous Space-Time Theory for which the introductory theoretician was presented in [1]. A theoretical model of the Continuous Space-Time is presented. The wave equation of time into absolutely stationary empty space referential will be described in detail. The complex time, that is the time fixed on the infinite phase time speed referential, is deduced from the New View of Relativity Theory that is being submitted simultaneously with this article in this congress. Finally considering the inseparable Space-Time is presented the duality equation wave-particle.

  5. Special values of the spectral zeta function of the non-commutative harmonic oscillator and confluent Heun equations

    CERN Document Server

    Ichinose, T

    2004-01-01

    We study the special values at $s=2$ and $3$ of the spectral zeta function $\\zeta_Q(s)$ of the non-commutative harmonic oscillator $Q(x,D_x)$ introduced in \\cite{PW1, 2}. It is shown that the series defining $\\zeta_Q(s)$ converges absolutely for Re $s>1$ and further the respective values $\\zeta_Q(2)$ and $\\zeta_Q(3)$ are represented essentially by contour integrals of the solutions, respectively, of a singly confluent Heun's ordinary differential equation and of exactly the same but an inhomogeneous equation. As a by-product of these results, we obtain integral representations of the solutions of these equations by rational functions. \\par\

  6. [Review of digital ground object spectral library].

    Science.gov (United States)

    Zhou, Xiao-Hu; Zhou, Ding-Wu

    2009-06-01

    A higher spectral resolution is the main direction of developing remote sensing technology, and it is quite important to set up the digital ground object reflectance spectral database library, one of fundamental research fields in remote sensing application. Remote sensing application has been increasingly relying on ground object spectral characteristics, and quantitative analysis has been developed to a new stage. The present article summarized and systematically introduced the research status quo and development trend of digital ground object reflectance spectral libraries at home and in the world in recent years. Introducing the spectral libraries has been established, including desertification spectral database library, plants spectral database library, geological spectral database library, soil spectral database library, minerals spectral database library, cloud spectral database library, snow spectral database library, the atmosphere spectral database library, rocks spectral database library, water spectral database library, meteorites spectral database library, moon rock spectral database library, and man-made materials spectral database library, mixture spectral database library, volatile compounds spectral database library, and liquids spectral database library. In the process of establishing spectral database libraries, there have been some problems, such as the lack of uniform national spectral database standard and uniform standards for the ground object features as well as the comparability between different databases. In addition, data sharing mechanism can not be carried out, etc. This article also put forward some suggestions on those problems.

  7. Dynamics of spectral components of heart rate variability during changes in autonomic balance

    DEFF Research Database (Denmark)

    Højgaard, M V; Holstein-Rathlou, N H; Agner, E

    1998-01-01

    Frequency domain analysis of heart rate variability (HRV) has been proposed as a semiquantitative method for assessing activities in the autonomic nervous system. We examined whether absolute powers, normalized powers, and the low frequency-to-high frequency ratio (LF/HF) derived from the HRV power...... spectrum could detect shifts in autonomic balance in a setting with low sympathetic nervous tone. Healthy subjects were examined for 3 h in the supine position during 1) control conditions (n = 12), 2) acute beta-blockade (n = 11), and 3) chronic beta-blockade (n = 10). Heart rate fell during the first 40...... min of the control session (72 +/- 2 to 64 +/- 2 beats/min; P powers of all spectral areas rose during the first 60 min in all three settings, more so with beta-blockade (P

  8. Spectral decomposition of single-tone-driven quantum phase modulation

    International Nuclear Information System (INIS)

    Capmany, Jose; Fernandez-Pousa, Carlos R

    2011-01-01

    Electro-optic phase modulators driven by a single radio-frequency tone Ω can be described at the quantum level as scattering devices where input single-mode radiation undergoes energy changes in multiples of ℎΩ. In this paper, we study the spectral representation of the unitary, multimode scattering operator describing these devices. The eigenvalue equation, phase modulation being a process preserving the photon number, is solved at each subspace with definite number of photons. In the one-photon subspace F 1 , the problem is equivalent to the computation of the continuous spectrum of the Susskind-Glogower cosine operator of the harmonic oscillator. Using this analogy, the spectral decomposition in F 1 is constructed and shown to be equivalent to the usual Fock-space representation. The result is then generalized to arbitrary N-photon subspaces, where eigenvectors are symmetrized combinations of N one-photon eigenvectors and the continuous spectrum spans the entire unit circle. Approximate normalizable one-photon eigenstates are constructed in terms of London phase states truncated to optical bands. Finally, we show that synchronous ultrashort pulse trains represent classical field configurations with the same structure as these approximate eigenstates, and that they can be considered as approximate eigenvectors of the classical formulation of phase modulation.

  9. Spectral decomposition of single-tone-driven quantum phase modulation

    Energy Technology Data Exchange (ETDEWEB)

    Capmany, Jose [ITEAM Research Institute, Univ. Politecnica de Valencia, 46022 Valencia (Spain); Fernandez-Pousa, Carlos R, E-mail: c.pousa@umh.es [Signal Theory and Communications, Department of Physics and Computer Science, Univ. Miguel Hernandez, 03202 Elche (Spain)

    2011-02-14

    Electro-optic phase modulators driven by a single radio-frequency tone {Omega} can be described at the quantum level as scattering devices where input single-mode radiation undergoes energy changes in multiples of {h_bar}{Omega}. In this paper, we study the spectral representation of the unitary, multimode scattering operator describing these devices. The eigenvalue equation, phase modulation being a process preserving the photon number, is solved at each subspace with definite number of photons. In the one-photon subspace F{sub 1}, the problem is equivalent to the computation of the continuous spectrum of the Susskind-Glogower cosine operator of the harmonic oscillator. Using this analogy, the spectral decomposition in F{sub 1} is constructed and shown to be equivalent to the usual Fock-space representation. The result is then generalized to arbitrary N-photon subspaces, where eigenvectors are symmetrized combinations of N one-photon eigenvectors and the continuous spectrum spans the entire unit circle. Approximate normalizable one-photon eigenstates are constructed in terms of London phase states truncated to optical bands. Finally, we show that synchronous ultrashort pulse trains represent classical field configurations with the same structure as these approximate eigenstates, and that they can be considered as approximate eigenvectors of the classical formulation of phase modulation.

  10. Towards absolute neutrino masses

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, Petr [Kellogg Radiation Laboratory 106-38, Caltech, Pasadena, CA 91125 (United States)

    2007-06-15

    Various ways of determining the absolute neutrino masses are briefly reviewed and their sensitivities compared. The apparent tension between the announced but unconfirmed observation of the 0{nu}{beta}{beta} decay and the neutrino mass upper limit based on observational cosmology is used as an example of what could happen eventually. The possibility of a 'nonstandard' mechanism of the 0{nu}{beta}{beta} decay is stressed and the ways of deciding which of the possible mechanisms is actually operational are described. The importance of the 0{nu}{beta}{beta} nuclear matrix elements is discussed and their uncertainty estimated.

  11. Absolute migration of Pacific basin mid-ocean ridges since 85 Ma ...

    African Journals Online (AJOL)

    Mid-ocean ridges are major physiographic features that dominate the world seafloor. Their absolute motion and tectonics are recorded in magnetic lineations they created. The absolute migration of mid-ocean ridges in the Pacific basin since 85 Ma and their tectonic implications was investigated in this work and the results ...

  12. Finite entanglement entropy and spectral dimension in quantum gravity

    Energy Technology Data Exchange (ETDEWEB)

    Arzano, Michele [Rome Univ. (Italy). Dipt. di Fisica; INFN, Rome (Italy); Calcagni, Gianluca [CSIC, Madrid (Spain). Inst. de Estructura de la Materia

    2017-12-15

    What are the conditions on a field theoretic model leading to a finite entanglement entropy density? We prove two very general results: (1) Ultraviolet finiteness of a theory does not guarantee finiteness of the entropy density; (2) If the spectral dimension of the spatial boundary across which the entropy is calculated is non-negative at all scales, then the entanglement entropy cannot be finite. These conclusions, which we verify in several examples, negatively affect all quantum-gravity models, since their spectral dimension is always positive. Possible ways out are considered, including abandoning the definition of the entanglement entropy in terms of the boundary return probability or admitting an analytic continuation (not a regularization) of the usual definition. In the second case, one can get a finite entanglement entropy density in multi-fractional theories and causal dynamical triangulations. (orig.)

  13. Finite entanglement entropy and spectral dimension in quantum gravity

    Science.gov (United States)

    Arzano, Michele; Calcagni, Gianluca

    2017-12-01

    What are the conditions on a field theoretic model leading to a finite entanglement entropy density? We prove two very general results: (1) Ultraviolet finiteness of a theory does not guarantee finiteness of the entropy density; (2) If the spectral dimension of the spatial boundary across which the entropy is calculated is non-negative at all scales, then the entanglement entropy cannot be finite. These conclusions, which we verify in several examples, negatively affect all quantum-gravity models, since their spectral dimension is always positive. Possible ways out are considered, including abandoning the definition of the entanglement entropy in terms of the boundary return probability or admitting an analytic continuation (not a regularization) of the usual definition. In the second case, one can get a finite entanglement entropy density in multi-fractional theories and causal dynamical triangulations.

  14. Finite entanglement entropy and spectral dimension in quantum gravity

    International Nuclear Information System (INIS)

    Arzano, Michele; Calcagni, Gianluca

    2017-01-01

    What are the conditions on a field theoretic model leading to a finite entanglement entropy density? We prove two very general results: (1) Ultraviolet finiteness of a theory does not guarantee finiteness of the entropy density; (2) If the spectral dimension of the spatial boundary across which the entropy is calculated is non-negative at all scales, then the entanglement entropy cannot be finite. These conclusions, which we verify in several examples, negatively affect all quantum-gravity models, since their spectral dimension is always positive. Possible ways out are considered, including abandoning the definition of the entanglement entropy in terms of the boundary return probability or admitting an analytic continuation (not a regularization) of the usual definition. In the second case, one can get a finite entanglement entropy density in multi-fractional theories and causal dynamical triangulations. (orig.)

  15. Absolute, Extreme-Ultraviolet Solar Spectral Irradiance Monitor (AESSIM)

    Science.gov (United States)

    1994-04-01

    molecular constituents [Meier 1991]. This radiation is the principal source of energy for producing and maintaining the complex, time-dependent, thermal...158.4 nm emisions for interstellar wind studies. After -2005, there is unlikely to be sufficient power to provide the requisite heating of the scan

  16. Absolute humidity and the seasonal onset of influenza in the continental United States.

    Directory of Open Access Journals (Sweden)

    Jeffrey Shaman

    2010-02-01

    Full Text Available Much of the observed wintertime increase of mortality in temperate regions is attributed to seasonal influenza. A recent reanalysis of laboratory experiments indicates that absolute humidity strongly modulates the airborne survival and transmission of the influenza virus. Here, we extend these findings to the human population level, showing that the onset of increased wintertime influenza-related mortality in the United States is associated with anomalously low absolute humidity levels during the prior weeks. We then use an epidemiological model, in which observed absolute humidity conditions temper influenza transmission rates, to successfully simulate the seasonal cycle of observed influenza-related mortality. The model results indicate that direct modulation of influenza transmissibility by absolute humidity alone is sufficient to produce this observed seasonality. These findings provide epidemiological support for the hypothesis that absolute humidity drives seasonal variations of influenza transmission in temperate regions.

  17. Measurement of transition probabilities in Kr II UV and visible spectral lines

    International Nuclear Information System (INIS)

    Mar, S; Val, J A del; RodrIguez, F; Pelaez, R J; Gonzalez, V R; Gonzalo, A B; Castro, A de; Aparicio, J A

    2006-01-01

    This work reports an extensive collection of 120 atomic transition probabilities of Kr II lines in the spectral region 350-720 nm, all of them measured in an emission experiment. For many of them, these are the first data up to the authors' knowledge. Relative intensity measurements have been obtained on a pulsed discharge lamp and the absolute A ki -values have been calculated by considering the available data from the literature as reference for the plasma temperature diagnosis. Excitation temperature (14 000-28 000 K) has been determined by using the Boltzmann-plot method. The plasma electron density (0.2-0.8 x 10 23 m -3 ) has been determined by two-wavelength interferometry. This work extends a previous one already published by our laboratory [1, 2]. Comparisons have also been made with previous literature values

  18. Overspecification of colour, pattern, and size: Salience, absoluteness, and consistency

    OpenAIRE

    Sammie eTarenskeen; Mirjam eBroersma; Mirjam eBroersma; Bart eGeurts

    2015-01-01

    The rates of overspecification of colour, pattern, and size are compared, to investigate how salience and absoluteness contribute to the production of overspecification. Colour and pattern are absolute attributes, whereas size is relative and less salient. Additionally, a tendency towards consistent responses is assessed. Using a within-participants design, we find similar rates of colour and pattern overspecification, which are both higher than the rate of size overspecification. Using a bet...

  19. Overspecification of color, pattern, and size: salience, absoluteness, and consistency

    OpenAIRE

    Tarenskeen, S.L.; Broersma, M.; Geurts, B.

    2015-01-01

    The rates of overspecification of color, pattern, and size are compared, to investigate how salience and absoluteness contribute to the production of overspecification. Color and pattern are absolute and salient attributes, whereas size is relative and less salient. Additionally, a tendency toward consistent responses is assessed. Using a within-participants design, we find similar rates of color and pattern overspecification, which are both higher than the rate of size overspecification. Usi...

  20. Improvements in absolute seismometer sensitivity calibration using local earth gravity measurements

    Science.gov (United States)

    Anthony, Robert E.; Ringler, Adam; Wilson, David

    2018-01-01

    The ability to determine both absolute and relative seismic amplitudes is fundamentally limited by the accuracy and precision with which scientists are able to calibrate seismometer sensitivities and characterize their response. Currently, across the Global Seismic Network (GSN), errors in midband sensitivity exceed 3% at the 95% confidence interval and are the least‐constrained response parameter in seismic recording systems. We explore a new methodology utilizing precise absolute Earth gravity measurements to determine the midband sensitivity of seismic instruments. We first determine the absolute sensitivity of Kinemetrics EpiSensor accelerometers to 0.06% at the 99% confidence interval by inverting them in a known gravity field at the Albuquerque Seismological Laboratory (ASL). After the accelerometer is calibrated, we install it in its normal configuration next to broadband seismometers and subject the sensors to identical ground motions to perform relative calibrations of the broadband sensors. Using this technique, we are able to determine the absolute midband sensitivity of the vertical components of Nanometrics Trillium Compact seismometers to within 0.11% and Streckeisen STS‐2 seismometers to within 0.14% at the 99% confidence interval. The technique enables absolute calibrations from first principles that are traceable to National Institute of Standards and Technology (NIST) measurements while providing nearly an order of magnitude more precision than step‐table calibrations.

  1. Absolute photoionization cross-section of the methyl radical.

    Science.gov (United States)

    Taatjes, Craig A; Osborn, David L; Selby, Talitha M; Meloni, Giovanni; Fan, Haiyan; Pratt, Stephen T

    2008-10-02

    The absolute photoionization cross-section of the methyl radical has been measured using two completely independent methods. The CH3 photoionization cross-section was determined relative to that of acetone and methyl vinyl ketone at photon energies of 10.2 and 11.0 eV by using a pulsed laser-photolysis/time-resolved synchrotron photoionization mass spectrometry method. The time-resolved depletion of the acetone or methyl vinyl ketone precursor and the production of methyl radicals following 193 nm photolysis are monitored simultaneously by using time-resolved synchrotron photoionization mass spectrometry. Comparison of the initial methyl signal with the decrease in precursor signal, in combination with previously measured absolute photoionization cross-sections of the precursors, yields the absolute photoionization cross-section of the methyl radical; sigma(CH3)(10.2 eV) = (5.7 +/- 0.9) x 10(-18) cm(2) and sigma(CH3)(11.0 eV) = (6.0 +/- 2.0) x 10(-18) cm(2). The photoionization cross-section for vinyl radical determined by photolysis of methyl vinyl ketone is in good agreement with previous measurements. The methyl radical photoionization cross-section was also independently measured relative to that of the iodine atom by comparison of ionization signals from CH3 and I fragments following 266 nm photolysis of methyl iodide in a molecular-beam ion-imaging apparatus. These measurements gave a cross-section of (5.4 +/- 2.0) x 10(-18) cm(2) at 10.460 eV, (5.5 +/- 2.0) x 10(-18) cm(2) at 10.466 eV, and (4.9 +/- 2.0) x 10(-18) cm(2) at 10.471 eV. The measurements allow relative photoionization efficiency spectra of methyl radical to be placed on an absolute scale and will facilitate quantitative measurements of methyl concentrations by photoionization mass spectrometry.

  2. THE HUBBLE WIDE FIELD CAMERA 3 TEST OF SURFACES IN THE OUTER SOLAR SYSTEM: SPECTRAL VARIATION ON KUIPER BELT OBJECTS

    International Nuclear Information System (INIS)

    Fraser, Wesley C.; Brown, Michael E.; Glass, Florian

    2015-01-01

    Here, we present additional photometry of targets observed as part of the Hubble Wide Field Camera 3 (WFC3) Test of Surfaces in the Outer Solar System. Twelve targets were re-observed with the WFC3 in the optical and NIR wavebands designed to complement those used during the first visit. Additionally, all of the observations originally presented by Fraser and Brown were reanalyzed through the same updated photometry pipeline. A re-analysis of the optical and NIR color distribution reveals a bifurcated optical color distribution and only two identifiable spectral classes, each of which occupies a broad range of colors and has correlated optical and NIR colors, in agreement with our previous findings. We report the detection of significant spectral variations on five targets which cannot be attributed to photometry errors, cosmic rays, point-spread function or sensitivity variations, or other image artifacts capable of explaining the magnitude of the variation. The spectrally variable objects are found to have a broad range of dynamical classes and absolute magnitudes, exhibit a broad range of apparent magnitude variations, and are found in both compositional classes. The spectrally variable objects with sufficiently accurate colors for spectral classification maintain their membership, belonging to the same class at both epochs. 2005 TV189 exhibits a sufficiently broad difference in color at the two epochs that span the full range of colors of the neutral class. This strongly argues that the neutral class is one single class with a broad range of colors, rather than the combination of multiple overlapping classes

  3. High-Resolution Spectral Measurement of High Temperature CO2 and H2O.

    Science.gov (United States)

    1980-12-01

    a major constituent which critically controls the infrared radiative transfer in the telluric atmosphere. Their absorption bands are distributed over... movement to prevent cracking. Also, the continuous Q = s/) spectrum spectral coverage filament ceramic fiber, brand AB-312 manufactured by resolution the 3M

  4. Absolute dissipative drift-wave instabilities in tokamaks

    International Nuclear Information System (INIS)

    Chen, L.; Chance, M.S.; Cheng, C.Z.

    1979-07-01

    Contrary to previous theoretical predictions, it is shown that the dissipative drift-wave instabilities are absolute in tokamak plasmas. The existence of unstable eigenmodes is shown to be associated with a new eigenmode branch induced by the finite toroidal couplings

  5. Internal descriptions of absolute Borel classes

    Czech Academy of Sciences Publication Activity Database

    Holický, P.; Pelant, Jan

    2004-01-01

    Roč. 141, č. 1 (2004), s. 87-104 ISSN 0166-8641 R&D Projects: GA ČR GA201/00/1466; GA ČR GA201/03/0933 Institutional research plan: CEZ:AV0Z1019905 Keywords : absolute Borel class * complete sequence of covers * open map Subject RIV: BA - General Mathematics Impact factor: 0.364, year: 2004

  6. Constraints on Dark Matter Interactions with Standard Model Particles from Cosmic Microwave Background Spectral Distortions.

    Science.gov (United States)

    Ali-Haïmoud, Yacine; Chluba, Jens; Kamionkowski, Marc

    2015-08-14

    We propose a new method to constrain elastic scattering between dark matter (DM) and standard model particles in the early Universe. Direct or indirect thermal coupling of nonrelativistic DM with photons leads to a heat sink for the latter. This results in spectral distortions of the cosmic microwave background (CMB), the amplitude of which can be as large as a few times the DM-to-photon-number ratio. We compute CMB spectral distortions due to DM-proton, DM-electron, and DM-photon scattering for generic energy-dependent cross sections and DM mass m_{χ}≳1 keV. Using Far-Infrared Absolute Spectrophotometer measurements, we set constraints on the cross sections for m_{χ}≲0.1 MeV. In particular, for energy-independent scattering we obtain σ_{DM-proton}≲10^{-24} cm^{2} (keV/m_{χ})^{1/2}, σ_{DM-electron}≲10^{-27} cm^{2} (keV/m_{χ})^{1/2}, and σ_{DM-photon}≲10^{-39} cm^{2} (m_{χ}/keV). An experiment with the characteristics of the Primordial Inflation Explorer would extend the regime of sensitivity up to masses m_{χ}~1 GeV.

  7. Absolute photoionization cross-section of the propargyl radical

    Energy Technology Data Exchange (ETDEWEB)

    Savee, John D.; Welz, Oliver; Taatjes, Craig A.; Osborn, David L. [Sandia National Laboratories, Combustion Research Facility, Livermore, California 94551 (United States); Soorkia, Satchin [Institut des Sciences Moleculaires d' Orsay, Universite Paris-Sud 11, Orsay (France); Selby, Talitha M. [Department of Chemistry, University of Wisconsin, Washington County Campus, West Bend, Wisconsin 53095 (United States)

    2012-04-07

    Using synchrotron-generated vacuum-ultraviolet radiation and multiplexed time-resolved photoionization mass spectrometry we have measured the absolute photoionization cross-section for the propargyl (C{sub 3}H{sub 3}) radical, {sigma}{sub propargyl}{sup ion}(E), relative to the known absolute cross-section of the methyl (CH{sub 3}) radical. We generated a stoichiometric 1:1 ratio of C{sub 3}H{sub 3} : CH{sub 3} from 193 nm photolysis of two different C{sub 4}H{sub 6} isomers (1-butyne and 1,3-butadiene). Photolysis of 1-butyne yielded values of {sigma}{sub propargyl}{sup ion}(10.213 eV)=(26.1{+-}4.2) Mb and {sigma}{sub propargyl}{sup ion}(10.413 eV)=(23.4{+-}3.2) Mb, whereas photolysis of 1,3-butadiene yielded values of {sigma}{sub propargyl}{sup ion}(10.213 eV)=(23.6{+-}3.6) Mb and {sigma}{sub propargyl}{sup ion}(10.413 eV)=(25.1{+-}3.5) Mb. These measurements place our relative photoionization cross-section spectrum for propargyl on an absolute scale between 8.6 and 10.5 eV. The cross-section derived from our results is approximately a factor of three larger than previous determinations.

  8. SpectralNET – an application for spectral graph analysis and visualization

    Directory of Open Access Journals (Sweden)

    Schreiber Stuart L

    2005-10-01

    Full Text Available Abstract Background Graph theory provides a computational framework for modeling a variety of datasets including those emerging from genomics, proteomics, and chemical genetics. Networks of genes, proteins, small molecules, or other objects of study can be represented as graphs of nodes (vertices and interactions (edges that can carry different weights. SpectralNET is a flexible application for analyzing and visualizing these biological and chemical networks. Results Available both as a standalone .NET executable and as an ASP.NET web application, SpectralNET was designed specifically with the analysis of graph-theoretic metrics in mind, a computational task not easily accessible using currently available applications. Users can choose either to upload a network for analysis using a variety of input formats, or to have SpectralNET generate an idealized random network for comparison to a real-world dataset. Whichever graph-generation method is used, SpectralNET displays detailed information about each connected component of the graph, including graphs of degree distribution, clustering coefficient by degree, and average distance by degree. In addition, extensive information about the selected vertex is shown, including degree, clustering coefficient, various distance metrics, and the corresponding components of the adjacency, Laplacian, and normalized Laplacian eigenvectors. SpectralNET also displays several graph visualizations, including a linear dimensionality reduction for uploaded datasets (Principal Components Analysis and a non-linear dimensionality reduction that provides an elegant view of global graph structure (Laplacian eigenvectors. Conclusion SpectralNET provides an easily accessible means of analyzing graph-theoretic metrics for data modeling and dimensionality reduction. SpectralNET is publicly available as both a .NET application and an ASP.NET web application from http://chembank.broad.harvard.edu/resources/. Source code is

  9. (LMRG): Microscope Resolution, Objective Quality, Spectral Accuracy and Spectral Un-mixing

    Science.gov (United States)

    Bayles, Carol J.; Cole, Richard W.; Eason, Brady; Girard, Anne-Marie; Jinadasa, Tushare; Martin, Karen; McNamara, George; Opansky, Cynthia; Schulz, Katherine; Thibault, Marc; Brown, Claire M.

    2012-01-01

    The second study by the LMRG focuses on measuring confocal laser scanning microscope (CLSM) resolution, objective lens quality, spectral imaging accuracy and spectral un-mixing. Affordable test samples for each aspect of the study were designed, prepared and sent to 116 labs from 23 countries across the globe. Detailed protocols were designed for the three tests and customized for most of the major confocal instruments being used by the study participants. One protocol developed for measuring resolution and objective quality was recently published in Nature Protocols (Cole, R. W., T. Jinadasa, et al. (2011). Nature Protocols 6(12): 1929–1941). The first study involved 3D imaging of sub-resolution fluorescent microspheres to determine the microscope point spread function. Results of the resolution studies as well as point spread function quality (i.e. objective lens quality) from 140 different objective lenses will be presented. The second study of spectral accuracy looked at the reflection of the laser excitation lines into the spectral detection in order to determine the accuracy of these systems to report back the accurate laser emission wavelengths. Results will be presented from 42 different spectral confocal systems. Finally, samples with double orange beads (orange core and orange coating) were imaged spectrally and the imaging software was used to un-mix fluorescence signals from the two orange dyes. Results from 26 different confocal systems will be summarized. Time will be left to discuss possibilities for the next LMRG study.

  10. Characterizing CDOM Spectral Variability Across Diverse Regions and Spectral Ranges

    Science.gov (United States)

    Grunert, Brice K.; Mouw, Colleen B.; Ciochetto, Audrey B.

    2018-01-01

    Satellite remote sensing of colored dissolved organic matter (CDOM) has focused on CDOM absorption (aCDOM) at a reference wavelength, as its magnitude provides insight into the underwater light field and large-scale biogeochemical processes. CDOM spectral slope, SCDOM, has been treated as a constant or semiconstant parameter in satellite retrievals of aCDOM despite significant regional and temporal variabilities. SCDOM and other optical metrics provide insights into CDOM composition, processing, food web dynamics, and carbon cycling. To date, much of this work relies on fluorescence techniques or aCDOM in spectral ranges unavailable to current and planned satellite sensors (e.g., global variability in SCDOM and fit deviations in the aCDOM spectra using the recently proposed Gaussian decomposition method. From this, we investigate if global variability in retrieved SCDOM and Gaussian components is significant and regionally distinct. We iteratively decreased the spectral range considered and analyzed the number, location, and magnitude of fitted Gaussian components to understand if a reduced spectral range impacts information obtained within a common spectral window. We compared the fitted slope from the Gaussian decomposition method to absorption-based indices that indicate CDOM composition to determine the ability of satellite-derived slope to inform the analysis and modeling of large-scale biogeochemical processes. Finally, we present implications of the observed variability for remote sensing of CDOM characteristics via SCDOM.

  11. Characterizing absolute piezoelectric microelectromechanical system displacement using an atomic force microscope

    International Nuclear Information System (INIS)

    Evans, J.; Chapman, S.

    2014-01-01

    Piezoresponse Force Microscopy (PFM) is a popular tool for the study of ferroelectric and piezoelectric materials at the nanometer level. Progress in the development of piezoelectric MEMS fabrication is highlighting the need to characterize absolute displacement at the nanometer and Ångstrom scales, something Atomic Force Microscopy (AFM) might do but PFM cannot. Absolute displacement is measured by executing a polarization measurement of the ferroelectric or piezoelectric capacitor in question while monitoring the absolute vertical position of the sample surface with a stationary AFM cantilever. Two issues dominate the execution and precision of such a measurement: (1) the small amplitude of the electrical signal from the AFM at the Ångstrom level and (2) calibration of the AFM. The authors have developed a calibration routine and test technique for mitigating the two issues, making it possible to use an atomic force microscope to measure both the movement of a capacitor surface as well as the motion of a micro-machine structure actuated by that capacitor. The theory, procedures, pitfalls, and results of using an AFM for absolute piezoelectric measurement are provided

  12. Characterizing absolute piezoelectric microelectromechanical system displacement using an atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Evans, J., E-mail: radiant@ferrodevices.com; Chapman, S., E-mail: radiant@ferrodevices.com [Radiant Technologies, Inc., 2835C Pan American Fwy NE, Albuquerque, New Mexico 87107 (United States)

    2014-08-14

    Piezoresponse Force Microscopy (PFM) is a popular tool for the study of ferroelectric and piezoelectric materials at the nanometer level. Progress in the development of piezoelectric MEMS fabrication is highlighting the need to characterize absolute displacement at the nanometer and Ångstrom scales, something Atomic Force Microscopy (AFM) might do but PFM cannot. Absolute displacement is measured by executing a polarization measurement of the ferroelectric or piezoelectric capacitor in question while monitoring the absolute vertical position of the sample surface with a stationary AFM cantilever. Two issues dominate the execution and precision of such a measurement: (1) the small amplitude of the electrical signal from the AFM at the Ångstrom level and (2) calibration of the AFM. The authors have developed a calibration routine and test technique for mitigating the two issues, making it possible to use an atomic force microscope to measure both the movement of a capacitor surface as well as the motion of a micro-machine structure actuated by that capacitor. The theory, procedures, pitfalls, and results of using an AFM for absolute piezoelectric measurement are provided.

  13. A vibration correction method for free-fall absolute gravimeters

    Science.gov (United States)

    Qian, J.; Wang, G.; Wu, K.; Wang, L. J.

    2018-02-01

    An accurate determination of gravitational acceleration, usually approximated as 9.8 m s-2, has been playing an important role in the areas of metrology, geophysics, and geodetics. Absolute gravimetry has been experiencing rapid developments in recent years. Most absolute gravimeters today employ a free-fall method to measure gravitational acceleration. Noise from ground vibration has become one of the most serious factors limiting measurement precision. Compared to vibration isolators, the vibration correction method is a simple and feasible way to reduce the influence of ground vibrations. A modified vibration correction method is proposed and demonstrated. A two-dimensional golden section search algorithm is used to search for the best parameters of the hypothetical transfer function. Experiments using a T-1 absolute gravimeter are performed. It is verified that for an identical group of drop data, the modified method proposed in this paper can achieve better correction effects with much less computation than previous methods. Compared to vibration isolators, the correction method applies to more hostile environments and even dynamic platforms, and is expected to be used in a wider range of applications.

  14. Wide-field absolute transverse blood flow velocity mapping in vessel centerline

    Science.gov (United States)

    Wu, Nanshou; Wang, Lei; Zhu, Bifeng; Guan, Caizhong; Wang, Mingyi; Han, Dingan; Tan, Haishu; Zeng, Yaguang

    2018-02-01

    We propose a wide-field absolute transverse blood flow velocity measurement method in vessel centerline based on absorption intensity fluctuation modulation effect. The difference between the light absorption capacities of red blood cells and background tissue under low-coherence illumination is utilized to realize the instantaneous and average wide-field optical angiography images. The absolute fuzzy connection algorithm is used for vessel centerline extraction from the average wide-field optical angiography. The absolute transverse velocity in the vessel centerline is then measured by a cross-correlation analysis according to instantaneous modulation depth signal. The proposed method promises to contribute to the treatment of diseases, such as those related to anemia or thrombosis.

  15. On determining absolute entropy without quantum theory or the third law of thermodynamics

    Science.gov (United States)

    Steane, Andrew M.

    2016-04-01

    We employ classical thermodynamics to gain information about absolute entropy, without recourse to statistical methods, quantum mechanics or the third law of thermodynamics. The Gibbs-Duhem equation yields various simple methods to determine the absolute entropy of a fluid. We also study the entropy of an ideal gas and the ionization of a plasma in thermal equilibrium. A single measurement of the degree of ionization can be used to determine an unknown constant in the entropy equation, and thus determine the absolute entropy of a gas. It follows from all these examples that the value of entropy at absolute zero temperature does not need to be assigned by postulate, but can be deduced empirically.

  16. Fingerprints of flower absolutes using supercritical fluid chromatography hyphenated with high resolution mass spectrometry.

    Science.gov (United States)

    Santerre, Cyrille; Vallet, Nadine; Touboul, David

    2018-06-02

    Supercritical fluid chromatography hyphenated with high resolution mass spectrometry (SFC-HRMS) was developed for fingerprint analysis of different flower absolutes commonly used in cosmetics field, especially in perfumes. Supercritical fluid chromatography-atmospheric pressure photoionization-high resolution mass spectrometry (SFC-APPI-HRMS) technique was employed to identify the components of the fingerprint. The samples were separated with a porous graphitic carbon (PGC) Hypercarb™ column (100 mm × 2.1 mm, 3 μm) by gradient elution using supercritical CO 2 and ethanol (0.0-20.0 min (2-30% B), 20.0-25.0 min (30% B), 25.0-26.0 min (30-2% B) and 26.0-30.0 min (2% B)) as mobile phase at a flow rate of 1.5 mL/min. In order to compare the SFC fingerprints between five different flower absolutes: Jasminum grandiflorum absolutes, Jasminum sambac absolutes, Narcissus jonquilla absolutes, Narcissus poeticus absolutes, Lavandula angustifolia absolutes from different suppliers and batches, the chemometric procedure including principal component analysis (PCA) was applied to classify the samples according to their genus and their species. Consistent results were obtained to show that samples could be successfully discriminated. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Telling in-tune from out-of-tune: widespread evidence for implicit absolute intonation.

    Science.gov (United States)

    Van Hedger, Stephen C; Heald, Shannon L M; Huang, Alex; Rutstein, Brooke; Nusbaum, Howard C

    2017-04-01

    Absolute pitch (AP) is the rare ability to name or produce an isolated musical note without the aid of a reference note. One skill thought to be unique to AP possessors is the ability to provide absolute intonation judgments (e.g., classifying an isolated note as "in-tune" or "out-of-tune"). Recent work has suggested that absolute intonation perception among AP possessors is not crystallized in a critical period of development, but is dynamically maintained by the listening environment, in which the vast majority of Western music is tuned to a specific cultural standard. Given that all listeners of Western music are constantly exposed to this specific cultural tuning standard, our experiments address whether absolute intonation perception extends beyond AP possessors. We demonstrate that non-AP listeners are able to accurately judge the intonation of completely isolated notes. Both musicians and nonmusicians showed evidence for absolute intonation recognition when listening to familiar timbres (piano and violin). When testing unfamiliar timbres (triangle and inverted sine waves), only musicians showed weak evidence of absolute intonation recognition (Experiment 2). Overall, these results highlight a previously unknown similarity between AP and non-AP possessors' long-term musical note representations, including evidence of sensitivity to frequency.

  18. Spectral and spectral-frequency methods of investigating atmosphereless bodies of the Solar system

    International Nuclear Information System (INIS)

    Busarev, Vladimir V; Prokof'eva-Mikhailovskaya, Valentina V; Bochkov, Valerii V

    2007-01-01

    A method of reflectance spectrophotometry of atmosphereless bodies of the Solar system, its specificity, and the means of eliminating basic spectral noise are considered. As a development, joining the method of reflectance spectrophotometry with the frequency analysis of observational data series is proposed. The combined spectral-frequency method allows identification of formations with distinctive spectral features, and estimations of their sizes and distribution on the surface of atmospherelss celestial bodies. As applied to investigations of asteroids 21 Lutetia and 4 Vesta, the spectral frequency method has given us the possibility of obtaining fundamentally new information about minor planets. (instruments and methods of investigation)

  19. Real-time spectral analysis of HRV signals: an interactive and user-friendly PC system.

    Science.gov (United States)

    Basano, L; Canepa, F; Ottonello, P

    1998-01-01

    We present a real-time system, built around a PC and a low-cost data acquisition board, for the spectral analysis of the heart rate variability signal. The Windows-like operating environment on which it is based makes the computer program very user-friendly even for non-specialized personnel. The Power Spectral Density is computed through the use of a hybrid method, in which a classical FFT analysis follows an autoregressive finite-extension of data; the stationarity of the sequence is continuously checked. The use of this algorithm gives a high degree of robustness of the spectral estimation. Moreover, always in real time, the FFT of every data block is computed and displayed in order to corroborate the results as well as to allow the user to interactively choose a proper AR model order.

  20. First TSI observations of the new Compact Lightweight Absolute Radiometer (CLARA)

    Science.gov (United States)

    Walter, B.; Finsterle, W.; Koller, S.; Levesque, P. L.; Pfiffner, D.; Schmutz, W. K.

    2017-12-01

    Continuous and precise Total Solar Irradiance (TSI) measurements are indispensable to evaluate the influence of short- and long-term solar radiative emission variations on the Earth's energy budget. The existence of a potentially long-term trend in the suns activity and whether or not such a trend could be climate effective is still a matter of debate. The Compact Lightweight Absolute Radiometer (CLARA) is one of PMOD/WRC's future contributions to the almost seamless series of space borne TSI measurements since 1978. CLARA is one of three payloads of the Norwegian micro satellite NORSAT-1, along with Langmuir probes for space plasma research and an Automatic Identification System (AIS) receiver to monitor maritime traffic in Norwegian waters. NORSAT-1 was launched July 14th 2017 and the nominal operation of CLARA will start after the instrument commissioning beginning August 21st2017. We present the design, calibration and first TSI observations of CLARA, a new generation of active cavity Electrical Substitution Radiometers (ESR) comprising the latest radiometer developments of PMOD/WRC: i) A three-cavity design for degradation tracking and redundancy, ii) a digital control loop with feed forward system allowing for measurement cadences of 30s, iii) an aperture arrangement to reduce internal scattered light and iv) a new cavity and heatsink design to minimize non-equivalence, size and weight of the instrument. CLARA was end-to-end calibrated against the SI traceable cryogenic radiometer of the TSI Radiometer Facility (TRF) in Boulder (Colorado). The absolute measurement uncertainties for the three SI-traceable TSI detectors of CLARA are 567, 576 and 912 ppm (k = 1).

  1. The Absolute Immanence in Deleuze

    OpenAIRE

    Park, Daeseung

    2013-01-01

    The absolute immanence in Deleuze Daeseung Park Abstract The plane of immanence is not unique. Deleuze and Guattari suppose a multiplicity of planes. Each great philosopher draws new planes on his own way, and these planes constitute the "time of philosophy". We can, therefore, "present the entire history of philosophy from the viewpoint of the institution of a plane of immanence" or present the time of philosophy from the viewpoint of the superposition and of the coexistence of planes. Howev...

  2. On the absolute measure of Beta activities

    International Nuclear Information System (INIS)

    Sanchez del Rio, C.; Jimenez Reynaldo, O.; Rodriguez Mayquez, E.

    1956-01-01

    A new method for absolute beta counting of solid samples is given. The mea surements is made with an inside Geiger-Muller tube of new construction. The backscattering correction when using an infinite thick mounting is discussed and results for different materials given. (Author)

  3. The Spectral Properties of Gamma-ray Bursts: a Review of Recent Development

    Science.gov (United States)

    Teegarden, B. J.

    1983-01-01

    Developments in the spectroscopy of gamma ray bursts (GRB) are reviewed. The general question of the validity of the spectral results, particularly with regard to features in the spectrum, is discussed. Confirmations of these spectral features are summarized. Results from the KONUS experiments on Venera 13 and 14 are reviewed. The status of models of the continuum spectrum is summarized. A number of different radiation mechanisms appear capable of fitting the data. These include thermal bremsstrahlung, thermal synchrotron and inverse Compton. Rapid variability of the spectra shape on time scales 76] 0.25 sec. was reported. The characteristic energy of the spectrum was observed to vary over nearly an order of magnitude during individual events. A strong correlation between spectral hardness and luminosity was found. Low-energy (50 keV) absorption features and high-energy (400 keV) emission features continue to appear in GRB spectra. Understanding the origin of these lines in the context of the existing continuum models remains a difficult problem.

  4. A geometrically exact beam element based on the absolute nodal coordinate formulation

    International Nuclear Information System (INIS)

    Gerstmayr, Johannes; Matikainen, Marko K.; Mikkola, Aki M.

    2008-01-01

    In this study, Reissner's classical nonlinear rod formulation, as implemented by Simo and Vu-Quoc by means of the large rotation vector approach, is implemented into the framework of the absolute nodal coordinate formulation. The implementation is accomplished in the planar case accounting for coupled axial, bending, and shear deformation. By employing the virtual work of elastic forces similarly to Simo and Vu-Quoc in the absolute nodal coordinate formulation, the numerical results of the formulation are identical to those of the large rotation vector formulation. It is noteworthy, however, that the material definition in the absolute nodal coordinate formulation can differ from the material definition used in Reissner's beam formulation. Based on an analytical eigenvalue analysis, it turns out that the high frequencies of cross section deformation modes in the absolute nodal coordinate formulation are only slightly higher than frequencies of common shear modes, which are present in the classical large rotation vector formulation of Simo and Vu-Quoc, as well. Thus, previous claims that the absolute nodal coordinate formulation is inefficient or would lead to ill-conditioned finite element matrices, as compared to classical approaches, could be refuted. In the introduced beam element, locking is prevented by means of reduced integration of certain parts of the elastic forces. Several classical large deformation static and dynamic examples as well as an eigenvalue analysis document the equivalence of classical nonlinear rod theories and the absolute nodal coordinate formulation for the case of appropriate material definitions. The results also agree highly with those computed in commercial finite element codes

  5. Estimation of spectral kurtosis

    Science.gov (United States)

    Sutawanir

    2017-03-01

    Rolling bearings are the most important elements in rotating machinery. Bearing frequently fall out of service for various reasons: heavy loads, unsuitable lubrications, ineffective sealing. Bearing faults may cause a decrease in performance. Analysis of bearing vibration signals has attracted attention in the field of monitoring and fault diagnosis. Bearing vibration signals give rich information for early detection of bearing failures. Spectral kurtosis, SK, is a parameter in frequency domain indicating how the impulsiveness of a signal varies with frequency. Faults in rolling bearings give rise to a series of short impulse responses as the rolling elements strike faults, SK potentially useful for determining frequency bands dominated by bearing fault signals. SK can provide a measure of the distance of the analyzed bearings from a healthy one. SK provides additional information given by the power spectral density (psd). This paper aims to explore the estimation of spectral kurtosis using short time Fourier transform known as spectrogram. The estimation of SK is similar to the estimation of psd. The estimation falls in model-free estimation and plug-in estimator. Some numerical studies using simulations are discussed to support the methodology. Spectral kurtosis of some stationary signals are analytically obtained and used in simulation study. Kurtosis of time domain has been a popular tool for detecting non-normality. Spectral kurtosis is an extension of kurtosis in frequency domain. The relationship between time domain and frequency domain analysis is establish through power spectrum-autocovariance Fourier transform. Fourier transform is the main tool for estimation in frequency domain. The power spectral density is estimated through periodogram. In this paper, the short time Fourier transform of the spectral kurtosis is reviewed, a bearing fault (inner ring and outer ring) is simulated. The bearing response, power spectrum, and spectral kurtosis are plotted to

  6. Utilization of 1H NMR in the determination of absolute configuration of alcohols

    International Nuclear Information System (INIS)

    Barreiros, Marizeth L.; David, Jorge M.; David, Juceni P. . E-juceni@ufba.br

    2005-01-01

    This review reports the determination of absolute configuration of primary and secondary alcohols by 1 H NMR spectroscopy, using the Mosher method. This method consists in the derivatization of an alcohol possessing unknown absolute configuration with one or both enantiomers of an auxiliary reagent. The resulting diastereoisomer spectra are registered and compared, and the chemical shift differences (Δδ R,S = δ R - δ S ) are measured. The determination of the absolute configuration of the alcohol molecule is based on the correlation between its chiral center and the auxiliary reagent's chiral center. Therefore, the determination of the absolute configuration depends on aromatic ring shielding effects on the substituents of the alcohol as evidenced by the 1 H NMR spectrum. (author)

  7. Spectral stratigraphy

    Science.gov (United States)

    Lang, Harold R.

    1991-01-01

    A new approach to stratigraphic analysis is described which uses photogeologic and spectral interpretation of multispectral remote sensing data combined with topographic information to determine the attitude, thickness, and lithology of strata exposed at the surface. The new stratigraphic procedure is illustrated by examples in the literature. The published results demonstrate the potential of spectral stratigraphy for mapping strata, determining dip and strike, measuring and correlating stratigraphic sequences, defining lithofacies, mapping biofacies, and interpreting geological structures.

  8. Spectral unmixing: estimating partial abundances

    CSIR Research Space (South Africa)

    Debba, Pravesh

    2009-01-01

    Full Text Available techniques is complicated when considering very similar spectral signatures. Iron-bearing oxide/hydroxide/sulfate minerals have similar spectral signatures. The study focuses on how could estimates of abundances of spectrally similar iron-bearing oxide...

  9. On the absolute meaning of motion

    Directory of Open Access Journals (Sweden)

    H. Edwards

    Full Text Available The present manuscript aims to clarify why motion causes matter to age slower in a comparable sense, and how this relates to relativistic effects caused by motion. A fresh analysis of motion, build on first axiom, delivers proof with its result, from which significant new understanding and computational power is gained.A review of experimental results demonstrates, that unaccelerated motion causes matter to age slower in a comparable, observer independent sense. Whilst focusing on this absolute effect, the present manuscript clarifies its context to relativistic effects, detailing their relationship and incorporating both into one consistent picture. The presented theoretical results make new predictions and are testable through suggested experiment of a novel nature. The manuscript finally arrives at an experimental tool and methodology, which as far as motion in ungravitated space is concerned or gravity appreciated, enables us to find the absolute observer independent picture of reality, which is reflected in the comparable display of atomic clocks.The discussion of the theoretical results, derives a physical causal understanding of gravity, a mathematical formulation of which, will be presented. Keywords: Kinematics, Gravity, Atomic clocks, Cosmic microwave background

  10. Linear ultrasonic motor for absolute gravimeter.

    Science.gov (United States)

    Jian, Yue; Yao, Zhiyuan; Silberschmidt, Vadim V

    2017-05-01

    Thanks to their compactness and suitability for vacuum applications, linear ultrasonic motors are considered as substitutes for classical electromagnetic motors as driving elements in absolute gravimeters. Still, their application is prevented by relatively low power output. To overcome this limitation and provide better stability, a V-type linear ultrasonic motor with a new clamping method is proposed for a gravimeter. In this paper, a mechanical model of stators with flexible clamping components is suggested, according to a design criterion for clamps of linear ultrasonic motors. After that, an effect of tangential and normal rigidity of the clamping components on mechanical output is studied. It is followed by discussion of a new clamping method with sufficient tangential rigidity and a capability to facilitate pre-load. Additionally, a prototype of the motor with the proposed clamping method was fabricated and the performance tests in vertical direction were implemented. Experimental results show that the suggested motor has structural stability and high dynamic performance, such as no-load speed of 1.4m/s and maximal thrust of 43N, meeting the requirements for absolute gravimeters. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Standardization of the cumulative absolute velocity

    International Nuclear Information System (INIS)

    O'Hara, T.F.; Jacobson, J.P.

    1991-12-01

    EPRI NP-5930, ''A Criterion for Determining Exceedance of the Operating Basis Earthquake,'' was published in July 1988. As defined in that report, the Operating Basis Earthquake (OBE) is exceeded when both a response spectrum parameter and a second damage parameter, referred to as the Cumulative Absolute Velocity (CAV), are exceeded. In the review process of the above report, it was noted that the calculation of CAV could be confounded by time history records of long duration containing low (nondamaging) acceleration. Therefore, it is necessary to standardize the method of calculating CAV to account for record length. This standardized methodology allows consistent comparisons between future CAV calculations and the adjusted CAV threshold value based upon applying the standardized methodology to the data set presented in EPRI NP-5930. The recommended method to standardize the CAV calculation is to window its calculation on a second-by-second basis for a given time history. If the absolute acceleration exceeds 0.025g at any time during each one second interval, the earthquake records used in EPRI NP-5930 have been reanalyzed and the adjusted threshold of damage for CAV was found to be 0.16g-set

  12. Confirmation of the absolute configuration of (−)-aurantioclavine

    KAUST Repository

    Behenna, Douglas C.; Krishnan, Shyam; Stoltz, Brian M.

    2011-01-01

    We confirm our previous assignment of the absolute configuration of (-)-aurantioclavine as 7R by crystallographically characterizing an advanced 3-bromoindole intermediate reported in our previous synthesis. This analysis also provides additional

  13. Musical Activity Tunes Up Absolute Pitch Ability

    DEFF Research Database (Denmark)

    Dohn, Anders; Garza-Villarreal, Eduardo A.; Ribe, Lars Riisgaard

    2014-01-01

    Absolute pitch (AP) is the ability to identify or produce pitches of musical tones without an external reference. Active AP (i.e., pitch production or pitch adjustment) and passive AP (i.e., pitch identification) are considered to not necessarily coincide, although no study has properly compared...

  14. Absolute surface reconstruction by slope metrology and photogrammetry

    Science.gov (United States)

    Dong, Yue

    Developing the manufacture of aspheric and freeform optical elements requires an advanced metrology method which is capable of inspecting these elements with arbitrary freeform surfaces. In this dissertation, a new surface measurement scheme is investigated for such a purpose, which is to measure the absolute surface shape of an object under test through its surface slope information obtained by photogrammetric measurement. A laser beam propagating toward the object reflects on its surface while the vectors of the incident and reflected beams are evaluated from the four spots they leave on the two parallel transparent windows in front of the object. The spots' spatial coordinates are determined by photogrammetry. With the knowledge of the incident and reflected beam vectors, the local slope information of the object surface is obtained through vector calculus and finally yields the absolute object surface profile by a reconstruction algorithm. An experimental setup is designed and the proposed measuring principle is experimentally demonstrated by measuring the absolute surface shape of a spherical mirror. The measurement uncertainty is analyzed, and efforts for improvement are made accordingly. In particular, structured windows are designed and fabricated to generate uniform scattering spots left by the transmitted laser beams. Calibration of the fringe reflection instrument, another typical surface slope measurement method, is also reported in the dissertation. Finally, a method for uncertainty analysis of a photogrammetry measurement system by optical simulation is investigated.

  15. A proposal to measure absolute environmental sustainability in lifecycle assessment

    DEFF Research Database (Denmark)

    Bjørn, Anders; Margni, Manuele; Roy, Pierre-Olivier

    2016-01-01

    sustainable are therefore increasingly important. Such absolute indicators exist, but suffer from shortcomings such as incomplete coverage of environmental issues, varying data quality and varying or insufficient spatial resolution. The purpose of this article is to demonstrate that life cycle assessment (LCA...... in supporting decisions aimed at simultaneously reducing environmental impacts efficiently and maintaining or achieving environmental sustainability. We have demonstrated that LCA indicators can be modified from being relative to being absolute indicators of environmental sustainability. Further research should...

  16. A note on unique solvability of the absolute value equation

    Directory of Open Access Journals (Sweden)

    Taher Lotfi

    2014-05-01

    Full Text Available It is proved that applying sufficient regularity conditions to the interval matrix $[A-|B|,A+|B|]$‎, ‎we can create a new unique solvability condition for the absolute value equation $Ax+B|x|=b$‎, ‎since regularity of interval matrices implies unique solvability of their corresponding absolute value equation‎. ‎This condition is formulated in terms of positive definiteness of a certain point matrix‎. ‎Special case $B=-I$ is verified too as an application.

  17. Comparison of absolute speed of screen-film systems measured in seven institutions

    International Nuclear Information System (INIS)

    Yoshida, Ken-ichi; Murakami, Yasunori; Asahara, Masaki; Nakamura, Satoru; Honda, Mitsugi; Morishita, Junji; Higashida, Yoshiharu; Otsuka, Akiyoshi; Yoshida, Akira.

    1998-01-01

    We compared the differences in absolute speed of four screen-film systems in seven institutions. Four different screens (HR-4, Fuji; Lanex Medium, Kodak; Lanex 250, Kodak; and HR-12, Fuji) combined with super HRS-30 (Fuji) film and a beam quality of 80 kV tube voltage with a 20 mm aluminum filter were employed. Absolute speeds of the HR-4, Lanex Medium, Lanex 250, and HR-12 in combination with super HRS-30 were 1.83 mR -1 , 2.72 mR -1 , 2.79 mR -1 , and 5.35 mR -1 (average of seven institutions), respectively. The variation in speed was about ±10% for the seven institutions. Two factors (film processor and densitometer) affecting absolute speed were analyzed. The absolute speed measured in seven institutions varied ±14% depending on the film processor (development conditions) and ±3% depending on the densitometer employed in each institution. (author)

  18. A novel capacitive absolute positioning sensor based on time grating with nanometer resolution

    Science.gov (United States)

    Pu, Hongji; Liu, Hongzhong; Liu, Xiaokang; Peng, Kai; Yu, Zhicheng

    2018-05-01

    The present work proposes a novel capacitive absolute positioning sensor based on time grating. The sensor includes a fine incremental-displacement measurement component combined with a coarse absolute-position measurement component to obtain high-resolution absolute positioning measurements. A single row type sensor was proposed to achieve fine displacement measurement, which combines the two electrode rows of a previously proposed double-row type capacitive displacement sensor based on time grating into a single row. To achieve absolute positioning measurement, the coarse measurement component is designed as a single-row type displacement sensor employing a single spatial period over the entire measurement range. In addition, this component employs a rectangular induction electrode and four groups of orthogonal discrete excitation electrodes with half-sinusoidal envelope shapes, which were formed by alternately extending the rectangular electrodes of the fine measurement component. The fine and coarse measurement components are tightly integrated to form a compact absolute positioning sensor. A prototype sensor was manufactured using printed circuit board technology for testing and optimization of the design in conjunction with simulations. Experimental results show that the prototype sensor achieves a ±300 nm measurement accuracy with a 1 nm resolution over a displacement range of 200 mm when employing error compensation. The proposed sensor is an excellent alternative to presently available long-range absolute nanometrology sensors owing to its low cost, simple structure, and ease of manufacturing.

  19. Spectral representation of the particle production out of equilibrium—Schwinger mechanism in pulsed electric fields

    International Nuclear Information System (INIS)

    Fukushima, Kenji

    2014-01-01

    We develop a formalism to describe the particle production out of equilibrium in terms of dynamical spectral functions, i.e. Wigner transformed Pauli–Jordan's and Hadamard's functions. We take an explicit example of a spatially homogeneous scalar theory under pulsed electric fields and investigate the time evolution of the spectral functions. In the out-state we find an oscillatory peak in Hadamard's function as a result of the mixing between positive- and negative-energy waves. The strength of this peak is of the linear order of the Bogoliubov mixing coefficient, whereas the peak corresponding to the Schwinger mechanism is of the quadratic order. Between the in- and the out-states we observe a continuous flow of the spectral peaks together with two transient oscillatory peaks. We also discuss the medium effect at finite temperature and density. We emphasize that the entire structure of the spectral functions conveys rich information on real-time dynamics including the particle production. (paper)

  20. VAR Portfolio Optimal: Perbandingan Antara Metode Markowitz dan Mean Absolute Deviation

    Directory of Open Access Journals (Sweden)

    R. Agus Sartono

    2009-05-01

    Full Text Available Portfolio selection method which have been introduced by Harry Markowitz (1952 used variance or deviation standard as a measure of risk. Kanno and Yamazaki (1991 introduced another method and used mean absolute deviation as a measure of risk instead of variance. The Value-at Risk (VaR is a relatively new method to capitalized risk that been used by financial institutions. The aim of this research is compare between mean variance and mean absolute deviation of two portfolios. Next, we attempt to assess the VaR of two portfolios using delta normal method and historical simulation. We use the secondary data from the Jakarta Stock Exchange – LQ45 during 2003. We find that there is a weak-positive correlation between deviation standard and return in both portfolios. The VaR nolmal delta based on mean absolute deviation method eventually is higher than the VaR normal delta based on mean variance method. However, based on the historical simulation the VaR of two methods is statistically insignificant. Thus, the deviation standard is sufficient measures of portfolio risk.Keywords: optimalisasi portofolio, mean-variance, mean-absolute deviation, value-at-risk, metode delta normal, metode simulasi historis

  1. Introduction to spectral theory

    CERN Document Server

    Levitan, B M

    1975-01-01

    This monograph is devoted to the spectral theory of the Sturm- Liouville operator and to the spectral theory of the Dirac system. In addition, some results are given for nth order ordinary differential operators. Those parts of this book which concern nth order operators can serve as simply an introduction to this domain, which at the present time has already had time to become very broad. For the convenience of the reader who is not familar with abstract spectral theory, the authors have inserted a chapter (Chapter 13) in which they discuss this theory, concisely and in the main without proofs, and indicate various connections with the spectral theory of differential operators.

  2. Spectral Cascade-Transport Turbulence Model Development for Two-Phase Flows

    Science.gov (United States)

    Brown, Cameron Scott

    Turbulence modeling remains a challenging problem in nuclear reactor applications, particularly for the turbulent multiphase flow conditions in nuclear reactor subchannels. Understanding the fundamental physics of turbulent multiphase flows is crucial for the improvement and further development of multiphase flow models used in reactor operation and safety calculations. Reactor calculations with Reynolds-averaged Navier-Stokes (RANS) approach continue to become viable tools for reactor analysis. The on-going increase in available computational resources allows for turbulence models that are more complex than the traditional two-equation models to become practical choices for nuclear reactor computational fluid dynamic (CFD) and multiphase computational fluid dynamic (M-CFD) simulations. Similarly, increased computational capabilities continue to allow for higher Reynolds numbers and more complex geometries to be evaluated using direct numerical simulation (DNS), thus providing more validation and verification data for turbulence model development. Spectral turbulence models are a promising approach to M-CFD simulations. These models resolve mean flow parameters as well as the turbulent kinetic energy spectrum, reproducing more physical details of the turbulence than traditional two-equation type models. Previously, work performed by other researchers on a spectral cascade-transport model has shown that the model behaves well for single and bubbly twophase decay of isotropic turbulence, single and two-phase uniform shear flow, and single-phase flow in a channel without resolving the near-wall boundary layer for relatively low Reynolds number. Spectral models are great candidates for multiphase RANS modeling since bubble source terms can be modeled as contributions to specific turbulence scales. This work focuses on the improvement and further development of the spectral cascadetransport model (SCTM) to become a three-dimensional (3D) turbulence model for use in M

  3. Neutron activation analysis of certified samples by the absolute method

    Science.gov (United States)

    Kadem, F.; Belouadah, N.; Idiri, Z.

    2015-07-01

    The nuclear reactions analysis technique is mainly based on the relative method or the use of activation cross sections. In order to validate nuclear data for the calculated cross section evaluated from systematic studies, we used the neutron activation analysis technique (NAA) to determine the various constituent concentrations of certified samples for animal blood, milk and hay. In this analysis, the absolute method is used. The neutron activation technique involves irradiating the sample and subsequently performing a measurement of the activity of the sample. The fundamental equation of the activation connects several physical parameters including the cross section that is essential for the quantitative determination of the different elements composing the sample without resorting to the use of standard sample. Called the absolute method, it allows a measurement as accurate as the relative method. The results obtained by the absolute method showed that the values are as precise as the relative method requiring the use of standard sample for each element to be quantified.

  4. An absolute distance interferometer with two external cavity diode lasers

    International Nuclear Information System (INIS)

    Hartmann, L; Meiners-Hagen, K; Abou-Zeid, A

    2008-01-01

    An absolute interferometer for length measurements in the range of several metres has been developed. The use of two external cavity diode lasers allows the implementation of a two-step procedure which combines the length measurement with a variable synthetic wavelength and its interpolation with a fixed synthetic wavelength. This synthetic wavelength is obtained at ≈42 µm by a modulation-free stabilization of both lasers to Doppler-reduced rubidium absorption lines. A stable reference interferometer is used as length standard. Different contributions to the total measurement uncertainty are discussed. It is shown that the measurement uncertainty can considerably be reduced by correcting the influence of vibrations on the measurement result and by applying linear regression to the quadrature signals of the absolute interferometer and the reference interferometer. The comparison of the absolute interferometer with a counting interferometer for distances up to 2 m results in a linearity error of 0.4 µm in good agreement with an estimation of the measurement uncertainty

  5. Computer-aided-design-model-assisted absolute three-dimensional shape measurement.

    Science.gov (United States)

    Li, Beiwen; Bell, Tyler; Zhang, Song

    2017-08-20

    Conventional three-dimensional (3D) shape measurement methods are typically generic to all types of objects. Yet, for many measurement conditions, such a level of generality is inessential when having the preknowledge of the object geometry. This paper introduces a novel adaptive algorithm for absolute 3D shape measurement with the assistance of the object computer-aided-design (CAD) model. The proposed algorithm includes the following major steps: (1) export the 3D point cloud data from the CAD model; (2) transform the CAD model into the camera perspective; (3) obtain a wrapped phase map from three phase-shifted fringe images; and (4) retrieve absolute phase and 3D geometry assisted by the CAD model. We demonstrate that if object CAD models are available, such an algorithm is efficient in recovering absolute 3D geometries of both simple and complex objects with only three phase-shifted fringe images.

  6. On the continuity of the stationary state distribution of DPCM

    Science.gov (United States)

    Naraghi-Pour, Morteza; Neuhoff, David L.

    1990-03-01

    Continuity and singularity properties of the stationary state distribution of differential pulse code modulation (DPCM) are explored. Two-level DPCM (i.e., delta modulation) operating on a first-order autoregressive source is considered, and it is shown that, when the magnitude of the DPCM prediciton coefficient is between zero and one-half, the stationary state distribution is singularly continuous; i.e., it is not discrete but concentrates on an uncountable set with a Lebesgue measure of zero. Consequently, it cannot be represented with a probability density function. For prediction coefficients with magnitude greater than or equal to one-half, the distribution is pure, i.e., either absolutely continuous and representable with a density function, or singular. This problem is compared to the well-known and still substantially unsolved problem of symmetric Bernoulli convolutions.

  7. Assessing Epistemic Sophistication by Considering Domain-Specific Absolute and Multiplicistic Beliefs Separately

    Science.gov (United States)

    Peter, Johannes; Rosman, Tom; Mayer, Anne-Kathrin; Leichner, Nikolas; Krampen, Günter

    2016-01-01

    Background: Particularly in higher education, not only a view of science as a means of finding absolute truths (absolutism), but also a view of science as generally tentative (multiplicism) can be unsophisticated and obstructive for learning. Most quantitative epistemic belief inventories neglect this and understand epistemic sophistication as…

  8. [Analysis of sensitive spectral bands for burning status detection using hyper-spectral images of Tiangong-01].

    Science.gov (United States)

    Qin, Xian-Lin; Zhu, Xi; Yang, Fei; Zhao, Kai-Rui; Pang, Yong; Li, Zeng-Yuan; Li, Xu-Zhi; Zhang, Jiu-Xing

    2013-07-01

    To obtain the sensitive spectral bands for detection of information on 4 kinds of burning status, i. e. flaming, smoldering, smoke, and fire scar, with satellite data, analysis was conducted to identify suitable satellite spectral bands for detection of information on these 4 kinds of burning status by using hyper-spectrum images of Tiangong-01 (TG-01) and employing a method combining statistics and spectral analysis. The results show that: in the hyper-spectral images of TG-01, the spectral bands differ obviously for detection of these 4 kinds of burning status; in all hyper-spectral short-wave infrared channels, the reflectance of flaming is higher than that of all other 3 kinds of burning status, and the reflectance of smoke is the lowest; the reflectance of smoke is higher than that of all other 3 kinds of burning status in the channels corresponding to hyper-spectral visible near-infrared and panchromatic sensors. For spectral band selection, more suitable spectral bands for flaming detection are 1 000.0-1 956.0 and 2 020.0-2 400.0 nm; the suitable spectral bands for identifying smoldering are 930.0-1 000.0 and 1 084.0-2 400.0 nm; the suitable spectral bands for smoke detection is in 400.0-920.0 nm; for fire scar detection, it is suitable to select bands with central wavelengths of 900.0-930.0 and 1 300.0-2 400.0 nm, and then to combine them to construct a detection model.

  9. Spectral Decomposition Algorithm (SDA)

    Data.gov (United States)

    National Aeronautics and Space Administration — Spectral Decomposition Algorithm (SDA) is an unsupervised feature extraction technique similar to PCA that was developed to better distinguish spectral features in...

  10. Solving Absolute Value Equations Algebraically and Geometrically

    Science.gov (United States)

    Shiyuan, Wei

    2005-01-01

    The way in which students can improve their comprehension by understanding the geometrical meaning of algebraic equations or solving algebraic equation geometrically is described. Students can experiment with the conditions of the absolute value equation presented, for an interesting way to form an overall understanding of the concept.

  11. How calibration and reference spectra affect the accuracy of absolute soft X-ray solar irradiance measured by the SDO/EVE/ESP during high solar activity

    Science.gov (United States)

    Didkovsky, Leonid; Wieman, Seth; Woods, Thomas

    2016-10-01

    The Extreme ultraviolet Spectrophotometer (ESP), one of the channels of SDO's Extreme ultraviolet Variability Experiment (EVE), measures solar irradiance in several EUV and soft x-ray (SXR) bands isolated using thin-film filters and a transmission diffraction grating, and includes a quad-diode detector positioned at the grating zeroth-order to observe in a wavelength band from about 0.1 to 7.0 nm. The quad diode signal also includes some contribution from shorter wavelength in the grating's first-order and the ratio of zeroth-order to first-order signal depends on both source geometry, and spectral distribution. For example, radiometric calibration of the ESP zeroth-order at the NIST SURF BL-2 with a near-parallel beam provides a different zeroth-to-first-order ratio than modeled for solar observations. The relative influence of "uncalibrated" first-order irradiance during solar observations is a function of the solar spectral irradiance and the locations of large Active Regions or solar flares. We discuss how the "uncalibrated" first-order "solar" component and the use of variable solar reference spectra affect determination of absolute SXR irradiance which currently may be significantly overestimated during high solar activity.

  12. Adequacy of relative and absolute risk models for lifetime risk estimate of radiation-induced cancer

    International Nuclear Information System (INIS)

    McBride, M.; Coldman, A.J.

    1988-03-01

    This report examines the applicability of the relative (multiplicative) and absolute (additive) models in predicting lifetime risk of radiation-induced cancer. A review of the epidemiologic literature, and a discussion of the mathematical models of carcinogenesis and their relationship to these models of lifetime risk, are included. Based on the available data, the relative risk model for the estimation of lifetime risk is preferred for non-sex-specific epithelial tumours. However, because of lack of knowledge concerning other determinants of radiation risk and of background incidence rates, considerable uncertainty in modelling lifetime risk still exists. Therefore, it is essential that follow-up of exposed cohorts be continued so that population-based estimates of lifetime risk are available

  13. Directly relating gas-phase cluster measurements to solution-phase hydrolysis, the absolute standard hydrogen electrode potential, and the absolute proton solvation energy.

    Science.gov (United States)

    Donald, William A; Leib, Ryan D; O'Brien, Jeremy T; Williams, Evan R

    2009-06-08

    Solution-phase, half-cell potentials are measured relative to other half-cell potentials, resulting in a thermochemical ladder that is anchored to the standard hydrogen electrode (SHE), which is assigned an arbitrary value of 0 V. A new method for measuring the absolute SHE potential is demonstrated in which gaseous nanodrops containing divalent alkaline-earth or transition-metal ions are reduced by thermally generated electrons. Energies for the reactions 1) M(H(2)O)(24)(2+)(g) + e(-)(g)-->M(H(2)O)(24)(+)(g) and 2) M(H(2)O)(24)(2+)(g) + e(-)(g)-->MOH(H(2)O)(23)(+)(g) + H(g) and the hydrogen atom affinities of MOH(H(2)O)(23)(+)(g) are obtained from the number of water molecules lost through each pathway. From these measurements on clusters containing nine different metal ions and known thermochemical values that include solution hydrolysis energies, an average absolute SHE potential of +4.29 V vs. e(-)(g) (standard deviation of 0.02 V) and a real proton solvation free energy of -265 kcal mol(-1) are obtained. With this method, the absolute SHE potential can be obtained from a one-electron reduction of nanodrops containing divalent ions that are not observed to undergo one-electron reduction in aqueous solution.

  14. Articulated Multimedia Physics, Lesson 14, Gases, The Gas Laws, and Absolute Temperature.

    Science.gov (United States)

    New York Inst. of Tech., Old Westbury.

    As the fourteenth lesson of the Articulated Multimedia Physics Course, instructional materials are presented in this study guide with relation to gases, gas laws, and absolute temperature. The topics are concerned with the kinetic theory of gases, thermometric scales, Charles' law, ideal gases, Boyle's law, absolute zero, and gas pressures. The…

  15. A quasi-continuous observation of the α-transition of Fe1+xS by Moessbauer line tracking

    International Nuclear Information System (INIS)

    Mendoza Zelis, P.; Pasquevich, G. A.; Veiga, A.; Fernandez van Raap, M. B.; Sanchez, F. H.

    2010-01-01

    Moessbauer absorption line tracking methodology, under a constant velocity strategy, is used for a quasi-continuous observation of the α-transition on slightly non stoichiometric Fe 1+x S alloy. To this end, two strategies were applied: an intelligent absorption line tracking with a control algorithm that uses the data measured in the previous region to establish the position of the next partial spectral range; and a predetermined line tracking in which temperature evolution of a partial spectral region of interest (ROI) is programmed. The latter uses results from the former, in order to achieve a quasi-continuous partial spectral observation. These experiments clearly demonstrate that line tracking allows a more efficient use of the radioactive source, as the effort is concentrated in a partial region of the spectra from which the desired information can be obtained.

  16. Application of x-ray fluorescence (XRF) absolute analysis method for silica refractories

    International Nuclear Information System (INIS)

    Asakura, Hideo; Yamada, Yasujiro; Kansai, Kouhei; Tomatsu, Ichirou; Murata, Mamoru

    2015-01-01

    X-ray fluorescence (XRF) analysis is a rapid and precise quantitative analytical method for the determination of major and trace elements in many industries and academics. XRF analytical values are relative due to the use of the calibration curves calculated from measuring the reference standard materials such as Japanese Refractory Reference Materials (JRRM) series with certified values determined by wet chemical analysis. The development of the XRF analytical method from relative to absolute analysis will help much to determine the absolute values of samples from the fields where reference standard samples have not been prepared, and thus can be applied widely in many industries. The implement of the absolute XRF analysis for silica refractories requires high purity reagents and/or reference standard solution for the binary basic calibration curve, and theoretical matrix correction coefficients for the multi-components silica refractories analysis. The reproducibility and repeatability of this method for Al 2 O 3 5 mass% sample were 0.009 and 0.006 mass% in Al 2 O 3 and showed better values that those of ICP-AES recognized as an absolute method in JIS R 2212-2, which yielded 0.028 and 0.031 mass%, respectively. The XRF absolute analysis for JRRM 200 series, 201a and 205a does not show a bias but coincides with their certified values. (author)

  17. Android Apps for Absolute Beginners

    CERN Document Server

    Jackson, Wallace

    2011-01-01

    Anybody can start building simple apps for the Android platform, and this book will show you how! Android Apps for Absolute Beginners takes you through the process of getting your first Android applications up and running using plain English and practical examples. It cuts through the fog of jargon and mystery that surrounds Android application development, and gives you simple, step-by-step instructions to get you started.* Teaches Android application development in language anyone can understand, giving you the best possible start in Android development * Provides simple, step-by-step exampl

  18. Radiation reaction in a continuous focusing channel

    International Nuclear Information System (INIS)

    Huang, Z.; Chen, P.; Ruth, R.D.

    1995-01-01

    We show that the radiation damping rate of the transverse action of a particle in a straight, continuous focusing system is independent of the particle energy, and that no quantum excitation is induced. This absolute damping effect leads to the existence of a transverse ground state to which the particle inevitably decays and yields the minimum beam emittance that one can ever attain, γε min =ℎ/2mc, limited only by the uncertainty principle. Because of adiabatic invariance, the particle can be accelerated along the focusing channel in its ground state without any radiation energy loss

  19. Study of errors in absolute flux density measurements of Cassiopeia A

    International Nuclear Information System (INIS)

    Kanda, M.

    1975-10-01

    An error analysis for absolute flux density measurements of Cassiopeia A is discussed. The lower-bound quadrature-accumulation error for state-of-the-art measurements of the absolute flux density of Cas A around 7 GHz is estimated to be 1.71% for 3 sigma limits. The corresponding practicable error for the careful but not state-of-the-art measurement is estimated to be 4.46% for 3 sigma limits

  20. SVM-Based Spectral Analysis for Heart Rate from Multi-Channel WPPG Sensor Signals.

    Science.gov (United States)

    Xiong, Jiping; Cai, Lisang; Wang, Fei; He, Xiaowei

    2017-03-03

    Although wrist-type photoplethysmographic (hereafter referred to as WPPG) sensor signals can measure heart rate quite conveniently, the subjects' hand movements can cause strong motion artifacts, and then the motion artifacts will heavily contaminate WPPG signals. Hence, it is challenging for us to accurately estimate heart rate from WPPG signals during intense physical activities. The WWPG method has attracted more attention thanks to the popularity of wrist-worn wearable devices. In this paper, a mixed approach called Mix-SVM is proposed, it can use multi-channel WPPG sensor signals and simultaneous acceleration signals to measurement heart rate. Firstly, we combine the principle component analysis and adaptive filter to remove a part of the motion artifacts. Due to the strong relativity between motion artifacts and acceleration signals, the further denoising problem is regarded as a sparse signals reconstruction problem. Then, we use a spectrum subtraction method to eliminate motion artifacts effectively. Finally, the spectral peak corresponding to heart rate is sought by an SVM-based spectral analysis method. Through the public PPG database in the 2015 IEEE Signal Processing Cup, we acquire the experimental results, i.e., the average absolute error was 1.01 beat per minute, and the Pearson correlation was 0.9972. These results also confirm that the proposed Mix-SVM approach has potential for multi-channel WPPG-based heart rate estimation in the presence of intense physical exercise.

  1. Performance evaluation of continuous blood sampling system for PET study. Comparison of three detector-systems

    CERN Document Server

    Matsumoto, K; Sakamoto, S; Senda, M; Yamamoto, S; Tarutani, K; Minato, K

    2002-01-01

    To measure cerebral blood flow with sup 1 sup 5 O PET, it is necessary to measure the time course of arterial blood radioactivity. We examined the performance of three different types of continuous blood sampling system. Three kinds of continuous blood sampling system were used: a plastic scintillator-based beta detector (conventional beta detector (BETA)), a bismuth germinate (BGO)-based coincidence gamma detector (Pico-count flow-through detector (COINC)) and a Phoswich detector (PD) composed by a combination of plastic scintillator and BGO scintillator. Performance of these systems was evaluated for absolute sensitivity, count rate characteristic, sensitivity to background gamnra photons, and reproducibility for nylon tube geometry. The absolute sensitivity of the PD was 0.21 cps/Bq for sup 6 sup 8 Ga positrons at the center of the detector. This was approximately three times higher than BETA, two times higher than COINC. The value measured with BETA was stable, even when background radioactivity was incre...

  2. Improved Strategies and Optimization of Calibration Models for Real-time PCR Absolute Quantification

    Science.gov (United States)

    Real-time PCR absolute quantification applications rely on the use of standard curves to make estimates of DNA target concentrations in unknown samples. Traditional absolute quantification approaches dictate that a standard curve must accompany each experimental run. However, t...

  3. Terahertz detectors for long wavelength multi-spectral imaging.

    Energy Technology Data Exchange (ETDEWEB)

    Lyo, Sungkwun Kenneth; Wanke, Michael Clement; Reno, John Louis; Shaner, Eric Arthur; Grine, Albert D.

    2007-10-01

    The purpose of this work was to develop a wavelength tunable detector for Terahertz spectroscopy and imaging. Our approach was to utilize plasmons in the channel of a specially designed field-effect transistor called the grating-gate detector. Grating-gate detectors exhibit narrow-linewidth, broad spectral tunability through application of a gate bias, and no angular dependence in their photoresponse. As such, if suitable sensitivity can be attained, they are viable candidates for Terahertz multi-spectral focal plane arrays. When this work began, grating-gate gate detectors, while having many promising characteristics, had a noise-equivalent power (NEP) of only 10{sup -5} W/{radical}Hz. Over the duration of this project, we have obtained a true NEP of 10{sup -8} W/{radical}Hz and a scaled NEP of 10{sup -9}W/{radical}Hz. The ultimate goal for these detectors is to reach a NEP in the 10{sup -9{yields}-10}W/{radical}Hz range; we have not yet seen a roadblock to continued improvement.

  4. Improvement of Gaofen-3 Absolute Positioning Accuracy Based on Cross-Calibration

    Directory of Open Access Journals (Sweden)

    Mingjun Deng

    2017-12-01

    Full Text Available The Chinese Gaofen-3 (GF-3 mission was launched in August 2016, equipped with a full polarimetric synthetic aperture radar (SAR sensor in the C-band, with a resolution of up to 1 m. The absolute positioning accuracy of GF-3 is of great importance, and in-orbit geometric calibration is a key technology for improving absolute positioning accuracy. Conventional geometric calibration is used to accurately calibrate the geometric calibration parameters of the image (internal delay and azimuth shifts using high-precision ground control data, which are highly dependent on the control data of the calibration field, but it remains costly and labor-intensive to monitor changes in GF-3’s geometric calibration parameters. Based on the positioning consistency constraint of the conjugate points, this study presents a geometric cross-calibration method for the rapid and accurate calibration of GF-3. The proposed method can accurately calibrate geometric calibration parameters without using corner reflectors and high-precision digital elevation models, thus improving absolute positioning accuracy of the GF-3 image. GF-3 images from multiple regions were collected to verify the absolute positioning accuracy after cross-calibration. The results show that this method can achieve a calibration accuracy as high as that achieved by the conventional field calibration method.

  5. Optimization of spectral printer modeling based on a modified cellular Yule-Nielsen spectral Neugebauer model.

    Science.gov (United States)

    Liu, Qiang; Wan, Xiaoxia; Xie, Dehong

    2014-06-01

    The study presented here optimizes several steps in the spectral printer modeling workflow based on a cellular Yule-Nielsen spectral Neugebauer (CYNSN) model. First, a printer subdividing method was developed that reduces the number of sub-models while maintaining the maximum device gamut. Second, the forward spectral prediction accuracy of the CYNSN model for each subspace of the printer was improved using back propagation artificial neural network (BPANN) estimated n values. Third, a sequential gamut judging method, which clearly reduced the complexity of the optimal sub-model and cell searching process during printer backward modeling, was proposed. After that, we further modified the use of the modeling color metric and comprehensively improved the spectral and perceptual accuracy of the spectral printer model. The experimental results show that the proposed optimization approaches provide obvious improvements in aspects of the modeling accuracy or efficiency for each of the corresponding steps, and an overall improvement of the optimized spectral printer modeling workflow was also demonstrated.

  6. Measurement of absolute myocardial blood flow with H215O and dynamic positron-emission tomography. Strategy for quantification in relation to the partial-volume effect

    International Nuclear Information System (INIS)

    Iida, H.; Kanno, I.; Takahashi, A.

    1988-01-01

    An in vivo technique was developed for measuring the absolute myocardial blood flow with H 2 15 O and dynamic positron-emission tomography. This technique was based on a new model involving the concept of the tissue fraction, which was defined as the fraction of the tissue mass in the volume of the region of interest. The myocardium was imaged dynamically by positron-emission tomography, starting at the time of intravenous bolus injection of H 2 15 O. The arterial input function was measured continuously with a beta-ray detector. A separate image after C 15 O inhalation was also obtained for correction of the H 2 15 O radioactivity in the blood. The absolute myocardial blood flow and the tissue fraction were calculated for 15 subjects with a kinetic technique under region-of-interest analysis. These results seem consistent with their coronary angiographic findings. The mean value of the measured absolute myocardial blood flows in normal subjects was 0.95 +/- 0.09 ml/min/g. This technique detected a diffuse decrease of myocardial blood flow in patients with triple-vessel disease

  7. Absolute Gravity Datum in the Age of Cold Atom Gravimeters

    Science.gov (United States)

    Childers, V. A.; Eckl, M. C.

    2014-12-01

    The international gravity datum is defined today by the International Gravity Standardization Net of 1971 (IGSN-71). The data supporting this network was measured in the 1950s and 60s using pendulum and spring-based gravimeter ties (plus some new ballistic absolute meters) to replace the prior protocol of referencing all gravity values to the earlier Potsdam value. Since this time, gravimeter technology has advanced significantly with the development and refinement of the FG-5 (the current standard of the industry) and again with the soon-to-be-available cold atom interferometric absolute gravimeters. This latest development is anticipated to provide improvement in the range of two orders of magnitude as compared to the measurement accuracy of technology utilized to develop ISGN-71. In this presentation, we will explore how the IGSN-71 might best be "modernized" given today's requirements and available instruments and resources. The National Geodetic Survey (NGS), along with other relevant US Government agencies, is concerned about establishing gravity control to establish and maintain high order geodetic networks as part of the nation's essential infrastructure. The need to modernize the nation's geodetic infrastructure was highlighted in "Precise Geodetic Infrastructure, National Requirements for a Shared Resource" National Academy of Science, 2010. The NGS mission, as dictated by Congress, is to establish and maintain the National Spatial Reference System, which includes gravity measurements. Absolute gravimeters measure the total gravity field directly and do not involve ties to other measurements. Periodic "intercomparisons" of multiple absolute gravimeters at reference gravity sites are used to constrain the behavior of the instruments to ensure that each would yield reasonably similar measurements of the same location (i.e. yield a sufficiently consistent datum when measured in disparate locales). New atomic interferometric gravimeters promise a significant

  8. Proposal for an absolute, atomic definition of mass

    International Nuclear Information System (INIS)

    Wignall, J.W.G.

    1991-11-01

    It is proposed that the mass of a particle be defined absolutely as its de Broglie frequency, measured as the mean de Broglie wavelength of the particle when it has a mean speed (v) and Lorentz factor γ; the masses of systems too large to have a measurable de Broglie wavelength mean are then to be derived by specifying the usual inertial and additive properties of mass. This definition avoids the use of an arbitrary macroscopic standard such as the prototype kilogram, and, if present theory is correct, does not even require the choice of a specific particle as a mass standard. Suggestions are made as to how this absolute mass can be realized and measured at the macroscopic level and, finally, some comments are made on the effect of the new definition on the form of the equations of physics. 19 refs

  9. Absolute limit on rotation of gravitationally bound stars

    Science.gov (United States)

    Glendenning, N. K.

    1994-03-01

    The authors seek an absolute limit on the rotational period for a neutron star as a function of its mass, based on the minimal constraints imposed by Einstein's theory of relativity, Le Chatelier's principle, causality, and a low-density equation of state, uncertainties which can be evaluated as to their effect on the result. This establishes a limiting curve in the mass-period plane below which no pulsar that is a neutron star can lie. For example, the minimum possible Kepler period, which is an absolute limit on rotation below which mass-shedding would occur, is 0.33 ms for a M = 1.442 solar mass neutron star (the mass of PSR1913+16). If the limit were found to be broken by any pulsar, it would signal that the confined hadronic phase of ordinary nucleons and nuclei is only metastable.

  10. Absolute beam-charge measurement for single-bunch electron beams

    International Nuclear Information System (INIS)

    Suwada, Tsuyoshi; Ohsawa, Satoshi; Furukawa, Kazuro; Akasaka, Nobumasa

    2000-01-01

    The absolute beam charge of a single-bunch electron beam with a pulse width of 10 ps and that of a short-pulsed electron beam with a pulse width of 1 ns were measured with a Faraday cup in a beam test for the KEK B-Factory (KEKB) injector linac. It is strongly desired to obtain a precise beam-injection rate to the KEKB rings, and to estimate the amount of beam loss. A wall-current monitor was also recalibrated within an error of ±2%. This report describes the new results for an absolute beam-charge measurement for single-bunch and short-pulsed electron beams, and recalibration of the wall-current monitors in detail. (author)

  11. Relationship between Income and Subjective Economic Well-Being: Absolute or Relative?

    Directory of Open Access Journals (Sweden)

    V A Khashchenko

    2012-09-01

    Full Text Available The article considers the role of the absolute and relative income in determining the subjective economic well-being. It is shown that the relationship of the income to SEB is curvilinear with the increase of marginal utility for a higher income. At low income levels its effect on SEB is determined not by its absolute, but by its relative value based on the comparisons with the subjective standards of well-being.

  12. Local absolute alcohol ablation for the treatment of recurrent pheochromocytoma

    International Nuclear Information System (INIS)

    Shang Mingyi; Wang Peijun; Lu Ying; Ma Jun; Tang Junjun; Xi Qian; Huang Zongliang; Gao Xiaolong

    2010-01-01

    Objective: to assess the clinical value of local injection of absolute alcohol under CT guidance in treating recurrent pheochromocytoma. Methods: Five patients with benign recurrent pheochromocytoma were enrolled in this study. Of the five cases, the lesions were located on the right side in three, on the left in one and on both sides in one. All the lesions were pathologically proved to be benign ones. Under CT guidance the ablation therapy with local injection of absolute alcohol was performed. The therapeutic results were observed and evaluated. Results: Thirty days after the treatment, different degrees of decrease in tumor size was observed on follow-up CT scans. All the patients were followed up for 9-42 months. During the follow-up period, both the blood pressure and the vanillyl mandelic acid (VMA) level in urine remained normal and no paroxysmal dizziness, headache or syncope occurred in all patients. Conclusion: For the treatment of recurrent pheochromocytoma the ablation therapy by using local injection of absolute alcohol under CT guidance is a safe and practical therapeutic means with definite and reliable effectiveness. (authors)

  13. Detecting Proxima b’s Atmosphere with JWST Targeting CO{sub 2} at 15 μ m Using a High-pass Spectral Filtering Technique

    Energy Technology Data Exchange (ETDEWEB)

    Snellen, I. A. G.; Van Dishoeck, E. F.; Brandl, B. R.; Van Eylen, V. [Leiden Observatory, Leiden University, Postbus 9513, 2300 RA Leiden (Netherlands); Désert, J.-M.; Waters, L. B. F. M.; Dominik, C.; Birkby, J. L. [Anton Pannekoek Institute for Astronomy, University of Amsterdam, P.O. Box 94249, 1090 GE Amsterdam (Netherlands); Robinson, T. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Meadows, V. [Astronomy Department, University of Washington (United States); Henning, T.; Bouwman, J. [Max-Planck-Institute for Astronomy, Koenigstuhl 17, D-69117 Heidelberg (Germany); Lahuis, F.; Min, M. [SRON Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht (Netherlands); Lovis, C. [Observatoire de Genève, Université de Genève, 51 chemin des Maillettes, 1290 Versoix (Switzerland); Sing, D. [School of Physics, University of Exeter, Exeter (United Kingdom); Anglada-Escudé, G. [School of Physics and Astronomy, Queen Mary University of London, 327 Mile End Road, London E1 4NS (United Kingdom); Brogi, M., E-mail: snellen@strw.leidenuniv.nl [Center for Astrophysics and Space Astronomy, University of Colorado at Boulder, Boulder, CO 80309 (United States)

    2017-08-01

    Exoplanet Proxima b will be an important laboratory for the search for extraterrestrial life for the decades ahead. Here, we discuss the prospects of detecting carbon dioxide at 15 μ m using a spectral filtering technique with the Medium Resolution Spectrograph (MRS) mode of the Mid-Infrared Instrument (MIRI) on the James Webb Space Telescope ( JWST ). At superior conjunction, the planet is expected to show a contrast of up to 100 ppm with respect to the star. At a spectral resolving power of R  = 1790–2640, about 100 spectral CO{sub 2} features are visible within the 13.2–15.8 μ m (3B) band, which can be combined to boost the planet atmospheric signal by a factor of 3–4, depending on the atmospheric temperature structure and CO{sub 2} abundance. If atmospheric conditions are favorable (assuming an Earth-like atmosphere), with this new application to the cross-correlation technique, carbon dioxide can be detected within a few days of JWST observations. However, this can only be achieved if both the instrumental spectral response and the stellar spectrum can be determined to a relative precision of ≤1 × 10{sup −4} between adjacent spectral channels. Absolute flux calibration is not required, and the method is insensitive to the strong broadband variability of the host star. Precise calibration of the spectral features of the host star may only be attainable by obtaining deep observations of the system during inferior conjunction that serve as a reference. The high-pass filter spectroscopic technique with the MIRI MRS can be tested on warm Jupiters, Neptunes, and super-Earths with significantly higher planet/star contrast ratios than the Proxima system.

  14. Spectral/hp element methods: Recent developments, applications, and perspectives

    DEFF Research Database (Denmark)

    Xu, Hui; Cantwell, Chris; Monteserin, Carlos

    2018-01-01

    regularity assumptions an exponential reduction in approximation error between numerical and exact solutions can be achieved. This method has now been applied in many simulation studies of both fundamental and practical engineering flows. This paper briefly describes the formulation of the spectral...... is based upon orthogonal polynomials, such as Legendre or Chebychev polynomials, modified to accommodate a C 0 - continuous expansion. Computationally and theoretically, by increasing the polynomial order p, high-precision solutions and fast convergence can be obtained and, in particular, under certain...

  15. Proton and electron impact on molecular and atomic oxygen: I. High resolution fluorescence spectra in the visible and VUV spectral range and emission cross-sections for dissociative ionisation and excitation of O2

    International Nuclear Information System (INIS)

    Wilhelmi, O.; Schartner, K.H.

    2000-01-01

    For pt.II see ibid., vol.11, p.45-58, 2000. Molecular oxygen O 2 was dissociated in collisions with protons and electrons in the intermediate velocity range (p + -energies: 17-800 keV, e - -energies: 0.2-2 keV). Fluorescence from excited atomic and singly ionised fragments and from singly ionised molecules was detected in the VUV and in the visible and near UV spectral range. Highly resolved spectra are presented for the VUV (46-131 nm) and the near UV/visible (340-605 nm) spectral range. Absolute emission cross-sections have been determined for dissociative ionisation and excitation leading to fluorescence in the VUV. Results are compared with published data. (orig.)

  16. Submillimeter Spectroscopic Study of Semiconductor Processing Plasmas

    Science.gov (United States)

    Helal, Yaser H.

    Plasmas used for manufacturing processes of semiconductor devices are complex and challenging to characterize. The development and improvement of plasma processes and models rely on feedback from experimental measurements. Current diagnostic methods are not capable of measuring absolute densities of plasma species with high resolution without altering the plasma, or without input from other measurements. At pressures below 100 mTorr, spectroscopic measurements of rotational transitions in the submillimeter/terahertz (SMM) spectral region are narrow enough in relation to the sparsity of spectral lines that absolute specificity of measurement is possible. The frequency resolution of SMM sources is such that spectral absorption features can be fully resolved. Processing plasmas are a similar pressure and temperature to the environment used to study astrophysical species in the SMM spectral region. Many of the molecular neutrals, radicals, and ions present in processing plasmas have been studied in the laboratory and their absorption spectra have been cataloged or are in the literature for the purpose of astrophysical study. Recent developments in SMM devices have made its technology commercially available for applications outside of specialized laboratories. The methods developed over several decades in the SMM spectral region for these laboratory studies are directly applicable for diagnostic measurements in the semiconductor manufacturing industry. In this work, a continuous wave, intensity calibrated SMM absorption spectrometer was developed as a remote sensor of gas and plasma species. A major advantage of intensity calibrated rotational absorption spectroscopy is its ability to determine absolute concentrations and temperatures of plasma species from first principles without altering the plasma environment. An important part of this work was the design of the optical components which couple 500 - 750 GHz radiation through a commercial inductively coupled plasma

  17. Fluctuation theorems in feedback-controlled open quantum systems: Quantum coherence and absolute irreversibility

    Science.gov (United States)

    Murashita, Yûto; Gong, Zongping; Ashida, Yuto; Ueda, Masahito

    2017-10-01

    The thermodynamics of quantum coherence has attracted growing attention recently, where the thermodynamic advantage of quantum superposition is characterized in terms of quantum thermodynamics. We investigate the thermodynamic effects of quantum coherent driving in the context of the fluctuation theorem. We adopt a quantum-trajectory approach to investigate open quantum systems under feedback control. In these systems, the measurement backaction in the forward process plays a key role, and therefore the corresponding time-reversed quantum measurement and postselection must be considered in the backward process, in sharp contrast to the classical case. The state reduction associated with quantum measurement, in general, creates a zero-probability region in the space of quantum trajectories of the forward process, which causes singularly strong irreversibility with divergent entropy production (i.e., absolute irreversibility) and hence makes the ordinary fluctuation theorem break down. In the classical case, the error-free measurement ordinarily leads to absolute irreversibility, because the measurement restricts classical paths to the region compatible with the measurement outcome. In contrast, in open quantum systems, absolute irreversibility is suppressed even in the presence of the projective measurement due to those quantum rare events that go through the classically forbidden region with the aid of quantum coherent driving. This suppression of absolute irreversibility exemplifies the thermodynamic advantage of quantum coherent driving. Absolute irreversibility is shown to emerge in the absence of coherent driving after the measurement, especially in systems under time-delayed feedback control. We show that absolute irreversibility is mitigated by increasing the duration of quantum coherent driving or decreasing the delay time of feedback control.

  18. Comparison of Single-Point and Continuous Sampling Methods for Estimating Residential Indoor Temperature and Humidity.

    Science.gov (United States)

    Johnston, James D; Magnusson, Brianna M; Eggett, Dennis; Collingwood, Scott C; Bernhardt, Scott A

    2015-01-01

    Residential temperature and humidity are associated with multiple health effects. Studies commonly use single-point measures to estimate indoor temperature and humidity exposures, but there is little evidence to support this sampling strategy. This study evaluated the relationship between single-point and continuous monitoring of air temperature, apparent temperature, relative humidity, and absolute humidity over four exposure intervals (5-min, 30-min, 24-hr, and 12-days) in 9 northern Utah homes, from March-June 2012. Three homes were sampled twice, for a total of 12 observation periods. Continuous data-logged sampling was conducted in homes for 2-3 wks, and simultaneous single-point measures (n = 114) were collected using handheld thermo-hygrometers. Time-centered single-point measures were moderately correlated with short-term (30-min) data logger mean air temperature (r = 0.76, β = 0.74), apparent temperature (r = 0.79, β = 0.79), relative humidity (r = 0.70, β = 0.63), and absolute humidity (r = 0.80, β = 0.80). Data logger 12-day means were also moderately correlated with single-point air temperature (r = 0.64, β = 0.43) and apparent temperature (r = 0.64, β = 0.44), but were weakly correlated with single-point relative humidity (r = 0.53, β = 0.35) and absolute humidity (r = 0.52, β = 0.39). Of the single-point RH measures, 59 (51.8%) deviated more than ±5%, 21 (18.4%) deviated more than ±10%, and 6 (5.3%) deviated more than ±15% from data logger 12-day means. Where continuous indoor monitoring is not feasible, single-point sampling strategies should include multiple measures collected at prescribed time points based on local conditions.

  19. On the rate of convergence in von Neumann's ergodic theorem with continuous time

    International Nuclear Information System (INIS)

    Kachurovskii, A G; Reshetenko, Anna V

    2010-01-01

    The rate of convergence in von Neumann's mean ergodic theorem is studied for continuous time. The condition that the rate of convergence of the ergodic averages be of power-law type is shown to be equivalent to requiring that the spectral measure of the corresponding dynamical system have a power-type singularity at 0. This forces the estimates for the convergence rate in the above ergodic theorem to be necessarily spectral. All the results obtained have obvious exact analogues for wide-sense stationary processes. Bibliography: 7 titles.

  20. Absolute measurement of the viscosity of classical and quantum fluids by rotating-cylinder viscometers

    International Nuclear Information System (INIS)

    Donnelly, R.J.; LaMar, M.M.

    1987-01-01

    We discuss the use of rotating-cylinder viscometers to determine absolute shear viscosities of classical fluids and of helium II in the context of past and current knowledge of the stability and flow of these fluids between concentric cylinders. We identify a problem in measuring the absolute viscosity when the inner cylinder is rotating and the outer cylinder is at rest. We conclude by discussing the design of viscometers for absolute viscosity measurements in helium I and helium II

  1. Spectral radius of graphs

    CERN Document Server

    Stevanovic, Dragan

    2015-01-01

    Spectral Radius of Graphs provides a thorough overview of important results on the spectral radius of adjacency matrix of graphs that have appeared in the literature in the preceding ten years, most of them with proofs, and including some previously unpublished results of the author. The primer begins with a brief classical review, in order to provide the reader with a foundation for the subsequent chapters. Topics covered include spectral decomposition, the Perron-Frobenius theorem, the Rayleigh quotient, the Weyl inequalities, and the Interlacing theorem. From this introduction, the

  2. A quasi-continuous observation of the {alpha}-transition of Fe{sub 1+x}S by Moessbauer line tracking

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza Zelis, P., E-mail: pmendoza@fisica.unlp.edu.ar; Pasquevich, G. A.; Veiga, A.; Fernandez van Raap, M. B.; Sanchez, F. H. [Universidad Nacional de La Plata, CONICET, Depto. de Fisica, Fac. Ciencias Exactas, Instituto de Fisica La Plata (Argentina)

    2010-01-15

    Moessbauer absorption line tracking methodology, under a constant velocity strategy, is used for a quasi-continuous observation of the {alpha}-transition on slightly non stoichiometric Fe{sub 1+x}S alloy. To this end, two strategies were applied: an intelligent absorption line tracking with a control algorithm that uses the data measured in the previous region to establish the position of the next partial spectral range; and a predetermined line tracking in which temperature evolution of a partial spectral region of interest (ROI) is programmed. The latter uses results from the former, in order to achieve a quasi-continuous partial spectral observation. These experiments clearly demonstrate that line tracking allows a more efficient use of the radioactive source, as the effort is concentrated in a partial region of the spectra from which the desired information can be obtained.

  3. Absolute tightness: the chemists hesitate to invest

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    The safety requirements of industries as nuclear plants and the strengthening of regulations in the field of environment (more particularly those related to volatile organic compounds) have lead the manufacturers to build absolute tightness pumps. But these equipments do not answer all the problems and represent a high investment cost. In consequence, the chemists hesitate to invest. (O.L.)

  4. Antiausterity activity of arctigenin enantiomers: importance of (2R,3R)-absolute configuration.

    Science.gov (United States)

    Awale, Suresh; Kato, Mamoru; Dibwe, Dya Fita; Li, Feng; Miyoshi, Chika; Esumi, Hiroyasu; Kadota, Shigetoshi; Tezuka, Yasuhiro

    2014-01-01

    From a MeOH extract of powdered roots of Wikstroemia indica, six dibenzyl-gamma-butyrolactone-type lignans with (2S,3S)-absolute configuration [(+)-arctigenin (1), (+)-matairesinol (2), (+)-trachelogenin (3), (+)-nortrachelogenin (4), (+)-hinokinin (5), and (+)-kusunokinin (6)] were isolated, whereas three dibenzyl-gamma-butyrolactone-type lignans with (2R,3R)-absolute configuration [(-)-arctigenin (1*), (-)-matairesinol (2*), (-)-trachelogenin (3*)] were isolated from Trachelospermum asiaticum. The in vitro preferential cytotoxic activity of the nine compounds was evaluated against human pancreatic PANC-1 cancer cells in nutrient-deprived medium (NDM), but none of the six lignans (1-6) with (2S,3S)-absolute configuration showed preferential cytotoxicity. On the other hand, three lignans (1*-3*) with (2R,3R)-absolute configuration exhibited preferential cytotoxicity in a concentration-dependent manner with PC50 values of 0.54, 6.82, and 5.85 microM, respectively. Furthermore, the effect of (-)- and (+)-arctigenin was evaluated against the activation of Akt, which is a key process in the tolerance to nutrition starvation. Interestingly, only (-)-arctigenin (1*) strongly suppressed the activation of Akt. These results indicate that the (2R,3R)-absolute configuration of (-)-enantiomers should be required for the preferential cytotoxicity through the inhibition of Akt activation.

  5. Spectrally narrow, long-term stable optical frequency reference based on a Eu3+:Y2SiO5 crystal at cryogenic temperature.

    Science.gov (United States)

    Chen, Qun-Feng; Troshyn, Andrei; Ernsting, Ingo; Kayser, Steffen; Vasilyev, Sergey; Nevsky, Alexander; Schiller, Stephan

    2011-11-25

    Using an ultrastable continuous-wave laser at 580 nm we performed spectral hole burning of Eu(3+):Y(2)SiO(5) at a very high spectral resolution. The essential parameters determining the usefulness as a macroscopic frequency reference, linewidth, temperature sensitivity, and long-term stability, were characterized using a H-maser stabilized frequency comb. Spectral holes with a linewidth as low as 6 kHz were observed and the upper limit of the drift of the hole frequency was determined to be 5±3 mHz/s. We discuss the necessary requirements for achieving ultrahigh stability in laser frequency stabilization to these spectral holes.

  6. Relative and absolute poverty : the case of México, 1992-2004

    OpenAIRE

    Ruiz-Castillo, Javier

    2005-01-01

    This paper advocates that although an absolute notion of poverty should remain an essential ingredient in the evaluation of the standard of living in developing and transition economies, it is time that relative poverty begins to be systematically estimated for those same economies. This prescription is applied to México for the 1992-2004 period, where the Fox Administration has fixed for the first time an absolute poverty line for 2000. To facilitate comparisons with developed countries, the...

  7. Memory for musical tempo: Additional evidence that auditory memory is absolute

    OpenAIRE

    Levitin, Daniel J.; Cook, Perry R.

    1996-01-01

    We report evidence that long term memory retains absolute (accurate) features of perceptual events. Specifically, we show that memory for music seems to preserve the absolute tempo of the musical performance. In Experiment 1, 46 subjects sang popular songs from memory, and their tempos were compared to recorded versions of the songs. Seventy-two of the subjects came within 8% of the actual tempo on two consecutive trials (using different songs), demonstrating accuracy near the perceptual thre...

  8. FURTHER DEFINING SPECTRAL TYPE 'Y' AND EXPLORING THE LOW-MASS END OF THE FIELD BROWN DWARF MASS FUNCTION

    International Nuclear Information System (INIS)

    Davy Kirkpatrick, J.; Gelino, Christopher R.; Griffith, Roger L.; Marsh, Kenneth A.; Cushing, Michael C.; Mace, Gregory N.; Wright, Edward L.; McLean, Ian S.; Skrutskie, Michael F.; Eisenhardt, Peter R.; Mainzer, Amanda K.; Burgasser, Adam J.; Tinney, C. G.; Parker, Stephen; Salter, Graeme

    2012-01-01

    We present the discovery of another seven Y dwarfs from the Wide-field Infrared Survey Explorer (WISE). Using these objects, as well as the first six WISE Y dwarf discoveries from Cushing et al., we further explore the transition between spectral types T and Y. We find that the T/Y boundary roughly coincides with the spot where the J – H colors of brown dwarfs, as predicted by models, turn back to the red. Moreover, we use preliminary trigonometric parallax measurements to show that the T/Y boundary may also correspond to the point at which the absolute H (1.6 μm) and W2 (4.6 μm) magnitudes plummet. We use these discoveries and their preliminary distances to place them in the larger context of the solar neighborhood. We present a table that updates the entire stellar and substellar constituency within 8 pc of the Sun, and we show that the current census has hydrogen-burning stars outnumbering brown dwarfs by roughly a factor of six. This factor will decrease with time as more brown dwarfs are identified within this volume, but unless there is a vast reservoir of cold brown dwarfs invisible to WISE, the final space density of brown dwarfs is still expected to fall well below that of stars. We also use these new Y dwarf discoveries, along with newly discovered T dwarfs from WISE, to investigate the field substellar mass function. We find that the overall space density of late-T and early-Y dwarfs matches that from simulations describing the mass function as a power law with slope –0.5 < α < 0.0; however, a power law may provide a poor fit to the observed object counts as a function of spectral type because there are tantalizing hints that the number of brown dwarfs continues to rise from late-T to early-Y. More detailed monitoring and characterization of these Y dwarfs, along with dedicated searches aimed at identifying more examples, are certainly required.

  9. Cross-validation of theoretically quantified fiber continuum generation and absolute pulse measurement by MIIPS for a broadband coherently controlled optical source

    DEFF Research Database (Denmark)

    Tu, H.; Liu, Y.; Lægsgaard, Jesper

    2012-01-01

    source with the MIIPS-integrated pulse shaper produces compressed transform-limited 9.6 fs (FWHM) pulses or arbitrarily shaped pulses at a central wavelength of 1020 nm, an average power over 100 mW, and a repetition rate of 76 MHz. In comparison to the 229-fs pump laser pulses that generate the fiber......The predicted spectral phase of a fiber continuum pulsed source rigorously quantified by the scalar generalized nonlinear Schrödinger equation is found to be in excellent agreement with that measured by multiphoton intrapulse interference phase scan (MIIPS) with background subtraction. This cross......-validation confirms the absolute pulse measurement by MIIPS and the transform-limited compression of the fiber continuum pulses by the pulse shaper performing the MIIPS measurement, and permits the subsequent coherent control on the fiber continuum pulses by this pulse shaper. The combination of the fiber continuum...

  10. Absolute Hydration Free Energy of Proton from First Principles Electronic Structure Calculations

    International Nuclear Information System (INIS)

    Zhan, Chang-Guo; Dixon, David A.

    2001-01-01

    The absolute hydration free energy of the proton, DGhyd298(H+), is one of the fundamental quantities for the thermodynamics of aqueous systems. Its exact value remains unknown despite extensive experimental and computational efforts. We report a first-principles determination of DGhyd298(H+) by using the latest developments in electronic structure theory and massively parallel computers. DGhyd298(H+) is accurately predicted to be -262.4 kcal/mol based on high-level, first-principles solvation-included electronic structure calculations. The absolute hydration free energies of other cations can be obtained by using appropriate available thermodynamic data in combination with this value. The high accuracy of the predicted absolute hydration free energy of proton is confirmed by applying the same protocol to predict DGhyd298(Li+)

  11. Determination of the absolute internal quantum efficiency of photoluminescence in GaN co-doped with Si and Zn

    Science.gov (United States)

    Reshchikov, M. A.; Foussekis, M.; McNamara, J. D.; Behrends, A.; Bakin, A.; Waag, A.

    2012-04-01

    The optical properties of high-quality GaN co-doped with silicon and zinc are investigated by using temperature-dependent continuous-wave and time-resolved photoluminescence measurements. The blue luminescence band is related to the ZnGa acceptor in GaN:Si,Zn, which exhibits an exceptionally high absolute internal quantum efficiency (IQE). An IQE above 90% was calculated for several samples having different concentrations of Zn. Accurate and reliable values of the IQE were obtained by using several approaches based on rate equations. The concentrations of the ZnGa acceptors and free electrons were also estimated from the photoluminescence measurements.

  12. Absolute analytical prediction of photonic crystal guided mode resonance wavelengths

    DEFF Research Database (Denmark)

    Hermannsson, Pétur Gordon; Vannahme, Christoph; Smith, Cameron

    2014-01-01

    numerically with methods such as rigorous coupled wave analysis. Here it is demonstrated how the absolute resonance wavelengths of such structures can be predicted by analytically modeling them as slab waveguides in which the propagation constant is determined by a phase matching condition. The model...... is experimentally verified to be capable of predicting the absolute resonance wavelengths to an accuracy of within 0.75 nm, as well as resonance wavelength shifts due to changes in cladding index within an accuracy of 0.45 nm across the visible wavelength regime in the case where material dispersion is taken...

  13. The bolometric, infrared and visual absolute magnitudes of Mira variables

    International Nuclear Information System (INIS)

    Robertson, B.S.C.; Feast, M.W.

    1981-01-01

    Statistical parallaxes, as well as stars with individually known distances are used to derive bolometric and infrared absolute magnitudes of Mira (Me) variables. The derived bolometric magnitudes are in the mean about 0.75 mag fainter than recent estimates. The problem of determining the pulsation constant is discussed. Miras with periods greater than 150 days probably pulsate in the first overtone. Those of shorter periods are anomalous and may be fundamental pulsators. It is shown that the absolute visual magnitudes at mean light of Miras with individually determined distances are consistent with values derived by Clayton and Feast from statistical parallaxes. (author)

  14. Rational functions with maximal radius of absolute monotonicity

    KAUST Repository

    Loczi, Lajos; Ketcheson, David I.

    2014-01-01

    -Kutta methods for initial value problems and the radius of absolute monotonicity governs the numerical preservation of properties like positivity and maximum-norm contractivity. We construct a function with p=2 and R>2s, disproving a conjecture of van de Griend

  15. Absolute configuration and antiprotozoal activity of minquartynoic acid

    DEFF Research Database (Denmark)

    Rasmussen, H B; Christensen, Søren Brøgger; Kvist, L P

    2000-01-01

    Minquartynoic acid (1) was isolated as an antimalarial and antileishmanial constituent of the Peruvian tree Minquartia guianensis and its absolute configuration at C-17 established to be (+)-S through conversion to the known (+)-(S)-17-hydroxystearic acid (2) and confirmed using Mosher's method....

  16. On quantum harmonic oscillator being subjected to absolute ...

    Indian Academy of Sciences (India)

    On quantum harmonic oscillator being subjected to absolute potential state. SWAMI NITYAYOGANANDA. Ramakrishna Mission Ashrama, R.K. Beach, Visakhapatnam 530 003, India. E-mail: nityayogananda@gmail.com. MS received 1 May 2015; accepted 6 May 2016; published online 3 December 2016. Abstract.

  17. Partial sums of arithmetical functions with absolutely convergent ...

    Indian Academy of Sciences (India)

    For an arithmetical function f with absolutely convergent Ramanujan expansion, we derive an asymptotic formula for the ∑ n ≤ N f(n)$ with explicit error term. As a corollary we obtain new results about sum-of-divisors functions and Jordan's totient functions.

  18. Improving the Curie depth estimation through optimizing the spectral block dimensions of the aeromagnetic data in the Sabalan geothermal field

    Science.gov (United States)

    Akbar, Somaieh; Fathianpour, Nader

    2016-12-01

    The Curie point depth is of great importance in characterizing geothermal resources. In this study, the Curie iso-depth map was provided using the well-known method of dividing the aeromagnetic dataset into overlapping blocks and analyzing the power spectral density of each block separately. Determining the optimum block dimension is vital in improving the resolution and accuracy of estimating Curie point depth. To investigate the relation between the optimal block size and power spectral density, a forward magnetic modeling was implemented on an artificial prismatic body with specified characteristics. The top, centroid, and bottom depths of the body were estimated by the spectral analysis method for different block dimensions. The result showed that the optimal block size could be considered as the smallest possible block size whose corresponding power spectrum represents an absolute maximum in small wavenumbers. The Curie depth map of the Sabalan geothermal field and its surrounding areas, in the northwestern Iran, was produced using a grid of 37 blocks with different dimensions from 10 × 10 to 50 × 50 km2, which showed at least 50% overlapping with adjacent blocks. The Curie point depth was estimated in the range of 5 to 21 km. The promising areas with the Curie point depths less than 8.5 km are located around Mountain Sabalan encompassing more than 90% of known geothermal resources in the study area. Moreover, the Curie point depth estimated by the improved spectral analysis is in good agreement with the depth calculated from the thermal gradient data measured in one of the exploratory wells in the region.

  19. Study progresses on continuous curvilinear capsulorhexis

    Directory of Open Access Journals (Sweden)

    Bo Gao

    2015-10-01

    Full Text Available As the progress of modern techniques for cataract extraction surgery and various needs of intraocular lens(IOLimplantation, continuous curvilinear capsulorhexis(CCCis still in absolute dominance among different ways of incision of anterior capsular lens in clinical practices, due to its advantages such as smoothness of capsulor opening, strong anti-tearing ability, integrity of supporting capsular bag, and strength at maintaining IOL stability. This article describes in general the historical development of CCC and complementary methods adapted to raise success rate when it is used in special cases of cataract extraction surgery. Meanwhile, the article also discusses briefly and envisions the prospects of femotsecond laser applied in CCC technique for cataract extraction.

  20. Spectral L2/L1 norm: A new perspective for spectral kurtosis for characterizing non-stationary signals

    Science.gov (United States)

    Wang, Dong

    2018-05-01

    Thanks to the great efforts made by Antoni (2006), spectral kurtosis has been recognized as a milestone for characterizing non-stationary signals, especially bearing fault signals. The main idea of spectral kurtosis is to use the fourth standardized moment, namely kurtosis, as a function of spectral frequency so as to indicate how repetitive transients caused by a bearing defect vary with frequency. Moreover, spectral kurtosis is defined based on an analytic bearing fault signal constructed from either a complex filter or Hilbert transform. On the other hand, another attractive work was reported by Borghesani et al. (2014) to mathematically reveal the relationship between the kurtosis of an analytical bearing fault signal and the square of the squared envelope spectrum of the analytical bearing fault signal for explaining spectral correlation for quantification of bearing fault signals. More interestingly, it was discovered that the sum of peaks at cyclic frequencies in the square of the squared envelope spectrum corresponds to the raw 4th order moment. Inspired by the aforementioned works, in this paper, we mathematically show that: (1) spectral kurtosis can be decomposed into squared envelope and squared L2/L1 norm so that spectral kurtosis can be explained as spectral squared L2/L1 norm; (2) spectral L2/L1 norm is formally defined for characterizing bearing fault signals and its two geometrical explanations are made; (3) spectral L2/L1 norm is proportional to the square root of the sum of peaks at cyclic frequencies in the square of the squared envelope spectrum; (4) some extensions of spectral L2/L1 norm for characterizing bearing fault signals are pointed out.

  1. Spectral properties in supersymmetric matrix models

    International Nuclear Information System (INIS)

    Boulton, Lyonell; Garcia del Moral, Maria Pilar; Restuccia, Alvaro

    2012-01-01

    We formulate a general sufficiency criterion for discreteness of the spectrum of both supersymmmetric and non-supersymmetric theories with a fermionic contribution. This criterion allows an analysis of Hamiltonians in complete form rather than just their semiclassical limits. In such a framework we examine spectral properties of various (1+0) matrix models. We consider the BMN model of M-theory compactified on a maximally supersymmetric pp-wave background, different regularizations of the supermembrane with central charges and a non-supersymmetric model comprising a bound state of N D2 with m D0. While the first two examples have a purely discrete spectrum, the latter has a continuous spectrum with a lower end given in terms of the monopole charge.

  2. Absolute dating of the Aegean Late Bronze Age

    International Nuclear Information System (INIS)

    Warren, P.M.

    1987-01-01

    A recent argument for raising the absolute date of the beginning of the Aegean Late Bronze (LB) Age to about 1700 B.C. is critically examined. It is argued here that: (1) the alabaster lid from Knossos did have the stratigraphical context assigned to it by Evans, in all probability Middle Minoan IIIA, c. 1650 B.C.; (2) the attempt to date the alabastron found in an early Eighteenth Dynasty context at Aniba to Late Minoan IIIA:1 is open to objections; (3) radiocarbon dates from Aegean LB I contexts are too wide in their calibrated ranges and too inconsistent both within and between site sets to offer any reliable grounds at present for raising Aegean LB I absolute chronology to 1700 B.C. Other evidence, however, suggests this period began about 1600 B.C., i.e. some fifty years earlier than the conventional date of 1550 B.C. (author)

  3. Early diagnosis of myocardial infarction using absolute and relative changes in cardiac troponin concentrations.

    Science.gov (United States)

    Irfan, Affan; Reichlin, Tobias; Twerenbold, Raphael; Meister, Marc; Moehring, Berit; Wildi, Karin; Bassetti, Stefano; Zellweger, Christa; Gimenez, Maria Rubini; Hoeller, Rebeca; Murray, Karsten; Sou, Seoung Mann; Mueller, Mira; Mosimann, Tamina; Reiter, Miriam; Haaf, Philip; Ziller, Ronny; Freidank, Heike; Osswald, Stefan; Mueller, Christian

    2013-09-01

    Absolute changes in high-sensitivity cardiac troponin T (hs-cTnT) seem to have higher diagnostic accuracy in the early diagnosis of acute myocardial infarction compared with relative changes. It is unknown whether the same applies to high-sensitivity cardiac troponin I (hs-cTnI) assays and whether the combination of absolute and relative change might further increase accuracy. In a prospective, international multicenter study, high-sensitivity cardiac troponin (hs-cTn) was measured with 3 novel assays (hs-cTnT, Roche Diagnostics Corp, Indianapolis, Ind; hs-cTnI, Beckman Coulter Inc, Brea, Calif; hs-cTnI, Siemens, Munich, Germany) in a blinded fashion at presentation and after 1 and 2 hours in a blinded fashion in 830 unselected patients with suspected acute myocardial infarction. The final diagnosis was adjudicated by 2 independent cardiologists. The area under the receiver operating characteristic curve for diagnosing acute myocardial infarction was significantly higher for 1- and 2-hour absolute versus relative hs-cTn changes for all 3 assays (P Siemens, 0.96 [95% CI, 0.93-0.99]) were high and provided some benefit compared with the use of absolute change alone for hs-cTnT, but not for the hs-cTnI assays. Reclassification analysis confirmed the superiority of absolute changes versus relative changes. Absolute changes seem to be the preferred metrics for both hs-cTnT and hs-cTnI in the early diagnosis of acute myocardial infarction. The combination of absolute and relative changes provides a small added value for hs-cTnT, but not for hs-cTnI. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. THE ASH’ARITE DOGMA: THE ROOT OF THE ARAB/MUSLIM ABSOLUTISM

    Directory of Open Access Journals (Sweden)

    Ali Mabrook

    2008-02-01

    Full Text Available There are three major categories upon which all of the world’s civilizations are established, namely, God, Man and World. The differentiation of worldly civilizations and the diversity of systems of knowledge are due to the way of drawing up the relation thereby the three categories are arranged. Some scholars assumed that these categories are communicated and totally correlated each other, in a way that each cannot be realized except in its connectivity to the others. While some others thought that the three categories should be separated and disconnected, in a way that each of the three is realized as an absolute and dominant one while the two others are marginal and dependent ones. Needless to say, while the first perception provokes the values of tolerance and the acceptance of the other, the second one motivates absolutism and the negation of the other. Unfortunately the Ash’arism, not only a dogma but —and more importantly— a stable and dominant way of thinking, is stimulated by the second perception based on an absolutism and the negation of the other. It departs from that historical fact that this paper argues that absolutism, manifested in political, religious and cultural aspects of nowadays Muslims life, can be related to the dominance ofAsh’arism all over the Muslim world.

  5. Benzofuranoid and bicyclooctanoid neolignans:absolute configuration

    International Nuclear Information System (INIS)

    Alvarenga, M.A. de; Giesbrecht, A.M.; Gottlieb, O.R.; Yoshida, M.

    1977-01-01

    The naturally occuring benzofuranoid and bicyclo (3,2,1) octanoid neolignans have their relative configurations established by 1 H and 13 C NMR, inclusively with aid of the solvent shift technique. Interconversion of the benzofuranoid type compounds, as well as for a benzofuranoid to a bicyclooctanoid derivate, make ORD correlations, ultimately with (2S, 3S) - and (2R,3R)-2,3- dihydrobenzofurans, possible, and led to the absolute configurations of both series of neolignans [pt

  6. Spectral methods. Fundamentals in single domains

    International Nuclear Information System (INIS)

    Canuto, C.

    2006-01-01

    Since the publication of ''Spectral Methods in Fluid Dynamics'' 1988, spectral methods have become firmly established as a mainstream tool for scientific and engineering computation. The authors of that book have incorporated into this new edition the many improvements in the algorithms and the theory of spectral methods that have been made since then. This latest book retains the tight integration between the theoretical and practical aspects of spectral methods, and the chapters are enhanced with material on the Galerkin with numerical integration version of spectral methods. The discussion of direct and iterative solution methods is also greatly expanded. (orig.)

  7. Limitations of absolute activity determination of I-125 sources

    Energy Technology Data Exchange (ETDEWEB)

    Pelled, O; German, U; Kol, R; Levinson, S; Weinstein, M; Laichter, Y [Israel Atomic Energy Commission, Beersheba (Israel). Nuclear Research Center-Negev; Alphasy, Z [Ben-Gurion Univ. of the Negev, Beersheba (Israel)

    1996-12-01

    A method for absolute determination of the activity of a I-125 source, based on the counting rate values of the 27 keV photons and the coincidence photon peak is given in the literature. It is based on the principle that if a radionuclide emits two photons in coincidence , a measurement of its disintegration rate in the photopeak and in the sum- peak can determinate it`s absolute activity. When using this method , the system calibration is simplified and parameters such as source geometry or source position relative to the detector have no significant influence. However, when the coincidence rate is very low, the application of this method is limited because of the statistics of the coincidence peak (authors).

  8. Remote ultrasound palpation for robotic interventions using absolute elastography.

    Science.gov (United States)

    Schneider, Caitlin; Baghani, Ali; Rohling, Robert; Salcudean, Septimiu

    2012-01-01

    Although robotic surgery has addressed many of the challenges presented by minimally invasive surgery, haptic feedback and the lack of knowledge of tissue stiffness is an unsolved problem. This paper presents a system for finding the absolute elastic properties of tissue using a freehand ultrasound scanning technique, which utilizes the da Vinci Surgical robot and a custom 2D ultrasound transducer for intraoperative use. An external exciter creates shear waves in the tissue, and a local frequency estimation method computes the shear modulus. Results are reported for both phantom and in vivo models. This system can be extended to any 6 degree-of-freedom tracking method and any 2D transducer to provide real-time absolute elastic properties of tissue.

  9. Vowel Inherent Spectral Change

    CERN Document Server

    Assmann, Peter

    2013-01-01

    It has been traditional in phonetic research to characterize monophthongs using a set of static formant frequencies, i.e., formant frequencies taken from a single time-point in the vowel or averaged over the time-course of the vowel. However, over the last twenty years a growing body of research has demonstrated that, at least for a number of dialects of North American English, vowels which are traditionally described as monophthongs often have substantial spectral change. Vowel Inherent Spectral Change has been observed in speakers’ productions, and has also been found to have a substantial effect on listeners’ perception. In terms of acoustics, the traditional categorical distinction between monophthongs and diphthongs can be replaced by a gradient description of dynamic spectral patterns. This book includes chapters addressing various aspects of vowel inherent spectral change (VISC), including theoretical and experimental studies of the perceptually relevant aspects of VISC, the relationship between ar...

  10. Spectral Comparison and Stability of Red Regions on Jupiter

    Science.gov (United States)

    Simon, A. A.; Carlson, R. W.; Sanchez-Lavega, A.

    2013-01-01

    A study of absolute color on Jupiter from Hubble Space Telescope imaging data shows that the Great Red Spot (GRS) is not the reddest region of the planet. Rather, a transient red cyclone visible in 1995 and the North Equatorial Belt both show redder spectra than the GRS (i.e., more absorption at blue and green wavelengths). This cyclone is unique among vortices in that it is intensely colored yet low altitude, unlike the GRS. Temporal analysis shows that the darkest regions of the NEB are relative constant in color from 1995 to 2008, while the slope of the GRS core may vary slightly. Principal component analysis shows several spectral components are needed, in agreement with past work, and further highlights the differences between regions. These color differences may be indicative of the same chromophore(s) under different conditions, such as mixing with white clouds, longer UV irradiation at higher altitude, and thermal processing, or may indicate abundance variations in colored compounds. A single compound does not fit the spectrum of any region well and mixes of multiple compounds including NH4SH, photolyzed NH3, hydrocarbons, and possibly P4, are likely needed to fully match each spectrum.

  11. Self-adjoint extensions and spectral analysis in the generalized Kratzer problem

    International Nuclear Information System (INIS)

    Baldiotti, M C; Gitman, D M; Tyutin, I V; Voronov, B L

    2011-01-01

    We present a mathematically rigorous quantum-mechanical treatment of a one-dimensional non-relativistic motion of a particle in the potential field V(x)=g 1 x -1 +g 2 x -2 , x is an element of R + = [0, ∞). For g 2 >0 and g 1 K (x) and is usually used to describe molecular energy and structure, interactions between different molecules and interactions between non-bonded atoms. We construct all self-adjoint Schroedinger operators with the potential V(x) and represent rigorous solutions of the corresponding spectral problems. Solving the first part of the problem, we use a method of specifying self-adjoint extensions by (asymptotic) self-adjoint boundary conditions. Solving spectral problems, we follow Krein's method of guiding functionals. This work is a continuation of our previous works devoted to the Coulomb, Calogero and Aharonov-Bohm potentials.

  12. Impact of spectral nudging on regional climate simulation over CORDEX East Asia using WRF

    Science.gov (United States)

    Tang, Jianping; Wang, Shuyu; Niu, Xiaorui; Hui, Pinhong; Zong, Peishu; Wang, Xueyuan

    2017-04-01

    In this study, the impact of the spectral nudging method on regional climate simulation over the Coordinated Regional Climate Downscaling Experiment East Asia (CORDEX-EA) region is investigated using the Weather Research and Forecasting model (WRF). Driven by the ERA-Interim reanalysis, five continuous simulations covering 1989-2007 are conducted by the WRF model, in which four runs adopt the interior spectral nudging with different wavenumbers, nudging variables and nudging coefficients. Model validation shows that WRF has the ability to simulate spatial distributions and temporal variations of the surface climate (air temperature and precipitation) over CORDEX-EA domain. Comparably the spectral nudging technique is effective in improving the model's skill in the following aspects: (1), the simulated biases and root mean square errors of annual mean temperature and precipitation are obviously reduced. The SN3-UVT (spectral nudging with wavenumber 3 in both zonal and meridional directions applied to U, V and T) and SN6 (spectral nudging with wavenumber 6 in both zonal and meridional directions applied to U and V) experiments give the best simulations for temperature and precipitation respectively. The inter-annual and seasonal variances produced by the SN experiments are also closer to the ERA-Interim observation. (2), the application of spectral nudging in WRF is helpful for simulating the extreme temperature and precipitation, and the SN3-UVT simulation shows a clear advantage over the other simulations in depicting both the spatial distributions and inter-annual variances of temperature and precipitation extremes. With the spectral nudging, WRF is able to preserve the variability in the large scale climate information, and therefore adjust the temperature and precipitation variabilities toward the observation.

  13. Continuous parts of basises on hyperboloid of one sheet [x,x]=-1

    International Nuclear Information System (INIS)

    Vilenkin, N.Ya.; Klesova, L.M.

    1980-01-01

    New spectral functions on the real axis are introduced. Applying the integral geometry method the new functions are used to write in an explicit form the continuous parts of the basises on the hyperboloid of one sheet corresponding to various reduction of the subgroups

  14. VAR Portfolio Optimal: Perbandingan Antara Metode Markowitz Dan Mean Absolute Deviation

    OpenAIRE

    Sartono, R. Agus; Setiawan, Arie Andika

    2006-01-01

    Portfolio selection method which have been introduced by Harry Markowitz (1952) used variance or deviation standard as a measure of risk. Kanno and Yamazaki (1991) introduced another method and used mean absolute deviation as a measure of risk instead of variance. The Value-at Risk (VaR) is a relatively new method to capitalized risk that been used by financial institutions. The aim of this research is compare between mean variance and mean absolute deviation of two portfolios. Next, we attem...

  15. Global Absolute Poverty: Behind the Veil of Dollars

    NARCIS (Netherlands)

    Moatsos, M.

    2017-01-01

    The widely applied “dollar-a-day” methodology identifies global absolute poverty as declining precipitously since the early 80’s throughout the developing world. The methodological underpinnings of the “dollar-a-day” approach have been questioned in terms of adequately representing equivalent

  16. Behavior of Multiclass Pesticide Residue Concentrations during the Transformation from Rose Petals to Rose Absolute.

    Science.gov (United States)

    Tascone, Oriane; Fillâtre, Yoann; Roy, Céline; Meierhenrich, Uwe J

    2015-05-27

    This study investigates the concentrations of 54 multiclass pesticides during the transformation processes from rose petal to concrete and absolute using roses spiked with pesticides as a model. The concentrations of the pesticides were followed during the process of transforming the spiked rose flowers from an organic field into concrete and then into absolute. The rose flowers, the concrete, and the absolute, as well as their transformation intermediates, were analyzed for pesticide content using gas chromatography/tandem mass spectrometry. We observed that all the pesticides were extracted and concentrated in the absolute, with the exception of three molecules: fenthion, fenamiphos, and phorate. Typical pesticides were found to be concentrated by a factor of 100-300 from the rose flowers to the rose absolute. The observed effect of pesticide enrichment was also studied in roses and their extracts from four classically phytosanitary treated fields. Seventeen pesticides were detected in at least one of the extracts. Like the case for the spiked samples in our model, the pesticides present in the rose flowers from Turkey were concentrated in the absolute. Two pesticides, methidathion and chlorpyrifos, were quantified in the rose flowers at approximately 0.01 and 0.01-0.05 mg kg(-1), respectively, depending on the treated field. The concentrations determined for the corresponding rose absolutes were 4.7 mg kg(-1) for methidathion and 0.65-27.25 mg kg(-1) for chlorpyrifos.

  17. Assessing the role of spectral and intensity cues in spectral ripple detection and discrimination in cochlear-implant users.

    Science.gov (United States)

    Anderson, Elizabeth S; Oxenham, Andrew J; Nelson, Peggy B; Nelson, David A

    2012-12-01

    Measures of spectral ripple resolution have become widely used psychophysical tools for assessing spectral resolution in cochlear-implant (CI) listeners. The objective of this study was to compare spectral ripple discrimination and detection in the same group of CI listeners. Ripple detection thresholds were measured over a range of ripple frequencies and were compared to spectral ripple discrimination thresholds previously obtained from the same CI listeners. The data showed that performance on the two measures was correlated, but that individual subjects' thresholds (at a constant spectral modulation depth) for the two tasks were not equivalent. In addition, spectral ripple detection was often found to be possible at higher rates than expected based on the available spectral cues, making it likely that temporal-envelope cues played a role at higher ripple rates. Finally, spectral ripple detection thresholds were compared to previously obtained speech-perception measures. Results confirmed earlier reports of a robust relationship between detection of widely spaced ripples and measures of speech recognition. In contrast, intensity difference limens for broadband noise did not correlate with spectral ripple detection measures, suggesting a dissociation between the ability to detect small changes in intensity across frequency and across time.

  18. An Absolute Phase Space for the Physicality of Matter

    International Nuclear Information System (INIS)

    Valentine, John S.

    2010-01-01

    We define an abstract and absolute phase space (''APS'') for sub-quantum intrinsic wave states, in three axes, each mapping directly to a duality having fundamental ontological basis. Many aspects of quantum physics emerge from the interaction algebra and a model deduced from principles of 'unique solvability' and 'identifiable entity', and we reconstruct previously abstract fundamental principles and phenomena from these new foundations. The physical model defines bosons as virtual continuous waves pairs in the APS, and fermions as real self-quantizing snapshots of those waves when simple conditions are met. The abstraction and physical model define a template for the constitution of all fermions, a template for all the standard fundamental bosons and their local interactions, in a common framework and compactified phase space for all forms of real matter and virtual vacuum energy, and a distinct algebra for observables and unobservables. To illustrate our scheme's potential, we provide examples of slit experiment variations (where the model finds theoretical basis for interference only occurring between two final sources), QCD (where we may model most attributes known to QCD, and a new view on entanglement), and we suggest approaches for other varied applications. We believe this is a viable candidate for further exploration as a foundational proposition for physics.

  19. Commissioning of the Absolute Luminosity For ATLAS detector at the LHC

    CERN Document Server

    Jakobsen, Sune; Hansen, Peter; Hansen, Jørgen Beck

    The startup of the LHC (Large Hadron Collider) has initialized a new era in particle physics. The standard model of particle physics has for the last 40 years with tremendous success described all measurements with phenomenal precision. The experiments at the LHC are testing the standard model in a new energy regime. To normalize the measurements and understand the potential discoveries of the LHC experiments it is often crucial to know the interaction rate - the absolute luminosity. The ATLAS (A Toroidal LHC ApparatuS) detector will measure luminosity by numerous methods. But for most of the methods only the relative luminosity is measured with good precision. The absolute scale has to be provided from elsewhere. ATLAS is like the other LHC experiments mainly relying of absolute luminosity calibration from van der Meer scans (beam separation scans). To cross check and maybe even improve the precision; ATLAS has built a sub-detector to measure the flux of protons scattered under very small angles as this flux...

  20. The Absolute Deviation Rank Diagnostic Approach to Gear Tooth Composite Fault

    Directory of Open Access Journals (Sweden)

    Guangbin Wang

    2017-01-01

    Full Text Available Aiming at nonlinear and nonstationary characteristics of the different degree with single fault gear tooth broken, pitting, and composite fault gear tooth broken-pitting, a method for the diagnosis of absolute deviation of gear faults is presented. The method uses ADAMS, respectively, set-up dynamics model of single fault gear tooth broken, pitting, and composite fault gear tooth broken-pitting, to obtain the result of different degree of broken teeth, pitting the single fault and compound faults in the meshing frequency, and the amplitude frequency doubling through simulating analysis. Through the comparison with the normal state to obtain the sensitive characteristic of the fault, the absolute value deviation diagnostic approach is used to identify the fault and validate it through experiments. The results show that absolute deviation rank diagnostic approach can realize the recognition of gear single faults and compound faults with different degrees and provide quick reference to determine the degree of gear fault.

  1. Changes in Absolute Sea Level Along U.S. Coasts

    Data.gov (United States)

    U.S. Environmental Protection Agency — This map shows changes in absolute sea level from 1960 to 2016 based on satellite measurements. Data were adjusted by applying an inverted barometer (air pressure)...

  2. Measured and modelled absolute gravity changes in Greenland

    DEFF Research Database (Denmark)

    Nielsen, Jens Emil; Forsberg, René; Strykowski, Gabriel

    2014-01-01

    in Greenland. Theresult is compared with the initial measurements of absolute gravity (AG) change at selected GreenlandNetwork (GNET) sites.We find that observations are highly influenced by the direct attraction from the ice and ocean. Thisis especially evident in the measurements conducted at the GNET...

  3. Overspecification of colour, pattern, and size: Salience, absoluteness, and consistency

    Directory of Open Access Journals (Sweden)

    Sammie eTarenskeen

    2015-11-01

    Full Text Available The rates of overspecification of colour, pattern, and size are compared, to investigate how salience and absoluteness contribute to the production of overspecification. Colour and pattern are absolute attributes, whereas size is relative and less salient. Additionally, a tendency towards consistent responses is assessed. Using a within-participants design, we find similar rates of colour and pattern overspecification, which are both higher than the rate of size overspecification. Using a between-participants design, however, we find similar rates of pattern and size overspecification, which are both lower than the rate of colour overspecification. This indicates that although many speakers are more likely to include colour than pattern (probably because colour is more salient, they may also treat pattern like colour due to a tendency towards consistency. We find no increase in size overspecification when the salience of size is increased, suggesting that speakers are more likely to include absolute than relative attributes. However, we do find an increase in size overspecification when mentioning the attributes is triggered, which again shows that speakers tend refer in a consistent manner, and that there are circumstances in which even size overspecification is frequently produced.

  4. Intersection numbers of spectral curves

    CERN Document Server

    Eynard, B.

    2011-01-01

    We compute the symplectic invariants of an arbitrary spectral curve with only 1 branchpoint in terms of integrals of characteristic classes in the moduli space of curves. Our formula associates to any spectral curve, a characteristic class, which is determined by the laplace transform of the spectral curve. This is a hint to the key role of Laplace transform in mirror symmetry. When the spectral curve is y=\\sqrt{x}, the formula gives Kontsevich--Witten intersection numbers, when the spectral curve is chosen to be the Lambert function \\exp{x}=y\\exp{-y}, the formula gives the ELSV formula for Hurwitz numbers, and when one chooses the mirror of C^3 with framing f, i.e. \\exp{-x}=\\exp{-yf}(1-\\exp{-y}), the formula gives the Marino-Vafa formula, i.e. the generating function of Gromov-Witten invariants of C^3. In some sense this formula generalizes ELSV, Marino-Vafa formula, and Mumford formula.

  5. Rational functions with maximal radius of absolute monotonicity

    KAUST Repository

    Loczi, Lajos

    2014-05-19

    We study the radius of absolute monotonicity R of rational functions with numerator and denominator of degree s that approximate the exponential function to order p. Such functions arise in the application of implicit s-stage, order p Runge-Kutta methods for initial value problems and the radius of absolute monotonicity governs the numerical preservation of properties like positivity and maximum-norm contractivity. We construct a function with p=2 and R>2s, disproving a conjecture of van de Griend and Kraaijevanger. We determine the maximum attainable radius for functions in several one-parameter families of rational functions. Moreover, we prove earlier conjectured optimal radii in some families with 2 or 3 parameters via uniqueness arguments for systems of polynomial inequalities. Our results also prove the optimality of some strong stability preserving implicit and singly diagonally implicit Runge-Kutta methods. Whereas previous results in this area were primarily numerical, we give all constants as exact algebraic numbers.

  6. The Spectral Web of stationary plasma equilibria. II. Internal modes

    Science.gov (United States)

    Goedbloed, J. P.

    2018-03-01

    (MRI) thought to be operating in accretion disks about black holes. The sequence n =1 ,2 ,… of unstable MRIs is located on one continuous solution path, but also on infinitely many separate loops ("pancakes") of the conjugate path with just one MRI on each of them. For narrow accretion disks, those sequences are connected with the slow magneto-sonic continuum, which is far away though from the marginal stability transition. In this case, the Spectral Web method is the first to effectively incorporate the MRIs into the general MHD spectral theory of equilibria with background flows. Together, the three examples provide compelling evidence of the computational power of the Spectral Web Method.

  7. Beyond the spectral theorem: Spectrally decomposing arbitrary functions of nondiagonalizable operators

    Science.gov (United States)

    Riechers, Paul M.; Crutchfield, James P.

    2018-06-01

    method to construct it. We provide new formulae for constructing spectral projection operators and delineate the relations among projection operators, eigenvectors, and left and right generalized eigenvectors. By way of illustrating its application, we explore several, rather distinct examples. First, we analyze stochastic transition operators in discrete and continuous time. Second, we show that nondiagonalizability can be a robust feature of a stochastic process, induced even by simple counting. As a result, we directly derive distributions of the time-dependent Poisson process and point out that nondiagonalizability is intrinsic to it and the broad class of hidden semi-Markov processes. Third, we show that the Drazin inverse arises naturally in stochastic thermodynamics and that applying the meromorphic functional calculus provides closed-form solutions for the dynamics of key thermodynamic observables. Finally, we draw connections to the Ruelle-Frobenius-Perron and Koopman operators for chaotic dynamical systems and propose how to extract eigenvalues from a time-series.

  8. Two Accounts of Moral Diversity: The Cognitive Science of Pluralism and Absolutism

    OpenAIRE

    Bolender, Asst. Prof. John

    2004-01-01

    Advances in cognitive science are relevant to the debate between moral pluralism and absolutism. Parametric structure, which plausibly underlies syntax, gives some idea of how pluralism might be true. The cognitive mechanisms underlying mathematical intelligence give some idea of how far absolutism is right. Advances in cognitive science should help us better understand the extent to which we are divided and how far we are potentially harmonious in our values.

  9. Atmospheric parameters, spectral indexes and their relation to CPV spectral performance

    Energy Technology Data Exchange (ETDEWEB)

    Núñez, Rubén, E-mail: ruben.nunez@ies-def.upm.es; Antón, Ignacio, E-mail: ruben.nunez@ies-def.upm.es; Askins, Steve, E-mail: ruben.nunez@ies-def.upm.es; Sala, Gabriel, E-mail: ruben.nunez@ies-def.upm.es [Instituto de Energía Solar - Universidad Politécnica de Madrid, Instituto de Energía Solar, ETSI Telecomunicación, Ciudad Universitaria 28040 Madrid (Spain)

    2014-09-26

    Air Mass and atmosphere components (basically aerosol (AOD) and precipitable water (PW)) define the absorption of the sunlight that arrive to Earth. Radiative models such as SMARTS or MODTRAN use these parameters to generate an equivalent spectrum. However, complex and expensive instruments (as AERONET network devices) are needed to obtain AOD and PW. On the other hand, the use of isotype cells is a convenient way to characterize spectrally a place for CPV considering that they provide the photocurrent of the different internal subcells individually. Crossing data from AERONET station and a Tri-band Spectroheliometer, a model that correlates Spectral Mismatch Ratios and atmospheric parameters is proposed. Considering the amount of stations of AERONET network, this model may be used to estimate the spectral influence on energy performance of CPV systems close to all the stations worldwide.

  10. Maximum entropy formalism for the analytic continuation of matrix-valued Green's functions

    Science.gov (United States)

    Kraberger, Gernot J.; Triebl, Robert; Zingl, Manuel; Aichhorn, Markus

    2017-10-01

    We present a generalization of the maximum entropy method to the analytic continuation of matrix-valued Green's functions. To treat off-diagonal elements correctly based on Bayesian probability theory, the entropy term has to be extended for spectral functions that are possibly negative in some frequency ranges. In that way, all matrix elements of the Green's function matrix can be analytically continued; we introduce a computationally cheap element-wise method for this purpose. However, this method cannot ensure important constraints on the mathematical properties of the resulting spectral functions, namely positive semidefiniteness and Hermiticity. To improve on this, we present a full matrix formalism, where all matrix elements are treated simultaneously. We show the capabilities of these methods using insulating and metallic dynamical mean-field theory (DMFT) Green's functions as test cases. Finally, we apply the methods to realistic material calculations for LaTiO3, where off-diagonal matrix elements in the Green's function appear due to the distorted crystal structure.

  11. Absolute parametric instability in a nonuniform plane plasma

    Indian Academy of Sciences (India)

    The paper reports an analysis of the effect of spatial plasma nonuniformity on absolute parametric instability (API) of electrostatic waves in magnetized plane waveguides subjected to an intense high-frequency (HF) electric field using the separation method. In this case the effect of strong static magnetic field is considered.

  12. Spectral embedding based active contour (SEAC): application to breast lesion segmentation on DCE-MRI

    Science.gov (United States)

    Agner, Shannon C.; Xu, Jun; Rosen, Mark; Karthigeyan, Sudha; Englander, Sarah; Madabhushi, Anant

    2011-03-01

    Spectral embedding (SE), a graph-based manifold learning method, has previously been shown to be useful in high dimensional data classification. In this work, we present a novel SE based active contour (SEAC) segmentation scheme and demonstrate its applications in lesion segmentation on breast dynamic contrast enhance magnetic resonance imaging (DCE-MRI). In this work, we employ SE on DCE-MRI on a per voxel basis to embed the high dimensional time series intensity vector into a reduced dimensional space, where the reduced embedding space is characterized by the principal eigenvectors. The orthogonal eigenvector-based data representation allows for computation of strong tensor gradients in the spectrally embedded space and also yields improved region statistics that serve as optimal stopping criteria for SEAC. We demonstrate both analytically and empirically that the tensor gradients in the spectrally embedded space are stronger than the corresponding gradients in the original grayscale intensity space. On a total of 50 breast DCE-MRI studies, SEAC yielded a mean absolute difference (MAD) of 3.2+/-2.1 pixels and mean Dice similarity coefficient (DSC) of 0.74+/-0.13 compared to manual ground truth segmentation. An active contour in conjunction with fuzzy c-means (FCM+AC), a commonly used segmentation method for breast DCE-MRI, produced a corresponding MAD of 7.2+/-7.4 pixels and mean DSC of 0.58+/-0.32. In conjunction with a set of 6 quantitative morphological features automatically extracted from the SEAC derived lesion boundary, a support vector machine (SVM) classifier yielded an area under the curve (AUC) of 0.73, for discriminating between 10 benign and 30 malignant lesions; the corresponding SVM classifier with the FCM+AC derived morphological features yielded an AUC of 0.65.

  13. Absolute electrical impedance tomography (aEIT) guided ventilation therapy in critical care patients: simulations and future trends.

    Science.gov (United States)

    Denaï, Mouloud A; Mahfouf, Mahdi; Mohamad-Samuri, Suzani; Panoutsos, George; Brown, Brian H; Mills, Gary H

    2010-05-01

    Thoracic electrical impedance tomography (EIT) is a noninvasive, radiation-free monitoring technique whose aim is to reconstruct a cross-sectional image of the internal spatial distribution of conductivity from electrical measurements made by injecting small alternating currents via an electrode array placed on the surface of the thorax. The purpose of this paper is to discuss the fundamentals of EIT and demonstrate the principles of mechanical ventilation, lung recruitment, and EIT imaging on a comprehensive physiological model, which combines a model of respiratory mechanics, a model of the human lung absolute resistivity as a function of air content, and a 2-D finite-element mesh of the thorax to simulate EIT image reconstruction during mechanical ventilation. The overall model gives a good understanding of respiratory physiology and EIT monitoring techniques in mechanically ventilated patients. The model proposed here was able to reproduce consistent images of ventilation distribution in simulated acutely injured and collapsed lung conditions. A new advisory system architecture integrating a previously developed data-driven physiological model for continuous and noninvasive predictions of blood gas parameters with the regional lung function data/information generated from absolute EIT (aEIT) is proposed for monitoring and ventilator therapy management of critical care patients.

  14. SVM-Based Spectral Analysis for Heart Rate from Multi-Channel WPPG Sensor Signals

    Directory of Open Access Journals (Sweden)

    Jiping Xiong

    2017-03-01

    Full Text Available Although wrist-type photoplethysmographic (hereafter referred to as WPPG sensor signals can measure heart rate quite conveniently, the subjects’ hand movements can cause strong motion artifacts, and then the motion artifacts will heavily contaminate WPPG signals. Hence, it is challenging for us to accurately estimate heart rate from WPPG signals during intense physical activities. The WWPG method has attracted more attention thanks to the popularity of wrist-worn wearable devices. In this paper, a mixed approach called Mix-SVM is proposed, it can use multi-channel WPPG sensor signals and simultaneous acceleration signals to measurement heart rate. Firstly, we combine the principle component analysis and adaptive filter to remove a part of the motion artifacts. Due to the strong relativity between motion artifacts and acceleration signals, the further denoising problem is regarded as a sparse signals reconstruction problem. Then, we use a spectrum subtraction method to eliminate motion artifacts effectively. Finally, the spectral peak corresponding to heart rate is sought by an SVM-based spectral analysis method. Through the public PPG database in the 2015 IEEE Signal Processing Cup, we acquire the experimental results, i.e., the average absolute error was 1.01 beat per minute, and the Pearson correlation was 0.9972. These results also confirm that the proposed Mix-SVM approach has potential for multi-channel WPPG-based heart rate estimation in the presence of intense physical exercise.

  15. Calibrating spectral images using penalized likelihood

    NARCIS (Netherlands)

    Heijden, van der G.W.A.M.; Glasbey, C.

    2003-01-01

    A new method is presented for automatic correction of distortions and for spectral calibration (which band corresponds to which wavelength) of spectral images recorded by means of a spectrograph. The method consists of recording a bar-like pattern with an illumination source with spectral bands

  16. Spectral Learning for Supervised Topic Models.

    Science.gov (United States)

    Ren, Yong; Wang, Yining; Zhu, Jun

    2018-03-01

    Supervised topic models simultaneously model the latent topic structure of large collections of documents and a response variable associated with each document. Existing inference methods are based on variational approximation or Monte Carlo sampling, which often suffers from the local minimum defect. Spectral methods have been applied to learn unsupervised topic models, such as latent Dirichlet allocation (LDA), with provable guarantees. This paper investigates the possibility of applying spectral methods to recover the parameters of supervised LDA (sLDA). We first present a two-stage spectral method, which recovers the parameters of LDA followed by a power update method to recover the regression model parameters. Then, we further present a single-phase spectral algorithm to jointly recover the topic distribution matrix as well as the regression weights. Our spectral algorithms are provably correct and computationally efficient. We prove a sample complexity bound for each algorithm and subsequently derive a sufficient condition for the identifiability of sLDA. Thorough experiments on synthetic and real-world datasets verify the theory and demonstrate the practical effectiveness of the spectral algorithms. In fact, our results on a large-scale review rating dataset demonstrate that our single-phase spectral algorithm alone gets comparable or even better performance than state-of-the-art methods, while previous work on spectral methods has rarely reported such promising performance.

  17. A study on photonic crystal slab waveguide with absolute photonic band gap

    Directory of Open Access Journals (Sweden)

    Katsumasa Satoh

    2018-02-01

    Full Text Available Most of the conventional photonic crystal (PhC slab waveguides have a photonic bandgap (PBG only for one polarization state of two orthogonal polarization states. In this paper, westudy on an absolute PBG that can realize PBG for both polarizations in the same frequency range anddemonstrate that an absolute PBG can be realized in PhC structures proposed here. In the numericalanalysis and design of PhC structures, we employ the two-dimensional finite element method (FEMbased on the effective index method (EIM. First, we propose two-types of PhC structures with anabsolute PBG and show that a steering type PhC is superior to an air-ring type PhC to obtain a widebandabsolute PBG. It is also shown that the optimized steering type PhC has the absolute PBG whosebandwidth of 164 nm at the center wavelength of 1.55 μm. Furthermore, we design PhC waveguidesbased on the obtained PhC structure having an absolute PBG in order to obtain guided modes for bothpolarization states within the same wavelength range. The transmission properties of the designed PhCwaveguides are also investigated and 60 degree bends which are required in compact photonic circuitsare designed. From these results, the possibility to realize compact polarization multiplexing photonicdevices is shown.

  18. Cell wall microstructure, pore size distribution and absolute density of hemp shiv

    Science.gov (United States)

    Jiang, Y.; Lawrence, M.; Ansell, M. P.; Hussain, A.

    2018-04-01

    This paper, for the first time, fully characterizes the intrinsic physical parameters of hemp shiv including cell wall microstructure, pore size distribution and absolute density. Scanning electron microscopy revealed microstructural features similar to hardwoods. Confocal microscopy revealed three major layers in the cell wall: middle lamella, primary cell wall and secondary cell wall. Computed tomography improved the visualization of pore shape and pore connectivity in three dimensions. Mercury intrusion porosimetry (MIP) showed that the average accessible porosity was 76.67 ± 2.03% and pore size classes could be distinguished into micropores (3-10 nm) and macropores (0.1-1 µm and 20-80 µm). The absolute density was evaluated by helium pycnometry, MIP and Archimedes' methods. The results show that these methods can lead to misinterpretation of absolute density. The MIP method showed a realistic absolute density (1.45 g cm-3) consistent with the density of the known constituents, including lignin, cellulose and hemi-cellulose. However, helium pycnometry and Archimedes' methods gave falsely low values owing to 10% of the volume being inaccessible pores, which require sample pretreatment in order to be filled by liquid or gas. This indicates that the determination of the cell wall density is strongly dependent on sample geometry and preparation.

  19. Analysis of Large Flexible Body Deformation in Multibody Systems Using Absolute Coordinates

    Energy Technology Data Exchange (ETDEWEB)

    Dombrowski, Stefan von [Institute of Robotics and Mechatronics, German Aerospace Center (DLR) (Germany)], E-mail: stefan.von.dombrowski@dlr.de

    2002-11-15

    To consider large deformation problems in multibody system simulations a finite element approach, called absolute nodal coordinate.formulation,has been proposed. In this formulation absolute nodal coordinates and their material derivatives are applied to represent both deformation and rigid body motion. The choice of nodal variables allows a fully nonlinear representation of rigid body motion and can provide the exact rigid body inertia in the case of large rotations. The methodology is especially suited for but not limited to modeling of beams, cables and shells in multibody dynamics.This paper summarizes the absolute nodal coordinate formulation for a 3D Euler-Bernoulli beam model, in particular the definition of nodal variables, corresponding generalized elastic and inertia forces and equations of motion. The element stiffness matrix is a nonlinear function of the nodal variables even in the case of linearized strain/displacement relations. Nonlinear strain/displacement relations can be calculated from the global displacements using quadrature formulae.Computational examples are given which demonstrate the capabilities of the applied methodology. Consequences of the choice of shape.functions on the representation of internal forces are discussed. Linearized strain/displacement modeling is compared to the nonlinear approach and significant advantages of the latter, when using the absolute nodal coordinate formulation, are outlined.

  20. Analysis of Large Flexible Body Deformation in Multibody Systems Using Absolute Coordinates

    International Nuclear Information System (INIS)

    Dombrowski, Stefan von

    2002-01-01

    To consider large deformation problems in multibody system simulations a finite element approach, called absolute nodal coordinate.formulation,has been proposed. In this formulation absolute nodal coordinates and their material derivatives are applied to represent both deformation and rigid body motion. The choice of nodal variables allows a fully nonlinear representation of rigid body motion and can provide the exact rigid body inertia in the case of large rotations. The methodology is especially suited for but not limited to modeling of beams, cables and shells in multibody dynamics.This paper summarizes the absolute nodal coordinate formulation for a 3D Euler-Bernoulli beam model, in particular the definition of nodal variables, corresponding generalized elastic and inertia forces and equations of motion. The element stiffness matrix is a nonlinear function of the nodal variables even in the case of linearized strain/displacement relations. Nonlinear strain/displacement relations can be calculated from the global displacements using quadrature formulae.Computational examples are given which demonstrate the capabilities of the applied methodology. Consequences of the choice of shape.functions on the representation of internal forces are discussed. Linearized strain/displacement modeling is compared to the nonlinear approach and significant advantages of the latter, when using the absolute nodal coordinate formulation, are outlined