WorldWideScience

Sample records for absolute single-molecule entropies

  1. Surface single-molecule dynamics controlled by entropy at low temperatures

    Science.gov (United States)

    Gehrig, J. C.; Penedo, M.; Parschau, M.; Schwenk, J.; Marioni, M. A.; Hudson, E. W.; Hug, H. J.

    2017-02-01

    Configuration transitions of individual molecules and atoms on surfaces are traditionally described using an Arrhenius equation with energy barrier and pre-exponential factor (attempt rate) parameters. Characteristic parameters can vary even for identical systems, and pre-exponential factors sometimes differ by orders of magnitude. Using low-temperature scanning tunnelling microscopy (STM) to measure an individual dibutyl sulfide molecule on Au(111), we show that the differences arise when the relative position of tip apex and molecule changes by a fraction of the molecule size. Altering the tip position on that scale modifies the transition's barrier and attempt rate in a highly correlated fashion, which results in a single-molecular enthalpy-entropy compensation. Conversely, appropriately positioning the STM tip allows selecting the operating point on the compensation line and modifying the transition rates. The results highlight the need to consider entropy in transition rates of single molecules, even at low temperatures.

  2. A family of 'windmill'-like {Cu6Ln12} complexes exhibiting single-molecule magnetism behavior and large magnetic entropy changes.

    Science.gov (United States)

    Alexandropoulos, Dimitris I; Poole, Katye M; Cunha-Silva, Luis; Ahmad Sheikh, Javeed; Wernsdorfer, Wolfgang; Christou, George; Stamatatos, Theocharis C

    2017-03-31

    A family of nanosized {Cu6Ln12} clusters with a 'windmill'-like topology was prepared from the employment of 2,6-diacetylpyridine dioxime, in conjunction with bridging N3(-), in 3d/4f-metal chemistry; the octadecanuclear compounds exhibit single-molecule magnetism behavior and large magnetic entropy changes, depending on the 4f-metal ion present.

  3. Classic maximum entropy recovery of the average joint distribution of apparent FRET efficiency and fluorescence photons for single-molecule burst measurements.

    Science.gov (United States)

    DeVore, Matthew S; Gull, Stephen F; Johnson, Carey K

    2012-04-05

    We describe a method for analysis of single-molecule Förster resonance energy transfer (FRET) burst measurements using classic maximum entropy. Classic maximum entropy determines the Bayesian inference for the joint probability describing the total fluorescence photons and the apparent FRET efficiency. The method was tested with simulated data and then with DNA labeled with fluorescent dyes. The most probable joint distribution can be marginalized to obtain both the overall distribution of fluorescence photons and the apparent FRET efficiency distribution. This method proves to be ideal for determining the distance distribution of FRET-labeled biomolecules, and it successfully predicts the shape of the recovered distributions.

  4. Digital encoding of cellular mRNAs enabling precise and absolute gene expression measurement by single-molecule counting.

    Science.gov (United States)

    Fu, Glenn K; Wilhelmy, Julie; Stern, David; Fan, H Christina; Fodor, Stephen P A

    2014-03-18

    We present a new approach for the sensitive detection and accurate quantitation of messenger ribonucleic acid (mRNA) gene transcripts in single cells. First, the entire population of mRNAs is encoded with molecular barcodes during reverse transcription. After amplification of the gene targets of interest, molecular barcodes are counted by sequencing or scored on a simple hybridization detector to reveal the number of molecules in the starting sample. Since absolute quantities are measured, calibration to standards is unnecessary, and many of the relative quantitation challenges such as polymerase chain reaction (PCR) bias are avoided. We apply the method to gene expression analysis of minute sample quantities and demonstrate precise measurements with sensitivity down to sub single-cell levels. The method is an easy, single-tube, end point assay utilizing standard thermal cyclers and PCR reagents. Accurate and precise measurements are obtained without any need for cycle-to-cycle intensity-based real-time monitoring or physical partitioning into multiple reactions (e.g., digital PCR). Further, since all mRNA molecules are encoded with molecular barcodes, amplification can be used to generate more material for multiple measurements and technical replicates can be carried out on limited samples. The method is particularly useful for small sample quantities, such as single-cell experiments. Digital encoding of cellular content preserves true abundance levels and overcomes distortions introduced by amplification.

  5. On determining absolute entropy without quantum theory or the third law of thermodynamics

    Science.gov (United States)

    Steane, Andrew M.

    2016-04-01

    We employ classical thermodynamics to gain information about absolute entropy, without recourse to statistical methods, quantum mechanics or the third law of thermodynamics. The Gibbs-Duhem equation yields various simple methods to determine the absolute entropy of a fluid. We also study the entropy of an ideal gas and the ionization of a plasma in thermal equilibrium. A single measurement of the degree of ionization can be used to determine an unknown constant in the entropy equation, and thus determine the absolute entropy of a gas. It follows from all these examples that the value of entropy at absolute zero temperature does not need to be assigned by postulate, but can be deduced empirically.

  6. Single molecules and nanotechnology

    CERN Document Server

    Vogel, Horst

    2007-01-01

    This book focuses on recent advances in the rapidly evolving field of single molecule research. These advances are of importance for the investigation of biopolymers and cellular biochemical reactions, and are essential to the development of quantitative biology. Written by leading experts in the field, the articles cover a broad range of topics, including: quantum photonics of organic dyes and inorganic nanoparticles their use in detecting properties of single molecules the monitoring of single molecule (enzymatic) reactions single protein (un)folding in nanometer-sized confined volumes the dynamics of molecular interactions in biological cells The book is written for advanced students and scientists who wish to survey the concepts, techniques and results of single molecule research and assess them for their own scientific activities.

  7. A Proposed Absolute Entropy of Near Extremal Kerr-Newman Black Hole

    CERN Document Server

    Lin, H

    2001-01-01

    Some problems have been found as to the definition of entropy of black hole being applied to the extremal Kerr-Newman case, which has conflicts with the third law of thermodynamics. We have proposed a new modification for the near extremal one, which not only obeys the third law, but also does not conflict with other results in black hole thermodynamics. Then we proved that the inner horizon has temperature and proposed that the inner horizon contributes to the entropy of the near extremal one so that the entropy of it has a modified form and vanishes at absolute zero temperature.

  8. Lanthanide single molecule magnets

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jinkui; Zhang, Peng [Chinese Academy of Sciences, Changchun (China). Changchun Inst. of Applied Chemistry

    2015-10-01

    This book begins by providing basic information on single-molecule magnets (SMMs), covering the magnetism of lanthanide, the characterization and relaxation dynamics of SMMs and advanced means of studying lanthanide SMMs. It then systematically introduces lanthanide SMMs ranging from mononuclear and dinuclear to polynuclear complexes, classifying them and highlighting those SMMs with high barrier and blocking temperatures - an approach that provides some very valuable indicators for the structural features needed to optimize the contribution of an Ising type spin to a molecular magnet. The final chapter presents some of the newest developments in the lanthanide SMM field, such as the design of multifunctional and stimuli-responsive magnetic materials as well as the anchoring and organization of the SMMs on surfaces. In addition, the crystal structure and magnetic data are clearly presented with a wealth of illustrations in each chapter, helping newcomers and experts alike to better grasp ongoing trends and explore new directions.

  9. Lanthanide single molecule magnets

    CERN Document Server

    Tang, Jinkui

    2015-01-01

    This book begins by providing basic information on single-molecule magnets (SMMs), covering the magnetism of lanthanide, the characterization and relaxation dynamics of SMMs, and advanced means of studying lanthanide SMMs. It then systematically introduces lanthanide SMMs ranging from mononuclear and dinuclear to polynuclear complexes, classifying them and highlighting those SMMs with high barrier and blocking temperatures – an approach that provides some very valuable indicators for the structural features needed to optimize the contribution of an Ising type spin to a molecular magnet. The final chapter presents some of the newest developments in the lanthanide SMM field, such as the design of multifunctional and stimuli-responsive magnetic materials as well as the anchoring and organization of the SMMs on surfaces. In addition, the crystal structure and magnetic data are clearly presented with a wealth of illustrations in each chapter, helping newcomers and experts alike to better grasp ongoing trends and...

  10. Topological Research on Standard Absolute Entropies,S(○)298, for Binary Inorganic Compounds

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    For predicting the standard entropy of a binary inorganic compound, two novel connectivity indexes mQ,mG and their converse indexes mQ',mG' based on adjacency matrix of molecular graphs and ionic parameters gi, qi were pro-posed. The qi and gi are defined as qi=(1.1+Zi1.1)/(1.7+ni), gi:(1.4d-Zi)/(0.9+ri+ri-1), where Zi, ni, ri are the charge numbers, the outer electronic shell primary quantum numbers, and the radii of ionic I respectively. The good Quantitative Structure-Property Relationship (QSPR) models for the standard entropies of binary inorganic com-pound can be constructed from 0Q,0Q',1G, and 1G', by using a multivariate linear regression (MLR) method and an artificial neural network (NN) method. The correlation coefficient r, the standard error s, and the average absolute deviation of the MLR model and the NN model are 0.9905, 8.29 J·K-1,mol-1 and 6.48 J·K-1·mol-1, and 0.9960,5.37 J·K-1·mol-1 and 3.90 J·K-1·mol-1, respectively, for 371 binary inorganic compounds (training set). The cross-validation by using the leave-one-out method demonstrates that the MLR model is highly reliable from the point of view of statistics. The correlation coefficients, standard deviations and average absolute deviations of pre-dicted values of the standard entropies of other 185 binary inorganic compounds (test set) are 0.9897, 8.64 J·K-1·mol-1 and 6.84 J·K-1·mol-1, and 0.9957, 5.63 J·K-1·mol-1 and 4.18 J·K-1·mol-1 for the MLR model and the Nnmodel, respectively. The results show that the current method is more effective than literature methods for estimat-ing the standard entropy of a binary inorganic compound. Both MLR and NN methods can provide acceptable mod-els for the prediction of the standard entropies of binary inorganic compounds. The NN model for the standard en-tropies appears to be more reliable than the MLR model.

  11. Special Issue: Single Molecule Techniques

    Directory of Open Access Journals (Sweden)

    Hans H. Gorris

    2015-04-01

    Full Text Available Technological advances in the detection and manipulation of single molecules have enabled new insights into the function, structure and interactions of biomolecules. This Special Issue was launched to account for the rapid progress in the field of “Single Molecule Techniques”. Four original research articles and seven review articles provide an introduction, as well as an in-depth discussion, of technical developments that are indispensable for the characterization of individual biomolecules. Fluorescence microscopy takes center stage in this Special Issue because it is one of the most sensitive and flexible techniques, which has been adapted in many variations to the specific demands of single molecule analysis. Two additional articles are dedicated to single molecule detection based on atomic force microscopy.

  12. Optofluidic single molecule flow proteometry

    Science.gov (United States)

    Jing, Nan; Chou, Chao-Kai; Hung, Mien-Chie; Kameoka, Jun

    2009-02-01

    A microfluidic single molecule fluorescence-based detection scheme is developed to identify target protein direct from cell lysate by using polyclonal antibody. Relative concentration of target protein in solution is determined by twodimensional (2D) photon burst analysis. Compared to conventional ensemble measurement assays, this microfluidic single molecule approach combines the advantages of higher sensitivity, fast processing time, small sample consumption and high resolution quantitative analysis.

  13. Single Molecule Electronics and Devices

    Directory of Open Access Journals (Sweden)

    Makusu Tsutsui

    2012-05-01

    Full Text Available The manufacture of integrated circuits with single-molecule building blocks is a goal of molecular electronics. While research in the past has been limited to bulk experiments on self-assembled monolayers, advances in technology have now enabled us to fabricate single-molecule junctions. This has led to significant progress in understanding electron transport in molecular systems at the single-molecule level and the concomitant emergence of new device concepts. Here, we review recent developments in this field. We summarize the methods currently used to form metal-molecule-metal structures and some single-molecule techniques essential for characterizing molecular junctions such as inelastic electron tunnelling spectroscopy. We then highlight several important achievements, including demonstration of single-molecule diodes, transistors, and switches that make use of electrical, photo, and mechanical stimulation to control the electron transport. We also discuss intriguing issues to be addressed further in the future such as heat and thermoelectric transport in an individual molecule.

  14. Single-molecule magnet engineering

    DEFF Research Database (Denmark)

    Pedersen, Kasper Steen; Bendix, Jesper; Clérac, Rodolphe

    2014-01-01

    to delicately tune, for instance, the properties of molecules that behave as "magnets", the so-called single-molecule magnets (SMMs). Although many interesting SMMs have been prepared by a more or less serendipitous approach, the assembly of predesigned, isolatable molecular entities into higher nuclearity...... complexes constitutes an elegant and fascinating strategy. This Feature article focuses on the use of building blocks or modules (both terms being used indiscriminately) to direct the structure, and therefore also the magnetic properties, of metal ion complexes exhibiting SMM behaviour. This journal...

  15. Single Molecule Studies of Chromatin

    Energy Technology Data Exchange (ETDEWEB)

    Jeans, C; Thelen, M P; Noy, A

    2006-02-06

    In eukaryotic cells, DNA is packaged as chromatin, a highly ordered structure formed through the wrapping of the DNA around histone proteins, and further packed through interactions with a number of other proteins. In order for processes such as DNA replication, DNA repair, and transcription to occur, the structure of chromatin must be remodeled such that the necessary enzymes can access the DNA. A number of remodeling enzymes have been described, but our understanding of the remodeling process is hindered by a lack of knowledge of the fine structure of chromatin, and how this structure is modulated in the living cell. We have carried out single molecule experiments using atomic force microscopy (AFM) to study the packaging arrangements in chromatin from a variety of cell types. Comparison of the structures observed reveals differences which can be explained in terms of the cell type and its transcriptional activity. During the course of this project, sample preparation and AFM techniques were developed and optimized. Several opportunities for follow-up work are outlined which could provide further insight into the dynamic structural rearrangements of chromatin.

  16. Single-Molecule Stochastic Resonance

    Directory of Open Access Journals (Sweden)

    K. Hayashi

    2012-08-01

    Full Text Available Stochastic resonance (SR is a well-known phenomenon in dynamical systems. It consists of the amplification and optimization of the response of a system assisted by stochastic (random or probabilistic noise. Here we carry out the first experimental study of SR in single DNA hairpins which exhibit cooperatively transitions from folded to unfolded configurations under the action of an oscillating mechanical force applied with optical tweezers. By varying the frequency of the force oscillation, we investigate the folding and unfolding kinetics of DNA hairpins in a periodically driven bistable free-energy potential. We measure several SR quantifiers under varied conditions of the experimental setup such as trap stiffness and length of the molecular handles used for single-molecule manipulation. We find that a good quantifier of the SR is the signal-to-noise ratio (SNR of the spectral density of measured fluctuations in molecular extension of the DNA hairpins. The frequency dependence of the SNR exhibits a peak at a frequency value given by the resonance-matching condition. Finally, we carry out experiments on short hairpins that show how SR might be useful for enhancing the detection of conformational molecular transitions of low SNR.

  17. Single-molecule stochastic resonance

    CERN Document Server

    Hayashi, K; Manosas, M; Huguet, J M; Ritort, F; 10.1103/PhysRevX.2.031012

    2012-01-01

    Stochastic resonance (SR) is a well known phenomenon in dynamical systems. It consists of the amplification and optimization of the response of a system assisted by stochastic noise. Here we carry out the first experimental study of SR in single DNA hairpins which exhibit cooperatively folding/unfolding transitions under the action of an applied oscillating mechanical force with optical tweezers. By varying the frequency of the force oscillation, we investigated the folding/unfolding kinetics of DNA hairpins in a periodically driven bistable free-energy potential. We measured several SR quantifiers under varied conditions of the experimental setup such as trap stiffness and length of the molecular handles used for single-molecule manipulation. We find that the signal-to-noise ratio (SNR) of the spectral density of measured fluctuations in molecular extension of the DNA hairpins is a good quantifier of the SR. The frequency dependence of the SNR exhibits a peak at a frequency value given by the resonance match...

  18. The Stumbling Block of the Gibbs Entropy: the Reality of the Negative Absolute Temperatures

    Directory of Open Access Journals (Sweden)

    Anghel Dragoş-Victor

    2016-01-01

    Full Text Available The second Tisza-Callen postulate of equilibrium thermodynamics states that for any system there exists a function of the system extensive parameters, called entropy, defined for all equilibrium states and having the property that the values assumed by the extensive parameters in the absence of a constraint are those that maximize the entropy over the manifold of constrained equilibrium states. Based on the thermodynamic evolution of systems which (in the Boltzmann description have positive and negative temperatures, we show that this postulate is satisfied by the Boltzmann formula for the entropy and may be violated by the Gibbs formula, therefore invalidating the later. Vice versa, if we assume, by reductio ad absurdum, that for some thermodynamic systems the equilibrium state is determined by the Gibbs’ prescription and not by Boltzmann’s, this implies that such systems have macroscopic fluctuations and therefore do not reach the thermodynamic equilibrium.

  19. A Proposed Absolute Entropy of Near Extremal Kerr-Newman Black Hole

    OpenAIRE

    Lin, Hai

    2001-01-01

    Some problems have been found as to the definition of entropy of black hole being applied to the extremal Kerr-Newman case, which has conflicts with the third law of thermodynamics. We have proposed a new modification for the near extremal one, which not only obeys the third law, but also does not conflict with other results in black hole thermodynamics. Then we proved that the inner horizon has temperature and proposed that the inner horizon contributes to the entropy of the near extremal on...

  20. Making "Operations" inside a Single Molecule

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ Free and delicate manipulation of single molecules has long been expected by scientists so as to realize specific functions. In the 1990s, the laboratory led by Prof. Wison Ho from the University of California was successful in inducing chemical reactions at the single molecule level with scanning tunneling microscopy (STM), revealing the extensive potentials of "single molecule operation." However, until recently, researchers have failed to utilize the reaction to give rise to special physical properties.

  1. Single-molecule dynamics at variable temperatures

    NARCIS (Netherlands)

    Zondervan, Rob

    2006-01-01

    Single-molecule optics has evolved from a specialized variety of optical spectroscopy at low temperatures into a versatile tool to address questions in physics, chemistry, biology, and materials science. In this thesis, the potential of single-molecule (and ensemble) optical microscopy at variable t

  2. SINGLE MOLECULE ENZYMOLOGY FINDS ITS STRIDE.

    Science.gov (United States)

    Perkel, Jeffrey

    2015-10-01

    More techniques aimed at probing the nature of single molecules are being developed and advanced in biophysics labs. Jeffrey Perkel takes a look at the scientists leading the charge into the micro-world.

  3. Non-linear irreversible thermodynamics of single-molecule experiments

    CERN Document Server

    Santamaria-Holek, I; Hidalgo-Soria, M; Perez-Madrid, A

    2015-01-01

    Irreversible thermodynamics of single-molecule experiments subject to external constraining forces of a mechanical nature is presented. Extending Onsager's formalism to the non-linear case of systems under non-equilibrium external constraints, we are able to calculate the entropy production and the general non-linear kinetic equations for the variables involved. In particular, we analyze the case of RNA stretching protocols obtaining critical oscillations between di?erent con?gurational states when forced by external means to remain in the unstable region of its free-energy landscape, as observed in experiments. We also calculate the entropy produced during these hopping events, and show how resonant phenomena in stretching experiments of single RNA macromolecules may arise. We also calculate the hopping rates using Kramer's approach obtaining a good comparison with experiments.

  4. Methods for calculating the absolute entropy and free energy of biological systems based on ideas from polymer physics.

    Science.gov (United States)

    Meirovitch, Hagai

    2010-01-01

    The commonly used simulation techniques, Metropolis Monte Carlo (MC) and molecular dynamics (MD) are of a dynamical type which enables one to sample system configurations i correctly with the Boltzmann probability, P(i)(B), while the value of P(i)(B) is not provided directly; therefore, it is difficult to obtain the absolute entropy, S approximately -ln P(i)(B), and the Helmholtz free energy, F. With a different simulation approach developed in polymer physics, a chain is grown step-by-step with transition probabilities (TPs), and thus their product is the value of the construction probability; therefore, the entropy is known. Because all exact simulation methods are equivalent, i.e. they lead to the same averages and fluctuations of physical properties, one can treat an MC or MD sample as if its members have rather been generated step-by-step. Thus, each configuration i of the sample can be reconstructed (from nothing) by calculating the TPs with which it could have been constructed. This idea applies also to bulk systems such as fluids or magnets. This approach has led earlier to the "local states" (LS) and the "hypothetical scanning" (HS) methods, which are approximate in nature. A recent development is the hypothetical scanning Monte Carlo (HSMC) (or molecular dynamics, HSMD) method which is based on stochastic TPs where all interactions are taken into account. In this respect, HSMC(D) can be viewed as exact and the only approximation involved is due to insufficient MC(MD) sampling for calculating the TPs. The validity of HSMC has been established by applying it first to liquid argon, TIP3P water, self-avoiding walks (SAW), and polyglycine models, where the results for F were found to agree with those obtained by other methods. Subsequently, HSMD was applied to mobile loops of the enzymes porcine pancreatic alpha-amylase and acetylcholinesterase in explicit water, where the difference in F between the bound and free states of the loop was calculated. Currently

  5. Single-Molecule Studies in Live Cells

    Science.gov (United States)

    Yu, Ji

    2016-05-01

    Live-cell single-molecule experiments are now widely used to study complex biological processes such as signal transduction, self-assembly, active trafficking, and gene regulation. These experiments' increased popularity results in part from rapid methodological developments that have significantly lowered the technical barriers to performing them. Another important advance is the development of novel statistical algorithms, which, by modeling the stochastic behaviors of single molecules, can be used to extract systemic parameters describing the in vivo biochemistry or super-resolution localization of biological molecules within their physiological environment. This review discusses recent advances in experimental and computational strategies for live-cell single-molecule studies, as well as a selected subset of biological studies that have utilized these new technologies.

  6. Theoretical study on single-molecule spectroscopy

    Institute of Scientific and Technical Information of China (English)

    SHAN Guang-cun; HUANG Wei

    2006-01-01

    The photon-by-photon approach for single molecule spectroscopy experiments utilizes the information carried by each detected photon and allows the measurements of conformational fluctuation with time resolution on a vast range of time scales,where each photon represents a data point.Here,we theoretically simulate the photon emission dynamics of a single molecule spectroscopy using the kinetic Monte Carlo algorithm to understand the underlying complex photon dynamic process of a single molecule.In addition,by following the molecular process in real time,the mechanism of complex biochemical reactions can be revealed.We hope that this theoretical study will serve as an introduction and a guideline into this exciting new field.

  7. Single Molecule Biophysics Experiments and Theory

    CERN Document Server

    Komatsuzaki, Tamiki; Takahashi, Satoshi; Yang, Haw; Silbey, Robert J; Rice, Stuart A; Dinner, Aaron R

    2011-01-01

    Discover the experimental and theoretical developments in optical single-molecule spectroscopy that are changing the ways we think about molecules and atoms The Advances in Chemical Physics series provides the chemical physics field with a forum for critical, authoritative evaluations of advances in every area of the discipline. This latest volume explores the advent of optical single-molecule spectroscopy, and how atomic force microscopy has empowered novel experiments on individual biomolecules, opening up new frontiers in molecular and cell biology and leading to new theoretical approaches

  8. Parametric scaling from species relative abundances to absolute abundances in the computation of biological diversity: a first proposal using Shannon's entropy.

    Science.gov (United States)

    Ricotta, Carlo

    2003-01-01

    Traditional diversity measures such as the Shannon entropy are generally computed from the species' relative abundance vector of a given community to the exclusion of species' absolute abundances. In this paper, I first mention some examples where the total information content associated with a given community may be more adequate than Shannon's average information content for a better understanding of ecosystem functioning. Next, I propose a parametric measure of statistical information that contains both Shannon's entropy and total information content as special cases of this more general function.

  9. Near-field single molecule spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Xie, X.S.; Dunn, R.C.

    1995-02-01

    The high spatial resolution and sensitivity of near-field fluorescence microscopy allows one to study spectroscopic and dynamical properties of individual molecules at room temperature. Time-resolved experiments which probe the dynamical behavior of single molecules are discussed. Ground rules for applying near-field spectroscopy and the effect of the aluminum coated near-field probe on spectroscopic measurements are presented.

  10. Nanoscience: Single-molecule instant replay

    Science.gov (United States)

    Camillone, Nicholas

    2016-11-01

    A nanoscale imaging method that uses ultrashort light pulses to initiate and follow the motion of a single molecule adsorbed on a solid surface opens a window onto the physical and chemical dynamics of molecules on surfaces. See Letter p.263

  11. Single-molecule Michaelis-Menten equations.

    Science.gov (United States)

    Kou, S C; Cherayil, Binny J; Min, Wei; English, Brian P; Xie, X Sunney

    2005-10-20

    This paper summarizes our present theoretical understanding of single-molecule kinetics associated with the Michaelis-Menten mechanism of enzymatic reactions. Single-molecule enzymatic turnover experiments typically measure the probability density f(t) of the stochastic waiting time t for individual turnovers. While f(t) can be reconciled with ensemble kinetics, it contains more information than the ensemble data; in particular, it provides crucial information on dynamic disorder, the apparent fluctuation of the catalytic rates due to the interconversion among the enzyme's conformers with different catalytic rate constants. In the presence of dynamic disorder, f(t) exhibits a highly stretched multiexponential decay at high substrate concentrations and a monoexponential decay at low substrate concentrations. We derive a single-molecule Michaelis-Menten equation for the reciprocal of the first moment of f(t), 1/, which shows a hyperbolic dependence on the substrate concentration [S], similar to the ensemble enzymatic velocity. We prove that this single-molecule Michaelis-Menten equation holds under many conditions, in particular when the intercoversion rates among different enzyme conformers are slower than the catalytic rate. However, unlike the conventional interpretation, the apparent catalytic rate constant and the apparent Michaelis constant in this single-molecule Michaelis-Menten equation are complicated functions of the catalytic rate constants of individual conformers. We also suggest that the randomness parameter r, defined as )2> / t2, can serve as an indicator for dynamic disorder in the catalytic step of the enzymatic reaction, as it becomes larger than unity at high substrate concentrations in the presence of dynamic disorder.

  12. Handbook of Single-Molecule Biophysics

    CERN Document Server

    Hinterdorfer, Peter

    2009-01-01

    The last decade has seen the development of a number of novel biophysical methods that allow the manipulation and study of individual biomolecules. The ability to monitor biological processes at this fundamental level of sensitivity has given rise to an improved understanding of the underlying molecular mechanisms. Through the removal of ensemble averaging, distributions and fluctuations of molecular properties can be characterized, transient intermediates identified, and catalytic mechanisms elucidated. By applying forces on biomolecules while monitoring their activity, important information can be obtained on how proteins couple function to structure. The Handbook of Single-Molecule Biophysics provides an introduction to these techniques and presents an extensive discussion of the new biological insights obtained from them. Coverage includes: Experimental techniques to monitor and manipulate individual biomolecules The use of single-molecule techniques in super-resolution and functional imaging Single-molec...

  13. The symmetry of single-molecule conduction.

    Science.gov (United States)

    Solomon, Gemma C; Gagliardi, Alessio; Pecchia, Alessandro; Frauenheim, Thomas; Di Carlo, Aldo; Reimers, Jeffrey R; Hush, Noel S

    2006-11-14

    We introduce the conductance point group which defines the symmetry of single-molecule conduction within the nonequilibrium Green's function formalism. It is shown, either rigorously or to within a very good approximation, to correspond to a molecular-conductance point group defined purely in terms of the properties of the conducting molecule. This enables single-molecule conductivity to be described in terms of key qualitative chemical descriptors that are independent of the nature of the molecule-conductor interfaces. We apply this to demonstrate how symmetry controls the conduction through 1,4-benzenedithiol chemisorbed to gold electrodes as an example system, listing also the molecular-conductance point groups for a range of molecules commonly used in molecular electronics research.

  14. Diamond based single molecule magnetic resonance spectroscopy

    CERN Document Server

    Cai, J -M; Plenio, M B; Retzker, A

    2011-01-01

    The detection of a nuclear spin in an individual molecule represents a key challenge in physics and biology whose solution has been pursued for many years. The small magnetic moment of a single nucleus and the unavoidable environmental noise present the key obstacles for its realization. Here, we theoretically demonstrate that a single nitrogen-vacancy (NV) center in diamond can be used to construct a nano-scale single molecule spectrometer that is capable of detecting the position and spin state of a single nucleus and can determine the distance and alignment of a nuclear or electron spin pair. In combination with organic spin labels, this device will find applications in single molecule spectroscopy in chemistry and biology, such as in determining protein structure or monitoring macromolecular motions and can thus provide a tool to help unravelling the microscopic mechanisms underlying bio-molecular function.

  15. Single molecule transcription profiling with AFM

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Jason [Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095 (United States); Mishra, Bud [Departments of Computer Science and Mathematics, Courant Institute of Mathematical Sciences, New York University, New York, NY 10012 (United States); Pittenger, Bede [Veeco Instruments, Santa Barbara, CA 93117 (United States); Magonov, Sergei [Veeco Instruments, Santa Barbara, CA 93117 (United States); Troke, Joshua [Department of Pathology and Center for Cell Control, an NIH Nanomedicine Development Center, UCLA, Los Angeles, CA 90095 (United States); Teitell, Michael A [Department of Pathology and Center for Cell Control, an NIH Nanomedicine Development Center, UCLA, Los Angeles, CA 90095 (United States); Gimzewski, James K [Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095 (United States)

    2007-01-31

    Established techniques for global gene expression profiling, such as microarrays, face fundamental sensitivity constraints. Due to greatly increasing interest in examining minute samples from micro-dissected tissues, including single cells, unorthodox approaches, including molecular nanotechnologies, are being explored in this application. Here, we examine the use of single molecule, ordered restriction mapping, combined with AFM, to measure gene transcription levels from very low abundance samples. We frame the problem mathematically, using coding theory, and present an analysis of the critical error sources that may serve as a guide to designing future studies. We follow with experiments detailing the construction of high density, single molecule, ordered restriction maps from plasmids and from cDNA molecules, using two different enzymes, a result not previously reported. We discuss these results in the context of our calculations.

  16. Automated imaging system for single molecules

    Science.gov (United States)

    Schwartz, David Charles; Runnheim, Rodney; Forrest, Daniel

    2012-09-18

    There is provided a high throughput automated single molecule image collection and processing system that requires minimal initial user input. The unique features embodied in the present disclosure allow automated collection and initial processing of optical images of single molecules and their assemblies. Correct focus may be automatically maintained while images are collected. Uneven illumination in fluorescence microscopy is accounted for, and an overall robust imaging operation is provided yielding individual images prepared for further processing in external systems. Embodiments described herein are useful in studies of any macromolecules such as DNA, RNA, peptides and proteins. The automated image collection and processing system and method of same may be implemented and deployed over a computer network, and may be ergonomically optimized to facilitate user interaction.

  17. Single Molecule Data Analysis: An Introduction

    CERN Document Server

    Tavakoli, Meysam; Li, Chun-Biu; Komatsuzaki, Tamiki; Pressé, Steve

    2016-01-01

    We review methods of data analysis for biophysical data with a special emphasis on single molecule applications. Our review is intended for anyone, from student to established researcher. For someone just getting started, we focus on exposing the logic, strength and limitations of each method and cite, as appropriate, the relevant literature for implementation details. We review traditional frequentist and Bayesian parametric approaches to data analysis and subsequently extend our discussion to recent non-parametric and information theoretic methods.

  18. Trapping and manipulating single molecules of DNA

    Science.gov (United States)

    Shon, Min Ju

    This thesis presents the development and application of nanoscale techniques to trap and manipulate biomolecules, with a focus on DNA. These methods combine single-molecule microscopy and nano- and micro-fabrication to study biophysical properties of DNA and proteins. The Dimple Machine is a lab-on-a-chip device that can isolate and confine a small number of molecules from a bulk solution. It traps molecules in nanofabricated chambers, or "dimples", and the trapped molecules are then studied on a fluorescence microscope at the single-molecule level. The sampling of bulk solution by dimples is representative, reproducible, and automated, enabling highthroughput single-molecule experiments. The device was applied to study hybridization of oligonucleotides, particularly in the context of reaction thermodynamics and kinetics in nanoconfinement. The DNA Pulley is a system to study protein binding and the local mechanical properties of DNA. A molecule of DNA is tethered to a surface on one end, and a superparamagnetic bead is attached to the other. A magnet pulls the DNA taut, and a silicon nitride knife with a nanoscale blade scans the DNA along its contour. Information on the local properties of the DNA is extracted by tracking the bead with nanometer precision in a white-light microscope. The system can detect proteins bound to DNA and localize their recognition sites, as shown with a model protein, EcoRI restriction enzyme. Progress on the measurements of nano-mechanical properties of DNA is included.

  19. Absolute Free Energy of Binding and Entropy of the FKBP12-FK506 Complex: Effects of the Force Field.

    Science.gov (United States)

    General, Ignacio J; Meirovitch, Hagai

    2013-10-08

    The hypothetical scanning molecular dynamics (HSMD) method combined with thermodynamic integration (HSMD-TI) has been extended recently for calculating ΔA(0)-the absolute free energy of binding of a ligand to a protein. With HSMD-TI, ΔA(0) is obtained in a new way as a sum of several components, among them is ΔSligand-the change in the conformational entropy as the ligand is transferred from the bulk solvent to the active site-this entropy is obtained by a specific reconstruction procedure. This unique aspect of HSMD (which is useful in rational drug design) is in particular important for treating large ligands, where ΔSligand might be significant. Technically, one should verify that the results for ΔSligand converge-a property that might become more difficult for large ligands; therefore, studying ligands of increasing size would define the range of applicability of HSMD-TI for binding. In this paper, we check the performance of HSMD-TI by applying it to the relatively large ligand FK506 (126 atoms) complexed with the protein FKBP12, where ΔA(0) = -12.8 kcal/mol is known experimentally as well as the crystal structure of the complex. This structure was initially equilibrated by carrying out a 100 ns molecular dynamics trajectory, where the system is modeled by the AMBER force field, TIP3P water, and Particle Mesh Ewald. HSMD-TI calculations were carried out in three conformational regions defined by the intervals [0.2,2], [2,5], and [5,100] ns along the trajectory, where local equilibration of the total energy has been observed; we obtained ΔA(0) = -13.6 ± 1.1, -16.6 ± 1.4, and -16.7 ± 1.4 kcal/mol, respectively indicating the following: (1) The second and third regions belong to the same conformational subspace of the complex, which is different from the [0.2,2] ns subspace. (2) The unsatisfactory result for ΔA(0) obtained in the well equilibrated (hence theoretically preferred) latter regions reflects the nonperfect modeling used, which however (3

  20. Deep learning for single-molecule science.

    Science.gov (United States)

    Albrecht, Tim; Slabaugh, Gregory; Alonso, Eduardo; Al-Arif, Masudur R

    2017-08-01

    Exploring and making predictions based on single-molecule data can be challenging, not only due to the sheer size of the datasets, but also because a priori knowledge about the signal characteristics is typically limited and poor signal-to-noise ratio. For example, hypothesis-driven data exploration, informed by an expectation of the signal characteristics, can lead to interpretation bias or loss of information. Equally, even when the different data categories are known, e.g., the four bases in DNA sequencing, it is often difficult to know how to make best use of the available information content. The latest developments in Machine Learning (ML), so-called Deep Learning (DL) offers an interesting, new avenues to address such challenges. In some applications, such as speech and image recognition, DL has been able to outperform conventional Machine Learning strategies and even human performance. However, to date DL has not been applied much in single-molecule science, presumably in part because relatively little is known about the 'internal workings' of such DL tools within single-molecule science as a field. In this Tutorial, we make an attempt to illustrate in a step-by-step guide how one of those, a Convolutional Neural Network, may be used for base calling in DNA sequencing applications. We compare it with a Support Vector Machine as a more conventional ML method, and and discuss some of the strengths and weaknesses of the approach. In particular, a 'deep' neural network has many features of a 'black box', which has important implications on how we look at and interpret data. © 2017 IOP Publishing Ltd.

  1. Deep learning for single-molecule science

    Science.gov (United States)

    Albrecht, Tim; Slabaugh, Gregory; Alonso, Eduardo; Al-Arif, SM Masudur R.

    2017-10-01

    Exploring and making predictions based on single-molecule data can be challenging, not only due to the sheer size of the datasets, but also because a priori knowledge about the signal characteristics is typically limited and poor signal-to-noise ratio. For example, hypothesis-driven data exploration, informed by an expectation of the signal characteristics, can lead to interpretation bias or loss of information. Equally, even when the different data categories are known, e.g., the four bases in DNA sequencing, it is often difficult to know how to make best use of the available information content. The latest developments in machine learning (ML), so-called deep learning (DL) offer interesting, new avenues to address such challenges. In some applications, such as speech and image recognition, DL has been able to outperform conventional ML strategies and even human performance. However, to date DL has not been applied much in single-molecule science, presumably in part because relatively little is known about the ‘internal workings’ of such DL tools within single-molecule science as a field. In this Tutorial, we make an attempt to illustrate in a step-by-step guide how one of those, a convolutional neural network (CNN), may be used for base calling in DNA sequencing applications. We compare it with a SVM as a more conventional ML method, and discuss some of the strengths and weaknesses of the approach. In particular, a ‘deep’ neural network has many features of a ‘black box’, which has important implications on how we look at and interpret data.

  2. Single molecule and single cell epigenomics.

    Science.gov (United States)

    Hyun, Byung-Ryool; McElwee, John L; Soloway, Paul D

    2015-01-15

    Dynamically regulated changes in chromatin states are vital for normal development and can produce disease when they go awry. Accordingly, much effort has been devoted to characterizing these states under normal and pathological conditions. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is the most widely used method to characterize where in the genome transcription factors, modified histones, modified nucleotides and chromatin binding proteins are found; bisulfite sequencing (BS-seq) and its variants are commonly used to characterize the locations of DNA modifications. Though very powerful, these methods are not without limitations. Notably, they are best at characterizing one chromatin feature at a time, yet chromatin features arise and function in combination. Investigators commonly superimpose separate ChIP-seq or BS-seq datasets, and then infer where chromatin features are found together. While these inferences might be correct, they can be misleading when the chromatin source has distinct cell types, or when a given cell type exhibits any cell to cell variation in chromatin state. These ambiguities can be eliminated by robust methods that directly characterize the existence and genomic locations of combinations of chromatin features in very small inputs of cells or ideally, single cells. Here we review single molecule epigenomic methods under development to overcome these limitations, the technical challenges associated with single molecule methods and their potential application to single cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Synthesis of single-molecule nanocars.

    Science.gov (United States)

    Vives, Guillaume; Tour, James M

    2009-03-17

    The drive to miniaturize devices has led to a variety of molecular machines inspired by macroscopic counterparts such as molecular motors, switches, shuttles, turnstiles, barrows, elevators, and nanovehicles. Such nanomachines are designed for controlled mechanical motion and the transport of nanocargo. As researchers miniaturize devices, they can consider two complementary approaches: (1) the "top-down" approach, which reduces the size of macroscopic objects to reach an equivalent microscopic entity using photolithography and related techniques and (2) the "bottom-up" approach, which builds functional microscopic or nanoscopic entities from molecular building blocks. The top-down approach, extensively used by the semiconductor industry, is nearing its scaling limits. On the other hand, the bottom-up approach takes advantage of the self-assembly of smaller molecules into larger networks by exploiting typically weak molecular interactions. But self-assembly alone will not permit complex assembly. Using nanomachines, we hope to eventually consider complex, enzyme-like directed assembly. With that ultimate goal, we are currently exploring the control of nanomachines that would provide a basis for the future bottom-up construction of complex systems. This Account describes the synthesis of a class of molecular machines that resemble macroscopic vehicles. We designed these so-called nanocars for study at the single-molecule level by scanning probe microscopy (SPM). The vehicles have a chassis connected to wheel-terminated axles and convert energy inputs such as heat, electric fields, or light into controlled motion on a surface, ultimately leading to transport of nanocargo. At first, we used C(60) fullerenes as wheels, which allowed the demonstration of a directional rolling mechanism of a nanocar on a gold surface by STM. However, because of the low solubility of the fullerene nanocars and the incompatibility of fullerenes with photochemical processes, we developed new

  4. Single Molecule Conductance of Oligothiophene Derivatives

    Science.gov (United States)

    Dell, Emma J.

    This thesis studies the electronic properties of small organic molecules based on the thiophene motif. If we are to build next-generation devices, advanced materials must be designed which possess requisite electronic functionality. Molecules present attractive candidates for these ad- vanced materials since nanoscale devices are particularly sought after. However, selecting a molecule that is suited to a certain electronic function remains a challenge, and characterization of electronic behavior is therefore critical. Single molecule conductance measurements are a powerful tool to determine properties on the nanoscale and, as such, can be used to investigate novel building blocks that may fulfill the design requirements of next-generation devices. Combining these conductance results with strategic chemical synthesis allows for the development of new families of molecules that show attractive properties for future electronic devices. Since thiophene rings are the fruitflies of organic semiconductors on the bulk scale, they present an intriguing starting point for building functional materials on the nanoscale, and therefore form the structural basis of all molecules studied herein. First, the single-molecule conductance of a family of bithiophene derivatives was measured. A broad distribution in the single-molecule conductance of bithiophene was found compared with that of a biphenyl. This increased breadth in the conductance distribution was shown to be explained by the difference in 5-fold symmetry of thiophene rings as compared to the 6-fold symmetry of benzene rings. The reduced symmetry of thiophene rings results in a restriction on the torsion angle space available to these molecules when bound between two metal electrodes in a junction, causing each molecular junction to sample a different set of conformers in the conductance measurements. By contrast, the rotations of biphenyl are essentially unimpeded by junction binding, allowing each molecular junction

  5. Grafting single molecule magnets on gold nanoparticles.

    Science.gov (United States)

    Perfetti, Mauro; Pineider, Francesco; Poggini, Lorenzo; Otero, Edwige; Mannini, Matteo; Sorace, Lorenzo; Sangregorio, Claudio; Cornia, Andrea; Sessoli, Roberta

    2014-01-29

    The chemical synthesis and characterization of the first hybrid material composed by gold nanoparticles and single molecule magnets (SMMs) are described. Gold nanoparticles are functionalized via ligand exchange using a tetrairon(III) SMM containing two 1,2-dithiolane end groups. The grafting is evidenced by the shift of the plasmon resonance peak recorded with a UV-vis spectrometer, by the suppression of nuclear magnetic resonance signals, by X-ray photoemission spectroscopy peaks, and by transmission electron microscopy images. The latter evidence the formation of aggregates of nanoparticles as a consequence of the cross-linking ability of Fe4 through the two 1,2-dithiolane rings located on opposite sides of the metal core. The presence of intact Fe4 molecules is directly proven by synchrotron-based X-ray absorption spectroscopy and X-ray magnetic circular dichroism spectroscopy, while a detailed magnetic characterization, obtained using electron paramagnetic resonance and alternating-current susceptibility, confirms the persistence of SMM behavior in this new hybrid nanostructure. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. 'Single molecule': theory and experiments, an introduction.

    Science.gov (United States)

    Riveline, Daniel

    2013-01-01

    At scales below micrometers, Brownian motion dictates most of the behaviors. The simple observation of a colloid is striking: a permanent and random motion is seen, whereas inertial forces play a negligible role. This Physics, where velocity is proportional to force, has opened new horizons in biology. The random feature is challenged in living systems where some proteins--molecular motors--have a directed motion whereas their passive behaviors of colloid should lead to a Brownian motion. Individual proteins, polymers of living matter such as DNA, RNA, actin or microtubules, molecular motors, all these objects can be viewed as chains of colloids. They are submitted to shocks from molecules of the solvent. Shapes taken by these biopolymers or dynamics imposed by motors can be measured and modeled from single molecules to their collective effects. Thanks to the development of experimental methods such as optical tweezers, Atomic Force Microscope (AFM), micropipettes, and quantitative fluorescence (such as Förster Resonance Energy Transfer, FRET), it is possible to manipulate these individual biomolecules in an unprecedented manner: experiments allow to probe the validity of models; and a new Physics has thereby emerged with original biological insights. Theories based on statistical mechanics are needed to explain behaviors of these systems. When force-extension curves of these molecules are extracted, the curves need to be fitted with models that predict the deformation of free objects or submitted to a force. When velocity of motors is altered, a quantitative analysis is required to explain the motions of individual molecules under external forces. This lecture will give some elements of introduction to the lectures of the session 'Nanophysics for Molecular Biology'.

  7. Single-molecule electronics: from chemical design to functional devices.

    Science.gov (United States)

    Sun, Lanlan; Diaz-Fernandez, Yuri A; Gschneidtner, Tina A; Westerlund, Fredrik; Lara-Avila, Samuel; Moth-Poulsen, Kasper

    2014-11-07

    The use of single molecules in electronics represents the next limit of miniaturisation of electronic devices, which would enable us to continue the trend of aggressive downscaling of silicon-based electronic devices. More significantly, the fabrication, understanding and control of fully functional circuits at the single-molecule level could also open up the possibility of using molecules as devices with novel, not-foreseen functionalities beyond complementary metal-oxide semiconductor technology (CMOS). This review aims at highlighting the chemical design and synthesis of single molecule devices as well as their electrical and structural characterization, including a historical overview and the developments during the last 5 years. We discuss experimental techniques for fabrication of single-molecule junctions, the potential application of single-molecule junctions as molecular switches, and general physical phenomena in single-molecule electronic devices.

  8. Rotation of a single molecule within a supramolecular bearing

    DEFF Research Database (Denmark)

    Gimzewski, J.K.; Joachim, C.; Schlittler, R.R.;

    1998-01-01

    Experimental visualization and verification of a single-molecule rotor operating within a supramolecular bearing is reported. Using a scanning tunneling microscope, single molecules were observed to exist in one of two spatially defined states Laterally separated by 0.26 nanometers. One was ident......Experimental visualization and verification of a single-molecule rotor operating within a supramolecular bearing is reported. Using a scanning tunneling microscope, single molecules were observed to exist in one of two spatially defined states Laterally separated by 0.26 nanometers. One...

  9. Evidence of disorder in biological molecules from single molecule pulling experiments

    CERN Document Server

    Hyeon, Changbong; Thirumalai, D

    2014-01-01

    Heterogeneity in biological molecules, resulting in molecule-to-molecule variations in their dynamics and function, is an emerging theme. To elucidate the consequences of heterogeneous behavior at the single molecule level, we propose an exactly solvable model in which the unfolding rate due to mechanical force depends parametrically on an auxiliary variable representing an entropy barrier arising from fluctuations in internal dynamics. When the rate of fluctuations, a measure of dynamical disorder, is comparable to or smaller than the rate of force-induced unbinding, we show that there are two experimentally observable consequences: non-exponential survival probability at constant force, and a heavy-tailed rupture force distribution at constant loading rate. By fitting our analytical expressions to data from single molecule pulling experiments on proteins and DNA, we quantify the extent of disorder. We show that only by analyzing data over a wide range of forces and loading rates can the role of disorder due...

  10. Single-Molecule FRET Study of DNA G-Quadruplex

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The DNA G-quadruplex formed by the human telomeric sequence is a potential target for novel anticancer drugs. We have investigated an intramolecular DNA G-quadruplex using single-molecule fluorescence resonance energy transfer and shown that individual folded quadruplexes can be identified. The mean proximity ratio measured at the single-molecule level was consistent with ensemble measurement.

  11. Single-molecule approaches to characterizing kinetics of biomolecular interactions

    NARCIS (Netherlands)

    van Oijen, Antoine M.

    2011-01-01

    Single-molecule fluorescence techniques have emerged as powerful tools to study biological processes at the molecular level. This review describes the application of these methods to the characterization of the kinetics of interaction between biomolocules. A large number of single-molecule assays ha

  12. Electrochemical Single-Molecule Transistors with Optimized Gate Coupling

    DEFF Research Database (Denmark)

    Osorio, Henrry M.; Catarelli, Samantha; Cea, Pilar

    2015-01-01

    Electrochemical gating at the single molecule level of viologen molecular bridges in ionic liquids is examined. Contrary to previous data recorded in aqueous electrolytes, a clear and sharp peak in the single molecule conductance versus electrochemical potential data is obtained in ionic liquids....

  13. Molecular electronics with single molecules in solid-state devices

    DEFF Research Database (Denmark)

    Moth-Poulsen, Kasper; Bjørnholm, Thomas

    2009-01-01

    The ultimate aim of molecular electronics is to understand and master single-molecule devices. Based on the latest results on electron transport in single molecules in solid-state devices, we focus here on new insights into the influence of metal electrodes on the energy spectrum of the molecule...

  14. Analyzing single-molecule time series via nonparametric Bayesian inference.

    Science.gov (United States)

    Hines, Keegan E; Bankston, John R; Aldrich, Richard W

    2015-02-03

    The ability to measure the properties of proteins at the single-molecule level offers an unparalleled glimpse into biological systems at the molecular scale. The interpretation of single-molecule time series has often been rooted in statistical mechanics and the theory of Markov processes. While existing analysis methods have been useful, they are not without significant limitations including problems of model selection and parameter nonidentifiability. To address these challenges, we introduce the use of nonparametric Bayesian inference for the analysis of single-molecule time series. These methods provide a flexible way to extract structure from data instead of assuming models beforehand. We demonstrate these methods with applications to several diverse settings in single-molecule biophysics. This approach provides a well-constrained and rigorously grounded method for determining the number of biophysical states underlying single-molecule data. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  15. An optical nanofiber-based interface for single molecules

    CERN Document Server

    Skoff, Sarah M; Schauffert, Hardy; Rauschenbeutel, Arno

    2016-01-01

    Optical interfaces for quantum emitters are a prerequisite for implementing quantum networks. Here, we couple single molecules to the guided modes of an optical nanofiber. The molecules are embedded within a crystal that provides photostability and due to its inhomogeneous environment, a means to spectrally address single molecules. Single molecules are excited and detected solely via the nanofiber interface without the requirement of additional optical access. In this way, we realize a fully fiber-integrated system that is scalable and may become a versatile constituent for quantum hybrid systems.

  16. Stochastic single-molecule dynamics of synaptic membrane protein domains

    CERN Document Server

    Kahraman, Osman; Haselwandter, Christoph A

    2016-01-01

    Motivated by single-molecule experiments on synaptic membrane protein domains, we use a stochastic lattice model to study protein reaction and diffusion processes in crowded membranes. We find that the stochastic reaction-diffusion dynamics of synaptic proteins provide a simple physical mechanism for collective fluctuations in synaptic domains, the molecular turnover observed at synaptic domains, key features of the single-molecule trajectories observed for synaptic proteins, and spatially inhomogeneous protein lifetimes at the cell membrane. Our results suggest that central aspects of the single-molecule and collective dynamics observed for membrane protein domains can be understood in terms of stochastic reaction-diffusion processes at the cell membrane.

  17. Direct Characterization of Amyloidogenic Oligomers by Single-Molecule Fluorescence

    National Research Council Canada - National Science Library

    Angel Orte; Neil R. Birkett; Richard W. Clarke; Glyn L. Devlin; Christopher M. Dobson; David Klenerman

    2008-01-01

    .... We describe here the application of a two-color single-molecule fluorescence technique to examine the assembly of oligomeric species formed during the aggregation of the SH3 domain of PI3 kinase...

  18. Single Molecule Scanning of DNA Radiation Oxidative Damage Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal will develop an assay to map genomic DNA, at the single molecule level and in a nanodevice, for oxidative DNA damage arising from radiation exposure;...

  19. Single Molecule Spectroscopy in Chemistry, Physics and Biology Nobel Symposium

    CERN Document Server

    Gräslund, Astrid; Widengren, Jerker

    2010-01-01

    Written by the leading experts in the field, this book describes the development and current state-of-the-art in single molecule spectroscopy. The application of this technique, which started 1989, in physics, chemistry and biosciences is displayed.

  20. Massively parallel single-molecule manipulation using centrifugal force

    CERN Document Server

    Halvorsen, Ken

    2009-01-01

    Precise manipulation of single molecules has already led to remarkable insights in physics, chemistry, biology and medicine. However, widespread adoption of single-molecule techniques has been impeded by equipment cost and the laborious nature of making measurements one molecule at a time. We have solved these issues with a new approach: massively parallel single-molecule force measurements using centrifugal force. This approach is realized in a novel instrument that we call the Centrifuge Force Microscope (CFM), in which objects in an orbiting sample are subjected to a calibration-free, macroscopically uniform force-field while their micro-to-nanoscopic motions are observed. We demonstrate high-throughput single-molecule force spectroscopy with this technique by performing thousands of rupture experiments in parallel, characterizing force-dependent unbinding kinetics of an antibody-antigen pair in minutes rather than days. Additionally, we verify the force accuracy of the instrument by measuring the well-est...

  1. Single Molecule Imaging in Living Cell with Optical Method

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Significance, difficult, international developing actuality and our completed works for single molecules imaging in living cell with optical method are described respectively. Additionally we give out some suggestions for the technology development further.

  2. Computer systems for annotation of single molecule fragments

    Science.gov (United States)

    Schwartz, David Charles; Severin, Jessica

    2016-07-19

    There are provided computer systems for visualizing and annotating single molecule images. Annotation systems in accordance with this disclosure allow a user to mark and annotate single molecules of interest and their restriction enzyme cut sites thereby determining the restriction fragments of single nucleic acid molecules. The markings and annotations may be automatically generated by the system in certain embodiments and they may be overlaid translucently onto the single molecule images. An image caching system may be implemented in the computer annotation systems to reduce image processing time. The annotation systems include one or more connectors connecting to one or more databases capable of storing single molecule data as well as other biomedical data. Such diverse array of data can be retrieved and used to validate the markings and annotations. The annotation systems may be implemented and deployed over a computer network. They may be ergonomically optimized to facilitate user interactions.

  3. Single-molecule emulsion PCR in microfluidic droplets.

    Science.gov (United States)

    Zhu, Zhi; Jenkins, Gareth; Zhang, Wenhua; Zhang, Mingxia; Guan, Zhichao; Yang, Chaoyong James

    2012-06-01

    The application of microfluidic droplet PCR for single-molecule amplification and analysis has recently been extensively studied. Microfluidic droplet technology has the advantages of compartmentalizing reactions into discrete volumes, performing highly parallel reactions in monodisperse droplets, reducing cross-contamination between droplets, eliminating PCR bias and nonspecific amplification, as well as enabling fast amplification with rapid thermocycling. Here, we have reviewed the important technical breakthroughs of microfluidic droplet PCR in the past five years and their applications to single-molecule amplification and analysis, such as high-throughput screening, next generation DNA sequencing, and quantitative detection of rare mutations. Although the utilization of microfluidic droplet single-molecule PCR is still in the early stages, its great potential has already been demonstrated and will provide novel solutions to today's biomedical engineering challenges in single-molecule amplification and analysis.

  4. Probing molecular choreography through single-molecule biochemistry.

    Science.gov (United States)

    van Oijen, Antoine M; Dixon, Nicholas E

    2015-12-01

    Single-molecule approaches are having a dramatic impact on views of how proteins work. The ability to observe molecular properties at the single-molecule level allows characterization of subpopulations and acquisition of detailed kinetic information that would otherwise be hidden in the averaging over an ensemble of molecules. In this Perspective, we discuss how such approaches have successfully been applied to in vitro-reconstituted systems of increasing complexity.

  5. Uncovering hierarchical data structure in single molecule transport

    Science.gov (United States)

    Wu, Ben H.; Ivie, Jeffrey A.; Johnson, Tyler K.; Monti, Oliver L. A.

    2017-03-01

    Interpretation of single molecule transport data is complicated by the fact that all such data are inherently highly stochastic in nature. Features are often broad, seemingly unstructured and distributed over more than an order of magnitude. However, the distribution contains information necessary for capturing the full variety of processes relevant in nanoscale transport, and a better understanding of its hierarchical structure is needed to gain deeper insight into the physics and chemistry of single molecule electronics. Here, we describe a novel data analysis approach based on hierarchical clustering to aid in the interpretation of single molecule conductance-displacement histograms. The primary purpose of statistically partitioning transport data is to provide avenues for unbiased hypothesis generation in single molecule break junction experiments by revealing otherwise potentially hidden aspects in the conductance data. Our approach is generalizable to the analysis of a wide variety of other single molecule experiments in molecular electronics, as well as in single molecule fluorescence spectroscopy, force microscopy, and ion-channel conductance measurements.

  6. PREFACE: Nanoelectronics, sensors and single molecule biophysics Nanoelectronics, sensors and single molecule biophysics

    Science.gov (United States)

    Tao, Nongjian

    2012-04-01

    This special section of Journal of Physics: Condensed Matter (JPCM) is dedicated to Professor Stuart M Lindsay on the occasion of his 60th birthday and in recognition of his outstanding contributions to multiple research areas, including light scattering spectroscopy, scanning probe microscopy, biophysics, solid-liquid interfaces and molecular and nanoelectronics. It contains a collection of 14 papers in some of these areas, including a feature article by Lindsay. Each paper was subject to the normal rigorous review process of JPCM. In Lindsay's paper, he discusses the next generations of hybrid chemical-CMOS devices for low cost and personalized medical diagnosis. The discussion leads to several papers on nanotechnology for biomedical applications. Kawaguchi et al report on the detection of single pollen allergen particles using electrode embedded microchannels. Stern et al describe a structural study of three-dimensional DNA-nanoparticle assemblies. Hihath et al measure the conductance of methylated DNA, and discuss the possibility of electrical detection DNA methylation. Portillo et al study the electrostatic effects on the aggregation of prion proteins and peptides with atomic force microscopy. In an effort to understand the interactions between nanostructures and cells, Lamprecht et al report on the mapping of the intracellular distribution of carbon nanotubes with a confocal Raman imaging technique, and Wang et al focus on the intracellular delivery of gold nanoparticles using fluorescence microscopy. Park and Kristic provide theoretical analysis of micro- and nano-traps and their biological applications. This section also features several papers on the fundamentals of electron transport in single atomic wires and molecular junctions. The papers by Xu et al and by Wandlowksi et al describe new methods to measure conductance and forces in single molecule junctions and metallic atomic wires. Scullion et al report on the conductance of molecules with similar

  7. Quantitative study of single molecule location estimation techniques.

    Science.gov (United States)

    Abraham, Anish V; Ram, Sripad; Chao, Jerry; Ward, E S; Ober, Raimund J

    2009-12-21

    Estimating the location of single molecules from microscopy images is a key step in many quantitative single molecule data analysis techniques. Different algorithms have been advocated for the fitting of single molecule data, particularly the nonlinear least squares and maximum likelihood estimators. Comparisons were carried out to assess the performance of these two algorithms in different scenarios. Our results show that both estimators, on average, are able to recover the true location of the single molecule in all scenarios we examined. However, in the absence of modeling inaccuracies and low noise levels, the maximum likelihood estimator is more accurate than the nonlinear least squares estimator, as measured by the standard deviations of its estimates, and attains the best possible accuracy achievable for the sets of imaging and experimental conditions that were tested. Although neither algorithm is consistently superior to the other in the presence of modeling inaccuracies or misspecifications, the maximum likelihood algorithm emerges as a robust estimator producing results with consistent accuracy across various model mismatches and misspecifications. At high noise levels, relative to the signal from the point source, neither algorithm has a clear accuracy advantage over the other. Comparisons were also carried out for two localization accuracy measures derived previously. Software packages with user-friendly graphical interfaces developed for single molecule location estimation (EstimationTool) and limit of the localization accuracy calculations (FandPLimitTool) are also discussed.

  8. Single-molecule manipulation experiments to explore friction and adhesion

    Science.gov (United States)

    Pawlak, R.; Kawai, S.; Meier, T.; Glatzel, T.; Baratoff, A.; Meyer, E.

    2017-03-01

    Friction forces, which arise when two bodies that are in contact are moved with respect to one another, are ubiquitous phenomena. Although various measurement tools have been developed to study these phenomena at all length scales, such investigations are highly challenging when tackling the scale of single molecules in motion on a surface. This work reviews the recent advances in single-molecule manipulation experiments performed at low temperature with the aim of understanding the fundamental frictional response of single molecules. Following the advent of ‘nanotribology’ in the field based on the atomic force microscopy technique, we will show the technical requirements to direct those studies at the single-molecule level. We will also discuss the experimental prerequisites needed to obtain and interpret the phenomena, such as the implementation of single-molecule manipulation techniques, the processing of the experimental data or their comparison with appropriate numerical models. Finally, we will report examples of the controlled vertical and lateral manipulation of long polymeric chains, graphene nanoribbons or single porphyrin molecules that systematically reveal friction-like characteristics while sliding over atomically clean surfaces.

  9. Single-molecule mechanochemical sensing using DNA origami nanostructures.

    Science.gov (United States)

    Koirala, Deepak; Shrestha, Prakash; Emura, Tomoko; Hidaka, Kumi; Mandal, Shankar; Endo, Masayuki; Sugiyama, Hiroshi; Mao, Hanbin

    2014-07-28

    While single-molecule sensing offers the ultimate detection limit, its throughput is often restricted as sensing events are carried out one at a time in most cases. 2D and 3D DNA origami nanostructures are used as expanded single-molecule platforms in a new mechanochemical sensing strategy. As a proof of concept, six sensing probes are incorporated in a 7-tile DNA origami nanoassembly, wherein binding of a target molecule to any of these probes leads to mechanochemical rearrangement of the origami nanostructure, which is monitored in real time by optical tweezers. Using these platforms, 10 pM platelet-derived growth factor (PDGF) are detected within 10 minutes, while demonstrating multiplex sensing of the PDGF and a target DNA in the same solution. By tapping into the rapid development of versatile DNA origami nanostructures, this mechanochemical platform is anticipated to offer a long sought solution for single-molecule sensing with improved throughput.

  10. Single-Molecule Electronics: Chemical and Analytical Perspectives.

    Science.gov (United States)

    Nichols, Richard J; Higgins, Simon J

    2015-01-01

    It is now possible to measure the electrical properties of single molecules using a variety of techniques including scanning probe microcopies and mechanically controlled break junctions. Such measurements can be made across a wide range of environments including ambient conditions, organic liquids, ionic liquids, aqueous solutions, electrolytes, and ultra high vacuum. This has given new insights into charge transport across molecule electrical junctions, and these experimental methods have been complemented with increasingly sophisticated theory. This article reviews progress in single-molecule electronics from a chemical perspective and discusses topics such as the molecule-surface coupling in electrical junctions, chemical control, and supramolecular interactions in junctions and gating charge transport. The article concludes with an outlook regarding chemical analysis based on single-molecule conductance.

  11. Probing the Conformations of Single Molecule via Photon Counting Statistics

    CERN Document Server

    Peng, Yonggang; Yang, Chuanlu; Zheng, Yujun

    2014-01-01

    We suggest an approach to detect the conformation of single molecule by using the photon counting statistics. The generalized Smoluchoswki equation is employed to describe the dynamical process of conformational change of single molecule. The resonant trajectories of the emission photon numbers $$ and the Mandel's $Q$ parameter, in the space of conformational coordinates $\\bm{\\mathcal{X}}$ and frequency $\\omega_L$ of external field ($\\bm{\\mathcal{X}}-\\omega_L$ space), can be used to rebuild the conformation of the single molecule. As an example, we consider Thioflavin T molecule. It demonstrates that the results of conformations extracted by employing the photon counting statistics is excellent agreement with the results of {\\it ab initio} computation.

  12. Single molecule detection using charge-coupled device array technology

    Energy Technology Data Exchange (ETDEWEB)

    Denton, M.B.

    1992-07-29

    A technique for the detection of single fluorescent chromophores in a flowing stream is under development. This capability is an integral facet of a rapid DNA sequencing scheme currently being developed by Los Alamos National Laboratory. In previous investigations, the detection sensitivity was limited by the background Raman emission from the water solvent. A detection scheme based on a novel mode of operating a Charge-Coupled Device (CCD) is being developed which should greatly enhance the discrimination between fluorescence from a single molecule and the background Raman scattering from the solvent. Register shifts between rows in the CCD are synchronized with the sample flow velocity so that fluorescence from a single molecule is collected in a single moving charge packet occupying an area approaching that of a single pixel while the background is spread evenly among a large number of pixels. Feasibility calculations indicate that single molecule detection should be achieved with an excellent signal-to-noise ratio.

  13. Extending single-molecule microscopy using optical Fourier processing.

    Science.gov (United States)

    Backer, Adam S; Moerner, W E

    2014-07-17

    This article surveys the recent application of optical Fourier processing to the long-established but still expanding field of single-molecule imaging and microscopy. A variety of single-molecule studies can benefit from the additional image information that can be obtained by modulating the Fourier, or pupil, plane of a widefield microscope. After briefly reviewing several current applications, we present a comprehensive and computationally efficient theoretical model for simulating single-molecule fluorescence as it propagates through an imaging system. Furthermore, we describe how phase/amplitude-modulating optics inserted in the imaging pathway may be modeled, especially at the Fourier plane. Finally, we discuss selected recent applications of Fourier processing methods to measure the orientation, depth, and rotational mobility of single fluorescent molecules.

  14. Single Molecule Spectroscopy of Monomeric LHCII: Experiment and Theory

    CERN Document Server

    Malý, Pavel; van Grondelle, Rienk; Mančal, Tomáš

    2015-01-01

    We derive approximate equations of motion for excited state dynamics of a multilevel open quantum system weakly interacting with light to describe fluorescence detected single molecule spectra. Based on the Frenkel exciton theory, we construct a model for the chlorophyll part of the LHCII complex of higher plants and its interaction with previously proposed excitation quencher in the form of the lutein molecule Lut 1. The resulting description is valid over a broad range of timescales relevant for single molecule spectroscopy, i.e. from ps to minutes. Validity of these equations is demonstrated by comparing simulations of ensemble and single-molecule spectra of monomeric LHCII with experiments. Using a conformational change of the LHCII protein as a switching mechanism, the intensity and spectral time traces of individual LHCII complexes are simulated, and the experimental statistical distributions are reproduced. Based on our model, it is shown that with reasonable assumptions about its interaction with chlo...

  15. Novel approaches for single molecule activation and detection

    CERN Document Server

    Benfenati, Fabio; Torre, Vincent

    2014-01-01

    How can we obtain tools able to process and exchange information at the molecular scale In order to do this, it is necessary to activate and detect single molecules under controlled conditions. This book focuses on the generation of biologically-inspired molecular devices. These devices are based on the developments of new photonic tools able to activate and stimulate single molecule machines. Additionally, new light sensitive molecules can be selectively activated by photonic tools. These technological innovations will provide a way to control activation of single light-sensitive molecules, a

  16. Single-molecule detection in electrochemical nanogap devices

    NARCIS (Netherlands)

    Kang, Shuo

    2014-01-01

    This thesis presents results obtained during a research project aimed at realizing electrochemical single-molecule detection in water. By virtue of being inherently electrical in nature, electrochemical sensors are particularly well suited for integration with microelectronics compared to sensors ba

  17. Atomic-Scale Control of Electron Transport through Single Molecules

    DEFF Research Database (Denmark)

    Wang, Y. F.; Kroger, J.; Berndt, R.

    2010-01-01

    Tin-phthalocyanine molecules adsorbed on Ag(111) were contacted with the tip of a cryogenic scanning tunneling microscope. Orders-of-magnitude variations of the single-molecule junction conductance were achieved by controllably dehydrogenating the molecule and by modifying the atomic structure...

  18. Single-molecule choreography between telomere proteins and G quadruplexes.

    Science.gov (United States)

    Hopfner, Karl-Peter

    2014-06-10

    Telomeric DNA binds proteins to protect chromosome ends, but it also adopts G quadruplex (GQ) structures. Two new studies by Hwang and colleagues (in this issue of Structure) and Ray and colleagues (published elsewhere) use single molecule imaging to reveal how GQs affect the binding of different telomere associated proteins. The data suggest that GQs play important roles in regulating accessibility of telomeres.

  19. Visualizing DNA Replication at the Single-Molecule Level

    NARCIS (Netherlands)

    Tanner, Nathan A.

    2010-01-01

    Recent advances in single-molecule methodology have made it possible to study the dynamic behavior of individual enzymes and their interactions with other proteins in multiprotein complexes. Here, we describe newly developed methods to study the coordination of DNA unwinding, priming, and synthesis

  20. VISUALIZING DNA REPLICATION AT THE SINGLE-MOLECULE LEVEL

    NARCIS (Netherlands)

    Tanner, Nathan A.; van Oijen, Antoine M.; Walter, NG

    2010-01-01

    Recent advances in single-molecule methodology have made it possible to study the dynamic behavior of individual enzymes and their interactions with other proteins in multiprotein complexes. Here, we describe newly developed methods to study the coordination of DNA unwinding, priming, and synthesis

  1. Visualizing Single-molecule DNA Replication with Fluorescence Microscopy

    NARCIS (Netherlands)

    Tanner, Nathan A.; Loparo, Joseph J.; Oijen, Antoine M. van

    2009-01-01

    We describe a simple fluorescence microscopy-based real-time method for observing DNA replication at the single-molecule level. A circular, forked DNA template is attached to a functionalized glass coverslip and replicated extensively after introduction of replication proteins and nucleotides. The

  2. Alternating-laser excitation : single-molecule FRET and beyond

    NARCIS (Netherlands)

    Hohlbein, Johannes; Craggs, Timothy D.; Cordes, Thorben

    2014-01-01

    The alternating-laser excitation (ALEX) scheme continues to expand the possibilities of fluorescence-based assays to study biological entities and interactions. Especially the combination of ALEX and single-molecule Forster Resonance Energy Transfer (smFRET) has been very successful as ALEX enables

  3. Photoemission of Mn6Cr single-molecule magnets

    Science.gov (United States)

    Heinzmann, U.; Merschjohann, F.; Helmstedt, A.; Gryzia, A.; Winter, A.; Steppeler, S.; Müller, N.; Brechling, A.; Sacher, M.; Richthofen, C.-G. Freiherr v.; Glaser, T.; Voss, S.; Fonin, M.; Rüdiger, U.

    2009-11-01

    We present the status of new experimental studies of X-ray absorption spectroscopy, magnetic circular dichroism in photoemission and spin-resolved photoelectron spectroscopy of Mn6Cr single-molecule magnet systems by use of circularly-polarized synchrotron radiation of the electron storage rings in Maxlab Lund, Sweden und BESSY, Berlin, Germany.

  4. Electron transfer dynamics of bistable single-molecule junctions

    DEFF Research Database (Denmark)

    Danilov, A.V; Kubatkin, S.; Kafanov, S. G.

    2006-01-01

    We present transport measurements of single-molecule junctions bridged by a molecule with three benzene rings connected by two double bonds and with thiol end-groups that allow chemical binding to gold electrodes. The I-V curves show switching behavior between two distinct states. By statistical ...

  5. Large negative differential conductance in single-molecule break junctions

    NARCIS (Netherlands)

    Perrin, Mickael L.; Frisenda, Riccardo; Koole, Max; Seldenthuis, Johannes S.; Gil, Jose A. Celis; Valkenier, Hennie; Hummelen, Jan C.; Renaud, Nicolas; Grozema, Ferdinand C.; Thijssen, Joseph M.; Dulic, Diana; van der Zant, Herre S. J.

    2014-01-01

    Molecular electronics aims at exploiting the internal structure and electronic orbitals of molecules to construct functional building blocks(1). To date, however, the overwhelming majority of experimentally realized single-molecule junctions can be described as single quantum dots, where transport i

  6. Single Molecule Study of Cellulase Hydrolysis of Crystalline Cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y.-S.; Luo, Y.; Baker, J. O.; Zeng, Y.; Himmel, M. E.; Smith, S.; Ding, S.-Y.

    2009-12-01

    This report seeks to elucidate the role of cellobiohydrolase-I (CBH I) in the hydrolysis of crystalline cellulose. A single-molecule approach uses various imaging techniques to investigate the surface structure of crystalline cellulose and changes made in the structure by CBH I.

  7. Visualizing Single-molecule DNA Replication with Fluorescence Microscopy

    NARCIS (Netherlands)

    Tanner, Nathan A.; Loparo, Joseph J.; Oijen, Antoine M. van

    2009-01-01

    We describe a simple fluorescence microscopy-based real-time method for observing DNA replication at the single-molecule level. A circular, forked DNA template is attached to a functionalized glass coverslip and replicated extensively after introduction of replication proteins and nucleotides. The g

  8. VISUALIZING DNA REPLICATION AT THE SINGLE-MOLECULE LEVEL

    NARCIS (Netherlands)

    Tanner, Nathan A.; van Oijen, Antoine M.; Walter, NG

    2010-01-01

    Recent advances in single-molecule methodology have made it possible to study the dynamic behavior of individual enzymes and their interactions with other proteins in multiprotein complexes. Here, we describe newly developed methods to study the coordination of DNA unwinding, priming, and synthesis

  9. Visualizing DNA Replication at the Single-Molecule Level

    NARCIS (Netherlands)

    Tanner, Nathan A.

    2010-01-01

    Recent advances in single-molecule methodology have made it possible to study the dynamic behavior of individual enzymes and their interactions with other proteins in multiprotein complexes. Here, we describe newly developed methods to study the coordination of DNA unwinding, priming, and synthesis

  10. Investigating single molecule adhesion by atomic force spectroscopy.

    Science.gov (United States)

    Stetter, Frank W S; Kienle, Sandra; Krysiak, Stefanie; Hugel, Thorsten

    2015-02-27

    Atomic force spectroscopy is an ideal tool to study molecules at surfaces and interfaces. An experimental protocol to couple a large variety of single molecules covalently onto an AFM tip is presented. At the same time the AFM tip is passivated to prevent unspecific interactions between the tip and the substrate, which is a prerequisite to study single molecules attached to the AFM tip. Analyses to determine the adhesion force, the adhesion length, and the free energy of these molecules on solid surfaces and bio-interfaces are shortly presented and external references for further reading are provided. Example molecules are the poly(amino acid) polytyrosine, the graft polymer PI-g-PS and the phospholipid POPE (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine). These molecules are desorbed from different surfaces like CH3-SAMs, hydrogen terminated diamond and supported lipid bilayers under various solvent conditions. Finally, the advantages of force spectroscopic single molecule experiments are discussed including means to decide if truly a single molecule has been studied in the experiment.

  11. Time-Varying Triplet State Lifetimes of Single Molecules

    NARCIS (Netherlands)

    Veerman, J.A.; Garcia-Parajo, M.F.; Kuipers, L.; Hulst, van N.F.

    1999-01-01

    It is found that triplet state lifetimes and intersystem crossing yields of individual molecules embedded in a polymer host at room temperature are not constant in time. The range over which the triplet lifetime of a single molecule varies during long observation times shows a strong similarity with

  12. Assembling a single-molecule view on nucleosome dynamics

    NARCIS (Netherlands)

    Vlijm, R.

    2014-01-01

    The main focus of this thesis is a better understanding of the basic compaction mechanism of our DNA using multiple single-molecule techniques. The stretched-out length of our DNA is enormous compared with the dimensions of a cell. To make DNA fit within a cell it is systematically wrapped around pr

  13. Large negative differential conductance in single-molecule break junctions

    NARCIS (Netherlands)

    Perrin, Mickael L.; Frisenda, Riccardo; Koole, Max; Seldenthuis, Johannes S.; Gil, Jose A. Celis; Valkenier, Hennie; Hummelen, Jan C.; Renaud, Nicolas; Grozema, Ferdinand C.; Thijssen, Joseph M.; Dulic, Diana; van der Zant, Herre S. J.

    2014-01-01

    Molecular electronics aims at exploiting the internal structure and electronic orbitals of molecules to construct functional building blocks(1). To date, however, the overwhelming majority of experimentally realized single-molecule junctions can be described as single quantum dots, where transport i

  14. An RNA toolbox for single-molecule force spectroscopy studies

    NARCIS (Netherlands)

    Vilfan, I.D.; Kamping, W.; Van den Hout, M.; Candelli, A.; Hage, S.; Dekker, N.H.

    2007-01-01

    Precise, controllable single-molecule force spectroscopy studies of RNA and RNA-dependent processes have recently shed new light on the dynamics and pathways of RNA folding and RNAenzyme interactions. A crucial component of this research is the design and assembly of an appropriate RNA construct. Su

  15. The optics inside an automated single molecule array analyzer

    Science.gov (United States)

    McGuigan, William; Fournier, David R.; Watson, Gary W.; Walling, Les; Gigante, Bill; Duffy, David C.; Rissin, David M.; Kan, Cheuk W.; Meyer, Raymond E.; Piech, Tomasz; Fishburn, Matthew W.

    2014-02-01

    Quanterix and Stratec Biomedical have developed an instrument that enables the automated measurement of multiple proteins at concentration ~1000 times lower than existing immunoassays. The instrument is based on Quanterix's proprietary Single Molecule Array technology (Simoa™ ) that facilitates the detection and quantification of biomarkers previously difficult to measure, thus opening up new applications in life science research and in-vitro diagnostics. Simoa is based on trapping individual beads in arrays of femtoliter-sized wells that, when imaged with sufficient resolution, allows for counting of single molecules associated with each bead. When used to capture and detect proteins, this approach is known as digital ELISA (Enzyme-linked immunosorbent assay). The platform developed is a merger of many science and engineering disciplines. This paper concentrates on the optical technologies that have enabled the development of a fully-automated single molecule analyzer. At the core of the system is a custom, wide field-of-view, fluorescence microscope that images arrays of microwells containing single molecules bound to magnetic beads. A consumable disc containing 24 microstructure arrays was developed previously in collaboration with Sony DADC. The system cadence requirements, array dimensions, and requirement to detect single molecules presented significant optical challenges. Specifically, the wide field-of-view needed to image the entire array resulted in the need for a custom objective lens. Additionally, cost considerations for the system required a custom solution that leveraged the image processing capabilities. This paper will discuss the design considerations and resultant optical architecture that has enabled the development of an automated digital ELISA platform.

  16. Electronic transport in benzodifuran single-molecule transistors

    Science.gov (United States)

    Xiang, An; Li, Hui; Chen, Songjie; Liu, Shi-Xia; Decurtins, Silvio; Bai, Meilin; Hou, Shimin; Liao, Jianhui

    2015-04-01

    Benzodifuran (BDF) single-molecule transistors have been fabricated in electromigration break junctions for electronic measurements. The inelastic electron tunneling spectrum validates that the BDF molecule is the pathway of charge transport. The gating effect is analyzed in the framework of a single-level tunneling model combined with transition voltage spectroscopy (TVS). The analysis reveals that the highest occupied molecular orbital (HOMO) of the thiol-terminated BDF molecule dominates the charge transport through Au-BDF-Au junctions. Moreover, the energy shift of the HOMO caused by the gate voltage is the main reason for conductance modulation. In contrast, the electronic coupling between the BDF molecule and the gold electrodes, which significantly affects the low-bias junction conductance, is only influenced slightly by the applied gate voltage. These findings will help in the design of future molecular electronic devices.Benzodifuran (BDF) single-molecule transistors have been fabricated in electromigration break junctions for electronic measurements. The inelastic electron tunneling spectrum validates that the BDF molecule is the pathway of charge transport. The gating effect is analyzed in the framework of a single-level tunneling model combined with transition voltage spectroscopy (TVS). The analysis reveals that the highest occupied molecular orbital (HOMO) of the thiol-terminated BDF molecule dominates the charge transport through Au-BDF-Au junctions. Moreover, the energy shift of the HOMO caused by the gate voltage is the main reason for conductance modulation. In contrast, the electronic coupling between the BDF molecule and the gold electrodes, which significantly affects the low-bias junction conductance, is only influenced slightly by the applied gate voltage. These findings will help in the design of future molecular electronic devices. Electronic supplementary information (ESI) available: The fabrication procedure for BDF single-molecule

  17. Single Molecule Junctions: Probing Contact Chemistry and Fundamental Circuit Laws

    Energy Technology Data Exchange (ETDEWEB)

    Hybertsen M. S.

    2013-04-11

    By exploiting selective link chemistry, formation of single molecule junctions with reproducible conductance has become established. Systematic studies reveal the structure-conductance relationships for diverse molecules. I will draw on experiments from my collaborators at Columbia University, atomic-scale calculations and theory to describe progress in two areas. First, I will describe a novel route to form single molecule junctions, based on SnMe3 terminated molecules, in which gold directly bonds to carbon in the molecule backbone resulting in near ideal contact resistance [1]. Second, comparison of the conductance of junctions formed with molecular species containing either one backbone or two backbones in parallel allows demonstration of the role of quantum interference in the conductance superposition law at the molecular scale [2].

  18. Coherent spectroscopy in the single molecule limit (Conference Presentation)

    Science.gov (United States)

    Potma, Eric O.; Crampton, Kevin; Fast, Alex; Alfonso García, Alba; Apkarian, Vartkess A.

    2016-10-01

    Surface enhanced Raman scattering (SERS) is a popular technique for detecting and analyzing molecules at very low concentrations. The sensitivity of SERS is high enough to detect single molecules. It has proven difficult, however, to perform similar measurements in the so-called nonlinear optical regime, a regime in which the molecule is responding to multiple light pulses. Nonetheless, recent experiments indicate that after careful optimization, it is possible to generate signals derived from nonlinear analogs of SERS. Such measurements make it possible to view molecular vibrations in real time, which amounts to the femto- to pico-second range. In this contribution, we discuss in detail under which conditions detectable surface-enhanced coherent Raman signals can be expected, provide experimental evidence of coherent Raman scattering of single molecules, and highlight the unique information that can be attained from such measurements.

  19. Directly measuring single molecule heterogeneity using force spectroscopy

    CERN Document Server

    Hinczewski, Michael; Thirumalai, D

    2016-01-01

    One of the most intriguing results of single molecule experiments on proteins and nucleic acids is the discovery of functional heterogeneity: the observation that complex cellular machines exhibit multiple, biologically active conformations. The structural differences between these conformations may be subtle, but each distinct state can be remarkably long-lived, with random interconversions between states occurring only at macroscopic timescales, fractions of a second or longer. Though we now have proof of functional heterogeneity in a handful of systems---enzymes, motors, adhesion complexes---identifying and measuring it remains a formidable challenge. Here we show that evidence of this phenomenon is more widespread than previously known, encoded in data collected from some of the most well-established single molecule techniques: AFM or optical tweezer pulling experiments. We present a theoretical procedure for analyzing distributions of rupture/unfolding forces recorded at different pulling speeds. This re...

  20. Single molecule insights on conformational selection and induced fit mechanism

    DEFF Research Database (Denmark)

    Hatzakis, Nikos

    2014-01-01

    Biomolecular interactions regulate a plethora of vital cellular processes, including signal transduction, metabolism, catalysis and gene regulation. Regulation is encoded in the molecular properties of the constituent proteins; distinct conformations correspond to different functional outcomes...... of unsynchronized molecules, often masking intrinsic dynamic behavior of proteins and biologically significant transient intermediates. Single molecule measurements are emerging as a powerful tool for characterizing protein function. They offer the direct observation and quantification of the activity, abundance...... and lifetime of multiple states and transient intermediates in the energy landscape, that are typically averaged out in non-synchronized ensemble measurements. Here we survey new insights from single molecule studies that advance our understanding of the molecular mechanisms underlying biomolecular recognition....

  1. Single molecule imaging with longer x-ray laser pulses

    CERN Document Server

    Martin, Andrew V; Caleman, Carl; Quiney, Harry M

    2015-01-01

    In serial femtosecond crystallography, x-ray laser pulses do not need to outrun all radiation damage processes because Bragg diffraction exceeds the damage-induced background scattering for longer pulses ($\\sim$ 50--100 fs). This is due to a "self-gating pulse" effect whereby damage terminates Bragg diffraction prior to the pulse completing its passage through the sample, as if that diffraction were produced by a shorter pulse of equal fluence. We show here that a similar gating effect applies to single molecule diffraction with respect to spatially uncorrelated damage processes like ionization and ion diffusion. The effect is clearly seen in calculations of the diffraction contrast, by calculating the diffraction of average structure separately to the diffraction from statistical fluctuations of the structure due to damage ("damage noise"). Our results suggest that sub-nanometer single molecule imaging with longer pulses, like those produced at currently operating facilities, should not yet be ruled out. The...

  2. Electronic Single Molecule Identification of Carbohydrate Isomers by Recognition Tunneling

    CERN Document Server

    Im, JongOne; Liu, Hao; Zhao, Yanan; Sen, Suman; Biswas, Sudipta; Ashcroft, Brian; Borges, Chad; Wang, Xu; Lindsay, Stuart; Zhang, Peiming

    2016-01-01

    Glycans play a central role as mediators in most biological processes, but their structures are complicated by isomerism. Epimers and anomers, regioisomers, and branched sequences contribute to a structural variability that dwarfs those of nucleic acids and proteins, challenging even the most sophisticated analytical tools, such as NMR and mass spectrometry. Here, we introduce an electron tunneling technique that is label-free and can identify carbohydrates at the single-molecule level, offering significant benefits over existing technology. It is capable of analyzing sub-picomole quantities of sample, counting the number of individual molecules in each subset in a population of coexisting isomers, and is quantitative over more than four orders of magnitude of concentration. It resolves epimers not well separated by ion-mobility and can be implemented on a silicon chip. It also provides a readout mechanism for direct single-molecule sequencing of linear oligosaccharides.

  3. Tetraanionic biphenyl lanthanide complexes as single-molecule magnets.

    Science.gov (United States)

    Huang, Wenliang; Le Roy, Jennifer J; Khan, Saeed I; Ungur, Liviu; Murugesu, Muralee; Diaconescu, Paula L

    2015-03-02

    Inverse sandwich biphenyl complexes [(NN(TBS))Ln]2(μ-biphenyl)[K(solvent)]2 [NN(TBS) = 1,1'-fc(NSi(t)BuMe2)2; Ln = Gd, Dy, Er; solvent = Et2O, toluene; 18-crown-6], containing a quadruply reduced biphenyl ligand, were synthesized and their magnetic properties measured. One of the dysprosium biphenyl complexes was found to exhibit antiferromagnetic coupling and single-molecule-magnet behavior with Ueff of 34 K under zero applied field. The solvent coordinated to potassium affected drastically the nature of the magnetic interaction, with the other dysprosium complex showing ferromagnetic coupling. Ab initio calculations were performed to understand the nature of magnetic coupling between the two lanthanide ions bridged by the anionic arene ligand and the origin of single-molecule-magnet behavior.

  4. Single Molecule Detection in Solution: Methods and Applications

    Science.gov (United States)

    Zander, Christoph; Enderlein, Jorg; Keller, Richard A.

    2002-07-01

    The detection of single molecules opens up new horizons in analytical chemistry, biology and medicine. This discipline, which belongs to the expanding field of nanoscience, has been rapidly emerging over the last ten years. This handbook provides a thorough overview of the field. It begins with basics of single molecule detection in solution, describes methods and devices (fluorescense correlation spectroscopy, surface enhanced Raman scattering, sensors, especially dyes, screening techniques, especially confocal laser scanning microscopy). In the second part, various applications in life sciences and medicine provide the latest research results. This modern handbook is a highly accessible reference for a broad community from advanced researchers, specialists and company professionals in physics, spectroscopy, biotechnology, analytical chemistry, and medicine. Written by leading authorities in the field, it is timely and fills a gap - up to now there exists no handbook concerning this theme.

  5. STM CONTROL OF CHEMICAL REACTIONS: Single-Molecule Synthesis

    Science.gov (United States)

    Hla, Saw-Wai; Rieder, Karl-Heinz

    2003-10-01

    The fascinating advances in single atom/molecule manipulation with a scanning tunneling microscope (STM) tip allow scientists to fabricate atomic-scale structures or to probe chemical and physical properties of matters at an atomic level. Owing to these advances, it has become possible for the basic chemical reaction steps, such as dissociation, diffusion, adsorption, readsorption, and bond-formation processes, to be performed by using the STM tip. Complete sequences of chemical reactions are able to induce at a single-molecule level. New molecules can be constructed from the basic molecular building blocks on a one-molecule-at-a-time basis by using a variety of STM manipulation schemes in a systematic step-by-step manner. These achievements open up entirely new opportunities in nanochemistry and nanochemical technology. In this review, various STM manipulation techniques useful in the single-molecule reaction process are reviewed, and their impact on the future of nanoscience and technology are discussed.

  6. Semisynthetic Nanoreactor for Reversible Single-Molecule Covalent Chemistry

    Science.gov (United States)

    2016-01-01

    Protein engineering has been used to remodel pores for applications in biotechnology. For example, the heptameric α-hemolysin pore (αHL) has been engineered to form a nanoreactor to study covalent chemistry at the single-molecule level. Previous work has been confined largely to the chemistry of cysteine side chains or, in one instance, to an irreversible reaction of an unnatural amino acid side chain bearing a terminal alkyne. Here, we present four different αHL pores obtained by coupling either two or three fragments by native chemical ligation (NCL). The synthetic αHL monomers were folded and incorporated into heptameric pores. The functionality of the pores was validated by hemolysis assays and by single-channel current recording. By using NCL to introduce a ketone amino acid, the nanoreactor approach was extended to an investigation of reversible covalent chemistry on an unnatural side chain at the single-molecule level. PMID:27537396

  7. Incoherent x-ray scattering in single molecule imaging

    CERN Document Server

    Slowik, Jan Malte; Dixit, Gopal; Jurek, Zoltan; Santra, Robin

    2014-01-01

    Imaging of the structure of single proteins or other biomolecules with atomic resolution would be enormously beneficial to structural biology. X-ray free-electron lasers generate highly intense and ultrashort x-ray pulses, providing a route towards imaging of single molecules with atomic resolution. The information on molecular structure is encoded in the coherent x-ray scattering signal. In contrast to crystallography there are no Bragg reflections in single molecule imaging, which means the coherent scattering is not enhanced. Consequently, a background signal from incoherent scattering deteriorates the quality of the coherent scattering signal. This background signal cannot be easily eliminated because the spectrum of incoherently scattered photons cannot be resolved by usual scattering detectors. We present an ab initio study of incoherent x-ray scattering from individual carbon atoms, including the electronic radiation damage caused by a highly intense x-ray pulse. We find that the coherent scattering pa...

  8. Minimizing detection errors in single molecule localization microscopy.

    Science.gov (United States)

    Křížek, Pavel; Raška, Ivan; Hagen, Guy M

    2011-02-14

    Fluorescence microscopy using single molecule imaging and localization (PALM, STORM, and similar approaches) has quickly been adopted as a convenient method for obtaining multicolor, 3D superresolution images of biological samples. Using an approach based on extensive Monte Carlo simulations, we examined the performance of various noise reducing filters required for the detection of candidate molecules. We determined a suitable noise reduction method and derived an optimal, nonlinear threshold which minimizes detection errors introduced by conventional algorithms. We also present a new technique for visualization of single molecule localization microscopy data based on adaptively jittered 2D histograms. We have used our new methods to image both Atto565-phalloidin labeled actin in fibroblast cells, and mCitrine-erbB3 expressed in A431 cells. The enhanced methods developed here were crucial in processing the data we obtained from these samples, as the overall signal to noise ratio was quite low.

  9. Single Molecule DNA Detection with an Atomic Vapor Notch Filter

    CERN Document Server

    Uhland, Denis; Widmann, Matthias; Lee, Sang-Yun; Wrachtrup, Jörg; Gerhardt, Ilja

    2015-01-01

    The detection of single molecules has facilitated many advances in life- and material-sciences. Commonly, it founds on the fluorescence detection of single molecules, which are for example attached to the structures under study. For fluorescence microscopy and sensing the crucial parameters are the collection and detection efficiency, such that photons can be discriminated with low background from a labeled sample. Here we show a scheme for filtering the excitation light in the optical detection of single stranded labeled DNA molecules. We use the narrow-band filtering properties of a hot atomic vapor to filter the excitation light from the emitted fluorescence of a single emitter. The choice of atomic sodium allows for the use of fluorescent dyes, which are common in life-science. This scheme enables efficient photon detection, and a statistical analysis proves an enhancement of the optical signal of more than 15% in a confocal and in a wide-field configuration.

  10. Dysprosium Acetylacetonato Single-Molecule Magnet Encapsulated in Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Ryo Nakanishi

    2016-12-01

    Full Text Available Dy single-molecule magnets (SMMs, which have several potential uses in a variety of applications, such as quantum computing, were encapsulated in multi-walled carbon nanotubes (MWCNTs by using a capillary method. Encapsulation was confirmed by using transmission electron microscopy (TEM. In alternating current magnetic measurements, the magnetic susceptibilities of the Dy acetylacetonato complexes showed clear frequency dependence even inside the MWCNTs, meaning that this hybrid can be used as magnetic materials in devices.

  11. Enhancing Single Molecule Imaging in Optofluidics and Microfluidics

    OpenAIRE

    Vasdekis, Andreas E.; Laporte, Gregoire P.J.

    2011-01-01

    Microfluidics and optofluidics have revolutionized high-throughput analysis and chemical synthesis over the past decade. Single molecule imaging has witnessed similar growth, due to its capacity to reveal heterogeneities at high spatial and temporal resolutions. However, both resolution types are dependent on the signal to noise ratio (SNR) of the image. In this paper, we review how the SNR can be enhanced in optofluidics and microfluidics. Starting with optofluidics, we outline integrated ph...

  12. Multiplex single-molecule interaction profiling of DNA barcoded proteins

    OpenAIRE

    Gu, Liangcai; Li, Chao; Aach, John; Hill, David E.; Vidal, Marc; Church, George M.

    2014-01-01

    In contrast with advances in massively parallel DNA sequencing1, high-throughput protein analyses2-4 are often limited by ensemble measurements, individual analyte purification and hence compromised quality and cost-effectiveness. Single-molecule (SM) protein detection achieved using optical methods5 is limited by the number of spectrally nonoverlapping chromophores. Here, we introduce a single molecular interaction-sequencing (SMI-Seq) technology for parallel protein interaction profiling le...

  13. Density Functional Theory with Dissipation: Transport through Single Molecules

    Energy Technology Data Exchange (ETDEWEB)

    Kieron Burke

    2012-04-30

    A huge amount of fundamental research was performed on this grant. Most of it focussed on fundamental issues of electronic structure calculations of transport through single molecules, using density functional theory. Achievements were: (1) First density functional theory with dissipation; (2) Pseudopotential plane wave calculations with master equation; (3) Weak bias limit; (4) Long-chain conductance; and (5) Self-interaction effects in tunneling.

  14. Quantum Chemical Characterization of Single Molecule Magnets Based on Uranium.

    Science.gov (United States)

    Spivak, Mariano; Vogiatzis, Konstantinos D; Cramer, Christopher J; Graaf, Coen de; Gagliardi, Laura

    2017-03-02

    Multiconfigurational electronic structure theory calculations including spin-orbit coupling effects were performed on four uranium-based single-molecule-magnets. Several quartet and doublet states were computed and the energy gaps between spin-orbit states were then used to determine magnetic susceptibility curves. Trends in experimental magnetic susceptibility curves were well reproduced by the calculations, and key factors affecting performance were identified.

  15. Predicting single-molecule conductance through machine learning

    Science.gov (United States)

    Lanzillo, Nicholas A.; Breneman, Curt M.

    2016-10-01

    We present a robust machine learning model that is trained on the experimentally determined electrical conductance values of approximately 120 single-molecule junctions used in scanning tunnelling microscope molecular break junction (STM-MBJ) experiments. Quantum mechanical, chemical, and topological descriptors are used to correlate each molecular structure with a conductance value, and the resulting machine-learning model can predict the corresponding value of conductance with correlation coefficients of r 2 = 0.95 for the training set and r 2 = 0.78 for a blind testing set. While neglecting entirely the effects of the metal contacts, this work demonstrates that single molecule conductance can be qualitatively correlated with a number of molecular descriptors through a suitably trained machine learning model. The dominant features in the machine learning model include those based on the electronic wavefunction, the geometry/topology of the molecule as well as the surface chemistry of the molecule. This model can be used to identify promising molecular structures for use in single-molecule electronic circuits and can guide synthesis and experiments in the future.

  16. Single Molecule Electrochemical Detection in Aqueous Solutions and Ionic Liquids.

    Science.gov (United States)

    Byers, Joshua C; Paulose Nadappuram, Binoy; Perry, David; McKelvey, Kim; Colburn, Alex W; Unwin, Patrick R

    2015-10-20

    Single molecule electrochemical detection (SMED) is an extremely challenging aspect of electroanalytical chemistry, requiring unconventional electrochemical cells and measurements. Here, SMED is reported using a "quad-probe" (four-channel probe) pipet cell, fabricated by depositing carbon pyrolytically into two diagonally opposite barrels of a laser-pulled quartz quadruple-barreled pipet and filling the open channels with electrolyte solution, and quasi-reference counter electrodes. A meniscus forms at the end of the probe covering the two working electrodes and is brought into contact with a substrate working electrode surface. In this way, a nanogap cell is produced whereby the two carbon electrodes in the pipet can be used to promote redox cycling of an individual molecule with the substrate. Anticorrelated currents generated at the substrate and tip electrodes, at particular distances (typically tens of nanometers), are consistent with the detection of single molecules. The low background noise realized in this droplet format opens up new opportunities in single molecule electrochemistry, including the use of ionic liquids, as well as aqueous solution, and the quantitative assessment and analysis of factors influencing redox cycling currents, due to a precisely known gap size.

  17. Single molecule microscopy in 3D cell cultures and tissues.

    Science.gov (United States)

    Lauer, Florian M; Kaemmerer, Elke; Meckel, Tobias

    2014-12-15

    From the onset of the first microscopic visualization of single fluorescent molecules in living cells at the beginning of this century, to the present, almost routine application of single molecule microscopy, the method has well-proven its ability to contribute unmatched detailed insight into the heterogeneous and dynamic molecular world life is composed of. Except for investigations on bacteria and yeast, almost the entire story of success is based on studies on adherent mammalian 2D cell cultures. However, despite this continuous progress, the technique was not able to keep pace with the move of the cell biology community to adapt 3D cell culture models for basic research, regenerative medicine, or drug development and screening. In this review, we will summarize the progress, which only recently allowed for the application of single molecule microscopy to 3D cell systems and give an overview of the technical advances that led to it. While initially posing a challenge, we finally conclude that relevant 3D cell models will become an integral part of the on-going success of single molecule microscopy.

  18. Vibrationally coupled electron transport through single-molecule junctions

    Energy Technology Data Exchange (ETDEWEB)

    Haertle, Rainer

    2012-04-26

    Single-molecule junctions are among the smallest electric circuits. They consist of a molecule that is bound to a left and a right electrode. With such a molecular nanocontact, the flow of electrical currents through a single molecule can be studied and controlled. Experiments on single-molecule junctions show that a single molecule carries electrical currents that can even be in the microampere regime. Thereby, a number of transport phenomena have been observed, such as, for example, diode- or transistor-like behavior, negative differential resistance and conductance switching. An objective of this field, which is commonly referred to as molecular electronics, is to relate these transport phenomena to the properties of the molecule in the contact. To this end, theoretical model calculations are employed, which facilitate an understanding of the underlying transport processes and mechanisms. Thereby, one has to take into account that molecules are flexible structures, which respond to a change of their charge state by a profound reorganization of their geometrical structure or may even dissociate. It is thus important to understand the interrelation between the vibrational degrees of freedom of a singlemolecule junction and the electrical current flowing through the contact. In this thesis, we investigate vibrational effects in electron transport through singlemolecule junctions. For these studies, we calculate and analyze transport characteristics of both generic and first-principles based model systems of a molecular contact. To this end, we employ a master equation and a nonequilibrium Green's function approach. Both methods are suitable to describe this nonequilibrium transport problem and treat the interactions of the tunneling electrons on the molecular bridge non-perturbatively. This is particularly important with respect to the vibrational degrees of freedom, which may strongly interact with the tunneling electrons. We show in detail that the resulting

  19. Single molecule energetics of F1-ATPase motor.

    Science.gov (United States)

    Muneyuki, Eiro; Watanabe-Nakayama, Takahiro; Suzuki, Tetsuya; Yoshida, Masasuke; Nishizaka, Takayuki; Noji, Hiroyuki

    2007-03-01

    Motor proteins are essential in life processes because they convert the free energy of ATP hydrolysis to mechanical work. However, the fundamental question on how they work when different amounts of free energy are released after ATP hydrolysis remains unanswered. To answer this question, it is essential to clarify how the stepping motion of a motor protein reflects the concentrations of ATP, ADP, and P(i) in its individual actions at a single molecule level. The F(1) portion of ATP synthase, also called F(1)-ATPase, is a rotary molecular motor in which the central gamma-subunit rotates against the alpha(3)beta(3) cylinder. The motor exhibits clear step motion at low ATP concentrations. The rotary action of this motor is processive and generates a high torque. These features are ideal for exploring the relationship between free energy input and mechanical work output, but there is a serious problem in that this motor is severely inhibited by ADP. In this study, we overcame this problem of ADP inhibition by introducing several mutations while retaining high enzymatic activity. Using a probe of attached beads, stepping rotation against viscous load was examined at a wide range of free energy values by changing the ADP concentration. The results showed that the apparent work of each individual step motion was not affected by the free energy of ATP hydrolysis, but the frequency of each individual step motion depended on the free energy. This is the first study that examined the stepping motion of a molecular motor at a single molecule level with simultaneous systematic control of DeltaG(ATP). The results imply that microscopically defined work at a single molecule level cannot be directly compared with macroscopically defined free energy input.

  20. Single particle tracking and single molecule energy transfer

    CERN Document Server

    Bräuchle, Christoph; Michaelis, Jens

    2009-01-01

    Closing a gap in the literature, this handbook gathers all the information on single particle tracking and single molecule energy transfer. It covers all aspects of this hot and modern topic, from detecting virus entry to membrane diffusion, and from protein folding using spFRET to coupled dye systems, as well recent achievements in the field. Throughout, the first-class editors and top international authors present content of the highest quality, making this a must-have for physical chemists, spectroscopists, molecular physicists and biochemists.

  1. Electronic Single Molecule Measurements with the Scanning Tunneling Microscope

    Science.gov (United States)

    Im, Jong One

    Richard Feynman said "There's plenty of room at the bottom". This inspired the techniques to improve the single molecule measurements. Since the first single molecule study was in 1961, it has been developed in various field and evolved into powerful tools to understand chemical and biological property of molecules. This thesis demonstrates electronic single molecule measurement with Scanning Tunneling Microscopy (STM) and two of applications of STM; Break Junction (BJ) and Recognition Tunneling (RT). First, the two series of carotenoid molecules with four different substituents were investigated to show how substituents relate to the conductance and molecular structure. The measured conductance by STM-BJ shows that Nitrogen induces molecular twist of phenyl distal substituents and conductivity increasing rather than Carbon. Also, the conductivity is adjustable by replacing the sort of residues at phenyl substituents. Next, amino acids and peptides were identified through STM-RT. The distribution of the intuitive features (such as amplitude or width) are mostly overlapped and gives only a little bit higher separation probability than random separation. By generating some features in frequency and cepstrum domain, the classification accuracy was dramatically increased. Because of large data size and many features, supporting vector machine (machine learning algorithm for big data) was used to identify the analyte from a data pool of all analytes RT data. The STM-RT opens a possibility of molecular sequencing in single molecule level. Similarly, carbohydrates were studied by STM-RT. Carbohydrates are difficult to read the sequence, due to their huge number of possible isomeric configurations. This study shows that STM-RT can identify not only isomers of mono-saccharides and disaccharides, but also various mono-saccharides from a data pool of eleven analytes. In addition, the binding affinity between recognition molecule and analyte was investigated by comparing with

  2. Single molecule studies of RNA polymerase II transcription in vitro.

    Science.gov (United States)

    Horn, Abigail E; Goodrich, James A; Kugel, Jennifer F

    2014-01-01

    Eukaryotic mRNA transcription by RNA polymerase II (RNAP II) is the first step in gene expression and a key determinant of cellular regulation. Elucidating the mechanism by which RNAP II synthesizes RNA is therefore vital to determining how genes are controlled under diverse biological conditions. Significant advances in understanding RNAP II transcription have been achieved using classical biochemical and structural techniques; however, aspects of the transcription mechanism cannot be assessed using these approaches. The application of single-molecule techniques to study RNAP II transcription has provided new insight only obtainable by studying molecules in this complex system one at a time.

  3. Single Molecule Study of Photoconversion and Spectral Heterogeneities of Fluorophores

    DEFF Research Database (Denmark)

    Liao, Zhiyu

    and mass spectrometry. Upon illumination, A3-TOTA+ degrades in a step-wise manner by de-ethylation on the periphery. The unusual red-shifted fluorescence from the photoproducts is not as intense as the original emission, but the photostability is improved. The acquired knowledge about photoconversion can...... stimulate new pathways in engineering and designing photoconvertible fluorophores, based on the reaction with oxygen or other chemicals. Besides, this results show that dyes that convert into other emissive species could give problems when interpreting single molecule FRET systems. The revealed mechanism...

  4. Electrochemical proton relay at the single-molecule level

    DEFF Research Database (Denmark)

    Kuznetsov, A. M.; Medvedev, I. G.; Ulstrup, Jens

    2009-01-01

    A scheme for the experimental study of single-proton transfer events, based on proton-coupled two-electron transfer between a proton donor and a proton acceptor molecule confined in the tunneling gap between two metal leads in electrolyte solution is suggested. Expressions for the electric current...... are derived and compared with formalism for electron tunneling through redox molecules. The scheme allows studying the kinetics of proton and hydrogen atom transfer as well as kinetic isotope effects at the single-molecule level under electrochemical potential control....

  5. Theoretical investigation on single-molecule chiroptical spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wakabayashi, M. [Tokyo Institute of Technology, School and Graduate School of Bioscience and Biotechnology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa (Japan); Yokojima, S. [Tokyo University of Pharmacy and Life Sciences, 1423-1 Horinouchi, Hachiouji-shi, Tokyo (Japan); Fukaminato, T. [Research Institute for Electronic Science, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020 (Japan); Ogata, K.; Nakamura, S. [Research Cluster for Innovation, Nakamura Lab, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)

    2013-12-10

    Some experimental results of chiroptical response of single molecule have already reported. In those experiments, dissymmetry parameter, g was used as an indicator of the relative circular dichroism intensity. The parameter for individual molecules was measured. For the purpose of giving an interpretation or explanation to the experimental result, the dissymmetry parameter is formulated on the basis of Fermi’s golden rule. Subsequently, the value of individual molecules is evaluated as a function of the direction of light propagation to the orientationary fixed molecules. The ground and excited wavefunction of electrons in the molecule and transition moments needed are culculated using the density functional theory.

  6. Hybrid photodetector for single-molecule spectroscopy and microscopy.

    Science.gov (United States)

    Michalet, X; Cheng, Adrian; Antelman, Joshua; Suyama, Motohiro; Arisaka, Katsushi; Weiss, Shimon

    2008-02-15

    We report benchmark tests of a new single-photon counting detector based on a GaAsP photocathode and an electron-bombarded avalanche photodiode developed by Hamamatsu Photonics. We compare its performance with those of standard Geiger-mode avalanche photodiodes. We show its advantages for FCS due to the absence of after-pulsing and for fluorescence lifetime measurements due to its excellent time resolution. Its large sensitive area also greatly simplifies setup alignment. Its spectral sensitivity being similar to that of recently introduced CMOS SPADs, this new detector could become a valuable tool for single-molecule fluorescence measurements, as well as for many other applications.

  7. Single Molecule Studies on Dynamics in Liquid Crystals

    Directory of Open Access Journals (Sweden)

    Daniela Täuber

    2013-09-01

    Full Text Available Single molecule (SM methods are able to resolve structure related dynamics of guest molecules in liquid crystals (LC. Highly diluted small dye molecules on the one hand explore structure formation and LC dynamics, on the other hand they report about a distortion caused by the guest molecules. The anisotropic structure of LC materials is used to retrieve specific conformation related properties of larger guest molecules like conjugated polymers. This in particular sheds light on organization mechanisms within biological cells, where large molecules are found in nematic LC surroundings. This review gives a short overview related to the application of highly sensitive SM detection schemes in LC.

  8. Single Molecule Raman Detection of Enkephalin on Silver Colloidal Particles

    DEFF Research Database (Denmark)

    Kneipp, Katrin; Kneipp, Holger; Abdali, Salim

    2004-01-01

    the Raman signal the enkephalin molecules have been attached to silver colloidal cluster structures. The experiments demonstrate that the SERS signal of the strongly enhanced ring breathing vibration of phenylalanine at 1000 cm-1 can be used as “intrinsic marker” for detecting a single enkephalin molecule......Enkephalin, an endogeneous substance in the human brain showing morphine-like biological functions, has been detected at the single molecule level based on the surface-enhanced Raman signal of the ring breathing mode of phenylalanine, which is one building block of the molecule. For enhancing...

  9. Single-molecule denaturation mapping of DNA in nanofluidic channels

    DEFF Research Database (Denmark)

    Reisner, Walter; Larsen, Niels Bent; Silahtaroglu, Asli

    2010-01-01

    Here we explore the potential power of denaturation mapping as a single-molecule technique. By partially denaturing YOYO (R)-1-labeled DNA in nanofluidic channels with a combination of formamide and local heating, we obtain a sequence-dependent "barcode" corresponding to a series of local dips....... Consequently, the technique is sensitive to sequence variation without requiring enzymatic labeling or a restriction step. This technique may serve as the basis for a new mapping technology ideally suited for investigating the long-range structure of entire genomes extracted from single cells....

  10. Dual-Colored DNA Comb Polymers for Single Molecule Rheology

    Science.gov (United States)

    Mai, Danielle; Marciel, Amanda; Schroeder, Charles

    2014-03-01

    We report the synthesis and characterization of branched biopolymers for single molecule rheology. In our work, we utilize a hybrid enzymatic-synthetic approach to graft ``short'' DNA branches to ``long'' DNA backbones, thereby producing macromolecular DNA comb polymers. The branches and backbones are synthesized via polymerase chain reaction with chemically modified deoxyribonucleotides (dNTPs): ``short'' branches consist of Cy5-labeled dNTPs and a terminal azide group, and ``long'' backbones contain dibenzylcyclooctyne-modified (DBCO) dNTPs. In this way, we utilize strain-promoted, copper-free cycloaddition ``click'' reactions for facile grafting of azide-terminated branches at DBCO sites along backbones. Copper-free click reactions are bio-orthogonal and nearly quantitative when carried out under mild conditions. Moreover, comb polymers can be labeled with an intercalating dye (e.g., YOYO) for dual-color fluorescence imaging. We characterized these materials using gel electrophoresis, HPLC, and optical microscopy, with atomic force microscopy in progress. Overall, DNA combs are suitable for single molecule dynamics, and in this way, our work holds the potential to improve our understanding of topologically complex polymer melts and solutions.

  11. Single-molecule enzymology à la Michaelis-Menten.

    Science.gov (United States)

    Grima, Ramon; Walter, Nils G; Schnell, Santiago

    2014-01-01

    Over the past 100 years, deterministic rate equations have been successfully used to infer enzyme-catalysed reaction mechanisms and to estimate rate constants from reaction kinetics experiments conducted in vitro. In recent years, sophisticated experimental techniques have been developed that begin to allow the measurement of enzyme-catalysed and other biopolymer-mediated reactions inside single cells at the single-molecule level. Time-course data obtained using these methods are considerably noisy because molecule numbers within cells are typically quite small. As a consequence, the interpretation and analysis of single-cell data requires stochastic methods, rather than deterministic rate equations. Here, we concisely review both experimental and theoretical techniques that enable single-molecule analysis, with particular emphasis on the major developments in the field of theoretical stochastic enzyme kinetics, from its inception in the mid-20th century to its modern-day status. We discuss the differences between stochastic and deterministic rate equation models, how these depend on enzyme molecule numbers and substrate inflow into the reaction compartment, and how estimation of rate constants from single-cell data is possible using recently developed stochastic approaches. © 2013 FEBS.

  12. State space approach to single molecule localization in fluorescence microscopy.

    Science.gov (United States)

    Vahid, Milad R; Chao, Jerry; Kim, Dongyoung; Ward, E Sally; Ober, Raimund J

    2017-03-01

    Single molecule super-resolution microscopy enables imaging at sub-diffraction-limit resolution by producing images of subsets of stochastically photoactivated fluorophores over a sequence of frames. In each frame of the sequence, the fluorophores are accurately localized, and the estimated locations are used to construct a high-resolution image of the cellular structures labeled by the fluorophores. Many methods have been developed for localizing fluorophores from the images. The majority of these methods comprise two separate steps: detection and estimation. In the detection step, fluorophores are identified. In the estimation step, the locations of the identified fluorophores are estimated through an iterative approach. Here, we propose a non-iterative state space-based localization method which combines the detection and estimation steps. We demonstrate that the estimated locations obtained from the proposed method can be used as initial conditions in an estimation routine to potentially obtain improved location estimates. The proposed method models the given image as the frequency response of a multi-order system obtained with a balanced state space realization algorithm based on the singular value decomposition of a Hankel matrix. The locations of the poles of the resulting system determine the peak locations in the frequency domain, and the locations of the most significant peaks correspond to the single molecule locations in the original image. The performance of the method is validated using both simulated and experimental data.

  13. From single molecules to life: microscopy at the nanoscale.

    Science.gov (United States)

    Turkowyd, Bartosz; Virant, David; Endesfelder, Ulrike

    2016-10-01

    Super-resolution microscopy is the term commonly given to fluorescence microscopy techniques with resolutions that are not limited by the diffraction of light. Since their conception a little over a decade ago, these techniques have quickly become the method of choice for many biologists studying structures and processes of single cells at the nanoscale. In this review, we present the three main approaches used to tackle the diffraction barrier of ∼200 nm: stimulated-emission depletion (STED) microscopy, structured illumination microscopy (SIM), and single-molecule localization microscopy (SMLM). We first present a theoretical overview of the techniques and underlying physics, followed by a practical guide to all of the facets involved in designing a super-resolution experiment, including an approachable explanation of the photochemistry involved, labeling methods available, and sample preparation procedures. Finally, we highlight some of the most exciting recent applications of and developments in these techniques, and discuss the outlook for this field. Graphical Abstract Super-resolution microscopy techniques. Working principles of the common approaches stimulated-emission depletion (STED) microscopy, structured illumination microscopy (SIM), and single-molecule localization microscopy (SMLM).

  14. Surface passivation for single-molecule protein studies.

    Science.gov (United States)

    Chandradoss, Stanley D; Haagsma, Anna C; Lee, Young Kwang; Hwang, Jae-Ho; Nam, Jwa-Min; Joo, Chirlmin

    2014-04-24

    Single-molecule fluorescence spectroscopy has proven to be instrumental in understanding a wide range of biological phenomena at the nanoscale. Important examples of what this technique can yield to biological sciences are the mechanistic insights on protein-protein and protein-nucleic acid interactions. When interactions of proteins are probed at the single-molecule level, the proteins or their substrates are often immobilized on a glass surface, which allows for a long-term observation. This immobilization scheme may introduce unwanted surface artifacts. Therefore, it is essential to passivate the glass surface to make it inert. Surface coating using polyethylene glycol (PEG) stands out for its high performance in preventing proteins from non-specifically interacting with a glass surface. However, the polymer coating procedure is difficult, due to the complication arising from a series of surface treatments and the stringent requirement that a surface needs to be free of any fluorescent molecules at the end of the procedure. Here, we provide a robust protocol with step-by-step instructions. It covers surface cleaning including piranha etching, surface functionalization with amine groups, and finally PEG coating. To obtain a high density of a PEG layer, we introduce a new strategy of treating the surface with PEG molecules over two rounds, which remarkably improves the quality of passivation. We provide representative results as well as practical advice for each critical step so that anyone can achieve the high quality surface passivation.

  15. Studying the Nucleated Mammalian Cell Membrane by Single Molecule Approaches

    Science.gov (United States)

    Wang, Feng; Wu, Jiazhen; Gao, Jing; Liu, Shuheng; Jiang, Junguang; Jiang, Shibo; Wang, Hongda

    2014-01-01

    The cell membrane plays a key role in compartmentalization, nutrient transportation and signal transduction, while the pattern of protein distribution at both cytoplasmic and ectoplasmic sides of the cell membrane remains elusive. Using a combination of single-molecule techniques, including atomic force microscopy (AFM), single molecule force spectroscopy (SMFS) and stochastic optical reconstruction microscopy (STORM), to study the structure of nucleated cell membranes, we found that (1) proteins at the ectoplasmic side of the cell membrane form a dense protein layer (4 nm) on top of a lipid bilayer; (2) proteins aggregate to form islands evenly dispersed at the cytoplasmic side of the cell membrane with a height of about 10–12 nm; (3) cholesterol-enriched domains exist within the cell membrane; (4) carbohydrates stay in microdomains at the ectoplasmic side; and (5) exposed amino groups are asymmetrically distributed on both sides. Based on these observations, we proposed a Protein Layer-Lipid-Protein Island (PLLPI) model, to provide a better understanding of cell membrane structure, membrane trafficking and viral fusion mechanisms. PMID:24806512

  16. Common fluorescent proteins for single-molecule localization microscopy

    Science.gov (United States)

    Klementieva, Natalia V.; Bozhanova, Nina G.; Mishina, Natalie M.; Zagaynova, Elena V.; Lukyanov, Konstantin A.; Mishin, Alexander S.

    2015-07-01

    Super-resolution techniques for breaking the diffraction barrier are spread out over multiple studies nowadays. Single-molecule localization microscopy such as PALM, STORM, GSDIM, etc allow to get super-resolved images of cell ultrastructure by precise localization of individual fluorescent molecules via their temporal isolation. However, these methods are supposed the use of fluorescent dyes and proteins with special characteristics (photoactivation/photoconversion). At the same time, there is a need for retaining high photostability of fluorophores during long-term acquisition. Here, we first showed the potential of common red fluorescent protein for single-molecule localization microscopy based on spontaneous intrinsic blinking. Also, we assessed the effect of different imaging media on photobleaching of these fluorescent proteins. Monomeric orange and red fluorescent proteins were examined for stochastic switching from a dark state to a bright fluorescent state. We studied fusions with cytoskeletal proteins in NIH/3T3 and HeLa cells. Imaging was performed on the Nikon N-STORM system equipped with EMCCD camera. To define the optimal imaging conditions we tested several types of cell culture media and buffers. As a result, high-resolution images of cytoskeleton structure were obtained. Essentially, low-intensity light was sufficient to initiate the switching of tested red fluorescent protein reducing phototoxicity and provide long-term live-cell imaging.

  17. High contrast single molecule tracking in the pericellular coat

    Science.gov (United States)

    Scrimgeour, Jan; McLane, Louis T.; Curtis, Jennifer E.

    2014-03-01

    The pericellular coat is a robust, hydrated, polymer brush-like structure that can extend several micrometers into the extracellular space around living cells. By controlling access to the cell surface, acting as a filter and storage reservoir for proteins, and actively controlling tissue-immune system interactions, the cell coat performs many important functions at scales ranging from the single cell to whole tissues. The cell coat consists of a malleable backbone - the large polysaccharide hyaluronic acid (HA) - with its structure, material properties, and ultimately its bio-functionality tuned by a diverse set of HA binding proteins. These proteins add charge, cross-links and growth factor-like ligands to the coat To probe the dynamic behavior of this soft biomaterial we have used high contrast single molecule imaging, based on highly inclined laser illumination, to observe individual fluorescently labeled HA binding proteins within the cell coat. Our work focuses on the cell coat of living chondrocyte (cartilage) cells, and in particular the effect of the large, highly charged, protein aggrecan on the properties of the coat. Through single molecule imaging we observe that aggrecan is tightly tethered to HA, and plays an important role in cell coat extension and stiffening.

  18. Single molecule study of a processivity clamp sliding on DNA

    Energy Technology Data Exchange (ETDEWEB)

    Laurence, T A; Kwon, Y; Johnson, A; Hollars, C; O?Donnell, M; Camarero, J A; Barsky, D

    2007-07-05

    Using solution based single molecule spectroscopy, we study the motion of the polIII {beta}-subunit DNA sliding clamp ('{beta}-clamp') on DNA. Present in all cellular (and some viral) forms of life, DNA sliding clamps attach to polymerases and allow rapid, processive replication of DNA. In the absence of other proteins, the DNA sliding clamps are thought to 'freely slide' along the DNA; however, the abundance of positively charged residues along the inner surface may create favorable electrostatic contact with the highly negatively charged DNA. We have performed single-molecule measurements on a fluorescently labeled {beta}-clamp loaded onto freely diffusing plasmids annealed with fluorescently labeled primers of up to 90 bases. We find that the diffusion constant for 1D diffusion of the {beta}-clamp on DNA satisfies D {le} 10{sup -14} cm{sup 2}/s, much slower than the frictionless limit of D = 10{sup -10} cm{sup 2}/s. We find that the {beta} clamp remains at the 3-foot end in the presence of E. coli single-stranded binding protein (SSB), which would allow for a sliding clamp to wait for binding of the DNA polymerase. Replacement of SSB with Human RP-A eliminates this interaction; free movement of sliding clamp and poor binding of clamp loader to the junction allows sliding clamp to accumulate on DNA. This result implies that the clamp not only acts as a tether, but also a placeholder.

  19. Large negative differential conductance in single-molecule break junctions.

    Science.gov (United States)

    Perrin, Mickael L; Frisenda, Riccardo; Koole, Max; Seldenthuis, Johannes S; Gil, Jose A Celis; Valkenier, Hennie; Hummelen, Jan C; Renaud, Nicolas; Grozema, Ferdinand C; Thijssen, Joseph M; Dulić, Diana; van der Zant, Herre S J

    2014-10-01

    Molecular electronics aims at exploiting the internal structure and electronic orbitals of molecules to construct functional building blocks. To date, however, the overwhelming majority of experimentally realized single-molecule junctions can be described as single quantum dots, where transport is mainly determined by the alignment of the molecular orbital levels with respect to the Fermi energies of the electrodes and the electronic coupling with those electrodes. Particularly appealing exceptions include molecules in which two moieties are twisted with respect to each other and molecules in which quantum interference effects are possible. Here, we report the experimental observation of pronounced negative differential conductance in the current-voltage characteristics of a single molecule in break junctions. The molecule of interest consists of two conjugated arms, connected by a non-conjugated segment, resulting in two coupled sites. A voltage applied across the molecule pulls the energy of the sites apart, suppressing resonant transport through the molecule and causing the current to decrease. A generic theoretical model based on a two-site molecular orbital structure captures the experimental findings well, as confirmed by density functional theory with non-equilibrium Green's functions calculations that include the effect of the bias. Our results point towards a conductance mechanism mediated by the intrinsic molecular orbitals alignment of the molecule.

  20. Tunable magnetoresistance in an asymmetrically coupled single-molecule junction

    Science.gov (United States)

    Warner, Ben; El Hallak, Fadi; Prüser, Henning; Sharp, John; Persson, Mats; Fisher, Andrew J.; Hirjibehedin, Cyrus F.

    2015-03-01

    Phenomena that are highly sensitive to magnetic fields can be exploited in sensors and non-volatile memories. The scaling of such phenomena down to the single-molecule level may enable novel spintronic devices. Here, we report magnetoresistance in a single-molecule junction arising from negative differential resistance that shifts in a magnetic field at a rate two orders of magnitude larger than Zeeman shifts. This sensitivity to the magnetic field produces two voltage-tunable forms of magnetoresistance, which can be selected via the applied bias. The negative differential resistance is caused by transient charging of an iron phthalocyanine (FePc) molecule on a single layer of copper nitride (Cu2N) on a Cu(001) surface, and occurs at voltages corresponding to the alignment of sharp resonances in the filled and empty molecular states with the Cu(001) Fermi energy. An asymmetric voltage-divider effect enhances the apparent voltage shift of the negative differential resistance with magnetic field, which inherently is on the scale of the Zeeman energy. These results illustrate the impact that asymmetric coupling to metallic electrodes can have on transport through molecules, and highlight how this coupling can be used to develop molecular spintronic applications.

  1. Probing Protein Channel Dynamics At The Single Molecule Level.

    Science.gov (United States)

    Lee, M. Ann; Dunn, Robert C.

    1997-03-01

    It would be difficult to overstate the importance played by protein ion channels in cellular function. These macromolecular pores allow the passage of ions across the cellular membrane and play indispensable roles in all aspects of neurophysiology. While the patch-clamp technique continues to provide elegant descriptions of the kinetic processes involved in ion channel gating, the associated conformational changes remain a mystery. We are using the spectroscopic capabilities and single molecule fluorescence sensitivity of near-field scanning optical microscopy (NSOM) to probe these dynamics at the single channel level. Using a newly developed cantilevered NSOM probe capable of probing soft biological samples with single molecule fluorescence sensitivity, we have begun mapping the location of single NMDA receptors in intact rat cortical neurons with <100 nm spatial resolution. We will also present recent results exploring the conformational changes accompanying activation of nuclear pore channels located in the nuclear membrane of Xenopus oocytes. Our recent NSOM and AFM measurements on single nuclear pore complexes reveal large conformational changes taking place upon activation, providing rich, new molecular level details of channel function.

  2. Single-molecule chemical reactions on DNA origami

    DEFF Research Database (Denmark)

    Voigt, Niels Vinther; Tørring, Thomas; Rotaru, Alexandru

    2010-01-01

    on a DNA origami scaffold by atomic force microscopy. The high yields and chemoselectivities of successive cleavage and bond-forming reactions observed in these experiments demonstrate the feasibility of post-assembly chemical modification of DNA nanostructures and their potential use as locally......DNA nanotechnology and particularly DNA origami, in which long, single-stranded DNA molecules are folded into predetermined shapes, can be used to form complex self-assembled nanostructures. Although DNA itself has limited chemical, optical or electronic functionality, DNA nanostructures can serve...... as templates for building materials with new functional properties. Relatively large nanocomponents such as nanoparticles and biomolecules can also be integrated into DNA nanostructures and imaged. Here, we show that chemical reactions with single molecules can be performed and imaged at a local position...

  3. Single molecule Michaelis-Menten equation beyond quasistatic disorder.

    Science.gov (United States)

    Xue, Xiaochuan; Liu, Fei; Ou-Yang, Zhong-Can

    2006-09-01

    The classic Michaelis-Menten equation describes the catalytic activities for ensembles of enzyme molecules very well. But recent single-molecule experiments showed that the waiting time distribution and other properties of single enzyme molecules were not consistent with the prediction based on the ensemble viewpoint. They have contributed to the slow conformational changes of a single enzyme in the catalytic processes. In this work, we study the general dynamics of single enzymes in the presence of dynamic disorder. We find that, within the time separation regimes, i.e., the slow reaction and nondiffusion limits, the Michaelis-Menten equation holds exactly. In particular, by employing the decoupling approximation we demonstrate analytically that the classic Michaelis-Menten equation is still an excellent approximation in the presence of general dynamic disorder.

  4. Toward single-molecule microscopy on a smart phone.

    Science.gov (United States)

    Khatua, Saumyakanti; Orrit, Michel

    2013-10-22

    Thanks to fluorescence, single nano-objects down to individual fluorophores can now be imaged in optical microscopes. Fluorescence imaging is still restricted to laboratory facilities as it usually involves expensive and bulky instrumentation. A report by Wei et al. in this issue of ACS Nano, however, shows that a sensitive, cost-effective, and portable device can be developed to image individual nano-objects as small as large viruses. This work opens the fascinating prospects of single-molecule microscopy and spectroscopy on a smart phone. We speculate on the possible applications of such a portable imaging device and on the perspectives it may open in different fields of science and technology.

  5. Linear trinuclear cobalt(II) single molecule magnet.

    Science.gov (United States)

    Zhang, Yuan-Zhu; Brown, Andrew J; Meng, Yin-Shan; Sun, Hao-Ling; Gao, Song

    2015-02-14

    The introduction of NaBPh(4) into a methanolic solution of CoCl(2)·(6)H(2)O and 2-[(pyridine-2-ylimine)-methyl]phenol (Hpymp) afforded {[Co(II)(3)(pymp)(4)(MeOH)(2)][BPh(4)](2)}·(2)MeOH (1) with a centro-symmetrically linear trinuclear structure. Magnetic analysis of 1 exhibited significant intracluster ferromagnetic exchange (2.4 cm(-1)) and slow relaxation of magnetization in both zero and non-zero static fields below 5 K, giving the first [Co(II)(3)] single molecule magnet with an effective energy barrier of 17.2(3) cm(-1) under a 500 Oe dc field.

  6. Enhancing single molecule imaging in optofluidics and microfluidics.

    Science.gov (United States)

    Vasdekis, Andreas E; Laporte, Gregoire P J

    2011-01-01

    Microfluidics and optofluidics have revolutionized high-throughput analysis and chemical synthesis over the past decade. Single molecule imaging has witnessed similar growth, due to its capacity to reveal heterogeneities at high spatial and temporal resolutions. However, both resolution types are dependent on the signal to noise ratio (SNR) of the image. In this paper, we review how the SNR can be enhanced in optofluidics and microfluidics. Starting with optofluidics, we outline integrated photonic structures that increase the signal emitted by single chromophores and minimize the excitation volume. Turning then to microfluidics, we review the compatible functionalization strategies that reduce noise stemming from non-specific interactions and architectures that minimize bleaching and blinking.

  7. Enhancing Single Molecule Imaging in Optofluidics and Microfluidics

    Directory of Open Access Journals (Sweden)

    Andreas E. Vasdekis

    2011-08-01

    Full Text Available Microfluidics and optofluidics have revolutionized high-throughput analysis and chemical synthesis over the past decade. Single molecule imaging has witnessed similar growth, due to its capacity to reveal heterogeneities at high spatial and temporal resolutions. However, both resolution types are dependent on the signal to noise ratio (SNR of the image. In this paper, we review how the SNR can be enhanced in optofluidics and microfluidics. Starting with optofluidics, we outline integrated photonic structures that increase the signal emitted by single chromophores and minimize the excitation volume. Turning then to microfluidics, we review the compatible functionalization strategies that reduce noise stemming from non-specific interactions and architectures that minimize bleaching and blinking.

  8. Low-temperature phonoemissive tunneling rates in single molecule magnets

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yun, E-mail: yl2192@gmail.com [University of Illinois, Department of Physics, 1110 W. Green St., Urbana, IL 61801 (United States); Garg, Anupam, E-mail: agarg@northwestern.edu [Northwestern University, Department of Physics and Astronomy, 2145 Sheridan Rd., Evanston, IL 60208 (United States)

    2016-03-15

    Tunneling between the two lowest energy levels of single molecule magnets with Ising type anisotropy, accompanied by the emission or absorption of phonons, is considered. Quantitatively accurate calculations of the rates for such tunneling are performed for a model Hamiltonian especially relevant to the best studied example, Fe{sub 8}. Two different methods are used: high-order perturbation theory in the spin–phonon interaction and the non-Ising-symmetric parts of the spin Hamiltonian, and a novel semiclassical approach based on spin-coherent-state-path-integral instantons. The methods are found to be in good quantitative agreement with other, and consistent with previous approaches to the problem. The implications of these results for magnetization of molecular solids of these molecules are discussed briefly.

  9. A Single-Molecule Hershey-Chase Experiment

    CERN Document Server

    Van Valen, David; Chen, Yi-Ju; Tuson, Hannah; Wiggins, Paul; Phillips, Rob

    2012-01-01

    Ever since Hershey and Chase used phages to establish DNA as the carrier of genetic information in 1952, the precise mechanisms of phage DNA translocation have been a mystery. While bulk measurements have set a time scale for in vivo DNA translocation during bacteriophage infection, measurements of DNA ejection by single bacteriophages have only been made in vitro. Here, we present direct visualization of single bacteriophages infecting individual Escherichia coli cells. For bacteriophage lambda, we establish a mean ejection time of roughly 5 minutes with significant cell-to-cell variability, including pausing events. In contrast, corresponding in vitro single-molecule ejections take only 10 seconds to reach completion and do not exhibit significant variability. Our data reveal that the velocity of ejection for two different genome lengths collapses onto a single curve. This suggests that in vivo ejections are controlled by the amount of DNA ejected, in contrast with in vitro DNA ejections, which are governed...

  10. Few-photon coherent nonlinear optics with a single molecule

    CERN Document Server

    Maser, Andreas; Utikal, Tobias; Götzinger, Stephan; Sandoghdar, Vahid

    2015-01-01

    The pioneering experiments of linear spectroscopy were performed using flames in the 1800s, but nonlinear optical measurements had to wait until lasers became available in the twentieth century. Because the nonlinear cross section of materials is very small, usually macroscopic bulk samples and pulsed lasers are used. Numerous efforts have explored coherent nonlinear signal generation from individual nanoparticles or small atomic ensembles with millions of atoms. Experiments on a single semiconductor quantum dot have also been reported, albeit with a very small yield. Here, we report on coherent nonlinear spectroscopy of a single molecule under continuous-wave single-pass illumination, where efficient photon-molecule coupling in a tight focus allows switching of a laser beam by less than a handful of pump photons nearly resonant with the sharp molecular transition. Aside from their fundamental importance, our results emphasize the potential of organic molecules for applications such as quantum information pro...

  11. Single Molecule Spectroscopy on Photosynthetic Pigment-Protein Complexes

    CERN Document Server

    Jelezko, F; Schuler, S; Thews, E; Tietz, C; Wechsler, A; Wrachtrup, J

    2001-01-01

    Single molecule spectroscopy was applied to unravel the energy transfer pathway in photosynthetic pigment-protein complexes. Detailed analysis of excitation and fluorescence emission spectra has been made for peripheral plant antenna LHC II and Photosystem I from cyanobacterium Synechococcus elongatus. Optical transitions of individual pigments were resolved under nonselective excitation of antenna chlorophylls. High-resolution fluorescence spectroscopy of individual plant antenna LHC II indicates that at low temperatures, the excitation energy is localized on the red-most Chl a pool absorbing at 680 nm. More than one pigment molecule is responsible for the fluorescence emission of the LHC II trimer. The spectral lines of single Chl a molecules absorbing at 675 nm are broadened because of the Foerster energy transfer towards the red-most pigments. Low-temperature spectroscopy on single PS I trimers indicates that two subgroups of pigments, which are present in the red antenna pool, differ by the strength of t...

  12. Synergizing superresolution optical fluctuation imaging with single molecule localization microscopy

    CERN Document Server

    Schidorsky, Shachar; Razvag, Yair; Golan, Yonatan; Weiss, Shimon; Sherman, Eilon

    2016-01-01

    Single molecule localization microscopy (SMLM) techniques enable imaging biological samples well beyond the diffraction limit of light, but they vary significantly in their spatial and temporal resolutions. High-order statistical analysis of temporal fluctuations as in superresolution optical fluctuation imaging (SOFI) also enable imaging beyond diffraction limit, but usually at a lower resolution as compared to SMLM. Since the same data format is acquired for both methods, their algorithms can be applied to the same data set, and thus may be combined synergistically to improve overall imaging performance. Here, we find that SOFI converges much faster than SMLM, provides additive information to SMLM, and can efficiently reject background. We then show how SOFI-assisted SMLM imaging can improve SMLM image reconstruction by rejecting common sources of background, especially under low signal-to-background conditions. The performance of our approach was evaluated using a realistic simulation of fluorescence imagi...

  13. Single-Molecule Electrochemical Gating in Ionic Liquids

    DEFF Research Database (Denmark)

    Kay, Nicola J.; Higgins, Simon J.; Jeppesen, Jan O.

    2012-01-01

    The single-molecular conductance of a redox active molecular bridge has been studied in an electrochemical single-molecule transistor configuration in a room-temperature ionic liquid (RTIL). The redox active pyrrolo-tetrathiafulvalene (pTTF) moiety was attached to gold contacts at both ends through...... −(CH2)6S– groups, and gating of the redox state was achieved with the electrochemical potential. The water-free, room-temperature, ionic liquid environment enabled both the monocationic and the previously inaccessible dicationic redox states of the pTTF moiety to be studied in the in situ scanning...... and decreases again as the second redox process is passed. This is described as an “off–on–off–on–off” conductance switching behavior. This molecular conductance vs electrochemical potential relation could be modeled well as a sequential two-step charge transfer process with full or partial vibrational...

  14. Spin thermoelectric effects in organic single-molecule devices

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H.L.; Wang, M.X.; Qian, C.; Hong, X.K.; Zhang, D.B.; Liu, Y.S.; Yang, X.F., E-mail: xfyang@cslg.edu.cn

    2017-05-25

    Highlights: • A stronger spin thermoelectric performance in a polyacetylene device is observed. • For the antiferromagnetic (AFM) ordering, a transport gap is opened. Thus the thermoelectric effects are largely enhanced. - Abstract: The spin thermoelectric performance of a polyacetylene chain bridging two zigzag graphene nanoribbons (ZGNRs) is investigated based on first principles method. Two different edge spin arrangements in ZGNRs are considered. For ferromagnetic (FM) ordering, transmission eigenstates with different spin indices distributed below and above Fermi level are observed, leading directly to a strong spin thermoelectric effect in a wide temperature range. With the edge spins arranged in the antiferromagnetic (AFM) ordering, an obvious transport gap appears in the system, which greatly enhances the thermoelectric effects. The presence of a small spin splitting also induces a spin thermoelectric effect greater than the charge thermoelectric effect in certain temperature range. In general, the single-molecule junction exhibits the potential to be used for the design of perfect thermospin devices.

  15. Electronic transport in benzodifuran single-molecule transistors.

    Science.gov (United States)

    Xiang, An; Li, Hui; Chen, Songjie; Liu, Shi-Xia; Decurtins, Silvio; Bai, Meilin; Hou, Shimin; Liao, Jianhui

    2015-05-07

    Benzodifuran (BDF) single-molecule transistors have been fabricated in electromigration break junctions for electronic measurements. The inelastic electron tunneling spectrum validates that the BDF molecule is the pathway of charge transport. The gating effect is analyzed in the framework of a single-level tunneling model combined with transition voltage spectroscopy (TVS). The analysis reveals that the highest occupied molecular orbital (HOMO) of the thiol-terminated BDF molecule dominates the charge transport through Au-BDF-Au junctions. Moreover, the energy shift of the HOMO caused by the gate voltage is the main reason for conductance modulation. In contrast, the electronic coupling between the BDF molecule and the gold electrodes, which significantly affects the low-bias junction conductance, is only influenced slightly by the applied gate voltage. These findings will help in the design of future molecular electronic devices.

  16. Single-molecule optomechanics in “picocavities”

    Science.gov (United States)

    Benz, Felix; Schmidt, Mikolaj K.; Dreismann, Alexander; Chikkaraddy, Rohit; Zhang, Yao; Demetriadou, Angela; Carnegie, Cloudy; Ohadi, Hamid; de Nijs, Bart; Esteban, Ruben; Aizpurua, Javier; Baumberg, Jeremy J.

    2016-11-01

    Trapping light with noble metal nanostructures overcomes the diffraction limit and can confine light to volumes typically on the order of 30 cubic nanometers. We found that individual atomic features inside the gap of a plasmonic nanoassembly can localize light to volumes well below 1 cubic nanometer (“picocavities”), enabling optical experiments on the atomic scale. These atomic features are dynamically formed and disassembled by laser irradiation. Although unstable at room temperature, picocavities can be stabilized at cryogenic temperatures, allowing single atomic cavities to be probed for many minutes. Unlike traditional optomechanical resonators, such extreme optical confinement yields a factor of 106 enhancement of optomechanical coupling between the picocavity field and vibrations of individual molecular bonds. This work sets the basis for developing nanoscale nonlinear quantum optics on the single-molecule level.

  17. Tracking Electrons in Biological Macromolecules: From Ensemble to Single Molecule

    Directory of Open Access Journals (Sweden)

    Leandro C. Tabares

    2014-08-01

    Full Text Available Nature utilizes oxido-reductases to cater to the energy demands of most biochemical processes in respiratory species. Oxido-reductases are capable of meeting this challenge by utilizing redox active sites, often containing transition metal ions, which facilitate movement and relocation of electrons/protons to create a potential gradient that is used to energize redox reactions. There has been a consistent struggle by researchers to estimate the electron transfer rate constants in physiologically relevant processes. This review provides a brief background on the measurements of electron transfer rates in biological molecules, in particular Cu-containing enzymes, and highlights the recent advances in monitoring these electron transfer events at the single molecule level or better to say, at the individual event level.

  18. The Single-Molecule Approach to Membrane Protein Stoichiometry.

    Science.gov (United States)

    Nichols, Michael G; Hallworth, Richard

    2016-01-01

    The advent of techniques for imaging solitary fluorescent molecules has made possible many new kinds of biological experiments. Here, we describe the application of single-molecule imaging to the problem of subunit stoichiometry in membrane proteins. A membrane protein of unknown stoichiometry, prestin, is coupled to the fluorescent enhanced green fluorescent protein (eGFP) and synthesized in the human embryonic kidney (HEK) cell line. We prepare adherent membrane fragments containing prestin-eGFP by osmotic lysis. The molecules are then exposed to continuous low-level excitation until their fluorescence reaches background levels. Their fluorescence decreases in discrete equal-amplitude steps, consistent with the photobleaching of single fluorophores. We count the number of steps required to photobleach each molecule. The molecular stoichiometry is then deduced using a binomial model.

  19. Single molecule DNA detection with an atomic vapor notch filter

    Energy Technology Data Exchange (ETDEWEB)

    Uhland, Denis; Rendler, Torsten; Widmann, Matthias; Lee, Sang-Yun [University of Stuttgart and Stuttgart Research Center of Photonic Engineering (SCoPE) and IQST, 3rd Physics Institute, Stuttgart (Germany); Wrachtrup, Joerg; Gerhardt, Ilja [University of Stuttgart and Stuttgart Research Center of Photonic Engineering (SCoPE) and IQST, 3rd Physics Institute, Stuttgart (Germany); Max Planck Institute for Solid State Research, Stuttgart (Germany)

    2015-12-01

    The detection of single molecules has facilitated many advances in life- and material-science. Commonly the fluorescence of dye molecules is detected, which are attached to a non-fluorescent structure under study. For fluorescence microscopy one desires to maximize the detection efficiency together with an efficient suppression of undesired laser leakage. Here we present the use of the narrow-band filtering properties of hot atomic sodium vapor to selectively filter the excitation light from the red-shifted fluorescence of dye labeled single-stranded DNA molecules. A statistical analysis proves an enhancement in detection efficiency of more than 15% in a confocal and in a wide-field configuration. (orig.)

  20. Exploring single-molecule dynamics with fluorescence nanoscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ringemann, Christian; Harke, Ben; Von Middendorff, Claas; Medda, Rebecca; Leutenegger, Marcel; Schoenle, Andreas; W Hell, Stefan; Eggeling, Christian [Department of Nanobiophotonics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Goettingen (Germany); Honigmann, Alf; Wagner, Richard [Biophysik, University Osnabrueck, FB Biologie/Chemie, Osnabrueck (Germany)], E-mail: ceggeli@gwdg.de

    2009-10-15

    The study of molecular dynamics at the single-molecule level with fluorescence correlation spectroscopy (FCS) and far-field optics has contributed greatly to the functional understanding of complex systems. Unfortunately, such studies are restricted to length scales of >200 nm because diffraction does not allow further reduction of the measurement volume. This sets an upper limit on the applicable concentration of fluorescently labeled molecules and even more importantly, averages out details of nanoscale dynamics. By combining FCS and fluorescence intensity distribution analysis (FIDA) with sub-diffraction-resolution stimulated emission depletion (STED) nanoscopy, we remove this restriction and obtain open measurement volumes of nanoscale dimensions which are tunable in size. As a consequence, single-molecule studies can now be extended to nanoscale dynamics and may be applied to much larger, often endogenous concentrations. In solution, low-brightness signal from axial out-of-focus volume shells was taken into account by using both FCS and FIDA in conjunction to analyze the data. In two-dimensional systems, such as lipid membranes, the background is greatly reduced and measurements feature excellent signal-to-noise ratios. Measurement foci of down to 30 nm in diameter directly reveal anomalous diffusion of lipids in the plasma membrane of living cells and allow for the determination of on/off rates of the binding of lipids to other membrane constituents. Such important insight into the prominent biological question of lipid membrane organization or 'lipid rafts' shows that combining fluctuation analysis with STED-engineered ultra-small measurement volumes is a viable and powerful new approach to probing molecular dynamics on the nanoscale.

  1. Structure and mechanics of proteins from single molecules to cells

    Science.gov (United States)

    Brown, Andre E.

    2009-07-01

    Physical factors drive evolution and play important roles in motility and attachment as well as in differentiation. As animal cells adhere to survive, they generate force and "feel" various mechanical features of their surroundings and respond to externally applied forces. This mechanosensitivity requires a substrate for cells to adhere to and a mechanism for cells to apply force, followed by a cellular response to the mechanical properties of the substrate. We have taken an outside-in approach to characterize several aspects of cellular mechanosensitivity. First, we used single molecule force spectroscopy to measure how fibrinogen, an extracellular matrix protein that forms the scaffold of blood clots, responds to applied force and found that it rapidly unfolds in 23 nm steps at forces around 100 pN. Second, we used tensile testing to measure the force-extension behavior of fibrin gels and found that they behave almost linearly to strains of over 100%, have extensibilities of 170 +/- 15%, and undergo a large volume decrease that corresponds to a large and negative peak in compressibility at low strain, which indicates a structural transition. Using electron microscopy and X-ray scattering we concluded that these properties are likely due to coiled-coil unfolding, as observed at the single molecule level in fibrinogen. Moving inside cells, we used total internal reflection fluorescence and atomic force microscopy to image self-assembled myosin filaments. These filaments of motor proteins that are responsible for cell and muscle contractility were found to be asymmetric, with an average of 32% more force generating heads on one half than the other. This could imply a force imbalance, so that rather than being simply contractile, myosin filaments may also be motile in cells.

  2. Single-molecule mechanics of protein-labelled DNA handles

    Directory of Open Access Journals (Sweden)

    Vivek S. Jadhav

    2016-01-01

    Full Text Available DNA handles are often used as spacers and linkers in single-molecule experiments to isolate and tether RNAs, proteins, enzymes and ribozymes, amongst other biomolecules, between surface-modified beads for nanomechanical investigations. Custom DNA handles with varying lengths and chemical end-modifications are readily and reliably synthesized en masse, enabling force spectroscopic measurements with well-defined and long-lasting mechanical characteristics under physiological conditions over a large range of applied forces. Although these chemically tagged DNA handles are widely used, their further individual modification with protein receptors is less common and would allow for additional flexibility in grabbing biomolecules for mechanical measurements. In-depth information on reliable protocols for the synthesis of these DNA–protein hybrids and on their mechanical characteristics under varying physiological conditions are lacking in literature. Here, optical tweezers are used to investigate different protein-labelled DNA handles in a microfluidic environment under different physiological conditions. Digoxigenin (DIG-dsDNA-biotin handles of varying sizes (1000, 3034 and 4056 bp were conjugated with streptavidin or neutravidin proteins. The DIG-modified ends of these hybrids were bound to surface-modified polystyrene (anti-DIG beads. Using different physiological buffers, optical force measurements showed consistent mechanical characteristics with long dissociation times. These protein-modified DNA hybrids were also interconnected in situ with other tethered biotinylated DNA molecules. Electron-multiplying CCD (EMCCD imaging control experiments revealed that quantum dot–streptavidin conjugates at the end of DNA handles remain freely accessible. The experiments presented here demonstrate that handles produced with our protein–DNA labelling procedure are excellent candidates for grasping single molecules exposing tags suitable for molecular

  3. Single-molecule experiments in biological physics: methods and applications.

    Science.gov (United States)

    Ritort, F

    2006-08-16

    I review single-molecule experiments (SMEs) in biological physics. Recent technological developments have provided the tools to design and build scientific instruments of high enough sensitivity and precision to manipulate and visualize individual molecules and measure microscopic forces. Using SMEs it is possible to manipulate molecules one at a time and measure distributions describing molecular properties, characterize the kinetics of biomolecular reactions and detect molecular intermediates. SMEs provide additional information about thermodynamics and kinetics of biomolecular processes. This complements information obtained in traditional bulk assays. In SMEs it is also possible to measure small energies and detect large Brownian deviations in biomolecular reactions, thereby offering new methods and systems to scrutinize the basic foundations of statistical mechanics. This review is written at a very introductory level, emphasizing the importance of SMEs to scientists interested in knowing the common playground of ideas and the interdisciplinary topics accessible by these techniques. The review discusses SMEs from an experimental perspective, first exposing the most common experimental methodologies and later presenting various molecular systems where such techniques have been applied. I briefly discuss experimental techniques such as atomic-force microscopy (AFM), laser optical tweezers (LOTs), magnetic tweezers (MTs), biomembrane force probes (BFPs) and single-molecule fluorescence (SMF). I then present several applications of SME to the study of nucleic acids (DNA, RNA and DNA condensation) and proteins (protein-protein interactions, protein folding and molecular motors). Finally, I discuss applications of SMEs to the study of the nonequilibrium thermodynamics of small systems and the experimental verification of fluctuation theorems. I conclude with a discussion of open questions and future perspectives.

  4. Easy Absolute Values? Absolutely

    Science.gov (United States)

    Taylor, Sharon E.; Mittag, Kathleen Cage

    2015-01-01

    The authors teach a problem-solving course for preservice middle-grades education majors that includes concepts dealing with absolute-value computations, equations, and inequalities. Many of these students like mathematics and plan to teach it, so they are adept at symbolic manipulations. Getting them to think differently about a concept that they…

  5. Single Molecule Screening of Disease DNA Without Amplification

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ji-Young [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    The potential of single molecule detection as an analysis tool in biological and medical fields is well recognized today. This fast evolving technique will provide fundamental sensitivity to pick up individual pathogen molecules, and therefore contribute to a more accurate diagnosis and a better chance for a complete cure. Many studies are being carried out to successfully apply this technique in real screening fields. In this dissertation, several attempts are shown that have been made to test and refine the application of the single molecule technique as a clinical screening method. A basic applicability was tested with a 100% target content sample, using electrophoretic mobility and multiple colors as identification tools. Both electrophoretic and spectral information of individual molecule were collected within a second, while the molecule travels along the flow in a capillary. Insertion of a transmission grating made the recording of the whole spectrum of a dye-stained molecule possible without adding complicated instrumental components. Collecting two kinds of information simultaneously and combining them allowed more thorough identification, up to 98.8% accuracy. Probing mRNA molecules with fluorescently labeled cDNA via hybridization was also carried out. The spectral differences among target, probe, and hybrid were interpreted in terms of dispersion distances after transmission grating, and used for the identification of each molecule. The probes were designed to have the least background when they are free, but have strong fluorescence after hybridization via fluorescence resonance energy transfer. The mRNA-cDNA hybrids were further imaged in whole blood, plasma, and saliva, to test how far a crude preparation can be tolerated. Imaging was possible with up to 50% of clear bio-matrix contents, suggesting a simple lysis and dilution would be sufficient for imaging for some cells. Real pathogen DNA of human papillomavirus (HPV) type-I6 in human genomic DNA

  6. Tunneling spectroscopy of organic monolayers and single molecules.

    Science.gov (United States)

    Hipps, K W

    2012-01-01

    Basic concepts in tunneling spectroscopy applied to molecular systems are presented. Junctions of the form M-A-M, M-I-A-M, and M-I-A-I'-M, where A is an active molecular layer, are considered. Inelastic electron tunneling spectroscopy (IETS) is found to be readily applied to all the above device types. It can provide both vibrational and electron spectroscopic data about the molecules comprising the A layer. In IETS there are no strong selection rules (although there are preferences) so that transitions that are normally IR, Raman, or even photon-forbidden can be observed. In the electronic transition domain, spin and Laporte forbidden transitions may be observed. Both vibrational and electronic IETS can be acquired from single molecules. The negative aspect of this seemingly ideal spectroscopic method is the thermal line width of about 5 k(B)T. This limits the useful measurement of vibrational IETS to temperatures below about 10 K. In the case of most electronic transitions where the intrinsic linewidth is much broader, useful experiments above 100 K are possible. One further limitation of electronic IETS is that it is generally limited to transitions with energy less than about 20,000 cm(-1). IETS can be identified by peaks in d(2) I/dV (2) vs bias voltage plots that occur at the same position (but not necessarily same intensity) in either bias polarity.Elastic tunneling spectroscopy is discussed in the context of processes involving molecular ionization and electron affinity states, a technique we call orbital mediated tunneling spectroscopy, or OMTS. OMTS can be applied readily to M-I-A-M and M-I-A-I'-M systems, but application to M-A-M junctions is problematic. Spectra can be obtained from single molecules. Ionization state results correlate well with UPS spectra obtained from the same systems in the same environment. Both ionization and affinity levels measured by OMTS can usually be correlated with one electron oxidation and reduction potentials for the

  7. Developing DNA nanotechnology using single-molecule fluorescence.

    Science.gov (United States)

    Tsukanov, Roman; Tomov, Toma E; Liber, Miran; Berger, Yaron; Nir, Eyal

    2014-06-17

    CONSPECTUS: An important effort in the DNA nanotechnology field is focused on the rational design and manufacture of molecular structures and dynamic devices made of DNA. As is the case for other technologies that deal with manipulation of matter, rational development requires high quality and informative feedback on the building blocks and final products. For DNA nanotechnology such feedback is typically provided by gel electrophoresis, atomic force microscopy (AFM), and transmission electron microscopy (TEM). These analytical tools provide excellent structural information; however, usually they do not provide high-resolution dynamic information. For the development of DNA-made dynamic devices such as machines, motors, robots, and computers this constitutes a major problem. Bulk-fluorescence techniques are capable of providing dynamic information, but because only ensemble averaged information is obtained, the technique may not adequately describe the dynamics in the context of complex DNA devices. The single-molecule fluorescence (SMF) technique offers a unique combination of capabilities that make it an excellent tool for guiding the development of DNA-made devices. The technique has been increasingly used in DNA nanotechnology, especially for the analysis of structure, dynamics, integrity, and operation of DNA-made devices; however, its capabilities are not yet sufficiently familiar to the community. The purpose of this Account is to demonstrate how different SMF tools can be utilized for the development of DNA devices and for structural dynamic investigation of biomolecules in general and DNA molecules in particular. Single-molecule diffusion-based Förster resonance energy transfer and alternating laser excitation (sm-FRET/ALEX) and immobilization-based total internal reflection fluorescence (TIRF) techniques are briefly described and demonstrated. To illustrate the many applications of SMF to DNA nanotechnology, examples of SMF studies of DNA hairpins and

  8. A single molecule investigation of the photostability of quantum dots.

    Directory of Open Access Journals (Sweden)

    Eva Christensen Arnspang

    Full Text Available Quantum dots (QDs are very attractive probes for multi-color fluorescence imaging in biological applications because of their immense brightness and reported extended photostability. We report here however that single QDs, suitable for biological applications, that are subject to continuous blue excitation from a conventional 100 W mercury arc lamp will undergo a continuous blue-switching of the emission wavelength eventually reaching a permanent dark, photobleached state. We further show that β-mercaptoethanol has a dual stabilizing effect on the fluorescence emission of QDs: 1 by increasing the frequency of time that a QD is in its fluorescent state, and 2 by decreasing the photobleaching rate. The observed QD color spectral switching is especially detrimental for multi-color single molecule applications, as we regularly observe spectral blue-shifts of 50 nm, or more even after only ten seconds of illumination. However, of significant importance for biological applications, we find that even small, biologically compatible, concentrations (25 µM of β-mercaptoethanol has a significant stabilizing effect on the emission color of QDs, but that greater amounts are required to completely abolish the spectral blue shifting or to minimize the emission intermittency of QDs.

  9. Computing magnetic anisotropy constants of single molecule magnets

    Indian Academy of Sciences (India)

    S Ramasesha; Shaon Sahoo; Rajamani Raghunathan; Diptiman Sen

    2009-09-01

    We present here a theoretical approach to compute the molecular magnetic anisotropy parameters, and for single molecule magnets in any given spin eigenstate of exchange spin Hamiltonian. We first describe a hybrid constant -valence bond (VB) technique of solving spin Hamiltonians employing full spatial and spin symmetry adaptation and we illustrate this technique by solving the exchange Hamiltonian of the Cu6Fe8 system. Treating the anisotropy Hamiltonian as perturbation, we compute the and values for various eigenstates of the exchange Hamiltonian. Since, the dipolar contribution to the magnetic anisotropy is negligibly small, we calculate the molecular anisotropy from the single-ion anisotropies of the metal centers. We have studied the variation of and by rotating the single-ion anisotropies in the case of Mn12Ac and Fe8 SMMs in ground and few low-lying excited states of the exchange Hamiltonian. In both the systems, we find that the molecular anisotropy changes drastically when the single-ion anisotropies are rotated. While in Mn12Ac SMM values depend strongly on the spin of the eigenstate, it is almost independent of the spin of the eigenstate in Fe8 SMM. We also find that the value is almost insensitive to the orientation of the anisotropy of the core Mn(IV) ions. The dependence of on the energy gap between the ground and the excited states in both the systems has also been studied by using different sets of exchange constants.

  10. Light-Induced Switching of Tunable Single-Molecule Junctions

    KAUST Repository

    Sendler, Torsten

    2015-04-16

    A major goal of molecular electronics is the development and implementation of devices such as single-molecular switches. Here, measurements are presented that show the controlled in situ switching of diarylethene molecules from their nonconductive to conductive state in contact to gold nanoelectrodes via controlled light irradiation. Both the conductance and the quantum yield for switching of these molecules are within a range making the molecules suitable for actual devices. The conductance of the molecular junctions in the opened and closed states is characterized and the molecular level E 0, which dominates the current transport in the closed state, and its level broadening Γ are identified. The obtained results show a clear light-induced ring forming isomerization of the single-molecule junctions. Electron withdrawing side-groups lead to a reduction of conductance, but do not influence the efficiency of the switching mechanism. Quantum chemical calculations of the light-induced switching processes correlate these observations with the fundamentally different low-lying electronic states of the opened and closed forms and their comparably small modification by electron-withdrawing substituents. This full characterization of a molecular switch operated in a molecular junction is an important step toward the development of real molecular electronics devices.

  11. Mapping Transcription Factors on Extended DNA: A Single Molecule Approach

    Science.gov (United States)

    Ebenstein, Yuval; Gassman, Natalie; Weiss, Shimon

    The ability to determine the precise loci and distribution of nucleic acid binding proteins is instrumental to our detailed understanding of cellular processes such as transcription, replication, and chromatin reorganization. Traditional molecular biology approaches and above all Chromatin immunoprecipitation (ChIP) based methods have provided a wealth of information regarding protein-DNA interactions. Nevertheless, existing techniques can only provide average properties of these interactions, since they are based on the accumulation of data from numerous protein-DNA complexes analyzed at the ensemble level. We propose a single molecule approach for direct visualization of DNA binding proteins bound specifically to their recognition sites along a long stretch of DNA such as genomic DNA. Fluorescent Quantum dots are used to tag proteins bound to DNA, and the complex is deposited on a glass substrate by extending the DNA to a linear form. The sample is then imaged optically to determine the precise location of the protein binding site. The method is demonstrated by detecting individual, Quantum dot tagged T7-RNA polymerase enzymes on the bacteriophage T7 genomic DNA and assessing the relative occupancy of the different promoters.

  12. A single-molecule view of gene regulation in cancer

    Science.gov (United States)

    Larson, Daniel

    2013-03-01

    Single-cell analysis has revealed that transcription is dynamic and stochastic, but tools are lacking that can determine the mechanism operating at a single gene. Here we utilize single-molecule observations of RNA in fixed and living cells to develop a single-cell model of steroid-receptor mediated gene activation. Steroid receptors coordinate a diverse range of responses in higher eukaryotes and are involved in a wide range of human diseases, including cancer. Steroid receptor response elements are present throughout the human genome and modulate chromatin remodeling and transcription in both a local and long-range fashion. As such, steroid receptor-mediated transcription is a paradigm of genetic control in the metazoan nucleus. Moreover, the ligand-dependent nature of these transcription factors makes them appealing targets for therapeutic intervention, necessitating a quantitative understanding of how receptors control output from target genes. We determine that steroids drive mRNA synthesis by frequency modulation of transcription. This digital behavior in single cells gives rise to the well-known analog dose response across the population. To test this model, we developed a light-activation technology to turn on a single gene and follow dynamic synthesis of RNA from the activated locus. The response delay is a measure of time required for chromatin remodeling at a single gene.

  13. DONOR-ACCEPTOR CONJUGATED COOLIGOMERS FOR SINGLE MOLECULE SOLAR CELLS

    Institute of Scientific and Technical Information of China (English)

    Jian-fei Qu; Jian Liu; Si-da Li; Zhi-yuan Xie; Yan-hou Geng

    2013-01-01

    Five novel donor-acceptor (D-A) conjugated cooligomers (F4B-hP,F5B-hP,F5B2[1,2]-hP,F5B2[1,3]-hP and F7B2[1,2]-hP) were synthesized.The absorption spectra of the cooligomers cover a wide range from 300 nm to 630 nm.The cooligomers could form films featured by alternating D-A lamellar nanostructures with the periods relative to the molecular lengths after thermal annealing or solvent vapor annealing.Single molecule solar cells were fabricated,and F5B-hP exhibited the best device performance.When the film of F5B-hP was thermally annealed,a power conversion efficiency (PCE) of 1.56% was realized.With solvent vapor annealing,the PCE could be further improved to 1.72% with a short-circuit current (Jsc) of 5.76 mA/cm2,an open-circuit voltage (VoC) of 0.87 V and a fill factor (FF) of 0.34.

  14. Chapter 15: Live-cell single-molecule force spectroscopy.

    Science.gov (United States)

    Dobrowsky, Terrence M; Panorchan, Porntula; Konstantopoulos, Konstantinos; Wirtz, Denis

    2008-01-01

    We describe a method to measure the kinetics and micromechanical properties of individual receptor-ligand bonds formed between two living cells. Using living cells rather than recombinant proteins ensures that the orientation, surface density, and posttranslational modifications of the probed receptors are physiological and that their regulated attachment to the cytoskeleton can occur. A cell is tethered to a flexible cantilever and brought into contact with cells adherent to a substratum before being pulled at a controlled retraction velocity. Measurements of bond rupture forces and associated bond loading rates over an extended range of retraction velocities allow us to compute precisely the tensile strength, reactive compliance, lifetime, and dissociation rate of individual intercellular receptor-ligand bonds. We also describe tests of specificity and Monte Carlo simulations, which ensure that measurements obtained by this method correspond to a single type of intercellular adhesion bond. We illustrate this live-cell single molecule force spectroscopy assay by characterizing homotypic bonds composed of vascular endothelial -cadherin pairs formed between living endothelial cells. This versatile assay could be used to establish the molecular principles that drive a wide range of important physiological processes involving receptor-mediated intercellular adhesion, such as the immunological synapse between a lymphocyte and an antigen-presenting cell and synaptic interactions between neuron cells, and pathological processes resulting in altered intercellular adhesion.

  15. Single-Molecule Detection in Nanogap-Embedded Plasmonic Gratings

    Directory of Open Access Journals (Sweden)

    Biyan Chen

    2015-07-01

    Full Text Available We introduce nanogap-embedded silver plasmonic gratings for single-molecule (SM visualization using an epifluorescence microscope. This silver plasmonic platform was fabricated by a cost-effective nano-imprint lithography technique, using an HD DVD template. DNA/ RNA duplex molecules tagged with Cy3/Cy5 fluorophores were immobilized on SiO 2 -capped silver gratings. Light was coupled to the gratings at particular wavelengths and incident angles to form surface plasmons. The SM fluorescence intensity of the fluorophores at the nanogaps showed approximately a 100-fold mean enhancement with respect to the fluorophores observed on quartz slides using an epifluorescence microscope. This high level of enhancement was due to the concentration of surface plasmons at the nanogaps. When nanogaps imaged with epifluorescence mode were compared to quartz imaged using total internal reflection fluorescence (TIRF microscopy, more than a 30-fold mean enhancement was obtained. Due to the SM fluorescence enhancement of plasmonic gratings and the correspondingly high emission intensity, the required laser power can be reduced, resulting in a prolonged detection time prior to photobleaching. This simple platform was able to perform SM studies with a low-cost epifluorescence apparatus, instead of the more expensive TIRF or confocal microscopes, which would enable SM analysis to take place in most scientific laboratories.

  16. Experimental demonstration of a single-molecule electric motor.

    Science.gov (United States)

    Tierney, Heather L; Murphy, Colin J; Jewell, April D; Baber, Ashleigh E; Iski, Erin V; Khodaverdian, Harout Y; McGuire, Allister F; Klebanov, Nikolai; Sykes, E Charles H

    2011-09-04

    For molecules to be used as components in molecular machines, methods that couple individual molecules to external energy sources and that selectively excite motion in a given direction are required. Significant progress has been made in the construction of molecular motors powered by light and by chemical reactions, but electrically driven motors have not yet been built, despite several theoretical proposals for such motors. Here we report that a butyl methyl sulphide molecule adsorbed on a copper surface can be operated as a single-molecule electric motor. Electrons from a scanning tunnelling microscope are used to drive the directional motion of the molecule in a two-terminal setup. Moreover, the temperature and electron flux can be adjusted to allow each rotational event to be monitored at the molecular scale in real time. The direction and rate of the rotation are related to the chiralities of both the molecule and the tip of the microscope (which serves as the electrode), illustrating the importance of the symmetry of the metal contacts in atomic-scale electrical devices.

  17. Single molecule analysis of Trypanosoma brucei DNA replication dynamics.

    Science.gov (United States)

    Calderano, Simone Guedes; Drosopoulos, William C; Quaresma, Marina Mônaco; Marques, Catarina A; Kosiyatrakul, Settapong; McCulloch, Richard; Schildkraut, Carl L; Elias, Maria Carolina

    2015-03-11

    Eukaryotic genome duplication relies on origins of replication, distributed over multiple chromosomes, to initiate DNA replication. A recent genome-wide analysis of Trypanosoma brucei, the etiological agent of sleeping sickness, localized its replication origins to the boundaries of multigenic transcription units. To better understand genomic replication in this organism, we examined replication by single molecule analysis of replicated DNA. We determined the average speed of replication forks of procyclic and bloodstream form cells and we found that T. brucei DNA replication rate is similar to rates seen in other eukaryotes. We also analyzed the replication dynamics of a central region of chromosome 1 in procyclic forms. We present evidence for replication terminating within the central part of the chromosome and thus emanating from both sides, suggesting a previously unmapped origin toward the 5' extremity of chromosome 1. Also, termination is not at a fixed location in chromosome 1, but is rather variable. Importantly, we found a replication origin located near an ORC1/CDC6 binding site that is detected after replicative stress induced by hydroxyurea treatment, suggesting it may be a dormant origin activated in response to replicative stress. Collectively, our findings support the existence of more replication origins in T. brucei than previously appreciated.

  18. Single molecule atomic force microscopy and force spectroscopy of chitosan.

    Science.gov (United States)

    Kocun, Marta; Grandbois, Michel; Cuccia, Louis A

    2011-02-01

    Atomic force microscopy (AFM) and AFM-based force spectroscopy was used to study the desorption of individual chitosan polymer chains from substrates with varying chemical composition. AFM images of chitosan adsorbed onto a flat mica substrate show elongated single strands or aggregated bundles. The aggregated state of the polymer is consistent with the high level of flexibility and mobility expected for a highly positively charged polymer strand. Conversely, the visualization of elongated strands indicated the presence of stabilizing interactions with the substrate. Surfaces with varying chemical composition (glass, self-assembled monolayer of mercaptoundecanoic acid/decanethiol and polytetrafluoroethylene (PTFE)) were probed with chitosan modified AFM tips and the corresponding desorption energies, calculated from plateau-like features, were attributed to the desorption of individual polymer strands. Desorption energies of 2.0±0.3×10(-20)J, 1.8±0.3×10(-20)J and 3.5±0.3×10(-20)J were obtained for glass, SAM of mercaptoundecanoic/dodecanethiol and PTFE, respectively. These single molecule level results can be used as a basis for investigating chitosan and chitosan-based materials for biomaterial applications.

  19. Single Molecule Analysis of Serotonin Transporter Regulation Using Quantum Dots

    Science.gov (United States)

    Chang, Jerry; Tomlinson, Ian; Warnement, Michael; Ustione, Alessandro; Carneiro, Ana; Piston, David; Blakely, Randy; Rosenthal, Sandra

    2011-03-01

    For the first time, we implement a novel, single molecule approach to define the localization and mobility of the brain's major target of widely prescribed antidepressant medications, the serotonin transporter (SERT). SERT labeled with single quantum dot (Qdot) revealed unsuspected features of transporter mobility with cholesterol-enriched membrane microdomains (often referred to as ``lipid rafts'') and cytoskeleton network linked to transporter activation. We document two pools of surface SERT proteins defined by their lateral mobility, one that exhibits relatively free diffusion in the plasma membrane and a second that displays significantly restricted mobility and localizes to cholesterol-enriched microdomains. Diffusion model prediction and instantaneous velocity analysis indicated that stimuli that act through p38 MAPK-dependent signaling pathways to activate SERT trigger rapid SERT movements within membrane microdomains. Cytoskeleton disruption showed that SERT lateral mobility behaves a membrane raft-constrained, cytoskeleton-associated manner. Our results identify an unsuspected aspect of neurotransmitter transporter regulation that we propose reflects the dissociation of inhibitory, SERT-associated cytoskeletal anchors.

  20. A theoretical justification for single molecule peptide sequencing.

    Directory of Open Access Journals (Sweden)

    Jagannath Swaminathan

    2015-02-01

    Full Text Available The proteomes of cells, tissues, and organisms reflect active cellular processes and change continuously in response to intracellular and extracellular cues. Deep, quantitative profiling of the proteome, especially if combined with mRNA and metabolite measurements, should provide an unprecedented view of cell state, better revealing functions and interactions of cell components. Molecular diagnostics and biomarker discovery should benefit particularly from the accurate quantification of proteomes, since complex diseases like cancer change protein abundances and modifications. Currently, shotgun mass spectrometry is the primary technology for high-throughput protein identification and quantification; while powerful, it lacks high sensitivity and coverage. We draw parallels with next-generation DNA sequencing and propose a strategy, termed fluorosequencing, for sequencing peptides in a complex protein sample at the level of single molecules. In the proposed approach, millions of individual fluorescently labeled peptides are visualized in parallel, monitoring changing patterns of fluorescence intensity as N-terminal amino acids are sequentially removed, and using the resulting fluorescence signatures (fluorosequences to uniquely identify individual peptides. We introduce a theoretical foundation for fluorosequencing and, by using Monte Carlo computer simulations, we explore its feasibility, anticipate the most likely experimental errors, quantify their potential impact, and discuss the broad potential utility offered by a high-throughput peptide sequencing technology.

  1. Ferromagnetic manganese "cubes": from PSII to single-molecule magnets.

    Science.gov (United States)

    Inglis, Ross; Stoumpos, Constantinos C; Prescimone, Alessandro; Siczek, Milosz; Lis, Tadeusz; Wernsdorfer, Wolfgang; Brechin, Euan K; Milios, Constantinos J

    2010-05-28

    The reaction of Mn(O₂CMe)₂·2H₂O with Me-saoH₂ (Me-saoH₂ = 2-hydroxyphenylethanone oxime) in MeCN forms the complex [Mn(III)₄(Me-sao)₄(Me-saoH)₄] (1) in good yields. Replacing Me-saoH₂ with Naphth-saoH₂ (Naphth-saoH₂ = 2-hydroxy-1-napthaldoxime) in the presence of CH₃ONa forms the complex [Mn(III)₄(Naphth-sao)₄(Naphth-saoH)₄] (2) in low yields, while the reaction between Mn(ClO₄)₂·6H₂O, Et-saoH₂ (Et-saoH₂= 2-hydroxypropiophenone oxime) and NBu₄OH in MeCN gives the complex [Mn(III)₄(Et-sao)₄(Et-saoH)₄] (3) in moderate yields. All three tetrametallic cages exclusively contain Mn(III) centres arranged in a "cube"-like topology, in which the metal centres are connected by -N-O(oximate) groups. The magnetic properties of 1-3 are near identical, revealing the presence of only ferromagnetic interactions between the metal ions leading to high-spin ground states of S = 8. The complexes display frequency dependent out-of-phase signals in ac susceptibility studies and, in the case of 1 single-molecule magnetism has been observed by means of single-crystal hysteresis loop measurements.

  2. High-resolution optical tweezers for single-molecule manipulation.

    Science.gov (United States)

    Zhang, Xinming; Ma, Lu; Zhang, Yongli

    2013-09-01

    Forces hold everything together and determine its structure and dynamics. In particular, tiny forces of 1-100 piconewtons govern the structures and dynamics of biomacromolecules. These forces enable folding, assembly, conformational fluctuations, or directional movements of biomacromolecules over sub-nanometer to micron distances. Optical tweezers have become a revolutionary tool to probe the forces, structures, and dynamics associated with biomacromolecules at a single-molecule level with unprecedented resolution. In this review, we introduce the basic principles of optical tweezers and their latest applications in studies of protein folding and molecular motors. We describe the folding dynamics of two strong coiled coil proteins, the GCN4-derived protein pIL and the SNARE complex. Both complexes show multiple folding intermediates and pathways. ATP-dependent chromatin remodeling complexes translocate DNA to remodel chromatin structures. The detailed DNA translocation properties of such molecular motors have recently been characterized by optical tweezers, which are reviewed here. Finally, several future developments and applications of optical tweezers are discussed. These past and future applications demonstrate the unique advantages of high-resolution optical tweezers in quantitatively characterizing complex multi-scale dynamics of biomacromolecules.

  3. Optical Microcavity: Sensing down to Single Molecules and Atoms

    Directory of Open Access Journals (Sweden)

    Shu-Yu Su

    2011-02-01

    Full Text Available This review article discusses fundamentals of dielectric, low-loss, optical micro-resonator sensing, including figures of merit and a variety of microcavity designs, and future perspectives in microcavity-based optical sensing. Resonance frequency and quality (Q factor are altered as a means of detecting a small system perturbation, resulting in realization of optical sensing of a small amount of sample materials, down to even single molecules. Sensitivity, Q factor, minimum detectable index change, noises (in sensor system components and microcavity system including environments, microcavity size, and mode volume are essential parameters to be considered for optical sensing applications. Whispering gallery mode, photonic crystal, and slot-type microcavities typically provide compact, high-quality optical resonance modes for optical sensing applications. Surface Bloch modes induced on photonic crystals are shown to be a promising candidate thanks to large field overlap with a sample and ultra-high-Q resonances. Quantum optics effects based on microcavity quantum electrodynamics (QED would provide novel single-photo-level detection of even single atoms and molecules via detection of doublet vacuum Rabi splitting peaks in strong coupling.

  4. Optical microcavity: sensing down to single molecules and atoms.

    Science.gov (United States)

    Yoshie, Tomoyuki; Tang, Lingling; Su, Shu-Yu

    2011-01-01

    This review article discusses fundamentals of dielectric, low-loss, optical micro-resonator sensing, including figures of merit and a variety of microcavity designs, and future perspectives in microcavity-based optical sensing. Resonance frequency and quality (Q) factor are altered as a means of detecting a small system perturbation, resulting in realization of optical sensing of a small amount of sample materials, down to even single molecules. Sensitivity, Q factor, minimum detectable index change, noises (in sensor system components and microcavity system including environments), microcavity size, and mode volume are essential parameters to be considered for optical sensing applications. Whispering gallery mode, photonic crystal, and slot-type microcavities typically provide compact, high-quality optical resonance modes for optical sensing applications. Surface Bloch modes induced on photonic crystals are shown to be a promising candidate thanks to large field overlap with a sample and ultra-high-Q resonances. Quantum optics effects based on microcavity quantum electrodynamics (QED) would provide novel single-photo-level detection of even single atoms and molecules via detection of doublet vacuum Rabi splitting peaks in strong coupling.

  5. Single-molecule magnet Mn12 on graphene

    Science.gov (United States)

    Li, Xiang-Guo; Fry, James N.; Cheng, Hai-Ping

    2014-09-01

    We study energetics, electronic and magnetic structures, and magnetic anisotropy barriers of a monolayer of single-molecule magnets (SMMs), [Mn12O12(COOR)16](H2O)4 (abbreviated as Mn12, with R=H, CH3, C6H5, and CHCl2), on a graphene surface using spin-polarized density-functional theory with generalized gradient corrections and the inclusion of van der Waals interactions. We find that Mn12 molecules with ligands -H, -CH3, and -C6H5 are physically adsorbed on graphene through weak van der Waals interactions, and a much stronger ionic interaction occurs using a -CHCl2 ligand. The strength of bonding is closely related to the charge transfer between the molecule and the graphene sheet and can be manipulated by strain in the graphene; specifically, tension enhances n doping of graphene, and compression encourages p doping. The magnetic anisotropy barrier is computed by including the spin-orbit interaction within density-functional theory. The barriers for the Mn12 molecules with ligands -H, -CH3 and -C6H5 on graphene surfaces remain unchanged (within 1K) from those of isolated molecules because of their weak interaction, and a much larger reduction (10K) is observed when using the -CHCl2 ligand on graphene due to a substantial structural deformation as a consequence of the much stronger interaction. Neither strain in graphene nor charge transfer affects the magnetic anisotropy barrier significantly. Finally, we discuss the effect of strong correlation in the high-spin state of a Mn12 SMM and the consequence of SMM-surface adsorption.

  6. Lab-on-a-chip technologies for single-molecule studies.

    Science.gov (United States)

    Zhao, Yanhui; Chen, Danqi; Yue, Hongjun; French, Jarrod B; Rufo, Joseph; Benkovic, Stephen J; Huang, Tony Jun

    2013-06-21

    Recent developments on various lab-on-a-chip techniques allow miniaturized and integrated devices to perform on-chip single-molecule studies. Fluidic-based platforms that utilize unique microscale fluidic behavior are capable of conducting single-molecule experiments with high sensitivities and throughputs, while biomolecular systems can be studied on-chip using techniques such as DNA curtains, magnetic tweezers, and solid-state nanopores. The advances of these on-chip single-molecule techniques lead to next-generation lab-on-a-chip devices, such as DNA transistors, and single-molecule real-time (SMRT) technology for rapid and low-cost whole genome DNA sequencing. In this Focus article, we will discuss some recent successes in the development of lab-on-a-chip techniques for single-molecule studies and expound our thoughts on the near future of on-chip single-molecule studies.

  7. DNA origami as biocompatible surface to match single-molecule and ensemble experiments

    OpenAIRE

    Gietl, Andreas; Holzmeister, Phil; Grohmann, Dina; Tinnefeld, Philip

    2012-01-01

    Single-molecule experiments on immobilized molecules allow unique insights into the dynamics of molecular machines and enzymes as well as their interactions. The immobilization, however, can invoke perturbation to the activity of biomolecules causing incongruities between single molecule and ensemble measurements. Here we introduce the recently developed DNA origami as a platform to transfer ensemble assays to the immobilized single molecule level without changing the nano-environment of the ...

  8. From nanofabrication to self-fabrication--tailored chemistry for control of single molecule electronic devices

    DEFF Research Database (Denmark)

    Moth-Poulsen, Kasper; Bjørnholm, Thomas

    2010-01-01

    as alternatives to the dominant top-down nanofabrication techniques. One example is solution-based self-assembly of a molecule enclosed by two gold nanorod electrodes. This article will discuss recent attempts to control the self-assembly process by the use of supramolecular chemistry and how to tailor......Single molecule electronics is a field of research focused on the use of single molecules as electronics components. During the past 15 years the field has concentrated on development of test beds for measurements on single molecules. Bottom-up approaches to single molecule devices are emerging...

  9. Calix[4]arene Based Single-Molecule Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Karotsis, Georgios; Teat, Simon J.; Wernsdorfer, Wolfgang; Piligkos, Stergios; Dalgarno, Scott J.; Brechin, Euan K.

    2009-06-04

    Single-molecule magnets (SMMs) have been the subject of much interest in recent years because their molecular nature and inherent physical properties allow the crossover between classical and quantum physics to be observed. The macroscopic observation of quantum phenomena - tunneling between different spin states, quantum interference between tunnel paths - not only allows scientists to study quantum mechanical laws in great detail, but also provides model systems with which to investigate the possible implementation of spin-based solid state qubits and molecular spintronics. The isolation of small, simple SMMs is therefore an exciting prospect. To date almost all SMMs have been made via the self-assembly of 3d metal ions in the presence of bridging/chelating organic ligands. However, very recently an exciting new class of SMMs, based on 3d metal clusters (or single lanthanide ions) housed within polyoxometalates, has appeared. These types of molecule, in which the SMM is completely encapsulated within (or shrouded by) a 'protective' organic or inorganic sheath have much potential for design and manipulation: for example, for the removal of unwanted dipolar interactions, the introduction of redox activity, or to simply aid functionalization for surface grafting. Calix[4]arenes are cyclic (typically bowl-shaped) polyphenols that have been used extensively in the formation of versatile self-assembled supramolecular structures. Although many have been reported, p-{sup t}But-calix[4]arene and calix[4]arene (TBC4 and C4 respectively, Figure 1A) are frequently encountered due to (a) synthetic accessibility, and (b) vast potential for alteration at either the upper or lower rim of the macrocyclic framework. Within the field of supramolecular chemistry, TBC4 is well known for interesting polymorphic behavior and phase transformations within anti-parallel bi-layer arrays, while C4 often forms self-included trimers. The polyphenolic nature of calix[n]arenes (where

  10. Theoretical analysis of single molecule spectroscopy lineshapes of conjugated polymers

    Science.gov (United States)

    Devi, Murali

    Conjugated Polymers(CPs) exhibit a wide range of highly tunable optical properties. Quantitative and detailed understanding of the nature of excitons responsible for such a rich optical behavior has significant implications for better utilization of CPs for more efficient plastic solar cells and other novel optoelectronic devices. In general, samples of CPs are plagued with substantial inhomogeneous broadening due to various sources of disorder. Single molecule emission spectroscopy (SMES) offers a unique opportunity to investigate the energetics and dynamics of excitons and their interactions with phonon modes. The major subject of the present thesis is to analyze and understand room temperature SMES lineshapes for a particular CP, called poly(2,5-di-(2'-ethylhexyloxy)-1,4-phenylenevinylene) (DEH-PPV). A minimal quantum mechanical model of a two-level system coupled to a Brownian oscillator bath is utilized. The main objective is to identify the set of model parameters best fitting a SMES lineshape for each of about 200 samples of DEH-PPV, from which new insight into the nature of exciton-bath coupling can be gained. This project also entails developing a reliable computational methodology for quantum mechanical modeling of spectral lineshapes in general. Well-known optimization techniques such as gradient descent, genetic algorithms, and heuristic searches have been tested, employing an L2 measure between theoretical and experimental lineshapes for guiding the optimization. However, all of these tend to result in theoretical lineshapes qualitatively different from experimental ones. This is attributed to the ruggedness of the parameter space and inadequateness of the L2 measure. On the other hand, when the dynamic reduction of the original parameter space to a 2-parameter space through feature searching and visualization of the search space paths using directed acyclic graphs(DAGs), the qualitative nature of the fitting improved significantly. For a more

  11. Single molecule studies of DNA packaging by bacteriophages

    Science.gov (United States)

    Fuller, Derek Nathan

    The DNA packaging dynamics of bacteriophages φ29, gamma, and T4 were studied at the single molecule level using a dual trap optical tweezers. Also, a method for producing long DNA molecules by PCR for optical tweezers studies of protein DNA interactions is presented and thoroughly characterized. This DNA preparation technique provided DNA samples for the φ29 and T4 studies. In the studies of φ29, the role of charge was investigated by varying the ionic conditions of the packaging buffer. Ionic conditions in which the DNA charge was highly screened due to divalent and trivalent cations showed the lowest resistance to packaging of the DNA to high density. This confirmed the importance of counterions in shielding the DNA interstrand repulsion when packaged to high density. While the ionic nature of the packaging buffer had a strong effect on packaging velocities, there was no clear trend between the counterion-screened charge of the DNA and the maximum packaging velocity. The packaging studies of lambda and T4 served as systems for comparative studies with φ29. Each system showed similarities to the φ29 system and unique differences. Both the lambda and T4 packaging motors were capable of generating forces in excess of 50 pN and showed remarkably high processivity, similar to φ29. However, dynamic structural transitions were observed with lambda that are not observed with φ29. The packaging of the lambda genome showed capsid expansion at approximately 30 percent of the genome packaged and capsid rupture at 90 percent of the genome packaged in the absence of capsid stabilizing protein gpD. Unique to the T4 packaging motor, packaging dynamics showed a remarkable amount of variability in velocities. This variability was seen both within individual packaging phages and from one phage to the next. This is possibly due to different conformational states of the packaging machinery. Additionally, lambda and T4 had average packaging velocities under minimal load of 600

  12. Calix[4]arene Based Single-Molecule Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Karotsis, Georgios; Teat, Simon J.; Wernsdorfer, Wolfgang; Piligkos, Stergios; Dalgarno, Scott J.; Brechin, Euan K.

    2009-06-04

    Single-molecule magnets (SMMs) have been the subject of much interest in recent years because their molecular nature and inherent physical properties allow the crossover between classical and quantum physics to be observed. The macroscopic observation of quantum phenomena - tunneling between different spin states, quantum interference between tunnel paths - not only allows scientists to study quantum mechanical laws in great detail, but also provides model systems with which to investigate the possible implementation of spin-based solid state qubits and molecular spintronics. The isolation of small, simple SMMs is therefore an exciting prospect. To date almost all SMMs have been made via the self-assembly of 3d metal ions in the presence of bridging/chelating organic ligands. However, very recently an exciting new class of SMMs, based on 3d metal clusters (or single lanthanide ions) housed within polyoxometalates, has appeared. These types of molecule, in which the SMM is completely encapsulated within (or shrouded by) a 'protective' organic or inorganic sheath have much potential for design and manipulation: for example, for the removal of unwanted dipolar interactions, the introduction of redox activity, or to simply aid functionalization for surface grafting. Calix[4]arenes are cyclic (typically bowl-shaped) polyphenols that have been used extensively in the formation of versatile self-assembled supramolecular structures. Although many have been reported, p-{sup t}But-calix[4]arene and calix[4]arene (TBC4 and C4 respectively, Figure 1A) are frequently encountered due to (a) synthetic accessibility, and (b) vast potential for alteration at either the upper or lower rim of the macrocyclic framework. Within the field of supramolecular chemistry, TBC4 is well known for interesting polymorphic behavior and phase transformations within anti-parallel bi-layer arrays, while C4 often forms self-included trimers. The polyphenolic nature of calix[n]arenes (where

  13. Localization microscopy: mapping cellular dynamics with single molecules.

    Science.gov (United States)

    Nelson, A J; Hess, S T

    2014-04-01

    Resolution describes the smallest details within a sample that can be recovered by a microscope lens system. For optical microscopes detecting visible light, diffraction limits the resolution to ∼200-250 nm. In contrast, localization measures the position of an isolated object using its image. Single fluorescent molecules can be localized with an uncertainty of a few tens of nanometres, and in some cases less than one nanometre. Superresolution fluorescence localization microscopy (SRFLM) images and localizes fluorescent molecules in a sample. By controlling the visibility of the fluorescent molecules with light, it is possible to cause a sparse subset of the tags to fluoresce and be spatially separated from each other. A movie is acquired with a camera, capturing images of many sets of visible fluorescent tags over a period of time. The movie is then analysed by a computer whereby all of the single molecules are independently measured, and their positions are recorded. When the coordinates of a sufficient number of molecules are collected, an image can be rendered by plotting the coordinates of the localized molecules. The spatial resolution of these rendered images can be better than 20 nm, roughly an order of magnitude better than the diffraction limited resolution. The invention of SRFLM has led to an explosion of related techniques. Through the use of specialized optics, the fluorescent signal can be split into multiple detection channels. These channels can capture additional information such as colour (emission wavelength), orientation and three-dimensional position of the detected molecules. Measurement of the colour of the detected fluorescence can allow researchers to distinguish multiple types of fluorescent tags and to study the interaction between multiple molecules of interest. Three-dimensional imaging and determination of molecular orientations offer insight into structural organization of the sample. SRFLM is compatible with living samples and

  14. Ab initio study of the thermopower of biphenyl-based single-molecule junctions

    Science.gov (United States)

    Bürkle, M.; Zotti, L. A.; Viljas, J. K.; Vonlanthen, D.; Mishchenko, A.; Wandlowski, T.; Mayor, M.; Schön, G.; Pauly, F.

    2012-09-01

    By employing ab initio electronic-structure calculations combined with the nonequilibrium Green's function technique, we study the dependence of the thermopower Q on the conformation in biphenyl-based single-molecule junctions. For the series of experimentally available biphenyl molecules, alkyl side chains allow us to gradually adjust the torsion angle ϕ between the two phenyl rings from 0∘ to 90∘ and to control in this way the degree of π-electron conjugation. Studying different anchoring groups and binding positions, our theory predicts that the absolute values of the thermopower decrease slightly towards larger torsion angles, following an a+bcos2ϕ dependence. The anchoring group determines the sign of Q and a,b simultaneously. Sulfur and amine groups give rise to Q,a,b>0, while for cyano, Q,a,bbinding positions can lead to substantial variations of the thermopower mostly due to changes in the alignment of the frontier molecular orbital levels and the Fermi energy. We explain our ab initio results in terms of a π-orbital tight-binding model and a minimal two-level model, which describes the pair of hybridizing frontier orbital states on the two phenyl rings. The variations of the thermopower with ϕ seem to be within experimental resolution.

  15. Novel High-Activity Organic Piezoelectric Materials - From Single-Molecule Response to Energy Harvesting Films

    Science.gov (United States)

    2015-08-24

    Mirman, B.; Karapetian, E. “Relationship between Direct and Converse Piezoelectric Effect in a Nanoscale Electromechanical Contact,” Physical Review B...response of organic hydrogen-bonded crystals and single-molecule electromechanical response. Using the known piezoelectric response of crystalline 2...Using computational exploration of the electromechanical response other molecular scaffolds, we explored single-molecule ferroelectrics based on

  16. Direct Observation of Magnetic Anisotropy in an Individual Fe4 Single-Molecule Magnet

    NARCIS (Netherlands)

    Burzuri, E.; Zyazin, A.S.; Cornia, A.; Van der Zant, H.S.J.

    2012-01-01

    We study three-terminal charge transport through individual Fe4 single-molecule magnets. Magnetic anisotropy of the single molecule is directly observed by introducing a spectroscopic technique based on measuring the position of the degeneracy point as a function of gate voltage and applied magnetic

  17. Single-molecule analysis of DNA replication in Xenopus egg extracts

    NARCIS (Netherlands)

    Yardimci, Hasan; Loveland, Anna B.; van Oijen, Antoine M.; Walter, Johannes C.; Mechali, Marcel

    The recent advent in single-molecule imaging and manipulation methods has made a significant impact on the understanding of molecular mechanisms underlying many essential cellular processes. Single-molecule techniques such as electron microscopy and DNA fiber assays have been employed to study the

  18. Electrochemical detection of single molecules using abiotic nanopores having electrically tunable dimensions

    Science.gov (United States)

    Sansinena, Jose-Maria; Redondo, Antonio; Olazabal, Virginia; Hoffbauer, Mark A.; Akhadov, Elshan A.

    2009-12-29

    A barrier structure for use in an electrochemical stochastic membrane sensor for single molecule detection. The sensor is based upon inorganic nanopores having electrically tunable dimensions. The inorganic nanopores are formed from inorganic materials and an electrically conductive polymer. Methods of making the barrier structure and sensing single molecules using the barrier structure are also described.

  19. Injection molded nanofluidic chips: Fabrication method and functional tests using single-molecule DNA experiments

    DEFF Research Database (Denmark)

    Utko, Pawel; Persson, Karl Fredrik; Kristensen, Anders;

    2011-01-01

    We demonstrate that fabrication of nanofluidic systems can be greatly simplified by injection molding of polymers. We functionally test our devices by single-molecule DNA experiments in nanochannels.......We demonstrate that fabrication of nanofluidic systems can be greatly simplified by injection molding of polymers. We functionally test our devices by single-molecule DNA experiments in nanochannels....

  20. Direct Observation of Magnetic Anisotropy in an Individual Fe4 Single-Molecule Magnet

    NARCIS (Netherlands)

    Burzuri, E.; Zyazin, A.S.; Cornia, A.; Van der Zant, H.S.J.

    2012-01-01

    We study three-terminal charge transport through individual Fe4 single-molecule magnets. Magnetic anisotropy of the single molecule is directly observed by introducing a spectroscopic technique based on measuring the position of the degeneracy point as a function of gate voltage and applied magnetic

  1. Single molecules in soft matter : a study of biomolecular conformation, heterogeneity and plasmon enhanced fluorescence

    NARCIS (Netherlands)

    Yuan, Haifeng

    2013-01-01

    We study the dynamics of single molecules and individual gold nanorods in glycerol at variable temperatures. We demonstrate temperature-cycle microscopy on FRET-labeled polyproline and double-stranded DNA molecules to access micro-second dynamics of single molecules, and reveal the influences of dye

  2. Single-molecule analysis of DNA replication in Xenopus egg extracts

    NARCIS (Netherlands)

    Yardimci, Hasan; Loveland, Anna B.; van Oijen, Antoine M.; Walter, Johannes C.; Mechali, Marcel

    2012-01-01

    The recent advent in single-molecule imaging and manipulation methods has made a significant impact on the understanding of molecular mechanisms underlying many essential cellular processes. Single-molecule techniques such as electron microscopy and DNA fiber assays have been employed to study the d

  3. Electrochemical detection of single molecules using abiotic nanopores having electrically tunable dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Sansinena, Jose-Maria; Redondo, Antonio; Olazabal, Virginia; Hoffbauer, Mark A.

    2017-09-12

    A barrier structure for use in an electrochemical stochastic membrane sensor for single molecule detection. The sensor is based upon inorganic nanopores having electrically tunable dimensions. The inorganic nanopores are formed from inorganic materials and an electrically conductive polymer. Methods of making the barrier structure and sensing single molecules using the barrier structure are also described.

  4. Electrochemical detection of single molecules using abiotic nanopores having electrically tunable dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Sansinena, Jose-Maria; Redondo, Antonio; Olazabal, Virginia; Hoffbauer, Mark A.; Akhadov, Elshan A.

    2017-07-18

    A barrier structure for use in an electrochemical stochastic membrane sensor for single molecule detection. The sensor is based upon inorganic nanopores having electrically tunable dimensions. The inorganic nanopores are formed from inorganic materials and an electrically conductive polymer. Methods of making the barrier structure and sensing single molecules using the barrier structure are also described.

  5. Recent Advances in Biological Single-Molecule Applications of Optical Tweezers and Fluorescence Microscopy

    NARCIS (Netherlands)

    Hashemi Shabestari, M; Meijering, A E C; Roos, W H; Wuite, G J L; Peterman, E J G

    2017-01-01

    Over the past two decades, single-molecule techniques have evolved into robust tools to study many fundamental biological processes. The combination of optical tweezers with fluorescence microscopy and microfluidics provides a powerful single-molecule manipulation and visualization technique that

  6. Resolving Single-Molecule Assembled Patterns with Superresolution Blink-Microscopy

    NARCIS (Netherlands)

    Cordes, Thorben; Strackharn, Mathias; Stahl, Stefan W.; Summerer, Wolfram; Steinhauer, Christian; Forthmann, Carsten; Puchner, Elias M.; Vogelsang, Jan; Gaub, Hermann E.; Tinnefeld, Philip

    2010-01-01

    In this paper we experimentally combine a recently developed AFM-based molecule-by-molecule assembly (single-molecule cut-and-paste, SMCP) with subdiffraction resolution fluorescence imaging. Using “Blink-Microscopy”, which exploits the fluctuating emission of single molecules for the reconstruction

  7. An Organolanthanide Building Block Approach to Single-Molecule Magnets.

    Science.gov (United States)

    Harriman, Katie L M; Murugesu, Muralee

    2016-06-21

    Single-molecule magnets (SMMs) are highly sought after for their potential application in high-density information storage, spintronics, and quantum computing. SMMs exhibit slow relaxation of the magnetization of purely molecular origin, thus making them excellent candidates towards the aforementioned applications. In recent years, significant focus has been placed on the rare earth elements due to their large intrinsic magnetic anisotropy arising from the near degeneracy of the 4f orbitals. Traditionally, coordination chemistry has been utilized to fabricate lanthanide-based SMMs; however, heteroatomic donor atoms such as oxygen and nitrogen have limited orbital overlap with the shielded 4f orbitals. Thus, control over the anisotropic axis and induction of f-f interactions are limited, meaning that the performance of these systems can only extend so far. To this end, we have placed considerable attention on the development of novel SMMs whose donor atoms are conjugated hydrocarbons, thereby allowing us to perturb the crystal field of lanthanide ions through the use of an electronic π-cloud. This approach allows for fine tuning of the anisotropic axis of the molecule, allowing this method the potential to elicit SMMs capable of reaching much larger values for the two vital performance measurements of an SMM, the energy barrier to spin reversal (Ueff), and the blocking temperature of the magnetization (TB). In this Account, we describe our efforts to exploit the inherent anisotropy of the late 4f elements; namely, Dy(III) and Er(III), through the use of cyclooctatetraenyl (COT) metallocenes. With respect to the Er(III) derivatives, we have seen record breaking success, reaching blocking temperatures as high as 14 K with frozen solution magnetometry. These results represent the first example of such a high TB being observed for a system with only a single spin center, formally known as a single-ion magnet (SIM). Our continued interrelationship between theoretical

  8. Optical tweezers absolute calibration

    CERN Document Server

    Dutra, R S; Neto, P A Maia; Nussenzveig, H M

    2014-01-01

    Optical tweezers are highly versatile laser traps for neutral microparticles, with fundamental applications in physics and in single molecule cell biology. Force measurements are performed by converting the stiffness response to displacement of trapped transparent microspheres, employed as force transducers. Usually, calibration is indirect, by comparison with fluid drag forces. This can lead to discrepancies by sizable factors. Progress achieved in a program aiming at absolute calibration, conducted over the past fifteen years, is briefly reviewed. Here we overcome its last major obstacle, a theoretical overestimation of the peak stiffness, within the most employed range for applications, and we perform experimental validation. The discrepancy is traced to the effect of primary aberrations of the optical system, which are now included in the theory. All required experimental parameters are readily accessible. Astigmatism, the dominant effect, is measured by analyzing reflected images of the focused laser spo...

  9. Directional Raman scattering from single molecules in the feed gaps of optical antennas.

    Science.gov (United States)

    Wang, Dongxing; Zhu, Wenqi; Best, Michael D; Camden, Jon P; Crozier, Kenneth B

    2013-05-08

    Controlling light from single emitters is an overarching theme of nano-optics. Antennas are routinely used to modify the angular emission patterns of radio wave sources. "Optical antennas" translate these principles to visible and infrared wavelengths and have been recently used to modify fluorescence from single quantum dots and single molecules. Understanding the properties of single molecules, however, would be advanced were one able to observe their vibrational spectra through Raman scattering in a very reproducible manner but it is a hugely challenging task, as Raman scattering cross sections are very weak. Here we measure for the first time the highly directional emission patterns of Raman scattering from single molecules in the feed gaps of optical antennas fabricated on a chip. More than a thousand single molecule events are observed, revealing that an unprecedented near-unity fraction of optical antennas have single molecule sensitivity.

  10. An Optical Tweezers Platform for Single Molecule Force Spectroscopy in Organic Solvents.

    Science.gov (United States)

    Black, Jacob; Kamenetska, Maria; Ganim, Ziad

    2017-10-03

    Observation at the single molecule level has been a revolutionary tool for molecular biophysics and materials science, but single molecule studies of solution-phase chemistry are less widespread. In this work we develop an experimental platform for solution-phase single molecule force spectroscopy in organic solvents. This optical-tweezer-based platform was designed for broad chemical applicability and utilizes optically trapped core-shell microspheres, synthetic polymer tethers, and click chemistry linkages formed in situ. We have observed stable optical trapping of the core-shell microspheres in ten different solvents, and single molecule link formation in four different solvents. These experiments demonstrate how to use optical tweezers for single molecule force application in the study of solution-phase chemistry.

  11. A Starting Point for Fluorescence-Based Single-Molecule Measurements in Biomolecular Research

    Directory of Open Access Journals (Sweden)

    Alexander Gust

    2014-09-01

    Full Text Available Single-molecule fluorescence techniques are ideally suited to provide information about the structure-function-dynamics relationship of a biomolecule as static and dynamic heterogeneity can be easily detected. However, what type of single-molecule fluorescence technique is suited for which kind of biological question and what are the obstacles on the way to a successful single-molecule microscopy experiment? In this review, we provide practical insights into fluorescence-based single-molecule experiments aiming for scientists who wish to take their experiments to the single-molecule level. We especially focus on fluorescence resonance energy transfer (FRET experiments as these are a widely employed tool for the investigation of biomolecular mechanisms. We will guide the reader through the most critical steps that determine the success and quality of diffusion-based confocal and immobilization-based total internal reflection fluorescence microscopy. We discuss the specific chemical and photophysical requirements that make fluorescent dyes suitable for single-molecule fluorescence experiments. Most importantly, we review recently emerged photoprotection systems as well as passivation and immobilization strategies that enable the observation of fluorescently labeled molecules under biocompatible conditions. Moreover, we discuss how the optical single-molecule toolkit has been extended in recent years to capture the physiological complexity of a cell making it even more relevant for biological research.

  12. A starting point for fluorescence-based single-molecule measurements in biomolecular research.

    Science.gov (United States)

    Gust, Alexander; Zander, Adrian; Gietl, Andreas; Holzmeister, Phil; Schulz, Sarah; Lalkens, Birka; Tinnefeld, Philip; Grohmann, Dina

    2014-09-30

    Single-molecule fluorescence techniques are ideally suited to provide information about the structure-function-dynamics relationship of a biomolecule as static and dynamic heterogeneity can be easily detected. However, what type of single-molecule fluorescence technique is suited for which kind of biological question and what are the obstacles on the way to a successful single-molecule microscopy experiment? In this review, we provide practical insights into fluorescence-based single-molecule experiments aiming for scientists who wish to take their experiments to the single-molecule level. We especially focus on fluorescence resonance energy transfer (FRET) experiments as these are a widely employed tool for the investigation of biomolecular mechanisms. We will guide the reader through the most critical steps that determine the success and quality of diffusion-based confocal and immobilization-based total internal reflection fluorescence microscopy. We discuss the specific chemical and photophysical requirements that make fluorescent dyes suitable for single-molecule fluorescence experiments. Most importantly, we review recently emerged photoprotection systems as well as passivation and immobilization strategies that enable the observation of fluorescently labeled molecules under biocompatible conditions. Moreover, we discuss how the optical single-molecule toolkit has been extended in recent years to capture the physiological complexity of a cell making it even more relevant for biological research.

  13. Future challenges in single-molecule fluorescence and laser trap approaches to studies of molecular motors.

    Science.gov (United States)

    Elting, Mary Williard; Spudich, James A

    2012-12-11

    Single-molecule analysis is a powerful modern form of biochemistry, in which individual kinetic steps of a catalytic cycle of an enzyme can be explored in exquisite detail. Both single-molecule fluorescence and single-molecule force techniques have been widely used to characterize a number of protein systems. We focus here on molecular motors as a paradigm. We describe two areas where we expect to see exciting developments in the near future: first, characterizing the coupling of force production to chemical and mechanical changes in motors, and second, understanding how multiple motors work together in the environment of the cell.

  14. Single-molecule force-conductance spectroscopy of hydrogen-bonded complexes

    DEFF Research Database (Denmark)

    Pirrotta, Alessandro; De Vico, Luca; Solomon, Gemma C.

    2017-01-01

    The emerging ability to study physical properties at the single-molecule limit highlights the disparity between what is observable in an ensemble of molecules and the heterogeneous contributions of its constituent parts. A particularly convenient platform for single-molecule studies are molecular...... junctions where forces and voltages can be applied to individual molecules, giving access to a series of electromechanical observables that can form the basis of highly discriminating multidimensional single-molecule spectroscopies. Here, we computationally examine the ability of force and conductance...

  15. Hydrogel Droplet Microfluidics for High-Throughput Single Molecule/Cell Analysis.

    Science.gov (United States)

    Zhu, Zhi; Yang, Chaoyong James

    2017-01-17

    Heterogeneity among individual molecules and cells has posed significant challenges to traditional bulk assays, due to the assumption of average behavior, which would lose important biological information in heterogeneity and result in a misleading interpretation. Single molecule/cell analysis has become an important and emerging field in biological and biomedical research for insights into heterogeneity between large populations at high resolution. Compared with the ensemble bulk method, single molecule/cell analysis explores the information on time trajectories, conformational states, and interactions of individual molecules/cells, all key factors in the study of chemical and biological reaction pathways. Various powerful techniques have been developed for single molecule/cell analysis, including flow cytometry, atomic force microscopy, optical and magnetic tweezers, single-molecule fluorescence spectroscopy, and so forth. However, some of them have the low-throughput issue that has to analyze single molecules/cells one by one. Flow cytometry is a widely used high-throughput technique for single cell analysis but lacks the ability for intercellular interaction study and local environment control. Droplet microfluidics becomes attractive for single molecule/cell manipulation because single molecules/cells can be individually encased in monodisperse microdroplets, allowing high-throughput analysis and manipulation with precise control of the local environment. Moreover, hydrogels, cross-linked polymer networks that swell in the presence of water, have been introduced into droplet microfluidic systems as hydrogel droplet microfluidics. By replacing an aqueous phase with a monomer or polymer solution, hydrogel droplets can be generated on microfluidic chips for encapsulation of single molecules/cells according to the Poisson distribution. The sol-gel transition property endows the hydrogel droplets with new functionalities and diversified applications in single

  16. Monitoring early fusion dynamics of human immunodeficiency virus type 1 at single-molecule resolution.

    Science.gov (United States)

    Dobrowsky, Terrence M; Zhou, Yan; Sun, Sean X; Siliciano, Robert F; Wirtz, Denis

    2008-07-01

    The fusion of human immunodeficiency virus type 1 (HIV-1) to host cells is a dynamic process governed by the interaction between glycoproteins on the viral envelope and the major receptor, CD4, and coreceptor on the surface of the cell. How these receptors organize at the virion-cell interface to promote a fusion-competent site is not well understood. Using single-molecule force spectroscopy, we map the tensile strengths, lifetimes, and energy barriers of individual intermolecular bonds between CCR5-tropic HIV-1 gp120 and its receptors CD4 and CCR5 or CXCR4 as a function of the interaction time with the cell. According to the Bell model, at short times of contact between cell and virion, the gp120-CD4 bond is able to withstand forces up to 35 pN and has an initial lifetime of 0.27 s and an intermolecular length of interaction of 0.34 nm. The initial bond also has an energy barrier of 6.7 k(B)T (where k(B) is Boltzmann's constant and T is absolute temperature). However, within 0.3 s, individual gp120-CD4 bonds undergo rapid destabilization accompanied by a shortened lifetime and a lowered tensile strength. This destabilization is significantly enhanced by the coreceptor CCR5, not by CXCR4 or fusion inhibitors, which suggests that it is directly related to a conformational change in the gp120-CD4 bond. These measurements highlight the instability and low tensile strength of gp120-receptor bonds, uncover a synergistic role for CCR5 in the progression of the gp120-CD4 bond, and suggest that the cell-virus adhesion complex is functionally arranged about a long-lived gp120-coreceptor bond.

  17. Multi-period Mean-absolute Deviation Fuzzy Portfolio Selection Model with Entropy Constraints%具有熵约束的多阶段均值-绝对偏差模糊投资组合决策

    Institute of Scientific and Technical Information of China (English)

    张鹏; 张卫国; 曾玉婷

    2016-01-01

    文章运用可能性绝对偏差和比例熵分别度量风险和分散化程度,提出了具有风险控制和线性交易成本的终期财富最大化的多阶段模糊投资组合模型。运用可能理论,将该模型转化为显示的非线性动态优化问题。由于投资过程存在交易成本,上述模型为具有路径依赖性的动态优化问题。文章提出了前向动态规划方法求解。最后,通过实证研究比较了不同熵的取值投资组合最优投资比例和最终财富的变化。%This paper considers a multi-period fuzzy portfolio selection problem maximizing the terminal wealth imposed by risk control, in which risk of assets and the divergence measure of portfolio are, respectively, meas-ured by fuzzy absolute deviation and proportion entropy.Based on the theories of possibility theory, the proposed model is transformed into a crisp nonlinear programming problem.Because of the transaction costs, the multi-period portfolio selection is a dynamic optimization problem with path dependence.Furthermore, a forward dynamic programming method is designed to obtain the optimal portfolio strategy.Finally, an example is given to illustrate the behavior of the proposed model and the designed algorithm.

  18. From the molecule to the mole: improving heterogeneous copper catalyzed click chemistry using single molecule spectroscopy.

    Science.gov (United States)

    Wang, Bowen; Durantini, Javier; Decan, Matthew R; Nie, Jun; Lanterna, Anabel E; Scaiano, Juan C

    2016-12-22

    Single molecule spectroscopy (SMS) inspired the optimization of a heterogeneous 'click' catalyst leading to enhanced yields of the Cu-catalyzed reaction of azides with terminal alkynes. Changes in SMS data after optimization confirm the improvements in catalyst performance.

  19. Single Molecule Photobleaching Probes the Exciton Wavefunction in a Multichromophoric System

    NARCIS (Netherlands)

    Hernando, J.; Hoogenboom, J.P.; Dijk, van E.M.H.P.; Garcia-Lopez, J.J.; Crego Calama, M.; Reinhoudt, D.N.; Hulst, van N.F.; Garcia-Parajo, M.F.

    2004-01-01

    The exciton wave function of a trichromophoric system is investigated by means of single molecule spectroscopy at room temperature. Individual trimers exhibit superradiance and loss of vibronic structure in emission spectrum, features proving exciton delocalization. We identify two distinct photodeg

  20. Variable-Temperature Tip-Enhanced Raman Spectroscopy of Single-Molecule Fluctuations and Dynamics.

    Science.gov (United States)

    Park, Kyoung-Duck; Muller, Eric A; Kravtsov, Vasily; Sass, Paul M; Dreyer, Jens; Atkin, Joanna M; Raschke, Markus B

    2016-01-13

    Structure, dynamics, and coupling involving single-molecules determine function in catalytic, electronic or biological systems. While vibrational spectroscopy provides insight into molecular structure, rapid fluctuations blur the molecular trajectory even in single-molecule spectroscopy, analogous to spatial averaging in measuring large ensembles. To gain insight into intramolecular coupling, substrate coupling, and dynamic processes, we use tip-enhanced Raman spectroscopy (TERS) at variable and cryogenic temperatures, to slow and control the motion of a single molecule. We resolve intrinsic line widths of individual normal modes, allowing detailed and quantitative investigation of the vibrational modes. From temperature dependent line narrowing and splitting, we quantify ultrafast vibrational dephasing, intramolecular coupling, and conformational heterogeneity. Through statistical correlation analysis of fluctuations of individual modes, we observe rotational motion and spectral fluctuations of the molecule. This work demonstrates single-molecule vibrational spectroscopy beyond chemical identification, opening the possibility for a complete picture of molecular motion ranging from femtoseconds to minutes.

  1. Single vesicle biochips for ultra-miniaturized nanoscale fluidics and single molecule bioscience

    DEFF Research Database (Denmark)

    Christensen, Andreas Lauge; Lohr, Christina; Christensen, Sune M.;

    2013-01-01

    , their fabrication via controlled self-assembly, and their characterization using fluorescence microscopy. We also highlight their applications in selected fields such as nanofluidics and single molecule bioscience. Despite their great potential for improved biocompatibility, extreme miniaturization and high...

  2. Shifting molecular localization by plasmonic coupling in a single-molecule mirage

    Science.gov (United States)

    Raab, Mario; Vietz, Carolin; Stefani, Fernando Daniel; Acuna, Guillermo Pedro; Tinnefeld, Philip

    2017-01-01

    Over the last decade, two fields have dominated the attention of sub-diffraction photonics research: plasmonics and fluorescence nanoscopy. Nanoscopy based on single-molecule localization offers a practical way to explore plasmonic interactions with nanometre resolution. However, this seemingly straightforward technique may retrieve false positional information. Here, we make use of the DNA origami technique to both control a nanometric separation between emitters and a gold nanoparticle, and as a platform for super-resolution imaging based on single-molecule localization. This enables a quantitative comparison between the position retrieved from single-molecule localization, the true position of the emitter and full-field simulations. We demonstrate that plasmonic coupling leads to shifted molecular localizations of up to 30 nm: a single-molecule mirage.

  3. Real-space observation of spin-split molecular orbitals of adsorbed single-molecule magnets

    National Research Council Canada - National Science Library

    Schwöbel, Jörg; Fu, Yingshuang; Brede, Jens; Dilullo, Andrew; Hoffmann, Germar; Klyatskaya, Svetlana; Ruben, Mario; Wiesendanger, Roland

    2012-01-01

    A key challenge in the field of molecular spintronics, and for the design of single-molecule magnet-based devices in particular, is the understanding and control of the molecular coupling at the electrode interfaces...

  4. Single-molecule detection at high concentrations with optical aperture nanoantennas

    Science.gov (United States)

    Alam, Md Shah; Karim, Farzia; Zhao, Chenglong

    2016-05-01

    Single-molecule detection has become an indispensable technology in life science, and medical research. In order to get meaningful information on many biological processes, single-molecule analysis is required in micro-molar concentrations. At such high concentrations, it is very challenging to isolate a single molecule with conventional diffraction-limited optics. Recently, optical aperture nanoantennas (OANs) have emerged as a powerful tool to enhance the single-molecule detection under a physiological environment. The OANs, which consist of nano-scale apertures on a metallic film, have the following unique properties: (1) nanoscale light confinement; (2) enhanced fluorescence emission; (3) tunable radiation pattern; (4) reduced background noise; and (5) massive parallel detection. This review presents the fundamentals, recent developments and future perspectives in this emerging field.

  5. Targeting neurotransmitter receptors with nanoparticles in vivo allows single-molecule tracking in acute brain slices

    Science.gov (United States)

    Varela, Juan A.; Dupuis, Julien P.; Etchepare, Laetitia; Espana, Agnès; Cognet, Laurent; Groc, Laurent

    2016-03-01

    Single-molecule imaging has changed the way we understand many biological mechanisms, particularly in neurobiology, by shedding light on intricate molecular events down to the nanoscale. However, current single-molecule studies in neuroscience have been limited to cultured neurons or organotypic slices, leaving as an open question the existence of fast receptor diffusion in intact brain tissue. Here, for the first time, we targeted dopamine receptors in vivo with functionalized quantum dots and were able to perform single-molecule tracking in acute rat brain slices. We propose a novel delocalized and non-inflammatory way of delivering nanoparticles (NPs) in vivo to the brain, which allowed us to label and track genetically engineered surface dopamine receptors in neocortical neurons, revealing inherent behaviour and receptor activity regulations. We thus propose a NP-based platform for single-molecule studies in the living brain, opening new avenues of research in physiological and pathological animal models.

  6. Giant Suppression of Photobleaching for Single Molecule Detection via the Purcell Effect

    Science.gov (United States)

    2013-11-18

    Giant Suppression of Photobleaching for Single Molecule Detection via the Purcell Effect Hu Cang,†,‡ Yongmin Liu,†,§,∥ Yuan Wang,† Xiaobo Yin,†,⊥ and...Information ABSTRACT: We report giant suppression of photobleaching and a prolonged lifespan of single fluorescent molecules via the Purcell effect in... Purcell effect to manipulate photochemical reactions at the subwavelength scale. KEYWORDS: Nano-optics, single-molecule fluorescence spectroscopy

  7. SINGLE MOLECULE APPROACHES TO BIOLOGY, 2010 GORDON RESEARCH CONFERENCE, JUNE 27-JULY 2, 2010, ITALY

    Energy Technology Data Exchange (ETDEWEB)

    Professor William Moerner

    2010-07-09

    The 2010 Gordon Conference on Single-Molecule Approaches to Biology focuses on cutting-edge research in single-molecule science. Tremendous technical developments have made it possible to detect, identify, track, and manipulate single biomolecules in an ambient environment or even in a live cell. Single-molecule approaches have changed the way many biological problems are addressed, and new knowledge derived from these approaches continues to emerge. The ability of single-molecule approaches to avoid ensemble averaging and to capture transient intermediates and heterogeneous behavior renders them particularly powerful in elucidating mechanisms of biomolecular machines: what they do, how they work individually, how they work together, and finally, how they work inside live cells. The burgeoning use of single-molecule methods to elucidate biological problems is a highly multidisciplinary pursuit, involving both force- and fluorescence-based methods, the most up-to-date advances in microscopy, innovative biological and chemical approaches, and nanotechnology tools. This conference seeks to bring together top experts in molecular and cell biology with innovators in the measurement and manipulation of single molecules, and will provide opportunities for junior scientists and graduate students to present their work in poster format and to exchange ideas with leaders in the field. A number of excellent poster presenters will be selected for short oral talks. Topics as diverse as single-molecule sequencing, DNA/RNA/protein interactions, folding machines, cellular biophysics, synthetic biology and bioengineering, force spectroscopy, new method developments, superresolution imaging in cells, and novel probes for single-molecule imaging will be on the program. Additionally, the collegial atmosphere of this Conference, with programmed discussion sessions as well as opportunities for informal gatherings in the afternoons and evenings in the beauty of the Il Ciocco site in

  8. pyFRET: A Python Library for Single Molecule Fluorescence Data Analysis

    OpenAIRE

    Murphy, Rebecca R.; Jackson, Sophie E.; Klenerman, David

    2014-01-01

    Single molecule F\\"orster resonance energy transfer (smFRET) is a powerful experimental technique for studying the properties of individual biological molecules in solution. However, as adoption of smFRET techniques becomes more widespread, the lack of available software, whether open source or commercial, for data analysis, is becoming a significant issue. Here, we present pyFRET, an open source Python package for the analysis of data from single-molecule fluorescence experiments from freely...

  9. Photon counting imaging and centroiding with an electron-bombarded CCD using single molecule localisation software

    OpenAIRE

    Hirvonen, Liisa Maija; Barber, Matthew; Suhling, Klaus

    2016-01-01

    Photon event centroiding in photon counting imaging and single-molecule localisation in super-resolution fluorescence microscopy share many traits. Although photon event centroiding has traditionally been performed with simple single-iteration algorithms, we recently reported that iterative fitting algorithms originally developed for single-molecule localisation fluorescence microscopy work very well when applied to centroiding photon events imaged with an MCP-intensified CMOS camera. Here, w...

  10. Diversity of Chemical Mechanisms in Thioredoxin Catalysis Revealed by Single-Molecule Force Spectroscopy

    OpenAIRE

    2009-01-01

    Thioredoxins (Trxs) are oxidoreductase enzymes, present in all organisms, that catalyze the reduction of disulfide bonds in proteins. By applying a calibrated force to a substrate disulfide, the chemical mechanisms of Trx catalysis can be examined in detail at the single-molecule level. Here we use single-molecule force-clamp spectroscopy to explore the chemical evolution of Trx catalysis by probing the chemistry of eight different Trx enzymes. All Trxs show a characteristic Michaelis-Menten ...

  11. Modulation of homochiral Dy(III) complexes: single-molecule magnets with ferroelectric properties.

    Science.gov (United States)

    Li, Xi-Li; Chen, Chun-Lai; Gao, Yu-Liang; Liu, Cai-Ming; Feng, Xiang-Li; Gui, Yang-Hai; Fang, Shao-Ming

    2012-11-12

    Homochiral Dy(III) complexes: by changing the ligand-to-metal ratio, enantiomeric pairs of a Dy(III) complex of different nuclearity could be obtained. The mono- and dinuclear complexes exhibit characteristics of single-molecule magnets and different slow magnetic relaxation processes. In addition, the dinuclear complexes exhibit ferroelectric behavior, thus representing the first chiral polynuclear lanthanide-based single-molecule magnets with ferroelectric properties.

  12. Physics of negative absolute temperatures

    Science.gov (United States)

    Abraham, Eitan; Penrose, Oliver

    2017-01-01

    Negative absolute temperatures were introduced into experimental physics by Purcell and Pound, who successfully applied this concept to nuclear spins; nevertheless, the concept has proved controversial: a recent article aroused considerable interest by its claim, based on a classical entropy formula (the "volume entropy") due to Gibbs, that negative temperatures violated basic principles of statistical thermodynamics. Here we give a thermodynamic analysis that confirms the negative-temperature interpretation of the Purcell-Pound experiments. We also examine the principal arguments that have been advanced against the negative temperature concept; we find that these arguments are not logically compelling, and moreover that the underlying "volume" entropy formula leads to predictions inconsistent with existing experimental results on nuclear spins. We conclude that, despite the counterarguments, negative absolute temperatures make good theoretical sense and did occur in the experiments designed to produce them.

  13. Absolute advantage

    NARCIS (Netherlands)

    J.G.M. van Marrewijk (Charles)

    2008-01-01

    textabstractA country is said to have an absolute advantage over another country in the production of a good or service if it can produce that good or service using fewer real resources. Equivalently, using the same inputs, the country can produce more output. The concept of absolute advantage can a

  14. Deciphering the Structure and Function of Nuclear Pores Using Single-Molecule Fluorescence Approaches.

    Science.gov (United States)

    Musser, Siegfried M; Grünwald, David

    2016-05-22

    Due to its central role in macromolecular trafficking and nucleocytoplasmic information transfer, the nuclear pore complex (NPC) has been studied in great detail using a wide spectrum of methods. Consequently, many aspects of its architecture, general function, and role in the life cycle of a cell are well understood. Over the last decade, fluorescence microscopy methods have enabled the real-time visualization of single molecules interacting with and transiting through the NPC, allowing novel questions to be examined with nanometer precision. While initial single-molecule studies focused primarily on import pathways using permeabilized cells, it has recently proven feasible to investigate the export of mRNAs in living cells. Single-molecule assays can address questions that are difficult or impossible to answer by other means, yet the complexity of nucleocytoplasmic transport requires that interpretation be based on a firm genetic, biochemical, and structural foundation. Moreover, conceptually simple single-molecule experiments remain technically challenging, particularly with regard to signal intensity, signal-to-noise ratio, and the analysis of noise, stochasticity, and precision. We discuss nuclear transport issues recently addressed by single-molecule microscopy, evaluate the limits of existing assays and data, and identify open questions for future studies. We expect that single-molecule fluorescence approaches will continue to be applied to outstanding nucleocytoplasmic transport questions, and that the approaches developed for NPC studies are extendable to additional complex systems and pathways within cells.

  15. Bekenstein Entropy is String Entropy

    CERN Document Server

    Halyo, Edi

    2009-01-01

    We argue that Bekenstein entropy can be interpreted as the entropy of an effective string with a rescaled tension. Using the AdS/CFT correspondence we show that the Bekenstein entropy on the boundary CFT is given by the entropy of a string at the stretched horizon of the AdS black hole in the bulk. The gravitationally redshifted tension and energy of the string match those required to reproduce Bekenstein entropy.

  16. SISGR: Room Temperature Single-Molecule Detection and Imaging by Stimulated Emission Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Xiaoliang Sunney [Harvard Univ., Cambridge, MA (United States). Dept. of Chemistry and Chemical Biology

    2017-03-13

    Single-molecule spectroscopy has made considerable impact on many disciplines including chemistry, physics, and biology. To date, most single-molecule spectroscopy work is accomplished by detecting fluorescence. On the other hand, many naturally occurring chromophores, such as retinal, hemoglobin and cytochromes, do not have detectable fluorescence. There is an emerging need for single-molecule spectroscopy techniques that do not require fluorescence. In the last proposal period, we have successfully demonstrated stimulated emission microscopy, single molecule absorption, and stimulated Raman microscopy based on a high-frequency modulation transfer technique. These first-of-a- kind new spectroscopy/microscopy methods tremendously improved our ability to observe molecules that fluorescence weakly, even to the limit of single molecule detection for absorption measurement. All of these methods employ two laser beams: one (pump beam) excites a single molecule to a real or virtual excited state, and the other (probe beam) monitors the absorption/emission property of the single. We extract the intensity change of the probe beam with high sensitivity by implementing a high-frequency phase-sensitive detection scheme, which offers orders of magnitude improvement in detection sensitivity over direct absorption/emission measurement. However, single molecule detection based on fluorescence or absorption is fundamentally limited due to their broad spectral response. It is important to explore other avenues in single molecule detection and imaging which provides higher molecular specificity for studying a wide variety of heterogeneous chemical and biological systems. This proposal aimed to achieve single-molecule detection sensitivity with near resonance stimulated Raman scattering (SRS) microscopy. SRS microscopy was developed in our lab as a powerful technique for imaging heterogeneous samples based on their intrinsic vibrational contrasts, which provides much higher molecular

  17. Multicolour single molecule imaging in cells with near infra-red dyes.

    Directory of Open Access Journals (Sweden)

    Christopher J Tynan

    Full Text Available BACKGROUND: The autofluorescence background of biological samples impedes the detection of single molecules when imaging. The most common method of reducing the background is to use evanescent field excitation, which is incompatible with imaging beyond the surface of biological samples. An alternative would be to use probes that can be excited in the near infra-red region of the spectrum, where autofluorescence is low. Such probes could also increase the number of labels that can be imaged in multicolour single molecule microscopes. Despite being widely used in ensemble imaging, there is a currently a shortage of information available for selecting appropriate commercial near infra-red dyes for single molecule work. It is therefore important to characterise available near infra-red dyes relevant to multicolour single molecule imaging. METHODOLOGY/PRINCIPAL FINDINGS: A range of commercially available near infra-red dyes compatible with multi-colour imaging was screened to find the brightest and most photostable candidates. Image series of immobilised samples of the brightest dyes (Alexa 700, IRDye 700DX, Alexa 790 and IRDye 800CW were analysed to obtain the mean intensity of single dye molecules, their photobleaching rates and long period blinking kinetics. Using the optimum dye pair, we have demonstrated for the first time widefield, multi-colour, near infra-red single molecule imaging using a supercontinuum light source in MCF-7 cells. CONCLUSIONS/SIGNIFICANCE: We have demonstrated that near infra-red dyes can be used to avoid autofluorescence background in samples where restricting the illumination volume of visible light fails or is inappropriate. We have also shown that supercontinuum sources are suited to single molecule multicolour imaging throughout the 470-1000 nm range. Our measurements of near infra-red dye properties will enable others to select optimal dyes for single molecule imaging.

  18. DNA origami as biocompatible surface to match single-molecule and ensemble experiments.

    Science.gov (United States)

    Gietl, Andreas; Holzmeister, Phil; Grohmann, Dina; Tinnefeld, Philip

    2012-08-01

    Single-molecule experiments on immobilized molecules allow unique insights into the dynamics of molecular machines and enzymes as well as their interactions. The immobilization, however, can invoke perturbation to the activity of biomolecules causing incongruities between single molecule and ensemble measurements. Here we introduce the recently developed DNA origami as a platform to transfer ensemble assays to the immobilized single molecule level without changing the nano-environment of the biomolecules. The idea is a stepwise transfer of common functional assays first to the surface of a DNA origami, which can be checked at the ensemble level, and then to the microscope glass slide for single-molecule inquiry using the DNA origami as a transfer platform. We studied the structural flexibility of a DNA Holliday junction and the TATA-binding protein (TBP)-induced bending of DNA both on freely diffusing molecules and attached to the origami structure by fluorescence resonance energy transfer. This resulted in highly congruent data sets demonstrating that the DNA origami does not influence the functionality of the biomolecule. Single-molecule data collected from surface-immobilized biomolecule-loaded DNA origami are in very good agreement with data from solution measurements supporting the fact that the DNA origami can be used as biocompatible surface in many fluorescence-based measurements.

  19. Blinking effect and the use of quantum dots in single molecule spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Rombach-Riegraf, Verena; Oswald, Peter; Bienert, Roland; Petersen, Jan [Albert-Ludwigs-Universitaet Freiburg, Institut fuer Physikalische Chemie, Albertstrasse 23a, 79104 Freiburg (Germany); Domingo, M.P. [Instituto de Carboquimica (CSIC), Miguel Luesma 4, 50018 Zaragoza (Spain); Pardo, Julian [Grupo Apoptosis, Inmunidad y Cancer, Departamento Bioquimica y Biologia Molecular y Celular, Fac. Ciencias, Universidad de Zaragoza, Zaragoza (Spain); Fundacion Aragon I-D (ARAID), Gobierno de Aragon, Zaragoza (Spain); Immune Effector Cells Group, Aragon Health Research Institute (IIS Aragon), Biomedical Research Centre of Aragon (CIBA) Fundacion Aragon I-D - ARAID, Gobierno de Aragon, Zaragoza (Spain); Graeber, P. [Albert-Ludwigs-Universitaet Freiburg, Institut fuer Physikalische Chemie, Albertstrasse 23a, 79104 Freiburg (Germany); Galvez, E.M., E-mail: eva@icb.csic.es [Instituto de Carboquimica (CSIC), Miguel Luesma 4, 50018 Zaragoza (Spain); Immune Effector Cells Group, Aragon Health Research Institute (IIS Aragon), Biomedical Research Centre of Aragon (CIBA) Fundacion Aragon I-D - ARAID, Gobierno de Aragon, Zaragoza (Spain)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer It is possible to eliminate the blinking effect of a water-soluble QD. Black-Right-Pointing-Pointer We provide a direct method to study protein function and dynamics at the single level. Black-Right-Pointing-Pointer QD, potent tool for single molecule studies of biochemical and biological processes. -- Abstract: Luminescent semiconductor nanocrystals (quantum dots, QD) have unique photo-physical properties: high photostability, brightness and narrow size-tunable fluorescence spectra. Due to their unique properties, QD-based single molecule studies have become increasingly more popular during the last years. However QDs show a strong blinking effect (random and intermittent light emission), which may limit their use in single molecule fluorescence studies. QD blinking has been widely studied and some hypotheses have been done to explain this effect. Here we summarise what is known about the blinking effect in QDs, how this phenomenon may affect single molecule studies and, on the other hand, how the 'on'/'off' states can be exploited in diverse experimental settings. In addition, we present results showing that site-directed binding of QD to cysteine residues of proteins reduces the blinking effect. This option opens a new possibility of using QDs to study protein-protein interactions and dynamics by single molecule fluorescence without modifying the chemical composition of the solution or the QD surface.

  20. Single-molecule electrical contacts on silicon electrodes under ambient conditions

    Science.gov (United States)

    Aragonès, Albert C.; Darwish, Nadim; Ciampi, Simone; Sanz, Fausto; Gooding, J. Justin; Díez-Pérez, Ismael

    2017-04-01

    The ultimate goal in molecular electronics is to use individual molecules as the active electronic component of a real-world sturdy device. For this concept to become reality, it will require the field of single-molecule electronics to shift towards the semiconducting platform of the current microelectronics industry. Here, we report silicon-based single-molecule contacts that are mechanically and electrically stable under ambient conditions. The single-molecule contacts are prepared on silicon electrodes using the scanning tunnelling microscopy break-junction approach using a top metallic probe. The molecular wires show remarkable current-voltage reproducibility, as compared to an open silicon/nano-gap/metal junction, with current rectification ratios exceeding 4,000 when a low-doped silicon is used. The extension of the single-molecule junction approach to a silicon substrate contributes to the next level of miniaturization of electronic components and it is anticipated it will pave the way to a new class of robust single-molecule circuits.

  1. Single-Molecule Spectroscopy, Imaging, and Photocontrol: Foundations for Super-Resolution Microscopy (Nobel Lecture).

    Science.gov (United States)

    Moerner, W E William E

    2015-07-06

    The initial steps toward optical detection and spectroscopy of single molecules in condensed matter arose out of the study of inhomogeneously broadened optical absorption profiles of molecular impurities in solids at low temperatures. Spectral signatures relating to the fluctuations of the number of molecules in resonance led to the attainment of the single-molecule limit in 1989 using frequency-modulation laser spectroscopy. In the early 90s, many fascinating physical effects were observed for individual molecules, and the imaging of single molecules as well as observations of spectral diffusion, optical switching and the ability to select different single molecules in the same focal volume simply by tuning the pumping laser frequency provided important forerunners of the later super-resolution microscopy with single molecules. In the room temperature regime, imaging of single copies of the green fluorescent protein also uncovered surprises, especially the blinking and photoinduced recovery of emitters, which stimulated further development of photoswitchable fluorescent protein labels. Because each single fluorophore acts a light source roughly 1 nm in size, microscopic observation and localization of individual fluorophores is a key ingredient to imaging beyond the optical diffraction limit. Combining this with active control of the number of emitting molecules in the pumped volume led to the super-resolution imaging of Eric Betzig and others, a new frontier for optical microscopy beyond the diffraction limit. The background leading up to these observations is described and current developments are summarized.

  2. Nobel Lecture: Single-molecule spectroscopy, imaging, and photocontrol: Foundations for super-resolution microscopy*

    Science.gov (United States)

    Moerner, W. E. William E.

    2015-10-01

    The initial steps toward optical detection and spectroscopy of single molecules in condensed matter arose out of the study of inhomogeneously broadened optical absorption profiles of molecular impurities in solids at low temperatures. Spectral signatures relating to the fluctuations of the number of molecules in resonance led to the attainment of the single-molecule limit in 1989 using frequency-modulation laser spectroscopy. In the early 1990s, many fascinating physical effects were observed for individual molecules, and the imaging of single molecules as well as observations of spectral diffusion, optical switching and the ability to select different single molecules in the same focal volume simply by tuning the pumping laser frequency provided important forerunners of the later super-resolution microscopy with single molecules. In the room-temperature regime, imaging of single copies of the green fluorescent protein also uncovered surprises, especially the blinking and photoinduced recovery of emitters, which stimulated further development of photoswitchable fluorescent protein labels. Because each single fluorophore acts as a light source roughly 1 nm in size, microscopic observation and localization of individual fluorophores is a key ingredient to imaging beyond the optical diffraction limit. Combining this with active control of the number of emitting molecules in the pumped volume led to the super-resolution imaging of Eric Betzig and others, a new frontier for optical microscopy beyond the diffraction limit. The background leading up to these observations is described and selected current developments are summarized.

  3. Experimental and Computational Characterization of Biological Liquid Crystals: A Review of Single-Molecule Bioassays

    Directory of Open Access Journals (Sweden)

    Sungsoo Na

    2009-09-01

    Full Text Available Quantitative understanding of the mechanical behavior of biological liquid crystals such as proteins is essential for gaining insight into their biological functions, since some proteins perform notable mechanical functions. Recently, single-molecule experiments have allowed not only the quantitative characterization of the mechanical behavior of proteins such as protein unfolding mechanics, but also the exploration of the free energy landscape for protein folding. In this work, we have reviewed the current state-of-art in single-molecule bioassays that enable quantitative studies on protein unfolding mechanics and/or various molecular interactions. Specifically, single-molecule pulling experiments based on atomic force microscopy (AFM have been overviewed. In addition, the computational simulations on single-molecule pulling experiments have been reviewed. We have also reviewed the AFM cantilever-based bioassay that provides insight into various molecular interactions. Our review highlights the AFM-based single-molecule bioassay for quantitative characterization of biological liquid crystals such as proteins.

  4. Supramolecular Systems and Chemical Reactions in Single-Molecule Break Junctions.

    Science.gov (United States)

    Li, Xiaohui; Hu, Duan; Tan, Zhibing; Bai, Jie; Xiao, Zongyuan; Yang, Yang; Shi, Jia; Hong, Wenjing

    2017-04-01

    The major challenges of molecular electronics are the understanding and manipulation of the electron transport through the single-molecule junction. With the single-molecule break junction techniques, including scanning tunneling microscope break junction technique and mechanically controllable break junction technique, the charge transport through various single-molecule and supramolecular junctions has been studied during the dynamic fabrication and continuous characterization of molecular junctions. This review starts from the charge transport characterization of supramolecular junctions through a variety of noncovalent interactions, such as hydrogen bond, π-π interaction, and electrostatic force. We further review the recent progress in constructing highly conductive molecular junctions via chemical reactions, the response of molecular junctions to external stimuli, as well as the application of break junction techniques in controlling and monitoring chemical reactions in situ. We suggest that beyond the measurement of single molecular conductance, the single-molecule break junction techniques provide a promising access to study molecular assembly and chemical reactions at the single-molecule scale.

  5. Single-molecule imaging and manipulation of biomolecular machines and systems.

    Science.gov (United States)

    Iino, Ryota; Iida, Tatsuya; Nakamura, Akihiko; Saita, Ei-Ichiro; You, Huijuan; Sako, Yasushi

    2017-08-05

    Biological molecular machines support various activities and behaviors of cells, such as energy production, signal transduction, growth, differentiation, and migration. We provide an overview of single-molecule imaging methods involving both small and large probes used to monitor the dynamic motions of molecular machines in vitro (purified proteins) and in living cells, and single-molecule manipulation methods used to measure the forces, mechanical properties and responses of biomolecules. We also introduce several examples of single-molecule analysis, focusing primarily on motor proteins and signal transduction systems. Single-molecule analysis is a powerful approach to unveil the operational mechanisms both of individual molecular machines and of systems consisting of many molecular machines. Quantitative, high-resolution single-molecule analyses of biomolecular systems at the various hierarchies of life will help to answer our fundamental question: "What is life?" This article is part of a Special Issue entitled "Biophysical Exploration of Dynamical Ordering of Biomolecular Systems" edited by Dr. Koichi Kato. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Next-Generation DNA Curtains for Single-Molecule Studies of Homologous Recombination.

    Science.gov (United States)

    Soniat, Michael M; Myler, Logan R; Schaub, Jeffrey M; Kim, Yoori; Gallardo, Ignacio F; Finkelstein, Ilya J

    2017-01-01

    Homologous recombination (HR) is a universally conserved DNA double-strand break repair pathway. Single-molecule fluorescence imaging approaches have revealed new mechanistic insights into nearly all aspects of HR. These methods are especially suited for studying protein complexes because multicolor fluorescent imaging can parse out subassemblies and transient intermediates that associate with the DNA substrates on the millisecond to hour timescales. However, acquiring single-molecule datasets remains challenging because most of these approaches are designed to measure one molecular reaction at a time. The DNA curtains platform facilitates high-throughput single-molecule imaging by organizing arrays of DNA molecules on the surface of a microfluidic flowcell. Here, we describe a second-generation UV lithography-based protocol for fabricating flowcells for DNA curtains. This protocol greatly reduces the challenges associated with assembling DNA curtains and paves the way for the rapid acquisition of large datasets from individual single-molecule experiments. Drawing on our recent studies of human HR, we also provide an overview of how DNA curtains can be used for observing facilitated protein diffusion, processive enzyme translocation, and nucleoprotein filament dynamics on single-stranded DNA. Together, these protocols and case studies form a comprehensive introduction for other researchers that may want to adapt DNA curtains for high-throughput single-molecule studies of DNA replication, transcription, and repair. © 2017 Elsevier Inc. All rights reserved.

  7. Single-molecule analysis of fluorescent carbon dots towards localization-based super-resolution microscopy

    Science.gov (United States)

    Verma, Navneet C.; Khan, Syamantak; Nandi, Chayan K.

    2016-12-01

    The advancement of high-resolution bioimaging has always been dependent on the discovery of bright and easily available fluorescent probes. Fluorescent carbon nanodots, an interesting class of relatively new nanomaterials, have emerged as a versatile alternative due to their superior optical properties, non-toxicity, cell penetrability and easy routes to synthesis. Although a plethora of reports is available on bioimaging using carbon dots, single-molecule-based super-resolution imaging is rare in the literature. In this study, we have systematically characterized the single-molecule fluorescence of three carbon dots and compared them with a standard fluorescent probe. Each of these carbon dots showed a long-lived dark state in the presence of an electron acceptor. The electron transfer mechanism was investigated in single-molecule as well as in ensemble experiments. The average on-off rate between the fluorescent bright and dark states, which is one of the important parameters for single-molecule localization-based super-resolution microscopy, was measured by changing the laser power. We report that the photon budget and on-off rate of these carbon dots were good enough to achieve single-molecule localization with a precision of ~35 nm.

  8. DNA origami as biocompatible surface to match single-molecule and ensemble experiments

    Science.gov (United States)

    Gietl, Andreas; Holzmeister, Phil; Grohmann, Dina; Tinnefeld, Philip

    2012-01-01

    Single-molecule experiments on immobilized molecules allow unique insights into the dynamics of molecular machines and enzymes as well as their interactions. The immobilization, however, can invoke perturbation to the activity of biomolecules causing incongruities between single molecule and ensemble measurements. Here we introduce the recently developed DNA origami as a platform to transfer ensemble assays to the immobilized single molecule level without changing the nano-environment of the biomolecules. The idea is a stepwise transfer of common functional assays first to the surface of a DNA origami, which can be checked at the ensemble level, and then to the microscope glass slide for single-molecule inquiry using the DNA origami as a transfer platform. We studied the structural flexibility of a DNA Holliday junction and the TATA-binding protein (TBP)-induced bending of DNA both on freely diffusing molecules and attached to the origami structure by fluorescence resonance energy transfer. This resulted in highly congruent data sets demonstrating that the DNA origami does not influence the functionality of the biomolecule. Single-molecule data collected from surface-immobilized biomolecule-loaded DNA origami are in very good agreement with data from solution measurements supporting the fact that the DNA origami can be used as biocompatible surface in many fluorescence-based measurements. PMID:22523083

  9. Dissecting contact mechanics from quantum interference in single-molecule junctions of stilbene derivatives.

    Science.gov (United States)

    Aradhya, Sriharsha V; Meisner, Jeffrey S; Krikorian, Markrete; Ahn, Seokhoon; Parameswaran, Radha; Steigerwald, Michael L; Nuckolls, Colin; Venkataraman, Latha

    2012-03-14

    Electronic factors in molecules such as quantum interference and cross-conjugation can lead to dramatic modulation and suppression of conductance in single-molecule junctions. Probing such effects at the single-molecule level requires simultaneous measurements of independent junction properties, as conductance alone cannot provide conclusive evidence of junction formation for molecules with low conductivity. Here, we compare the mechanics of the conducting para-terminated 4,4'-di(methylthio)stilbene and moderately conducting 1,2-bis(4-(methylthio)phenyl)ethane to that of insulating meta-terminated 3,3'-di(methylthio)stilbene single-molecule junctions. We simultaneously measure force and conductance across single-molecule junctions and use force signatures to obtain independent evidence of junction formation and rupture in the meta-linked cross-conjugated molecule even when no clear low-bias conductance is measured. By separately quantifying conductance and mechanics, we identify the formation of atypical 3,3'-di(methylthio)stilbene molecular junctions that are mechanically stable but electronically decoupled. While theoretical studies have envisaged many plausible systems where quantum interference might be observed, our experiments provide the first direct quantitative study of the interplay between contact mechanics and the distinctively quantum mechanical nature of electronic transport in single-molecule junctions.

  10. Capabilities for measuring the diffusivity of a single molecule by recycling it in a nanochannel

    Science.gov (United States)

    Wang, Bo; Davis, Lloyd

    2014-03-01

    Analysis of the fractions of fluorescently labeled molecules with different diffusivities within a microliter drop of solution is often used for high-throughput screening of molecular binding interactions in pharmaceutical drug discovery research. Assays frequently employ fluorescence correlation spectroscopy, an ensemble technique that is able to resolve fast diffusing small ligands from those bound to much larger biomolecules with considerably slower diffusion. Single-molecule measurements have the potential to resolve species with different diffusivities and to count the numbers of molecules of each species. Single-molecule recycling in a nanochannel, which entails detection of bursts of fluorescence photons from the repeated passage of a molecule through a focused laser beam as the flow along a nanochannel is periodically alternated, can be used to determine the diffusivity of a single molecule from the fluctuations in the intervals between successive detections. We discuss Monte Carlo studies to determine favorable experimental conditions for determining single-molecule diffusivities, together with a weighted-sliding-sum photon burst detection algorithm for flow-control and maximum-likelihood based analysis of recycle times. We also discuss incorporation of the algorithms into our experimental apparatus for single-molecule recycling, which uses a LabView real-time system for photon count analysis and flow control.

  11. Single-molecule spectroscopy for plastic electronics: materials analysis from the bottom-up.

    Science.gov (United States)

    Lupton, John M

    2010-04-18

    pi-conjugated polymers find a range of applications in electronic devices. These materials are generally highly disordered in terms of chain length and chain conformation, besides being influenced by a variety of chemical and physical defects. Although this characteristic can be of benefit in certain device applications, disorder severely complicates materials analysis. Accurate analytical techniques are, however, crucial to optimising synthetic procedures and assessing overall material purity. Fortunately, single-molecule spectroscopic techniques have emerged as an unlikely but uniquely powerful approach to unraveling intrinsic material properties from the bottom up. Building on the success of such techniques in the life sciences, single-molecule spectroscopy is finding increasing applicability in materials science, effectively enabling the dissection of the bulk down to the level of the individual molecular constituent. This article reviews recent progress in single molecule spectroscopy of conjugated polymers as used in organic electronics.

  12. Measurement and understanding of single-molecule break junction rectification caused by asymmetric contacts.

    Science.gov (United States)

    Wang, Kun; Zhou, Jianfeng; Hamill, Joseph M; Xu, Bingqian

    2014-08-01

    The contact effects of single-molecule break junctions on rectification behaviors were experimentally explored by a systematic control of anchoring groups of 1,4-disubstituted benzene molecular junctions. Single-molecule conductance and I-V characteristic measurements reveal a strong correlation between rectifying effects and the asymmetry in contacts. Analysis using energy band models and I-V calculations suggested that the rectification behavior is mainly caused by asymmetric coupling strengths at the two contact interfaces. Fitting of the rectification ratio by a modified Simmons model we developed suggests asymmetry in potential drop across the asymmetric anchoring groups as the mechanism of rectifying I-V behavior. This study provides direct experimental evidence and sheds light on the mechanisms of rectification behavior induced simply by contact asymmetry, which serves as an aid to interpret future single-molecule electronic behavior involved with asymmetric contact conformation.

  13. Vibrationally dependent electron-electron interactions in resonant electron transport through single-molecule junctions

    Science.gov (United States)

    Erpenbeck, A.; Härtle, R.; Bockstedte, M.; Thoss, M.

    2016-03-01

    We investigate the role of electronic-vibrational coupling in resonant electron transport through single-molecule junctions, taking into account that the corresponding coupling strengths may depend on the charge and excitation state of the molecular bridge. Within an effective-model Hamiltonian approach for a molecule with multiple electronic states, this requires to extend the commonly used model and include vibrationally dependent electron-electron interaction. We use Born-Markov master equation methods and consider selected models to exemplify the effect of the additional interaction on the transport characteristics of a single-molecule junction. In particular, we show that it has a significant influence on local cooling and heating mechanisms, it may result in negative differential resistance, and it may cause pronounced asymmetries in the conductance map of a single-molecule junction.

  14. From single-molecule spectroscopy to super-resolution imaging of the neuron: a review

    Science.gov (United States)

    Laine, Romain F.; Kaminski Schierle, Gabriele S.; van de Linde, Sebastian; Kaminski, Clemens F.

    2016-06-01

    For more than 20 years, single-molecule spectroscopy has been providing invaluable insights into nature at the molecular level. The field has received a powerful boost with the development of the technique into super-resolution imaging methods, ca. 10 years ago, which overcome the limitations imposed by optical diffraction. Today, single molecule super-resolution imaging is routinely used in the study of macromolecular function and structure in the cell. Concomitantly, computational methods have been developed that provide information on numbers and positions of molecules at the nanometer-scale. In this overview, we outline the technical developments that have led to the emergence of localization microscopy techniques from single-molecule spectroscopy. We then provide a comprehensive review on the application of the technique in the field of neuroscience research.

  15. Assembly and diploid architecture of an individual human genome via single-molecule technologies.

    Science.gov (United States)

    Pendleton, Matthew; Sebra, Robert; Pang, Andy Wing Chun; Ummat, Ajay; Franzen, Oscar; Rausch, Tobias; Stütz, Adrian M; Stedman, William; Anantharaman, Thomas; Hastie, Alex; Dai, Heng; Fritz, Markus Hsi-Yang; Cao, Han; Cohain, Ariella; Deikus, Gintaras; Durrett, Russell E; Blanchard, Scott C; Altman, Roger; Chin, Chen-Shan; Guo, Yan; Paxinos, Ellen E; Korbel, Jan O; Darnell, Robert B; McCombie, W Richard; Kwok, Pui-Yan; Mason, Christopher E; Schadt, Eric E; Bashir, Ali

    2015-08-01

    We present the first comprehensive analysis of a diploid human genome that combines single-molecule sequencing with single-molecule genome maps. Our hybrid assembly markedly improves upon the contiguity observed from traditional shotgun sequencing approaches, with scaffold N50 values approaching 30 Mb, and we identified complex structural variants (SVs) missed by other high-throughput approaches. Furthermore, by combining Illumina short-read data with long reads, we phased both single-nucleotide variants and SVs, generating haplotypes with over 99% consistency with previous trio-based studies. Our work shows that it is now possible to integrate single-molecule and high-throughput sequence data to generate de novo assembled genomes that approach reference quality.

  16. Electrochemistry and bioelectrochemistry towards the single-molecule level: Theoretical notions and systems

    DEFF Research Database (Denmark)

    Zhang, Jingdong; Chi, Qijin; Albrecht, Tim

    2005-01-01

    of metallic and semiconductor-based nanoparticles, nano-arrays, nanotubes, and nanopits. Others are based on self-assembled molecular monolayers. The latter extend to bioelectrochemical systems with redox metalloproteins and DNA-based molecules as targets. We overview here some recent achievements in areas...... of interfacial electrochemical ET systems, mapped to the nanoscale and single-molecule levels. Focus is on both experimental and theoretical studies in our group. Systems addressed are organized monolayers of redox active transition metal complexes, and metalloproteins and metalloenzymes on single-crystal Au(111...... have been supported by new theoretical frames, which extend established theory of interfacial electrochemical ET. The electrochemical nanoscale and single-molecule systems discussed are compared with other recent nanoscale and single-molecule systems with conspicuous device-like properties...

  17. Orbital-selective single molecule excitation and spectroscopy based on plasmon-exciton coupling

    CERN Document Server

    Imada, Hiroshi; Imai-Imada, Miyabi; Kawahara, Shota; Kimura, Kensuke; Kim, Yousoo

    2016-01-01

    The electronic excitation of molecules triggers diverse phenomena such as luminescence and photovoltaic effects, which are the bases of various energy-converting devices. Understanding and control of the excitations at the single-molecule level are long standing targets, however, they have been hampered by the limited spatial resolution in optical probing techniques. Here we investigate the electronic excitation of a single molecule with sub-molecular precision using a localised plasmon at the tip apex of a scanning tunnelling microscope (STM) as an excitation probe. Coherent energy transfer between the plasmon and molecular excitons is discovered when the plasmon is located in the proximity of isolated molecules, which is corroborated by a theoretical analysis. The polarised plasmonic field enables selective excitation of an electronic transition between anisotropic frontier molecular orbitals. Our findings have established the foundation of a novel single-molecule spectroscopy with STM, providing an integra...

  18. Single-molecule detection of dihydroazulene photo-thermal reaction using break junction technique

    Science.gov (United States)

    Huang, Cancan; Jevric, Martyn; Borges, Anders; Olsen, Stine T.; Hamill, Joseph M.; Zheng, Jue-Ting; Yang, Yang; Rudnev, Alexander; Baghernejad, Masoud; Broekmann, Peter; Petersen, Anne Ugleholdt; Wandlowski, Thomas; Mikkelsen, Kurt V.; Solomon, Gemma C.; Brøndsted Nielsen, Mogens; Hong, Wenjing

    2017-05-01

    Charge transport by tunnelling is one of the most ubiquitous elementary processes in nature. Small structural changes in a molecular junction can lead to significant difference in the single-molecule electronic properties, offering a tremendous opportunity to examine a reaction on the single-molecule scale by monitoring the conductance changes. Here, we explore the potential of the single-molecule break junction technique in the detection of photo-thermal reaction processes of a photochromic dihydroazulene/vinylheptafulvene system. Statistical analysis of the break junction experiments provides a quantitative approach for probing the reaction kinetics and reversibility, including the occurrence of isomerization during the reaction. The product ratios observed when switching the system in the junction does not follow those observed in solution studies (both experiment and theory), suggesting that the junction environment was perturbing the process significantly. This study opens the possibility of using nano-structured environments like molecular junctions to tailor product ratios in chemical reactions.

  19. Biophysical Insights from Temperature-Dependent Single-Molecule Förster Resonance Energy Transfer

    Science.gov (United States)

    Holmstrom, Erik D.; Nesbitt, David J.

    2016-05-01

    Single-molecule fluorescence microscopy techniques can be used in combination with micrometer length-scale temperature control and Förster resonance energy transfer (FRET) in order to gain detailed information about fundamental biophysical phenomena. In particular, this combination of techniques has helped foster the development of remarkable quantitative tools for studying both time- and temperature-dependent structural kinetics of biopolymers. Over the past decade, multiple research efforts have successfully incorporated precise spatial and temporal control of temperature into single-molecule FRET (smFRET)-based experiments, which have uncovered critical thermodynamic information on a wide range of biological systems such as conformational dynamics of nucleic acids. This review provides an overview of various temperature-dependent smFRET approaches from our laboratory and others, highlighting efforts in which such methods have been successfully applied to studies of single-molecule nucleic acid folding.

  20. Structure from Fleeting Illumination of Faint Spinning Objects in Flight with Application to Single Molecules

    CERN Document Server

    Fung, Russell; Saldin, Dilano K; Ourmazd, Abbas

    2008-01-01

    There are many instances when the structure of a weakly-scattering spinning object in flight must be determined to high resolution. Examples range from comets to nanoparticles and single molecules. The latter two instances are the subject of intense current interest. Substantial progress has recently been made in illuminating spinning single particles in flight with powerful X-ray bursts to determine their structure with the ultimate goal of determining the structure of single molecules. However, proposals to reconstruct the molecular structure from diffraction "snapshots" of unknown orientation require ~1000x more signal than available from next-generation sources. Using a new approach, we demonstrate the recovery of the structure of a weakly scattering macromolecule at the anticipated next-generation X-ray source intensities. Our work closes a critical gap in determining the structure of single molecules and nanoparticles by X-ray methods, and opens the way to reconstructing the structure of spinning, or ra...

  1. Single-molecule analysis of DNA replication in Xenopus egg extracts.

    Science.gov (United States)

    Yardimci, Hasan; Loveland, Anna B; van Oijen, Antoine M; Walter, Johannes C

    2012-06-01

    The recent advent in single-molecule imaging and manipulation methods has made a significant impact on the understanding of molecular mechanisms underlying many essential cellular processes. Single-molecule techniques such as electron microscopy and DNA fiber assays have been employed to study the duplication of genome in eukaryotes. Here, we describe a single-molecule assay that allows replication of DNA attached to the functionalized surface of a microfluidic flow cell in a soluble Xenopus leavis egg extract replication system and subsequent visualization of replication products via fluorescence microscopy. We also explain a method for detection of replication proteins, through fluorescently labeled antibodies, on partially replicated DNA immobilized at both ends to the surface.

  2. Single-Cell and Single-Molecule Analysis of Gene Expression Regulation

    Science.gov (United States)

    Vera, Maria; Biswas, Jeetayu; Senecal, Adrien

    2016-01-01

    Recent advancements in single-cell and single-molecule imaging technologies have resolved biological processes in time and space that are fundamental to understanding the regulation of gene expression. Observations of single-molecule events in their cellular context have revealed highly dynamic aspects of transcriptional and post-transcriptional control in eukaryotic cells. This approach can relate transcription with mRNA abundance and lifetimes. Another key aspect of single-cell analysis is the cell-to-cell variability among populations of cells. Definition of heterogeneity has revealed stochastic processes, determined characteristics of under-represented cell types or transitional states, and integrated cellular behaviors in the context of multicellular organisms. In this review, we discuss novel aspects of gene expression of eukaryotic cells and multicellular organisms revealed by the latest advances in single-cell and single-molecule imaging technology. PMID:27893965

  3. Single molecule detection using charge-coupled device array technology. Technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Denton, M.B.

    1992-07-29

    A technique for the detection of single fluorescent chromophores in a flowing stream is under development. This capability is an integral facet of a rapid DNA sequencing scheme currently being developed by Los Alamos National Laboratory. In previous investigations, the detection sensitivity was limited by the background Raman emission from the water solvent. A detection scheme based on a novel mode of operating a Charge-Coupled Device (CCD) is being developed which should greatly enhance the discrimination between fluorescence from a single molecule and the background Raman scattering from the solvent. Register shifts between rows in the CCD are synchronized with the sample flow velocity so that fluorescence from a single molecule is collected in a single moving charge packet occupying an area approaching that of a single pixel while the background is spread evenly among a large number of pixels. Feasibility calculations indicate that single molecule detection should be achieved with an excellent signal-to-noise ratio.

  4. Shedding light on protein folding, structural and functional dynamics by single molecule studies

    DEFF Research Database (Denmark)

    Bavishi, Krutika; Hatzakis, Nikos

    2014-01-01

    The advent of advanced single molecule measurements unveiled a great wealth of dynamic information revolutionizing our understanding of protein dynamics and behavior in ways unattainable by conventional bulk assays. Equipped with the ability to record distribution of behaviors rather than the mean...... property of a population, single molecule measurements offer observation and quantification of the abundance, lifetime and function of multiple protein states. They also permit the direct observation of the transient and rarely populated intermediates in the energy landscape that are typically averaged out...... in non-synchronized ensemble measurements. Single molecule studies have thus provided novel insights about how the dynamic sampling of the free energy landscape dictates all aspects of protein behavior; from its folding to function. Here we will survey some of the state of the art contributions...

  5. Single-Molecule Investigations of Morphology and Mass Transport Dynamics in Nanostructured Materials

    Science.gov (United States)

    Higgins, Daniel A.; Park, Seok Chan; Tran-Ba, Khanh-Hoa; Ito, Takashi

    2015-07-01

    Nanostructured materials such as mesoporous metal oxides and phase-separated block copolymers form the basis for new monolith, membrane, and thin film technologies having applications in energy storage, chemical catalysis, and separations. Mass transport plays an integral role in governing the application-specific performance characteristics of many such materials. The majority of methods employed in their characterization provide only ensemble data, often masking the nanoscale, molecular-level details of materials morphology and mass transport. Single-molecule fluorescence methods offer direct routes to probing these characteristics on a single-molecule/single-nanostructure basis. This article provides a review of single-molecule studies focused on measurements of anisotropic diffusion, adsorption, partitioning, and confinement in nanostructured materials. Experimental methods covered include confocal and wide-field fluorescence microscopy. The results obtained promise to deepen our understanding of mass transport mechanisms in nanostructures, thus aiding in the realization of advanced materials systems.

  6. Biophysical Insights from Temperature-Dependent Single-Molecule Förster Resonance Energy Transfer.

    Science.gov (United States)

    Holmstrom, Erik D; Nesbitt, David J

    2016-05-27

    Single-molecule fluorescence microscopy techniques can be used in combination with micrometer length-scale temperature control and Förster resonance energy transfer (FRET) in order to gain detailed information about fundamental biophysical phenomena. In particular, this combination of techniques has helped foster the development of remarkable quantitative tools for studying both time- and temperature-dependent structural kinetics of biopolymers. Over the past decade, multiple research efforts have successfully incorporated precise spatial and temporal control of temperature into single-molecule FRET (smFRET)-based experiments, which have uncovered critical thermodynamic information on a wide range of biological systems such as conformational dynamics of nucleic acids. This review provides an overview of various temperature-dependent smFRET approaches from our laboratory and others, highlighting efforts in which such methods have been successfully applied to studies of single-molecule nucleic acid folding.

  7. Single-molecule three-color FRET with both negligible spectral overlap and long observation time.

    Directory of Open Access Journals (Sweden)

    Sanghwa Lee

    Full Text Available Full understanding of complex biological interactions frequently requires multi-color detection capability in doing single-molecule fluorescence resonance energy transfer (FRET experiments. Existing single-molecule three-color FRET techniques, however, suffer from severe photobleaching of Alexa 488, or its alternative dyes, and have been limitedly used for kinetics studies. In this work, we developed a single-molecule three-color FRET technique based on the Cy3-Cy5-Cy7 dye trio, thus providing enhanced observation time and improved data quality. Because the absorption spectra of three fluorophores are well separated, real-time monitoring of three FRET efficiencies was possible by incorporating the alternating laser excitation (ALEX technique both in confocal microscopy and in total-internal-reflection fluorescence (TIRF microscopy.

  8. Single-molecule force-conductance spectroscopy of hydrogen-bonded complexes

    Science.gov (United States)

    Pirrotta, Alessandro; De Vico, Luca; Solomon, Gemma C.; Franco, Ignacio

    2017-03-01

    The emerging ability to study physical properties at the single-molecule limit highlights the disparity between what is observable in an ensemble of molecules and the heterogeneous contributions of its constituent parts. A particularly convenient platform for single-molecule studies are molecular junctions where forces and voltages can be applied to individual molecules, giving access to a series of electromechanical observables that can form the basis of highly discriminating multidimensional single-molecule spectroscopies. Here, we computationally examine the ability of force and conductance to inform about molecular recognition events at the single-molecule limit. For this, we consider the force-conductance characteristics of a prototypical class of hydrogen bonded bimolecular complexes sandwiched between gold electrodes. The complexes consist of derivatives of a barbituric acid and a Hamilton receptor that can form up to six simultaneous hydrogen bonds. The simulations combine classical molecular dynamics of the mechanical deformation of the junction with non-equilibrium Green's function computations of the electronic transport. As shown, in these complexes hydrogen bonds mediate transport either by directly participating as a possible transport pathway or by stabilizing molecular conformations with enhanced conductance properties. Further, we observe that force-conductance correlations can be very sensitive to small changes in the chemical structure of the complexes and provide detailed information about the behavior of single molecules that cannot be gleaned from either measurement alone. In fact, there are regions during the elongation that are only mechanically active, others that are only conductance active, and regions where both force and conductance changes as the complex is mechanically manipulated. The implication is that force and conductance provide complementary information about the evolution of molecules in junctions that can be used to

  9. Single-molecule electronics: Cooling individual vibrational modes by the tunneling current

    Science.gov (United States)

    Lykkebo, Jacob; Romano, Giuseppe; Gagliardi, Alessio; Pecchia, Alessandro; Solomon, Gemma C.

    2016-03-01

    Electronic devices composed of single molecules constitute the ultimate limit in the continued downscaling of electronic components. A key challenge for single-molecule electronics is to control the temperature of these junctions. Controlling heating and cooling effects in individual vibrational modes can, in principle, be utilized to increase stability of single-molecule junctions under bias, to pump energy into particular vibrational modes to perform current-induced reactions, or to increase the resolution in inelastic electron tunneling spectroscopy by controlling the life-times of phonons in a molecule by suppressing absorption and external dissipation processes. Under bias the current and the molecule exchange energy, which typically results in heating of the molecule. However, the opposite process is also possible, where energy is extracted from the molecule by the tunneling current. Designing a molecular "heat sink" where a particular vibrational mode funnels heat out of the molecule and into the leads would be very desirable. It is even possible to imagine how the vibrational energy of the other vibrational modes could be funneled into the "cooling mode," given the right molecular design. Previous efforts to understand heating and cooling mechanisms in single molecule junctions have primarily been concerned with small models, where it is unclear which molecular systems they correspond to. In this paper, our focus is on suppressing heating and obtaining current-induced cooling in certain vibrational modes. Strategies for cooling vibrational modes in single-molecule junctions are presented, together with atomistic calculations based on those strategies. Cooling and reduced heating are observed for two different cooling schemes in calculations of atomistic single-molecule junctions.

  10. Understanding the physics of DNA using nanoscale single-molecule manipulation

    Science.gov (United States)

    Frey, Eric W.; Gooding, Ashton A.; Wijeratne, Sitara; Kiang, Ching-Hwa

    2012-10-01

    Processes for decoding the genetic information in cells, including transcription, replication, recombination and repair, involve the deformation of DNA from its equilibrium structures such as bending, stretching, twisting, and unzipping of the double helix. Single-molecule manipulation techniques have made it possible to control DNA conformation and simultaneously detect the induced changes, revealing a rich variety of mechanically-induced conformational changes and thermodynamic states. These single-molecule techniques helped us to reveal the physics of DNA and the processes involved in the passing on of the genetic code.

  11. Single Molecule Experiments Challenge the Strict Wave-Particle Dualism of Light

    Directory of Open Access Journals (Sweden)

    Karl Otto Greulich

    2010-01-01

    Full Text Available Single molecule techniques improve our understanding of the photon and light. If the single photon double slit experiment is performed at the “single photon limit” of a multi-atom light source, faint light pulses with more than one photon hamper the interpretation. Single molecules, quantum dots or defect centres in crystals should be used as light source. “Single photon detectors” do not meet their promise―only “photon number resolving single photon detectors” do so. Particularly, the accumulation time argument, the only safe basis for the postulate of a strictly particle like photon, has so far not yet been verified.

  12. Single molecule experiments challenge the strict wave-particle dualism of light.

    Science.gov (United States)

    Greulich, Karl Otto

    2010-01-21

    Single molecule techniques improve our understanding of the photon and light. If the single photon double slit experiment is performed at the "single photon limit" of a multi-atom light source, faint light pulses with more than one photon hamper the interpretation. Single molecules, quantum dots or defect centres in crystals should be used as light source. "Single photon detectors" do not meet their promise-only "photon number resolving single photon detectors" do so. Particularly, the accumulation time argument, the only safe basis for the postulate of a strictly particle like photon, has so far not yet been verified.

  13. Controlled switching of single-molecule junctions by mechanical motion of a phenyl ring

    Directory of Open Access Journals (Sweden)

    Yuya Kitaguchi

    2015-10-01

    Full Text Available Mechanical methods for single-molecule control have potential for wide application in nanodevices and machines. Here we demonstrate the operation of a single-molecule switch made functional by the motion of a phenyl ring, analogous to the lever in a conventional toggle switch. The switch can be actuated by dual triggers, either by a voltage pulse or by displacement of the electrode, and electronic manipulation of the ring by chemical substitution enables rational control of the on-state conductance. Owing to its simple mechanics, structural robustness, and chemical accessibility, we propose that phenyl rings are promising components in mechanical molecular devices.

  14. Highlights from Faraday Discussion 184: Single-Molecule Microscopy and Spectroscopy, London, UK, September 2015.

    Science.gov (United States)

    Gellings, E; Faez, S; Piatkowski, L

    2016-02-07

    The 2015 Faraday Discussion on single-molecule microscopy and spectroscopy brought together leading scientists involved in various topics of single-molecule research. It attracted almost a hundred delegates from a broad spectrum of backgrounds and experience levels - from experimentalists to theoreticians, from biologists to materials scientists, from masters students to Nobel Prize Laureates. The meeting was merely a reflection of how big of an impact the ability to detect individual molecules has had on science over the past quarter of a century. In the following we give an overview of the topics covered during this meeting and briefly highlight the content of each presentation.

  15. Blinking effect and the use of quantum dots in single molecule spectroscopy.

    Science.gov (United States)

    Rombach-Riegraf, Verena; Oswald, Peter; Bienert, Roland; Petersen, Jan; Domingo, M P; Pardo, Julian; Gräber, P; Galvez, E M

    2013-01-01

    Luminescent semiconductor nanocrystals (quantum dots, QD) have unique photo-physical properties: high photostability, brightness and narrow size-tunable fluorescence spectra. Due to their unique properties, QD-based single molecule studies have become increasingly more popular during the last years. However QDs show a strong blinking effect (random and intermittent light emission), which may limit their use in single molecule fluorescence studies. QD blinking has been widely studied and some hypotheses have been done to explain this effect. Here we summarise what is known about the blinking effect in QDs, how this phenomenon may affect single molecule studies and, on the other hand, how the "on"/"off" states can be exploited in diverse experimental settings. In addition, we present results showing that site-directed binding of QD to cysteine residues of proteins reduces the blinking effect. This option opens a new possibility of using QDs to study protein-protein interactions and dynamics by single molecule fluorescence without modifying the chemical composition of the solution or the QD surface.

  16. Optical detection of electrokinetically manipulated single molecules in a nanofluidic chip

    NARCIS (Netherlands)

    Parikesit, G.O.F.; Kutchoukov, V.G.; Bossche, A.; Young, I,T.; Garini, Y.

    2005-01-01

    We report on the progress of a novel nanofluidic device for detecting and manipulating single molecules in solution. This paper discusses the development of an earlier proposed molecule separation method, where electrokinetic forces separate different molecules based on their masses and charges.

  17. Nonequilibrium Chemical Effects in Single-Molecule SERS Revealed by Ab Initio Molecular Dynamics Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Sean A.; Apra, Edoardo; Govind, Niranjan; Hess, Wayne P.; El-Khoury, Patrick Z.

    2017-02-03

    Recent developments in nanophotonics have paved the way for achieving significant advances in the realm of single molecule chemical detection, imaging, and dynamics. In particular, surface-enhanced Raman scattering (SERS) is a powerful analytical technique that is now routinely used to identify the chemical identity of single molecules. Understanding how nanoscale physical and chemical processes affect single molecule SERS spectra and selection rules is a challenging task, and is still actively debated. Herein, we explore underappreciated chemical phenomena in ultrasensitive SERS. We observe a fluctuating excited electronic state manifold, governed by the conformational dynamics of a molecule (4,4’-dimercaptostilbene, DMS) interacting with a metallic cluster (Ag20). This affects our simulated single molecule SERS spectra; the time trajectories of a molecule interacting with its unique local environment dictates the relative intensities of the observable Raman-active vibrational states. Ab initio molecular dynamics of a model Ag20-DMS system are used to illustrate both concepts in light of recent experimental results.

  18. 2012 Gordon Research Conference, Single molecule approaches to biology, July 15-20 2012

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Julio M. [Columbia Univ., New York, NY (United States)

    2012-04-20

    Single molecule techniques are rapidly occupying a central role in biological research at all levels. This transition was made possible by the availability and dissemination of robust techniques that use fluorescence and force probes to track the conformation of molecules one at a time, in vitro as well as in live cells. Single-molecule approaches have changed the way many biological problems are studied. These novel techniques provide previously unobtainable data on fundamental biochemical processes that are essential for all forms of life. The ability of single-molecule approaches to avoid ensemble averaging and to capture transient intermediates and heterogeneous behavior renders them particularly powerful in elucidating mechanisms of the molecular systems that underpin the functioning of living cells. Hence, our conference seeks to disseminate the implementation and use of single molecule techniques in the pursuit of new biological knowledge. Topics covered include: Molecular Motors on the Move; Origin And Fate Of Proteins; Physical Principles Of Life; Molecules and Super-resolution Microscopy; Nanoswitches In Action; Active Motion Or Random Diffusion?; Building Blocks Of Living Cells; From Molecular Mechanics To Physiology; Tug-of-war: Force Spectroscopy Of Single Proteins.

  19. Ninth international conference on hole burning, single molecule and related spectroscopies: science and applications (HBSM 2006)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This conference was organized around 9 sessions: -) single molecule, -) quantum optics, -) hole-burning materials and mechanisms, -) single nano-particle spectroscopy, -) dephasing and spectral diffusion, -) microwave photonics, -) biological systems, -) rare earth doped materials, -) novel laser sources. This document gathers only the slides of the presentations.

  20. Frozen-solution magnetisation dynamics of hexanuclear oxime-based MnIII single-molecule magnets

    DEFF Research Database (Denmark)

    Inglis, R.; Bendix, J.; Brock-Nannestad, T.

    2010-01-01

    Frozen solution SQUID measurements of the hexanuclear Single-Molecule Magnets [Mn6O2(Et-sao)(6)(EtOH)(6)(Me(2)benz)(2)] (1) and [Mn6O2(Et-sao)(6)(EtOH)(4)(H2O)(2)(benz)(2)] (2) allow the molecular and solid state contributions to the magnetic properties to be quantified...

  1. Single-molecule diodes with high rectification ratios through environmental control.

    Science.gov (United States)

    Capozzi, Brian; Xia, Jianlong; Adak, Olgun; Dell, Emma J; Liu, Zhen-Fei; Taylor, Jeffrey C; Neaton, Jeffrey B; Campos, Luis M; Venkataraman, Latha

    2015-06-01

    Molecular electronics aims to miniaturize electronic devices by using subnanometre-scale active components. A single-molecule diode, a circuit element that directs current flow, was first proposed more than 40 years ago and consisted of an asymmetric molecule comprising a donor-bridge-acceptor architecture to mimic a semiconductor p-n junction. Several single-molecule diodes have since been realized in junctions featuring asymmetric molecular backbones, molecule-electrode linkers or electrode materials. Despite these advances, molecular diodes have had limited potential for applications due to their low conductance, low rectification ratios, extreme sensitivity to the junction structure and high operating voltages. Here, we demonstrate a powerful approach to induce current rectification in symmetric single-molecule junctions using two electrodes of the same metal, but breaking symmetry by exposing considerably different electrode areas to an ionic solution. This allows us to control the junction's electrostatic environment in an asymmetric fashion by simply changing the bias polarity. With this method, we reliably and reproducibly achieve rectification ratios in excess of 200 at voltages as low as 370 mV using a symmetric oligomer of thiophene-1,1-dioxide. By taking advantage of the changes in the junction environment induced by the presence of an ionic solution, this method provides a general route for tuning nonlinear nanoscale device phenomena, which could potentially be applied in systems beyond single-molecule junctions.

  2. Detailed analysis of complex single molecule FRET data with the software MASH

    Science.gov (United States)

    Hadzic, Mélodie C. A. S.; Kowerko, Danny; Börner, Richard; Zelger-Paulus, Susann; Sigel, Roland K. O.

    2016-04-01

    The processing and analysis of surface-immobilized single molecule FRET (Förster resonance energy transfer) data follows systematic steps (e.g. single molecule localization, clearance of different sources of noise, selection of the conformational and kinetic model, etc.) that require a solid knowledge in optics, photophysics, signal processing and statistics. The present proceeding aims at standardizing and facilitating procedures for single molecule detection by guiding the reader through an optimization protocol for a particular experimental data set. Relevant features were determined from single molecule movies (SMM) imaging Cy3- and Cy5-labeled Sc.ai5γ group II intron molecules synthetically recreated, to test the performances of four different detection algorithms. Up to 120 different parameterizations per method were routinely evaluated to finally establish an optimum detection procedure. The present protocol is adaptable to any movie displaying surface-immobilized molecules, and can be easily reproduced with our home-written software MASH (multifunctional analysis software for heterogeneous data) and script routines (both available in the download section of www.chem.uzh.ch/rna).

  3. Quantifying and optimizing single-molecule switching nanoscopy at high speeds.

    Directory of Open Access Journals (Sweden)

    Yu Lin

    Full Text Available Single-molecule switching nanoscopy overcomes the diffraction limit of light by stochastically switching single fluorescent molecules on and off, and then localizing their positions individually. Recent advances in this technique have greatly accelerated the data acquisition speed and improved the temporal resolution of super-resolution imaging. However, it has not been quantified whether this speed increase comes at the cost of compromised image quality. The spatial and temporal resolution depends on many factors, among which laser intensity and camera speed are the two most critical parameters. Here we quantitatively compare the image quality achieved when imaging Alexa Fluor 647-immunolabeled microtubules over an extended range of laser intensities and camera speeds using three criteria - localization precision, density of localized molecules, and resolution of reconstructed images based on Fourier Ring Correlation. We found that, with optimized parameters, single-molecule switching nanoscopy at high speeds can achieve the same image quality as imaging at conventional speeds in a 5-25 times shorter time period. Furthermore, we measured the photoswitching kinetics of Alexa Fluor 647 from single-molecule experiments, and, based on this kinetic data, we developed algorithms to simulate single-molecule switching nanoscopy images. We used this software tool to demonstrate how laser intensity and camera speed affect the density of active fluorophores and influence the achievable resolution. Our study provides guidelines for choosing appropriate laser intensities for imaging Alexa Fluor 647 at different speeds and a quantification protocol for future evaluations of other probes and imaging parameters.

  4. Electron transfer behaviour of biological macromolecules towards the single-molecule level

    DEFF Research Database (Denmark)

    Zhang, Jingdong; Grubb, Mikala; Hansen, Allan Glargaard

    2003-01-01

    on Au(111) by chemisorption via exposed sulfur-containing residues. Voltammetric, interfacial capacitance, x-ray photoelectron spectroscopy and microcantilever sensor data, together with in situ STM with single-molecule resolution, all point to a coherent view of monolayer organization with protein...

  5. Spectral multitude and spectral dynamics reflect changing conjugation length in single molecules of oligophenylenevinylenes

    KAUST Repository

    Kobayashi, Hiroyuki

    2012-01-01

    Single-molecule study of phenylenevinylene oligomers revealed distinct spectral forms due to different conjugation lengths which are determined by torsional defects. Large spectral jumps between different spectral forms were ascribed to torsional flips of a single phenylene ring. These spectral changes reflect the dynamic nature of electron delocalization in oligophenylenevinylenes and enable estimation of the phenylene torsional barriers. © 2012 The Owner Societies.

  6. A versatile low-temperature setup for the electrical characterization of single-molecule junctions

    NARCIS (Netherlands)

    Martin, C.A.; Smit, R.H.M.; Van Egmond, R.; Van der Zant, H.S.J.; Van Ruitenbeek, J.M.

    2011-01-01

    We present a modular high-vacuum setup for the electrical characterization of single molecules down to liquid helium temperatures. The experimental design is based on microfabricated mechanically controllable break junctions, which offer control over the distance of two electrodes via the bending of

  7. A general approach to break the concentration barrier in single-molecule imaging

    NARCIS (Netherlands)

    Loveland, Anna B.; Habuchi, Satoshi; Walter, Johannes C.; Oijen, Antoine M. van

    2012-01-01

    Single-molecule fluorescence imaging is often incompatible with physiological protein concentrations, as fluorescence background overwhelms an individual molecule’s signal. We solve this problem with a new imaging approach called PhADE (PhotoActivation, Diffusion and Excitation). A protein of intere

  8. Potential of protoporphyrin IX and metal derivatives for single molecule fluorescence studies

    Energy Technology Data Exchange (ETDEWEB)

    Hu Yi; Geissinger, Peter [Department of Chemistry and Biochemistry, Laboratory for Surface Studies, University of Wisconsin-Milwaukee, 3210 N. Cramer Street, Milwaukee, WI 53211 (United States); Woehl, Joerg C., E-mail: woehl@uwm.ed [Department of Chemistry and Biochemistry, Laboratory for Surface Studies, University of Wisconsin-Milwaukee, 3210 N. Cramer Street, Milwaukee, WI 53211 (United States)

    2011-03-15

    Metalloporphyrins are cofactors of a variety of proteins, and are often used as spectroscopic probes of the active site. Many high resolution techniques, such as single molecule spectroscopy, are based on fluorescence contrast and require the replacement of the native metalloporphyrin by a fluorescent analog. We have investigated the potential of several fluorescent analogs of heme, namely free-base protoporphyrin IX and its metal derivatives containing Zn, Sn, and Mg, for single molecule fluorescence studies by determining their room-temperature molecular absorption cross sections and fluorescence quantum yields. According to these data, free-base protoporphyrin IX and its Zn derivative, which have the highest fluorescence quantum yields, are the most suitable heme analogs for single molecule fluorescence studies. - Research highlights: Protoporphyrin IX and fluorescent metal derivatives for single molecule detection. Measurement of room temperature absorption cross sections for Q bands. Measurement of room temperature fluorescence quantum yields for Q bands. PPIX and Zn derivative have highest quantum yields for lowest-energy transition.

  9. Frontiers in Laser Cooling, Single-Molecule Biophysics, and Enrgy Science: A Talk by Carl Wieman

    Energy Technology Data Exchange (ETDEWEB)

    Wieman, Carl

    2008-08-30

    Carl Wieman presents a talk at Frontiers in Laser Cooling, Single-Molecule Biophysics and Energy Science, a scientific symposium honoring Steve Chu, director of Lawrence Berkeley National Laboratory and recipient of the 1997 Nobel Prize in Physics. The symposium was held August 30, 2008 in Berkeley.

  10. Large Conductance Switching in a Single-Molecule Device through Room Temperature Spin-Dependent Transport.

    Science.gov (United States)

    Aragonès, Albert C; Aravena, Daniel; Cerdá, Jorge I; Acís-Castillo, Zulema; Li, Haipeng; Real, José Antonio; Sanz, Fausto; Hihath, Josh; Ruiz, Eliseo; Díez-Pérez, Ismael

    2016-01-13

    Controlling the spin of electrons in nanoscale electronic devices is one of the most promising topics aiming at developing devices with rapid and high density information storage capabilities. The interface magnetism or spinterface resulting from the interaction between a magnetic molecule and a metal surface, or vice versa, has become a key ingredient in creating nanoscale molecular devices with novel functionalities. Here, we present a single-molecule wire that displays large (>10000%) conductance switching by controlling the spin-dependent transport under ambient conditions (room temperature in a liquid cell). The molecular wire is built by trapping individual spin crossover Fe(II) complexes between one Au electrode and one ferromagnetic Ni electrode in an organic liquid medium. Large changes in the single-molecule conductance (>100-fold) are measured when the electrons flow from the Au electrode to either an α-up or a β-down spin-polarized Ni electrode. Our calculations show that the current flowing through such an interface appears to be strongly spin-polarized, thus resulting in the observed switching of the single-molecule wire conductance. The observation of such a high spin-dependent conductance switching in a single-molecule wire opens up a new door for the design and control of spin-polarized transport in nanoscale molecular devices at room temperature.

  11. The more the merrier: high-throughput single-molecule techniques.

    Science.gov (United States)

    Hill, Flynn R; Monachino, Enrico; van Oijen, Antoine M

    2017-06-15

    The single-molecule approach seeks to understand molecular mechanisms by observing biomolecular processes at the level of individual molecules. These methods have led to a developing understanding that for many processes, a diversity of behaviours will be observed, representing a multitude of pathways. This realisation necessitates that an adequate number of observations are recorded to fully characterise this diversity. The requirement for large numbers of observations to adequately sample distributions, subpopulations, and rare events presents a significant challenge for single-molecule techniques, which by their nature do not typically provide very high throughput. This review will discuss many developing techniques which address this issue by combining nanolithographic approaches, such as zero-mode waveguides and DNA curtains, with single-molecule fluorescence microscopy, and by drastically increasing throughput of force-based approaches such as magnetic tweezers and laminar-flow techniques. These methods not only allow the collection of large volumes of single-molecule data in single experiments, but have also made improvements to ease-of-use, accessibility, and automation of data analysis. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  12. A new optical method for characterizing single molecule interactions based on dark field microscopy

    NARCIS (Netherlands)

    Dietrich, H.R.C.; Vermolen, B.J.; Rieger, B.; Young, I.T.; Garini, Y.

    2007-01-01

    Single-molecule techniques continue to gain in popularity in research disciplines such as the study of intermolecular interactions. These techniques provide information that otherwise would be lost by using bulk measurements that deal with a large number of molecules. We describe in this report the

  13. Single-Molecule Kinetics of λ Exonuclease Reveal Base Dependence and Dynamic Disorder

    NARCIS (Netherlands)

    Oijen, Antoine M. van; Blainey, Paul C.; Crampton, Donald J.; Richardson, Charles C.; Ellenberger, Tom; Xie, X. Sunney

    2003-01-01

    We used a multiplexed approach based on flow-stretched DNA to monitor the enzymatic digestion of λ-phage DNA by individual bacteriophage λ exonuclease molecules. Statistical analyses of multiple single-molecule trajectories observed simultaneously reveal that the catalytic rate is dependent on the l

  14. Single-molecule enzymatic analysis in a droplet-based microfluidic system

    NARCIS (Netherlands)

    Arayanarakool, R.; Shui, L.; Kengen, S.W.M.; Berg, van den A.; Eijkel, J.C.T.; Fujii, T.; Hibara, A.; Takeuchi, S.; Fukuba, T.

    2012-01-01

    The kinetic activity of individual enzyme molecules was determined in aqueous droplets generated in a nano- and microfluidic device. To avoid high background noise, the enzyme and substrate solution was confined into femtolitre carriers to achieve single-molecule encapsulation. The tiny droplets (f~

  15. Single-molecule tools for enzymology, structural biology, systems biology and nanotechnology: an update.

    Science.gov (United States)

    Widom, Julia R; Dhakal, Soma; Heinicke, Laurie A; Walter, Nils G

    2014-11-01

    Toxicology is the highly interdisciplinary field studying the adverse effects of chemicals on living organisms. It requires sensitive tools to detect such effects. After their initial implementation during the 1990s, single-molecule fluorescence detection tools were quickly recognized for their potential to contribute greatly to many different areas of scientific inquiry. In the intervening time, technical advances in the field have generated ever-improving spatial and temporal resolution and have enabled the application of single-molecule fluorescence to increasingly complex systems, such as live cells. In this review, we give an overview of the optical components necessary to implement the most common versions of single-molecule fluorescence detection. We then discuss current applications to enzymology and structural studies, systems biology, and nanotechnology, presenting the technical considerations that are unique to each area of study, along with noteworthy recent results. We also highlight future directions that have the potential to revolutionize these areas of study by further exploiting the capabilities of single-molecule fluorescence microscopy.

  16. Quantum interference effects at room temperature in OPV-based single-molecule junctions

    DEFF Research Database (Denmark)

    Arroyo, Carlos R.; Frisenda, Riccardo; Moth-Poulsen, Kasper;

    2013-01-01

    Interference effects on charge transport through an individual molecule can lead to a notable modulation and suppression on its conductance. In this letter, we report the observation of quantum interference effects occurring at room temperature in single-molecule junctions based on oligo(3...

  17. Electrostatic melting in a single-molecule field-effect transistor with applications in genomic identification

    Science.gov (United States)

    Vernick, Sefi; Trocchia, Scott M.; Warren, Steven B.; Young, Erik F.; Bouilly, Delphine; Gonzalez, Ruben L.; Nuckolls, Colin; Shepard, Kenneth L.

    2017-05-01

    The study of biomolecular interactions at the single-molecule level holds great potential for both basic science and biotechnology applications. Single-molecule studies often rely on fluorescence-based reporting, with signal levels limited by photon emission from single optical reporters. The point-functionalized carbon nanotube transistor, known as the single-molecule field-effect transistor, is a bioelectronics alternative based on intrinsic molecular charge that offers significantly higher signal levels for detection. Such devices are effective for characterizing DNA hybridization kinetics and thermodynamics and enabling emerging applications in genomic identification. In this work, we show that hybridization kinetics can be directly controlled by electrostatic bias applied between the device and the surrounding electrolyte. We perform the first single-molecule experiments demonstrating the use of electrostatics to control molecular binding. Using bias as a proxy for temperature, we demonstrate the feasibility of detecting various concentrations of 20-nt target sequences from the Ebolavirus nucleoprotein gene in a constant-temperature environment.

  18. Advances in single-molecule magnet surface patterning through microcontact printing

    NARCIS (Netherlands)

    Mannini, Matteo; Bonacchi, D.; Bonacchi, Daniele; Zobbi, Laura; Piras, Federica M.; Speets, E.A.; Caneschi, Andrea; Cornia, Andrea; Magnani, Agnese; Ravoo, B.J.; Reinhoudt, David; Sessoli, Roberta; Gatteschi, Dante

    2005-01-01

    We present an implementation of strategies to deposit single-molecule magnets (SMMs) using microcontact printing (uCP). We describe different approaches of CP to print stripes of a sulfur-functionalized dodecamanganese(III,IV) cluster on gold surfaces. Comparison by atomic force microscopy profile

  19. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy

    Science.gov (United States)

    Neuman, Keir C.; Nagy, Attila

    2012-01-01

    Single-molecule force spectroscopy has emerged as a powerful tool to investigate the forces and motions associated with biological molecules and enzymatic activity. The most common force spectroscopy techniques are optical tweezers, magnetic tweezers and atomic force microscopy. These techniques are described and illustrated with examples highlighting current capabilities and limitations. PMID:18511917

  20. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy

    OpenAIRE

    Neuman, Keir C.; Nagy, Attila

    2008-01-01

    Single-molecule force spectroscopy has emerged as a powerful tool to investigate the forces and motions associated with biological molecules and enzymatic activity. The most common force spectroscopy techniques are optical tweezers, magnetic tweezers and atomic force microscopy. These techniques are described and illustrated with examples highlighting current capabilities and limitations.

  1. Real-time data acquisition incorporating high-speed software correlator for single-molecule spectroscopy.

    Science.gov (United States)

    Yang, L-L; Lee, H-Y; Wang, M-K; Lin, X-Y; Hsu, K-H; Chang, Y-R; Fann, W; White, J D

    2009-06-01

    Single-molecule spectroscopy and detection are powerful techniques for the study of single fluorescent particles and their interaction with their environment. We present a low-cost system for simultaneous real-time acquisition, storage of inter-photon arrival times and the calculation and display of the fluorescence time trace, autocorrelation function and distribution of delays histogram for single-molecule experiments. From a hardware perspective, in addition to a multi-core computer, only a standard low-cost counting board is required as processing is software-based. Software is written in a parallel programming environment with time crucial operations coded in ANSI-C. Crucial to system performance is a simple and efficient real-time autocorrelation algorithm (acf) optimized for the count rates (approximately 10(4) cps) encountered in single-molecule experiments. The algorithm's time complexity is independent of temporal resolution, which is maintained at all time delays. The system and algorithm's performance was validated by duplicating the signal from the photon detector and sending it to both the ordinary counter board and a commercial correlator simultaneously. The data acquisition system's robustness under typical single-molecule experimental conditions was tested by observing the diffusion of Rhodamine 6G molecules in deionized water.

  2. Theoretical Investigation of a Single Molecule Device:Geometrical Configurations and Electronic Properties

    Institute of Scientific and Technical Information of China (English)

    YUAN Zhe; SU Chang-Rong; ZHANG Shi-Zhong; LI Jia-Ming

    2004-01-01

    @@ Using the first-principle molecular dynamics simulations, we have studied the molecular geometrical configurations as well as the corresponding electronic structures of a single molecule device assembled by the mechanically controllable break junction technique with variations of the electrode distance. There are some very interesting features varying with the electrode distance.

  3. Probing the Conformational Landscape of DNA Polymerases Using Diffusion-Based Single-Molecule FRET

    NARCIS (Netherlands)

    Hohlbein, J.; Kapanidis, A.N.

    2016-01-01

    Monitoring conformational changes in DNA polymerases using single-molecule Förster resonance energy transfer (smFRET) has provided new tools for studying fidelity-related mechanisms that promote the rejection of incorrect nucleotides before DNA synthesis. In addition to the previously known open

  4. Photophysics of Fluorescent Probes for Single-Molecule Biophysics and Super-Resolution Imaging

    Science.gov (United States)

    Ha, Taekjip; Tinnefeld, Philip

    2012-05-01

    Single-molecule fluorescence spectroscopy and super-resolution microscopy are important elements of the ongoing technical revolution to reveal biochemical and cellular processes in unprecedented clarity and precision. Demands placed on the photophysical properties of the fluorophores are stringent and drive the choice of appropriate probes. Such fluorophores are not simple light bulbs of a certain color and brightness but instead have their own “personalities” regarding spectroscopic parameters, redox properties, size, water solubility, photostability, and several other factors. Here, we review the photophysics of fluorescent probes, both organic fluorophores and fluorescent proteins, used in applications such as particle tracking, single-molecule FRET, stoichiometry determination, and super-resolution imaging. Of particular interest is the thiol-induced blinking of Cy5, a curse for single-molecule biophysical studies that was later overcome using Trolox through a reducing/oxidizing system but a boon for super-resolution imaging owing to the controllable photoswitching. Understanding photophysics is critical in the design and interpretation of single-molecule experiments.

  5. Step detection in single-molecule real time trajectories embedded in correlated noise.

    Directory of Open Access Journals (Sweden)

    Srikesh G Arunajadai

    Full Text Available Single-molecule real time trajectories are embedded in high noise. To extract kinetic or dynamic information of the molecules from these trajectories often requires idealization of the data in steps and dwells. One major premise behind the existing single-molecule data analysis algorithms is the gaussian 'white' noise, which displays no correlation in time and whose amplitude is independent on data sampling frequency. This so-called 'white' noise is widely assumed but its validity has not been critically evaluated. We show that correlated noise exists in single-molecule real time trajectories collected from optical tweezers. The assumption of white noise during analysis of these data can lead to serious over- or underestimation of the number of steps depending on the algorithms employed. We present a statistical method that quantitatively evaluates the structure of the underlying noise, takes the noise structure into account, and identifies steps and dwells in a single-molecule trajectory. Unlike existing data analysis algorithms, this method uses Generalized Least Squares (GLS to detect steps and dwells. Under the GLS framework, the optimal number of steps is chosen using model selection criteria such as Bayesian Information Criterion (BIC. Comparison with existing step detection algorithms showed that this GLS method can detect step locations with highest accuracy in the presence of correlated noise. Because this method is automated, and directly works with high bandwidth data without pre-filtering or assumption of gaussian noise, it may be broadly useful for analysis of single-molecule real time trajectories.

  6. Single-molecule FRET studies on alpha-synuclein oligomerization of Parkinson’s disease genetically related mutants

    Science.gov (United States)

    Tosatto, Laura; Horrocks, Mathew H.; Dear, Alexander J.; Knowles, Tuomas P. J.; Dalla Serra, Mauro; Cremades, Nunilo; Dobson, Christopher M.; Klenerman, David

    2015-11-01

    Oligomers of alpha-synuclein are toxic to cells and have been proposed to play a key role in the etiopathogenesis of Parkinson’s disease. As certain missense mutations in the gene encoding for alpha-synuclein induce early-onset forms of the disease, it has been suggested that these variants might have an inherent tendency to produce high concentrations of oligomers during aggregation, although a direct experimental evidence for this is still missing. We used single-molecule Förster Resonance Energy Transfer to visualize directly the protein self-assembly process by wild-type alpha-synuclein and A53T, A30P and E46K mutants and to compare the structural properties of the ensemble of oligomers generated. We found that the kinetics of oligomer formation correlates with the natural tendency of each variant to acquire beta-sheet structure. Moreover, A53T and A30P showed significant differences in the averaged FRET efficiency of one of the two types of oligomers formed compared to the wild-type oligomers, indicating possible structural variety among the ensemble of species generated. Importantly, we found similar concentrations of oligomers during the lag-phase of the aggregation of wild-type and mutated alpha-synuclein, suggesting that the properties of the ensemble of oligomers generated during self-assembly might be more relevant than their absolute concentration for triggering neurodegeneration.

  7. Absolute Summ

    Science.gov (United States)

    Phillips, Alfred, Jr.

    Summ means the entirety of the multiverse. It seems clear, from the inflation theories of A. Guth and others, that the creation of many universes is plausible. We argue that Absolute cosmological ideas, not unlike those of I. Newton, may be consistent with dynamic multiverse creations. As suggested in W. Heisenberg's uncertainty principle, and with the Anthropic Principle defended by S. Hawking, et al., human consciousness, buttressed by findings of neuroscience, may have to be considered in our models. Predictability, as A. Einstein realized with Invariants and General Relativity, may be required for new ideas to be part of physics. We present here a two postulate model geared to an Absolute Summ. The seedbed of this work is part of Akhnaton's philosophy (see S. Freud, Moses and Monotheism). Most important, however, is that the structure of human consciousness, manifest in Kenya's Rift Valley 200,000 years ago as Homo sapiens, who were the culmination of the six million year co-creation process of Hominins and Nature in Africa, allows us to do the physics that we do. .

  8. A single molecule magnet to single molecule magnet transformation via a solvothermal process: Fe4Dy2 → Fe6Dy3.

    Science.gov (United States)

    Chen, Sihuai; Mereacre, Valeriu; Anson, Christopher E; Powell, Annie K

    2016-01-01

    Two series of heterometallic Fe(III)-Ln(III) compounds, [FeLn(μ3-OH)2(mdea)4(m-NO2C6H4COO)8]·3MeCN where Ln = Y (1) and Dy (2) and [FeLn(μ4-O)3(μ3-O)(mdea)5(m-NO2C6H4COO)9]·3MeCN where Ln = Y (3) and Dy (4), were synthesized. Compounds 1 and 2 were obtained under ambient conditions, whereas 3 and 4 were obtained via a solvothermal transformation process by heating 1 or 2 at 120 °C in MeCN. The magnetic properties of all four compounds have been measured and show that compounds 2 and 4 containing Dy(III) ions exhibit slow relaxation of magnetization characteristic of Single Molecule Magnetic (SMM) behaviour.

  9. Organization of DNA partners and strand exchange mechanisms during Flp site-specific recombination analyzed by difference topology, single molecule FRET and single molecule TPM.

    Science.gov (United States)

    Ma, Chien-Hui; Liu, Yen-Ting; Savva, Christos G; Rowley, Paul A; Cannon, Brian; Fan, Hsiu-Fang; Russell, Rick; Holzenburg, Andreas; Jayaram, Makkuni

    2014-02-20

    Flp site-specific recombination between two target sites (FRTs) harboring non-homology within the strand exchange region does not yield stable recombinant products. In negatively supercoiled plasmids containing head-to-tail sites, the reaction produces a series of knots with odd-numbered crossings. When the sites are in head-to-head orientation, the knot products contain even-numbered crossings. Both types of knots retain parental DNA configuration. By carrying out Flp recombination after first assembling the topologically well defined Tn3 resolvase synapse, it is possible to determine whether these knots arise by a processive or a dissociative mechanism. The nearly exclusive products from head-to-head and head-to-tail oriented "non-homologous" FRT partners are a 4-noded knot and a 5-noded knot, respectively. The corresponding products from a pair of native (homologous) FRT sites are a 3-noded knot and a 4-noded catenane, respectively. These results are consistent with non-homology-induced two rounds of dissociative recombination by Flp, the first to generate reciprocal recombinants containing non-complementary base pairs and the second to produce parental molecules with restored base pairing. Single molecule fluorescence resonance energy transfer (smFRET) analysis of geometrically restricted FRTs, together with single molecule tethered particle motion (smTPM) assays of unconstrained FRTs, suggests that the sites are preferentially synapsed in an anti-parallel fashion. This selectivity in synapse geometry occurs prior to the chemical steps of recombination, signifying early commitment to a productive reaction path. The cumulative topological, smFRET and smTPM results have implications for the relative orientation of DNA partners and the directionality of strand exchange during recombination mediated by tyrosine site-specific recombinases.

  10. Studies of G-quadruplex DNA structures at the single molecule level

    DEFF Research Database (Denmark)

    Kragh, Sofie Louise

    2015-01-01

    Folding of G-quaduplex structures adopted by the human telomeric repeat is here studied by single molecule FRET microscopy. This method allows for the investigation of G-quadruplex structures and their conformational dynamic. Telomeres are located at the ends of our chromosomes and end in a single...... populations and thus providing more information than traditional ensemble experiments. Using single molecule FRET microscopy different aspects of G-quadruplex folding were investigated. We have obtained direct insight into G-quadruplex structural polymorphism both in K+ and Na+ solutions. Polymorphism have...... previously only been investigated in K+. Here, we observe significant polymorphism also in Na+. By investigating the dynamics of these conformational changes and comparing these findings with other experiments for G-quadruplexes with known topology we are able to identify different conformations and folding...

  11. The origin of relative intensity fluctuations in single-molecule tip-enhanced Raman spectroscopy.

    Science.gov (United States)

    Sonntag, Matthew D; Chulhai, Dhabih; Seideman, Tamar; Jensen, Lasse; Van Duyne, Richard P

    2013-11-13

    An explanation of the relative intensity fluctuations observed in single-molecule Raman experiments is described utilizing both single-molecule tip-enhanced Raman spectroscopy and time-dependent density functional theory calculations. No correlation is observed in mode to mode intensity fluctuations indicating that the changes in mode intensities are completely independent. Theoretical calculations provide convincing evidence that the fluctuations are not the result of diffusion, orientation, or local electromagnetic field gradients but rather are the result of subtle variations of the excited-state lifetime, energy, and geometry of the molecule. These variations in the excited-state properties will provide information on adsorbate-adsorbate and adsorbate-substrate interactions and may allow for inversion of experimental results to obtain these excited-state properties.

  12. Detection of Single Molecules Illuminated by a Light-Emitting Diode

    CERN Document Server

    Gerhardt, Ilja; Lamas-Linares, Antia; Kurtsiefer, Christian

    2011-01-01

    Optical detection and spectroscopy of single molecules has become an indispensable tool in biological imaging and sensing. Its success is based on fluorescence of organic dye molecules under carefully engineered laser illumination. In this paper we demonstrate optical detection of single molecules on a wide-field microscope with an illumination based on a commercially available, green light-emitting diode. The results are directly compared with laser illumination in the same experimental configuration. The setup and the limiting factors, such as light transfer to the sample, spectral filtering and the resulting signal-to-noise ratio are discussed. A theoretical and an experimental approach to estimate these parameters are presented. The results can be adapted to other single emitter and illumination schemes.

  13. Current rectification in a single molecule diode: the role of electrode coupling.

    Science.gov (United States)

    Sherif, Siya; Rubio-Bollinger, Gabino; Pinilla-Cienfuegos, Elena; Coronado, Eugenio; Cuevas, Juan Carlos; Agraït, Nicolás

    2015-07-24

    We demonstrate large rectification ratios (> 100) in single-molecule junctions based on a metal-oxide cluster (polyoxometalate), using a scanning tunneling microscope (STM) both at ambient conditions and at low temperature. These rectification ratios are the largest ever observed in a single-molecule junction, and in addition these junctions sustain current densities larger than 10(5) A cm(-2). By following the variation of the I-V characteristics with tip-molecule separation we demonstrate unambiguously that rectification is due to asymmetric coupling to the electrodes of a molecule with an asymmetric level structure. This mechanism can be implemented in other type of molecular junctions using both organic and inorganic molecules and provides a simple strategy for the rational design of molecular diodes.

  14. Supramolecular Chemistry and Mechanochemistry of Macromolecules: Recent Advances by Single-Molecule Force Spectroscopy.

    Science.gov (United States)

    Cheng, Bo; Cui, Shuxun

    2015-01-01

    Atomic force spectroscopy (AFM)-based single-molecule force spectroscopy (SMFS) was invented in the 1990s. Since then, SMFS has been developed into a powerful tool to study the inter- and intra-molecular interactions of macromolecules. Using SMFS, a number of problems in the field of supramolecular chemistry and mechanochemistry have been studied at the single-molecule level, which are not accessible by traditional ensemble characterization methods. In this review, the principles of SMFS are introduced, followed by the discussion of several problems of contemporary interest at the interface of supramolecular chemistry and mechanochemistry of macromolecules, including single-chain elasticity of macromolecules, interactions between water and macromolecules, interactions between macromolecules and solid surface, and the interactions in supramolecular polymers.

  15. Super-resolution Analysis of TCR-Dependent Signaling: Single-Molecule Localization Microscopy.

    Science.gov (United States)

    Barr, Valarie A; Yi, Jason; Samelson, Lawrence E

    2017-01-01

    Single-molecule localization microscopy (SMLM) comprises methods that produce super-resolution images from molecular locations of single molecules. These techniques mathematically determine the center of a diffraction-limited spot produced by a fluorescent molecule, which represents the most likely location of the molecule. Only a small cohort of well-separated molecules is visualized in a single image, and then many images are obtained from a single sample. The localizations from all the images are combined to produce a super-resolution picture of the sample. Here we describe the application of two methods, photoactivation localization microscopy (PALM) and direct stochastic optical reconstruction microscopy (dSTORM), to the study of signaling microclusters in T cells.

  16. Direct Measurement of Single-Molecule DNA Hybridization Dynamics with Single-Base Resolution.

    Science.gov (United States)

    He, Gen; Li, Jie; Ci, Haina; Qi, Chuanmin; Guo, Xuefeng

    2016-07-25

    Herein, we report label-free detection of single-molecule DNA hybridization dynamics with single-base resolution. By using an electronic circuit based on point-decorated silicon nanowires as electrical probes, we directly record the folding/unfolding process of individual hairpin DNAs with sufficiently high signal-to-noise ratio and bandwidth. These measurements reveal two-level current oscillations with strong temperature dependence, enabling us to determine the thermodynamic and kinetic properties of hairpin DNA hybridization. More importantly, successive, stepwise increases and decreases in device conductance at low temperature on a microsecond timescale are successfully observed, indicating a base-by-base unfolding/folding process. The process demonstrates a kinetic zipper model for DNA hybridization/dehybridization at the single base-pair level. This measurement capability promises a label-free single-molecule approach to probe biomolecular interactions with fast dynamics.

  17. Single-molecule diffusion and conformational dynamics by spatial integration of temporal fluctuations

    KAUST Repository

    Bayoumi, Maged Fouad

    2014-10-06

    Single-molecule localization and tracking has been used to translate spatiotemporal information of individual molecules to map their diffusion behaviours. However, accurate analysis of diffusion behaviours and including other parameters, such as the conformation and size of molecules, remain as limitations to the method. Here, we report a method that addresses the limitations of existing single-molecular localization methods. The method is based on temporal tracking of the cumulative area occupied by molecules. These temporal fluctuations are tied to molecular size, rates of diffusion and conformational changes. By analysing fluorescent nanospheres and double-stranded DNA molecules of different lengths and topological forms, we demonstrate that our cumulative-area method surpasses the conventional single-molecule localization method in terms of the accuracy of determined diffusion coefficients. Furthermore, the cumulative-area method provides conformational relaxation times of structurally flexible chains along with diffusion coefficients, which together are relevant to work in a wide spectrum of scientific fields.

  18. Single-Molecule Diodes with High On/Off Ratios Through Environmental Control

    Science.gov (United States)

    Capozzi, Brian; Xia, Jianlong; Dell, Emma; Adak, Olgun; Liu, Zhen-Fei; Neaton, Jeffrey; Campos, Luis; Venkataraman, Latha

    2015-03-01

    Single-Molecule diodes were first proposed with an asymmetric molecule comprising a donor-bridge-acceptor architecture to mimic a semiconductor p-n junction. Progress in molecular electronics has led to the realization of several single-molecule diodes; these have relied on asymmetric molecular backbones, asymmetric molecule-electrode linkers, or asymmetric electrode materials. Despite these advances, molecular diodes have had limited potential for functional applications due to several pitfalls, including low rectification ratios (``on''/``off'' current ratios environment instead of an asymmetric molecule, we reproducibly achieve high rectification ratios at low operating voltages for molecular junctions based on a family of symmetric small-gap molecules. This technique serves as an unconventional approach for developing functional molecular-scale devices and probing their charge transport characteristics. Furthermore, this technique should be applicable to other nanoscale devices, providing a general route for tuning device properties.

  19. Inelastic transport and low-bias rectification in a single-molecule diode.

    Science.gov (United States)

    Hihath, Joshua; Bruot, Christopher; Nakamura, Hisao; Asai, Yoshihiro; Díez-Pérez, Ismael; Lee, Youngu; Yu, Luping; Tao, Nongjian

    2011-10-25

    Designing, controlling, and understanding rectification behavior in molecular-scale devices has been a goal of the molecular electronics community for many years. Here we study the transport behavior of a single molecule diode, and its nonrectifying, symmetric counterpart at low temperatures, and at both low and high biases to help elucidate the electron-phonon interactions and transport mechanisms in the rectifying system. We find that the onset of current rectification occurs at low biases, indicating a significant change in the elastic transport pathway. However, the peaks in the inelastic electron tunneling (IET) spectrum are antisymmetric about zero bias and show no significant changes in energy or intensity in the forward or reverse bias directions, indicating that despite the change in the elastic transmission probability there is little impact on the inelastic pathway. These results agree with first principles calculations performed to evaluate the IETS, which also allow us to identify which modes are active in the single molecule junction.

  20. Single molecule detection of 4-dimethylaminoazobenzene by surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Zhang, Z. L.; Yin, Y. F.; Jiang, J. W.; Mo, Y. J.

    2009-02-01

    4-Dimethylaminoazobenzene (DAB) is anticipated to be a human carcinogen based on sufficient evidence of carcinogenicity in experimental animals. The trace detection of DAB is of great significance in environmental protection and safe life of the people. To test the availability of DAB trace detection using surface-enhanced Raman scattering (SERS), the SERS spectra of DAB single molecules adsorbed on the silver particle aggregates in colloid were investigated. The phenomena of blinking, spectral diffusion, and intensity fluctuations of the vibrational lines in the SERS spectra were observed. Statistical analysis of spectral intensity fluctuations indicates a multimodal distribution of some specific Raman bands, which are consistent with the identification of single molecule detection. Our results demonstrated that SERS can be applied to the trace detection of DAB molecules and other azo dyes.

  1. Revealing −1 Programmed Ribosomal Frameshifting Mechanisms by Single-Molecule Techniques and Computational Methods

    Directory of Open Access Journals (Sweden)

    Kai-Chun Chang

    2012-01-01

    Full Text Available Programmed ribosomal frameshifting (PRF serves as an intrinsic translational regulation mechanism employed by some viruses to control the ratio between structural and enzymatic proteins. Most viral mRNAs which use PRF adapt an H-type pseudoknot to stimulate −1 PRF. The relationship between the thermodynamic stability and the frameshifting efficiency of pseudoknots has not been fully understood. Recently, single-molecule force spectroscopy has revealed that the frequency of −1 PRF correlates with the unwinding forces required for disrupting pseudoknots, and that some of the unwinding work dissipates irreversibly due to the torsional restraint of pseudoknots. Complementary to single-molecule techniques, computational modeling provides insights into global motions of the ribosome, whose structural transitions during frameshifting have not yet been elucidated in atomic detail. Taken together, recent advances in biophysical tools may help to develop antiviral therapies that target the ubiquitous −1 PRF mechanism among viruses.

  2. Single-molecule chemistry and physics explored by low-temperature scanning probe microscopy.

    Science.gov (United States)

    Swart, Ingmar; Gross, Leo; Liljeroth, Peter

    2011-08-28

    It is well known that scanning probe techniques such as scanning tunnelling microscopy (STM) and atomic force microscopy (AFM) routinely offer atomic scale information on the geometric and the electronic structure of solids. Recent developments in STM and especially in non-contact AFM have allowed imaging and spectroscopy of individual molecules on surfaces with unprecedented spatial resolution, which makes it possible to study chemistry and physics at the single molecule level. In this feature article, we first review the physical concepts underlying image contrast in STM and AFM. We then focus on the key experimental considerations and use selected examples to demonstrate the capabilities of modern day low-temperature scanning probe microscopy in providing chemical insight at the single molecule level.

  3. Influence of quantum dot labels on single molecule movement in the plasma membrane

    DEFF Research Database (Denmark)

    Clausen, Mathias P.; Lagerholm, B. Christoffer

    2011-01-01

    Single particle tracking results are very dependent on the probe that is used. In this study we have investigated the influence that functionalized quantum dots (QDs) have on the recorded movement in single molecule tracking experiments of plasma membrane species in live cells. Potential issues...... in labeling single molecules with QDs (and other particles e.g. gold particles) are induction of cross-linking of the target molecules, which can cause activation of signaling pathways or reduced mobility, and steric hindrance as a result of the probe size. Cross-linking can be a result of the multivalent...... for simultaneous investigations of different plasma membrane species in order to discriminate the effect of the label from differences in movement of the target molecules....

  4. pyFRET: A Python Library for Single Molecule Fluorescence Data Analysis

    CERN Document Server

    Murphy, Rebecca R; Klenerman, David

    2014-01-01

    Single molecule F\\"orster resonance energy transfer (smFRET) is a powerful experimental technique for studying the properties of individual biological molecules in solution. However, as adoption of smFRET techniques becomes more widespread, the lack of available software, whether open source or commercial, for data analysis, is becoming a significant issue. Here, we present pyFRET, an open source Python package for the analysis of data from single-molecule fluorescence experiments from freely diffusing biomolecules. The package provides methods for the complete analysis of a smFRET dataset, from burst selection and denoising, through data visualisation and model fitting. We provide support for both continuous excitation and alternating laser excitation (ALEX) data analysis. pyFRET is available as a package downloadable from the Python Package Index (PyPI) under the open source three-clause BSD licence, together with links to extensive documentation and tutorials, including example usage and test data. Additio...

  5. Aptamer-based single-molecule imaging of insulin receptors in living cells

    Science.gov (United States)

    Chang, Minhyeok; Kwon, Mijin; Kim, Sooran; Yunn, Na-Oh; Kim, Daehyung; Ryu, Sung Ho; Lee, Jong-Bong

    2014-05-01

    We present a single-molecule imaging platform that quantitatively explores the spatiotemporal dynamics of individual insulin receptors in living cells. Modified DNA aptamers that specifically recognize insulin receptors (IRs) with a high affinity were selected through the SELEX process. Using quantum dot-labeled aptamers, we successfully imaged and analyzed the diffusive motions of individual IRs in the plasma membranes of a variety of cell lines (HIR, HEK293, HepG2). We further explored the cholesterol-dependent movement of IRs to address whether cholesterol depletion interferes with IRs and found that cholesterol depletion of the plasma membrane by methyl-β-cyclodextrin reduces the mobility of IRs. The aptamer-based single-molecule imaging of IRs will provide better understanding of insulin signal transduction through the dynamics study of IRs in the plasma membrane.

  6. Monitoring patterned enzymatic polymerization on DNA origami at single-molecule level

    Science.gov (United States)

    Okholm, A. H.; Aslan, H.; Besenbacher, F.; Dong, M.; Kjems, J.

    2015-06-01

    DNA origami has been used to orchestrate reactions with nano-precision using a variety of biomolecules. Here, the dynamics of albumin-assisted, localized single-molecule DNA polymerization by terminal deoxynucleotidyl transferase on a 2D DNA origami are monitored using AFM in liquid. Direct visualization of the surface activity revealed the mechanics of growth.DNA origami has been used to orchestrate reactions with nano-precision using a variety of biomolecules. Here, the dynamics of albumin-assisted, localized single-molecule DNA polymerization by terminal deoxynucleotidyl transferase on a 2D DNA origami are monitored using AFM in liquid. Direct visualization of the surface activity revealed the mechanics of growth. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01945a

  7. Influence of quantum dot labels on single molecule movement in the plasma membrane

    DEFF Research Database (Denmark)

    Clausen, Mathias P.; Lagerholm, B. Christoffer

    2011-01-01

    Single particle tracking results are very dependent on the probe that is used. In this study we have investigated the influence that functionalized quantum dots (QDs) have on the recorded movement in single molecule tracking experiments of plasma membrane species in live cells. Potential issues...... in labeling single molecules with QDs (and other particles e.g. gold particles) are induction of cross-linking of the target molecules, which can cause activation of signaling pathways or reduced mobility, and steric hindrance as a result of the probe size. Cross-linking can be a result of the multivalent...... functionalization tag (e.g. streptavidin (sAv)) or the presence of multiple mono- or multivalent functionalization tags per QD. In this work, we have compared commercially available sAv-QDs of different sizes with custom prepared Co enzyme A (CoA)-QDs both targeting a GPI-anchored protein modified with either...

  8. Single molecule fluorescence fluctuations of the cyanine dyes linked covalently to DNA

    Institute of Scientific and Technical Information of China (English)

    AUMILER; Damir

    2009-01-01

    The intersystem crossing and isomerization dynamics of free-Cy3,Cy3-ssDNA,free-Cy5 and Cy5-ssDNA are obtained through simple analysis of rapid on/off blinking from single molecule fluorescence intensity time-traces and the fluorescence correlation spectroscopy(FCS).The on-and off-times observed in fluorescence time traces of single cyanine dyes are due to the formation of the triplet state and isomerization,where both the interaction with DNA and long central polymethine chain of cyanine dyes increase the barriers of isomerization,leading to long off-time.The results indicate that the single molecule fluorescence fluctuation together with the resulting second autocorrelation analysis are powerful methods for determining the triplet state and isomerization dynamics,which could be the simple techniques and complementary to other spectroscopic techniques,such as fluorescence decay measurement and laser flash photolysis to study the photophysical processes of complex molecules.

  9. Single-molecule fluorescence spectroscopy maps the folding landscape of a large protein.

    Science.gov (United States)

    Pirchi, Menahem; Ziv, Guy; Riven, Inbal; Cohen, Sharona Sedghani; Zohar, Nir; Barak, Yoav; Haran, Gilad

    2011-10-11

    Proteins attain their function only after folding into a highly organized three-dimensional structure. Much remains to be learned about the mechanisms of folding of large multidomain proteins, which may populate metastable intermediate states on their energy landscapes. Here we introduce a novel method, based on high-throughput single-molecule fluorescence experiments, which is specifically geared towards tracing the dynamics of folding in the presence of a plethora of intermediates. We employ this method to characterize the folding reaction of a three-domain protein, adenylate kinase. Using thousands of single-molecule trajectories and hidden Markov modelling, we identify six metastable states on adenylate kinase's folding landscape. Remarkably, the connectivity of the intermediates depends on denaturant concentration; at low concentration, multiple intersecting folding pathways co-exist. We anticipate that the methodology introduced here will find broad applicability in the study of folding of large proteins, and will provide a more realistic scenario of their conformational dynamics.

  10. Assembling large genomes with single-molecule sequencing and locality-sensitive hashing.

    Science.gov (United States)

    Berlin, Konstantin; Koren, Sergey; Chin, Chen-Shan; Drake, James P; Landolin, Jane M; Phillippy, Adam M

    2015-06-01

    Long-read, single-molecule real-time (SMRT) sequencing is routinely used to finish microbial genomes, but available assembly methods have not scaled well to larger genomes. We introduce the MinHash Alignment Process (MHAP) for overlapping noisy, long reads using probabilistic, locality-sensitive hashing. Integrating MHAP with the Celera Assembler enabled reference-grade de novo assemblies of Saccharomyces cerevisiae, Arabidopsis thaliana, Drosophila melanogaster and a human hydatidiform mole cell line (CHM1) from SMRT sequencing. The resulting assemblies are highly continuous, include fully resolved chromosome arms and close persistent gaps in these reference genomes. Our assembly of D. melanogaster revealed previously unknown heterochromatic and telomeric transition sequences, and we assembled low-complexity sequences from CHM1 that fill gaps in the human GRCh38 reference. Using MHAP and the Celera Assembler, single-molecule sequencing can produce de novo near-complete eukaryotic assemblies that are 99.99% accurate when compared with available reference genomes.

  11. A Stochastic Single-Molecule Event Triggers Phenotype Switching of a Bacterial Cell

    Science.gov (United States)

    Xie, Sunney; Choi, Paul; Cai, Long

    2009-03-01

    By monitoring fluorescently labeled lactose permease with single-molecule sensitivity, we investigated the molecular mechanism of how an Escherichia coli cell with the lac operon switches from one phenotype to another. At intermediate inducer concentrations, a population of genetically identical cells exhibits two phenotypes: induced cells with highly fluorescent membranes and uninduced cells with a small number of membrane-bound permeases. We found that this basal-level expression results from partial dissociation of the tetrameric lactose repressor from one of its operators on looped DNA. In contrast, infrequent events of complete dissociation of the repressor from DNA result in large bursts of permease expression that trigger induction of the lac operon. Hence, a stochastic single-molecule event determines a cell's phenotype.

  12. A stochastic model for magnetic dynamics in single-molecule magnets

    Energy Technology Data Exchange (ETDEWEB)

    López-Ruiz, R., E-mail: rlruiz@ifi.unicamp.br [Instituto de Física Gleb Wataghin - Universidade Estadual de Campinas, 13083-859 Campinas (SP) (Brazil); Almeida, P.T. [Instituto de Física Gleb Wataghin - Universidade Estadual de Campinas, 13083-859 Campinas (SP) (Brazil); Vaz, M.G.F. [Instituto de Química, Universidade Federal Fluminense, 24020-150 Niterói (RJ) (Brazil); Novak, M.A. [Instituto de Física - Universidade Federal do Rio de Janeiro, 21941-972 Rio de Janeiro (RJ) (Brazil); Béron, F.; Pirota, K.R. [Instituto de Física Gleb Wataghin - Universidade Estadual de Campinas, 13083-859 Campinas (SP) (Brazil)

    2016-04-01

    Hysteresis and magnetic relaxation curves were performed on double well potential systems with quantum tunneling possibility via stochastic simulations. Simulation results are compared with experimental ones using the Mn{sub 12} single-molecule magnet, allowing us to introduce time dependence in the model. Despite being a simple simulation model, it adequately reproduces the phenomenology of a thermally activated quantum tunneling and can be extended to other systems with different parameters. Assuming competition between the reversal modes, thermal (over) and tunneling (across) the anisotropy barrier, a separation of classical and quantum contributions to relaxation time can be obtained. - Highlights: • Single-molecule magnets are modeled using a simple stochastic approach. • Simulation reproduces thermally-activated tunnelling magnetization reversal features. • The time is introduced in hysteresis and relaxation simulations. • We can separate the quantum and classical contributions to decay time.

  13. Photon counting imaging and centroiding with an electron-bombarded CCD using single molecule localisation software

    Science.gov (United States)

    Hirvonen, Liisa M.; Barber, Matthew J.; Suhling, Klaus

    2016-06-01

    Photon event centroiding in photon counting imaging and single-molecule localisation in super-resolution fluorescence microscopy share many traits. Although photon event centroiding has traditionally been performed with simple single-iteration algorithms, we recently reported that iterative fitting algorithms originally developed for single-molecule localisation fluorescence microscopy work very well when applied to centroiding photon events imaged with an MCP-intensified CMOS camera. Here, we have applied these algorithms for centroiding of photon events from an electron-bombarded CCD (EBCCD). We find that centroiding algorithms based on iterative fitting of the photon events yield excellent results and allow fitting of overlapping photon events, a feature not reported before and an important aspect to facilitate an increased count rate and shorter acquisition times.

  14. Diversity of Chemical Mechanisms in Thioredoxin Catalysis Revealed by Single-Molecule Force Spectroscopy

    Science.gov (United States)

    Perez-Jimenez, Raul; Li, Jingyuan; Kosuri, Pallav; Sanchez-Romero, Inmaculada; Wiita, Arun P.; Rodriguez-Larrea, David; Chueca, Ana; Holmgren, Arne; Miranda-Vizuete, Antonio; Becker, Katja; Cho, Seung-Hyun; Beckwith, Jon; Gelhaye, Eric; Jacquot, Jean P.; Gaucher, Eric; Sanchez-Ruiz, Jose M.; Berne, Bruce J.; Fernandez, Julio M.

    2009-01-01

    Thioredoxins are oxido-reductase enzymes present in all organisms, catalyzing the reduction of disulfide bonds in proteins. By applying a calibrated force to a substrate disulfide, the chemical mechanisms of Trx catalysis can be examined in detail at the single molecule level. Here we use single molecule force-clamp spectroscopy to explore the chemical evolution of Trx catalysis by probing the chemistry of eight different thioredoxin enzymes. While all Trxs show a characteristic Michaelis-Menten mechanism detected when the disulfide bond is stretched at low forces, two different chemical behaviors distinguish bacterial from eukaryotic-origin Trxs at high forces. Eukaryotic-origin Trxs reduce disulfide bonds through a single-electron transfer reaction (SET) whereas bacterial-origin Trxs exhibit both nucleophilic substitution (SN2) and SET reactions. A computational analysis of Trx structures identifies the evolution of the binding groove as an important factor controlling the chemistry of Trx catalysis. PMID:19597482

  15. Nanomechanical DNA origami 'single-molecule beacons' directly imaged by atomic force microscopy

    Science.gov (United States)

    Kuzuya, Akinori; Sakai, Yusuke; Yamazaki, Takahiro; Xu, Yan; Komiyama, Makoto

    2011-01-01

    DNA origami involves the folding of long single-stranded DNA into designed structures with the aid of short staple strands; such structures may enable the development of useful nanomechanical DNA devices. Here we develop versatile sensing systems for a variety of chemical and biological targets at molecular resolution. We have designed functional nanomechanical DNA origami devices that can be used as 'single-molecule beacons', and function as pinching devices. Using 'DNA origami pliers' and 'DNA origami forceps', which consist of two levers ~170 nm long connected at a fulcrum, various single-molecule inorganic and organic targets ranging from metal ions to proteins can be visually detected using atomic force microscopy by a shape transition of the origami devices. Any detection mechanism suitable for the target of interest, pinching, zipping or unzipping, can be chosen and used orthogonally with differently shaped origami devices in the same mixture using a single platform. PMID:21863016

  16. Vibronic excitation of single molecules: a new technique for studying low-temperature dynamics.

    Science.gov (United States)

    Kiraz, Alper; Ehrl, Moritz; Hellriegel, Christian; Bräuchle, Christoph; Zumbusch, Andreas

    2005-05-01

    Herein, we present vibronic excitation and detection of purely electronic zero-phonon lines (ZPL) of single molecules as a new tool for investigating dynamics at cryogenic temperatures. Applications of this technique to study crystalline and amorphous matrix materials are presented. In the crystalline environment, spectrally stable ZPLs are observed at moderate excitation powers. By contrast, investigations at higher excitation intensities reveal the opening of local degrees of freedom and spectral jumps, which we interpret as the observation of elementary steps in the melting of a crystal. We compare these results to spectral single-molecule trajectories recorded in a polymer. The way in which much more complicated spectral features can be analysed is shown. Surprisingly, pronounced spectral shifts on a previously not accessible large energy scale are observed, which are hard to reconcile with the standard two-level model system used to describe low-temperature dynamics in disordered systems.

  17. Reconstructing multiple free energy pathways of DNA stretching from single molecule experiments.

    Science.gov (United States)

    Frey, Eric W; Li, Jingqiang; Wijeratne, Sithara S; Kiang, Ching-Hwa

    2015-04-23

    Free energy landscapes provide information on the dynamics of proteins and nucleic acid folding. It has been demonstrated that such landscapes can be reconstructed from single molecule force measurement data using Jarzynski's equality, which requires only stretching data. However, when the process is reversible, the Crooks fluctuation theorem combines both stretch and relaxation force data for the analysis and can offer more rapid convergence of free energy estimates of different states. Here we demonstrate that, similar to Jarzynski's equality, the Crooks fluctuation theorem can be used to reconstruct the full free energy landscapes. In addition, when the free energy landscapes exhibit multiple folding pathways, one can use Jarzynski's equality to reconstruct individual free energy pathways if the experimental data show distinct work distributions. We applied the method to reconstruct the overstretching transition of poly(dA) to demonstrate that the nonequilibrium work theorem combined with single molecule force measurements provides a clear picture of the free energy landscapes.

  18. Carbon nanotube nanoelectromechanical systems as magnetometers for single-molecule magnets.

    Science.gov (United States)

    Ganzhorn, Marc; Klyatskaya, Svetlana; Ruben, Mario; Wernsdorfer, Wolfgang

    2013-07-23

    Due to outstanding mechanical and electronic properties, carbon nanotube nanoelectromechanical systems (NEMS) were recently proposed as ultrasensitive magnetometers for single-molecule magnets (SMM). In this article, we describe a noninvasive grafting of a SMM on a carbon nanotube NEMS, which conserves both the mechanical properties of the carbon nanotube NEMS and the magnetic properties of the SMM. We will demonstrate that the nonlinearity of a carbon nanotube's mechanical motion can be used to probe the reversal of a molecular spin, associated with a bis(phthalocyaninato)terbium(III) single-molecule magnet, providing an experimental evidence for the detection of a single spin by a mechanical degree of freedom on a molecular level.

  19. High-Resolution Optical Tweezers Combined With Single-Molecule Confocal Microscopy.

    Science.gov (United States)

    Whitley, K D; Comstock, M J; Chemla, Y R

    2017-01-01

    We describe the design, construction, and application of an instrument combining dual-trap, high-resolution optical tweezers and a confocal microscope. This hybrid instrument allows nanomechanical manipulation and measurement simultaneously with single-molecule fluorescence detection. We present the general design principles that overcome the challenges of maximizing optical trap resolution while maintaining single-molecule fluorescence sensitivity, and provide details on the construction and alignment of the instrument. This powerful new tool is just beginning to be applied to biological problems. We present step-by-step instructions on an application of this technique that highlights the instrument's capabilities, detecting conformational dynamics in a nucleic acid-processing enzyme. © 2017 Elsevier Inc. All rights reserved.

  20. Single-Molecule Protein Folding Experiments Using High-Precision Optical Tweezers.

    Science.gov (United States)

    Jiao, Junyi; Rebane, Aleksander A; Ma, Lu; Zhang, Yongli

    2017-01-01

    How proteins fold from linear chains of amino acids to delicate three-dimensional structures remains a fundamental biological problem. Single-molecule manipulation based on high-resolution optical tweezers (OT) provides a powerful approach to study protein folding with unprecedented spatiotemporal resolution. In this method, a single protein or protein complex is tethered between two beads confined in optical traps and pulled. Protein unfolding induced by the mechanical force is counteracted by the spontaneous folding of the protein, reaching a dynamic equilibrium at a characteristic force and rate. The transition is monitored by the accompanying extension change of the protein and used to derive conformations and energies of folding intermediates and their associated transition kinetics. Here, we provide general strategies and detailed protocols to study folding of proteins and protein complexes using optical tweezers, including sample preparation, DNA-protein conjugation and methods of data analysis to extract folding energies and rates from the single-molecule measurements.

  1. Largely Enhanced Single-molecule Fluorescence in Plasmonic Nanogaps formed by Hybrid Silver Nanostructures

    Science.gov (United States)

    Zhang, Jian; Lakowicz, Joseph R.

    2013-01-01

    It has been suggested that narrow gaps between metallic nanostructures can be practical for producing large field enhancement. We design a hybrid silver nanostructure geometry in which fluorescent emitters are sandwiched between silver nanoparticles and silver island film (SIF). A desired number of polyelectrolyte layers are deposited on the SIF surface before the self-assembly of a second silver nanoparticle layer. Layer-by-layer configuration provides a well-defined dye position. It allows us to study the photophyical behaviors of fluorophores in the resulting gap at the single molecule level. The enhancement factor of a fluorophore located in the gap is much higher than those on silver surfaces alone and on glass. These effects may be used for increased detectability of single molecules bound to surfaces which contain metallic structures for either biophysical studies or high sensitivity assays. PMID:23373787

  2. Roles of vacuum tunnelling and contact mechanics in single-molecule thermopower

    Science.gov (United States)

    Tsutsui, Makusu; Yokota, Kazumichi; Morikawa, Takanori; Taniguchi, Masateru

    2017-01-01

    Molecular junction is a chemically-defined nanostructure whose discrete electronic states are expected to render enhanced thermoelectric figure of merit suitable for energy-harvesting applications. Here, we report on geometrical dependence of thermoelectricity in metal-molecule-metal structures. We performed simultaneous measurements of the electrical conductance and thermovoltage of aromatic molecules having different anchoring groups at room temperature in vacuum. We elucidated the mutual contributions of vacuum tunnelling on thermoelectricity in the short molecular bridges. We also found stretching-induced thermoelectric voltage enhancement in thiol-linked single-molecule bridges along with absence of the pulling effects in diamine counterparts, thereby suggested that the electromechanical effect would be a rather universal phenomenon in Au-S anchored molecular junctions that undergo substantial metal-molecule contact elongation upon stretching. The present results provide a novel concept for molecular design to achieve high thermopower with single-molecule junctions. PMID:28281684

  3. Single-Molecule Imaging with X-Ray Free-Electron Lasers: Dream or Reality?

    KAUST Repository

    Fratalocchi, Andrea

    2011-03-09

    X-ray free-electron lasers (XFEL) are revolutionary photon sources, whose ultrashort, brilliant pulses are expected to allow single-molecule diffraction experiments providing structural information on the atomic length scale of nonperiodic objects. This ultimate goal, however, is currently hampered by several challenging questions basically concerning sample damage, Coulomb explosion, and the role of nonlinearity. By employing an original ab initio approach, we address these issues showing that XFEL-based single-molecule imaging will be only possible with a few-hundred long attosecond pulses, due to significant radiation damage and the formation of preferred multisoliton clusters which reshape the overall electronic density of the molecular system at the femtosecond scale.

  4. Single-molecule magnet behavior with a single metal center enhanced through peripheral ligand modifications.

    Science.gov (United States)

    Jurca, Titel; Farghal, Ahmed; Lin, Po-Heng; Korobkov, Ilia; Murugesu, Muralee; Richeson, Darrin S

    2011-10-12

    Bis(imino)pyridine pincer ligands in conjunction with two isothiocyanate ligands have been used to prepare two mononuclear Co(II) complexes. Both complexes have a distorted square-pyramidal geometry with the Co(II) centers lying above the basal plane. This leads to significant spin-orbit coupling for the d(7) Co(II) ions and consequently to slow relaxation of the magnetization that is characteristic of Single-Molecule Magnet (SMM) behavior.

  5. A gate controlled conjugated single molecule diode: Its rectification could be reversed

    Science.gov (United States)

    Zhang, Qun

    2014-10-01

    A gate controlled Au/diphenyldipyrimidinyl/Au single molecule diode is simulated by a tight-binding Hamiltonian combined with Green's Function and transport methods. After calculating a number of electronic transport characteristics under various gate voltages, a clear modulation by gate is got and when the positive voltage is high enough, the rectification could be reversed. This is advisable for the designing and building future molecular logic devices and integrated circuits.

  6. All-electric-controlled spin current switching in single-molecule magnet-tunnel junctions

    Institute of Scientific and Technical Information of China (English)

    Zhang Zheng-Zhong; Shen Rui; Sheng Li; Wang Rui-Qiang; Wang Bai-Gen; Xing Ding-Yu

    2011-01-01

    A single-molecule magnet (SMM)coupled to two normal metallic electrodes can both switch spin-up and spindown electronic currents within two different windows of SMM gate voltage. Such spin current switching in the SMM tunnel junction arises from spin-selected single electron resonant tunneling via the lowest unoccupied molecular orbit of the SMM. Since it is not magnetically controlled but all-electrically controlled, the proposed spin current switching effect may have potential applications in future spintronics.

  7. Surface-enhanced Raman spectroscopy at single-molecule scale and its implications in biology

    OpenAIRE

    Wang, Yuling; Irudayaraj, Joseph

    2013-01-01

    Single-molecule (SM) spectroscopy has been an exciting area of research offering significant promise and hope in the field of sensor development to detect targets at ultra-low levels down to SM resolution. To the experts and developers in the field of surface-enhanced Raman spectroscopy (SERS), this has often been a challenge and a significant opportunity for exploration. Needless to say, the opportunities and excitement of this multidisciplinary area impacts span the fields of physics, chemi...

  8. Single molecule studies of molecular diffusion in cellular membranes: determining membrane structure.

    Science.gov (United States)

    Ritchie, Ken; Spector, Jeff

    Since the advent of single particle/molecule microscopies, researchers have applied these techniques to understanding the fluid membranes of cells. By observing diffusion of membrane proteins and lipids in live cell membranes of eukaryotic cells, it has been found that membranes contain a mosaic of fluid compartments. Such structure may be instrumental in understanding key characteristics of the membrane. Recent single molecule observations on prokaryotic cell membranes will also be discussed.

  9. A Single-Molecule Study on the Structural Damage of Ultraviolet Radiated DNA

    Directory of Open Access Journals (Sweden)

    Pu Chun Ke

    2008-04-01

    Full Text Available The structural damage of double-stranded DNA under UV radiation was examined using single-molecule fluorescence microscopy. Compared to undamaged DNA, the diffusion coefficient of λ-DNA was significantly increased with 12 min or 20 min of radiation but remained unchanged for 40 min of exposure possibly due to strand crosslinking. The structural damage of DNA was further examined using transmission electron microscopy which revealed kinks and sharp bends along the DNA backbone.

  10. Molecular-crowding effects on single-molecule RNA folding/unfolding thermodynamics and kinetics.

    Science.gov (United States)

    Dupuis, Nicholas F; Holmstrom, Erik D; Nesbitt, David J

    2014-06-10

    The effects of "molecular crowding" on elementary biochemical processes due to high solute concentrations are poorly understood and yet clearly essential to the folding of nucleic acids and proteins into correct, native structures. The present work presents, to our knowledge, first results on the single-molecule kinetics of solute molecular crowding, specifically focusing on GAAA tetraloop-receptor folding to isolate a single RNA tertiary interaction using time-correlated single-photon counting and confocal single-molecule FRET microscopy. The impact of crowding by high-molecular-weight polyethylene glycol on the RNA folding thermodynamics is dramatic, with up to ΔΔG° ∼ -2.5 kcal/mol changes in free energy and thus >60-fold increase in the folding equilibrium constant (Keq) for excluded volume fractions of 15%. Most importantly, time-correlated single-molecule methods permit crowding effects on the kinetics of RNA folding/unfolding to be explored for the first time (to our knowledge), which reveal that this large jump in Keq is dominated by a 35-fold increase in tetraloop-receptor folding rate, with only a modest decrease in the corresponding unfolding rate. This is further explored with temperature-dependent single-molecule RNA folding measurements, which identify that crowding effects are dominated by entropic rather than enthalpic contributions to the overall free energy change. Finally, a simple "hard-sphere" treatment of the solute excluded volume is invoked to model the observed kinetic trends, and which predict ΔΔG° ∼ -5 kcal/mol free-energy stabilization at excluded volume fractions of 30%.

  11. An Undecanuclear Ferrimagnetic Cu9Dy2 Single Molecule Magnet Achieved through Ligand Fine-Tuning.

    Science.gov (United States)

    Kühne, Irina A; Kostakis, George E; Anson, Christopher E; Powell, Annie K

    2016-05-02

    We describe the concept of increasing the nuclearity of a previously reported high-spin Cu5Gd2 core using a "fine-tuning" ligand approach. Thus, two Cu9Ln2 coordination clusters, with Ln = Dy (1) and Gd (2), were synthesized with the Gd compound having a ground spin state of (17)/2 and the Dy analogue showing single-molecule-magnet behavior in zero field.

  12. Single molecule localization microscopy of the distribution of chromatin using Hoechst and DAPI fluorescent probes

    OpenAIRE

    Szczurek, Aleksander T; PRAKASH, KIRTI; Lee, Hyun-Keun; Żurek-Biesiada, Dominika J; Best, Gerrit; Hagmann, Martin; Dobrucki, Jurek W; Cremer, Christoph; Birk, Udo

    2014-01-01

    Several approaches have been described to fluorescently label and image DNA and chromatin in situ on the single-molecule level. These superresolution microscopy techniques are based on detecting optically isolated, fluorescently tagged anti-histone antibodies, fluorescently labeled DNA precursor analogs, or fluorescent dyes bound to DNA. Presently they suffer from various drawbacks such as low labeling efficiency or interference with DNA structure. In this report, we demonstrate that DNA mino...

  13. Versatile single-molecule multi-color excitation and detection fluorescence setup for studying biomolecular dynamics

    KAUST Repository

    Sobhy, M. A.

    2011-11-07

    Single-molecule fluorescence imaging is at the forefront of tools applied to study biomolecular dynamics both in vitro and in vivo. The ability of the single-molecule fluorescence microscope to conduct simultaneous multi-color excitation and detection is a key experimental feature that is under continuous development. In this paper, we describe in detail the design and the construction of a sophisticated and versatile multi-color excitation and emission fluorescence instrument for studying biomolecular dynamics at the single-molecule level. The setup is novel, economical and compact, where two inverted microscopes share a laser combiner module with six individual laser sources that extend from 400 to 640 nm. Nonetheless, each microscope can independently and in a flexible manner select the combinations, sequences, and intensities of the excitation wavelengths. This high flexibility is achieved by the replacement of conventional mechanical shutters with acousto-optic tunable filter (AOTF). The use of AOTF provides major advancement by controlling the intensities, duration, and selection of up to eight different wavelengths with microsecond alternation time in a transparent and easy manner for the end user. To our knowledge this is the first time AOTF is applied to wide-field total internal reflection fluorescence (TIRF) microscopy even though it has been commonly used in multi-wavelength confocal microscopy. The laser outputs from the combiner module are coupled to the microscopes by two sets of four single-mode optic fibers in order to allow for the optimization of the TIRF angle for each wavelength independently. The emission is split into two or four spectral channels to allow for the simultaneous detection of up to four different fluorophores of wide selection and using many possible excitation and photoactivation schemes. We demonstrate the performance of this new setup by conducting two-color alternating excitation single-molecule fluorescence resonance energy

  14. Effect of disorder on ultrafast exciton dynamics probed by single molecule spectroscopy

    OpenAIRE

    Hernando Campos, Jordi; van Dijk, Erik M. H. P.; Hoogenboom, Jacob P.; García López, Juan José; Reinhoudt, David N.; Crego Calama, Mercedes; García Parajó, María F.; van Hulst, Niek F.

    2006-01-01

    We present a single-molecule study unraveling the effect of static disorder on the vibrational-assisted ultrafast exciton dynamics in multichromophoric systems. For every single complex, we probe the initial exciton relaxation process by an ultrafast pump-probe approach and the coupling to vibrational modes by emission spectra, while fluorescence lifetime analysis measures the amount of static disorder. Exploiting the wide range of disorder found from complex to complex, we demonstrate that s...

  15. A Heterotetranuclear [NiIIReIV3] single-molecule magnet.

    Science.gov (United States)

    Martínez-Lillo, José; Armentano, Donatella; De Munno, Giovanni; Wernsdorfer, Wolfgang; Julve, Miguel; Lloret, Francesc; Faus, Juan

    2006-11-01

    The reaction of [ReIVCl4(ox)]2- and fully solvated Ni2+ ions in a MeCN/i-PrOH mixture affords the heterotetranuclear complex (NBu4)4[Ni{ReCl4(ox)}3] where the rhenium precursor acts as a bidentate ligand toward the nicke(II) ion through the oxalate group. The mixed 3d-5d species exhibits intramolecular ferromagnetic coupling and it behaves like a single-molecule magnet.

  16. Real-Time analysis and visualization for single-molecule based super-resolution microscopy

    OpenAIRE

    Kechkar, Adel; Nair, Deepak; Heilemann, Mike; Choquet, Daniel; Sibarita, Jean-Baptiste

    2013-01-01

    Accurate multidimensional localization of isolated fluorescent emitters is a time consuming process in single-molecule based super-resolution microscopy. We demonstrate a functional method for real-time reconstruction with automatic feedback control, without compromising the localization accuracy. Compatible with high frame rates of EM-CCD cameras, it relies on a wavelet segmentation algorithm, together with a mix of CPU/GPU implementation. A combination with Gaussian fitting allows direct ac...

  17. Real-Time Analysis and Visualization for Single-Molecule Based Super-Resolution Microscopy

    OpenAIRE

    Kechkar, Adel; Nair, Deepak; Heilemann, Mike; Choquet, Daniel; Sibarita, Jean-Baptiste

    2013-01-01

    Accurate multidimensional localization of isolated fluorescent emitters is a time consuming process in single-molecule based super-resolution microscopy. We demonstrate a functional method for real-time reconstruction with automatic feedback control, without compromising the localization accuracy. Compatible with high frame rates of EM-CCD cameras, it relies on a wavelet segmentation algorithm, together with a mix of CPU/GPU implementation. A combination with Gaussian fitting allows direct ac...

  18. Retention of transcription initiation factor sigma(70) in transcription elongation: Single-molecule analysis

    OpenAIRE

    Kapanidis, A. N.; Margeat, E; Laurence, T A; Doose, S.; Ho, S O; Mukhopadhyay, J.; Kortkhonjia, E; Mekler, V; Ebright, R H; S. Weiss

    2005-01-01

    We report a single-molecule assay that defines, simultaneously, the translocational position of a protein complex relative to DNA and the subunit stoichiometry of the complex. We applied the assay to define translocational positions and sigma(70) contents of bacterial transcription elongation complexes in vitro. The results confirm ensemble results indicating that a large fraction, similar to 70%-90%, of early elongation complexes retain sigma(70) and that a determinant for sigma(70) recognit...

  19. Single-Molecule Enzymology Based On The Principle Of The Millikan Oil Drop Experiment

    OpenAIRE

    Leiske, Danielle L; Chow, Andrea; Dettloff, Roger; Farinas, Javier

    2013-01-01

    The ability to monitor the progress of single molecule enzyme reactions is often limited by the need to use fluorogenic substrates. A method based on the principle of the Millikan Oil Drop Experiment was developed to monitor the change in charge of substrates bound to a nanoparticle and offers a means of detecting single enzyme reactions without fluorescence detection. As a proof of principle of the ability to monitor reactions which result in a change in substrate charge, polymerization on a...

  20. Single molecule magnet behaviour in a rare trinuclear {Cr(III)Dy} methoxo-bridged complex.

    Science.gov (United States)

    Car, Pierre-Emmanuel; Favre, Annaïck; Caneschi, Andrea; Sessoli, Roberta

    2015-09-28

    The reaction of the chromium(iii) chloride tetrahydrofuran complex with the dipivaloylmethane ligand, the lanthanide alcoholic salt DyCl3·CH3OH and the 1,1,1-tris(hydroxymethyl)-ethane ligand resulted in the formation of a new trinuclear chromium-dysprosium complex. Magnetic investigations revealed that the new 3d-4f complex exhibits single molecule magnet behaviour.

  1. Single-molecule spectroscopy of the temperature-induced collapse of unfolded proteins.

    Science.gov (United States)

    Nettels, Daniel; Müller-Späth, Sonja; Küster, Frank; Hofmann, Hagen; Haenni, Dominik; Rüegger, Stefan; Reymond, Luc; Hoffmann, Armin; Kubelka, Jan; Heinz, Benjamin; Gast, Klaus; Best, Robert B; Schuler, Benjamin

    2009-12-01

    We used single-molecule FRET in combination with other biophysical methods and molecular simulations to investigate the effect of temperature on the dimensions of unfolded proteins. With single-molecule FRET, this question can be addressed even under near-native conditions, where most molecules are folded, allowing us to probe a wide range of denaturant concentrations and temperatures. We find a compaction of the unfolded state of a small cold shock protein with increasing temperature in both the presence and the absence of denaturant, with good agreement between the results from single-molecule FRET and dynamic light scattering. Although dissociation of denaturant from the polypeptide chain with increasing temperature accounts for part of the compaction, the results indicate an important role for additional temperature-dependent interactions within the unfolded chain. The observation of a collapse of a similar extent in the extremely hydrophilic, intrinsically disordered protein prothymosin alpha suggests that the hydrophobic effect is not the sole source of the underlying interactions. Circular dichroism spectroscopy and replica exchange molecular dynamics simulations in explicit water show changes in secondary structure content with increasing temperature and suggest a contribution of intramolecular hydrogen bonding to unfolded state collapse.

  2. Single-molecule fluorescence study of the inhibition of the oncogenic functionality of STAT3

    Science.gov (United States)

    Liu, Baoxu; Badali, Daniel; Fletcher, Steven; Avadisian, Miriam; Gunning, Patrick; Gradinaru, Claudiu

    2009-06-01

    Signal-Transducer-and-Activator-of-Transcription 3 (STAT3) protein plays an important role in the onset of cancers such as leukemia and lymphoma. In this study, we aim to test the effectiveness of a novel peptide drug designed to tether STAT3 to the phospholipid bilayer of the cell membrane and thus inhibit unwanted transcription. As a first step, STAT3 proteins were successfully labelled with tetramethylrhodamine (TMR), a fluorescent dye with suitable photostability for single molecule studies. The effectiveness of labelling was determined using fluorescence correlation spectroscopy in a custom built confocal microscope, from which diffusion times and hydrodynamic radii of individual proteins were determined. A newly developed fluorescein derivative label (F-NAc) has been designed to be incorporated into the structure of the peptide drug so that peptide-STAT3 interactions can be examined. This dye is spectrally characterized and is found to be well suited for its application to this project, as well as other single-molecule studies. The membrane localization via high-affinity cholesterol-bound small-molecule binding agents can be demonstrated by encapsulating TMR-labeled STAT3 and inhibitors within a vesicle model cell system. To this end, unilaminar lipid vesicles were examined for size and encapsulation ability. Preliminary results of the efficiency and stability of the STAT3 anchoring in lipid membranes obtained via quantitative confocal imaging and single-molecule spectroscopy using a custom-built multiparameter fluorescence microscope are reported here.

  3. High-sensitivity single-molecule fluorescence detection in theory and practice

    Energy Technology Data Exchange (ETDEWEB)

    Mathies, R.A.; Peck, K. (California Univ., Berkeley, CA (United States). Dept. of Chemistry); Stryer, L. (Stanford Univ., CA (United States). Dept. of Cell Biology)

    1989-01-01

    The number of emitted photons that can be obtained from a fluorophore increases with the incident light intensity and the duration of illumination. However, saturation of the absorption transition and photodestruction place natural limits on the ultimate signal-to-noise ratio that can be obtained. Equations have been derived to describe the fluorescence-to-background-noise ratio in the presence of saturating light intensities and photodestruction. The fluorescence lifetime and the photodestruction quantum yield are the key parameters that determine the optimum light intensity and exposure time. To test this theory we have performed single molecule detection of phycoerythrin (PE). The laser power was selected to give a mean time between absorptions approximately equal to the fluorescence decay rate. The transit time was selected to be nearly equal to the photodestruction time of {approximately}600 {mu}s. Under these conditions the photocount distribution function, the photocount autocorrelation function, and the concentration dependence clearly show that we are detecting bursts of fluorescence from individual fluorophores. A hard-wired version of this single-molecule detection system was used to measure the concentration of PE down to 10{sup {minus}15} M. This single-molecule counter is three orders-of-magnitude more sensitive than conventional fluorescence detection systems. The approach presented here should be useful in the optimization of fluorescence detected DNA sequencing gels. 17 refs., 4 figs.

  4. Magnetic relaxations in a Tb-based single molecule magnet studied by quasielastic neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Kofu, Maiko [Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581 (Japan); Kajiwara, Takashi [Faculty of Science, Nara Women’s University, Nara, Nara 630-8506 (Japan); Gardner, Jason S. [NIST Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899-6102 (United States); Simeoni, Giovanna G. [Technische Universität München, Forschungsneutronenquelle Heinz Maier-Leibnitz FRM II, D-85747 Garching (Germany); Tyagi, Madhusudan; Faraone, Antonio [NIST Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899-6102 (United States); Department of Materials Science, University of Maryland, College Park, MD 20742 (United States); Nakajima, Kenji; Ohira-Kawamura, Seiko [Neutron Science Section, J-PARC Center, Tokai, Ibaraki 319-1195 (Japan); Nakano, Motohiro [Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871 (Japan); Yamamuro, Osamu, E-mail: yamamuro@issp.u-tokyo.ac.jp [Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581 (Japan)

    2013-12-12

    Highlights: • We examined a Tb based single molecule magnet by ac susceptibility and QENS. • We found two distinct magnetic relaxations in a wide time range from 0.1 ms to 1 ps. • The slower relaxation corresponds to the thermally activated tunneling process. • The faster one couples with the motion of H atoms around the magnetic ions. • The two relaxations exhibit a crossover around 100 ns. - Abstract: By using ac magnetic susceptibility and quasielatic neutron scattering (QENS) techniques, we have investigated a magnetization relaxation phenomenon of a rare-earth based single molecule magnet, TbCuC{sub 19}H{sub 20}N{sub 3}O{sub 16}. We clearly identified and characterized two magnetic relaxations. The slower relaxation observed in the ac susceptibility is at the ms timescale around T=2 K and its activation energy is 16 K. On the other hand, the faster relaxation in the QENS measurements occurs on the timescale between ns and ps with activation energy of 174 K. The slower relaxation may occur through thermally activated tunneling among magnetic substates. We discuss two possible origins for the faster relaxation; one is a thermally activated tunneling between the higher excited states, the other is the magnetic relaxation coupled with the motion of ligands around the magnetic ions. This is the first clear observation of magnetic relaxation on the single molecule magnet revealed by QENS.

  5. Single-Molecule Counting of Point Mutations by Transient DNA Binding

    Science.gov (United States)

    Su, Xin; Li, Lidan; Wang, Shanshan; Hao, Dandan; Wang, Lei; Yu, Changyuan

    2017-03-01

    High-confidence detection of point mutations is important for disease diagnosis and clinical practice. Hybridization probes are extensively used, but are hindered by their poor single-nucleotide selectivity. Shortening the length of DNA hybridization probes weakens the stability of the probe-target duplex, leading to transient binding between complementary sequences. The kinetics of probe-target binding events are highly dependent on the number of complementary base pairs. Here, we present a single-molecule assay for point mutation detection based on transient DNA binding and use of total internal reflection fluorescence microscopy. Statistical analysis of single-molecule kinetics enabled us to effectively discriminate between wild type DNA sequences and single-nucleotide variants at the single-molecule level. A higher single-nucleotide discrimination is achieved than in our previous work by optimizing the assay conditions, which is guided by statistical modeling of kinetics with a gamma distribution. The KRAS c.34 A mutation can be clearly differentiated from the wild type sequence (KRAS c.34 G) at a relative abundance as low as 0.01% mutant to WT. To demonstrate the feasibility of this method for analysis of clinically relevant biological samples, we used this technology to detect mutations in single-stranded DNA generated from asymmetric RT-PCR of mRNA from two cancer cell lines.

  6. Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform

    Science.gov (United States)

    Baaske, Martin D.; Foreman, Matthew R.; Vollmer, Frank

    2014-11-01

    Biosensing relies on the detection of molecules and their specific interactions. It is therefore highly desirable to develop transducers exhibiting ultimate detection limits. Microcavities are an exemplary candidate technology for demonstrating such a capability in the optical domain and in a label-free fashion. Additional sensitivity gains, achievable by exploiting plasmon resonances, promise biosensing down to the single-molecule level. Here, we introduce a biosensing platform using optical microcavity-based sensors that exhibits single-molecule sensitivity and is selective to specific single binding events. Whispering gallery modes in glass microspheres are used to leverage plasmonic enhancements in gold nanorods for the specific detection of nucleic acid hybridization, down to single 8-mer oligonucleotides. Detection of single intercalating small molecules confirms the observation of single-molecule hybridization. Matched and mismatched strands are discriminated by their interaction kinetics. Our platform allows us to monitor specific molecular interactions transiently, hence mitigating the need for high binding affinity and avoiding permanent binding of target molecules to the receptors. Sensor lifetime is therefore increased, allowing interaction kinetics to be statistically analysed.

  7. Magnetic Relaxation Study on Single Crystals of Ni4 Single-Molecule Magnets

    Institute of Scientific and Technical Information of China (English)

    LI Yan-Rong; LIU Hai-Qing; LIU Ying; SU Shao-Kui; WANG Yun-Ping

    2009-01-01

    The ac susceptibility of single crystals of Nia single-molecule magnets is measured by a compensation measurement setup. The magnetic relaxation time calculated from the peak of the out-phase component of the susceptibility fits the Arrhenius law well and gives an effective spin-flipping energy barrier of Ueff = 7.2 K. This value is far below the classical activation energy barrier of U = 14 K, whereas it is close to the energy gap between the Sz = ±4 and Sz = ±3 doublets, which indicates that quantum tunneling between the Sz = 3 and Sz = -3 states plays a key role in the magnetic relaxation. Therefore the relaxation process combines thermal activation and quantum tunneling. Also we deduce that the blocking temperature of Ni4 single-molecule magnets is lower than 0.3 K by extrapolating the relaxation time plot, which ensures that this single-molecule magnet material enters a long-range magnetic ordered state instead of a spin glass state at 0.91 K.

  8. Research Update: Molecular electronics: The single-molecule switch and transistor

    Directory of Open Access Journals (Sweden)

    Kai Sotthewes

    2014-01-01

    Full Text Available In order to design and realize single-molecule devices it is essential to have a good understanding of the properties of an individual molecule. For electronic applications, the most important property of a molecule is its conductance. Here we show how a single octanethiol molecule can be connected to macroscopic leads and how the transport properties of the molecule can be measured. Based on this knowledge we have realized two single-molecule devices: a molecular switch and a molecular transistor. The switch can be opened and closed at will by carefully adjusting the separation between the electrical contacts and the voltage drop across the contacts. This single-molecular switch operates in a broad temperature range from cryogenic temperatures all the way up to room temperature. Via mechanical gating, i.e., compressing or stretching of the octanethiol molecule, by varying the contact's interspace, we are able to systematically adjust the conductance of the electrode-octanethiol-electrode junction. This two-terminal single-molecule transistor is very robust, but the amplification factor is rather limited.

  9. Ensemble and single-molecule studies on fluorescence quenching in transition metal bipyridine-complexes.

    Directory of Open Access Journals (Sweden)

    Dominik Brox

    Full Text Available Beyond their use in analytical chemistry fluorescent probes continuously gain importance because of recent applications of single-molecule fluorescence spectroscopy to monitor elementary reaction steps. In this context, we characterized quenching of a fluorescent probe by different metal ions with fluorescence spectroscopy in the bulk and at the single-molecule level. We apply a quantitative model to explain deviations from existing standard models for fluorescence quenching. The model is based on a reversible transition from a bright to a dim state upon binding of the metal ion. We use the model to estimate the stability constants of complexes with different metal ions and the change of the relative quantum yield of different reporter dye labels. We found ensemble data to agree widely with results from single-molecule experiments. Our data indicates a mechanism involving close molecular contact of dye and quenching moiety which we also found in molecular dynamics simulations. We close the manuscript with a discussion of possible mechanisms based on Förster distances and electrochemical potentials which renders photo-induced electron transfer to be more likely than Förster resonance energy transfer.

  10. DNA origami-based shape IDs for single-molecule nanomechanical genotyping

    Science.gov (United States)

    Zhang, Honglu; Chao, Jie; Pan, Dun; Liu, Huajie; Qiang, Yu; Liu, Ke; Cui, Chengjun; Chen, Jianhua; Huang, Qing; Hu, Jun; Wang, Lianhui; Huang, Wei; Shi, Yongyong; Fan, Chunhai

    2017-04-01

    Variations on DNA sequences profoundly affect how we develop diseases and respond to pathogens and drugs. Atomic force microscopy (AFM) provides a nanomechanical imaging approach for genetic analysis with nanometre resolution. However, unlike fluorescence imaging that has wavelength-specific fluorophores, the lack of shape-specific labels largely hampers widespread applications of AFM imaging. Here we report the development of a set of differentially shaped, highly hybridizable self-assembled DNA origami nanostructures serving as shape IDs for magnified nanomechanical imaging of single-nucleotide polymorphisms. Using these origami shape IDs, we directly genotype single molecules of human genomic DNA with an ultrahigh resolution of ~10 nm and the multiplexing ability. Further, we determine three types of disease-associated, long-range haplotypes in samples from the Han Chinese population. Single-molecule analysis allows robust haplotyping even for samples with low labelling efficiency. We expect this generic shape ID-based nanomechanical approach to hold great potential in genetic analysis at the single-molecule level.

  11. Rectifications in organic single-molecule diodes alkanethiolate-terminated heterocyclics

    Energy Technology Data Exchange (ETDEWEB)

    An, Yipeng, E-mail: ypan@htu.edu.cn [College of Physics and Electronic Engineering, Henan Normal University, Xinxiang 453007 (China); Zhang, Mengjun; Wang, Tianxing; Wang, Guangtao [College of Physics and Electronic Engineering, Henan Normal University, Xinxiang 453007 (China); Fu, Zhaoming, E-mail: fuzhm1979@163.com [College of Physics and Electronic Engineering, Henan Normal University, Xinxiang 453007 (China); Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2016-02-22

    Based on the non-equilibrium Green's function formalism combined with the ab initio density functional theory, we investigate the rectifying behaviors of the organic single-molecule S(CH{sub 2}){sub 11}-terminated with a variety of heterocyclics (i.e., BIPY, PHE, PHEPY, and PYR) coupled with two semi-infinite Au electrodes. Our quantum transport calculation results show that the BIPY and PHE nanojunctions show the high-efficiency rectifying effects. While, differently, the current–voltage (I–V) curves of PHEPY and PYR nanojunctions display the insulating and linear characters, respectively. The corresponding electronic transport mechanisms are analyzed in detail. Our calculation results demonstrate that these investigated organic single-molecule nanojunctions have the potential applications in rectifiers and molecular wires. - Highlights: • The organic single-molecule diodes S(CH{sub 2}){sub 11}-terminated with bipyridyl and phenanthroline groups present rectifying effects. • The S(CH{sub 2}){sub 11}-terminated with phenylpyridyl exhibit the insulating character. • The I–V curve of S(CH{sub 2}){sub 11}-terminated with pyrazinyl group presents well linear character.

  12. Correlating anomalous diffusion with lipid bilayer membrane structure using single molecule tracking and atomic force microscopy

    Science.gov (United States)

    Skaug, Michael J.; Faller, Roland; Longo, Marjorie L.

    2011-06-01

    Anomalous diffusion has been observed abundantly in the plasma membrane of biological cells, but the underlying mechanisms are still unclear. In general, it has not been possible to directly image the obstacles to diffusion in membranes, which are thought to be skeleton bound proteins, protein aggregates, and lipid domains, so the dynamics of diffusing particles is used to deduce the obstacle characteristics. We present a supported lipid bilayer system in which we characterized the anomalous diffusion of lipid molecules using single molecule tracking, while at the same time imaging the obstacles to diffusion with atomic force microscopy. To explain our experimental results, we performed lattice Monte Carlo simulations of tracer diffusion in the presence of the experimentally determined obstacle configurations. We correlate the observed anomalous diffusion with obstacle area fraction, fractal dimension, and correlation length. To accurately measure an anomalous diffusion exponent, we derived an expression to account for the time-averaging inherent to all single molecule tracking experiments. We show that the length of the single molecule trajectories is critical to the determination of the anomalous diffusion exponent. We further discuss our results in the context of confinement models and the generating stochastic process.

  13. Dissociation rates from single-molecule pulling experiments under large thermal fluctuations or large applied force.

    Science.gov (United States)

    Abkenar, Masoud; Gray, Thomas H; Zaccone, Alessio

    2017-04-01

    Theories that are used to extract energy-landscape information from single-molecule pulling experiments in biophysics are all invariably based on Kramers' theory of the thermally activated escape rate from a potential well. As is well known, this theory recovers the Arrhenius dependence of the rate on the barrier energy and crucially relies on the assumption that the barrier energy is much larger than k_{B}T (limit of comparatively low thermal fluctuations). As was shown already in Dudko et al. [Phys. Rev. Lett. 96, 108101 (2006)PRLTAO0031-900710.1103/PhysRevLett.96.108101], this approach leads to the unphysical prediction of dissociation time increasing with decreasing binding energy when the latter is lowered to values comparable to k_{B}T (limit of large thermal fluctuations). We propose a theoretical framework (fully supported by numerical simulations) which amends Kramers' theory in this limit and use it to extract the dissociation rate from single-molecule experiments where now predictions are physically meaningful and in agreement with simulations over the whole range of applied forces (binding energies). These results are expected to be relevant for a large number of experimental settings in single-molecule biophysics.

  14. Synthesis and single-molecule imaging of highly mobile adamantane-wheeled nanocars.

    Science.gov (United States)

    Chu, Pin-Lei E; Wang, Lin-Yung; Khatua, Saumyakanti; Kolomeisky, Anatoly B; Link, Stephan; Tour, James M

    2013-01-22

    The synthesis and single-molecule imaging of two inherently fluorescent nanocars equipped with adamantane wheels is reported. The nanocars were imaged using 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) as the chromophore, which was rigidly incorporated into the nanocar chassis via Sonogashira cross-coupling chemistry that permitted the synthesis of nanocars having different geometries. In particular, studied here were four- and three-wheeled nanocars with adamantane wheels. It was found that, for the four-wheeled nanocar, the percentage of moving nanocars and the diffusion constant show a significant improvement over p-carborane-wheeled nanocars with the same chassis. The three-wheeled nanocar showed only limited mobility due to its geometry. These results are consistent with a requisite wheel-like rolling motion. We furthermore developed a model that relates the percentage of moving nanocars in single-molecule experiments with the diffusion constant. The excellent agreement between the model and the new results presented here as well as previous single-molecule studies of fluorescent nanocars yields an improved understanding of motion in these molecular machines.

  15. Wafer-scale metasurface for total power absorption, local field enhancement and single molecule Raman spectroscopy.

    Science.gov (United States)

    Wang, Dongxing; Zhu, Wenqi; Best, Michael D; Camden, Jon P; Crozier, Kenneth B

    2013-10-04

    The ability to detect molecules at low concentrations is highly desired for applications that range from basic science to healthcare. Considerable interest also exists for ultrathin materials with high optical absorption, e.g. for microbolometers and thermal emitters. Metal nanostructures present opportunities to achieve both purposes. Metal nanoparticles can generate gigantic field enhancements, sufficient for the Raman spectroscopy of single molecules. Thin layers containing metal nanostructures ("metasurfaces") can achieve near-total power absorption at visible and near-infrared wavelengths. Thus far, however, both aims (i.e. single molecule Raman and total power absorption) have only been achieved using metal nanostructures produced by techniques (high resolution lithography or colloidal synthesis) that are complex and/or difficult to implement over large areas. Here, we demonstrate a metasurface that achieves the near-perfect absorption of visible-wavelength light and enables the Raman spectroscopy of single molecules. Our metasurface is fabricated using thin film depositions, and is of unprecedented (wafer-scale) extent.

  16. Single-molecule chemical reaction reveals molecular reaction kinetics and dynamics.

    Science.gov (United States)

    Zhang, Yuwei; Song, Ping; Fu, Qiang; Ruan, Mingbo; Xu, Weilin

    2014-06-25

    Understanding the microscopic elementary process of chemical reactions, especially in condensed phase, is highly desirable for improvement of efficiencies in industrial chemical processes. Here we show an approach to gaining new insights into elementary reactions in condensed phase by combining quantum chemical calculations with a single-molecule analysis. Elementary chemical reactions in liquid-phase, revealed from quantum chemical calculations, are studied by tracking the fluorescence of single dye molecules undergoing a reversible redox process. Statistical analyses of single-molecule trajectories reveal molecular reaction kinetics and dynamics of elementary reactions. The reactivity dynamic fluctuations of single molecules are evidenced and probably arise from either or both of the low-frequency approach of the molecule to the internal surface of the SiO2 nanosphere or the molecule diffusion-induced memory effect. This new approach could be applied to other chemical reactions in liquid phase to gain more insight into their molecular reaction kinetics and the dynamics of elementary steps.

  17. Multiplex single-molecule interaction profiling of DNA-barcoded proteins.

    Science.gov (United States)

    Gu, Liangcai; Li, Chao; Aach, John; Hill, David E; Vidal, Marc; Church, George M

    2014-11-27

    In contrast with advances in massively parallel DNA sequencing, high-throughput protein analyses are often limited by ensemble measurements, individual analyte purification and hence compromised quality and cost-effectiveness. Single-molecule protein detection using optical methods is limited by the number of spectrally non-overlapping chromophores. Here we introduce a single-molecular-interaction sequencing (SMI-seq) technology for parallel protein interaction profiling leveraging single-molecule advantages. DNA barcodes are attached to proteins collectively via ribosome display or individually via enzymatic conjugation. Barcoded proteins are assayed en masse in aqueous solution and subsequently immobilized in a polyacrylamide thin film to construct a random single-molecule array, where barcoding DNAs are amplified into in situ polymerase colonies (polonies) and analysed by DNA sequencing. This method allows precise quantification of various proteins with a theoretical maximum array density of over one million polonies per square millimetre. Furthermore, protein interactions can be measured on the basis of the statistics of colocalized polonies arising from barcoding DNAs of interacting proteins. Two demanding applications, G-protein coupled receptor and antibody-binding profiling, are demonstrated. SMI-seq enables 'library versus library' screening in a one-pot assay, simultaneously interrogating molecular binding affinity and specificity.

  18. Nonlinear reconstruction of single-molecule free-energy surfaces from univariate time series.

    Science.gov (United States)

    Wang, Jiang; Ferguson, Andrew L

    2016-03-01

    The stable conformations and dynamical fluctuations of polymers and macromolecules are governed by the underlying single-molecule free energy surface. By integrating ideas from dynamical systems theory with nonlinear manifold learning, we have recovered single-molecule free energy surfaces from univariate time series in a single coarse-grained system observable. Using Takens' Delay Embedding Theorem, we expand the univariate time series into a high dimensional space in which the dynamics are equivalent to those of the molecular motions in real space. We then apply the diffusion map nonlinear manifold learning algorithm to extract a low-dimensional representation of the free energy surface that is diffeomorphic to that computed from a complete knowledge of all system degrees of freedom. We validate our approach in molecular dynamics simulations of a C(24)H(50) n-alkane chain to demonstrate that the two-dimensional free energy surface extracted from the atomistic simulation trajectory is - subject to spatial and temporal symmetries - geometrically and topologically equivalent to that recovered from a knowledge of only the head-to-tail distance of the chain. Our approach lays the foundations to extract empirical single-molecule free energy surfaces directly from experimental measurements.

  19. Amplification of single molecule translocation signal using β-strand peptide functionalized nanopores.

    Science.gov (United States)

    Liebes-Peer, Yael; Rapaport, Hanna; Ashkenasy, Nurit

    2014-07-22

    Changes in ionic current flowing through nanopores due to binding or translocation of single biopolymer molecules enable their detection and characterization. It is, however, much more challenging to detect small molecules due to their rapid and small signal signature. Here we demonstrate the use of de novo designed peptides for functionalization of nanopores that enable the detection of a small analytes at the single molecule level. The detection relies on cooperative peptide conformational change that is induced by the binding of the small molecule to a receptor domain on the peptide. This change results in alteration of the nanopore effective diameter and hence induces current perturbation signal. On the basis of this approach, we demonstrate here the detection of diethyl 4-nitrophenyl phosphate (paraoxon), a poisonous organophosphate molecule. Paraoxon binding is induced by the incorporation of the catalytic triad of acetylcholine esterase in the hydrophilic domain of a short amphiphilic peptide and promotes β-sheet assembly of the peptide both in solution and for peptide molecules immobilized on solid surfaces. Nanopores coated with this peptide allowed the detection of paraoxon at the single molecule level revealing two binding arrangements. This unique approach, hence, provides the ability to study interactions of small molecules with the corresponding engineered receptors at the single molecule level. Furthermore, the suggested versatile platform may be used for the development of highly sensitive small analytes sensors.

  20. Irving Langmuir Prize Talk: Single-Molecule Fluorescence Imaging: Nanoscale Emitters with Photoinduced Switching Enable Superresolution.

    Science.gov (United States)

    Moerner, W. E.

    2009-03-01

    In the two decades since the first optical detection and spectroscopy of a single molecule in a solid (Phys. Rev. Lett. 62, 2535 (1989)), much has been learned about the ability of single molecules to probe local nanoenvironments and individual behavior in biological and nonbiological materials in the absence of ensemble averaging that can obscure heterogeneity. The early years concentrated on high-resolution spectroscopy in solids, which provided observations of lifetime-limited spectra, optical saturation, spectral diffusion, optical switching, vibrational spectra, and magnetic resonance of a single molecular spin. In the mid-1990's, much of the field moved to room temperature, where a wide variety of biophysical effects were subsequently explored, but it is worth noting that several features from the low-temperature studies have analogs at high temperature. For example, in our first studies of yellow-emitting variants of green fluorescent protein (EYFP) in the water-filled pores of a gel (Nature 388, 355 (1997)), optically induced switching of the emission was observed, a room-temperature analog of the earlier low-temperature behavior. Because each single fluorophore acts a light source roughly 1 nm in size, microscopic imaging of individual fluorophores leads naturally to superlocalization, or determination of the position of the molecule with precision beyond the optical diffraction limit, simply by digitization of the point-spread function from the single emitter. Recent work has allowed measurement of the shape of single filaments in a living cell simply by allowing a single molecule to move through the filament (PNAS 103, 10929 (2006)). The additional use of photoinduced control of single-molecule emission allows imaging beyond the diffraction limit (superresolution) by several novel approaches proposed by different researchers. For example, using photoswitchable EYFP, a novel protein superstructure can now be directly imaged in a living bacterial cell at

  1. Rational design of DNA-actuated enzyme nanoreactors guided by single molecule analysis

    Science.gov (United States)

    Dhakal, Soma; Adendorff, Matthew R.; Liu, Minghui; Yan, Hao; Bathe, Mark; Walter, Nils G.

    2016-01-01

    The control of enzymatic reactions using nanoscale DNA devices offers a powerful application of DNA nanotechnology uniquely derived from actuation. However, previous characterization of enzymatic reaction rates using bulk biochemical assays reported suboptimal function of DNA devices such as tweezers. To gain mechanistic insight into this deficiency and to identify design rules to improve their function, here we exploit the synergy of single molecule imaging and computational modeling to characterize the three-dimensional structures and catalytic functions of DNA tweezer-actuated nanoreactors. Our analysis revealed two important deficiencies - incomplete closure upon actuation and conformational heterogeneity. Upon rational redesign of the Holliday junctions located at their hinge and arms, we found that the DNA tweezers could be more completely and uniformly closed. A novel single molecule enzyme assay was developed to demonstrate that our design improvements yield significant, independent enhancements in the fraction of active enzyme nanoreactors and their individual substrate turnover frequencies. The sequence-level design strategies explored here may aid more broadly in improving the performance of DNA-based nanodevices including biological and chemical sensors.The control of enzymatic reactions using nanoscale DNA devices offers a powerful application of DNA nanotechnology uniquely derived from actuation. However, previous characterization of enzymatic reaction rates using bulk biochemical assays reported suboptimal function of DNA devices such as tweezers. To gain mechanistic insight into this deficiency and to identify design rules to improve their function, here we exploit the synergy of single molecule imaging and computational modeling to characterize the three-dimensional structures and catalytic functions of DNA tweezer-actuated nanoreactors. Our analysis revealed two important deficiencies - incomplete closure upon actuation and conformational

  2. Volume Entropy

    CERN Document Server

    Astuti, Valerio; Rovelli, Carlo

    2016-01-01

    Building on a technical result by Brunnemann and Rideout on the spectrum of the Volume operator in Loop Quantum Gravity, we show that the dimension of the space of the quadrivalent states --with finite-volume individual nodes-- describing a region with total volume smaller than $V$, has \\emph{finite} dimension, bounded by $V \\log V$. This allows us to introduce the notion of "volume entropy": the von Neumann entropy associated to the measurement of volume.

  3. Kinetic modeling of molecular motors: pause model and parameter determination from single-molecule experiments

    Science.gov (United States)

    Morin, José A.; Ibarra, Borja; Cao, Francisco J.

    2016-05-01

    Single-molecule manipulation experiments of molecular motors provide essential information about the rate and conformational changes of the steps of the reaction located along the manipulation coordinate. This information is not always sufficient to define a particular kinetic cycle. Recent single-molecule experiments with optical tweezers showed that the DNA unwinding activity of a Phi29 DNA polymerase mutant presents a complex pause behavior, which includes short and long pauses. Here we show that different kinetic models, considering different connections between the active and the pause states, can explain the experimental pause behavior. Both the two independent pause model and the two connected pause model are able to describe the pause behavior of a mutated Phi29 DNA polymerase observed in an optical tweezers single-molecule experiment. For the two independent pause model all parameters are fixed by the observed data, while for the more general two connected pause model there is a range of values of the parameters compatible with the observed data (which can be expressed in terms of two of the rates and their force dependencies). This general model includes models with indirect entry and exit to the long-pause state, and also models with cycling in both directions. Additionally, assuming that detailed balance is verified, which forbids cycling, this reduces the ranges of the values of the parameters (which can then be expressed in terms of one rate and its force dependency). The resulting model interpolates between the independent pause model and the indirect entry and exit to the long-pause state model

  4. Fluorescence spectroscopy of single molecules at room temperature and its applications

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Taekjip [Univ. of California, Berkeley, CA (United States)

    1996-12-01

    We performed fluorescence spectroscopy of single and pairs of dye molecules on a surface at room temperature. Near field scanning optical microscope (NSOM) and far field scanning optical microscope with multi-color excitation/detection capability were built. The instrument is capable of optical imaging with 100nm resolution and has the sensitivity necessary for single molecule detection. A variety of dynamic events which cannot be observed from an ensemble of molecules is revealed when the molecules are probed one at a time. They include (1) spectral jumps correlated with dark states, (2) individually resolved quantum jumps to and from the meta-stable triplet state, (3) rotational jumps due to desorption/readsorption events of single molecules on the surface. For these studies, a computer controlled optical system which automatically and rapidly locates and performs spectroscopic measurements on single molecules was developed. We also studied the interaction between closely spaced pairs of molecules. In particular, fluorescence resonance energy transfer between a single resonant pair of donor and acceptor molecules was measured. Photodestruction dynamics of the donor or acceptor were used to determine the presence and efficiency of energy transfer Dual molecule spectroscopy was extended to a non-resonant pair of molecules to obtain high resolution differential distance information. By combining NSOM and dual color scheme, we studied the co-localization of parasite proteins and host proteins on a human red blood cell membrane infected with malaria. These dual-molecule techniques can be used to measure distances, relative orientations, and changes in distances/orientations of biological macromolecules with very good spatial, angular and temporal resolutions, hence opening new capabilities in the study of such systems.

  5. Electron transfer behaviour of biological macromolecules towards the single-molecule level

    Science.gov (United States)

    Zhang, Jingdong; Grubb, Mikala; Hansen, Allan G.; Kuznetsov, Alexander M.; Boisen, Anja; Wackerbarth, Hainer; Ulstrup, Jens

    2003-05-01

    Redox metalloproteins immobilized on metallic surfaces in contact with aqueous biological media are important in many areas of pure and applied sciences. Redox metalloprotein films are currently being addressed by new approaches where biotechnology including modified and synthetic proteins is combined with state-of-the-art physical electrochemistry with emphasis on single-crystal, atomically planar electrode surfaces, in situ scanning tunnelling microscopy (STM) and other surface techniques. These approaches have brought bioelectrochemistry important steps forward towards the nanoscale and single-molecule levels. We discuss here these advances with reference to two specific redox metalloproteins, the blue single-copper protein Pseudomonas aeruginosa azurin and the single-haem protein Saccharomyces cerevisiae yeast cytochrome c, and a short oligonucleotide. Both proteins can be immobilized on Au(111) by chemisorption via exposed sulfur-containing residues. Voltammetric, interfacial capacitance, x-ray photoelectron spectroscopy and microcantilever sensor data, together with in situ STM with single-molecule resolution, all point to a coherent view of monolayer organization with protein electron transfer (ET) function retained. In situ STM can also address the microscopic mechanisms for electron tunnelling through the biomolecules and offers novel notions such as coherent multi-ET between the substrate and tip via the molecular redox levels. This differs in important respects from electrochemical ET at a single metal/electrolyte interface. Similar data for a short oligonucleotide immobilized on Au(111) show that oligonucleotides can be characterized with comparable detail, with novel perspectives for addressing DNA electronic conduction mechanisms and for biological screening towards the single-molecule level.

  6. Single-molecule chemistry of metal phthalocyanine on noble metal surfaces.

    Science.gov (United States)

    Li, Zhenyu; Li, Bin; Yang, Jinlong; Hou, Jian Guo

    2010-07-20

    To develop new functional materials and nanoscale electronics, researchers would like to accurately describe and precisely control the quantum state of a single molecule on a surface. Scanning tunneling microscopy (STM), combined with first-principles simulations, provides a powerful technique for acquiring this level of understanding. Traditionally, metal phthalocyanine (MPc) molecules, composed of a metal atom surrounded by a ligand ring, have been used as dyes and pigments. Recently, MPc molecules have shown great promise as components of light-emitting diodes, field-effect transistors, photovoltaic cells, and single-molecule devices. In this Account, we describe recent research on the characterization and control of adsorption and electronic states of a single MPc molecule on noble metal surfaces. In general, the electronic and magnetic properties of a MPc molecule largely depend on the type of metal ion within the phthalocyanine ligand and the type of surface on which the molecule is adsorbed. However, with the STM technique, we can use on-site molecular "surgery" to manipulate the structure and the properties of the molecule. For example, STM can induce a dehydrogenation reaction of the MPc, which allows us to control the Kondo effect, which describes the spin polarization of the molecule and its interaction with the complex environment. A specially designed STM tip can allow researchers to detect certain molecule-surface hybrid states that are not accessible by other techniques. By matching the local orbital symmetry of the STM tip and the molecule, we can generate the negative differential resistance effect in the formed molecular junction. This orbital symmetry based mechanism is extremely robust and does not critically depend on the geometry of the STM tip. In summary, this simple model system, a MPc molecule absorbed on a noble metal surface, demonstrates the power of STM for quantum characterization and manipulation of single molecules, highlighting the

  7. Examining Sources of Error in PCR by Single-Molecule Sequencing

    Science.gov (United States)

    Potapov, Vladimir

    2017-01-01

    Next-generation sequencing technology has enabled the detection of rare genetic or somatic mutations and contributed to our understanding of disease progression and evolution. However, many next-generation sequencing technologies first rely on DNA amplification, via the Polymerase Chain Reaction (PCR), as part of sample preparation workflows. Mistakes made during PCR appear in sequencing data and contribute to false mutations that can ultimately confound genetic analysis. In this report, a single-molecule sequencing assay was used to comprehensively catalog the different types of errors introduced during PCR, including polymerase misincorporation, structure-induced template-switching, PCR-mediated recombination and DNA damage. In addition to well-characterized polymerase base substitution errors, other sources of error were found to be equally prevalent. PCR-mediated recombination by Taq polymerase was observed at the single-molecule level, and surprisingly found to occur as frequently as polymerase base substitution errors, suggesting it may be an underappreciated source of error for multiplex amplification reactions. Inverted repeat structural elements in lacZ caused polymerase template-switching between the top and bottom strands during replication and the frequency of these events were measured for different polymerases. For very accurate polymerases, DNA damage introduced during temperature cycling, and not polymerase base substitution errors, appeared to be the major contributor toward mutations occurring in amplification products. In total, we analyzed PCR products at the single-molecule level and present here a more complete picture of the types of mistakes that occur during DNA amplification. PMID:28060945

  8. Plasmonic nano-protrusions: hierarchical nanostructures for single-molecule Raman spectroscopy

    Science.gov (United States)

    Basuray, Sagnik; Pathak, Avinash; Bok, Sangho; Chen, Biyan; Hamm, Steven C.; Mathai, Cherian J.; Guha, Suchismita; Gangopadhyay, Keshab; Gangopadhyay, Shubhra

    2017-01-01

    Classical methods for enhancing the electromagnetic field from substrates for spectroscopic applications, such as surface-enhanced Raman spectroscopy (SERS), have involved the generation of hotspots through directed self-assembly of nanoparticles or by patterning nanoscale features using expensive nanolithography techniques. A novel large-area, cost-effective soft lithographic technique involving glancing angle deposition (GLAD) of silver on polymer gratings is reported here. This method produces hierarchical nanostructures with high enhancement factors capable of analyzing single-molecule SERS. The uniform ordered and patterned nanostructures provide extraordinary field enhancements that serve as excitatory hotspots and are herein interrogated by SERS. The high spatial homogeneity of the Raman signal and signal enhancement over a large area from a self-assembled monolayer (SAM) of 2-naphthalenethiol demonstrated the uniformity of the hotspots. The enhancement was shown to have a critical dependence on the underlying nanostructure via the surface energy landscape and GLAD angles for a fixed deposition thickness, as evidenced by atomic force microscopy and scanning electron microscopy surface analysis of the substrate. The nanostructured surface leads to an extremely concentrated electromagnetic field at sharp nanoscale peaks, here referred to as ‘nano-protrusions’, due to the coupling of surface plasmon resonance (SPR) with localized SPR. These nano-protrusions act as hotspots which provide Raman enhancement factors as high as 108 over a comparable SAM on silver. Comparison of our substrate with the commercial substrate Klarite™ shows higher signal enhancement and minimal signal variation with hotspot spatial distribution. By using the proper plasmon resonance angle corresponding to the laser source wavelength, further enhancement in signal intensity can be achieved. Single-molecule Raman spectra for rhodamine 6G are obtained from the best SERS substrate (a

  9. Single molecule studies of solvent-dependent diffusion and entrapment in poly(dimethylsiloxane) thin films.

    Science.gov (United States)

    Lange, Jeffrey J; Culbertson, Christopher T; Higgins, Daniel A

    2008-12-15

    Single molecule microscopic and spectroscopic methods are employed to probe the mobility and physical entrapment of dye molecules in dry and solvent-loaded poly(dimethylsiloxane) (PDMS) films. PDMS films of approximately 220 nm thickness are prepared by spin casting dilute solutions of Sylgard 184 onto glass coverslips, followed by low temperature curing. A perylene diimide dye (BPPDI) is used to probe diffusion and molecule-matrix interactions. Two classes of dye-loaded samples are investigated: (i) those incorporating dye dispersed throughout the films ("in film" samples) and (ii) those in which the dye is restricted primarily to the PDMS surface ("on film" samples). Experiments are performed under dry nitrogen and at various levels of isopropyl alcohol (IPA) loading from the vapor phase. A PDMS-coated quartz-crystal microbalance is employed to monitor solvent loading and drying of the PDMS and to ensure equilibrium conditions are achieved. Single molecules are shown to be predominantly immobile under dry conditions and mostly mobile under IPA-saturated conditions. Quantitative methods for counting the fluorescent spots produced by immobile single molecules in optical images of the samples demonstrate that the population of mobile molecules increases nonlinearly with IPA loading. Even under IPA saturated conditions, the population of fixed molecules is found to be greater than zero and is greatest for "in film" samples. Fluorescence correlation spectroscopy is used to measure the apparent diffusion coefficient for the mobile molecules, yielding a mean value of D = 1.4(+/-0.4) x 10(-8) cm(2)/s that is virtually independent of IPA loading and sample class. It is concluded that a nonzero population of dye molecules is physically entrapped within the PDMS matrix under all conditions. The increase in the population of mobile molecules under high IPA conditions is attributed to the filling of film micropores with solvent, rather than by incorporation of molecularly

  10. BOBA FRET: bootstrap-based analysis of single-molecule FRET data.

    Directory of Open Access Journals (Sweden)

    Sebastian L B König

    Full Text Available Time-binned single-molecule Förster resonance energy transfer (smFRET experiments with surface-tethered nucleic acids or proteins permit to follow folding and catalysis of single molecules in real-time. Due to the intrinsically low signal-to-noise ratio (SNR in smFRET time traces, research over the past years has focused on the development of new methods to extract discrete states (conformations from noisy data. However, limited observation time typically leads to pronounced cross-sample variability, i.e., single molecules display differences in the relative population of states and the corresponding conversion rates. Quantification of cross-sample variability is necessary to perform statistical testing in order to assess whether changes observed in response to an experimental parameter (metal ion concentration, the presence of a ligand, etc. are significant. However, such hypothesis testing has been disregarded to date, precluding robust biological interpretation. Here, we address this problem by a bootstrap-based approach to estimate the experimental variability. Simulated time traces are presented to assess the robustness of the algorithm in conjunction with approaches commonly used in thermodynamic and kinetic analysis of time-binned smFRET data. Furthermore, a pair of functionally important sequences derived from the self-cleaving group II intron Sc.ai5γ (d3'EBS1/IBS1 is used as a model system. Through statistical hypothesis testing, divalent metal ions are shown to have a statistically significant effect on both thermodynamic and kinetic aspects of their interaction. The Matlab source code used for analysis (bootstrap-based analysis of smFRET data, BOBA FRET, as well as a graphical user interface, is available via http://www.aci.uzh.ch/rna/.

  11. Conformational equilibria in monomeric alpha-synuclein at the single-molecule level.

    Directory of Open Access Journals (Sweden)

    Massimo Sandal

    2008-01-01

    Full Text Available Human alpha-Synuclein (alphaSyn is a natively unfolded protein whose aggregation into amyloid fibrils is involved in the pathology of Parkinson disease. A full comprehension of the structure and dynamics of early intermediates leading to the aggregated states is an unsolved problem of essential importance to researchers attempting to decipher the molecular mechanisms of alphaSyn aggregation and formation of fibrils. Traditional bulk techniques used so far to solve this problem point to a direct correlation between alphaSyn's unique conformational properties and its propensity to aggregate, but these techniques can only provide ensemble-averaged information for monomers and oligomers alike. They therefore cannot characterize the full complexity of the conformational equilibria that trigger the aggregation process. We applied atomic force microscopy-based single-molecule mechanical unfolding methodology to study the conformational equilibrium of human wild-type and mutant alphaSyn. The conformational heterogeneity of monomeric alphaSyn was characterized at the single-molecule level. Three main classes of conformations, including disordered and "beta-like" structures, were directly observed and quantified without any interference from oligomeric soluble forms. The relative abundance of the "beta-like" structures significantly increased in different conditions promoting the aggregation of alphaSyn: the presence of Cu2+, the pathogenic A30P mutation, and high ionic strength. This methodology can explore the full conformational space of a protein at the single-molecule level, detecting even poorly populated conformers and measuring their distribution in a variety of biologically important conditions. To the best of our knowledge, we present for the first time evidence of a conformational equilibrium that controls the population of a specific class of monomeric alphaSyn conformers, positively correlated with conditions known to promote the formation of

  12. Electron transfer behaviour of biological macromolecules towards the single-molecule level

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Jingdong [Department of Chemistry, Building 207, Technical University of Denmark, DK-2800 Lyngby (Denmark); Grubb, Mikala [Department of Chemistry, Building 207, Technical University of Denmark, DK-2800 Lyngby (Denmark); Hansen, Allan G [Department of Chemistry, Building 207, Technical University of Denmark, DK-2800 Lyngby (Denmark); Kuznetsov, Alexander M [A N Frumkin Institute of Electrochemistry of the Russian Academy of Sciences, Leninskij Prospect 31, 117071 Moscow (Russian Federation); Boisen, Anja [Microelectronics Centre, Building 345, Technical University of Denmark, DK-2800 Lyngby (Denmark); Wackerbarth, Hainer [Department of Chemistry, Building 207, Technical University of Denmark, DK-2800 Lyngby (Denmark); Ulstrup, Jens [Department of Chemistry, Building 207, Technical University of Denmark, DK-2800 Lyngby (Denmark)

    2003-05-14

    Redox metalloproteins immobilized on metallic surfaces in contact with aqueous biological media are important in many areas of pure and applied sciences. Redox metalloprotein films are currently being addressed by new approaches where biotechnology including modified and synthetic proteins is combined with state-of-the-art physical electrochemistry with emphasis on single-crystal, atomically planar electrode surfaces, in situ scanning tunnelling microscopy (STM) and other surface techniques. These approaches have brought bioelectrochemistry important steps forward towards the nanoscale and single-molecule levels. We discuss here these advances with reference to two specific redox metalloproteins, the blue single-copper protein Pseudomonas aeruginosa azurin and the single-haem protein Saccharomyces cerevisiae yeast cytochrome c, and a short oligonucleotide. Both proteins can be immobilized on Au(111) by chemisorption via exposed sulfur-containing residues. Voltammetric, interfacial capacitance, x-ray photoelectron spectroscopy and microcantilever sensor data, together with in situ STM with single-molecule resolution, all point to a coherent view of monolayer organization with protein electron transfer (ET) function retained. In situ STM can also address the microscopic mechanisms for electron tunnelling through the biomolecules and offers novel notions such as coherent multi-ET between the substrate and tip via the molecular redox levels. This differs in important respects from electrochemical ET at a single metal/electrolyte interface. Similar data for a short oligonucleotide immobilized on Au(111) show that oligonucleotides can be characterized with comparable detail, with novel perspectives for addressing DNA electronic conduction mechanisms and for biological screening towards the single-molecule level.

  13. Single-molecule TPM studies on the conversion of human telomeric DNA.

    Science.gov (United States)

    Chu, Jen-Fei; Chang, Ta-Chau; Li, Hung-Wen

    2010-04-21

    Human telomere contains guanine-rich (G-rich) tandem repeats of single-stranded DNA sequences at its 3' tail. The G-rich sequences can be folded into various secondary structures, termed G-quadruplexes (G4s), by Hoogsteen basepairing in the presence of monovalent cations (such as Na+ and K+). We developed a single-molecule tethered particle motion (TPM) method to investigate the unfolding process of G4s in the human telomeric sequence AGGG(TTAGGG)3 in real time. The TPM method monitors the DNA tether length change caused by formation of the G4, thus allowing the unfolding process and structural conversion to be monitored at the single-molecule level. In the presence of its antisense sequence, the folded G4 structure can be disrupted and converted to the unfolded conformation, with apparent unfolding time constants of 82 s and 3152 s. We also observed that the stability of the G4 is greatly affected by different monovalent cations. The folding equilibrium constant of G4 is strongly dependent on the salt concentration, ranging from 1.75 at 5 mM Na+ to 3.40 at 15 mM Na+. Earlier spectral studies of Na+- and K+-folded states suggested that the spectral conversion between these two different folded structures may go through a structurally unfolded intermediate state. However, our single-molecule TPM experiments did not detect any totally unfolded intermediate within our experimental resolution when sodium-folded G4 DNA molecules were titrated with high-concentration, excess potassium ions. This observation suggests that a totally unfolding pathway is likely not the major pathway for spectral conversion on the timescale of minutes, and that interconversion among folded states can be achieved by the loop rearrangement. This study also demonstrates that TPM experiments can be used to study conformational changes in single-stranded DNA molecules.

  14. Hydrophobic fluorescent probes introduce artifacts into single molecule tracking experiments due to non-specific binding.

    Science.gov (United States)

    Zanetti-Domingues, Laura C; Tynan, Christopher J; Rolfe, Daniel J; Clarke, David T; Martin-Fernandez, Marisa

    2013-01-01

    Single-molecule techniques are powerful tools to investigate the structure and dynamics of macromolecular complexes; however, data quality can suffer because of weak specific signal, background noise and dye bleaching and blinking. It is less well-known, but equally important, that non-specific binding of probe to substrates results in a large number of immobile fluorescent molecules, introducing significant artifacts in live cell experiments. Following from our previous work in which we investigated glass coating substrates and demonstrated that the main contribution to this non-specific probe adhesion comes from the dye, we carried out a systematic investigation of how different dye chemistries influence the behaviour of spectrally similar fluorescent probes. Single-molecule brightness, bleaching and probe mobility on the surface of live breast cancer cells cultured on a non-adhesive substrate were assessed for anti-EGFR affibody conjugates with 14 different dyes from 5 different manufacturers, belonging to 3 spectrally homogeneous bands (491 nm, 561 nm and 638 nm laser lines excitation). Our results indicate that, as well as influencing their photophysical properties, dye chemistry has a strong influence on the propensity of dye-protein conjugates to adhere non-specifically to the substrate. In particular, hydrophobicity has a strong influence on interactions with the substrate, with hydrophobic dyes showing much greater levels of binding. Crucially, high levels of non-specific substrate binding result in calculated diffusion coefficients significantly lower than the true values. We conclude that the physic-chemical properties of the dyes should be considered carefully when planning single-molecule experiments. Favourable dye characteristics such as photostability and brightness can be offset by the propensity of a conjugate for non-specific adhesion.

  15. Hydrophobic fluorescent probes introduce artifacts into single molecule tracking experiments due to non-specific binding.

    Directory of Open Access Journals (Sweden)

    Laura C Zanetti-Domingues

    Full Text Available Single-molecule techniques are powerful tools to investigate the structure and dynamics of macromolecular complexes; however, data quality can suffer because of weak specific signal, background noise and dye bleaching and blinking. It is less well-known, but equally important, that non-specific binding of probe to substrates results in a large number of immobile fluorescent molecules, introducing significant artifacts in live cell experiments. Following from our previous work in which we investigated glass coating substrates and demonstrated that the main contribution to this non-specific probe adhesion comes from the dye, we carried out a systematic investigation of how different dye chemistries influence the behaviour of spectrally similar fluorescent probes. Single-molecule brightness, bleaching and probe mobility on the surface of live breast cancer cells cultured on a non-adhesive substrate were assessed for anti-EGFR affibody conjugates with 14 different dyes from 5 different manufacturers, belonging to 3 spectrally homogeneous bands (491 nm, 561 nm and 638 nm laser lines excitation. Our results indicate that, as well as influencing their photophysical properties, dye chemistry has a strong influence on the propensity of dye-protein conjugates to adhere non-specifically to the substrate. In particular, hydrophobicity has a strong influence on interactions with the substrate, with hydrophobic dyes showing much greater levels of binding. Crucially, high levels of non-specific substrate binding result in calculated diffusion coefficients significantly lower than the true values. We conclude that the physic-chemical properties of the dyes should be considered carefully when planning single-molecule experiments. Favourable dye characteristics such as photostability and brightness can be offset by the propensity of a conjugate for non-specific adhesion.

  16. Single-molecule force spectroscopy reveals the individual mechanical unfolding pathways of a surface layer protein.

    Science.gov (United States)

    Horejs, Christine; Ristl, Robin; Tscheliessnig, Rupert; Sleytr, Uwe B; Pum, Dietmar

    2011-08-05

    Surface layers (S-layers) represent an almost universal feature of archaeal cell envelopes and are probably the most abundant bacterial cell proteins. S-layers are monomolecular crystalline structures of single protein or glycoprotein monomers that completely cover the cell surface during all stages of the cell growth cycle, thereby performing their intrinsic function under a constant intra- and intermolecular mechanical stress. In gram-positive bacteria, the individual S-layer proteins are anchored by a specific binding mechanism to polysaccharides (secondary cell wall polymers) that are linked to the underlying peptidoglycan layer. In this work, atomic force microscopy-based single-molecule force spectroscopy and a polyprotein approach are used to study the individual mechanical unfolding pathways of an S-layer protein. We uncover complex unfolding pathways involving the consecutive unfolding of structural intermediates, where a mechanical stability of 87 pN is revealed. Different initial extensibilities allow the hypothesis that S-layer proteins adapt highly stable, mechanically resilient conformations that are not extensible under the presence of a pulling force. Interestingly, a change of the unfolding pathway is observed when individual S-layer proteins interact with secondary cell wall polymers, which is a direct signature of a conformational change induced by the ligand. Moreover, the mechanical stability increases up to 110 pN. This work demonstrates that single-molecule force spectroscopy offers a powerful tool to detect subtle changes in the structure of an individual protein upon binding of a ligand and constitutes the first conformational study of surface layer proteins at the single-molecule level.

  17. Single molecule optical measurements of orientation and rotations of biological macromolecules

    Science.gov (United States)

    Shroder, Deborah Y.; Lippert, Lisa G.; Goldman, Yale E.

    2016-12-01

    Subdomains of macromolecules often undergo large orientation changes during their catalytic cycles that are essential for their activity. Tracking these rearrangements in real time opens a powerful window into the link between protein structure and functional output. Site-specific labeling of individual molecules with polarized optical probes and measurement of their spatial orientation can give insight into the crucial conformational changes, dynamics, and fluctuations of macromolecules. Here we describe the range of single molecule optical technologies that can extract orientation information from these probes, review the relevant types of probes and labeling techniques, and highlight the advantages and disadvantages of these technologies for addressing specific inquiries.

  18. Electron transfer behaviour of biological macromolecules towards the single-molecule level

    DEFF Research Database (Denmark)

    Zhang, Jingdong; Grubb, Mikala; Hansen, Allan Glargaard

    2003-01-01

    Redox metalloproteins immobilized on metallic surfaces in contact with aqueous biological media are important in many areas of pure and applied sciences. Redox metalloprotein films are currently being addressed by new approaches where biotechnology including modified and synthetic proteins...... and single-molecule levels.We discuss here these advances with reference to two specific redox metalloproteins, the blue single-copper protein Pseudomonas aeruginosa azurin and the single-haem protein Saccharomyces cerevisiae yeast cytochrome c, and a short oligonucleotide. Both proteins can be immobilized...

  19. Nonlinear thermoelectric transport in single-molecule junctions: the effect of electron-phonon interactions

    Science.gov (United States)

    Zimbovskaya, Natalya A.

    2016-07-01

    In this paper, we theoretically analyze steady-state thermoelectric transport through a single-molecule junction with a vibrating bridge. The thermally induced charge current in the system is explored using a nonequilibrium Green function formalism. We study the combined effects of Coulomb interactions between charge carriers on the bridge and electron-phonon interactions on the thermocurrent beyond the linear response regime. It is shown that electron-vibron interactions may significantly affect both the magnitude and the direction of the thermocurrent, and vibrational signatures may appear.

  20. Theory of single-molecule experiments in the overstretching force regime

    CERN Document Server

    Manca, Fabio; Palla, Pier Luca; Cleri, Fabrizio; Colombo, Luciano

    2012-01-01

    We present a statistical mechanics analysis of the finite-size elasticity of biopolymers, consisting of domains which can exhibit transitions between more than one stable state at large applied force. The constant-force (Gibbs) and constant-displacement (Helmholtz) formulations of single molecule stretching experiments are shown to converge in the thermodynamic limit. Monte Carlo simulations of continuous three dimensional polymers of variable length are carried out, based on this formulation. We demonstrate that the experimental force-extension curves for short and long chain polymers are described by a unique universal model, despite the differences in chemistry and rate-dependence of transition forces.

  1. Ultrahigh-throughput single-molecule spectroscopy and spectrally resolved super-resolution microscopy.

    Science.gov (United States)

    Zhang, Zhengyang; Kenny, Samuel J; Hauser, Margaret; Li, Wan; Xu, Ke

    2015-10-01

    By developing a wide-field scheme for spectral measurement and implementing photoswitching, we synchronously obtained the fluorescence spectra and positions of ∼10(6) single molecules in labeled cells in minutes, which consequently enabled spectrally resolved, 'true-color' super-resolution microscopy. The method, called spectrally resolved stochastic optical reconstruction microscopy (SR-STORM), achieved cross-talk-free three-dimensional (3D) imaging for four dyes 10 nm apart in emission spectrum. Excellent resolution was obtained for every channel, and 3D localizations of all molecules were automatically aligned within one imaging path.

  2. Salen-based [Zn2Ln3] complexes with fluorescence and single-molecule-magnet properties.

    Science.gov (United States)

    Burrow, Carolyn E; Burchell, Tara J; Lin, Po-Heng; Habib, Fatemah; Wernsdorfer, Wolfgang; Clérac, Rodolphe; Murugesu, Muralee

    2009-09-07

    A family of four isostructural complexes with a V-shaped pentanuclear [Zn(2)Ln(3)] core of general formula [Zn(2)Ln(3)(m-salen)(3)(N(3))(5)(OH)(2)] [Ln(III) = Tb(III) (1), Eu(III) (2), Ho(III) (3), Dy(III) (4); m-salen = N,N'-ethylenebis(3-methoxysalicylideneamine)] were isolated and structurally characterized. The fluorescence and magnetic measurements of the four compounds were investigated. Complex 1 exhibits strong fluorescence properties, while single-molecule-magnet behavior is seen in complex 4.

  3. Single molecule photon emission statistics of driven three-level systems.

    Science.gov (United States)

    Peng, Yonggang; Zheng, Yujun; Brown, Frank L H

    2007-03-14

    We study the statistics of photon emission from three-level single molecule systems. The generating function method [Y. Zheng and F. L. H. Brown, Phys. Rev. Lett. 90, 238305 (2003)] is used to calculate steady state absorption line shapes and Mandel's Q parameter as a function of excitation frequency, as well as the time dependence associated with approach to the steady state. The line shape calculations confirm known results derived via other methods, while the Q parameter results display complex frequency dependences not amenable to simple interpretation. This study confirms the applicability of the generating function formalism to multilevel quantum systems, including the proper modeling of quantum coherence effects.

  4. Theory on single molecule_photon cryocooler—— Conception and quantum transition processes

    Institute of Scientific and Technical Information of China (English)

    秦伟平; 陈宝玖; 秦冠仕; 杜国同; 许武; 黄世华

    2001-01-01

    The micro mechanism of anti_Stokes fluorescent cooling was investigated on molecular or ionic scale. A new conception of single molecule_photon cryocooler (SMPC) was given, and the smallest cryocooler in the world was predicted. We described SMPC and its running principle in detail. The quantum transition processes of SMPC and the largest cooling coefficient that SMPC can get in an optical transition were given. Also we studied the random property of SMPC in cooling processes. The thermodynamic behavior of single Yb3+ ion as a photon cryocooler was imitated.

  5. Single-Molecule FRET Reveals Hidden Complexity in a Protein Energy Landscape

    OpenAIRE

    Tsytlonok, Maksym; Ibrahim, Shehu M.; Rowling, Pamela J.E.; Xu, Wenshu; Ruedas-Rama, Maria J.; Orte, Angel; Klenerman, David; Itzhaki, Laura S.

    2015-01-01

    Summary Here, using single-molecule FRET, we reveal previously hidden conformations of the ankyrin-repeat domain of AnkyrinR, a giant adaptor molecule that anchors integral membrane proteins to the spectrin-actin cytoskeleton through simultaneous binding of multiple partner proteins. We show that the ankyrin repeats switch between high-FRET and low-FRET states, controlled by an unstructured “safety pin” or “staple” from the adjacent domain of AnkyrinR. Opening of the safety pin leads to unrav...

  6. Interaction of spin and vibrations in transport through single-molecule magnets

    Directory of Open Access Journals (Sweden)

    Falk May

    2011-10-01

    Full Text Available We study electron transport through a single-molecule magnet (SMM and the interplay of its anisotropic spin with quantized vibrational distortions of the molecule. Based on numerical renormalization group calculations we show that, despite the longitudinal anisotropy barrier and small transverse anisotropy, vibrational fluctuations can induce quantum spin-tunneling (QST and a QST-Kondo effect. The interplay of spin scattering, QST and molecular vibrations can strongly enhance the Kondo effect and induce an anomalous magnetic field dependence of vibrational Kondo side-bands.

  7. Nano-magnetic materials: spin crossover compounds vs. single molecule magnets vs. single chain magnets.

    Science.gov (United States)

    Brooker, Sally; Kitchen, Jonathan A

    2009-09-28

    Brief introductions to spin crossover (SCO), single molecule magnetism (SMM) and single chain magnetism (SCM) are provided. Each section is illustrated by selected examples that have contributed significantly to the development of these fields, including recent efforts to produce materials (films, attachment to surfaces etc.). The advantages and disadvantages of each class of magnetically interesting compound are considered, along with the key challenges that remain to be overcome before such compounds can be used commercially as nanocomponents. This invited perspective article is intended to be easily comprehensible to non-specialists in the field.

  8. Preparation and single molecule structure of electroactive polysilane end-grafted on a crystalline silicon surface

    Science.gov (United States)

    Furukawa, Kazuaki; Ebata, Keisuke

    2000-12-01

    Electrically active polysilanes of poly(methylphenylsilane) (PMPS) and poly[bis(p-n-butylphenyl)silane] (PBPS), which are, respectively, known as a good hole transporting material and a near-ultraviolet electroluminescent material, are end-grafted directly on a crystalline silicon surface. The single polysilane molecules are clearly distinguished one from the other on the surface by means of atomic force microscopy observations. End-grafted single molecules of PMPS are observed as dots while end-grafted PBPS appear as worms extending for more than 100 nm on the crystalline silicon surface.

  9. Highly sensitive, non-invasive detection of colorectal cancer mutations using single molecule, third generation sequencing

    Directory of Open Access Journals (Sweden)

    Giancarlo Russo

    2015-12-01

    We present the first study that applies the high read accuracy and depth of single molecule, real time, circular consensus sequencing (SMRT-CCS to the detection of mutations in stool DNA in order to provide a non-invasive, sensitive and accurate test for CRC. In stool DNA isolated from patients diagnosed with adenocarcinoma, we are able to detect mutations at frequencies below 0.5% with no false positives. This approach establishes a foundation for a non-invasive, highly sensitive assay to screen the population for CRC and the early stage adenomas that lead to CRC.

  10. Refractive index fluctuations in solids: nanoprobing by means of single-molecule spectroscopy

    CERN Document Server

    Anikushina, T A; Gorshelev, A A; Naumov, A V

    2015-01-01

    We suggest a novel approach for probing of local fluctuations of the refractive index $n$ in solids by means of single-molecule (SM) spectroscopy. It is based on the dependence $T_1(n)$ of the effective radiative lifetime $T_1$ of dye centres in solids on $n$ due to the local field effects. Detection of SM zero-phonon lines at ultra-low temperatures gives the values of SM natural spectral linewidth (which is inverse proportional to $T_1$) and makes it possible to reveal the distribution of the local $n$ values in solids. Here we demonstrate this possibility on the example of amorphous polyethylene and polycrystalline naphthalene doped with terrylene.

  11. A simple DNA handle attachment method for single molecule mechanical manipulation experiments.

    Science.gov (United States)

    Min, Duyoung; Arbing, Mark A; Jefferson, Robert E; Bowie, James U

    2016-08-01

    Manipulating single molecules and systems of molecules with mechanical force is a powerful technique to examine their physical properties. Applying force requires attachment of the target molecule to larger objects using some sort of molecular tether, such as a strand of DNA. DNA handle attachment often requires difficult manipulations of the target molecule, which can preclude attachment to unstable, hard to obtain, and/or large, complex targets. Here we describe a method for covalent DNA handle attachment to proteins that simply requires the addition of a preprepared reagent to the protein and a short incubation. The handle attachment method developed here provides a facile approach for studying the biomechanics of biological systems.

  12. A new multiplexing single molecule technique for measuring restriction enzyme activity

    Science.gov (United States)

    Harbottle, Allison; Cavanaugh, Jillian; Gordon, Wendy; Loparo, Joseph; Price, Allen

    2012-02-01

    We present a new multiplexing single molecule method for observing the cleavage of DNAs by restriction enzymes. DNAs are attached to a surface at one end using a biotin-streptavidin link and to a micro bead at the other end via a digoxigenin-antidigoxigenin link. The DNAs are stretched by applying a flow. After introduction of the restriction enzyme, the exact time of cleavage of individual DNAs is recorded with video microscopy. We can image hundreds to thousands of DNAs in a single experiment. We are using our technique to search for the signature of facilitated diffusion in the measured rate dependence on ionic strength.

  13. Direct measurement and modulation of single-molecule coordinative bonding forces in a transition metal complex

    DEFF Research Database (Denmark)

    Hao, Xian; Zhu, Nan; Gschneidtner, Tina

    2013-01-01

    Coordination chemistry has been a consistently active branch of chemistry since Werner's seminal theory of coordination compounds inaugurated in 1893, with the central focus on transition metal complexes. However, control and measurement of metal-ligand interactions at the single-molecule level...... remain a daunting challenge. Here we demonstrate an interdisciplinary and systematic approach that enables measurement and modulation of the coordinative bonding forces in a transition metal complex. Terpyridine is derived with a thiol linker, facilitating covalent attachment of this ligand on both gold...

  14. Comment on "A New Method for Determining Dipole Moment Orientation of Single Molecules"

    Institute of Scientific and Technical Information of China (English)

    Martin Vacha; Masahiro Kotani

    2004-01-01

    @@ In a recent issue of Chinese Physics Letters, Wang et al.[1] proposed a method for determining orientation of transition dipole moments of single molecules. The suggested method is based on differences in electric field profile in fluorescence microscope produced by excitation light in epi-fluorescence illumination and total internal reflection illumination configurations, respectively. Here, we wish to draw attention to the fact that the same method based on identical physical principles has been already proposed and experimentally demonstrated by us in a publication which appeared more than one year before Wang's paper.

  15. The Relation between Structure and Quantum Interference in Single Molecule Junctions

    DEFF Research Database (Denmark)

    Markussen, Troels; Stadler, Robert; Thygesen, Kristian Sommer

    2010-01-01

    Quantum interference (QI) of electron pathways has recently attracted increased interest as an enabling tool for single-molecule electronic devices. Although various molecular systems have been shown to exhibit QI effects and a number of methods have been proposed for its analysis, simple...... the existence of QI-induced transmission antiresonances. The generality of the scheme, which is exact for a certain class of tight-binding models, is proved by a comparison to first-principles transport calculations for 10 different configurations of anthraquinone as well as a set of cross-conjugated molecular...

  16. Communication: atomic force detection of single-molecule nonlinear optical vibrational spectroscopy.

    Science.gov (United States)

    Saurabh, Prasoon; Mukamel, Shaul

    2014-04-28

    Atomic Force Microscopy (AFM) allows for a highly sensitive detection of spectroscopic signals. This has been first demonstrated for NMR of a single molecule and recently extended to stimulated Raman in the optical regime. We theoretically investigate the use of optical forces to detect time and frequency domain nonlinear optical signals. We show that, with proper phase matching, the AFM-detected signals closely resemble coherent heterodyne-detected signals. Applications are made to AFM-detected and heterodyne-detected vibrational resonances in Coherent Anti-Stokes Raman Spectroscopy (χ((3))) and sum or difference frequency generation (χ((2))).

  17. Single-Molecule Electrochemical Transistor Utilizing a Nickel-Pyridyl Spinterface

    DEFF Research Database (Denmark)

    Brooke, Richard J.; Jin, Chengjun; Szumski, Doug S.

    2015-01-01

    Using a scanning tunnelling microscope break-junction technique, we produce 4,4′-bipyridine (44BP) single-molecule junctions with Ni and Au contacts. Electrochemical control is used to prevent Ni oxidation and to modulate the conductance of the devices via nonredox gating - the first time this has...... been shown using non-Au contacts. Remarkably the conductance and gain of the resulting Ni-44BP-Ni electrochemical transistors is significantly higher than analogous Au-based devices. Ab-initio calculations reveal that this behavior arises because charge transport is mediated by spin-polarized Ni d...

  18. A single molecule switch based on two Pd nanocrystals linked by a conjugated dithiol

    Indian Academy of Sciences (India)

    Ved Varun Agrawal; Reji Thomas; G U Kulkarni; C N R Rao

    2005-11-01

    Tunneling spectroscopy measurements have been carried out on a single molecule device formed by two Pd nanocrystals (dia. ∼ 5 nm) electronically coupled by a conducting molecule, dimercaptodiphenylacetylene. The – data, obtained by positioning the tip over a nanocrystal electrode, exhibit negative differential resistance (NDR) on a background M-I-M characteristics. The NDR feature occurs at ∼ 0.67 V at 300 K and shifts to a higher bias of 1.93 V at 90 K. When the tip is held in the middle region of the device, a Coulomb blockade region is observed (± ∼ 0.3 V).

  19. Theoretical and Experimental Exploration of the Structures and Electronic States of Single Molecules

    Institute of Scientific and Technical Information of China (English)

    HOU Jianguo; YANG Jinlong; WANG Haiqian; WANG Bing; ZHU Qingshi

    2007-01-01

    @@ The scanning tunnel microscopy/spectroscopy(STM/STS) is a powerful technique in probing the surface structures and the electronic states on a single molecular scale. Although a scanning tunneling microscope has a high spatial resolution in a topographic image, the image just reflects the spatial distribution of the electronic states, instead of the geometric structure of single molecules. Moreover, some additional factors,like the influence of the substrate and the STM tip, may also affect an STM image. So, it is still a challenge to determine the molecular conformation, molecular orientation, and intramolecular structure and electronic states on a single molecular scale.

  20. Real-time analysis and visualization for single-molecule based super-resolution microscopy.

    Directory of Open Access Journals (Sweden)

    Adel Kechkar

    Full Text Available Accurate multidimensional localization of isolated fluorescent emitters is a time consuming process in single-molecule based super-resolution microscopy. We demonstrate a functional method for real-time reconstruction with automatic feedback control, without compromising the localization accuracy. Compatible with high frame rates of EM-CCD cameras, it relies on a wavelet segmentation algorithm, together with a mix of CPU/GPU implementation. A combination with Gaussian fitting allows direct access to 3D localization. Automatic feedback control ensures optimal molecule density throughout the acquisition process. With this method, we significantly improve the efficiency and feasibility of localization-based super-resolution microscopy.

  1. Real-time analysis and visualization for single-molecule based super-resolution microscopy.

    Science.gov (United States)

    Kechkar, Adel; Nair, Deepak; Heilemann, Mike; Choquet, Daniel; Sibarita, Jean-Baptiste

    2013-01-01

    Accurate multidimensional localization of isolated fluorescent emitters is a time consuming process in single-molecule based super-resolution microscopy. We demonstrate a functional method for real-time reconstruction with automatic feedback control, without compromising the localization accuracy. Compatible with high frame rates of EM-CCD cameras, it relies on a wavelet segmentation algorithm, together with a mix of CPU/GPU implementation. A combination with Gaussian fitting allows direct access to 3D localization. Automatic feedback control ensures optimal molecule density throughout the acquisition process. With this method, we significantly improve the efficiency and feasibility of localization-based super-resolution microscopy.

  2. Label-free single molecule imaging with numerical aperture-shaped interferometric scattering microscopy

    CERN Document Server

    Cole, Daniel; Weigel, Alexander; Kukura, P

    2016-01-01

    Our ability to optically interrogate nanoscopic objects is controlled by the difference between their extinction cross sections and the diffraction limited area to which light can be confined in the far field. We show that a partially transmissive spatial mask placed near the back focal plane of a high numerical aperture microscope objective enhances the extinction contrast of a scatterer near an interface by approximately $T^{-1/2}$, where T is the transmissivity of the mask. Numerical aperture based differentiation of background from scattered light represents a general approach to increasing extinction contrast and enables routine label free imaging down to the single molecule level.

  3. Cationic Mn4 single-molecule magnet with a sterically isolated core.

    Science.gov (United States)

    Heroux, Katie J; Quddusi, Hajrah M; Liu, Junjie; O'Brien, James R; Nakano, Motohiro; del Barco, Enrique; Hill, Stephen; Hendrickson, David N

    2011-08-15

    The synthesis, structure, and magnetic properties of a ligand-modified Mn(4) dicubane single-molecule magnet (SMM), [Mn(4)(Bet)(4)(mdea)(2)(mdeaH)(2)](BPh(4))(4), are presented, where the cationic SMM units are significantly separated from neighboring molecules in the crystal lattice. There are no cocrystallized solvate molecules, making it an ideal candidate for single-crystal magnetization hysteresis and high-frequency electron paramagnetic resonance studies. Increased control over intermolecular interactions in such materials is a crucial factor in the future application of SMMs.

  4. A Low-Symmetry Dysprosium Metallocene Single-Molecule Magnet with a High Anisotropy Barrier.

    Science.gov (United States)

    Pugh, Thomas; Chilton, Nicholas F; Layfield, Richard A

    2016-09-05

    The single-molecule magnet (SMM) properties of the isocarbonyl-ligated dysprosium metallocene [Cp*2 Dy{μ-(OC)2 FeCp}]2 (1Dy ), which contains a rhombus-shaped Dy2 Fe2 core, are described. Combining a strong axial [Cp*](-) ligand field with a weak equatorial field consisting of the isocarbonyl ligands leads to an anisotropy barrier of 662 cm(-1) in zero applied field. The dominant thermal relaxation pathways in 1Dy involves at least the fourth-excited Kramers doublet, thus demonstrating that prominent SMM behavior can be observed for dysprosium in low-symmetry environments.

  5. Single-molecule folding mechanism of an EF-hand neuronal calcium sensor

    DEFF Research Database (Denmark)

    Heidarsson, P.O.; Otazo, M.R.; Bellucci, L.

    2013-01-01

    EF-hand calcium sensors respond structurally to changes in intracellular Ca2+ concentration, triggering diverse cellular responses and resulting in broad interactomes. Despite impressive advances in decoding their structure-function relationships, the folding mechanism of neuronal calcium sensors...... is still elusive. We used single-molecule optical tweezers to study the folding mechanism of the human neuronal calcium sensor 1 (NCS1). Two intermediate structures induced by Ca2+ binding to the EF-hands were observed during refolding. The complete folding of the C domain is obligatory for the folding...

  6. SLAP: Small Labeling Pair for Single-Molecule Super-Resolution Imaging.

    Science.gov (United States)

    Wieneke, Ralph; Raulf, Anika; Kollmannsperger, Alina; Heilemann, Mike; Tampé, Robert

    2015-08-24

    Protein labeling with synthetic fluorescent probes is a key technology in chemical biology and biomedical research. A sensitive and efficient modular labeling approach (SLAP) was developed on the basis of a synthetic small-molecule recognition unit (Ni-trisNTA) and the genetically encoded minimal protein His6-10 -tag. High-density protein tracing by SLAP was demonstrated. This technique allows super-resolution fluorescence imaging and fulfills the necessary sampling criteria for single-molecule localization-based imaging techniques. It avoids masking by large probes, for example, antibodies, and supplies sensitive, precise, and robust size analysis of protein clusters (nanodomains).

  7. Fast electron transfer through a single molecule natively structured redox protein

    DEFF Research Database (Denmark)

    Della Pia, Eduardo Antonio; Chi, Qijin; Macdonald, J. Emyr;

    2012-01-01

    a gold surface and a platinum–iridium STM tip. Two different orientations of the linkers were examined: a long-axis configuration (SH-LA) and a short-axis configuration (SH-SA). In each case, the molecular conductance could be ‘gated’ through electrochemical control of the heme redox state. Reproducible...... and remarkably high conductance was observed in this relatively complex electron transfer system, with single-molecule conductance values peaking around 18 nS and 12 nS for the SH-SA and SH-LA cytochrome b562 molecules near zero electrochemical overpotential. This strongly points to the important role...

  8. A single molecule assay for measuring site-specific DNA cleavage.

    Science.gov (United States)

    Gambino, Stefano; Mousley, Briana; Cathcart, Lindsay; Winship, Janelle; Loparo, Joseph J; Price, Allen C

    2016-02-15

    Sequence-specific DNA cleavage is a key step in a number of genomic transactions. Here, we report a single-molecule technique that allows the simultaneous measurement of hundreds of DNAs, thereby collecting significant statistics in a single experiment. Microbeads are tethered with single DNA molecules in a microfluidic channel. After the DNA cleavage reaction is initiated, the time of cleavage of each DNA is recorded using video microscopy. We demonstrate the utility of our method by measuring the cleavage kinetics of NdeI, a type II restriction endonuclease.

  9. Interfacial electrochemical electron transfer in biology – Towards the level of the single molecule

    DEFF Research Database (Denmark)

    Zhang, Jingdong; Chi, Qijin; Hansen, Allan Glargaard

    2012-01-01

    electrolyte (in situ STM). Interfacial electrochemistry of metalloproteins is presently going through a similar transition. Electrochemical surfaces with thiol-based promoter molecular monolayers (SAMs) as biomolecular electrochemical environments and the biomolecules themselves have been mapped...... with unprecedented resolution, opening a new area of single-molecule bioelectrochemistry. We consider first in situ STM of small redox molecules, followed by in situ STM of thiol-based SAMs as molecular views of bioelectrochemical environments. We then address electron transfer metalloproteins, and multi......-centre metalloenzymes including applied single-biomolecular perspectives based on metalloprotein/metallic nanoparticle hybrids....

  10. Monitoring Early Fusion Dynamics of Human Immunodeficiency Virus Type 1 at Single-Molecule Resolution ▿ †

    Science.gov (United States)

    Dobrowsky, Terrence M.; Zhou, Yan; Sun, Sean X.; Siliciano, Robert F.; Wirtz, Denis

    2008-01-01

    The fusion of human immunodeficiency virus type 1 (HIV-1) to host cells is a dynamic process governed by the interaction between glycoproteins on the viral envelope and the major receptor, CD4, and coreceptor on the surface of the cell. How these receptors organize at the virion-cell interface to promote a fusion-competent site is not well understood. Using single-molecule force spectroscopy, we map the tensile strengths, lifetimes, and energy barriers of individual intermolecular bonds between CCR5-tropic HIV-1 gp120 and its receptors CD4 and CCR5 or CXCR4 as a function of the interaction time with the cell. According to the Bell model, at short times of contact between cell and virion, the gp120-CD4 bond is able to withstand forces up to 35 pN and has an initial lifetime of 0.27 s and an intermolecular length of interaction of 0.34 nm. The initial bond also has an energy barrier of 6.7 kBT (where kB is Boltzmann's constant and T is absolute temperature). However, within 0.3 s, individual gp120-CD4 bonds undergo rapid destabilization accompanied by a shortened lifetime and a lowered tensile strength. This destabilization is significantly enhanced by the coreceptor CCR5, not by CXCR4 or fusion inhibitors, which suggests that it is directly related to a conformational change in the gp120-CD4 bond. These measurements highlight the instability and low tensile strength of gp120-receptor bonds, uncover a synergistic role for CCR5 in the progression of the gp120-CD4 bond, and suggest that the cell-virus adhesion complex is functionally arranged about a long-lived gp120-coreceptor bond. PMID:18480458

  11. The mechanics of DNA loops bridged by proteins unveiled by single-molecule experiments.

    Science.gov (United States)

    Tardin, Catherine

    2017-08-10

    Protein-induced DNA bridging and looping is a common mechanism for various and essential processes in bacterial chromosomes. This mechanism is preserved despite the very different bacterial conditions and their expected influence on the thermodynamic and kinetic characteristics of the bridge formation and stability. Over the last two decades, single-molecule techniques carried out on in vitro DNA systems have yielded valuable results which, in combination with theoretical works, have clarified the effects of different parameters of nucleoprotein complexes on the protein-induced DNA bridging and looping process. In this review, I will outline the features that can be measured for such processes with various single-molecule techniques in use in the field. I will then describe both the experimental results and the theoretical models that illuminate the contribution of the DNA molecule itself as well as that of the bridging proteins in the DNA looping mechanism at play in the nucleoid of E. coli. Copyright © 2017. Published by Elsevier B.V.

  12. Limits of single-molecule super-resolution microscopy in thin polymer films

    Science.gov (United States)

    Wang, Muzhou; Davanco, Marcelo; Marr, James M.; Liddle, J. Alexander; Gilman, Jeffrey W.

    Structural characterization by super-resolution microscopy has become increasingly widespread, particularly in the biological community. The technique is powerful because it can produce real-space images with resolutions of tens of nanometers, while sample preparation is relatively non-invasive. Previous studies have applied these techniques to important scientific problems in the life sciences, but relatively little work has explored the attainable limit of resolution using samples of known structure. In this work, we apply photo-activated localization microscopy (PALM) to polymer films that have been nanopatterned using electron-beam lithography. Trace amounts of a rhodamine spiroamide dye are dispersed into nanostructured poly(methyl methacrylate), and UV-induced switching of the fluorophores enables nanoscale localization of single molecules to generate a final composite super-resolution image. Features as small as 50 nm are clearly resolvable. To determine the ultimate resolution limit, we investigate sources of error in the system, particularly from systematic mislocalizations due to the effect of fluorophore orientation on the single-molecule point-spread function.

  13. A state space based approach to localizing single molecules from multi-emitter images.

    Science.gov (United States)

    Vahid, Milad R; Chao, Jerry; Ward, E Sally; Ober, Raimund J

    2017-01-28

    Single molecule super-resolution microscopy is a powerful tool that enables imaging at sub-diffraction-limit resolution. In this technique, subsets of stochastically photoactivated fluorophores are imaged over a sequence of frames and accurately localized, and the estimated locations are used to construct a high-resolution image of the cellular structures labeled by the fluorophores. Available localization methods typically first determine the regions of the image that contain emitting fluorophores through a process referred to as detection. Then, the locations of the fluorophores are estimated accurately in an estimation step. We propose a novel localization method which combines the detection and estimation steps. The method models the given image as the frequency response of a multi-order system obtained with a balanced state space realization algorithm based on the singular value decomposition of a Hankel matrix, and determines the locations of intensity peaks in the image as the pole locations of the resulting system. The locations of the most significant peaks correspond to the locations of single molecules in the original image. Although the accuracy of the location estimates is reasonably good, we demonstrate that, by using the estimates as the initial conditions for a maximum likelihood estimator, refined estimates can be obtained that have a standard deviation close to the Cramér-Rao lower bound-based limit of accuracy. We validate our method using both simulated and experimental multi-emitter images.

  14. Morphological investigation of Mn12 single-molecule magnets adsorbed on Au(111).

    Science.gov (United States)

    Otero, Gonzalo; Evangelio, Emi; Rogero, Celia; Vázquez, Luis; Gómez-Segura, Jordi; Gago, José Angel Martín; Ruiz-Molina, Daniel

    2009-09-01

    We report on the adsorption of Mn(12) single-molecule magnets bearing external biphenyl groups on Au(111) surfaces after a simple dipping procedure. Topographic AFM images confirm that the biphenyl groups favor the adsorption of the molecules without the need of functionalization with thiols or thioether groups. The first formed molecular layer covers homogenously the whole surface, whereas further growth takes place mostly in the form of molecular wires (or aggregates) and, occasionally, as molecular islands. Interestingly, the Mn(12) core is preserved for all the cases, although its aggregation state appears to influence significantly the rigidity of the molecular aggregates. Force-volume imaging experiments have demonstrated that molecules at the second layer are stiffer, that is, more rigid, than the molecules lying at the background layer. This fact clearly reveals that the interplay of attractive and repulsive forces between molecules and the molecule-surface interaction modulate the mechanical properties of the Mn(12) single-molecule magnets upon grafting. These results are very important to understand how surface-induced morphological deformations can modify the magnetic properties of these molecular systems on the translation from the macroscopic to a surface.

  15. Nanophotonic approaches for nanoscale imaging and single-molecule detection at ultrahigh concentrations.

    Science.gov (United States)

    Mivelle, Mathieu; Van Zanten, Thomas S; Manzo, Carlo; Garcia-Parajo, Maria F

    2014-07-01

    Over the last decade, we have witnessed an outburst of many different optical techniques aimed at breaking the diffraction limit of light, providing super-resolution imaging on intact fixed cells. In parallel, single-molecule detection by means of fluorescence has become a common tool to investigate biological interactions at the molecular level both in vitro and in living cells. Despite these advances, visualization of dynamic events at relevant physiological concentrations at the nanometer scale remains challenging. In this review, we focus on recent advancements in the field of nanophotonics toward nanoimaging and single-molecule detection at ultrahigh sample concentrations. These approaches rely on the use of metal nanostructures known as optical antennas to localize and manipulate optical fields at the nanometer scale. We highlight examples on how different optical antenna geometries are being implemented for nanoscale imaging of cell membrane components. We also discuss different implementations of self-standing and two-dimensional antenna arrays for studying nanoscale dynamics in living cell membranes as well as detection of individual biomolecular interactions in the µM range for sensing applications.

  16. A general approach to break the concentration barrier in single-molecule imaging

    KAUST Repository

    Loveland, Anna B.

    2012-09-09

    Single-molecule fluorescence imaging is often incompatible with physiological protein concentrations, as fluorescence background overwhelms an individual molecule\\'s signal. We solve this problem with a new imaging approach called PhADE (PhotoActivation, Diffusion and Excitation). A protein of interest is fused to a photoactivatable protein (mKikGR) and introduced to its surface-immobilized substrate. After photoactivation of mKikGR near the surface, rapid diffusion of the unbound mKikGR fusion out of the detection volume eliminates background fluorescence, whereupon the bound molecules are imaged. We labeled the eukaryotic DNA replication protein flap endonuclease 1 with mKikGR and added it to replication-competent Xenopus laevis egg extracts. PhADE imaging of high concentrations of the fusion construct revealed its dynamics and micrometer-scale movements on individual, replicating DNA molecules. Because PhADE imaging is in principle compatible with any photoactivatable fluorophore, it should have broad applicability in revealing single-molecule dynamics and stoichiometry of macromolecular protein complexes at previously inaccessible fluorophore concentrations. © 2012 Nature America, Inc. All rights reserved.

  17. Single-molecule studies of DNA transcription using atomic force microscopy

    Science.gov (United States)

    Billingsley, Daniel J.; Bonass, William A.; Crampton, Neal; Kirkham, Jennifer; Thomson, Neil H.

    2012-04-01

    Atomic force microscopy (AFM) can detect single biomacromolecules with a high signal-to-noise ratio on atomically flat biocompatible support surfaces, such as mica. Contrast arises from the innate forces and therefore AFM does not require imaging contrast agents, leading to sample preparation that is relatively straightforward. The ability of AFM to operate in hydrated environments, including humid air and aqueous buffers, allows structure and function of biological and biomolecular systems to be retained. These traits of the AFM are ensuring that it is being increasingly used to study deoxyribonucleic acid (DNA) structure and DNA-protein interactions down to the secondary structure level. This report focuses in particular on reviewing the applications of AFM to the study of DNA transcription in reductionist single-molecule bottom-up approaches. The technique has allowed new insights into the interactions between ribonucleic acid (RNA) polymerase to be gained and enabled quantification of some aspects of the transcription process, such as promoter location, DNA wrapping and elongation. More recently, the trend is towards studying the interactions of more than one enzyme operating on a single DNA template. These methods begin to reveal the mechanics of gene expression at the single-molecule level and will enable us to gain greater understanding of how the genome is transcribed and translated into the proteome.

  18. Single Molecule Bioelectronics and Their Application to Amplification-Free Measurement of DNA Lengths.

    Science.gov (United States)

    Gül, O Tolga; Pugliese, Kaitlin M; Choi, Yongki; Sims, Patrick C; Pan, Deng; Rajapakse, Arith J; Weiss, Gregory A; Collins, Philip G

    2016-06-24

    As biosensing devices shrink smaller and smaller, they approach a scale in which single molecule electronic sensing becomes possible. Here, we review the operation of single-enzyme transistors made using single-walled carbon nanotubes. These novel hybrid devices transduce the motions and catalytic activity of a single protein into an electronic signal for real-time monitoring of the protein's activity. Analysis of these electronic signals reveals new insights into enzyme function and proves the electronic technique to be complementary to other single-molecule methods based on fluorescence. As one example of the nanocircuit technique, we have studied the Klenow Fragment (KF) of DNA polymerase I as it catalytically processes single-stranded DNA templates. The fidelity of DNA polymerases makes them a key component in many DNA sequencing techniques, and here we demonstrate that KF nanocircuits readily resolve DNA polymerization with single-base sensitivity. Consequently, template lengths can be directly counted from electronic recordings of KF's base-by-base activity. After measuring as few as 20 copies, the template length can be determined with <1 base pair resolution, and different template lengths can be identified and enumerated in solutions containing template mixtures.

  19. Feedback-controlled electro-kinetic traps for single-molecule spectroscopy

    Indian Academy of Sciences (India)

    Manoj Kumbakhar; Dirk Hähnel; Ingo Gregor; Jörg Enderlein

    2014-01-01

    A principal limitation of single-molecule spectroscopy in solution is the diffusionlimited residence time of a given molecule within the detection volume. A common solution to this problem is to immobilize molecules of interest on a passivated glass surface for extending the observation time to obtain reliable data statistics. However, surface tethering of molecules often introduces artifacts, particularly when studying the structural dynamics of biomolecules. To circumvent this limitation, we investigated alternative ways to extend single-molecule observation times in solution without surface immobilization. Among various possibilities, the so-called anti-Brownian electro-kinetic trap (or ABEL trap) seems best suited to achieve this goal. The essential part of this trap is a feedback-controlled electro-kinetic steering of a molecule’s position in reaction to its diffusive Brownian motion which is monitored by fluorescence, thus keeping the molecule within a sub-micron sized detection volume. Fluorescence trace recordings of over thousands of milliseconds duration on individual dye molecules within an ABEL trap have been reported. In this short review, we shall briefly discuss the principle and some results of ABEL trapping of individual molecules with possible extensions to future works.

  20. Single molecule localization microscopy of the distribution of chromatin using Hoechst and DAPI fluorescent probes.

    Science.gov (United States)

    Szczurek, Aleksander T; Prakash, Kirti; Lee, Hyun-Keun; Zurek-Biesiada, Dominika J; Best, Gerrit; Hagmann, Martin; Dobrucki, Jurek W; Cremer, Christoph; Birk, Udo

    2014-01-01

    Several approaches have been described to fluorescently label and image DNA and chromatin in situ on the single-molecule level. These superresolution microscopy techniques are based on detecting optically isolated, fluorescently tagged anti-histone antibodies, fluorescently labeled DNA precursor analogs, or fluorescent dyes bound to DNA. Presently they suffer from various drawbacks such as low labeling efficiency or interference with DNA structure. In this report, we demonstrate that DNA minor groove binding dyes, such as Hoechst 33258, Hoechst 33342, and DAPI, can be effectively employed in single molecule localization microscopy (SMLM) with high optical and structural resolution. Upon illumination with low intensity 405 nm light, a small subpopulation of these molecules stochastically undergoes photoconversion from the original blue-emitting form to a green-emitting form. Using a 491 nm laser excitation, fluorescence of these green-emitting, optically isolated molecules was registered until "bleached". This procedure facilitated substantially the optical isolation and localization of large numbers of individual dye molecules bound to DNA in situ, in nuclei of fixed mammalian cells, or in mitotic chromosomes, and enabled the reconstruction of high-quality DNA density maps. We anticipate that this approach will provide new insights into DNA replication, DNA repair, gene transcription, and other nuclear processes.

  1. The role of anharmonic phonons in under-barrier spin relaxation of single molecule magnets

    Science.gov (United States)

    Lunghi, Alessandro; Totti, Federico; Sessoli, Roberta; Sanvito, Stefano

    2017-01-01

    The use of single molecule magnets in mainstream electronics requires their magnetic moment to be stable over long times. One can achieve such a goal by designing compounds with spin-reversal barriers exceeding room temperature, namely with large uniaxial anisotropies. Such strategy, however, has been defeated by several recent experiments demonstrating under-barrier relaxation at high temperature, a behaviour today unexplained. Here we propose spin–phonon coupling to be responsible for such anomaly. With a combination of electronic structure theory and master equations we show that, in the presence of phonon dissipation, the relevant energy scale for the spin relaxation is given by the lower-lying phonon modes interacting with the local spins. These open a channel for spin reversal at energies lower than that set by the magnetic anisotropy, producing fast under-barrier spin relaxation. Our findings rationalize a significant body of experimental work and suggest a possible strategy for engineering room temperature single molecule magnets. PMID:28262663

  2. Single-molecule study on polymer diffusion in a melt state: Effect of chain topology

    KAUST Repository

    Habuchi, Satoshi

    2013-08-06

    We report a new methodology for studying diffusion of individual polymer chains in a melt state, with special emphasis on the effect of chain topology. A perylene diimide fluorophore was incorporated into the linear and cyclic poly(THF)s, and real-time diffusion behavior of individual chains in a melt of linear poly(THF) was measured by means of a single-molecule fluorescence imaging technique. The combination of mean squared displacement (MSD) and cumulative distribution function (CDF) analysis demonstrated the broad distribution of diffusion coefficient of both the linear and cyclic polymer chains in the melt state. This indicates the presence of spatiotemporal heterogeneity of the polymer diffusion which occurs at much larger time and length scales than those expected from the current polymer physics theory. We further demonstrated that the cyclic chains showed marginally slower diffusion in comparison with the linear counterparts, to suggest the effective suppression of the translocation through the threading-entanglement with the linear matrix chains. This coincides with the higher activation energy for the diffusion of the cyclic chains than of the linear chains. These results suggest that the single-molecule imaging technique provides a powerful tool to analyze complicated polymer dynamics and contributes to the molecular level understanding of the chain interaction. © 2013 American Chemical Society.

  3. Integration and oligomerization of Bax protein in lipid bilayers characterized by single molecule fluorescence study.

    Science.gov (United States)

    Luo, Lu; Yang, Jun; Liu, Dongxiang

    2014-11-14

    Bax is a pro-apoptotic Bcl-2 family protein. The activated Bax translocates to mitochondria, where it forms pore and permeabilizes the mitochondrial outer membrane. This process requires the BH3-only activator protein (i.e. tBid) and can be inhibited by anti-apoptotic Bcl-2 family proteins such as Bcl-xL. Here by using single molecule fluorescence techniques, we studied the integration and oligomerization of Bax in lipid bilayers. Our study revealed that Bax can bind to lipid membrane spontaneously in the absence of tBid. The Bax pore formation undergoes at least two steps: pre-pore formation and membrane insertion. The activated Bax triggered by tBid or BH3 domain peptide integrates on bilayers and tends to form tetramers, which are termed as pre-pore. Subsequent insertion of the pre-pore into membrane is highly dependent on the composition of cardiolipin in lipid bilayers. Bcl-xL can translocate Bax from membrane to solution and inhibit the pore formation. The study of Bax integration and oligomerization at the single molecule level provides new evidences that may help elucidate the pore formation of Bax and its regulatory mechanism in apoptosis. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. All-Dielectric Silicon Nanogap Antennas To Enhance the Fluorescence of Single Molecules.

    Science.gov (United States)

    Regmi, Raju; Berthelot, Johann; Winkler, Pamina M; Mivelle, Mathieu; Proust, Julien; Bedu, Frédéric; Ozerov, Igor; Begou, Thomas; Lumeau, Julien; Rigneault, Hervé; García-Parajó, María F; Bidault, Sébastien; Wenger, Jérôme; Bonod, Nicolas

    2016-08-10

    Plasmonic antennas have a profound impact on nanophotonics as they provide efficient means to manipulate light and enhance light-matter interactions at the nanoscale. However, the large absorption losses found in metals can severely limit the plasmonic applications in the visible spectral range. Here, we demonstrate the effectiveness of an alternative approach using all-dielectric nanoantennas based on silicon dimers to enhance the fluorescence detection of single molecules. The silicon antenna design is optimized to confine the near-field intensity in the 20 nm nanogap and reach a 270-fold fluorescence enhancement in a nanoscale volume of λ(3)/1800 with dielectric materials only. Our conclusions are assessed by combining polarization resolved optical spectroscopy of individual antennas, scanning electron microscopy, numerical simulations, fluorescence lifetime measurements, fluorescence burst analysis, and fluorescence correlation spectroscopy. This work demonstrates that all-silicon nanoantennas are a valid alternative to plasmonic devices for enhanced single molecule fluorescence sensing, with the additional key advantages of reduced nonradiative quenching, negligible heat generation, cost-efficiency, and complementary metal-oxide-semiconductor (CMOS) compatibility.

  5. Diffusion of oriented single molecules with switchable mobility in networks of long unidimensional nanochannels.

    Science.gov (United States)

    Jung, Christophe; Kirstein, Johanna; Platschek, Barbara; Bein, Thomas; Budde, Michael; Frank, Irmgard; Müllen, Klaus; Michaelis, Jens; Bräuchle, Christoph

    2008-02-06

    Single dye molecules incorporated into a mesoporous matrix can act as highly sensitive reporters of their environment. Here, we use single TDI molecules incorporated as guests into hexagonal mesoporous films containing highly structured domains. The dye molecules allow us to map the size of these domains which can extend to over 100 microm. Investigation of the translational and orientational dynamics via single molecule fluorescence techniques gives structural as well as dynamical information about the host material. In an air atmosphere, the guest molecules show no movement but perfect orientation along the pore direction. The diffusion of the TDI molecules can be induced by placing the mesoporous film in a saturated atmosphere of chloroform. In single molecule measurements with very high positioning accuracy (down to 2-3 nm) the movement of molecules could be observed even between neighboring channels. This reveals the presence of defects like dead ends closing the pores or small openings in the silica walls between neighboring channels, where molecules can change from one channel to the next. A statistical analysis demonstrates that the diffusion of TDI in the mesoporous film cannot be described with a 1D-random diffusion but is more complicated due to the presence of adsorption sites in which the TDI molecules can be occasionally trapped.

  6. Single-molecule measurements of synthesis by DNA polymerase with base-pair resolution.

    Science.gov (United States)

    Christian, Thomas D; Romano, Louis J; Rueda, David

    2009-12-15

    The catalytic mechanism of DNA polymerases involves multiple steps that precede and follow the transfer of a nucleotide to the 3'-hydroxyl of the growing DNA chain. Here we report a single-molecule approach to monitor the movement of E. coli DNA polymerase I (Klenow fragment) on a DNA template during DNA synthesis with single base-pair resolution. As each nucleotide is incorporated, the single-molecule Förster resonance energy transfer intensity drops in discrete steps to values consistent with single-nucleotide incorporations. Purines and pyrimidines are incorporated with comparable rates. A mismatched primer/template junction exhibits dynamics consistent with the primer moving into the exonuclease domain, which was used to determine the fraction of primer-termini bound to the exonuclease and polymerase sites. Most interestingly, we observe a structural change after the incorporation of a correctly paired nucleotide, consistent with transient movement of the polymerase past the preinsertion site or a conformational change in the polymerase. This may represent a previously unobserved step in the mechanism of DNA synthesis that could be part of the proofreading process.

  7. Single-molecule kinetics and footprinting of DNA bis-intercalation: the paradigmatic case of Thiocoraline

    Science.gov (United States)

    Camunas-Soler, Joan; Manosas, Maria; Frutos, Silvia; Tulla-Puche, Judit; Albericio, Fernando; Ritort, Felix

    2015-01-01

    DNA bis-intercalators are widely used in molecular biology with applications ranging from DNA imaging to anticancer pharmacology. Two fundamental aspects of these ligands are the lifetime of the bis-intercalated complexes and their sequence selectivity. Here, we perform single-molecule optical tweezers experiments with the peptide Thiocoraline showing, for the first time, that bis-intercalation is driven by a very slow off-rate that steeply decreases with applied force. This feature reveals the existence of a long-lived (minutes) mono-intercalated intermediate that contributes to the extremely long lifetime of the complex (hours). We further exploit this particularly slow kinetics to determine the thermodynamics of binding and persistence length of bis-intercalated DNA for a given fraction of bound ligand, a measurement inaccessible in previous studies of faster intercalating agents. We also develop a novel single-molecule footprinting technique based on DNA unzipping and determine the preferred binding sites of Thiocoraline with one base-pair resolution. This fast and radiolabelling-free footprinting technique provides direct access to the binding sites of small ligands to nucleic acids without the need of cleavage agents. Overall, our results provide new insights into the binding pathway of bis-intercalators and the reported selectivity might be of relevance for this and other anticancer drugs interfering with DNA replication and transcription in carcinogenic cell lines. PMID:25690887

  8. Single molecule localization microscopy of the distribution of chromatin using Hoechst and DAPI fluorescent probes

    Science.gov (United States)

    Szczurek, Aleksander T; Prakash, Kirti; Lee, Hyun-Keun; Żurek-Biesiada, Dominika J; Best, Gerrit; Hagmann, Martin; Dobrucki, Jurek W; Cremer, Christoph; Birk, Udo

    2014-01-01

    Several approaches have been described to fluorescently label and image DNA and chromatin in situ on the single-molecule level. These superresolution microscopy techniques are based on detecting optically isolated, fluorescently tagged anti-histone antibodies, fluorescently labeled DNA precursor analogs, or fluorescent dyes bound to DNA. Presently they suffer from various drawbacks such as low labeling efficiency or interference with DNA structure. In this report, we demonstrate that DNA minor groove binding dyes, such as Hoechst 33258, Hoechst 33342, and DAPI, can be effectively employed in single molecule localization microscopy (SMLM) with high optical and structural resolution. Upon illumination with low intensity 405 nm light, a small subpopulation of these molecules stochastically undergoes photoconversion from the original blue-emitting form to a green-emitting form. Using a 491 nm laser excitation, fluorescence of these green-emitting, optically isolated molecules was registered until “bleached”. This procedure facilitated substantially the optical isolation and localization of large numbers of individual dye molecules bound to DNA in situ, in nuclei of fixed mammalian cells, or in mitotic chromosomes, and enabled the reconstruction of high-quality DNA density maps. We anticipate that this approach will provide new insights into DNA replication, DNA repair, gene transcription, and other nuclear processes. PMID:25482122

  9. Single-Molecule Imaging Reveals Topology Dependent Mutual Relaxation of Polymer Chains

    KAUST Repository

    Abadi, Maram

    2015-08-24

    The motion and relaxation of linear and cyclic polymers under entangled conditions are investigated by means of a newly developed single-molecule tracking technique, cumulative-area (CA) tracking. CA tracking enables simultaneous quantitative characterization of the diffusion mode, diffusion rate, and relaxation time that have been impossible with a widely used conventional single-molecule localization and tracking method, by analyzing cumulative areas occupied by the moving molecule. Using the novel approach, we investigate the motion and relaxation of entangled cyclic polymers, which have been an important but poorly understood question. Fluorescently labeled 42 kbp linear or cyclic tracer dsDNAs in concentrated solutions of unlabeled linear or cyclic DNAs are used as model systems. We show that CA tracking can explicitly distinguish topology-dependent diffusion mode, rate, and relaxation time, demonstrating that the method provides an invaluable tool for characterizing topological interaction between the entangled chains. We further demonstrate that the current models proposed for the entanglement between cyclic polymers which are based on cyclic chains moving through an array of fixed obstacles cannot correctly describe the motion of the cyclic chain under the entangled conditions. Our results rather suggest the mutual relaxation of the cyclic chains, which underscore the necessity of developing a new model to describe the motion of cyclic polymer under the entangled conditions based on the mutual interaction of the chains.

  10. Probing the conductance superposition law in single-molecule circuits with parallel paths.

    Science.gov (United States)

    Vazquez, H; Skouta, R; Schneebeli, S; Kamenetska, M; Breslow, R; Venkataraman, L; Hybertsen, M S

    2012-10-01

    According to Kirchhoff's circuit laws, the net conductance of two parallel components in an electronic circuit is the sum of the individual conductances. However, when the circuit dimensions are comparable to the electronic phase coherence length, quantum interference effects play a critical role, as exemplified by the Aharonov-Bohm effect in metal rings. At the molecular scale, interference effects dramatically reduce the electron transfer rate through a meta-connected benzene ring when compared with a para-connected benzene ring. For longer conjugated and cross-conjugated molecules, destructive interference effects have been observed in the tunnelling conductance through molecular junctions. Here, we investigate the conductance superposition law for parallel components in single-molecule circuits, particularly the role of interference. We synthesize a series of molecular systems that contain either one backbone or two backbones in parallel, bonded together cofacially by a common linker on each end. Single-molecule conductance measurements and transport calculations based on density functional theory show that the conductance of a double-backbone molecular junction can be more than twice that of a single-backbone junction, providing clear evidence for constructive interference.

  11. Electron diffraction of CBr4 in superfluid helium droplets: A step towards single molecule diffraction

    Science.gov (United States)

    He, Yunteng; Zhang, Jie; Kong, Wei

    2016-07-01

    We demonstrate the practicality of electron diffraction of single molecules inside superfluid helium droplets using CBr4 as a testing case. By reducing the background from pure undoped droplets via multiple doping, with small corrections for dimers and trimers, clearly resolved diffraction rings of CBr4 similar to those of gas phase molecules can be observed. The experimental data from CBr4 doped droplets are in agreement with both theoretical calculations and with experimental results of gaseous species. The abundance of monomers and clusters in the droplet beam also qualitatively agrees with the Poisson statistics. Possible extensions of this approach to macromolecular ions will also be discussed. This result marks the first step in building a molecular goniometer using superfluid helium droplet cooling and field induced orientation. The superior cooling effect of helium droplets is ideal for field induced orientation, but the diffraction background from helium is a concern. This work addresses this background issue and identifies a possible solution. Accumulation of diffraction images only becomes meaningful when all images are produced from molecules oriented in the same direction, and hence a molecular goniometer is a crucial technology for serial diffraction of single molecules.

  12. Single Molecule Bioelectronics and Their Application to Amplification-Free Measurement of DNA Lengths

    Directory of Open Access Journals (Sweden)

    O. Tolga Gül

    2016-06-01

    Full Text Available As biosensing devices shrink smaller and smaller, they approach a scale in which single molecule electronic sensing becomes possible. Here, we review the operation of single-enzyme transistors made using single-walled carbon nanotubes. These novel hybrid devices transduce the motions and catalytic activity of a single protein into an electronic signal for real-time monitoring of the protein’s activity. Analysis of these electronic signals reveals new insights into enzyme function and proves the electronic technique to be complementary to other single-molecule methods based on fluorescence. As one example of the nanocircuit technique, we have studied the Klenow Fragment (KF of DNA polymerase I as it catalytically processes single-stranded DNA templates. The fidelity of DNA polymerases makes them a key component in many DNA sequencing techniques, and here we demonstrate that KF nanocircuits readily resolve DNA polymerization with single-base sensitivity. Consequently, template lengths can be directly counted from electronic recordings of KF’s base-by-base activity. After measuring as few as 20 copies, the template length can be determined with <1 base pair resolution, and different template lengths can be identified and enumerated in solutions containing template mixtures.

  13. Chitosan-coated anisotropic silver nanoparticles as a SERS substrate for single-molecule detection

    Science.gov (United States)

    Potara, Monica; Baia, Monica; Farcau, Cosmin; Astilean, Simion

    2012-02-01

    Surface-enhanced Raman spectroscopy (SERS) is a technique that has become widely used for identifying and providing structural information about molecular species in low concentration. There is an ongoing interest in finding optimum particle size, shape and spatial distribution for optimizing the SERS substrates and pushing the sensitivity toward the single-molecule detection limit. This work reports the design of a novel, biocompatible SERS substrate based on small clusters of anisotropic silver nanoparticles embedded in a film of chitosan biopolymer. The SERS efficiency of the biocompatible film is assessed by employing Raman imaging and spectroscopy of adenine, a significant biological molecule. By combining atomic force microscopy with SERS imaging we find that the chitosan matrix enables the formation of small clusters of silver nanoparticles, with junctions and gaps that greatly enhance the Raman intensities of the adsorbed molecules. The study demonstrates that chitosan-coated anisotropic silver nanoparticle clusters are sensitive enough to be implemented as effective plasmonic substrates for SERS detection of nonresonant analytes at the single-molecule level.

  14. Single molecule PCR reveals similar patterns of non-homologous DSB repair in tobacco and Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Andrew H Lloyd

    Full Text Available DNA double strand breaks (DSBs occur constantly in eukaryotes. These potentially lethal DNA lesions are repaired efficiently by two major DSB repair pathways: homologous recombination and non-homologous end joining (NHEJ. We investigated NHEJ in Arabidopsis thaliana and tobacco (Nicotiana tabacum by introducing DNA double-strand breaks through inducible expression of I-SceI, followed by amplification of individual repair junction sequences by single-molecule PCR. Using this process over 300 NHEJ repair junctions were analysed in each species. In contrast to previously published variation in DSB repair between Arabidopsis and tobacco, the two species displayed similar DSB repair profiles in our experiments. The majority of repair events resulted in no loss of sequence and small (1-20 bp deletions occurred at a minority (25-45% of repair junctions. Approximately ~1.5% of the observed repair events contained larger deletions (>20 bp and a similar percentage contained insertions. Strikingly, insertion events in tobacco were associated with large genomic deletions at the site of the DSB that resulted in increased micro-homology at the sequence junctions suggesting the involvement of a non-classical NHEJ repair pathway. The generation of DSBs through inducible expression of I-SceI, in combination with single molecule PCR, provides an effective and efficient method for analysis of individual repair junctions and will prove a useful tool in the analysis of NHEJ.

  15. Single molecule fluorescence fluctuations of the cyanine dyes linked covalently to DNA

    Institute of Scientific and Technical Information of China (English)

    LV Wei; CHEN XuDong; AUMILER Damir; XIA AnDong

    2009-01-01

    The intersystem crossing and isomerization dynamics of free-Cy3,Cy3-ssDNA,free-Cy5 and Cy5-ssDNA are obtained through simple analysis of rapid on/off blinking from single molecule fluo rescence intensity time-traces and the fluorescence correlation spectroscopy(FCS).The on-and off-times observed in fluorescence time traces of single cyanine dyes are due to the formation of the triplet state and isomerization,where both the interaction with DNA and long central polymethine chain of cyanine dyes increase the barriers of isomerization,leading to long off-time.The results indicate that the single molecule fluorescence fluctuation together with the resulting second autocorrelation analysis are powerful methods for determining the triplet state and isomerization dynamics,which could be the simple techniques and complementary to other spectroscopic techniques,such as fluorescence decay measurement and laser flash photolysis to study the photophysical processes of complex molecules.

  16. madSTORM: a superresolution technique for large-scale multiplexing at single-molecule accuracy.

    Science.gov (United States)

    Yi, Jason; Manna, Asit; Barr, Valarie A; Hong, Jennifer; Neuman, Keir C; Samelson, Lawrence E

    2016-11-07

    Investigation of heterogeneous cellular structures using single-molecule localization microscopy has been limited by poorly defined localization accuracy and inadequate multiplexing capacity. Using fluorescent nanodiamonds as fiducial markers, we define and achieve localization precision required for single-molecule accuracy in dSTORM images. Coupled with this advance, our new multiplexing strategy, madSTORM, allows accurate targeting of multiple molecules using sequential binding and elution of fluorescent antibodies. madSTORM is used on an activated T-cell to localize 25 epitopes, 14 of which are on components of the same multimolecular T-cell receptor complex. We obtain an average localization precision of 2.6 nm, alignment error of 2.0 nm, and molecules within structures. Probing the molecular topology of complex signaling cascades and other heterogeneous networks is feasible with madSTORM. © 2016 Yi et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  17. Single molecule high-throughput footprinting of small and large DNA ligands.

    Science.gov (United States)

    Manosas, Maria; Camunas-Soler, Joan; Croquette, Vincent; Ritort, Felix

    2017-08-21

    Most DNA processes are governed by molecular interactions that take place in a sequence-specific manner. Determining the sequence selectivity of DNA ligands is still a challenge, particularly for small drugs where labeling or sequencing methods do not perform well. Here, we present a fast and accurate method based on parallelized single molecule magnetic tweezers to detect the sequence selectivity and characterize the thermodynamics and kinetics of binding in a single assay. Mechanical manipulation of DNA hairpins with an engineered sequence is used to detect ligand binding as blocking events during DNA unzipping, allowing determination of ligand selectivity both for small drugs and large proteins with nearly base-pair resolution in an unbiased fashion. The assay allows investigation of subtle details such as the effect of flanking sequences or binding cooperativity. Unzipping assays on hairpin substrates with an optimized flat free energy landscape containing all binding motifs allows determination of the ligand mechanical footprint, recognition site, and binding orientation.Mapping the sequence specificity of DNA ligands remains a challenge, particularly for small drugs. Here the authors develop a parallelized single molecule magnetic tweezers approach using engineered DNA hairpins that can detect sequence selectivity, thermodynamics and kinetics of binding for small drugs and large proteins.

  18. Single-molecule visualization of ROS-induced DNA damage in large DNA molecules.

    Science.gov (United States)

    Lee, Jinyong; Kim, Yongkyun; Lim, Sangyong; Jo, Kyubong

    2016-02-07

    We present a single molecule visualization approach for the quantitative analysis of reactive oxygen species (ROS) induced DNA damage, such as base oxidation and single stranded breaks in large DNA molecules. We utilized the Fenton reaction to generate DNA damage with subsequent enzymatic treatment using a mixture of three types of glycosylases to remove oxidized bases, and then fluorescent labeling on damaged lesions via nick translation. This single molecule analytical platform provided the capability to count one or two damaged sites per λ DNA molecule (48.5 kb), which were reliably dependent on the concentrations of hydrogen peroxide and ferrous ion at the micromolar level. More importantly, the labeled damaged sites that were visualized under a microscope provided positional information, which offered the capability of comparing DNA damaged sites with the in silico genomic map to reveal sequence specificity that GTGR is more sensitive to oxidative damage. Consequently, single DNA molecule analysis provides a sensitive analytical platform for ROS-induced DNA damage and suggests an interesting biochemical insight that the genome primarily active during the lysogenic cycle may have less probability for oxidative DNA damage.

  19. Large tunable image-charge effects in single-molecule junctions.

    Science.gov (United States)

    Perrin, Mickael L; Verzijl, Christopher J O; Martin, Christian A; Shaikh, Ahson J; Eelkema, Rienk; van Esch, Jan H; van Ruitenbeek, Jan M; Thijssen, Joseph M; van der Zant, Herre S J; Dulić, Diana

    2013-04-01

    Metal/organic interfaces critically determine the characteristics of molecular electronic devices, because they influence the arrangement of the orbital levels that participate in charge transport. Studies on self-assembled monolayers show molecule-dependent energy-level shifts as well as transport-gap renormalization, two effects that suggest that electric-field polarization in the metal substrate induced by the formation of image charges plays a key role in the alignment of the molecular energy levels with respect to the metal's Fermi energy. Here, we provide direct experimental evidence for an electrode-induced gap renormalization in single-molecule junctions. We study charge transport through single porphyrin-type molecules using electrically gateable break junctions. In this set-up, the position of the occupied and unoccupied molecular energy levels can be followed in situ under simultaneous mechanical control. When increasing the electrode separation by just a few ångströms, we observe a substantial increase in the transport gap and level shifts as high as several hundreds of meV. Analysis of this large and tunable gap renormalization based on atomic charges obtained from density functional theory confirms and clarifies the dominant role of image-charge effects in single-molecule junctions.

  20. Max Delbruck Prize in Biological Physics Lecture: Single-molecule protein folding and transition paths

    Science.gov (United States)

    Eaton, William

    2012-02-01

    The transition path is the tiny fraction of an equilibrium molecular trajectory when a transition occurs by crossing the free energy barrier between two states. It is a uniquely single-molecule property, and has not yet been observed experimentally for any system in the condensed phase. The importance of the transition path in protein folding is that it contains all of the mechanistic information on how a protein folds. As a major step toward observing transition paths, we have determined the average transition-path time for a fast and a slow-folding protein from a photon-by-photon analysis of fluorescence trajectories in single-molecule FRET experiments. While the folding rate coefficients differ by 10,000-fold, surprisingly, the transition-path times differ by less than 5-fold, showing that a successful barrier crossing event takes almost the same time for a fast- and a slow-folding protein, i.e. almost the same time to fold when it actually happens.

  1. Solution-based single molecule imaging of surface-immobilized conjugated polymers.

    Science.gov (United States)

    Dalgarno, Paul A; Traina, Christopher A; Penedo, J Carlos; Bazan, Guillermo C; Samuel, Ifor D W

    2013-05-15

    The photophysical behavior of conjugated polymers used in modern optoelectronic devices is strongly influenced by their structural dynamics and conformational heterogeneity, both of which are dependent on solvent properties. Single molecule studies of these polymer systems embedded in a host matrix have proven to be very powerful to investigate the fundamental fluorescent properties. However, such studies lack the possibility of examining the relationship between conformational dynamics and photophysical response in solution, which is the phase from which films for devices are deposited. By developing a synthetic strategy to incorporate a biotin moiety as a surface attachment point at one end of a polyalkylthiophene, we immobilize it, enabling us to make the first single molecule fluorescence measurements of conjugated polymers for long periods of time in solution. We identify fluctuation patterns in the fluorescence signal that can be rationalized in terms of photobleaching and stochastic transitions to reversible dark states. Moreover, by using the advantages of solution-based imaging, we demonstrate that the addition of oxygen scavengers improves optical stability by significantly decreasing the photobleaching rates.

  2. madSTORM: a superresolution technique for large-scale multiplexing at single-molecule accuracy

    Science.gov (United States)

    Yi, Jason; Manna, Asit; Barr, Valarie A.; Hong, Jennifer; Neuman, Keir C.; Samelson, Lawrence E.

    2016-01-01

    Investigation of heterogeneous cellular structures using single-molecule localization microscopy has been limited by poorly defined localization accuracy and inadequate multiplexing capacity. Using fluorescent nanodiamonds as fiducial markers, we define and achieve localization precision required for single-molecule accuracy in dSTORM images. Coupled with this advance, our new multiplexing strategy, madSTORM, allows accurate targeting of multiple molecules using sequential binding and elution of fluorescent antibodies. madSTORM is used on an activated T-cell to localize 25 epitopes, 14 of which are on components of the same multimolecular T-cell receptor complex. We obtain an average localization precision of 2.6 nm, alignment error of 2.0 nm, and <0.01% cross-talk. Combining these technical advances affords the ability to move beyond obtaining superresolved structures to defining spatial relationships among constituent molecules within structures. Probing the molecular topology of complex signaling cascades and other heterogeneous networks is feasible with madSTORM. PMID:27708141

  3. Probing static disorder in Arrhenius kinetics by single-molecule force spectroscopy

    Science.gov (United States)

    Kuo, Tzu-Ling; Garcia-Manyes, Sergi; Li, Jingyuan; Barel, Itay; Lu, Hui; Berne, Bruce J.; Urbakh, Michael; Klafter, Joseph; Fernández, Julio M.

    2010-01-01

    The widely used Arrhenius equation describes the kinetics of simple two-state reactions, with the implicit assumption of a single transition state with a well-defined activation energy barrier ΔE, as the rate-limiting step. However, it has become increasingly clear that the saddle point of the free-energy surface in most reactions is populated by ensembles of conformations, leading to nonexponential kinetics. Here we present a theory that generalizes the Arrhenius equation to include static disorder of conformational degrees of freedom as a function of an external perturbation to fully account for a diverse set of transition states. The effect of a perturbation on static disorder is best examined at the single-molecule level. Here we use force-clamp spectroscopy to study the nonexponential kinetics of single ubiquitin proteins unfolding under force. We find that the measured variance in ΔE shows both force-dependent and independent components, where the force-dependent component scales with F2, in excellent agreement with our theory. Our study illustrates a novel adaptation of the classical Arrhenius equation that accounts for the microscopic origins of nonexponential kinetics, which are essential in understanding the rapidly growing body of single-molecule data. PMID:20534507

  4. Simultaneous measurement of orientational and spectral dynamics of single molecules in nanostructured host-guest materials.

    Science.gov (United States)

    Jung, Christophe; Hellriegel, Christian; Platschek, Barbara; Wöhrle, Dieter; Bein, Thomas; Michaelis, Jens; Bräuchle, Christoph

    2007-05-02

    Nanostructured host-guest materials are important for various applications in nanoscience, and therefore, a thorough understanding of the dynamics of the guest molecules within the host matrix is needed. To this aim we used single-molecule fluorescence techniques to simultaneously examine the spectral and the orientational behavior of single molecules in nanostructured porous host materials. Two types of host-guest systems have been investigated. First, oxazine-1 dye molecules were fixed rigidly in the channels of microporous AlPO4-5 crystals. Second, it was shown that terrylenediimide (TDI) dye molecules move in the mesoporous network of an uncalcined M41S thin film. In the first sample both spectral fluctuations ( approximately 5 nm) and rare spectral jumps (>10 nm) of the emission maximum were observed. However, the orientation of the emission dipole of the dye molecules remained constant. In contrast, the second system showed orientational dynamics as well as substantially more spectral dynamics. In this system the molecules were found to move between different regions in the host. The typical motion of the TDI molecules in the pores of M41S was not continuous but characterized by jumps between specific sites. Moreover, the spectral and orientational dynamics were correlated and arose directly from the different environments that were being explored by the mobile molecule.

  5. Single molecule PCR reveals similar patterns of non-homologous DSB repair in tobacco and Arabidopsis.

    Science.gov (United States)

    Lloyd, Andrew H; Wang, Dong; Timmis, Jeremy N

    2012-01-01

    DNA double strand breaks (DSBs) occur constantly in eukaryotes. These potentially lethal DNA lesions are repaired efficiently by two major DSB repair pathways: homologous recombination and non-homologous end joining (NHEJ). We investigated NHEJ in Arabidopsis thaliana and tobacco (Nicotiana tabacum) by introducing DNA double-strand breaks through inducible expression of I-SceI, followed by amplification of individual repair junction sequences by single-molecule PCR. Using this process over 300 NHEJ repair junctions were analysed in each species. In contrast to previously published variation in DSB repair between Arabidopsis and tobacco, the two species displayed similar DSB repair profiles in our experiments. The majority of repair events resulted in no loss of sequence and small (1-20 bp) deletions occurred at a minority (25-45%) of repair junctions. Approximately ~1.5% of the observed repair events contained larger deletions (>20 bp) and a similar percentage contained insertions. Strikingly, insertion events in tobacco were associated with large genomic deletions at the site of the DSB that resulted in increased micro-homology at the sequence junctions suggesting the involvement of a non-classical NHEJ repair pathway. The generation of DSBs through inducible expression of I-SceI, in combination with single molecule PCR, provides an effective and efficient method for analysis of individual repair junctions and will prove a useful tool in the analysis of NHEJ.

  6. Single molecule FRET analysis of the 11 discrete steps of a DNA actuator.

    Science.gov (United States)

    Hildebrandt, Lasse L; Preus, Søren; Zhang, Zhao; Voigt, Niels V; Gothelf, Kurt V; Birkedal, Victoria

    2014-06-25

    DNA hybridization allows the design and assembly of dynamic DNA-based molecular devices. Such structures usually accomplish their function by the addition of fuel strands that drive the structure from one conformation to a new one or by internal changes in DNA hybridization. We report here on the performance and robustness of one of these devices by the detailed study of a dynamic DNA actuator. The DNA actuator was chosen as a model system, as it is the device with most discrete states to date. It is able to reversibly slide between 11 different states and can in principle function both autonomously and nonautonomously. The 11 states of the actuator were investigated by single molecule Förster Resonance Energy Transfer (smFRET) microscopy to obtain information on the static and dynamic heterogeneities of the device. Our results show that the DNA actuator can be effectively locked in several conformations with the help of well-designed DNA lock strands. However, the device also shows pronounced static and dynamic heterogeneities both in the unlocked and locked modes, and we suggest possible structural models. Our study allows for the direct visualization of the conformational diversity and movement of the dynamic DNA-based device and shows that complex DNA-based devices are inherently heterogeneous. Our results also demonstrate that single molecule techniques are a powerful tool for structural dynamics studies and provide a stringent test for the performance of molecular devices made out of DNA.

  7. Mapping single molecule sequencing reads using basic local alignment with successive refinement (BLASR: application and theory

    Directory of Open Access Journals (Sweden)

    Chaisson Mark J

    2012-09-01

    Full Text Available Abstract Background Recent methods have been developed to perform high-throughput sequencing of DNA by Single Molecule Sequencing (SMS. While Next-Generation sequencing methods may produce reads up to several hundred bases long, SMS sequencing produces reads up to tens of kilobases long. Existing alignment methods are either too inefficient for high-throughput datasets, or not sensitive enough to align SMS reads, which have a higher error rate than Next-Generation sequencing. Results We describe the method BLASR (Basic Local Alignment with Successive Refinement for mapping Single Molecule Sequencing (SMS reads that are thousands of bases long, with divergence between the read and genome dominated by insertion and deletion error. The method is benchmarked using both simulated reads and reads from a bacterial sequencing project. We also present a combinatorial model of sequencing error that motivates why our approach is effective. Conclusions The results indicate that it is possible to map SMS reads with high accuracy and speed. Furthermore, the inferences made on the mapability of SMS reads using our combinatorial model of sequencing error are in agreement with the mapping accuracy demonstrated on simulated reads.

  8. Single-molecule analysis of RAG-mediated V(D)J DNA cleavage.

    Science.gov (United States)

    Lovely, Geoffrey A; Brewster, Robert C; Schatz, David G; Baltimore, David; Phillips, Rob

    2015-04-07

    The recombination-activating gene products, RAG1 and RAG2, initiate V(D)J recombination during lymphocyte development by cleaving DNA adjacent to conserved recombination signal sequences (RSSs). The reaction involves DNA binding, synapsis, and cleavage at two RSSs located on the same DNA molecule and results in the assembly of antigen receptor genes. We have developed single-molecule assays to examine RSS binding by RAG1/2 and their cofactor high-mobility group-box protein 1 (HMGB1) as they proceed through the steps of this reaction. These assays allowed us to observe in real time the individual molecular events of RAG-mediated cleavage. As a result, we are able to measure the binding statistics (dwell times) and binding energies of the initial RAG binding events and characterize synapse formation at the single-molecule level, yielding insights into the distribution of dwell times in the paired complex and the propensity for cleavage on forming the synapse. Interestingly, we find that the synaptic complex has a mean lifetime of roughly 400 s and that its formation is readily reversible, with only ∼40% of observed synapses resulting in cleavage at consensus RSS binding sites.

  9. Incorporating single molecules into electrical circuits. The role of the chemical anchoring group.

    Science.gov (United States)

    Leary, Edmund; La Rosa, Andrea; González, M Teresa; Rubio-Bollinger, Gabino; Agraït, Nicolás; Martín, Nazario

    2015-02-21

    Constructing electronic circuits containing singly wired molecules is at the frontier of electrical device miniaturisation. When a molecule is wired between a pair of electrodes, the two points of contact are determined by the chemical anchoring groups, located at the ends of the molecule. At this point, when a bias is applied, electrons are channelled from a metallic environment through an extremely narrow constriction, essentially a single atom, into the molecule. The fact that this is such an abrupt change in the electron pathway makes the nature of the chemical anchoring groups critically important regarding the propagation of electrons from the electrode across the molecule. A delicate interplay of phenomena can occur when a molecule binds to the electrodes, which can produce profound differences in conductance properties depending on the anchoring group. This makes answering the question "what is the best anchoring group for single molecule studies" far from straight forward. In this review, we firstly take a look at techniques developed to 'wire-up' single molecules, as understanding their limitations is key when assessing a molecular wire's performance. We then analyse the various chemical anchoring groups, and discuss their merits and disadvantages. Finally we discuss some theoretical concepts of molecular junctions to understand how transport is affected by the nature of the chemical anchor group.

  10. The linear and non-linear magnetic response of a tri-uranium single molecule magnet

    Science.gov (United States)

    Shivaram, B. S.; Colineau, E.; Griveau, J.; Kumar, P.; Celli, V.

    2017-03-01

    We report here low temperature magnetization isotherms for the single molecule magnet, (UO2-L)3. By analyzing the low temperature magnetization in terms of M  =  χ 1 B  +  χ 3 B 3 we extract the linear susceptibility χ 1 and the leading order nonlinear susceptibility χ 3. We find that χ 1 exhibits a peak at a temperature of T 1  =  10.4 K with χ 3 also exhibiting a peak but at a reduced temperature T 3  =  5 K. At the lowest temperatures the isotherms exhibit a critical field B c  =  11.5 T marked by a clear point of inflection. A minimal Hamiltonian employing S  =  1 (pseudo) spins with only a single energy scale (successfully used to model the behavior of bulk f-electron metamagnets) is shown to provide a good description of the observed linear scaling between T 1, T 3 and B c. We further show that a Heisenberg Hamiltonian previously employed by Carretta et al (2013 J. Phys.: Condens. Matter 25 486001) to model this single molecule magnet gives formulas for the angle averaged susceptibilities (in the Ising limit) very similar to those of the minimal model.

  11. Force-activated reactivity switch in a bimolecular chemical reaction at the single molecule level

    Science.gov (United States)

    Szoszkiewicz, Robert; Garcia-Manyes, Sergi; Liang, Jian; Kuo, Tzu-Ling; Fernandez, Julio M.

    2010-03-01

    Mechanical force can deform the reacting molecules along a well-defined direction of the reaction coordinate. However, the effect of mechanical force on the free-energy surface that governs a chemical reaction is still largely unknown. The combination of protein engineering with single-molecule AFM force-clamp spectroscopy allows us to study the influence of mechanical force on the rate at which a protein disulfide bond is reduced by some reducing agents in a bimolecular substitution reaction (so-called SN2). We found that cleavage of a protein disulfide bond by hydroxide anions exhibits an abrupt reactivity ``switch'' at 500 pN, after which the accelerating effect of force on the rate of an SN2 chemical reaction greatly diminishes. We propose that an abrupt force-induced conformational change of the protein disulfide bond shifts its ground state, drastically changing its reactivity in SN2 chemical reactions. Our experiments directly demonstrate the action of a force-activated switch in the chemical reactivity of a single molecule. References: Sergi Garcia-Manyes, Jian Liang, Robert Szoszkiewicz, Tzu-Ling Kuo and Julio M. Fernandez, Nature Chemistry, 1, 236-242, 2009.

  12. Recent Advances in Biological Single-Molecule Applications of Optical Tweezers and Fluorescence Microscopy.

    Science.gov (United States)

    Hashemi Shabestari, M; Meijering, A E C; Roos, W H; Wuite, G J L; Peterman, E J G

    2017-01-01

    Over the past two decades, single-molecule techniques have evolved into robust tools to study many fundamental biological processes. The combination of optical tweezers with fluorescence microscopy and microfluidics provides a powerful single-molecule manipulation and visualization technique that has found widespread application in biology. In this combined approach, the spatial (~nm) and temporal (~ms) resolution, as well as the force scale (~pN) accessible to optical tweezers is complemented with the power of fluorescence microscopy. Thereby, it provides information on the local presence, identity, spatial dynamics, and conformational dynamics of single biomolecules. Together, these techniques allow comprehensive studies of, among others, molecular motors, protein-protein and protein-DNA interactions, biomolecular conformational changes, and mechanotransduction pathways. In this chapter, recent applications of fluorescence microscopy in combination with optical trapping are discussed. After an introductory section, we provide a description of instrumentation together with the current capabilities and limitations of the approaches. Next we summarize recent studies that applied this combination of techniques in biological systems and highlight some representative biological assays to mark the exquisite opportunities that optical tweezers combined with fluorescence microscopy provide. © 2017 Elsevier Inc. All rights reserved.

  13. Label-free free-solution nanoaperture optical tweezers for single molecule protein studies.

    Science.gov (United States)

    Al Balushi, Ahmed A; Kotnala, Abhay; Wheaton, Skyler; Gelfand, Ryan M; Rajashekara, Yashaswini; Gordon, Reuven

    2015-07-21

    Nanoaperture optical tweezers are emerging as useful label-free, free-solution tools for the detection and identification of biological molecules and their interactions at the single molecule level. Nanoaperture optical tweezers provide a low-cost, scalable, straight-forward, high-speed and highly sensitive (SNR ∼ 33) platform to observe real-time dynamics and to quantify binding kinetics of protein-small molecule interactions without the need to use tethers or labeling. Such nanoaperture-based optical tweezers, which are 1000 times more efficient than conventional optical tweezers, have been used to trap and isolate single DNA molecules and to study proteins like p53, which has been claimed to be in mutant form for 75% of human cancers. More recently, nanoaperture optical tweezers have been used to probe the low-frequency (in the single digit wavenumber range) Raman active modes of single nanoparticles and proteins. Here we review recent developments in the field of nanoaperture optical tweezers and how they have been applied to protein-antibody interactions, protein-small molecule interactions including single molecule binding kinetics, and protein-DNA interactions. In addition, recent works on the integration of nanoaperture optical tweezers at the tip of optical fiber and in microfluidic environments are presented.

  14. Probing static disorder in Arrhenius kinetics by single-molecule force spectroscopy.

    Science.gov (United States)

    Kuo, Tzu-Ling; Garcia-Manyes, Sergi; Li, Jingyuan; Barel, Itay; Lu, Hui; Berne, Bruce J; Urbakh, Michael; Klafter, Joseph; Fernández, Julio M

    2010-06-22

    The widely used Arrhenius equation describes the kinetics of simple two-state reactions, with the implicit assumption of a single transition state with a well-defined activation energy barrier DeltaE, as the rate-limiting step. However, it has become increasingly clear that the saddle point of the free-energy surface in most reactions is populated by ensembles of conformations, leading to nonexponential kinetics. Here we present a theory that generalizes the Arrhenius equation to include static disorder of conformational degrees of freedom as a function of an external perturbation to fully account for a diverse set of transition states. The effect of a perturbation on static disorder is best examined at the single-molecule level. Here we use force-clamp spectroscopy to study the nonexponential kinetics of single ubiquitin proteins unfolding under force. We find that the measured variance in DeltaE shows both force-dependent and independent components, where the force-dependent component scales with F(2), in excellent agreement with our theory. Our study illustrates a novel adaptation of the classical Arrhenius equation that accounts for the microscopic origins of nonexponential kinetics, which are essential in understanding the rapidly growing body of single-molecule data.

  15. Excitonic Coupling in Linear and Trefoil Trimer Perylenediimide Molecules Probed by Single-Molecule Spectroscopy

    KAUST Repository

    Yoo, Hyejin

    2012-10-25

    Perylenediimide (PDI) molecules are promising building blocks for photophysical studies of electronic interactions within multichromophore arrays. Such PDI arrays are important materials for fabrication of molecular nanodevices such as organic light-emitting diodes, organic semiconductors, and biosensors because of their high photostability, chemical and physical inertness, electron affinity, and high tinctorial strength over the entire visible spectrum. In this work, PDIs have been organized into linear (L3) and trefoil (T3) trimer molecules and investigated by single-molecule fluorescence microscopy to probe the relationship between molecular structures and interchromophoric electronic interactions. We found a broad distribution of coupling strengths in both L3 and T3 and hence strong/weak coupling between PDI units by monitoring spectral peak shifts in single-molecule fluorescence spectra upon sequential photobleaching of each constituent chromophore. In addition, we used a wide-field defocused imaging technique to resolve heterogeneities in molecular structures of L3 and T3 embedded in a PMMA polymer matrix. A systematic comparison between the two sets of experimental results allowed us to infer the correlation between intermolecular interactions and molecular structures. Our results show control of the PDI intermolecular interactions using suitable multichromophoric structures. © 2012 American Chemical Society.

  16. Single-Molecule Imaging of DNAs with Sticky Ends at Water/Fused Silica Interface

    Energy Technology Data Exchange (ETDEWEB)

    Isailovic, Slavica [Iowa State Univ., Ames, IA (United States)

    2005-01-01

    Total internal reflection fluorescence microscopy (TIRFM) was used to study intermolecular interactions of DNAs with unpaired (sticky) ends of different lengths at water/fused silica interface at the single-molecule level. Evanescent field residence time, linear velocity and adsorption/desorption frequency were measured in a microchannel for individual DNA molecules from T7, Lambda, and PSP3 phages at various pH values. The longest residence times and the highest adsorption/desorption frequencies at the constant flow at pH 5.5 were found for PSP3 DNA, followed by lower values for Lambda DNA, and the lowest values for T7 DNA. Since T7, Lambda, and PSP3 DNA molecules contain none, twelve and nineteen unpaired bases, respectively, it was concluded that the affinity of DNAs for the surface increases with the length of the sticky ends. This confirms that hydrophobic and hydrogen-bonding interactions between sticky ends and fused-silica surface are driving forces for DNA adsorption at the fused-silica surface. Described single-molecule methodology and results therein can be valuable for investigation of interactions in liquid chromatography, as well as for design of DNA hybridization sensors and drug delivery systems.

  17. Single-molecule enzymology based on the principle of the Millikan oil drop experiment.

    Science.gov (United States)

    Leiske, Danielle L; Chow, Andrea; Dettloff, Roger; Farinas, Javier

    2014-03-01

    The ability to monitor the progress of single-molecule enzyme reactions is often limited by the need to use fluorogenic substrates. A method based on the principle of the Millikan oil drop experiment was developed to monitor the change in charge of substrates bound to a nanoparticle and offers a means of detecting single-enzyme reactions without fluorescence detection. As a proof of principle of the ability to monitor reactions that result in a change in substrate charge, polymerization on a single DNA template was detected. A custom oligonucleotide was synthesized that allowed for the attachment of single DNA templates to gold nanoparticles with a single polymer tether. The nanoparticles were then tethered to the surface of a microfluidic channel where the positions of the nanoparticles, subjected to an oscillating electric field, were monitored using dark field microscopy. With short averaging times, the signal-to-noise level was low enough to discriminate changes in charge of less than 1.2%. Polymerization of a long DNA template demonstrated the ability to use the system to monitor single-molecule enzymatic activity. Finally, nanoparticle surfaces were modified with thiolated moieties to reduce and/or shield the number of unproductive charges and allow for improved sensitivity.

  18. Identification of intensity ratio break points from photon arrival trajectories in ratiometric single molecule spectroscopy.

    Science.gov (United States)

    Bingemann, Dieter; Allen, Rachel M

    2012-01-01

    We describe a statistical method to analyze dual-channel photon arrival trajectories from single molecule spectroscopy model-free to identify break points in the intensity ratio. Photons are binned with a short bin size to calculate the logarithm of the intensity ratio for each bin. Stochastic photon counting noise leads to a near-normal distribution of this logarithm and the standard student t-test is used to find statistically significant changes in this quantity. In stochastic simulations we determine the significance threshold for the t-test's p-value at a given level of confidence. We test the method's sensitivity and accuracy indicating that the analysis reliably locates break points with significant changes in the intensity ratio with little or no error in realistic trajectories with large numbers of small change points, while still identifying a large fraction of the frequent break points with small intensity changes. Based on these results we present an approach to estimate confidence intervals for the identified break point locations and recommend a bin size to choose for the analysis. The method proves powerful and reliable in the analysis of simulated and actual data of single molecule reorientation in a glassy matrix.

  19. Single-molecule protein unfolding and translocation by an ATP-fueled proteolytic machine.

    Science.gov (United States)

    Aubin-Tam, Marie-Eve; Olivares, Adrian O; Sauer, Robert T; Baker, Tania A; Lang, Matthew J

    2011-04-15

    All cells employ ATP-powered proteases for protein-quality control and regulation. In the ClpXP protease, ClpX is a AAA+ machine that recognizes specific protein substrates, unfolds these molecules, and then translocates the denatured polypeptide through a central pore and into ClpP for degradation. Here, we use optical-trapping nanometry to probe the mechanics of enzymatic unfolding and translocation of single molecules of a multidomain substrate. Our experiments demonstrate the capacity of ClpXP and ClpX to perform mechanical work under load, reveal very fast and highly cooperative unfolding of individual substrate domains, suggest a translocation step size of 5-8 amino acids, and support a power-stroke model of denaturation in which successful enzyme-mediated unfolding of stable domains requires coincidence between mechanical pulling by the enzyme and a transient stochastic reduction in protein stability. We anticipate that single-molecule studies of the mechanical properties of other AAA+ proteolytic machines will reveal many shared features with ClpXP.

  20. BayFish: Bayesian inference of transcription dynamics from population snapshots of single-molecule RNA FISH in single cells

    National Research Council Canada - National Science Library

    Mariana Gomez-Schiavon; Liang-Fu Chen; Anne E West; Nicolas E Buchler

    2017-01-01

    Single-molecule RNA fluorescence in situ hybridization (smFISH) provides unparalleled resolution in the measurement of the abundance and localization of nascent and mature RNA transcripts in fixed, single cells...

  1. Single molecule narrowfield microscopy of protein-DNA binding dynamics in glucose signal transduction of live yeast cells

    CERN Document Server

    Wollman, Adam J M

    2016-01-01

    Single-molecule narrowfield microscopy is a versatile tool to investigate a diverse range of protein dynamics in live cells and has been extensively used in bacteria. Here, we describe how these methods can be extended to larger eukaryotic, yeast cells, which contain sub-cellular compartments. We describe how to obtain single-molecule microscopy data but also how to analyse these data to track and obtain the stoichiometry of molecular complexes diffusing in the cell. We chose glucose mediated signal transduction of live yeast cells as the system to demonstrate these single-molecule techniques as transcriptional regulation is fundamentally a single molecule problem - a single repressor protein binding a single binding site in the genome can dramatically alter behaviour at the whole cell and population level.

  2. The physics of pulling polyproteins: a review of single molecule force spectroscopy using the AFM to study protein unfolding

    Science.gov (United States)

    Hughes, Megan L.; Dougan, Lorna

    2016-07-01

    One of the most exciting developments in the field of biological physics in recent years is the ability to manipulate single molecules and probe their properties and function. Since its emergence over two decades ago, single molecule force spectroscopy has become a powerful tool to explore the response of biological molecules, including proteins, DNA, RNA and their complexes, to the application of an applied force. The force versus extension response of molecules can provide valuable insight into its mechanical stability, as well as details of the underlying energy landscape. In this review we will introduce the technique of single molecule force spectroscopy using the atomic force microscope (AFM), with particular focus on its application to study proteins. We will review the models which have been developed and employed to extract information from single molecule force spectroscopy experiments. Finally, we will end with a discussion of future directions in this field.

  3. Entropy Maximization

    Indian Academy of Sciences (India)

    K B Athreya

    2009-09-01

    It is shown that (i) every probability density is the unique maximizer of relative entropy in an appropriate class and (ii) in the class of all pdf that satisfy $\\int fh_id_=_i$ for $i=1,2,\\ldots,\\ldots k$ the maximizer of entropy is an $f_0$ that is proportional to $\\exp(\\sum c_i h_i)$ for some choice of $c_i$. An extension of this to a continuum of constraints and many examples are presented.

  4. Structure-property relationships in redox-gated single molecule junctions - A comparison of pyrrolo-tetrathiafulvalene and viologen redox groups

    DEFF Research Database (Denmark)

    Leary, E.; Higgins, S.J.; van Zalinge, H.

    2008-01-01

    We demonstrate that the electrical 'switching" behavior of single molecules connected between two electrode contacts can be controlled by altering their structure and electrochemical characteristics. The electrical properties of gold vertical bar molecule vertical bar gold single molecule junctio...

  5. Single Molecule Spectroelectrochemistry of Interfacial Charge Transfer Dynamics In Hybrid Organic Solar Cell

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Shanlin [Univ. of Alabama, Tuscaloosa, AL (United States)

    2014-11-16

    Our research under support of this DOE grant is focused on applied and fundamental aspects of model organic solar cell systems. Major accomplishments are: 1) we developed a spectroelectorchemistry technique of single molecule single nanoparticle method to study charge transfer between conjugated polymers and semiconductor at the single molecule level. The fluorescence of individual fluorescent polymers at semiconductor surfaces was shown to exhibit blinking behavior compared to molecules on glass substrates. Single molecule fluorescence excitation anisotropy measurements showed the conformation of the polymer molecules did not differ appreciably between glass and semiconductor substrates. The similarities in molecular conformation suggest that the observed differences in blinking activity are due to charge transfer between fluorescent polymer and semiconductor, which provides additional pathways between states of high and low fluorescence quantum efficiency. Similar spectroelectrochemistry work has been done for small organic dyes for understand their charge transfer dynamics on various substrates and electrochemical environments; 2) We developed a method of transferring semiconductor nanoparticles (NPs) and graphene oxide (GO) nanosheets into organic solvent for a potential electron acceptor in bulk heterojunction organic solar cells which employed polymer semiconductor as the electron donor. Electron transfer from the polymer semiconductor to semiconductor and GO in solutions and thin films was established through fluorescence spectroscopy and electroluminescence measurements. Solar cells containing these materials were constructed and evaluated using transient absorption spectroscopy and dynamic fluorescence techniques to understand the charge carrier generation and recombination events; 3) We invented a spectroelectorchemistry technique using light scattering and electroluminescence for rapid size determination and studying electrochemistry of single NPs in an

  6. Exploring novel techniques for the single molecule toolkit: Vesicle encapsulation and immobilization

    Science.gov (United States)

    Okumus, Burak

    Tracking asynchronous time evolution of single biological molecules provides unique insights into detailed reaction kinetics and pathways. Such measurements are frequently made on macromolecules that are tethered on a glass surface. However, there have been reports of variability of surface environment, and suspicion that observed heterogeneity of dynamic properties in single molecules might be an artifact of the local surface. A striking example is the hairpin ribozyme which was shown---in our lab---to exhibit two orders of magnitude variation in folding/unfolding kinetics between molecules. Moreover, a DNA with a sequence of human telomeric repeat exhibited extreme conformational diversity among six interconverting conformations. In order to find out the true nature of the observed heterogeneities, we encapsulated the ribozyme and the human telomeric DNA inside liposomes (i.e. artificially formed phospholipid vesicles) which were then tethered on the surface. Our data revealed similar behavior for encapsulated and the conventionally attached nucleic acid molecules. Although vesicle encapsulation offers a biologically relevant environment for many soluble proteins and nucleic acids, impermeability towards ions and other small molecules such as ATP hinders more general applications. We therefore developed methods to induce pores into vesicles which open up the possibility of using them as ultra-small, bio-mimetic, porous containers. Porous vesicles were then utilized to perform unique measurements for observing RecA filament formation, hairpin ribozyme cleavage and Rep helicase translocation within confined volumes. Novel features were revealed by such experiments unveiling new biological findings. We also discuss ideas to introduce pores that can be opened up via ultraviolet radiation for future applications. Aside from the encapsulation studies, we developed a new assay to detect the SNARE mediated membrane fusion by using surface attached proteliposomes. Such an

  7. Solid-phase single molecule biosensing using dual-color colocalization of fluorescent quantum dot nanoprobes

    Science.gov (United States)

    Liu, Jianbo; Yang, Xiaohai; Wang, Kemin; Wang, Qing; Liu, Wei; Wang, Dong

    2013-10-01

    The development of solid-phase surface-based single molecule imaging technology has attracted significant interest during the past decades. Here we demonstrate a sandwich hybridization method for highly sensitive detection of a single thrombin protein at a solid-phase surface based on the use of dual-color colocalization of fluorescent quantum dot (QD) nanoprobes. Green QD560-modified thrombin binding aptamer I (QD560-TBA I) were deposited on a positive poly(l-lysine) assembled layer, followed by bovine serum albumin blocking. It allowed the thrombin protein to mediate the binding of the easily detectable red QD650-modified thrombin binding aptamer II (QD650-TBA II) to the QD560-TBA I substrate. Thus, the presence of the target thrombin can be determined based on fluorescent colocalization measurements of the nanoassemblies, without target amplification or probe separation. The detection limit of this assay reached 0.8 pM. This fluorescent colocalization assay has enabled single molecule recognition in a separation-free detection format, and can serve as a sensitive biosensing platform that greatly suppresses the nonspecific adsorption false-positive signal. This method can be extended to other areas such as multiplexed immunoassay, single cell analysis, and real time biomolecule interaction studies.The development of solid-phase surface-based single molecule imaging technology has attracted significant interest during the past decades. Here we demonstrate a sandwich hybridization method for highly sensitive detection of a single thrombin protein at a solid-phase surface based on the use of dual-color colocalization of fluorescent quantum dot (QD) nanoprobes. Green QD560-modified thrombin binding aptamer I (QD560-TBA I) were deposited on a positive poly(l-lysine) assembled layer, followed by bovine serum albumin blocking. It allowed the thrombin protein to mediate the binding of the easily detectable red QD650-modified thrombin binding aptamer II (QD650-TBA II) to

  8. Mechanism for Si–Si Bond Rupture in Single Molecule Junctions

    Energy Technology Data Exchange (ETDEWEB)

    Li, Haixing; Kim, Nathaniel T.; Su, Timothy A.; Steigerwald, Michael L.; Nuckolls, Colin; Darancet, Pierre; Leighton, James L.; Venkataraman, Latha

    2016-12-14

    The stability of chemical bonds can be studied experimentally by rupturing single molecule junctions under applied voltage. Here, we compare voltage-induced bond rupture in two Si–Si backbones: one has no alternate conductive pathway whereas the other contains an additional naphthyl pathway in parallel to the Si–Si bond. We show that in contrast to the first system, the second can conduct through the naphthyl group when the Si–Si bond is ruptured using an applied voltage. We investigate this voltage induced Si–Si bond rupture by ab initio density functional theory calculations and molecular dynamics simulations that ultimately demonstrate that the excitation of molecular vibrational modes by tunneling electrons leads to homolytic Si–Si bond rupture.

  9. Bayesian field theoretic reconstruction of bond potential and bond mobility in single molecule force spectroscopy

    CERN Document Server

    Chang, Joshua C; Chou, Tom

    2015-01-01

    Quantifying the forces between and within macromolecules is a necessary first step in understanding the mechanics of molecular structure, protein folding, and enzyme function and performance. In such macromolecular settings, dynamic single-molecule force spectroscopy (DFS) has been used to distort bonds. The resulting responses, in the form of rupture forces, work applied, and trajectories of displacements, have been used to reconstruct bond potentials. Such approaches often rely on simple parameterizations of one-dimensional bond potentials, assumptions on equilibrium starting states, and/or large amounts of trajectory data. Parametric approaches typically fail at inferring complex-shaped bond potentials with multiple minima, while piecewise estimation may not guarantee smooth results with the appropriate behavior at large distances. Existing techniques, particularly those based on work theorems, also do not address spatial variations in the diffusivity that may arise from spatially inhomogeneous coupling to...

  10. Single Molecule Localization Microscopy of Mammalian Cell Nuclei on the Nanoscale

    Science.gov (United States)

    Szczurek, Aleksander; Xing, Jun; Birk, Udo J.; Cremer, Christoph

    2016-01-01

    Nuclear texture analysis is a well-established method of cellular pathology. It is hampered, however, by the limits of conventional light microscopy (ca. 200 nm). These limits have been overcome by a variety of super-resolution approaches. An especially promising approach to chromatin texture analysis is single molecule localization microscopy (SMLM) as it provides the highest resolution using fluorescent based methods. At the present state of the art, using fixed whole cell samples and standard DNA dyes, a structural resolution of chromatin in the 50–100 nm range is obtained using SMLM. We highlight how the combination of localization microscopy with standard fluorophores opens the avenue to a plethora of studies including the spatial distribution of DNA and associated proteins in eukaryotic cell nuclei with the potential to elucidate the functional organization of chromatin. These views are based on our experience as well as on recently published research in this field. PMID:27446198

  11. Single-Molecule Electronic Measurements of the Dynamic Flexibility of Histone Deacetylases

    Science.gov (United States)

    Froberg, James; You, Seungyong; Yu, Junru; Haldar, Manas; Sedigh, Abbas; Mallik, Sanku; Srivastava, D. K.; Choi, Yongki

    Due to their involvement in epigenetic regulation, histone deacetylases (HDACs) have gained considerable interest in designing drugs for treatment of a variety of human diseases including cancers. Recently, we applied a label-free, electronic single-molecule nano-circuit technique to gain insight into the contribution of the dynamic flexibility in HDACs structure during the course of substrates/ ligands binding and catalysis. We observed that HDAC8 has two major (dynamically interconvertible) conformational states, ``ground (catalytically unfavorable)'' and ``transition (catalytically favorable)''. In addition, we found that its cognate substrates/ligands reciprocally catalyze the transition of the ground to the transition state conformation of HDAC8. Thus, we propose that both enzymes and their substrates/ligands serve as ``catalysts'' in facilitating the structural changes of each other and promoting the overall chemical transformation reaction. Such new information provides the potential for designing a new class of mechanism-based inhibitors and activators of HDAC8 for treating human diseases.

  12. Label-Free, Single Molecule Resonant Cavity Detection: A Double-Blind Experimental Study

    Directory of Open Access Journals (Sweden)

    Maria V. Chistiakova

    2015-03-01

    Full Text Available Optical resonant cavity sensors are gaining increasing interest as a potential diagnostic method for a range of applications, including medical prognostics and environmental monitoring. However, the majority of detection demonstrations to date have involved identifying a “known” analyte, and the more rigorous double-blind experiment, in which the experimenter must identify unknown solutions, has yet to be performed. This scenario is more representative of a real-world situation. Therefore, before these devices can truly transition, it is necessary to demonstrate this level of robustness. By combining a recently developed surface chemistry with integrated silica optical sensors, we have performed a double-blind experiment to identify four unknown solutions. The four unknown solutions represented a subset or complete set of four known solutions; as such, there were 256 possible combinations. Based on the single molecule detection signal, we correctly identified all solutions. In addition, as part of this work, we developed noise reduction algorithms.

  13. Time-, Frequency-, and Wavevector-Resolved X-Ray Diffraction from Single Molecules

    CERN Document Server

    Bennett, Kochise; Zhang, Yu; Dorfman, Konstantin E; Mukamel, Shaul

    2014-01-01

    Using a quantum electrodynamic framework, we calculate the off-resonant scattering of a broad-band X-ray pulse from a sample initially prepared in an arbitrary superposition of electronic states. The signal consists of single-particle (incoherent) and two-particle (coherent) contributions that carry different particle form factors that involve different material transitions. Single-molecule experiments involving incoherent scattering are more influenced by inelastic processes compared to bulk measurements. The conditions under which the technique directly measures charge densities (and can be considered as diffraction) as opposed to correlation functions of the charge-density are specified. The results are illustrated with time- and wavevector-resolved signals from a single amino acid molecule (cysteine) following an impulsive excitation by a stimulated X-ray Raman process resonant with the sulfur K-edge. Our theory and simulations can guide future experimental studies on the structures of nano-particles and ...

  14. Bayesian Decision Tree for the Classification of the Mode of Motion in Single-Molecule Trajectories

    CERN Document Server

    Türkcan, Silvan

    2015-01-01

    Membrane proteins move in heterogeneous environments with spatially (sometimes temporally) varying friction and with biochemical interactions with various partners. It is important to reliably distinguish different modes of motion to improve our knowledge of the membrane architecture and to understand the nature of interactions between membrane proteins and their environments. Here, we present an analysis technique for single molecule tracking (SMT) trajectories that can determine the preferred model of motion that best matches observed trajectories. Information theory criteria, such as the Bayesian information criterion (BIC), the Akaike information criterion (AIC), and modified AIC (AICc), are used to select the preferred model. The considered group of models includes free Brownian motion, and confined motion in 2nd or 4th order potentials. We determine the best information criteria for classifying trajectories. We tested its limits through simulations matching large sets of experimental conditions and buil...

  15. InP nanowires from surfactant-free thermolysis of single molecule precursors.

    Science.gov (United States)

    Banerjee, Chiranjib; Hughes, David L; Bochmann, Manfred; Nann, Thomas

    2012-06-28

    Indium phosphide nanofibres were grown from a single-molecule precursor, [(PhCH(2))(2)InP(SiMe(3))(2)](2), using hot injection techniques by a solution-liquid-solid (SLS) process, under "surfactant-free" conditions and without the use of protic additives. The fibres are 85-95 nm in diameter and grow from In metal droplets of 100 nm diameter. The length of the nanofibres is a function of the precursor injection temperature (rather than the growth temperature) and can be varied from 6000 nm at 210 °C to 1000 nm at 310 °C. The indium metal tip can be readily removed under mild, non-etching conditions by treatment with thiophenol-P(SiMe(3))(3) mixtures.

  16. Single-molecule spectromicroscopy: a route towards sub-wavelength refractometry.

    Science.gov (United States)

    Anikushina, T A; Gladush, M G; Gorshelev, A A; Naumov, A V

    2015-01-01

    We suggest a novel approach for spatially resolved probing of local fluctuations of the refractive index n in solids by means of single-molecule (SM) spectroscopy. It is based on the dependence T1(n) of the effective radiative lifetime T1 of dye centres in solids on n due to the local-field effects. Detection of SM zero-phonon lines at low temperatures gives the values of the SM natural spectral linewidth (which is inversely proportional to T1) and makes it possible to reveal the distribution of the local n values in solids. Here we demonstrate this possibility on the example of amorphous polyethylene and polycrystalline naphthalene doped with terrylene. In particular, we show that the obtained distributions of lifetime limited spectral linewidths of terrylene molecules embedded into these matrices are due to the spatial fluctuations of the refractive index local values.

  17. A single-molecule approach to explore binding, uptake and transport of cancer cell targeting nanotubes

    Science.gov (United States)

    Lamprecht, C.; Plochberger, B.; Ruprecht, V.; Wieser, S.; Rankl, C.; Heister, E.; Unterauer, B.; Brameshuber, M.; Danzberger, J.; Lukanov, P.; Flahaut, E.; Schütz, G.; Hinterdorfer, P.; Ebner, A.

    2014-03-01

    In the past decade carbon nanotubes (CNTs) have been widely studied as a potential drug-delivery system, especially with functionality for cellular targeting. Yet, little is known about the actual process of docking to cell receptors and transport dynamics after internalization. Here we performed single-particle studies of folic acid (FA) mediated CNT binding to human carcinoma cells and their transport inside the cytosol. In particular, we employed molecular recognition force spectroscopy, an atomic force microscopy based method, to visualize and quantify docking of FA functionalized CNTs to FA binding receptors in terms of binding probability and binding force. We then traced individual fluorescently labeled, FA functionalized CNTs after specific uptake, and created a dynamic ‘roadmap’ that clearly showed trajectories of directed diffusion and areas of nanotube confinement in the cytosol. Our results demonstrate the potential of a single-molecule approach for investigation of drug-delivery vehicles and their targeting capacity.

  18. Single-molecule studies on individual peptides and peptide assemblies on surfaces.

    Science.gov (United States)

    Yang, Yanlian; Wang, Chen

    2013-10-13

    This review is intended to reflect the recent progress in single-molecule studies of individual peptides and peptide assemblies on surfaces. The structures and the mechanism of peptide assembly are discussed in detail. The contents include the following topics: structural analysis of single peptide molecules, adsorption and assembly of peptides on surfaces, folding structures of the amyloid peptides, interaction between amyloid peptides and dye or drug molecules, and modulation of peptide assemblies by small molecules. The explorations of peptide adsorption and assembly will benefit the understanding of the mechanisms for protein-protein interactions, protein-drug interactions and the pathogenesis of amyloidoses. The investigations on peptide assembly and its modulations could also provide a potential approach towards the treatment of the amyloidoses.

  19. Molecular Water Lilies: Orienting Single Molecules in a Polymer Film by Solvent Vapor Annealing

    CERN Document Server

    Wuersch, Dominik; Eder, Theresa; Aggarwal, A Vikas; Idelson, Alissa; Hoeger, Sigurd; Lupton, John M; Vogelsang, Jan

    2016-01-01

    The microscopic orientation and position of photoactive molecules is crucial to the operation of optoelectronic devices such as OLEDs and solar cells. Here, we introduce a shape-persistent macrocyclic molecule as an excellent fluorescent probe to simply measure (i) its orientation by rotating the excitation polarization and recording the strength of modulation in photoluminescence (PL), and (ii) its position in a film by analyzing the overall PL brightness at the molecular level. The unique shape, the absorption and the fluorescence properties of this probe yields information on molecular orientation and position. We control orientation and positioning of the probe in a polymer film by solvent vapor annealing (SVA). During the SVA process the molecules accumulate at the polymer/air interface, where they adopt a flat conformation, much like water lilies on the surface of a pond. The results are significant for OLED fabrication and single-molecule spectroscopy (SMS) in general.

  20. Single-molecule fluorescence polarization study of conformational change in archaeal group II chaperonin.

    Directory of Open Access Journals (Sweden)

    Ryo Iizuka

    Full Text Available Group II chaperonins found in archaea and in eukaryotic cytosol mediate protein folding without a GroES-like cofactor. The function of the cofactor is substituted by the helical protrusion at the tip of the apical domain, which forms a built-in lid on the central cavity. Although many studies on the change in lid conformation coupled to the binding and hydrolysis of nucleotides have been conducted, the molecular mechanism of lid closure remains poorly understood. Here, we performed a single-molecule polarization modulation to probe the rotation of the helical protrusion of a chaperonin from a hyperthermophilic archaeum, Thermococcus sp. strain KS-1. We detected approximately 35° rotation of the helical protrusion immediately after photorelease of ATP. The result suggests that the conformational change from the open lid to the closed lid state is responsible for the approximately 35° rotation of the helical protrusion.