WorldWideScience

Sample records for absolute radioactivity measurements

  1. Recent Progress in Liquid Scintillation Counting System for Absolute Radioactivity Measurement

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The triple to double coincidence ratio (TDCR) method is an absolute activity measurement method in liquid scintillation counting, especially developed for pure β- and EC-emitters activity standardization. Such a liquid scintillation counting system is now

  2. Absolute luminosity measurements at LHCb

    CERN Document Server

    Hopchev, Plamen

    2011-01-01

    Absolute luminosity measurements are of general interest for colliding-beam experiments at storage rings. These measurements are necessary to determine the absolute cross-sections of reaction processes and are valuable to quantify the performance of the accelerator. LHCb has applied two methods to determine the absolute scale of its luminosity measurements for proton-proton collisions at the LHC running at a centre-of-mass energy of 7 TeV. In addition to the classic ``van der Meer'' scan method a novel technique has been developed which makes use of direct imaging of the individual beams using both proton-gas and proton-proton interactions. The beam imaging method is made possible by the high resolution of the LHCb vertex detector and the close proximity of the detector to the beams, and allows beam parameters such as positions, angles and widths to be determined. We describe both methods and compare the two results. In addition, we present the techniques used to transport the absolute luminosity measurement ...

  3. Environmental radioactivity. Measurement and monitoring

    International Nuclear Information System (INIS)

    The contribution on environmental radioactivity covers the following issues: natural and artificial radioactivity; continuous monitoring of radioactivity; monitoring authorities and measurement; radioactivity in the living environment; radioactivity in food and feeding stuff; radioactivity of game meat and wild-growing mushrooms; radioactivity in mines; radioactivity in the research center Rossendorf.

  4. Radioactivity and its measurement

    CERN Document Server

    Mann, W B; Garfinkel, S B

    1980-01-01

    Begins with a description of the discovery of radioactivity and the historic research of such pioneers as the Curies and Rutherford. After a discussion of the interactions of &agr;, &bgr; and &ggr; rays with matter, the energetics of the different modes of nuclear disintegration are considered in relation to the Einstein mass-energy relationship as applied to radioactive transformations. Radiation detectors and radioactivity measurements are also discussed

  5. Measurement of the absolute speed is possible?

    OpenAIRE

    Sergey V. Shevchenko; Tokarevsky, Vladimir V.

    2016-01-01

    One of popular problems, which  are experimentally studied in physics in a long time, is the testing of the special relativity theory, first of all – measurements of isotropy and constancy of light speed; as well as attempts to determine so called “absolute speed”, i.e. the Earth speed in the absolute spacetime (absolute reference frame), if this spacetime (ARF) exists.  Corresponding experiments aimed at the measuring of proper speed of some reference frame in oth...

  6. Absolute radioactivity measurements of sup 1 sup 5 sup 3 Sm, sup 1 sup 8 sup 8 Re, sup 8 sup 9 Sr and national comparisons

    CERN Document Server

    Wang Jian Qing; Yao Yan Ling; Jia Xue Wen

    2003-01-01

    sup 1 sup 5 sup 3 Sm and sup 1 sup 8 sup 8 Re are short half-life nuclides and sup 8 sup 9 Sr is one of pure beta-decay nuclide, these nuclides have being applied to nuclear medicine. It's very important to carry out comparisons for radioactivity standardization of these nuclides. Several laboratories in China including our laboratory took part in the comparisons. The results from our laboratory are in good agreement with the mean values

  7. Absolute calibration in vivo measurement systems

    International Nuclear Information System (INIS)

    Lawrence Livermore National Laboratory (LLNL) is currently investigating a new method for obtaining absolute calibration factors for radiation measurement systems used to measure internally deposited radionuclides in vivo. Absolute calibration of in vivo measurement systems will eliminate the need to generate a series of human surrogate structures (i.e., phantoms) for calibrating in vivo measurement systems. The absolute calibration of in vivo measurement systems utilizes magnetic resonance imaging (MRI) to define physiological structure, size, and composition. The MRI image provides a digitized representation of the physiological structure, which allows for any mathematical distribution of radionuclides within the body. Using Monte Carlo transport codes, the emission spectrum from the body is predicted. The in vivo measurement equipment is calibrated using the Monte Carlo code and adjusting for the intrinsic properties of the detection system. The calibration factors are verified using measurements of existing phantoms and previously obtained measurements of human volunteers. 8 refs

  8. Precise Measurement of the Absolute Fluorescence Yield

    Science.gov (United States)

    Ave, M.; Bohacova, M.; Daumiller, K.; Di Carlo, P.; di Giulio, C.; San Luis, P. Facal; Gonzales, D.; Hojvat, C.; Hörandel, J. R.; Hrabovsky, M.; Iarlori, M.; Keilhauer, B.; Klages, H.; Kleifges, M.; Kuehn, F.; Monasor, M.; Nozka, L.; Palatka, M.; Petrera, S.; Privitera, P.; Ridky, J.; Rizi, V.; D'Orfeuil, B. Rouille; Salamida, F.; Schovanek, P.; Smida, R.; Spinka, H.; Ulrich, A.; Verzi, V.; Williams, C.

    2011-09-01

    We present preliminary results of the absolute yield of fluorescence emission in atmospheric gases. Measurements were performed at the Fermilab Test Beam Facility with a variety of beam particles and gases. Absolute calibration of the fluorescence yield to 5% level was achieved by comparison with two known light sources--the Cherenkov light emitted by the beam particles, and a calibrated nitrogen laser. The uncertainty of the energy scale of current Ultra-High Energy Cosmic Rays experiments will be significantly improved by the AIRFLY measurement.

  9. ABSOLUTE MEASUREMENT OF THE GANIL BEAM ENERGY

    NARCIS (Netherlands)

    CASANDJIAN, JM; MITTIG, W; BEUNARD, R; GAUDARD, L; LEPINESZILY, A; VILLARI, ACC; AUGER, G; BIANCHI, L; CUNSOLO, A; FOTI, A; LICHTENTHALER, R; PLAGNOL, E; SCHUTZ, Y; SIEMSSEN, RH; WIELECZKO, JP

    1993-01-01

    The energy of the GANIL cyclotron beam was measured on-line during the Pb-208 + Pb-208 elastic scattering experiment ''Search for Color van der Waals Force in the Pb-208 + Pb-208 Mott scattering'' with an absolute precision of 7 x 10(-5) at approximately 1.0 GeV, which represents an improvement of o

  10. An absolute measure for a key currency

    Science.gov (United States)

    Oya, Shunsuke; Aihara, Kazuyuki; Hirata, Yoshito

    It is generally considered that the US dollar and the euro are the key currencies in the world and in Europe, respectively. However, there is no absolute general measure for a key currency. Here, we investigate the 24-hour periodicity of foreign exchange markets using a recurrence plot, and define an absolute measure for a key currency based on the strength of the periodicity. Moreover, we analyze the time evolution of this measure. The results show that the credibility of the US dollar has not decreased significantly since the Lehman shock, when the Lehman Brothers bankrupted and influenced the economic markets, and has increased even relatively better than that of the euro and that of the Japanese yen.

  11. Measurement of absolute gravity acceleration in Firenze

    Directory of Open Access Journals (Sweden)

    M. de Angelis

    2011-01-01

    Full Text Available This paper reports the results from the accurate measurement of the acceleration of gravity g taken at two separate premises in the Polo Scientifico of the University of Firenze (Italy. In these laboratories, two separate experiments aiming at measuring the Newtonian constant and testing the Newtonian law at short distances are in progress. Both experiments require an independent knowledge on the local value of g. The only available datum, pertaining to the italian zero-order gravity network, was taken more than 20 years ago at a distance of more than 60 km from the study site. Gravity measurements were conducted using an FG5 absolute gravimeter, and accompanied by seismic recordings for evaluating the noise condition at the site. The absolute accelerations of gravity at the two laboratories are (980 492 160.6 ± 4.0 μGal and (980 492 048.3 ± 3.0 μGal for the European Laboratory for Non-Linear Spectroscopy (LENS and Dipartimento di Fisica e Astronomia, respectively. Other than for the two referenced experiments, the data here presented will serve as a benchmark for any future study requiring an accurate knowledge of the absolute value of the acceleration of gravity in the study region.

  12. Measurement of absolute gravity acceleration in Firenze

    Science.gov (United States)

    de Angelis, M.; Greco, F.; Pistorio, A.; Poli, N.; Prevedelli, M.; Saccorotti, G.; Sorrentino, F.; Tino, G. M.

    2011-01-01

    This paper reports the results from the accurate measurement of the acceleration of gravity g taken at two separate premises in the Polo Scientifico of the University of Firenze (Italy). In these laboratories, two separate experiments aiming at measuring the Newtonian constant and testing the Newtonian law at short distances are in progress. Both experiments require an independent knowledge on the local value of g. The only available datum, pertaining to the italian zero-order gravity network, was taken more than 20 years ago at a distance of more than 60 km from the study site. Gravity measurements were conducted using an FG5 absolute gravimeter, and accompanied by seismic recordings for evaluating the noise condition at the site. The absolute accelerations of gravity at the two laboratories are (980 492 160.6 ± 4.0) μGal and (980 492 048.3 ± 3.0) μGal for the European Laboratory for Non-Linear Spectroscopy (LENS) and Dipartimento di Fisica e Astronomia, respectively. Other than for the two referenced experiments, the data here presented will serve as a benchmark for any future study requiring an accurate knowledge of the absolute value of the acceleration of gravity in the study region.

  13. Radioactivity measurements principles and practice

    CERN Document Server

    Mann, W B; Spernol, A

    2012-01-01

    The authors have addressed the basic need for internationally consistent standards and methods demanded by the new and increasing use of radioactive materials, radiopharmaceuticals and labelled compounds. Particular emphasis is given to the basic and practical problems that may be encountered in measuring radioactivity. The text provides information and recommendations in the areas of radiation protection, focusing on quality control and the precautions necessary for the preparation and handling of radioactive substances. New information is also presented on the applications of both traditiona

  14. Neutronic measurements of radioactive waste

    International Nuclear Information System (INIS)

    This document presents the general matters involved in the radioactive waste management and the different non destructive assays of radioactivity. The neutronic measurements used in the characterization of waste drums containing emitters are described with more details, especially the active neutronic interrogation assays with prompt or delayed neutron detection: physical principle, signal processing and evaluation of the detection limit. (author)

  15. Environmental radioactivity measurements in Switzerland

    International Nuclear Information System (INIS)

    The survey of the environmental radioactivity in Switzerland is the responsibility of the Swiss Federal Radioactivity Surveillance Commission KUeR. All laboratories specializing in environmental radioactivity measurements in Switzerland take part in the KUeR-sampling and measurement program. This program includes measurements of air, water, soil, grass, important food sources as well as the body radioactivity of human beings. Special environmental sampling and measurement programs are implemented in the vicinity of the operating Nuclear Power Stations (NPS) and those under construction. To confirm compliance with the licensing requirements the various activities include all measurements to assess any radiological consequences of NPS operation. Such requirements are drawn up for each power-station by the Nuclear Safety Division of the Swiss Federal Office of Energy (ASK) and the KUeR. (author)

  16. Statistical aspects in radioactivity measurements

    International Nuclear Information System (INIS)

    This report contains a summary of basic concepts and formulae important for the treatment of errors and for calculating lower limits of detection in radioactivity measurements. Special attention has been paid to practical application and examples which are of interest for scientists working in this field. (orig./HP)

  17. High-precision absolute coordinate measurement using frequency scanned interferometry

    International Nuclear Information System (INIS)

    We reported previously on measurements of absolute distance with frequency scanned interferometry (FSI) method [1, 2]. In this paper, we extend the FSI method into 2-dimensional and 3-dimensional high-precision absolute coordinate measurements using a single laser. Absolute position is determined by several related absolute distances measured simultaneously. The achieved precision on X and Y in 2- and in 3-dimensional measurements is confirmed to be below 1 μm, while the precision in Z (in 3D case) is found to be about 2 μm. The last one is limited by the accuracy of the available translational stage used in the tests. A much more powerful laser and a better real-time data acquirement system will be required in case of measurements of larger absolute distances

  18. Absolute measurements of fast neutrons using yttrium

    International Nuclear Information System (INIS)

    Yttrium is presented as an absolute neutron detector for pulsed neutron sources. It has high sensitivity for detecting fast neutrons. Yttrium has the property of generating a monoenergetic secondary radiation in the form of a 909 keV gamma-ray caused by inelastic neutron interaction. It was calibrated numerically using MCNPX and does not need periodic recalibration. The total yttrium efficiency for detecting 2.45 MeV neutrons was determined to be fn∼4.1x10-4 with an uncertainty of about 0.27%. The yttrium detector was employed in the NX2 plasma focus experiments and showed the neutron yield of the order of 108 neutrons per discharge.

  19. An All Fiber White Light Interferometric Absolute Temperature Measurement System

    Directory of Open Access Journals (Sweden)

    Jeonggon Harrison Kim

    2008-11-01

    Full Text Available Recently the author of this article proposed a new signal processing algorithm for an all fiber white light interferometer. In this article, an all fiber white light interferometric absolute temperature measurement system is presented using the previously proposed signal processing algorithm. Stability and absolute temperature measurement were demonstrated. These two tests demonstrated the feasibility of absolute temperature measurement with an accuracy of 0.015 fringe and 0.0005 fringe, respectively. A hysteresis test from 373K to 873K was also presented. Finally, robustness of the sensor system towards laser diode temperature drift, AFMZI temperature drift and PZT non-linearity was demonstrated.

  20. Spectrometry techniques for radioactivity measurements

    International Nuclear Information System (INIS)

    The energy of the radiation emission following the nuclear decay is unique and the characteristic of the radio nuclide which undergoes decay. Thus measurement of the energy of the radiation offers a method of identifying the radio nuclides. The prime requirement of the energy measurement is a suitable detector which shows response proportional to the energy of the radiation rather than the presence of the radiation. The response from such detectors are suitably processed and distributed with respect to the signal strength which is proportional to incident energy. This distribution is normally referred as energy spectrum and is recorded in the multichannel analyser. The measurement of energy and intensity of radiation from the spectrum is called radiation spectrometry. Thus the radiation spectrometry allows the identification and quantification of radioactive isotopes in variety of matrices. The radiation spectrometry has now become a popular radioanalytical technique in wide area of nuclear fuel cycle programs. The popular spectrometry techniques commonly used for the radioactivity measurement and analysis are Alpha spectrometry, Gamma ray spectrometry and Beta spectrometry

  1. Absolute brightness temperature measurements at 2.1-mm wavelength

    Science.gov (United States)

    Ulich, B. L.

    1974-01-01

    Absolute measurements of the brightness temperatures of the Sun, new Moon, Venus, Mars, Jupiter, Saturn, and Uranus, and of the flux density of DR21 at 2.1-mm wavelength are reported. Relative measurements at 3.5-mm wavelength are also preented which resolve the absolute calibration discrepancy between The University of Texas 16-ft radio telescope and the Aerospace Corporation 15-ft antenna. The use of the bright planets and DR21 as absolute calibration sources at millimeter wavelengths is discussed in the light of recent observations.

  2. Absolute Branching Fraction Measurements of Exclusive D^0 Semileptonic Decays

    CERN Document Server

    Coan, T E; Liu, F; Artuso, M; Boulahouache, C; Blusk, S; Butt, J; Dambasuren, E; Dorjkhaidav, O; Li, J; Menaa, N; Mountain, R; Nandakumar, R; Redjimi, R; Sia, R; Skwarnicki, T; Stone, S; Wang, J C; Zhang, K; Csorna, S E; Bonvicini, G; Cinabro, D; Dubrovin, M; Briere, R A; Chen, G P; Chen, J; Ferguson, T; Tatishvili, G T; Vogel, H; Watkins, M E; Rosner, J L; Adam, N E; Alexander, J P; Berkelman, K; Cassel, D G; Credé, V; Duboscq, J E; Ecklund, K M; Ehrlich, R; Fields, L; Gibbons, L; Gittelman, B; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Hsu, L; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Mahlke-Krüger, H; Meyer, T O; Onyisi, P U E; Patterson, J R; Peterson, D; Pivarski, J; Phillips, E A; Riley, D; Ryd, A; Sadoff, A J; Schwarthoff, H; Shepherd, M R; Stroiney, S; Sun, W M; Urner, D; Wilksen, T; Weinberger, M; Athar, S B; Avery, P; Breva-Newell, L; Patel, R; Potlia, V; Stöck, H; Yelton, J; Rubin, P; Cawlfield, C; Eisenstein, B I; Gollin, G D; Karliner, I; Kim, D; Lowrey, N; Naik, P; Sedlack, C; Selen, M; Williams, J; Wiss, J; Edwards, K W; Besson, D; Pedlar, T K; Cronin-Hennessy, D; Gao, K Y; Gong, D T; Kubota, Y; Klein, T; Lang, B W; Li, S Z; Poling, R; Scott, A W; Smith, A; Dobbs, S; Metreveli, Z V; Seth, K K; Tomaradze, A G; Zweber, P; Ernst, J; Mahmood, A H; Severini, H; Asner, D M; Dytman, S A; Love, W; Mehrabyan, S S; Müller, J A; Savinov, V; Li, Z; López, A; Méndez, H; Ramírez, J; Huang, G S; Miller, D H; Pavlunin, V; Sanghi, B; Shibata, E I; Shipsey, I P J; Adams, G S; Chasse, M; Cravey, M; Cummings, J P; Danko, I; Napolitano, J; He, Q; Muramatsu, H; Park, C S; Park, W; Thorndike, E H

    2005-01-01

    With the first data sample collected by the CLEO-c detector at the psi(3770) resonance we have studied four exclusive semileptonic decays of the D0 meson. Our results include the first observation and absolute branching fraction measurement for D0 --> rho- e+ nu_e and improved measurements of the absolute branching fractions for D0 decays to K- e+ nu_e, pi- e+ nu_e, and K*- e+ nu_e.

  3. Radioactivity measurements and control solutions

    International Nuclear Information System (INIS)

    In our department, in the last years, a new line of production has been developed devoted to the radioactivity measurements (portal monitor, gamma source detector, neutron monitor). Instruments of different design (hand-held, portals or steady-state) are intended for detection and locating of radioactive sources. Monitors are intended to detect radioactive and special nuclear materials in vehicles, pedestrians, luggage, as well as for illegal traffic prevention of radioactive sources. Monitors provide audio and visual alarm signals when radioactive and/or special nuclear materials are detected. Neutron dosimeters are designed for the determination of dose equivalent rate around neutron generators or sources. All devices can be recommended for use to officers of customs, border guard and emergency services, civil defense, fire brigades, police and military departments, nuclear research or power facilities. Incorporating micro controllers and new design, our products span almost all the spectra of radioactivity detection (gamma, beta, X and neutrons). No special knowledge is needed to operate these instruments as all service functions are performed automatically (self-tests, background updating and threshold calculation). The Portal monitor is intended to be a checkpoint in contamination control or in unauthorized traffic of radioactive materials. The portal monitor can be installed both in open, unprotected to environmental conditions areas or in enclosed areas. It may be used at pedestrian cross border points, at check points of Nuclear Power Plants, enterprises of nuclear industry, weapons manufacturing and storage plants, nuclear waste disposal and storage sites, at the entrances to steel plants, the post-offices and airports, the governmental offices, banks, private companies etc. The monitor provides audio alarming signals when radioactive and/or special nuclear materials are detected. The monitor consists in a portal frame, which sustains 5 detectors. Each

  4. Absolute density measurements in the middle atmosphere

    Directory of Open Access Journals (Sweden)

    M. Rapp

    Full Text Available In the last ten years a total of 25 sounding rockets employing ionization gauges have been launched at high latitudes ( ~ 70° N to measure total atmospheric density and its small scale fluctuations in an altitude range between 70 and 110 km. While the determination of small scale fluctuations is unambiguous, the total density analysis has been complicated in the past by aerodynamical disturbances leading to densities inside the sensor which are enhanced compared to atmospheric values. Here, we present the results of both Monte Carlo simulations and wind tunnel measurements to quantify this aerodynamical effect. The comparison of the resulting ‘ram-factor’ profiles with empirically determined density ratios of ionization gauge measurements and falling sphere measurements provides excellent agreement. This demonstrates both the need, but also the possibility, to correct aerodynamical influences on measurements from sounding rockets. We have determined a total of 20 density profiles of the mesosphere-lower-thermosphere (MLT region. Grouping these profiles according to season, a listing of mean density profiles is included in the paper. A comparison with density profiles taken from the reference atmospheres CIRA86 and MSIS90 results in differences of up to 40%. This reflects that current reference atmospheres are a significant potential error source for the determination of mixing ratios of, for example, trace gas constituents in the MLT region.

    Key words. Middle atmosphere (composition and chemistry; pressure, density, and temperature; instruments and techniques

  5. Absolute small-angle measurement based on optical feedback interferometry

    Institute of Scientific and Technical Information of China (English)

    Jingang Zhong; Xianhua Zhang; Zhixiang Ju

    2008-01-01

    We present a simple but effective method for small-angle measurement based on optical feedback inter-ferometry (or laser self-mixing interferometry). The absolute zero angle can be defined at the biggest fringe amplitude point, so this method can also achieve absolute angle measurement. In order to verify the method, we construct an angle measurement system. The Fourier-transform method is used to analysis the interference signal. Rotation angles are experimentally measured with a resolution of 10-6 rad and a measurement range of approximately from -0.0007 to +0.0007 rad.

  6. Heat amount measuring method for radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Takakura, Masahide

    1998-10-09

    The present invention provides a device for easily and accurately measuring the amount of heat generated from high level radioactive wastes generated upon reprocessing of spent fuels. Namely, radioactive wastes are contained in a measuring vessel formed by using thick-walled iron plates. Air is circulated in the measuring vessel. The temperatures of charged air and discharged air are measured. Then the amount of heat dissipated from the radioactive wastes and the amount of heat dissipated from the iron plates due to absorption of {gamma}-rays to the iron plates are obtained based on the temperature difference. Accordingly, the amount of heat generated from the radioactive wastes can be measured accurately. In addition, there is provided an effect that the amount of heat generated from radioactive wastes can be measured by simple procedures of charging radioactive wastes in the measuring vessel and driving air circulation fans. (I.S.)

  7. On the Absolute Continuity of the Blackwell Measure

    Science.gov (United States)

    Bárány, Balázs; Kolossváry, István

    2015-04-01

    In 1957, Blackwell expressed the entropy of hidden Markov chains using a measure which can be characterised as an invariant measure for an iterated function system with place-dependent weights. This measure, called the Blackwell measure, plays a central role in understanding the entropy rate and other important characteristics of fundamental models in information theory. We show that for a suitable set of parameter values the Blackwell measure is absolutely continuous for almost every parameter in the case of binary symmetric channels.

  8. Mathematical Model for Absolute Magnetic Measuring Systems in Industrial Applications

    Science.gov (United States)

    Fügenschuh, Armin; Fügenschuh, Marzena; Ludszuweit, Marina; Mojsic, Aleksandar; Sokół, Joanna

    2015-09-01

    Scales for measuring systems are either based on incremental or absolute measuring methods. Incremental scales need to initialize a measurement cycle at a reference point. From there, the position is computed by counting increments of a periodic graduation. Absolute methods do not need reference points, since the position can be read directly from the scale. The positions on the complete scales are encoded using two incremental tracks with different graduation. We present a new method for absolute measuring using only one track for position encoding up to micrometre range. Instead of the common perpendicular magnetic areas, we use a pattern of trapezoidal magnetic areas, to store more complex information. For positioning, we use the magnetic field where every position is characterized by a set of values measured by a hall sensor array. We implement a method for reconstruction of absolute positions from the set of unique measured values. We compare two patterns with respect to uniqueness, accuracy, stability and robustness of positioning. We discuss how stability and robustness are influenced by different errors during the measurement in real applications and how those errors can be compensated.

  9. Absolute Branching Fraction Measurements of Exclusive D^+ Semileptonic Decays

    CERN Document Server

    Huang, G S; Pavlunin, V; Sanghi, B; Shipsey, I P J; Adams, G S; Chasse, M; Cravey, M; Cummings, J P; Danko, I; Napolitano, J; He, Q; Muramatsu, H; Park, C S; Park, W; Thorndike, E H; Coan, T E; Gao, Y S; Liu, F; Artuso, M; Boulahouache, C; Blusk, S; Butt, J; Dambasuren, E; Dorjkhaidav, O; Li, J; Menaa, N; Mountain, R; Nandakumar, R; Randrianarivony, K; Redjimi, R; Sia, R; Skwarnicki, T; Stone, S; Wang, J C; Zhang, K; Csorna, S E; Bonvicini, G; Cinabro, D; Dubrovin, M; Briere, R A; Chen, G P; Chen, J; Ferguson, T; Tatishvili, G T; Vogel, H; Watkins, M E; Rosner, J L; Adam, N E; Alexander, J P; Berkelman, K; Cassel, D G; Credé, V; Duboscq, J E; Ecklund, K M; Ehrlich, R; Fields, L; Gibbons, L; Gittelman, B; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Hsu, L; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Mahlke-Krüger, H; Meyer, T O; Onyisi, P U E; Patterson, J R; Peterson, D; Phillips, E A; Pivarski, J; Riley, D; Ryd, A; Sadoff, A J; Schwarthoff, H; Shi, X; Shepherd, M R; Stroiney, S; Sun, W M; Urner, D; Weaver, K M; Wilksen, T; Weinberger, M; Athar, S B; Avery, P; Breva-Newell, L; Patel, R; Potlia, V; Stöck, H; Yelton, J; Rubin, P; Cawlfield, C; Eisenstein, B I; Gollin, G D; Karliner, I; Kim, D; Lowrey, N; Naik, P; Sedlack, C; Selen, M; Williams, J; Wiss, J; Edwards, K W; Besson, D; Pedlar, T K; Cronin-Hennessy, D; Gao, K Y; Gong, D T; Hietala, J; Kubota, Y; Klein, T; Lang, B W; Li, S Z; Poling, R; Scott, A W; Smith, A; Dobbs, S; Metreveli, Z V; Seth, K K; Tomaradze, A G; Zweber, P; Ernst, J; Mahmood, A H; Severini, H; Asner, D M; Dytman, S A; Love, W; Mehrabyan, S S; Müller, J A; Savinov, V; Li, Z; López, A; Méndez, H; Ramírez, J

    2005-01-01

    Using data collected at the psi(3770) resonance with the CLEO-c detector at the Cornell e+e- storage ring, we present improved measurements of the absolute branching fractions of D+ decays to K0B e+ nu_e, pi0 e+ nu_e, K0B* e+ nu_e, and rho0 e+ nu_e, and the first observation and absolute branching fraction measurement of D+ --> omega e+ nu_e. We also report the most precise tests to date of isospin invariance in semileptonic D0 and D+ decays.

  10. Measurement of gamma radioactivity in steel

    International Nuclear Information System (INIS)

    The steel industry is being confronted increasingly with radioactive scrap from dismantled nuclear facilities. The clearance and release regulations that exist around the world differ very greatly and are difficult to implement. A 'radioactivity measurement' working group has therefore been set up at VDEh to clarify how radioactive measurements can be integrated into the day-to-day production routine. Operating results obtained at Thyssen Krupp Stahl AG with a gamma-ray spectrometer indicate a possibility for the simple detection of radioactive contamination. (orig.)

  11. Testing and evaluation of thermal cameras for absolute temperature measurement

    Science.gov (United States)

    Chrzanowski, Krzysztof; Fischer, Joachim; Matyszkiel, Robert

    2000-09-01

    The accuracy of temperature measurement is the most important criterion for the evaluation of thermal cameras used in applications requiring absolute temperature measurement. All the main international metrological organizations currently propose a parameter called uncertainty as a measure of measurement accuracy. We propose a set of parameters for the characterization of thermal measurement cameras. It is shown that if these parameters are known, then it is possible to determine the uncertainty of temperature measurement due to only the internal errors of these cameras. Values of this uncertainty can be used as an objective criterion for comparisons of different thermal measurement cameras.

  12. Absolute luminosity measurements with the LHCb detector at the LHC

    CERN Document Server

    Aaij, R; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amhis, Y; Anderson, J; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Arrabito, L; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Bachmann, S; Back, J J; Bailey, D S; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bates, A; Bauer, C; Bauer, Th; Bay, A; Bediaga, I; Belous, K; Belyaev, I; Ben-Haim, E; Benayoun, M; Bencivenni, G; Benson, S; Benton, J; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blanks, C; Blouw, J; Blusk, S; Bobrov, A; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Brisbane, S; Britsch, M; Britton, T; Brook, N H; Brown, H; Büchler-Germann, A; Burducea, I; Bursche, A; Buytaert, J; Cadeddu, S; Caicedo Carvajal, J M; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casse, G; Cattaneo, M; Charles, M; Charpentier, Ph; Chiapolini, N; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Collins, P; Constantin, F; Conti, G; Contu, A; Cook, A; Coombes, M; Corti, G; Cowan, G A; Currie, R; D'Almagne, B; D'Ambrosio, C; David, P; De Bonis, I; De Capua, S; De Cian, M; De Lorenzi, F; De Miranda, J M; De Paula, L; De Simone, P; Decamp, D; Deckenhoff, M; Degaudenzi, H; Deissenroth, M; Del Buono, L; Deplano, C; Deschamps, O; Dettori, F; Dickens, J; Dijkstra, H; Diniz Batista, P; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Dzhelyadin, R; Eames, C; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisele, F; Eisenhardt, S; Ekelhof, R; Eklund, L; Elsasser, Ch; d'Enterria, D G; Esperante Pereira, D; Estève, L; Falabella, A; Fanchini, E; Färber, C; Fardell, G; Farinelli, C; Farry, S; Fave, V; Fernandez Albor, V; Ferro-Luzzi, M; Filippov, S; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Frank, M; Frei, C; Frosini, M; Furcas, S; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garnier, J-C; Garofoli, J; Garra Tico, J; Garrido, L; Gaspar, C; Gauvin, N; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Gregson, S; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Haefeli, G; Haen, C; Haines, S C; Hampson, T; Hansmann-Menzemer, S; Harji, R; Harnew, N; Harrison, J; Harrison, P F; He, J; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicks, E; Hofmann, W; Holubyev, K; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Huston, R S; Hutchcroft, D; Hynds, D; Iakovenko, V; Ilten, P; Imong, J; Jacobsson, R; Jaeger, A; Jahjah Hussein, M; Jans, E; Jansen, F; Jaton, P; Jean-Marie, B; Jing, F; John, M; Johnson, D; Jones, C R; Jost, B; Kandybei, S; Karacson, M; Karbach, T M; Keaveney, J; Kerzel, U; Ketel, T; Keune, A; Khanji, B; Kim, Y M; Knecht, M; Koblitz, S; Koppenburg, P; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kruzelecki, K; Kucharczyk, M; Kukulak, S; Kumar, R; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leroy, O; Lesiak, T; Li, L; Li Gioi, L; Lieng, M; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; Lopes, J H; Lopez Asamar, E; Lopez-March, N; Luisier, J; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Magnin, J; Malde, S; Mamunur, R M D; Manca, G; Mancinelli, G; Mangiafave, N; Marconi, U; Märki, R; Marks, J; Martellotti, G; Martens, A; Martin, L; Martín Sánchez, A; Martinez Santos, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Matveev, M; Maurice, E; Maynard, B; Mazurov, A; McGregor, G; McNulty, R; Mclean, C; Meissner, M; Merk, M; Merkel, J; Messi, R; Miglioranzi, S; Milanes, D A; Minard, M-N; Monteil, S; Moran, D; Morawski, P; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Musy, M; Mylroie-Smith, J; Naik, P; Nakada, T; Nandakumar, R; Nardulli, J; Nasteva, I; Nedos, M; Needham, M; Neufeld, N; Nguyen-Mau, C; Nicol, M; Nies, S; Niess, V; Nikitin, N; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Pal, B; Palacios, J; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Paterson, S K; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C

    2012-01-01

    Absolute luminosity measurements are of general interest for colliding-beam experiments at storage rings. These measurements are necessary to determine the absolute cross-sections of reaction processes and are valuable to quantify the performance of the accelerator. LHCb has applied two methods to determine the absolute scale of its luminosity measurements for proton-proton collisions at the LHC with a centre-of-mass energy of 7 TeV. In addition to the classic ``van der Meer scan'' method a novel technique has been developed which makes use of direct imaging of the individual beams using beam-gas and beam-beam interactions. This beam imaging method is made possible by the high resolution of the LHCb vertex detector and the close proximity of the detector to the beams, and allows beam parameters such as positions, angles and widths to be determined. The results of the two methods have comparable precision and are in good agreement. Combining the two methods, an overall precision of 3.5\\% in the absolute lumi...

  13. Beam energy absolute measurement using K-edge absorption spectrometers

    International Nuclear Information System (INIS)

    A method is presented of absolute energy measurement with an accuracy of triangle Ε ∼ 10-4Εo by direct measurement of the bend angle in a high-precision magnetic dipole using two opposite-direction short (about 2 mm long) high-field-intensity magnets (bar Β dipole much-lt Βshortmag) installed at each end and two K-edge absorption spectrometers. Using these spectrometers and the hard x-ray synchrotron radiation created by the short magnets, a bend angle of 4.5 arc deg for the CEBAF energy bandwidth can be measured with an accuracy of a few units of 10-6 rad, and the main sources of systematic errors are the absolute measurement of the field integral and the determination of the centroid of the synchrotron beam at a wavelength equal to the K-edge absorption of the chosen substance

  14. BMO solvability and absolute continuity of harmonic measure

    OpenAIRE

    Hofmann, Steve; Le, Phi

    2016-01-01

    We show that for a uniformly elliptic divergence form operator $L$, defined in an open set $\\Omega$ with Ahlfors-David regular boundary, BMO-solvability implies scale invariant quantitative absolute continuity (the weak-$A_\\infty$ property) of elliptic-harmonic measure with respect to surface measure on $\\partial \\Omega$. We do not impose any connectivity hypothesis, qualitative or quantitative; in particular, we do not assume the Harnack Chain condition, even within individual connected comp...

  15. Measurement of the absolute branching fraction of the Ds+- meson

    CERN Document Server

    Abe, K; Dragic, J; Fujii, H; Gershon, T; Haba, J; Hazumi, M; Higuchi, T; Igarashi, Y; Itoh, R; Iwasaki, Y; Katayama, N; Kichimi, H; Krokovnyi, P P; Limosani, A; Nakamura, I; Nakao, M; Nakazawa, H; Nishida, S; Nozaki, T; Ozaki, H; Ronga, F J; Saitoh, S; Sakai, Y; Stamen, R; Sumisawa, K; Suzuki, S Y; Tajima, O; Takasaki, F; Tamai, K; Tanaka, M; Trabelsi, K; Tsuboyama, T; Tsukamoto, T; Uehara, S; Unno, Y; Uno, S; Ushiroda, Y; Yamauchi, M; Zhang, J; Hoshi, Y; Neichi, K; Aihara, H; Hastings, N C; Ishikawa, A; Itoh, K; Iwasaki, M; Kakuno, H; Kusaka, A; Nakahama, Y; Tanabe, K; Anipko, D; Arinstein, K; Aulchenko, V; Bedny, I; Bondar, A; Eidelman, S; Epifanov, D A; Gabyshev, N; Kuzmin, A; Poluektov, A; Root, N; Shwartz, B; Sidorov, V; Usov, Yu; Zhilich, V; Aoki, K; Enari, Y; Hara, K; Hayasaka, K; Hokuue, T; Iijima, T; Ikado, K; Inami, K; Kishimoto, N; Kozakai, Y; Kubota, T; Miyazaki, Y; Ohshima, T; Okabe, T; Sato, N; Senyo, K; Yoshino, S; Arakawa, T; Kawasaki, T; Miyata, H; Tamura, N; Watanabe, M; Asano, Y; Aso, T; Aushev, T; Bay, A; Hinz, L; Jacoby, C; Schietinger, T; Schneider, O; Villa, S; Wicht, J; Zürcher, D; Aziz, T; Banerjee, S; Gokhroo, G; Majumder, G; Bahinipati, S; Drutskoy, A; Goldenzweig, P; Kinoshita, K; Kulasiri, R; Sayeed, K; Schwartz, A J; Somov, A; Bakich, A M; Cole, S; McOnie, S; Parslow, N; Peak, L S; Stöck, H; Varvell, K E; Yabsley, B D; Balagura, V; Chistov, R; Danilov, M; Liventsev, D; Medvedeva, T; Mizuk, R; Pakhlov, P; Pakhlova, G; Tikhomirov, I; Uglov, T; Tian, Y BanX C; Barberio, E; Dalseno, J; Dowd, R; Moloney, G R; Sevior, M E; Taylor, G N; Tse, Y F; Urquijo, P; Barbero, M; Browder, T E; Guler, H; Jones, M; Li, J; Nishimura, K; Olsen, S L; Peters, M; Rorie, J; Sahoo, H; Uchida, K; Varner, G; Belous, K S; Shapkin, M; Sokolov, A; Bitenc, U; Bizjak, I; Fratina, S; Gorisek, A; Pestotnik, R; Staric, M; Zupanc, A; Blyth, S; Chen, A; Chen, W T; Go, A; Hou, S; Kuo, C C; Bozek, A; Kapusta, P; Lesiak, T; Matyja, A; Natkaniec, Z; Ostrowicz, W; Palka, H; Rózanska, M; Wiechczynski, J; Bracko, M; Korpar S; Brodzicka, J; Chang, M C; Kikuchi, N; Mikami, Y; Nagamine, T; Schonmeier, P; Yamaguchi, A; Yamamoto, H; Chang, P; Chao, Y; Chen, K F; Hou, W S; Hsiung, Y B; Lee, Y J; Lin, C Y; Lin, S W; Shen, Y T; Tsai, Y T; Ueno, K; Wang, C C; Wang, M Z; Wu, C H; Cheon, B G; Choi, J H; Ha, H; Kang, J S; Won, E; Choi, S K; Choi, Y; Choi, Y K; Kim, H O; Kim, J H; Park, C W; Park, K S; Chuvikov, A; Garmash, A; Marlow, D; Ziegler, T; Dash, M; Mohapatra, D; Piilonen, L E; Yusa, Y; Fujikawa, M; Hayashii, H; Imoto, A; Kataoka, S U; Miyabayashi, K; Noguchi, S; Krizan, P; Golob, B; Seidl, R; Grosse-Perdekamp, M; Hara, T; Heffernan, D; Miyake, H; Hasegawa, Y; Satoyama, N; Takada, N; Nitoh, O; Hoshina, K; Ishino, H; Khan, H R; Kibayashi, A; Mori, T; Ono, S; Watanabe, Y; Iwabuchi, M; Kim, Y J; Liu, Y; Sarangi, T R; Uchida, Y; Kang, J H; Kim, T H; Kwon, Y J; Kurihara, E; Kawai, H; Park, H; Kim, H J; Kim, S K; Lee, J; Lee, S E; Yang He Young; Kumar, R; Singh, J B; Soni, N; Lange, J S; Leder, G; MacNaughton, J; Mandl, F; Mitaroff, W A; Pernicka, M; Schwanda, C; Widhalm, L; Matsumoto, T; Nakagawa, T; Seki, T; Sumiyoshi, T; Yamamoto, S; Müller, J; Murakami, A; Sugiyama, A; Suzuki, S; Nagasaka, Y; Nakano, E; Sakaue, H; Teramoto, Y; Ogawa, A; Shibuya, H; Ogawa, S; Okuno, S; Sakamoto, H; Wang, C H; Schümann, J; Stanic, S; Xie, Q L; Yuan, Y; Zang, S L; Zhang, C C; Yamashita, Y; Zhang, L M; Zhang, Z P

    2006-01-01

    The Ds+- -> K+-K-+pi+- absolute branching fraction is measured using e+e- -> Ds*+- Ds1-+(2536) events collected by the Belle detector at the KEKB e+e- asymmetric energy collider. Using the ratio of yields when either the Ds1 or Ds* is fully reconstructed, we find Br(Ds+- -> K+-K-+pi+-)= (4.0+-0.4(stat)+-0.4(sys))%.

  16. Carbon clusters for absolute mass measurements at ISOLTRAP

    CERN Document Server

    Blaum, K; Herfurth, F; Kellerbauer, A G; Kluge, H J; Kuckein, M; Sauvan, E; Scheidenberger, C; Schweikhard, L

    2002-01-01

    The cyclotron frequencies of singly charged carbon clusters C/sub n //sup +/ (n >or= 2) were measured with the Penning-trap mass spectrometer ISOLTRAP at ISOLDE/CERN. The present limit of mass accuracy delta m/m = 1.2.10/sup -8/ and the extent of the mass- dependent systematic shift ( delta m/m)/sub sys/ = 1.7(0.6).10/sup -10//u.(m - m/sub ref/) of the setup were investigated for the first time. In addition, absolute mass measurements by use of pure clusters of the most abundant carbon isotope /sup 12/C are now possible at ISOLTRAP. (15 refs).

  17. Strategy for the absolute neutron emission measurement on ITER.

    Science.gov (United States)

    Sasao, M; Bertalot, L; Ishikawa, M; Popovichev, S

    2010-10-01

    Accuracy of 10% is demanded to the absolute fusion measurement on ITER. To achieve this accuracy, a functional combination of several types of neutron measurement subsystem, cross calibration among them, and in situ calibration are needed. Neutron transport calculation shows the suitable calibration source is a DT/DD neutron generator of source strength higher than 10(10) n/s (neutron/second) for DT and 10(8) n/s for DD. It will take eight weeks at the minimum with this source to calibrate flux monitors, profile monitors, and the activation system.

  18. Strategy for the absolute neutron emission measurement on ITER

    International Nuclear Information System (INIS)

    Accuracy of 10% is demanded to the absolute fusion measurement on ITER. To achieve this accuracy, a functional combination of several types of neutron measurement subsystem, cross calibration among them, and in situ calibration are needed. Neutron transport calculation shows the suitable calibration source is a DT/DD neutron generator of source strength higher than 1010 n/s (neutron/second) for DT and 108 n/s for DD. It will take eight weeks at the minimum with this source to calibrate flux monitors, profile monitors, and the activation system.

  19. Absolute Measurement of Quantum-Limited Interferometric Displacements

    CERN Document Server

    Thiel, Valérian; Treps, Nicolas; Roslund, Jonathan

    2016-01-01

    A methodology is introduced that enables an absolute, quantum-limited measurement of sub-wavelength interferometric displacements. The technique utilizes a high-frequency optical path modulation within an interferometer operated in a homodyne configuration. All of the information necessary to fully characterize the resultant path displacement is contained within the relative strengths of the various harmonics of the phase modulation. The method, which is straightforward and readily implementable, allows a direct measurement of the theoretical Cram\\'er-Rao limit of detection without any assumptions on the nature of the light source.

  20. Absolute orientations from EBSD measurements - as easy as it seems?

    Science.gov (United States)

    Kilian, Rüdiger; Bestmann, Michel; Heilbronner, Renée

    2016-04-01

    In structural geology, some problems can be addressed by inspecting the crystal orientation of grains in a rock. Deriving shear senses, kinematics of flow, information on deformation processes and recrystallization are some examples. Usually, oriented samples are taken in the field and, if inspected in an universal stage, the researcher has full control over the procedure and can make sure that the derived orientation is related to our geographic reference frame - that it is an absolute orientation. Nowadays, usage of electron backscatter diffraction (EBSD) has greatly improved the information in the derived data (fully crystal orientations, mappings, etc…), and the speed of data acquisition. However, this comes to the price of having to rely on the vendor supplied software and machine setup. Recent benchmarks and comparison of reference data revealed that for various EBSD setups around the world, the orientation data defaults to the wrong absolute orientation. The absolute orientation is not correctly derived - it commonly suffer a 180 degree rotation around the normal of the sample surface. In this contribution we will discuss the implications of such erroneous measurements and what kind of interpretations derived by orientation and texture data will be affected.

  1. Absolute and specific measures of research group excellence

    CERN Document Server

    Mryglod, O; Holovatch, Yu; Berche, B

    2012-01-01

    A desirable goal of scientific management is to introduce, if it exists, a simple and reliable way to measure the scientific excellence of publicly-funded research institutions and universities to serve as a basis for their ranking and financing. While citation-based indicators and metrics are easily accessible, they are far from being universally accepted as way to automate or inform evaluation processes or to replace evaluations based on peer review. Here we consider absolute measurements of research excellence at an amalgamated, institutional level and specific measures of research excellence as performance per head. Using biology research institutions in the UK as a test case, we examine the correlations between peer-review-based and citation-based measures of research excellence on these two scales. We find that citation-based indicators are very highly correlated with peer-evaluated measures of group strength but are poorly correlated with group quality. Thus, and almost paradoxically, our analysis indi...

  2. On Absolute Measurements of β-Emitting Radionuclides

    International Nuclear Information System (INIS)

    4 π GM detectors are described and some of their characteristics presented. The absence of spurious pulses is shown by the measurement of the rate of arrival of intervals between pulses. Some problems related to the foil absorption and source absorption are considered using Sr90 and Y90. Aiming at correcting the counting losses in the foil and in a certain extent also the source absorption an experimental method which uses paired sources is presented. The preparation of standards of Bi210 (RaE) is described. A note is presented on the problem of foil absorption losses in scintillation absolute counting. (author)

  3. Measuring Postglacial Rebound with GPS and Absolute Gravity

    Science.gov (United States)

    Larson, Kristine M.; vanDam, Tonie

    2000-01-01

    We compare vertical rates of deformation derived from continuous Global Positioning System (GPS) observations and episodic measurements of absolute gravity. We concentrate on four sites in a region of North America experiencing postglacial rebound. The rates of uplift from gravity and GPS agree within one standard deviation for all sites. The GPS vertical deformation rates are significantly more precise than the gravity rates, primarily because of the denser temporal spacing provided by continuous GPS tracking. We conclude that continuous GPS observations are more cost efficient and provide more precise estimates of vertical deformation rates than campaign style gravity observations where systematic errors are difficult to quantify.

  4. Absolute Measurement Fiber-optic Sensors in Large Structural Monitoring

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The security of civil engineering is an important task due to the economic, social and environmental significance. Compared with conventional sensors, the optical fiber sensors have their unique characteristics.Being durable, stable and insensitive to external perturbations,they are particular interesting for the long-term monitoring of civil structures.Focus is on absolute measurement optical fiber sensors, which are emerging from the monitoring large structural, including SOFO system, F-P optical fiber sensors, and fiber Bragg grating sensors. The principle, characteristic and application of these three kinds of optical fiber sensors are described together with their future prospects.

  5. An absolute scale for measuring the utility of money

    Science.gov (United States)

    Thomas, P. J.

    2010-07-01

    Measurement of the utility of money is essential in the insurance industry, for prioritising public spending schemes and for the evaluation of decisions on protection systems in high-hazard industries. Up to this time, however, there has been no universally agreed measure for the utility of money, with many utility functions being in common use. In this paper, we shall derive a single family of utility functions, which have risk-aversion as the only free parameter. The fact that they return a utility of zero at their low, reference datum, either the utility of no money or of one unit of money, irrespective of the value of risk-aversion used, qualifies them to be regarded as absolute scales for the utility of money. Evidence of validation for the concept will be offered based on inferential measurements of risk-aversion, using diverse measurement data.

  6. High-precision absolute measurement of CEBAF beam mean energy

    International Nuclear Information System (INIS)

    The absolute measurement of the beam mean energy with an accuracy of one part in 104 or higher is an important demand of the CEBAF Hall A physics program. This accuracy may reduce the uncertainty in the d(e, e'p)p cross section δσ/σ to 1%. The need for such an accurately calibrated beam is not particular to CEBAF; at other electron facilities uncertainty in the incident energy has proven to be among the dominant sources of systematic error. The following methods for solving the problem were considered at both CEBAF and the Yerevan Physics Institute during 1990--1991: Backscattering of a plane electromagnetic wave by the relativistic electron beam. Calculations show that the intensity of the backscattered radiation in a bandwidth of 10-4 near the maximum frequency is about 1 photon per second at 4 GeV and 0.3 mA. Magnetic spectrometers performing as three- and four-magnet chicanes with appropriate detector systems. Such a system was used at SLAC for absolute measurement of the SLC beams energy, where a maximum accuracy of 5 x 10-4 was achieved. Calculations show that a similar accuracy can be achieved for the CEBAF beam in both proposed systems. Measurement of the vertical distribution of synchrotron radiation. Calculations indicate that precision of about 2.5 x 10-5 is achievable for CEBAF

  7. Deconstructing European Poverty Measures: What Relative and Absolute Scales Measure

    Science.gov (United States)

    Burkhauser, Richard V.

    2009-01-01

    Forster and d'Ercole (2009) outline the dominant method of conceptualization and operationalization of European poverty measures that informed the EU in its development of the questionnaire for the European Union--Survey of Income and Living Conditions (EU-SILC). They do so in the context of their explanation of how the Organization for Economic…

  8. Absolute measures of the completeness of the fossil record.

    Science.gov (United States)

    Foote, M; Sepkoski, J J

    1999-04-01

    Measuring the completeness of the fossil record is essential to understanding evolution over long timescales, particularly when comparing evolutionary patterns among biological groups with different preservational properties. Completeness measures have been presented for various groups based on gaps in the stratigraphic ranges of fossil taxa and on hypothetical lineages implied by estimated evolutionary trees. Here we present and compare quantitative, widely applicable absolute measures of completeness at two taxonomic levels for a broader sample of higher taxa of marine animals than has previously been available. We provide an estimate of the probability of genus preservation per stratigraphic interval, and determine the proportion of living families with some fossil record. The two completeness measures use very different data and calculations. The probability of genus preservation depends almost entirely on the Palaeozoic and Mesozoic records, whereas the proportion of living families with a fossil record is influenced largely by Cenozoic data. These measurements are nonetheless highly correlated, with outliers quite explicable, and we find that completeness is rather high for many animal groups.

  9. Radioactivity measurements on live Bewick's Swans

    International Nuclear Information System (INIS)

    Measurements made on 46 live swans at Slimbridge using portable high resolution hyperpure germanium gamma ray spectrometry equipment are described. Laboratory measurements are also reported on two swans which died of natural causes or of flying accidents. The implications of the measured radioactivity levels are discussed in relation to the suggestion that they might have been affected by the Chernobyl accident on their migration. (UK)

  10. System for measuring radioactivity of labelled biopolymers

    International Nuclear Information System (INIS)

    A system is described for measuring radioactivity of labelled biopolymers, comprising: a set of containers adapted for receiving aqueous solutions of biological samples containing biopolymers which are subsequently precipitated in said containers on particles of diatomite in the presence of a coprecipitator, then filtered, dissolved, and mixed with a scintillator; radioactivity measuring means including a detection chamber to which is fed the mixture produced in said set of containers; an electric drive for moving said set of containers in a stepwise manner; means for proportional feeding of said coprecipitator and a suspension of diatomite in an acid solution to said containers which contain the biological sample for forming an acid precipitation of biopolymers; means for the removal of precipitated samples from said containers; precipitated biopolymer filtering means for successively filtering the precipitate, suspending the precipitate, dissolving the biopolymers mixed with said scintillator for feeding of the mixture to said detection chamber; a system of pipelines interconnecting said above-recited means; and said means for measuring radioactivity of labelled biopolymers including, a measuring cell arranged in a detection chamber and communicating with said means for filtering precipitated biopolymers through one pipeline of said system of pipelines; a program unit electrically connected to said electric drive, said means for acid precipatation of biopolymers, said means for the removal of precipitated samples from said containers, said filtering means, and said radioactivity measuring device; said program unit adapted to periodically switch on and off the above-recited means and check the sequence of the radioactivity measuring operations; and a control unit for controlling the initiation of the system and for selecting programs

  11. Nondestructive measurement of environmental radioactive strontium

    Directory of Open Access Journals (Sweden)

    Saiba Shuntaro

    2014-03-01

    Full Text Available The Fukushima Daiichi nuclear power plant accident was triggered by the 2011 Great East Japan Earthquake. The main radioactivity concerns after the accident are I-131 (half-life: 8.0 days, Cs-134 (2.1 years, Cs-137 (30 years, Sr-89 (51 days, and Sr-90 (29 years. We are aiming to establish a new nondestructive measurement and detection technique that will enable us to realize a quantitative evaluation of strontium radioactivity without chemical separation processing. This technique is needed to detect radiation contained in foods, environmental water, and soil, to prevent us from undesired internal exposure to radiation.

  12. Absolute Thermal SST Measurements over the Deepwater Horizon Oil Spill

    Science.gov (United States)

    Good, W. S.; Warden, R.; Kaptchen, P. F.; Finch, T.; Emery, W. J.

    2010-12-01

    Climate monitoring and natural disaster rapid assessment require baseline measurements that can be tracked over time to distinguish anthropogenic versus natural changes to the Earth system. Disasters like the Deepwater Horizon Oil Spill require constant monitoring to assess the potential environmental and economic impacts. Absolute calibration and validation of Earth-observing sensors is needed to allow for comparison of temporally separated data sets and provide accurate information to policy makers. The Ball Experimental Sea Surface Temperature (BESST) radiometer was designed and built by Ball Aerospace to provide a well calibrated measure of sea surface temperature (SST) from an unmanned aerial system (UAS). Currently, emissive skin SST observed by satellite infrared radiometers is validated by shipborne instruments that are expensive to deploy and can only take a few data samples along the ship track to overlap within a single satellite pixel. Implementation on a UAS will allow BESST to map the full footprint of a satellite pixel and perform averaging to remove any local variability due to the difference in footprint size of the instruments. It also enables the capability to study this sub-pixel variability to determine if smaller scale effects need to be accounted for in models to improve forecasting of ocean events. In addition to satellite sensor validation, BESST can distinguish meter scale variations in SST which could be used to remotely monitor and assess thermal pollution in rivers and coastal areas as well as study diurnal and seasonal changes to bodies of water that impact the ocean ecosystem. BESST was recently deployed on a conventional Twin Otter airplane for measurements over the Gulf of Mexico to access the thermal properties of the ocean surface being affected by the oil spill. Results of these measurements will be presented along with ancillary sensor data used to eliminate false signals including UV and Synthetic Aperture Radar (SAR

  13. Residual radioactivity measurements at Indus accelerator complex

    International Nuclear Information System (INIS)

    Indus-1 and Indus-2 are two Synchrotron Radiation Sources (SRS) operational at RRCAT, Indore. Indus-1 and Indus-2 are designed for maximum electron beam energy of 450 MeV and 2.5 GeV respectively. During shut down of these accelerators for maintenance purpose, residual radioactivity measurements were carried out. The residual radioactivity formation in various parts of the high energy electron accelerators is due to the beam loss taking place at these locations. The present paper describes the recent residual radioactivity measurements carried out at the electron accelerators of Indus Accelerator Complex and the radio-isotopes identified. The maximum dose rate due to induced activity obtained is 30 μSv/h, near dipole-5 of booster synchrotron after 12 h of cooling time. In case of Indus-1 and Indus-2 SRS the dose rate due to induced radioactivity is found to be of the order of 2 - 3 μSv/h. The radio isotopes identified at these beam loss locations are beta emitters that do not pose serious external hazard to the working personnel. However, precautions are to be observed while doing maintenance on activated components. The paper describes the measurements in detail with the results. (author)

  14. Measuring the absolute quantum efficiency of luminescent materials

    Energy Technology Data Exchange (ETDEWEB)

    Rohwer, Lauren Shea [Sandia National Laboratories, P.O. Box 5800, MS-0892, Albuquerque, NM 87185-0892 (United States)]. E-mail: leshea@sandia.gov; Martin, James E. [Sandia National Laboratories, P.O. Box 5800, MS-0892, Albuquerque, NM 87185-0892 (United States)

    2005-11-15

    A measurement system and mathematical procedure are developed for determining the absolute quantum efficiency (QE), of luminescent materials. This technique, based on absorption of diffuse light within an integrating sphere, is applied to fluorescent laser dyes and conventional phosphor powders. The system described is tested for excitation in the near-UV and blue regions, but can be applied to higher energy excitation (UV), as well as lower energy excitation in the visible to near-IR, with the appropriate photodetectors and optical filters. The system was tested on both liquid and solid samples such as Coumarin 500 (CM500) dye in methanol and ethyl acetate; Rhodamine 6G in ethanol; and a variety of powder phosphors. The QE of quinine sulfate dihydrate solution (5x10{sup -3} M in 0.1 N H{sub 2}SO{sub 4}), a NIST fluorescence standard, was found to be in good agreement with the NIST value under 390 nm excitation. The accuracy of this measurement technique is acceptable for samples with absorption cross sections greater than {approx}6 mm{sup 2}.

  15. A proposal to measure absolute environmental sustainability in lifecycle assessment

    DEFF Research Database (Denmark)

    Bjørn, Anders; Margni, Manuele; Roy, Pierre-Olivier;

    2016-01-01

    in supporting decisions aimed at simultaneously reducing environmental impacts efficiently and maintaining or achieving environmental sustainability. We have demonstrated that LCA indicators can be modified from being relative to being absolute indicators of environmental sustainability. Further research should...

  16. Comparison of available measurements of the absolute fluorescence yield

    CERN Document Server

    Rosado, J; Arqueros, F

    2010-01-01

    The uncertainty in the absolute value of the fluorescence yield is still one of the main contributions to the total error in the reconstruction of the primary energy of ultra-energetic air showers using the fluorescence technique. A significant number of experimental values of the fluorescence yield have been published in the last years, however reported results are given very often in different units (photons/MeV or photons/m) and for different wavelength intervals. In this work we present a comparison of available results normalized to its value in photons/MeV for the 337 nm band at 800 hPa and 293 K. Possible sources of systematic errors on these measurements are discussed. In particular, the conversion of photons/m to photons/MeV requires an accurate determination of the energy deposited by the electrons in the field of view of the experimental setup. We have calculated the energy deposition for each experiment by means of a detailed Monte Carlo simulation including when possible the geometrical details o...

  17. Measurement and analysis of radioactive substances

    International Nuclear Information System (INIS)

    Here are gathered the abstracts presented to the 3. summer university of the year 2001 whose main themes were the destructive (5 conferences) and nondestructive (8 conferences) analyses applied to nuclear industry. The points of view of different organisms (as DSIN: Directorate for the Safety of Nuclear Installations, IPSN: Institute of Nuclear Protection and Safety, OPRI: Office of Protection against Ionizing Radiations, TUI: Institute for Transuranium Elements, COGEMA, EDF: Electric Utilities, ANDRA: French National Agency for Radioactive Waste Management, CRLC Val d'Aurelle, France) concerning the needs involved in nuclear facilities control, the methods of radionuclide speciation in use internationally, the measurements and analyses of radioactive substances are given too as well as some general concepts concerning 1)the laser-matter interaction 2)the ions production 3)the quality applied to the measurements and analyses 4)the standard in activity metrology. (O.M.)

  18. The correction of vibration in frequency scanning interferometry based absolute distance measurement system for dynamic measurements

    Science.gov (United States)

    Lu, Cheng; Liu, Guodong; Liu, Bingguo; Chen, Fengdong; Zhuang, Zhitao; Xu, Xinke; Gan, Yu

    2015-10-01

    Absolute distance measurement systems are of significant interest in the field of metrology, which could improve the manufacturing efficiency and accuracy of large assemblies in fields such as aircraft construction, automotive engineering, and the production of modern windmill blades. Frequency scanning interferometry demonstrates noticeable advantages as an absolute distance measurement system which has a high precision and doesn't depend on a cooperative target. In this paper , the influence of inevitable vibration in the frequency scanning interferometry based absolute distance measurement system is analyzed. The distance spectrum is broadened as the existence of Doppler effect caused by vibration, which will bring in a measurement error more than 103 times bigger than the changes of optical path difference. In order to decrease the influence of vibration, the changes of the optical path difference are monitored by a frequency stabilized laser, which runs parallel to the frequency scanning interferometry. The experiment has verified the effectiveness of this method.

  19. Cross-section measurements for radioactive samples

    International Nuclear Information System (INIS)

    The measurement of (n,p), (n,α) and (n,γ) cross sections for radioactive nuclei is of interest to both nuclear physics and astrophysics. For example, using these reactions, properties of levels in nuclei at high excitation energies, which are difficult or impossible to study using other reactions, can be investigated. Also, reaction rates for both big-bang and stellar nucleosynthesis can be obtained from these measurements. In the past, the large background associated with the sample activity limited these types of measurements to radioisotopes with very long half-lives. The advent of the low-energy, high-intensity neutron source at the Los Alamos Neutron Scattering CEnter (LANSCE) has greatly increased the number of nuclei which can be studied. Examples of (n,p) measurements on samples with half lives as short as fifty-three days will be given. The nuclear physics and astrophysics to be learned from these data will be discussed. Additional difficulties are encountered when making (n,γ) rather than (n,p) or (n,α) measurements. However, with a properly-designed detector, and the high peak neutron intensities now available, (n,γ) measurements can be made for nuclei with half lives as short as several months. Progress on the Los Alamos (n,γ) cross-section measurement program for radioactive samples will be discussed. 39 refs., 7 figs

  20. Radioactivity measurement with a plastic scintillation vial

    International Nuclear Information System (INIS)

    Introduction: Liquid scintillation counting method is commonly used to measure radioactivity especially for beta emitters because of its high sensitivity. However, since the sample should be mixed with scintillation cocktail of organic liquid, there are problems that the sample could not be recovered and radioactive organic liquid waste is produced. The radioactive waste is usually burned with a specially designed incinerator, so that it needs costs and labor. To resolve the problems, I tried to develop a novel method to measure radioactivity using liquid scintillation counter without scintillation cocktail, and investigated the feasibility of the method. Method: A cylindrical plastic scintillator with well was installed in a counting vial, which is named 'ScintiVial' Sample contained in a 1500 μL microtube was put in the ScintiVial, and was measured with a liquid scintillation counter. Samples including 200-800 Bq of 32P in 25-1300 μL of solution and 900 Bq of 125I in 100 μL solution were measured using the ScintiVial. Results and Discussion: The counting efficiency for 25-1300 μL of 32P was 28-10%, and that for 100 μL of 125I was 3%. The counting efficiency was decreased with the increase of the sample volume. The pulse height distribution of the ScintiVial was similar to that of usual liquid scintillation of the nuclide in question. The microtube, commonly known as 'Eppendorf tube', for containing the sample is widely used for experiments of chemistry etc., and also used to contain most of labeled compounds. Using the ScintiVial made them possible that the sample on an experiment may be measured as it is and the sample may be recovered and reused. In addition, the method will not produce any radioactive organic liquid waste. Not producing the active organic liquid will eliminate the load for its incineration, and then CO2 with the incineration will not be generated. Therefore, the method will potentially assist the resolution of the environmental problem

  1. Measurement of the absolute separation for atomic force microscopy measurements in the presence of adsorbed polymer

    OpenAIRE

    McKee, C. T.; Mosse, W. K. J.; Ducker, W. A.

    2006-01-01

    We demonstrate that the absolute separation between an atomic force microscope (AFM) tip and a solid substrate can be measured in the presence of an irreversibly adsorbed polymer film. The separation is obtained from the analysis of a scattered evanescent wave that is generated at the surface of the solid. By comparing our scattering measurements to conventional AFM measurements, we also show an example where a conventional AFM measurement gives the incorrect force-distance profile. We valida...

  2. Measurement of radioactivity in volcanic products

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Jun

    1988-10-01

    Radioactivity in volcanic products was measured for obtaining new knowledge about volcano. A distribution map of /sup 2//sup 2//sup 8/Ra//sup 2//sup 2//sup 6/Ra in the volcanic products of Japanese Islands volcanic front was prepared. From the map, it was understood that only Izu-Mariana Arc was different from other series of vocanos. Concerning Volcano Sakurajima, /sup 2//sup 2//sup 2/Rn//sup 2//sup 2//sup 0/Rn ratio in the pumice produced by the eruption was measured for studying its change with days after creation. Regarding the lava of Miyake Island, change of /sup 2//sup 1//sup 4/Bi with time was measured. 3 figures.

  3. Measures of radioactivity: a tool for understanding statistical data analysis

    OpenAIRE

    Montalbano, Vera; Quattrini, Sonia

    2012-01-01

    A learning path on radioactivity in the last class of high school is presented. An introduction to radioactivity and nuclear phenomenology is followed by measurements of natural radioactivity. Background and weak sources are monitored for days or weeks. The data are analyzed in order to understand the importance of statistical analysis in modern physics.

  4. The absolute gravity measurement by FG5 gravimeter at Great Wall Station, Antarctica

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Gravity measurement is of great importance to the height datum in Antarctica.The absolute gravity measurement was carried out at Great Wall Station, Antarctica, using FG5 absolute gravity instrument.The gravity data was processed with corrections of earth tide, ocean tide, polar motion and the atmospher, and the RMS is within +3 x 10 -s ms-2.The vertical and horizontal gravity gradients were measured using 2 LaCoaste & Romberg (LCR) gravimeters.The absolute gravity measurement provides the fundamental data for the validation and calibration of the satellite gravity projects such as CHAMP, GRACE and GOCE, and for the high accuracy geoid model.

  5. Study on the effect factor of the absolute fission rates measured by depleted uranium fission chamber

    International Nuclear Information System (INIS)

    The absolute fission rates was measured by the depleted uranium fission chamber. The efficiency of the fission fragments recorded in the fission chamber was analyzed. The factor influencing absolute fission rates was studied in the experiment, including the disturbing effect between detectors and the effect of the structural material of the fission chamber, etc

  6. Radioactivity measurements using storage phosphor technology

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Y.T. [NeuTek, Darnestown, MD (United States); Hwang, J. [Advanced Technologies and Labs. International, Rockville, MD (United States); Hutchinson, M.R. [National Institute of Standards and Technology, Gaithersburg, MD (United States)

    1995-10-01

    We propose to apply a recently developed charged particle radiation imaging concept in bio-medical research for fast, cost-effective characterization of radionuclides in contaminated sites and environmental samples. This concept utilizes sensors with storage photostimulable phosphor (SPP) technology as radiation detectors. They exhibit high sensitivity for all types of radiation and the response is linear over a wide dynamic range (>10{sup 5}), essential for quantitative analysis. These new sensors have an Active area of up to 35 cm x 43 cm in size and a spatial resolution as fine as 50 {mu}m. They offer considerable promise as large area detectors for fast characterization of radionuclides with an added ability to locate and identify hot spots. Tests with SPP sensors have found that a single alpha particle effect can be observed and an alpha field of 100 dpm/100 cm{sup 2} or a beta activity of 0.1 dpm/mm{sup 2} or gamma radiation of few {mu}R/hr can all be measured in minutes. Radioactive isotopes can further be identified by energy discrimination which is accomplished by placing different thicknesses of filter material in front of the sensor plate. For areas with possible neutron contamination, the sensors can be coupled to a neutron to charged particle converter screen, such as dysprosium foil to detect neutrons. Our study has shown that this approach can detect a neutron flux of 1 n/cm{sup 2}s or lower, again with only minutes of exposure time. The utilization of these new sensors can significantly reduce the time and cost required for many site characterization and environmental monitoring tasks. The {open_quotes}exposure{close_quotes} time for mapping radioactivity in an environmental sample may be in terms of minutes and offer a positional resolution not obtainable with presently used counting equipment. The resultant digital image will lend itself to ready analysis.

  7. Measurement Technology on 200 Liters Barrels of Radioactive Waste

    Institute of Scientific and Technical Information of China (English)

    BAI; Lei; SHAO; Jie-wen; LIU; Da-ming; LIU; Hong-bin; CHENG; Yi-mei; HE; Li-xia; ZHU; Li-qun

    2012-01-01

    <正>The measurement device on 200 liters barrel of radioactive waste is designed following the rule of orderly measurement automatically, by using the technology of non-destructive to measure the mass of radioactive waste produced from fuel cycle. Device objects as shown in Fig. 1, which consists of the

  8. Present status and prospects of ultralow level radioactivity measurements (3). Environmental radioactivity monitoring in Japan

    International Nuclear Information System (INIS)

    The environmental radioactivity survey in Japan is explained. There are two kinds of surveys such as monitoring around nuclear facilities and the environmental radioactivity survey. On monitoring around the nuclear facilities, its objects, monitoring at ordinary times and in an emergency, the measurement items, radioactive materials analysis, evaluation and open to the public of monitoring results and guarantee of monitoring quality are reported. On environmental radioactivity survey in wide area, its objects, environmental radioactivity survey, working organizations, fallout measurement, concentration of radon in foods, neutron dose, natural radionuclide and nuclides in relation to reprocessing plants are measured. The measurement results are opened on Web site; http://www.kankyo-hoshano.go.jp/ and http://www.search.kankyo-hoshano.go.jp/. (S.Y.)

  9. Absolute reliability of shoulder joint horizontal adductor muscle strength measurements using a handheld dynamometer

    OpenAIRE

    Hirano, Masahiro; Katoh, Munenori

    2015-01-01

    [Purpose] The aim of this study was to verify the absolute reliability of shoulder joint horizontal adductor muscle strength measurements using a handheld dynamometer (HHD). [Subjects and Methods] The subjects were 33 healthy college students. The measurements were made three times with the HHD fixed using a belt (BFHHD) or with the examiner’s hand (conventional method; HFHHD). The absolute reliability of measurements was verified using Bland-Altman analysis, both in the all subjects group an...

  10. Absolute Fluorescence Spectrum and Yield Measurements for a wide range of experimental conditions

    OpenAIRE

    Monnier Ragaigne, D.; Gorodetzky, P.; Moretto, C; Blaksley, C.; Dagoret-Campagne, D.; Gonnin, A.; Miyamoto, H.; Monard, H.; Wicek, F.

    2013-01-01

    For the JEM-EUSO Collaboration The fluorescence yield is a key ingredient in cosmic ray energy determination. It is sensitive to pressure, temperature and humidity. Up to now the fluorescence yield of the brightest line at 337 nm has been measured in an absolute way in one set of conditions, whereas fluorescence yields at the other wavelengths have been relatively measured for different conditions. Thus, absolute calibration for all the lines is unclear. We will do all measurements at once...

  11. Absolute beam emittance measurements at RHIC using ionization profile monitors

    Energy Technology Data Exchange (ETDEWEB)

    Minty, M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Connolly, R [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Liu, C. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Summers, T. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Tepikian, S. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2014-08-15

    In the past, comparisons between emittance measurements obtained using ionization profile monitors, Vernier scans (using as input the measured rates from the zero degree counters, or ZDCs), the polarimeters and the Schottky detectors evidenced significant variations of up to 100%. In this report we present studies of the RHIC ionization profile monitors (IPMs). After identifying and correcting for two systematic instrumental errors in the beam size measurements, we present experimental results showing that the remaining dominant error in beam emittance measurements at RHIC using the IPMs was imprecise knowledge of the local beta functions. After removal of the systematic errors and implementation of measured beta functions, precise emittance measurements result. Also, consistency between the emittances measured by the IPMs and those derived from the ZDCs was demonstrated.

  12. Technological Basis and Scientific Returns for Absolutely Accurate Measurements

    Science.gov (United States)

    Dykema, J. A.; Anderson, J.

    2011-12-01

    The 2006 NRC Decadal Survey fostered a new appreciation for societal objectives as a driving motivation for Earth science. Many high-priority societal objectives are dependent on predictions of weather and climate. These predictions are based on numerical models, which derive from approximate representations of well-founded physics and chemistry on space and timescales appropriate to global and regional prediction. These laws of chemistry and physics in turn have a well-defined quantitative relationship with physical measurement units, provided these measurement units are linked to international measurement standards that are the foundation of contemporary measurement science and standards for engineering and commerce. Without this linkage, measurements have an ambiguous relationship to scientific principles that introduces avoidable uncertainty in analyses, predictions, and improved understanding of the Earth system. Since the improvement of climate and weather prediction is fundamentally dependent on the improvement of the representation of physical processes, measurement systems that reduce the ambiguity between physical truth and observations represent an essential component of a national strategy for understanding and living with the Earth system. This paper examines the technological basis and potential science returns of sensors that make measurements that are quantitatively tied on-orbit to international measurement standards, and thus testable to systematic errors. This measurement strategy provides several distinct benefits. First, because of the quantitative relationship between these international measurement standards and fundamental physical constants, measurements of this type accurately capture the true physical and chemical behavior of the climate system and are not subject to adjustment due to excluded measurement physics or instrumental artifacts. In addition, such measurements can be reproduced by scientists anywhere in the world, at any time

  13. Perfusion measurements with radioactively labelled microspheres

    International Nuclear Information System (INIS)

    The technique and the evaluation of the microsphere-method are comprehensively represented in theory and practice. Some changes and new concepts are discussed, besides the known foundations and techniques, that assure an essential methodic improvement resp. practical simplifications. Two new formulas are derived within the frame of the theoretical principles, by which the absolute flux of shorts can be calculated, i.e. on the one hand in the case of known and on the other hand in the case of unknown applied amount of indicator. The determination of the optimal indicator dose is defined and formulated mathematically with respect to the experimental conditions to be expected. The matrix method was designed for the analysis of complex gamma spectra. Hereby there is no selective error accumulation in the case of low energy radio nuclids contrary to the so far exclusively used stripping technique. The number of possible error quantities was reduced by one resp. two variables. The error of particular radio nuclid components is quantitatively computed as standard deviation by means of the theory of approximated systems of linear equations. The external measurement of distance was developed. This technique is less susceptible for errors as the aliquota i.e. whole body measurement technique. Additionally less measurement time is needed. A flexible computer program for a desk top computer was developped for the evaluation. The data from the gamma spectrometer are recorded on tipe and automatically read in by the computer. The manual input are limited to the weights of the organs and some control parameter. The output is made by a clearly arranged table by means of a lineprinter. (orig./MG)

  14. Combining Near-Subject Absolute and Relative Measures of Longitudinal Hydration in Hemodialysis

    OpenAIRE

    Chan, Cian; McIntyre, Christopher; Smith, David; Spanel, Patrik; Davies, Simon J.

    2009-01-01

    Background and objectives: The feasibility and additional value of combining bioimpedance analysis (BIA) with near-subject absolute measurement of total body water using deuterium dilution (TBWD) in determining longitudinal fluid status was investigated.

  15. Natural radioactivity measurements in Pahang State, Malaysia.

    Science.gov (United States)

    Gabdo, Hamman Tukur; Ramli, Ahmad Termizi; Saleh, Muneer Aziz; Garba, Nuraddeen Nasiru; Sanusi, Mohamad

    2016-06-01

    This study was aimed at providing the baseline data of terrestrial gamma dose rates and natural radioactivity to assess the corresponding health risk in the ambient environment of the Pahang State. Terrestrial gamma radiation (TGR) from 640 locations was measured with the mean value found to be 176 ± 5 nGy h(-1). Ninety-eight soil samples were analysed using a high-purity germanium detector (HPGe), and the mean concentrations of the radionuclides (226)Ra, (232)Th and (40)K are 110 ± 3, 151 ± 5 and 542 ± 51 Bq kg(-1), respectively.(226)Ra and (232)Th concentrations were found to be three times the world average, while that of (40)K is quite higher than the world average value. The acid-intrusive geological formation has the highest mean concentrations for (226)Ra (215 ± 6 Bq kg(-1)), (232)Th (384 ± 12 Bq kg(-1)) and (40)K (1564 ± 153 Bq kg(-1)). The radium equivalent activities (Req) and the external hazard index (Hex) for the various soil types were also calculated. Some of the soil types were found to have values exceeding the internationally recommended levels of 370 Bq kg(-1) and the unity value, respectively. PMID:26999725

  16. Natural radioactivity measurements in Pahang State, Malaysia.

    Science.gov (United States)

    Gabdo, Hamman Tukur; Ramli, Ahmad Termizi; Saleh, Muneer Aziz; Garba, Nuraddeen Nasiru; Sanusi, Mohamad

    2016-06-01

    This study was aimed at providing the baseline data of terrestrial gamma dose rates and natural radioactivity to assess the corresponding health risk in the ambient environment of the Pahang State. Terrestrial gamma radiation (TGR) from 640 locations was measured with the mean value found to be 176 ± 5 nGy h(-1). Ninety-eight soil samples were analysed using a high-purity germanium detector (HPGe), and the mean concentrations of the radionuclides (226)Ra, (232)Th and (40)K are 110 ± 3, 151 ± 5 and 542 ± 51 Bq kg(-1), respectively.(226)Ra and (232)Th concentrations were found to be three times the world average, while that of (40)K is quite higher than the world average value. The acid-intrusive geological formation has the highest mean concentrations for (226)Ra (215 ± 6 Bq kg(-1)), (232)Th (384 ± 12 Bq kg(-1)) and (40)K (1564 ± 153 Bq kg(-1)). The radium equivalent activities (Req) and the external hazard index (Hex) for the various soil types were also calculated. Some of the soil types were found to have values exceeding the internationally recommended levels of 370 Bq kg(-1) and the unity value, respectively.

  17. Absolute measurements of neutron cross sections. Progress report

    International Nuclear Information System (INIS)

    In the photoneutron laboratory, we have completed a major refurbishing of experimental facilities and begun work on measurements of the capture cross section in thorium and U-238. In the 14 MeV neutron experimental bay, work continues on the measurement of 14 MeV neutron induced reactions of interest as standards or because of their technological importance. First results have been obtained over the past year, and we are extending these measurements along the lines outlined in our proposal of a year ago

  18. Radioactivity measurement of radioactive contaminated soil by using a fiber-optic radiation sensor

    Science.gov (United States)

    Joo, Hanyoung; Kim, Rinah; Moon, Joo Hyun

    2016-06-01

    A fiber-optic radiation sensor (FORS) was developed to measure the gamma radiation from radioactive contaminated soil. The FORS was fabricated using an inorganic scintillator (Lu,Y)2SiO5:Ce (LYSO:Ce), a mixture of epoxy resin and hardener, aluminum foil, and a plastic optical fiber. Before its real application, the FORS was tested to determine if it performed adequately. The test result showed that the measurements by the FORS adequately followed the theoretically estimated values. Then, the FORS was applied to measure the gamma radiation from radioactive contaminated soil. For comparison, a commercial radiation detector was also applied to measure the same soil samples. The measurement data were analyzed by using a statistical parameter, the critical level to determine if net radioactivity statistically different from background was present in the soil sample. The analysis showed that the soil sample had radioactivity distinguishable from background.

  19. ABSOLUTE CONTINUITY FOR INTERACTING MEASURE-VALUED BRANCHING BROWNIAN MOTIONS

    Institute of Scientific and Technical Information of China (English)

    ZHAOXUELEI

    1997-01-01

    The moments and absohite continuity of measure-valued branching Brownian motions with bounded interacting intensity are hivestigated. An estimate of higher order moments is obtained. The ahsolute continuity is verified in the one dimension case. This therehy verifies the conjecture of Méléard and Roelly in [5].

  20. Absolute Oxygenation Metabolism Measurements Using Magnetic Resonance Imaging

    OpenAIRE

    An, Hongyu; Liu, Qingwei; Eldeniz, Cihat; Lin, Weili

    2011-01-01

    Cerebral oxygen metabolism plays a critical role in maintaining normal function of the brain. It is the primary energy source to sustain neuronal functions. Abnormalities in oxygen metabolism occur in various neuro-pathologic conditions such as ischemic stroke, cerebral trauma, cancer, Alzheimer’s disease and shock. Therefore, the ability to quantitatively measure tissue oxygenation and oxygen metabolism is essential to the understanding of pathophysiology and treatment of various diseases. T...

  1. Observer variability of absolute and relative thrombus density measurements in patients with acute ischemic stroke

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Emilie M.M. [Erasmus MC - University Medical Center Rotterdam, Department of Radiology, P.O. Box 2040, Rotterdam (Netherlands); Department of Radiology, AMC, Amsterdam (Netherlands); Yoo, Albert J. [Texas Stroke Institute, Plano, TX (United States); Beenen, Ludo F.; Majoie, Charles B. [Department of Radiology, AMC, Amsterdam (Netherlands); Berkhemer, Olvert A. [Department of Radiology, AMC, Amsterdam (Netherlands); Department of Neurology, Erasmus MC, Rotterdam (Netherlands); Blanken, Mark D. den; Wismans, Carrie [AMC, Department of Biomedical Engineering and Physics, Amsterdam (Netherlands); Niessen, Wiro J. [Erasmus MC - University Medical Center Rotterdam, Department of Radiology, P.O. Box 2040, Rotterdam (Netherlands); Delft University of Technology, Faculty of Applied Sciences, Delft (Netherlands); Marquering, Henk A. [Department of Radiology, AMC, Amsterdam (Netherlands); AMC, Department of Biomedical Engineering and Physics, Amsterdam (Netherlands); Collaboration: on behalf of the MR CLEAN investigators

    2016-02-15

    Thrombus density may be a predictor for acute ischemic stroke treatment success. However, only limited data on observer variability for thrombus density measurements exist. This study assesses the variability and bias of four common thrombus density measurement methods by expert and non-expert observers. For 132 consecutive patients with acute ischemic stroke, three experts and two trained observers determined thrombus density by placing three standardized regions of interest (ROIs) in the thrombus and corresponding contralateral arterial segment. Subsequently, absolute and relative thrombus densities were determined using either one or three ROIs. Intraclass correlation coefficient (ICC) was determined, and Bland-Altman analysis was performed to evaluate interobserver and intermethod agreement. Accuracy of the trained observer was evaluated with a reference expert observer using the same statistical analysis. The highest interobserver agreement was obtained for absolute thrombus measurements using three ROIs (ICCs ranging from 0.54 to 0.91). In general, interobserver agreement was lower for relative measurements, and for using one instead of three ROIs. Interobserver agreement of trained non-experts and experts was similar. Accuracy of the trained observer measurements was comparable to the expert interobserver agreement and was better for absolute measurements and with three ROIs. The agreement between the one ROI and three ROI methods was good. Absolute thrombus density measurement has superior interobserver agreement compared to relative density measurement. Interobserver variation is smaller when multiple ROIs are used. Trained non-expert observers can accurately and reproducibly assess absolute thrombus densities using three ROIs. (orig.)

  2. Observer variability of absolute and relative thrombus density measurements in patients with acute ischemic stroke

    International Nuclear Information System (INIS)

    Thrombus density may be a predictor for acute ischemic stroke treatment success. However, only limited data on observer variability for thrombus density measurements exist. This study assesses the variability and bias of four common thrombus density measurement methods by expert and non-expert observers. For 132 consecutive patients with acute ischemic stroke, three experts and two trained observers determined thrombus density by placing three standardized regions of interest (ROIs) in the thrombus and corresponding contralateral arterial segment. Subsequently, absolute and relative thrombus densities were determined using either one or three ROIs. Intraclass correlation coefficient (ICC) was determined, and Bland-Altman analysis was performed to evaluate interobserver and intermethod agreement. Accuracy of the trained observer was evaluated with a reference expert observer using the same statistical analysis. The highest interobserver agreement was obtained for absolute thrombus measurements using three ROIs (ICCs ranging from 0.54 to 0.91). In general, interobserver agreement was lower for relative measurements, and for using one instead of three ROIs. Interobserver agreement of trained non-experts and experts was similar. Accuracy of the trained observer measurements was comparable to the expert interobserver agreement and was better for absolute measurements and with three ROIs. The agreement between the one ROI and three ROI methods was good. Absolute thrombus density measurement has superior interobserver agreement compared to relative density measurement. Interobserver variation is smaller when multiple ROIs are used. Trained non-expert observers can accurately and reproducibly assess absolute thrombus densities using three ROIs. (orig.)

  3. [Absolute measurement of laminar flow with the aid of an orthogonal excitation technic in NMR tomography].

    Science.gov (United States)

    Bielke, G; Meindl, S; von Seelen, W

    1986-11-01

    A method for absolute measurement of flow quantities by excitation of a slice orthogonal to the measuring plane is presented. The developing flow profile can be imaged directly and its dynamic behaviour can be sampled and measured using the multiecho technique. Simple formulas can be derived by means of Hagen-Poiseuille's law for quantification.

  4. Precise measurements of the absolute γ-ray emission probabilities of 223Ra and decay progeny in equilibrium

    International Nuclear Information System (INIS)

    Precise measurements of the absolute γ-ray emission probabilities have been made of radiochemically pure solutions of 223Ra in equilibrium with its decay progeny, which had been previously standardised by 4π(liquid scintillation)-γ digital coincidence counting techniques. Two high-purity germanium γ-ray spectrometers were used which had been accurately calibrated using a suite of primary and secondary radioactive standards. Comparison of the activity concentration determined by the primary technique against γ-ray spectrometry measurements using the nuclear data evaluations of the Decay Data Evaluation Project exhibited a range of ~18% in the most intense γ-ray emissions (>1% probability) of the 223Ra decay series. Absolute γ-ray emission probabilities and standard uncertainties have been determined for the decay of 223Ra, 219Rn, 215Po, 211Pb, 211Bi and 207Tl in equilibrium. The standard uncertainties of the measured γ-ray emission probabilities quoted in this work show a significant improvement over previously reported γ-ray emission probabilities. Correlation coefficients for pairs of the measured γ-ray emission probabilities from the decays of the radionuclides 223Ra, 219Rn and 211Pb have been determined and are presented. The α-transition probabilities of the 223Ra have been deduced from P(γ+ce) balance using the γ-ray emission probabilities determined in this work with some agreement observed with the published experimental values of the α-emission probabilities. - Highlights: • Discrepancies found within currently published γ-ray emission probabilities. • Absolute γ-ray emission probabilities of decay series in equilibrium determined. • Significant improvement in precision of measured values. • Closer agreement between deduced and experimental α transition probabilities. • Correlation coefficients presented for γ-emissions of 223Ra, 219Rn and 211Pb

  5. A technique for the absolute measurement of the W-value for X-rays in counting gases

    Energy Technology Data Exchange (ETDEWEB)

    Vinagre, F.L.R. E-mail: fleonor@saturno.fis.uc.pt; Conde, C.A.N

    2000-08-11

    A technique was developed for the absolute measurement of the W-value (the mean energy for the production of an electron-ion pair) for low-energy X-rays in a wide range of gases at atmospheric pressures, with a standard uncertainty better than 1%. This technique is based on the absolute measurement of the primary ionization charge produced by X-ray photons from a constant intensity monoenergetic X-ray source, e.g. a long lifetime radioactive source. The ionization charge is calibrated by the number of X-ray photons absorbed in the gas, counted with a photon detector. For this purpose, a hybrid detector system was tested and its use in W-value measurements was investigated. The technique was applied to pure xenon at 825 Torr with 5.9 keV X-rays and a W-value of 21.61{sub -0.10}{sup +0.14} eV was obtained for a 68% confidence level. The required corrections and the different factors contributing to the accuracy of the results are discussed. The advantages and limitations of this technique are explored and future developments are discussed.

  6. The Implications for Higher-Accuracy Absolute Measurements for NGS and its GRAV-D Project

    Science.gov (United States)

    Childers, V. A.; Winester, D.; Roman, D. R.; Eckl, M. C.; Smith, D. A.

    2013-12-01

    Absolute and relative gravity measurements play an important role in the work of NOAA's National Geodetic Survey (NGS). When NGS decided to replace the US national vertical datum, the Gravity for the Redefinition of the American Vertical Datum (GRAV-D) project added a new dimension to the NGS gravity program. Airborne gravity collection would complement existing satellite and surface gravity data to allow the creation of a gravimetric geoid sufficiently accurate to form the basis of the new reference surface. To provide absolute gravity ties for the airborne surveys, initially new FG5 absolute measurements were made at existing absolute stations and relative measurements were used to transfer those measurements to excenters near the absolute mark and to the aircraft sensor height at the parking space. In 2011, NGS obtained a field-capable A10 absolute gravimeter from Micro-g LaCoste which became the basis of the support of the airborne surveys. Now A10 measurements are made at the aircraft location and transferred to sensor height. Absolute and relative gravity play other roles in GRAV-D. Comparison of surface data with new airborne collection will highlight surface surveys with bias or tilt errors and can provide enough information to repair or discard the data. We expect that areas of problem surface data may be re-measured. The GRAV-D project also plans to monitor the geoid in regions of rapid change and update the vertical datum when appropriate. Geoid change can result from glacial isostatic adjustment (GIA), tectonic change, and the massive drawdown of large scale aquifers. The NGS plan for monitoring these changes over time is still in its preliminary stages and is expected to rely primarily on the GRACE and GRACE Follow On satellite data in conjunction with models of GIA and tectonic change. We expect to make absolute measurements in areas of rapid change in order to verify model predictions. With the opportunities presented by rapid, highly accurate

  7. A flowrate measurement method by counting of radioactive particles suspended in a liquid

    International Nuclear Information System (INIS)

    By external counting of fine #betta# emitting radioactive particles suspended in a liquid, the flowrate in a system of pipes can be measured. The study comprises three phases: 1. - The hydraulic validity of the method is demonstrated in laminar as well as in turbulent flow under certain conditions of particles size and density and of liquid viscosity. 2. - Radioactive labelling of microspheres of serumalbumin or ion exchange resins with indium 113m delivered by a generator Tin 113 → Indium 113m. 3. - Counting with a scintillation detector: a method of threshold overstepping is experimented with a mechanical or electronic simulator; the statistical study of particle superposition under the detector enables a correction for the resulting counting losses to be proposed. The method provides absolute measurements, but is particularly suitable to measure relative flowrates in a hydraulic network. It can be continuous and does not perturb the flow and the network. The accuracy of the method is analysed in details

  8. Calibrating the absolute amplitude scale for air showers measured at LOFAR

    International Nuclear Information System (INIS)

    Air showers induced by cosmic rays create nanosecond pulses detectable at radio frequencies. These pulses have been measured successfully in the past few years at the LOw-Frequency ARray (LOFAR) and are used to study the properties of cosmic rays. For a complete understanding of this phenomenon and the underlying physical processes, an absolute calibration of the detecting antenna system is needed. We present three approaches that were used to check and improve the antenna model of LOFAR and to provide an absolute calibration of the whole system for air shower measurements. Two methods are based on calibrated reference sources and one on a calibration approach using the diffuse radio emission of the Galaxy, optimized for short data-sets. An accuracy of 19% in amplitude is reached. The absolute calibration is also compared to predictions from air shower simulations. These results are used to set an absolute energy scale for air shower measurements and can be used as a basis for an absolute scale for the measurement of astronomical transients with LOFAR

  9. Calibrating the absolute amplitude scale for air showers measured at LOFAR

    CERN Document Server

    Nelles, A; Karskens, T; Krause, M; Buitink, S; Corstanje, A; Enriquez, J E; Erdmann, M; Falcke, H; Haungs, A; Hiller, R; Huege, T; Krause, R; Link, K; Norden, M J; Rachen, J P; Rossetto, L; Schellart, P; Scholten, O; Schröder, F G; ter Veen, S; Thoudam, S; Trinh, T N G; Weidenhaupt, K; Wijnholds, S J; Anderson, J; Bähren, L; Bell, M E; Bentum, M J; Best, P; Bonafede, A; Bregman, J; Brouw, W N; Bruüggen, M; Butcher, H R; Carbone, D; Ciardi, B; de Gasperin, F; Duscha, S; Eislöffel, J; Fallows, R A; Frieswijk, W; Garrett, M A; van Haarlem, M P; Heald, G; Hoeft, M; Horneffer, A; Iacobelli, M; Juette, E; Karastergiou, A; Kohler, J; Kondratiev, V I; Kuniyoshi, M; Kuper, G; van Leeuwen, J; Maat, P; McFadden, R; McKay-Bukowski, D; Orru, E; Paas, H; Pandey-Pommier, M; Pandey, V N; Pizzo, R; Polatidis, A G; Reich, W; Röttgering, H; Schwarz, D; Serylak, M; Sluman, J; Smirnov, O; Tasse, C; Toribio, M C; Vermeulen, R; van Weeren, R J; Wijers, R A M J; Wucknitz, O; Zarka, P

    2015-01-01

    Air showers induced by cosmic rays create nanosecond pulses detectable at radio frequencies. These pulses have been measured successfully in the past few years at the LOw- Frequency ARray (LOFAR) and are used to study the properties of cosmic rays. For a complete understanding of this phenomenon and the underlying physical processes, an absolute calibration of the detecting antenna system is needed. We present three approaches that were used to check and improve the antenna model of LOFAR and to provide an absolute calibration for air shower measurements. Two methods are based on calibrated reference sources and one on a calibration approach using the diffuse radio emission of the Galaxy, optimized for short data-sets. An accuracy of 35% in amplitude is reached. The absolute calibration is also compared to predictions from air shower simulations. These results are used to set an absolute energy scale for air shower measurements and can be used as a basis for an absolute scale for the measurement of astronomic...

  10. Radioactivity Measurement of Short Life Nuclide 89Rb

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>The radioactivity of short life nuclide 89Rb produced by fast radiochemical separation was measured by the digital coincidence counting (DCC) system. In this experiment, there were a large quantity of impurities

  11. Radioactive contamination of edible mushrooms. Current measured values (State: 2013)

    International Nuclear Information System (INIS)

    The report includes the current measured values (2013) of the radioactive contamination of edible mushrooms in Southern Germany (Cs137 and K-40) and discusses the relation radio-cesium intake and radiation exposure now and and the future.

  12. Measurement of absolute optical thickness of mask glass by wavelength-tuning Fourier analysis.

    Science.gov (United States)

    Kim, Yangjin; Hbino, Kenichi; Sugita, Naohiko; Mitsuishi, Mamoru

    2015-07-01

    Optical thickness is a fundamental characteristic of an optical component. A measurement method combining discrete Fourier-transform (DFT) analysis and a phase-shifting technique gives an appropriate value for the absolute optical thickness of a transparent plate. However, there is a systematic error caused by the nonlinearity of the phase-shifting technique. In this research the absolute optical-thickness distribution of mask blank glass was measured using DFT and wavelength-tuning Fizeau interferometry without using sensitive phase-shifting techniques. The error occurring during the DFT analysis was compensated for by using the unwrapping correlation. The experimental results indicated that the absolute optical thickness of mask glass was measured with an accuracy of 5 nm.

  13. Absolute measurement of the DT primary neutron yield on the National Ignition Facility

    Directory of Open Access Journals (Sweden)

    Leeper R.J.

    2013-11-01

    Full Text Available The measurement of the absolute neutron yield produced in inertial confinement fusion target experiments conducted on the National Ignition Facility (NIF is essential in benchmarking progress towards the goal of achieving ignition on this facility. This paper describes three independent diagnostic techniques that have been developed to make accurate and precise DT neutron yield measurements on the NIF.

  14. Absolute frequency measurement of the 1S0 - 3P0 transition of 171Yb

    CERN Document Server

    Pizzocaro, Marco; Rauf, Benjamin; Bregolin, Filippo; Milani, Gianmaria; Clivati, Cecilia; Costanzo, Giovanni A; Levi, Filippo; Calonico, Davide

    2016-01-01

    We report the absolute frequency measurement of the unperturbed transition 1S0 - 3P0 at 578 nm in 171Yb realized in an optical lattice frequency standard. The absolute frequency is measured 518 295 836 590 863.55(28) Hz relative to a cryogenic caesium fountain with a fractional uncertainty of 5.4x10-16 . This value is in agreement with the ytterbium frequency recommended as a secondary representation of the second in the International System of Units.

  15. High precision absolute distance measurement with the fiber femtosecond optical frequency comb

    Science.gov (United States)

    Guo, Jiashuai; Wu, Tengfei; Liang, Zhiguo; Wang, Yu; Han, Jibo

    2016-01-01

    The absolute distance measurement was experimentally demonstrated by using the fiber femtosecond optical frequency comb in air. The technique is based on the measurement of cross correlation between reference and measurement optical pulses. This method can achieve accuracy better than the commercial laser interferometer. It is attained sub-micrometer resolution in large scale measurement by using the fiber femtosecond optical frequency comb. It will be benefit for future laser lidar and satellite formation flying mission.

  16. First Absolutely Calibrated Localized Measurements of Ion Velocity in the MST in Locked and Rotating Plasmas

    Science.gov (United States)

    Baltzer, M.; Craig, D.; den Hartog, D. J.; Nornberg, M. D.; Munaretto, S.

    2015-11-01

    An Ion Doppler Spectrometer (IDS) is used on MST for high time-resolution passive and active measurements of impurity ion emission. Absolutely calibrated measurements of flow are difficult because the spectrometer records data within 0.3 nm of the C+5 line of interest, and commercial calibration lamps do not produce lines in this narrow range . A novel optical system was designed to absolutely calibrate the IDS. The device uses an UV LED to produce a broad emission curve in the desired region. A Fabry-Perot etalon filters this light, cutting transmittance peaks into the pattern of the LED emission. An optical train of fused silica lenses focuses the light into the IDS with f/4. A holographic diffuser blurs the light cone to increase homogeneity. Using this light source, the absolute Doppler shift of ion emissions can be measured in MST plasmas. In combination with charge exchange recombination spectroscopy, localized ion velocities can now be measured. Previously, a time-averaged measurement along the chord bisecting the poloidal plane was used to calibrate the IDS; the quality of these central chord calibrations can be characterized with our absolute calibration. Calibration errors may also be quantified and minimized by optimizing the curve-fitting process. Preliminary measurements of toroidal velocity in locked and rotating plasmas will be shown. This work has been supported by the US DOE.

  17. Physical Measure and Absolute Continuity for One-Dimensional Center Direction

    CERN Document Server

    Viana, Marcelo

    2010-01-01

    For a class of partially hyperbolic $C^k$, $k>1$ diffeomorphisms with circle center leaves we prove existence and finiteness of physical (or Sinai-Ruelle-Bowen) measures, whose basins cover a full Lebesgue measure subset of the ambient manifold. Our conditions contain an open and dense subset of all $C^k$ partially hyperbolic skew-products on compact circle bundles. Our arguments blend ideas from the theory of Gibbs states for diffeomorphisms with mostly contracting center direction together with recent progress in the theory of cocycles over hyperbolic systems that call into play geometric properties of invariant foliations such as absolute continuity. Recent results show that absolute continuity of the center foliation is often a rigid property among volume preserving systems. We prove that this is not at all the case in the dissipative setting, where absolute continuity can even be robust.

  18. Absolute reliability of shoulder joint horizontal adductor muscle strength measurements using a handheld dynamometer.

    Science.gov (United States)

    Hirano, Masahiro; Katoh, Munenori

    2015-07-01

    [Purpose] The aim of this study was to verify the absolute reliability of shoulder joint horizontal adductor muscle strength measurements using a handheld dynamometer (HHD). [Subjects and Methods] The subjects were 33 healthy college students. The measurements were made three times with the HHD fixed using a belt (BFHHD) or with the examiner's hand (conventional method; HFHHD). The absolute reliability of measurements was verified using Bland-Altman analysis, both in the all subjects group and a group of subjects showing measurements less than a fixed limit of 30 kgf. [Results] In the adductor muscle strength, single measurements obtained using an HFHHD in the case of a <30 kgf group and the maximum value of two measurements obtained using a BFHHD are reliable. PMID:26311938

  19. Natural radioactivity measurements at the proposed nuclear power plant site

    International Nuclear Information System (INIS)

    Natural radioactivity measurement in the Philippines aims to establish baseline radioactivity levels in the environment of items essential to man. In this article, results of the environmental surveillance conducted in Bagac, Bataan from 1973 to 1974 are presented. Analyses were made on air parti-culates, sea and fresh water, grass, and soil samples for gross beta-gamma activities. Results obtained showed activity levels below the maximum permissible concentration recommended by the International Committee on Radiation Protection (ICRP)

  20. Measurements with radioactive beams at ATLAS.

    Energy Technology Data Exchange (ETDEWEB)

    Rehm, K. E.

    1998-08-06

    Reactions of interest to nuclear astrophysics have been studied with radioactive beams at the ATLAS accelerator. Using a modified ISOL technique, beams of {sup 18}F (T{sub 1/2} = 110 min) and {sup 56}Ni (T{sub 1/2} = 6.1d) were produced and the reactions {sup 18}F(p,{alpha}){sup 15}O, {sup 18}F(p,{gamma}){sup 19}Ne, and {sup 56}Ni(d,p){sup 57}Ni have been investigated. The results indicate that the {sup 18}F(p,{gamma}) route is a small contributor to the breakout from the hot CNO cycle into the rp process, while the {sup 56}Ni(p,{gamma}){sup 57}Cu rate is about ten times larger than previously assumed.

  1. Measurement of total body radioactivity in man

    International Nuclear Information System (INIS)

    Techniques for the determination of whole-body radioactivity in man using uncollimated NaI(Tl) detectors have been studied. Geometrical effects and photon attenuation effects due to the different shapes of humans as well as due to varying in-vivo radioactivity distributions have been evaluated particularly for scanning-bed geometries and the chair geometry. Theoretically it is shown that the attenuation effects are generally dominating, for full-energy-peak pulse-range methods. For the application in radiation protection a cheap and simple chair-geometry unit has been constructed and used at various places distantly from the home-laboratory, for studies of body activity of Cs-137 in northern Sweden. High body activities were found particularly in reindeer-breeding Lapps. The elimination rate of Cs-137 in man was studied in the stationary whole-body counter in Lund as well as with the field-system. For the study of the performances at low and high photon energies clinical applications of methods for gastro-intestinal absorption of vitamin B12 (Co-57; 122 keV) and total body potassium determination (K-40; 1.46 MeV, K-42; 1.52 MeV) have been evaluated. Theoretical and experimental results as well as experiences of applications in radiation protection and medicine show that the scanning-bed geometry effectively evens out redistributional effects. For optimum results, however, scatter-energy pulse-ranges rather than full-energy-peak ranges should be used. (Auth.)

  2. Low geometry counter for the absolute measurement of the activity of alpha-emitting sources

    International Nuclear Information System (INIS)

    A low-geometry counter is described which allows the absolute determination of the activity for alpha-emitting sources. A Si implanted detector is used to obtain the spectrum of the sample. Two samples are measured with this counter and a 2 π gridded ion chamber. The results an their uncertainties for both instruments are discussed. (Author)

  3. In situ measurement of leaf chlorophyll concentration: analysis of the optical/absolute relationship.

    Science.gov (United States)

    Parry, Christopher; Blonquist, J Mark; Bugbee, Bruce

    2014-11-01

    In situ optical meters are widely used to estimate leaf chlorophyll concentration, but non-uniform chlorophyll distribution causes optical measurements to vary widely among species for the same chlorophyll concentration. Over 30 studies have sought to quantify the in situ/in vitro (optical/absolute) relationship, but neither chlorophyll extraction nor measurement techniques for in vitro analysis have been consistent among studies. Here we: (1) review standard procedures for measurement of chlorophyll; (2) estimate the error associated with non-standard procedures; and (3) implement the most accurate methods to provide equations for conversion of optical to absolute chlorophyll for 22 species grown in multiple environments. Tests of five Minolta (model SPAD-502) and 25 Opti-Sciences (model CCM-200) meters, manufactured from 1992 to 2013, indicate that differences among replicate models are less than 5%. We thus developed equations for converting between units from these meter types. There was no significant effect of environment on the optical/absolute chlorophyll relationship. We derive the theoretical relationship between optical transmission ratios and absolute chlorophyll concentration and show how non-uniform distribution among species causes a variable, non-linear response. These results link in situ optical measurements with in vitro chlorophyll concentration and provide insight to strategies for radiation capture among diverse species.

  4. Measurement of the absolute branching fraction of $D^{+}\\rightarrow\\bar K^0 e^{+}\

    CERN Document Server

    Ablikim, M; Ai, X C; Albayrak, O; Albrecht, M; Ambrose, D J; Amoroso, A; An, F F; An, Q; Bai, J Z; Ferroli, R Baldini; Ban, Y; Bennett, D W; Bennett, J V; Bertani, M; Bettoni, D; Bian, J M; Bianchi, F; Boger, E; Boyko, I; Briere, R A; Cai, H; Cai, X; Cakir, O; Calcaterra, A; Cao, G F; Cetin, S A; Chang, J F; Chelkov, G; Chen, G; Chen, H S; Chen, H Y; Chen, J C; Chen, M L; Chen, S; Chen, S J; Chen, X; Chen, X R; Chen, Y B; Cheng, H P; Chu, X K; Cibinetto, G; Dai, H L; Dai, J P; Dbeyssi, A; Dedovich, D; Deng, Z Y; Denig, A; Denysenko, I; Destefanis, M; De Mori, F; Ding, Y; Dong, C; Dong, J; Dong, L Y; Dong, M Y; Dou, Z L; Du, S X; Duan, P F; Fan, J Z; Fang, J; Fang, S S; Fang, X; Fang, Y; Farinelli, R; Fava, L; Fedorov, O; Feldbauer, F; Felici, G; Feng, C Q; Fioravanti, E; Fritsch, M; Fu, C D; Gao, Q; Gao, X L; Gao, X Y; Gao, Y; Gao, Z; Garzia, I; Goetzen, K; Gong, L; Gong, W X; Gradl, W; Greco, M; Gu, M H; Gu, Y T; Guan, Y H; Guo, A Q; Guo, L B; Guo, R P; Guo, Y; Guo, Y P; Haddadi, Z; Hafner, A; Han, S; Hao, X Q; Harris, F A; He, K L; Held, T; Heng, Y K; Hou, Z L; Hu, C; Hu, H M; Hu, J F; Hu, T; Hu, Y; Huang, G S; Huang, J S; Huang, X T; Huang, X Z; Huang, Y; Huang, Z L; Hussain, T; Ji, Q; Ji, Q P; Ji, X B; Ji, X L; Jiang, L W; Jiang, X S; Jiang, X Y; Jiao, J B; Jiao, Z; Jin, D P; Jin, S; Johansson, T; Julin, A; Kalantar-Nayestanaki, N; Kang, X L; Kang, X S; Kavatsyuk, M; Ke, B C; Kiese, P; Kliemt, R; Kloss, B; Kolcu, O B; Kopf, B; Kornicer, M; Kupsc, A; Kühn, W; Lange, J S; Lara, M; Larin, P; Leng, C; Li, C; Li, Cheng; Li, D M; Li, F; Li, F Y; Li, G; Li, H B; Li, H J; Li, J C; Li, Jin; Li, K; Li, K; Li, Lei; Li, P R; Li, Q Y; Li, T; Li, W D; Li, W G; Li, X L; Li, X N; Li, X Q; Li, Y B; Li, Z B; Liang, H; Liang, Y F; Liang, Y T; Liao, G R; Lin, D X; Liu, B; Liu, B J; Liu, C X; Liu, D; Liu, F H; Liu, Fang; Liu, Feng; Liu, H B; Liu, H H; Liu, H H; Liu, H M; Liu, J; Liu, J B; Liu, J P; Liu, J Y; Liu, K; Liu, K Y; Liu, L D; Liu, P L; Liu, Q; Liu, S B; Liu, X; Liu, Y B; Liu, Z A; Liu, Zhiqing; Loehner, H; Lou, X C; Lu, H J; Lu, J G; Lu, Y; Lu, Y P; Luo, C L; Luo, M X; Luo, T; Luo, X L; Lyu, X R; Ma, F C; Ma, H L; Ma, L L; Ma, M M; Ma, Q M; Ma, T; Ma, X N; Ma, X Y; Ma, Y M; Maas, F E; Maggiora, M; Mao, Y J; Mao, Z P; Marcello, S; Messchendorp, J G; Min, J; Min, T J; Mitchell, R E; Mo, X H; Mo, Y J; Morales, C Morales; Muchnoi, N Yu; Muramatsu, H; Nefedov, Y; Nerling, F; Nikolaev, I B; Ning, Z; Nisar, S; Niu, S L; Niu, X Y; Olsen, S L; Ouyang, Q; Pacetti, S; Pan, Y; Patteri, P; Pelizaeus, M; Peng, H P; Peters, K; Pettersson, J; Ping, J L; Ping, R G; Poling, R; Prasad, V; Qi, H R; Qi, M; Qian, S; Qiao, C F; Qin, L Q; Qin, N; Qin, X S; Qin, Z H; Qiu, J F; Rashid, K H; Redmer, C F; Ripka, M; Rong, G; Rosner, Ch; Ruan, X D; Sarantsev, A; Savrié, M; Schoenning, K; Schumann, S; Shan, W; Shao, M; Shen, C P; Shen, P X; Shen, X Y; Sheng, H Y; Shi, M; Song, W M; Song, X Y; Sosio, S; Spataro, S; Sun, G X; Sun, J F; Sun, S S; Sun, X H; Sun, Y J; Sun, Y Z; Sun, Z J; Sun, Z T; Tang, C J; Tang, X; Tapan, I; Thorndike, E H; Tiemens, M; Ullrich, M; Uman, I; Varner, G S; Wang, B; Wang, B L; Wang, D; Wang, D Y; Wang, K; Wang, L L; Wang, L S; Wang, M; Wang, P; Wang, P L; Wang, W; Wang, W P; Wang, X F; Wang, Y; Wang, Y D; Wang, Y F; Wang, Y Q; Wang, Z; Wang, Z G; Wang, Z H; Wang, Z Y; Wang, Z Y; Weber, T; Wei, D H; Weidenkaff, P; Wen, S P; Wiedner, U; Wolke, M; Wu, L H; Wu, L J; Wu, Z; Xia, L; Xia, L G; Xia, Y; Xiao, D; Xiao, H; Xiao, Z J; Xie, Y G; Xiu, Q L; Xu, G F; Xu, J J; Xu, L; Xu, Q J; Xu, Q N; Xu, X P; Yan, L; Yan, W B; Yan, W C; Yan, Y H; Yang, H J; Yang, H X; Yang, L; Yang, Y X; Ye, M; Ye, M H; Yin, J H; Yu, B X; Yu, C X; Yu, J S; Yuan, C Z; Yuan, W L; Yuan, Y; Yuncu, A; Zafar, A A; Zallo, A; Zeng, Y; Zeng, Z; Zhang, B X; Zhang, B Y; Zhang, C; Zhang, C C; Zhang, D H; Zhang, H H; Zhang, H Y; Zhang, J; Zhang, J J; Zhang, J L; Zhang, J Q; Zhang, J W; Zhang, J Y; Zhang, J Z; Zhang, K; Zhang, L; Zhang, S Q; Zhang, X Y; Zhang, Y; Zhang, Y H; Zhang, Y N; Zhang, Y T; Zhang, Yu; Zhang, Z H; Zhan, Z P; Zhang, Z Y; Zhao, G; Zhao, J W; Zhao, J Y; Zhao, J Z; Zhao, Lei; Zhao, Ling; Zhao, M G; Zhao, Q; Zhao, Q W; Zhao, S J; Zhao, T C; Zhao, Y B; Zhao, Z G; Zhemchugov, A; Zheng, B; Zheng, J P; Zheng, W J; Zheng, Y H; Zhong, B; Zhou, L; Zhou, X; Zhou, X K; Zhou, X R; Zhou, X Y; Zhu, K; Zhu, K J; Zhu, S; Zhu, S H; Zhu, X L; Zhu, Y C; Zhu, Y S; Zhu, Z A; Zhuang, J; Zotti, L; Zou, B S; Zou, J H

    2016-01-01

    By analyzing 2.93 fb$^{-1}$ data collected at the center-of-mass energy $\\sqrt s=3.773$ GeV with the BESIII detector, we measure the absolute branching fraction of the semileptonic decay $D^+\\rightarrow\\bar K^0 e^{+}\

  5. Measurements of the absolute branching fractions for $D_{s}^{+}\\rightarrow\\eta e^{+}\

    CERN Document Server

    Ablikim, M; Ai, X C; Albayrak, O; Albrecht, M; Ambrose, D J; Amoroso, A; An, F F; An, Q; Bai, J Z; Ferroli, R Baldini; Ban, Y; Bennett, D W; Bennett, J V; Bertani, M; Bettoni, D; Bian, J M; Bianchi, F; Boger, E; Boyko, I; Briere, R A; Cai, H; Cai, X; Cakir, O; Calcaterra, A; Cao, G F; Cetin, S A; Chang, J F; Chelkov, G; Chen, G; Chen, H S; Chen, H Y; Chen, J C; Chen, M L; Chen, S; Chen, S J; Chen, X; Chen, X R; Chen, Y B; Cheng, H P; Chu, X K; Cibinetto, G; Dai, H L; Dai, J P; Dbeyssi, A; Dedovich, D; Deng, Z Y; Denig, A; Denysenko, I; Destefanis, M; De Mori, F; Ding, Y; Dong, C; Dong, J; Dong, L Y; Dong, M Y; Dou, Z L; Du, S X; Duan, P F; Fan, J Z; Fang, J; Fang, S S; Fang, X; Fang, Y; Farinelli, R; Fava, L; Fedorov, O; Feldbauer, F; Felici, G; Feng, C Q; Fioravanti, E; Fritsch, M; Fu, C D; Gao, Q; Gao, X L; Gao, X Y; Gao, Y; Gao, Z; Garzia, I; Goetzen, K; Gong, L; Gong, W X; Gradl, W; Greco, M; Gu, M H; Gu, Y T; Guan, Y H; Guo, A Q; Guo, L B; Guo, R P; Guo, Y; Guo, Y P; Haddadi, Z; Hafner, A; Han, S; Hao, X Q; Harris, F A; He, K L; Held, T; Heng, Y K; Hou, Z L; Hu, C; Hu, H M; Hu, J F; Hu, T; Hu, Y; Huang, G S; Huang, J S; Huang, X T; Huang, X Z; Huang, Y; Huang, Z L; Hussain, T; Ji, Q; Ji, Q P; Ji, X B; Ji, X L; Jiang, L W; Jiang, X S; Jiang, X Y; Jiao, J B; Jiao, Z; Jin, D P; Jin, S; Johansson, T; Julin, A; Kalantar-Nayestanaki, N; Kang, X L; Kang, X S; Kavatsyuk, M; Ke, B C; Kiese, P; Kliemt, R; Kloss, B; Kolcu, O B; Kopf, B; Kornicer, M; Kupsc, A; Kühn, W; Lange, J S; Lara, M; Larin, P; Leng, C; Li, C; Li, Cheng; Li, D M; Li, F; Li, F Y; Li, G; Li, H B; Li, H J; Li, J C; Li, Jin; Li, K; Li, K; Li, Lei; Li, P R; Li, Q Y; Li, T; Li, W D; Li, W G; Li, X L; Li, X N; Li, X Q; Li, Y B; Li, Z B; Liang, H; Liang, Y F; Liang, Y T; Liao, G R; Lin, D X; Liu, B; Liu, B J; Liu, C X; Liu, D; Liu, F H; Liu, Fang; Liu, Feng; Liu, H B; Liu, H H; Liu, H H; Liu, H M; Liu, J; Liu, J B; Liu, J P; Liu, J Y; Liu, K; Liu, K Y; Liu, L D; Liu, P L; Liu, Q; Liu, S B; Liu, X; Liu, Y B; Liu, Z A; Liu, Zhiqing; Loehner, H; Lou, X C; Lu, H J; Lu, J G; Lu, Y; Lu, Y P; Luo, C L; Luo, M X; Luo, T; Luo, X L; Lyu, X R; Ma, F C; Ma, H L; Ma, L L; Ma, M M; Ma, Q M; Ma, T; Ma, X N; Ma, X Y; Ma, Y M; Maas, F E; Maggiora, M; Mao, Y J; Mao, Z P; Marcello, S; Messchendorp, J G; Min, J; Min, T J; Mitchell, R E; Mo, X H; Mo, Y J; Morales, C Morales; Muchnoi, N Yu; Muramatsu, H; Nefedov, Y; Nerling, F; Nikolaev, I B; Ning, Z; Nisar, S; Niu, S L; Niu, X Y; Olsen, S L; Ouyang, Q; Pacetti, S; Pan, Y; Patteri, P; Pelizaeus, M; Peng, H P; Peters, K; Pettersson, J; Ping, J L; Ping, R G; Poling, R; Prasad, V; Qi, H R; Qi, M; Qian, S; Qiao, C F; Qin, L Q; Qin, N; Qin, X S; Qin, Z H; Qiu, J F; Rashid, K H; Redmer, C F; Ripka, M; Rong, G; Rosner, Ch; Ruan, X D; Sarantsev, A; Savrié, M; Schoenning, K; Schumann, S; Shan, W; Shao, M; Shen, C P; Shen, P X; Shen, X Y; Sheng, H Y; Shi, M; Song, W M; Song, X Y; Sosio, S; Spataro, S; Sun, G X; Sun, J F; Sun, S S; Sun, X H; Sun, Y J; Sun, Y Z; Sun, Z J; Sun, Z T; Tang, C J; Tang, X; Tapan, I; Thorndike, E H; Tiemens, M; Ullrich, M; Uman, I; Varner, G S; Wang, B; Wang, B L; Wang, D; Wang, D Y; Wang, K; Wang, L L; Wang, L S; Wang, M; Wang, P; Wang, P L; Wang, W; Wang, W P; Wang, X F; Wang, Y; Wang, Y D; Wang, Y F; Wang, Y Q; Wang, Z; Wang, Z G; Wang, Z H; Wang, Z Y; Wang, Z Y; Weber, T; Wei, D H; Weidenkaff, P; Wen, S P; Wiedner, U; Wolke, M; Wu, L H; Wu, L J; Wu, Z; Xia, L; Xia, L G; Xia, Y; Xiao, D; Xiao, H; Xiao, Z J; Xie, Y G; Xiu, Q L; Xu, G F; Xu, J J; Xu, L; Xu, Q J; Xu, Q N; Xu, X P; Yan, L; Yan, W B; Yan, W C; Yan, Y H; Yang, H J; Yang, H X; Yang, L; Yang, Y X; Ye, M; Ye, M H; Yin, J H; Yu, B X; Yu, C X; Yu, J S; Yuan, C Z; Yuan, W L; Yuan, Y; Yuncu, A; Zafar, A A; Zallo, A; Zeng, Y; Zeng, Z; Zhang, B X; Zhang, B Y; Zhang, C; Zhang, C C; Zhang, D H; Zhang, H H; Zhang, H Y; Zhang, J; Zhang, J J; Zhang, J L; Zhang, J Q; Zhang, J W; Zhang, J Y; Zhang, J Z; Zhang, K; Zhang, L; Zhang, S Q; Zhang, X Y; Zhang, Y; Zhang, Y H; Zhang, Y N; Zhang, Y T; Zhang, Yu; Zhang, Z H; Zhan, Z P; Zhang, Z Y; Zhao, G; Zhao, J W; Zhao, J Y; Zhao, J Z; Zhao, Lei; Zhao, Ling; Zhao, M G; Zhao, Q; Zhao, Q W; Zhao, S J; Zhao, T C; Zhao, Y B; Zhao, Z G; Zhemchugov, A; Zheng, B; Zheng, J P; Zheng, W J; Zheng, Y H; Zhong, B; Zhou, L; Zhou, X; Zhou, X K; Zhou, X R; Zhou, X Y; Zhu, K; Zhu, K J; Zhu, S; Zhu, S H; Zhu, X L; Zhu, Y C; Zhu, Y S; Zhu, Z A; Zhuang, J; Zotti, L; Zou, B S; Zou, J H

    2016-01-01

    By analyzing 482 pb$^{-1}$ of $e^+e^-$ collision data collected at $\\sqrt s=4.009$ GeV with the BESIII detector at the BEPCII storage ring, we measure the absolute branching fractions for the semileptonic decays $D_{s}^{+}\\to\\eta e^{+}\

  6. Re-creating Gauss's method for non-electrical absolute measurements of magnetic fields and moments

    Science.gov (United States)

    Van Baak, D. A.

    2013-10-01

    In 1832, Gauss made the first absolute measurements of magnetic fields and of magnetic moments in experiments that are straightforward and instructive to replicate. We show, using rare-earth permanent magnets and a variation of Gauss's technique, that the horizontal component of the ambient geomagnetic field, as well as the size of the magnetic moments of such magnets, can be found. The method shows the connection between the SI and cgs emu unit systems for these quantities and permits an absolute realization of the Ampere with considerable precision.

  7. Evaluation of absolute phase for 3D profile measurement using fringe projection

    Institute of Scientific and Technical Information of China (English)

    Mengtao Huang; Zhuangde Jiang; Bing Li; Suping Fang

    2006-01-01

    A new method of absolute phase evaluation for three-dimensional (3D) profile measurement using fringe projection is presented, which combines the gray code and the phase shift technique. Two kinds of fringe patterns are projected onto the object surface respectively, one is sinusoidal intensity distribution used for phase demodulation and the other is gray code fringe pattern for unwrapping. These images are acquired by camera and stored into computer. The absolute phase is obtained by analyzing these images. The validity of this method is verified experimentally. The method is superior to other phase unwrapping methods.

  8. Demonstrating the Error Budget for the Climate Absolute Radiance and Refractivity Observatory Through Solar Irradiance Measurements

    Science.gov (United States)

    Thome, Kurtis; McCorkel, Joel; McAndrew, Brendan

    2016-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission addresses the need to observe highaccuracy, long-term climate change trends and to use decadal change observations as a method to determine the accuracy of climate change. A CLARREO objective is to improve the accuracy of SI-traceable, absolute calibration at infrared and reflected solar wavelengths to reach on-orbit accuracies required to allow climate change observations to survive data gaps and observe climate change at the limit of natural variability. Such an effort will also demonstrate National Institute of Standards and Technology (NIST) approaches for use in future spaceborne instruments. The current work describes the results of laboratory and field measurements with the Solar, Lunar for Absolute Reflectance Imaging Spectroradiometer (SOLARIS) which is the calibration demonstration system (CDS) for the reflected solar portion of CLARREO. SOLARIS allows testing and evaluation of calibration approaches, alternate design and/or implementation approaches and components for the CLARREO mission. SOLARIS also provides a test-bed for detector technologies, non-linearity determination and uncertainties, and application of future technology developments and suggested spacecraft instrument design modifications. Results of laboratory calibration measurements are provided to demonstrate key assumptions about instrument behavior that are needed to achieve CLARREO's climate measurement requirements. Absolute radiometric response is determined using laser-based calibration sources and applied to direct solar views for comparison with accepted solar irradiance models to demonstrate accuracy values giving confidence in the error budget for the CLARREO reflectance retrieval.

  9. Radiation Protection Research: Low-level Radioactivity Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Hurtgen, C

    2000-07-01

    The objectives of the research performed in the area of low-level radioactivity measurements are (1) to maintain and develop techniques for the measurement of low-level environmental and biological samples, (2) to measure these samples by means of low-background counters (liquid scintillators, proportional counters, ZnS counters, alpha spectrometry), (3) to support and advice the nuclear and non-nuclear industry in matters concerning radioactive contamination and/or low-level radioactivity measurements; (4) to maintain the quality assurance system according to the EN45001 standard; and (5) to assess the internal dose from occupational intakes of radionuclides of workers of the nuclear industry. Progress and achievements in these areas in 1999 are reported. Particular emphasis is SCK-CEN's contribution to the EULEP-EURADOS Action Group on 'Derivation of parameter values for application in the new model of the human respiratory tract for occupational exposure'.

  10. Measured radioactivity data acquisition and evaluation system (REA)

    International Nuclear Information System (INIS)

    In Germany, authorities in the Federal States are obliged to monitor the environment for radioactivity. Various institutions run radioactivity measurements for this purpose. The measured results are made available to the competent authorities in a variety of ways. Computer systems are now used for central collection and evaluation of these data. LfU has developed a concept to support by DP technologies also the procedures between the measurement site and the central authority. This facilitates data acquisition and speeds up data transmission. The REA concept will streamline procedures and improve data quality. (orig.)

  11. A novel method for the absolute fluorescence yield measurement by AIRFLY

    CERN Document Server

    Ave, M

    2008-01-01

    One of the goals of the AIRFLY (AIR FLuorescence Yield) experiment is to measure the absolute fluorescence yield induced by electrons in air to better than 10% precision. We introduce a new technique for measurement of the absolute fluorescence yield of the 337 nm line that has the advantage of reducing the systematic uncertainty due to the detector calibration. The principle is to compare the measured fluorescence yield to a well known process - the Cerenkov emission. Preliminary measurements taken in the BFT (Beam Test Facility) in Frascati, Italy with 350 MeV electrons are presented. Beam tests in the Argonne Wakefield Accelerator at the Argonne National Laboratory, USA with 14 MeV electrons have also shown that this technique can be applied at lower energies.

  12. Frequency-scanning interferometry for dynamic absolute distance measurement using Kalman filter.

    Science.gov (United States)

    Tao, Long; Liu, Zhigang; Zhang, Weibo; Zhou, Yangli

    2014-12-15

    We propose a frequency-scanning interferometry using the Kalman filtering technique for dynamic absolute distance measurement. Frequency-scanning interferometry only uses a single tunable laser driven by a triangle waveform signal for forward and backward optical frequency scanning. The absolute distance and moving speed of a target can be estimated by the present input measurement of frequency-scanning interferometry and the previously calculated state based on the Kalman filter algorithm. This method not only compensates for movement errors in conventional frequency-scanning interferometry, but also achieves high-precision and low-complexity dynamic measurements. Experimental results of dynamic measurements under static state, vibration and one-dimensional movement are presented. PMID:25503050

  13. Hilbertian sine as an absolute measure of Bayesian inference in ISR, homeland security, medicine, and defense

    Science.gov (United States)

    Jannson, Tomasz; Wang, Wenjian; Hodelin, Juan; Forrester, Thomas; Romanov, Volodymyr; Kostrzewski, Andrew

    2016-05-01

    In this paper, Bayesian Binary Sensing (BBS) is discussed as an effective tool for Bayesian Inference (BI) evaluation in interdisciplinary areas such as ISR (and, C3I), Homeland Security, QC, medicine, defense, and many others. In particular, Hilbertian Sine (HS) as an absolute measure of BI, is introduced, while avoiding relativity of decision threshold identification, as in the case of traditional measures of BI, related to false positives and false negatives.

  14. Polarized H- Jet Polarimeter For Absolute Proton Polarization Measurements in RHIC

    International Nuclear Information System (INIS)

    Status of the H-jet polarimeter development is reviewed. A number of design issues are discussed including vacuum system, integration into the RHIC storage ring, scattering chamber, and uniform vertical holding field magnet design. The absolute proton polarization of the atomic hydrogen-jet target will be measured to 3% accuracy by a Breit- systematic error contribution to the jet-target polarization measurements is also discussed

  15. Measuring the absolute DT neutron yield using the Magnetic Recoil Spectrometer at OMEGA and the NIF

    Energy Technology Data Exchange (ETDEWEB)

    Mackinnon, A; Casey, D; Frenje, J A; Johnson, M G; Seguin, F H; Li, C K; Petrasso, R D; Glebov, V Y; Katz, J; Knauer, J; Meyerhofer, D; Sangster, T; Bionta, R; Bleuel, D; Hachett, S P; Hartouni, E; Lepape, S; Mckernan, M; Moran, M; Yeamans, C

    2012-05-03

    A Magnetic Recoil Spectrometer (MRS) has been installed and extensively used on OMEGA and the National Ignition Facility (NIF) for measurements of the absolute neutron spectrum from inertial confinement fusion (ICF) implosions. From the neutron spectrum measured with the MRS, many critical implosion parameters are determined including the primary DT neutron yield, the ion temperature, and the down-scattered neutron yield. As the MRS detection efficiency is determined from first principles, the absolute DT neutron yield is obtained without cross-calibration to other techniques. The MRS primary DT neutron measurements at OMEGA and the NIF are shown to be in excellent agreement with previously established yield diagnostics on OMEGA, and with the newly commissioned nuclear activation diagnostics on the NIF.

  16. Absolute measurement of the nitrogen fluorescence yield in air between 300 and 430 nm

    CERN Document Server

    Lefeuvre, G; Gorodetzky, P; Patzak, T; Salin, P

    2007-01-01

    The nitrogen fluorescence induced in air is used to detect ultra-high energy cosmic rays and to measure their energy. The precise knowledge of the absolute fluorescence yield is the key quantity to improve the accuracy on the cosmic ray energy. The total yield has been measured in dry air using a 90Sr source and a [300-430 nm] filter. The fluorescence yield in air is 4.23 $\\pm$ 0.20 photons per meter when normalized to 760 mmHg, 15 degrees C and with an electron energy of 0.85 MeV. This result is consistent with previous experiments made at various energies, but with an accuracy improved by a factor of about 3. For the first time, the absolute continuous spectrum of nitrogen excited by 90Sr electrons has also been measured with a spectrometer. Details of this experiment are given in one of the author's PhD thesis [32].

  17. Absolute frequency measurements and hyperfine structures of the molecular iodine transitions at 578 nm

    CERN Document Server

    Kobayashi, Takumi; Hosaka, Kazumoto; Inaba, Hajime; Okubo, Sho; Tanabe, Takehiko; Yasuda, Masami; Onae, Atsushi; Hong, Feng-Lei

    2016-01-01

    We report absolute frequency measurements of 81 hyperfine components of the rovibrational transitions of molecular iodine at 578 nm using the second harmonic generation of an 1156-nm external-cavity diode laser and a fiber-based optical frequency comb. The relative uncertainties of the measured absolute frequencies are typically $1.4\\times10^{-11}$. Accurate hyperfine constants of four rovibrational transitions are obtained by fitting the measured hyperfine splittings to a four-term effective Hamiltonian including the electric quadrupole, spin-rotation, tensor spin-spin, and scalar spin-spin interactions. The observed transitions can be good frequency references at 578 nm, and are especially useful for research using atomic ytterbium since the transitions are close to the $^{1}S_{0}-^{3}P_{0}$ clock transition of ytterbium.

  18. High-precision gravity measurements using absolute and relative gravimeters at Mount Etna (Sicily, Italy

    Directory of Open Access Journals (Sweden)

    Ciro Del Negro

    2011-12-01

    Full Text Available Accurate detection of time gravity changes attributable to the dynamics of volcanoes requires high-precision gravity measurements. With the aim of improving the quality of data from the Mount Etna gravity network, we used both absolute and relative gravimeters in a hybrid method. In this report, some of the techniques for gravity surveys are reviewed, and the results related to each method are compared. We show how the total uncertainty estimated for the gravity measurements performed with this combined use of absolute and relative gravimeters is roughly comparable to that calculated when the measurements are acquired using only relative gravimeters (the traditional method. However, the data highlight how the hybrid approach improves the measurement capabilities for surveying the Mount Etna volcanic area. This approach enhances the accuracy of the data, and then of the four-dimensional surveying, which minimizes ambiguities inherent in the gravity measurements. As a case study, we refer to two gravity datasets acquired in 2005 and 2010 from the western part of the Etna volcano, which included five absolute and 13 relative stations of the Etna gravity network.

  19. Absolute Frequency Measurements of the D1 and D2 Transitions in Aatomic Li

    Science.gov (United States)

    Sheets, Donal; Almaguer, Jose; Baron, Jacob; Elgee, Peter; Rowan, Michael; Stalnaker, Jason

    2014-05-01

    We present preliminary results from our measurements of the D1 and D2 transitions in Li. The data were obtained from a collimated atomic beam excited by light from an extended cavity diode laser. The frequency of the diode laser was stabilized to an optical frequency comb, providing absolute frequency measurement and control of the excitation laser frequency. These measurements will provide a stringent test of atomic structure calculations and yield information about the nuclear structure. We also discuss plans to extend the technique to other high-lying states in lithium. Funded by the NIST Precision Measurements Grant and NSF Award #1305591.

  20. Krypton-85 and other airborne radioactivity measurements throughout Ireland

    International Nuclear Information System (INIS)

    In compliance with articles 35 and 36 of the EURATOM Treaty, the Radiological Protection Institute of Ireland (RPII) undertakes a comprehensive programme of radioactivity monitoring in the Irish terrestrial environment. Radioactivity is present in the terrestrial environment due to natural processes, the testing of nuclear weapons in the atmosphere, accidents such as the Chernobyl accident and the routine discharge of radionuclides from nuclear installations. The RPII monitors airborne radioactivity concentrations at ten stations throughout Ireland, of which, nine are equipped with low volume particulate samplers and one, in Dublin, with a high volume particulate sampler. The low volume particulate samples are assessed for total beta activity and high volume samples for gamma emitting radionuclides such as caesium-137 and beryllium-7. In addition, air sampled at the RPII laboratory in Dublin, is monitored for krypton-85, a radioactive noble gas, released into the environment primarily as a result of the reprocessing of nuclear fuel at installations such as Sellafield in the UK and La Hague in France. Since the inception of the krypton measurements in 1993 a trend of increasing atmospheric concentrations has been observed. The results of the krypton-85 monitoring, as well as the airborne radioactivity concentration measurements, will be presented and discussed in this paper. (author)

  1. Absolute reaction rate measurement with D-D neutron source in polyethylene spherical shell

    International Nuclear Information System (INIS)

    The absolute reaction rate distribution measurements in a polyethylene spherical shell with 38.6 cm outside diameter and 10 cm thickness were performed with D-D neutron source. By combining fission method and activation method, rich-uranium fission chamber, depleted-uranium fission chamber, 237Np fission chamber and 115In activation foils were placed at several positions on the equatorial line of the inner face of the shell, and the absolute reaction rates were obtained. The uncertainty of fission rates is 2.5%-4.3%, while the uncertainty of activation rates is about 6.3%. The reaction rates were calculated by MCNP and ENDF/B-VII. 0. The calculated results are lower than the measured results and 238U is typical. (authors)

  2. Hyperspectral interferometry for single-shot absolute measurement of 3-D shape and displacement fields

    Directory of Open Access Journals (Sweden)

    Ruiz P. D.

    2010-06-01

    Full Text Available We propose a method that we call Hyperspectral Interferometry (HSI to resolve the 2π phase unwrapping problem in the analysis of interferograms recorded with a narrow-band light source. By using a broad-band light source and hyperspectral imaging system, a set of interferograms at different wavenumbers are recorded simultaneously on a high resolution image sensor. These are then assembled to form a three-dimensional intensity distribution. By Fourier transformation along the wavenumber axis, an absolute optical path difference is obtained for each pixel independently of the other pixels in the field of view. As a result, interferograms with spatially distinct regions are analysed as easily as continuous ones. The approach is illustrated with a HSI system to measure 3-D profiles of optically smooth or rough surfaces. Compared to existing profilometers able to measure absolute path differences, the single shot nature of the approach provides greater immunity from environmental disturbance.

  3. Precise Measurement of the Absolute Yield of Fluorescence Photons in Atmospheric Gases

    Energy Technology Data Exchange (ETDEWEB)

    Ave, M.; /Karlsruhe, Inst. Technol.; Bohacova, M.; /Chicago U., EFI; Daumiller, K.; /Karlsruhe, Inst. Technol.; Di Carlo, P.; /INFN, Aquila; Di Giulio, C.; /INFN, Rome; Luis, P.Facal San; /Chicago U., EFI; Gonzales, D.; /Karlsruhe U., EKP; Hojvat, C.; /Fermilab; Horandel, J.R.; /Nijmegen U., IMAPP; Hrabovsky, M.; /Palacky U.; Iarlori, M.; /INFN, Aquila /Karlsruhe, Inst. Technol.

    2011-01-01

    We have performed a measurement of the absolute yield of fluorescence photons at the Fermilab Test Beam. A systematic uncertainty at 5% level was achieved by the use of Cherenkov radiation as a reference calibration light source. A cross-check was performed by an independent calibration using a laser light source. A significant improvement on the energy scale uncertainty of Ultra-High Energy Cosmic Rays is expected.

  4. FFTF (FAST FLUX TEST FACILITY) REACTOR CHARACTERIZATION PROGRAM ABSOLUTE FISSION RATE MEASUREMENTS

    Energy Technology Data Exchange (ETDEWEB)

    FULLER JL; GILLIAM DM; GRUNDL JA; RAWLINS JA; DAUGHTRY JW

    1981-05-01

    Absolute fission rate measurements using modified National Bureau of Standards fission chambers were performed in the Fast Flux Test Facility at two core locations for isotopic deposits of {sup 232}Th, {sup 233}U, {sup 235}U, {sup 238}U, {sup 237}Np, {sup 239}Pu, {sup 240}Pu, and {sup 241}Pu. Monitor chamber results at a third location were analyzed to support other experiments involving passive dosimeter fission rate determinations.

  5. FFTF (Fast Flux Test Facility) Reactor Characterization Program: Absolute Fission-rate Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, J.L.; Gilliam, D.M.; Grundl, J.A.; Rawlins, J.A.; Daughtry, J.W.

    1981-05-01

    Absolute fission rate measurements using modified National Bureau of Standards fission chambers were performed in the Fast Flux Test Facility at two core locations for isotopic deposits of {sup 232}Th, {sup 233}U, {sup 235}U, {sup 238}U, {sup 237}Np, {sup 239}Pu, {sup 240}Pu, and {sup 241}Pu. Monitor chamber results at a third location were analyzed to support other experiments involving passive dosimeter fission rate determinations.

  6. Absolute Frequency Measurement of Rubidium 5S-7S Two-Photon Transitions

    CERN Document Server

    Morzynski, Piotr; Ablewski, Piotr; Gartman, Rafal; Gawlik, Wojciech; Maslowski, Piotr; Nagorny, Bartlomiej; Ozimek, Filip; Radzewicz, Czeslaw; Witkowski, Marcin; Ciurylo, Roman; Zawada, Michal

    2013-01-01

    We report the absolute frequency measurements of rubidium 5S-7S two-photon transitions with a cw laser digitally locked to an atomic transition and referenced to an optical frequency comb. The narrow, two-photon transition, 5S-7S (760 nm) insensitive to first order in a magnetic field, is a promising candidate for frequency reference. The performed tests yield the transition frequency with accuracy better than reported previously.

  7. Use of relative and absolute effect measures in reporting health inequalities: structured review

    OpenAIRE

    Nicholas B. King; Harper, Sam; Young, Meredith E

    2012-01-01

    Objective To examine the frequency of reporting of absolute and relative effect measures in health inequalities research. Design Structured review of selected general medical and public health journals. Data sources 344 articles published during 2009 in American Journal of Epidemiology, American Journal of Public Health, BMJ, Epidemiology, International Journal of Epidemiology, JAMA, Journal of Epidemiology and Community Health, The Lancet, The New England Journal of Medicine, and Social Scie...

  8. Absolute Polarization Measurements at RHIC in the Coulomb Nuclear Interference Region

    OpenAIRE

    Eyser, K. O.; Alekseev, I.; Bravar, A; Bunce, G.; Dhawan, S.; Gill, R; Haeberli, W.; Huang, H.; Jinnouchi, O.; Makdisi, Y.; Nakagawa, I.; Nass, A.; Okada, H.; Stephenson, E.; Svirida, D.

    2006-01-01

    The Relativistic Heavy Ion Collider at Brookhaven National Laboratory provides polarized proton beams for the investigation of the nucleon spin structure. For polarimetry, carbon-proton and proton-proton scattering is used in the Coulomb nuclear interference region at small momentum transfer ($-t$). Fast polarization measurements of each beam are carried out with carbon fiber targets at several times during an accelerator store. A polarized hydrogen gas jet target is needed for absolute norma...

  9. Absolute measurement of the ultrafast nonlinear electronic and rovibrational response in H$_2$ and D$_2$

    CERN Document Server

    Wahlstrand, J K; Cheng, Y -H; Palastro, J P; Milchberg, H M

    2015-01-01

    The electronic, rotational, and vibrational components of the ultrafast optical nonlinearity in H$_2$ and D$_2$ are measured directly and absolutely at intensities up to the ionization threshold of $\\sim$10$^{14}$ W/cm$^2$. As the most basic nonlinear interactions of the simplest molecules exposed to high fields, these results constitute a benchmark for high field laser-matter theory and simulation.

  10. Radio frequency controlled synthetic wavelength sweep for absolute distance measurement by optical interferometry

    International Nuclear Information System (INIS)

    We present a new technique applied to the variable optical synthetic wavelength generation in optical interferometry. It consists of a chain of optical injection locking among three lasers: first a distributed-feedback laser is used as a master to injection lock an intensity-modulated laser that is directly modulated around 15 GHz by a radio frequency generator on a sideband. A second distributed-feedback laser is injection locked on another sideband of the intensity-modulated laser. The variable synthetic wavelength for absolute distance measurement is simply generated by sweeping the radio frequency over a range of several hundred megahertz, which corresponds to the locking range of the two slave lasers. In this condition, the uncertainty of the variable synthetic wavelength is equivalent to the radio frequency uncertainty. This latter has a relative accuracy of 10-7 or better, resulting in a resolution of ±25 μm for distances exceeding tens of meters. The radio frequency generator produces a linear frequency sweep of 1 ms duration (i.e., exactly equal to one absolute distance measurement acquisition time), with frequency steps of about 1 MHz. Finally, results of absolute distance measurements for ranges up to 10 m are presented

  11. Radio frequency controlled synthetic wavelength sweep for absolute distance measurement by optical interferometry.

    Science.gov (United States)

    Le Floch, Sébastien; Salvadé, Yves; Mitouassiwou, Rostand; Favre, Patrick

    2008-06-01

    We present a new technique applied to the variable optical synthetic wavelength generation in optical interferometry. It consists of a chain of optical injection locking among three lasers: first a distributed-feedback laser is used as a master to injection lock an intensity-modulated laser that is directly modulated around 15 GHz by a radio frequency generator on a sideband. A second distributed-feedback laser is injection locked on another sideband of the intensity-modulated laser. The variable synthetic wavelength for absolute distance measurement is simply generated by sweeping the radio frequency over a range of several hundred megahertz, which corresponds to the locking range of the two slave lasers. In this condition, the uncertainty of the variable synthetic wavelength is equivalent to the radio frequency uncertainty. This latter has a relative accuracy of 10(-7) or better, resulting in a resolution of +/-25 microm for distances exceeding tens of meters. The radio frequency generator produces a linear frequency sweep of 1 ms duration (i.e., exactly equal to one absolute distance measurement acquisition time), with frequency steps of about 1 MHz. Finally, results of absolute distance measurements for ranges up to 10 m are presented. PMID:18516123

  12. Absolute measurement of {beta} activities and application to the determination of neutronic densities; Mesure absolue d'activites {beta} et application a la determination des densites neutronique

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, R. [Commissariat a l' Energie Atomique, Lab. du Fort de Chatillon, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1951-01-15

    M. Berthelot, to my entrance to the ''Commissariat a l 'Energie Atomique'', proposed me to study the absolute measurement of neutron densities. Very quickly the problem of the absolute activity of {beta} sources became the central object of this work. In a first part, we will develop the methods of absolute determination for {beta} activities. The use of a 4{pi} counter permits to get the absolute activity of all beta radioactive source, susceptible to be put as thin leaf and of period superior than some minutes. The method is independent of the spectra of the measured radioelement. we will describe in the second part some applications which use neutron densities measurement, neutron sources intensities and ratio of cross sections of capture of thermal neutrons. (M.B.) [French] M. Berthelot, a mon entree au ''Commissariat a l 'Energie Atomique'', m'a propose d'etudier la mesure absolue des densites neutroniques. Tres rapidement le probleme de l'activite absolue des sources beta est devenu l'objet central de ce travail. Dans une premiere partie, on abordera les methodes de determination absolue des activites beta. L'utilisation d'un compteur 4{pi} permet d 'obtenir l'activite absolue de toute source radioactive beta, susceptible d'etre mise sous forme de feuille mince et de periode superieure a quelques minutes. La methode est independante du spectre du radioelement mesure. On decrira dans la seconde partie quelques applications a des mesures de densites neutroniques, d'intensites de sources de neutrons et de rapport de sections efficaces de capture de neutrons thermiques. (M.B.)

  13. Radioactivity measurements of the HMI after the Chernobyl reactor accident

    International Nuclear Information System (INIS)

    The report explains the methods applied and the data measured by the HMI campaign. The material is presented so as to be of interest also to readers who in general are not concerned with aspects of radiation protection. The data measured refer to the local dose rate and to radioactivity in the environment (air, rain, surface waters, soil, food, mother's milk. Also, results of measurements of samples from Eastern Europe are given. (orig./HP)

  14. LHCb: A novel method for an absolute luminosity measurement at LHCb using beam-gas imaging

    CERN Multimedia

    Barschel, C

    2013-01-01

    A novel technique to measure the absolute luminosity at the Large Hadron Collider (LHC) using beam-gas interactions has been successfully used in the LHCb experiment. A gas injection device (SMOG) has been installed in the LHCb experiment to increase the pressure around the interaction point during dedicated fills. The Beam Gas Imaging method (BGI) has now the potential to surpass the accuracy of the commonly used van der Meer scan method (VDM). This poster presents the principles of the Beam Gas Imaging method used to measure the beam overlap integral. Furthermore the gas injection increased the accuracy measurement of the so-called ghost charges and also intensities per bunch.

  15. Natural radioactivity measurements in building materials used in Samsun, Turkey.

    Science.gov (United States)

    Tufan, M Çagatay; Disci, Tugba

    2013-01-01

    In this study, radioactivity levels of 35 different samples of 11 commonly used building materials in Samsun were measured by using a gamma spectrometry system. The analysis carried out with the high purity Germanium gamma spectrometry system. Radioactivity concentrations of (226)Ra, (232)Th and (40)K range from 6 to 54 Bq kg(-1), 5 to 88 Bq kg(-1) and 6 to 1070 Bq kg(-1), respectively. From these results, radium equivalent activities, gamma indexes, absorbed dose rates and annual effective doses were calculated for all samples. Obtained results were compared with the available data, and it was concluded that all the investigated materials did not have radiological risk.

  16. Advanced technologies for radioactive waste characterization and free release measurement

    Energy Technology Data Exchange (ETDEWEB)

    Vetrov, A.; Sladek, P., E-mail: anton.vetrov@picoenvirotec.com [ENVINET Pico Envirotec Group, Concord, Ontario (Canada); Verbitskaya, V. [ENVINET a.s., Trebic (Czech Republic)

    2012-07-01

    Nuclear power generation, medicine and heavy industry are widely using radioactive materials and, as a result, are generating large amounts of radwaste that has to either be stored or free-released to the environment. Free-release procedures require precise detection of radionuclides that can remain in waste. The low activity of such nuclides can be on a level of natural background or even below. That requires the background influence to be removed. ENVINET has developed very low radioactivity materials which can be used to form a low background measuring chamber. The concrete composite based material has several advantages when compare with lead, which is usually used for such purposes. (author)

  17. Measurement and analysis of radioactive substances; Mesure et analyse de substances radioactives

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    Here are gathered the abstracts presented to the 3. summer university of the year 2001 whose main themes were the destructive (5 conferences) and nondestructive (8 conferences) analyses applied to nuclear industry. The points of view of different organisms (as DSIN: Directorate for the Safety of Nuclear Installations, IPSN: Institute of Nuclear Protection and Safety, OPRI: Office of Protection against Ionizing Radiations, TUI: Institute for Transuranium Elements, COGEMA, EDF: Electric Utilities, ANDRA: French National Agency for Radioactive Waste Management, CRLC Val d'Aurelle, France) concerning the needs involved in nuclear facilities control, the methods of radionuclide speciation in use internationally, the measurements and analyses of radioactive substances are given too as well as some general concepts concerning 1)the laser-matter interaction 2)the ions production 3)the quality applied to the measurements and analyses 4)the standard in activity metrology. (O.M.)

  18. Determining radioactive aerosol concentrations using a surface radioactive contamination measurement device

    International Nuclear Information System (INIS)

    For experiments with dispersed radioactive aerosols in a radon-aerosol chamber (RAC), it is desirable to know the activity of the radioactive aerosols applied in the RAC. A COLIBRI TTC survey metre with an SABG-151 probe (Canberra, USA) was purchased for this purpose. The probe is designed for surface contamination measurements, and it is intended to measure the activity of aerosols deposited on the filters during experiments in the RAC. Since the probe is calibrated in a different geometry, its response in the authors' experimental geometry was simulated by a Monte Carlo method. The authors present a Monte Carlo model using MCNPX and an experimental verification of this probe model. (authors)

  19. Rotational positioning measurement for the absolute angle based on a hetero-core fiber optics sensor

    Science.gov (United States)

    Nishiyama, Michiko; Watanabe, Kazuhiro

    2009-10-01

    We proposed a new approach to measure the rotational angle and describe how the rotational positioning sensor could be devised arranging the hetero-core fiber-optic macro-bending sensors in terms of detecting the absolute rotational angle. The hetero-core fiber optic sensor has many advantages such as ability of macro-bend sensing with optical intensity-based measurement, single-mode transmission basis and independence of temperature fluctuation for external environment. Therefore, it is suitable that the rotational positioning sensor is fabricated with the hetero-core fiber-optic technique. We designed two types of the absolute rotational position sensor modules to convert the absolute rotational angle to the displacement. The result showed that the proposed rotational positioning modules were sufficiently sensitive to the given rotational angle with monotonic loss change characteristics. The hetero-core rotational positioning sensors were successfully perceptive with typical sensitivities approximately 0.77 and 0.71 dB in the rotational angle ranges of 60 - 360 and 60 - 180 degrees. The deviation of the module in the range of 60 - 180 degrees induced 1.74 % that corresponded to 2.13 degrees.

  20. Modelling and measurement of the absolute level of power radiated by antenna integrated THz UTC photodiodes.

    Science.gov (United States)

    Natrella, Michele; Liu, Chin-Pang; Graham, Chris; van Dijk, Frederic; Liu, Huiyun; Renaud, Cyril C; Seeds, Alwyn J

    2016-05-30

    We determine the output impedance of uni-travelling carrier (UTC) photodiodes at frequencies up to 400 GHz by performing, for the first time, 3D full-wave modelling of detailed UTC photodiode structures. In addition, we demonstrate the importance of the UTC impedance evaluation, by using it in the prediction of the absolute power radiated by an antenna integrated UTC, over a broad frequency range and confirming the predictions by experimental measurements up to 185 GHz. This is done by means of 3D full-wave modelling and is only possible since the source (UTC) to antenna impedance match is properly taken into account. We also show that, when the UTC-to-antenna coupling efficiency is modelled using the classical junction-capacitance/series-resistance concept, calculated and measured levels of absolute radiated power are in substantial disagreement, and the maximum radiated power is overestimated by a factor of almost 7 dB. The ability to calculate the absolute emitted power correctly enables the radiated power to be maximised through optimisation of the UTC-to-antenna impedance match.

  1. Modelling and measurement of the absolute level of power radiated by antenna integrated THz UTC photodiodes.

    Science.gov (United States)

    Natrella, Michele; Liu, Chin-Pang; Graham, Chris; van Dijk, Frederic; Liu, Huiyun; Renaud, Cyril C; Seeds, Alwyn J

    2016-05-30

    We determine the output impedance of uni-travelling carrier (UTC) photodiodes at frequencies up to 400 GHz by performing, for the first time, 3D full-wave modelling of detailed UTC photodiode structures. In addition, we demonstrate the importance of the UTC impedance evaluation, by using it in the prediction of the absolute power radiated by an antenna integrated UTC, over a broad frequency range and confirming the predictions by experimental measurements up to 185 GHz. This is done by means of 3D full-wave modelling and is only possible since the source (UTC) to antenna impedance match is properly taken into account. We also show that, when the UTC-to-antenna coupling efficiency is modelled using the classical junction-capacitance/series-resistance concept, calculated and measured levels of absolute radiated power are in substantial disagreement, and the maximum radiated power is overestimated by a factor of almost 7 dB. The ability to calculate the absolute emitted power correctly enables the radiated power to be maximised through optimisation of the UTC-to-antenna impedance match. PMID:27410104

  2. A Method for Measurement of Absolute Angular Position and Application in a Novel Electromagnetic Encoder System

    Directory of Open Access Journals (Sweden)

    Zijian Zhang

    2015-01-01

    Full Text Available For the encoders, especially the sine-cosine magnetic ones, a new method to measure absolute angular position is proposed in the paper. In the method, the code disc of the encoder has only two circle tracks and each one was divided into N and (N-1 equal code cells. The cell angles, changing from 0° to 360° between any two neighboring code cells, are defined to represent any position on the code disc. The position value of the same point can be represented by different cell angle values of different tracks and the absolute angular position of the point can be obtained by the difference value between the cell angle value of the outer track and the inner one. To validate the correctness of the method theoretically, the derivation process of the method was provided. An electromagnetic encoder system was designed and the experimental platform was established to test the method. The experimental results indicate that the electromagnetic encoder can measure the absolute angular position. Besides, it shows that the method is easy to be realized in algorithm and can reduce computational complexity and decrease dimension of the encoder.

  3. Absolute X-ray emission cross section measurements of Fe K transitions

    Science.gov (United States)

    Hell, Natalie; Brown, Gregory V.; Beiersdorfer, Peter; Boyce, Kevin R.; Grinberg, Victoria; Kelley, Richard L.; Kilbourne, Caroline; Leutenegger, Maurice A.; Porter, Frederick Scott; Wilms, Jörn

    2016-06-01

    We have measured the absolute X-ray emission cross sections of K-shell transitions in highly charged L- and K-shell Fe ions using the LLNL EBIT-I electron beam ion trap and the NASA GSFC EBIT Calorimeter Spectrometer (ECS). The cross sections are determined by using the ECS to simultaneously record the spectrum of the bound-bound K-shell transitions and the emission from radiative recombination from trapped Fe ions. The measured spectrum is then brought to an absolute scale by normalizing the measured flux in the radiative recombination features to their theoretical cross sections, which are well known. Once the spectrum is brought to an absolute scale, the cross sections of the K-shell transitions are determined. These measurements are made possible by the ECS, which consists of a 32 channel array, with 14 channels optimized for detecting high energy photons (hν > 10 keV) and 18 channels optimized for detecting low energy photons (hν collection area, relatively high energy resolution, and a large bandpass; all properties necessary for this measurement technique to be successful. These data will be used to benchmark cross sections in the atomic reference data bases underlying the plasma modeling codes used to analyze astrophysical spectra, especially those measured by the Soft X-ray Spectrometer calorimeter instrument recently launched on the Hitomi X-ray Observatory.This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, and supported by NASA grants to LLNL and NASA/GSFC and by ESA under contract No. 4000114313/15/NL/CB.

  4. Measurement of the Absolute Hohlraum Wall Albedo Under Ignition Foot Drive Condition

    Energy Technology Data Exchange (ETDEWEB)

    Jones, O S; Glenzer, S H; Suter, L J; Turner, R E; Campbell, K M; Dewald, E L; Hammel, B A; Kauffman, R L; Landen, O L; Rosen, M D; Wallace, R J; Weber, F A

    2003-08-26

    We present the first measurements of the absolute albedos of hohlraums made from gold or from high-Z mixtures. The measurements are performed over the range of radiation temperatures (70-100 eV) expected during the foot of an indirect-drive temporally-shaped ignition laser pulse, where accurate knowledge of the wall albedo (i.e. soft x-ray wall re-emission) is most critical for determining capsule radiation symmetry. We find that the gold albedo agrees well with calculations using the super transition array opacity model, potentially providing additional margin for ICF ignition.

  5. Measurement of the absolute hohlraum wall albedo under ignition foot drive conditions

    Energy Technology Data Exchange (ETDEWEB)

    Suter, L J; Wallace, R J; Hammel, B A; Weber, F A; Landen, O L; Campbell, K M; DeWald, E L; Glenzer, S H; Rosen, M D; Jones, O S; Turner, R E; Kauffmann, R L; Hammer, J H

    2003-11-25

    We present the first measurements of the absolute albedos of hohlraums made from gold or from high-Z mixtures. The measurements are performed over the range of radiation temperatures (70-100 eV) expected during the foot of an indirect-drive temporally-shaped ignition laser pulse, where accurate knowledge of the wall albedo (i.e. soft x-ray wall re-emission) is most critical for determining capsule radiation symmetry. We find that the gold albedo agrees well with calculations using the super transition array opacity model, potentially providing additional margin for ICF ignition.

  6. A Model for Converting Solid State Fermentation Growth Profiles Between Absolute and Relative Measurement Bases

    OpenAIRE

    Viccini, Graciele; Mitchell, David A; Krieger, Nadia

    2003-01-01

    A mathematical model is developed for converting between the two measurement bases commonly used in the construction of growth profiles in solid-state fermentation, namely absolute mass ratio m(dry biomass)/m(initial dry matter) and relative mass ratio m(dry biomass)/m(dry matter). These are not equivalent, due to the loss of dry matter as CO2 during the fermentation. The model is equally applicable to any biomass component used in indirect measurements of growth, such as protein. Use of the ...

  7. Absolute Pulse Energy Measurements of Soft X-Rays at the Linac Coherent Light Source

    OpenAIRE

    Tiedtke, K.; Sorokin, Andrey; Soufli, R.; Fernández-Perea, M.; Juha, L.; Heimann, P.(Universität Siegen, Siegen, Germany); Nagler, B.; Lee, H. J.; Mack, S; Cammarata, M.; O. Krupin; Messerschmidt, M.; Jastrow, U.; Holmes, M.; Rowen, M.

    2014-01-01

    This paper reports novel measurements of x-ray optical radiation on an absolute scale from the intense and ultra-short radiation generated in the soft x-ray regime of a free electron laser. We give a brief description of the detection principle for radiation measurements which was specifically adapted for this photon energy range. We present data characterizing the soft x-ray instrument at the Linac Coherent Light Source (LCLS) with respect to the radiant power output and transmission by usin...

  8. Application of the 4 pigammaMethod to the Absolute Standardization of Radioactive Sources of Positron Emitters

    International Nuclear Information System (INIS)

    We discuss the application of the method known as 4 pigammacountingto the standardization of positron emitters. Monte Carlo simulations are used to calculate the detection efficiency of positrons emitted by the nuclides 22Na and 18F. Two experimental setups are used, both based on a NaI(Tl) well detector. The results of the standardizations are in good agreement with those obtained by other methods. It is shown that the 4 pigammamethod can be successfully used for the absolute standardization of sources of positron emitters. (Author) 23 refs

  9. Wave cutoff method to measure absolute electron density in cold plasma

    International Nuclear Information System (INIS)

    A method for precise measurements of absolute electron density in plasma using wave cutoff is described. This method of measurement uses a network analyzer with radiating and detecting antenna A microwave signal of 10 kHZ-3 GHz frequency is introduced into the plasma from a radiating port of the network analyzer and propagates in the plasma. The transmitted wave is monitored at a distance from a radiating antenna using an antenna connected to the receiving port of the network analyzer. The transmitted wave decays rapidly at a cutoff plasma frequency, which is a direct measure of the absolute electron density. This cutoff method is free of many difficulties often encountered with a Langmuir probe, such as thin film deposition and plasma potential fluctuation. The cutoff probe can also measure the spatial distribution of the electron density. The measurement technique is analyzed theoretically and experimentally, demonstrated in density measurements of an inductively coupled radio-frequency plasma, and is compared with the double probe and a plasma oscillation methods

  10. Camera-based speckle noise reduction for 3-D absolute shape measurements.

    Science.gov (United States)

    Zhang, Hao; Kuschmierz, Robert; Czarske, Jürgen; Fischer, Andreas

    2016-05-30

    Simultaneous position and velocity measurements enable absolute 3-D shape measurements of fast rotating objects for instance for monitoring the cutting process in a lathe. Laser Doppler distance sensors enable simultaneous position and velocity measurements with a single sensor head by evaluating the scattered light signals. The superposition of several speckles with equal Doppler frequency but random phase on the photo detector results in an increased velocity and shape uncertainty, however. In this paper, we present a novel image evaluation method that overcomes the uncertainty limitations due to the speckle effect. For this purpose, the scattered light is detected with a camera instead of single photo detectors. Thus, the Doppler frequency from each speckle can be evaluated separately and the velocity uncertainty decreases with the square root of the number of camera lines. A reduction of the velocity uncertainty by the order of one magnitude is verified by the numerical simulations and experimental results, respectively. As a result, the measurement uncertainty of the absolute shape is not limited by the speckle effect anymore. PMID:27410133

  11. Measurement of the absolute values of cross-sections in neutron photoproduction (1962)

    International Nuclear Information System (INIS)

    The absolute values of photoneutrons production cross-sections for the case of intermediate and heavy nuclei (lanthanium, cerium, tantalum, gold, lead and bismuth) are determined with an error of 15 per cent. The results obtained agree with theories in which the giant resonance is explained by the collective motion of the protons against the neutrons. The effect of the nuclear deformation on the shape of the giant resonance is seen in the case of Ta181, it will be possible to determine the quadrupole momenta of deformed nuclei with a good accuracy when we shall increase the statistics of measurements. (author)

  12. Absolute beam flux measurement at NDCX-I using gold-melting calorimetry technique

    International Nuclear Information System (INIS)

    We report on an alternative way to measure the absolute beam flux at the NDCX-I, LBNL linear accelerator. Up to date, the beam flux is determined from the analysis of the beam-induced optical emission from a ceramic scintilator (Al-Si). The new approach is based on calorimetric technique, where energy flux is deduced from the melting dynamics of a gold foil. We estimate an average 260 kW/cm2 beam flux over 5 (micro)s, which is consistent with values provided by the other methods. Described technique can be applied to various ion species and energies.

  13. Absolute efficiency measurements with the {sup 10}B based Jalousie detector

    Energy Technology Data Exchange (ETDEWEB)

    Modzel, G., E-mail: modzel@physi.uni-heidelberg [Physikalisches Institut, Universität Heidelberg, Neuenheimer Feld 226, 69120 Heidelberg (Germany); Henske, M. [CDT CASCADE Detector Technologies GmbH, Hans-Bunte-Str. 8–10, 69123 Heidelberg (Germany); Houben, A. [Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen (Germany); Klein, M. [Physikalisches Institut, Universität Heidelberg, Neuenheimer Feld 226, 69120 Heidelberg (Germany); CDT CASCADE Detector Technologies GmbH, Hans-Bunte-Str. 8–10, 69123 Heidelberg (Germany); Köhli, M.; Lennert, P. [Physikalisches Institut, Universität Heidelberg, Neuenheimer Feld 226, 69120 Heidelberg (Germany); Meven, M. [Heinz Maier-Leibnitz Zentrum (MLZ), 85747 Garching (Germany); Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science (JCNS), Outstation at MLZ, 85747 Garching (Germany); Schmidt, C.J. [CDT CASCADE Detector Technologies GmbH, Hans-Bunte-Str. 8–10, 69123 Heidelberg (Germany); GSI Detector Laboratory, Planckstr. 1, 64291 Darmstadt (Germany); Schmidt, U. [Physikalisches Institut, Universität Heidelberg, Neuenheimer Feld 226, 69120 Heidelberg (Germany); Schweika, W. [Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science (JCNS), 52425 Jülich (Germany); European Spallation Source ESS AB, SE-22100 Lund (Sweden)

    2014-04-11

    The {sup 10}B based Jalousie detector is a replacement for {sup 3}He counter tubes, which are nowadays less affordable for large area detectors due to the {sup 3}He crisis. In this paper we investigate and verify the performance of the new {sup 10}B based detector concept and its adoption for the POWTEX diffractometer, which is designed for the detection of thermal neutrons with predicted detection efficiencies of 75–50% for neutron energies of 10–100 meV, respectively. The predicted detection efficiency has been verified by absolute measurements using neutrons with a wavelength of 1.17 Å (59 meV)

  14. Absolute Measurement of Hadronic Branching Fractions of the D_s^+ Meson

    CERN Document Server

    Alexander, J; Cassel, D G; Duboscq, J E; Ehrlich, R; Fields, L; Gibbons, L; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Mahlke-Krüger, H; Mohapatra, D; Onyisi, P U E; Patterson, J R; Peterson, D; Riley, D; Ryd, A; Sadoff, A J; Shi, X; Stroiney, S; Sun, W M; Wilksen, T; Athar, S B; Patel, R; Yelton, J; Rubin, P; Eisenstein, B I; Karliner, I; Mehrabyan, S; Lowrey, N; Selen, M; White, E J; Wiss, J; Mitchell, R E; Shepherd, M R; Besson, D; Pedlar, T K; Cronin-Hennessy, D; Gao, K Y; Hietala, J; Kubota, Y; Klein, T; Lang, B W; Poling, R; Scott, A W; Zweber, P; Dobbs, S; Metreveli, Z; Seth, K K; Tomaradze, A G; Libby, J; Powell, A; Wilkinson, G; Ecklund, K M; Love, W; Savinov, V; López, A; Méndez, H; Ramírez, J; Ge, J Y; Miller, D H; Sanghi, B; Shipsey, I P J; Xin, B; Adams, G S; Anderson, M; Cummings, J P; Danko, I; Hu, D; Moziak, B; Napolitano, J; He, Q; Insler, J; Muramatsu, H; Park, C S; Thorndike, E H; Yang, F; Artuso, M; Blusk, S; Khalil, S; Li, J; Mountain, R; Nisar, S; Randrianarivony, K; Sultana, N; Skwarnicki, T; Stone, S; Wang, J C; Zhang, L M; Bonvicini, G; Cinabro, D; Dubrovin, M; Lincoln, A; Rademacker, J; Asner, D M; Edwards, K W; Naik, P; Briere, R A; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Rosner, J L

    2008-01-01

    The branching fractions of D_s meson decays serve to normalize many measurements of processes involving charm quarks. Using 298 /pb of e+ e- collisions recorded at a center of mass energy of 4.17 GeV, we determine absolute branching fractions for eight D_s decays with a double tag technique. In particular we determine the branching fraction B(D_s -> K- K+ pi+) = (5.50 +- 0.23 +- 0.16)%, where the uncertainties are statistical and systematic respectively. We also provide partial branching fractions for kinematic subsets of the K- K+ pi+ decay mode.

  15. A Method for Measurement of Absolute Angular Position and Application in a Novel Electromagnetic Encoder System

    OpenAIRE

    Zijian Zhang; Yangyang Dong; Fenglei Ni; Minghe Jin; Hong Liu

    2015-01-01

    For the encoders, especially the sine-cosine magnetic ones, a new method to measure absolute angular position is proposed in the paper. In the method, the code disc of the encoder has only two circle tracks and each one was divided into N and (N-1) equal code cells. The cell angles, changing from 0° to 360° between any two neighboring code cells, are defined to represent any position on the code disc. The position value of the same point can be represented by different cell angle values of di...

  16. Improved Measurement of Absolute Hadronic Branching Fractions of the Ds+ Meson

    CERN Document Server

    Onyisi, P U E; Cinabro, D; Smith, M J; Zhou, P; Naik, P; Rademacker, J; Edwards, K W; Briere, R A; Vogel, H; Rosner, J L; Alexander, J P; Cassel, D G; Das, S; Ehrlich, R; Gibbons, L; Gray, S W; Hartill, D L; Heltsley, B K; Kreinick, D L; Kuznetsov, V E; Patterson, J R; Peterson, D; Riley, D; Ryd, A; Sadoff, A J; Shi, X; Sun, W M; Yelton, J; Rubin, P; Lowrey, N; Mehrabyan, S; Selen, M; Wiss, J; Libby, J; Kornicer, M; Mitchell, R E; Besson, D; Pedlar, T K; Cronin-Hennessy, D; Hietala, J; Dobbs, S; Metreveli, Z; Seth, K K; Tomaradze, A; Xiao, T; Powell, A; Thomas, C; Wilkinson, G; Asner, D M; Tatishvili, G; Ge, J Y; Miller, D H; Shipsey, I P J; Xin, B; Adams, G S; Napolitano, J; Ecklund, K M; Insler, J; Muramatsu, H; Pearson, L J; Thorndike, E H; Artuso, M; Blusk, S; Mountain, R; Skwarnicki, T; Stone, S; Wang, J C; Zhang, L M

    2013-01-01

    The branching fractions of Ds meson decays serve to normalize many measurements of processes involving charm quarks. Using 586 pb^-1 of e+ e- collisions recorded at a center of mass energy of 4.17 GeV, we determine absolute branching fractions for 13 Ds decays in 16 reconstructed final states with a double tag technique. In particular we make a precise measurement of the branching fraction B(Ds -> K- K+ pi+) = (5.55 +- 0.14 +- 0.13)%, where the uncertainties are statistical and systematic respectively. We find a significantly reduced value of B(Ds -> pi+ pi0 eta') compared to the world average, and our results bring the inclusively and exclusively measured values of B(Ds -> eta' X)$ into agreement. We also search for CP-violating asymmetries in Ds decays and measure the cross-section of e+ e- -> Ds* Ds at Ecm = 4.17 GeV.

  17. Measurements of absolute hadronic branching fractions of $\\Lambda_{c}^{+}$ baryon

    CERN Document Server

    Ablikim, M; Ai, X C; Albayrak, O; Albrecht, M; Ambrose, D J; Amoroso, A; An, F F; An, Q; Bai, J Z; Ferroli, R Baldini; Ban, Y; Bennett, D W; Bennett, J V; Bertani, M; Bettoni, D; Bian, J M; Bianchi, F; Boger, E; Boyko, I; Briere, R A; Cai, H; Cai, X; Cakir, O; Calcaterra, A; Cao, G F; Cetin, S A; Chang, J F; Chelkov, G; Chen, G; Chen, H S; Chen, H Y; Chen, J C; Chen, M L; Chen, S J; Chen, X; Chen, X R; Chen, Y B; Cheng, H P; Chu, X K; Cibinetto, G; Dai, H L; Dai, J P; Dbeyssi, A; Dedovich, D; Deng, Z Y; Denig, A; Denysenko, I; Destefanis, M; De Mori, F; Ding, Y; Dong, C; Dong, J; Dong, L Y; Dong, M Y; Dou, Z L; Du, S X; Duan, P F; Eren, E E; Fan, J Z; Fang, J; Fang, S S; Fang, X; Fang, Y; Farinelli, R; Fava, L; Fedorov, O; Feldbauer, F; Felici, G; Feng, C Q; Fioravanti, E; Fritsch, M; Fu, C D; Gao, Q; Gao, X L; Gao, X Y; Gao, Y; Gao, Z; Garzia, I; Goetzen, K; Gong, L; Gong, W X; Gradl, W; Greco, M; Gu, M H; Gu, Y T; Guan, Y H; Guo, A Q; Guo, L B; Guo, Y; Guo, Y P; Haddadi, Z; Hafner, A; Han, S; Hao, X Q; Harris, F A; He, K L; Held, T; Heng, Y K; Hou, Z L; Hu, C; Hu, H M; Hu, J F; Hu, T; Hu, Y; Huang, G S; Huang, J S; Huang, X T; Huang, Y; Hussain, T; Ji, Q; Ji, Q P; Ji, X B; Ji, X L; Jiang, L W; Jiang, X S; Jiang, X Y; Jiao, J B; Jiao, Z; Jin, D P; Jin, S; Johansson, T; Julin, A; Kalantar-Nayestanaki, N; Kang, X L; Kang, X S; Kavatsyuk, M; Ke, B C; Kiese, P; Kliemt, R; Kloss, B; Kolcu, O B; Kopf, B; Kornicer, M; Kuehn, W; Kupsc, A; Lange, J S; Lara, M; Larin, P; Leng, C; Li, C; Li, Cheng; Li, D M; Li, F; Li, F Y; Li, G; Li, H B; Li, J C; Li, Jin; Li, K; Li, Lei; Li, P R; Li, Q Y; Li, T; Li, W D; Li, W G; Li, X L; Li, X M; Li, X N; Li, X Q; Li, Z B; Liang, H; Liang, Y F; Liang, Y T; Liao, G R; Lin, D X; Liu, B J; Liu, C X; Liu, D; Liu, F H; Liu, Fang; Liu, Feng; Liu, H B; Liu, H H; Liu, H M; Liu, J; Liu, J B; Liu, J P; Liu, J Y; Liu, K; Liu, K Y; Liu, L D; Liu, P L; Liu, Q; Liu, S B; Liu, X; Liu, Y B; Liu, Z A; Liu, Zhiqing; Loehner, H; Lou, X C; Lu, H J; Lu, J G; Lu, Y; Lu, Y P; Luo, C L; Luo, M X; Luo, T; Luo, X L; Lyu, X R; Ma, F C; Ma, H L; Ma, L L; Ma, Q M; Ma, T; Ma, X N; Ma, X Y; Ma, Y M; Maas, F E; Maggiora, M; Mao, Y J; Mao, Z P; Marcello, S; Messchendorp, J G; Min, J; Mitchell, R E; Mo, X H; Mo, Y J; Morales, C Morales; Muchnoi, N Yu; Muramatsu, H; Nefedov, Y; Nerling, F; Nikolaev, I B; Ning, Z; Nisar, S; Niu, S L; Niu, X Y; Olsen, S L; Ouyang, Q; Pacetti, S; Pan, Y; Patteri, P; Pelizaeus, M; Peng, H P; Peters, K; Pettersson, J; Ping, J L; Ping, R G; Poling, R; Prasad, V; Qi, H R; Qi, M; Qian, S; Qiao, C F; Qin, L Q; Qin, N; Qin, X S; Qin, Z H; Qiu, J F; Rashid, K H; Redmer, C F; Ripka, M; Rong, G; Rosner, Ch; Ruan, X D; Santoro, V; Sarantsev, A; Savrié, M; Schoenning, K; Schumann, S; Shan, W; Shao, M; Shen, C P; Shen, P X; Shen, X Y; Sheng, H Y; Song, W M; Song, X Y; Sosio, S; Spataro, S; Sun, G X; Sun, J F; Sun, S S; Sun, Y J; Sun, Y Z; Sun, Z J; Sun, Z T; Tang, C J; Tang, X; Tapan, I; Thorndike, E H; Tiemens, M; Ullrich, M; Uman, I; Varner, G S; Wang, B; Wang, B L; Wang, D; Wang, D Y; Wang, K; Wang, L L; Wang, L S; Wang, M; Wang, P; Wang, P L; Wang, S G; Wang, W; Wang, W P; Wang, X F; Wang, Y D; Wang, Y F; Wang, Y Q; Wang, Z; Wang, Z G; Wang, Z H; Wang, Z Y; Weber, T; Wei, D H; Wei, J B; Weidenkaff, P; Wen, S P; Wiedner, U; Wolke, M; Wu, L H; Wu, Z; Xia, L; Xia, L G; Xia, Y; Xiao, D; Xiao, H; Xiao, Z J; Xie, Y G; Xiu, Q L; Xu, G F; Xu, L; Xu, Q J; Xu, Q N; Xu, X P; Yan, L; Yan, W B; Yan, W C; Yan, Y H; Yang, H J; Yang, H X; Yang, L; Yang, Y X; Ye, M; Ye, M H; Yin, J H; Yu, B X; Yu, C X; Yu, J S; Yuan, C Z; Yuan, W L; Yuan, Y; Yuncu, A; Zafar, A A; Zallo, A; Zeng, Y; Zeng, Z; Zhang, B X; Zhang, B Y; Zhang, C; Zhang, C C; Zhang, D H; Zhang, H H; Zhang, H Y; Zhang, J J; Zhang, J L; Zhang, J Q; Zhang, J W; Zhang, J Y; Zhang, J Z; Zhang, K; Zhang, L; Zhang, X Y; Zhang, Y; Zhang, Y H; Zhang, Y N; Zhang, Y T; Zhang, Yu; Zhang, Z H; Zhang, Z P; Zhang, Z Y; Zhao, G; Zhao, J W; Zhao, J Y; Zhao, J Z; Zhao, Lei; Zhao, Ling; Zhao, M G; Zhao, Q; Zhao, Q W; Zhao, S J; Zhao, T C; Zhao, Y B; Zhao, Z G; Zhemchugov, A; Zheng, B; Zheng, J P; Zheng, W J; Zheng, Y H; Zhong, B; Zhou, L; Zhou, X; Zhou, X K; Zhou, X R; Zhou, X Y; Zhu, K; Zhu, K J; Zhu, S; Zhu, S H; Zhu, X L; Zhu, Y C; Zhu, Y S; Zhu, Z A; Zhuang, J; Zotti, L; Zou, B S; Zou, J H

    2015-01-01

    Using $567\\rm{pb}^{-1}$ of $e^+e^-$ collisions recorded at $\\sqrt{s}=4.599\\rm{GeV}$ with the BESIII detector, we report first measurements of absolute hadronic branching fractions of Cabibbo-favored decays of the $\\Lambda_{c}^{+}$ baryon with a double-tag technique. A global least-square fitter is utilized to improve the measured precision. Among the measurements for twelve $\\Lambda_{c}^{+}$ decay modes, the branching fraction for $\\Lambda_{c}^{+} \\rightarrow pK^-\\pi^+$ is determined to be $(5.84\\pm0.27\\pm0.23)\\%$, where the first uncertainty is statistical and the second is systematic. In addition, the measurements of the branching fractions of the other eleven Cabbibo-favored hadronic decay modes are significantly improved.

  18. Utilization of coincidence criteria in absolute length measurements by optical interferometry in vacuum and air

    International Nuclear Information System (INIS)

    Traceability of length measurements to the international system of units (SI) can be realized by using optical interferometry making use of well-known frequencies of monochromatic light sources mentioned in the Mise en Pratique for the realization of the metre. At some national metrology institutes, such as Physikalisch-Technische Bundesanstalt (PTB) in Germany, the absolute length of prismatic bodies (e.g. gauge blocks) is realized by so-called gauge-block interference comparators. At PTB, a number of such imaging phase-stepping interference comparators exist, including specialized vacuum interference comparators, each equipped with three highly stabilized laser light sources. The length of a material measure is expressed as a multiple of each wavelength. The large number of integer interference orders can be extracted by the method of exact fractions in which the coincidence of the lengths resulting from the different wavelengths is utilized as a criterion. The unambiguous extraction of the integer interference orders is an essential prerequisite for correct length measurements. This paper critically discusses coincidence criteria and their validity for three modes of absolute length measurements: 1) measurements under vacuum in which the wavelengths can be identified with the vacuum wavelengths, 2) measurements under air in which the air refractive index is obtained from environmental parameters using an empirical equation, and 3) measurements under air in which the air refractive index is obtained interferometrically by utilizing a vacuum cell placed along the measurement pathway. For case 3), which corresponds to PTB’s Kösters-Comparator for long gauge blocks, the unambiguous determination of integer interference orders related to the air refractive index could be improved by about a factor of ten when an ‘overall dispersion value,’ suggested in this paper, is used as coincidence criterion. (paper)

  19. Absolute specific heat measurements of a microgram Pb crystal using ac nanocalorimetry

    Science.gov (United States)

    Tagliati, S.; Rydh, A.

    2012-12-01

    Heat capacity measurements using the ac steady state method are often considered difficult to provide absolute accuracy. By adjusting the working frequency to maintain a constant phase and using the phase information to obtain the heat capacity, we have found that it is possible to achieve good absolute accuracy. Here we present a thermodynamic study of a ~ 2.6 μg Pb superconducting crystal to demonstrate the newly opened capabilities. The sample is measured using a differential membrane-based calorimeter. The custom-made calorimetric cell is a pile of thin film Ti heater, insulation layer and Ge1-xAux thermometer fabricated in the center of two Si3N4 membranes. It has a background heat capacity < 100 nJ/K at 300 K, decreasing to 9 pJ/K at 1 K. The sample is characterized at temperatures down to 0.5 K. The zero field transition at Tc = 7.21 K has a width asymp 20 mK and displays no upturn in C. From the heat capacity jump at Tc and the extrapolated Sommerfeld term we find ΔC/γTc = 2.68. The latent heat curve obtained from the zero field heat capacity measurement, and the deviations of the thermodynamic critical field from the empirical expression Hc = Hc (0) [1 - (T/Tc)2] are discussed. Both analyses give results in good agreement with literature.

  20. In-situ measurements of the radioactive fallout deposit

    Science.gov (United States)

    Korun, M.; Martinčič, R.; Pucelj, B.

    1991-02-01

    An improved method to determine radionuclide concentrations in soil and the radioactive fallout deposit is presented. The approach is based on in-situ gamma-ray spectrometric measurements performed with a portable high resolution gamma spectrometer and on calculations of the depth distribution based on the energy dependence of the attenuation of gamma rays in soil. The results are compared with laboratory analysis of collected soil samples.

  1. Radon Natural Radioactivity Measurements for Evaluation of Primary Pollutants

    OpenAIRE

    Fenjuan Wang; Zhenyi Zhang; Maria Pia Ancora; Xiaodong Deng; Hua Zhang

    2013-01-01

    Radon is naturally released from the soil into the surface layer of the atmosphere, and by monitoring the natural radioactivity data of radon and its shot-live decay products we can get valuable information about the dilution properties of the lower boundary layer. This paper explores the dispersion characteristics of the lower layer of the atmosphere in Lanzhou, China, and the close relationship with the patterns of primary pollutants’ concentrations. Measurements were conducted from July 20...

  2. The relation of the measurement physical quantities to radioactive logging

    International Nuclear Information System (INIS)

    According to the statistic error theory, the author discusses the vertical resolution because of the moving survey in the radioactive logging, and analyses its relation with the other measurement physical quantities, as the GR (Natural gamma-rays logging) being given. And the fitting process principle is described, especially Kalman fitting technology in modern control theory and adaptive Kalman fitting in the practical application. The examples of simulation are shown

  3. Absolute fission rate measurement of 238U induced by 14 MeV neutrons penetrated composite material

    International Nuclear Information System (INIS)

    In order to prove the model calculation method and parameter, the 238U absolute fission rate in the case of 14 MeV neutrons penetrating through the special composite material was measured by minitype slab uranium fission chambers. The measuring spots are distributed in the surface of iron ball hull along the different position of equator. The calculated results are compared with the experiment results. The total error of measured 238U absolute fission rate is 6.1%. (author)

  4. Ultra low radioactivity measurements at Modane underground Laboratory

    International Nuclear Information System (INIS)

    We present in this paper the activities of the Laboratoire Souterrain de Modane, LSM, and in particular the activity related to Single-Event Rate Errors in semiconductors. The LSM is located in the middle of the Frejus tunnel under 1 800 m of rock. The rock coverage suppress the cosmic ray flux by about 2 millions with respect to the surface, thus, the LSM offers an excellent site for rare-event searches which would, if located on the surface, be overwhelmed by the cosmic-ray background. As semiconductor devices continue to be scaled down, the integrated circuits are sensitive to interactions with cosmic-ray particles on the surface (primarily atmospheric neutrons) or to interactions with alpha-particles produced in on-chip radioactive impurities disintegrations. The ultra-low background environment at LSM allows the measurement of extremely low radioactivity levels. The aim of the work presented in this paper is to assess the feasibility of the alpha-emission measurement in materials commonly used in integrated circuits, by means of ultra-low level gamma-spectrometry. An epoxy slab has been measured and the surface α-emission has been deduced from the radioactive impurities level. The result is compared to the value obtained with an a- gas proportional counter. (authors)

  5. National network of environment radioactivity measurements. Press kit

    International Nuclear Information System (INIS)

    This document first presents the objectives, challenges, context, operation and actors of the French national network of environment radioactivity measurements. It discusses the reasons for these measurements, the way they are performed, who perform them and how they are transmitted to the national network. It describes the quality policy for these measurements, and how this network is at the service of authorities, experts and population. It outlines the originality of the French approach within the European Union, and how this network takes the population expectations and their evolution into account

  6. Precision mass measurements of radioactive nuclei at JYFLTRAP

    CERN Document Server

    Rahaman, S; Eronen, T; Hager, U; Hakala, J; Jokinen, A; Kankainen, A; Moore, I D; Pentillä, H; Rinta-Antila, S; Rissanen, J; Saastamoinen, A; Sonoda, T; Weber, C; Äystö, J

    2007-01-01

    The Penning trap mass spectrometer JYFLTRAP was used to measure the atomic masses of radioactive nuclei with an uncertainty better than 10 keV. The atomic masses of the neutron-deficient nuclei around the N = Z line were measured to improve the understanding of the rp-process path and the SbSnTe cycle. Furthermore, the masses of the neutron-rich gallium (Z = 31) to palladium (Z = 46) nuclei have been measured. The physics impacts on the nuclear structure and the r-process paths are reviewed. A better understanding of the nuclear deformation is presented by studying the pairing energy around A = 100.

  7. Our experience of blood flow measurements using radioactive tracers

    International Nuclear Information System (INIS)

    A critical study of blood flow measuring methods is proposed. After a review of the various diffusible and non-diffusible radioactive tracers and the corresponding detector systems, the principles which allow to measure blood flow from the data so obtained, are studied. There is a different principle of flow measurement for each type of tracer. The theory of flow measurement using non-diffusible tracers (human serum albumin labelled with 131I or sup(99m)Tc, 113In-labelled siderophiline) and its application to cardiac flow measurement are described first. Then the theory of flow measurement using diffusible tracers (133Xe, 85Kr) and its application to measurement of blood flow through tissues (muscles and kidney particularly) are described. A personal experience of this various flow measurements is reported. The results obtained, the difficulties encountered and the improvments proposed are developed

  8. ABSOLUTE MEASUREMENT OF THE POLARIZATION OF HIGH ENERGY PROTON BEAMS AT RHIC

    Energy Technology Data Exchange (ETDEWEB)

    MAKDISI,Y.; BRAVAR, A. BUNCE, G. GILL, R.; HUANG, H.; ET AL.

    2007-06-25

    The spin physics program at the Relativistic Heavy Ion Collider (RHIC) requires knowledge of the beam polarization to better than 5%. Such a goal is made the more difficult by the lack of knowledge of the analyzing power of high energy nuclear physics processes. To overcome this, a polarized hydrogen jet target was constructed and installed at one intersection region in RHIC where it intersects both beams and utilizes the precise knowledge of the jet atomic hydrogen beam polarization to measure the analyzing power in proton-proton elastic scattering in the Nuclear Coulomb Interference (CNI) region at the prescribed RHIC proton beam energy. The reverse reaction is used to assess the absolute beam polarization. Simultaneous measurements taken with fast high statistics polarimeters that measure the p-Carbon elastic scattering process also in the CNI region use the jet results to calibrate the latter.

  9. Calibration of Fourier domain short coherence interferometer for absolute distance measurements.

    Science.gov (United States)

    Montonen, R; Kassamakov, I; Hæggström, E; Österberg, K

    2015-05-20

    We calibrated and determined the measurement uncertainty of a custom-made Fourier domain short coherence interferometer operated in laboratory conditions. We compared the optical thickness of two thickness standards and three coverslips determined with our interferometer to the geometric thickness determined by SEM. Using this calibration data, we derived a calibration function with a 95% confidence level system uncertainty of (5.9×10(-3)r+2.3)  μm, where r is the optical distance in μm, across the 240 μm optical measurement range. The confidence limit includes contributions from uncertainties in the optical thickness, geometric thickness, and refractive index measurements as well as uncertainties arising from cosine errors and thermal expansion. The results show feasibility for noncontacting absolute distance characterization with micrometer-level accuracy. This instrument is intended for verifying the alignment of the discs of an accelerating structure in the possible future compact linear collider.

  10. The new IMGC-02 transportable absolute gravimeter: measurement apparatus and applications in geophysics and volcanology

    Directory of Open Access Journals (Sweden)

    V. D’errico

    2008-06-01

    Full Text Available The research carried out at the Istituto Nazionale di Ricerca Metrologica (formerly Istituto di Metrologia «G. Colonnetti» aiming to develop a transportable ballistic absolute gravimeter ended with a new version of the instrument, called the IMGC-02. It uses laser interferometry to measure the symmetrical free rising and falling motion of a test mass in the gravity field. Providing the same accuracy achieved with previous versions, the instrumental improvements mainly concern size, weight, data processing algorithms and operational simplicity. An uncertainty of 9 ?Gal (1 ?Gal=1×10–8 m·s?2 can be achieved within a single observation session, lasting about 12 h, while the time series of several observation sessions show a reproducibility of 4 ?Gal. At this level, gravity measurements provide useful information in Geophysics and Volcanology. A wide set of dynamic phenomena, i.e. seismicity and volcanic activity, can produce temporal gravity changes, often quite small, with an amplitude ranging from a few to hundreds of microgals. Therefore the IMGC absolute gravimeter has been employed since 1986 in surveying the Italian active volcanoes. A brief history of the gravimeter and the description of the new apparatus, together with the main results of ongoing applications in Geophysics and Volcanology are presented.

  11. Sonographic Measurement of Absolute and Relative Renal Length in Healthy Isfahani Adults

    Directory of Open Access Journals (Sweden)

    A Hekmatnia

    2004-04-01

    Full Text Available Background: There is no information on renal size and its relation to age, sex and height in the area of Isfahan. The aim of this study was to define sonographically measured absolute renal lengths and their relations to height in normal Isfahani adults. Methods: 400 healthy Isfahani subjects aged 20 to 69 years with normal blood pressure, no history of renal disease in them or their first degree relatives and with normal sonographic appearance were chosen in 2002-2003. The study was cross-sectional. With real-time sonography, absolute renal length was measured. Results: Four hundred healthy adults (230 men and 170 women aged 20 to 69 years (39.6 ± 13.6 year were evaluated. The length of left kidney was longer than the right one (111 ± 9.8 mm vs. 109 ± 8.4 mm in right kidney; P < 0.01. Renal length was significantly greater in males compared to females (P < 0.01. Renal length decreased with age and the rate of decrease was accelerated at the age of 60 years and older. There was a significant correlation between kidney length and the subject's height (P < 0.01. Conclusion: The result of this study shows the normal values for renal length in Iranian males and females, which may be helpful in assessing the size of patients’ kidneys in different clinical settings. Keywords: Kidney size, Renal length, Ultrasonography, Normal values.

  12. Relative vs. absolute physiological measures as predictors of mountain bike cross-country race performance.

    Science.gov (United States)

    Gregory, John; Johns, David P; Walls, Justin T

    2007-02-01

    The aims of this study were to document the effect terrain has on the physiological responses and work demands (power output) of riding a typical mountain bike cross-country course under race conditions. We were particularly interested in determining whether physiological measures relative to mass were better predictors of race performance than absolute measures. Eleven A-grade male cross-country mountain bike riders (VO2max 67.1 +/- 3.6 ml x kg(-1) x min(-1)) performed 2 tests: a laboratory-based maximum progressive exercise test, and a 15.5-km (six 2.58-km laps) mountain bike cross-country time trial. There were significant differences among the speed, cadence, and power output measured in each of 8 different terrain types found in the cross-country time trial course. The highest average speed was measured during the 10-15% downhill section (22.7 +/- 2.6 km x h(-1)), whereas the cadence was highest in the posttechnical flat sections (74.3 +/- 5.6 rpm) and lowest on the 15-20% downhill sections (6.4 +/- 12.1 rpm). The highest mean heart rate (HR) was obtained during the steepest (15-20% incline) section of the course (179 +/- 8 b x min(-1)), when the power output was greatest (419.8 +/- 39.7 W). However, HR remained elevated relative to power output in the downhill sections of the course. Physiological measures relative to total rider mass correlated more strongly to average course speed than did absolute measures (peak power relative to mass r = 0.93, p < 0.01, vs. peak power r = 0.64, p < 0.05; relative VO2max r = 0.80, p < 0.05, vs. VO2max r = 0.66, p < 0.05; power at anaerobic threshold relative to mass r = 0.78, p < 0.05, vs. power at anaerobic threshold r = 0.5, p < 0.05). This suggests that mountain bike cross-country training programs should focus upon improving relative physiological values rather than focusing upon maximizing absolute values to improve performance. PMID:17313256

  13. Measurements of absolute absorption cross sections of ozone in the 185- to 254-nm wavelength region and the temperature dependence

    Science.gov (United States)

    Yoshino, K.; Esmond, J. R.; Freeman, D. E.; Parkinson, W. H.

    1993-01-01

    Laboratory measurements of the relative absorption cross sections of ozone at temperatures 195, 228, and 295 K have been made throughout the 185 to 254 nm wavelength region. The absolute absorption cross sections at the same temperatures have been measured at several discrete wavelengths in the 185 to 250 nm region. The absolute cross sections of ozone have been used to put the relative cross sections on a firm absolute basis throughout the 185 to 255 nm region. These recalibrated cross sections are slightly lower than those of Molina and Molina (1986), but the differences are within a few percent and would not be significant in atmospheric applications.

  14. An overview on measurements of natural radioactivity in Malaysia

    Directory of Open Access Journals (Sweden)

    Nisar Ahmad

    2015-01-01

    Full Text Available Humans are always exposed during their lives to ionizing radiation arising outside and within the earth. The exposure to these radiation occurs from natural sources such as radioactive elements in rocks and soil, internal exposure form radioactive elements through water, food and air and cosmic rays entering from outer space to earth's atmosphere. About 87% of the radiation dose received by human beings is due to natural radiation, it is essential to assess the radiation doses in order to control possible health effects from such natural sources. In this regard, a number of articles have been appeared for Malaysia in international research journals, which have been reviewed and complied in this article. Most of these articles are about the measurement of activity concentrations of primordial (238U, 232Th, 226Ra and 40K and anthropogenic (137Cs radionuclide's and gamma dose rate in environmental samples using HPGe and NaI (Tl survey meter.

  15. Hair radioactivity as a measure of exposure to radioisotopes

    Science.gov (United States)

    Strain, W. H.; Pories, W. J.; Fratianne, R. B.; Flynn, A.

    1972-01-01

    Since many radioisotopes accumulate in hair, this tropism was investigated by comparing the radioactivity of shaved with plucked hair collected from rats at various time intervals up to 24 hrs after intravenous injection of the ecologically important radioisotopes, iodine-131, manganese-54, strontium-85, and zinc-65. The plucked hair includes the hair follicles where biochemical transformations are taking place. The data indicate a slight surge of each radioisotpe into the hair immediately after injection, a variation of content of each radionuclide in the hair, and a greater accumulation of radioactivity in plucked than in shaved hair. These results have application not only to hair as a measure of exposure to radioisotopes, but also to tissue damage and repair at the hair follicle.

  16. GEMS: Underwater spectrometer for long-term radioactivity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Sartini, Ludovica, E-mail: ludovica.sartini@ingv.i [Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sect.Roma 2, Roma (Italy); Genoa University, Genoa (Italy); Simeone, Francesco; Pani, Priscilla [' Sapienza' University and Istituto Nazionale di Fisica Nucleare (INFN), Sect.Roma, Roma (Italy); Lo Bue, Nadia; Marinaro, Giuditta [Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sect.Roma 2, Roma (Italy); Grubich, Andry; Lobko, Alexander [Institute for Nuclear Problems (INP), Belarus State University, Minsk (Belarus); Etiope, Giuseppe [Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sect.Roma 2, Roma (Italy); Capone, Antonio [' Sapienza' University and Istituto Nazionale di Fisica Nucleare (INFN), Sect.Roma, Roma (Italy); Favali, Paolo [Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sect.Roma 2, Roma (Italy); Gasparoni, Francesco; Bruni, Federico [Tecnomare S.p.A., Venice (Italy)

    2011-01-21

    GEMS (Gamma Energy Marine Spectrometer) is a prototype of an autonomous radioactivity sensor for underwater measurements, developed in the framework for a development of a submarine telescope for neutrino detection (KM3NeT Design Study Project). The spectrometer is highly sensitive to gamma rays produced by {sup 40}K decays but it can detect other natural (e.g., {sup 238}U,{sup 232}Th) and anthropogenic radio-nuclides (e.g., {sup 137}Cs). GEMS was firstly tested and calibrated in the laboratory using known sources and it was successfully deployed for a long-term (6 months) monitoring at a depth of 3200 m in the Ionian Sea (Capo Passero, offshore Eastern Sicily). The instrument recorded data for the whole deployment period within the expected specifications. This monitoring provided, for the first time, a continuous time-series of radioactivity in deep-sea.

  17. A study of environmental radioactivity measurements for Cankiri, Turkey

    International Nuclear Information System (INIS)

    This study is the first to assess the level of background radiation for the Cankiri province of Turkey. Indoor air radon concentrations were determined using Columbia Resin-39 nuclear track detectors and the average 222Rn activity was found to be 44 Bq m-3(equivalent to an annual effective dose of 1.1 mSv). Measurements of gamma doses in outdoor air were performed using a portable plastic scintillation detector and the average gamma absorbed dose rate was found to be 8 μR h-1 (corresponding to an annual effective dose of 87.7 μSv). Radionuclide activity concentrations in soil samples were measured through gamma-ray spectrometry and the average activities were determined as 17.7, 22.3, 357 and 4.1 Bq kg-1 for the radionuclides 238U, 232Th, 40K and 137Cs, respectively. The average annual effective dose from the natural radioactivity sources 238U series, 232Th series and 40K) was calculated to be 44.4 μSv. Radioactivity levels of drinking water samples were carried out using a low-background proportional counter and the average gross alpha and beta activities were obtained as 0.25 and 0.26 Bq l-1, respectively (equivalent to an annual effective dose of 184 μSv). The average radon concentrations in indoor air and the average radionuclide activities in soil were found to be lower than most Turkish cities while higher levels of outdoor gamma dose rate and water radioactivity were observed. The results of this study showed that the region's background radioactivity level differs considerably from the reported data for Turkish cities. (authors)

  18. Absolute absorption cross-section measurements of ozone in the wavelength region 238-335 nm and the temperature dependence

    Science.gov (United States)

    Yoshino, K.; Freeman, D. E.; Esmond, J. R.; Parkinson, W. H.

    1988-01-01

    The absolute absorption cross-section of ozone has been experimentally determined at the temperatures 195, 228, and 295 K at several discrete wavelengths in the 238-335-nm region. The present results for ozone at 295 K are found to be in agreement with those of Hearn (1961). Absolute cross-section measurements of ozone at 195 K have confirmed previous (Freeman et al., 1984) relative cross-section measurements throughout the 240-335-nm region.

  19. Device and method for measuring radioactive particles in oil

    International Nuclear Information System (INIS)

    A device for wear measurement of machine parts labelled with radioactive material is improved in such a way that a filter may be installed in the oil flow transporting the wear particles containing the radioisotopes to the place of measurement. It is then possible to study the wear behavior of intricate internal-combustion engines. For this purpose either the total oil flow or only part of it is conducted through the filter. Design details are exhaustively presented. (10 sub-claims). (UWI) 891 HP

  20. Comb-calibrated frequency-modulated continuous-wave ladar for absolute distance measurements.

    Science.gov (United States)

    Baumann, Esther; Giorgetta, Fabrizio R; Coddington, Ian; Sinclair, Laura C; Knabe, Kevin; Swann, William C; Newbury, Nathan R

    2013-06-15

    We demonstrate a comb-calibrated frequency-modulated continuous-wave laser detection and ranging (FMCW ladar) system for absolute distance measurements. The FMCW ladar uses a compact external cavity laser that is swept quasi-sinusoidally over 1 THz at a 1 kHz rate. The system simultaneously records the heterodyne FMCW ladar signal and the instantaneous laser frequency at sweep rates up to 3400 THz/s, as measured against a free-running frequency comb (femtosecond fiber laser). Demodulation of the ladar signal against the instantaneous laser frequency yields the range to the target with 1 ms update rates, bandwidth-limited 130 μm resolution and a ~100 nm accuracy that is directly linked to the counted repetition rate of the comb. The precision is <100 nm at the 1 ms update rate and reaches ~6 nm for a 100 ms average. PMID:23938965

  1. The magnetic recoil spectrometer for measurements of the absolute neutron spectrum at OMEGA and the NIF.

    Science.gov (United States)

    Casey, D T; Frenje, J A; Johnson, M Gatu; Séguin, F H; Li, C K; Petrasso, R D; Glebov, V Yu; Katz, J; Magoon, J; Meyerhofer, D D; Sangster, T C; Shoup, M; Ulreich, J; Ashabranner, R C; Bionta, R M; Carpenter, A C; Felker, B; Khater, H Y; LePape, S; MacKinnon, A; McKernan, M A; Moran, M; Rygg, J R; Yeoman, M F; Zacharias, R; Leeper, R J; Fletcher, K; Farrell, M; Jasion, D; Kilkenny, J; Paguio, R

    2013-04-01

    The neutron spectrum produced by deuterium-tritium (DT) inertial confinement fusion implosions contains a wealth of information about implosion performance including the DT yield, ion-temperature, and areal-density. The Magnetic Recoil Spectrometer (MRS) has been used at both the OMEGA laser facility and the National Ignition Facility (NIF) to measure the absolute neutron spectrum from 3 to 30 MeV at OMEGA and 3 to 36 MeV at the NIF. These measurements have been used to diagnose the performance of cryogenic target implosions to unprecedented accuracy. Interpretation of MRS data requires a detailed understanding of the MRS response and background. This paper describes ab initio characterization of the system involving Monte Carlo simulations of the MRS response in addition to the commission experiments for in situ calibration of the systems on OMEGA and the NIF.

  2. Absolute alpha activity measurements of some plants growing in monazite bearing soils in Sri Lanka

    Energy Technology Data Exchange (ETDEWEB)

    Mahawatte, P.; Hewamanna, R. (Colombo Univ. (Sri Lanka). Radioisotope Centre)

    1991-01-01

    Deposits of monazite bearing soils occur along the Southwest, West and East Coasts of Sri Lanka. High levels of gamma activity in some plant species growing in the West Coast have been reported. The high levels were due to the presence of the daughter nuclides of {sup 232}Th, most of which are alpha emitters. Absolute alpha activity measurements of ash samples of some plants growing in monazite bearing soils were carried out using the alpha sensitive polymeric nuclear track detector CR-39. The values ranged from 60-1900 mBq/g and were in good agreement with the values obtained from conventional scintillation counting method. The activity concentration of {sup 228}Th in the ash samples was also calculated by measuring the activity concentration of emanated thoron trapped inside a glass bottle with the use of a CR-39 track detector. (author).

  3. Absolute alpha activity measurements of some plants growing in monazite bearing soils in Sri Lanka

    International Nuclear Information System (INIS)

    Deposits of monazite bearing soils occur along the Southwest, West and East Coasts of Sri Lanka. High levels of gamma activity in some plant species growing in the West Coast have been reported. The high levels were due to the presence of the daughter nuclides of 232Th, most of which are alpha emitters. Absolute alpha activity measurements of ash samples of some plants growing in monazite bearing soils were carried out using the alpha sensitive polymeric nuclear track detector CR-39. The values ranged from 60-1900 mBq/g and were in good agreement with the values obtained from conventional scintillation counting method. The activity concentration of 228Th in the ash samples was also calculated by measuring the activity concentration of emanated thoron trapped inside a glass bottle with the use of a CR-39 track detector. (author)

  4. The magnetic recoil spectrometer for measurements of the absolute neutron spectrum at OMEGA and the NIF

    Energy Technology Data Exchange (ETDEWEB)

    Casey, D. T.; Frenje, J. A.; Gatu Johnson, M.; Seguin, F. H.; Li, C. K.; Petrasso, R. D. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Glebov, V. Yu.; Katz, J.; Magoon, J.; Meyerhofer, D. D.; Sangster, T. C.; Shoup, M.; Ulreich, J. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Ashabranner, R. C.; Bionta, R. M.; Carpenter, A. C.; Felker, B.; Khater, H. Y.; LePape, S.; MacKinnon, A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2013-04-15

    The neutron spectrum produced by deuterium-tritium (DT) inertial confinement fusion implosions contains a wealth of information about implosion performance including the DT yield, ion-temperature, and areal-density. The Magnetic Recoil Spectrometer (MRS) has been used at both the OMEGA laser facility and the National Ignition Facility (NIF) to measure the absolute neutron spectrum from 3 to 30 MeV at OMEGA and 3 to 36 MeV at the NIF. These measurements have been used to diagnose the performance of cryogenic target implosions to unprecedented accuracy. Interpretation of MRS data requires a detailed understanding of the MRS response and background. This paper describes ab initio characterization of the system involving Monte Carlo simulations of the MRS response in addition to the commission experiments for in situ calibration of the systems on OMEGA and the NIF.

  5. Precise measurement of the absolute fluorescence yield of the 337 nm band in atmospheric gases

    Science.gov (United States)

    Ave, M.; Bohacova, M.; Curry, E.; Di Carlo, P.; Di Giulio, C.; Facal San Luis, P.; Gonzales, D.; Hojvat, C.; Hörandel, J.; Hrabovsky, M.; Iarlori, M.; Keilhauer, B.; Klages, H.; Kleifges, M.; Kuehn, F.; Li, S.; Monasor, M.; Nozka, L.; Palatka, M.; Petrera, S.; Privitera, P.; Ridky, J.; Rizi, V.; Rouille D'Orfeuil, B.; Salamida, F.; Schovanek, P.; Smida, R.; Spinka, H.; Ulrich, A.; Verzi, V.; Williams, C.

    2013-02-01

    A measurement of the absolute fluorescence yield of the 337 nm nitrogen band, relevant to ultra-high energy cosmic ray (UHECR) detectors, is reported. Two independent calibrations of the fluorescence emission induced by a 120 GeV proton beam were employed: Cherenkov light from the beam particle and calibrated light from a nitrogen laser. The fluorescence yield in air at a pressure of 1013 hPa and temperature of 293 K was found to be Y337=5.61±0.06stat±0.22syst photons/MeV. When compared to the fluorescence yield currently used by UHECR experiments, this measurement improves the uncertainty by a factor of three, and has a significant impact on the determination of the energy scale of the cosmic ray spectrum.

  6. Measurement of absolute reaction rates in Be,Pb and Fe spherical systems

    Institute of Scientific and Technical Information of China (English)

    LiuRong; ChenYuan; 等

    1998-01-01

    The absolute reaction rates in Be,Pb and Fe have been measured by using the activation foil technique with different reaction energy thresholds.Thicknesses of Be,Pb and Fe spheres were 5.3,19.1 and 31.9cm.respectively,Eight kinds of activation folis were used for Fe,and four kinds each for Be and Pb,The total experimental er5ror was about 5-7%.The measured results were compared to the values calculated with the 1-D ANISN code and the ENDF/B-VI library data.The average ratio of the experimental to the calculational is less than 7% for Be and Pb,about 5-30% for Fe.

  7. Precise measurement of the absolute fluorescence yield of the 337 nm band in atmospheric gases

    CERN Document Server

    Ave, M; Curry, E; Di Carlo, P; Di Giulio, C; Luis, P Facal San; Gonzales, D; Hojvat, C; Hörandel, J; Hrabovsky, M; Iarlori, M; Keilhauer, B; Klages, H; Kleifges, M; Kuehn, F; Li, S; Monasor, M; Nozka, L; Palatka, M; Petrera, S; Privitera, P; Ridky, J; Rizi, V; D'Orfeuil, B Rouille; Salamida, F; Schovanek, P; Smida, R; Spinka, H; Ulrich, A; Verzi, V; Williams, C

    2012-01-01

    A measurement of the absolute fluorescence yield of the 337 nm nitrogen band, relevant to ultra-high energy cosmic ray (UHECR) detectors, is reported. Two independent calibrations of the fluorescence emission induced by a 120 GeV proton beam were employed: Cherenkov light from the beam particle and calibrated light from a nitrogen laser. The fluorescence yield in air at a pressure of 1013 hPa and temperature of 293 K was found to be $Y_{337} = 5.61\\pm 0.06_{stat} \\pm 0.21_{syst}$ photons/MeV. When compared to the fluorescence yield currently used by UHECR experiments, this measurement improves the uncertainty by a factor of three, and has a significant impact on the determination of the energy scale of the cosmic ray spectrum.

  8. A diode laser spectrometer at 634 nm and absolute frequency measurements using optical frequency comb

    Institute of Scientific and Technical Information of China (English)

    Yi Lin; Yuan Jie; Qi Xiang-Hui; Chen Wen-Lan; Zhou Da-Wei; Zhou Tong; Zhou Xiao-Ji; Chen Xu-Zong

    2009-01-01

    This paper reports that two identical external-cavity-diode-laser(ECDL)based spectrometers are constructed at 634 nm referencing on the hyperfine B-X transition a(80)8-4 of 127I2.The lasers are stabilized on the Doppler-free absorption signals using the third-harmonic detection technique.The instability of the stabilized laser is measured to be 2.8×10-12(after 1000 s)by counting the beat note between the two lasers.The absolute optical frequency of the transition is,for the first time,determined to be 472851936189.5 kHz by using an optical frequency comb referenced on the microwave caesium atomic clock.The uncertainty of the measurement is less than 4.9 kHz.

  9. Measurement of the thermal neutron capture cross section and the resonance integral of radioactive Hf182

    Science.gov (United States)

    Vockenhuber, C.; Bichler, M.; Wallner, A.; Kutschera, W.; Dillmann, I.; Käppeler, F.

    2008-04-01

    The neutron capture cross sections of the radioactive isotope Hf182 (t1/2=8.9×106 yr) in the thermal and epithermal energy regions have been measured by activation at the TRIGA Mark-II reactor of the Atomic Institute of the Austrian Universities in Vienna, Austria, and subsequent γ-ray spectroscopy of Hf183. High values for the thermal (kT=25 meV) cross section σ0=133±10 b and for the resonance integral I0=5850±660 b were found. Additionally, the absolute intensities of the main γ-ray transitions in the decay of Hf182 have been considerably improved.

  10. National audit of radioactivity measurements in Nuclear Medicine Centres

    International Nuclear Information System (INIS)

    Routine activity measurements of radiopharmaceutical solutions in Nuclear Medicine Centres (NMC) are carried out with the help of radionuclide calibrators (RC). These solutions are either ingested or injected to the patient for diagnosis or therapy. However, for the realization of an optimized examination, the activity of these radiopharmaceuticals must be determined accurately before administering it to patients. The primary standards are maintained by Radiation Standards Section, Radiological Physics and Advisory Division. National audit programmes of Iodine -131 activity measurements with RCs are conducted biannually to establish traceability to national standards and to check the status of nuclear medicine practice followed at the NMC. The results of fifteenth audit of 131I activity measurements with RC are presented in this paper. Questionnaires were sent to two hundred and thirty three NMCs in-the country. One hundred and nine NMC's agreed for participation and accordingly, glass vials containing radioactive 131I solution of nominal activity of 100 MBq were procured from Board of Radiation and Isotope Technology, Mumbai. The radioactivity in each vial was determined with high pressure re-entrant gamma ionisation chamber (GIC), a secondary standard maintained by this laboratory. The sensitivity coefficient of GIC is traceable to the primary standard. The standardized radioactive solution of 131I in glass vial was sent to each participant. Measurements results were reported in the reporting form sent. This audit was conducted in four schedules in Jan 2013. One hundred and sixty six results were received from one hundred and nine participants as many participants took measurements on more than one isotope calibrator

  11. Measurement of absolute phase Shift on reflection of thin films using white-light spectral interferometry

    Institute of Scientific and Technical Information of China (English)

    Hui Xue; Weidong Shen; Peifu Gu; Zhenyue Luo; Yueguang Zhang; Xu Liu

    2009-01-01

    A novel method to measure the absolute phase shift on reflection of thin film is presented utilizing a white-light interferometer in spectral domain.By applying Fourier transformation to the recorded spectral interference signal,we retrieve the spectral phase function ф,which is induced by three parts:the path length difference in air L,the effective thickness of slightly dispersive cube beam splitter Teff and the nonlinear phase function due to multi-reflection of the thin film structure.We utilize the fact that the overall optical path difference(OPD)is linearly dependent on the refractive index of the beam splitter to determine both L and Teff.The spectral phase shift on reflection of thin film structure can be obtained by subtracting these two parts from ф.We show theoretically and experimentally that our now method can provide a sinlple and fast solution in calculating the absolute spectral phase function of optical thin films,while still maintaining high accuracy.

  12. A new method for the absolute radiance calibration for UV-vis measurements of scattered sunlight

    Science.gov (United States)

    Wagner, T.; Beirle, S.; Dörner, S.; Penning de Vries, M.; Remmers, J.; Rozanov, A.; Shaiganfar, R.

    2015-10-01

    Absolute radiometric calibrations are important for measurements of the atmospheric spectral radiance. Such measurements can be used to determine actinic fluxes, the properties of aerosols and clouds, and the shortwave energy budget. Conventional calibration methods in the laboratory are based on calibrated light sources and reflectors and are expensive, time consuming and subject to relatively large uncertainties. Also, the calibrated instruments might change during transport from the laboratory to the measurement sites. Here we present a new calibration method for UV-vis instruments that measure the spectrally resolved sky radiance, for example zenith sky differential optical absorption spectroscopy (DOAS) instruments or multi-axis (MAX)-DOAS instruments. Our method is based on the comparison of the solar zenith angle dependence of the measured zenith sky radiance with radiative transfer simulations. For the application of our method, clear-sky measurements during periods with almost constant aerosol optical depth are needed. The radiative transfer simulations have to take polarisation into account. We show that the calibration results are almost independent from the knowledge of the aerosol optical properties and surface albedo, which causes a rather small uncertainty of about < 7 %. For wavelengths below about 330 nm it is essential that the ozone column density during the measurements be constant and known.

  13. Particle sizing of airborne radioactivity field measurements at Olympic Dam

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, S.B.; Wilkis, M.; O`Brein, R.; Ganakas, G.

    1993-12-01

    On July 1, 1991 the Australian Radiation Laboratory (ARL) commenced a two year project entitled - Particle sizing of airborne radioactivity, funded by a Mining and Quarrying Occupational Health and Safety Committee - grant (submission No. 9138). This study was set out to measure airborne radioactivity size distributions in an underground uranium mine, in order to provide better estimates of the health risks associated with inhalation of airborne radiation in the work place. These measurements included both active and passive measurement of radon gas, continuous and spot sample of radon daughter levels, as well as wire screen diffusion battery measurements of the radon daughter size distributions. The results of measurements at over 50 sites within the mine are reported, together with the calculated dose conversion factors derived from the older dosimetric models and from the new ICRP lung model using the computer code RADEP. The results showed that the ventilation is relatively uniform within the mine and the radon daughter concentrations are kept to less than 20% of the equilibrium concentration. The radon and radon daughter concentrations showed marked variability with both time and position within the mine. It is concluded that the present radiation protection methods and dose conversion factors used in Australia provide a good estimate of the radiation risk for the inhalation of radon progeny. 29 refs., 8 tabs., 9 figs.

  14. Easy Absolute Values? Absolutely

    Science.gov (United States)

    Taylor, Sharon E.; Mittag, Kathleen Cage

    2015-01-01

    The authors teach a problem-solving course for preservice middle-grades education majors that includes concepts dealing with absolute-value computations, equations, and inequalities. Many of these students like mathematics and plan to teach it, so they are adept at symbolic manipulations. Getting them to think differently about a concept that they…

  15. Absolute and relative reliability of lumbar interspinous process ultrasound imaging measurements.

    Science.gov (United States)

    Tozawa, Ryosuke; Katoh, Munenori; Aramaki, Hidefumi; Kawasaki, Tsubasa; Nishikawa, Yuichi; Kumamoto, Tsuneo; Fujinawa, Osamu

    2016-08-01

    [Purpose] The intra- and inter-examiner reliabilities of lumbar interspinous process distances measured by ultrasound imaging were examined. [Subjects and Methods] The subjects were 10 males who had no history of orthopedic diseases or dysfunctions. Ten lumbar interspinous images from 360 images captured from 10 subjects were selected. The 10 images were measured by nine examiners. The lumbar interspinous process distance measurements were performed five times by each examiner. In addition, four of the nine examiners measured the distances again after 4 days for test-retest analysis. In statistical analysis, the intraclass correlation coefficient was used to investigate relative reliability, and Bland-Altman analysis was used to investigate absolute reliability. [Results] The intraclass correlation coefficients (1, 1) for intra-examiner reliability ranged from 0.985 to 0.998. For inter-rater reliability, the intraclass correlation coefficient (2, 1) was 0.969. The intraclass correlation coefficients (1, 2) for test-retest reliability ranged from 0.991 to 0.999. The Bland-Altman analysis results indicated no systematic error. [Conclusion] The results indicate that ultrasound measurements of interspinous process distance are highly reliable even when measured only once by a single person. PMID:27630399

  16. Measurement of the Absolute Branching Fraction of D0 to K- pi+

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, B.; Bona, M.; Boutigny, D.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Prudent, X.; Tisserand, V.; Zghiche, A.; /Annecy, LAPP; Garra Tico, J.; Grauges, E.; /Barcelona U., ECM; Lopez, L.; Palano, A.; /Bari U.; Eigen, G.; Ofte, I.; Stugu, B.; Sun, L.; /Bergen U.; Abrams, G.S.; Battaglia, M.; Brown, D.N.; Button-Shafer, J.; /LBL, Berkeley

    2007-04-25

    The authors measure the absolute branching fraction for D{sup 0} {yields} K{sup -} {pi}{sup +} using partial reconstruction of {bar B}{sup 0} {yields} D*{sup +}X{ell}{sup -}{bar {nu}}{sub {ell}} decays, in which only the charged lepton and the pion from the decay D*{sup +} {yields} D{sup 0}{pi}{sup +} are used. Based on a data sample of 230 million B{bar B} pairs collected at the {Upsilon}(4S) resonance with the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC, they obtain {Beta}(D{sup 0} {yields} K{sup -}{pi}{sup +}) = (4.007 {+-} 0.037 {+-} 0.070)%, where the first error is statistical and the second error is systematic.

  17. Conversion of far ultraviolet to visible radiation: absolute measurements of the conversion efficiency of tetraphenyl butadiene

    Science.gov (United States)

    Vest, Robert E.; Coplan, Michael A.; Clark, Charles W.

    Far ultraviolet (FUV) scintillation of noble gases is used in dark matter and neutrino research and in neutron detection. Upon collisional excitation, noble gas atoms recombine into excimer molecules that decay by FUV emission. Direct detection of FUV is difficult. Another approach is to convert it to visible light using a wavelength-shifting medium. One such medium, tetraphenyl butadiene (TPB) can be vapor-deposited on substrates. Thus the quality of thin TPB films can be tightly controlled. We have measured the absolute efficiency of FUV-to-visible conversion by 1 μm-thick TPB films vs. FUV wavelengths between 130 and 300 nm, with 1 nm resolution. The energy efficiency of FUV to visible conversion varies between 1% and 5%. We make comparisons with other recent results. Work performed at the NIST SURF III Synchrotron Ultraviolet Radiation Facility,.

  18. Absolute Polarization Measurements at RHIC in the Coulomb Nuclear Interference Region

    International Nuclear Information System (INIS)

    The Relativistic Heavy Ion Collider at Brookhaven National Laboratory provides polarized proton beams for the investigation of the nucleon spin structure. For polarimetry, carbon-proton and proton-proton scattering is used in the Coulomb nuclear interference region at small momentum transfer (-t). Fast polarization measurements of each beam are carried out with carbon fiber targets at several times during an accelerator store. A polarized hydrogen gas jet target is needed for absolute normalization over multiple stores, while the target polarization is constantly monitored in a Breit-Rabi polarimeter. In 2005, the jet polarimeter has been used with both RHIC beams. We present results from the jet polarimeter including a detailed analysis of background contributions to asymmetries and to the beam polarization

  19. Coincidence system for the absolute measurement of radionuclides activity using a liquid scintillator

    International Nuclear Information System (INIS)

    A system for the standartization of radioisotopes activity using liquid scintillator detector was developed. The system was set up at Nuclear Metrology Laboratory - L.M.N. (Nuclear Physics Division - IEA). The system performance was checked by absolute activity measurements for two radioisotopes, 60Co and 241Am. The activities were determined by the 4π(α, β-γ) coincidence method. An accuracy of the order of 99,8% was obtained. The results for 60Co were compared with those obtained by 4πβ-γ coincidence method using a proportional counter at L.M.N., while the results for 241Am were compared with those obtained through the linear extrapolation method using the same liquid scintillator. Compared to other systems, the advantages of this one are the simplicity and the short time spent in the sample preparation, and the negligible self-absorption. (Author)

  20. Absolute luminosity and proton-proton total cross section measurement for the ATLAS experiment at LHC

    International Nuclear Information System (INIS)

    The Large Hadron Collider (LHC) at CERN in Geneva will soon deliver collisions with an energy never reached in a particle accelerator. An energy in the center of mass of 10 and ultimately 14 TeV will allow to go beyond the borders of the physics known so far. ATLAS, the largest detector ever built, will hunt the Higgs boson and search for new physics beyond the Standard Model. Any physical process is described by a cross section that measures its probability to occur. The events resulting from a given process are registered by ATLAS. To determine their according cross section, one has to know the luminosity. For the ATLAS experiment, a relative measurement of the luminosity can be done using the response of several sub-detectors. However to calibrate these detectors, an absolute measurement has to be performed. The ALFA detector has been designed to measure the elastic scattering spectrum that will allow to determine the absolute luminosity and the proton-proton total cross section. This provides an accurate calibration tool at a percent level. These detectors, located 240 m away from the interaction point, are called roman pots, a mechanical system that allows to approach a scintillating fiber tracker a few millimeters to the beam center. The simulation of the measurement requires to use a charged particles transport program. This program has to be carefully chosen because the determination of the protons lost during their travel from the interaction point to the detector has a major impact on the acceptance computation. The systematical uncertainties affecting the luminosity and the total cross section measurements are also determined using the full simulation chain. The ALFA detector operates in a complex environment and consequently its design requires a great care. A large tests campaign has been performed on the front end electronics. The results and the corresponding data analysis have shown that all requirement where fulfilled. A test beam has been

  1. Direct reaction measurements with a 132Sn radioactive ion beam

    OpenAIRE

    Jones, K L; Adekola, A. S.; Bardayan, D. W.; Blackmon, J. C.; Chae, K. Y.; K.A. Chipps; Cizewski, J. A.; Erikson, L.; Harlin, C.; Hatarik, R.; Kapler, R.; Kozub, R.L.; Liang, J. F.; Livesay, R.; Ma, Z.

    2011-01-01

    The (d,p) neutron transfer and (d,d) elastic scattering reactions were measured in inverse kinematics using a radioactive ion beam of 132Sn at 630 MeV. The elastic scattering data were taken in a region where Rutherford scattering dominated the reaction, and nuclear effects account for less than 8% of the cross section. The magnitude of the nuclear effects was found to be independent of the optical potential used, allowing the transfer data to be normalized in a reliable manner. The neutron-t...

  2. A study on the absolute measurement of β-ray absorbed dose in the skin depth

    International Nuclear Information System (INIS)

    The absolute measurement of β ray absorbed dose in the skin depth located at the certain distance from the radiation source (90Sr + 90Y, 204TI, 147Pm) recommended by the International Standardization Organization is performed by using an extrapolation chamber in the range of several mGy/h. Since one of critical points in measuring of absorbed dose is to make the environment in chamber similar to tissue, a new approach to the measurement of absorbed dose is proposed. The attenuation difference is minimized by deciding a window thickness such as the attenuation effect in chamber window becomes similar to that in the skin depth. A-150 tissue equivalent plastic, whose structure and density is very similar to tissue, is used for back material. The back scattering effect of both media is measured using the proposed method to calibrate the difference in back scattering effect between back material and tissue. For the measurement of back scattering effect of each material, an ionization chamber, whose structure is very similar to the extrapolation chamber and back material is replaceable, is made. Based on the results, β ray absorbed dose in the skin depth of 70 μm was measured as follows : 0.759 μGy/s (±3.78% ) for 90Sr + 90Y, 0.173 μGy/s (±4.17%) for 204TI and 0.088 μGy/s (±7.70%) for 147Pm. In order to evaluate the reliability of the proposed method, the absorbed dose measured in this study is compared to that measured in PTB (Physikalisch Technische Bundesanstalt) for the same β ray source. Although the proposed method gives slightly higher value, the difference is within 1%. In conclusion, the proposed method seems to make the measuring environment closer to tissue, even though the calibration factor yielded by the proposed method has a little effect on evaluation of absorbed dose

  3. Radon natural radioactivity measurements for evaluation of primary pollutants.

    Science.gov (United States)

    Wang, Fenjuan; Zhang, Zhenyi; Ancora, Maria Pia; Deng, Xiaodong; Zhang, Hua

    2013-01-01

    Radon is naturally released from the soil into the surface layer of the atmosphere, and by monitoring the natural radioactivity data of radon and its shot-live decay products we can get valuable information about the dilution properties of the lower boundary layer. This paper explores the dispersion characteristics of the lower layer of the atmosphere in Lanzhou, China, and the close relationship with the patterns of primary pollutants' concentrations. Measurements were conducted from July 2007 to May 2008 at one station and a fifty-day campaign was carried out at two stations in Lanzhou. The interpretation of radon radioactivity measurement showed that the measured atmospheric stability index (ASI) data at two stations in Lanzhou had statistically significant correlation, and well described the lower atmospheric layer mixing property in the area. The temporal trend of PM10 data was consistent with the temporal trend of ASI, with almost twice as high values in December than it in August. The results show that the ASI allows to highlight the dilution factor playing an important role in determining primary pollution events, and the mixing properties of the lower boundary layer is the key factor determining PM10 concentration in urban areas.

  4. Measurement of indoor radon and natural/fall out radioactivity

    International Nuclear Information System (INIS)

    Indoor radon and natural radioactivity measurement surveys were carried out in various parts of the Punjab, Khyber Pakhtoonkha, FATA, Azad Jammu and Kashmir and Gilgit Baltistan using CR-39 based radon detectors. The annual effective dose, mean effective dose and exhalation rate were calculated for the general public. Indoor radon activity concentrations in the surveyed houses ranged from 12 +- 5 to 169 +- 9 Bq m/sup -3/ with an overall average value of 57 +- 30 Bq m/sup -3/ which is more than the world average of 40 Bq m/sup -3/. The indoor radon levels were maximum in winter and minimum during summer season and were within the recommended limits. Besides indoor radon and natural radioactivity measurements, uranium contents were determined in samples of drinking water collected from natural springs of Hatian Bala using fission track technique. Except in a few cases, the measured uranium concentration was found within the safe limit of 30 gL/sup -1/. (Orig./A.B.)

  5. The impact of water temperature on the measurement of absolute dose

    Science.gov (United States)

    Islam, Naveed Mehdi

    To standardize reference dosimetry in radiation therapy, Task Group 51 (TG 51) of American Association of Physicist's in Medicine (AAPM) recommends that dose calibration measurements be made in a water tank at a depth of 10 cm and at a reference geometry. Methodologies are provided for calculating various correction factors to be applied in calculating the absolute dose. However the protocol does not specify the water temperature to be used. In practice, the temperature of water during dosimetry may vary considerably between independent sessions and different centers. In this work the effect of water temperature on absolute dosimetry has been investigated. Density of water varies with temperature, which in turn may impact the beam attenuation and scatter properties. Furthermore, due to thermal expansion or contraction air volume inside the chamber may change. All of these effects can result in a change in the measurement. Dosimetric measurements were made using a Farmer type ion chamber on a Varian Linear Accelerator for 6 MV and 23 MV photon energies for temperatures ranging from 10 to 40 °C. A thermal insulation was designed for the water tank in order to maintain relatively stable temperature over the duration of the experiment. Dose measured at higher temperatures were found to be consistently higher by a very small magnitude. Although the differences in dose were less than the uncertainty in each measurement, a linear regression of the data suggests that the trend is statistically significant with p-values of 0.002 and 0.013 for 6 and 23 MV beams respectively. For a 10 degree difference in water phantom temperatures, which is a realistic deviation across clinics, the final calculated reference dose can differ by 0.24% or more. To address this effect, first a reference temperature (e.g.22 °C) can be set as the standard; subsequently a correction factor can be implemented for deviations from this reference. Such a correction factor is expected to be of similar

  6. The study of the nonlinear correction of the FMCW absolute distance measurement using frequency-sampling and precision analysis

    Science.gov (United States)

    Lu, Cheng; Gan, Yu; Chen, Fengdong; Liu, Bingguo; Zhuang, Zhitao; Xu, Xinke; Liu, Guodong

    2014-12-01

    This article uses the external cavity laser to realize FMCW high precision absolute distance measurement, as the external cavity laser owns the advantage of large tuning range of frequency. Firstly, aim at the problem of nonlinear tuning of the external cavity laser, a study of method of frequency-sampling has been shown. Secondly, in this article the mathematical model of the absolute dis tance measurement system has been established, and the sources of the errors of the FMCW absolute distance measurement has been analyzed, and the accuracy model has been established. Finally, a ball which is put at a distance about 3 meters is measured, and the random error is 0.3479μm, the standard uncertainty of measurement system is 0.3479μm+3.141Rppm.

  7. Absolute measurement of the activity of sup 2 sup 2 sup 2 Rn using a proportional counter

    CERN Document Server

    Busch, I; Keyser, U

    2002-01-01

    A measuring set-up comprising a proportional counter of calculable sup 2 sup 2 sup 2 Rn efficiency and quantifiable active volume (delta sub V <0.1%) is described. On account of the special design of the end caps, the counter is suitable for absolute activity measurements on gaseous radiation sources. The sup 2 sup 2 sup 2 Rn efficiency is determined by computer simulation of the measured alpha-spectra. The procedures necessary for absolute measurements by means of the counter are described, and the suitability of the counter for absolute measurements of the sup 2 sup 2 sup 2 Rn activity is proved by experiments. Thus, a new method for the realization of the unit of activity of sup 2 sup 2 sup 2 Rn is obtained, which is independent of the unit of activity of sup 2 sup 2 sup 6 Ra.

  8. A low noise highly integrated bolometer array for absolute measurement of VUV and soft x radiation

    International Nuclear Information System (INIS)

    A new low noise miniaturized multichannel bolometer module for absolute measurements in the VUV and soft x spectral ranges is described. Highly integrated four-channel modules (2x3.3x1.5 cm3) each comprising four independent ac-excited (50 kHz) metal resistor bolometer bridges were successfully tested on a large tokamak (Tore Supra in Cadarache) and on an electron synchrotron (BESSY in Berlin). The bolometer system features a linear response to the absorbed radiation power, a low detection limit (≤1.0x10-6 W cm-2 on Tore Supra with an integration time of τint=10x10-3 s) and a low NEP (≤10x10-9 W on BESSY). The thermal cross-talk between adjacent detectors is negligible (Br/ΔT -4 V degree C-1 is achieved. It can be operated at a maximum temperature of 150 degree C, at high magnetic fields (tested up to B=4.5 T in the laboratory) and survives high nuclear radiation doses. The system offers the possibility of detecting low-power VUV and soft x-radiation with sampling rates of up to 10 kHz on plasma machines and of absolutely calibrating VUV and soft x instruments. Effective suppression of electric, thermal and nuclear radiation interferences is characteristic of the bolometer system.Strain gauge effects, which could affect the behavior of the bolometers at high magnetic fields, are suppressed by the ac-excitation technique

  9. Study on improving the turbidity measurement of the absolute coagulation rate constant.

    Science.gov (United States)

    Sun, Zhiwei; Liu, Jie; Xu, Shenghua

    2006-05-23

    The existing theories dealing with the evaluation of the absolute coagulation rate constant by turbidity measurement were experimentally tested for different particle-sized (radius = a) suspensions at incident wavelengths (lambda) ranging from near-infrared to ultraviolet light. When the size parameter alpha = 2pi a/lambda > 3, the rate constant data from previous theories for fixed-sized particles show significant inconsistencies at different light wavelengths. We attribute this problem to the imperfection of these theories in describing the light scattering from doublets through their evaluation of the extinction cross section. The evaluations of the rate constants by all previous theories become untenable as the size parameter increases and therefore hampers the applicable range of the turbidity measurement. By using the T-matrix method, we present a robust solution for evaluating the extinction cross section of doublets formed in the aggregation. Our experiments show that this new approach is effective in extending the applicability range of the turbidity methodology and increasing measurement accuracy.

  10. ^241Am(n,γ) absolute cross sections measured with DANCE

    Science.gov (United States)

    Jandel, M.; Bredeweg, T. A.; Fowler, M. M.; Bond, E. M.; Chadwick, M. B.; Clement, R. R.; Couture, A.; O'Donnell, J. M.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.; Agvaanluvsan, U.; Macri, R. A.; Sheets, S. A.; Wu, C. Y.; Becker, J. A.

    2007-10-01

    ^241Am is present in plutonium due to the beta decay of ^241Pu (t1/2=14.38 years). As such ^241Am can be used as a detector for nuclear forensics. A precise measurement of ^241Am(n,γ) cross section is thus needed for this application. The measurement is also of interest for advanced reactor design as part of the Global Nuclear Energy Partnership (GNEP). The Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory (LANL) was used for neutron capture cross section measurement on ^241Am. The high granularity of DANCE (160 BaF2 detectors in a 4π geometry) enables the efficient detection of prompt gamma-rays following a neutron capture. DANCE is located on the 20.26 m neutron flight path 14(FP14) at the Manuel Lujan Jr. Neutron Scattering Center at the Los Alamos Neutron Science Center (LANSCE). The absolute ^241Am(n,γ) cross sections were obtained in the range of neutron energies from 0.02 eV to 320 keV. The results will be compared to existing evaluations in detail.

  11. Absolute measurement of the effective nonlinearities of KTP and BBO crystals by optical parametric amplification.

    Science.gov (United States)

    Armstrong, D J; Alford, W J; Raymond, T D; Smith, A V

    1996-04-20

    Absolute magnitudes of the effective nonlinearity, deff, were measured for seven KTP and six BBO crystals. The d(eff), were derived from the parametric gain of an 800-nm signal wave in the sample crystals when they were pumped by the frequency-doubled, spatially filtered light from an injectionseeded, Q-switched Nd:YAG laser. The KTP crystals, all type II phase matched with propagation in the X-Z plane, had d(eff) values ranging from 1.97 to 3.50 pm/V. Measurements of gain as a function of phase velocity mismatch indicate that two of the KTP crystals clearly contain multiple ferroelectric domains. For five type I phase-matched BBO crystals, d(eff) ranged from 1.76 to 1.83 pm/V, and a single type II phase-matched BBO crystal had a d(eff) of 1.56 pm/V. The uncertainty in our measurements of d(eff) values is ±5% for KTP and ±10% for BBO.

  12. Luminosity measurement method for the LHC: Event selection and absolute luminosity determination

    Energy Technology Data Exchange (ETDEWEB)

    Krasny, M.W., E-mail: krasny@lpnhep.in2p3.fr [LPNHE, Pierre and Marie Curie University, CNRS-IN2P3, Tour 33, RdC, 4, pl. Jussieu, 75005 Paris (France); Chwastowski, J. [Institute of Teleinformatics, Faculty of Physics, Mathematics and Computer Science, Cracow University of Technology, ul. Warszawska 24, 31-115 Kraków (Poland); Institute of Nuclear Physics PAN, ul. Radzikowskiego 152, 31-342 Kraków (Poland); Cyz, A.; Słowikowski, K. [Institute of Nuclear Physics PAN, ul. Radzikowskiego 152, 31-342 Kraków (Poland)

    2013-11-21

    In our earlier papers Krasny et al. [1,2] have proposed a new luminosity measurement method which uses lepton pairs produced in peripheral collisions of the LHC beam particles, and identified the requirements for a new, specialized luminosity detector which is indispensable for their efficient on-line selection. In this paper we use the base-line detector model, with no precise timing capabilities, to evaluate the statistical and systematic accuracy of the method. We propose the complete event selection procedure and demonstrate that it allows to collect a sufficiently large sample of e{sup +}e{sup −} pairs to achieve a better than 1% statistical accuracy of the luminosity measurement over less than one-month-long running time intervals. We argue that the absolute luminosity measurement systematic errors can be kept below 1%. The proposed method can be directly applied to the LHC running periods for which the machine instantaneous luminosity does not exceed the L=10{sup 33}s{sup −1}cm{sup −2} value. Two ways extending the method to the large pile-up periods corresponding to higher instantaneous luminosities are proposed.

  13. Cryogenic Current Comparator for Absolute Measurement of the Dark Current of the Superconducting Cavities for Tesla

    CERN Document Server

    Knaack, K; Wittenburg, K

    2003-01-01

    A newly high performance SQUID based measurement system for detecting dark currents, generated by superconducting cavities for TESLA is proposed. It makes use of the Cryogenic Current Comparator principle and senses dark currents in the nA range with a small signal bandwidth of 70 kHz. To reach the maximum possible energy in the TESLA project is a strong motivation to push the gradients of the superconducting cavities closer to the physical limit of 50 MV/m. The field emission of electrons (the so called dark current) of the superconducting cavities at strong fields may limit the maximum gradient. The absolute measurement of the dark current in correlation with the gradient will give a proper value to compare and classify the cavities. This contribution describes a Cryogenic Current Comparator (CCC) as an excellent and useful tool for this purpose. The most important component of the CCC is a high performance DC SQUID system which is able to measure extremely low magnetic fields, e.g. caused by the extracted ...

  14. Absolute measurement of the effective nonlinearities of KTP and BBO crystals by optical parametric amplification.

    Science.gov (United States)

    Armstrong, D J; Alford, W J; Raymond, T D; Smith, A V

    1996-04-20

    Absolute magnitudes of the effective nonlinearity, deff, were measured for seven KTP and six BBO crystals. The d(eff), were derived from the parametric gain of an 800-nm signal wave in the sample crystals when they were pumped by the frequency-doubled, spatially filtered light from an injectionseeded, Q-switched Nd:YAG laser. The KTP crystals, all type II phase matched with propagation in the X-Z plane, had d(eff) values ranging from 1.97 to 3.50 pm/V. Measurements of gain as a function of phase velocity mismatch indicate that two of the KTP crystals clearly contain multiple ferroelectric domains. For five type I phase-matched BBO crystals, d(eff) ranged from 1.76 to 1.83 pm/V, and a single type II phase-matched BBO crystal had a d(eff) of 1.56 pm/V. The uncertainty in our measurements of d(eff) values is ±5% for KTP and ±10% for BBO. PMID:21085331

  15. IAEA's ALMERA network: Supporting the quality of environmental radioactivity measurements.

    Science.gov (United States)

    Osvath, I; Tarjan, S; Pitois, A; Groening, M; Osborn, D

    2016-03-01

    The International Atomic Energy Agency coordinates and provides methodological and analytical quality support to the network of Analytical Laboratories for the Measurement of Environmental Radioactivity (ALMERA), comprising 150 laboratories in 84 countries. Annual proficiency tests (PTs) are organized for the network laboratories using sets of different samples typically encountered in environmental and food monitoring laboratories. The PT system is designed to respond to the needs of the network for rapid response and reliable measurement results, and to metrological principles and international standards and guides. Comparison of performance of ALMERA and non-ALMERA laboratories in PTs indicates that the "PT - method development - training - PT" strategy adopted for capability building is beneficial to the network. PMID:26810873

  16. IAEA's ALMERA network: Supporting the quality of environmental radioactivity measurements.

    Science.gov (United States)

    Osvath, I; Tarjan, S; Pitois, A; Groening, M; Osborn, D

    2016-03-01

    The International Atomic Energy Agency coordinates and provides methodological and analytical quality support to the network of Analytical Laboratories for the Measurement of Environmental Radioactivity (ALMERA), comprising 150 laboratories in 84 countries. Annual proficiency tests (PTs) are organized for the network laboratories using sets of different samples typically encountered in environmental and food monitoring laboratories. The PT system is designed to respond to the needs of the network for rapid response and reliable measurement results, and to metrological principles and international standards and guides. Comparison of performance of ALMERA and non-ALMERA laboratories in PTs indicates that the "PT - method development - training - PT" strategy adopted for capability building is beneficial to the network.

  17. Measurement of the Absolute Branching Fractions for $D^-_s\\!\\rightarrow\\!\\ell^-\\bar{\

    Energy Technology Data Exchange (ETDEWEB)

    del Amo Sanchez, P.; Lees, J.P.; Poireau, V.; Prencipe, E.; Tisserand, V.; /Annecy, LAPP; Garra Tico, J.; Grauges, E.; /Barcelona U., ECM; Martinelli, M.; Palano, A.; Pappagallo, M.; /INFN, Bari /Bari U.; Eigen, G.; Stugu, B.; Sun, L.; /Bergen U.; Battaglia, M.; Brown, David Nathan; Hooberman, B.; Kerth, L.T.; Kolomensky, Yu.G.; Lynch, G.; Osipenkov, I.L.; Tanabe, T.; /LBL, Berkeley /UC, Berkeley /Birmingham U. /Ruhr U., Bochum /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UC, Riverside /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /INFN, Ferrara /Ferrara U. /Frascati /INFN, Genoa /Genoa U. /Indian Inst. Tech., Guwahati /Harvard U. /Heidelberg U. /Humboldt U., Berlin /Imperial Coll., London /Iowa State U. /Iowa State U. /Johns Hopkins U. /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Louisville U. /Mainz U., Inst. Kernphys. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT /McGill U. /INFN, Milan /Milan U. /Mississippi U. /Montreal U. /INFN, Naples /Naples U. /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U.; /more authors..

    2010-10-27

    The absolute branching fractions for the decays D{sub s}{sup -} {yields} {ell}{sup -}{bar {nu}}{sub {ell}} ({ell} = e, {mu}, or {tau}) are measured using a data sample corresponding to an integrated luminosity of 521 fb{sup -1} collected at center of mass energies near 10.58 GeV with the BABAR detector at the PEP-II e{sup +}e{sup -} collider at SLAC. The number of D{sub s}{sup -} mesons is determined by reconstructing the recoiling system DKX{gamma} in events of the type e{sup +}e{sup -}DKXD*{sub s}{sup -}, where D*{sub s}{sup -} {yields} D{sub s}{sup -}{gamma} and X represents additional pions from fragmentation. The D{sub s}{sup -} {yields} {ell}{sup 0}{nu}{sub {ell}} events are detected by full or partial reconstruction of the recoiling system DKX{gamma}{ell}. The branching fraction measurements are combined to determine the D{sub s}{sup -} decay constant f{sub D{sub s}} = (258.6 {+-} 6.4 {+-} 7.5) MeV, where the first uncertainty is statistical and the second is systematic.

  18. ArtDeco: a beam-deconvolution code for absolute cosmic microwave background measurements

    Science.gov (United States)

    Keihänen, E.; Reinecke, M.

    2012-12-01

    We present a method for beam-deconvolving cosmic microwave background (CMB) anisotropy measurements. The code takes as input the time-ordered data along with the corresponding detector pointings and known beam shapes, and produces as output the harmonic aTlm, aElm, and aBlm coefficients of the observed sky. From these one can derive temperature and Q and U polarisation maps. The method is applicable to absolute CMB measurements with wide sky coverage, and is independent of the scanning strategy. We tested the code with extensive simulations, mimicking the resolution and data volume of Planck 30 GHz and 70 GHz channels, but with exaggerated beam asymmetry. We applied it to multipoles up to l = 1700 and examined the results in both pixel space and harmonic space. We also tested the method in presence of white noise. The code is released under the terms of the GNU General Public License and can be obtained from http://sourceforge.net/projects/art-deco/

  19. Use of proportional gas scintillator in absolute measurements of alpha-gamma emitter activities

    International Nuclear Information System (INIS)

    The absolute activity of U-235 contained in a U3 O8 sample was measured utilizing a sum-coincidence circuit which selects only the alpha particles which are simultaneous with the 143 KeV and 186 KeV gamma radiations from the Th-231 (product nucleus). The alpha particles were detected by means of a new type of a gas scintillating chamber, in which the light emitted by excitation of the gas atoms, due to the passage of a charged incoming particle, has its intensity increased by the action of an applied electric field. The gamma radiations were detected by means of a NaI(Tl) 1'' x 11/2'' scintillation detector. The value obtained for the half-life of U-235 was compared with the data available from various observers which used different experimental techniques. It is shown tht the results, are in excellent agreement with the best international data available on the subject and that, therefore, the sum-coincidence technique constitutes an important method for such measurements. (Author)

  20. Gravity change from repeated absolute measurements in Estonia, Latvia and Lithuania 1994-2008

    Science.gov (United States)

    Mäkinen, J.; Bilker-Koivula, M.; Falk, R.; Gitlein, O.; Kaminskis, J.; Lapushka, K.; Oja, T.; Paršeliunas, E.; Petroškevičius, P.; Timmen, L.

    2009-04-01

    Estonia, Latvia, and Lithuania belong to the margin of the Fennoscandian postglacial rebound (PGR) area. Vertical rates predicted by PGR models are in the range 0 to +3 mm/yr. Our first absolute gravity campaigns in the area were performed with the JILAg-5 gravimeter in 1994-1995 when three stations were measured in each country. All three stations in Lithuania were repeated with the JILAg-5 in 2002 and one of them (Vilnius) with the FG5#221 gravimeter in 2007. In Latvia one station (Riga) was remeasured with the FG5#101 and FG5#107 (D. Stizza, NIMA) in 1986 and with the FG5#221 in 2007. In Estonia two of the stations (Suurupi and Töravere) were remeasured with the FG5#220 in 2007 and with the FG5#221 in 2008, the third (Kuressaare) was only remeasured in 2008 with the FG5#221. This amounts to seven repeated stations with time spans of 8-13 years. In interpreting gravity change, special attention must be paid to subsurface water storage, as (due to inaccessibility of crystalline bedrock) many stations are on thick sediments, the repeat measurements were partly made in different seasons, and in some cases there is evidence of strong interannual variation in hydrology. We discuss the constraints to PGR implied by the observed gravity change and compare it with PGR models and with available observations of vertical motion.

  1. Investigating 2010 Northern Cascadia ETS Processes With Absolute Gravity & Deformation Measurements Near Port Renfrew, British Columbia

    Science.gov (United States)

    Henton, J. A.; Dragert, H.; Wang, K.; Kao, H.; Lambert, A.

    2010-12-01

    The monitoring of subduction zone Episodic Tremor and Slip (ETS) has been carried out primarily using seismic data for tremor and continuous Global Positioning System (GPS) and strain- or tilt-meter observations for transient slip. The regularity of ETS episodes in the forearc of the northern Cascadia Subduction Zone has recently allowed us to schedule a series of absolute gravity (AG) measurements to augment these other data and thereby help in understanding the physical processes involved in the generation of ETS. High-precision AG observations are sensitive to vertical motion of the observation site as well as mass redistribution during transient deformation. For the 2010 ETS event in the northern Cascadia, AG observations were carried out at Port Renfrew, British Columbia. The Port Renfrew region was targeted since it has typically had large (~7mm) vertical displacements measured at a nearby GPS site. Additionally this region has experienced large strains during past ETS episodes. The closest PBO borehole strainmeter to Port Renfrew, B004 (Sekiu, WA), typically experiences ETS shear strain transients exceeding 100 nanostrain. In this contribution, we focus on the analysis of the multiple epoch series of AG observations at Port Renfrew during the 2010 ETS event. The ratio of the change of surface gravity (Δg) to vertical displacement (Δh) during the ETS event will also be examined. This ratio provides unique constraints on processes involved in generating observed gravity signals and will help us explore the mechanism of ETS.

  2. In-Flight Measurement of the Absolute Energy Scale of the Fermi Large Area Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, M.; /Stanford U., HEPL /SLAC /KIPAC, Menlo Park; Ajello, M.; /Stanford U., HEPL /SLAC /KIPAC, Menlo Park; Allafort, A.; /Stanford U., HEPL /SLAC /KIPAC, Menlo Park; Atwood, W.B.; /UC, Santa Cruz; Axelsson, M.; /Stockholm U. /Stockholm U., OKC /Royal Inst. Tech., Stockholm; Baldini, L.; /INFN, Pisa; Barbiellini, G.; /INFN, Trieste /Trieste U.; Bastieri, D.; /INFN, Padua /Padua U.; Bechtol, K.; /Stanford U., HEPL /SLAC /KIPAC, Menlo Park; Bellazzini, R.; /INFN, Pisa; Berenji, B.; /Stanford U., HEPL /SLAC /KIPAC, Menlo Park; Bloom, E.D.; /Stanford U., HEPL /SLAC /KIPAC, Menlo Park; Bonamente, E.; /INFN, Perugia /Perugia U.; Borgland, A.W.; /Stanford U., HEPL /SLAC /KIPAC, Menlo Park; Bouvier, A.; /UC, Santa Cruz; Bregeon, J.; /INFN, Pisa; Brez, A.; /INFN, Pisa; Brigida, M.; /Bari Polytechnic /INFN, Bari; Bruel, P.; /Ecole Polytechnique; Buehler, R.; /Stanford U., HEPL /SLAC /KIPAC, Menlo Park; Buson, S.; /INFN, Padua /Padua U. /CSIC, Catalunya /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /IASF, Milan /DAPNIA, Saclay /INFN, Perugia /Perugia U. /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /Unlisted, US /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /ASDC, Frascati /Perugia U. /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /Montpellier U. /ASDC, Frascati /Bari Polytechnic /INFN, Bari /Naval Research Lab, Wash., D.C. /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /Montpellier U. /Bari Polytechnic /INFN, Bari /Ecole Polytechnique /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /Ecole Polytechnique /Hiroshima U. /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /Bari Polytechnic /INFN, Bari /INFN, Bari /NASA, Goddard /INFN, Perugia /Perugia U.; /more authors..

    2012-09-20

    The Large Area Telescope (LAT) on-board the Fermi Gamma-ray Space Telescope is a pair-conversion telescope designed to survey the gamma-ray sky from 20 MeV to several hundreds of GeV. In this energy band there are no astronomical sources with sufficiently well known and sharp spectral features to allow an absolute calibration of the LAT energy scale. However, the geomagnetic cutoff in the cosmic ray electron-plus-positron (CRE) spectrum in low Earth orbit does provide such a spectral feature. The energy and spectral shape of this cutoff can be calculated with the aid of a numerical code tracing charged particles in the Earth's magnetic field. By comparing the cutoff value with that measured by the LAT in different geomagnetic positions, we have obtained several calibration points between {approx}6 and {approx}13 GeV with an estimated uncertainty of {approx}2%. An energy calibration with such high accuracy reduces the systematic uncertainty in LAT measurements of, for example, the spectral cutoff in the emission from gamma ray pulsars.

  3. Radioactivity measurements of sewerage in 4 hospitals from Chongqing,China

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xian-ying; SHU Wei-qun; CAO Jia; LIU Yi-min

    2007-01-01

    @@ Monitoring of any release of radioactive materials to the environment is necessary for the environmental protection. Measurement of medical radioactive elements in the hospital sewerage is very important too. However, few study of radioactivity in hospital sewerage has been carried out or reported.

  4. Quality assurance for radioactive measurement in nuclear medicine

    International Nuclear Information System (INIS)

    The field of nuclear medicine continues to grow around the world, owing in part to a number of successful programmes carried out by the IAEA to enhance the use of nuclear medicine techniques in Member States. The implementation of quality assurance (QA) programmes to ensure the safe application of radiopharmaceuticals has, however, been variable in many Member States. One possible reason is the lack of a unified set of principles regarding the establishment of such programmes. This publication addresses the issue of QA programmes for radioactivity measurement in nuclear medicine. A group of experts consulted by the IAEA recommended in 2002 that unified principles concerning QA and quality control (QC) procedures for the measurement of radioactivity in nuclear medicine be developed because of its importance in controlling the safety and effectiveness of the use of radiopharmaceuticals. This publication is the result of advice provided to the IAEA by experts in the fields of radionuclide metrology, medical physics and radiopharmacy. This report can be considered to be a more detailed and updated version of IAEA-TECDOC-602, Quality Control of Nuclear Medicine Instruments, published in 1991. Advances in the field of nuclear instrumentation since that report was published, particularly in imaging, and the increased emphasis on QA and QC prompted the need for an update. Moreover, it was realized that the activity measurement and imaging aspects had each become so specialized as to be better treated in separate publications. The present report focuses on the factors affecting radioactivity measurement and the implementation of QA and QC programmes to ensure accurate and consistent results. The IAEA has developed a safety standard on The Management System for Facilities and Activities (IAEA Safety Standards Series No. GS-R-3), which replaces the IAEA publications on QA issued as Safety Series No. 50-C/SG-Q (1996). In GS-R-3, the management system is described as a set of

  5. Average value of available measurements of the absolute air-fluorescence yield

    CERN Document Server

    Rosado, J; Arqueros, F

    2011-01-01

    The air-fluorescence yield is a key parameter for determining the energy scale of ultra-high-energy cosmic rays detected by fluorescence telescopes. A compilation of the available measurements of the absolute air-fluorescence yield normalized to its value in photons per MeV for the 337 nm band at given pressure and temperature has been recently presented in Ref. [1]. Also, in that paper, some corrections in the evaluation of the energy deposited in the corresponding experimental collision chambers have been proposed. In this note this comparison is updated. In addition, a simple statistical analysis is carried out showing that our corrections favor the compatibility among the various experiments. As a result, an average value of 5.45 ph/MeV for the fluorescence yield of the 337 nm band (20.1 ph/MeV for the spectral interval 300-420 nm) at 1013 hPa and 293 K with an uncertainty of 5% is found. This result is fully compatible with that recently presented by the AIRFLY collaboration (still preliminary) in such a...

  6. Measurement of cosmogenic radioactive products in xenon and copper

    Science.gov (United States)

    Piastra, Francesco

    2016-02-01

    Rare events searches, such as direct dark matter detection or neutrinoless double beta decay (0vββ) observation, using liquid xenon as target and detection medium require ultralow background to fully exploit the physics potential. Cosmogenic activation of the detector components, and even more importantly, of the xenon itself might have undesired impact on the background and the final sensitivity of the experiment. Since no measurement of cosmogenic activation of xenon was present in literature so far, we performed such a measurement exposing of a natural xenon sample to the cosmic radiation at the Jungfraujoch research station at an altitude of 3470 m above sea level for 245 days. This study was complemented with a ultra pure copper sample that was activated together with the xenon. We directly observed, with gamma-ray spectrometry, the production of 7Be, 101Rh, 125Sb, 126I and 127Xe in xenon, out of which only 125 Sb could potentially lead to a background relevant for multi-ton scale direct dark matter search. The production rates for five out of eight radioactive isotopes in copper are in good agreement with the only dedicated measurement present in literature. The production rates measured for both samples were compared with the predictions obtained with commonly used software packages. The latter showed a systematic under-estimation, especially for xenon.

  7. Measurements of whole-body radioactivity in the UK population

    International Nuclear Information System (INIS)

    A national survey of whole-body radioactivity was undertaken. A mobile whole-body counter visited collaborating Medical Physics Departments and Hospitals in England and Wales. Data were also obtained from an installed whole-body counter at the West Cumberland Hospital, Whitehaven, and from a control site at Addenbrooke's Hospital, Cambridge. 1657 volunteer members of the public were measured, including 162 children. 36% of volunteers had been measured in a similar survey 2 years earlier, and showed between a two and five fold reduction in body radiocaesium. No radiocaesium was detected in 54% of people measured. Measurements showed a progressive fall over the course of the study, reaching a baseline of 0.3 Bq137Cs/gK. In 1989, the additional radiation dose incurred from radiocaesium varied from a maximum of 4.1 μSv in Cumbria to 1.5 μSv in the South East, compared with the average annual radiation dose of 2500 μSv due to all other causes. No other gamma-emitting radionuclides were found. Results are consistent with Chernobyl as the source of the radiocaesium detected. (author)

  8. ELENA MCP detector: absolute efficiency measurement for low energy neutral atoms

    Science.gov (United States)

    Rispoli, R.; De Angelis, E.; Colasanti, L.; Vertolli, N.; Orsini, S.; Scheer, J.; Mura, A.; Milillo, A.; Wurz, P.; Selci, S.; Di Lellis, A. M.; Leoni, R.; D'Alessandro, M.; Mattioli, F.; Cibella, S.

    2012-04-01

    MicroChannel plates (MCP) detectors are frequently used in space instrumentation for detecting a wide range of radiation and particles. In particular, the capability to detect non-thermal low energy neutral species is crucial for the sensor ELENA (Emitted Low-Energy Neutral Atoms), part of the package SERENA (Search for Exospheric Refilling and Emitted Natural Abundances) on board the BepiColombo mission to Mercury to be launched in 2014. ELENA is a TOF sensor, based on a novel concept ultra-sonic oscillating shutter (Start section)which is operated at frequencies up to 50 kHz; a MCP detector is used as a Stop section. It is aimed to detect neutral atoms in the range 10 eV - 5 keV, within 70° FOV, perpendicular to the S/C orbital plane. ELENA will monitor the emission of neutral atoms from the whole surface of Mercury thanks to the spacecraft motion. The major scientific objectives are the interaction between the environment and the planet, the global particle loss-rate and the remote sensing of the surface properties. In particular, surface release processes are investigated by identifying particles release from the surface, via solar wind-induced ion sputtering (100 eV) as well as Hydrogen back-scattered at hundreds eV. MCP absolute detection efficiency for very low energy neutral atoms (EMEFISTO facility of the Physical Institute of University of Bern (CH), measurements on three different type of MCPs coating have been performed providing the behaviors of MCP detection efficiency in the range 10eV-1keV. Outcomes from such measurements are here discussed.

  9. The measurement of radioactive microspheres in biological samples

    International Nuclear Information System (INIS)

    Measurements of the distribution of radioactive microspheres are used in investigations of regional coronary blood flow, but the size and shape of the heart varies for different test animals, and the organ is frequently divided into smaller pieces for studies of regional perfusion. Errors are introduced by variations in the distribution of the radioactive source and the amount of Compton scatter in different samples. A technique has therefore been developed to allow the counting of these tissue samples in their original form, and correction factors have been derived to inter-relate the various counting geometries thus encountered. Dogs were injected with microspheres labelled with 141Ce, 51Cr or 85Sr. The tissue samples did not require remodelling to fit a standard container, and allowance was made for the inhomogeneous distribution in the blood samples. The activities in the centrifuged blood samples were correlated with those from the tissue samples by a calibration procedure involving comparisons of the counts from samples of microspheres embedded in sachets of gelatine, and similar samples mixed with blood and then centrifuged. The calibration data have indicated that 51Cr behaves anomalously, and its use as a label for microspheres may introduce unwarranted errors. A plane cylindrical 10 x 20 cm NaI detector was used, and a 'worst case' correction of 20% was found to be necessary for geometry effects. The accuracy of this method of correlating different geometries was tested by remodelling the same tissue sample into different sizes and comparing the results, and the validity of the technique was supported by agreement of the final results with previously published data. (U.K.)

  10. Radioactivity measurement in Austria 1992 and 1993. Data and evaluation

    International Nuclear Information System (INIS)

    The Federal Ministry of Health and Consumer Protection is responsible for the large scale surveillance of radioactive contaminations of the Austrian territory. For this purpose on one hand an on-line measurement system has been set up, using gamma dose rate measuring devices situated in 336 locations. On the other hand, various media e.g. aerosols, precipitation, surface water and foodstuffs are being collected. Their radionuclide content is analysed in several laboratories. Additional special projects have been set up to improve the knowledge of the time dependence respectively of regional aspects of the contamination situation. The report covers the results of this surveillance for the years 1992 and 1993. The evaluation of these measurements and of other data concerning the average exposure of the Austrian population for the year 1993 is summarized in the following figure. It can be seen that the main contributions to the radiation dose are due to natural exposure pathways, among which the inhalation of indoor radon is of main importance. (Compared to the data in earlier reports due to a new evaluation of the radon risk by ICRP this dose contribution is significantly lower.) In comparison, the component due to the consequences of the Chernobyl reactor accident in 1986 onto Austrian territory during 1992 and 1993 was marginal. (author)

  11. Present status and prospects of ultralow level radioactivity measurements (2). Underground laboratory and recent topics emerged from ultralow level radioactivity measurements

    International Nuclear Information System (INIS)

    The present status of ultralow level radioactivity measurements in underground laboratories in Japan and Europe, and some researches using ultralow level radioactivity measurement technologies are stated. The background radiation originating cosmic ray is not excluded on the ground, but it decreased in the underground laboratory. Anticoincidence of underground measurement, countermeasure of radon, shielding materials, background of Ge measurement in Ogoya and other underground laboratories in Japan are reported. There are many underground laboratories for ultralow level radioactivity measurements in Europe, and a group of Collaboration of European Low-level underground LAboRatories (CELLAR) was organized. Some examples of ultralow level background of gamma ray measurements such as 152Eu, atomic bomb induced nuclide, natural induced radioactive nuclide by environmental neutron, measurement of 22Na, 108mAg and 110mAg, new evaluation method using 108mAg, high resolution analysis of change of 7Be and 210Pb in air, and nuclide in meteorite are reported. The sensitivity increasing method of low level radioactivity measurement and radioactive contamination of reagents are described. (S.Y.)

  12. Measurements of neutron cross sections of radioactive waste nuclides

    Energy Technology Data Exchange (ETDEWEB)

    Katoh, Toshio [Gifu College of Medical Technology, Seki, Gifu (Japan); Harada, Hideo; Nakamura, Shoji; Tanase, Masakazu; Hatsukawa, Yuichi

    1998-01-01

    Accurate nuclear reaction cross sections of radioactive fission products and transuranic elements are required for research on nuclear transmutation methods in nuclear waste management. Important fission products in the nuclear waste management are {sup 137}Cs, {sup 135}Cs, {sup 90}Sr, {sup 99}Tc and {sup 129}I because of their large fission yields and long half-lives. The present authors have measured the neutron capture cross sections and resonance integrals of {sup 137}Cs, {sup 90}Sr and {sup 99}Tc. The purpose of this study is to measure the neutron capture cross sections and resonance integrals of nuclides, {sup 129}I and {sup 135}Cs accurately. Preliminary experiments were performed by using Rikkyo University Reactor and JRR-3 reactor at Japan Atomic Energy Research Institute (JAERI). Then, it was decided to measure the cross section and resonance integral of {sup 135}Cs by using the JRR-3 Reactor because this measurement required a high flux reactor. On the other hand, those of {sup 129}I were measured at the Rikkyo Reactor because the product nuclides, {sup 130}I and {sup 130m}I, have short half-lives and this reactor is suitable for the study of short lived nuclide. In this report, the measurements of the cross section and resonance integral of {sup 135}Cs are described. To obtain reliable values of the cross section and resonance integral of {sup 135}Cs(n, {gamma}){sup 136}Cs reaction, a quadrupole mass spectrometer was used for the mass analysis of nuclide in the sample. A progress report on the cross section of {sup 134}Cs, a neighbour of {sup 135}Cs, is included in this report. A report on {sup 129}I will be presented in the Report on the Joint-Use of Rikkyo University Reactor. (author)

  13. Reduced Haemodynamic Response in the Ageing Visual Cortex Measured by Absolute fNIRS

    Science.gov (United States)

    Ward, Laura McKernan; Aitchison, Ross Thomas; Tawse, Melisa; Simmers, Anita Jane; Shahani, Uma

    2015-01-01

    The effect of healthy ageing on visual cortical activation is still to be fully explored. This study aimed to elucidate whether the haemodynamic response (HDR) of the visual cortex altered as a result of ageing. Visually normal (healthy) participants were presented with a simple visual stimulus (reversing checkerboard). Full optometric screening was implemented to identify two age groups: younger adults (n = 12, mean age 21) and older adults (n = 13, mean age 71). Frequency-domain Multi-distance (FD-MD) functional Near-Infrared Spectroscopy (fNIRS) was used to measure absolute changes in oxygenated [HbO] and deoxygenated [HbR] haemoglobin concentrations in the occipital cortices. Utilising a slow event-related design, subjects viewed a full field reversing checkerboard with contrast and check size manipulations (15 and 30 minutes of arc, 50% and 100% contrast). Both groups showed the characteristic response of increased [HbO] and decreased [HbR] during stimulus presentation. However, older adults produced a more varied HDR and often had comparable levels of [HbO] and [HbR] during both stimulus presentation and baseline resting state. Younger adults had significantly greater concentrations of both [HbO] and [HbR] in every investigation regardless of the type of stimulus displayed (p<0.05). The average variance associated with this age-related effect for [HbO] was 88% and [HbR] 91%. Passive viewing of a visual stimulus, without any cognitive input, showed a marked age-related decline in the cortical HDR. Moreover, regardless of stimulus parameters such as check size, the HDR was characterised by age. In concurrence with present neuroimaging literature, we conclude that the visual HDR decreases as healthy ageing proceeds. PMID:25909849

  14. Reduced Haemodynamic Response in the Ageing Visual Cortex Measured by Absolute fNIRS.

    Directory of Open Access Journals (Sweden)

    Laura McKernan Ward

    Full Text Available The effect of healthy ageing on visual cortical activation is still to be fully explored. This study aimed to elucidate whether the haemodynamic response (HDR of the visual cortex altered as a result of ageing. Visually normal (healthy participants were presented with a simple visual stimulus (reversing checkerboard. Full optometric screening was implemented to identify two age groups: younger adults (n = 12, mean age 21 and older adults (n = 13, mean age 71. Frequency-domain Multi-distance (FD-MD functional Near-Infrared Spectroscopy (fNIRS was used to measure absolute changes in oxygenated [HbO] and deoxygenated [HbR] haemoglobin concentrations in the occipital cortices. Utilising a slow event-related design, subjects viewed a full field reversing checkerboard with contrast and check size manipulations (15 and 30 minutes of arc, 50% and 100% contrast. Both groups showed the characteristic response of increased [HbO] and decreased [HbR] during stimulus presentation. However, older adults produced a more varied HDR and often had comparable levels of [HbO] and [HbR] during both stimulus presentation and baseline resting state. Younger adults had significantly greater concentrations of both [HbO] and [HbR] in every investigation regardless of the type of stimulus displayed (p<0.05. The average variance associated with this age-related effect for [HbO] was 88% and [HbR] 91%. Passive viewing of a visual stimulus, without any cognitive input, showed a marked age-related decline in the cortical HDR. Moreover, regardless of stimulus parameters such as check size, the HDR was characterised by age. In concurrence with present neuroimaging literature, we conclude that the visual HDR decreases as healthy ageing proceeds.

  15. Some triple-filament lead isotope ratio measurements and an absolute growth curve for single-stage leads

    Science.gov (United States)

    Stacey, J.S.; Delevaux, M.E.; Ulrych, T.J.

    1969-01-01

    Triple-filament analyses of three standard lead samples are used to calibrate a mass spectrometer in an absolute sense. The bias we measure is 0.0155 percent per mass unit, and the precision (for 95% confidence limits) is ??0.13% or less for all ratios relative to 204Pb. Although its precision is not quite so good as that of the lead-tetramethyl method in the analysis of large samples, the triple-filament method is less complex and is an attractive alternative for smaller sample sizes down to 500 ??g. Triple-filament data are presented for six possibly single-stage lead ores and one feldspar. These new data for ores are combined with corrected tetramethyl data for stratiform lead deposits to compute absolute parameters for a universal single-stage lead isotope growth curve. Absolute isotopic ratios for primeval lead have been determined by Oversby and because all the previous data for both meteorites and lead ores were similarly fractionated, the absolute value of 238U 204Pb = 9.09 ?? 0.06 for stratiform leads is little different from the value 8.99 ?? 0.05 originally computed by Ostic, Russell and Stanton. Absolute values for lead isotope ratios for all interlaboratory standard samples presently available from the literature are tabulated. ?? 1969.

  16. Field Measurement of Sand Dune Bidirectional Reflectance Characteristics for Absolute Radiometric Calibration of Optical Remote Sensing Data.

    Science.gov (United States)

    Coburn, C. A.; Logie, G.; Beaver, J.; Helder, D.

    2015-12-01

    The use of Pseudo Invariant Calibration Sites (PICS) for establishing the radiometric trending of optical remote sensing systems has a long history of successful implementation. Past studies have shown that the PICS method is useful for evaluating the trend of sensors over time or cross-calibration of sensors but was not considered until recently for deriving absolute calibration. Current interest in using this approach to establish absolute radiometric calibration stems from recent research that indicates that with empirically derived models of the surface properties and careful atmospheric characterisation Top of Atmosphere (TOA) reflectance values can be predicted and used for absolute sensor radiometric calibration. Critical to the continued development of this approach is the accurate characterization of the Bidirectional Reflectance Distribution Function (BRDF) of PICS sites. This paper presents the field data collected by a high-performance portable goniometer system in order to develop a BRDF model for the Algodones Dunes in California. These BRDF data are part of a larger study that is seeking to evaluate and quantify all aspects of this dune system (from regional effects to the micro scale optical properties of the sand) in order to provide an absolute radiometric calibration PICS. This paper presents the results of a dense temporal measurement sequence (several measurements per hour with high angular resolution), to yield detailed information on the nature of the surface reflectance properties. The BRDF data were collected covering typical view geometry of space borne sensors and will be used to close the loop on the calibration to create an absolute calibration target for optical satellite absolute radiometric calibration.

  17. Results of radioactivity measurements in France during 1983

    International Nuclear Information System (INIS)

    Various marine and continental sampling networks for the environmental monitoring of radioactivity of liquid waste discharges from French nuclear establishments have been set up by the Departement de Protection Sanitaire (DPS) since 1983. Measurements carried out on marine biological indicators: seaweeds, molluscs and fish caught all along the French shore, show that man-made radionuclide levels are locally higher both in the Channel near the release outlet of La Hague fuel reprocessing plant and in the influence area of the Rhone river waters in the Mediterranean sea. At the stations with the highest levels, the sanitary incidence of man-made radionuclides remains low, since it corresponds to a fraction in the range of 10-5 of the dose limit recommended by the International Commission on Radiological Protection. Continental measurements, especially those carried out on the crops from the agricultural area irrigated by the Compagnie Nationale d'Amenagement de la Region du Bas-Rhone et du Languedoc, corroborate the lack of transfers of radionuclides conveyed by the Rhone water to the agricultural produces of this region

  18. Application of γ spectrometry sourceless efficiency method in measuring radioactive rare earth residues in Jiangsu province

    International Nuclear Information System (INIS)

    Background: The radioactivity levels of rare earth residues in Jiangsu province are not well known, and there are no explicit laws on their regulation. Purpose: By analyzing the radioactive nuclides in rare earth residues of Jiangsu province, we plan to propose some suggestions on volume reduction. Methods: HPGe γ spectrometry sourceless efficiency calibration method is playing an important role in the radioactive analysis because of its high accuracy and efficiency. It can be used without standard radioactive source and is easy to be measured on the spot. The reliability of method was verified by using IAEA reference materials. Results: The results show that in the rare earth residues the radioactive equilibrium of uranium and thorium decay series has been broken, and the radioactive levels in different samples have obvious difference. Conclusions: Based on the results, this paper investigates and analyses the radioactive residues of rare earth smelting and separation plants in Jiangsu Province, and puts forward some suggestions on volume reduction. (authors)

  19. Measurement of the Absolute Proton and Helium Flux at the Top of the Atmosphere using IMAX

    DEFF Research Database (Denmark)

    Menn, W.; Hof, M.; Reimer, O.;

    1996-01-01

    with ancillary scintillators, time-of-flight, and aerogel cherenkov detectors. High resolution drift chambers and MWPCs were used as the tracking devices. Using redundant detectors, an extensive examination of the instrument efficiency was carried out. We present the absolute spectra of protons and helium...

  20. Design of a quasi-zero-stiffness based sensor system for the measurement of absolute vibration displacement of moving platforms

    Science.gov (United States)

    Jing, Xingjian; Wang, Yu; Li, Quankun; Sun, Xiuting

    2016-09-01

    This study presents the analysis and design of a novel sensor system for measuring the absolute vibration displacement of moving platforms based on the concept of quasi-zero-stiffness (QZS). The sensor system is constructed using positive- and negative-stiffness springs, which make it possible to achieve an equivalent QZS and consequently to create a broadband vibration-free point for absolute vibration displacement measurement in moving platforms. Theoretical analysis is conducted for the analysis and design of the influence of structure parameters on system measurement performance. A prototype is designed which can avoid the drawback of instability in existing QZS systems with negative stiffness, and corresponding data-processing software is developed to fulfill time domain measurements. Both the simulation and experimental results verify the effectiveness of this novel sensor system.

  1. Analysis, Design and Testing of a Novel Quasi-Zero-Stiffness based Sensor System for Measurement of Absolute Vibration Motion

    CERN Document Server

    Wang, Yu

    2015-01-01

    This study presents the analysis and design of a novel quasi-zero-stiffness (QZS) based vibration sensor system for measuring absolute displacement of vibrating platforms/objects. The sensor system is constructed by using positive and negative-stiffness springs, which makes it possible to achieve an equivalent QZS and consequently to create a broadband vibration-free point for absolute displacement measurement in vibrating platforms. Theoretic analysis is conducted for the analysis and design of the influence of structure parameters on system measurement performance. A prototype is designed which can avoid the drawback of instability in existing QZS systems with negative stiffness, and the corresponding data-processing software is developed to fulfill time domain and frequency domain measurements simultaneously. Both simulation and experiment results verify the effectiveness of this novel sensor system.

  2. Measurement of intrinsic radioactivity in a GSO crystal

    CERN Document Server

    Wang, S C; Fujiwara, M

    2002-01-01

    Scintillating crystal detectors offer potential advantages in low-energy low-background experiments for particle physics and astrophysics. The GSO crystal is an interesting detector to explore in future neutrino physics experiments. The contributions to background due to the various channels of intrinsic radio isotopes from the sup 2 sup 3 sup 2 Th and sup 2 sup 3 sup 8 U series are identified and studied with time-correlation analysis and detailed fits to the spectral shape. Good agreement is achieved between measured and simulated spectra, indicating that background suppression factors to the 10 sup - sup 2 -10 sup - sup 3 level are possible. The procedures can be adopted for background understanding and suppression in other low-count-rate experiments where the dominant source of background is from internal radioactivity. Based on 1656 h of data taking, limits on the double beta decay half-life for the various channels in sup 1 sup 6 sup 0 Gd are derived. The limits for the neutrinoless and the Majoron mode...

  3. Measurement of intrinsic radioactivity in a GSO crystal

    International Nuclear Information System (INIS)

    Scintillating crystal detectors offer potential advantages in low-energy low-background experiments for particle physics and astrophysics. The GSO crystal is an interesting detector to explore in future neutrino physics experiments. The contributions to background due to the various channels of intrinsic radio isotopes from the 232Th and 238U series are identified and studied with time-correlation analysis and detailed fits to the spectral shape. Good agreement is achieved between measured and simulated spectra, indicating that background suppression factors to the 10-2-10-3 level are possible. The procedures can be adopted for background understanding and suppression in other low-count-rate experiments where the dominant source of background is from internal radioactivity. Based on 1656 h of data taking, limits on the double beta decay half-life for the various channels in 160Gd are derived. The limits for the neutrinoless and the Majoron modes are T((1)/(2))0νββ>2.0(0.8)x1020 yr and T((1)/(2))χββ>3.0(1.9)x1019 yr, respectively, at 68(90)% confidence level

  4. Direct reaction measurements with a 132Sn radioactive ion beam

    CERN Document Server

    Jones, K L; Bardayan, D W; Blackmon, J C; Chae, K Y; Chipps, K A; Cizewski, J A; Erikson, L; Harlin, C; Hatarik, R; Kapler, R; Kozub, R L; Liang, J F; Livesay, R; Ma, Z; Moazen, B H; Nesaraja, C D; Nunes, F M; Pain, S D; Patterson, N P; Shapira, D; Shriner, J F; Smith, M S; Swan, T P; Thomas, J S

    2011-01-01

    The (d,p) neutron transfer and (d,d) elastic scattering reactions were measured in inverse kinematics using a radioactive ion beam of 132Sn at 630 MeV. The elastic scattering data were taken in a region where Rutherford scattering dominated the reaction, and nuclear effects account for less than 8% of the cross section. The magnitude of the nuclear effects was found to be independent of the optical potential used, allowing the transfer data to be normalized in a reliable manner. The neutron-transfer reaction populated a previously unmeasured state at 1363 keV, which is most likely the single-particle 3p1/2 state expected above the N=82 shell closure. The data were analyzed using finite range adiabatic wave calculations and the results compared with the previous analysis using the distorted wave Born approximation. Angular distributions for the ground and first excited states are consistent with the previous tentative spin and parity assignments. Spectroscopic factors extracted from the differential cross sect...

  5. Direct reaction measurements with a 132Sn radioactive ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Katherine L.; Nunes, Filomena M.; Adekola, Aderemi S.; Bardayan, Dan W.; Blackmon, Jeff; Chae, K. Y.; Chipps, Kelly A.; Cizewski, Jolie A.; Erikson, Luke E.; Harlin, C.; Hatarik, R.; Kapler, R.; Kozub, Raymond L.; Liang, J. F.; Livesay, Ronald J.; Ma, Zhongguo J.; Moazen, B. H.; Nesaraja, Caroline D.; Pain, Steven D.; Patterson, N. P.; Shapira, Dan; Shriner, Jr., John F.; Smith, Michael S.; Swan, Thomas P.; Thomas, Jeff S.

    2011-09-01

    The (d,p) neutron transfer and (d,d) elastic scattering reactions were measured in inverse kinematics using a radioactive ion beam of 132Sn at 630 MeV. The elastic scattering data were taken in a region where Rutherford scattering dominated the reaction, and nuclear effects account for less than 8% of the elastic scattering cross section. The magnitude of the nuclear effects, in the angular range studied, was found to be independent of the optical potential used, allowing the transfer data to be normalized in a reliable manner. The neutron-transfer reaction populated a previously unmeasured state at 1363 keV, which is most likely the single-particle 3p1/2 state expected above the N = 82 shell closure. The data were analyzed using finite-range adiabatic-wave calculations and the results compared with the previous analysis using the distorted-wave Born approximation. Angular distributions for the ground and first-excited states are consistent with the previous tentative spin and parity assignments. Spectroscopic factors extracted from the differential cross sections are similar to those found for the one-neutron states beyond the benchmark doubly magic nucleus 208Pb.

  6. Measurement and Monte Carlo Calculation of Waste Drum Filled With Radioactive Aqueous Solution

    Institute of Scientific and Technical Information of China (English)

    XU; Li-jun; ZHANG; Wei-dong; YE; Hong-sheng; LIN; Min; CHEN; Xi-lin; GUO; Xiao-qing

    2012-01-01

    <正>Theoretically the best calibrating source of gamma scan system (SGS) is a waste drum filled with uniform distribution of medium and radioactive nuclides. However, in reality, waste drums usually full of solid substance, which are difficult to be prepared in a completely uniformly distributed state. To reduce measurement uncertainty of the radioactivity of waste drums prepared using the method of shell source, a waste drum filled with radioactive aqueous solution was prepared. Besides, its radioactivity was measured by a SGS device and calculated using Monte Carlo method to verify the exact geometric model, which

  7. Measurements of radioactivity in Austria 1998, data and assessment

    International Nuclear Information System (INIS)

    In Austria an extensive program is realized for the purpose of large scale surveillance on radioactivity. On the one hand an Early Radiation Warning System with 336 gamma dose rate monitors and several partly nuclide specific air contamination monitors is operated by the Federal Chancellery. The data are automatically communicated to various authorities in real-time. On the other hand the radionuclide content of various media such as air, precipitation, surface water, foodstuffs etc. is monitored by periodic sampling and analysis in laboratories. In addition to this routine program special projects are carried out for investigation of specific media and to improve the knowledge of the time dependence respectively of regional aspects of the contamination situation. The inspection of the nuclear installations by the authorities concerning emissions and immissions is set up of two parts: inspection of the quality of the internal control by the operator and independent surveillance by examination of samples taken by the authority. In 1998 the average annual radiation exposure of the Austrian population amounted to about 4.6 mSv effective dose. The contributions dominating by far originate from natural and medical sources of radiation. In comparison with these, contributions from all other sources of radiation are extremely small. The average annual effective dose caused by natural radiation amounts to approximately 3.2 mSv. The inhalation of the radioactive noble gas radon and its short lived progeny in the mean contributes more than half to this exposure. Mainly because of different radon values considerable variations in natural radiation exposure do occur. There are regions with particular geological conditions where exposure levels by far exceed the average dose due to high radon values. Artificial radiation exposure is predominantly caused by the use of radioactive substances and of ionizing radiation in medical applications, in particular by X-ray diagnostics

  8. Measuring the absolute deuterium-tritium neutron yield using the magnetic recoil spectrometer at OMEGA and the NIF.

    Science.gov (United States)

    Casey, D T; Frenje, J A; Gatu Johnson, M; Séguin, F H; Li, C K; Petrasso, R D; Glebov, V Yu; Katz, J; Knauer, J P; Meyerhofer, D D; Sangster, T C; Bionta, R M; Bleuel, D L; Döppner, T; Glenzer, S; Hartouni, E; Hatchett, S P; Le Pape, S; Ma, T; MacKinnon, A; McKernan, M A; Moran, M; Moses, E; Park, H-S; Ralph, J; Remington, B A; Smalyuk, V; Yeamans, C B; Kline, J; Kyrala, G; Chandler, G A; Leeper, R J; Ruiz, C L; Cooper, G W; Nelson, A J; Fletcher, K; Kilkenny, J; Farrell, M; Jasion, D; Paguio, R

    2012-10-01

    A magnetic recoil spectrometer (MRS) has been installed and extensively used on OMEGA and the National Ignition Facility (NIF) for measurements of the absolute neutron spectrum from inertial confinement fusion implosions. From the neutron spectrum measured with the MRS, many critical implosion parameters are determined including the primary DT neutron yield, the ion temperature, and the down-scattered neutron yield. As the MRS detection efficiency is determined from first principles, the absolute DT neutron yield is obtained without cross-calibration to other techniques. The MRS primary DT neutron measurements at OMEGA and the NIF are shown to be in excellent agreement with previously established yield diagnostics on OMEGA, and with the newly commissioned nuclear activation diagnostics on the NIF.

  9. Absolute distance measurement by dual-comb interferometry with multi-channel digital lock-in phase detection

    International Nuclear Information System (INIS)

    We present a dual-comb-based heterodyne multi-wavelength absolute interferometer capable of long distance measurements. The phase information of the various comb modes is extracted in parallel by a multi-channel digital lock-in phase detection scheme. Several synthetic wavelengths of the same order are constructed and the corresponding phases are averaged to deduce the absolute lengths with significantly reduced uncertainty. Comparison experiments with an incremental HeNe reference interferometer show a combined relative measurement uncertainty of 5.3 × 10−7 at a measurement distance of 20 m. Combining the advantage of synthetic wavelength interferometry and dual-comb interferometry, our compact and simple approach provides sufficient precision for many industrial applications. (paper)

  10. Measurement of radioactive nuclides from geological samples and radiation hazards due to environmental radon

    International Nuclear Information System (INIS)

    The naturally occurring radio nuclides present in the environment may result in external and internal doses received by a population exposed to them directly and via the ingestion/inhalation pathways. Human beings are exposed to low levels of ionizing radiation from natural sources during their daily lives. The basic component of our life support system is considered to be in the soil, water, plants and air. These environmental components contain measurable amount of radioactivity. Radon and its progeny are radioactive and is the major contributor to environmental radioactivity. Radon is formed from the decay of radium which in turn is formed from uranium. The gaseous radioactive isotope of radon, from natural sources has a significant share in the total quantum of natural sources exposure to human beings. Gamma radiations are spontaneously emitted by naturally occurring radioactive material like 226Ra, 232Th and 40K, ever since their existence on earth. Natural radioactive materials under certain conditions can reach hazardous radiological levels. So, it becomes necessary to study the natural radioactivity in different materials to assess the dose for the population in order to know the health risks and future changes in the environmental radioactivity due to human activities. The present study deals with the measurement of radioactivity in some naturally occurring radioactive materials (NORMs). (author)

  11. Absolute brightness temperature measurements at 3.5-mm wavelength. [of sun, Venus, Jupiter and Saturn

    Science.gov (United States)

    Ulich, B. L.; Rhodes, P. J.; Davis, J. H.; Hollis, J. M.

    1980-01-01

    Careful observations have been made at 86.1 GHz to derive the absolute brightness temperatures of the sun (7914 + or - 192 K), Venus (357.5 + or - 13.1 K), Jupiter (179.4 + or - 4.7 K), and Saturn (153.4 + or - 4.8 K) with a standard error of about three percent. This is a significant improvement in accuracy over previous results at millimeter wavelengths. A stable transmitter and novel superheterodyne receiver were constructed and used to determine the effective collecting area of the Millimeter Wave Observatory (MWO) 4.9-m antenna relative to a previously calibrated standard gain horn. The thermal scale was set by calibrating the radiometer with carefully constructed and tested hot and cold loads. The brightness temperatures may be used to establish an absolute calibration scale and to determine the antenna aperture and beam efficiencies of other radio telescopes at 3.5-mm wavelength.

  12. Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development

    Directory of Open Access Journals (Sweden)

    Nick D.L. Owens

    2016-01-01

    Full Text Available Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack a comprehensive understanding of transcript kinetics, which limits quantitative biology. This is an acute challenge in embryonic development, where rapid changes in gene expression dictate cell fate decisions. By ultra-high-frequency sampling of Xenopus embryos and absolute normalization of sequence reads, we present smooth gene expression trajectories in absolute transcript numbers. During a developmental period approximating the first 8 weeks of human gestation, transcript kinetics vary by eight orders of magnitude. Ordering genes by expression dynamics, we find that “temporal synexpression” predicts common gene function. Remarkably, a single parameter, the characteristic timescale, can classify transcript kinetics globally and distinguish genes regulating development from those involved in cellular metabolism. Overall, our analysis provides unprecedented insight into the reorganization of maternal and embryonic transcripts and redefines our ability to perform quantitative biology.

  13. Natural radioactivity measurements in building materials in Southern Lebanon.

    Science.gov (United States)

    Kobeissi, M A; El Samad, O; Zahraman, K; Milky, S; Bahsoun, F; Abumurad, K M

    2008-08-01

    Using gamma-spectroscopy and CR-39 detector, concentration C of naturally occurring radioactive nuclides (226)Ra, (222)Rn, (214)Bi, (228)Ac, (212)Pb, (212)Bi and (40)K, has been measured in sand, cement, gravel, gypsum, and paint, which are used as building materials in Lebanon. Sand samples were collected from 10 different sandbank locations in the southern part of the country. Gravel samples of different types and forms were collected from several quarries. White and gray cement fabricated by Shaka Co. were obtained. gamma-spectroscopy measurements in sand gave Ra concentration ranging from 4.2+/-0.4 to 60.8+/-2.2 Bq kg(-1) and Ra concentration equivalents from 8.8+/-1.0 to 74.3+/-9.2 Bq kg(-1). The highest Ra concentration was in gray and white cement having the values 73.2+/-3.0 and 76.3+/-3.0 Bq kg(-1), respectively. Gravel results showed Ra concentration between 20.2+/-1.0 and 31.7+/-1.4 Bq kg(-1) with an average of 27.5+/-1.3 Bq kg(-1). Radon concentration in paint was determined by CR-39 detector. In sand, the average (222)Rn concentration ranged between 291+/-69 and 1774+/-339 Bq m(-3) among the sandbanks with a total average value of 704+/-139 Bq m(-3). For gravel, the range was found to be from 52+/-9 to 3077+/-370 Bq m(-3) with an average value of 608+/-85 Bq m(-3). Aerial and mass exhalation rates of (222)Rn were also calculated and found to be between 44+/-7 and 2226+/-267 mBq m(-2)h(-1), and between 0.40+/-0.07 and 20.0+/-0.3 mBq kg(-1)h(-1), respectively.

  14. Phase-sensitive swept-source interferometry for absolute ranging with application to measurements of group refractive index and thickness.

    Science.gov (United States)

    Moore, Eric D; McLeod, Robert R

    2011-04-25

    Interferometric range measurements using a wavelength-tunable source form the basis of several measurement techniques, including optical frequency domain reflectometry (OFDR), swept-source optical coherence tomography (SS-OCT), and frequency-modulated continuous wave (FMCW) lidar. We present a phase-sensitive and self-referenced approach to swept-source interferometry that yields absolute range measurements with axial precision three orders of magnitude better than the transform-limited axial resolution of the system. As an example application, we implement the proposed method for a simultaneous measurement of group refractive index and thickness of an optical glass sample. PMID:21643062

  15. Measurement of absolute gamma ray emission probability of 1001 keV from the decay of 234mPa

    International Nuclear Information System (INIS)

    In the direct γ-ray spectrometric measurements of 238U content, 1001 keV γ-ray of 234mPa is commonly used in recent years. 234mPa is the second daughter of 238U and rapidly reaches secular equilibrium with the parent nucleus. This clean peak is well resolved by high purity Ge detectors and gives more accurate indication of uranium content without requiring any self attenuation correction. Several measurements of the absolute emission probability of the 1001 keV γ-ray of 234mPa have resulted in doubts concerning the old recommended value 0.59±0.01 % obtained by a radiochemical method. Therefore, this old value is now absolute and a newly value of 0.835±0.004 % is recommended. In this study the γ-ray spectrometric measurements were carried out using the powdered U3O8 and the certified uranium samples. A new experimental value o 0.861±0.015 % for the absolute γ-ray emission probability for the 1001 keV gamma-ray of the 234mPa has been obtained. The present measured values agrees good with the most experimental results appeared in the literature and is close to the newly recommended values of 0.835±0.004 % and 0.837±0.012 % for the 1001 keV γ-ray of 234mPa

  16. Separating climate-induced mass transfers and instrumental effects from tectonic signal in repeated absolute gravity measurements

    Science.gov (United States)

    Van Camp, M.; Viron, O.; Avouac, J. P.

    2016-05-01

    We estimate the signature of the climate-induced mass transfers in repeated absolute gravity measurements based on satellite gravimetric measurements from the Gravity Recovery and Climate Experiment (GRACE) mission. We show results at the globe scale and compare them with repeated absolute gravity (AG) time behavior in three zones where AG surveys have been published: Northwestern Europe, Canada, and Tibet. For 10 yearly campaigns, the uncertainties affecting the determination of a linear gravity rate of change range 3-4 nm/s2/a in most cases, in the absence of instrumental artifacts. The results are consistent with what is observed for long-term repeated campaigns. We also discuss the possible artifact that can result from using short AG survey to determine the tectonic effects in a zone of high hydrological variability. We call into question the tectonic interpretation of several gravity changes reported from stations in Tibet, in particular the variation observed prior to the 2015 Gorkha earthquake.

  17. A Proposed Method for Measurement of Absolute Air Fluorescence Yield based on High Resolution Optical Emission Spectroscopy

    CERN Document Server

    Gika, V; Maltezos, S

    2016-01-01

    In this work, we present a method for absolute measurement of air fluorescence yield based on high resolution optical emission spectroscopy. The absolute measurement of the air fluorescence yield is feasible using the Cherenkov light, emitted by an electron beam simultaneously with the fluorescence light, as a "standard candle". The separation of these two radiations can be accomplished exploiting the "dark" spectral regions of the emission band systems of the molecular spectrum of nitrogen. In these "dark" regions the net Cherenkov light can be recorded experimentally and be compared with the calculated one. The instrumentation for obtaining the nitrogen molecular spectra in high resolution and the noninvasive method for monitoring the rotational temperature of the emission process are also described. For the experimental evaluation of the molecular spectra analysis we used DC normal glow discharges in air performed in an appropriate spectral lamp considered as an air-fluorescence light emulator. The propose...

  18. Savannah River Site Experiences in In Situ Field Measurements of Radioactive Materials

    Energy Technology Data Exchange (ETDEWEB)

    Moore, F.S.

    1999-10-07

    This paper discusses some of the field gamma-ray measurements made at the Savannah River Site, the equipment used for the measurements, and lessons learned during in situ identification and characterization of radioactive materials.

  19. Measurement of radioactive nuclides in the `Mayak` region

    Energy Technology Data Exchange (ETDEWEB)

    Myasoedov, B.F. [V.I. Vernadsky Inst. of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Moscow (Russian Federation); Novikov, A.P. [V.I. Vernadsky Inst. of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Moscow (Russian Federation)

    1997-03-01

    The study of environmental contamination caused by anthropogenic impact and, primarily, by radioactive nuclides is one of the main scientific problems facing contemporary science. Radioecological monitoring, decision making on remediation of polluted areas need detailed information about distribution of radioactive nuclides in the terrestrial and aquatic ecosystems, knowledge about radioactive nuclide occurrence forms and migration patterns. Experimental tests of nuclear and thermonuclear weapon in atmosphere and underground, nuclear power engineering and numerous accidents that took place at the nuclear power plants (NPP), unauthorized dump of radioactive materials in various places of the ocean and pouring off the strongly dump of radioactive wastes from ships and submarine equipped with nuclear power engines made artificial radionuclides a constant and unretrievable component of the modern biosphere, becoming an additional unfavorable ecological factor. As regards Former Sovient Union (FSU) the most unfavorable regions are Southern Ural, zones suffered from Chernobyl Accident, Altay, Novaya Zemlya, some part of West Siberia near Seversk (Tomsk-7) and Zheleznogorsk (Krasnoyarsk-26). (orig.)

  20. Measurement of the absolute branching ratio of the K+ -> pi+ pi0 (gamma) decay with the KLOE detector

    CERN Document Server

    Ambrosino, F; Antonelli, M; Archilli, F; Bacci, C; Beltrame, P; Bencivenni, G; Bertolucci, S; Bini, C; Bloise, C; Bocchetta, S; Bossi, F; Branchini, P; Campana, P; Capon, G; Capussela, T; Ceradini, F; Cesario, F; Chi, S; Chiefari, G; Ciambrone, P; Crucianelli, F; De Lucia, E; De Santis, A; De Simone, P; De Zorzi, G; Denig, A; Di Domenico, A; Di Donato, C; Di Micco, B; Doria, A; Dreucci, M; Felici, G; Ferrari, A; Ferrer, M L; Fiore, S; Forti, C; Franzini, P; Gatti, C; Gauzzi, P; Giovannella, S; Gorini, E; Graziani, E; Kluge, W; Kulikov, V; Lacava, F; Lanfranchi, G; Lee-Franzini, J; Leone, D; Martemyanov, M; Martini, M; Massarotti, P; Mei, W; Meola, S; Miscetti, S; Moulson, M; Müller, S; Murtas, F; Napolitano, M; Nguyen, F; Palutan, M; Pasqualucci, E; Passeri, A; Patera, V; Perfetto, F; Primavera, M; Santangelo, P; Saracino, G; Sciascia, B; Sciubba, A; Sibidanov, A; Spadaro, T; Testa, M; Tortora, L; Valente, P; Venanzoni, G; Versaci, R; Xu, G

    2008-01-01

    We have measured the absolute branching ratio of the K+ -> pi+ pi0 (gamma) decay, using about 20 million tagged K+ mesons collected with the KLOE detector at DAFNE, the Frascati phi-factory. Signal counts are obtained from the fit of the distribution of the momentum of the charged decay particle in the kaon rest frame. The result, inclusive of final-state radiation, is BR(K+ -> pi+ pi0 (gamma))=0.2065+/-0.0005_{stat}+/- 0.0008_{syst}.

  1. Measurements and calculations of doses from radioactive particles

    International Nuclear Information System (INIS)

    Three Mile Island (TMI) and Tchernobyl reactor accidents have revealed the importance of the skin exposure to beta radiation produced by small high activity sources, named 'hot particles'. In nuclear power reactors, they may arise as small fragments of irradiated fuel or material which have been neutron activated by passing through the reactor co. In recent years, skin exposure to hot particles has been subject to different limitation criteria, formulated by AIEA, ICRP, NCRP working groups. The present work is the contribution of CEA Grenoble to a contract of the Commission of the European communities in cooperation with several laboratories: University of Birmingham, University of Toulouse and University of Montpellier with the main goal to check experiments and calculations of tissue dose from 60Co radioactive particles. This report is split up into two parts: hot particle dosimetry close to a 60Co spherical sample with an approximately 200 μm diameter, using a PTW extrapolation chamber model 233991; dose calculations from two codes: the Varskin Mod 2 computer code and the Hot 25 S2 Monte Carlo algorithm. The two codes lead to similar results; nevertheless there is a large discrepancy (of about 2) between calculations and PTW measurements which are higher by a factor of 1.9. At a 70 μm skin depth and for 1 cm2 irradiated area, the total (β + γ) tissue dose rate delivered by a spherical ( φ = 200 μm) 60Co source, in contact with skin, is of the order of 6.1 10-2 nGy s-1 Bq-1. (author)

  2. Measurement of natural and 137Cs radioactivity concentrations at Izmit Bay (Marmara Sea), Turkey

    Science.gov (United States)

    Öksüz, I.; Güray, R. T.; Özkan, N.; Yalçin, C.; Ergül, H. A.; Aksan, S.

    2016-03-01

    In order to determine the radioactivity level at Izmit Bay Marmara Sea, marine sediment samples were collected from five different locations. The radioactivity concentrations of naturally occurring 238U, 232Th and 40K isotopes and also that of an artificial isotope 137Cs were measured by using gamma-ray spectroscopy. Preliminary results show that the radioactivity concentrations of 238U and 232Th isotopes are lower than the average worldwide values while the radioactivity concentrations of the 40K are higher than the average worldwide value. A small amount of 137Cs contamination, which might be caused by the Chernobyl accident, was also detected.

  3. Measurements of Natural Radioactivity in Submicron Aerosols in Mexico City.

    Science.gov (United States)

    Gaffney, J. S.; Marley, N. A.; Sterling, K.; Sturchio, N. C.

    2003-12-01

    Natural radionuclides can be useful in evaluating the transport of ozone and aerosols in the troposphere. Beryllium-7, which is produced by cosmic ray interactions in the upper troposphere and lower stratosphere and becomes adsorbed on fine aerosols, can be a useful indicator of upper air transport into a region. Lead-210 is produced by the decay of radon-222 out-gassed into the lower atmosphere from ground-based uranium deposits. Potassium-40, found in soils, can act as a measure of wind-blown dust and also comes from burning of wood and other biomass that is enriched in this natural radioisotope. Thus, both lead-210 and potassium-40 can aid in identification of aerosols sourced in the lower atmosphere. As part of our continuing interest in the lifetimes and sources of aerosols and their radiative effects, we report here measurements of fine aerosol radioactivity in Mexico City, one of the largest megacities in the world. Samples were collected on quartz fiber filters by using cascade impactors (Sierra type, Anderson Instruments) and high-volume air samplers from the rooftop of the main laboratory of El Centro Nacional de Investigacion y Capacitacion Ambiental (CENICA). By using stage 4 of the impactor and timers, we were able to collect integrated samples of sizes > 1 micrometer and < 1 micrometer over 12-hr time periods daily for approximately one month in April 2003. Samples were counted at the University of Illinois at Chicago by using state-of-the-art gamma counting (beryllium-7, 477.6 keV; potassium-40, 1460.8 keV; lead-210, 46.5 keV). The beryllium-7 data indicate one possible upper-air transport event during April 2003. As expected, the lead-210 data indicate very little soil contribution to the fine aerosol. The potassium-40 data showed an increase in fine aerosol potassium during Holy Week that might be attributed to local combustion of biomass fuels. The data will be presented and discussed in light of future data analysis and comparison with other

  4. Integration of Quantitative Positron Emission Tomography Absolute Myocardial Blood Flow Measurements in the Clinical Management of Coronary Artery Disease.

    Science.gov (United States)

    Gewirtz, Henry; Dilsizian, Vasken

    2016-05-31

    In the >40 years since planar myocardial imaging with(43)K-potassium was introduced into clinical research and management of patients with coronary artery disease (CAD), diagnosis and treatment have undergone profound scientific and technological changes. One such innovation is the current state-of-the-art hardware and software for positron emission tomography myocardial perfusion imaging, which has advanced it from a strictly research-oriented modality to a clinically valuable tool. This review traces the evolving role of quantitative positron emission tomography measurements of myocardial blood flow in the evaluation and management of patients with CAD. It presents methodology, currently or soon to be available, that offers a paradigm shift in CAD management. Heretofore, radionuclide myocardial perfusion imaging has been primarily qualitative or at best semiquantitative in nature, assessing regional perfusion in relative terms. Thus, unlike so many facets of modern cardiovascular practice and CAD management, which depend, for example, on absolute values of key parameters such as arterial and left ventricular pressures, serum lipoprotein, and other biomarker levels, the absolute levels of rest and maximal myocardial blood flow have yet to be incorporated into routine clinical practice even in most positron emission tomography centers where the potential to do so exists. Accordingly, this review focuses on potential value added for improving clinical CAD practice by measuring the absolute level of rest and maximal myocardial blood flow. Physiological principles and imaging fundamentals necessary to understand how positron emission tomography makes robust, quantitative measurements of myocardial blood flow possible are highlighted.

  5. Integration of Quantitative Positron Emission Tomography Absolute Myocardial Blood Flow Measurements in the Clinical Management of Coronary Artery Disease.

    Science.gov (United States)

    Gewirtz, Henry; Dilsizian, Vasken

    2016-05-31

    In the >40 years since planar myocardial imaging with(43)K-potassium was introduced into clinical research and management of patients with coronary artery disease (CAD), diagnosis and treatment have undergone profound scientific and technological changes. One such innovation is the current state-of-the-art hardware and software for positron emission tomography myocardial perfusion imaging, which has advanced it from a strictly research-oriented modality to a clinically valuable tool. This review traces the evolving role of quantitative positron emission tomography measurements of myocardial blood flow in the evaluation and management of patients with CAD. It presents methodology, currently or soon to be available, that offers a paradigm shift in CAD management. Heretofore, radionuclide myocardial perfusion imaging has been primarily qualitative or at best semiquantitative in nature, assessing regional perfusion in relative terms. Thus, unlike so many facets of modern cardiovascular practice and CAD management, which depend, for example, on absolute values of key parameters such as arterial and left ventricular pressures, serum lipoprotein, and other biomarker levels, the absolute levels of rest and maximal myocardial blood flow have yet to be incorporated into routine clinical practice even in most positron emission tomography centers where the potential to do so exists. Accordingly, this review focuses on potential value added for improving clinical CAD practice by measuring the absolute level of rest and maximal myocardial blood flow. Physiological principles and imaging fundamentals necessary to understand how positron emission tomography makes robust, quantitative measurements of myocardial blood flow possible are highlighted. PMID:27245647

  6. Absolute measurements of the alpha-gamma emitters activities by a sum-coincidence method

    International Nuclear Information System (INIS)

    The absolute activity of U-235 contained in a UO2 sample, using a sum-coincidence circuit which selected only the alpha particles which were simultaneous with the well known 184 Kev gamma radiation from Th-231. The alpha particles were detected by ZnS(Ag) scintillator specially designed to show its maximun efficiency for U-235 alpha particles, whereas the gamma radiation was detected by NaI(Tl) scintillation detector. The values obtained for the half-life of U-235 was compared with data from various observers using different experimental techniques. (Author)

  7. Neutronic measurements of radioactive waste; Les mesures neutroniques des dechets radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Perot, B

    1997-12-31

    This document presents the general matters involved in the radioactive waste management and the different non destructive assays of radioactivity. The neutronic measurements used in the characterization of waste drums containing emitters are described with more details, especially the active neutronic interrogation assays with prompt or delayed neutron detection: physical principle, signal processing and evaluation of the detection limit. (author).

  8. Characteristics and Measurement of Radioactivity and Radiation Levels. Annex I of Technical Volume 4

    International Nuclear Information System (INIS)

    This annex provides background information on the quantities and units used in radiation protection and an introduction to the characteristics of radioactive material. Discussed are also their dispersion and deposition in the terrestrial environment and their measurement as well as the assessment of the resulting exposure due to ionizing radiation emitted by radioactive material

  9. Application of the permeation to the production of low radioactive calibrated gas flows. Low radioactive tritium measurement

    International Nuclear Information System (INIS)

    The permeation of compounds (HT, HTO, 131ICH3, and 129ICH3) through organic membranes in view of producing low radioactive calibrated gas flows has been studied. This process of which the diffusion is the main stage enables respecting certain conditions (choice of the membrane, temperature, partial pressure differential) our aims to be reached with a good accuracy. In order to measure radioactivity of tritiated standard gases, a detector was built. This detector is an Oeschger type proportional counter with a total volume of 17.4 dm3 and an useful volume of 3.9 dm3. In the conditions of operation, the background is of 1.7.10-6 I s-1 cm-3. The counter coupled with a feed-rack enables various samples to be measured and it is possible in the best conditions to detect some 10-11 μCi cm-3 NTP

  10. Natural radioactivity measurements in building materials in Southern Lebanon

    Energy Technology Data Exchange (ETDEWEB)

    Kobeissi, M.A.; El Samad, O.; Zahraman, K. [Lebanese Atomic Energy Commission, National Council for Scientific Research, P.O. Box 11-8281, Beirut (Lebanon); Milky, S.; Bahsoun, F. [Department of Physics, Lebanese University, Faculty of Sciences (I), Hadeth, Beirut (Lebanon); Abumurad, K.M. [Department of Physics, Yarmouk University, P.O. Box 566, Irbid 21163 (Jordan)], E-mail: abumurad@yu.edu.jo

    2008-08-15

    Using {gamma}-spectroscopy and CR-39 detector, concentration C of naturally occurring radioactive nuclides {sup 226}Ra, {sup 222}Rn, {sup 214}Bi, {sup 228}Ac, {sup 212}Pb, {sup 212}Bi and {sup 40}K, has been measured in sand, cement, gravel, gypsum, and paint, which are used as building materials in Lebanon. Sand samples were collected from 10 different sandbank locations in the southern part of the country. Gravel samples of different types and forms were collected from several quarries. White and gray cement fabricated by Shaka Co. were obtained. {gamma}-Spectroscopy measurements in sand gave Ra concentration ranging from 4.2 {+-} 0.4 to 60.8 {+-} 2.2 Bq kg{sup -1} and Ra concentration equivalents from 8.8 {+-} 1.0 to 74.3 {+-} 9.2 Bq kg{sup -1}. The highest Ra concentration was in gray and white cement having the values 73.2 {+-} 3.0 and 76.3 {+-} 3.0 Bq kg{sup -1}, respectively. Gravel results showed Ra concentration between 20.2 {+-} 1.0 and 31.7 {+-} 1.4 Bq kg{sup -1} with an average of 27.5 {+-} 1.3 Bq kg{sup -1}. Radon concentration in paint was determined by CR-39 detector. In sand, the average {sup 222}Rn concentration ranged between 291 {+-} 69 and 1774 {+-} 339 Bq m{sup -3} among the sandbanks with a total average value of 704 {+-} 139 Bq m{sup -3}. For gravel, the range was found to be from 52 {+-} 9 to 3077 {+-} 370 Bq m{sup -3} with an average value of 608 {+-} 85 Bq m{sup -3}. Aerial and mass exhalation rates of {sup 222}Rn were also calculated and found to be between 44 {+-} 7 and 2226 {+-} 267 mBq m{sup -2} h{sup -1}, and between 0.40 {+-} 0.07 and 20.0 {+-} 0.3 mBq kg{sup -1} h{sup -1}, respectively.

  11. ISEA (International geodetic project in SouthEastern Alaska) for rapid uplifting caused by glacial retreat: (3) Absolute gravity measurements

    Science.gov (United States)

    Sun, W.; Miura, S.; Sato, T.; Kaufman, A. M.; Cross, R.; Freymueller, J. T.; Schiel, A.

    2006-12-01

    The southeast Alaska is undergoing a rapid ice-melting and land uplift due to the effect of global warming in the last three hundred years. The corresponding crustal deformation caused by the post-glacial rebound has been clearly detected by modern geodetic techniques, e.g., GPS and tidal gauge measurements (Larsen et al., 2004; Sato et al., 2005). The geodetic deformation provides us useful information in evaluating ice-melting rate, effect of global warming, and even the viscosity beneath the crust. For this purpose, however, integrated geodetic observation, especially including gravity measurement, is considered very important (Miura et al., a separate presentation at the same AGU conference; Wahr et al., 1995). Therefore, to detect the crutal deformation caused by the post-glacial rebound and to study the viscoelastic structure of the earth in the southeast Alaska, a joint team of Japanese and U.S. researchers has begun a three year project of GPS, earth tide, and absolute gravity measurements. In this presentation, results of the absolute gravity observation carried out between June 3 and June 18, 2006 are reported. During the 2006 observation campaign, a network of absolute gravity was for the first time established which is composed of five sites about 100 km around of Juneau: Bartlett Cove at Gustavus, Russell Island, Hains Fairground at Hains, UAS Egan Library at Juneau and Mendenhall Glacier Visitors Center at Juneau, Alaska. Absolute gravity data were acquired at the five sites using a Micro-LaCoste absolute gravimeter, serial number 111. A typical occupation recorded a set of 100 single measurements every half hour. At each site data were collected over a 48~62 hour period. Due to the bad ocean model in this area, ocean loading correction seems not efficient because large tidal residuals remain in the observed results. To carry out an accurate tidal correction, on site tidal observation was also performed. Detail discussions on tidal observation and

  12. Measures to prevent breaches in the security of radioactive materials

    International Nuclear Information System (INIS)

    The objective of this paper, which is the result of the co-operation between the Swedish Board of Customs, the Swedish Radiation Protection Institute, the Security Police and the Swedish Nuclear Power Inspectorate, is to give an idea of the national prevention system as to illicit trafficking of nuclear materials and other radioactive sources. (author)

  13. Absolute cerebral blood flow and blood volume measured by magnetic resonance imaging bolus tracking: comparison with positron emission tomography values

    DEFF Research Database (Denmark)

    Østergaard, Leif; Smith, D F; Vestergaard-Poulsen, Peter;

    1998-01-01

    The authors determined cerebral blood flow (CBF) with magnetic resonance imaging (MRI) of contrast agent bolus passage and compared the results with those obtained by O-15 labeled water (H215O) and positron emission tomography (PET). Six pigs were examined by MRI and PET under normo......- and hypercapnic conditions. After dose normalization and introduction of an empirical constant phi Gd, absolute regional CBF was calculated from MRI. The spatial resolution and the signal-to-noise ratio of CBF measurements by MRI were better than by the H215O-PET protocol. Magnetic resonance imaging cerebral...... blood volume (CBV) estimates obtained using this normalization constant correlated well with values obtained by O-15 labeled carbonmonooxide (C15O) PET. However, PET CBV values were approximately 2.5 times larger than absolute MRI CBV values, supporting the hypothesized sensitivity of MRI to small...

  14. Absolute advantage

    NARCIS (Netherlands)

    J.G.M. van Marrewijk (Charles)

    2008-01-01

    textabstractA country is said to have an absolute advantage over another country in the production of a good or service if it can produce that good or service using fewer real resources. Equivalently, using the same inputs, the country can produce more output. The concept of absolute advantage can a

  15. Absolute nuclear material assay

    Science.gov (United States)

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2010-07-13

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  16. A measurement to analyze the relative change in the Absolute Parity of Power Purchase: An application to the European Union

    OpenAIRE

    Feijoo, Santiago Rodriguez; Caro, Alejandro Rodriguez; Correa, Carlos Gonzalez

    2003-01-01

    In the present paper an index to measure the changes in the Absolute Purchasing Power Parity. in the short term of a group of territories that conform an unique market, using the information of the Harmonized Index of Consumer Prices and the Exchange Rates. This measurement is utilized to study the change in relative prices of the countries of the European Union for the period 1991-2002, and the fulfillment of the theory of the Relative Purchasing Power Parity, taking as a reference the Absol...

  17. A Measurement Of The Lambda-c Baryon Decays To Proton Kaon(-) Pion(+) Absolute Branching Fraction With The Babar Detector

    CERN Document Server

    Roat, C M

    2003-01-01

    A measurement of B&parl0;L+c→ pK- p+&parr0; is presented based on data collected with the BaBar detector at the Stanford Linear Accelerator Center. Branching fraction measurements represent a large portion of what is known about short- lived particles, the strong force that binds them, and the weak force that causes them to decay. While the majority of branching fraction measurements are done as ratios between two decay modes, it is the absolute measurements of a few particular decay modes that set the scale for these relative measurements. The L+c particle is one of the four weakly decaying hadrons into which more than 90% of the known heavy quark hadrons will eventually decay. Thus, an absolute measurement of the branching fraction for B&parl0;L+c→ pK- p+&parr0; is important for many studies of the heavy quark sector, from spectroscopy to B meson decays. The number of produced L+c 's is inferred from the number of events reconstructed with an antiproton and an ...

  18. Measuring Radioactivity from Fukushima Daiichi in New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    McNaughton, Michael [Los Alamos National Laboratory

    2011-01-01

    On March 11, 2011, the Fukushima Daiichi nuclear power plant was damaged by the tsunami that followed the 'Great East Japan Earthquake,' and the reactor subsequently leaked radioactive material. In response, LANL augmented the routine ambient (AIRNET) and stack (Rad-NESHAP) measurements with three high-volume samplers: No.167 at the Old White Rock Fire Station; No.173 at the TA-49 gate, and No.211 at the Los Alamos Medical Center. Previous accidents, such as the Three-Mile-Island accident in 1979 and the Chernobyl accident in 1986, indicated that the most likely releases were (a) the noble gases: krypton and xenon; and (b) the volatile elements: cesium, tellurium, and iodine. At the latitude of Fukushima, the predominant winds across the Pacific Ocean are from west to east, and models predicted that the plume would arrive in the western US on about March 18. By this time the shorter-lived isotopes would have decayed. Therefore, the expected radionuclides were xenon-133, cesium-134, cesium-136, cesium-137, tellurium-132, iodine-131, and iodine-132. As expected, cesium-134, cesium-136, cesium-137, tellurium-132, iodine-131, and iodine-132 were all detected by all three high-volume samplers during March 17-21. The concentrations peaked during the March 24-28 period. After this, concentrations of all nuclides declined. In general, the concentrations were consistent with those measured by the EPA RadNet system and many other monitoring systems throughout the world. At the time of writing, preliminary results from the AIRNET and Rad-NESHAP systems are being reported. More detailed results are described in LA-UR-11-10304 and will be reported in full in the annual environmental report for 2011. All previous releases from nuclear reactors have been dominated by noble gases, primarily krypton and xenon, which are not measured by the high-volume samplers or the AIRNET system. However, in sufficient concentrations these and other fission products would be detected by

  19. Measures to radioactive contamination connected with nuclear power generation

    International Nuclear Information System (INIS)

    The problems on the environmental radioactivity due to nuclear power generation must be dealt with not only as the local problems in the regions around nuclear power plants but also as the environmental acitivity problems in global scale. Human security and protection are maintained by the regulation of releasing radioactive materials to the environment from all the facilities, not limited to nuclear power plants and nuclear fuel reprocessing plants, and the safety control of environmental activity. The fundamental concept of the regulation and control of environmental activity and each system taken in U.K., U.S. and Japan are described first. Next, the present status of releasing radioactivity into the air and water in the world is explained in detail and the minute data are shown for the release into water. The underground and deep ocean disposals of solid wastes are described with calculation formulae obtained so far. Since the information on the aspect of exposure of human body to natural radiation is important for comparison when the influence of artificial activity is evaluated, the survey of the natural radiation and the conditions of activity due to nuclear tests and the peaceful uses of atomic energy are described, respectively. In Japan, the special committee on environmental safety investigated the possibility of materializing the numerical guide to ''as low as practicable'', and submitted the report showing ''target dose'' in light water reactor nuclear power plants to the Atomic Energy Comission of Japan, in which the dose for whole body exposure is proposed as 5 m rem/year and that for thyroid gland exposure due to radioactive iodine as 15 m rem/year. (Wakatsuki, Y.)

  20. Use of airborne radiometric measurements for monitoring environmental radioactive contamination

    International Nuclear Information System (INIS)

    The technique of airborne gamma spectrometry has many advantages over conventional ground based monitoring methods in the mounting of a time constrained response to an accident involving a release of radioactive material into the environment. The paper reviews the basis and background of the method, with an emphasis on the role that detector and nucleonics development plays in determining capabilities. The main features of detector response are briefly discussed, including nuclide specificity, circles of investigation and sensitivity. Identification of distributed and point sources of radioactivity is potentially of interest and leads to differing survey requirements. The relative merits and limitations of calibration methods are also reviewed. Practical examples of the use of aerial methods in the United Kingdom are given, including surveys conducted by the Scottish Universities Research and Reactor Centre using fixed wing and rotary wing aircraft in Scotland and west Cumbria in the aftermath of the Chernobyl accident. The results clearly show the potential of aerial methods for guiding ground based work in the recovery phase of an accident involving release of radioactivity to the environment. Further needs include baseline studies, technical developments and improved knowledge of nuclide mobility and transfer factors. (author). 25 refs, 1 fig., 2 tabs

  1. Natural Radioactivity Measurements and Radiation Dose Estimation in Some Sedimentary Rock Samples in Turkey

    OpenAIRE

    Akkurt, I.; K. Günoğlu

    2014-01-01

    The natural radioactivity existed since creation of the universe due to the long life time of some radionuclides. This natural radioactivity is caused by γ-radiation originating from the uranium and thorium series and 40K. In this study, the gamma radiation has been measured to determine natural radioactivity of 238U, 232Th, and 40K in collected sedimentary rock samples in different places of Turkey. The measurements have been performed using γ-ray spectrometer containing NaI(Tl) detector and...

  2. Absolute distance measurement by multi-heterodyne interferometry using a frequency comb and a cavity-stabilized tunable laser.

    Science.gov (United States)

    Wu, Hanzhong; Zhang, Fumin; Liu, Tingyang; Balling, Petr; Qu, Xinghua

    2016-05-20

    In this paper, we develop a multi-heterodyne system capable of absolute distance measurement using a frequency comb and a tunable diode laser locked to a Fabry-Perot cavity. In a series of subsequent measurements, numerous beat components can be obtained by downconverting the optical frequency into the RF region with multi-heterodyne interferometry. The distances can be measured via the mode phases with a series of synthetic wavelengths. The comparison with the reference interferometer shows an agreement within 1.5 μm for the averages of five measurements and 2.5 μm for the single measurement, which is at the 10-8 relative precision level. PMID:27411152

  3. A critical review of measures to reduce radioactive doses from drinking water and consumption of freshwater foodstuffs

    OpenAIRE

    Smith, Jim; Voitsekhovitch, O.; Hakanson, L.; Hilton, J.

    2001-01-01

    Following a radioactive fallout event, there are a number of possible intervention measures to reduce radioactive doses to the public via the surface water pathway. We have critically reviewed the options available to decision-makers in the event of radioactive contamination of surface waters. We believe that the most effective and viable measures to reduce radioactivity in drinking water are those which operate at the water treatment and distribution stage. Intervention measures to reduce co...

  4. Measurement of radioactivity in the environment - Soil - Part 1: General guidelines and definitions

    International Nuclear Information System (INIS)

    This part of ISO 18589 specifies the general requirements to carry out radionuclides tests on soil sample, including sampling. This part of ISO 18589 is addressed to people responsible for determining the radioactivity present in soils for the purpose of radiation protection. This may concern soils from gardens and farmland, urban or industrial sites, as well as soil not affected by human activities. This part of ISO 18589 is applicable to all laboratories regardless of the number of personnel or the extent of the scope of testing activities. When a laboratory does not undertake one or more of the activities covered by this part of ISO 18589, such as planning, sampling or testing, the requirements of those clauses do not apply. This part of ISO 18589 is to be used in conjunction with other parts of ISO 18589 that outline the setting up of programmes and sampling techniques, methods of general processing of samples in the laboratory and also methods for measuring the radioactivity in soil. Its purpose is the following: - define the main terms relating to soils, sampling, radioactivity and its measurement; - describe the origins of the radioactivity in soils; - define the main objectives of the study of radioactivity in soil samples; - present the principles of studies of soil radioactivity; - identify the analytical and procedural requirements when measuring radioactivity in soil. This part of ISO 18589 is applicable if radionuclide measurements for the purpose of radiation protection are to be made in the following cases: - initial characterization of radioactivity in the environment; - routine surveillance of the impact of nuclear installations or of the evolution of the general territory; - investigations of accident and incident situations; - planning and surveillance of remedial action; - decommissioning of installations or clearance of materials. This part of ISO 18589 is not intended to cover scientific investigations of soil radioactivity and therefore does

  5. Exact method for determining subsurface radioactivity depth profiles from gamma spectroscopy measurements

    CERN Document Server

    Van Siclen, Clinton DeW

    2011-01-01

    Subsurface radioactivity may be due to transport of radionuclides from a contaminated surface into the solid volume, as occurs for radioactive fallout deposited on soil, or from fast neutron activation of a solid volume, as occurs in concrete blocks used for radiation shielding. For purposes including fate and transport studies of radionuclides in the environment, decommissioning and decontamination of radiation facilities, and nuclear forensics, an in situ, nondestructive method for ascertaining the subsurface distribution of radioactivity is desired. The method developed here obtains a polynomial expression for the radioactivity depth profile, using a small set of gamma-ray count rates measured by a collimated detector directed towards the surface at a variety of angles with respect to the surface normal. To demonstrate its capabilities, this polynomial method is applied to the simple case where the radioactivity is maximal at the surface and decreases exponentially with depth below the surface, and to the ...

  6. Absolute optical extinction measurements of single nano-objects by spatial modulation spectroscopy using a white lamp.

    Science.gov (United States)

    Billaud, Pierre; Marhaba, Salem; Grillet, Nadia; Cottancin, Emmanuel; Bonnet, Christophe; Lermé, Jean; Vialle, Jean-Louis; Broyer, Michel; Pellarin, Michel

    2010-04-01

    This article describes a high sensitivity spectrophotometer designed to detect the overall extinction of light by a single nanoparticle (NP) in the 10(-4)-10(-5) relative range, using a transmission measurement configuration. We focus here on the simple and low cost scheme where a white lamp is used as a light source, permitting easy and broadband extinction measurements (300-900 nm). Using a microscope, in a confocal geometry, an increased sensitivity is reached thanks to a modulation of the NP position under the light spot combined with lock-in detection. Moreover, it is shown that this technique gives access to the absolute extinction cross-sections of the single NP provided that the incident electromagnetic field distribution experienced by the NP is accurately characterized. In this respect, an experimental procedure to characterize the light spot profile in the focal plane, using a reference NP as a probe, is also laid out. The validity of this approach is discussed and confirmed by comparing experimental intensity distributions to theoretical calculations taking into account the vector character of the tightly focused beam. The calibration procedure permitting to obtain the absolute extinction cross-section of the probed NP is then fully described. Finally, the force of the present technique is illustrated through selected examples concerning spherical and slightly elongated gold and silver NPs. Absolute extinction measurements are found to be in good consistency with the NP size and shape independently obtained from transmission electron microscopy, showing that spatial modulation spectroscopy is a powerful tool to get an optical fingerprint of the NP. PMID:20441319

  7. System parameters and measurement instrument parameters are not separately observable: Relational mass is observable while absolute mass is not

    CERN Document Server

    Holt, Craig R

    2014-01-01

    A brief summary of the objections to the relational nature of inertial mass, gravitational mass and electric charge is presented. The objections are refuted by showing that the measurement process of comparing an instrument reference clock and a reference rod both obeying the laws of physics to a system obeying the same laws of physics results in relational quantities: inertial mass, gravitational mass and electric charge appear only as ratios. This means that scaling of the absolute inertial mass of every object in the universe by the same factor is unobservable (likewise for gravitational mass and electric charge). It is shown that the measurement process does not separate the instrument parameters from the system parameters. Instead a measurement produces functions of fundamental, dimensionless parameters such as the fine structure constant, electron-proton mass ratio and the proton gyro-magnetic factor. It is shown that the measurement of Planck's constant also results in such a function of these dimensio...

  8. Radioactive fallout in the South Pacific: a history Part 2: radioactivity measurements in the Pacific islands

    International Nuclear Information System (INIS)

    This report summarises results of the environmental radioactivity monitoring programme maintained in the Pacific islands by the National Radiation Laboratory (NRL) since 1961. Monitoring was commenced during the nuclear weapons tests at Christmas Island, then extended to a greater number of sites during the French atmospheric tests at Mururoa during 1966-1974 and maintained at that level until 1985 when the network was scaled down to its pres the monitoring of the French tests as the largest local source of short-lived fallout. These pacific monitoring operations during the period of 1960 to 1990 are reviewed which brings together and summarises the extensive compilation of data comprising 70 NRL report published during the period. An attempt is also made to correct the original data for decay between sampling and analysis. The average effective dose commitment for the South Pacific island population due to the entire history of atmospheric weapons tests is estimated to be 1.1 milli sievert.(author). 17 refs., 23 figs., tabs., ills

  9. Measurement of the absolute vμ-CCQE cross section at the SciBooNE experiment

    Energy Technology Data Exchange (ETDEWEB)

    Aunion, Jose Luis Alcaraz [Autonomous Univ. of Barcelona (Spain)

    2010-07-01

    This thesis presents the measurement of the charged current quasi-elastic (CCQE) neutrino-nucleon cross section at neutrino energies around 1 GeV. This measurement has two main physical motivations. On one hand, the neutrino-nucleon interactions at few GeV is a region where existing old data are sparse and with low statistics. The current measurement populates low energy regions with higher statistics and precision than previous experiments. On the other hand, the CCQE interaction is the most useful interaction in neutrino oscillation experiments. The CCQE channel is used to measure the initial and final neutrino fluxes in order to determine the neutrino fraction that disappeared. The neutrino oscillation experiments work at low neutrino energies, so precise measurement of CCQE interactions are essential for flux measurements. The main goal of this thesis is to measure the CCQE absolute neutrino cross section from the SciBooNE data. The SciBar Booster Neutrino Experiment (SciBooNE) is a neutrino and anti-neutrino scattering off experiment. The neutrino energy spectrum works at energies around 1 GeV. SciBooNE was running from June 8th 2007 to August 18th 2008. In that period, the experiment collected a total of 2.65 x 1020 protons on target (POT). This thesis has used full data collection in neutrino mode 0.99 x 1020 POT. A CCQE selection cut has been performed, achieving around 70% pure CCQE sample. A fit method has been exclusively developed to determine the absolute CCQE cross section, presenting results in a neutrino energy range from 0.2 to 2 GeV. The results are compatible with the NEUT predictions. The SciBooNE measurement has been compared with both Carbon (MiniBoonE) and deuterium (ANL and BNL) target experiments, showing a good agreement in both cases.

  10. Absolute Beam Energy Measurement using Elastic ep Scattering at Thomas Jefferson National Accelerator Facility

    Science.gov (United States)

    Deur, Alexandre

    1999-10-01

    The Jefferson Lab beam energy measurement in Hall A using the elastic ep scattering will be described. This new, non-magnetic, energy measurement method allows a ( triangle E/E=10-4 ) precision. First-order corrections are canceled by the measurements of the electron and proton scattering angles for two symmetric kinematics. The measurement principle will be presented as well as the device and measurement results. Comparison with independent magnetic energy measurements of the same accuracy will be shown. This project is the result of a collaboration between the LPC: université Blaise Pascal/in2p3), Saclay and Jefferson Lab.

  11. Comparative measurements of plant radioactivity in the Agrobotanical Garden and experimental fields

    Directory of Open Access Journals (Sweden)

    Attila T. SZABO

    1986-08-01

    Full Text Available In order to demonstrate the usefulness of the Garden's Catalogue in unforeseen situations, the radioactivity of some plant species cultivated on different plots of the Agrobotanical Garden has been measured in May 1986. Comparative measurements have been carried out on species harvested from the experimental fields Sapca-Verde (Cluj-Napoca and from a collection trip in Tulcea county (Tulcea, Babadag, too. A monocanal energy spectrometer NK-350 (Gamma has been used for measurements; impulses per minute have been registered and plant radioactivity expressed in Becquerel (Bq units has been calculated. The highest values have been measured in the Agrobotanical Garden (alt. s.m. 475 m, incl. about 200 , exp. NE. Small-leaved low stature plants of Cyperaceae and Poaceae family have been much more radioactive than large-leaved Brassicaceae. In 28th May 1986 plants were generally more radioactive at basis as on top; older stems were 4-6 times more radioactive than top leaves or regrowth after harvest. Washing in running water (100 gr fresh weight in 50 l water for 5 minutes reduced the radioactivity levels measured in different species with about 30%.

  12. Measurement Of Radioactivity Levels And Assessment Of Radioactivity Hazards Of Soil Samples İn Karaman, Turkey

    OpenAIRE

    Ağar, O.; Boztosun, I.; Korkmaz, M E; Özmen, S. F.

    2014-01-01

    In this study, the levels of the natural and artificial radioactivity in soil samples collected from surrounding of Karaman in Turkey were measured. Activity concentrations of the concerned radionuclides were determined by gamma-ray spectrometry using a high-purity germanium detector with a relative efficiency of 40 % at 1.332 MeV. The results obtained for the 238U series (226Ra, 214Pb and 214Bi), 232Th series (228Ac), 40K and fission product 137Cs are discussed. To evaluate the radiological ...

  13. Absolute measurement of gauge block without wringing using tandem low-coherence interferometry

    International Nuclear Information System (INIS)

    A novel method of gauge block measurement without wringing onto a glass platen is proposed. By using tandem low-coherence interferometry to perform remote measurements, wringing is rendered unnecessary. To measure its length, a gauge block for measurement without wringing is set several millimeters above a glass platen that is positioned on a triangle interferometer such that the distances between the surfaces of the block and the reflection surface of the platen can be measured from opposite directions. By using tandem low-coherence interferometry with a He–Ne laser as a reference length standard, gauge blocks with nominal lengths of 5, 10 and 75 mm have been measured remotely with an expanded uncertainty of about 86 nm. (paper)

  14. International measures needed to protect metal recycling facilities from radioactive materials

    International Nuclear Information System (INIS)

    . The government of every country that licences the use of radioactive material should institute a program to determine both the location of every known source and the effectiveness of current controls over that source. (ii) Control of orphaned material. Each government should institute a program for the safe removal and control of orphaned radioactive sources and material without penalty to the individual that has unintentionally received it. (iii) Transportation rules. International agreements should be developed that allow discovered radioactive material to be easily yet safely transported to either its point of origin or to a facility for its safe disposal. (iv) Registry of events. An international mechanism should be developed for the documentation and reporting of radiation related incidents and the discovery of potentially orphaned radioactive sources and material. (v) Universal measurements. There are several highly technical ways to describe radioactivity. None of these can be easily understood by the individuals who may encounter this material. The international community should agree on how radioactivity will be measured and qualified in a manner that is easily understood by all individuals. (vi) Technology sharing. As new, user-friendly technology is being advanced, the international community should keep track of such advances, share this information, as well as fund the development of technology that will accurately and consistently identify radioactive material that could be found in all forms of metal or containers. (author)

  15. Absolute distance measurement in a combined-dispersive interferometer using a femtosecond pulse laser

    International Nuclear Information System (INIS)

    In this paper, a ranging system using dispersive interferometry is developed with a femtosecond pulse laser, aiming to eliminate the measurement dead zones by using a greatly unbalanced Mach–Zehnder interferometer. The distance can be measured by the frequency of the spectral modulation. We indicate that the integer number of the pulse-to-pulse length can be determined by changing the repetition frequency. In the short distance measurement, the results show an agreement within 1.5 μm compared with an incremental He-Ne laser in the 1 m measurement range. We do large-scale experiments on a long optical rail using a typical Michelson interferometer, and an agreement well within 25 μm is obtained in a range up to 75 m, corresponding to a relative precision of 3.3  ×  10−7. Additionally, we experimentally optimize the system set-up to minimize the measurement uncertainty. (paper)

  16. Two-dimensional measurement of natural radioactivity of some Archean and Proterozoic rocks from South Africa

    OpenAIRE

    Tsuchiya, Noriyoshi/Hareyama, Mihoko

    2001-01-01

    The imaging plate is employed as a radiation sensor for obtaining two-dimensional radiation images of natural radioactivity. We used it to evaluate the autoradiography of several types of Archean and Proterozoic granitoids and ultramafic rocks from South Africa for obtaining the distribution of radiation emitters. The semiquantitative dose of natural radioactivity, represented by PSL value in the imaging plate measuring system (the intensity of photostimulated luminescence per unit area), is ...

  17. Measurement of radioactivity in Norway. Annual report 1991; Maaling av radioaktivitet i Norge; Aarsrapport 1991

    Energy Technology Data Exchange (ETDEWEB)

    Berg, T.C.

    1992-11-01

    A nation-wide network of 20 monitoring stations for continuous registration of radioactivity in the air has been established in Norway. Via the telecommunication network collected data are dayly automatically transmitted to the Norwegian Institute for Air Research (NILU). High radiation levels trigger an alarm for immediate transmission. The monitoring system and experiences in connection with its operation are described, and results from measurements in 1991 are presented. No unnormal radioactivity has been recorded in the period. 24 figs.

  18. An electrostatic radon detector designed for water radioactivity measurements

    CERN Document Server

    Wang Jian Xiong; Simpson, J J

    1999-01-01

    The Sudbury Neutrino Observatory contains 1000 t of ultra-pure heavy water and 7000 t of very pure light water. In order to achieve the goal of determining accurately the total number of neutrinos emitted by the sun regardless of type, the radioactivity in the water must be maintained with a radiopurity of less than 10 sup - sup 1 sup 4 g/g of sup 2 sup 3 sup 2 Th and sup 2 sup 3 sup 8 U in secular equilibrium with their daughters. This paper describes the design and application of an electrostatic radon detector which determines the amount of radon emanating from a column containing MnO sub 2 used to extract radium from the water. This electrostatic radon detector has a total efficiency of 35% for detecting sup 2 sup 2 sup 2 Rn and 22% for sup 2 sup 2 sup 0 Rn.

  19. Solubility of krypton, xenon and radon in polycarbonates. Application for measurement of their radioactive isotopes

    International Nuclear Information System (INIS)

    Bisphenol-A polycarbonates have a high absorption ability for noble gases that can be employed for sampling and measurement of radioactive isotopes of these gases. In this report the solubility of krypton, xenon and radon in the specified polycarbonates is determined by measurement of 85Kr, 133Xe and 222Rn absorbed in polycarbonate specimens. The found solubility is used to develop a general methodology for measurement of radioactive noble gases in air and water. The methodology is tested in pilot measurements of 133Xe in air under real conditions. The results demonstrate sufficient potential for practical applications.

  20. Establishment of a force balanced piston gauge for very low gauge and absolute pressure measurements at NPL, India

    Science.gov (United States)

    Vijayakumar, D. Arun; Prakash, Om; Sharma, R. K.

    2012-11-01

    National Physical Laboratory, the National Metrology Institute (NMI) of India is maintaining Primary standards of pressure that cover several decades of pressure, starting from 3.0E-06 Pa to 1.0 GPa. Among which a recent addition is a Force Balanced Piston Gauge, the non-rotating piston type, having better resolution and zero stability compared to any other primary pressure standards commercially available in the range 1.0 Pa to 15.0 kPa (abs and gauge). The characterization of this FPG is done against Ultrasonic Interferometer Manometer (UIM), the National Primary pressure standard, working in the range 1.0 Pa to 130.0 kPa (abs and diff) and Air Piston Gauge (APG), a Transfer Pressure Standard, working in the range 6.5 kPa to 360 kPa (abs and gauge), in their overlapping pressure regions covering both absolute and gauge pressures. As NPL being one of the signatories to the CIPM MRA, the Calibration and Measurement Capabilities (CMC) of both the reference standards (UIM & APG), are Peer reviewed and notified in the Key Comparison Data Base (KCDB) of BIPM. The estimated mean effective area of the Piston Cylinder assembly of this FPG against UIM (980.457 mm2) and APG (980.463 mm2) are well within 4 ppm and 10 ppm agreement respectively, with the manufacturer's reported value (980.453 mm2). The expanded uncertainty of this FPG, Q(0.012 Pa, 0.0025% of reading), evaluated against UIM as reference standard, is well within the reported value of the manufacturer, Q(0.008 Pa, 0.003% of reading) at k = 2. The results of the characterization along with experimental setup & measurement conditions (for gauge and absolute pressure measurements), uncertainty budget preparation and evaluation of measurement uncertainty are discussed in detail in this paper.

  1. Establishment of a force balanced piston gauge for very low gauge and absolute pressure measurements at NPL, India

    International Nuclear Information System (INIS)

    National Physical Laboratory, the National Metrology Institute (NMI) of India is maintaining Primary standards of pressure that cover several decades of pressure, starting from 3.0E-06 Pa to 1.0 GPa. Among which a recent addition is a Force Balanced Piston Gauge, the non-rotating piston type, having better resolution and zero stability compared to any other primary pressure standards commercially available in the range 1.0 Pa to 15.0 kPa (abs and gauge). The characterization of this FPG is done against Ultrasonic Interferometer Manometer (UIM), the National Primary pressure standard, working in the range 1.0 Pa to 130.0 kPa (abs and diff) and Air Piston Gauge (APG), a Transfer Pressure Standard, working in the range 6.5 kPa to 360 kPa (abs and gauge), in their overlapping pressure regions covering both absolute and gauge pressures. As NPL being one of the signatories to the CIPM MRA, the Calibration and Measurement Capabilities (CMC) of both the reference standards (UIM and APG), are Peer reviewed and notified in the Key Comparison Data Base (KCDB) of BIPM. The estimated mean effective area of the Piston Cylinder assembly of this FPG against UIM (980.457 mm2) and APG (980.463 mm2) are well within 4 ppm and 10 ppm agreement respectively, with the manufacturer's reported value (980.453 mm2). The expanded uncertainty of this FPG, Q(0.012 Pa, 0.0025% of reading), evaluated against UIM as reference standard, is well within the reported value of the manufacturer, Q(0.008 Pa, 0.003% of reading) at k = 2. The results of the characterization along with experimental setup and measurement conditions (for gauge and absolute pressure measurements), uncertainty budget preparation and evaluation of measurement uncertainty are discussed in detail in this paper.

  2. TU-A-12A-09: Absolute Blood Flow Measurement in a Cardiac Phantom Using Low Dose CT

    Energy Technology Data Exchange (ETDEWEB)

    Ziemer, B; Hubbard, L; Lipinski, J; Molloi, S [University of California, Irvine, CA (United States)

    2014-06-15

    Purpose: To investigate a first pass analysis technique to measure absolute flow from low dose CT images in a cardiac phantom. This technique can be combined with a myocardial mass assignment to yield absolute perfusion using only two volume scans and reduce the radiation dose to the patient. Methods: A four-chamber cardiac phantom and perfusion chamber were constructed from poly-acrylic and connected with tubing to approximate anatomical features. The system was connected to a pulsatile pump, input/output reservoirs and power contrast injector. Flow was varied in the range of 1-2.67 mL/s with the pump operating at 60 beats/min. The system was imaged once a second for 14 seconds with a 320-row scanner (Toshiba Medical Systems) using a contrast-enhanced, prospective-gated cardiac perfusion protocol. Flow was calculated by the following steps: subsequent images of the perfusion volume were subtracted to find the contrast entering the volume; this was normalized by an upstream, known volume region to convert Hounsfield (HU) values to concentration; this was divided by the subtracted images time difference. The technique requires a relatively stable input contrast concentration and no contrast can leave the perfusion volume before the flow measurement is completed. Results: The flow calculated from the images showed an excellent correlation with the known rates. The data was fit to a linear function with slope 1.03, intercept 0.02 and an R{sup 2} value of 0.99. The average root mean square (RMS) error was 0.15 mL/s and the average standard deviation was 0.14 mL/s. The flow rate was stable within 7.7% across the full scan and served to validate model assumptions. Conclusion: Accurate, absolute flow rates were measured from CT images using a conservation of mass model. Measurements can be made using two volume scans which can substantially reduce the radiation dose compared with current dynamic perfusion techniques.

  3. Research on temperature measurement technology for graphite-cone-absorption-cavity absolute calorimeter

    Science.gov (United States)

    Wei, Ji Feng; Lu, Fei; Sun, Li Qun; Zhang, Kai; Hu, Xiao Yang; Zhou, Shan; Xu, De

    2015-02-01

    The nonlinear effect of materials and sensors in high-energy laser calorimeters is especially obvious—due to the steep temperature gradients of their absorbers. Significant measurement errors occur when traditional integral temperature sensors and methods are utilized. In an effort to remedy this, a method is proposed in this paper in which an absorption cavity is divided into many parts and multiple discrete thermocouple sensors are used to measure the temperature rise of the absorbers. The temperature distribution in the absorbers is theoretically analyzed, numerically simulated, and verified through experimentation. Energy measurement results are compared according to the temperature distribution for different layouts of thermocouples. A high-accuracy calorimeter is developed by setting and optimizing thermocouple layout, as well as correcting various elements such as the specific heat of graphite and responsivity of thermocouples. The calorimeter employing this measurement method is calibrated against a standard energy meter, resulting in correction coefficient of 1.027 and relative standard deviation of the correction coefficient of only 0.8%. Theoretical analysis, numerical simulation, and experimental verification all prove that the proposed method successfully improves measurement accuracy.

  4. Absolute Thickness Measurements on Coatings Without Prior Knowledge of Material Properties Using Terahertz Energy

    Science.gov (United States)

    Roth, Don J.; Cosgriff, Laura M.; Harder, Bryan; Zhu, Dongming; Martin, Richard E.

    2013-01-01

    This study investigates the applicability of a novel noncontact single-sided terahertz electromagnetic measurement method for measuring thickness in dielectric coating systems having either dielectric or conductive substrate materials. The method does not require knowledge of the velocity of terahertz waves in the coating material. The dielectric coatings ranged from approximately 300 to 1400 m in thickness. First, the terahertz method was validated on a bulk dielectric sample to determine its ability to precisely measure thickness and density variation. Then, the method was studied on simulated coating systems. One simulated coating consisted of layered thin paper samples of varying thicknesses on a ceramic substrate. Another simulated coating system consisted of adhesive-backed Teflon adhered to conducting and dielectric substrates. Alumina samples that were coated with a ceramic adhesive layer were also investigated. Finally, the method was studied for thickness measurement of actual thermal barrier coatings (TBC) on ceramic substrates. The unique aspects and limitations of this method for thickness measurements are discussed.

  5. Laser-excitation technique for the measurement of absolute transition probabilities of weak atomic lines

    Science.gov (United States)

    Kwong, H. S.; Smith, P. L.; Parkinson, W. H.

    1982-01-01

    A new technique is presented for the measurement of transition probabilities for weak allowed, intersystem, and forbidden lines. The method exploits the fact that oscillator strength is proportional to the number of stimulated absorptions and emissions produced by a narrow-band laser pulse of known energy which is in resonance with an atomic transition. The method is tested for a particular transition of Mg I with a known oscillator strength value and of appropriate magnitude. The number densities are measured using a Mach-Zehnder interferometer and the hook method for the lower level population and by measuring an absorption-equivalent width for the other. The apparatus consisted of a high-power tunable laser and a magnesium oven to produce excited Mg vapor, and a laser-plasma background continuum. The results are in good agreement with theoretical and other experimental data.

  6. A new method for the absolute radiance calibration for UV/vis measurements of scattered sun light

    Directory of Open Access Journals (Sweden)

    T. Wagner

    2015-05-01

    Full Text Available Absolute radiometric calibrations are important for measurements of the atmospheric spectral radiance. Such measurements can be used to determine actinic fluxes, the properties of aerosols and clouds and the short wave energy budget. Conventional calibration methods in the laboratory are based on calibrated light sources and reflectors and are expensive, time consuming and subject to relatively large uncertainties. Also, the calibrated instruments might change during transport from the laboratory to the measurement sites. Here we present a new calibration method for UV/vis instruments that measure the spectrally resolved sky radiance, like for example zenith sky Differential Optical Absorption Spectroscopy (DOAS- instruments or Multi-AXis (MAX- DOAS instruments. Our method is based on the comparison of the solar zenith angle dependence of the measured zenith sky radiance with radiative transfer simulations. For the application of our method clear sky measurements during periods with almost constant aerosol optical depth are needed. The radiative transfer simulations have to take polarisation into account. We show that the calibration results are almost independent from the knowledge of the aerosol optical properties and surface albedo, which causes a rather small uncertainty of about <7%. For wavelengths below about 330 nm it is essential that the ozone column density during the measurements is constant and known.

  7. A new method for the absolute radiance calibration for UV/vis measurements of scattered sun light

    Science.gov (United States)

    Wagner, T.; Beirle, S.; Dörner, S.; Penning de Vries, M.; Remmers, J.; Rozanov, A.; Shaiganfar, R.

    2015-05-01

    Absolute radiometric calibrations are important for measurements of the atmospheric spectral radiance. Such measurements can be used to determine actinic fluxes, the properties of aerosols and clouds and the short wave energy budget. Conventional calibration methods in the laboratory are based on calibrated light sources and reflectors and are expensive, time consuming and subject to relatively large uncertainties. Also, the calibrated instruments might change during transport from the laboratory to the measurement sites. Here we present a new calibration method for UV/vis instruments that measure the spectrally resolved sky radiance, like for example zenith sky Differential Optical Absorption Spectroscopy (DOAS-) instruments or Multi-AXis (MAX-) DOAS instruments. Our method is based on the comparison of the solar zenith angle dependence of the measured zenith sky radiance with radiative transfer simulations. For the application of our method clear sky measurements during periods with almost constant aerosol optical depth are needed. The radiative transfer simulations have to take polarisation into account. We show that the calibration results are almost independent from the knowledge of the aerosol optical properties and surface albedo, which causes a rather small uncertainty of about <7%. For wavelengths below about 330 nm it is essential that the ozone column density during the measurements is constant and known.

  8. The Reproducibility and Absolute Values of Echocardiographic Measurements of Left Ventricular Size and Function in Children are Algorithm Dependent

    Science.gov (United States)

    Margossian, Renee; Chen, Shan; Sleeper, Lynn A.; Tani, Lloyd Y.; Shirali, Girish; Golding, Fraser; Tierney, Elif Seda Selamet; Altmann, Karen; Campbell, Michael J.; Szwast, Anita; Sharkey, Angela; Radojewski, Elizabeth; Colan, Steven D.

    2015-01-01

    Background Several quantification algorithms for measuring left ventricular (LV) size and function are used in clinical and research settings. We investigated the effect of the measurement algorithm and beat averaging on the reproducibility of measurements of the LV and assessed the magnitude of agreement among the algorithms in children with dilated cardiomyopathy (DCM). Methods Echocardiograms were obtained on 169 children from 8 clinical centers. Inter- and intra-reader reproducibility were assessed on measurements of LV volumes using biplane Simpson, modified Simpson (MS), and 5/6 x area x length (5/6AL) algorithms. Percent error (%error) was calculated as the inter- or intra-reader difference / mean x 100. Single beat measurements and the 3-beat average (3BA) were compared. Intra-class correlation coefficients (ICC) were calculated to assess agreement. Results Single beat inter-reader reproducibility was lowest (%error was highest) using biplane Simpson; 5/6AL and MS were similar but significantly better than biplane Simpson (p 0.95 across measures, although absolute volume and mass values were systematically lower for biplane Simpson compared to MS and to 5/6AL. Conclusions The reproducibility of LV size and function measurements in children with DCM is highest using the 5/6AL algorithm, and can be further improved by using 3BA. However, values derived from different algorithms are not interchangeable. PMID:25728351

  9. Absolute frequency measurement of the magnesium intercombination transition $^1S_0 \\to ^3P_1$

    OpenAIRE

    Friebe, Jan; Pape, André; Riedmann, Matthias; Moldenhauer, Karsten; Mehlstäubler, Tanja; Rehbein, Nils; Lisdat, Christian; Rasel, Ernst M.; Ertmer, Wolfgang; Schnatz, Harald; Lipphardt, Burghard; Grosche, Gesine

    2007-01-01

    We report on a frequency measurement of the $(3s^2)^1S_0\\to(3s3p)^3P_1$ clock transition of $^{24}$Mg on a thermal atomic beam. The intercombination transition has been referenced to a portable primary Cs frequency standard with the help of a femtosecond fiber laser frequency comb. The achieved uncertainty is $2.5\\times10^{-12}$ which corresponds to an increase in accuracy of six orders of magnitude compared to previous results. The measured frequency value permits the calculation of several ...

  10. Absolute polarimetry at RHIC

    OpenAIRE

    Okada, H.; Alekseev, I.; Bravar, A; Bunce, G.; Dhawan, S.; Eyser, K. O.; Gill, R; Haeberli, W.; Huang, H.; Jinnouchi, O.; Makdisi, Y.; Nakagawa, I.; Nass, A.; Saito, N; Stephenson, E.

    2007-01-01

    Precise and absolute beam polarization measurements are critical for the RHIC spin physics program. Because all experimental spin-dependent results are normalized by beam polarization, the normalization uncertainty contributes directly to final physics uncertainties. We aimed to perform the beam polarization measurement to an accuracy of $\\Delta P_{beam}/P_{beam} < 5%$. The absolute polarimeter consists of Polarized Atomic Hydrogen Gas Jet Target and left-right pairs of silicon strip detector...

  11. Local variation in absolute water content of human and rabbit eye lenses measured by Raman microspectroscopy

    NARCIS (Netherlands)

    Huizinga, Alex; Bot, Annet C.C.; Mul, de Frits F.M.; Vrensen, Gijs F.J.M.; Greve, Jan

    1989-01-01

    Raman spectra were obtained from fresh, fixed and sliced rabbit lenses and from human lens slices. For all lenses and lens slices the ratio R, defined as the Raman intensity at 3390 cm−1 divided by the Raman intensity at 2935 cm−1, was measured at different locations along the visual and equatorial

  12. Absolute activity measurement and gamma-ray emission probability for decay of I-126

    International Nuclear Information System (INIS)

    The accurate knowledge of the gamma-ray emission probability per decay of radionuclides is important in several applications. In the case of 126 I, its importance lies mainly in fast neutron dosimetry as well as in the production of 125 I where 126 I appears as an impurity. In the present work the gamma-ray emission probabilities per decay for the 388 and 666-KeV transitions of 126 I have been measured. This radionuclide was obtained by means of the 127 I(n, 2n)126 I reaction in a fast neutron flux at the IPEN 2 MW research reactor. The methodology for the primary standardization of 126 I is described. For this purpose, two different coincidence systems were used due to the complex decay scheme of this radionuclide. The βbranch measurement was carried out in a 4 π(PC)β-γ coincidence system consisting of a proportional counter, coupled to a pair of 3'x3' Na I (Tl) crystal. The electron capture branch was measured in a X-γ coincidence system using two NaI(Tl) crystals. The gamma-ray measurements were performed in a HPGe system, previously calibrated by means of standard sources supplied by the International Atomic Energy Agency. All the uncertainties evolved were treated rigorously, by means of covariance analysis. (author)

  13. Validation of a Monte Carlo model for a GMX detector used for measurements of environmental radioactivity

    International Nuclear Information System (INIS)

    In an Environmental Radioactivity Laboratory, samples from several products are analyzed, in order to determine the amount of radioactive products they contain. A usual method is the gamma activity measurement of these samples, which typically requires the use of High Purity Germanium Detectors (HPGe). GMX (n-type) detectors can be found among this group of detectors. They have a high efficiency for low energy emissions. As any detector, it must be calibrated, in energy, efficiency and resolution (FWHM). To do this calibration, a gamma standard solution is used, whose composition and activity are certified by a reference laboratory. This source contains several radionuclides, providing a wide energy spectrum. The simulation of the detection process with MCNP5, a code based on the Monte Carlo method, is a useful tool in an Environmental Radioactivity Laboratory, since it can reproduce the experimental conditions of the essay, without manipulating radioactive sources, and consequently reducing radioactive wastes. On the other hand, the simulation of the detector calibration permits to analyze the influence of different variables on detector efficiency. In this paper, the simulation of the calibration of the GMX detector used in the Environmental Radioactivity Laboratory of the Polytechnic University of Valencia (UPV) is presented. Results obtained with this simulation are compared with laboratory measurements, in order to validate the model. (author)

  14. Calibration of a gamma spectrometer for natural radioactivity measurement. Experimental measurements and Monte Carlo modelling

    International Nuclear Information System (INIS)

    The thesis proceeded in the context of dating by thermoluminescence. This method requires laboratory measurements of the natural radioactivity. For that purpose, we have been using a germanium spectrometer. To refine the calibration of this one, we modelled it by using a Monte-Carlo computer code: Geant4. We developed a geometrical model which takes into account the presence of inactive zones and zones of poor charge-collection within the germanium crystal. The parameters of the model were adjusted by comparison with experimental results obtained with a source of 137Cs. It appeared that the form of the inactive zones is less simple than is presented in the specialized literature. This model was widened to the case of a more complex source, with cascade effect and angular correlations between photons: the 60Co. Lastly, applied to extended sources, it gave correct results and allowed us to validate the simulation of matrix effect. (author)

  15. Measurement of the Absolute Branching Fraction of D_s^+ --> tau^+ nu_tau Decay

    CERN Document Server

    Ecklund, K M; Savinov, V; López, A; Méndez, H; Ramírez, J; Ge, J Y; Miller, D H; Shipsey, I P J; Xin, B; Adams, G S; Anderson, M; Cummings, J P; Danko, I; Hu, D; Moziak, B; Napolitano, J; He, Q; Insler, J; Muramatsu, H; Park, C S; Thorndike, E H; Yang, F; Artuso, M; Blusk, S; Khalil, S; Li, J; Mountain, R; Nisar, S; Randrianarivony, K; Sultana, N; Skwarnicki, T; Stone, S; Wang, J C; Zhang, L M; Bonvicini, G; Cinabro, D; Dubrovin, M; Lincoln, A; Rademacker, J; Asner, D M; Edwards, K W; Naik, P; Reed, J; Briere, R A; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Rosner, J L; Alexander, J P; Cassel, D G; Duboscq, J E; Ehrlich, R; Fields, L; Gibbons, L; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Mahlke-Krüger, H; Mohapatra, D; Onyisi, P U E; Patterson, J R; Peterson, D; Riley, D; Ryd, A; Sadoff, A J; Shi, X; Stroiney, S; Sun, W M; Wilksen, T; Athar, S B; Patel, R; Yelton, J; Rubin, P; Eisenstein, B I; Karliner, I; Mehrabyan, S; Lowrey, N; Selen, M; White, E J; Wiss, J; Mitchell, R E; Shepherd, M R; Besson, D; Pedlar, T K; Cronin-Hennessy, D; Gao, K Y; Hietala, J; Kubota, Y; Klein, T; Lang, B W; Poling, R; Scott, A W; Zweber, P; Dobbs, S; Metreveli, Z; Seth, K K; Tomaradze, A G; Libby, J; Powell, A; Wilkinson, G

    2007-01-01

    Using a sample of tagged D_s decays collected near the D^*_s D_s peak production energy with the CLEO-c detector, we study the leptonic decay D^+_s to tau^+ nu_tau via the decay channel tau^+ to e^+ nu_e bar{nu}_tau. We measure B(D^+_s to tau^+ nu_tau) = (6.17 +- 0.71 +- 0.34) %. Combining with our measurements of D^+_s to mu^+ nu_mu and D^+_s to tau^+ nu_tau (via tau^+ to pi^+ bar{nu}_tau), we determine f_{D_s} = 274 +- 10 +- 5 MeV.

  16. Measurement of mean transit time with radioactive tracers

    International Nuclear Information System (INIS)

    The purpose of this work was to validate the use of moment to computer transit time in radioactive tracer studies. In tracer dilution studies, input and output functions usually can be described by means of exponential and gamma-variate functions. The authors demonstrated mathematically that computation of transit time with use of the first moments of these modeling functions is equivalent to the use of impulse response functions. They used a test object that would emulate the transit time of pulmonary blood flow in a medium-size dog to validate the computation of transit time with the first moment. A bolus of 185 MBq (5 mCi) of Tc-99m pertechnetate was injected. The quality of the bolus injection was modified by changing the size of the bolus. The transit time obtained from the first moments of the tracer-dilution curves was in agreement with the first moments of the modeling mathematical functions. Transit time is radionuclide studies can be computed from either the first moment of the tracer-dilution curve or of the modeling mathematical functions. Derivation of the impulse response function is not necessary

  17. Absolute frequency measurement of the magnesium intercombination transition $^1S_0 \\to ^3P_1$

    CERN Document Server

    Friebe, Jan; Riedmann, Matthias; Moldenhauer, Karsten; Mehlstäubler, Tanja; Rehbein, Nils; Lisdat, Christian; Rasel, Ernst M; Ertmer, Wolfgang; Schnatz, Harald; Lipphardt, Burghard; Grosche, Gesine

    2007-01-01

    We report on a frequency measurement of the $(3s^2)^1S_0\\to(3s3p)^3P_1$ clock transition of $^{24}$Mg on a thermal atomic beam. The intercombination transition has been referenced to a portable primary Cs frequency standard with the help of a femtosecond fiber laser frequency comb. The achieved uncertainty is $2.5\\times10^{-12}$ which corresponds to an increase in accuracy of six orders of magnitude compared to previous results. The measured frequency value permits the calculation of several other optical transitions from $^1S_0$ to the $^3P_J$-level system for $^{24}$Mg, $^{25}$Mg and $^{26}$Mg. We describe in detail the components of our optical frequency standard like the stabilized spectroscopy laser, the atomic beam apparatus used for Ramsey-Bord\\'e interferometry and the frequency comb generator and discuss the uncertainty contributions to our measurement including the first and second order Doppler effect. An upper limit of $3\\times10^{-13}$ in one second for the short term instability of our optical f...

  18. Proficiency Tests for Environmental Radioactivity Measurement Organized by an Accredited Laboratory

    Science.gov (United States)

    Aubert, Cédric; Osmond, Mélanie

    2008-08-01

    For 40 years, STEME (Environmental Sample Processing and Metrology Department) organized international proficiency testing (PT) exercises formerly for WHO (World Health Organization) and EC (European Community) and currently for ASN (French Nuclear Safety Authority). Five PT exercises are organized each year for the measurement of radionuclides (alpha, beta and gamma) in different matrixes (water, soil, biological and air samples) at environmental levels. ASN can deliver a French ministerial agreement to participate on environmental radioactivity measurements French network for laboratories asking it [1]. Since 2006, November, STEME is the first French entity obtaining a COFRAC (French Committee of Accreditation) accreditation as "Interlaboratory Comparisons" for the organization of proficiency tests for environmental radioactivity measurement according to standard International Standard Organization (ISO) 17025 and guide ISO 43-1. STEME has in charge to find, as far as possible, real sample or to create, by radionuclide adding, an adapted sample. STEME realizes the sampling, the samples preparation and the dispatching. STEME is also accredited according to Standard 17025 for radioactivity measurements in environmental samples and determines homogeneity, stability and reference values. After the reception of participating laboratories results, STEME executes statistical treatments in order to verify the normal distribution, to eliminate outliers and to evaluate laboratories performance. Laboratories participate with several objectives, to obtain French agreement, to prove the quality of their analytical performance in regards to standard 17025 or to validate new methods or latest developments. For 2 years, in addition to usual PT exercises, new PT about alpha or beta measurement in air filters, radioactive iodine in carbon cartridges or measurement of environmental dosimeters are organized. These PT exercises help laboratories to improve radioactive measurements

  19. Regularity of absolutely continuous invariant measures for piecewise expanding unimodal maps

    Science.gov (United States)

    Contreras, Fabián; Dolgopyat, Dmitry

    2016-09-01

    Let f:[0,1]\\to [0,1] be a piecewise expanding unimodal map of class C  k+1, with k≥slant 1 , and μ =ρ \\text{d}x the (unique) SRB measure associated to it. We study the regularity of ρ. In particular, points N where ρ is not differentiable has zero Hausdorff dimension, but is uncountable if the critical orbit of f is dense. This improves on a work of Szewc (1984). We also obtain results about higher orders of differentiability of ρ in the sense of Whitney.

  20. Solar rotation measurements at Mount Wilson. II - Systematic instrumental effects and the absolute rotation rate

    Science.gov (United States)

    Labonte, B. J.; Howard, R.

    1981-01-01

    Possible sources of systematic error in solar Doppler rotational velocities are examined. Scattered light is shown to affect the Mount Wilson solar rotation results, but this effect is not enough to bring the spectroscopic results in coincidence with the sunspot rotation. Interference fringes at the spectrograph focus at Mount Wilson have in two intervals affected the rotation results. It has been possible to correlate this error with temperature and thus correct for it. A misalignment between the entrance and exit slits is a possible source of error, but for the Mount Wilson slit configuration, the amplitude of this effect is negligibly small. Rapid scanning of the solar image also produces no measurable effect.

  1. Absolute activity measurement and gamma-ray emission probability for decay of I-126

    CERN Document Server

    Fonseca, K A

    1997-01-01

    The accurate knowledge of the gamma-ray emission probability per decay of radionuclides is important in several applications. In the case of sup 1 sup 2 sup 6 I, its importance lies mainly in fast neutron dosimetry as well as in the production of sup 1 sup 2 sup 5 I where sup 1 sup 2 sup 6 I appears as an impurity. In the present work the gamma-ray emission probabilities per decay for the 388 and 666-KeV transitions of sup 1 sup 2 sup 6 I have been measured. This radionuclide was obtained by means of the sup 1 sup 2 sup 7 I(n, 2n) sup 1 sup 2 sup 6 I reaction in a fast neutron flux at the IPEN 2 MW research reactor. The methodology for the primary standardization of sup 1 sup 2 sup 6 I is described. For this purpose, two different coincidence systems were used due to the complex decay scheme of this radionuclide. The beta branch measurement was carried out in a 4 pi(PC)beta-gamma coincidence system consisting of a proportional counter, coupled to a pair of 3'x3' Na I (Tl) crystal. The electron capture branch ...

  2. Measuring the Absolute Height and Profile of the Mesospheric Sodium Layer using a Continuous Wave Laser

    CERN Document Server

    Butler, D J; Redfern, R M; Ageorges, N; Fews, H

    2003-01-01

    We have developed and tested a novel method, based on LIDAR, of measuring the height and profile of the mesospheric sodium layer using a continuous wave laser. It is more efficient than classical LIDAR as the laser is on for 50% of the time, and so can in principle be used during laser guide star adaptive optics observations. It also has significant advantages over direct imaging techniques because it does not require a second telescope, is almost independent of the atmospheric conditions, and avoids triangulation problems in determining the height. In the long term, regular monitoring using this method would allow a valuable database of sodium layer profiles, heights, and return flux measurements to be built up which would enable observatory staff astronomers to schedule observations optimally. In this paper we describe the original experiment carried out using the ALFA laser guide star system at Calar Alto Observatory in Spain. We validate the method by comparing the LIDAR results with those obtained from s...

  3. Comparison of available measurements of the absolute air-fluorescence yield and determination of its global average value

    CERN Document Server

    Rosado, J; Arqueros, F

    2011-01-01

    Experimental results of the absolute air-fluorescence yield are given very often in different units (photons/MeV or photons/m) and for different wavelength intervals. In this work we present a comparison of available results normalized to its value in photons/MeV for the 337 nm band at 1013 hPa and 293 K. The conversion of photons/m to photons/MeV requires an accurate determination of the energy deposited by the electrons in the field of view of the experimental set-up. We have calculated the energy deposition for each experiment by means of a detailed Monte Carlo simulation and the results have been compared with those assumed or calculated by the authors. As a result, corrections to the reported fluorescence yields are proposed. These corrections improve the compatibility between measurements in such a way that a reliable average value with uncertainty at the level of 5% is obtained.

  4. LOWRAD 96. Methods and applications of low-level radioactivity measurements. Proceedings

    International Nuclear Information System (INIS)

    The newest developments in the field of low-level radioactivity measurements and new applications for existing and low-level measuring facilities are presented. The contributions mostly were devoted to basic physical aspects and applications of low-level counting. Papers on chemical separation and preparation techniques and on low-level radiation dose determinations were also presented. (DG)

  5. Measuring and analyzing on natural radioactive nuclide uranium concentration in mineral water from market

    International Nuclear Information System (INIS)

    Using the Laser-fluorescence analyzing technology and adopting the standard mix method, the measuring and analyzing on mineral water was made. Seventeen samples of mineral water were chosen. The LMA-3 type laser trace analysis instrument was employed. The measuring result showed that the uranium content of the mineral water belongs in normal radioactive background level

  6. LOWRAD 96. Methods and applications of low-level radioactivity measurements. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Fietz, J. [ed.] [Forschungszentrum Rossendorf e.V. (FZR), Dresden (Germany)

    1997-03-01

    The newest developments in the field of low-level radioactivity measurements and new applications for existing and low-level measuring facilities are presented. The contributions mostly were devoted to basic physical aspects and applications of low-level counting. Papers on chemical separation and preparation techniques and on low-level radiation dose determinations were also presented. (DG)

  7. Stochastic Optimization for Portfolio Selection Problem with Mean Absolute Negative Deviation Measure

    Directory of Open Access Journals (Sweden)

    Anton A. Kamil

    2009-01-01

    Full Text Available Problem statement: The most important character within optimization problem is the uncertainty of the future returns. Approach: To handle such problems, we utilized probabilistic methods alongside with optimization techniques. We developed single stage and two stage stochastic programming with recourse. The models were developed for risk adverse investors and the objective of the stochastic programming models is to minimize the maximum downside semi deviation. We used the so-called “Here-and-Now” approach where the decision-maker makes decision “now” before observing the actual outcome for the stochastic parameter. Results: We compared the optimal portfolios between the single stage and two stage models with the incorporation of the deviation measure. The models were applied to the optimal selection of stocks listed in Bursa Malaysia and the return of the optimal portfolio was compared between the two stochastic models. Conclusion: The results showed that the two stage model outperforms the single stage model in the optimal and in-sample analysis.

  8. Measuring absolute frequencies beyond the GPS limit via long-haul optical frequency dissemination.

    Science.gov (United States)

    Clivati, Cecilia; Cappellini, Giacomo; Livi, Lorenzo F; Poggiali, Francesco; de Cumis, Mario Siciliani; Mancini, Marco; Pagano, Guido; Frittelli, Matteo; Mura, Alberto; Costanzo, Giovanni A; Levi, Filippo; Calonico, Davide; Fallani, Leonardo; Catani, Jacopo; Inguscio, Massimo

    2016-05-30

    Global Positioning System (GPS) dissemination of frequency standards is ubiquitous at present, providing the most widespread time and frequency reference for the majority of industrial and research applications worldwide. On the other hand, the ultimate limits of the GPS presently curb further advances in high-precision, scientific and industrial applications relying on this dissemination scheme. Here, we demonstrate that these limits can be reliably overcome even in laboratories without a local atomic clock by replacing the GPS with a 642-km-long optical fiber link to a remote primary caesium frequency standard. Through this configuration we stably address the 1S0-3P0 clock transition in an ultracold gas of 173Yb, with a precision that exceeds the possibilities of a GPS-based measurement, dismissing the need for a local clock infrastructure to perform beyond-GPS high-precision tasks. We also report an improvement of two orders of magnitude in the accuracy on the transition frequency reported in literature. PMID:27410109

  9. Measuring absolute frequencies beyond the GPS limit via long-haul optical frequency dissemination

    CERN Document Server

    Clivati, C; Livi, L; Poggiali, F; de Cumis, M Siciliani; Mancini, M; Pagano, G; Frittelli, M; Mura, A; Costanzo, G A; Levi, F; Calonico, D; Fallani, L; Catani, J; Inguscio, M

    2015-01-01

    Global Positioning System (GPS) dissemination of frequency standards is ubiquitous at present, providing the most widespread time and frequency reference for the majority of industrial and research applications worldwide. On the other hand, the ultimate limits of the GPS presently curb further advances in high-precision, scientific and industrial applications relying on this dissemination scheme. Here, we demonstrate that these limits can be reliably overcome even in laboratories without a local atomic clock by replacing the GPS with a 642-km-long optical fiber link to a remote primary caesium frequency standard. Through this configuration we stably address the $^1$S$_0$---$^3$P$_0$ clock transition in an ultracold gas of $^{173}$Yb, with a precision that exceeds the possibilities of a GPS-based measurement, dismissing the need for a local clock infrastructure to perform high-precision tasks beyond GPS limit. We also report an improvement of two orders of magnitude in the accuracy on the transition frequency ...

  10. Measuring absolute frequencies beyond the GPS limit via long-haul optical frequency dissemination.

    Science.gov (United States)

    Clivati, Cecilia; Cappellini, Giacomo; Livi, Lorenzo F; Poggiali, Francesco; de Cumis, Mario Siciliani; Mancini, Marco; Pagano, Guido; Frittelli, Matteo; Mura, Alberto; Costanzo, Giovanni A; Levi, Filippo; Calonico, Davide; Fallani, Leonardo; Catani, Jacopo; Inguscio, Massimo

    2016-05-30

    Global Positioning System (GPS) dissemination of frequency standards is ubiquitous at present, providing the most widespread time and frequency reference for the majority of industrial and research applications worldwide. On the other hand, the ultimate limits of the GPS presently curb further advances in high-precision, scientific and industrial applications relying on this dissemination scheme. Here, we demonstrate that these limits can be reliably overcome even in laboratories without a local atomic clock by replacing the GPS with a 642-km-long optical fiber link to a remote primary caesium frequency standard. Through this configuration we stably address the 1S0-3P0 clock transition in an ultracold gas of 173Yb, with a precision that exceeds the possibilities of a GPS-based measurement, dismissing the need for a local clock infrastructure to perform beyond-GPS high-precision tasks. We also report an improvement of two orders of magnitude in the accuracy on the transition frequency reported in literature.

  11. Absolute beginners

    OpenAIRE

    Costa, Carlos Casimiro da; Costa, Jacinta Casimiro da

    2012-01-01

    Tomorrow, I m recovering my Thursday child as an absolute beginner , Transporting you to the essential touch of surface skin and space, Only for you, i do not regret, looking for education in a materia set. My love is your love , my materiality is you making things, The legacy of our ethnography, craftsmen s old and disappear, make me strong hard feelings, Recovering experiences and knowledge sprinkled in powder of stone, wood and metal ( ) reflecting in your dirty face the ...

  12. Dose {sup 131}I radioactivity interfere with thyroglobulin measurement in patients undergoing radioactive iodine therapy with recombinant human TSH?

    Energy Technology Data Exchange (ETDEWEB)

    Park, So Hyun; Bang, Ji In; Lee, Ho Young; Kim, Sang Eun [Dept. of Nuclear Medicine, Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2015-06-15

    Recombinant human thyroid-stimulating hormone (rhTSH) is widely used in radioactive iodine therapy (RIT) to avoid side effects caused by hypothyroidism during the therapy. Owing to RIT with rhTSH, serum thyroglobulin (Tg) is measured with high 131I concentrations. It is of concern that the relatively high energy of 131I could interfere with Tg measurement using the immunoradiometric assay (IRMA). We investigated the effect of 131I administration on Tg measurement with IRMA after RIT. A total of 67 patients with thyroid cancer were analysed retrospectively. All patients had undergone rhTSH stimulation for RIT. The patients’ sera were sampled 2 days after 131I administration and divided into two portions: for Tg measurements on days 2 and 32 after 131I administration. The count per minute (CPM) of whole serum (200 μl) was also measured at each time point. Student’s paired t-test and Pearson’s correlation analyses were performed for statistical analysis. Serum Tg levels were significantly concordant between days 2 and 32, irrespective of the serum CPM. Subgroup analysis was performed by classification based on the 131I dose. No difference was noted between the results of the two groups. IRMA using 125I did not show interference from 131I in the serum of patients stimulated by rhTSH.

  13. Digital encoding of cellular mRNAs enabling precise and absolute gene expression measurement by single-molecule counting.

    Science.gov (United States)

    Fu, Glenn K; Wilhelmy, Julie; Stern, David; Fan, H Christina; Fodor, Stephen P A

    2014-03-18

    We present a new approach for the sensitive detection and accurate quantitation of messenger ribonucleic acid (mRNA) gene transcripts in single cells. First, the entire population of mRNAs is encoded with molecular barcodes during reverse transcription. After amplification of the gene targets of interest, molecular barcodes are counted by sequencing or scored on a simple hybridization detector to reveal the number of molecules in the starting sample. Since absolute quantities are measured, calibration to standards is unnecessary, and many of the relative quantitation challenges such as polymerase chain reaction (PCR) bias are avoided. We apply the method to gene expression analysis of minute sample quantities and demonstrate precise measurements with sensitivity down to sub single-cell levels. The method is an easy, single-tube, end point assay utilizing standard thermal cyclers and PCR reagents. Accurate and precise measurements are obtained without any need for cycle-to-cycle intensity-based real-time monitoring or physical partitioning into multiple reactions (e.g., digital PCR). Further, since all mRNA molecules are encoded with molecular barcodes, amplification can be used to generate more material for multiple measurements and technical replicates can be carried out on limited samples. The method is particularly useful for small sample quantities, such as single-cell experiments. Digital encoding of cellular content preserves true abundance levels and overcomes distortions introduced by amplification.

  14. Measurement of zone plate efficiencies in the extreme ultraviolet and applications to radiation monitors for absolute spectral emission

    Science.gov (United States)

    Seely, John; Holland, Glenn; Bremer, James C.; Zukowski, Tim; Feser, Michael; Feng, Yan; Kjornrattanawanich, Benjawan; Goray, Leonid

    2006-08-01

    The diffraction efficiencies of a Fresnel zone plate (ZP), fabricated by Xradia Inc. using the electron-beam writing technique, were measured using polarized, monochromatic synchrotron radiation in the extreme ultraviolet wavelength range 3.4-22 nm. The ZP had 2 mm diameter, 3330 zones, 150 nm outer zone width, and a 1 mm central occulter. The ZP was supported by a 100 nm thick Si 3N 4 membrane. The diffraction patterns were recorded by CMOS imagers with phosphor coatings and with 5.2 μm or 48 μm pixels. The focused +n orders (n=1-4), the diverging -1 order, and the undiffracted 0 order were observed as functions of wavelength and off-axis tilt angle. Sub-pixel focusing of the +n orders was achieved. The measured efficiency in the +1 order was in the 5% to 30% range with the phase-shift enhanced efficiency occurring at 8.3 nm where the gold bars are partially transmitting. The +2 and higher order efficiencies were much lower than the +1 order efficiency. The efficiencies were constant when the zone plate was tilted by angles up to +/-1° from the incident radiation beam. This work indicates the feasibility and benefits of using zone plates to measure the absolute EUV spectral emissions from solar and laboratory sources: relatively high EUV efficiency in the focused +1 order, good out-of-band rejection resulting from the low higher-order efficiencies and the ZP focusing properties, insensitivity to (unfocused) visible light scattered by the ZP, flat response with off-axis angle, and insensitivity to the polarization of the radiation based on the ZP circular symmetry. EUV sensors with Fresnel zone plates potentially have many advantages over existing sensors intended to accurately measure absolute EUV emission levels, such as those implemented on the GOES N-P satellites that use transmission gratings which have off-axis sensitivity variations and poor out-of-band EUV and visible light rejection, and other solar and laboratory sensors using reflection gratings which

  15. Optical factors determined by the T-matrix method in turbidity measurement of absolute coagulation rate constants.

    Science.gov (United States)

    Xu, Shenghua; Liu, Jie; Sun, Zhiwei

    2006-12-01

    Turbidity measurement for the absolute coagulation rate constants of suspensions has been extensively adopted because of its simplicity and easy implementation. A key factor in deriving the rate constant from experimental data is how to theoretically evaluate the so-called optical factor involved in calculating the extinction cross section of doublets formed during aggregation. In a previous paper, we have shown that compared with other theoretical approaches, the T-matrix method provides a robust solution to this problem and is effective in extending the applicability range of the turbidity methodology, as well as increasing measurement accuracy. This paper will provide a more comprehensive discussion of the physical insight for using the T-matrix method in turbidity measurement and associated technical details. In particular, the importance of ensuring the correct value for the refractive indices for colloidal particles and the surrounding medium used in the calculation is addressed, because the indices generally vary with the wavelength of the incident light. The comparison of calculated results with experiments shows that the T-matrix method can correctly calculate optical factors even for large particles, whereas other existing theories cannot. In addition, the data of the optical factor calculated by the T-matrix method for a range of particle radii and incident light wavelengths are listed.

  16. Development of an absolute neutron dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Acevedo, C; Birstein, L; Loyola, H [Section de Desarrollos Innovativos, Comision Chilena de EnergIa Nuclear (CCHEN), Casilla 188-D, Santiago (Chile)], E-mail: lbirstei@cchen.cl

    2008-11-01

    An Absolute Neutron Dosimeter was developed to be used as a calibration standard for the Radiation Metrology Laboratory at CCHEN. The main component of the Dosimeter consists of a Proportional Counter of cylindrical shape, with Polyethylene walls and Ethylene gas in its interior. It includes a cage shaped arrangement of graphite bars that operates like the Proportional Counter cathode and a tungsten wire of 25 {mu}m in diameter {mu}m as the anode. Results of a Montecarlo modeling for the Dosimeter operation and results of tests and measurements performed with a radioactive source are presented.

  17. Quality control of the concentration measurement of specific radioactive isotopes

    International Nuclear Information System (INIS)

    The counting efficiency of a gamma spectroscopy chain with a Ge (H.p) detector was measured. The Monte Carlo simulation and standard reference materials, in order to calculate the specific activity from 4 reference materials, and from intercomparison samples were used. The purpose was to evaluate the analytical results obtained in the Laboratorio de Espectroscopia Gamma. (author)

  18. Spectra of radioactive nuclides radiation, measured with semiconductor detectors. 2

    International Nuclear Information System (INIS)

    The second part of the atlas 'Radiation spectra of radionuclides measured with semiconductor detectors' is presented including 259 spectra of 126 alpha, beta, gamma, and X ray emitters. Some spectra of the first part of the atlas are given at another scale and sometimes for other energy ranges. The total number of investigated radionuclides amounts to 261 of which 69 are new ones

  19. Systematic Uncertainties in the Spectroscopic Measurements of Neutron-Star Masses and Radii from Thermonuclear X-ray Bursts. III. Absolute Flux Calibration

    OpenAIRE

    Guver, Tolga; Ozel, Feryal; Marshall, Herman; Psaltis, Dimitrios; Guainazzi, Matteo; Diaz-Trigo, Maria

    2015-01-01

    Many techniques for measuring neutron star radii rely on absolute flux measurements in the X-rays. As a result, one of the fundamental uncertainties in these spectroscopic measurements arises from the absolute flux calibrations of the detectors being used. Using the stable X-ray burster, GS 1826-238, and its simultaneous observations by Chandra HETG/ACIS-S and RXTE/PCA as well as by XMM-Newton EPIC-pn and RXTE/PCA, we quantify the degree of uncertainty in the flux calibration by assessing the...

  20. Measurements of extremely low radioactivity levels in BOREXINO

    CERN Document Server

    Arpesella, C

    2001-01-01

    The techniques researched, developed and applied towards the measurement of radioisotope concentrations at ultra-low levels in the real-time solar neutrino experiment BOREXINO at Gran Sasso are presented and illustrated with specific results of widespread interest. We report the use of low-level germanium gamma spectrometry, low-level miniaturized gas proportional counters and low background scintillation detectors developed in solar neutrino research. Each now sets records in its field. We additionally describe our techniques of radiochemical ultra-pure, few atom manipulations and extractions. Forefront measurements also result from the powerful combination of neutron activation and low-level counting. Finally, with our techniques and commercially available mass spectrometry and atomic absorption spectroscopy, new low-level detection limits for isotopes of interest are obtained.

  1. The use of ultrasound in support of body radioactivity measurements

    International Nuclear Information System (INIS)

    The use of the ultrasound scanner has been investigated as an adjunct to medical radiography. To date, the equipment has been used by the NRPB mainly for examining chest wall thickness and structure, but it can also be used to locate organs such as the liver, kidneys, or thyroid. The information from the scanner would be most useful in support of measurements of lower-energy photon emitters. The measurement of iodine-125 (with emissions around 30 keV) in the thyroid is presented as an example. From such a scan, it would be possible to estimate the tissue cover over the thyroid and hence choose an appropriate detection efficiency for that subject. (U.K.)

  2. Measurement of the dry deposition rates on trees by using the natural radioactivity as a tracer

    International Nuclear Information System (INIS)

    Measurement of the dry deposition rates on trees by using the natural radioactivity as a tracer. The direct measurement of dry deposition fluxes into a canopy or onto single branches or leaves is difficult. The natural particle bound radioactivity in the ground-level air can be used as a tracer to gain information on this process in small scales of time and space. γ- and α-spectroscopy of radioactive daughters of Rn and Tn deposited on filters and on leaves, needles and surrogate acceptors have been developed as highly mobile field-methods. Applying Radon daughters as tracers leads to information on deposition velocities during short time intervals. The evaluation of meteorological effects in the field thus becomes possible. The main factors influencing the deposition velocity are the particle size and the wind speed. Therefore size fractionating sampling devices and anemometer arrangements are needed, both small, light-weight and cheap. We prefered filter and impactor combinations to gain 4 size fractions suitable for radioactivity and composition measurements. The concentration values of compounds and elements have been evaluated by X-ray fluorescence and ionchromatography. Numerous results of measurements on natural leaves and surrogates are presented, showing the state of developement now attained and proving the applicability of this method. (orig.). 41 figs., 108 refs., 28 tabs

  3. Measurement of environment and food products radioactivity: the intercomparisons organised by OPRI

    International Nuclear Information System (INIS)

    For the laboratories that measure the radioactivity of environment and foods, the analysis quality is essential. The test of intercomparison is unrivaled to check it. Since 1970, the sub-direction of sanitary impact organizes this kind of test at the French, European and International levels. Its objective is to contribute to the persistent improvement of participating laboratories analysis. (N.C.)

  4. γ Ray Radioactivity Measurement of ~(88)Y and ~(22)Na Point Source

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Both 22Na and 88Y have adequate half life, they are broadly used in radioactive measuring field. They are also very important in different techniques application and usually used in γ ray detectors like as high purity germanium efficiency calibration.

  5. Questionnaire survey report on measurement of radioactivity in working environment of radioisotopes facility

    International Nuclear Information System (INIS)

    To look over the current measurement of radioactivity concentration in working environment of many radioisotopes facilities, a questionnaire survey was carried out under the auspices of the Planning Committee of the Japan Society of Radiation Safety Management. 64 responses were obtained in 128 radiation facilities, which the questionnaires were sent to. The main results were obtained by aggregate analysis of the answers for questionnaires as the followings. Major nuclides subject to measurement were 3H, 14C, 32P and 125I Sampling of radioisotopes in air was mainly performed using collectors like dust samplers and HC-collectors. Liquid scintillation counters and gamma counters were used to measure β and γ radioactivity contained in airborne particles or gas samples. Contamination by radioactivity was not detected in 55% facilities surveyed, but in 40% facilities at the same level as or at lower levels than a hundredth part of the regulated concentration limit of each nuclide. Almost all facilities is found to consider that the measurement of radioactivity concentration in working environments is not always necessary. (author)

  6. Measurement of airborne radioactivity from the Fukushima reactor accident in Tokushima, Japan

    CERN Document Server

    Fushimi, K; Sakama, M; Sakaguchi, Y

    2011-01-01

    The airborne radioactive isotopes from the Fukushima Daiichi nuclear plant was measured in Tokushima, western Japan. The continuous monitoring has been carried out in Tokushima. From March 23, 2011 the fission product $^{131}$I was observed. The radioisotopes $^{134}$Cs and $^{137}$Cs were also observed in the beginning of April. However the densities were extremely smaller than the Japanese regulation of radioisotopes.

  7. Absolute Summ

    Science.gov (United States)

    Phillips, Alfred, Jr.

    Summ means the entirety of the multiverse. It seems clear, from the inflation theories of A. Guth and others, that the creation of many universes is plausible. We argue that Absolute cosmological ideas, not unlike those of I. Newton, may be consistent with dynamic multiverse creations. As suggested in W. Heisenberg's uncertainty principle, and with the Anthropic Principle defended by S. Hawking, et al., human consciousness, buttressed by findings of neuroscience, may have to be considered in our models. Predictability, as A. Einstein realized with Invariants and General Relativity, may be required for new ideas to be part of physics. We present here a two postulate model geared to an Absolute Summ. The seedbed of this work is part of Akhnaton's philosophy (see S. Freud, Moses and Monotheism). Most important, however, is that the structure of human consciousness, manifest in Kenya's Rift Valley 200,000 years ago as Homo sapiens, who were the culmination of the six million year co-creation process of Hominins and Nature in Africa, allows us to do the physics that we do. .

  8. Measurement of nuclear cross sections using radioactive beams; Medicion de secciones eficaces nucleares usando haces radiactivos

    Energy Technology Data Exchange (ETDEWEB)

    Lizcano, D.; Aguilera, E.F.; Martinez Q, E. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2000-07-01

    One of the main applications of the production and use of nuclear radioactive beams is the measurement of nuclear cross sections. In this work is used a {sup 6} He nuclear radioactive beam ({beta} emitting with half life 806.7 ms) for the study of the reaction {sup 6} + {sup 209} Bi which could have several products. This investigation was realized in collaboration with the personnel of the Nuclear Structure laboratory at the University of Notre Dame (U.S.A.) and the National institute of Nuclear Research and CONACyT by Mexico. (Author)

  9. Radiation situation in the Republic of Kazakhstan, its control and measures on liquidation of radioactive pollution

    International Nuclear Information System (INIS)

    The report describes procedures of supervision and control of radiation situation in the Republic of Kazakhstan, its general conditions and some methods used on practice of recultivation of polluted territories. In the report are described the main sources of radioactive pollution and conducted measures, which permit to prevent the distribution of radioactive contamination. It is shown that the main part of the contaminated territories is supervised and if it is necessary deactivated. The work on revealing of unknown pollution is regularly carried out. Also in the report are given radiation safety regulations on liquidation of uranium enterprises and some problems connected with waste handling in the Republic. (author). 7 refs

  10. (n, {gamma}) measurements on radioactive isotopes with DANCE

    Energy Technology Data Exchange (ETDEWEB)

    Reifarth, R. [Los Alamos National Laboratory, LANSCE-3, MS H855, Los Alamos, NM 87545 (United States)]. E-mail: reifarth@lanl.gov; Esch, E.-I. [Los Alamos National Laboratory, LANSCE-3, MS H855, Los Alamos, NM 87545 (United States); Alpizar-Vicente, A. [Colorado School of Mines, Golden, CO 80401 (United States); Bond, E.M. [Los Alamos National Laboratory, LANSCE-3, MS H855, Los Alamos, NM 87545 (United States); Bredeweg, T.A. [Los Alamos National Laboratory, LANSCE-3, MS H855, Los Alamos, NM 87545 (United States); Glover, S.E. [Los Alamos National Laboratory, LANSCE-3, MS H855, Los Alamos, NM 87545 (United States); Greife, U. [Colorado School of Mines, Golden, CO 80401 (United States); Hatarik, R. [Colorado School of Mines, Golden, CO 80401 (United States); Haight, R.C. [Los Alamos National Laboratory, LANSCE-3, MS H855, Los Alamos, NM 87545 (United States); Kronenberg, A. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); O' Donnell, J.M. [Los Alamos National Laboratory, LANSCE-3, MS H855, Los Alamos, NM 87545 (United States); Rundberg, R.S. [Los Alamos National Laboratory, LANSCE-3, MS H855, Los Alamos, NM 87545 (United States); Schwantes, J.M. [Los Alamos National Laboratory, LANSCE-3, MS H855, Los Alamos, NM 87545 (United States); Ullmann, J.L. [Los Alamos National Laboratory, LANSCE-3, MS H855, Los Alamos, NM 87545 (United States); Vieira, D.J. [Los Alamos National Laboratory, LANSCE-3, MS H855, Los Alamos, NM 87545 (United States); Wilhelmy, J.B. [Los Alamos National Laboratory, LANSCE-3, MS H855, Los Alamos, NM 87545 (United States); Wouters, J.M. [Los Alamos National Laboratory, LANSCE-3, MS H855, Los Alamos, NM 87545 (United States)

    2005-12-15

    The Detector for Advanced Neutron Capture Experiments (DANCE) at the Los Alamos National Laboratory (LANL) is designed as a high efficiency, highly segmented 4{pi} BaF2 detector for calorimetrically detecting gamma rays following a neutron capture. Coupled with the neutron spallation source at the Los Alamos Neutron Science Center (LANSCE), DANCE measurements on unstable isotopes in the energy range between 10 meV and 500 keV will provide many of the missing key reactions that are needed to understand the nucleosynthesis of the heavy elements and will also provide vital information for the design of future reactor concepts.

  11. (n, γ) measurements on radioactive isotopes with DANCE

    Science.gov (United States)

    Reifarth, R.; Esch, E.-I.; Alpizar-Vicente, A.; Bond, E. M.; Bredeweg, T. A.; Glover, S. E.; Greife, U.; Hatarik, R.; Haight, R. C.; Kronenberg, A.; O'Donnell, J. M.; Rundberg, R. S.; Schwantes, J. M.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.

    2005-12-01

    The Detector for Advanced Neutron Capture Experiments (DANCE) at the Los Alamos National Laboratory (LANL) is designed as a high efficiency, highly segmented 4π BaF2 detector for calorimetrically detecting gamma rays following a neutron capture. Coupled with the neutron spallation source at the Los Alamos Neutron Science Center (LANSCE), DANCE measurements on unstable isotopes in the energy range between 10 meV and 500 keV will provide many of the missing key reactions that are needed to understand the nucleosynthesis of the heavy elements and will also provide vital information for the design of future reactor concepts.

  12. (n, γ) measurements on radioactive isotopes with DANCE

    International Nuclear Information System (INIS)

    The Detector for Advanced Neutron Capture Experiments (DANCE) at the Los Alamos National Laboratory (LANL) is designed as a high efficiency, highly segmented 4π BaF2 detector for calorimetrically detecting gamma rays following a neutron capture. Coupled with the neutron spallation source at the Los Alamos Neutron Science Center (LANSCE), DANCE measurements on unstable isotopes in the energy range between 10 meV and 500 keV will provide many of the missing key reactions that are needed to understand the nucleosynthesis of the heavy elements and will also provide vital information for the design of future reactor concepts

  13. Measures for product control during the treatment of radioactive waste

    International Nuclear Information System (INIS)

    Process control during conditioning of the wastes can be used as a very appropriate measure to perform the task of quality assurance. This contribution aims to outline what such a process control would look like in practice. A number of examples is examined dealing with wastes typically arising during the operation of nuclear power plants and during MOX fuel fabrication. The examples also cover treatment by the waste generator or a hired service company, with stationary or mobile facilities. It is found that the system of process control as introduced by the paper could be adopted for all examples. (orig./PW)

  14. Measuring neutrino mass with radioactive ions in a storage ring

    CERN Document Server

    Lindroos, Mats; Orme, Christopher; Schwetz, Thomas

    2009-01-01

    We propose a method to measure the neutrino mass kinematically using beams of ions which undergo beta decay. The idea is to tune the ion beam momentum so that in most decays, the electron is forward moving with respect to the beam, and only in decays near the endpoint is the electron moving backwards. Then, by counting the backward moving electrons one can observe the effect of neutrino mass on the beta spectrum close to the endpoint. In order to reach sensitivities for $m_\

  15. Laboratory measurement of radioactivity purification for 212Pb in liquid scintillator

    Science.gov (United States)

    Hu, Wei; Fang, Jian; Yu, Bo-Xiang; Zhang, Xuan; Zhou, Li; Cai, Xiao; Sun, Li-Jun; Liu, Wan-Jin; Wang, Lan; Lü, Jun-Guang

    2016-09-01

    Liquid scintillator (LS) has been widely used in past and running neutrino experiments, and is expected also to be used in future experiments. Requirements on LS radio-purity have become higher and higher. Water extraction is a powerful method to remove soluble radioactive nuclei, and a mini-extraction station has been constructed. To evaluate the extraction efficiency and optimize the operation parameters, a setup to load radioactivity to LS and a laboratory scale setup to measure radioactivity using the 212Bi-212Po-208Pb cascade decay have been developed. Experience from this laboratory study will be useful for the design of large scale water extraction plants and the optimization of working conditions in the future. Supported by The Strategic Priority Research Program of the Chinese Academy of Sciences (XDA10010500), Natural Science Foundation of China (11390384)

  16. Development of a scintillating fiber-optic sensor for the radioactive contamination measurement in a narrow area

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chan Hee [Dongguk University, 707 Seokjang-dong, Gyeong-ju, Gyeongbuk 780-714 (Korea, Republic of); Moon, Joo Hyun, E-mail: jhmoon86@dongguk.ac.kr [Dongguk University, 707 Seokjang-dong, Gyeong-ju, Gyeongbuk 780-714 (Korea, Republic of); Seo, Bum Kyong [Korea Atomic Energy Research Institute, Dukjin-dong, Yuseong-gu, Daejon (Korea, Republic of)

    2011-08-15

    Measuring the level of radioactive contamination in a high-radiation area with a complex geometry requires a new measuring system that can be operated remotely and free of electronic noise by radiation. In this study, a measuring system suitable for measuring high-level radioactive contamination in the narrow gap of a nuclear facility was developed. The measuring system was a fiber-optic remote system using an organic scintillator, epoxy resin and an optical fiber. The measuring system was tested for Cs-137 and Sr/Y-90 radiation sources, and could measure radioactive contamination remotely in a narrow area.

  17. Evaluation of induced radioactivity in 10 MeV-electron irradiated spices, (1); [gamma]-ray measurement

    Energy Technology Data Exchange (ETDEWEB)

    Furuta, Masakazu; Katayama, Tadashi; Ito, Norio; Mizohata, Akira; Matsunami, Tadao; Shibata, Setsuko; Toratani, Hirokazu (Osaka Prefectural Univ., Sakai (Japan). Research Inst. for Advanced Science and Technology); Takeda, Atsuhiko

    1994-02-01

    Black pepper, white pepper, red pepper, ginger and turmeric were irradiated with 10 MeV electrons from a linear accelerator to a dose of 100 kGy and radioactivity was measured in order to estimate induced radioactivity in the irradiated foods. Induced radioactivity could not be detected significantly by [gamma]-ray spectrometry in the irradiated samples except for spiked samples which contain some photonuclear target nuclides in the list of photonuclear reactions which could produce radioactivity below 10 MeV. From the amount of observed radioactivities of short-lived photonuclear products in the spiked samples and calculation of H[sub 50] according to ICRP Publication 30, it was concluded that the induced radioactivity and its biological effects in the 10 MeV electron-irradiated natural samples were negligible in comparison with natural radioactivity from [sup 40]K contained in the samples. (author).

  18. Reductive Capacity Measurement of Waste Forms for Secondary Radioactive Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Um, Wooyong; Yang, Jungseok; Serne, R. Jeffrey; Westsik, Joseph H.

    2015-09-28

    The reductive capacities of dry ingredients and final solid waste forms were measured using both the Cr(VI) and Ce(IV) methods and the results were compared. Blast furnace slag (BFS), sodium sulfide, SnF2, and SnCl2 used as dry ingredients to make various waste forms showed significantly higher reductive capacities compared to other ingredients regardless of which method was used. Although the BFS exhibits appreciable reductive capacity, it requires greater amounts of time to fully react. In almost all cases, the Ce(IV) method yielded larger reductive capacity values than those from the Cr(VI) method and can be used as an upper bound for the reductive capacity of the dry ingredients and waste forms, because the Ce(IV) method subjects the solids to a strong acid (low pH) condition that dissolves much more of the solids. Because the Cr(VI) method relies on a neutral pH condition, the Cr(VI) method can be used to estimate primarily the waste form surface-related and readily dissolvable reductive capacity. However, the Cr(VI) method does not measure the total reductive capacity of the waste form, the long-term reductive capacity afforded by very slowly dissolving solids, or the reductive capacity present in the interior pores and internal locations of the solids.

  19. Reductive capacity measurement of waste forms for secondary radioactive wastes

    Science.gov (United States)

    Um, Wooyong; Yang, Jung-Seok; Serne, R. Jeffrey; Westsik, Joseph H.

    2015-12-01

    The reductive capacities of dry ingredients and final solid waste forms were measured using both the Cr(VI) and Ce(IV) methods and the results were compared. Blast furnace slag (BFS), sodium sulfide, SnF2, and SnCl2 used as dry ingredients to make various waste forms showed significantly higher reductive capacities compared to other ingredients regardless of which method was used. Although the BFS exhibits appreciable reductive capacity, it requires greater amounts of time to fully react. In almost all cases, the Ce(IV) method yielded larger reductive capacity values than those from the Cr(VI) method and can be used as an upper bound for the reductive capacity of the dry ingredients and waste forms, because the Ce(IV) method subjects the solids to a strong acid (low pH) condition that dissolves much more of the solids. Because the Cr(VI) method relies on a neutral pH condition, the Cr(VI) method can be used to estimate primarily the waste form surface-related and readily dissolvable reductive capacity. However, the Cr(VI) method does not measure the total reductive capacity of the waste form, the long-term reductive capacity afforded by very slowly dissolving solids, or the reductive capacity present in the interior pores and internal locations of the solids.

  20. Absolute measurement of cerebral optical coefficients, hemoglobin concentration and oxygen saturation in old and young adults with near-infrared spectroscopy

    Science.gov (United States)

    We present near-infrared spectroscopy measurement of absolute cerebral hemoglobin concentration and saturation in a large sample of 36 healthy elderly (mean age, 85 ± 6 years) and 19 young adults (mean age, 28 ± 4 years). Non-invasive measurements were obtained on the forehead using a commercially a...

  1. Study on Method of Asphalt Density Measurement Using Low Level Radioactive Isotope

    International Nuclear Information System (INIS)

    The fundamental cause of damage to road pavement is insufficient management of asphalt density during construction. Currently, asphalt density in Korea is measured in a laboratory by extracting a core sample after construction. This method delays the overall time of measurement and therefore it is difficult to achieve real-time density management. Using a radioactive isotope for measuring asphalt density during construction reduces measuring time thus enabling realtime measurement. Also, it is provided reliable density measurement to achieve effective density management at work sites. However, existing radiological equipment has not been widely used because of management restrictions and regulations due to the high radiation dose. In this study, we employed a non-destructive method for density measurement. Density is measured by using a portable gamma-ray backscatter device having a radioactivity emission of 100 μCi or less (notice No. 2002-23, Ministry of Science and Technology, standards on radiation protection, etc.), a sealed radioactive source subject to declaration

  2. Nuclear charge radius measurements of radioactive beryllium isotopes

    CERN Multimedia

    2002-01-01

    We propose to measure the nuclear charge radii of the beryllium isotopes $^{7,9,10}$Be and the one-neutron halo isotope $^{11}$Be using laser spectroscopy of trapped ions. Ions produced at ISOLDE and ionized with the laser ion source will be cooled and bunched in the radio-frequency buncher of the ISOLTRAP experiment and then transferred into a specially designed Paul trap. Here, they will be cooled to temperatures in the mK range employing sympathetic and direct laser cooling. Precision laser spectroscopy of the isotope shift on the cooled ensemble in combination with accurate atomic structure calculations will provide nuclear charge radii with a precision of better than 3%. This will be the first model-independent determination of a one-neutron halo nuclear charge radius.

  3. Radioactivity measurements in Europe after the Chernobyl accident. Part 1

    International Nuclear Information System (INIS)

    The data base presented is being set up primarily for scientific studies such as the validation of long range transport models, physico-chemical behaviour of radionuclides in air, etc. The data were extracted from the REM Data Bank at the Joint Research Centre of the Commission of the European Communities at Ispra. The data where originally obtained from written reports or were copied directly from tapes or diskettes into the REM Data Bank. In the latter case, verification with written material was persued. The original sources are given in the references. In preparing this report, only those data were retained which were fully specified as far as time, location and measuring techniques are concerned, i.e.: beginning and end of sampling, geographical coordinates and types of filters are known

  4. Measuring Neutrino Mass with Radioactive Ions in a Storage Ring

    Science.gov (United States)

    Lindroos, Mats; McElrath, Bob; Orme, Christopher; Schwetz, Thomas

    2010-03-01

    A method to measure the neutrino mass kinematically using beams of ions which undergo beta decay is proposed. The idea is to tune the ion beam momentum so that in most decays, the electron is forward moving with respect to the beam, and only in decays near the endpoint is the electron moving backwards. By counting the backward moving electrons one can observe the effect of neutrino mass on the beta spectrum close to the endpoint. In order to reach sensitivities for mν<0.2 eV, it is necessary to control the ion momentum with a precision better than δp/p<10-5, identify suitable nuclei with low Q-values (in the few to ten keV range), and one must be able to observe at least O(1018) decays.

  5. Measurement of radioactivity from Chernobyl in population groups in Scotland

    International Nuclear Information System (INIS)

    The results of a survey of the uptake of radiocaesium by members of the Scottish population between May 1986 and February 1988 following the Chernobyl reactor accident are described. 251 volunteers from various parts of the country were measured by high sensitivity whole-body monitoring and 487 observations are reported. Influence of age, sex, diet and geographical location on uptake was assessed. All members of the Scottish population have almost certainly taken up some radiocaesium as a result of the accident. Body levels reached a maximum after about 8 months and varied by a factor of 4 from an upper to a lower boundary covering 80% of the population sampled. Total (134Cs + 137Cs) mean dose equivalents from the observations were 31μSv and 20μSv for the first and second years and 62μSv for the overall dose commitment based on the observed decline of radiocaesium. Fresh milk consumption appeared to be the most important dietary factor influencing body levels and venison and goat-meat eaters formed a special group with significantly higher levels than the rest of the population. (author)

  6. Absolute sensitivity calibration of vacuum and extreme ultraviolet spectrometer systems and Z(eff) measurement based on bremsstrahlung continuum in HL-2A tokamak.

    Science.gov (United States)

    Zhou, Hangyu; Cui, Zhengying; Morita, Shigeru; Fu, Bingzhong; Goto, Motoshi; Sun, Ping; Dong, Chunfeng; Gao, Yadong; Xu, Yuan; Lu, Ping; Yang, Qingwei; Duan, Xuru

    2012-10-01

    A grazing-incidence flat-field extreme ultraviolet (EUV) spectrometer has been newly developed in HL-2A tokamak. Typical spectral lines are observed from intrinsic impurities of carbon, oxygen, iron, and extrinsic impurity of helium in the wavelength range of 20 Å-500 Å. Bremsstrahlung continuum is measured at different electron densities of HL-2A discharges to calibrate absolute sensitivity of the EUV spectrometer system and to measure effective ionic charge, Z(eff). The sensitivity of a vacuum ultraviolet (VUV) spectrometer system is also absolutely calibrated in overlapped wavelength range of 300 Å-500 Å by comparing the intensity between VUV and EUV line emissions. PMID:23126850

  7. Improvement of the gamma radioactivity measurements in water by the evaporation method

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, J. [Laboratorio de Radiactividad Ambiental, Servicio de Radiaciones, Universidad Politecnica de Valencia, Camino de vera s/n, 46022 Valencia (Spain); Serradell, V. [Laboratorio de Radiactividad Ambiental, Servicio de Radiaciones, Universidad Politecnica de Valencia, Camino de vera s/n, 46022 Valencia (Spain); Departamento de Ingenieria Quimica y Nuclear, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain)], E-mail: vserradell@iqn.upv.es; Gallardo, S. [Departamento de Ingenieria Quimica y Nuclear, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain); Ballesteros, L.; Zarza, I. [Laboratorio de Radiactividad Ambiental, Servicio de Radiaciones, Universidad Politecnica de Valencia, Camino de vera s/n, 46022 Valencia (Spain)

    2007-09-21

    Frequently to measure gamma radioactivity in water, the water is poured in a tray covered with a plastic film and dried in an oven. Then, the film is folded and introduced in a Petri box to be measured in a Ge(HP) detector. The present paper studies the effect, that an irregular deposition of the residue left on the plastic film when evaporating the water, introduces in the results of the measurement. The quantitative analyses of gamma radioactivity imply a previous calibration of the instrument. Calibration samples are prepared in the same way as any other, then the calibration process becomes affected by the same previously mentioned effect. The study evaluates the maximum discrepancies that can be expected from this irregular deposition of the residue. Monte Carlo program MCNP is used to simulate the experimental measurements carried out, that easily allows to study intermediate situations. Lastly, a method to avoid this type of systematic error is recommended.

  8. Results of measurements of the radioactive contamination of the biosphere in the Netherlands, compiled by the CCRX 1983

    International Nuclear Information System (INIS)

    In this internal annual report results are given of measurements of the radioactive contamination of the biosphere in the Netherlands. These measurements are coordinated by the Coordinating Committee for the Monitoring of Radioactive and Xenobiotic Substances (CCRX). Also samples of milk and grass from surroundings of nuclear reactors have been analysed

  9. Comparison of a citation-based indicator and peer review for absolute and specific measures of research-group excellence

    CERN Document Server

    Mryglod, O; Holovatch, Yu; Berche, B

    2013-01-01

    Many different measures are used to assess academic research excellence and these are subject to ongoing discussion and debate within the scientometric, university-management and policy-making communities internationally. One topic of continued importance is the extent to which citation-based indicators compare with peer-review-based evaluation. Here we analyse the correlations between values of a particular citation-based impact indicator and peer-review scores in several academic disciplines, from natural to social sciences and humanities. We perform the comparison for research groups rather than for individuals. We make comparisons on two levels. At an absolute level, we compare total impact and overall strength of the group as a whole. At a specific level, we compare academic impact and quality, normalised by the size of the group. We find very high correlations at the former level for some disciplines and poor correlations at the latter level for all disciplines. This means that, although the citation-ba...

  10. Study of a 4πβ-γ coincidence system for absolute radionuclide activity measurement using plastic scintillators

    International Nuclear Information System (INIS)

    The present work was intended to study a coincidence system 4π(PS)β-γ for absolute activity measurement using plastic scintillators in 4π geometry. Along with experiments on the coincidence system, simulations were also performed applying the Monte Carlo Method, by means of codes PENELOPE and ESQUEMA. These simulations were performed in order to calculate the extrapolation curve of the coincidence system 4π(PS)β-γ and compare it to experimental data. A new geometry was proposed to the coincidence system adding up a second photomultiplier tube to the previous system for improving light collection from the plastic scintillator, as this system presented limitations in the minimum detected energy due to the presence of electronic noise and low gain. The results show that an improvement in the signal-to-noise ratio was obtained, as well as in the minimum detected energy. Moreover, there was an increase in the detection efficiency. With these modifications, it is now possible to calibrate radionuclides which emit low energy electrons or X-rays, increasing the number of radionuclides that can be standardized with this type of system.(author)

  11. Natural Radioactivity Measurements and Radiation Dose Estimation in Some Sedimentary Rock Samples in Turkey

    Directory of Open Access Journals (Sweden)

    I. Akkurt

    2014-01-01

    Full Text Available The natural radioactivity existed since creation of the universe due to the long life time of some radionuclides. This natural radioactivity is caused by γ-radiation originating from the uranium and thorium series and 40K. In this study, the gamma radiation has been measured to determine natural radioactivity of 238U, 232Th, and 40K in collected sedimentary rock samples in different places of Turkey. The measurements have been performed using γ-ray spectrometer containing NaI(Tl detector and multichannel analyser (MCA. Absorbed dose rate (D, annual effective dose (AED, radium equivalent activities (Raeq, external hazard index (Hex, and internal hazard index (Hin associated with the natural radionuclide were calculated to assess the radiation hazard of the natural radioactivity in the sedimentary rock samples. The average values of absorbed dose rate in air (D, annual effective dose (AED, radium equivalent activity (Raeq, external hazard index (Hex, and internal hazard index (Hin were calculated and these were 45.425 nGy/h, 0.056 mSv/y, 99.014 Bq/kg, 0.267, and 0.361, respectively.

  12. Specific calibration problems for gammaspectrometric measurements of low-level radioactivity in environmental samples

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, D. [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany); Wershofen, H. [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany)

    1997-03-01

    Gammaspectrometric measurements of low-level radioactivity in environmental samples are always done in a close source detector geometry. This geometry causes coincidence-summing effects for measurements of multi-photon emitting nuclides. The measurements of radioactivity in environmental samples are also influenced by the absorption of photons in the materials which have to be analysed. Both effects must be taken into account by correction factors with respect to an energy-specific calibration of the detector system for a given geometry and a given composition of the calibration source. The importance of these corrections is emphasized. It is the aim of the present paper to compare different experimental and theoretical methods for the determination of these correction factors published by various authors and to report about efforts to refine them. (orig.)

  13. Precision lifetime measurements using LaBr3 detectors with stable and radioactive beams

    International Nuclear Information System (INIS)

    A range of high resolution gamma-ray spectroscopy measurements have been carried out using arrays which include a number of Cerium-doped Lanthanum-Tribromide (LrBr3(Ce)) scintillation detectors used in conjunction with high-resolution hyper-pure germanium detectors. Examples of the spectral and temporal responses of such set-ups, using both standard point radioactive sources 152Eu and 56Co, and in-beam fusion evaporation reaction experiments for precision measurements of nuclear excited states in 34P and 138Ce are presented. The current and future use of such arrays at existing (EURICA at RIKEN) and future (NUSTAR at FAIR) secondary radioactive beam facilities for precision measurements of excited nuclear state lifetimes in the 10 ps to 10 ns regime are also discussed. (authors)

  14. Preparation of spiked matrices to improve the traceability of environmental radioactivity measurements

    International Nuclear Information System (INIS)

    The monitoring of environmental radioactivity is important for public health protection. In France, environmental radioactivity is specifically monitored by a network of certified laboratories. Indeed the Nuclear Safety Authority (ASN) delivers three to five year governmental agreements to each laboratory provided that it succeeds in proficiency tests (PTs) organized by the Institute for Radiological Protection and Nuclear Safety (IRSN). To ensure a direct traceability chain in radioactivity measurements, the Laboratoire National Henri Becquerel (LNE-LNHB), as the French national laboratory for radionuclide metrology, has been organizing national PTs for more than 40 years. LNE-LNHB also regularly realizes specific PTs to train the laboratories to the regulatory tests of IRSN. Most tests are based on aqueous solutions but there is a growing demand for tests on solid matrices to be measured by γ-spectrometry. Measurement of radionuclides from environmental samples includes a wide variety of matrix compositions and densities. Since 2009, LNE-LNHB is working on the production of suitable calibration reference materials to improve the traceability of environmental radioactivity measurements in France. To address this issue, LNE-LNHB intends to produce mixed γ-ray reference materials with a known mass activity and a composition as representative as possible of real environmental samples. The use of such materials will also improve the calibration of γ-spectrometry measurement systems due to a more accurate determination of the self-attenuation correction by measuring a known sample whose composition is close to the real one. This paper describes the development of the preparation protocol and the characterization of traceable matrices, spiked with various γ-ray emitters. A PT exercise has been organized with a low density matrix produced. The results of the participants are mentioned in this article. (authors)

  15. Present-day Surface Deformation and Vertical Motion In The Central Alborz (iran) From GPS and Absolute Gravity Measurements.

    Science.gov (United States)

    Masson, F.; Sedighi, M.; Hinderer, J.; Bayer, R.; Nilforoushan, F.; Luck, J.-M.; Vernant, P.; Chéry, J.

    The present tectonic of Iran results from the north-south convergence between Eura- sia and Arabia, with a rate of about 3 cm/year. The deformation of Iran is concen- trated in major belts along the south-western border (Zagros), the southern shore of the Caspian Sea (Alborz) and along the north-east border (Kopet-Dag). The Alborz range is an east-west mountain range which accommodates about 1 cm/year of short- ening between the Central Iranian Desert and the south Caspian Sea. The main tec- tonic structures are generally overthrusting range-parallel faults northward dipping in the south (North Tehran fault, Mosha fault) and southward dipping in the north (Amir fault, North Border fault). The compressive tectonic in the Alborz range is certainly accommodated by large vertical motions along the major faults. To study the defor- mation (horizontal and vertical movement) we have installed and measured a GPS network of 14 sites crossing the Alborz range east of Tehran. The GPS network is measured during campaigns performed each year. In order to well constrained the ver- tical deformation of the southern border of the Alborz, we have performed colocated GPS and absolute gravity measurements in 3 sites, one near the Mosha fault (Abali), one in the frontal thrust area of Tehran and one in the stable central Iranian block (Chesmeh-Sour). After two measures (2000 and 2001), some interesting preliminary results will be shown. The observed gravity variation for one year (Sept. 2000 - Sept. 2001) is -3.0 mgal +-2.6 mgal (Abali), -24.2 mgal +-4.8 mgal (Tehran) and +4.7 mgal +-2.3 mgal (Chesmeh-Sour). These results could be explained respectively by a tec- tonic uplift of about 10 mm/year in the Alborz, water pumping in the Tehran area and (unexplained) subsidence at Chesmeh-Sour. These results will be compared to the first estimation of the deformation obtained by GPS (horizontal repeatability < 3 mm and vertical repeatability < 5 mm).

  16. Gross Alpha Beta Radioactivity in Air Filters Measured by Ultra Low Level α/β Counter

    Science.gov (United States)

    Cfarku, Florinda; Bylyku, Elida; Deda, Antoneta; Dhoqina, Polikron; Bakiu, Erjona; Perpunja, Flamur

    2010-01-01

    Study of radioactivity in air as very important for life is done regularly using different methods in every country. As a result of nuclear reactors, atomic centrals, institutions and laboratories, which use the radioactivity substances in open or closed sources, there are a lot radioactive wastes. Mixing of these wastes after treatment with rivers and lakes waters makes very important control of radioactivity. At the other side nuclear and radiological accidents are another source of the contamination of air and water. Due to their radio toxicity, especially those of Sr90, Pu239, etc. a contamination hazard for human begins exist even at low concentration levels. Measurements of radioactivity in air have been performed in many parts of the world mostly for assessment of the doses and risk resulting from consuming air. In this study we present the results of international comparison organized by IAEA Vienna, Austria for the air filters spiked with unknown Alpha and Beta Activity. For the calibration of system we used the same filters spiked: a) with Pu-239 as alpha source; b) Sr-90 as beta source and also the blank filter. The measurements of air filter samples after calibration of the system are done with Ultra Low Level α/β Counter (MPC 9604) Protean Instrument Corporation. The high sensitivity of the system for the determination of the Gross Alpha and Beta activity makes sure detection of low values activity of air filters. Our laboratory results are: Aα = (0.19±0.01) Bq/filter and Aα (IAEA) = (0.17±0.009) Bq/filter; Aβ = (0.33±0.009) Bq/filter and Aβ (IAEA) = (0.29±0.01) Bq/filter. As it seems our results are in good agreement with reference values given by IAEA (International Atomic Energy Agency).

  17. Measurement of natural radioactivity in animal feed supplements samples by gamma-ray spectrometry

    International Nuclear Information System (INIS)

    The objective of the present work is to determine the radiation levels found in animal feed supplements due to natural radioactivity. Knowledge of the radiation levels in samples of animal and poultry feed supplements is important, because they directly or indirectly form part of the human diet. In order to obtain this data, gamma-ray spectrometry technique was used, employing a p-type HPGe detector of 30% of relative efficiency, with an energy resolution of 1.9 KeV for the 60Co 1332.46 KeV line. The radioactivity due to radionuclides 40K, 226Ra, 238U, 232Th and its respective decay series was measured. The accommodation recipient of the samples was a 250 cc cylindrical plastic container. The 238U series radioactivity was calculated through 214Pb and 214Bi activities, and the 232Th series' activity was calculated through the 228Ac, 212Pb, 212Bi and 208Tl values. The animal feed supplements samples measured in this work were samples received in this laboratory for radioactivity test certification. Among the samples, the radioactivity concentration of Uranium-238, Thorium-232, Radium-226 and Potassium-40 in animal supplement was found to be in the range of 1.4 ± 0.2 to 32.7 ± 5.7 Bq/kg, 1.8 ± 0.2 to 44.5 ± 6.6 Bq/kg, 4.0 ± 1. 2 to 105.2 ± 10.2 Bq/kg and 13.1 ± 3.6 to 397.2 ± 19.9 Bq/kg respectively. (author)

  18. Supplementary radiological measurements at the Maxey Flats radioactive waste burial site, 1976--1977

    International Nuclear Information System (INIS)

    Evaporator effluents were investigated further to better define quantities of radionuclides discharged to the atmosphere and improve decontamination factors assigned to the principal radionuclides observed in the evaporator feed: 3H, 14C, 60Co, 137Cs, 238Pu, and 239Pu. On-site measurements included soil sample profiles taken to a maximum depth of 3.5 m from the trench area and from within the main washes east and south of the site. These measurements provided additional information on the near-surface lateral movement of radioactivity. Radiochemical analysis of a test-well sample showed that all measurable radioactivity was associated with the sediment in the well and the highest specific radioactivity was associated with the smaller particles (< 5 μm). Milk and vegetables were again sampled from a number of nearby farms. As previously reported, tritium was the only radionuclide measured in these foods above ambient levels, although concentrations were less than in similar samples collected during the earlier study. 4 figures, 17 tables

  19. Measurement of the Absolute Magnitude and Time Courses of Mitochondrial Membrane Potential in Primary and Clonal Pancreatic Beta-Cells.

    Science.gov (United States)

    Gerencser, Akos A; Mookerjee, Shona A; Jastroch, Martin; Brand, Martin D

    2016-01-01

    The aim of this study was to simplify, improve and validate quantitative measurement of the mitochondrial membrane potential (ΔψM) in pancreatic β-cells. This built on our previously introduced calculation of the absolute magnitude of ΔψM in intact cells, using time-lapse imaging of the non-quench mode fluorescence of tetramethylrhodamine methyl ester and a bis-oxonol plasma membrane potential (ΔψP) indicator. ΔψM is a central mediator of glucose-stimulated insulin secretion in pancreatic β-cells. ΔψM is at the crossroads of cellular energy production and demand, therefore precise assay of its magnitude is a valuable tool to study how these processes interplay in insulin secretion. Dispersed islet cell cultures allowed cell type-specific, single-cell observations of cell-to-cell heterogeneity of ΔψM and ΔψP. Glucose addition caused hyperpolarization of ΔψM and depolarization of ΔψP. The hyperpolarization was a monophasic step increase, even in cells where the ΔψP depolarization was biphasic. The biphasic response of ΔψP was associated with a larger hyperpolarization of ΔψM than the monophasic response. Analysis of the relationships between ΔψP and ΔψM revealed that primary dispersed β-cells responded to glucose heterogeneously, driven by variable activation of energy metabolism. Sensitivity analysis of the calibration was consistent with β-cells having substantial cell-to-cell variations in amounts of mitochondria, and this was predicted not to impair the accuracy of determinations of relative changes in ΔψM and ΔψP. Finally, we demonstrate a significant problem with using an alternative ΔψM probe, rhodamine 123. In glucose-stimulated and oligomycin-inhibited β-cells the principles of the rhodamine 123 assay were breached, resulting in misleading conclusions.

  20. [Methodological Approaches to the Organization of Counter Measures Taking into Account Landscape Features of Radioactively Contaminated Territories].

    Science.gov (United States)

    Kuznetsov, V K; Sanzharova, N I

    2016-01-01

    Methodological approaches to the organization of counter measures are considered taking into account the landscape features of the radioactively contaminated territories. The current status and new requirements to the organization of counter measures in the contaminated agricultural areas are analyzed. The basic principles, objectives and problems of the formation of counter measures with regard to the landscape characteristics of the territory are presented; also substantiated are the organization and optimization of the counter measures in radioactively contaminated agricultural landscapes. PMID:27245009

  1. National network of measurement of radioactivity in the environment - 2014 management report

    International Nuclear Information System (INIS)

    This report aims at presenting evolutions of the regulation of the French National network of measurement of radioactivity in the environment (the RNM), of its organisation, of the operation of its steering committee and various work groups. It also presents evolutions implemented in its information system and Internet web-site which gives public access to radioactivity measurements. After presentation of the RNM objectives and challenges, of the legal context, and a description of the RNM operation, the report presents the involved actors (ASN, IRSN, members of the RNM). The operation of the steering committee and work-groups is assessed. A chapter addresses the information system: description, data harmonisation and new information exchange protocol, technical support by the IRSN to data producers, interaction between the IRSN and system host, application management and third-party applications acceptance. Next parts propose an overview of laboratories certification, and activities related to communication and publications

  2. DANCE device for measurement of (n, {gamma}) reactions on radioactive species

    Energy Technology Data Exchange (ETDEWEB)

    Wilhelmy, J.B.; Chamberlin, E.P.; Dragowsky, M.R. [Los Alamos National Laboratory, Los Alamos, New Mexico (US)] [and others

    2002-08-01

    DANCE (Device for Advanced Neutron Capture Experiments) is a 4{pi} 162 element BaF{sub 2} array under development at Los Alamos National Laboratory. It is designed to provide high granularity, fast timing and high photon detection efficiency. It will be located at the Los Alamos Neutron Scattering Center where neutrons are produced using 800 MeV proton induced spallation reactions on heavy element production targets. Using the pulsed high neutron fluence available at this facility combined with time of flight techniques it will be possible to make neutron capture measurements in the neutron energy range from eV to 100's keV on rate and radioactive target material at the milligram and below level. These measurements will provide critically needed data for the interpretation of the astrophysical s-process 'branching point' nuclei as well as information for reactions needed in understanding transmutation processes of radioactive species. (author)

  3. DANCE : Device for Measurement of (n.g.) Reactions on radioactive Species /

    Energy Technology Data Exchange (ETDEWEB)

    Chamberlin, E. P. (Edwin P.); Dragowsky, M. (Michael); Fowler, Malcolm M.; Miller, G. G. (Geoffrey G.); Palmer, P. D. (Phillip D.); Pangualt, L. N. (Laurence N.); Rundberg, R. S. (Robert S.); Haight, Robert C.; Seabury, E. H. (Edward H.); Ullmann, J. L. (John L.); Strottman, D. D. (Daniel D.); Heil, M. (Michael); Kaeppeler, F. (Franz K.); Reifarth, R. (Rene); Wisshak, K.; Wilhelmy, J. B. (Jerry B.)

    2001-01-01

    DANCE (Device for Advanced Neutron Capture Experiments) is a 4{pi} 162 element BaF{sub 2} array under development at Los Alamos National Laboratory. It is designed to provide high granularity, fast timing and high photon detection efficiency. It will be located at the Los Alamos Neutron Scattering Center where neutrons are produced using 800 MeV proton induced spallation reactions on heavy element production targets. Using the pulsed high neutron fluence available at this facility combined with time of flight techniques it will be possible to make neutron capture measurements in the neutron energy range from eV to 100's of keV on rare and radioactive target material at the milligram and below level. These measurements will provide critically needed data for the interpretation of the astrophysical s-process 'branching point' nuclei as well as information for reactions needed in understanding transmutation processes of radioactive species.

  4. Calculation of uncertainties associated to environmental radioactivity measurements and their functions. Practical Procedure II

    International Nuclear Information System (INIS)

    Environmental radioactivity measurements are mainly affected by counting uncertainties. In this report the uncertainties associated to certain functions related to activity concentration calculations are determined. Some practical exercise are presented to calculate the uncertainties associated to: a) Chemical recovery of a radiochemical separation when employing tracers (i.e. Pu and Am purification from a sediment sample). b) Indirect determination of a mother radionuclide through one of its daughters (i. e. ''210 Pb quantification following its daughter ''210 Po building-up activity). c) Time span from last separation date of one of the components of a disintegration chain (i.e. Am last purification date from a nuclear weapons following ''241 Am and ''241 Pu measurements). Calculations concerning example b) and c) are based on Baterman equations, regulating radioactive equilibria. Although the exercises here presented are performed with certain radionuclides, they could be applied as generic procedures for other alpha-emitting radioelements

  5. DANCE device for measurement of (n, γ) reactions on radioactive species

    International Nuclear Information System (INIS)

    DANCE (Device for Advanced Neutron Capture Experiments) is a 4π 162 element BaF2 array under development at Los Alamos National Laboratory. It is designed to provide high granularity, fast timing and high photon detection efficiency. It will be located at the Los Alamos Neutron Scattering Center where neutrons are produced using 800 MeV proton induced spallation reactions on heavy element production targets. Using the pulsed high neutron fluence available at this facility combined with time of flight techniques it will be possible to make neutron capture measurements in the neutron energy range from eV to 100's keV on rate and radioactive target material at the milligram and below level. These measurements will provide critically needed data for the interpretation of the astrophysical s-process 'branching point' nuclei as well as information for reactions needed in understanding transmutation processes of radioactive species. (author)

  6. DANCE: Device for Measurement of (n.g.) Reactions on radioactive Species

    International Nuclear Information System (INIS)

    DANCE (Device for Advanced Neutron Capture Experiments) is a 4π 162 element BaF2 array under development at Los Alamos National Laboratory. It is designed to provide high granularity, fast timing and high photon detection efficiency. It will be located at the Los Alamos Neutron Scattering Center where neutrons are produced using 800 MeV proton induced spallation reactions on heavy element production targets. Using the pulsed high neutron fluence available at this facility combined with time of flight techniques it will be possible to make neutron capture measurements in the neutron energy range from eV to 100's of keV on rare and radioactive target material at the milligram and below level. These measurements will provide critically needed data for the interpretation of the astrophysical s-process 'branching point' nuclei as well as information for reactions needed in understanding transmutation processes of radioactive species.

  7. New reaction chamber for transient field g-factor measurements with radioactive ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Illana, A., E-mail: a.illana@csic.es; Perea, A.; Nácher, E.; Orlandi, R.; Jungclaus, A.

    2015-06-11

    A new reaction chamber has been designed and constructed to measure g-factors of short-lived excited states using the Transient Field technique in combination with Coulomb excitation in inverse kinematics. In this paper we will discuss several important aspects which have to be considered in order to successfully carry out this type of measurement with radioactive ion beams, instead of the stable beams used in a wide range of experiments in the past. The technical solutions to the problems arising from the use of such radioactive beams will be exposed in detail and the first successful experiment using the new chamber in combination with MINIBALL cluster detectors at REX-ISOLDE (CERN) will be reported on.

  8. Radioactivity calculation and measurement of spent fuel elements of SPRR-300

    International Nuclear Information System (INIS)

    As one of the original preparation works of SPRR-300 decommissioning, radioactivity of spent fuel elements in the reactor should be estimated by both calculation and experiment. ORIGEN2 is chosen to do the calculation. The ACCESS database of reactor operation history is built, whose tables is connected by load ID. The needed input history data is obtained using inquiries. Assistant programs, such as Operation Data Processing Program, Composition Data Processing Program, etc. are developed to change the original data into ORIGEN2 input file. In the output file, there are nuclides data, gamma activity data, and so on. Gamma spectrum of three elements in three distances is measured. radioactivity of three nuclides measured is compared to that calculated. The two kinds of data are at the same order. So the data calculated are believable. The comparison shows that the data calculated are reliable. (authors)

  9. Preliminary results of natural radioactivity measurements in the southern part of Ethiopia

    Energy Technology Data Exchange (ETDEWEB)

    Wollel Tiruneh, Getachew [Ethiopian Radiation Protection Authority, PO Box 20486 code 1000, Addis-Ababa (Ethiopia)], E-mail: gwollel@yahoo.com; Wodaje Kebede, Worku [Ethiopian Radiation Protection Authority, PO Box 20486 code 1000, Addis-Ababa (Ethiopia)

    2008-11-15

    The paper presents the first results of natural radioactivity measurements in the Southern part of Ethiopia (Bale Zone-Oromiya Regional State). The preliminary results indicate that radiation levels in the mining areas of Kallido Mountain are elevated compared with those in the town of Negele Borena (background area). Both external gamma radiation and alpha surface contamination levels are significantly elevated above local background levels.

  10. Preliminary results of natural radioactivity measurements in the southern part of Ethiopia

    International Nuclear Information System (INIS)

    The paper presents the first results of natural radioactivity measurements in the Southern part of Ethiopia (Bale Zone-Oromiya Regional State). The preliminary results indicate that radiation levels in the mining areas of Kallido Mountain are elevated compared with those in the town of Negele Borena (background area). Both external gamma radiation and alpha surface contamination levels are significantly elevated above local background levels

  11. Environmental radioactivity measurements at BNL during the year following the Chernobyl accident

    International Nuclear Information System (INIS)

    The accident which destroyed Unit 4 of the Chernobyl Nuclear Power Station on 26 April 1986 provided the world's scientists with an opportunity, unique in recent years, to study many of the processes which follow the release of large quantities of radioactivity into the atmosphere. BNL undertook a wide ranging programme of environmental measurements after the accident, the immediate aim being to supply HM Government with data to help assess the radiological consequences to the UK population. As it became clear that the UK dose commitment was relatively low, the thrust of the measurements began to be concentrated on airborne radioactivity and the movement of nuclides in the grass-soil system. The aim of these studies was to assess dispersion and diffusion of radioactivity in these particular compartments of the environment. The measurements have continued over the twelve month period since the Chernobyl accident. This report aims to disseminate the year's data and to offer some initial interpretations of the trends. (U.K.)

  12. Measuring chamber of the device for determination of the wear particle radioactivity

    International Nuclear Information System (INIS)

    Proposed is a measuring chamber for a device designed for determining radioactivity of wear particles in the system of lubrication of an internal-combustion engine. The chamber consists of of a case with two chambers for supplying oil to a cylindrical cavity of the chamber and of one channel for offtake from the cavity. A characteristic feature of the invention is that for increasing the accuracy of measurements the supplying channels are tangetial relative to the internal surface of the cavity, and the offtake channel is radial and located between them. The application of the chamber decrease measurement errors from 20-30% to 5-6%

  13. Report from the results of measurements of radioactive contaminations after Chernobyl accident

    International Nuclear Information System (INIS)

    The results of measurements of radioactive contamination carried out in Cracow during the first days after Chernobyl accident are presented. The particular radioisotopes were determined by gamma spectroscopy. In the period from April 28th to morning hours of May 1st 1986 radiation measurements concerned above all air. After rains considerable contamination of earth's surface was detected and measurements were concentrated on soil contamination. There were also examined water and food samples. The concentration of strontium radioisotopes was determined too. (M. F. W.)

  14. A state of the art on the measurement of the radioactive contamination in the inner surface of the pipe

    Energy Technology Data Exchange (ETDEWEB)

    Seo, B. K.; Lee, K. W.; Oh, W. Z.; Woo, Z. H.; Kim, G. H

    2004-11-15

    Many radioactive wastes are produced during the decommissioning of the nuclear facilities. Their radiological characterization must be estimated for disposal and reuse. Especially, it is very difficult to measure the in-pipe surface contamination, because of the difficulty of access. So, it is necessary to develop the measurement technology for the in-pipe surface contamination. In the developed counties of the decommissioning technology such as America, Japan etc. they developed the measuring device for the in-pipe radioactive contamination and performed the capacity estimation. In this report, the state of the art on the measurement of the radioactive contamination in the inner surface of the pipe and radiation detector for measuring the each radiation(alpha, beta, and gamma) proceeding around the world was analyzed. By means of such technology analysis, we will develop the measuring technology of the radioactive contamination in the inner surface of the pipe and apply to the decommissioning sites.

  15. A state of the art on the measurement of the radioactive contamination in the inner surface of the pipe

    International Nuclear Information System (INIS)

    Many radioactive wastes are produced during the decommissioning of the nuclear facilities. Their radiological characterization must be estimated for disposal and reuse. Especially, it is very difficult to measure the in-pipe surface contamination, because of the difficulty of access. So, it is necessary to develop the measurement technology for the in-pipe surface contamination. In the developed counties of the decommissioning technology such as America, Japan etc. they developed the measuring device for the in-pipe radioactive contamination and performed the capacity estimation. In this report, the state of the art on the measurement of the radioactive contamination in the inner surface of the pipe and radiation detector for measuring the each radiation(alpha, beta, and gamma) proceeding around the world was analyzed. By means of such technology analysis, we will develop the measuring technology of the radioactive contamination in the inner surface of the pipe and apply to the decommissioning sites

  16. Crosslinked plastic scintillators: A new detection system for radioactivity measurement in organic and aggressive media

    International Nuclear Information System (INIS)

    Highlights: • A crosslinked plastic scintillatior for radioactivity measurement was developed. • The effect of C-PS composition in the detection efficiency was evaluated. • C-PS permits the measurement of radioactivity in organic and aggressive media. • C-PS exhibits high detection efficiency in water and even higher in organic media. • C-PS exhibits good reproducibility under different polymerisations with elevated yield. - Abstract: The measurement of radioactive solutions containing organic or aggressive media may cause stability problems in liquid and plastic scintillation (PS) techniques. In the case of PS, this can be overcome by adding a crosslinker to the polymer structure. The objectives of this study are to synthesise a suitable crosslinked plastic scintillator (C-PS) for radioactivity determination in organic and aggressive media. The results indicated that an increase in the crosslinker content reduces the detection efficiency and a more flexible crosslinker yields higher detection efficiency. For the polymer composition studied, 2,5-diphenyloxazole (PPO) is the most adequate fluorescent solute and an increase in its concentration causes little change in the detection efficiency. The inclusion of a secondary fluorescent solute 1,4-bis-2-(5-phenyloxazolyl) benzene (POPOP) improves the C-PS radiometrical characteristics. For the final composition chosen, the synthesis of the C-PS exhibits good reproducibility with elevated yield. The obtained C-PS also displays high stability in different organic (toluene, hydrotreated vegetable oil (HVO) and methanol) and aggressive media (hydrochloric acid, nitric acid and hydrogen peroxide). Finally, the C-PS exhibits high detection efficiency both in water and in aggressive media and can also be applied in organic media showing similar or even higher detection efficiency values

  17. Measuring, and identifying predictors of, women's perceptions of three types of breast cancer risk: population risk, absolute risk and comparative risk

    OpenAIRE

    Apicella, C.; Peacock, S.J.; Andrews, L.; Tucker, K.; Daly, M B; Hopper, J L

    2009-01-01

    Although a key function of cancer genetics services is to provide risk information, to date there has been little consistency in the way in which breast cancer risk perception has been measured. The aims of the study were to measure estimates of (i) population risk, (ii) absolute risk and (iii) comparative risk of developing breast cancer for Ashkenazi Jewish women, and to determine predictors of breast cancer risk perception. Of 152 women, 107 (70%) completed all questions. The mean (s.d.) e...

  18. Radioactivity concentration measurement and analysis in construction floor materials of Korea

    Science.gov (United States)

    Kim, G. H.; Lee, H. K.; Cho, J. H.

    2016-05-01

    In this study, the radioactive concentrations contained in samples of commonly used building floor materials were measured. This result can be used as basic information for public health and the environment. Among building floor materials, samples of induction blocks, cement bricks, artificial granite blocks and compact high-pressure blocks were chosen and used. A detailed gamma nuclide analysis was performed with a multichannel analyzer by putting these samples on a high-purity germanium detector which is a semiconductor detector. In order to measure the concentration of radionuclides, a spectrum file was obtained by analyzing the concentration of gamma radionuclides and setting the measurement time as 1000, 4000, 7000 and 10,000 s. According to the study results, K-40, Bi-214, Pb-214, Ra-226 and U-235 were detected in the induction blocks measured at 10,000 s and K-40, Th-230, Bi-214, Pb-214, Ra-226 and Na-22 were detected in the cement bricks measured at 10,000 s. K-40, Bi-214, Pb-214, Th-234, U-235 and Ra-223 were detected in the artificial granite blocks measured at 10,000 s and K-40, Bi-214, Pb-214, Th-234, Ra-226, Ra-223 and Mn-54 were detected in the compact high-pressure blocks. In conclusion, low-level radioactivity was detected in building floor materials, so it is thought that measures to reduce radioactivity and further studies on this will be needed.

  19. Environmental radioactivity measurements and applications - Difficulties, current status and future trends

    Science.gov (United States)

    Anagnostakis, Marios J.

    2015-11-01

    For several decades natural and artificial radioactivity in the environment have been extensively studied all around the world. Nuclear accidents - mainly that of Chernobyl - have led to the development of the field of radioecology, while detector systems and techniques - with predominant that of γ-spectrometry - have been continuously developed through the years to meet researchers' needs. The study of natural radionuclides that was originally limited to 226Ra, 232Th and 40K was then extended to include radionuclides such as 234Th, 210Pb, 235U and 7Be, which allowed the study of radioactive equilibrium. Besides their importance from the radiation protection point of view, many radionuclides are also used as tracers of environmental processes, such as aerosol and transportation of air masses studies (7Be, 10Be, 22Na), soil erosion, sedimentation and geochronology (210Pb, 137Cs), marine ecosystems studies and studies related to climate change. All these studies require specialized samplings strategies and sampling preparation techniques as well as high quality measurements, while the improvement of detection limits is often of vital importance. This work is a review of environmental radioactivity measurements and applications, mainly focused in the field of γ-spectrometry, for which difficulties and limitations will be presented, together with future trends, new challenges and applications.

  20. The method of radioactive tracer for measuring the amount of inorganic nanoparticles in biological samples

    Science.gov (United States)

    Buzulukov, Yu; Antsiferova, A.; Demin, V. A.; Demin, V. F.; Kashkarov, P.

    2015-11-01

    The method to measure the mass of inorganic nanoparticles in biological (or any other samples) using nanoparticles labeled with radioactive tracers is developed and applied to practice. The tracers are produced in original nanoparticles by radioactive activation of some of their atomic nuclei. The method of radioactive tracers demonstrates a sensitivity, specificity and accuracy equal or better than popular methods of optical and mass spectrometry, or electron microscopy and has some specific advantages. The method can be used for study of absorption, distribution, metabolism and excretion in living organism, as well as in ecological and fundamental research. It was used in practice to study absorption, distribution, metabolism and excretion of nanoparticles of Ag, Au, Se, ZnO, TiO2 as well as to study transportation of silver nanoparticles through the barriers of blood-brain, placenta and milk gland of rats. Brief descriptions of data obtained in experiments with application of this method included in the article. The method was certified in Russian Federation standard system GOST-R and recommended by the Russian Federation regulation authority ROSPOTREBNADZOR for measuring of toxicokinetic and organotropy parameters of nanoparticles.

  1. Measurements of the radioactive inventory of the old effluent pipe line on the BNL site

    International Nuclear Information System (INIS)

    When Berkeley Nuclear Laboratory (BNL) was built, a 3 inch cast iron pipe was laid to carry the radioactive effluent from the BNL effluent treatment plant to the power station for further treatment and/or discharge. In 1980/81 a new pipe line was installed and since then the old line has remained unused. As part of the refurbishment of certain parts of the BNL site currently in progress, the majority of the pipe is to be dug up in two stages, although a small length of the pipe which runs under existing foundations will be left in the ground. This report gives the radioactive inventory of the pipe based on measurements made during the first state of removal. Samples from the trench dug to expose the pipe were taken before and after the removal of the pipe and analysed to determine whether the pipe had leaked and the level of contamination caused by the pipe's removal. (author)

  2. Measurement of natural radioactivity level of fly ash from certain thermoelectricity plant

    International Nuclear Information System (INIS)

    In order to have a comprehensive understanding of radioactivity level of fly ash and its application in a thermoelectricity group in Xi'an, five samples were collected from fly ash stack of the group. Natural radionuclide contents in samples were measured by a low background anti-Compton HPGe Gamma spectrometer. The contents of 238U, 226Ra, 232Th, 40K were 67.6 Bq/kg, 79.5 Bq/kg, 72.7 Bq/kg, 190 Bq/kg, respectively. According to national standard GB 6566-2001, the result indicates the radioactivity level of all samples is at the normal background level and the fly ash can be used as Category A building materials. The future application of the fly ash in the thermoelectricity group was also analyzed. (authors)

  3. Crude radioactivity measure of coal dust based on HPGe γ-ray spectrometer

    International Nuclear Information System (INIS)

    This paper introduced the composing and working principle of a low background anti-Compton HPGe γ spectrometer, then measured the crude radioactivity of five coal dust samples that collected from Da Tang thermoelectricity factory in Xi'an. The average contents of 238U, 226Ra, 232Th, 40K were 67.6 Bq/kg, 79.5Bq/kg, 72.7Bq/kg and 190 Bq/kg. The result reveals that the radioactivity level of coal dust is at a normal level and the coal dust can be used as the A kind building materials according to national standard GB6566-2001, its application range has no limit. (authors)

  4. Visualisation of Radioactivity in Real-Time on a Tablet Measured by a Hybrid Pixel Detector

    CERN Document Server

    AUTHOR|(SzGeCERN)749233; Bantel, Michael; Grünhaupt, Ulrich

    This work explores a method to visualise and interact with radioactivity over time and space by means of augmented reality on a screen. A prototype, iPadPix, was built to demonstrate use as an intuitive new tool for educative and training purposes. Measured by a hybrid pixel detector, Timepix, traces of radioactive decays are displayed in real- time on a mobile device. Its detection principle and properties are detailed as well as the calibration of the sensor. An embedded board is used to process and forward the sensor data to a tablet over a wireless network connection. Software was developed to processes and overlay signatures of ionising radiation and particles on a live camera feed. It is described here and published as open source.

  5. Measuring radioactivity level in various types of rice using NaI (Tl detector

    Directory of Open Access Journals (Sweden)

    Laith A. Najam

    2015-03-01

    Full Text Available A study of long- lived gamma emitting radionuclides in rice consumed in Nineveh Province (IRAQ were performed. The study targeted the natural radionuclides 226Ra, 232Th and 40K .The rice samples originated from seven different countries. NaI(Tl detector was used to measure the radionuclides level. The radioactivity concentrations of 226Ra, 232Th and 40K ranged from 51.15 to 109.26 Bq/kg,13.67 to 71.97 Bq/kg and 231.87 to 691.71Bq/kg. In order to evaluate the radiological hazard of the natural radioactivity, radium equivalent activity, gamma absorbed dose rate, internal and external hazard indices , gamma index and finally alpha index have been calculated . Hence rice consumption in Nineveh province (IRAQ is radiologically safe for the presence of the investigated radionuclides.

  6. Measurement of the Absolute Magnitude and Time Courses of Mitochondrial Membrane Potential in Primary and Clonal Pancreatic Beta-Cells.

    Science.gov (United States)

    Gerencser, Akos A; Mookerjee, Shona A; Jastroch, Martin; Brand, Martin D

    2016-01-01

    The aim of this study was to simplify, improve and validate quantitative measurement of the mitochondrial membrane potential (ΔψM) in pancreatic β-cells. This built on our previously introduced calculation of the absolute magnitude of ΔψM in intact cells, using time-lapse imaging of the non-quench mode fluorescence of tetramethylrhodamine methyl ester and a bis-oxonol plasma membrane potential (ΔψP) indicator. ΔψM is a central mediator of glucose-stimulated insulin secretion in pancreatic β-cells. ΔψM is at the crossroads of cellular energy production and demand, therefore precise assay of its magnitude is a valuable tool to study how these processes interplay in insulin secretion. Dispersed islet cell cultures allowed cell type-specific, single-cell observations of cell-to-cell heterogeneity of ΔψM and ΔψP. Glucose addition caused hyperpolarization of ΔψM and depolarization of ΔψP. The hyperpolarization was a monophasic step increase, even in cells where the ΔψP depolarization was biphasic. The biphasic response of ΔψP was associated with a larger hyperpolarization of ΔψM than the monophasic response. Analysis of the relationships between ΔψP and ΔψM revealed that primary dispersed β-cells responded to glucose heterogeneously, driven by variable activation of energy metabolism. Sensitivity analysis of the calibration was consistent with β-cells having substantial cell-to-cell variations in amounts of mitochondria, and this was predicted not to impair the accuracy of determinations of relative changes in ΔψM and ΔψP. Finally, we demonstrate a significant problem with using an alternative ΔψM probe, rhodamine 123. In glucose-stimulated and oligomycin-inhibited β-cells the principles of the rhodamine 123 assay were breached, resulting in misleading conclusions. PMID:27404273

  7. Measurement of the absolute Quantum Efficiency of Hamamatsu model R11410-10 photomultiplier tubes at low temperatures down to liquid xenon boiling point

    CERN Document Server

    Lyashenko, Alexey; Snyder, Adam; Wang, Hanguo; Arisaka, Katsushi

    2014-01-01

    We report on the measurements of the absolute Quantum Efficiency(QE) for Hamamatsu model R11410-10 PMTs specially designed for the use in low background liquid xenon detectors. QE was measured for five PMTs in a spectral range between 154.5 nm to 400 nm at low temperatures down to -110$^0$C. It was shown that during the PMT cooldown from room temperature to -110 $^0$C (a typical PMT operation temperature in liquid xenon detectors), the absolute QE increases by a factor of 1.1 - 1.15 at 175 nm. The QE growth rate with respect to temperature is wavelength dependent peaking at about 165 nm corresponding to the fastest growth of about -0.07 %QE/$^{0}C$ and at about 200 nm corresponding to slowest growth of below -0.01 %QE/$^{0}C$. A dedicated setup and methods for PMT Quantum Efficiency measurement at low temperatures are described in details.

  8. Best practice guide for radioactivity measurement laboratories in a post-accident situation

    International Nuclear Information System (INIS)

    Published for laboratories likely to be asked to perform radioactivity measurements at the time of or after a radiological or nuclear accident in France or abroad, this guide aims at defining the best practices in terms of laboratory organisation (sample flow management, personnel radioprotection, sample identification and recording, sample cross-contamination risks, result transmission, archiving of data, results and samples, waste dismissal), and in terms of metrology (adaptation to needs in terms of detection limit and measurement uncertainty, preferred use of gamma spectrometry, analysis strategies)

  9. Inelastic mean-free paths and surface excitation parameters by absolute reflection electron-energy loss measurements

    Science.gov (United States)

    Nagatomi, T.; Goto, K.

    2007-06-01

    An analytical approach is proposed for simultaneously determining the inelastic mean-free path (IMFP), the surface excitation parameter (SEP), and the differential SEP (DSEP) in absolute units from an absolute reflection electron energy loss spectroscopy (REELS) spectrum under the assumption that the normalized differential inelastic mean-free path for bulk excitations and the elastic scattering cross section are known. This approach was applied to an analysis of REELS spectra for Ni, and the IMFP, SEP, and DSEP in Ni for 300-3000eV electrons were determined. The resulting IMFPs showed good agreement with those calculated using the TPP-2M predictive equations and with those calculated from optical data. The deduced DSEPs show a reasonable agreement with those theoretically predicted. The obtained SEPs were compared with those calculated using several predictive equations. The present SEP results agreed well with the Chen formula with a material parameter proposed for Ni. The present approach has high potential for the experimental determination of IMFPs, SEPs, and DSEPs in absolute units.

  10. Radioactive contamination of edible mushrooms. Current measured values (State: 2013); Radioaktive Kontamination von Speisepilzen. Aktuelle Messwerte (Stand: 2013)

    Energy Technology Data Exchange (ETDEWEB)

    Kabai, Eva; Hiersche, Lydia

    2015-01-15

    The report includes the current measured values (2013) of the radioactive contamination of edible mushrooms in Southern Germany (Cs137 and K-40) and discusses the relation radio-cesium intake and radiation exposure now and and the future.

  11. Radiation measurements of excavated items at a radioactive-waste burial site

    Science.gov (United States)

    Stromswold, D. C.; Alvarez, J. L.; Ludowise, J. D.

    1995-12-01

    Radiation measurements on items excavated from a radioactive-waste burial ground were part of a field test of excavation techniques for the cleanup of subsurface sites. The waste resulted from plutonium production for nuclear weapons at Hanford, WA. The radiation measurements investigated techniques for classifying bulk waste for placement into a permanent disposal facility. Hand-held γ-ray survey instruments measured exposure rates (mR/h) from contaminated dirt and radioactive objects as they were removed by heavy excavation equipment. Gamma-ray detectors mounted on the excavation equipment provided additional data that were transmitted by radio. Exposure rates from identifiable objects (e.g. specific reactor components) were compared with expected exposure rates calculated from site-disposal records and computer modeling. Selected objects were subjected to additional on-site measurements using a high-purity germanium detector. Detected nuclides included 60Co, 137Cs, 152,154Eu, and 108mAg. A large-volume neutron detector checked for possible transuranic nuclides. Alpha and β spectrometry also were tested. but their utility for this application was limited due to the short range of the particles and the difficulty of maintaining a repeatable measurement geometry in the field.

  12. Radio activity measurements

    International Nuclear Information System (INIS)

    The following leaflets are contained in this folder concerning radioactivity measurements and standards, and calibration services available at the National Physical Laboratory: Calibration of 226Ra Standards, Radioactivity Standards available, Type-271 radionuclide calibrator, Surface-contamination standards, Absolute counting, Gas counting, Gamma-ray spectrometry, Beta-ray spectrometry, Mass separator, On-line computing and electronic instrumentation. (U.K.)

  13. Measurement of induced radioactivities for the evaluation of internal exposure at high energy accelerator facilities

    International Nuclear Information System (INIS)

    At high-intense and high energy accelerator facilities, accelerator components are exposed to primary and/or secondary high energy particles during machine operation. As a result, these become radioactive and the radioactivities are accumulated with operation time. When workers engage in maintenance work such as cutting, welding, etc. in the areas with residual activities. These become a source of internal exposure through the inhalation of radioactive airbornes as well as a source of external exposure. The estimation of external doses to workers is relatively easy by directly measuring the radiation fields by pertinent radiation counters. While the internal dose depends very much on the kinds of radioactive nuclides and their concentrations in air. In a routine survey for internal dose evaluation, airborne activities are filtered and their activities on the filter are measured with a GM counter with an automatic sample changer at KEK (the High Energy Accelerator Research Organization). Ordinarily many filter samples have to be measured with a relatively short counting time, so this gross beta counting is a practical way in a routine procedure. In order to evaluate the internal dose from these countings, it is necessary to examine precisely the kinds of radioactivities and their concentrations collected on the filters by a Ge semiconductor detector, and the correlation between the gross beta counting and the actual dose has to be made clear in advance. However, kinds of radioactivities and their concentrations depend very much on production rates of individual nuclides and time variations after beam-off. First, in order to elucidate the production rates of individual nuclides and their concentrations after beam-off, metal samples of Al, Fe, Cu, Steel, etc., which are principal materials used in accelerator facilities, were irradiated at various places in the tunnel of KEK-500MeV and 12GeV proton synchrotrons. By using these irradiated samples, we examined

  14. Air radioactivity levels following the Fukushima reactor accident measured at the Laboratoire Souterrain de Modane, France.

    Science.gov (United States)

    Loaiza, P; Brudanin, V; Piquemal, F; Reyss, J-L; Stekl, I; Warot, G; Zampaolo, M

    2012-12-01

    The radioactivity levels in the air of the radionuclides released by the Fukushima accident were measured at the Laboratoire Souterrain de Modane, in the South-East of France, during the period 25 March-18 April 2011. Air-filters from the ventilation system exposed for one or two days were measured using low-background gamma-ray spectrometry. In this paper we present the activity concentrations obtained for the radionuclides (131)I, (132)Te, (134)Cs, (137)Cs, (95)Nb, (95)Zr, (106)Ru, (140)Ba/La and (103)Ru. The activity concentration of (131)I was of the order of 100 μBq/m(3), more than 100 times higher than the activities of other fission products. The highest activities of (131)I were measured as a first peak on 30 March and a second peak on 3-4 April. The activity concentrations of (134)Cs and (137)Cs varied from 5 to 30 μBq/m(3). The highest activity concentration recorded for Cs corresponded to the same period as for (131)I, with a peak on 2-3 April. The results of the radioactivity concentration levels in grass and mushrooms exposed to the air in the Modane region were also measured. Activity concentrations of (131)I of about 100 mBq/m(2) were found in grass.

  15. Instrumentation, Equipment and Methods for the In Vivo Measurement of Radioactive Material in the Body

    International Nuclear Information System (INIS)

    The current applications for the in vivo measurement of radioactive material can be divided into three broad categories: (1) occupational exposure monitoring, (2) monitoring of the public, and (3) medical monitoring. The focus of this chapter is on occupational exposure monitoring that is part of an internal dosimetry program for monitoring workers for intakes and assessing the dose consequences of an intake. In the 1920's when electroscopes were first used to measure radium in the body of dial painters issues affecting the measurement accuracy were identified related to external contamination interferences, properly measuring the instrument background, need for measurement QC, microphonic interferences, shielding and others. The sophistication of the radiation detection instrumentation has evolved to the point where most systems today employ one or more detectors primarily either sodium iodide or germanium. Many different styles of detectors and cryostat designs are used at different facilities. However, the same issues identified in the 1920's are still issues today. The in vivo measurement systems are calibrated with anthropometric phantoms that simulate the body or parts of the body. Whole body phantoms, torso phantoms, lung phantoms, thyroid phantoms and skeletal phantoms are just some of the different types used.The systems are typically shielded with low background materials such as pre-World War II steel from battleships. Interferences can come from naturally occurring radioactive material, medically administered radiopharmaceuticals, equipment instability, non-ionizing electromagnetic radiation and other sources. These contribute to the uncertainties in measurement results that can range from 10% to 1000% or more depending on the measurement system, the energy of the radiation associated with the radionuclide to be measured, the accuracy of the phantom versus the person especially how well the distributions of activity match.

  16. Post-Chernobyl accident radioactivity measurements in the Comunidad Autonoma de Valencia, Spain.

    Science.gov (United States)

    Ortiz, J; Ballesteros, L; Serradell, V

    1992-03-01

    Increased atmospheric radioactivity after the accident in Chernobyl was first detected on air filters. Measurements were begun in Valencia on May 2, 1986, with the maximum activity being observed around May 3-4, 1986. As a consequence of this accident, annual campaigns of measurements on migrating birds (several species of aquatic birds and song-thrushes) were started. The data corresponding to the campaign immediately after the accident (1986/87) show a generalized contamination (approximately 50% of the measured specimens). Significant levels of 134Cs, 137Cs and 110Agm were found. It is important to note that 110Agm is only present in Aythya ferina. In the successive campaigns in 1988/89 and 1989/91 few samples were found to be contaminated and only 137Cs was identified. Strontium-90 was measured and identified in some specimens, mainly in their bones.

  17. Body surface monitor for measuring radioactive contamination of the general population after a nuclear accident

    International Nuclear Information System (INIS)

    A new body surface monitor for monitoring the surface radioactive contamination of the general population living and working around the site in the early stages of a nuclear accident has been designed. The body surface monitors will be installed in a medium-sized bus with a thyroid counter and moved to the place where measurement is required. The different characteristics needed for the body surface monitor to measure the general population from those of monitors used in nuclear power stations are discussed. The detection sensitivity of the plastic scintillator was measured under various geometric conditions and the Minimum Detectable Activity (MDA) was found to be lower than 1 Bq/cm2 in a 10-second count time. Two body surface monitors can measure 2,880 persons in eight hours. (author)

  18. Dispersive white light combined with a frequency-modulated continuous-wave interferometer for high-resolution absolute measurements of distance.

    Science.gov (United States)

    Rovati, L; Minoni, U; Docchio, F

    1997-06-15

    A nonincremental interferometer for the absolute measurement of distances is presented. The measuring technique is based on both dispersive white-light (DWL) interferometry and frequency-modulated continuous-wave (FMCW) interferometry. The proposed configuration integrates both techniques in the same interferometer by use of a single laser diode. This solution enables the results from the coarse measurements from the FMCW interferometer to be combined with the fine readouts from the DWL interferometer. Preliminary experimental results confirm the capability of the system to combine the advantages of the two techniques. PMID:18185683

  19. Prism-pair interferometry by homodyne interferometers with a common light source for high-accuracy measurement of the absolute refractive index of glasses

    International Nuclear Information System (INIS)

    A prism-pair interferometer comprising two homodyne interferometers with a common light source was developed for high-precision measurements of the refractive index of optical glasses with an uncertainty of the order of 10-6. The two interferometers measure changes in the optical path length in the glass sample and in air, respectively. Uncertainties in the absolute wavelength of the common light source are cancelled out by calculating a ratio between the results from the interferometers. Uncertainties in phase measurement are suppressed by a quadrature detection system. The combined standard uncertainty of the developed system is evaluated as 1.1x10-6.

  20. Radioactivity measurements on migrating birds (Turdus philomelos) captured in the Comunidad Valenciana (Spain).

    Science.gov (United States)

    Navarro, E; Roldán, C; Cervera, J; Ferrero, J L

    1998-01-19

    The radionuclides 137Cs, 134Cs and 90Sr have been measured in edible tissues and bones of migratory birds (song-thrushes, Turdus philomelos) from central and northern Europe and captured in the Comunidad Valenciana, Spain in the 1994 autumn-winter season. Eight years after the Chernobyl accident, extensive agricultural lands in Europe are still contaminated and this study shows that there was a transfer of radioactive isotopes to the captured migratory song-thrushes. The whole-body dose commitment to humans consuming these birds is estimated.

  1. Measuring radioactivity level in various types of rice using NaI (Tl) detector

    OpenAIRE

    Laith A. Najam; Nada F. Tawfiq; Fouzey H. Kitha

    2015-01-01

    A study of long- lived gamma emitting radionuclides in rice consumed in Nineveh Province (IRAQ) were performed. The study targeted the natural radionuclides 226Ra, 232Th and 40K .The rice samples originated from seven different countries. NaI(Tl) detector was used to measure the radionuclides level. The radioactivity concentrations of 226Ra, 232Th and 40K ranged from 51.15 to 109.26 Bq/kg,13.67 to 71.97 Bq/kg and 231.87 to 691.71Bq/kg. In order to evaluate the radiological hazard of the na...

  2. The observatories for the radioactivity. results of measures; Les observatoires de la radioactivite. resultats des mesures

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This IPSN's report on the monitoring of the radioactivity in France provides many graphs and tables of measures results recorded during the year 2000. The graphs show the activity levels (Bq or Bq fraction, per mass or volume unit) of many radionuclides in selected indicators and for levels upper than the detection limits. The metrology and the selected samples are presented. These samples are different for the three types of observatories: atmospheric, coast and terrestrial observatories. A chronological account of the results from 1959 to 2000 is also provided for the Cesium 137 and the beryllium 7 in the aerosols. (A.L.B.)

  3. Calculation of uncertainties associated to environmental radioactivity measurements and their functions. Practical Procedure

    International Nuclear Information System (INIS)

    This report summarizes the procedure used to calculate the uncertainties associated to environmental radioactivity measurements, focusing on those obtained by radiochemical separation in which tracers have been added. Uncertainties linked to activity concentration calculations, isotopic rat iso, inventories, sequential leaching data, chronology dating by using C.R.S. model and duplicate analysis are described in detail. The objective of this article is to serve as a guide to people not familiarized with this kind of calculations, showing clear practical examples. The input of the formulas and all the data needed to achieve these calculations into the Lotus 1, 2, 3 WTN is outlined as well. (Author) 13 refs

  4. Calculation of uncertainties associated to environmental radioactivity measurements and their functions. Practical Procedure

    International Nuclear Information System (INIS)

    This report summarizes the procedure used to calculate the uncertainties associated to environmental radioactivity measurements. focusing on those obtained by radiochemical separation in which tracers have been added. Uncertainties linked to activity concentration calculations, isotopic ratio, inventories, sequential leaching data, chronology dating by using C.R.S model and duplicate analysis are described in detail. The objective of this article is to serve as a guide to people not familiarized with this kind of calculations, showing clear practical examples. The input of the formulas and all the data needed to achieve these calculations into the Lotus 1,2,3, WIN is outlined as well. (Author)

  5. A critical review of measures to reduce radioactive doses from drinking water and consumption of freshwater foodstuffs.

    Science.gov (United States)

    Smith, J T; Voitsekhovitch, O V; Håkanson, L; Hilton, J

    2001-01-01

    Following a radioactive fallout event, there are a number of possible intervention measures to reduce radioactive doses to the public via the surface water pathway. We have critically reviewed the options available to decision-makers in the event of radioactive contamination of surface waters. We believe that the most effective and viable measures to reduce radioactivity in drinking water are those which operate at the water treatment and distribution stage. Intervention measures to reduce concentrations of radioactivity in rivers and reservoirs are expected to be much less viable and efficient at reducing doses via the drinking water pathway. Bans on consumption of freshwater fish can be effective, but there are few viable measures to reduce radioactivity in fish prior to the preparation stage. Lake liming and biomanipulation have been found to be ineffective for radiocaesium, although the addition of potassium to lakewaters appears promising in some situations. Lake liming may be effective in reducing radiostrontium in fish, though this has not, to our knowledge, been tested. De-boning fish contaminated by strontium is probably the most effective food preparation measure, but salting and freezing can also reduce radiocaesium concentrations in fish. The provision of accurate information to the public is highlighted as a key element of countermeasure implementation.

  6. A critical review of measures to reduce radioactive doses from drinking water and consumption of freshwater foodstuffs

    International Nuclear Information System (INIS)

    Following a radioactive fallout event, there are a number of possible intervention measures to reduce radioactive doses to the public via the surface water pathway. We have critically reviewed the options available to decision-makers in the event of radioactive contamination of surface waters. We believe that the most effective and viable measures to reduce radioactivity in drinking water are those which operate at the water treatment and distribution stage. Intervention measures to reduce concentrations of radioactivity in rivers and reservoirs are expected to be much less viable and efficient at reducing doses via the drinking water pathway. Bans on consumption of freshwater fish can be effective, but there are few viable measures to reduce radioactivity in fish prior to the preparation stage. Lake liming and biomanipulation have been found to be ineffective for radiocaesium, although the addition of potassium to lakewaters appears promising in some situations. Lake liming may be effective in reducing radiostrontium in fish, though this has not, to our knowledge, been tested. De-boning fish contaminated by strontium is probably the most effective food preparation measure, but salting and freezing can also reduce radiocaesium concentrations in fish. The provision of accurate information to the public is highlighted as a key element of countermeasure implementation

  7. A critical review of measures to reduce radioactive doses from drinking water and consumption of freshwater foodstuffs

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.T. E-mail: j.t.smith@ife.ac.ukjtse@ceh.ac.uk; Voitsekhovitch, O.V.; Haakanson, L.; Hilton, J

    2001-07-01

    Following a radioactive fallout event, there are a number of possible intervention measures to reduce radioactive doses to the public via the surface water pathway. We have critically reviewed the options available to decision-makers in the event of radioactive contamination of surface waters. We believe that the most effective and viable measures to reduce radioactivity in drinking water are those which operate at the water treatment and distribution stage. Intervention measures to reduce concentrations of radioactivity in rivers and reservoirs are expected to be much less viable and efficient at reducing doses via the drinking water pathway. Bans on consumption of freshwater fish can be effective, but there are few viable measures to reduce radioactivity in fish prior to the preparation stage. Lake liming and biomanipulation have been found to be ineffective for radiocaesium, although the addition of potassium to lakewaters appears promising in some situations. Lake liming may be effective in reducing radiostrontium in fish, though this has not, to our knowledge, been tested. De-boning fish contaminated by strontium is probably the most effective food preparation measure, but salting and freezing can also reduce radiocaesium concentrations in fish. The provision of accurate information to the public is highlighted as a key element of countermeasure implementation.

  8. Measurement of cesium emissions during the vitrification of simulated high level radioactive waste

    International Nuclear Information System (INIS)

    In the Defense Waste Processing Facility at the Savannah River Site, it is desired to eliminate a startup test that would involve adding small amounts of radioactive cesium-137 to simulated high-level waste. In order to eliminate this test, a reliable method for measuring non-radioactive cesium in the offgas system from the glass melter is required. From a pilot scale melter system, offgas particulate samples were taken on filter paper media and analyzed by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). The ICPMS method proved to be sufficiently sensitive to measure cesium quantities as low as 0.135 μg, with the sensitivity being limited by the background cesium present in the filter paper. Typical particulate loadings ranged from 800 μg of cesium. This sensitivity allowed determination of cesium decontamination factors for four of the five major components of the offgas system. The decontamination factors measured experimentally compared favorably with the process design basis values

  9. Systematic Uncertainties in the Spectroscopic Measurements of Neutron-Star Masses and Radii from Thermonuclear X-ray Bursts. III. Absolute Flux Calibration

    CERN Document Server

    Guver, Tolga; Marshall, Herman; Psaltis, Dimitrios; Guainazzi, Matteo; Diaz-Trigo, Maria

    2015-01-01

    Many techniques for measuring neutron star radii rely on absolute flux measurements in the X-rays. As a result, one of the fundamental uncertainties in these spectroscopic measurements arises from the absolute flux calibrations of the detectors being used. Using the stable X-ray burster, GS 1826-238, and its simultaneous observations by Chandra HETG/ACIS-S and RXTE/PCA as well as by XMM-Newton EPIC-pn and RXTE/PCA, we quantify the degree of uncertainty in the flux calibration by assessing the differences between the measured fluxes during bursts. We find that the RXTE/PCA and the Chandra gratings measurements agree with each other within their formal uncertainties, increasing our confidence in these flux measurements. In contrast, XMM-Newton EPIC-pn measures 14.0$\\pm$0.3% less flux than the RXTE/PCA. This is consistent with the previously reported discrepancy with the flux measurements of EPIC-pn, compared to EPIC-MOS1, MOS2 and ACIS-S detectors. We also address the calibration uncertainty in the RXTE/PCA int...

  10. Determination of the absolute configuration of perylene quinone-derived mycotoxins by measurement and calculation of electronic circular dichroism spectra and specific rotations.

    Science.gov (United States)

    Podlech, Joachim; Fleck, Stefanie C; Metzler, Manfred; Bürck, Jochen; Ulrich, Anne S

    2014-09-01

    Altertoxins I-III, alterlosins I and II, alteichin (alterperylenol), stemphyltoxins I-IV, stemphyperylenol, stemphytriol, 7-epi-8-hydroxyaltertoxin I, and 6-epi-stemphytriol are mycotoxins derived from perylene quinone, for which the absolute configuration was not known. Electronic circular dichroism (ECD) spectra were calculated for these compounds and compared with measured spectra of altertoxins I-III, alteichin, and stemphyltoxin III and with reported Cotton effects. Specific rotations were calculated and compared with reported specific rotations. The absolute configuration of all the toxins, except for stemphyltoxin IV, could thus be determined. The validity of the assignment was high whenever reported ECD data were available for comparison, and the validity was lower when the assignment was based only on the comparison of calculated and reported specific rotations. ECD spectra are intrinsically different for toxins with a biphenyl substructure and for toxins derived from dihydroanthracene.

  11. Radiation Protection. Measurement of radioactivity in the environment - Air- radon 222. A proposed ISO standard.

    Science.gov (United States)

    Gillmore, G.; Woods, M.

    2009-04-01

    Radon isotopes (222, 220, 219) are radioactive gases produced by the disintegration of radium isotopes 226, 224 and 223, which are decay products of uranium238, thorium232 and uranium235 respectively. All are found in the earth's crust. Solid elements, also radioactive, are produced by radon disintegration. Radon is classed as a rare gas in the periodic table of elements, along with helium, argon, neon, krypton and xenon. When disintegrating, radon emits alpha particles and generates solid decay products, which are also radioactive (polonium, bismuth, lead etc.). The potential danger of radon lies in its solid decay products rather than the gas itself. Whether or not they are attached aerosols, radon decay products can be inhaled and deposited in the bronchopulmonary tree to varying depths according to their size. Radon today is considered to be the main source of human exposure to natural radiation. At the international level, radon accounts for 52% of global average exposure to natural radiation. Isotope 222 (48%) is far more significant than isotope 220 (4%), whilst isotope 219 is considered as negligible. Exposure to radon varies considerably from one region to another, depending on factors such as weather conditions, and underlying geology. Activity concentration can therefore vary by a factor of 10 or even a 100 from one period of time to the next and from one area to another. There are many ways of measuring the radon 222 activity concentration and the potential alpha energy concentration of its short-lived decay products. Measuring techniques fall into three categories: - spot measurement methods; continuous measurement; integrated measurement. The proposed ISO (International Organisation for Standardisation) document suggests guidelines for measuring radon222 activity concentration and the potential alpha energy concentration of its short-lived decay products in a free (environment) and confined (buildings) atmosphere. The target date for availability of

  12. Direct measurement of nanoscale lithium diffusion in solid battery materials using radioactive tracer of 8Li

    Science.gov (United States)

    Ishiyama, H.; Jeong, S. C.; Watanabe, Y. X.; Hirayama, Y.; Imai, N.; Jung, H. S.; Miyatake, H.; Oyaizu, M.; Osa, A.; Otokawa, Y.; Matsuda, M.; Nishio, K.; Makii, H.; Sato, T. K.; Kuwata, N.; Kawamura, J.; Ueno, H.; Kim, Y. H.; Kimura, S.; Mukai, M.

    2016-06-01

    We have developed an in situ and nanoscale Li diffusion measurement method in Li battery materials using an α-emitting radioactive 8Li tracer. In this method, while implanting a low-energy (8 keV) 8Li beam, the α particles emitted at a small angle (10°) relative to the sample surface were detected as a function of time. Measurement for Li diffusion coefficients in a spinel phase LiMn2O4 (LMO) thin film has been started, which is used as an electrode in a Li ion secondary battery. An obvious Li diffusion effect in LMO was observed at the sample temperature of 623 K, and the further measurement is underway.

  13. Factors affecting radioactive microsphere measurement of blood flow in pregnant guinea pigs

    International Nuclear Information System (INIS)

    Comparative blood flow studies were performed in pregnant guinea pigs using radioactive microspheres to test the effects of different sphere sizes on blood flow measurements and the relationship between flows obtained intraoperatively and those performed after 5 days of recovery from anesthesia and surgery. We observed that 1.5% of the cardiac output was shunted through the microcirculation of the carcass, gut, skin and endomyometrium when 15 mu microspheres were used. Intraoperative measurements of heart rate, cardiac output and placental blood flow are significantly lower than measurements made after 5 days recovery. These reductions were ameliorated with the addition of a continuous infusion of isoproterenol and the deletion of atropine from the anesthetic

  14. Multi-Sampling Ionization Chamber (MUSIC) for measurements of fusion reactions with radioactive beams

    Science.gov (United States)

    Carnelli, P. F. F.; Almaraz-Calderon, S.; Rehm, K. E.; Albers, M.; Alcorta, M.; Bertone, P. F.; Digiovine, B.; Esbensen, H.; Fernández Niello, J.; Henderson, D.; Jiang, C. L.; Lai, J.; Marley, S. T.; Nusair, O.; Palchan-Hazan, T.; Pardo, R. C.; Paul, M.; Ugalde, C.

    2015-11-01

    A detection technique for high-efficiency measurements of fusion reactions with low-intensity radioactive beams was developed. The technique is based on a Multi-Sampling Ionization Chamber (MUSIC) operating as an active target and detection system, where the ionization gas acts as both target and counting gas. In this way, we can sample an excitation function in an energy range determined by the gas pressure, without changing the beam energy. The detector provides internal normalization to the incident beam and drastically reduces the measuring time. In a first experiment we tested the performance of the technique by measuring the 10,13,15C+12C fusion reactions at energies around the Coulomb barrier.

  15. Validation of Monte Carlo model of HPGe detector for field-station measurement of airborne radioactivity

    Science.gov (United States)

    Šolc, J.; Kovář, P.; Dryák, P.

    2016-03-01

    A Monte Carlo (MC) model of a mechanically-cooled High Purity Germanium detection system IDM-200-V™ manufactured by ORTEC® was created, optimized and validated within the scope of the Joint Research Project ENV57 ``Metrology for radiological early warning networks in Europe''. The validation was performed for a planar source homogeneously distributed on a filter placed on top of the detector end cap and for point sources positioned farther from the detector by comparing simulated full-energy peak (FEP) detection efficiencies with the ones measured with two or three different pieces of the IDM detector. True coincidence summing correction factors were applied to the measured FEP efficiencies. Relative differences of FEP efficiencies laid within 8% that is fully satisfactory for the intended use of the detectors as instruments for airborne radioactivity measurement in field-stations. The validated MC model of the IDM-200-V™ detector is now available for further MC calculations planned in the ENV57 project.

  16. Multi-Sampling Ionization Chamber (MUSIC) for measurements of fusion reactions with radioactive beams

    International Nuclear Information System (INIS)

    A detection technique for high-efficiency measurements of fusion reactions with low-intensity radioactive beams was developed. The technique is based on a Multi-Sampling Ionization Chamber (MUSIC) operating as an active target and detection system, where the ionization gas acts as both target and counting gas. In this way, we can sample an excitation function in an energy range determined by the gas pressure, without changing the beam energy. The detector provides internal normalization to the incident beam and drastically reduces the measuring time. In a first experiment we tested the performance of the technique by measuring the 10,13,15C+12C fusion reactions at energies around the Coulomb barrier

  17. Multi-Sampling Ionization Chamber (MUSIC) for measurements of fusion reactions with radioactive beams

    Energy Technology Data Exchange (ETDEWEB)

    Carnelli, P.F.F. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Laboratorio TANDAR, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499, B1650KNA, San Martín, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Rivadavia 1917, C1033AAJ Buenos Aires (Argentina); Almaraz-Calderon, S. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Rehm, K.E., E-mail: rehm@anl.gov [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Albers, M.; Alcorta, M.; Bertone, P.F.; Digiovine, B.; Esbensen, H. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Fernández Niello, J. [Laboratorio TANDAR, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499, B1650KNA, San Martín, Buenos Aires (Argentina); Universidad Nacional de San Martín, Campus Miguelete, B1650BWA San Martín, Buenos Aires (Argentina); Henderson, D.; Jiang, C.L. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Lai, J. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Marley, S.T.; Nusair, O.; Palchan-Hazan, T.; Pardo, R.C. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Paul, M. [Racah Institute of Physics, Hebrew University, Jerusalem (Israel); Ugalde, C. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2015-11-01

    A detection technique for high-efficiency measurements of fusion reactions with low-intensity radioactive beams was developed. The technique is based on a Multi-Sampling Ionization Chamber (MUSIC) operating as an active target and detection system, where the ionization gas acts as both target and counting gas. In this way, we can sample an excitation function in an energy range determined by the gas pressure, without changing the beam energy. The detector provides internal normalization to the incident beam and drastically reduces the measuring time. In a first experiment we tested the performance of the technique by measuring the {sup 10,13,15}C+{sup 12}C fusion reactions at energies around the Coulomb barrier.

  18. Measurement of the retention and pulmonary excretion using solid radio-active particles

    International Nuclear Information System (INIS)

    Pulmonary dust retention and clearance were determined by inhalation of hematite particles (Fe2O3) labelled with 59Fe followed by overall measurement of intra-pulmonary radio-activity. Hematite aerosol was obtained by dispersion of dry particles in air. The measurement was carried out by external counting using a plastic detector. The dose required was about 0.5 microcurie, a value less than one hundredth of the admissible maximal concentration. A first series of measurements carried out on 5 subjects without any form of lung disease, who had never worked in a dusty atmosphere, showed individual differences, both concerning the amount retained and the capacity of alveolar clearance. The method planned for use in clinical medicine, is designed mainly for studying the course of the dust elimination capacity of subjects submitted to the repeated influence of various forms of pollution, together with the influence of pulmonary lesions, such as pneumoconiosis, on lung clearance

  19. Automatic Measurement of Radioactive Deposition: a New On-Line System in Slovenian Radiation Monitoring Network

    International Nuclear Information System (INIS)

    Full text: The automatic radiation-monitoring network in Slovenia consists of four different on-line systems: external gamma radiation network, aerosol measuring stations, a continuous radon monitor, and a radioactive deposition measuring system (RDMS). The latest system became operational in October 1999. Since June 2000, the results have been continuously presented on the World Wide Web. The system is designed for on-line detection and evaluation of possible radioactive contamination with artificial radionuclides, such as fission products 131I , 137Cs and others. Once surface-specific activities of individual radionuclides are determined, it is possible to promptly make dose projections for the population due to ingestion of food and drinking water. The measuring system and data analysis method are the results of SNSA's own development. The RMDS is equipped with a 3'x3' NaI(Tl) scintillation detector, which is mounted in a thermostatic housing. The system collects data and performs a gamma-spectroscopic analysis every 6 hours. The measurement time interval can be easily changed. Special software enables an on-line evaluation, display and storage of the results of surface ground contamination. Natural short-lived radon decay products (gamma emitters 214Pb and 214Bi) washed-out from the atmosphere by precipitation are recorded occasionally. The decay of these gamma-emitting radionuclides considerably contributes to the natural background radiation levels. Surface-specific activities of the deposited radon daughters is in accordance with the increase in dose rate measured with gamma probes. The RMDS has proved to be a reliable and very sensitive system for measuring contamination with gamma emitters deposited on the ground. In case of a nuclear or radiological accident it gives valuable information for proper decision making. (author)

  20. Traceability for measurements of radioactivity in waste materials arising from nuclear site decommissioning

    Science.gov (United States)

    Dean, Julian C. J.; Adsley, Ian; Burgess, Peter H.

    2007-08-01

    Site decommissioning is now a major aspect of the work of the nuclear industry worldwide. One of its many technical challenges is the need to measure levels of radioactivity in a range of materials (e.g. concrete, brick and steel) in order that radioactive waste may be identified, sentenced and consigned to the appropriate waste stream in accordance with national regulations. This is done using any of a number of measurement techniques, falling under three categories: (i) bulk monitoring (for γ and neutron emitters), (ii) surface monitoring (predominantly for α and β emitters) and (iii) radiochemical analysis. The last is often used to determine a 'radionuclide fingerprint' for a particular operational area for use in conjunction with data from in situ monitoring. Traceability to national standards can be difficult to demonstrate for measurements of this type. Only a limited number of standards and reference materials are available, and their chemical and physical forms do not match those of the very wide range of samples being measured. Traceability for surface measurements is further complicated by the subjective nature of monitoring using hand-held detectors. This paper describes some of the detector types used for γ non-destructive assay (NDA) and for surface measurements, gives examples of currently available standards and calibration procedures and provides some guidance in how to achieve traceability. A generic analysis regime for an operational area is presented which demonstrates points where traceability can, in principle, be attained. A new methodology for developing 'realistic' large-volume standard sources, traceable to national standards, has been developed by the National Physical Laboratory (NPL), and this is described.

  1. Measures to prevent, intercept and respond to illicit uses of nuclear material and radioactive sources. Proceedings

    International Nuclear Information System (INIS)

    As nuclear programmes have evolved, the quantities of nuclear material in use or storage, and the number of facilities operating or shut down has increased. In particular, the dismantling of nuclear weapons has resulted in greatly increased stockpiles of weapons usable plutonium and highly enriched uranium. Concern over the security of these and related materials has been further raised by the continued occurrence of cases of illicit trafficking. The risks are theft, leading to trafficking and possible illicit use, and sabotage which could lead to the creation of radiological hazards. The challenge is threefold: prevention, detection and interception, and response. Prevention starts with effective national systems for accountancy, control and protection. Detection and interception involves effective measures to combat illicit trafficking, and response requires planning for the consequences of theft and sabotage. Responsibilities in these fields are national, but nuclear security also has a powerful international dimension. The consequences of failures in national measures reach beyond national boundaries. The effectiveness of national nuclear security can be enhanced through international measures: through agreed international norms, standards and guides, through training and advice, through information exchange and the sharing of experience, and through developing common understandings and perceptions. The Stockholm Conference contributed by focusing on the threats, including terrorist, to nuclear and other radioactive materials; on how to assess them and on how to develop the appropriate security measures. National measures to protect nuclear material and facilities and the continuing development of international standards and obligations were described. The conference discussed the patterns and trends in the illicit trafficking of nuclear and other radioactive materials and national and international measures to combat such trafficking. Finally, it considered

  2. C-reactive protein, established risk factors and social inequalities in cardiovascular disease – the significance of absolute versus relative measures of disease

    Directory of Open Access Journals (Sweden)

    Hedblad Bo

    2008-06-01

    Full Text Available Abstract Background The widespread use of relative scales in socioepidemiological studies has recently been criticized. The criticism is based mainly on the fact that the importance of different risk factors in explaining social inequalities in cardiovascular disease (CVD varies, depending on which scale is used to measure social inequalities. The present study examines the importance of established risk factors, as opposed to low-grade inflammation, in explaining socioeconomic differences in the incidence of CVD, using both relative and absolute scales. Methods We obtained information on socioeconomic position (SEP, established risk factors (smoking, hypertension, and hyperlipidemia, and low-grade inflammation as measured by high-sensitive (hs C-reactive protein (CRP levels, in 4,268 Swedish men and women who participated in the Malmö Diet and Cancer Study (MDCS. Data on first cardiovascular events, i.e., stroke or coronary event (CE, was collected from regional and national registers. Social inequalities were measured in relative terms, i.e., as ratios between incidence rates in groups with lower and higher SEP, and also in absolute terms, i.e., as the absolute difference in incidence rates in groups with lower and higher SEP. Results Those with low SEP had a higher risk of future CVD. Adjustment for risk factors resulted in a rather small reduction in the relative socioeconomic gradient, namely 8% for CRP (≥ 3 mg/L and 21% for established risk factors taken together. However, there was a reduction of 18% in the absolute socioeconomic gradient when looking at subjects with CRP-levels Conclusion C-reactive protein and established risk factors all contribute to socioeconomic differences in CVD. However, conclusions on the importance of "modern" risk factors (here, CRP, as opposed to established risk factors, in the association between SEP and CVD depend on the scale on which social inequalities are measured. The one-sided use of the relative

  3. Measurement of radioactive contamination in the high-resistivity silicon CCDs of the DAMIC experiment

    International Nuclear Information System (INIS)

    We present measurements of radioactive contamination in the high-resistivity silicon charge-coupled devices (CCDs) used by the DAMIC experiment to search for dark matter particles. Novel analysis methods, which exploit the unique spatial resolution of CCDs, were developed to identify α and β particles. Uranium and thorium contamination in the CCD bulk was measured through α spectroscopy, with an upper limit on the 238U (232Th) decay rate of 5 (15) kg−1 d−1 at 95% CL. We also searched for pairs of spatially correlated electron tracks separated in time by up to tens of days, as expected from 32Si –32P or 210Pb –210Bi sequences of β decays. The decay rate of 32Si was found to be 80+110−65 kg−1 d−1 (95% CI). An upper limit of ∼35 kg−1 d−1 (95% CL) on the 210Pb decay rate was obtained independently by α spectroscopy and the β decay sequence search. These levels of radioactive contamination are sufficiently low for the successful operation of CCDs in the forthcoming 100 g DAMIC detector

  4. Implantation of the NC ISO 9001 in the Radioactivity measurement service in junks of CPHR

    International Nuclear Information System (INIS)

    In the last years in the international environment, radiological incidents have been reported, due to the presence of radioactive materials in the junk, that have implied the adoption of measures in matter of radiological safety, to avoid affectations in the public and the environment, as well as in the international trade. The establishment of the radiological control of junk during it commercialization requires of the implantation of a quality management program. In such sense, the present work exposes the experience of our institution in the design and organization of a service for the radioactivity measurement in junks based on a quality administration system based on the requirements of the quality standards ISO 9001:2000, ISO/IEC 17050 and ISO/IEC 17025:2000. In coherence with the postulates defined in the institutional strategy related to the implantation of a total quality system and the international demands on this matter. To such ends the processes that compose the service were identified, the corresponding and implemented procedures were elaborated, the registrations associated to the same one, being worked in the design of a quality assurance program that allowed the evaluation of the conformity of the product and the customer. (Author)

  5. Measurement of radioactive contamination in the CCD’s of the DAMIC experiment

    Science.gov (United States)

    Aguilar-Arevalo, A.; Amidei, D.; Bertou, X.; Bole, D.; Butner, M.; Cancelo, G.; Castañeda Vásquez, A.; Chavarria, A. E.; de Mello Neto, J. R. T.; Dixon, S.; D’Olivo, J. C.; Estrada, J.; Fernandez Moroni, G.; Hernández Torres, K. P.; Izraelevitch, F.; Kavner, A.; Kilminster, B.; Lawson, I.; Liao, J.; López, M.; Molina, J.; Moreno-Granados, G.; Pena, J.; Privitera, P.; Sarkis, Y.; Scarpine, V.; Schwarz, T.; Sofo Haro, M.; Tiffenberg, J.; Torres Machado, D.; Trillaud, F.; Yol, X.; Zhou, J.

    2016-05-01

    DAMIC (Dark Matter in CCDs) is an experiment searching for dark matter particles employing fully-depleted charge-coupled devices. Using the bulk silicon which composes the detector as target, we expect to observe coherent WIMP-nucleus elastic scattering. Although located in the SNOLAB laboratory, 2 km below the surface, the CCDs are not completely free of radioactive contamination, in particular coming from radon daughters or from the detector itself. We present novel techniques for the measurement of the radioactive contamination in the bulk silicon and on the surface of DAMIC CCDs. Limits on the Uranium and Thorium contamination as well as on the cosmogenic isotope 32 Si, intrinsically present on the detector, were performed. We have obtained upper limits on the 238 TJ (232 Th) decay rate of 5 (15) kg_1 d_1 at 95% CL. Pairs of spatially correlated electron tracks expected from 32 Si-32 P and 210 Pb-210 Bi beta decays were also measured. We have found a decay rate of 80+l10 -65 kg_1 d_1 for 32 Si and an upper limit of - 35 kg-1 d-1 for 210 Pb, both at 95% CL.

  6. Measurement of residual radioactive surface contamination by 2-D laser heated TLD

    International Nuclear Information System (INIS)

    The feasibility of applying and adapting a two-dimensional laser heated thermoluminescence dosimetry system to the problem of surveying for radioactive surface contamination was studied. The system consists of a CO2 laser-based reader and monolithic arrays of thin dosimeter elements. The arrays consist of 10,201 thermoluminescent phosphor elements of 40 micron thickness, covering a 900 cm2 area. Array substrates are 125 micron thick polyimide sheets, enabling them to easily conform to regular surface shapes, especially for survey of surfaces that are inaccessible for standard survey instruments. The passive, integrating radiation detectors are sensitive to alpha and beta radiation at contamination levels below release guideline limits. Required contact times with potentially contaminated surfaces are under one hour to achieve detection of transuranic alpha emission at 100 dpm/100 cm2. Positional information obtained from array evaluation is useful for locating contamination zones. Unique capabilities of this system for survey of sites, facilities and material include measurement inside pipes and other geometrical configurations that prevent standard surveys, and below-surface measurement of alpha and beta emitters in contaminated soils. These applications imply a reduction of material that must be classified as radioactive waste by virtue of its possibility of contamination, and cost savings in soil sampling at contaminated sites

  7. Measurement of radioactive contamination in the high-resistivity silicon CCDs of the DAMIC experiment

    CERN Document Server

    Aguilar-Arevalo, A; Bertou, X; Bole, D; Butner, M; Cancelo, G; Vázquez, A Castañeda; Chavarria, A E; Neto, J R T de Mello; Dixon, S; D'Olivo, J C; Estrada, J; Moroni, G Fernandez; Torres, K P Hernández; Izraelevitch, F; Kavner, A; Kilminster, B; Lawson, I; Liao, J; López, M; Molina, J; Moreno-Granados, G; Pena, J; Privitera, P; Sarkis, Y; Scarpine, V; Schwarz, T; Haro, M Sofo; Tiffenberg, J; Machado, D Torres; Trillaud, F; You, X; Zhou, J

    2015-01-01

    We present measurements of radioactive contamination in the high-resistivity silicon charge-coupled devices (CCDs) used by the DAMIC experiment to search for dark matter particles. Novel analysis methods, which exploit the unique spatial resolution of CCDs, were developed to identify $\\alpha$ and $\\beta$ particles. Uranium and thorium contamination in the CCD bulk was measured through $\\alpha$ spectroscopy, with an upper limit on the $^{238}$U ($^{232}$Th) decay rate of 5 (15) kg$^{-1}$ d$^{-1}$ at 95% CL. We also searched for pairs of spatially correlated electron tracks separated in time by up to tens of days, as expected from $^{32}$Si-$^{32}$P or $^{210}$Pb-$^{210}$Bi sequences of $\\beta$ decays. The decay rate of $^{32}$Si was found to be $80^{+110}_{-65}$ kg$^{-1}$ d$^{-1}$ (95% CI). An upper limit of $\\sim$35 kg$^{-1}$ d$^{-1}$ (95% CL) on the $^{210}$Pb decay rate was obtained independently by $\\alpha$ spectroscopy and the $\\beta$ decay sequence search. These levels of radioactive contamination are su...

  8. Measurement of natural radioactivity in soil from Peshawar basin of Pakistan

    International Nuclear Information System (INIS)

    Natural radioactivity in the environment may change with time due to human activities, chemical and biological changes. From the view of radiation risk to population, the knowledge of natural radioactivity levels and the measurement of collective radiation dose received by the population is very vital. Radiological constraints on soil of thickly populated Peshawar basin in northern Pakistan were assessed through radiometric assay. Soil samples collected from different locations of four districts of this basin were analysed using an HPGe gamma spectrometer. Activity concentrations of 40K, 226Ra and 232Th in these samples was 648 ± 121 (421-996), 45 ± 7 (32-60) and 59 ± 7 (46-72) Bq kg-1, respectively that followed lognormal distribution. The average concentrations of primordial radionuclides were found to be higher than that reported for the worldwide soil. Radium equivalent activity and gamma index derived from these activity concentrations were lesser than their respective limits. The average absorbed dose rate and the annual effective dose for both indoor and outdoor cases were found to be higher than the values given in the UNSCEAR 2000 report. The results of the present study were compared with those for other locations of Pakistan along with that for the world. The radiological impact of the measured data was evaluated using hazard assessment models. A thoughtful discussion of the above mentioned evaluation is also given. (author)

  9. Gamma-ray measurements of natural radioactivity in sedimentary rocks from Egypt

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The aim of this study was to measure concentrations and distributions of natural radionuclides occurring mentary rock samples from Eastern Desert (Um El-Huetat), Nile Valley (Gebel Owina) and from southwest Sinai (Wadi Ghweiba) were measured using a high-purity germanium detector. The samples under investigation (clay, shale and sandstone) were used as raw materials in the construction industry (bricks, ceramics, cement, fillers, etc.). Though the sediments of Egypt have already been investigated in the geological and mineralogical aspects, it is necessary to investigate the natural radioactivity in order to complete their classification. The average concentration values of 226Ra, 232Th, 40K in the surveyed samples were 47 ± 7,21± 5, 393±19 Bq.kg-1 (clay); 23 ± 5, 30 ± 6, 563 ± 24 Bq.kg-1(shale); and 17 ± 4, 14 ± 4, 299 ± 17 Bq.kg-1 (sandstone), respectively. All sediment samples have radium equivalent natural radionuclides present in the samples have been computed and compared with the global averages. In terms of the radiation safety, the natural radioactivity of the sediment in Egypt is below the recommended limits of the gamma dose rate. Therefore, they can be used for all kinds of public buildings.

  10. Measurement of the absolute branching ratio of the K+→π+π−π+(γ decay with the KLOE detector

    Directory of Open Access Journals (Sweden)

    D. Babusci

    2014-11-01

    Full Text Available The absolute branching ratio of the K+→π+π−π+(γ decay, inclusive of final-state radiation, has been measured using ∼17 million tagged K+ mesons collected with the KLOE detector at DAΦNE, the Frascati ϕ-factory. The result is:BR(K+→π+π−π+(γ=0.05565±0.00031stat±0.00025syst a factor ≃ 5 more precise with respect to the previous result. This work completes the program of precision measurements of the dominant kaon branching ratios at KLOE.

  11. Measurement of the absolute branching ratio of the K+→π+π−π+(γ) decay with the KLOE detector

    International Nuclear Information System (INIS)

    The absolute branching ratio of the K+→π+π−π+(γ) decay, inclusive of final-state radiation, has been measured using ∼17 million tagged K+ mesons collected with the KLOE detector at DAΦNE, the Frascati ϕ-factory. The result is: BR(K+→π+π−π+(γ))=0.05565±0.00031stat±0.00025syst a factor ≃ 5 more precise with respect to the previous result. This work completes the program of precision measurements of the dominant kaon branching ratios at KLOE.

  12. A novel double-focusing time-of-flight mass spectrometer for absolute recoil ion cross sections measurements.

    Science.gov (United States)

    Sigaud, L; de Jesus, V L B; Ferreira, Natalia; Montenegro, E C

    2016-08-01

    In this work, the inclusion of an Einzel-like lens inside the time-of-flight drift tube of a standard mass spectrometer coupled to a gas cell-to study ionization of atoms and molecules by electron impact-is described. Both this lens and a conical collimator are responsible for further focalization of the ions and charged molecular fragments inside the spectrometer, allowing a much better resolution at the time-of-flight spectra, leading to a separation of a single mass-to-charge unit up to 100 a.m.u. The procedure to obtain the overall absolute efficiency of the spectrometer and micro-channel plate detector is also discussed. PMID:27587105

  13. A novel double-focusing time-of-flight mass spectrometer for absolute recoil ion cross sections measurements

    Science.gov (United States)

    Sigaud, L.; de Jesus, V. L. B.; Ferreira, Natalia; Montenegro, E. C.

    2016-08-01

    In this work, the inclusion of an Einzel-like lens inside the time-of-flight drift tube of a standard mass spectrometer coupled to a gas cell—to study ionization of atoms and molecules by electron impact—is described. Both this lens and a conical collimator are responsible for further focalization of the ions and charged molecular fragments inside the spectrometer, allowing a much better resolution at the time-of-flight spectra, leading to a separation of a single mass-to-charge unit up to 100 a.m.u. The procedure to obtain the overall absolute efficiency of the spectrometer and micro-channel plate detector is also discussed.

  14. Results of measurements of the radioactive contamination of the biosphere in the Netherlands, compiled by the CCRX 1984

    International Nuclear Information System (INIS)

    In this report results are given of measurments of the radioactive contamination of the biosphere in the Netherlands. These measurements are coordinated by the Coordinating Committee for the Monitoring of Radioactive and Xenobiotic Substances (CCRX). Analyses are considered essential for an efficacious determination of the radioactivity of the biosphere. The measurements are performed in air, surface water, milk, fishery products and precipitation. Finally, also samples of milk and grass from the surroundings of nuclear reactors have been analysed. The second category of measurements, comprises orientating research for specific radionuclides which may be present in some samples and other investigations which may yield useful information. Results of measurements by the licensees of the Dutch nuclear installations of samples from the surroundings of their plants are given. Since 1970 the daily ingestion of Sr-90 and Cs-137 is calculated from the concentration of these radionuclides in milk. (Auth.)

  15. Radioactivity measurements applied to the dating and authentication of old wines

    Science.gov (United States)

    Hubert, Ph.; Perrot, F.; Gaye, J.; Médina, B.; Pravikoff, M. S.

    2009-09-01

    For many years the neutrino group in the CENBG has been involved in the development of low background γ-ray spectrometers, based on the use of HPGe crystals. When applied to radioactivity measurements of wine in bottles, it has been shown that besides the well-known isotope 40K, the wine contains also trace amounts of 137Cs (less than 1 Bq/l) with an activity depending on the vintage. This technique has thus led to the possibility to date the wine bottles of vintages between 1952 and ˜1980 and to verify the year written on the label or on the cork. Since the measurements do not require opening the bottle, the technique has also proved to be very useful for detecting counterfeit wines of the XIXth century and first half of the XXth century. To cite this article: Ph. Hubert et al., C. R. Physique 10 (2009).

  16. Radioactivity measurements applied to the dating and authentication of old wines

    International Nuclear Information System (INIS)

    For many years the neutrino group in the CENBG has been involved in the development of low background γ-ray spectrometers, based on the use of HPGe crystals. When applied to radioactivity measurements of wine in bottles, it has been shown that besides the well-known isotope 40K, the wine contains also trace amounts of 137Cs (less than 1 Bq/l) with an activity depending on the vintage. This technique has thus led to the possibility to date the wine bottles of vintages between 1952 and ∼ 1980 and to verify the year written on the label or on the cork. Since the measurements do not require opening the bottle, the technique has also proved to be very useful for detecting counterfeit wines of the 19. century and first half of the 20. century. (authors)

  17. Student Award Finalist: Reactive species generated in atmospheric-pressure plasmas with water admixtures for biomedical applications: Absolute measurements and numerical simulations

    Science.gov (United States)

    Schröter, Sandra; Bredin, J.; West, A.; Niemi, K.; Dedrick, J.; de Oliveira, N.; Joyeux, D.; Nahon, L.; Foucher, M.; Booth, J.-P.; Wagenaars, E.; Gans, T.; O'Connell, D.

    2015-09-01

    We investigate the production of atomic oxygen (O), hydroxyl (OH) and atomic hydrogen (H) in an rf atmospheric-pressure plasma operated in helium with water admixtures. These species, and their longer-lived products, are known to influence biological systems. Absolute measurements of species densities are required to develop these plasmas for therapeutics. Accurate determination of radical densities is challenging at elevated pressures in complex gas mixtures due to collisional quenching. We measure radical densities using VUV high-resolution Fourier-transform absorption spectroscopy with synchrotron radiation, UV broadband absorption spectroscopy, and picosecond two-photon absorption laser induced fluorescence (ps-TALIF). These diagnostics are the most suitable techniques allowing direct, absolute and 2-dimensional spatial resolution measurements at atmospheric pressure. Ps-TALIF also enables measurements of the lifetimes of laser-excited states of O and H, providing insight into the chemical kinetics and ambient air diffusion into the plasma jet region. Good agreement has been found between the measurements and a numerical chemical-kinetic simulation. Funding from the UK EPSRC (EP/K018388/1 & EP/H003797/1), the York-Paris Low Temperature Plasma Collaborative Research Centre and financial state aid managed by the laboratory of excellence Plas@Par (ANR-11-IDEX-0004-02).

  18. Absolute measurement of {beta} {sub eff} based on Feynman-{alpha} experiments and the two-region model in the IPEN/MB-01 research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kuramoto, Renato Y.R. [Instituto de Pesquisas Energeticas e Nucleares, IPEN/CNEN-SP, Av. Prof. Lineu Prestes, 2242 Cidade Universitaria, 05508-000 Pinheiros, Sao Paulo, SP (Brazil); Santos, Adimir dos [Instituto de Pesquisas Energeticas e Nucleares, IPEN/CNEN-SP, Av. Prof. Lineu Prestes, 2242 Cidade Universitaria, 05508-000 Pinheiros, Sao Paulo, SP (Brazil)]. E-mail: asantos@ipen.br; Jerez, Rogerio [Instituto de Pesquisas Energeticas e Nucleares, IPEN/CNEN-SP, Av. Prof. Lineu Prestes, 2242 Cidade Universitaria, 05508-000 Pinheiros, Sao Paulo, SP (Brazil); Diniz, Ricardo [Instituto de Pesquisas Energeticas e Nucleares, IPEN/CNEN-SP, Av. Prof. Lineu Prestes, 2242 Cidade Universitaria, 05508-000 Pinheiros, Sao Paulo, SP (Brazil)

    2007-06-15

    A new methodology for absolute measurement of the effective delayed neutron fraction {beta} {sub eff} based on Feynman-{alpha} experiments and the two-region model was developed. This method made use of Feynman-{alpha} experiments and the two-region model. To examine the present methodology, a series of Feynman-{alpha} experiments were conducted at the IPEN/MB-01 research reactor facility. In contrast with other techniques like the slope method, Nelson-number method and {sup 252}Cf-source method, the main advantage of this new methodology is to obtain {beta} {sub eff} with the required accuracy and without knowledge of any other parameter. By adopting the present approach, {beta} {sub eff} was measured with a 0.67% uncertainty. In addition, the prompt neutron generation time, {lambda}, and other parameters, was also obtained in an absolute experimental way. In general, the measured parameters are in good agreement with the values found from frequency analysis experiments. The theory-experiment comparison for the {beta} {sub eff} measured in this work shows that JENDL3.3 presented the best agreement (within 1%). The reduction of the {sup 235}U thermal yield as proposed by Okajima and Sakurai is completely justified according to the {beta} {sub eff} measurements performed in this work.

  19. Absolute measurement of {beta}{sub eff} based on Feynman-{alpha} experiments and the two-region model in the IPEN/MB-01 research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kuramoto, Renato Yoichi Ribeiro; Santos, Adimir dos; Jerez, Rogerio; Diniz, Ricardo [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mails: ryrkuram@ipen.br; asantos@ipen.br

    2007-07-01

    A new methodology for absolute measurement of the effective delayed neutron fraction {beta}{sub eff} based on Feynman-alpha experiments and the two-region model was developed. This method made use of Feynman-{alpha} experiments and the two-region model. To examine the present methodology, a series of Feynman-{alpha} experiments were conducted at the IPEN/MB-01 research reactor facility. In contrast with other techniques like the slope method, Nelson-number method and 252Cf-source method, the main advantage of this new methodology is to obtain {beta}{sub eff} with the required accuracy and without knowledge of any other parameter. By adopting the present approach, {beta}{sub eff} was measured with a 0.67% uncertainty. In addition, the prompt neutron generation time, {lambda}, and other parameters, was also obtained in an absolute experimental way. In general, the measured parameters are in good agreement with the values found from frequency analysis experiments. The theory-experiment comparison for the {beta}{sub eff} measured in this work shows that JENDL3.3 presented the best agreement (within 1%). The reduction of the {sup 235}U thermal yield as proposed by Okajima and Sakurai is completely justified according to the {beta}{sub eff} measurements performed in this work. (author)

  20. Teaching Absolute Value Meaningfully

    Science.gov (United States)

    Wade, Angela

    2012-01-01

    What is the meaning of absolute value? And why do teachers teach students how to solve absolute value equations? Absolute value is a concept introduced in first-year algebra and then reinforced in later courses. Various authors have suggested instructional methods for teaching absolute value to high school students (Wei 2005; Stallings-Roberts…

  1. Environmental pollutant isotope measurements and natural radioactivity assessment for North Tushki area, south western desert, Egypt

    Energy Technology Data Exchange (ETDEWEB)

    Sroor, A. E-mail: amanysroor@hotmail.com; Afifi, S.Y.; Abdel-Haleem, A.S.; Salman, A.B.; Abdel-Sammad, M

    2002-09-01

    Natural radioactive materials under certain conditions can reach hazardous radiological levels. The natural radionuclide ({sup 238}U, {sup 232}Th, {sup 40}K) contents of rock samples at various locations in the North Tushki area were investigated using gamma-spectrometric analysis. Estimates of the measured radionuclide content have been made for the absorbed dose rate of gamma radiation. The equivalent radium (R{sub eq}) and the external hazard index (H{sub ex}) which resulted from the natural radionuclides in soil are also calculated and tabulated. The studied samples have been collected from various rock exposures in the North Tushki area. The distribution of major oxides, U and Th were studied. It is found that the enrichment and depletion of the major oxides are mainly due to the effect of hydrothermal alteration, which caused mobility of some major oxides, which increases some elements and decreases others. It is important to mention that the study area is far from the development region of the Tushki project and is only a local hazard. Therefore, additional regional studies of the Tushki Project area should be under taken to explore any unexpected environmental hazard due to the high concentration of the radioactive elements, which have been observed at its north boundary.

  2. Environmental pollutant isotope measurements and natural radioactivity assessment for north Tushki area, south western desert, Egypt.

    Science.gov (United States)

    Sroor, A; Afifi, S Y; Abdel-Haleem, A S; Salman, A B; Abdel-Sammad, M

    2002-09-01

    Natural radioactive materials under certain conditions can reach hazardous radiological levels. The natural radionuclide (238U, 232Th, 40K) contents of rock samples at various locations in the North Tushki area were investigated using gamma-spectrometric analysis. Estimates of the measured radionuclide content have been made for the absorbed dose rate of gamma radiation. The equivalent radium (Req) and the external hazard index (Hex) which resulted from the natural radionuclides in soil are also calculated and tabulated. The studied samples have been collected from various rock exposures in the North Tushki area. The distribution of major oxides, U and Th were studied. It is found that the enrichment and depletion of the major oxides are mainly due to the effect of hydrothermal alteration, which caused mobility of some major oxides, which increases some elements and decreases others. It is important to mention that the study area is far from the development region of the Tushki project and is only a local hazard. Therefore, additional regional studies of the Tushki Project area should be under taken to explore any unexpected environmental hazard due to the high concentration of the radioactive elements, which have been observed at its north boundary. PMID:12201151

  3. Development of measuring and control systems for underwater cutting of radioactive components

    International Nuclear Information System (INIS)

    Shutdown and dismantling of nuclear power plants requires special techniques to decommission the radioactive components involved. For reasons of safety, decommissioning of components under water can be advantageous because of the radioactive shielding effect of water. In this project, research activities and developmental works focused on the realization of different sensor systems and their adaptation to cutting tasks. A new image-processing system has been developed in addition to the use of a modified underwater TV camera for optical cutting process control (plasma and abrasive wheel cutting). For control of process parameters, different inductive, ultrasonic and optical sensors have been modified and tested. The investigations performed are aimed at assuring high-quality underwater cutting with the help of sensor systems specially adapted to cutting tasks, with special signal procession and evaluation through microcomputer control. It is important that special attention be paid to the reduction of interferences in image pick-up and procession. The measuring system has been designed and realized according to the consideration of the demands for underwater cutting processes. The reliability of the system was tested in conjunction with a four-axes handling system

  4. Technique of absolute efficiency determination for gamma radiation semiconductor detectors

    International Nuclear Information System (INIS)

    Simple technique is suggested to determine the absolute efficiency (E) of semiconductor detectors (SCD) which employes low-intensity neutron sources wide spread in scientific laboratories. The technique is based on using radioactive nuclide gamma radiation in decay chains of heavy element fission fragments, uranium-235, for example. Cumulative yields of a number of nulcides following heavy element fission are measured to a high accuracy (1-5%), which permits to . the value E is determined for a wide energy range (from X- ray to some MeV); using a nuclide with a well known decay scheme and measured to a high accuracy cumulative yield 140La, for example, one can calibrate in absolute values comparatively easily obtained plots of the SCD relative efficiency. The technique allows to determine the E value for extended plane (and volumetric) sources of an arbitrary form. Some nuclides, convenient for the determination of E, and their nuclear characteristics are tabulated

  5. Absolute power scaling measurements of Electromagnetic radiation at 2ω /sub uh/ generated by steady state colliding electron beams

    International Nuclear Information System (INIS)

    Space physics data indicate Electromagnetic (EM) emission correlated with the existence of electron beams in solar and planetary sources. The EM power is too large to be produced by linear plasma production mechanisms, suggesting that non-linear beam processes can coherently, enhance the generation of EM radiation. Steady state counterstreaming electron beams are produced in a triple plasma device, where they collide in a filament discharge target plasma. Neutral pressure is low (5 x 10-5 Torr), with background target density, n /sub e/ less than or equal to 1010 cm-3 and electron temperature T /sub e/ less than or equal to 4 eV . Beams are grid extracted from sources and collimated with a small axial magnetic field (B /sub o/ less than or equal to 10 Gauss). Beam density is n /sub b/ less than or equal to 108 cm-3 and beam energy is E /sub b/ < 150 eV. Plasma ions with varying masses such as He+, Ar+, Xe+ are used. Diagnostics are carried out with electrostatic probes and absolutely calibrated single turn Faraday shielded loop antennae. When counterstreaming electron beams are allowed to collide in the target, steady state electrostatic and electromagnetic disturbances are observed respectively at the upper hybrid frequency and the first harmonic. The colliding beam EM radiation power is seen to be greatly enhanced over that of the single beam case

  6. Oil and gas potential assessment for coal measure source rocks on absolute concentration of n-alkanes and aromatic hydrocarbons

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Absolute concentration of normal alkanes(n-alkanes) and aromatic hydrocarbons in bitumen extracted from source rocks in the period of thermodegradation from Turpan-Hami Basin suggests that aromatic hydrocarbons are dominant in coal and carbargilite while n-alkanes are dominant in mudstones. Bulkrock analysis and gas chromatograph/mass spectrum(GC-MS) of source rocks shows aromatic hydrocarbons are dominant in total ion chromatograms(TIC) of samples with poor perhydrous macerals while n-alkanes are dominant in TICs of samples with abundant perhydrous macerals. The identification of oil-prone and gas prone property based on GC-MS of bitumen "A" together with bulkrock analysis indicates that source rocks from Shengbei area are more oil-prone while source rocks from Qiudong and Xiaocaohu areas are more gas-prone,coinciding with the distribution of oil and gas reservoirs in Taibei Sag. Ratios used to identify oil-prone and gas-prone property for source rocks from Turpan Basin are proposed:n-alkanes >110 μg·mg-1,aromatics <15 μg·mg-1,and n-alkanes/aromatics >8 for oil-prone source rock bitumen while n-alkanes<82 μg·mg-1,aromatics >40 μg·mg-1,and n-alkanes/aromatics <1.5 for gas-prone source rock bitumen.

  7. In-situ absolute calibration of electric-field amplitude measurements with the LPDA radio detector stations of the Pierre Auger Observatory

    CERN Document Server

    Briechle, Florian

    2016-01-01

    With the Auger Engineering Radio Array (AERA) located at the Pierre Auger Observatory, radio emission of extensive air showers is observed. To exploit the physics potential of AERA, electric-field amplitude measurements with the radio detector stations need to be well-calibrated on an absolute level. A convenient tool for far-field calibration campaigns is a flying drone. Here we make use of an octocopter to place a calibrated source at freely chosen positions above the radio detector array. Special emphasis is put on the reconstruction of the octocopter position and its accuracy during the flights. The antenna response pattern of the radio detector stations was measured in a recent calibration campaign. Results of these measurements are presented and compared to simulations. It is found that measurements and simulations are in good agreement.

  8. Absolute absorption and fluorescence measurements over a dynamic range of 10$^6$ with cavity-enhanced laser-induced fluorescence

    CERN Document Server

    Sanders, Scott E; Nahler, N Hendrik; Wrede, Eckart

    2013-01-01

    We describe a novel experimental setup that combines the advantages of both laser-induced fluorescence and cavity ring-down techniques. The simultaneous measurement of the ring-down and fluorescence signals from the same sample in a single laser beam delivers the calibration of the fluorescence measurement to gain absolute quantities: absorption cross section, sample density and fluorescence quantum yield. At the same time, the fluorescence measurement extends the dynamic range of a stand-alone cavity ring-down setup from typically three to at least six orders of magnitude. The methodology of this combined cavity-enhanced laser-induced fluorescence (CELIF) technique is developed and rigorously tested against the spectroscopy of 1,4-bis(phenylethynyl)benzene in a molecular beam and density measurements in a cell.

  9. ABSOLUTE POLARIMETRY AT RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    OKADA; BRAVAR, A.; BUNCE, G.; GILL, R.; HUANG, H.; MAKDISI, Y.; NASS, A.; WOOD, J.; ZELENSKI, Z.; ET AL.

    2007-09-10

    Precise and absolute beam polarization measurements are critical for the RHIC spin physics program. Because all experimental spin-dependent results are normalized by beam polarization, the normalization uncertainty contributes directly to final physics uncertainties. We aimed to perform the beam polarization measurement to an accuracy Of {Delta}P{sub beam}/P{sub beam} < 5%. The absolute polarimeter consists of Polarized Atomic Hydrogen Gas Jet Target and left-right pairs of silicon strip detectors and was installed in the RHIC-ring in 2004. This system features proton-proton elastic scattering in the Coulomb nuclear interference (CNI) region. Precise measurements of the analyzing power A{sub N} of this process has allowed us to achieve {Delta}P{sub beam}/P{sub beam} = 4.2% in 2005 for the first long spin-physics run. In this report, we describe the entire set up and performance of the system. The procedure of beam polarization measurement and analysis results from 2004-2005 are described. Physics topics of AN in the CNI region (four-momentum transfer squared 0.001 < -t < 0.032 (GeV/c){sup 2}) are also discussed. We point out the current issues and expected optimum accuracy in 2006 and the future.

  10. Absolute polarimetry at RHIC

    CERN Document Server

    Okada, H; Bravar, A; Bunce, G; Dhawan, S; Eyser, K O; Gill, R; Haeberli, W; Huang, H; Jinnouchi, O; Makdisi, Y; Nakagawa, I; Nass, A; Saitô, N; Stephenson, E; Sviridia, D; Wise, T; Wood, J; Zelenski, A

    2007-01-01

    Precise and absolute beam polarization measurements are critical for the RHIC spin physics program. Because all experimental spin-dependent results are normalized by beam polarization, the normalization uncertainty contributes directly to final physics uncertainties. We aimed to perform the beam polarization measurement to an accuracy of $\\Delta P_{beam}/P_{beam} < 5%$. The absolute polarimeter consists of Polarized Atomic Hydrogen Gas Jet Target and left-right pairs of silicon strip detectors and was installed in the RHIC-ring in 2004. This system features \\textit{proton-proton} elastic scattering in the Coulomb nuclear interference (CNI) region. Precise measurements of the analyzing power $A_N$ of this process has allowed us to achieve $\\Delta P_{beam}/P_{beam} =4.2%$ in 2005 for the first long spin-physics run. In this report, we describe the entire set up and performance of the system. The procedure of beam polarization measurement and analysis results from 2004-2005 are described. Physics topics of $A...

  11. Radioactivity in environmental samples: calibration standards measurement methods, quality assurance, and data analysis

    International Nuclear Information System (INIS)

    The numerous environmental radioactivity measurements made by and for the U.S. Environmental Protection Agency (U.S.EPA) include measurements on samples of water, urine, food, milk, and air filters. Calibration standards are listed which are available in the form of water solutions and soils for a wide range of radionuclides. Method validation procedures for U.S. EPA approval include protocol development and single-laboratory and multiple-laboratory evaluation for precision and accuracy. Inter-laboratory comparison studies are conducted for both cross-check and performance evaluation samples and involve 295 federal, state, and local laboratories. For water samples, 80% to 90% of the participating laboratories are within the control limits for most of the radionuclides measured; however, some problem areas exist, especially for radium-228 and strontium-89 and -90. For milk and food samples, more than 90% of the laboratories are within control limits for cobalt-60 and cesium-137 but some problems exist for the measurement of strontium-90, iodine-131, and potassium-40. For tritium, 91% of the laboratories are within the control limit for water samples and 87% are within the control limits for the urine samples. The laboratory performance for air filter samples shows some problems for gross beta, strontium-90 and cesium-137 measurements. (author)

  12. Method and the device for measurement of volume activity of gas and aerosol fractions of radioactive aero disperse systems

    Directory of Open Access Journals (Sweden)

    Tsovianov A.G.

    2013-12-01

    Full Text Available The given article aims a development of the method and the device for the disperse analysis and simultaneous measurement of volume activity of aerosol and gas fractions of radioactive aero disperse systems. Importance of the article is concerned with the fact that for measuring volume activity of sample including gas and aerosol fractions it's necessary to measure an activity of both fractions. Taking into account the volume activity of only one fraction in other case can result to understatement of internal dose estimation induced by radioactive aerosols inhalation. The method includes separation of aerosol fraction from gas by inertial sedimentation on cascade elements of the impactor, the subsequent chemical transformation of a gas component of aero disperse system to a disperse phase by input of reagent vapors in a gas stream and sedimentation of the formed aerosol particles on the filter. The device can be used in the industry for control of radioactive pollution of the air environment.

  13. A review of the nationwide proficiency test on natural radioactivity measurements by gamma spectrometry.

    Science.gov (United States)

    Şahin, N K; Yeltepe, E; Yücel, Ü

    2016-03-01

    This study is the review of the first proficiency test on radioactivity measurement organized in Turkey by Sarayköy Nuclear Research and Training Center (SANAEM) of Turkish Atomic Energy Authority (TAEK) in 2013. The objective of the test was to determine (226)Ra, (232)Th and (40)K activity concentrations in natural soil samples using gamma-ray spectrometry. The bulk material consisting of uranium- and thorium-rich soil and sand was milled, mixed thoroughly and sieved. Homogeneity of the final mix was tested with 6 randomly taken samples. 16 proficiency test samples were distributed to 16 participating laboratories. 12 laboratories reported results. The results were evaluated on the accuracy and precision criteria adopted by the IAEA Proficiency Testing Group. The percentage of acceptable scores was 49%. Some recommendations have been provided to the laboratories to improve the quality of their results. It is planned to extend these proficiency tests periodically for various radionuclides in various matrices. PMID:26750585

  14. The national network of measurements of radioactivity in the environment. Management report - 2010

    International Nuclear Information System (INIS)

    This report presents the objectives and challenges of the French national network for the measurement of radioactivity in the environment, its legal and regulatory context, its operation, its actors (ASN, IRSN and other actors). It proposes the moral report on the steering committee and work-groups. It describes the development of the information system: main stages, synthetic description, process from data transmission to edition on Internet sites, exploitation of the public Internet site, of the requester internet site, of hosting platforms, harmonization of transmitted data, planning for 2011. It presents the exploitation assessment for 2011: technical support activities, interactions between the IRSN and the national network information system host, and so on. The last part deals with communication and publication activities

  15. A review of the nationwide proficiency test on natural radioactivity measurements by gamma spectrometry.

    Science.gov (United States)

    Şahin, N K; Yeltepe, E; Yücel, Ü

    2016-03-01

    This study is the review of the first proficiency test on radioactivity measurement organized in Turkey by Sarayköy Nuclear Research and Training Center (SANAEM) of Turkish Atomic Energy Authority (TAEK) in 2013. The objective of the test was to determine (226)Ra, (232)Th and (40)K activity concentrations in natural soil samples using gamma-ray spectrometry. The bulk material consisting of uranium- and thorium-rich soil and sand was milled, mixed thoroughly and sieved. Homogeneity of the final mix was tested with 6 randomly taken samples. 16 proficiency test samples were distributed to 16 participating laboratories. 12 laboratories reported results. The results were evaluated on the accuracy and precision criteria adopted by the IAEA Proficiency Testing Group. The percentage of acceptable scores was 49%. Some recommendations have been provided to the laboratories to improve the quality of their results. It is planned to extend these proficiency tests periodically for various radionuclides in various matrices.

  16. REMOTE MEASUREMENT OF RADIOACTIVE CONTAMINATION OF TERRITORIES BY THE UNMANNED DOSIMETRIC SYSTEM

    Directory of Open Access Journals (Sweden)

    Kaliberda Inna Vasil'evna

    2012-07-01

    One of the most effective ways of reconnaissance of territories exposed to radioactive contamination to assure the search for the sources of radionuclides represents remote measurement of surface gamma radiation performed by radiation meters installed on unmanned airborne vehicles (UMAV. The main advantage of UMAV is that it may be used as the carrier of radiation meters. In addition to the gamma radiation meter, the system can take a video of different sources of hazards. The article demonstrates the results of tests of the unmanned radiation meter designated for remote sensing of the surface gamma radiation. The option of assessment of the intensity of the radiation and the concentrations of radionuclide fields is considered. It is noteworthy that the technology of remote scanning of the area can also be used for environmental surveying, technical inspection of structures and buildings, fire detection, photography of high-voltage lines and other facilities located in remote areas.

  17. Real-time absolute frequency measurement of continuous-wave terahertz wave based on dual terahertz combs of photocarriers with different frequency spacings

    CERN Document Server

    Yasui, Takeshi; Ichikawa, Ryuji; Cahyadi, Harsono; Hsieh, Yi-Da; Mizutani, Yasuhiro; Yamamoto, Hirotsugu; Iwata, Tetsuo; Inaba, Hajime; Minoshima, Kaoru

    2015-01-01

    Real-time measurement of the absolute frequency of continuous-wave terahertz (CW-THz) waves is required for characterization and frequency calibration of practical CW-THz sources. We proposed a method for real-time monitoring of the absolute frequency of CW-THz waves involving temporally parallel, i.e., simultaneous, measurement of two pairs of beat frequencies and laser repetition frequencies based on dual THz combs of photocarriers (PC-THz combs) with different frequency spacings. To demonstrate the method, THz-comb-referenced spectrum analyzers were constructed with a dual configuration based on dual femtosecond lasers. Regardless of the presence or absence of frequency control in the PC-THz combs, a frequency precision of 10-11 was achieved at a measurement rate of 100 Hz. Furthermore, large fluctuation of the CW-THz frequencies, crossing several modes of the PC-THz combs, was correctly monitored in real time. The proposed method will be a powerful tool for the research and development of practical CW-THz...

  18. Absolute measurement of {beta}{sub eff} based on Rossi-{alpha} experiments and two-region model in IPEN/MB-01 research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kuramoto, Renato Yoichi Ribeiro; Santos, Adimir dos; Jerez, Rogerio; Diniz, Ricardo [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); E-mails: ryrkuram@ipen.br; asantos@ipen.br

    2007-07-01

    A new method for absolute measurement of the effective delayed neutron fraction, {beta}{sub eff}, based on Rossi-{alpha} experiments and the Two-Region Model was developed at the IPEN/MB-01 Research Reactor facility. In contrast with other techniques like the Slope Method, Nelson-Number Method and {sup 252}Cf-Source Method, the main advantage of this new methodology is to obtain the effective delayed neutron parameters in a purely experimental way, eliminating all parameters that are difficult to measure or calculate. In this way, Rossi-alpha experiments for validation of this method were performed at the IPEN/MB-01 facility, and adopting the present approach, {beta}{sub eff} was measured with a 1.46% uncertainty. In addition, the prompt neutron generation time, LAMBDA and other parameters, was also obtained in an absolute experimental way. In general, the final results agree well with values from frequency analysis experiments. The theory-experiment comparison reveals that JENDL-3.3 shows deviation for {beta}{sub eff} lower than 1% which meets the desired accuracy for the theoretical determination of this parameter. This work supports the reduction of the {sup 235U} thermal yield as proposed by Okajima and Sakurai. (author)

  19. Gamma-ray measurements of natural radioactivity in sedimentary rocks from Egypt

    International Nuclear Information System (INIS)

    The aim of this study was to measure concentrations and distributions of natural radionuclides occurring in rocks. The activity concentrations (Bq·kg-1) of the naturally occurring radionuclides 226Ra, 232Th, and 40K in sedimentary rock samples from Eastern Desert (Um El-Huetat), Nile Valley (Gebel Owina) and from southwest Sinai (Wadi Ghweiba) were measured using a high-purity germanium detector. The samples under investigation (clay, shale and sandstone) were used as raw materials in the construction industry (bricks, ceramics, cement, fillers, etc.). Though the sediments of Egypt have already been investigated in the geological and mineralogical aspects, it is necessary to investigate the natural radioactivity in order to complete their classification. The average concentration values of 226Ra, 232Th, 40K in the surveyed samples were 47 ± 7, 21 ± 5, 393 ± 19 Bq·kg-1 (clay); 23 ± 5, 30 ± 6, 563 ± 24 Bq·kg-1 (shale); and 17 ± 4, 14 ± 4, 299 ± 17 Bq·kg-1 (sandstone), respectively. All sediment samples have radium equivalent activities ranging from 55 to 115 Bq·kg-1, lower than the limit set in the OECD Report (370 Bq·kg-1). The overall mean outdoor terrestrial gamma dose rates fluctuate from 28 to 55 nGy·h-1. The external gamma radiation dose due to natural radionuclides present in the samples have been computed and compared with the global averages. In terms of the radiation safety, the natural radioactivity of the sediment in Eygpt is below the recommended limits of the gamma dose rate. Therefore, they can be used for all kinds of public buildings. (authors)

  20. Gamma-ray measurements of natural radioactivity in cultivated and reclaimed soil, Upper Egypt

    International Nuclear Information System (INIS)

    Specific activity of primordial radio-nuclides in soil samples from 10 different regions in Qena governorate and Wadi EL-Lagita were determined by gamma-ray spectrometry. A total of 50 soil samples were collected from different sorts of soil with depth ranged from 0 - 25 cm. The energy peaks used were: 352.0 keV of 214Pb and 609.3, 1120.3 and 1764.5 keV of 214Bi for 226 Ra. In the case of 232Th the energy peaks used were: 238.6 keV of 212Pb, 2615 of 208Tl and 911.1 keV of 228Ac. While the radioactivity of 40K was obtained from the single photopeak of this isotope at 1460.75 keV. The total uncertainty of the obtained values of the radioactivity was calculated from the systematic and the random error of the measurements. Concentrations of radio-nuclides in soils analyzed in this study ranged from 7.9 ± 2.8 to 96.1 ± 9.8 for 226Ra, 8 ± 2.8 to 19 ± 4.4 for 232Th and 85.2 ± 9.2 to 302.5 ± 17.4 Bq/kg for 40 K. The results obtained were compared with those from other studies in the world and Egypt. The radiological health implication to the population that may result from these values is found to be low and almost insignificant, except in one case. No artificial radionuclide, however, was detected in any of the samples, hence, measurements have been taken as representing baseline values of these radio-nuclides in the soil in studying areas. (author)(tk)

  1. Gamma-ray measurements of natural radioactivity in cultivated and reclaimed soil, Upper Egypt

    Energy Technology Data Exchange (ETDEWEB)

    Abbady, A.; El-Arabi, A.M.; Abbady, A.G.E.; Taha, S.

    2008-07-01

    Specific activity of primordial radio-nuclides in soil samples from 10 different regions in Qena governorate and Wadi EL-Lagita were determined by gamma-ray spectrometry. A total of 50 soil samples were collected from different sorts of soil with depth ranged from 0 - 25 cm. The energy peaks used were: 352.0 keV of 214Pb and 609.3, 1120.3 and 1764.5 keV of 214Bi for 226 Ra. In the case of 232Th the energy peaks used were: 238.6 keV of 212Pb, 2615 of 208Tl and 911.1 keV of 228Ac. While the radioactivity of 40K was obtained from the single photopeak of this isotope at 1460.75 keV. The total uncertainty of the obtained values of the radioactivity was calculated from the systematic and the random error of the measurements. Concentrations of radio-nuclides in soils analyzed in this study ranged from 7.9 +- 2.8 to 96.1 +- 9.8 for 226Ra, 8 +- 2.8 to 19 +- 4.4 for 232Th and 85.2 +- 9.2 to 302.5 +- 17.4 Bq/kg for 40 K. The results obtained were compared with those from other studies in the world and Egypt. The radiological health implication to the population that may result from these values is found to be low and almost insignificant, except in one case. No artificial radionuclide, however, was detected in any of the samples, hence, measurements have been taken as representing baseline values of these radio-nuclides in the soil in studying areas. (author)(tk)

  2. The use of non-destructive passive neutron measurement methods in dismantling and radioactive waste characterization

    International Nuclear Information System (INIS)

    The cleaning up and dismantling of nuclear facilities lead to a great volume of technological radioactive wastes which need to be characterized in order to be sent to the adequate final disposal or interim storage. The control and characterization can be performed with non-destructive nuclear measurements such as gamma-ray spectrometry. Passive neutron counting is an alternative when the alpha-gamma emitters cannot be detected due to the presence of a high gamma emission resulting from fission or activation products, or when the waste matrix is too absorbing for the gamma rays of interest (too dense and/or made of high atomic number elements). It can also be a complement to gamma-ray spectrometry when two measurement results must be confronted to improve the confidence in the activity assessment. Passive neutron assays involve the detection of spontaneous fission neutrons emitted by even nuclides (238Pu, 240Pu, 242Pu, 242Cm, 244Cm...) and neutrons resulting from (α, n) reactions with light nuclides (O, F, Be...). The latter is conditioned by the presence of high α-activity radionuclides (234U, 238Pu, 240Pu, 241Am...) and low-Z elements, which depends on the chemical form (metallic, oxide or fluorine) of the plutonium or uranium contaminant. This paper presents the recent application of passive neutron methods to the cleaning up of a nuclear facility located at CEA Cadarache (France), which concerns the Pu mass assessment of 2714 historic, 100 litre radioactive waste drums produced between 1980 and 1997. Another application is the dismantling and decommissioning of an uranium enrichment facility for military purposes, which involves the 235U and total uranium quantifications in about a thousand, large compressors employed in the gaseous diffusion enrichment process. (authors)

  3. Optimising in situ gamma measurements to identify the presence of radioactive particles in land areas

    International Nuclear Information System (INIS)

    High-coverage in situ surveys with gamma detectors are the best means of identifying small hotspots of activity, such as radioactive particles, in land areas. Scanning surveys can produce rapid results, but the probabilities of obtaining false positive or false negative errors are often unknown, and they may not satisfy other criteria such as estimation of mass activity concentrations. An alternative is to use portable gamma-detectors that are set up at a series of locations in a systematic sampling pattern, where any positive measurements are subsequently followed up in order to determine the exact location, extent and nature of the target source. The preliminary survey is typically designed using settings of detector height, measurement spacing and counting time that are based on convenience, rather than using settings that have been calculated to meet requirements. This paper introduces the basis of a repeatable method of setting these parameters at the outset of a survey, for pre-defined probabilities of false positive and false negative errors in locating spatially small radioactive particles in land areas. It is shown that an un-collimated detector is more effective than a collimated detector that might typically be used in the field. - Highlights: • We propose a method of optimising the design of in situ particle detection. • It is intended for systematic survey designs using a portable in situ gamma detector. • Detector height, spacing and counting time are optimised. • Performance improves with the use of an un-collimated detector. • Using empirical estimates of uncertainty increases survey times

  4. Measurement methodology of natural radioactivity in the thermal establishments; Methodologies de mesure de la radioactivite naturelle dans les etablissements thermaux

    Energy Technology Data Exchange (ETDEWEB)

    Ameon, R.; Robe, M.C

    2004-11-15

    The thermal baths have been identified as an activity susceptible to expose to ionizing radiations the workers through the natural sources of radon and radon 220. The new regulation obliges these facilities to realize radioactivity measurements. The principal ways of exposure are radon and its daughters inhalation,, exposure to gamma radiation, ingestion of radioelements in thermal waters. I.R.S.N. proposes two methods of measurements of the natural radioactivity in application to the regulation relative to the protection of persons and workers. Some principles to reduce exposure to radon are reminded. (N.C.)0.

  5. Development of an underground HPGe array facility for ultra low radioactivity measurements

    International Nuclear Information System (INIS)

    Low Level Counting techniques using low background facilities are continuously under development to increase the possible sensitivity needed for rare physics events experiments. The CUP (Center for Underground Physics) group of IBS is developing, in collaboration with Canberra, a ultra low background instrument composed of two arrays facing each other with 7 HPGe detectors each. The low radioactive background of each detector has been evaluated and improved by the material selection of the detector components. Samples of all the building materials have been provided by the manufacturer and the contaminations had been measured using an optimized low background 100% HPGe with a dedicated shielding. The evaluation of the intrinsic background has been performed using MonteCarlo simulations and considering the contribution of each material with the measured contamination. To further reduce the background, the instrument will be placed in the new underground laboratory at YangYang exploiting the 700m mountain coverage and radon-free air supplying system. The array has been designed to perform various Ultra Low background measurements; the sensitivity we are expecting will allow not only low level measurements of Ra and Th contaminations in Copper or other usually pure materials, but also the search for rare decays. In particular some possible candidates and configurations to detect the 0νECEC (for example 106Cd and 156Dy) and rare β decays (96Zr, 180mTa , etc ) are under study

  6. Results of radiometric and geochemical measurement for the natural radioactivity map of Slovenia

    Directory of Open Access Journals (Sweden)

    Mišo Andjelov

    1994-12-01

    Full Text Available In 1990, a program was initiated to cover Slovenia with portable gamma-ray spectrometer measurements on a 5 x 5 km grid. The measurements were performed with a four channel Scintrex GAD-6 spectrometer. Five gamma-ray measurements were taken at each of 816 locations. Samples of the upper 10 cm of soil profile were collected for laboratory analysis. Uranium in samples was determinedby delayed neutron method (DNC. Other 35 elements: Ag, Al, As, Au, Ba, Be,Bi, Ca, Co, Cr, Cu, Fe, K, La, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Sb, Se, Sn, Sr, Th, Ti,U, V, W, Y, Zn and Zr were analyzed by plasma-coupled emission spectrometry (ICP. The field gamma-ray measurements were converted to ground concentrationsof potassium, uranium and thorium. These show good correlation with the laboratory analyses of soil samples. Regardless of the wide spaced sampling, the produced maps show relatively good correlation with main geological units. They demonstrated that the methodology can be successfully implemented for environmental monitoring, geological mapping and mineral exploration. The product ofthis project is the frist natural background radioactivity map of Slovenia covering the entire country.

  7. Estimation of potassium concentration in coconut water by beta radioactivity measurement

    International Nuclear Information System (INIS)

    Potassium is widely distributed in soil, in all vegetable, fruits and animal tissues. Approximately half the radioactivity found in humans comes from 40K. Potassium is an essential element in our diet since it is required for proper nerve and muscle function, as well as for maintaining the fluid balance of cells and heart rhythm. Potassium can enter the body mainly consuming fruits, vegetables and food. Tender coconut water is consumed widely as natural refreshing drink which is rich in potassium. The simple way to determine 40K activity is by gamma ray spectrometry. However, the low abundance of this gamma photon makes the technique less sensitive compared to gross beta measurement. Many analytical methods are reported for potassium estimation which is time consuming and destructive in nature. A unique way to estimate 40K by beta activity is by Cerenkov Counting technique using Liquid Scintillation Analyzer. Also much lower detection limit is achieved, allowing for greater precision. In this work, we have compared two methods to arrive at the potassium concentration in tender and matured coconut water by measuring 40K. One is non-scintillator method based on measurement of the Cerenkov radiation generated from the high-energy β of 40K. The second method is based on beta activity measurement using low background Gas flow counter

  8. Calibration of a gamma spectrometer for measuring natural radioactivity. Experimental measurements and modeling by Monte-Carlo methods

    International Nuclear Information System (INIS)

    The thesis proceeded in the context of dating by thermoluminescence. This method requires laboratory measurements of the natural radioactivity. For that purpose, we have been using a germanium spectrometer. To refine the calibration of this one, we modelled it by using a Monte-Carlo computer code: Geant4. We developed a geometrical model which takes into account the presence of inactive zones and zones of poor charge-collection within the germanium crystal. The parameters of the model were adjusted by comparison with experimental results obtained with a source of 137Cs. It appeared that the form of the inactive zones is less simple than is presented in the specialized literature. This model was widened to the case of a more complex source, with cascade effect and angular correlations between photons: the 60Co. Lastly, applied to extended sources, it gave correct results and allowed us to validate the simulation of matrix effect. (author)

  9. Measurement of Absolute Atomic Collision Cross Section with Helium Using 87Rb Atoms Confined in Magneto-Optic and Magnetic Traps

    Institute of Scientific and Technical Information of China (English)

    WANG Ji-Cheng; ZHOU Ke-Ya; WANG Yue-Yuan; LIAO Qing-Hong; LIU Shu-Tian

    2011-01-01

    We present the measurements and calculations of the absolute total collision cross sections for a room-temperature gas of helium using 87 Rb atoms confined in either a magneto-optic or a magnetic quadrupole trap. The loss rates from the magneto-optic trap and the pure magnetic trap are compared and show significant differences. The collision cross sections as a function of trap depth for helium gas are obtained. These findings are significant for extracting the information about the different cross sections when the trap depth is changed.%@@ We present the measurements and calculations of the absolute total collision cross sections for a room-temperature gas of helium using 87Rb atoms confined in either a magneto-optic or a magnetic quadrupole trap.The loss rates from the magneto-optic trap and the pure magnetic trap are compared and show significant differences.The collision cross sections as a function of trap depth for helium gas are obtained.These findings are significant for extracting the information about the different cross sections when the trap depth is changed.

  10. To the problem of concepts of measures for water protection against secondary radioactive contamination after the Chernobyl' NPP accident

    International Nuclear Information System (INIS)

    Basing on the analysis of experience in water protection measures in the zone of the Chernobyl' accident influence some conceptual approaches to solving the problems of secondary radioactive contamination of the Dnieper river water system are discussed. The scheme of the necessary information support for decision making in the field of water protection measures in zones subjected to accidental contamination by radioactive materials is suggested. It is shown that isolation of flooded source forming radionuclide washing-out from ground and surface waters is the most efficient method for decreasing water contamination level in the zone affected by contaminated spillways and river flood-plain basins. The objects for localization are the contaminated soils or leakages from radioactive waste storage places. 12 refs.; 1 tab

  11. Development of radiation detection and measurement system - Development of microcalorimeter for the radioactivity measurement

    Energy Technology Data Exchange (ETDEWEB)

    Jun, Jae Shik; Jung, H. J.; Chai, H. S.; Han, W. S. [Chungnam National University, Taejon (Korea)

    2000-03-01

    A unique multi-purpose radiation transport code has been developed and expected to be used in various fields of radiation physics and engineering. The present model is a hybrid in which the restricted energy-loss straggling is applied as in the Class I algorithm and the correlation in the secondary electron production is maintained explicitly. Output electromotive forces from the several types of the heat flux sensors have been measured as a function of the temperature differences between both end-plates of the sensors. Based on the analysis of the measurements, we could select the most appropriate type for our purpose, the sensitivity of which is greater than 45 mV/K. Heat source has also been fabricated with manganin wires and the uncertainty has been estimated to be less than 0.1%. The calorimetric core has been installed in the temporary thermal jacket surrounded by thick styrofoam and the signal from the core has been measured with power varying in the range {mu}W {approx} mW. The reproducibility has been found to be better than 0.5% for power greater than 60 {mu}W/s. In addition, it is confirmed that the heat generated by Co-60 and Ir-192 sources frequently used in industries, medicine and biology with very high level of the activity could be measured with the reproducibility better than that above mentioned. On the whole, the performance characteristics of the calorimetric core could be comparable to those commercially available. 139 refs., 40 figs., 7 tabs. (Author)

  12. IMIS (Integrated Measurement and Information System) - the German integrated radioactivity information and decision support system

    International Nuclear Information System (INIS)

    IMIS is being set up as part of the German Government's National Response Plan for dealing with the consequences of a large scale radioactive contamination of the environment. The IMIS system has three operational action levels. Level 3 covers the collection of radiological data from state-of-the-art monitoring networks and measurement laboratories. Level 2 involves computerised data processing and quality control, based on standardised procedures for the collection and presentation of measurements. This level also includes the use of transport and dose assessment models. Level 1 includes evaluation of the data, management of the consequences of a given situation, legal enforcement of protective measures and provision of information to the public. In its final form the IMIS system will consist of a total of 75 RISC computers linked together by an efficient packet-switched Wide Area Network. Owing to various demands of the individual users, three different types of RISC computers are used. The system software includes ULTRIX, TCP/IP and X windows. The relational database management system ORACLE is used together with the query language SQL-Plus. Statistical analyses are carried out with the standard product SAS. The geographical information system TERRA provides all the tools necessary for a detailed geographic presentation of the data. (author)

  13. Quality control laboratories for measuring radioactivity; Control de calidad en los laboratorios de medida de radiactividad

    Energy Technology Data Exchange (ETDEWEB)

    Legarda, F.; Garcia-Tenorio, R.; Nunez, R.

    2010-07-01

    In those laboratories involved in the measurement of radioactivity it is considered that a good determination requires, among other issues, and adequate monitoring of equipment performance and reagents and tracers. In this paper some of the parameters, of equipment performance are described together with some of the problems associated with their control and outlining possible solutions. Later, routine determinations are considered. For it is taken into account that an adequate control of the goodness of the results requires checking the whole measurement system, from sample reception to results delivery. In addition, the pros and cons of carrying out the enlargement of the control system so as to include management and performance of the laboratory as a whole in order to obtain an accreditation as external acknowledgement of well doing are discussed. Finally, this kind of acknowledgement, accreditation, is compared with the other kind of external acknowledgement of well doing: certification, establishing the former as adequate way of controlling not only the measurement process but also the management system. (Author). 15 refs.

  14. Review of Electret ion chamber technology for measuring technologically enhanced natural radioactivity

    International Nuclear Information System (INIS)

    Electret ion chamber (EIC) is a passive integrating ionization chamber used extensively for measuring technologically enhanced radioactivity. Commercially available electret ion chambers called 1E-PERM (Electret-Passive Environmental Radiation Monitors) electret ion chambers are relatively new and are in use only from the past 10 years. The EIC consists of a stable electret (electrically charged Teflon disc) mounted inside an electrically conducting chamber. The electret serves both as a source of the electric field and as a sensor. The ions produced inside the chamber are collected by the electret. The reduction in charge of the electret is related to total ionization during the period of exposure. This charge reduction is measured using a battery operated electret reader. Using appropriate calibration factors and the exposure time, the desired parameters such as radon concentration in air is calculated. These low cost monitors require neither power nor battery and several hundreds of these can be used simultaneously and serviced by one reader. These monitors do not provide on line readings, but provide an average value over a period of time. The EICs have been used for measuring: (a) indoor and outdoor radon, (b) thoron, (c) dissolved radon and radium in water, (d) environmental gamma, (e) radon emanating radon concentration in soil samples and in pipes, (f) radon flux from surfaces and building materials. The purpose of this paper is to describe these methods and give selected reference to the related publications for more detailed reading. (author)

  15. Current Measures on Radioactive Contamination in Japan: A Policy Situation Analysis.

    Directory of Open Access Journals (Sweden)

    Stuart Gilmour

    Full Text Available The Great East Japan Earthquake on 11th March 2011 and the subsequent Fukushima Dai-ichi nuclear power plant disaster caused radioactive contamination in the surrounding environment. In the immediate aftermath of the accident the Government of Japan placed strict measures on radio-contamination of food, and enhanced radio-contamination monitoring activities. Japan is a pilot country in the WHO Foodborne Disease Burden Epidemiology Reference Group (FERG, and through this initiative has an opportunity to report on policy affecting chemicals and toxins in the food distribution network. Nuclear accidents are extremely rare, and a policy situation analysis of the Japanese government's response to the Fukushima Dai-ichi nuclear accident is a responsibility of Japanese scientists. This study aims to assess Japan government policies to reduce radio-contamination risk and to identify strategies to strengthen food policies to ensure the best possible response to possible future radiation accidents.We conducted a hand search of all publicly available policy documents issued by the Cabinet Office, the Food Safety Commission, the Ministry of Health, Labor and Welfare (MHLW, the Ministry of Agriculture, Forestry and Fishery (MAFF and prefectural governments concerning food safety standards and changes to radiation and contamination standards since March 11th, 2011. We extracted information on food shipment and sales restrictions, allowable radio-contamination limits, monitoring activities and monitoring results. The standard for allowable radioactive cesium (Cs-134 and Cs-137 of 100 Bq/Kg in general food, 50 Bq/Kg in infant formula and all milk products, and 10 Bq/Kg in drinking water was enforced from April 2012 under the Food Sanitation Law, although a provisional standard on radio-contamination had been applied since the nuclear accident. Restrictions on the commercial sale and distribution of specific meat, vegetable and fish products were released for

  16. Eosinophil count - absolute

    Science.gov (United States)

    Eosinophils; Absolute eosinophil count ... the white blood cell count to give the absolute eosinophil count. ... than 500 cells per microliter (cells/mcL). Normal value ranges may vary slightly among different laboratories. Talk ...

  17. Absolute measurement of anti ν/sub p/ for 252Cf using the ORNL large liquid scintillator neutron detector

    International Nuclear Information System (INIS)

    The ORNL large liquid scintillator detector was used in a precise determination of anti ν/sub p/, the number of neutrons emitted promptly, for spontaneous fission of 252Cf. Measurements of the detector efficiency over a broad energy region were made by means of a proton-recoil technique employing the ORELA white neutron source. Monte Carlo calculation of the detector efficiency for a spectrum representative of 252Cf fission neutrons was calibrated with these elaborate measurements. The unusually flat response of the neutron detector resulted in elimination of several known sources of error. Experimental measurement was coupled with calculational methods to correct for other known errors. These measurements lead to an unusually small estimated uncertainty of 0.2% in the value obtained, anti ν/sub p/ = 3.773 +- 0.007

  18. Measurements of periods, relative abundances and absolute yields of delayed neutrons from fast neutron induced fission of {sup 237}Np

    Energy Technology Data Exchange (ETDEWEB)

    Piksaikine, V. [Institute of Physics and Power Engineering, Obninsk (Russian Federation)

    1997-03-01

    The experimental method for measurements of the delayed neutron yields and period is presented. The preliminary results of the total yield, relative abundances and periods are shown comparing with the previously reported values. (J.P.N.)

  19. Absolute dose measurement Gafchromic R EBT2 movies. Case Study of Kaposis sarcoma; Medida de dosis absoluta con peliculas Gafchromic EBT2. Caso practico de un sarcoma de Kaposi

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, L.; Moral, F. del; Meilan, E.; Azevedo Gomes, J. C. de; Tejeiro Garcia, A. G.; Andrade Alvarez, B.; Vazquez, J.; Nieto, I.; Medal, D.; Lopez Medina, A.; Francisco, S.; Salgado, M.; Munoz, V.

    2011-07-01

    Because of its high spatial resolution, low energy dependence and good response over a wide energy range, EBT2 Gafchromic films are widely used in many applications in radiotherapy for measuring relative dose. Despite being the most common use can be used to measure absolute dose. This text is an example of using films as EBT2 for in vivo absolute dose in a Kaposis sarcoma.

  20. Radioactive release in the area of the Research Centre Juelich, - model calculations and measurements

    International Nuclear Information System (INIS)

    There are several plants with a licence for higher releases of radioactive materials into the air in the area of the Research Centre Juelich. The development of the radioactive releases in the last ten years are shown. For their valuation the radiation exposure is determinated by two different methods. Their advantages and disadvantages are discussed. (orig.)