WorldWideScience

Sample records for absolute quantum efficiency

  1. Extremely high absolute internal quantum efficiency of photoluminescence in co-doped GaN:Zn,Si

    Science.gov (United States)

    Reshchikov, M. A.; Willyard, A. G.; Behrends, A.; Bakin, A.; Waag, A.

    2011-10-01

    We report on the fabrication of GaN co-doped with silicon and zinc by metalorganic vapor phase epitaxy and a detailed study of photoluminescence in this material. We observe an exceptionally high absolute internal quantum efficiency of blue photoluminescence in GaN:Zn,Si. The value of 0.93±0.04 has been obtained from several approaches based on rate equations.

  2. Fluctuation theorems in feedback-controlled open quantum systems: Quantum coherence and absolute irreversibility

    Science.gov (United States)

    Murashita, Yûto; Gong, Zongping; Ashida, Yuto; Ueda, Masahito

    2017-10-01

    The thermodynamics of quantum coherence has attracted growing attention recently, where the thermodynamic advantage of quantum superposition is characterized in terms of quantum thermodynamics. We investigate the thermodynamic effects of quantum coherent driving in the context of the fluctuation theorem. We adopt a quantum-trajectory approach to investigate open quantum systems under feedback control. In these systems, the measurement backaction in the forward process plays a key role, and therefore the corresponding time-reversed quantum measurement and postselection must be considered in the backward process, in sharp contrast to the classical case. The state reduction associated with quantum measurement, in general, creates a zero-probability region in the space of quantum trajectories of the forward process, which causes singularly strong irreversibility with divergent entropy production (i.e., absolute irreversibility) and hence makes the ordinary fluctuation theorem break down. In the classical case, the error-free measurement ordinarily leads to absolute irreversibility, because the measurement restricts classical paths to the region compatible with the measurement outcome. In contrast, in open quantum systems, absolute irreversibility is suppressed even in the presence of the projective measurement due to those quantum rare events that go through the classically forbidden region with the aid of quantum coherent driving. This suppression of absolute irreversibility exemplifies the thermodynamic advantage of quantum coherent driving. Absolute irreversibility is shown to emerge in the absence of coherent driving after the measurement, especially in systems under time-delayed feedback control. We show that absolute irreversibility is mitigated by increasing the duration of quantum coherent driving or decreasing the delay time of feedback control.

  3. Determination of the absolute internal quantum efficiency of photoluminescence in GaN co-doped with Si and Zn

    Science.gov (United States)

    Reshchikov, M. A.; Foussekis, M.; McNamara, J. D.; Behrends, A.; Bakin, A.; Waag, A.

    2012-04-01

    The optical properties of high-quality GaN co-doped with silicon and zinc are investigated by using temperature-dependent continuous-wave and time-resolved photoluminescence measurements. The blue luminescence band is related to the ZnGa acceptor in GaN:Si,Zn, which exhibits an exceptionally high absolute internal quantum efficiency (IQE). An IQE above 90% was calculated for several samples having different concentrations of Zn. Accurate and reliable values of the IQE were obtained by using several approaches based on rate equations. The concentrations of the ZnGa acceptors and free electrons were also estimated from the photoluminescence measurements.

  4. Absolute determination of photoluminescence quantum efficiency using an integrating sphere setup

    International Nuclear Information System (INIS)

    Leyre, S.; Coutino-Gonzalez, E.; Hofkens, J.; Joos, J. J.; Poelman, D.; Smet, P. F.; Ryckaert, J.; Meuret, Y.; Durinck, G.; Hanselaer, P.; Deconinck, G.

    2014-01-01

    An integrating sphere-based setup to obtain a quick and reliable determination of the internal quantum efficiency of strongly scattering luminescent materials is presented. In literature, two distinct but similar measurement procedures are frequently mentioned: a “two measurement” and a “three measurement” approach. Both methods are evaluated by applying the rigorous integrating sphere theory. It was found that both measurement procedures are valid. Additionally, the two methods are compared with respect to the uncertainty budget of the obtained values of the quantum efficiency. An inter-laboratory validation using the two distinct procedures was performed. The conclusions from the theoretical study were confirmed by the experimental data

  5. Development of a System for Absolute Quantum Efficiency Determination of Hybrid Photo Diodes

    CERN Document Server

    Hammarstedt, P

    2001-01-01

    At CERN, the European Laboratory for Particle Physics, a new particle accelerator, the Large Hadron Collider (LHC), is under development. The detectors at LHC require development of highly sophisticated technologies, including Hybrid Photo Diodes (HPD) for high efficiency, high resolution single photon detection with a large area coverage. During the HPD development phase, one of the crucial parameters in the optimization of the photocathode creation process is the quantum efficiency. The aim of this Master Thesis has been to design and implement a system for high precision, high resolution quantum efficiency determination over a large, 200-700 nm photon wavelength range. Commercially available components have been obtained, an optomechanical system has been designed and built, and all the necessary data acquisition, control and analysis software has been implemented. The relative precision of the measurement system has been determined to 2%, with additional possible systematic errors less than 2%. Various qu...

  6. Quantum efficiency of silica-coated rare-earth doped yttrium silicate

    International Nuclear Information System (INIS)

    Cervantes-Vásquez, D.; Contreras, O.E.; Hirata, G.A.

    2013-01-01

    The photoluminescent properties of rare earth-activated white-emitting Y 2 SiO 5 :Ce,Tb nanocrystalline phosphor prepared by two different methods, pressure-assisted combustion synthesis and sol–gel, were studied. The synthesized phosphor samples were post-annealed at 1373 K and 1623 K in order to obtain the X1-Y 2 SiO 5 and X2-Y 2 SiO 5 phases, respectively, which were confirmed by X-ray diffraction measurements. Photoluminescence analysis showed the contribution of two blue-emission bands within the 380–450 nm region originating from 5d–4f transitions in Ce 3+ ions and a well-defined green emission of Tb 3+ ions located at 545 nm corresponding to 5 D 4 → 7 F 5 electronic transitions. Thereafter, Y 2 SiO 5 :Ce,Tb powders were coated with colloidal silica in order to investigate the effect of silica coatings on their luminescent properties. Absolute fluorescence quantum efficiency measurements were carefully performed, which revealed an increase of 12% of efficiency in coated compared with bare-Y 2 SiO 5 :Ce,Tb phosphor. -- Highlights: • Y 2 SiO 5 :Ce,Tb phosphor powders were successfully coated with colloidal silica. • Post-annealing treatments improved the quantum efficiency of silica-coated Y 2 SiO 5 :Ce,Tb phosphors. • Absolute fluorescence quantum efficiency measurements showed an increase of 12%

  7. On quantum harmonic oscillator being subjected to absolute ...

    Indian Academy of Sciences (India)

    On quantum harmonic oscillator being subjected to absolute potential state. SWAMI NITYAYOGANANDA. Ramakrishna Mission Ashrama, R.K. Beach, Visakhapatnam 530 003, India. E-mail: nityayogananda@gmail.com. MS received 1 May 2015; accepted 6 May 2016; published online 3 December 2016. Abstract.

  8. Quantum efficiency measurement system for large area CsI photodetectors

    CERN Document Server

    Cusanno, F; Colilli, S; Crateri, R; Fratoni, R; Frullani, S; Garibaldi, F; Giuliani, F; Gricia, M; Lucentini, M; Mostarda, A; Santavenere, F; Veneroni, P; Breuer, H; Iodice, M; Urciuoli, G M; De Cataldo, G; De Leo, R; Lagamba, L; Braem, André

    2003-01-01

    A proximity focusing freon/CsI RICH detector has been built for kaon physics at Thomas Jefferson National Accelerator Facility (TJNAF or Jefferson Lab), Hall A. The Cherenkov photons are detected by a UV photosensitive CsI film which has been obtained by vacuum evaporation. A dedicated evaporation facility for large area photocathodes has been built for this task. A measuring system has been built to allow the evaluation of the absolute quantum efficiency (QE) just after the evaporation. The evaporation facility is described here, as well as the quantum efficiency measurement device. Results of the QE on-line measurements, for the first time on large area photocathodes, are reported.

  9. Quantum efficiency of silica-coated rare-earth doped yttrium silicate

    Energy Technology Data Exchange (ETDEWEB)

    Cervantes-Vásquez, D., E-mail: dcervant@cnyn.unam.mx [Centro de Investigación Científica y de Educación Superior de Ensenada, Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860 Ensenada, B.C., México (Mexico); Contreras, O.E.; Hirata, G.A. [Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km. 107 Carretera Tijuana-Ensenada, C.P. 22800 Ensenada, B.C., México (Mexico)

    2013-11-15

    The photoluminescent properties of rare earth-activated white-emitting Y{sub 2}SiO{sub 5}:Ce,Tb nanocrystalline phosphor prepared by two different methods, pressure-assisted combustion synthesis and sol–gel, were studied. The synthesized phosphor samples were post-annealed at 1373 K and 1623 K in order to obtain the X1-Y{sub 2}SiO{sub 5} and X2-Y{sub 2}SiO{sub 5} phases, respectively, which were confirmed by X-ray diffraction measurements. Photoluminescence analysis showed the contribution of two blue-emission bands within the 380–450 nm region originating from 5d–4f transitions in Ce{sup 3+} ions and a well-defined green emission of Tb{sup 3+} ions located at 545 nm corresponding to {sup 5}D{sub 4}→{sup 7}F{sub 5} electronic transitions. Thereafter, Y{sub 2}SiO{sub 5}:Ce,Tb powders were coated with colloidal silica in order to investigate the effect of silica coatings on their luminescent properties. Absolute fluorescence quantum efficiency measurements were carefully performed, which revealed an increase of 12% of efficiency in coated compared with bare-Y{sub 2}SiO{sub 5}:Ce,Tb phosphor. -- Highlights: • Y{sub 2}SiO{sub 5}:Ce,Tb phosphor powders were successfully coated with colloidal silica. • Post-annealing treatments improved the quantum efficiency of silica-coated Y{sub 2}SiO{sub 5}:Ce,Tb phosphors. • Absolute fluorescence quantum efficiency measurements showed an increase of 12%.

  10. Efficient quantum circuits for Szegedy quantum walks

    International Nuclear Information System (INIS)

    Loke, T.; Wang, J.B.

    2017-01-01

    A major advantage in using Szegedy’s formalism over discrete-time and continuous-time quantum walks lies in its ability to define a unitary quantum walk by quantizing a Markov chain on a directed or weighted graph. In this paper, we present a general scheme to construct efficient quantum circuits for Szegedy quantum walks that correspond to classical Markov chains possessing transformational symmetry in the columns of the transition matrix. In particular, the transformational symmetry criteria do not necessarily depend on the sparsity of the transition matrix, so this scheme can be applied to non-sparse Markov chains. Two classes of Markov chains that are amenable to this construction are cyclic permutations and complete bipartite graphs, for which we provide explicit efficient quantum circuit implementations. We also prove that our scheme can be applied to Markov chains formed by a tensor product. We also briefly discuss the implementation of Markov chains based on weighted interdependent networks. In addition, we apply this scheme to construct efficient quantum circuits simulating the Szegedy walks used in the quantum Pagerank algorithm for some classes of non-trivial graphs, providing a necessary tool for experimental demonstration of the quantum Pagerank algorithm. - Highlights: • A general theoretical framework for implementing Szegedy walks using quantum circuits. • Explicit efficient quantum circuit implementation of the Szegedy walk for several classes of graphs. • Efficient implementation of Szegedy walks for quantum page-ranking of a certain class of graphs.

  11. Measurement of the quantum efficiency of TMAE and TEA from threshold to 120 nm

    International Nuclear Information System (INIS)

    Holroyd, R.A.; Preses, J.M.; Woody, C.L.; Johnson, R.A.

    1986-01-01

    Several existing and planned high energy physics experiments incorporate detectors which use either TMAE (tetrakis-dimethylaminoethylene) or TEA (triethylamine) as their photosensitive agent. Understanding the operation of these devices requires knowledge of the absolute photoionization quantum efficiencies and absorption lengths of TMAE and TEA. In an experiment performed at the National Synchrotron Light source at Brookhaven National Laboratory, we have measured these parameters from 120 nm to 280 nm. The quantum efficiencies were normalized to the known photoionization yields of benzene and cis-2-butene. The results of these measurements and details of the experiment are presented in this paper

  12. An optical test bench for the precision characterization of absolute quantum efficiency for the TESS CCD detectors

    International Nuclear Information System (INIS)

    Krishnamurthy, A.; Villasenor, J.; Kissel, S.; Ricker, G.; Vanderspek, R.

    2017-01-01

    The Transiting Exoplanet Survey Satellite (TESS) will search for planets transiting bright stars with Ic ∼< 13. TESS has been selected by NASA for launch in 2018 as an Astrophysics Explorer mission, and is expected to discover a thousand or more planets that are smaller in size than Neptune. TESS will employ four wide-field optical charge-coupled device (CCD) cameras with a band-pass of 650 nm–1050 nm to detect temporary drops in brightness of stars due to planetary transits. The 1050 nm limit is set by the quantum efficiency (QE) of the CCDs. The detector assembly consists of four back-illuminated MIT Lincoln Laboratory CCID-80 devices. Each CCID-80 device consists of 2048×2048 imaging array and 2048×2048 frame store regions. Very precise on-ground calibration and characterization of CCD detectors will significantly assist in the analysis of the science data obtained in space. The characterization of the absolute QE of the CCD detectors is a crucial part of the characterization process because QE affects the performance of the CCD significantly over the redder wavelengths at which TESS will be operating. An optical test bench with significantly high photometric stability has been developed to perform precise QE measurements. The design of the test setup along with key hardware, methodology, and results from the test campaign are presented.

  13. Efficient quantum circuits for Szegedy quantum walks

    Science.gov (United States)

    Loke, T.; Wang, J. B.

    2017-07-01

    A major advantage in using Szegedy's formalism over discrete-time and continuous-time quantum walks lies in its ability to define a unitary quantum walk by quantizing a Markov chain on a directed or weighted graph. In this paper, we present a general scheme to construct efficient quantum circuits for Szegedy quantum walks that correspond to classical Markov chains possessing transformational symmetry in the columns of the transition matrix. In particular, the transformational symmetry criteria do not necessarily depend on the sparsity of the transition matrix, so this scheme can be applied to non-sparse Markov chains. Two classes of Markov chains that are amenable to this construction are cyclic permutations and complete bipartite graphs, for which we provide explicit efficient quantum circuit implementations. We also prove that our scheme can be applied to Markov chains formed by a tensor product. We also briefly discuss the implementation of Markov chains based on weighted interdependent networks. In addition, we apply this scheme to construct efficient quantum circuits simulating the Szegedy walks used in the quantum Pagerank algorithm for some classes of non-trivial graphs, providing a necessary tool for experimental demonstration of the quantum Pagerank algorithm.

  14. Efficient quantum walk on a quantum processor

    Science.gov (United States)

    Qiang, Xiaogang; Loke, Thomas; Montanaro, Ashley; Aungskunsiri, Kanin; Zhou, Xiaoqi; O'Brien, Jeremy L.; Wang, Jingbo B.; Matthews, Jonathan C. F.

    2016-01-01

    The random walk formalism is used across a wide range of applications, from modelling share prices to predicting population genetics. Likewise, quantum walks have shown much potential as a framework for developing new quantum algorithms. Here we present explicit efficient quantum circuits for implementing continuous-time quantum walks on the circulant class of graphs. These circuits allow us to sample from the output probability distributions of quantum walks on circulant graphs efficiently. We also show that solving the same sampling problem for arbitrary circulant quantum circuits is intractable for a classical computer, assuming conjectures from computational complexity theory. This is a new link between continuous-time quantum walks and computational complexity theory and it indicates a family of tasks that could ultimately demonstrate quantum supremacy over classical computers. As a proof of principle, we experimentally implement the proposed quantum circuit on an example circulant graph using a two-qubit photonics quantum processor. PMID:27146471

  15. Determination of absolute detection efficiencies for detectors of interest in homeland security

    International Nuclear Information System (INIS)

    Ayaz-Maierhafer, Birsen; DeVol, Timothy A.

    2007-01-01

    The absolute total and absolute peak detection efficiencies of gamma ray detector materials NaI:Tl, CdZnTe, HPGe, HPXe, LaBr 3 :Ce and LaCl 3 :Ce were simulated and compared to that of polyvinyltoluene (PVT). The dimensions of the PVT detector were 188.82 cmx60.96 cmx5.08 cm, which is a typical size for a single-panel portal monitor. The absolute total and peak detection efficiencies for these detector materials for the point, line and spherical source geometries of 60 Co (1332 keV), 137 Cs (662 keV) and 241 Am (59.5 keV) were simulated at various source-to-detector distances using the Monte Carlo N-Particle software (MCNP5-V1.30). The comparison of the absolute total detection efficiencies for a point, line and spherical source geometry of 60 Co and 137 Cs at different source-to-detector distance showed that the absolute detection efficiency for PVT is higher relative to the other detectors of typical dimensions for that material. However, the absolute peak detection efficiency of some of these detectors are higher relative to PVT, for example the absolute peak detection efficiency of NaI:Tl (7.62 cm diameterx7.62 cm long), HPGe (7.62 cm diameterx7.62 cm long), HPXe (11.43 cm diameterx60.96 cm long), and LaCl 3 :Ce (5.08 cm diameterx5.08 cm long) are all greater than that of a 188.82 cmx60.96 cmx5.08 cm PVT detector for 60 Co and 137 Cs for all geometries studied. The absolute total and absolute peak detection efficiencies of a right circular cylinder of NaI:Tl with various diameters and thicknesses were determined for a point source. The effect of changing the solid angle on the NaI:Tl detectors showed that with increasing solid angle and detector thickness, the absolute efficiency increases. This work establishes a common basis for differentiating detector materials for passive portal monitoring of gamma ray radiation

  16. Enhanced carrier collection efficiency and reduced quantum state absorption by electron doping in self-assembled quantum dot solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tian, E-mail: tianlee@umd.edu, E-mail: dage@ece.umd.edu; Dagenais, Mario, E-mail: tianlee@umd.edu, E-mail: dage@ece.umd.edu [Department of Electrical Engineering, University of Maryland, College Park, Maryland 20742 (United States); Lu, Haofeng; Fu, Lan; Tan, Hark Hoe; Jagadish, Chennupati [Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra ACT 0200 (Australia)

    2015-02-02

    Reduced quantum dot (QD) absorption due to state filling effects and enhanced electron transport in doped QDs are demonstrated to play a key role in solar energy conversion. Reduced QD state absorption with increased n-doping is observed in the self-assembled In{sub 0.5}Ga{sub 0.5}As/GaAs QDs from high resolution below-bandgap external quantum efficiency (EQE) measurement, which is a direct consequence of the Pauli exclusion principle. We also show that besides partial filling of the quantum states, electron-doping produces negatively charged QDs that exert a repulsive Coulomb force on the mobile electrons, thus altering the electron trajectory and reducing the probability of electron capture, leading to an improved collection efficiency of photo-generated carriers, as indicated by an absolute above-bandgap EQE measurement. The resulting redistribution of the mobile electron in the planar direction is further validated by the observed photoluminescence intensity dependence on doping.

  17. On determining absolute entropy without quantum theory or the third law of thermodynamics

    Science.gov (United States)

    Steane, Andrew M.

    2016-04-01

    We employ classical thermodynamics to gain information about absolute entropy, without recourse to statistical methods, quantum mechanics or the third law of thermodynamics. The Gibbs-Duhem equation yields various simple methods to determine the absolute entropy of a fluid. We also study the entropy of an ideal gas and the ionization of a plasma in thermal equilibrium. A single measurement of the degree of ionization can be used to determine an unknown constant in the entropy equation, and thus determine the absolute entropy of a gas. It follows from all these examples that the value of entropy at absolute zero temperature does not need to be assigned by postulate, but can be deduced empirically.

  18. Efficient quantum circuit implementation of quantum walks

    International Nuclear Information System (INIS)

    Douglas, B. L.; Wang, J. B.

    2009-01-01

    Quantum walks, being the quantum analog of classical random walks, are expected to provide a fruitful source of quantum algorithms. A few such algorithms have already been developed, including the 'glued trees' algorithm, which provides an exponential speedup over classical methods, relative to a particular quantum oracle. Here, we discuss the possibility of a quantum walk algorithm yielding such an exponential speedup over possible classical algorithms, without the use of an oracle. We provide examples of some highly symmetric graphs on which efficient quantum circuits implementing quantum walks can be constructed and discuss potential applications to quantum search for marked vertices along these graphs.

  19. Lyman alpha SMM/UVSP absolute calibration and geocoronal correction

    Science.gov (United States)

    Fontenla, Juan M.; Reichmann, Edwin J.

    1987-01-01

    Lyman alpha observations from the Ultraviolet Spectrometer Polarimeter (UVSP) instrument of the Solar Maximum Mission (SMM) spacecraft were analyzed and provide instrumental calibration details. Specific values of the instrument quantum efficiency, Lyman alpha absolute intensity, and correction for geocoronal absorption are presented.

  20. Quantum autoencoders for efficient compression of quantum data

    Science.gov (United States)

    Romero, Jonathan; Olson, Jonathan P.; Aspuru-Guzik, Alan

    2017-12-01

    Classical autoencoders are neural networks that can learn efficient low-dimensional representations of data in higher-dimensional space. The task of an autoencoder is, given an input x, to map x to a lower dimensional point y such that x can likely be recovered from y. The structure of the underlying autoencoder network can be chosen to represent the data on a smaller dimension, effectively compressing the input. Inspired by this idea, we introduce the model of a quantum autoencoder to perform similar tasks on quantum data. The quantum autoencoder is trained to compress a particular data set of quantum states, where a classical compression algorithm cannot be employed. The parameters of the quantum autoencoder are trained using classical optimization algorithms. We show an example of a simple programmable circuit that can be trained as an efficient autoencoder. We apply our model in the context of quantum simulation to compress ground states of the Hubbard model and molecular Hamiltonians.

  1. Accurate reconstruction of the jV-characteristic of organic solar cells from measurements of the external quantum efficiency

    Science.gov (United States)

    Meyer, Toni; Körner, Christian; Vandewal, Koen; Leo, Karl

    2018-04-01

    In two terminal tandem solar cells, the current density - voltage (jV) characteristic of the individual subcells is typically not directly measurable, but often required for a rigorous device characterization. In this work, we reconstruct the jV-characteristic of organic solar cells from measurements of the external quantum efficiency under applied bias voltages and illumination. We show that it is necessary to perform a bias irradiance variation at each voltage and subsequently conduct a mathematical correction of the differential to the absolute external quantum efficiency to obtain an accurate jV-characteristic. Furthermore, we show that measuring the external quantum efficiency as a function of voltage for a single bias irradiance of 0.36 AM1.5g equivalent sun provides a good approximation of the photocurrent density over voltage curve. The method is tested on a selection of efficient, common single-junctions. The obtained conclusions can easily be transferred to multi-junction devices with serially connected subcells.

  2. Assignment of absolute stereostructures through quantum mechanics electronic and vibrational circular dichroism calculations.

    Science.gov (United States)

    Dai, Peng; Jiang, Nan; Tan, Ren-Xiang

    2016-01-01

    Elucidation of absolute configuration of chiral molecules including structurally complex natural products remains a challenging problem in organic chemistry. A reliable method for assigning the absolute stereostructure is to combine the experimental circular dichroism (CD) techniques such as electronic and vibrational CD (ECD and VCD), with quantum mechanics (QM) ECD and VCD calculations. The traditional QM methods as well as their continuing developments make them more applicable with accuracy. Taking some chiral natural products with diverse conformations as examples, this review describes the basic concepts and new developments of QM approaches for ECD and VCD calculations in solution and solid states.

  3. Classical and quantum dynamics of a gravitational theory with absolute teleparallelism

    International Nuclear Information System (INIS)

    Azeredo Campos, R. de.

    1984-01-01

    The dynamics of an alternative theory of gravitation with absolute teleparallelism is sustied. In the Cauchy problem of this theory four constraint relations are obtained, as in general relativity, because of the existence of the manifold mapping group. Propagation equations for the dynamical variables are also derived by applying Dirac's Hamiltonian methods. In addition, an algebra of generators related to the global Lorentz group and the correspondence principle leading to a quantum version of the theory are also discussed. (author) [pt

  4. An efficient quantum algorithm for spectral estimation

    Science.gov (United States)

    Steffens, Adrian; Rebentrost, Patrick; Marvian, Iman; Eisert, Jens; Lloyd, Seth

    2017-03-01

    We develop an efficient quantum implementation of an important signal processing algorithm for line spectral estimation: the matrix pencil method, which determines the frequencies and damping factors of signals consisting of finite sums of exponentially damped sinusoids. Our algorithm provides a quantum speedup in a natural regime where the sampling rate is much higher than the number of sinusoid components. Along the way, we develop techniques that are expected to be useful for other quantum algorithms as well—consecutive phase estimations to efficiently make products of asymmetric low rank matrices classically accessible and an alternative method to efficiently exponentiate non-Hermitian matrices. Our algorithm features an efficient quantum-classical division of labor: the time-critical steps are implemented in quantum superposition, while an interjacent step, requiring much fewer parameters, can operate classically. We show that frequencies and damping factors can be obtained in time logarithmic in the number of sampling points, exponentially faster than known classical algorithms.

  5. Solvent Dependency in the Quantum Efficiency of 4-[(4-Aminophenyl)-(4-imino-1-cyclohexa-2, 5- dienylidene) methyl] Aniline Hydrochloride.

    Science.gov (United States)

    Pathrose, Bini; Nampoori, V P N; Radhakrishnan, P; Sahira, H; Mujeeb, A

    2015-05-01

    In the present work dual beam thermal lens technique is used for studying the solvent dependency on the quantum efficiency of a novel dye used for biomedical applications. The role of solvent in the absolute fluorescence quantum yield of 4-[(4-Aminophenyl)-(4-imino-1-cyclohexa-2, 5- dienylidene) methyl] aniline hydrochloride is studied using thermal lens technique. It is observed that the variation in solvents and its concentration results considerable variations in the fluorescence quantum yield. These variations are due to the non-radiative relaxation of the absorbed energy and because of the different solvent properties. The highest quantum yield of the dye is observed in the polar protic solvent-water.

  6. Optimal quantum error correcting codes from absolutely maximally entangled states

    Science.gov (United States)

    Raissi, Zahra; Gogolin, Christian; Riera, Arnau; Acín, Antonio

    2018-02-01

    Absolutely maximally entangled (AME) states are pure multi-partite generalizations of the bipartite maximally entangled states with the property that all reduced states of at most half the system size are in the maximally mixed state. AME states are of interest for multipartite teleportation and quantum secret sharing and have recently found new applications in the context of high-energy physics in toy models realizing the AdS/CFT-correspondence. We work out in detail the connection between AME states of minimal support and classical maximum distance separable (MDS) error correcting codes and, in particular, provide explicit closed form expressions for AME states of n parties with local dimension \

  7. Efficient quantum computing with weak measurements

    International Nuclear Information System (INIS)

    Lund, A P

    2011-01-01

    Projective measurements with high quantum efficiency are often assumed to be required for efficient circuit-based quantum computing. We argue that this is not the case and show that the fact that they are not required was actually known previously but was not deeply explored. We examine this issue by giving an example of how to perform the quantum-ordering-finding algorithm efficiently using non-local weak measurements considering that the measurements used are of bounded weakness and some fixed but arbitrary probability of success less than unity is required. We also show that it is possible to perform the same computation with only local weak measurements, but this must necessarily introduce an exponential overhead.

  8. Conditional efficient multiuser quantum cryptography network

    International Nuclear Information System (INIS)

    Xue Peng; Li Chuanfeng; Guo Guangcan

    2002-01-01

    We propose a conditional quantum key distribution scheme with three nonorthogonal states. Combined with the idea presented by Lo et al. (H.-K. Lo, H. F. Chau, and M. Ardehali, e-print arXiv: quant-ph/0011056), the efficiency of this scheme is increased to tend to 100%. Also, such a refined data analysis guarantees the security of our scheme against the most general eavesdropping strategy. Then, based on the scheme, we present a quantum cryptography network with the addition of a device called ''space optical switch.'' Moreover, we give out a realization of a quantum random number generator. Thus, a feasible experimental scheme of this efficient quantum cryptography network is completely given

  9. Absolute spectroscopy near 7.8 {\\mu} m with a comb-locked extended-cavity quantum-cascade-laser

    KAUST Repository

    Lamperti, Marco; Alsaif, Bidoor; Gatti, Davide; Fermann, Martin; Laporta, Paolo; Farooq, Aamir; Marangoni, Marco

    2017-01-01

    We report the first experimental demonstration of frequency-locking of an extended-cavity quantum-cascade-laser (EC-QCL) to a near-infrared frequency comb. The locking scheme is applied to carry out absolute spectroscopy of N2O lines near 7.87 {\\mu

  10. Quantum interferences reconstruction with low homodyne detection efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Esposito, Martina; Randi, Francesco [Universita degli studi di Trieste, Dipartimento di Fisica, Trieste (Italy); Titimbo, Kelvin; Zimmermann, Klaus; Benatti, Fabio [Universita degli studi di Trieste, Dipartimento di Fisica, Trieste (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, Trieste (Italy); Kourousias, Georgios; Curri, Alessio [Sincrotrone Trieste S.C.p.A., Trieste (Italy); Floreanini, Roberto [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, Trieste (Italy); Parmigiani, Fulvio [Universita degli studi di Trieste, Dipartimento di Fisica, Trieste (Italy); Sincrotrone Trieste S.C.p.A., Trieste (Italy); University of Cologne, Institute of Physics II, Cologne (Germany); Fausti, Daniele [Universita degli studi di Trieste, Dipartimento di Fisica, Trieste (Italy); Sincrotrone Trieste S.C.p.A., Trieste (Italy)

    2016-12-15

    Optical homodyne tomography consists in reconstructing the quantum state of an optical field from repeated measurements of its amplitude at different field phases (homodyne data). The experimental noise, which unavoidably affects the homodyne data, leads to a detection efficiency η<1. The problem of reconstructing quantum states from noisy homodyne data sets prompted an intense scientific debate about the presence or absence of a lower homodyne efficiency bound (η>0.5) below which quantum features, like quantum interferences, cannot be retrieved. Here, by numerical experiments, we demonstrate that quantum interferences can be effectively reconstructed also for low homodyne detection efficiency. In particular, we address the challenging case of a Schroedinger cat state and test the minimax and adaptive Wigner function reconstruction technique by processing homodyne data distributed according to the chosen state but with an efficiency η>0.5. By numerically reproducing the Schroedinger's cat interference pattern, we give evidence that quantum state reconstruction is actually possible in these conditions, and provide a guideline for handling optical tomography based on homodyne data collected by low efficiency detectors. (orig.)

  11. Maximally efficient protocols for direct secure quantum communication

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Anindita [Department of Physics and Materials Science Engineering, Jaypee Institute of Information Technology, A-10, Sector-62, Noida, UP-201307 (India); Department of Physics and Center for Astroparticle Physics and Space Science, Bose Institute, Block EN, Sector V, Kolkata 700091 (India); Pathak, Anirban, E-mail: anirban.pathak@jiit.ac.in [Department of Physics and Materials Science Engineering, Jaypee Institute of Information Technology, A-10, Sector-62, Noida, UP-201307 (India); RCPTM, Joint Laboratory of Optics of Palacky University and Institute of Physics of Academy of Science of the Czech Republic, Faculty of Science, Palacky University, 17. Listopadu 12, 77146 Olomouc (Czech Republic)

    2012-10-01

    Two protocols for deterministic secure quantum communication (DSQC) using GHZ-like states have been proposed. It is shown that one of these protocols is maximally efficient and that can be modified to an equivalent protocol of quantum secure direct communication (QSDC). Security and efficiency of the proposed protocols are analyzed and compared. It is shown that dense coding is sufficient but not essential for DSQC and QSDC protocols. Maximally efficient QSDC protocols are shown to be more efficient than their DSQC counterparts. This additional efficiency arises at the cost of message transmission rate. -- Highlights: ► Two protocols for deterministic secure quantum communication (DSQC) are proposed. ► One of the above protocols is maximally efficient. ► It is modified to an equivalent protocol of quantum secure direct communication (QSDC). ► It is shown that dense coding is sufficient but not essential for DSQC and QSDC protocols. ► Efficient QSDC protocols are always more efficient than their DSQC counterparts.

  12. Efficient multiparty quantum-secret-sharing schemes

    International Nuclear Information System (INIS)

    Xiao Li; Deng Fuguo; Long Guilu; Pan Jianwei

    2004-01-01

    In this work, we generalize the quantum-secret-sharing scheme of Hillery, Buzek, and Berthiaume [Phys. Rev. A 59, 1829 (1999)] into arbitrary multiparties. Explicit expressions for the shared secret bit is given. It is shown that in the Hillery-Buzek-Berthiaume quantum-secret-sharing scheme the secret information is shared in the parity of binary strings formed by the measured outcomes of the participants. In addition, we have increased the efficiency of the quantum-secret-sharing scheme by generalizing two techniques from quantum key distribution. The favored-measuring-basis quantum-secret-sharing scheme is developed from the Lo-Chau-Ardehali technique [H. K. Lo, H. F. Chau, and M. Ardehali, e-print quant-ph/0011056] where all the participants choose their measuring-basis asymmetrically, and the measuring-basis-encrypted quantum-secret-sharing scheme is developed from the Hwang-Koh-Han technique [W. Y. Hwang, I. G. Koh, and Y. D. Han, Phys. Lett. A 244, 489 (1998)] where all participants choose their measuring basis according to a control key. Both schemes are asymptotically 100% in efficiency, hence nearly all the Greenberger-Horne-Zeilinger states in a quantum-secret-sharing process are used to generate shared secret information

  13. Bounds on absolutely maximally entangled states from shadow inequalities, and the quantum MacWilliams identity

    Science.gov (United States)

    Huber, Felix; Eltschka, Christopher; Siewert, Jens; Gühne, Otfried

    2018-04-01

    A pure multipartite quantum state is called absolutely maximally entangled (AME), if all reductions obtained by tracing out at least half of its parties are maximally mixed. Maximal entanglement is then present across every bipartition. The existence of such states is in many cases unclear. With the help of the weight enumerator machinery known from quantum error correction and the shadow inequalities, we obtain new bounds on the existence of AME states in dimensions larger than two. To complete the treatment on the weight enumerator machinery, the quantum MacWilliams identity is derived in the Bloch representation. Finally, we consider AME states whose subsystems have different local dimensions, and present an example for a 2×3×3×3 system that shows maximal entanglement across every bipartition.

  14. The new Absolute Quantum Gravimeter (AQG): first results and perspectives

    Science.gov (United States)

    Bonvalot, Sylvain; Le Moigne, Nicolas; Merlet, Sebastien; Desruelle, Bruno; Lautier-Gaud, Jean; Menoret, Vincent; Vermeulen, Pierre

    2016-04-01

    Cold atom gravimetry represents one of the most innovative evolution in gravity instrumentation since the last 20 years. The concept of measuring the gravitational acceleration by dropping atoms and the development of the first instrumental devices during this last decade quickly revealed the promising perspectives of this new generation of gravity meters enabling accurate and absolute measurements of the Earth's gravity field for a wide range of applications (geophysics, geodesy, metrology, etc.). The Absolute Quantum Gravimeter (AQG) gravity meter, developed by MUQUANS (Talence, France - http://www.muquans.com/) with the support of RESIF, the French Seismologic and Geodetic Network (http://www.resif.fr/) belongs to this new generation of instruments. It also represents the first commercial device based on the utilization of advanced matter-wave interferometry techniques, which allow to characterize precisely the vertical acceleration experienced by a cloud of cold atoms. Recently, the first operational unit (AQG01) has been achieved as a compact transportable gravimeter with the aim of satisfying absolute gravity measurements in laboratory conditions under the following specifications: measurements the μGal level at a few Hz cycling frequency, sensitivity of 50μGal/√Hz, immunity to ground vibrations, easy and quickness of operation, automated continuous data acquisition for several months, etc. In order to evaluate the current performances of the AQG01, several experiments are carried out in collaboration between RESIF user's teams and the MUQUANS manufacturer on different reference gravity sites and laboratories in France. These measurements performed in indoor conditions including simultaneous observations with classical reference gravity instruments (corner-cube absolute gravity meters, relative superconducting meters) as well with the Cold Atom Gravity meter (CAG) developed by LNE-SYRTE, lead to a first objective characterization of the performances of

  15. Spectral Irradiance Calibration in the Infrared. XIV: the Absolute Calibration of 2MASS

    OpenAIRE

    Cohen, Martin; Wheaton, Wm. A.; Megeath, S. T.

    2003-01-01

    Element-by-element we have combined the optical components in the three 2MASS cameras, and incorporated detector quantum efficiency curves and site-specific atmospheric transmissions, to create three relative spectral response curves (RSRs). We provide absolute 2MASS attributes associated with "zero magnitude" in the JHKs bands so that these RSRs may be used for synthetic photometry. The RSRs tie 2MASS to the Cohen-Walker-Witteborn framework of absolute photometry and spectra for the purpose ...

  16. Internal quantum efficiency enhancement of GaInN/GaN quantum-well structures using Ag nanoparticles

    DEFF Research Database (Denmark)

    Iida, Daisuke; Fadil, Ahmed; Chen, Yuntian

    2015-01-01

    We report internal quantum efficiency enhancement of thin p-GaN green quantumwell structure using self-assembled Ag nanoparticles. Temperature dependent photoluminescence measurements are conducted to determine the internal quantum efficiency. The impact of excitation power density on the enhance......We report internal quantum efficiency enhancement of thin p-GaN green quantumwell structure using self-assembled Ag nanoparticles. Temperature dependent photoluminescence measurements are conducted to determine the internal quantum efficiency. The impact of excitation power density...

  17. Quantum efficiency and oscillator strength of site-controlled InAs quantum dots

    DEFF Research Database (Denmark)

    Albert, F.; Stobbe, Søren; Schneider, C.

    2010-01-01

    We report on time-resolved photoluminescence spectroscopy to determine the oscillator strength (OS) and the quantum efficiency (QE) of site-controlled InAs quantum dots nucleating on patterned nanoholes. These two quantities are determined by measurements on site-controlled quantum dot (SCQD...

  18. Pulsed homodyne Gaussian quantum tomography with low detection efficiency

    Science.gov (United States)

    Esposito, M.; Benatti, F.; Floreanini, R.; Olivares, S.; Randi, F.; Titimbo, K.; Pividori, M.; Novelli, F.; Cilento, F.; Parmigiani, F.; Fausti, D.

    2014-04-01

    Pulsed homodyne quantum tomography usually requires a high detection efficiency, limiting its applicability in quantum optics. Here, it is shown that the presence of low detection efficiency (<50%) does not prevent the tomographic reconstruction of quantum states of light, specifically, of Gaussian states. This result is obtained by applying the so-called ‘minimax’ adaptive reconstruction of the Wigner function to pulsed homodyne detection. In particular, we prove, by both numerical and real experiments, that an effective discrimination of different Gaussian quantum states can be achieved. Our finding paves the way to a more extensive use of quantum tomographic methods, even in physical situations in which high detection efficiency is unattainable.

  19. Pulsed homodyne Gaussian quantum tomography with low detection efficiency

    International Nuclear Information System (INIS)

    Esposito, M; Benatti, F; Randi, F; Titimbo, K; Pividori, M; Parmigiani, F; Fausti, D; Floreanini, R; Olivares, S; Novelli, F; Cilento, F

    2014-01-01

    Pulsed homodyne quantum tomography usually requires a high detection efficiency, limiting its applicability in quantum optics. Here, it is shown that the presence of low detection efficiency (<50) does not prevent the tomographic reconstruction of quantum states of light, specifically, of Gaussian states. This result is obtained by applying the so-called ‘minimax’ adaptive reconstruction of the Wigner function to pulsed homodyne detection. In particular, we prove, by both numerical and real experiments, that an effective discrimination of different Gaussian quantum states can be achieved. Our finding paves the way to a more extensive use of quantum tomographic methods, even in physical situations in which high detection efficiency is unattainable

  20. Quantum efficiency and thermal emittance of metal photocathodes

    Directory of Open Access Journals (Sweden)

    David H. Dowell

    2009-07-01

    Full Text Available Modern electron beams have demonstrated the brilliance needed to drive free electron lasers at x-ray wavelengths with major advances occurring since the invention of the photocathode gun and the realization of emittance compensation. These state-of-the-art electron beams are now becoming limited by the intrinsic thermal emittance of the cathode. In both dc and rf photocathode guns details of the cathode emission physics strongly influence the quantum efficiency and the thermal emittance. Therefore improving cathode performance is essential to increasing the brightness of beams. It is especially important to understand the fundamentals of cathode quantum efficiency and thermal emittance. This paper investigates the relationship between the quantum efficiency and the thermal emittance for metal cathodes using the Fermi-Dirac model for the electron distribution. We use a consistent theory to derive the quantum efficiency and thermal emittance, and compare our results to those of others.

  1. Efficient quantum circuits for one-way quantum computing.

    Science.gov (United States)

    Tanamoto, Tetsufumi; Liu, Yu-Xi; Hu, Xuedong; Nori, Franco

    2009-03-13

    While Ising-type interactions are ideal for implementing controlled phase flip gates in one-way quantum computing, natural interactions between solid-state qubits are most often described by either the XY or the Heisenberg models. We show an efficient way of generating cluster states directly using either the imaginary SWAP (iSWAP) gate for the XY model, or the sqrt[SWAP] gate for the Heisenberg model. Our approach thus makes one-way quantum computing more feasible for solid-state devices.

  2. Highly Efficient Spontaneous Emission from Self-Assembled Quantum Dots

    DEFF Research Database (Denmark)

    Johansen, Jeppe; Lund-Hansen, Toke; Hvam, Jørn Märcher

    2006-01-01

    We present time resolved measurements of spontaneous emission (SE) from InAs/GaAs quantum dots (QDs). The measurements are interpreted using Fermi's Golden Rule and from this analysis we establish the parameters for high quantum efficiency.......We present time resolved measurements of spontaneous emission (SE) from InAs/GaAs quantum dots (QDs). The measurements are interpreted using Fermi's Golden Rule and from this analysis we establish the parameters for high quantum efficiency....

  3. Absolute efficiency calibration of HPGe detector by simulation method

    International Nuclear Information System (INIS)

    Narayani, K.; Pant, Amar D.; Verma, Amit K.; Bhosale, N.A.; Anilkumar, S.

    2018-01-01

    High resolution gamma ray spectrometry by HPGe detectors is a powerful radio analytical technique for estimation of activity of various radionuclides. In the present work absolute efficiency calibration of the HPGe detector was carried out using Monte Carlo simulation technique and results are compared with those obtained by experiment using standard radionuclides of 152 Eu and 133 Ba. The coincidence summing correction factors for the measurement of these nuclides were also calculated

  4. Quantum efficiency and oscillator strength of site-controlled InGaAs quantum dots

    DEFF Research Database (Denmark)

    Albert, F.; Schneider, C.; Stobbe, Søren

    2010-01-01

    We report on time-resolved photoluminescence spectroscopy to determine the oscillator strength (OS) and the quantum efficiency (QE) of site-controlled In(Ga)As quantum dots nucleating on patterned nanoholes. These two quantities are determined by measurements on site-controlled quantum dot (SCQD...

  5. Quantum entanglement helps in improving economic efficiency

    International Nuclear Information System (INIS)

    Du Jiangfeng; Ju Chenyong; Li Hui

    2005-01-01

    We propose an economic regulation approach based on quantum game theory for the government to reduce the abuses of oligopolistic competition. Theoretical analysis shows that this approach can help government improve the economic efficiency of the oligopolistic market, and help prevent monopoly due to incorrect information. These advantages are completely attributed to the quantum entanglement, a unique quantum mechanical character

  6. Quantum entanglement helps in improving economic efficiency

    Science.gov (United States)

    Du, Jiangfeng; Ju, Chenyong; Li, Hui

    2005-02-01

    We propose an economic regulation approach based on quantum game theory for the government to reduce the abuses of oligopolistic competition. Theoretical analysis shows that this approach can help government improve the economic efficiency of the oligopolistic market, and help prevent monopoly due to incorrect information. These advantages are completely attributed to the quantum entanglement, a unique quantum mechanical character.

  7. The Quantum Efficiency and Thermal Emittance of Metal Photocathodes

    International Nuclear Information System (INIS)

    Dowell, D.

    2009-01-01

    Modern electron beams have demonstrated the brilliance needed to drive free electron lasers at x-ray wavelengths, with the principle improvements occurring since the invention of the photocathode gun. The state-of-the-art normalized emittance electron beams are now becoming limited by the thermal emittance of the cathode. In both DC and RF photocathode guns, details of the cathode emission physics strongly influence the quantum efficiency and the thermal emittance. Therefore improving cathode performance is essential to increasing the brightness of beams. It is especially important to understand the fundamentals of cathode quantum efficiency and thermal emittance. This paper investigates the relationship between the quantum efficiency and the thermal emittance of metal cathodes using the Fermi-Dirac model for the electron distribution. We derive the thermal emittance and its relationship to the quantum efficiency, and compare our results to those of others

  8. Current measurement system utilizing cryogenic techniques for the absolute measurement of the magnetic flux quantum

    International Nuclear Information System (INIS)

    Endo, T.; Murayama, Y.; Sakamoto, Y.; Sakuraba, T.; Shiota, F.

    1989-01-01

    A series of systems composed of cryogenic devices such as a Josephson potentiometer and a cryogenic current comparator has been proposed and developed to precisely measure a current with any value up to 1 A. These systems will be used to measure the injected electrical energy with an uncertainty of the order of 0.01 ppm or less in the absolute measurement of the magnetic flux quantum by superconducting magnetic levitation. Some preliminary experiments are described

  9. Efficiency of fermionic quantum distillation

    Energy Technology Data Exchange (ETDEWEB)

    Herbrych, Jacek W. [Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Feiguin, Adrian E. [Northeastern Univ., Boston, MA (United States); Dagotto, Elbio R. [Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Heidrich-Meisner, F. [Ludwig-Maximilians-Univ. Munchen, Munchen (Germany)

    2017-09-13

    Here, we present a time-dependent density-matrix renormalization group investigation of the quantum distillation process within the Fermi-Hubbard model on a quasi-one-dimensional ladder geometry. The term distillation refers to the dynamical, spatial separation of singlons and doublons in the sudden expansion of interacting particles in an optical lattice, i.e., the release of a cloud of atoms from a trapping potential. Remarkably, quantum distillation can lead to a contraction of the doublon cloud, resulting in an increased density of the doublons in the core region compared to the initial state. As a main result, we show that this phenomenon is not limited to chains that were previously studied. Interestingly, there are additional dynamical processes on the two-leg ladder such as density oscillations and self-trapping of defects that lead to a less efficient distillation process. An investigation of the time evolution starting from product states provides an explanation for this behavior. Initial product states are also considered since in optical lattice experiments, such states are often used as the initial setup. We propose configurations that lead to a fast and efficient quantum distillation.

  10. Fast, efficient error reconciliation for quantum cryptography

    International Nuclear Information System (INIS)

    Buttler, W.T.; Lamoreaux, S.K.; Torgerson, J.R.; Nickel, G.H.; Donahue, C.H.; Peterson, C.G.

    2003-01-01

    We describe an error-reconciliation protocol, which we call Winnow, based on the exchange of parity and Hamming's 'syndrome' for N-bit subunits of a large dataset. The Winnow protocol was developed in the context of quantum-key distribution and offers significant advantages and net higher efficiency compared to other widely used protocols within the quantum cryptography community. A detailed mathematical analysis of the Winnow protocol is presented in the context of practical implementations of quantum-key distribution; in particular, the information overhead required for secure implementation is one of the most important criteria in the evaluation of a particular error-reconciliation protocol. The increase in efficiency for the Winnow protocol is largely due to the reduction in authenticated public communication required for its implementation

  11. Direct determination of quantum efficiency of semiconducting films

    Science.gov (United States)

    Faughnan, B.W.; Hanak, J.J.

    Photovoltaic quantum efficiency of semiconductor samples is determined directly, without requiring that a built-in photovoltage be generated by the sample. Electrodes are attached to the sample so as to form at least one Schottky barrier therewith. When illuminated, the generated photocurrent carriers are collected by an external bias voltage impressed across the electrodes. The generated photocurrent is measured, and photovoltaic quantum efficiency is calculated therefrom.

  12. Efficient quantum secure communication with a publicly known key

    International Nuclear Information System (INIS)

    Li Chunyan; Li Xihan; Deng Fuguo; Zhou Hongyu

    2008-01-01

    This paper presents a simple way for an eavesdropper to eavesdrop freely the secret message in the experimental realization of quantum communication protocol proposed by Beige et al (2002 Acta Phys. Pol. A 101 357). Moreover, it introduces an efficient quantum secure communication protocol based on a publicly known key with decoy photons and two biased bases by modifying the original protocol. The total efficiency of this new protocol is double that of the original one. With a low noise quantum channel, this protocol can be used for transmitting a secret message. At present, this protocol is good for generating a private key efficiently. (general)

  13. Efficient multiuser quantum cryptography network based on entanglement.

    Science.gov (United States)

    Xue, Peng; Wang, Kunkun; Wang, Xiaoping

    2017-04-04

    We present an efficient quantum key distribution protocol with a certain entangled state to solve a special cryptographic task. Also, we provide a proof of security of this protocol by generalizing the proof of modified of Lo-Chau scheme. Based on this two-user scheme, a quantum cryptography network protocol is proposed without any quantum memory.

  14. An Efficient Quantum Somewhat Homomorphic Symmetric Searchable Encryption

    Science.gov (United States)

    Sun, Xiaoqiang; Wang, Ting; Sun, Zhiwei; Wang, Ping; Yu, Jianping; Xie, Weixin

    2017-04-01

    In 2009, Gentry first introduced an ideal lattices fully homomorphic encryption (FHE) scheme. Later, based on the approximate greatest common divisor problem, learning with errors problem or learning with errors over rings problem, FHE has developed rapidly, along with the low efficiency and computational security. Combined with quantum mechanics, Liang proposed a symmetric quantum somewhat homomorphic encryption (QSHE) scheme based on quantum one-time pad, which is unconditional security. And it was converted to a quantum fully homomorphic encryption scheme, whose evaluation algorithm is based on the secret key. Compared with Liang's QSHE scheme, we propose a more efficient QSHE scheme for classical input states with perfect security, which is used to encrypt the classical message, and the secret key is not required in the evaluation algorithm. Furthermore, an efficient symmetric searchable encryption (SSE) scheme is constructed based on our QSHE scheme. SSE is important in the cloud storage, which allows users to offload search queries to the untrusted cloud. Then the cloud is responsible for returning encrypted files that match search queries (also encrypted), which protects users' privacy.

  15. Highly efficient photonic nanowire single-photon sources for quantum information applications

    DEFF Research Database (Denmark)

    Gregersen, Niels; Claudon, J.; Munsch, M.

    2013-01-01

    to a collection efficiency of only 1-2 %, and efficient light extraction thus poses a major challenge in SPS engineering. Initial efforts to improve the efficiency have exploited cavity quantum electrodynamics (cQED) to efficiently couple the emitted photons to the optical cavity mode. An alternative approach......Within the emerging field of optical quantum information processing, the current challenge is to construct the basic building blocks for the quantum computing and communication systems. A key component is the singlephoton source (SPS) capable of emitting single photons on demand. Ideally, the SPS...... must feature near-unity efficiency, where the efficiency is defined as the number of detected photons per trigger, the probability g(2)(τ=0) of multi-photon emission events should be 0 and the emitted photons are required to be indistinguishable. An optically or electrically triggered quantum light...

  16. Comparison of total experimental and theoretical absolute γ-ray detection efficiencies of a cylindrical NaI(Tl) crystal

    International Nuclear Information System (INIS)

    Uosif, M.A.; El-Taher, A.

    2005-01-01

    A new fit function has been developed to calculate theoretically the absolute gamma ray detection efficiencies (ηTh) of a cylindrical NaI(Tl) crystal, for calculating the absolute efficiency at any interesting gamma energy in the energy range between 10 and 1300 keV and distance between 0 and 8 cm. The total absolute gamma ray detection efficiencies have been calculated for five detectors, four are 2x2 and one is 3x 3 inches NaI(Tl) crystal at different distances. The absolute efficiency of the different detectors was calculated at the specific energy of the standard sources for each measuring distances. In this calculation, experimental (ηExp) and theoretical (ηTh) have been calculated. The uncertainties of efficiency calibration have been calculated also for quality control. Measurements were performed with calibrated point source. Gamma-ray energies under consideration were 0.356, 0.662, 1.17 and 1.33 MeV. The differences between (ηExp) and (ηTh) at these energies are 1.30E-06, 7.99E-05, 2.29E-04 and 2.42E-04 respectively. The results obtained on the basis of (ηExp) and (ηTh) seem to be in very good agreement

  17. Efficient Multiphoton Generation in Waveguide Quantum Electrodynamics

    Science.gov (United States)

    González-Tudela, A.; Paulisch, V.; Kimble, H. J.; Cirac, J. I.

    2017-05-01

    Engineering quantum states of light is at the basis of many quantum technologies such as quantum cryptography, teleportation, or metrology among others. Though, single photons can be generated in many scenarios, the efficient and reliable generation of complex single-mode multiphoton states is still a long-standing goal in the field, as current methods either suffer from low fidelities or small probabilities. Here we discuss several protocols which harness the strong and long-range atomic interactions induced by waveguide QED to efficiently load excitations in a collection of atoms, which can then be triggered to produce the desired multiphoton state. In order to boost the success probability and fidelity of each excitation process, atoms are used to both generate the excitations in the rest, as well as to herald the successful generation. Furthermore, to overcome the exponential scaling of the probability of success with the number of excitations, we design a protocol to merge excitations that are present in different internal atomic levels with a polynomial scaling.

  18. Determination of local absolute detection efficiency of a ceratron with 55Fe Auger electrons

    International Nuclear Information System (INIS)

    Mori, C.; Sugiyama, T.; Watanabe, T.

    1983-01-01

    The local absolute detection efficiency of a Ceratron (channel electron multiplier made of ceramics) was determined with collimated Mn K Auger electrons ( 5 keV) emitted from 55 Fe as a function of electron incident position and applied voltage. The local efficiency at the channel inlet did not depend so much on the applied voltage. The efficiency at the funnel increased with the applied voltage, while it was always lower than that at the channel inlet. (orig.)

  19. Efficiently characterizing the total error in quantum circuits

    Science.gov (United States)

    Carignan-Dugas, Arnaud; Wallman, Joel J.; Emerson, Joseph

    A promising technological advancement meant to enlarge our computational means is the quantum computer. Such a device would harvest the quantum complexity of the physical world in order to unfold concrete mathematical problems more efficiently. However, the errors emerging from the implementation of quantum operations are likewise quantum, and hence share a similar level of intricacy. Fortunately, randomized benchmarking protocols provide an efficient way to characterize the operational noise within quantum devices. The resulting figures of merit, like the fidelity and the unitarity, are typically attached to a set of circuit components. While important, this doesn't fulfill the main goal: determining if the error rate of the total circuit is small enough in order to trust its outcome. In this work, we fill the gap by providing an optimal bound on the total fidelity of a circuit in terms of component-wise figures of merit. Our bound smoothly interpolates between the classical regime, in which the error rate grows linearly in the circuit's length, and the quantum regime, which can naturally allow quadratic growth. Conversely, our analysis substantially improves the bounds on single circuit element fidelities obtained through techniques such as interleaved randomized benchmarking. This research was supported by the U.S. Army Research Office through Grant W911NF- 14-1-0103, CIFAR, the Government of Ontario, and the Government of Canada through NSERC and Industry Canada.

  20. High-Efficiency Quantum Interrogation Measurements via the Quantum Zeno Effect

    International Nuclear Information System (INIS)

    Kwiat, P. G.; White, A. G.; Mitchell, J. R.; Nairz, O.; Weihs, G.; Weinfurter, H.; Zeilinger, A.

    1999-01-01

    The phenomenon of quantum interrogation allows one to optically detect the presence of an absorbing object, without the measuring light interacting with it. In an application of the quantum Zeno effect, the object inhibits the otherwise coherent evolution of the light, such that the probability that an interrogating photon is absorbed can in principle be arbitrarily small. We have implemented this technique, achieving efficiencies of up to 73% , and consequently exceeding the 50% theoretical maximum of the original ''interaction-free'' measurement proposal. We have also predicted and experimentally verified a previously unsuspected dependence on loss. (c) 1999 The American Physical Society

  1. Quantum engine efficiency bound beyond the second law of thermodynamics.

    Science.gov (United States)

    Niedenzu, Wolfgang; Mukherjee, Victor; Ghosh, Arnab; Kofman, Abraham G; Kurizki, Gershon

    2018-01-11

    According to the second law, the efficiency of cyclic heat engines is limited by the Carnot bound that is attained by engines that operate between two thermal baths under the reversibility condition whereby the total entropy does not increase. Quantum engines operating between a thermal and a squeezed-thermal bath have been shown to surpass this bound. Yet, their maximum efficiency cannot be determined by the reversibility condition, which may yield an unachievable efficiency bound above unity. Here we identify the fraction of the exchanged energy between a quantum system and a bath that necessarily causes an entropy change and derive an inequality for this change. This inequality reveals an efficiency bound for quantum engines energised by a non-thermal bath. This bound does not imply reversibility, unless the two baths are thermal. It cannot be solely deduced from the laws of thermodynamics.

  2. Efficient tomography of a quantum many-body system

    Science.gov (United States)

    Lanyon, B. P.; Maier, C.; Holzäpfel, M.; Baumgratz, T.; Hempel, C.; Jurcevic, P.; Dhand, I.; Buyskikh, A. S.; Daley, A. J.; Cramer, M.; Plenio, M. B.; Blatt, R.; Roos, C. F.

    2017-12-01

    Quantum state tomography is the standard technique for estimating the quantum state of small systems. But its application to larger systems soon becomes impractical as the required resources scale exponentially with the size. Therefore, considerable effort is dedicated to the development of new characterization tools for quantum many-body states. Here we demonstrate matrix product state tomography, which is theoretically proven to allow for the efficient and accurate estimation of a broad class of quantum states. We use this technique to reconstruct the dynamical state of a trapped-ion quantum simulator comprising up to 14 entangled and individually controlled spins: a size far beyond the practical limits of quantum state tomography. Our results reveal the dynamical growth of entanglement and describe its complexity as correlations spread out during a quench: a necessary condition for future demonstrations of better-than-classical performance. Matrix product state tomography should therefore find widespread use in the study of large quantum many-body systems and the benchmarking and verification of quantum simulators and computers.

  3. Preparation of reflective CsI photocathodes with reproducible high quantum efficiency

    Science.gov (United States)

    Maier-Komor, P.; Bauer, B. B.; Friese, J.; Gernhäuser, R.; Kienle, P.; Körner, H. J.; Montermann, G.; Zeitelhack, K.

    1995-02-01

    CsI as a solid UV-photocathode material has many promising applications in fast gaseous photon detectors. They are proposed in large area Ring Imaging CHerenkov (RICH) devices in forthcoming experiments at various high-energy particle accelerators. A high photon-to-electron conversion efficiency is a basic requirement for the successful operation of these devices. High reproducible quantum efficiencies could be achieved with CsI layers prepared by electron beam evaporation from a water-cooled copper crucible. CsI films were deposited in the thickness range of 30 to 500 μg/cm 2. Absorption coefficients and quantum efficiencies were measured in the wavelength region of 150 nm to 250 nm. The influence of various evaporation parameters on the quantum efficiency were investigated.

  4. Preparation of reflective CsI photocathodes with reproducible high quantum efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Maier-Komor, P. [Technische Univ. Muenchen, Garching (Germany). Physik-Department; Bauer, B.B. [Technische Univ. Muenchen, Garching (Germany). Physik-Department; Friese, J. [Technische Univ. Muenchen, Garching (Germany). Physik-Department; Gernhaeuser, R. [Technische Univ. Muenchen, Garching (Germany). Physik-Department; Kienle, P. [Technische Univ. Muenchen, Garching (Germany). Physik-Department; Koerner, H.J. [Technische Univ. Muenchen, Garching (Germany). Physik-Department; Montermann, G. [Technische Univ. Muenchen, Garching (Germany). Physik-Department; Zeitelhack, K. [Technische Univ. Muenchen, Garching (Germany). Physik-Department

    1995-08-01

    CsI as a solid UV-photocathode material has many promising applications in fast gaseous photon detectors. They are proposed in large area Ring Imaging CHerenkov (RICH) devices in forthcoming experiments at various high-energy particle accelerators. A high photon-to-electron conversion efficiency is a basic requirement for the successful operation of these devices. High reproducible quantum efficiencies could be achieved with CsI layers prepared by electron beam evaporation from a water-cooled copper crucible. CsI films were deposited in the thickness range of 30 to 500 {mu}g/cm{sup 2}. Absorption coefficients and quantum efficiencies were measured in the wavelength region of 150 nm to 250 nm. The influence of various evaporation parameters on the quantum efficiency were investigated. (orig.).

  5. Equivalent Method of Solving Quantum Efficiency of Reflection-Mode Exponential Doping GaAs Photocathode

    International Nuclear Information System (INIS)

    Jun, Niu; Zhi, Yang; Ben-Kang, Chang

    2009-01-01

    The mathematical expression of the electron diffusion and drift length L DE of exponential doping photocathode is deduced. In the quantum efficiency equation of the reffection-mode uniform doping cathode, substituting L DE for L D , the equivalent quantum efficiency equation of the reffection-mode exponential doping cathode is obtained. By using the equivalent equation, theoretical simulation and experimental analysis shows that the equivalent index formula and formula-doped cathode quantum efficiency results in line. The equivalent equation avoids complicated calculation, thereby simplifies the process of solving the quantum efficiency of exponential doping photocathode

  6. Scaling-Up Quantum Heat Engines Efficiently via Shortcuts to Adiabaticity

    Directory of Open Access Journals (Sweden)

    Mathieu Beau

    2016-04-01

    Full Text Available The finite-time operation of a quantum heat engine that uses a single particle as a working medium generally increases the output power at the expense of inducing friction that lowers the cycle efficiency. We propose to scale up a quantum heat engine utilizing a many-particle working medium in combination with the use of shortcuts to adiabaticity to boost the nonadiabatic performance by eliminating quantum friction and reducing the cycle time. To this end, we first analyze the finite-time thermodynamics of a quantum Otto cycle implemented with a quantum fluid confined in a time-dependent harmonic trap. We show that nonadiabatic effects can be controlled and tailored to match the adiabatic performance using a variety of shortcuts to adiabaticity. As a result, the nonadiabatic dynamics of the scaled-up many-particle quantum heat engine exhibits no friction, and the cycle can be run at maximum efficiency with a tunable output power. We demonstrate our results with a working medium consisting of particles with inverse-square pairwise interactions that includes non-interacting and hard-core bosons as limiting cases.

  7. Origin of low quantum efficiency of photoluminescence of InP/ZnS nanocrystals

    International Nuclear Information System (INIS)

    Shirazi, Roza; Kovacs, Andras; Dan Corell, Dennis; Gritti, Claudia; Thorseth, Anders; Dam-Hansen, Carsten; Michael Petersen, Paul; Kardynal, Beata

    2014-01-01

    In this paper, we study the origin of a strong wavelength dependence of the quantum efficiency of InP/ZnS nanocrystals. We find that while the average size of the nanocrystals increased by 50%, resulting in longer emission wavelength, the quantum efficiency drops more than one order of magnitude compared to the quantum efficiency of the small nanocrystals. By correlating this result with the time-resolved photoluminescence we find that the reduced photoluminescence efficiency is caused by a fast growing fraction of non-emissive nanocrystals while the quality of the nanocrystals that emit light is similar for all samples. Transmission electron microscopy reveals the polycrystalline nature of many of the large nanocrystals, pointing to the grain boundaries as one possible site for the photoluminescence quenching defects. -- Highlights: • We investigate drop of quantum efficiency of InP/ZnS nanocrystals emitting at longer wavelengths. • We correlate quantum efficiency measurements with time-resolved carrier dynamics. • We find that only a small fraction of larger nanocrystals is optically active

  8. Origin of low quantum efficiency of photoluminescence of InP/ZnS nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Shirazi, Roza, E-mail: rozas@fotonik.dtu.dk [Department of Photonics Engineering, Technical University of Denmark, Oersted Plads 343, 2800 Kgs Lyngby (Denmark); Kovacs, Andras [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Peter Grunberg Institute, Forschungszentrum Julich, 52425 Julich (Germany); Dan Corell, Dennis [Department of Photonics Engineering, Technical University of Denmark, Riso, Frederiksborgvej 399, 4000 Roskilde (Denmark); Gritti, Claudia [Department of Photonics Engineering, Technical University of Denmark, Oersted Plads 343, 2800 Kgs Lyngby (Denmark); Thorseth, Anders; Dam-Hansen, Carsten; Michael Petersen, Paul [Department of Photonics Engineering, Technical University of Denmark, Riso, Frederiksborgvej 399, 4000 Roskilde (Denmark); Kardynal, Beata [Department of Photonics Engineering, Technical University of Denmark, Oersted Plads 343, 2800 Kgs Lyngby (Denmark); PGI-9, Forschungszentrum Julich, JARA FIT, 52425 Julich (Germany)

    2014-01-15

    In this paper, we study the origin of a strong wavelength dependence of the quantum efficiency of InP/ZnS nanocrystals. We find that while the average size of the nanocrystals increased by 50%, resulting in longer emission wavelength, the quantum efficiency drops more than one order of magnitude compared to the quantum efficiency of the small nanocrystals. By correlating this result with the time-resolved photoluminescence we find that the reduced photoluminescence efficiency is caused by a fast growing fraction of non-emissive nanocrystals while the quality of the nanocrystals that emit light is similar for all samples. Transmission electron microscopy reveals the polycrystalline nature of many of the large nanocrystals, pointing to the grain boundaries as one possible site for the photoluminescence quenching defects. -- Highlights: • We investigate drop of quantum efficiency of InP/ZnS nanocrystals emitting at longer wavelengths. • We correlate quantum efficiency measurements with time-resolved carrier dynamics. • We find that only a small fraction of larger nanocrystals is optically active.

  9. Study of silicon microstrips detector quantum efficiency using mathematical simulation

    International Nuclear Information System (INIS)

    Leyva Pernia, Diana; Cabal Rodriguez, Ana Ester; Pinnera Hernandez, Ibrahin; Fabelo, Antonio Leyva; Abreu Alfonso, Yamiel; Cruz Inclan, Carlos M.

    2011-01-01

    The paper shows the results from the application of mathematical simulation to study the quantum efficiency of a microstrips crystalline silicon detector, intended for medical imaging and the development of other applications such as authentication and dating of cultural heritage. The effects on the quantum efficiency of some parameters of the system, such as the detector-source geometry, X rays energy and detector dead zone thickness, were evaluated. The simulation results were compared with the theoretical prediction and experimental available data, resulting in a proper correspondence. It was concluded that the use of frontal configuration for incident energies lower than 17 keV is more efficient, however the use of the edge-on configuration for applications requiring the detection of energy above this value is recommended. It was also found that the reduction of the detector dead zone led to a considerable increase in quantum efficiency for any energy value in the interval from 5 to 100 keV.(author)

  10. Absolute peak detection efficiencies of a Ge(Li) detector for high gamma-ray energies

    International Nuclear Information System (INIS)

    Katagiri, Masaki

    1985-11-01

    Absolute peak detection efficiencies of a Ge(Li) detector for gamma-rays of 3.5 MeV to 12 MeV were measured using four (p,γ) reactions and a (n,γ) reaction. Two-line-method was used to obtaine peak detection efficiencies. The efficiencies with the both cases are agreed very well. Utilization of (n,γ) reaction is, therefore, effective for measuring these efficiencies, because high energy gamma-rays can be generated easily by using a neutron source. These results were applied to calibration of a gamma-ray standard source, emitting 6.13 MeV gamma-rays, and of intensities of 56 Co standard gamma-ray source. (author)

  11. The Efficiency of Quantum Identity Testing of Multiple States

    OpenAIRE

    Kada, Masaru; Nishimura, Harumichi; Yamakami, Tomoyuki

    2008-01-01

    We examine two quantum operations, the Permutation Test and the Circle Test, which test the identity of n quantum states. These operations naturally extend the well-studied Swap Test on two quantum states. We first show the optimality of the Permutation Test for any input size n as well as the optimality of the Circle Test for three input states. In particular, when n=3, we present a semi-classical protocol, incorporated with the Swap Test, which approximates the Circle Test efficiently. Furt...

  12. Efficient decoding of random errors for quantum expander codes

    OpenAIRE

    Fawzi , Omar; Grospellier , Antoine; Leverrier , Anthony

    2017-01-01

    We show that quantum expander codes, a constant-rate family of quantum LDPC codes, with the quasi-linear time decoding algorithm of Leverrier, Tillich and Z\\'emor can correct a constant fraction of random errors with very high probability. This is the first construction of a constant-rate quantum LDPC code with an efficient decoding algorithm that can correct a linear number of random errors with a negligible failure probability. Finding codes with these properties is also motivated by Gottes...

  13. Pure sources and efficient detectors for optical quantum information processing

    Science.gov (United States)

    Zielnicki, Kevin

    Over the last sixty years, classical information theory has revolutionized the understanding of the nature of information, and how it can be quantified and manipulated. Quantum information processing extends these lessons to quantum systems, where the properties of intrinsic uncertainty and entanglement fundamentally defy classical explanation. This growing field has many potential applications, including computing, cryptography, communication, and metrology. As inherently mobile quantum particles, photons are likely to play an important role in any mature large-scale quantum information processing system. However, the available methods for producing and detecting complex multi-photon states place practical limits on the feasibility of sophisticated optical quantum information processing experiments. In a typical quantum information protocol, a source first produces an interesting or useful quantum state (or set of states), perhaps involving superposition or entanglement. Then, some manipulations are performed on this state, perhaps involving quantum logic gates which further manipulate or entangle the intial state. Finally, the state must be detected, obtaining some desired measurement result, e.g., for secure communication or computationally efficient factoring. The work presented here concerns the first and last stages of this process as they relate to photons: sources and detectors. Our work on sources is based on the need for optimized non-classical states of light delivered at high rates, particularly of single photons in a pure quantum state. We seek to better understand the properties of spontaneous parameteric downconversion (SPDC) sources of photon pairs, and in doing so, produce such an optimized source. We report an SPDC source which produces pure heralded single photons with little or no spectral filtering, allowing a significant rate enhancement. Our work on detectors is based on the need to reliably measure single-photon states. We have focused on

  14. Electrostatics and quantum efficiency simulations of asymmetrically contacted carbon nanotube photodetector

    Directory of Open Access Journals (Sweden)

    Xiao Guo

    2017-10-01

    Full Text Available Electrostatic properties of asymmetrically contacted carbon nanotube barrier-free bipolar diode photodetector are studied by solving the Poisson equation self-consistently with equilibrium carrier statistics. For electric field parallel to tube’s axis, the maximum electric field occurs near contact but decays rapidly in a few nanometers, followed by a slowly increasing trend when it extends to the center of channel. By considering the field ionization and the diffusion effect of exciton, a model of estimation on quantum efficiency for the device is made. We find that the quantum efficiency increases with increasing exciton lifetime, decreasing diffusion constant and channel length. For devices with a channel length shorter than 50 nm, the contribution of field ionization to the quantum efficiency can reach 60%.

  15. Predictable quantum efficient detector based on n-type silicon photodiodes

    Science.gov (United States)

    Dönsberg, Timo; Manoocheri, Farshid; Sildoja, Meelis; Juntunen, Mikko; Savin, Hele; Tuovinen, Esa; Ronkainen, Hannu; Prunnila, Mika; Merimaa, Mikko; Tang, Chi Kwong; Gran, Jarle; Müller, Ingmar; Werner, Lutz; Rougié, Bernard; Pons, Alicia; Smîd, Marek; Gál, Péter; Lolli, Lapo; Brida, Giorgio; Rastello, Maria Luisa; Ikonen, Erkki

    2017-12-01

    The predictable quantum efficient detector (PQED) consists of two custom-made induced junction photodiodes that are mounted in a wedged trap configuration for the reduction of reflectance losses. Until now, all manufactured PQED photodiodes have been based on a structure where a SiO2 layer is thermally grown on top of p-type silicon substrate. In this paper, we present the design, manufacturing, modelling and characterization of a new type of PQED, where the photodiodes have an Al2O3 layer on top of n-type silicon substrate. Atomic layer deposition is used to deposit the layer to the desired thickness. Two sets of photodiodes with varying oxide thicknesses and substrate doping concentrations were fabricated. In order to predict recombination losses of charge carriers, a 3D model of the photodiode was built into Cogenda Genius semiconductor simulation software. It is important to note that a novel experimental method was developed to obtain values for the 3D model parameters. This makes the prediction of the PQED responsivity a completely autonomous process. Detectors were characterized for temperature dependence of dark current, spatial uniformity of responsivity, reflectance, linearity and absolute responsivity at the wavelengths of 488 nm and 532 nm. For both sets of photodiodes, the modelled and measured responsivities were generally in agreement within the measurement and modelling uncertainties of around 100 parts per million (ppm). There is, however, an indication that the modelled internal quantum deficiency may be underestimated by a similar amount. Moreover, the responsivities of the detectors were spatially uniform within 30 ppm peak-to-peak variation. The results obtained in this research indicate that the n-type induced junction photodiode is a very promising alternative to the existing p-type detectors, and thus give additional credibility to the concept of modelled quantum detector serving as a primary standard. Furthermore, the manufacturing of

  16. A Comparison of the recombination efficiency in green-emitting InGaN quantum dots and quantum wells

    International Nuclear Information System (INIS)

    Park, Il-Kyu; Kwon, Min-Ki; Park, Seong-Ju

    2012-01-01

    A comparative investigation of the recombination efficiency of green-emitting InGaN quantum dots (QDs) and quantum wells (QWs) is reported in this paper. Optical investigations using temperature dependent photoluminescence (PL) results showed that the internal quantum efficiency of InGaN QDs at room temperature was 8.7 times larger than that found for InGaN QWs because they provided dislocation-free recombination sites for the electrical charge carriers. The excitation power-dependent PL and electroluminescence results showed that the effect of the polarization induced electric field on the recombination process of electrical charge carriers in the QDs was negligibly small whereas it was dominant in the QWs. These results indicate that InGaN QDs are more beneficial than QWs in improving the luminescence efficiency of LEDs in the green spectral range.

  17. Positive Wigner functions render classical simulation of quantum computation efficient.

    Science.gov (United States)

    Mari, A; Eisert, J

    2012-12-07

    We show that quantum circuits where the initial state and all the following quantum operations can be represented by positive Wigner functions can be classically efficiently simulated. This is true both for continuous-variable as well as discrete variable systems in odd prime dimensions, two cases which will be treated on entirely the same footing. Noting the fact that Clifford and Gaussian operations preserve the positivity of the Wigner function, our result generalizes the Gottesman-Knill theorem. Our algorithm provides a way of sampling from the output distribution of a computation or a simulation, including the efficient sampling from an approximate output distribution in the case of sampling imperfections for initial states, gates, or measurements. In this sense, this work highlights the role of the positive Wigner function as separating classically efficiently simulable systems from those that are potentially universal for quantum computing and simulation, and it emphasizes the role of negativity of the Wigner function as a computational resource.

  18. Efficient construction of two-dimensional cluster states with probabilistic quantum gates

    International Nuclear Information System (INIS)

    Chen Qing; Cheng Jianhua; Wang Kelin; Du Jiangfeng

    2006-01-01

    We propose an efficient scheme for constructing arbitrary two-dimensional (2D) cluster states using probabilistic entangling quantum gates. In our scheme, the 2D cluster state is constructed with starlike basic units generated from 1D cluster chains. By applying parallel operations, the process of generating 2D (or higher-dimensional) cluster states is significantly accelerated, which provides an efficient way to implement realistic one-way quantum computers

  19. Detective quantum efficiency gains compared with speed gains for hypersensitized astronomical plates

    International Nuclear Information System (INIS)

    Kaye, A.L.

    1977-01-01

    It is reasonable to assume that gains in detective quantum efficiency (DQE) are far better criteria for assessing the performance of hypersensitizing techniques than gains in speed. It is shown here that gains in speed can be misleading, for some methods of hypersensitization give plates of increased speed but reduced detective quantum efficiency. (author)

  20. Size-dependent oscillator strength and quantum efficiency of CdSe quantum dots controlled via the local density of states

    DEFF Research Database (Denmark)

    Leistikow, M.D.; Johansen, Jeppe; Kettelarij, A.J.

    2009-01-01

    We study experimentally time-resolved emission of colloidal CdSe quantum dots in an environment with a controlled local density of states LDOS. The decay rate is measured versus frequency and as a function of distance to a mirror. We observe a linear relation between the decay rate and the LDOS, ...... with the measured radiative rates. Our results are relevant for applications of CdSe quantum dots in spontaneous emission control and cavity quantum electrodynamics.......We study experimentally time-resolved emission of colloidal CdSe quantum dots in an environment with a controlled local density of states LDOS. The decay rate is measured versus frequency and as a function of distance to a mirror. We observe a linear relation between the decay rate and the LDOS......, allowing us to determine the size-dependent quantum efficiency and oscillator strength. We find that the quantum efficiency decreases with increasing emission energy mostly due to an increase in nonradiative decay. We manage to obtain the oscillator strength of the important class of CdSe quantum dots...

  1. Quantum Efficiency of Hybrid Photon Detectors for the LHCb RICH

    CERN Document Server

    Lambert, R W

    2008-01-01

    The production of Hybrid Photon Detectors to be used as the single-photon sensors for the RICH detectors of the LHCb experiment has recently finished. We present the quantum efficiency measurements of the entire sample of 550 tubes. The manufacturer has succeeded in consistently improving the quantum efficiency of the employed S20-type multi-alkali photocathode above our expectations, by a relative 27 % integrated over the energy spectrum. We also report measurements of the vacuum quality using the photocurrent of the device as a monitor for possible vacuum degradation.

  2. Highly Efficient Perovskite-Quantum-Dot Light-Emitting Diodes by Surface Engineering

    KAUST Repository

    Pan, Jun; Quan, Li Na; Zhao, Yongbiao; Peng, Wei; Banavoth, Murali; Sarmah, Smritakshi P.; Yuan, Mingjian; Sinatra, Lutfan; AlYami, Noktan; Liu, Jiakai; Yassitepe, Emre; Yang, Zhenyu; Voznyy, Oleksandr; Comin, Riccardo; Hedhili, Mohamed N.; Mohammed, Omar F.; Lu, Zheng Hong; Kim, Dong Ha; Sargent, Edward H.; Bakr, Osman

    2016-01-01

    A two-step ligand-exchange strategy is developed, in which the long-carbon-chain ligands on all-inorganic perovskite (CsPbX3, X = Br, Cl) quantum dots (QDs) are replaced with halide-ion-pair ligands. Green and blue light-emitting diodes made from the halide-ion-paircapped quantum dots exhibit high external quantum efficiencies compared with the untreated QDs.

  3. Highly Efficient Perovskite-Quantum-Dot Light-Emitting Diodes by Surface Engineering

    KAUST Repository

    Pan, Jun

    2016-08-16

    A two-step ligand-exchange strategy is developed, in which the long-carbon-chain ligands on all-inorganic perovskite (CsPbX3, X = Br, Cl) quantum dots (QDs) are replaced with halide-ion-pair ligands. Green and blue light-emitting diodes made from the halide-ion-paircapped quantum dots exhibit high external quantum efficiencies compared with the untreated QDs.

  4. Improved quantum efficiency models of CZTSe: GE nanolayer solar cells with a linear electric field.

    Science.gov (United States)

    Lee, Sanghyun; Price, Kent J; Saucedo, Edgardo; Giraldo, Sergio

    2018-02-08

    We fabricated and characterized CZTSe:Ge nanolayer (quantum efficiency for Ge doped CZTSe devices. The linear electric field model is developed with the incomplete gamma function of the quantum efficiency as compared to the empirical data at forward bias conditions. This model is characterized with a consistent set of parameters from a series of measurements and the literature. Using the analytical modelling method, the carrier collection profile in the absorber is calculated and closely fitted by the developed mathematical expressions to identify the carrier dynamics during the quantum efficiency measurement of the device. The analytical calculation is compared with the measured quantum efficiency data at various bias conditions.

  5. Computationally Efficient Nonlinear Bell Inequalities for Quantum Networks

    Science.gov (United States)

    Luo, Ming-Xing

    2018-04-01

    The correlations in quantum networks have attracted strong interest with new types of violations of the locality. The standard Bell inequalities cannot characterize the multipartite correlations that are generated by multiple sources. The main problem is that no computationally efficient method is available for constructing useful Bell inequalities for general quantum networks. In this work, we show a significant improvement by presenting new, explicit Bell-type inequalities for general networks including cyclic networks. These nonlinear inequalities are related to the matching problem of an equivalent unweighted bipartite graph that allows constructing a polynomial-time algorithm. For the quantum resources consisting of bipartite entangled pure states and generalized Greenberger-Horne-Zeilinger (GHZ) states, we prove the generic nonmultilocality of quantum networks with multiple independent observers using new Bell inequalities. The violations are maximal with respect to the presented Tsirelson's bound for Einstein-Podolsky-Rosen states and GHZ states. Moreover, these violations hold for Werner states or some general noisy states. Our results suggest that the presented Bell inequalities can be used to characterize experimental quantum networks.

  6. Efficient quantum computing using coherent photon conversion.

    Science.gov (United States)

    Langford, N K; Ramelow, S; Prevedel, R; Munro, W J; Milburn, G J; Zeilinger, A

    2011-10-12

    Single photons are excellent quantum information carriers: they were used in the earliest demonstrations of entanglement and in the production of the highest-quality entanglement reported so far. However, current schemes for preparing, processing and measuring them are inefficient. For example, down-conversion provides heralded, but randomly timed, single photons, and linear optics gates are inherently probabilistic. Here we introduce a deterministic process--coherent photon conversion (CPC)--that provides a new way to generate and process complex, multiquanta states for photonic quantum information applications. The technique uses classically pumped nonlinearities to induce coherent oscillations between orthogonal states of multiple quantum excitations. One example of CPC, based on a pumped four-wave-mixing interaction, is shown to yield a single, versatile process that provides a full set of photonic quantum processing tools. This set satisfies the DiVincenzo criteria for a scalable quantum computing architecture, including deterministic multiqubit entanglement gates (based on a novel form of photon-photon interaction), high-quality heralded single- and multiphoton states free from higher-order imperfections, and robust, high-efficiency detection. It can also be used to produce heralded multiphoton entanglement, create optically switchable quantum circuits and implement an improved form of down-conversion with reduced higher-order effects. Such tools are valuable building blocks for many quantum-enabled technologies. Finally, using photonic crystal fibres we experimentally demonstrate quantum correlations arising from a four-colour nonlinear process suitable for CPC and use these measurements to study the feasibility of reaching the deterministic regime with current technology. Our scheme, which is based on interacting bosonic fields, is not restricted to optical systems but could also be implemented in optomechanical, electromechanical and superconducting

  7. High efficiency transfer of quantum information and multiparticle entanglement generation in translation-invariant quantum chains

    International Nuclear Information System (INIS)

    Plenio, Martin B; Semiao, Fernando L

    2005-01-01

    We demonstrate that a translation-invariant chain of interacting quantum systems can be used for high efficiency transfer of quantum entanglement and the generation of multiparticle entanglement over large distances and between arbitrary sites without the requirement of precise spatial or temporal control. The scheme is largely insensitive to disorder and random coupling strengths in the chain. We discuss harmonic oscillator systems both in the case of arbitrary Gaussian states and in situations when at most one excitation is in the system. The latter case, which we prove to be equivalent to an xy-spin chain, may be used to generate genuine multiparticle entanglement. Such a 'quantum data bus' may prove useful in future solid state architectures for quantum information processing

  8. Origin of low quantum efficiency of photoluminescence of InP/ZnS nanocrystals

    DEFF Research Database (Denmark)

    Shirazi, Roza; Kovacs, Andras; Corell, Dennis Dan

    2013-01-01

    In this paper, we study the origin of a strong wavelength dependence of the quantum efficiency of InP/ZnS nanocrystals. We find that while the average size of the nanocrystals increased by 50%, resulting in longer emission wavelength, the quantum efficiency drops more than one order of magnitude...

  9. Duality quantum algorithm efficiently simulates open quantum systems

    Science.gov (United States)

    Wei, Shi-Jie; Ruan, Dong; Long, Gui-Lu

    2016-01-01

    Because of inevitable coupling with the environment, nearly all practical quantum systems are open system, where the evolution is not necessarily unitary. In this paper, we propose a duality quantum algorithm for simulating Hamiltonian evolution of an open quantum system. In contrast to unitary evolution in a usual quantum computer, the evolution operator in a duality quantum computer is a linear combination of unitary operators. In this duality quantum algorithm, the time evolution of the open quantum system is realized by using Kraus operators which is naturally implemented in duality quantum computer. This duality quantum algorithm has two distinct advantages compared to existing quantum simulation algorithms with unitary evolution operations. Firstly, the query complexity of the algorithm is O(d3) in contrast to O(d4) in existing unitary simulation algorithm, where d is the dimension of the open quantum system. Secondly, By using a truncated Taylor series of the evolution operators, this duality quantum algorithm provides an exponential improvement in precision compared with previous unitary simulation algorithm. PMID:27464855

  10. The Influences of Quantum Coherence on the Positive Work and the Efficiency of Quantum Heat Engine with Working Substance of Two-Qubit Heisenberg XXX Model

    Science.gov (United States)

    Peng, Hu-Ping; Fang, Mao-Fa; Yu, Min; Zou, Hong-Mei

    2018-03-01

    We study the influences of quantum coherence on the positive work and the efficiency of quantum heat engine (QHE) based on working substance of two-qubit Heisenberg model under a constant external magnetic field. By using analytical and numerical solution, we give the relation expressions for both the positive work and the efficiency with quantum coherence, and in detail discuss the effects of the quantum coherence on the positive work and the efficiency of QHE in the absence or presence of external magnetic field, respectively.

  11. The Influences of Quantum Coherence on the Positive Work and the Efficiency of Quantum Heat Engine with Working Substance of Two-Qubit Heisenberg XXX Model

    Science.gov (United States)

    Peng, Hu-Ping; Fang, Mao-Fa; Yu, Min; Zou, Hong-Mei

    2018-06-01

    We study the influences of quantum coherence on the positive work and the efficiency of quantum heat engine (QHE) based on working substance of two-qubit Heisenberg model under a constant external magnetic field. By using analytical and numerical solution, we give the relation expressions for both the positive work and the efficiency with quantum coherence, and in detail discuss the effects of the quantum coherence on the positive work and the efficiency of QHE in the absence or presence of external magnetic field, respectively.

  12. Quasi-Resonant Absorption for Quantum Efficiency Improvement in Detectors

    Data.gov (United States)

    National Aeronautics and Space Administration — Quasi-resonant absorption has been demonstrated to enhance the quantum efficiency of devices across the spectrum, but specifically it is a challenge in the UV...

  13. Absolute 22Na radioactivity measurement by gamma efficiency variation of 4πβ-γ coincidence method

    International Nuclear Information System (INIS)

    Hino, Yoshio; Kawada, Yasusi.

    1994-01-01

    The absolute radioactivity of 22 Na was obtained by gamma efficiency variation of 4πβ-γ coincidence method. Some other previous techniques, such as sum peak gate method based on the positron emission rate, relative measurement with calibrated ionization chambers, and gamma spectrometry with a HPGe detector, were also tried to ensure the present result. The results of these methods were in reasonable agreement with the present absolute measurement. The assayed source solution of this experiment was transferred to NBS type ampoules, and sealed ampoules were sent to the SIR (International Reference System) in BIPM, Taiwan and Indonesia for the international comparison. (author)

  14. The world of quantum matter

    CERN Multimedia

    CERN. Geneva

    2006-01-01

    In my lecture series, I will present the recent spectacular advances in the field of quantum gases and macroscopic quantum physics. A variety of subjects will be covered including Bose condensates and degenerate Fermi gases, ultracold molecules and chemistry near absolute zero, Rydberg gases, single-atom manipulation, quantum information processing, as well as applications of cold atoms as precision targets. The topics of the lectures are: I. Physics near absolute zero II. Bose condensation and Fermi degeneracy III. Molecules, Rydberg gases and other exotic species IV. Single-atom manipulation, quantum information processing and ultracold atoms as targets in storage rings

  15. Parallel state transfer and efficient quantum routing on quantum networks.

    Science.gov (United States)

    Chudzicki, Christopher; Strauch, Frederick W

    2010-12-31

    We study the routing of quantum information in parallel on multidimensional networks of tunable qubits and oscillators. These theoretical models are inspired by recent experiments in superconducting circuits. We show that perfect parallel state transfer is possible for certain networks of harmonic oscillator modes. We extend this to the distribution of entanglement between every pair of nodes in the network, finding that the routing efficiency of hypercube networks is optimal and robust in the presence of dissipation and finite bandwidth.

  16. Effects of low charge carrier wave function overlap on internal quantum efficiency in GaInN quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Netzel, Carsten; Hoffmann, Veit; Wernicke, Tim; Knauer, Arne; Weyers, Markus [Ferdinand-Braun-Institut fuer Hoechstfrequenztechnik, Gustav-Kirchhoff-Strasse 4, 12489 Berlin (Germany); Kneissl, Michael [Ferdinand-Braun-Institut fuer Hoechstfrequenztechnik, Gustav-Kirchhoff-Strasse 4, 12489 Berlin (Germany); Institut fuer Festkoerperphysik, Technische Universitaet Berlin, Hardenbergstrasse 36, 10623 Berlin (Germany)

    2010-07-15

    To determine relevant processes affecting the internal quantum efficiency in GaInN quantum well structures, we have studied the temperature and excitation power dependent photoluminescence intensity for quantum wells with different well widths on (0001) c-plane GaN and for quantum wells on nonpolar (11-20) a-plane GaN. In thick polar quantum wells, the quantum confined Stark effect (QCSE) causes a stronger intensity decrease with increasing temperature as long as the radiative recombination dominates. At higher temperatures, when the nonradiative recombination becomes more important, thick polar quantum wells feature a lower relative intensity decrease than thinner polar or nonpolar quantum wells. Excitation power dependent photoluminescence points to a transition from a recombination of excitons to a bimolecular recombination of uncorrelated charge carriers for thick polar quantum wells in the same temperature range. This transition might contribute to the limitation of nonradiative recombination by a reduced diffusivity of charge carriers. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Efficient method for transport simulations in quantum cascade lasers

    Directory of Open Access Journals (Sweden)

    Maczka Mariusz

    2017-01-01

    Full Text Available An efficient method for simulating quantum transport in quantum cascade lasers is presented. The calculations are performed within a simple approximation inspired by Büttiker probes and based on a finite model for semiconductor superlattices. The formalism of non-equilibrium Green’s functions is applied to determine the selected transport parameters in a typical structure of a terahertz laser. Results were compared with those obtained for a infinite model as well as other methods described in literature.

  18. Absolute continuity for operator valued completely positive maps on C∗-algebras

    Science.gov (United States)

    Gheondea, Aurelian; Kavruk, Ali Şamil

    2009-02-01

    Motivated by applicability to quantum operations, quantum information, and quantum probability, we investigate the notion of absolute continuity for operator valued completely positive maps on C∗-algebras, previously introduced by Parthasarathy [in Athens Conference on Applied Probability and Time Series Analysis I (Springer-Verlag, Berlin, 1996), pp. 34-54]. We obtain an intrinsic definition of absolute continuity, we show that the Lebesgue decomposition defined by Parthasarathy is the maximal one among all other Lebesgue-type decompositions and that this maximal Lebesgue decomposition does not depend on the jointly dominating completely positive map, we obtain more flexible formulas for calculating the maximal Lebesgue decomposition, and we point out the nonuniqueness of the Lebesgue decomposition as well as a sufficient condition for uniqueness. In addition, we consider Radon-Nikodym derivatives for absolutely continuous completely positive maps that, in general, are unbounded positive self-adjoint operators affiliated to a certain von Neumann algebra, and we obtain a spectral approximation by bounded Radon-Nikodym derivatives. An application to the existence of the infimum of two completely positive maps is indicated, and formulas in terms of Choi's matrices for the Lebesgue decomposition of completely positive maps in matrix algebras are obtained.

  19. Highly Luminescent Phase-Stable CsPbI3 Perovskite Quantum Dots Achieving Near 100% Absolute Photoluminescence Quantum Yield.

    Science.gov (United States)

    Liu, Feng; Zhang, Yaohong; Ding, Chao; Kobayashi, Syuusuke; Izuishi, Takuya; Nakazawa, Naoki; Toyoda, Taro; Ohta, Tsuyoshi; Hayase, Shuzi; Minemoto, Takashi; Yoshino, Kenji; Dai, Songyuan; Shen, Qing

    2017-10-24

    Perovskite quantum dots (QDs) as a new type of colloidal nanocrystals have gained significant attention for both fundamental research and commercial applications owing to their appealing optoelectronic properties and excellent chemical processability. For their wide range of potential applications, synthesizing colloidal QDs with high crystal quality is of crucial importance. However, like most common QD systems such as CdSe and PbS, those reported perovskite QDs still suffer from a certain density of trapping defects, giving rise to detrimental nonradiative recombination centers and thus quenching luminescence. In this paper, we show that a high room-temperature photoluminescence quantum yield of up to 100% can be obtained in CsPbI 3 perovskite QDs, signifying the achievement of almost complete elimination of the trapping defects. This is realized with our improved synthetic protocol that involves introducing organolead compound trioctylphosphine-PbI 2 (TOP-PbI 2 ) as the reactive precursor, which also leads to a significantly improved stability for the resulting CsPbI 3 QD solutions. Ultrafast kinetic analysis with time-resolved transient absorption spectroscopy evidence the negligible electron or hole-trapping pathways in our QDs, which explains such a high quantum efficiency. We expect the successful synthesis of the "ideal" perovskite QDs will exert profound influence on their applications to both QD-based light-harvesting and -emitting devices.

  20. Efficient quantum algorithm for computing n-time correlation functions.

    Science.gov (United States)

    Pedernales, J S; Di Candia, R; Egusquiza, I L; Casanova, J; Solano, E

    2014-07-11

    We propose a method for computing n-time correlation functions of arbitrary spinorial, fermionic, and bosonic operators, consisting of an efficient quantum algorithm that encodes these correlations in an initially added ancillary qubit for probe and control tasks. For spinorial and fermionic systems, the reconstruction of arbitrary n-time correlation functions requires the measurement of two ancilla observables, while for bosonic variables time derivatives of the same observables are needed. Finally, we provide examples applicable to different quantum platforms in the frame of the linear response theory.

  1. Numerical simulation of quantum efficiency and surface recombination in HgCdTe IR photon-trapping structures

    Science.gov (United States)

    Schuster, Jonathan; Bellotti, Enrico

    2013-06-01

    We have investigated the quantum effiency in HgCdTe photovoltaic pixel arrays employing a photon-trapping structure realized with a periodic array of pillars intended to provide broadband operation. We have found that the quantum efficiency depends heavily on the passivation of the pillar surface. Pillars passivated with anodicoxide have a large fixed positive charge on the pillar surface. We use our three-dimensional numerical simulation model to study the effect of surface charge and surface recombination velocity on the exterior of the pillars. We then evaluate the quantum efficiency of this structure subject to different surface conditions. We have found that by themselves, the surface charge and surface recombination are detrimental to the quantum efficiency but the quantum efficiency is recovered when both phenomena are present. We will discuss the effects of these phenomena and the trade offs that exist between the two.

  2. A highly efficient single-photon source based on a quantum dot in a photonic nanowire

    DEFF Research Database (Denmark)

    Claudon, Julien; Bleuse, Joel; Malik, Nitin Singh

    2010-01-01

    –4 or a semiconductor quantum dot5–7. Achieving a high extraction efficiency has long been recognized as a major issue, and both classical solutions8 and cavity quantum electrodynamics effects have been applied1,9–12. We adopt a different approach, based on an InAs quantum dot embedded in a GaAs photonic nanowire......The development of efficient solid-state sources of single photons is a major challenge in the context of quantum communication,optical quantum information processing and metrology1. Such a source must enable the implementation of a stable, single-photon emitter, like a colour centre in diamond2...

  3. Radioluminescence properties of the CdSe/ZnS Quantum Dot nanocrystals with analysis of long-memory trends

    International Nuclear Information System (INIS)

    Nikolopoulos, D.; Valais, I.; Michail, C.; Bakas, A.; Fountzoula, C.; Cantzos, D.; Bhattacharyya, D.; Sianoudis, I.; Fountos, G.; Yannakopoulos, P.; Panayiotakis, G.; Kandarakis, I.

    2016-01-01

    This paper reports radioluminescence properties of the CdSe/ZnS quantum dots. Three quantum dot samples were prepared with concentrations 14.2 × 10"−"5 mg/mL, 21.3 × 10"−"5 mg/mL and 28.5 × 10"−"5 mg/mL, respectively. The ultraviolet induced emission spectra of CdSe/ZnS dots exhibited a peak at 550 nm ranging between 450 nm and 650 nm. Discrepancies observed between 250 nm and 450 nm were attributed to the solvent and cuvette. The absolute efficiency calculated from random fractional-Gaussian luminescence segments varied. Long-memory fractional-Brownian segments were also found. The quantum dot solution with concentration of 21.3 × 10"−"5 mg/mL exhibited the maximum absolute efficiency value at 90 kVp. The CdSe/ZnS dots have demonstrated potential for detection of X-rays in the medical imaging energy range. - Highlights: • Luminescence properties of CdSe/ZnS QDs under UV and X-ray irradiation. • Detrended fluctuation analysis used to identify long-memory trends in the signal. • QDs of high concentrations exhibited high absolute efficiency up to 80 kVp. • CdSe/ZnS showed potential for detection of X-rays in the medical imaging energies.

  4. Efficient quantum computation in a network with probabilistic gates and logical encoding

    DEFF Research Database (Denmark)

    Borregaard, J.; Sørensen, A. S.; Cirac, J. I.

    2017-01-01

    An approach to efficient quantum computation with probabilistic gates is proposed and analyzed in both a local and nonlocal setting. It combines heralded gates previously studied for atom or atomlike qubits with logical encoding from linear optical quantum computation in order to perform high......-fidelity quantum gates across a quantum network. The error-detecting properties of the heralded operations ensure high fidelity while the encoding makes it possible to correct for failed attempts such that deterministic and high-quality gates can be achieved. Importantly, this is robust to photon loss, which...... is typically the main obstacle to photonic-based quantum information processing. Overall this approach opens a path toward quantum networks with atomic nodes and photonic links....

  5. Quantum gravity and quantum nondemolition measurements

    International Nuclear Information System (INIS)

    Borzeszkowski, H.H. von; Treder, H.J.

    1984-01-01

    It is shown that in Quantum Gravity, and more general: in Grand Unified Theory incorporating General Relativity on a basic level, there arise necessarily absolute limitations on measurement which one cannot evade by any 'quantum nondemolition measurements'. This fact is demonstrated not to oppose the existence of certain approximations to the full theory where these limitations do not arise. (author)

  6. Non-Markovian quantum processes: Complete framework and efficient characterization

    Science.gov (United States)

    Pollock, Felix A.; Rodríguez-Rosario, César; Frauenheim, Thomas; Paternostro, Mauro; Modi, Kavan

    2018-01-01

    Currently, there is no systematic way to describe a quantum process with memory solely in terms of experimentally accessible quantities. However, recent technological advances mean we have control over systems at scales where memory effects are non-negligible. The lack of such an operational description has hindered advances in understanding physical, chemical, and biological processes, where often unjustified theoretical assumptions are made to render a dynamical description tractable. This has led to theories plagued with unphysical results and no consensus on what a quantum Markov (memoryless) process is. Here, we develop a universal framework to characterize arbitrary non-Markovian quantum processes. We show how a multitime non-Markovian process can be reconstructed experimentally, and that it has a natural representation as a many-body quantum state, where temporal correlations are mapped to spatial ones. Moreover, this state is expected to have an efficient matrix-product-operator form in many cases. Our framework constitutes a systematic tool for the effective description of memory-bearing open-system evolutions.

  7. Efficiency versus speed in quantum heat engines: Rigorous constraint from Lieb-Robinson bound

    Science.gov (United States)

    Shiraishi, Naoto; Tajima, Hiroyasu

    2017-08-01

    A long-standing open problem whether a heat engine with finite power achieves the Carnot efficiency is investgated. We rigorously prove a general trade-off inequality on thermodynamic efficiency and time interval of a cyclic process with quantum heat engines. In a first step, employing the Lieb-Robinson bound we establish an inequality on the change in a local observable caused by an operation far from support of the local observable. This inequality provides a rigorous characterization of the following intuitive picture that most of the energy emitted from the engine to the cold bath remains near the engine when the cyclic process is finished. Using this description, we prove an upper bound on efficiency with the aid of quantum information geometry. Our result generally excludes the possibility of a process with finite speed at the Carnot efficiency in quantum heat engines. In particular, the obtained constraint covers engines evolving with non-Markovian dynamics, which almost all previous studies on this topic fail to address.

  8. Absolute spectroscopy near 7.8 {\\mu} m with a comb-locked extended-cavity quantum-cascade-laser

    KAUST Repository

    Lamperti, Marco

    2017-07-31

    We report the first experimental demonstration of frequency-locking of an extended-cavity quantum-cascade-laser (EC-QCL) to a near-infrared frequency comb. The locking scheme is applied to carry out absolute spectroscopy of N2O lines near 7.87 {\\\\mu}m with an accuracy of ~60 kHz. Thanks to a single mode operation over more than 100 cm^{-1}, the comb-locked EC-QCL shows great potential for the accurate retrieval of line center frequencies in a spectral region that is currently outside the reach of broadly tunable cw sources, either based on difference frequency generation or optical parametric oscillation. The approach described here can be straightforwardly extended up to 12 {\\\\mu}m, which is the current wavelength limit for commercial cw EC-QCLs.

  9. Fluorescent porous silicon biological probes with high quantum efficiency and stability.

    Science.gov (United States)

    Tu, Chang-Ching; Chou, Ying-Nien; Hung, Hsiang-Chieh; Wu, Jingda; Jiang, Shaoyi; Lin, Lih Y

    2014-12-01

    We demonstrate porous silicon biological probes as a stable and non-toxic alternative to organic dyes or cadmium-containing quantum dots for imaging and sensing applications. The fluorescent silicon quantum dots which are embedded on the porous silicon surface are passivated with carboxyl-terminated ligands through stable Si-C covalent bonds. The porous silicon bio-probes have shown photoluminescence quantum yield around 50% under near-UV excitation, with high photochemical and thermal stability. The bio-probes can be efficiently conjugated with antibodies, which is confirmed by a standard enzyme-linked immunosorbent assay (ELISA) method.

  10. Relative and absolute level populations in beam-foil--excited neutral helium

    International Nuclear Information System (INIS)

    Davidson, J.

    1975-01-01

    Relative and absolute populations of 19 levels in beam-foil--excited neutral helium at 0.275 MeV have been measured. The singlet angular-momentum sequences show dependences on principal quantum number consistent with n -3 , but the triplet sequences do not. Singlet and triplet angular-momentum sequences show similar dependences on level excitation energy. Excitation functions for six representative levels were measured in the range 0.160 to 0.500 MeV. The absolute level populations increase with energy, whereas the neutral fraction of the beam decreases with energy. Further, the P angular-momentum levels are found to be overpopulated with respect to the S and D levels. The overpopulation decreases with increasing principal quantum number

  11. Exceeding Conventional Photovoltaic Efficiency Limits Using Colloidal Quantum Dots

    Science.gov (United States)

    Pach, Gregory F.

    Colloidal quantum dots (QDs) are a widely investigated field of research due to their highly tunable nature in which the optical and electronic properties of the nanocrystal can be manipulated by merely changing the nanocrystal's size. Specifically, colloidal quantum dot solar cells (QDSCs) have become a promising candidate for future generation photovoltaic technology. Quantum dots exhibit multiple exciton generation (MEG) in which multiple electron-hole pairs are generated from a single high-energy photon. This process is not observed in bulk-like semiconductors and allows for QDSCs to achieve theoretical efficiency limits above the standard single-junction Shockley-Queisser limit. However, the fast expanding field of QDSC research has lacked standardization of synthetic techniques and device design. Therefore, we sought to detail methodology for synthesizing PbS and PbSe QDs as well as photovoltaic device fabrication techniques as a fast track toward constructing high-performance solar cells. We show that these protocols lead toward consistently achieving efficiencies above 8% for PbS QDSCs. Using the same methodology for building single-junction photovoltaic devices, we incorporated PbS QDs as a bottom cell into a monolithic tandem architecture along with solution-processed CdTe nanocrystals. Modeling shows that near-peak tandem device efficiencies can be achieved across a wide range of bottom cell band gaps, and therefore the highly tunable band gap of lead-chalcogenide QDs lends well towards a bottom cell in a tandem architecture. A fully functioning monolithic tandem device is realized through the development of a ZnTe/ZnO recombination layer that appropriately combines the two subcells in series. Multiple recent reports have shown nanocrystalline heterostructures to undergo the MEG process more efficiency than several other nanostrucutres, namely lead-chalcogenide QDs. The final section of my thesis expands upon a recent publication by Zhang et. al., which

  12. Quantum efficiency harmonic analysis of exciton annihilation in organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Price, J. S.; Giebink, N. C., E-mail: ncg2@psu.edu [Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2015-06-29

    Various exciton annihilation processes are known to impact the efficiency roll-off of organic light emitting diodes (OLEDs); however, isolating and quantifying their contribution in the presence of other factors such as changing charge balance continue to be a challenge for routine device characterization. Here, we analyze OLED electroluminescence resulting from a sinusoidal dither superimposed on the device bias and show that nonlinearity between recombination current and light output arising from annihilation mixes the quantum efficiency measured at different dither harmonics in a manner that depends uniquely on the type and magnitude of the annihilation process. We derive a series of analytical relations involving the DC and first harmonic external quantum efficiency that enable annihilation rates to be quantified through linear regression independent of changing charge balance and evaluate them for prototypical fluorescent and phosphorescent OLEDs based on the emitters 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran and platinum octaethylporphyrin, respectively. We go on to show that, in most cases, it is sufficient to calculate the needed quantum efficiency harmonics directly from derivatives of the DC light versus current curve, thus enabling this analysis to be conducted solely from standard light-current-voltage measurement data.

  13. Single-photon sources for quantum technologies - Results of the joint research project SIQUTE

    DEFF Research Database (Denmark)

    Kück, S.; López, M.; Rodiek, B.

    2017-01-01

    In this presentation, the results of the joint research project “Single-Photon Sources for Quantum Technologies” (SIQUTE) [1] will be presented. The focus will be on the development of absolutely characterized single-photon sources, on the realization of an efficient waveguide-based single-photon......-photon source at the telecom wavelengths of 1.3 µm and 1.55 µm, on the implementation of the quantum-enhanced resolution in confocal fluorescence microscopy and on the development of a detector for very low photon fluxes...

  14. Efficient eco-friendly inverted quantum dot sensitized solar cells

    NARCIS (Netherlands)

    Park, Jinhyung; Sajjad, Muhammad T.; Jouneau, Pierre-Henri; Ruseckas, Arvydas; Faure-Vincent, Jérôme; Samuel, Ifor D. W.; Reiss, Peter; Aldakov, Dmitry

    2016-01-01

    Recent progress in quantum dot (QD) sensitized solar cells has demonstrated the possibility of low-cost and efficient photovoltaics. However, the standard device structure based on n-type materials often suffers from slow hole injection rate, which may lead to unbalanced charge transport. We have

  15. Scales of Time Where the Quantum Discord Allows an Efficient Execution of the DQC1 Algorithm

    Directory of Open Access Journals (Sweden)

    M. Ávila

    2014-01-01

    Full Text Available The power of one qubit deterministic quantum processor (DQC1 (Knill and Laflamme (1998 generates a nonclassical correlation known as quantum discord. The DQC1 algorithm executes in an efficient way with a characteristic time given by τ=Tr[Un]/2n, where Un is an n qubit unitary gate. For pure states, quantum discord means entanglement while for mixed states such a quantity is more than entanglement. Quantum discord can be thought of as the mutual information between two systems. Within the quantum discord approach the role of time in an efficient evaluation of τ is discussed. It is found that the smaller the value of t/T is, where t is the time of execution of the DQC1 algorithm and T is the scale of time where the nonclassical correlations prevail, the more efficient the calculation of τ is. A Mösbauer nucleus might be a good processor of the DQC1 algorithm while a nuclear spin chain would not be efficient for the calculation of τ.

  16. Quantum efficiency of InAs/InP nanowire heterostructures grown on silicon substrates

    International Nuclear Information System (INIS)

    Anufriev, Roman; Chauvin, Nicolas; Bru-Chevallier, Catherine; Khmissi, Hammadi; Naji, Khalid; Gendry, Michel; Patriarche, Gilles

    2013-01-01

    Photoluminescence (PL) quantum efficiency (QE) is experimentally investigated, using an integrating sphere, as a function of excitation power on both InAs/InP quantum rod nanowires (QRod-NWs) and radial quantum well nanowires (QWell-NWs) grown on silicon substrates. The measured values of the QE are compared with those of the planar analogues such as quantum dash and quantum well samples, and found to be comparable for the quantum well structures at relatively low power density. Further studies reveal that the values of QE of the QRod-NWs and QWell-NWs are limited by the low quality of the InP NW structure and the quality of radial quantum well, respectively. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Near threshold absolute TDCS: First results

    International Nuclear Information System (INIS)

    Roesel, T.; Schlemmer, P.; Roeder, J.; Frost, L.; Jung, K.; Ehrhardt, H.

    1992-01-01

    A new method, and first results for an impact energy 2 eV above the threshold of ionisation of helium, are presented for the measurement of absolute triple differential cross sections (TDCS) in a crossed beam experiment. The method is based upon measurement of beam/target overlap densities using known absolute total ionisation cross sections and of detection efficiencies using known absolute double differential cross sections (DDCS). For the present work the necessary absolute DDCS for 1 eV electrons had also to be measured. Results are presented for several different coplanar kinematics and are compared with recent DWBA calculations. (orig.)

  18. An efficient numerical progressive diagonalization scheme for the quantum Rabi model revisited

    International Nuclear Information System (INIS)

    Pan, Feng; Bao, Lina; Dai, Lianrong; Draayer, Jerry P

    2017-01-01

    An efficient numerical progressive diagonalization scheme for the quantum Rabi model is revisited. The advantage of the scheme lies in the fact that the quantum Rabi model can be solved almost exactly by using the scheme that only involves a finite set of one variable polynomial equations. The scheme is especially efficient for a specified eigenstate of the model, for example, the ground state. Some low-lying level energies of the model for several sets of parameters are calculated, of which one set of the results is compared to that obtained from the Braak’s exact solution proposed recently. It is shown that the derivative of the entanglement measure defined in terms of the reduced von Neumann entropy with respect to the coupling parameter does reach the maximum near the critical point deduced from the classical limit of the Dicke model, which may provide a probe of the critical point of the crossover in finite quantum many-body systems, such as that in the quantum Rabi model. (paper)

  19. Erbium-implanted silica colloids with 80% luminescence quantum efficiency

    Science.gov (United States)

    Slooff, L. H.; de Dood, M. J. A.; van Blaaderen, A.; Polman, A.

    2000-06-01

    Silica colloids with a diameter of 240-360 nm, grown by wet chemical synthesis using ethanol, ammonia, water, and tetraethoxysilane, were implanted with 350 keV Er ions, to peak concentrations of 0.2-1.1 at. % and put onto a silicon or glass substrate. After annealing at 700-900 °C the colloids show clear room-temperature photoluminescence at 1.53 μm, with lifetimes as high as 17 ms. By comparing data of different Er concentrations, the purely radiative lifetime is estimated to be 20-22 ms, indicating a high quantum efficiency of about 80%. This high quantum efficiency indicates that, after annealing, the silica colloids are almost free of OH impurities. Spinning a layer of polymethylmethacrylate over the silica spheres results in an optically transparent nanocomposite layer, that can be used as a planar optical waveguide amplifier at 1.5 μm that is fully compatible with polymer technology.

  20. Intrinsic retrieval efficiency for quantum memories: A three-dimensional theory of light interaction with an atomic ensemble

    Science.gov (United States)

    Gujarati, Tanvi P.; Wu, Yukai; Duan, Luming

    2018-03-01

    Duan-Lukin-Cirac-Zoller quantum repeater protocol, which was proposed to realize long distance quantum communication, requires usage of quantum memories. Atomic ensembles interacting with optical beams based on off-resonant Raman scattering serve as convenient on-demand quantum memories. Here, a complete free space, three-dimensional theory of the associated read and write process for this quantum memory is worked out with the aim of understanding intrinsic retrieval efficiency. We develop a formalism to calculate the transverse mode structure for the signal and the idler photons and use the formalism to study the intrinsic retrieval efficiency under various configurations. The effects of atomic density fluctuations and atomic motion are incorporated by numerically simulating this system for a range of realistic experimental parameters. We obtain results that describe the variation in the intrinsic retrieval efficiency as a function of the memory storage time for skewed beam configuration at a finite temperature, which provides valuable information for optimization of the retrieval efficiency in experiments.

  1. Relative and absolute level populations in beam-foil-excited neutral helium

    Science.gov (United States)

    Davidson, J.

    1975-01-01

    Relative and absolute populations of 19 levels in beam-foil-excited neutral helium at 0.275 MeV have been measured. The singlet angular-momentum sequences show dependences on principal quantum number consistent with n to the -3rd power, but the triplet sequences do not. Singlet and triplet angular-momentum sequences show similar dependences on level excitation energy. Excitation functions for six representative levels were measured in the range from 0.160 to 0.500 MeV. The absolute level populations increase with energy, whereas the neutral fraction of the beam decreases with energy. Further, the P angular-momentum levels are found to be overpopulated with respect to the S and D levels. The overpopulation decreases with increasing principal quantum number.

  2. Quantum efficiency and excited-state relaxation dynamics in neodymium-doped phosphate laser glasses

    International Nuclear Information System (INIS)

    Caird, J.A.; Ramponi, A.J.; Staver, P.R.

    1991-01-01

    Radiometrically calibrated spectroscopic techniques employing an integrating-sphere detection system have been used to determine the fluorescence quantum efficiencies for two commercially available Nd 3+ -doped phosphate laser glasses, LG-750 and LG-760. Quantum efficiencies and fluorescence lifetimes were measured for samples with various neodymium concentrations. It is shown that the effects of concentration quenching are accurately described when both resonant nonradiative excitation hopping (the Burshtein model) and annihilation by cross relaxation are accounted for by Foerster--Dexter dipole--dipole energy-transfer theory. The Foerster--Dexter critical range for nonradiative excitation hopping was found to be R DD =11 A, while the critical range for cross relaxation was close to R DA =4 A in these glasses. The quantum efficiency at low Nd 3+ concentrations was (92±5)%, implying a nonradiative relaxation rate of 210±150 s -1 for isolated ions. Improved values for the radiative lifetimes and the stimulated emission cross sections for these glasses were also deduced from the measurements

  3. An Efficient and Secure Arbitrary N-Party Quantum Key Agreement Protocol Using Bell States

    Science.gov (United States)

    Liu, Wen-Jie; Xu, Yong; Yang, Ching-Nung; Gao, Pei-Pei; Yu, Wen-Bin

    2018-01-01

    Two quantum key agreement protocols using Bell states and Bell measurement were recently proposed by Shukla et al. (Quantum Inf. Process. 13(11), 2391-2405, 2014). However, Zhu et al. pointed out that there are some security flaws and proposed an improved version (Quantum Inf. Process. 14(11), 4245-4254, 2015). In this study, we will show Zhu et al.'s improvement still exists some security problems, and its efficiency is not high enough. For solving these problems, we utilize four Pauli operations { I, Z, X, Y} to encode two bits instead of the original two operations { I, X} to encode one bit, and then propose an efficient and secure arbitrary N-party quantum key agreement protocol. In the protocol, the channel checking with decoy single photons is introduced to avoid the eavesdropper's flip attack, and a post-measurement mechanism is used to prevent against the collusion attack. The security analysis shows the present protocol can guarantee the correctness, security, privacy and fairness of quantum key agreement.

  4. High Efficiency Colloidal Quantum Dot Phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Kahen, Keith

    2013-12-31

    The project showed that non-Cd containing, InP-based nanocrystals (semiconductor materials with dimensions of ~6 nm) have high potential for enabling next-generation, nanocrystal-based, on chip phosphors for solid state lighting. Typical nanocrystals fall short of the requirements for on chip phosphors due to their loss of quantum efficiency under the operating conditions of LEDs, such as, high temperature (up to 150 °C) and high optical flux (up to 200 W/cm2). The InP-based nanocrystals invented during this project maintain high quantum efficiency (>80%) in polymer-based films under these operating conditions for emission wavelengths ranging from ~530 to 620 nm. These nanocrystals also show other desirable attributes, such as, lack of blinking (a common problem with nanocrystals which limits their performance) and no increase in the emission spectral width from room to 150 °C (emitters with narrower spectral widths enable higher efficiency LEDs). Prior to these nanocrystals, no nanocrystal system (regardless of nanocrystal type) showed this collection of properties; in fact, other nanocrystal systems are typically limited to showing only one desirable trait (such as high temperature stability) but being deficient in other properties (such as high flux stability). The project showed that one can reproducibly obtain these properties by generating a novel compositional structure inside of the nanomaterials; in addition, the project formulated an initial theoretical framework linking the compositional structure to the list of high performance optical properties. Over the course of the project, the synthetic methodology for producing the novel composition was evolved to enable the synthesis of these nanomaterials at a cost approximately equal to that required for forming typical conventional nanocrystals. Given the above results, the last major remaining step prior to scale up of the nanomaterials is to limit the oxidation of these materials during the tens of

  5. An efficient deterministic secure quantum communication scheme based on cluster states and identity authentication

    International Nuclear Information System (INIS)

    Wen-Jie, Liu; Han-Wu, Chen; Zhi-Qiang, Li; Zhi-Hao, Liu; Wen-Bo, Hu; Ting-Huai, Ma

    2009-01-01

    A novel efficient deterministic secure quantum communication scheme based on four-qubit cluster states and single-photon identity authentication is proposed. In this scheme, the two authenticated users can transmit two bits of classical information per cluster state, and its efficiency of the quantum communication is 1/3, which is approximately 1.67 times that of the previous protocol presented by Wang et al [Chin. Phys. Lett. 23 (2006) 2658]. Security analysis shows the present scheme is secure against intercept-resend attack and the impersonator's attack. Furthermore, it is more economic with present-day techniques and easily processed by a one-way quantum computer. (general)

  6. Modeling the irradiance dependency of the quantum efficiency of potosynthesis

    NARCIS (Netherlands)

    Silsbe, G.M.; Kromkamp, J.C.

    2012-01-01

    Measures of the quantum efficiency of photosynthesis (phi(PSII)) across an irradiance (E) gradient are an increasingly common physiological assay and alternative to traditional photosynthetic-irradiance (PE) assays. Routinely, the analysis and interpretation of these data are analogous to PE

  7. Analysis of the external and internal quantum efficiency of multi-emitter, white organic light emitting diodes

    Science.gov (United States)

    Furno, Mauro; Rosenow, Thomas C.; Gather, Malte C.; Lüssem, Björn; Leo, Karl

    2012-10-01

    We report on a theoretical framework for the efficiency analysis of complex, multi-emitter organic light emitting diodes (OLEDs). The calculation approach makes use of electromagnetic modeling to quantify the overall OLED photon outcoupling efficiency and a phenomenological description for electrical and excitonic processes. From the comparison of optical modeling results and measurements of the total external quantum efficiency, we obtain reliable estimates of internal quantum yield. As application of the model, we analyze high-efficiency stacked white OLEDs and comment on the various efficiency loss channels present in the devices.

  8. Quantum Secure Direct Communication with Quantum Memory.

    Science.gov (United States)

    Zhang, Wei; Ding, Dong-Sheng; Sheng, Yu-Bo; Zhou, Lan; Shi, Bao-Sen; Guo, Guang-Can

    2017-06-02

    Quantum communication provides an absolute security advantage, and it has been widely developed over the past 30 years. As an important branch of quantum communication, quantum secure direct communication (QSDC) promotes high security and instantaneousness in communication through directly transmitting messages over a quantum channel. The full implementation of a quantum protocol always requires the ability to control the transfer of a message effectively in the time domain; thus, it is essential to combine QSDC with quantum memory to accomplish the communication task. In this Letter, we report the experimental demonstration of QSDC with state-of-the-art atomic quantum memory for the first time in principle. We use the polarization degrees of freedom of photons as the information carrier, and the fidelity of entanglement decoding is verified as approximately 90%. Our work completes a fundamental step toward practical QSDC and demonstrates a potential application for long-distance quantum communication in a quantum network.

  9. Enhanced life time and suppressed efficiency roll-off in phosphorescent organic light-emitting diodes with multiple quantum well structures

    Directory of Open Access Journals (Sweden)

    Ja-Ryong Koo

    2012-03-01

    Full Text Available We demonstrate red phosphorescent organic light-emitting diodes (OLEDs with multiple quantum well structures which confine triplet exciton inside an emitting layer (EML region. Five types of OLEDs, from a single to five quantum wells, are fabricated with charge control layers to produce high efficiencies, and the performance of the devices is investigated. The improved quantum efficiency and lifetime of the OLED with four quantum wells, and its suppressed quantum efficiency roll-off of 17.6%, can be described by the increased electron–hole charge balance owing to the bipolar property as well as the efficient triplet exciton confinement within each EML, and by prevention of serious triplet–triplet and/or triplet–polaron annihilation as well as the Förster self-quenching due to charge control layers.

  10. Efficient quantum entanglement distribution over an arbitrary collective-noise channel

    Science.gov (United States)

    Sheng, Yu-Bo; Deng, Fu-Guo

    2010-04-01

    We present an efficient quantum entanglement distribution over an arbitrary collective-noise channel. The basic idea in the present scheme is that two parties in quantum communication first transmit the entangled states in the frequency degree of freedom which suffers little from the noise in an optical fiber. After the two parties share the photon pairs, they add some operations and equipments to transfer the frequency entanglement of pairs into the polarization entanglement with the success probability of 100%. Finally, they can get maximally entangled polarization states with polarization independent wavelength division multiplexers and quantum frequency up-conversion which can erase distinguishability for frequency. Compared with conventional entanglement purification protocols, the present scheme works in a deterministic way in principle. Surprisingly, the collective noise leads to an additional advantage.

  11. Efficiency enhancement of solid-state PbS quantum dot-sensitized solar cells with Al2O3 barrier layer

    KAUST Repository

    Brennan, Thomas P.; Trejo, Orlando; Roelofs, Katherine E.; Xu, John; Prinz, Fritz B.; Bent, Stacey F.

    2013-01-01

    Atomic layer deposition (ALD) was used to grow both PbS quantum dots and Al2O3 barrier layers in a solid-state quantum dot-sensitized solar cell (QDSSC). Barrier layers grown prior to quantum dots resulted in a near-doubling of device efficiency (0.30% to 0.57%) whereas barrier layers grown after quantum dots did not improve efficiency, indicating the importance of quantum dots in recombination processes. © 2013 The Royal Society of Chemistry.

  12. On the effect of ballistic overflow on the temperature dependence of the quantum efficiency of InGaN/GaN multiple quantum well light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Prudaev, I. A., E-mail: funcelab@gmail.com; Kopyev, V. V.; Romanov, I. S.; Oleynik, V. L. [National Research Tomsk State University (Russian Federation)

    2017-02-15

    The dependences of the quantum efficiency of InGaN/GaN multiple quantum well light-emitting diodes on the temperature and excitation level are studied. The experiment is performed for two luminescence excitation modes. A comparison of the results obtained during photo- and electroluminescence shows an additional (to the loss associated with Auger recombination) low-temperature loss in the high-density current region. This causes inversion of the temperature dependence of the quantum efficiency at temperatures lower than 220–300 K. Analysis shows that the loss is associated with electron leakage from the light-emitting-diode active region. The experimental data are explained using the ballistic-overflow model. The simulation results are in qualitative agreement with the experimental dependences of the quantum efficiency on temperature and current density.

  13. Efficient universal quantum channel simulation in IBM's cloud quantum computer

    Science.gov (United States)

    Wei, Shi-Jie; Xin, Tao; Long, Gui-Lu

    2018-07-01

    The study of quantum channels is an important field and promises a wide range of applications, because any physical process can be represented as a quantum channel that transforms an initial state into a final state. Inspired by the method of performing non-unitary operators by the linear combination of unitary operations, we proposed a quantum algorithm for the simulation of the universal single-qubit channel, described by a convex combination of "quasi-extreme" channels corresponding to four Kraus operators, and is scalable to arbitrary higher dimension. We demonstrated the whole algorithm experimentally using the universal IBM cloud-based quantum computer and studied the properties of different qubit quantum channels. We illustrated the quantum capacity of the general qubit quantum channels, which quantifies the amount of quantum information that can be protected. The behavior of quantum capacity in different channels revealed which types of noise processes can support information transmission, and which types are too destructive to protect information. There was a general agreement between the theoretical predictions and the experiments, which strongly supports our method. By realizing the arbitrary qubit channel, this work provides a universally- accepted way to explore various properties of quantum channels and novel prospect for quantum communication.

  14. Determination of the absolute efficiency of an organic scintillator for neutrons with energies between 0.5 and 800 MeV

    International Nuclear Information System (INIS)

    Howe, S.D.; Lisowski, P.W.; Russell, G.J.; King, N.S.P.; Donnert, H.J.

    1984-01-01

    We have determined the absolute efficiency of an NE-213 scintillator for neutrons with energies from 0.5 to 800 MeV. The detector was 5.1 cm in diameter and 2.5 cm deep. The efficiencies were obtained for detector thresholds of 0.011, 0.48, 1.12, and 4.48 MeVee. Our results are compared to predictions of the STANTON computer code. (orig.)

  15. Calculated Absolute Detection Efficiencies of Cylindrical Nal (Tl) Scintillation Crystals for Aqueous Spherical Sources

    Energy Technology Data Exchange (ETDEWEB)

    Strindehag, O; Tollander, B

    1968-08-15

    Calculated values of the absolute total detection efficiencies of cylindrical scintillation crystals viewing spherical sources of various sizes are presented. The calculation is carried out for 2 x 2 inch and 3 x 3 inch Nal(Tl) crystals and for sources which have the radii 1/4, 1/2, 3/4 and 1 times the crystal radius. Source-detector distances of 5-20 cm and gamma energies in the range 0.1 - 5 MeV are considered. The correction factor for absorption in the sample container wall and in the detector housing is derived and calculated for a practical case.

  16. Single-Photon Source for Quantum Information Based on Single Dye Molecule Fluorescence in Liquid Crystal Host

    International Nuclear Information System (INIS)

    Lukishova, S.G.; Knox, R.P.; Freivald, P.; McNamara, A.; Boyd, R.W.; Stroud, Jr. C.R.; Schmid, A.W.; Marshall, K.L.

    2006-01-01

    This paper describes a new application for liquid crystals: quantum information technology. A deterministically polarized single-photon source that efficiently produces photons exhibiting antibunching is a pivotal hardware element in absolutely secure quantum communication. Planar-aligned nematic liquid crystal hosts deterministically align the single dye molecules which produce deterministically polarized single (antibunched) photons. In addition, 1-D photonic bandgap cholesteric liquid crystals will increase single-photon source efficiency. The experiments and challenges in the observation of deterministically polarized fluorescence from single dye molecules in planar-aligned glassy nematic-liquid-crystal oligomer as well as photon antibunching in glassy cholesteric oligomer are described for the first time

  17. Efficient Computation of Transition State Resonances and Reaction Rates from a Quantum Normal Form

    NARCIS (Netherlands)

    Schubert, Roman; Waalkens, Holger; Wiggins, Stephen

    2006-01-01

    A quantum version of a recent formulation of transition state theory in phase space is presented. The theory developed provides an algorithm to compute quantum reaction rates and the associated Gamov-Siegert resonances with very high accuracy. The algorithm is especially efficient for

  18. Efficient one-way quantum computations for quantum error correction

    International Nuclear Information System (INIS)

    Huang Wei; Wei Zhaohui

    2009-01-01

    We show how to explicitly construct an O(nd) size and constant quantum depth circuit which encodes any given n-qubit stabilizer code with d generators. Our construction is derived using the graphic description for stabilizer codes and the one-way quantum computation model. Our result demonstrates how to use cluster states as scalable resources for many multi-qubit entangled states and how to use the one-way quantum computation model to improve the design of quantum algorithms.

  19. Comparative studies of efficiency droop in polar and non-polar InGaN quantum wells

    International Nuclear Information System (INIS)

    Davies, M. J.; Dawson, P.; Hammersley, S.; Zhu, T.; Kappers, M. J.; Humphreys, C. J.; Oliver, R. A.

    2016-01-01

    We report on a comparative study of efficiency droop in polar and non-polar InGaN quantum well structures at T = 10 K. To ensure that the experiments were carried out with identical carrier densities for any particular excitation power density, we used laser pulses of duration ∼100 fs at a repetition rate of 400 kHz. For both types of structures, efficiency droop was observed to occur for carrier densities of above 7 × 10 11  cm −2  pulse −1 per quantum well; also both structures exhibited similar spectral broadening in the droop regime. These results show that efficiency droop is intrinsic in InGaN quantum wells, whether polar or non-polar, and is a function, specifically, of carrier density.

  20. Efficiency dip observed with InGaN-based multiple quantum well solar cells

    KAUST Repository

    Lai, Kunyu; Lin, G. J.; Wu, Yuhrenn; Tsai, Menglun; He, Jr-Hau

    2014-01-01

    The dip of external quantum efficiency (EQE) is observed on In0.15Ga0.85N/GaN multiple quantum well (MQW) solar cells upon the increase of incident optical power density. With indium composition increased to 25%, the EQE dip becomes much less noticeable. The composition dependence of EQE dip is ascribed to the competition between radiative recombination and photocurrent generation in the active region, which are dictated by quantum-confined Stark effect (QCSE) and composition fluctuation in the MQWs.

  1. Design of Efficient Mirror Adder in Quantum- Dot Cellular Automata

    Science.gov (United States)

    Mishra, Prashant Kumar; Chattopadhyay, Manju K.

    2018-03-01

    Lower power consumption is an essential demand for portable multimedia system using digital signal processing algorithms and architectures. Quantum dot cellular automata (QCA) is a rising nano technology for the development of high performance ultra-dense low power digital circuits. QCA based several efficient binary and decimal arithmetic circuits are implemented, however important improvements are still possible. This paper demonstrate Mirror Adder circuit design in QCA. We present comparative study of mirror adder cells designed using conventional CMOS technique and mirror adder cells designed using quantum-dot cellular automata. QCA based mirror adders are better in terms of area by order of three.

  2. External quantum efficiency enhancement by photon recycling with backscatter evasion.

    Science.gov (United States)

    Nagano, Koji; Perreca, Antonio; Arai, Koji; Adhikari, Rana X

    2018-05-01

    The nonunity quantum efficiency (QE) in photodiodes (PD) causes deterioration of signal quality in quantum optical experiments due to photocurrent loss as well as the introduction of vacuum fluctuations into the measurement. In this paper, we report that the external QE enhancement of a PD was demonstrated by recycling the reflected photons. The external QE for an InGaAs PD was increased by 0.01-0.06 from 0.86-0.92 over a wide range of incident angles. Moreover, we confirmed that this technique does not increase backscattered light when the recycled beam is properly misaligned.

  3. Quantum frequency conversion with ultra-broadband tuning in a Raman memory

    Science.gov (United States)

    Bustard, Philip J.; England, Duncan G.; Heshami, Khabat; Kupchak, Connor; Sussman, Benjamin J.

    2017-05-01

    Quantum frequency conversion is a powerful tool for the construction of hybrid quantum photonic technologies. Raman quantum memories are a promising method of conversion due to their broad bandwidths. Here we demonstrate frequency conversion of THz-bandwidth, fs-duration photons at the single-photon level using a Raman quantum memory based on the rotational levels of hydrogen molecules. We shift photons from 765 nm to wavelengths spanning from 673 to 590 nm—an absolute shift of up to 116 THz. We measure total conversion efficiencies of up to 10% and a maximum signal-to-noise ratio of 4.0(1):1, giving an expected conditional fidelity of 0.75, which exceeds the classical threshold of 2/3. Thermal noise could be eliminated by cooling with liquid nitrogen, giving noiseless conversion with wide tunability in the visible and infrared.

  4. Increasing the quantum efficiency of GaAs solar cells by embedding InAs quantum dots

    Science.gov (United States)

    Salii, R. A.; Mintairov, S. A.; Nadtochiy, A. M.; Payusov, A. S.; Brunkov, P. N.; Shvarts, M. Z.; Kalyuzhnyy, N. A.

    2016-11-01

    Development of Metalorganic Vapor Phase Epitaxy (MOVPE) technology of InAs quantum dots (QDs) in GaAs for photovoltaic applications is presented. The growth peculiarities in InAs-GaAs lattice-mismatched system were considered. The photoluminescence (PL) intensity dependences on different growth parameters were obtained. The multimodal distribution of QDs by sizes was found using AFM and PL methods. GaAs solar cell nanoheterostructures with imbedded QD arrays were designed and obtained. Ones have been demonstrated a significant increase of quantum efficiency and photogenerated current of QD solar cells due to photo effect in InAs QD array (0.59 mA/cm2 for AM1.5D and 82 mA/cm2 for AM0).

  5. Effects of quantum well growth temperature on the recombination efficiency of InGaN/GaN multiple quantum wells that emit in the green and blue spectral regions

    Energy Technology Data Exchange (ETDEWEB)

    Hammersley, S.; Dawson, P. [School of Physics and Astronomy, Photon Science Institute, University of Manchester, Manchester M13 9PL (United Kingdom); Kappers, M. J.; Massabuau, F. C.-P.; Sahonta, S.-L.; Oliver, R. A.; Humphreys, C. J. [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom)

    2015-09-28

    InGaN-based light emitting diodes and multiple quantum wells designed to emit in the green spectral region exhibit, in general, lower internal quantum efficiencies than their blue-emitting counter parts, a phenomenon referred to as the “green gap.” One of the main differences between green-emitting and blue-emitting samples is that the quantum well growth temperature is lower for structures designed to emit at longer wavelengths, in order to reduce the effects of In desorption. In this paper, we report on the impact of the quantum well growth temperature on the optical properties of InGaN/GaN multiple quantum wells designed to emit at 460 nm and 530 nm. It was found that for both sets of samples increasing the temperature at which the InGaN quantum well was grown, while maintaining the same indium composition, led to an increase in the internal quantum efficiency measured at 300 K. These increases in internal quantum efficiency are shown to be due reductions in the non-radiative recombination rate which we attribute to reductions in point defect incorporation.

  6. Effects of quantum well growth temperature on the recombination efficiency of InGaN/GaN multiple quantum wells that emit in the green and blue spectral regions

    International Nuclear Information System (INIS)

    Hammersley, S.; Dawson, P.; Kappers, M. J.; Massabuau, F. C.-P.; Sahonta, S.-L.; Oliver, R. A.; Humphreys, C. J.

    2015-01-01

    InGaN-based light emitting diodes and multiple quantum wells designed to emit in the green spectral region exhibit, in general, lower internal quantum efficiencies than their blue-emitting counter parts, a phenomenon referred to as the “green gap.” One of the main differences between green-emitting and blue-emitting samples is that the quantum well growth temperature is lower for structures designed to emit at longer wavelengths, in order to reduce the effects of In desorption. In this paper, we report on the impact of the quantum well growth temperature on the optical properties of InGaN/GaN multiple quantum wells designed to emit at 460 nm and 530 nm. It was found that for both sets of samples increasing the temperature at which the InGaN quantum well was grown, while maintaining the same indium composition, led to an increase in the internal quantum efficiency measured at 300 K. These increases in internal quantum efficiency are shown to be due reductions in the non-radiative recombination rate which we attribute to reductions in point defect incorporation

  7. Highly Efficient Light-Emitting Diodes of Colloidal Metal-Halide Perovskite Nanocrystals beyond Quantum Size.

    Science.gov (United States)

    Kim, Young-Hoon; Wolf, Christoph; Kim, Young-Tae; Cho, Himchan; Kwon, Woosung; Do, Sungan; Sadhanala, Aditya; Park, Chan Gyung; Rhee, Shi-Woo; Im, Sang Hyuk; Friend, Richard H; Lee, Tae-Woo

    2017-07-25

    Colloidal metal-halide perovskite quantum dots (QDs) with a dimension less than the exciton Bohr diameter D B (quantum size regime) emerged as promising light emitters due to their spectrally narrow light, facile color tuning, and high photoluminescence quantum efficiency (PLQE). However, their size-sensitive emission wavelength and color purity and low electroluminescence efficiency are still challenging aspects. Here, we demonstrate highly efficient light-emitting diodes (LEDs) based on the colloidal perovskite nanocrystals (NCs) in a dimension > D B (regime beyond quantum size) by using a multifunctional buffer hole injection layer (Buf-HIL). The perovskite NCs with a dimension greater than D B show a size-irrespective high color purity and PLQE by managing the recombination of excitons occurring at surface traps and inside the NCs. The Buf-HIL composed of poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS) and perfluorinated ionomer induces uniform perovskite particle films with complete film coverage and prevents exciton quenching at the PEDOT:PSS/perovskite particle film interface. With these strategies, we achieved a very high PLQE (∼60.5%) in compact perovskite particle films without any complex post-treatments and multilayers and a high current efficiency of 15.5 cd/A in the LEDs of colloidal perovskite NCs, even in a simplified structure, which is the highest efficiency to date in green LEDs that use colloidal organic-inorganic metal-halide perovskite nanoparticles including perovskite QDs and NCs. These results can help to guide development of various light-emitting optoelectronic applications based on perovskite NCs.

  8. Simple and efficient absorption filter for single photons from a cold atom quantum memory.

    Science.gov (United States)

    Stack, Daniel T; Lee, Patricia J; Quraishi, Qudsia

    2015-03-09

    The ability to filter unwanted light signals is critical to the operation of quantum memories based on neutral atom ensembles. Here we demonstrate an efficient frequency filter which uses a vapor cell filled with (85)Rb and a buffer gas to attenuate both residual laser light and noise photons by nearly two orders of magnitude with little loss to the single photons associated with our cold (87)Rb quantum memory. This simple, passive filter provides an additional 18 dB attenuation of our pump laser and erroneous spontaneous emissions for every 1 dB loss of the single photon signal. We show that the addition of a frequency filter increases the non-classical correlations and the retrieval efficiency of our quantum memory by ≈ 35%.

  9. Quantum exam

    International Nuclear Information System (INIS)

    Nguyen, Ba An

    2006-01-01

    Absolutely and asymptotically secure protocols for organizing an exam in a quantum way are proposed basing judiciously on multipartite entanglement. The protocols are shown to stand against common types of eavesdropping attack

  10. Finite Correlation Length Implies Efficient Preparation of Quantum Thermal States

    Science.gov (United States)

    Brandão, Fernando G. S. L.; Kastoryano, Michael J.

    2018-05-01

    Preparing quantum thermal states on a quantum computer is in general a difficult task. We provide a procedure to prepare a thermal state on a quantum computer with a logarithmic depth circuit of local quantum channels assuming that the thermal state correlations satisfy the following two properties: (i) the correlations between two regions are exponentially decaying in the distance between the regions, and (ii) the thermal state is an approximate Markov state for shielded regions. We require both properties to hold for the thermal state of the Hamiltonian on any induced subgraph of the original lattice. Assumption (ii) is satisfied for all commuting Gibbs states, while assumption (i) is satisfied for every model above a critical temperature. Both assumptions are satisfied in one spatial dimension. Moreover, both assumptions are expected to hold above the thermal phase transition for models without any topological order at finite temperature. As a building block, we show that exponential decay of correlation (for thermal states of Hamiltonians on all induced subgraphs) is sufficient to efficiently estimate the expectation value of a local observable. Our proof uses quantum belief propagation, a recent strengthening of strong sub-additivity, and naturally breaks down for states with topological order.

  11. Comparative studies of efficiency droop in polar and non-polar InGaN quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Davies, M. J.; Dawson, P.; Hammersley, S. [School of Physics and Astronomy, Photon Science Institute, University of Manchester, M13 9PL Manchester (United Kingdom); Zhu, T.; Kappers, M. J.; Humphreys, C. J.; Oliver, R. A. [Department of Material Science and Metallurgy, 27 Charles Babbage Road, University of Cambridge, Cambridge CB3 0FS (United Kingdom)

    2016-06-20

    We report on a comparative study of efficiency droop in polar and non-polar InGaN quantum well structures at T = 10 K. To ensure that the experiments were carried out with identical carrier densities for any particular excitation power density, we used laser pulses of duration ∼100 fs at a repetition rate of 400 kHz. For both types of structures, efficiency droop was observed to occur for carrier densities of above 7 × 10{sup 11 }cm{sup −2 }pulse{sup −1} per quantum well; also both structures exhibited similar spectral broadening in the droop regime. These results show that efficiency droop is intrinsic in InGaN quantum wells, whether polar or non-polar, and is a function, specifically, of carrier density.

  12. Improving quantum efficiency and spectral resolution of a CCD through direct manipulation of the depletion region

    Science.gov (United States)

    Brown, Craig; Ambrosi, Richard M.; Abbey, Tony; Godet, Olivier; O'Brien, R.; Turner, M. J. L.; Holland, Andrew; Pool, Peter J.; Burt, David; Vernon, David

    2008-07-01

    Future generations of X-ray astronomy instruments will require position sensitive detectors in the form of charge-coupled devices (CCDs) for X-ray spectroscopy and imaging with the ability to probe the X-ray universe with greater efficiency. This will require the development of CCDs with structures that will improve their quantum efficiency over the current state of the art. The quantum efficiency improvements would have to span a broad energy range (0.2 keV to >15 keV). These devices will also have to be designed to withstand the harsh radiation environments associated with orbits that extend beyond the Earth's magnetosphere. This study outlines the most recent work carried out at the University of Leicester focused on improving the quantum efficiency of an X-ray sensitive CCD through direct manipulation of the device depletion region. It is also shown that increased spectral resolution is achieved using this method due to a decrease in the number of multi-pixel events. A Monte Carlo and analytical models of the CCD have been developed and used to determine the depletion depths achieved through variation of the device substrate voltage, Vss. The models are also used to investigate multi-pixel event distributions and quantum efficiency as a function of depletion depth.

  13. Internal quantum efficiency in yellow-amber light emitting AlGaN-InGaN-GaN heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Ngo, Thi Huong; Gil, Bernard; Valvin, Pierre [Laboratoire Charles Coulomb – UMR 5221, CNRS and University Montpellier, Case courier 074, 34095 Montpellier Cedex 5 (France); Damilano, Benjamin; Lekhal, Kaddour; De Mierry, Philippe [CRHEA-CNRS Centre de Recherche sur l' Hétéro-Epitaxie et ses Applications, Centre National de la Recherche Scientifique, rue Bernard Gregory, 06560 Valbonne (France)

    2015-09-21

    We determine the internal quantum efficiency of strain-balanced AlGaN-InGaN-GaN hetero-structures designed for yellow-amber light emission, by using a recent model based on the kinetics of the photoluminescence decay initiated by Iwata et al. [J. Appl. Phys. 117, 075701 (2015)]. Our results indicate that low temperature internal quantum efficiencies sit in the 50% range and we measure that adding an AlGaN layer increases the internal quantum efficiency from 50% up to 57% with respect to the GaN-InGaN case. More dramatic, it almost doubles from 2.5% up to 4.3% at room temperature.

  14. Optimal power and efficiency of quantum Stirling heat engines

    Science.gov (United States)

    Yin, Yong; Chen, Lingen; Wu, Feng

    2017-01-01

    A quantum Stirling heat engine model is established in this paper in which imperfect regeneration and heat leakage are considered. A single particle which contained in a one-dimensional infinite potential well is studied, and the system consists of countless replicas. Each particle is confined in its own potential well, whose occupation probabilities can be expressed by the thermal equilibrium Gibbs distributions. Based on the Schrödinger equation, the expressions of power output and efficiency for the engine are obtained. Effects of imperfect regeneration and heat leakage on the optimal performance are discussed. The optimal performance region and the optimal values of important parameters of the engine cycle are obtained. The results obtained can provide some guidelines for the design of a quantum Stirling heat engine.

  15. Efficient spin filter using multi-terminal quantum dot with spin-orbit interaction

    Directory of Open Access Journals (Sweden)

    Yokoyama Tomohiro

    2011-01-01

    Full Text Available Abstract We propose a multi-terminal spin filter using a quantum dot with spin-orbit interaction. First, we formulate the spin Hall effect (SHE in a quantum dot connected to three leads. We show that the SHE is significantly enhanced by the resonant tunneling if the level spacing in the quantum dot is smaller than the level broadening. We stress that the SHE is tunable by changing the tunnel coupling to the third lead. Next, we perform a numerical simulation for a multi-terminal spin filter using a quantum dot fabricated on semiconductor heterostructures. The spin filter shows an efficiency of more than 50% when the conditions for the enhanced SHE are satisfied. PACS numbers: 72.25.Dc,71.70.Ej,73.63.Kv,85.75.-d

  16. High-efficiency and low-loss gallium nitride dielectric metasurfaces for nanophotonics at visible wavelengths

    Science.gov (United States)

    Emani, Naresh Kumar; Khaidarov, Egor; Paniagua-Domínguez, Ramón; Fu, Yuan Hsing; Valuckas, Vytautas; Lu, Shunpeng; Zhang, Xueliang; Tan, Swee Tiam; Demir, Hilmi Volkan; Kuznetsov, Arseniy I.

    2017-11-01

    The dielectric nanophotonics research community is currently exploring transparent material platforms (e.g., TiO2, Si3N4, and GaP) to realize compact high efficiency optical devices at visible wavelengths. Efficient visible-light operation is key to integrating atomic quantum systems for future quantum computing. Gallium nitride (GaN), a III-V semiconductor which is highly transparent at visible wavelengths, is a promising material choice for active, nonlinear, and quantum nanophotonic applications. Here, we present the design and experimental realization of high efficiency beam deflecting and polarization beam splitting metasurfaces consisting of GaN nanostructures etched on the GaN epitaxial substrate itself. We demonstrate a polarization insensitive beam deflecting metasurface with 64% and 90% absolute and relative efficiencies. Further, a polarization beam splitter with an extinction ratio of 8.6/1 (6.2/1) and a transmission of 73% (67%) for p-polarization (s-polarization) is implemented to demonstrate the broad functionality that can be realized on this platform. The metasurfaces in our work exhibit a broadband response in the blue wavelength range of 430-470 nm. This nanophotonic platform of GaN shows the way to off- and on-chip nonlinear and quantum photonic devices working efficiently at blue emission wavelengths common to many atomic quantum emitters such as Ca+ and Sr+ ions.

  17. "High Quantum Efficiency of Band-Edge Emission from ZnO Nanowires"

    Energy Technology Data Exchange (ETDEWEB)

    GARGAS, DANIEL; GAO, HANWEI; WANG, HUNGTA; PEIDONG, YANG

    2010-12-01

    External quantum efficiency (EQE) of photoluminescence as high as 20 percent from isolated ZnO nanowires were measured at room temperature. The EQE was found to be highly dependent on photoexcitation density, which underscores the importance of uniform optical excitation during the EQE measurement. An integrating sphere coupled to a microscopic imaging system was used in this work, which enabled the EQE measurement on isolated ZnO nanowires. The EQE values obtained here are significantly higher than those reported for ZnO materials in forms of bulk, thin films or powders. Additional insight on the radiative extraction factor of one-dimensional nanostructures was gained by measuring the internal quantum efficiency of individual nanowires. Such quantitative EQE measurements provide a sensitive, noninvasive method to characterize the optical properties of low-dimensional nanostructures and allow tuning of synthesis parameters for optimization of nanoscale materials.

  18. Efficiency studies on semipolar GaInN-GaN quantum well structures

    Energy Technology Data Exchange (ETDEWEB)

    Scholz, Ferdinand; Meisch, Tobias; Elkhouly, Karim [Institute of Optoelectronics, Ulm University (Germany)

    2016-12-15

    In order to clarify the reasons for the fairly poor electroluminescence (EL) performance of semipolar LED structures grown on patterned sapphire wafers, we have analyzed both, pure photoluminescence (PL) test structures without doping only containing 5 GaInN quantum wells and full EL test structures, all emitting at a wavelength of about 510 nm. Evaluating the PL intensity over a wide range of temperatures and excitation powers, we conclude that such quantum wells possess a fairly large internal quantum efficiency of about 20%. However, on EL test structures containing nominally the same quantum wells, we obtained an optical output power of only about 150μW at an applied current of 20 mA. This may be due partly to some thermal destruction of the quantum wells by the overgrowth with p-GaN. Even more important seems to be the not yet finally optimized p-doping of these structures. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Functional Basis for Efficient Physical Layer Classical Control in Quantum Processors

    Science.gov (United States)

    Ball, Harrison; Nguyen, Trung; Leong, Philip H. W.; Biercuk, Michael J.

    2016-12-01

    The rapid progress seen in the development of quantum-coherent devices for information processing has motivated serious consideration of quantum computer architecture and organization. One topic which remains open for investigation and optimization relates to the design of the classical-quantum interface, where control operations on individual qubits are applied according to higher-level algorithms; accommodating competing demands on performance and scalability remains a major outstanding challenge. In this work, we present a resource-efficient, scalable framework for the implementation of embedded physical layer classical controllers for quantum-information systems. Design drivers and key functionalities are introduced, leading to the selection of Walsh functions as an effective functional basis for both programing and controller hardware implementation. This approach leverages the simplicity of real-time Walsh-function generation in classical digital hardware, and the fact that a wide variety of physical layer controls, such as dynamic error suppression, are known to fall within the Walsh family. We experimentally implement a real-time field-programmable-gate-array-based Walsh controller producing Walsh timing signals and Walsh-synthesized analog waveforms appropriate for critical tasks in error-resistant quantum control and noise characterization. These demonstrations represent the first step towards a unified framework for the realization of physical layer controls compatible with large-scale quantum-information processing.

  20. The quantum walk search algorithm: Factors affecting efficiency

    OpenAIRE

    Lovett, Neil B.; Everitt, Matthew; Heath, Robert M.; Kendon, Viv

    2011-01-01

    We numerically study the quantum walk search algorithm of Shenvi, Kempe and Whaley [PRA \\textbf{67} 052307] and the factors which affect its efficiency in finding an individual state from an unsorted set. Previous work has focused purely on the effects of the dimensionality of the dataset to be searched. Here, we consider the effects of interpolating between dimensions, connectivity of the dataset, and the possibility of disorder in the underlying substrate: all these factors affect the effic...

  1. Enhanced quantum efficiency for CsI grown on a graphite-based substrate coating

    CERN Document Server

    Friese, J; Homolka, J; Kastenmüller, A; Maier-Komor, P; Peter, M; Zeitelhack, K; Kienle, P; Körner, H J

    1999-01-01

    Quantum efficiencies (QE) in the vacuum ultraviolet (VUV) wavelength region have been measured for solid CsI layers on various substrates. The CsI films were deposited applying electron beam evaporation. The QE measurements were performed utilizing synchrotron radiation as well as light from a deuterium lamp. A GaAsP diode with a sensitivity calibration traceable to a primary radiation standard was used for normalization. For CsI layers grown on resin-stabilized graphite films a significant enhancement of QE was observed. Substrates suitable for gas detector applications and aging properties were investigated. The procedures to prepare and reproduce high quantum efficient CsI layers are described.

  2. On quantum harmonic oscillator being subjected to absolute

    Indian Academy of Sciences (India)

    In a quantum harmonic oscillator (QHO), the energy of the oscillator increases with increased frequency. In this paper, assuming a boundary condition that the product of momentum and position, or the product of energy density and position remains constant in the QHO, it is established that a particle subjected to increasing ...

  3. Efficient interfacing of light and surface plasmon polaritons for quantum optics applications

    DEFF Research Database (Denmark)

    Eran, Kot

    interaction are the window to the underlying quantum world. It is no surprise then that there has always been push to find more, and gain better control over systems in which this interaction can be studied. In the past two decades, this end was further motivated as applications were envisioned to coherent...... control of matter. These include applications such as efficient photon collection, single-photon switching and transistors, and long-range optical coupling of quantum bits for quantum communications. However, generating and controlling strong coherent interaction between otherwise very weakly interacting...... light and quantum emitters proves a difficult task. Current days solutions range from cavities, atomic ensembles, photonic band gaps structures, ion traps and optical latices are all being improved and studied but none has yet to emerge as superior. Recently, another proposal for such a strong coupling...

  4. PsiQuaSP-A library for efficient computation of symmetric open quantum systems.

    Science.gov (United States)

    Gegg, Michael; Richter, Marten

    2017-11-24

    In a recent publication we showed that permutation symmetry reduces the numerical complexity of Lindblad quantum master equations for identical multi-level systems from exponential to polynomial scaling. This is important for open system dynamics including realistic system bath interactions and dephasing in, for instance, the Dicke model, multi-Λ system setups etc. Here we present an object-oriented C++ library that allows to setup and solve arbitrary quantum optical Lindblad master equations, especially those that are permutationally symmetric in the multi-level systems. PsiQuaSP (Permutation symmetry for identical Quantum Systems Package) uses the PETSc package for sparse linear algebra methods and differential equations as basis. The aim of PsiQuaSP is to provide flexible, storage efficient and scalable code while being as user friendly as possible. It is easily applied to many quantum optical or quantum information systems with more than one multi-level system. We first review the basics of the permutation symmetry for multi-level systems in quantum master equations. The application of PsiQuaSP to quantum dynamical problems is illustrated with several typical, simple examples of open quantum optical systems.

  5. Proposal for efficient mode converter based on cavity quantum electrodynamics dark mode in a semiconductor quantum dot coupled to a bimodal microcavity

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jiahua [School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China); Key Laboratory of Fundamental Physical Quantities Measurement of Ministry of Education, Wuhan 430074 (China); Yu, Rong, E-mail: yurong321@126.com [School of Science, Hubei Province Key Laboratory of Intelligent Robot, Wuhan Institute of Technology, Wuhan 430073 (China); Ma, Jinyong; Wu, Ying, E-mail: yingwu2@163.com [School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2014-10-28

    The ability to engineer and convert photons between different modes in a solid-state approach has extensive technological implications not only for classical communication systems but also for future quantum networks. In this paper, we put forward a scheme for coherent mode conversion of optical photons by utilizing the intermediate coupling between a single quantum dot and a bimodal photonic crystal microcavity via a waveguide. Here, one mode of the photonic crystal microcavity is coherently driven by an external single-frequency continuous-wave laser field and the two cavity modes are not coupled to each other due to their orthogonal polarizations. The undriven cavity mode is thus not directly coupled to the input driving laser and the only way it can get light is via the quantum dot. The influences of the system parameters on the photon-conversion efficiency are analyzed in detail in the limit of weak probe field and it is found that high photon-conversion efficiency can be achieved under appropriate conditions. It is shown that the cavity dark mode, which is a superposition of the two optical modes and is decoupled from the quantum dot, can appear in such a hybrid optical system. We discuss the properties of the dark mode and indicate that the formation of the dark mode enables the efficient transfer of optical fields between the two cavity modes.

  6. Absolute Configuration Determination by Quantum Mechanical Calculation of Chiroptical Spectra: Basics and Applications to Fungal Metabolites.

    Science.gov (United States)

    Superchi, Stefano; Scafato, Patrizia; Gorecki, Marcin; Pescitelli, Gennaro

    2018-01-01

    Quantum mechanical simulations of chiroptical properties, such as electronic circular dichroism (ECD), optical rotation (OR), and vibrational circular dichroism (VCD), have rapidly become very popular to assign the absolute configuration of novel natural products. We review the application of the ECD/OR/VCD computational methodology to chiral metabolites of fungal origin. First, we summarize the fundamentals of the three spectroscopies; then, we focus on the specific experimental and computational issues allied to the application of their calculations. We surveyed the entire literature describing the use of ECD/OR/VCD computations for fungal metabolites, and catalogued all papers according to the method employed and to the structural family of compounds. Then, we chose several examples to illustrate the use of the techniques and highlight the practical application of the computational approach. Our literature survey demonstrates that the simulation of ECD/OR/VCD spectra is nowadays widespread and accessible also to non-experts, although a good computational practice is necessary to avoid wrong assignments. ECD is still the most common technique used in the context of fungal metabolites. OR and VCD may be profitably employed when the compound of interest lacks chromophoric groups. Our examples illustrate that the combination of two or more chiroptical methods is strongly advisable in some cases, especially in the presence of high conformational flexibility, where a single technique does not lead to a safe conclusion. The ECD/OR/VCD computational approach is a reliable and versatile method to assign the absolute configuration of fungal metabolites and related natural products. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. High-efficiency Gaussian key reconciliation in continuous variable quantum key distribution

    Science.gov (United States)

    Bai, ZengLiang; Wang, XuYang; Yang, ShenShen; Li, YongMin

    2016-01-01

    Efficient reconciliation is a crucial step in continuous variable quantum key distribution. The progressive-edge-growth (PEG) algorithm is an efficient method to construct relatively short block length low-density parity-check (LDPC) codes. The qua-sicyclic construction method can extend short block length codes and further eliminate the shortest cycle. In this paper, by combining the PEG algorithm and qua-si-cyclic construction method, we design long block length irregular LDPC codes with high error-correcting capacity. Based on these LDPC codes, we achieve high-efficiency Gaussian key reconciliation with slice recon-ciliation based on multilevel coding/multistage decoding with an efficiency of 93.7%.

  8. Efficient calculation of dissipative quantum transport properties in semiconductor nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Greck, Peter

    2012-11-26

    We present a novel quantum transport method that follows the non-equilibrium Green's function (NEGF) framework but side steps any self-consistent calculation of lesser self-energies by replacing them by a quasi-equilibrium expression. We termed this method the multi-scattering Buettiker-Probe (MSB) method. It generalizes the so-called Buettiker-Probe model but takes into account all relevant individual scattering mechanisms. It is orders of magnitude more efficient than a fully selfconsistent non-equilibrium Green's function calculation for realistic devices, yet accurately reproduces the results of the latter method as well as experimental data. This method is fairly easy to implement and opens the path towards realistic three-dimensional quantum transport calculations. In this work, we review the fundamentals of the non-equilibrium Green's function formalism for quantum transport calculations. Then, we introduce our novel MSB method after briefly reviewing the original Buettiker-Probe model. Finally, we compare the results of the MSB method to NEGF calculations as well as to experimental data. In particular, we calculate quantum transport properties of quantum cascade lasers in the terahertz (THz) and the mid-infrared (MIR) spectral domain. With a device optimization algorithm based upon the MSB method, we propose a novel THz quantum cascade laser design. It uses a two-well period with alternating barrier heights and complete carrier thermalization for the majority of the carriers within each period. We predict THz laser operation for temperatures up to 250 K implying a new temperature record.

  9. Efficient networks for quantum factoring

    International Nuclear Information System (INIS)

    Beckman, D.; Chari, A.N.; Devabhaktuni, S.; Preskill, J.

    1996-01-01

    We consider how to optimize memory use and computation time in operating a quantum computer. In particular, we estimate the number of memory quantum bits (qubits) and the number of operations required to perform factorization, using the algorithm suggested by Shor [in Proceedings of the 35th Annual Symposium on Foundations of Computer Science, edited by S. Goldwasser (IEEE Computer Society, Los Alamitos, CA, 1994), p. 124]. A K-bit number can be factored in time of order K 3 using a machine capable of storing 5K+1 qubits. Evaluation of the modular exponential function (the bottleneck of Shor close-quote s algorithm) could be achieved with about 72K 3 elementary quantum gates; implementation using a linear ion trap would require about 396K 3 laser pulses. A proof-of-principle demonstration of quantum factoring (factorization of 15) could be performed with only 6 trapped ions and 38 laser pulses. Though the ion trap may never be a useful computer, it will be a powerful device for exploring experimentally the properties of entangled quantum states. copyright 1996 The American Physical Society

  10. Origins of efficient green light emission in phase-separated InGaN quantum wells

    International Nuclear Information System (INIS)

    Lai, Y-L; Liu, C-P; Lin, Y-H; Hsueh, T-H; Lin, R-M; Lyu, D-Y; Peng, Z-X; Lin, T-Y

    2006-01-01

    Green-light-emitting InGaN/GaN multiple quantum wells (MQWs) with high luminescent efficiency were grown by metalorganic chemical vapour deposition (MOCVD). The microstructure of the sample was studied by high-resolution transmission electron microscopy (HRTEM) and high-resolution x-ray diffraction, while its optical behaviour was analysed in great detail by a variety of photoluminescence methods. Two InGaN-related peaks that were clearly found in the photoluminescence (PL) spectrum are assigned to quasi-quantum dots (516 nm) and the InGaN matrix (450 nm), respectively, due to a strong phase separation observed by HRTEM. Except for the strong indium aggregation regions (511 meV of Stokes shift), slight composition fluctuations were also observed in the InGaN matrix, which were speculated from an 'S-shaped' transition and a Stokes shift of 341 meV. Stronger carrier localization and an internal quantum efficiency of the dot-related emission (21.5%), higher than the InGaN-matrix related emission (7.5%), was demonstrated. Additionally, a shorter lifetime and 'two-component' PL decay were found for the low-indium-content regions (matrix). Thus, the carrier transport process within quantum wells is suggested to drift from the low-In-content matrix to the high-In-content dots, resulting in the enhanced luminescence efficiency of the green light emission

  11. Enhancement of Radiative Efficiency with Staggered InGaN Quantum Well Light Emitting Diodes

    Energy Technology Data Exchange (ETDEWEB)

    Tansu, Nelson; Dierolf, Volkmar; Huang, Gensheng; Penn, Samson; Zhao, Hongping; Liu, Guangyu; Li, Xiaohang; Poplawsky, Jonathan

    2011-07-14

    The technology on the large overlap InGaN QWs developed in this program is currently implemented in commercial technology in enhancing the internal quantum efficiency in major LED industry in US and Asia. The scientific finding from this work supported by the DOE enabled the implementation of this step-like staggered quantum well in the commercial LEDs.

  12. Quantum efficiencies of near-infrared emission from Ni2+-doped glass-ceramics

    International Nuclear Information System (INIS)

    Suzuki, Takenobu; Arai, Yusuke; Ohishi, Yasutake

    2008-01-01

    A systematic method to evaluate potentials of Ni 2+ -doped transparent glass-ceramics as a new broadband optical gain media is presented. At first, near-infrared emission of various ceramics were investigated to explore the suitable crystalline phase to be grown in the glass-ceramics. The quantum efficiency of Ni 2+ near-infrared emission estimated by the Struck-Fonger analysis was higher than 95% for spinel-type structure gallate crystals MgGa 2 O 4 and LiGa 5 O 8 at room temperature. Transparent glass-ceramics containing Ni 2+ :LiGa 5 O 8 could be prepared and the quantum efficiency for the glass-ceramics was measured to be about 10%. This value shows a potential of Ni-doped transparent glass-ceramics as a broadband gain media

  13. Conversion and quantum efficiency from ultraviolet light to near infrared emission in Yb{sup 3+}-doped pyrovanadates MZnV{sub 2}O{sub 7} (M = Ca, Sr, Ba)

    Energy Technology Data Exchange (ETDEWEB)

    Guan, Ying; Huang, Yanlin [College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 (China); Tsuboi, Taiju; Huang, Wei [Jiangsu-Singapore Joint Research Center for Organic/Bio-Electronics and Information Displays and Institute of Advanced Materials, Nanjing Tech University, Nanjing 211816 (China); Chen, Cuili; Cai, Peiqing [Department of Physics and Interdisciplinary Program of Biomedical, Mechanical and Electrical Engineering, Pukyong National University, Busan 608-737 (Korea, Republic of); Seo, Hyo Jin, E-mail: hjseo@pknu.ac.kr [Department of Physics and Interdisciplinary Program of Biomedical, Mechanical and Electrical Engineering, Pukyong National University, Busan 608-737 (Korea, Republic of)

    2014-12-15

    Highlights: • Efficient convertors of Yb{sup 3+} doped pyrovanadates are prepared and characterized. • Broadband down-conversion from ultraviolet into near-infrared is realized. • High quantum efficiency of 18.5% can be reached. • Energy transfer from VO{sub 4} groups to Yb{sup 3+} ions is demonstrated on the base of the crystal structure. - Abstract: Yb{sup 3+}-doped CaZnV{sub 2}O{sub 7}, SrZnV{sub 2}O{sub 7} and BaZnV{sub 2}O{sub 7} were synthesized via the solid-state reaction. The polycrystalline samples were investigated by XRD and SEM measurements. The reflectance spectra, photoluminescence (PL) excitation and emission spectra, the absolute quantum efficiency (QE) of the IR emission (900–1100 nm) were measured. The efficient conversion from ultraviolet (UV) light to near-infrared (NIR) emission has been demonstrated in the Yb{sup 3+}-doped pyrovanadates by the broadband down conversion from VO{sub 4}{sup 3−} to Yb{sup 3+} ions. Under UV light excitation, an intense NIR emission around 1000 nm ascribed to the {sup 2}F{sub 5/2} → {sup 2}F{sub 7/2} transition of Yb{sup 3+} ions has been observed, which just corresponds to the spectral response of Si solar cells. The NIR emission efficiency is observed to depend on the lattice of pyrovanadate. The mechanism of the NIR emission ascribed to energy transfer is discussed by taking into account the experimental results and the crystal structures.

  14. Phosphorescence quantum yield determination with time-gated fluorimeter and Tb(III)-acetylacetonate as luminescence reference

    Energy Technology Data Exchange (ETDEWEB)

    Penzkofer, A., E-mail: alfons.penzkofer@physik.uni-regensburg.de [Fakultät für Physik, Universität Regensburg, Universitätsstrasse 31, D-93053 Regensburg (Germany)

    2013-03-29

    Highlights: ► Procedure for absolute phosphorescence quantum yield measurement is described. ► Experimental setup for absolute luminescence quantum yield standard calibration. ► Tb(acac){sub 3} proposed as phosphorescence quantum yield reference standard. ► Luminescence quantum yield of Tb(acac){sub 3} in cyclohexane measured. ► Luminescence lifetime of Tb(acac){sub 3} in cyclohexane measured. - Abstract: Phosphorescence quantum yield measurements of fluorescent and phosphorescent samples require the use of time-gated fluorimeters in order to discriminate against the fluorescence contribution. As reference standard a non-fluorescent luminescent compound is needed for absolute phosphorescence quantum yield determination. For this purpose the luminescence behavior of the rare earth chelate terbium(III)-acetylacetonate (Tb(acac){sub 3}) was studied (determination of luminescence quantum yield and luminescence lifetime). The luminescence quantum yield of Tb(acac){sub 3} was determined by using an external light source and operating the fluorimeter in chemo/bioluminescence mode with a fluorescent dye (rhodamine 6G in methanol) as reference standard. A procedure is developed for absolute luminescence (phosphorescence) quantum yield determination of samples under investigation with a time-gated fluorimeter using a non-fluorescent luminescent compound of known luminescence quantum yield and luminescence lifetime.

  15. Limits to solar power conversion efficiency with applications to quantum and thermal systems

    Science.gov (United States)

    Byvik, C. E.; Buoncristiani, A. M.; Smith, B. T.

    1983-01-01

    An analytical framework is presented that permits examination of the limit to the efficiency of various solar power conversion devices. Thermodynamic limits to solar power efficiency are determined for both quantum and thermal systems, and the results are applied to a variety of devices currently considered for use in space systems. The power conversion efficiency for single-threshold energy quantum systems receiving unconcentrated air mass zero solar radiation is limited to 31 percent. This limit applies to photovoltaic cells directly converting solar radiation, or indirectly, as in the case of a thermophotovoltaic system. Photoelectrochemical cells rely on an additional chemical reaction at the semiconductor-electrolyte interface, which introduces additional second-law demands and a reduction of the solar conversion efficiency. Photochemical systems exhibit even lower possible efficiencies because of their relatively narrow absorption bands. Solar-powered thermal engines in contact with an ambient reservoir at 300 K and operating at maximum power have a peak conversion efficiency of 64 percent, and this occurs for a thermal reservoir at a temperature of 2900 K. The power conversion efficiency of a solar-powered liquid metal magnetohydrodydnamic generator, a solar-powered steam turbine electric generator, and an alkali metal thermoelectric converter is discussed.

  16. Structural Investigation of Cesium Lead Halide Perovskites for High-Efficiency Quantum Dot Light-Emitting Diodes

    Energy Technology Data Exchange (ETDEWEB)

    Le, Quyet Van [School; Kim, Jong Beom [Department; Kim, Soo Young [School; Lee, Byeongdu [X-ray; Lee, Dong Ryeol [Department

    2017-08-15

    We have investigated the effect of reaction temperature of hot-injection method on the structural properties of CsPbX3 (X: Br, I, Cl) perovskite nanocrystals (NCs) using the small- and wide-angle X-ray scattering. It is confirmed that the size of the NCs decreased as the reaction temperature decreased, resulting stronger quantum confinement. The cubic-phase perovskite NCs were formed despite the reaction temperatures increased from 140 to 180 °C. However, monodispersive NC cubes which are required for densely packing self-assembly film were only formed at lower temperatures. From the X-ray scattering measurements, the spin-coated film from more monodispersive perovskite nanocubes synthesized at lower temperatures resulted in more preferred orientation. This dense-packing perovskite film with preferred orientation yielded efficient light-emitting diode (LED) performance. Thus, the dense-packing structure of NC assemblies formed after spin-coating should be considered for high-efficient LEDs based on perovskite quantum dots in addition to quantum confinement effect of the quantum dots.

  17. High-Efficiency Colloidal Quantum Dot Photovoltaics via Robust Self-Assembled Monolayers

    KAUST Repository

    Kim, Gi-Hwan

    2015-11-11

    © 2015 American Chemical Society. The optoelectronic tunability offered by colloidal quantum dots (CQDs) is attractive for photovoltaic applications but demands proper band alignment at electrodes for efficient charge extraction at minimal cost to voltage. With this goal in mind, self-assembled monolayers (SAMs) can be used to modify interface energy levels locally. However, to be effective SAMs must be made robust to treatment using the various solvents and ligands required for to fabricate high quality CQD solids. We report robust self-assembled monolayers (R-SAMs) that enable us to increase the efficiency of CQD photovoltaics. Only by developing a process for secure anchoring of aromatic SAMs, aided by deposition of the SAMs in a water-free deposition environment, were we able to provide an interface modification that was robust against the ensuing chemical treatments needed in the fabrication of CQD solids. The energy alignment at the rectifying interface was tailored by tuning the R-SAM for optimal alignment relative to the CQD quantum-confined electron energy levels. This resulted in a CQD PV record power conversion efficiency (PCE) of 10.7% with enhanced reproducibility relative to controls.

  18. Genomic DNA-based absolute quantification of gene expression in Vitis.

    Science.gov (United States)

    Gambetta, Gregory A; McElrone, Andrew J; Matthews, Mark A

    2013-07-01

    Many studies in which gene expression is quantified by polymerase chain reaction represent the expression of a gene of interest (GOI) relative to that of a reference gene (RG). Relative expression is founded on the assumptions that RG expression is stable across samples, treatments, organs, etc., and that reaction efficiencies of the GOI and RG are equal; assumptions which are often faulty. The true variability in RG expression and actual reaction efficiencies are seldom determined experimentally. Here we present a rapid and robust method for absolute quantification of expression in Vitis where varying concentrations of genomic DNA were used to construct GOI standard curves. This methodology was utilized to absolutely quantify and determine the variability of the previously validated RG ubiquitin (VvUbi) across three test studies in three different tissues (roots, leaves and berries). In addition, in each study a GOI was absolutely quantified. Data sets resulting from relative and absolute methods of quantification were compared and the differences were striking. VvUbi expression was significantly different in magnitude between test studies and variable among individual samples. Absolute quantification consistently reduced the coefficients of variation of the GOIs by more than half, often resulting in differences in statistical significance and in some cases even changing the fundamental nature of the result. Utilizing genomic DNA-based absolute quantification is fast and efficient. Through eliminating error introduced by assuming RG stability and equal reaction efficiencies between the RG and GOI this methodology produces less variation, increased accuracy and greater statistical power. © 2012 Scandinavian Plant Physiology Society.

  19. LHCb: Quantum Efficiency of Hybrid Photon Detectors for the LHCb RICH

    CERN Multimedia

    Lambert, Robert W

    2007-01-01

    The production of 550 hybrid photon detectors to be used within the LHCb RICH detectors has recently finished. Photonis-DEP have succeeded in consistently improving the tube quantum efficiency, by a relative 27,% with respect to preseries and prototype tubes, when integrated over the energy spectrum.

  20. The effect of nonadiabaticity on the efficiency of quantum memory based on an optical cavity

    Science.gov (United States)

    Veselkova, N. G.; Sokolov, I. V.

    2017-07-01

    Quantum efficiency is an important characteristic of quantum memory devices that are aimed at recording the quantum state of light signals and its storing and reading. In the case of memory based on an ensemble of cold atoms placed in an optical cavity, the efficiency is restricted, in particular, by relaxation processes in the system of active atomic levels. We show how the effect of the relaxation on the quantum efficiency can be determined in a regime of the memory usage in which the evolution of signals in time is not arbitrarily slow on the scale of the field lifetime in the cavity and when the frequently used approximation of the adiabatic elimination of the quantized cavity mode field cannot be applied. Taking into account the effect of the nonadiabaticity on the memory quality is of interest in view of the fact that, in order to increase the field-medium coupling parameter, a higher cavity quality factor is required, whereas storing and processing of sequences of many signals in the memory implies that their duration is reduced. We consider the applicability of the well-known efficiency estimates via the system cooperativity parameter and estimate a more general form. In connection with the theoretical description of the memory of the given type, we also discuss qualitative differences in the behavior of a random source introduced into the Heisenberg-Langevin equations for atomic variables in the cases of a large and a small number of atoms.

  1. Efficient steady-state solver for hierarchical quantum master equations

    Science.gov (United States)

    Zhang, Hou-Dao; Qiao, Qin; Xu, Rui-Xue; Zheng, Xiao; Yan, YiJing

    2017-07-01

    Steady states play pivotal roles in many equilibrium and non-equilibrium open system studies. Their accurate evaluations call for exact theories with rigorous treatment of system-bath interactions. Therein, the hierarchical equations-of-motion (HEOM) formalism is a nonperturbative and non-Markovian quantum dissipation theory, which can faithfully describe the dissipative dynamics and nonlinear response of open systems. Nevertheless, solving the steady states of open quantum systems via HEOM is often a challenging task, due to the vast number of dynamical quantities involved. In this work, we propose a self-consistent iteration approach that quickly solves the HEOM steady states. We demonstrate its high efficiency with accurate and fast evaluations of low-temperature thermal equilibrium of a model Fenna-Matthews-Olson pigment-protein complex. Numerically exact evaluation of thermal equilibrium Rényi entropies and stationary emission line shapes is presented with detailed discussion.

  2. Absolute measurement of the viscosity of classical and quantum fluids by rotating-cylinder viscometers

    International Nuclear Information System (INIS)

    Donnelly, R.J.; LaMar, M.M.

    1987-01-01

    We discuss the use of rotating-cylinder viscometers to determine absolute shear viscosities of classical fluids and of helium II in the context of past and current knowledge of the stability and flow of these fluids between concentric cylinders. We identify a problem in measuring the absolute viscosity when the inner cylinder is rotating and the outer cylinder is at rest. We conclude by discussing the design of viscometers for absolute viscosity measurements in helium I and helium II

  3. Quantum phase transitions

    International Nuclear Information System (INIS)

    Sachdev, S.

    1999-01-01

    Phase transitions are normally associated with changes of temperature but a new type of transition - caused by quantum fluctuations near absolute zero - is possible, and can tell us more about the properties of a wide range of systems in condensed-matter physics. Nature abounds with phase transitions. The boiling and freezing of water are everyday examples of phase transitions, as are more exotic processes such as superconductivity and superfluidity. The universe itself is thought to have passed through several phase transitions as the high-temperature plasma formed by the big bang cooled to form the world as we know it today. Phase transitions are traditionally classified as first or second order. In first-order transitions the two phases co-exist at the transition temperature - e.g. ice and water at 0 deg., or water and steam at 100 deg. In second-order transitions the two phases do not co-exist. In the last decade, attention has focused on phase transitions that are qualitatively different from the examples noted above: these are quantum phase transitions and they occur only at the absolute zero of temperature. The transition takes place at the ''quantum critical'' value of some other parameter such as pressure, composition or magnetic field strength. A quantum phase transition takes place when co-operative ordering of the system disappears, but this loss of order is driven solely by the quantum fluctuations demanded by Heisenberg's uncertainty principle. The physical properties of these quantum fluctuations are quite distinct from those of the thermal fluctuations responsible for traditional, finite-temperature phase transitions. In particular, the quantum system is described by a complex-valued wavefunction, and the dynamics of its phase near the quantum critical point requires novel theories that have no analogue in the traditional framework of phase transitions. In this article the author describes the history of quantum phase transitions. (UK)

  4. Jefferson Lab IR demo FEL photocathode quantum efficiency scanner

    CERN Document Server

    Gubeli, J; Grippo, A; Jordan, K; Shinn, M; Siggins, T

    2001-01-01

    Jefferson Laboratory's Free Electron Laser (FEL) incorporates a cesiated gallium arsenide (GaAs) DC photocathode gun as its electron source. By using a set of scanning mirrors, the surface of the GaAs wafer is illuminated with a 543.5nm helium-neon laser. Measuring the current flow across the biased photocathode generates a quantum efficiency (QE) map of the 1-in. diameter wafer surface. The resulting QE map provides a very detailed picture of the efficiency of the wafer surface. By generating a QE map in a matter of minutes, the photocathode scanner has proven to be an exceptional tool in quickly determining sensitivity and availability of the photocathode for operation.

  5. Academic Training: The World of Quantum Matter

    CERN Multimedia

    Françoise Benz

    2006-01-01

    2005-2006 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 23, 24, 25, 26 January 2006 from 11:00 to 12:00 - Main Auditorium, bldg. 500 The World of Quantum Matter M. WEIDEMUELLER / Albert-Ludwigs-Universität Freiburg In my lecture series, I will present the recent spectacular advances in the field of quantum gases and macroscopic quantum physics. A variety of subjects will be covered including Bose condensates and degenerate Fermi gases, ultracold molecules and chemistry near absolute zero, Rydberg gases, single-atom manipulation, quantum information processing, as well as applications of cold atoms as precision targets. The topics of the lectures are: Physics near absolute zero Bose condensation and Fermi degeneracy Molecules, Rydberg gases and other exotic species Single-atom manipulation, quantum information processing and ultracold atoms as targets in storage rings. ENSEIGNEMENT ACADEMIQUE ACADEMIC TRAINING Françoise Benz 73127 academic.training@cern.ch If you wish to participate in one of the f...

  6. Conversion of far ultraviolet to visible radiation: absolute measurements of the conversion efficiency of tetraphenyl butadiene

    Science.gov (United States)

    Vest, Robert E.; Coplan, Michael A.; Clark, Charles W.

    Far ultraviolet (FUV) scintillation of noble gases is used in dark matter and neutrino research and in neutron detection. Upon collisional excitation, noble gas atoms recombine into excimer molecules that decay by FUV emission. Direct detection of FUV is difficult. Another approach is to convert it to visible light using a wavelength-shifting medium. One such medium, tetraphenyl butadiene (TPB) can be vapor-deposited on substrates. Thus the quality of thin TPB films can be tightly controlled. We have measured the absolute efficiency of FUV-to-visible conversion by 1 μm-thick TPB films vs. FUV wavelengths between 130 and 300 nm, with 1 nm resolution. The energy efficiency of FUV to visible conversion varies between 1% and 5%. We make comparisons with other recent results. Work performed at the NIST SURF III Synchrotron Ultraviolet Radiation Facility,.

  7. Practical expressions describing detective quantum efficiency in flat-panel detectors

    Science.gov (United States)

    Kim, H. K.

    2011-11-01

    In radiology, image quality excellence is a balance between system performance and patient dose, hence x-ray systems must be designed to ensure the maximum image quality is obtained for the lowest consistent dose. The concept of detective quantum efficiency (DQE) is widely used to quantify, understand, measure, and predict the performance of x-ray detectors and imaging systems. Cascaded linear-systems theory can be used to estimate DQE based on the system design parameters and this theoretical DQE can be utilized for determining the impact of various physical processes, such as secondary quantum sinks, noise aliasing, reabsorption noise, and others. However, the prediction of DQE usually requires tremendous efforts to determine each parameter consisting of the cascaded linear-systems model. In this paper, practical DQE formalisms assessing both the photoconductor- and scintillator-based flat-panel detectors under quantum-noise-limited operation are described. The developed formalisms are experimentally validated and discussed for their limits. The formalisms described in this paper would be helpful for the rapid prediction of the DQE performances of developing systems as well as the optimal design of systems.

  8. Optoelectronic engineering of colloidal quantum-dot solar cells beyond the efficiency black hole: a modeling approach

    Science.gov (United States)

    Mahpeykar, Seyed Milad; Wang, Xihua

    2017-02-01

    Colloidal quantum dot (CQD) solar cells have been under the spotlight in recent years mainly due to their potential for low-cost solution-processed fabrication and efficient light harvesting through multiple exciton generation (MEG) and tunable absorption spectrum via the quantum size effect. Despite the impressive advances achieved in charge carrier mobility of quantum dot solids and the cells' light trapping capabilities, the recent progress in CQD solar cell efficiencies has been slow, leaving them behind other competing solar cell technologies. In this work, using comprehensive optoelectronic modeling and simulation, we demonstrate the presence of a strong efficiency loss mechanism, here called the "efficiency black hole", that can significantly hold back the improvements achieved by any efficiency enhancement strategy. We prove that this efficiency black hole is the result of sole focus on enhancement of either light absorption or charge extraction capabilities of CQD solar cells. This means that for a given thickness of CQD layer, improvements accomplished exclusively in optic or electronic aspect of CQD solar cells do not necessarily translate into tangible enhancement in their efficiency. The results suggest that in order for CQD solar cells to come out of the mentioned black hole, incorporation of an effective light trapping strategy and a high quality CQD film at the same time is an essential necessity. Using the developed optoelectronic model, the requirements for this incorporation approach and the expected efficiencies after its implementation are predicted as a roadmap for CQD solar cell research community.

  9. Effect of AlSb quantum dots on efficiency of GaAs solar cell (Conference Presentation)

    Science.gov (United States)

    Mansoori, Ahmad; Addamane, Sadhvikas J.; Renteria, Emma J.; Shima, Darryl M.; Hains, Christopher P.; Balakrishnan, Ganesh

    2016-09-01

    Quantum Dots (QDs) have a broad applications in science and specifically in solar cell. Many research groups show that by adding QDs with lower bandgap respect to host material, the overall absorption of sun spectrum coverage will increase. Here, we propose using QDs with higher band gap respect to host material to improve efficiency of solar cell by improving quantum efficiency. GaAs solar cells have the highest efficiency in single junction solar cells. However, the absorption of GaAs is not good enough in wavelength lower than 550nm. AlSb can absorb shorter wavelength with higher absorption coefficient and also recombination rate should be lower because of higher bandgap of AlSb respect to GaAs. We embed AlSb QDs in GaAs solar cells and results show slight improvement in quantum efficiency and also in overall efficiency. Coverage of AlSb QDs has a direct impact on quality of AlSb QDs and efficiency of cell. In the higher coverage, intermixing between GaAs and AlSb causes to shift bandgap to lower value (having AlGaSb QDs instead of pure AlSb QDs). This intermixing decrease the Voc and overall efficiency of cell. In lower coverage, AlSb can survive from intermixing and overall performance of cell improves. Optimizing growth condition of AlSb QDs is a key point for this work. By using AlSb QDs, we can decrease the thickness of active layer of GaAs solar cells and have a thinner solar cell.

  10. High Quantum Efficiency Back-Illuminated AlGaN-Based Solar-Blind Ultraviolet p—i—n Photodetectors

    International Nuclear Information System (INIS)

    Wang Guo-Sheng; Lu Hai; Xie Feng; Chen Dun-Jun; Ren Fang-Fang; Zhang Rong; Zheng You-Dou

    2012-01-01

    AlGaN-based back-illuminated solar-blind ultraviolet (UV) p—i—n photodetectors (PDs) with high quantum efficiency are fabricated on sapphire substrates. To improve the overall performance of the PD, a series of structural design considerations and growth procedures are implemented in the epitaxy process. A distinct wavelength-selective photo-response peak of the PD is obtained in the solar-blind region. When operating in photovoltaic mode, the PD exhibits a solar-blind/UV rejection ratio of up to 4 orders of magnitude and a peak responsivity of ∼113.5 mA/W at 270 nm, which corresponds to an external quantum efficiency of ∼52%. Under a reverse bias of −5 V, the PD shows a low dark current of ∼1.8 pA and an enhanced peak quantum efficiency of ∼64%. The thermal noise limited detectivity is estimated to be ∼ 3.3 × 10 13 cm·Hz 1/2 W −1

  11. Heterogeneous photocatalysis for air and water treatment: Fundamental needs for quantum efficiency enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Ollis, D.F. [North Carolina State Univ., Raleigh, NC (United States)

    1996-09-01

    In the remediation industries, a useful treatment technology must be {open_quotes}general, robust, and cheap{close_quotes}. Among oxidation processes, heterogeneous photocatalysis is now broadly demonstrated to destroy common water and air contaminants. The potential process uses of highly stable titania, long lived lamps (one year), and room temperature operation, indicating a simple and robust process. We are left to address the third criterion: Can photocatalysis be {open_quotes}cheap{close_quotes}? In both liquid phase and gas phase treatment and purification by photocatalysis, it is established that the primary barrier to commercialization is often cost. Cost in return is dominated by the efficiency with which solar or lamp photons are harvested for productive light, and subsequent dark, reactions. This paper therefore defines fundamental needs in photocatalysis for pollution control in terms of activities which could lead to quantum efficiency enhancement. We first recall three related definitions. The quantum yield (QY) is the ratio of molecules of reactant converted per photon absorbed, a fundamental quantity. A less fundamental, but more easily measured variable is the quantum efficiency (QE), the ratio of molecules converted per photon entering the reactor. A third variable is the energy required per order of magnitude pollutant reduction, or EEO, a definition which provides for easy energy cost comparisons among different technologies. Each measure cited here reflects the photon, and thus the electrical, cost of this photochemistry.

  12. Robust nonfullerene solar cells approaching unity external quantum efficiency enabled by suppression of geminate recombination.

    Science.gov (United States)

    Baran, Derya; Gasparini, Nicola; Wadsworth, Andrew; Tan, Ching Hong; Wehbe, Nimer; Song, Xin; Hamid, Zeinab; Zhang, Weimin; Neophytou, Marios; Kirchartz, Thomas; Brabec, Christoph J; Durrant, James R; McCulloch, Iain

    2018-05-25

    Nonfullerene solar cells have increased their efficiencies up to 13%, yet quantum efficiencies are still limited to 80%. Here we report efficient nonfullerene solar cells with quantum efficiencies approaching unity. This is achieved with overlapping absorption bands of donor and acceptor that increases the photon absorption strength in the range from about 570 to 700 nm, thus, almost all incident photons are absorbed in the active layer. The charges generated are found to dissociate with negligible geminate recombination losses resulting in a short-circuit current density of 20 mA cm -2 along with open-circuit voltages >1 V, which is remarkable for a 1.6 eV bandgap system. Most importantly, the unique nano-morphology of the donor:acceptor blend results in a substantially improved stability under illumination. Understanding the efficient charge separation in nonfullerene acceptors can pave the way to robust and recombination-free organic solar cells.

  13. Robust nonfullerene solar cells approaching unity external quantum efficiency enabled by suppression of geminate recombination

    KAUST Repository

    Baran, Derya

    2018-05-21

    Nonfullerene solar cells have increased their efficiencies up to 13%, yet quantum efficiencies are still limited to 80%. Here we report efficient nonfullerene solar cells with quantum efficiencies approaching unity. This is achieved with overlapping absorption bands of donor and acceptor that increases the photon absorption strength in the range from about 570 to 700 nm, thus, almost all incident photons are absorbed in the active layer. The charges generated are found to dissociate with negligible geminate recombination losses resulting in a short-circuit current density of 20 mA cm-2 along with open-circuit voltages >1 V, which is remarkable for a 1.6 eV bandgap system. Most importantly, the unique nano-morphology of the donor:acceptor blend results in a substantially improved stability under illumination. Understanding the efficient charge separation in nonfullerene acceptors can pave the way to robust and recombination-free organic solar cells.

  14. Robust nonfullerene solar cells approaching unity external quantum efficiency enabled by suppression of geminate recombination

    KAUST Repository

    Baran, Derya; Gasparini, Nicola; Wadsworth, Andrew; Tan, Ching Hong; Wehbe, Nimer; Song, Xin; Hamid, Zeinab; Zhang, Weimin; Neophytou, Marios; Kirchartz, Thomas; Brabec, Christoph J.; Durrant, James R.; McCulloch, Iain

    2018-01-01

    Nonfullerene solar cells have increased their efficiencies up to 13%, yet quantum efficiencies are still limited to 80%. Here we report efficient nonfullerene solar cells with quantum efficiencies approaching unity. This is achieved with overlapping absorption bands of donor and acceptor that increases the photon absorption strength in the range from about 570 to 700 nm, thus, almost all incident photons are absorbed in the active layer. The charges generated are found to dissociate with negligible geminate recombination losses resulting in a short-circuit current density of 20 mA cm-2 along with open-circuit voltages >1 V, which is remarkable for a 1.6 eV bandgap system. Most importantly, the unique nano-morphology of the donor:acceptor blend results in a substantially improved stability under illumination. Understanding the efficient charge separation in nonfullerene acceptors can pave the way to robust and recombination-free organic solar cells.

  15. Absolute quantum yield measurements for the formation of oxygen ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. The dynamics of formation of oxygen atoms after UV photoexcitation of .... The SO2 pressure in the cell was typically 30–55 mTorr (monitored by an MKS .... With this value the quantum yield for O(3P) formation could be calculated to.

  16. Efficient Raman generation in a waveguide: A route to ultrafast quantum random number generation

    Energy Technology Data Exchange (ETDEWEB)

    England, D. G.; Bustard, P. J.; Moffatt, D. J.; Nunn, J.; Lausten, R.; Sussman, B. J., E-mail: ben.sussman@nrc.ca [National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada)

    2014-02-03

    The inherent uncertainty in quantum mechanics offers a source of true randomness which can be used to produce unbreakable cryptographic keys. We discuss the development of a high-speed random number generator based on the quantum phase fluctuations in spontaneously initiated stimulated Raman scattering (SISRS). We utilize the tight confinement and long interaction length available in a Potassium Titanyl Phosphate waveguide to generate highly efficient SISRS using nanojoule pulse energies, reducing the high pump power requirements of the previous approaches. We measure the random phase of the Stokes output using a simple interferometric setup to yield quantum random numbers at 145 Mbps.

  17. Enhancing the photon-extraction efficiency of site-controlled quantum dots by deterministically fabricated microlenses

    Science.gov (United States)

    Kaganskiy, Arsenty; Fischbach, Sarah; Strittmatter, André; Rodt, Sven; Heindel, Tobias; Reitzenstein, Stephan

    2018-04-01

    We report on the realization of scalable single-photon sources (SPSs) based on single site-controlled quantum dots (SCQDs) and deterministically fabricated microlenses. The fabrication process comprises the buried-stressor growth technique complemented with low-temperature in-situ electron-beam lithography for the integration of SCQDs into microlens structures with high yield and high alignment accuracy. The microlens-approach leads to a broadband enhancement of the photon-extraction efficiency of up to (21 ± 2)% and a high suppression of multi-photon events with g (2)(τ = 0) SPSs which, can be applied in photonic quantum circuits and advanced quantum computation schemes.

  18. Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Mehnke, Frank, E-mail: mehnke@physik.tu-berlin.de; Kuhn, Christian; Guttmann, Martin; Reich, Christoph; Kolbe, Tim; Rass, Jens; Wernicke, Tim [Technische Universität Berlin, Institut für Festkörperphysik, Hardenbergstr. 36, EW 6-1, 10623 Berlin (Germany); Kueller, Viola; Knauer, Arne; Lapeyrade, Mickael; Einfeldt, Sven; Weyers, Markus [Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489 Berlin (Germany); Kneissl, Michael [Technische Universität Berlin, Institut für Festkörperphysik, Hardenbergstr. 36, EW 6-1, 10623 Berlin (Germany); Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489 Berlin (Germany)

    2014-08-04

    The design and Mg-doping profile of AlN/Al{sub 0.7}Ga{sub 0.3}N electron blocking heterostructures (EBH) for AlGaN multiple quantum well (MQW) light emitting diodes (LEDs) emitting below 250 nm was investigated. By inserting an AlN electron blocking layer (EBL) into the EBH, we were able to increase the quantum well emission power and significantly reduce long wavelength parasitic luminescence. Furthermore, electron leakage was suppressed by optimizing the thickness of the AlN EBL while still maintaining sufficient hole injection. Ultraviolet (UV)-C LEDs with very low parasitic luminescence (7% of total emission power) and external quantum efficiencies of 0.19% at 246 nm have been realized. This concept was applied to AlGaN MQW LEDs emitting between 235 nm and 263 nm with external quantum efficiencies ranging from 0.002% to 0.93%. After processing, we were able to demonstrate an UV-C LED emitting at 234 nm with 14.5 μW integrated optical output power and an external quantum efficiency of 0.012% at 18.2 A/cm{sup 2}.

  19. Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes

    International Nuclear Information System (INIS)

    Mehnke, Frank; Kuhn, Christian; Guttmann, Martin; Reich, Christoph; Kolbe, Tim; Rass, Jens; Wernicke, Tim; Kueller, Viola; Knauer, Arne; Lapeyrade, Mickael; Einfeldt, Sven; Weyers, Markus; Kneissl, Michael

    2014-01-01

    The design and Mg-doping profile of AlN/Al 0.7 Ga 0.3 N electron blocking heterostructures (EBH) for AlGaN multiple quantum well (MQW) light emitting diodes (LEDs) emitting below 250 nm was investigated. By inserting an AlN electron blocking layer (EBL) into the EBH, we were able to increase the quantum well emission power and significantly reduce long wavelength parasitic luminescence. Furthermore, electron leakage was suppressed by optimizing the thickness of the AlN EBL while still maintaining sufficient hole injection. Ultraviolet (UV)-C LEDs with very low parasitic luminescence (7% of total emission power) and external quantum efficiencies of 0.19% at 246 nm have been realized. This concept was applied to AlGaN MQW LEDs emitting between 235 nm and 263 nm with external quantum efficiencies ranging from 0.002% to 0.93%. After processing, we were able to demonstrate an UV-C LED emitting at 234 nm with 14.5 μW integrated optical output power and an external quantum efficiency of 0.012% at 18.2 A/cm 2

  20. Highly Efficient Red and White Organic Light-Emitting Diodes with External Quantum Efficiency beyond 20% by Employing Pyridylimidazole-Based Metallophosphors.

    Science.gov (United States)

    Miao, Yanqin; Tao, Peng; Wang, Kexiang; Li, Hongxin; Zhao, Bo; Gao, Long; Wang, Hua; Xu, Bingshe; Zhao, Qiang

    2017-11-01

    Two highly efficient red neutral iridium(III) complexes, Ir1 and Ir2, were rationally designed and synthesized by selecting two pyridylimidazole derivatives as the ancillary ligands. Both Ir1 and Ir2 show nearly the same photoluminescence emission with the maximum peak at 595 nm (shoulder band at about 638 nm) and achieve high solution quantum yields of up to 0.47 for Ir1 and 0.57 for Ir2. Employing Ir1 and Ir2 as emitters, the fabricated red organic light-emitting diodes (OLEDs) show outstanding performance with the maximum external quantum efficiency (EQE), current efficiency (CE), and power efficiency (PE) of 20.98%, 33.04 cd/A, and 33.08 lm/W for the Ir1-based device and 22.15%, 36.89 cd/A, and 35.85 lm/W for the Ir2-based device, respectively. Furthermore, using Ir2 as red emitter, a trichromatic hybrid white OLED, showing good warm white emission with low correlated color temperature of white device also realizes excellent device efficiencies with the maximum EQE, CE, and PE reaching 22.74%, 44.77 cd/A, and 46.89 lm/W, respectively. Such high electroluminescence performance for red and white OLEDs indicates that Ir1 and Ir2 as efficient red phosphors have great potential for future OLED displays and lightings applications.

  1. Composition Screening in Blue-Emitting Li4Sr1+xCa0.97-x(SiO4)2:Ce3+ Phosphors for High Quantum Efficiency and Thermally Stable Photoluminescence.

    Science.gov (United States)

    Zhang, Jingchen; Zhang, Jilin; Zhou, Wenli; Ji, Xiaoyu; Ma, Wentao; Qiu, Zhongxian; Yu, Liping; Li, Chengzhi; Xia, Zhiguo; Wang, Zhengliang; Lian, Shixun

    2017-09-13

    Photoluminescence quantum efficiency (QE) and thermal stability are important for phosphors used in phosphor-converted light-emitting diodes (pc-LEDs). Li 4 Sr 1+x Ca 0.97-x (SiO 4 ) 2 :0.03Ce 3+ (-0.7 ≤ x ≤ 1.0) phosphors were designed from the initial model of Li 4 SrCa(SiO 4 ) 2 :Ce 3+ , and their single-phased crystal structures were found to be located in the composition range of -0.4 ≤ x ≤ 0.7. Depending on the substitution of Sr 2+ for Ca 2+ ions, the absolute QE value of blue-emitting composition-optimized Li 4 Sr 1.4 Ca 0.57 (SiO 4 ) 2 :0.03Ce 3+ reaches ∼94%, and the emission intensity at 200 °C remains 95% of that at room temperature. Rietveld refinements and Raman spectral analyses suggest the increase of crystal rigidity, increase of force constant in CeO 6 , and decrease of vibrational frequency by increasing Sr 2+ content, which are responsible for the enhanced quantum efficiency and thermal stability. The present study points to a new strategy for future development of the pc-LEDs phosphors based on local structures correlation via composition screening.

  2. Hardware-efficient bosonic quantum error-correcting codes based on symmetry operators

    Science.gov (United States)

    Niu, Murphy Yuezhen; Chuang, Isaac L.; Shapiro, Jeffrey H.

    2018-03-01

    We establish a symmetry-operator framework for designing quantum error-correcting (QEC) codes based on fundamental properties of the underlying system dynamics. Based on this framework, we propose three hardware-efficient bosonic QEC codes that are suitable for χ(2 )-interaction based quantum computation in multimode Fock bases: the χ(2 ) parity-check code, the χ(2 ) embedded error-correcting code, and the χ(2 ) binomial code. All of these QEC codes detect photon-loss or photon-gain errors by means of photon-number parity measurements, and then correct them via χ(2 ) Hamiltonian evolutions and linear-optics transformations. Our symmetry-operator framework provides a systematic procedure for finding QEC codes that are not stabilizer codes, and it enables convenient extension of a given encoding to higher-dimensional qudit bases. The χ(2 ) binomial code is of special interest because, with m ≤N identified from channel monitoring, it can correct m -photon-loss errors, or m -photon-gain errors, or (m -1 )th -order dephasing errors using logical qudits that are encoded in O (N ) photons. In comparison, other bosonic QEC codes require O (N2) photons to correct the same degree of bosonic errors. Such improved photon efficiency underscores the additional error-correction power that can be provided by channel monitoring. We develop quantum Hamming bounds for photon-loss errors in the code subspaces associated with the χ(2 ) parity-check code and the χ(2 ) embedded error-correcting code, and we prove that these codes saturate their respective bounds. Our χ(2 ) QEC codes exhibit hardware efficiency in that they address the principal error mechanisms and exploit the available physical interactions of the underlying hardware, thus reducing the physical resources required for implementing their encoding, decoding, and error-correction operations, and their universal encoded-basis gate sets.

  3. Emulsion Synthesis of Size-Tunable CH3NH3PbBr3 Quantum Dots: An Alternative Route toward Efficient Light-Emitting Diodes.

    Science.gov (United States)

    Huang, Hailong; Zhao, Fangchao; Liu, Lige; Zhang, Feng; Wu, Xian-gang; Shi, Lijie; Zou, Bingsuo; Pei, Qibing; Zhong, Haizheng

    2015-12-30

    We report a facile nonaqueous emulsion synthesis of colloidal halide perovskite quantum dots by controlled addition of a demulsifier into an emulsion of precursors. The size of resulting CH3NH3PbBr3 quantum dots can be tuned from 2 to 8 nm by varying the amount of demulsifier. Moreover, this emulsion synthesis also allows the purification of these quantum dots by precipitation from the colloidal solution and obtains solid-state powder which can be redissolved for thin film coating and device fabrication. The photoluminescence quantum yields of the quantum dots is generally in the range of 80-92%, and can be well-preserved after purification (∼80%). Green light-emitting diodes fabricated comprising a spin-cast layer of the colloidal CH3NH3PbBr3 quantum dots exhibited maximum current efficiency of 4.5 cd/A, power efficiency of 3.5 lm/W, and external quantum efficiency of 1.1%. This provides an alternative route toward high efficient solution-processed perovskite-based light-emitting diodes. In addition, the emulsion synthesis is versatile and can be extended for the fabrication of inorganic halide perovskite colloidal CsPbBr3 nanocrystals.

  4. An energy and cost efficient majority-based RAM cell in quantum-dot cellular automata

    Directory of Open Access Journals (Sweden)

    Milad Bagherian Khosroshahy

    Full Text Available Nanotechnologies, notably quantum-dot cellular automata, have achieved major attentions for their prominent features as compared to the conventional CMOS circuitry. Quantum-dot cellular automata, particularly owning to its considerable reduction in size, high switching speed and ultra-low energy consumption, is considered as a potential alternative for the CMOS technology. As the memory unit is one of the most essential components in a digital system, designing a well-optimized QCA random access memory (RAM cell is an important area of research. In this paper, a new five-input majority gate is presented which is suitable for implementing efficient single-layer QCA circuits. In addition, a new RAM cell with set and reset capabilities is designed based on the proposed majority gate, which has an efficient and low-energy structure. The functionality, performance and energy consumption of the proposed designs are evaluated based on the QCADesigner and QCAPro tools. According to the simulation results, the proposed RAM design leads to on average 38% lower total energy dissipation, 25% smaller area, 20% lower cell count, 28% lower delay and 60% lower QCA cost as compared to its previous counterparts. Keywords: Quantum-dot cellular automata (QCA, Majority gate, Random access memory (RAM, Energy efficiency

  5. High-efficiency red electroluminescent device based on multishelled InP quantum dots.

    Science.gov (United States)

    Jo, Jung-Ho; Kim, Jong-Hoon; Lee, Ki-Heon; Han, Chang-Yeol; Jang, Eun-Pyo; Do, Young Rag; Yang, Heesun

    2016-09-01

    We report on the synthesis of highly fluorescent red-emitting InP quantum dots (QDs) and their application to the fabrication of a high-efficiency QD-light-emitting diode (QLED). The core/shell heterostructure of the QDs is elaborately tailored toward a multishelled structure with a composition-gradient ZnSeS intermediate shell and an outer ZnS shell. Using the resulting InP/ZnSeS/ZnS QDs as an emitting layer, all-solution-processible red InP QLEDs are fabricated with a hybrid multilayered device structure having an organic hole transport layer (HTL) and an inorganic ZnO nanoparticle electron transport layer. Two HTLs of poly(9-vinlycarbazole) or poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4'-(N-(4-sec-butylphenyl))diphenyl-amine), whose hole mobilities are different by at least three orders of magnitude, are individually applied for QLED fabrication and such HTL-dependent device performances are compared. Our best red device displays exceptional figures of merit such as a maximum luminance of 2849  cd/m2, a current efficiency of 4.2  cd/A, and an external quantum efficiency of 2.5%.

  6. Internal quantum efficiency and tunable colour temperature in monolithic white InGaN/GaN LED

    Science.gov (United States)

    Titkov, Ilya E.; Yadav, Amit; Zerova, Vera L.; Zulonas, Modestas; Tsatsulnikov, Andrey F.; Lundin, Wsevolod V.; Sakharov, Alexey V.; Rafailov, Edik U.

    2014-03-01

    Internal Quantum Efficiency (IQE) of two-colour monolithic white light emitting diode (LED) was measured by temperature dependant electro-luminescence (TDEL) and analysed with modified rate equation based on ABC model. External, internal and injection efficiencies of blue and green quantum wells were analysed separately. Monolithic white LED contained one green InGaN QW and two blue QWs being separated by GaN barrier. This paper reports also the tunable behaviour of correlated colour temperature (CCT) in pulsed operation mode and effect of self-heating on device performance.

  7. Achieving the classical Carnot efficiency in a strongly coupled quantum heat engine

    Science.gov (United States)

    Xu, Y. Y.; Chen, B.; Liu, J.

    2018-02-01

    Generally, the efficiency of a heat engine strongly coupled with a heat bath is less than the classical Carnot efficiency. Through a model-independent method, we show that the classical Carnot efficiency is achieved in a strongly coupled quantum heat engine. First, we present the first law of quantum thermodynamics in strong coupling. Then, we show how to achieve the Carnot cycle and the classical Carnot efficiency at strong coupling. We find that this classical Carnot efficiency stems from the fact that the heat released in a nonequilibrium process is balanced by the absorbed heat. We also analyze the restrictions in the achievement of the Carnot cycle. The first restriction is that there must be two corresponding intervals of the controllable parameter in which the corresponding entropies of the work substance at the hot and cold temperatures are equal, and the second is that the entropy of the initial and final states in a nonequilibrium process must be equal. Through these restrictions, we obtain the positive work conditions, including the usual one in which the hot temperature should be higher than the cold, and a new one in which there must be an entropy interval at the hot temperature overlapping that at the cold. We demonstrate our result through a paradigmatic model—a two-level system in which a work substance strongly interacts with a heat bath. In this model, we find that the efficiency may abruptly decrease to zero due to the first restriction, and that the second restriction results in the control scheme becoming complex.

  8. PHOTO-ELECTROCHEMICAL QUANTUM EFFICIENCY OF TiO2 THIN FILMS : EFFECT OF CRISTAL STRUCTURE, PLASMA HYDROGENATION AND SURFACE PHOTOETCHING

    Directory of Open Access Journals (Sweden)

    E TEYAR

    2007-12-01

    Full Text Available The use of semi-conducting materials in the photoelectrochemical detoxification of water became a very important research field. For this purpose, TiO2 nanostructures thin films with size of 18 nm to 45nm have been synthesized at low temperature. It is found by means of cyclic voltametry and coulometry measurements that the best photoelectrochemical quantum efficiency under UV monochromatic light with a wavelength of 365 nm and a solution of NaOH 0.1N is obtained in the case of thermal oxidation deposition method which can reach 28% compared to ultrasonic spray and dip coating methods of which the quantum is less than 20%. The crystal structure has an influence on the photo-degradation of methanol. The crystal structure which is recommended for this task is the anatase one, especially in the dipping case when the quantum increases after addition of methanol more than twice compared to the solution of NaOH without methanol. The photoelectrochemical quantum efficiency of these films is related to the number of dips and annealing under air at 550°C during one hour. The annealing has no effect on the quantum efficiency of the films, but decreases there photocatalytic activity as showed by the measure of the photocurrent related to methanol photodegradation. The annealing has no effect on the crystal structure of the material. The impedance spectroscopy of six dips deposited films with and without methanol shows that the annealing increases the doping and weakly decreases the film quantum efficiency. This implies, the importance of surface morphology which the rough is decreasing as showed by scanning electron microscopy. The effect of the precursor concentration in ethanol have been investigated by using films, synthesized at T=550°C. The quantum efficiency increases weakly according the precursor concentration. It tends towards a saturation at great concentrations of precursor. In Na OH with methanol added, it passes by a maximum at

  9. Absolute calibration technique for spontaneous fission sources

    International Nuclear Information System (INIS)

    Zucker, M.S.; Karpf, E.

    1984-01-01

    An absolute calibration technique for a spontaneously fissioning nuclide (which involves no arbitrary parameters) allows unique determination of the detector efficiency for that nuclide, hence of the fission source strength

  10. Novel Multi-Party Quantum Key Agreement Protocol with G-Like States and Bell States

    Science.gov (United States)

    Min, Shi-Qi; Chen, Hua-Ying; Gong, Li-Hua

    2018-06-01

    A significant aspect of quantum cryptography is quantum key agreement (QKA), which ensures the security of key agreement protocols by quantum information theory. The fairness of an absolute security multi-party quantum key agreement (MQKA) protocol demands that all participants can affect the protocol result equally so as to establish a shared key and that nobody can determine the shared key by himself/herself. We found that it is difficult for the existing multi-party quantum key agreement protocol to withstand the collusion attacks. Put differently, it is possible for several cooperated and untruthful participants to determine the final key without being detected. To address this issue, based on the entanglement swapping between G-like state and Bell states, a new multi-party quantum key agreement protocol is put forward. The proposed protocol makes full use of EPR pairs as quantum resources, and adopts Bell measurement and unitary operation to share a secret key. Besides, the proposed protocol is fair, secure and efficient without involving a third party quantum center. It demonstrates that the protocol is capable of protecting users' privacy and meeting the requirement of fairness. Moreover, it is feasible to carry out the protocol with existing technologies.

  11. Novel Multi-Party Quantum Key Agreement Protocol with G-Like States and Bell States

    Science.gov (United States)

    Min, Shi-Qi; Chen, Hua-Ying; Gong, Li-Hua

    2018-03-01

    A significant aspect of quantum cryptography is quantum key agreement (QKA), which ensures the security of key agreement protocols by quantum information theory. The fairness of an absolute security multi-party quantum key agreement (MQKA) protocol demands that all participants can affect the protocol result equally so as to establish a shared key and that nobody can determine the shared key by himself/herself. We found that it is difficult for the existing multi-party quantum key agreement protocol to withstand the collusion attacks. Put differently, it is possible for several cooperated and untruthful participants to determine the final key without being detected. To address this issue, based on the entanglement swapping between G-like state and Bell states, a new multi-party quantum key agreement protocol is put forward. The proposed protocol makes full use of EPR pairs as quantum resources, and adopts Bell measurement and unitary operation to share a secret key. Besides, the proposed protocol is fair, secure and efficient without involving a third party quantum center. It demonstrates that the protocol is capable of protecting users' privacy and meeting the requirement of fairness. Moreover, it is feasible to carry out the protocol with existing technologies.

  12. Deterministic and efficient quantum cryptography based on Bell's theorem

    International Nuclear Information System (INIS)

    Chen, Z.-B.; Zhang, Q.; Bao, X.-H.; Schmiedmayer, J.; Pan, J.-W.

    2005-01-01

    Full text: We propose a novel double-entanglement-based quantum cryptography protocol that is both efficient and deterministic. The proposal uses photon pairs with entanglement both in polarization and in time degrees of freedom; each measurement in which both of the two communicating parties register a photon can establish a key bit with the help of classical communications. Eavesdropping can be detected by checking the violation of local realism for the detected events. We also show that our protocol allows a robust implementation under current technology. (author)

  13. Improve photocurrent quantum efficiency of carbon nanotube by chemical treatment

    International Nuclear Information System (INIS)

    Wang Hongguang; Wei Jinquan; Jia Yi; Li Zhen; Zhu Hongwei; Wang Kunlin; Wu Dehai

    2012-01-01

    Highlights: ► The QE of photocurrent for the H 2 O 2 -treated CNTs reaches to 5.28% at U bias = 0.1 V. ► Moderate chemical treatment can enhance the QE of photocurrent of CNTs. ► Excessive chemical treatment decreases the photocurrent quantum efficiency of CNTs. - Abstract: High photocurrent quantum efficiency (QE) of carbon nanotubes (CNTs) is important to their photovoltaic applications. The ability of photocurrent generation of CNTs depends on their band structure and surface state. For given CNTs, it is possible to improve the QE of photocurrent by chemical modification. Here, we study the effects of simple chemical treatment on the QE of CNTs by measuring the photocurrent of macroscopic CNT bundles. The QE of the H 2 O 2 -treated CNT bundle reaches 5.28% at 0.1 V bias voltage at a laser (λ = 473 nm) illumination, which is 85% higher than that of the pristine sample. But the QE of the CNTs treated in concentrated HNO 3 is lower than that of the pristine sample. It shows that moderate chemical treatment can enhance the photocurrent QE and excessive chemical treatment will decrease the QE because of introducing lots of structural defects.

  14. Reliable quantum communication over a quantum relay channel

    Energy Technology Data Exchange (ETDEWEB)

    Gyongyosi, Laszlo, E-mail: gyongyosi@hit.bme.hu [Quantum Technologies Laboratory, Department of Telecommunications, Budapest University of Technology and Economics, 2 Magyar tudosok krt, Budapest, H-1117, Hungary and Information Systems Research Group, Mathematics and Natural Sciences, Hungarian Ac (Hungary); Imre, Sandor [Quantum Technologies Laboratory, Department of Telecommunications, Budapest University of Technology and Economics, 2 Magyar tudosok krt, Budapest, H-1117 (Hungary)

    2014-12-04

    We show that reliable quantum communication over an unreliable quantum relay channels is possible. The coding scheme combines the results on the superadditivity of quantum channels and the efficient quantum coding approaches.

  15. High Quantum Efficiency 1024x1024 Longwave Infrared SLS FPA and Camera, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a high quantum efficiency (QE) 1024x1024 longwave infrared focal plane array (LWIR FPA) and CAMERA with ~ 12 micron cutoff wavelength made from...

  16. High Efficiency Quantum Dot III-V Multijunction Solar Cell for Space Power, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — We are proposing to utilize quantum dots to develop a super high-efficiency multijunction III-V solar cell for space. In metamorphic triple junction space solar...

  17. A novel high-efficiency single-mode quantum dot single photon source

    DEFF Research Database (Denmark)

    Gerard, J.M.; Gregersen, Niels; Nielsen, Torben Roland

    2008-01-01

    We present a novel single-mode single photon source exploiting the emission of a semiconductor quantum dot (QD) located inside a photonic wire. Besides an excellent coupling (>95%) of QD spontaneous emission to the fundamental guided mode [1], we show that a single photon collection efficiency...... above 80% within a 0.5 numerical aperture can be achieved using a bottom Bragg mirror and a tapering of the nanowire tip. Because this photon collection strategy does not exploit the Purcell effect, it could also be efficiently applied to broadband single photon emitters such as F-centers in diamond....

  18. Photocurrent extraction efficiency in colloidal quantum dot photovoltaics

    KAUST Repository

    Kemp, K. W.; Wong, C. T. O.; Hoogland, S. H.; Sargent, E. H.

    2013-01-01

    The efficiency of photocurrent extraction was studied directly inside operating Colloidal Quantum Dot (CQD) photovoltaic devices. A model was derived from first principles for a thin film p-n junction with a linearly spatially dependent electric field. Using this model, we were able to clarify the origins of recent improvement in CQD solar cell performance. From current-voltage diode characteristics under 1 sun conditions, we extracted transport lengths ranging from 39 nm to 86 nm for these materials. Characterization of the intensity dependence of photocurrent extraction revealed that the dominant loss mechanism limiting the transport length is trap-mediated recombination. © 2013 AIP Publishing LLC.

  19. Efficient experimental design of high-fidelity three-qubit quantum gates via genetic programming

    Science.gov (United States)

    Devra, Amit; Prabhu, Prithviraj; Singh, Harpreet; Arvind; Dorai, Kavita

    2018-03-01

    We have designed efficient quantum circuits for the three-qubit Toffoli (controlled-controlled-NOT) and the Fredkin (controlled-SWAP) gate, optimized via genetic programming methods. The gates thus obtained were experimentally implemented on a three-qubit NMR quantum information processor, with a high fidelity. Toffoli and Fredkin gates in conjunction with the single-qubit Hadamard gates form a universal gate set for quantum computing and are an essential component of several quantum algorithms. Genetic algorithms are stochastic search algorithms based on the logic of natural selection and biological genetics and have been widely used for quantum information processing applications. We devised a new selection mechanism within the genetic algorithm framework to select individuals from a population. We call this mechanism the "Luck-Choose" mechanism and were able to achieve faster convergence to a solution using this mechanism, as compared to existing selection mechanisms. The optimization was performed under the constraint that the experimentally implemented pulses are of short duration and can be implemented with high fidelity. We demonstrate the advantage of our pulse sequences by comparing our results with existing experimental schemes and other numerical optimization methods.

  20. Spotlighting quantum critical points via quantum correlations at finite temperatures

    International Nuclear Information System (INIS)

    Werlang, T.; Ribeiro, G. A. P.; Rigolin, Gustavo

    2011-01-01

    We extend the program initiated by T. Werlang et al. [Phys. Rev. Lett. 105, 095702 (2010)] in several directions. Firstly, we investigate how useful quantum correlations, such as entanglement and quantum discord, are in the detection of critical points of quantum phase transitions when the system is at finite temperatures. For that purpose we study several thermalized spin models in the thermodynamic limit, namely, the XXZ model, the XY model, and the Ising model, all of which with an external magnetic field. We compare the ability of quantum discord, entanglement, and some thermodynamic quantities to spotlight the quantum critical points for several different temperatures. Secondly, for some models we go beyond nearest neighbors and also study the behavior of entanglement and quantum discord for second nearest neighbors around the critical point at finite temperature. Finally, we furnish a more quantitative description of how good all these quantities are in spotlighting critical points of quantum phase transitions at finite T, bridging the gap between experimental data and those theoretical descriptions solely based on the unattainable absolute zero assumption.

  1. The Over-Barrier Resonant States and Multi-Channel Scattering in Multiple Quantum Wells

    Directory of Open Access Journals (Sweden)

    A Polupanov

    2016-09-01

    Full Text Available We demonstrate an explicit numerical method for accurate calculation of the scattering matrix and its poles, and apply this method to describe the multi-channel scattering in the multiple quantum-wells structures. The S-matrix is continued analytically to the unphysical region of complex energy values. Results of calculations show that there exist one or more S-matrix poles, corresponding to the over-barrier resonant states critical for the effect of the absolute reflection of holes in the energy range where only the heavy ones may propagate over barriers in a structure. Light- and heavy-hole states are described by the Luttinger Hamiltonian matrix. In contrast to the single quantum-well case, at some parameters of a multiple quantum-wells structure the number of S-matrix poles may exceed that of the absolute reflection peaks, and at different values of parameters the absolute reflection peak corresponds to different resonant states. The imaginary parts of the S-matrix poles and hence the lifetimes of resonant states as well as the widths of resonant peaks of absolute reflection depend drastically on the quantum-well potential depth. In the case of shallow quantum wells there is in fact a long-living over-barrier resonant hole state.

  2. Simple formalism for efficient derivatives and multi-determinant expansions in quantum Monte Carlo

    NARCIS (Netherlands)

    Filippi, Claudia; Assaraf, R.; Moroni, S.

    2016-01-01

    We present a simple and general formalism to compute efficiently the derivatives of a multi-determinant Jastrow-Slater wave function, the local energy, the interatomic forces, and similar quantities needed in quantum Monte Carlo. Through a straightforward manipulation of matrices evaluated on the

  3. Rapid Optimization of External Quantum Efficiency of Thin Film Solar Cells Using Surrogate Modeling of Absorptivity.

    Science.gov (United States)

    Kaya, Mine; Hajimirza, Shima

    2018-05-25

    This paper uses surrogate modeling for very fast design of thin film solar cells with improved solar-to-electricity conversion efficiency. We demonstrate that the wavelength-specific optical absorptivity of a thin film multi-layered amorphous-silicon-based solar cell can be modeled accurately with Neural Networks and can be efficiently approximated as a function of cell geometry and wavelength. Consequently, the external quantum efficiency can be computed by averaging surrogate absorption and carrier recombination contributions over the entire irradiance spectrum in an efficient way. Using this framework, we optimize a multi-layer structure consisting of ITO front coating, metallic back-reflector and oxide layers for achieving maximum efficiency. Our required computation time for an entire model fitting and optimization is 5 to 20 times less than the best previous optimization results based on direct Finite Difference Time Domain (FDTD) simulations, therefore proving the value of surrogate modeling. The resulting optimization solution suggests at least 50% improvement in the external quantum efficiency compared to bare silicon, and 25% improvement compared to a random design.

  4. Resource-efficient linear-optical quantum router

    Czech Academy of Sciences Publication Activity Database

    Lemr, K.; Bartkiewicz, K.; Černoch, A.; Soubusta, Jan

    2013-01-01

    Roč. 87, č. 6 (2013), "062333-1"-"062333-7" ISSN 1050-2947 Institutional research plan: CEZ:AV0Z10100522 Keywords : quantum router * signal qubit * quantum communications Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.991, year: 2013

  5. Nanocrystal Size-Dependent Efficiency of Quantum Dot Sensitized Solar Cells in the Strongly Coupled CdSe Nanocrystals/TiO2 System.

    Science.gov (United States)

    Yun, Hyeong Jin; Paik, Taejong; Diroll, Benjamin; Edley, Michael E; Baxter, Jason B; Murray, Christopher B

    2016-06-15

    Light absorption and electron injection are important criteria determining solar energy conversion efficiency. In this research, monodisperse CdSe quantum dots (QDs) are synthesized with five different diameters, and the size-dependent solar energy conversion efficiency of CdSe quantum dot sensitized solar cell (QDSSCs) is investigated by employing the atomic inorganic ligand, S(2-). Absorbance measurements and transmission electron microscopy show that the diameters of the uniform CdSe QDs are 2.5, 3.2, 4.2, 6.4, and 7.8 nm. Larger CdSe QDs generate a larger amount of charge under the irradiation of long wavelength photons, as verified by the absorbance results and the measurements of the external quantum efficiencies. However, the smaller QDs exhibit faster electron injection kinetics from CdSe QDs to TiO2 because of the high energy level of CBCdSe, as verified by time-resolved photoluminescence and internal quantum efficiency results. Importantly, the S(2-) ligand significantly enhances the electronic coupling between the CdSe QDs and TiO2, yielding an enhancement of the charge transfer rate at the interfacial region. As a result, the S(2-) ligand helps improve the new size-dependent solar energy conversion efficiency, showing best performance with 4.2-nm CdSe QDs, whereas conventional ligand, mercaptopropionic acid, does not show any differences in efficiency according to the size of the CdSe QDs. The findings reported herein suggest that the atomic inorganic ligand reinforces the influence of quantum confinement on the solar energy conversion efficiency of QDSSCs.

  6. Device-independent quantum reading and noise-assisted quantum transmitters

    International Nuclear Information System (INIS)

    Roga, W; Buono, D; Illuminati, F

    2015-01-01

    In quantum reading, a quantum state of light (transmitter) is applied to read classical information. In the presence of noise or for sufficiently weak signals, quantum reading can outperform classical reading by reason of enhanced state distinguishability. Here we show that enhanced quantum efficiency depends on the presence in the transmitter of a particular type of quantum correlations, the discord of response. Different encodings and transmitters give rise to different levels of efficiency. Considering noisy quantum probes, we show that squeezed thermal transmitters with non-symmetrically distributed noise among the field modes yield higher quantum efficiency compared with coherent thermal quantum states. The noise-enhanced quantum advantage is a consequence of the discord of response being a non-decreasing function of increasing thermal noise under constant squeezing, a behavior that leads to increased state distinguishability. We finally show that, for non-symmetric squeezed thermal states, the probability of error, as measured by the quantum Chernoff bound, vanishes asymptotically with increasing local thermal noise with finite global squeezing. Therefore, with fixed finite squeezing, noisy but strongly discordant quantum states with a large noise imbalance between the field modes can outperform noisy classical resources as well as pure entangled transmitters with the same finite level of squeezing. (paper)

  7. Laser diode bars based on AlGaAs/GaAs quantum-well heterostructures with an efficiency up to 70%

    Science.gov (United States)

    Ladugin, M. A.; Marmalyuk, A. A.; Padalitsa, A. A.; Bagaev, T. A.; Andreev, A. Yu.; Telegin, K. Yu.; Lobintsov, A. V.; Davydova, E. I.; Sapozhnikov, S. M.; Danilov, A. I.; Podkopaev, A. V.; Ivanova, E. B.; Simakov, V. A.

    2017-05-01

    The results of the development and fabrication of laser diode bars (λ = 800 - 810 nm) based on AlGaAs/GaAs quantum-well heterostructures with a high efficiency are presented. An increase in the internal quantum and external differential efficiencies together with a decrease in the working voltage and the series resistance allowed us to improve the output parameters of the semiconductor laser under quasi-cw pumping. The output power of the laser diode bars with a 5-mm transverse length reached 210 W, and the efficiency was ~70%.

  8. Significant internal quantum efficiency enhancement of GaN/AlGaN multiple quantum wells emitting at ~350 nm via step quantum well structure design

    KAUST Repository

    Wu, Feng; Sun, Haiding; Ajia, Idris A.; Roqan, Iman S.; Zhang, Daliang; Dai, Jiangnan; Chen, Changqing; Feng, Zhe Chuan; Li, Xiaohang

    2017-01-01

    Significant internal quantum efficiency (IQE) enhancement of GaN/AlGaN multiple quantum wells (MQWs) emitting at similar to 350 nm was achieved via a step quantum well (QW) structure design. The MQW structures were grown on AlGaN/AlN/sapphire templates by metal-organic chemical vapor deposition (MOCVD). High resolution x-ray diffraction (HR-XRD) and scanning transmission electron microscopy (STEM) were performed, showing sharp interface of the MQWs. Weak beam dark field imaging was conducted, indicating a similar dislocation density of the investigated MQWs samples. The IQE of GaN/AlGaN MQWs was estimated by temperature dependent photoluminescence (TDPL). An IQE enhancement of about two times was observed for the GaN/AlGaN step QW structure, compared with conventional QW structure. Based on the theoretical calculation, this IQE enhancement was attributed to the suppressed polarization-induced field, and thus the improved electron-hole wave-function overlap in the step QW.

  9. Significant internal quantum efficiency enhancement of GaN/AlGaN multiple quantum wells emitting at ~350 nm via step quantum well structure design

    KAUST Repository

    Wu, Feng

    2017-05-03

    Significant internal quantum efficiency (IQE) enhancement of GaN/AlGaN multiple quantum wells (MQWs) emitting at similar to 350 nm was achieved via a step quantum well (QW) structure design. The MQW structures were grown on AlGaN/AlN/sapphire templates by metal-organic chemical vapor deposition (MOCVD). High resolution x-ray diffraction (HR-XRD) and scanning transmission electron microscopy (STEM) were performed, showing sharp interface of the MQWs. Weak beam dark field imaging was conducted, indicating a similar dislocation density of the investigated MQWs samples. The IQE of GaN/AlGaN MQWs was estimated by temperature dependent photoluminescence (TDPL). An IQE enhancement of about two times was observed for the GaN/AlGaN step QW structure, compared with conventional QW structure. Based on the theoretical calculation, this IQE enhancement was attributed to the suppressed polarization-induced field, and thus the improved electron-hole wave-function overlap in the step QW.

  10. InP/ZnSe/ZnS core-multishell quantum dots for improved luminescence efficiency

    Science.gov (United States)

    Greco, Tonino; Ippen, Christian; Wedel, Armin

    2012-04-01

    Semiconductor quantum dots (QDs) exhibit unique optical properties like size-tunable emission color, narrow emission peak, and high luminescence efficiency. QDs are therefore investigated towards their application in light-emitting devices (QLEDs), solar cells, and for bio-imaging purposes. In most cases QDs made from cadmium compounds like CdS, CdSe or CdTe are studied because of their facile and reliable synthesis. However, due to the toxicity of Cd compounds and the corresponding regulation (e.g. RoHS directive in Europe) these materials are not feasible for customer applications. Indium phosphide is considered to be the most promising alternative because of the similar band gap (InP 1.35 eV, CdSe 1.73 eV). InP QDs do not yet reach the quality of CdSe QDs, especially in terms of photoluminescence quantum yield and peak width. Typically, QDs are coated with another semiconductor material of wider band gap, often ZnS, to passivate surface defects and thus improve luminescence efficiency. Concerning CdSe QDs, multishell coatings like CdSe/CdS/ZnS or CdSe/ZnSe/ZnS have been shown to be advantageous due to the improved compatibility of lattice constants. Here we present a method to improve the luminescence efficiency of InP QDs by coating a ZnSe/ZnS multishell instead of a ZnS single shell. ZnSe exhibits an intermediate lattice constant of 5.67 Å between those of InP (5.87 Å) and ZnS (5.41 Å) and thus acts as a wetting layer. As a result, InP/ZnSe/ZnS is introduced as a new core-shell quantum dot material which shows improved photoluminescence quantum yield (up to 75 %) compared to the conventional InP/ZnS system.

  11. Efficient one-out-of-two quantum oblivious transfer based on four-coherent-state postselection protocol

    International Nuclear Information System (INIS)

    Chen, I-C; Hwang Tzonelih; Li C-M

    2008-01-01

    On the basis of the modified four-coherent-state post-selection quantum key distribution protocol (Namiki and Hirano 2006 Preprint quant-ph/0608144v1), two 1-out-of-2 quantum oblivious transfer (QOT 2 1 ) protocols are proposed. The first proposed protocol (called the receiver-based QOT 2 1 protocol) requires the coherent states to be prepared by the receiver, whereas the second protocol (called the sender-based QOT 2 1 protocol) allows the coherent states to be generated by the sender. The main advantages of the proposed protocols are that (i) no quantum bit commitment schemes and the assumption of quantum memory are needed; (ii) less communication cost between participants is required, i.e. the receiver-based QOT 2 1 protocol requires only one quantum communication and one classical communication and the sender-based QOT 2 1 protocol requires only one quantum communication between participants during protocol execution; and (iii) the utilization of quantum states is very efficient, wherein the receiver-based and the sender-based QOT 2 1 protocols use only two coherent pulses and one coherent pulse respectively for sending the sender's two messages

  12. Does time exist in quantum gravity?

    Directory of Open Access Journals (Sweden)

    Claus Kiefer

    2015-12-01

    Full Text Available Time is absolute in standard quantum theory and dynamical in general relativity. The combination of both theories into a theory of quantum gravity leads therefore to a “problem of time”. In my essay, I investigate those consequences for the concept of time that may be drawn without a detailed knowledge of quantum gravity. The only assumptions are the experimentally supported universality of the linear structure of quantum theory and the recovery of general relativity in the classical limit. Among the consequences are the fundamental timelessness of quantum gravity, the approximate nature of a semiclassical time, and the correlation of entropy with the size of the Universe.

  13. Generalized inequalities for quantum correlations with hidden variables

    International Nuclear Information System (INIS)

    Vinduska, M.

    1991-01-01

    Renowned inequalities for quantum correlations are generalized for the case when quantum system cannot be described with an absolute independent measure of the probability. Such a formulation appears to be suitable for the formulation of the hidden variables theory in terms of non-Euclidean geometry. 10 refs

  14. Minimum detection efficiency for the loophole-free confirmation of quantum contextuality

    International Nuclear Information System (INIS)

    Xiang Yang; Hong Fang-Yu

    2013-01-01

    Klyachko—Can—Binicioğlu—Shumovsky (KCBS) inequality is a Bell-like inequality, the violation of which can be used to confirm the existence of quantum contextuality. However, the imperfection of detection efficiency may cause the so-called loophole in actual KCBS's experiments. We derive an alternative KCBS inequality to deal with the loophole in actual KCBS's experiments. We prove that if the experimental data violate this KCBS inequality, the loophole-free violation of the original KCBS inequality will occur. We show that the minimum detection efficiency needed for a loophole-free violation of the KCBS inequality is about 0.9738

  15. High Efficiency Quantum Well Waveguide Solar Cells and Methods for Constructing the Same

    Science.gov (United States)

    Welser, Roger E. (Inventor); Sood, Ashok K. (Inventor)

    2014-01-01

    Photon absorption, and thus current generation, is hindered in conventional thin-film solar cell designs, including quantum well structures, by the limited path length of incident light passing vertically through the device. Optical scattering into lateral waveguide structures provides a physical mechanism to increase photocurrent generation through in-plane light trapping. However, the insertion of wells of high refractive index material with lower energy gap into the device structure often results in lower voltage operation, and hence lower photovoltaic power conversion efficiency. The voltage output of an InGaAs quantum well waveguide photovoltaic device can be increased by employing a III-V material structure with an extended wide band gap emitter heterojunction. Analysis of the light IV characteristics reveals that non-radiative recombination components of the underlying dark diode current have been reduced, exposing the limiting radiative recombination component and providing a pathway for realizing solar-electric conversion efficiency of 30% or more in single junction cells.

  16. Quantum jumps are more quantum than quantum diffusion

    International Nuclear Information System (INIS)

    Daryanoosh, Shakib; M Wiseman, Howard

    2014-01-01

    It was recently argued (Wiseman and Gambetta 2012 Phys. Rev. Lett. 108 220402) that the stochastic dynamics (jumps or diffusion) of an open quantum system are not inherent to the system, but rather depend on the existence and nature of a distant detector. The proposed experimental tests involved homodyne detection, giving rise to quantum diffusion, and required efficiencies η of well over 50%. Here we prove that this requirement (η>0.5) is universal for diffusive-type detection, even if the system is coupled to multiple baths. However, this no-go theorem does not apply to quantum jumps, and we propose a test involving a qubit with jump-type detectors, with a threshold efficiency of only 37%. That is, quantum jumps are ‘more quantum’, and open the way to practical experimental tests. Our scheme involves a novel sort of adaptive monitoring scheme on a system coupled to two baths. (paper)

  17. Deterministic and efficient quantum cryptography based on Bell's theorem

    International Nuclear Information System (INIS)

    Chen Zengbing; Pan Jianwei; Zhang Qiang; Bao Xiaohui; Schmiedmayer, Joerg

    2006-01-01

    We propose a double-entanglement-based quantum cryptography protocol that is both efficient and deterministic. The proposal uses photon pairs with entanglement both in polarization and in time degrees of freedom; each measurement in which both of the two communicating parties register a photon can establish one and only one perfect correlation, and thus deterministically create a key bit. Eavesdropping can be detected by violation of local realism. A variation of the protocol shows a higher security, similar to the six-state protocol, under individual attacks. Our scheme allows a robust implementation under the current technology

  18. Efficient generation of photonic entanglement and multiparty quantum communication

    Energy Technology Data Exchange (ETDEWEB)

    Trojek, Pavel

    2007-09-15

    This thesis deals largely with the problem of efficient generation of photonic entanglement with the principal aim of developing a bright source of polarization-entangled photon pairs, which meets the requirements for reliable and economic operation of quantum communication prototypes and demonstrators. Our approach uses a cor-related photon-pair emission in nonlinear process of spontaneous parametric downconversion pumped by light coming from a compact and cheap blue laser diode. Two alternative source configurations are examined within the thesis. The first makes use of a well established concept of degenerate non-collinear emission from a single type-II nonlinear crystal and the second relies on a novel method where the emissions from two adjacent type-I phase-matched nonlinear crystals operated in collinear non-degenerate regime are coherently overlapped. The latter approach showed to be more effective, yielding a total detected rate of almost 10{sup 6} pairs/s at >98% quantum interference visibility of polarization correlations. The second issue addressed within the thesis is the simplification and practical implementation of quantum-assisted solutions to multiparty communication tasks. We show that entanglement is not the only non-classical resource endowing the quantum multiparty information processing its power. Instead, only the sequential communication and transformation of a single qubit can be sufficient to accomplish certain tasks. This we prove for two distinct communication tasks, secret sharing and communication complexity. Whereas the goal of the first is to split a cryptographic key among several parties in a way that its reconstruction requires their collaboration, the latter aims at reducing the amount of communication during distributed computational tasks. Importantly, our qubitassisted solutions to the problems are feasible with state-of-the-art technology. This we clearly demonstrate in the laboratory implementation for 6 and 5 parties

  19. Efficient generation of photonic entanglement and multiparty quantum communication

    International Nuclear Information System (INIS)

    Trojek, Pavel

    2007-09-01

    This thesis deals largely with the problem of efficient generation of photonic entanglement with the principal aim of developing a bright source of polarization-entangled photon pairs, which meets the requirements for reliable and economic operation of quantum communication prototypes and demonstrators. Our approach uses a cor-related photon-pair emission in nonlinear process of spontaneous parametric downconversion pumped by light coming from a compact and cheap blue laser diode. Two alternative source configurations are examined within the thesis. The first makes use of a well established concept of degenerate non-collinear emission from a single type-II nonlinear crystal and the second relies on a novel method where the emissions from two adjacent type-I phase-matched nonlinear crystals operated in collinear non-degenerate regime are coherently overlapped. The latter approach showed to be more effective, yielding a total detected rate of almost 10 6 pairs/s at >98% quantum interference visibility of polarization correlations. The second issue addressed within the thesis is the simplification and practical implementation of quantum-assisted solutions to multiparty communication tasks. We show that entanglement is not the only non-classical resource endowing the quantum multiparty information processing its power. Instead, only the sequential communication and transformation of a single qubit can be sufficient to accomplish certain tasks. This we prove for two distinct communication tasks, secret sharing and communication complexity. Whereas the goal of the first is to split a cryptographic key among several parties in a way that its reconstruction requires their collaboration, the latter aims at reducing the amount of communication during distributed computational tasks. Importantly, our qubitassisted solutions to the problems are feasible with state-of-the-art technology. This we clearly demonstrate in the laboratory implementation for 6 and 5 parties

  20. Layer-by-layer assembly of multicolored semiconductor quantum dots towards efficient blue, green, red and full color optical films

    International Nuclear Information System (INIS)

    Zhang Jun; Li Qian; Di Xiaowei; Liu Zhiliang; Xu Gang

    2008-01-01

    Multicolored semiconductor quantum dots have shown great promise for construction of miniaturized light-emitting diodes with compact size, low weight and cost, and high luminescent efficiency. The unique size-dependent luminescent property of quantum dots offers the feasibility of constructing single-color or full-color output light-emitting diodes with one type of material. In this paper, we have demonstrated the facile fabrication of blue-, green-, red- and full-color-emitting semiconductor quantum dot optical films via a layer-by-layer assembly technique. The optical films were constructed by alternative deposition of different colored quantum dots with a series of oppositely charged species, in particular, the new use of cationic starch on glass substrates. Semiconductor ZnSe quantum dots exhibiting blue emission were deposited for fabrication of blue-emitting optical films, while semiconductor CdTe quantum dots with green and red emission were utilized for construction of green- and red-emitting optical films. The assembly of integrated blue, green and red semiconductor quantum dots resulted in full-color-emitting optical films. The luminescent optical films showed very bright emitting colors under UV irradiation, and displayed dense, smooth and efficient luminous features, showing brighter luminescence in comparison with their corresponding quantum dot aqueous colloid solutions. The assembled optical films provide the prospect of miniaturized light-emitting-diode applications.

  1. Quantum mechanics versus relativity: an experimental test of the structure of spacetime

    International Nuclear Information System (INIS)

    Emelyanov, S A

    2012-01-01

    We have performed an experimental test under the conditions in which quantum mechanics predicts spatially discontinuous single-particle transport. The transport is beyond the relativistic paradigm of movement in Cartesian space and therefore may well be nonlocal. Our test has demonstrated that such transport does exist. This fact opens the door for a realistic interpretation of quantum mechanics in so far as the requirement of Lorentz invariance appears inapplicable to any version of quantum theory. Moreover, as quantum mechanics proposes a particle dynamics beyond relativity, it automatically requires an adequate ‘quantum’ concept of spacetime, for which the relativistic concept is only a limiting case. The quantum concept allows absolute simultaneity and hence revives the notion of absolute time. It also goes beyond the relativistic curvilinear Cartesian order of space to account for quantum phenomena such as discontinuity and nonlocality in the spirit of Bohm's concept of the implicate order.

  2. Relativistic quantum chemistry on quantum computers

    DEFF Research Database (Denmark)

    Veis, L.; Visnak, J.; Fleig, T.

    2012-01-01

    The past few years have witnessed a remarkable interest in the application of quantum computing for solving problems in quantum chemistry more efficiently than classical computers allow. Very recently, proof-of-principle experimental realizations have been reported. However, so far only...... the nonrelativistic regime (i.e., the Schrodinger equation) has been explored, while it is well known that relativistic effects can be very important in chemistry. We present a quantum algorithm for relativistic computations of molecular energies. We show how to efficiently solve the eigenproblem of the Dirac......-Coulomb Hamiltonian on a quantum computer and demonstrate the functionality of the proposed procedure by numerical simulations of computations of the spin-orbit splitting in the SbH molecule. Finally, we propose quantum circuits with three qubits and nine or ten controlled-NOT (CNOT) gates, which implement a proof...

  3. An efficient single-step scheme for manipulating quantum information of two trapped ions beyond the Lamb-Dicke limit

    International Nuclear Information System (INIS)

    Wei, L.F.; Nori, Franco

    2003-01-01

    Based on the exact conditional quantum dynamics for a two-ion system, we propose an efficient single-step scheme for coherently manipulating quantum information of two trapped cold ions by using a pair of synchronous laser pulses. Neither the auxiliary atomic level nor the Lamb-Dicke approximation are needed

  4. Quantum Coherent Three-Terminal Thermoelectrics: Maximum Efficiency at Given Power Output

    Directory of Open Access Journals (Sweden)

    Robert S. Whitney

    2016-05-01

    Full Text Available This work considers the nonlinear scattering theory for three-terminal thermoelectric devices used for power generation or refrigeration. Such systems are quantum phase-coherent versions of a thermocouple, and the theory applies to systems in which interactions can be treated at a mean-field level. It considers an arbitrary three-terminal system in any external magnetic field, including systems with broken time-reversal symmetry, such as chiral thermoelectrics, as well as systems in which the magnetic field plays no role. It is shown that the upper bound on efficiency at given power output is of quantum origin and is stricter than Carnot’s bound. The bound is exactly the same as previously found for two-terminal devices and can be achieved by three-terminal systems with or without broken time-reversal symmetry, i.e., chiral and non-chiral thermoelectrics.

  5. A quantum-chemical perspective into low optical-gap polymers for highly-efficient organic solar cells

    KAUST Repository

    Risko, Chad

    2011-03-15

    The recent and rapid enhancement in power conversion efficiencies of organic-based, bulk heterojunction solar cells has been a consequence of both improved materials design and better understanding of the underlying physical processes involved in photocurrent generation. In this Perspective, we first present an overview of the application of quantum-chemical techniques to study the intrinsic material properties and molecular- and nano-scale processes involved in device operation. In the second part, these quantum-chemical tools are applied to an oligomer-based study on a collection of donor-acceptor copolymers that have been used in the highest-efficiency solar cell devices reported to date. The quantum-chemical results are found to be in good agreement with the empirical data related to the electronic and optical properties. In particular, they provide insight into the natures of the electronic excitations responsible for the near-infrared/visible absorption profiles, as well as into the energetics of the low-lying singlet and triplet states. These results lead to a better understanding of the inherent differences among the materials, and highlight the usefulness of quantum chemistry as an instrument for material design. Importantly, the results also point to the need to continue the development of integrated, multi scale modeling approaches to provide a thorough understanding of the materials properties. © The Royal Society of Chemistry 2011.

  6. Femtosecond laser direct writing of gratings and waveguides in high quantum efficiency erbium-doped Baccarat glass

    International Nuclear Information System (INIS)

    Vishnubhatla, K C; Kumar, R Sai Santosh; Rao, D Narayana; Rao, S Venugopal; Osellame, R; Ramponi, R; Bhaktha, S N B; Mattarelli, M; Montagna, M; Turrell, S; Chiappini, A; Chiasera, A; Ferrari, M; Righini, G C

    2009-01-01

    The femtosecond laser direct writing technique was employed to inscribe gratings and waveguides in high quantum efficiency erbium-doped Baccarat glass. Using the butt coupling technique, a systematic study of waveguide loss with respect to input pulse energy and writing speed was performed to achieve the best waveguide with low propagation loss (PL). By pumping at 980 nm, we observed signal enhancement in these active waveguides in the telecom spectral region. The refractive index change was smooth and we estimated it to be ∼10 -3 . The high quantum efficiency (∼80%) and a best PL of ∼0.9 dB cm -1 combined with signal enhancement makes Baccarat glass a potential candidate for application in photonics.

  7. Quantum glassiness in clean strongly correlated systems: an example of topological overprotection

    Science.gov (United States)

    Chamon, Claudio

    2005-03-01

    Describing matter at near absolute zero temperature requires understanding a system's quantum ground state and the low energy excitations around it, the quasiparticles, which are thermally populated by the system's contact to a heat bath. However, this paradigm breaks down if thermal equilibration is obstructed. I present solvable examples of quantum many-body Hamiltonians of systems that are unable to reach their ground states as the environment temperature is lowered to absolute zero. These examples, three dimensional generalizations of quantum Hamiltonians proposed for topological quantum computing, 1) have no quenched disorder, 2) have solely local interactions, 3) have an exactly solvable spectrum, 4) have topologically ordered ground states, and 5) have slow dynamical relaxation rates akin to those of strong structural glasses.

  8. Efficient quantum state transfer in an engineered chain of quantum bits

    Science.gov (United States)

    Sandberg, Martin; Knill, Emanuel; Kapit, Eliot; Vissers, Michael R.; Pappas, David P.

    2016-03-01

    We present a method of performing quantum state transfer in a chain of superconducting quantum bits. Our protocol is based on engineering the energy levels of the qubits in the chain and tuning them all simultaneously with an external flux bias. The system is designed to allow sequential adiabatic state transfers, resulting in on-demand quantum state transfer from one end of the chain to the other. Numerical simulations of the master equation using realistic parameters for capacitive nearest-neighbor coupling, energy relaxation, and dephasing show that fast, high-fidelity state transfer should be feasible using this method.

  9. Control of Emission Color of High Quantum Yield CH3NH3PbBr3 Perovskite Quantum Dots by Precipitation Temperature.

    Science.gov (United States)

    Huang, He; Susha, Andrei S; Kershaw, Stephen V; Hung, Tak Fu; Rogach, Andrey L

    2015-09-01

    Emission color controlled, high quantum yield CH 3 NH 3 PbBr 3 perovskite quantum dots are obtained by changing the temperature of a bad solvent during synthesis. The products for temperatures between 0 and 60 °C have good spectral purity with narrow emission line widths of 28-36 nm, high absolute emission quantum yields of 74% to 93%, and short radiative lifetimes of 13-27 ns.

  10. Splitting efficiency and interference effects in a Cooper pair splitter based on a triple quantum dot with ferromagnetic contacts

    Science.gov (United States)

    Bocian, Kacper; Rudziński, Wojciech; Weymann, Ireneusz

    2018-05-01

    We theoretically study the spin-resolved subgap transport properties of a Cooper pair splitter based on a triple quantum dot attached to superconducting and ferromagnetic leads. Using the Keldysh Green's function formalism, we analyze the dependence of the Andreev conductance, Cooper pair splitting efficiency, and tunnel magnetoresistance on the gate and bias voltages applied to the system. We show that the system's transport properties are strongly affected by spin dependence of tunneling processes and quantum interference between different local and nonlocal Andreev reflections. We also study the effects of finite hopping between the side quantum dots on the Andreev current. This allows for identifying the optimal conditions for enhancing the Cooper pair splitting efficiency of the device. We find that the splitting efficiency exhibits a nonmonotonic dependence on the degree of spin polarization of the leads and the magnitude and type of hopping between the dots. An almost perfect splitting efficiency is predicted in the nonlinear response regime when the energies of the side quantum dots are tuned to the energies of the corresponding Andreev bound states. In addition, we analyzed features of the tunnel magnetoresistance (TMR) for a wide range of the gate and bias voltages, as well as for different model parameters, finding the corresponding sign changes of the TMR in certain transport regimes. The mechanisms leading to these effects are thoroughly discussed.

  11. High-efficiency frequency doubling of continuous-wave laser light.

    Science.gov (United States)

    Ast, Stefan; Nia, Ramon Moghadas; Schönbeck, Axel; Lastzka, Nico; Steinlechner, Jessica; Eberle, Tobias; Mehmet, Moritz; Steinlechner, Sebastian; Schnabel, Roman

    2011-09-01

    We report on the observation of high-efficiency frequency doubling of 1550 nm continuous-wave laser light in a nonlinear cavity containing a periodically poled potassium titanyl phosphate crystal (PPKTP). The fundamental field had a power of 1.10 W and was converted into 1.05 W at 775 nm, yielding a total external conversion efficiency of 95±1%. The latter value is based on the measured depletion of the fundamental field being consistent with the absolute values derived from numerical simulations. According to our model, the conversion efficiency achieved was limited by the nonperfect mode matching into the nonlinear cavity and by the nonperfect impedance matching for the maximum input power available. Our result shows that cavity-assisted frequency conversion based on PPKTP is well suited for low-decoherence frequency conversion of quantum states of light.

  12. Spectrometric performances of high quantum efficiency multi and single anode PMTs coupled to LaBr3(Ce) crystal

    Energy Technology Data Exchange (ETDEWEB)

    Cinti, Maria Nerina, E-mail: marianerina.cinti@uniroma1.it [Department of Molecular Medicine, Sapienza University of Rome, Rome 00161 (Italy); INFN Rome 1 Section, Rome (Italy); Pani, Roberto; Pellegrini, Rosanna [Department of Molecular Medicine, Sapienza University of Rome, Rome 00161 (Italy); INFN Rome 1 Section, Rome (Italy); Bennati, Paolo [Department of Molecular Medicine, Sapienza University of Rome, Rome 00161 (Italy); Orlandi, Chiara [Medical Physics Post Graduate School, Sapienza University of Rome, Rome 00161 (Italy); Fabbri, Andrea [Department of Physics, Roma Tre University, Rome (Italy); INFN Rome 3 Section, Rome (Italy); Ridolfi, Stefano; Scafè, Raffaele [Department of Molecular Medicine, Sapienza University of Rome, Rome 00161 (Italy)

    2013-10-01

    High quantum efficiency semiconductor photodetectors have recently drawn the attention of the scientific community for their potential in the realization of a new class of scintillation imagers with very high energy and spatial resolution performance. However, this goal does not seem within easy reach, due to various technological issues such as, for example, the difficulty to scale the characteristics of a single detector to an imager with suitable dimensions. Lately a definite technical improvement in increasing quantum efficiency up to 42% for position sensitive photomultipliers was achieved. The aim of this work is thus to test this new technological progress and to study the possible implications in imaging applications. Four Hamamatsu PMTs were tested: two multi anode photomultipliers, one with a bialkali (27% quantum efficiency) and the other one with a super-bialkali photocathode (38% quantum efficiency), and two 1×1 in. PMTs, both equipped with an ultra bialkali photocathode (42% quantum efficiency). In particular one of the ultra bialkali PMT has also an increased efficiency of first dynode charge collection. The results were compared with the ones obtained with a reference PMT (Hamamatsu R6231), mainly used in spectroscopy. The PMTs were coupled to LaBr3(Ce), NaI(Tl) and LSO(Ce) continuous scintillation crystals. The tests were done using two independent electronic chains: one dedicated for spectroscopic application and a second one, using a multi wire 64 channel readout, for imaging applications. The super-bialkali MA-PMTs have shown high energy resolution, both with spectroscopic and imaging setup, highlighting the appropriateness of these devices for the development of imaging devices with high spectroscopic performance. -- Highlights: • A study of energy resolution results coming from position sensitive photomultipliers are proposed. • The study is also extended on mono- anode photomultiplier. • The selected scintillation crystal is LeBr3(Ce

  13. Fast and efficient wireless power transfer via transitionless quantum driving.

    Science.gov (United States)

    Paul, Koushik; Sarma, Amarendra K

    2018-03-07

    Shortcut to adiabaticity (STA) techniques have the potential to drive a system beyond the adiabatic limits. Here, we present a robust and efficient method for wireless power transfer (WPT) between two coils based on the so-called transitionless quantum driving (TQD) algorithm. We show that it is possible to transfer power between the coils significantly fast compared to its adiabatic counterpart. The scheme is fairly robust against the variations in the coupling strength and the coupling distance between the coils. Also, the scheme is found to be reasonably immune to intrinsic losses in the coils.

  14. Efficiency enhancement of InGaN/GaN light-emitting diodes with pin-doped GaN quantum barrier

    International Nuclear Information System (INIS)

    Sirkeli, Vadim P; Al-Daffaie, Shihab; Oprea, Ion; Küppers, Franko; Hartnagel, Hans L; Yilmazoglu, Oktay; Ong, Duu Sheng

    2017-01-01

    Blue InGaN/GaN light-emitting diodes with undoped, heavily Si-doped, Si delta-doped, heavily Mg-doped, Mg delta-doped, and Mg–Si pin-doped GaN barrier are investigated numerically. The simulation results demonstrate that the Mg–Si pin-doping in the GaN barrier effectively reduces the polarization-induced electric field between the InGaN well and the GaN barrier in the multiple quantum well, suppresses the quantum-confined Stark effect, and enhances the hole injection and electron confinement in the active region. For this light-emitting diode (LED) device structure, we found that the turn-on voltage is 2.8 V, peak light emission is at 415.3 nm, and internal quantum efficiency is 85.9% at 100 A cm −2 . It is established that the LED device with Mg–Si pin-doping in the GaN barrier has significantly improved efficiency and optical output power performance, and lower efficiency droop up to 400 A cm −2 compared with LED device structures with undoped or Si(Mg)-doped GaN barrier. (paper)

  15. Atom-chip-based quantum gravimetry for the precise determination of absolute gravity

    Science.gov (United States)

    Abend, Sven; Schubert, Christian; Ertmer, Wolfgang; Rasel, Ernst

    2017-04-01

    We present a novel technique for the precise measurement of absolute local gravity with a quantum gravimeter based on an atom chip. Atom interferometry utilizes the interference of matter waves interrogated by laser light to read out inertial forces. Today's generation of these devices typically operate with test mass samples, that consists of ensembles of laser cooled atoms. Their performance is limited by the velocity spread and finite-size of the test masses that impose systematic uncertainties at the level of a few μGal [1]. Rather than laser cooled atoms we employ quantum degenerate ensembles, so called Bose-Einstein condensates [2], as ultra-sensitive probes for gravity. These sources offer unique properties that will allow to overcome the current limitations in the next generation of sensors. Furthermore, atom-chip technology offers the possibility to generate Bose-Einstein condensates in a fast and reliable way. We present a lab-based prototype that uses the atom chip itself to retro-reflect the interrogation laser and thus serves as inertial reference inside the vacuum [3]. With this setup, it is possible to demonstrate all necessary steps to measure gravity, including the preparation of the source, spanning an interferometer as well as the detection of the output signal. All steps are pursued on a baseline of 1 cm right below the atom chip and to analyze relevant systematic effects. In the framework of the center of excellence geoQ a next generation device is under construction at the Institut für Quantenoptik, that will target for in-field measurements. This device will feature a state-of-the-art atom-chip source with a high-flux of ultra-cold atoms at a repetition rate of 1-2 Hz [4]. The device will be characterized in cooperation with the Müller group at the Institut für Erdmessung the sensor and finally employed in a campaign to measure the Fennoscandian uplift at the level of 1 μGal. The presented work is supported by the CRC 1227 DQ-mat, the

  16. Quantum Monte Carlo tunneling from quantum chemistry to quantum annealing

    Science.gov (United States)

    Mazzola, Guglielmo; Smelyanskiy, Vadim N.; Troyer, Matthias

    2017-10-01

    Quantum tunneling is ubiquitous across different fields, from quantum chemical reactions and magnetic materials to quantum simulators and quantum computers. While simulating the real-time quantum dynamics of tunneling is infeasible for high-dimensional systems, quantum tunneling also shows up in quantum Monte Carlo (QMC) simulations, which aim to simulate quantum statistics with resources growing only polynomially with the system size. Here we extend the recent results obtained for quantum spin models [Phys. Rev. Lett. 117, 180402 (2016), 10.1103/PhysRevLett.117.180402], and we study continuous-variable models for proton transfer reactions. We demonstrate that QMC simulations efficiently recover the scaling of ground-state tunneling rates due to the existence of an instanton path, which always connects the reactant state with the product. We discuss the implications of our results in the context of quantum chemical reactions and quantum annealing, where quantum tunneling is expected to be a valuable resource for solving combinatorial optimization problems.

  17. Entanglement growth and simulation efficiency in one-dimensional quantum lattice systems

    OpenAIRE

    Perales, Alvaro; Vidal, Guifre

    2007-01-01

    We study the evolution of one-dimensional quantum lattice systems when the ground state is perturbed by altering one site in the middle of the chain. For a large class of models, we observe a similar pattern of entanglement growth during the evolution, characterized by a moderate increase of significant Schmidt coefficients in all relevant bipartite decompositions of the state. As a result, the evolution can be accurately described by a matrix product state and efficiently simulated using the...

  18. Quantum perturbation solution of sextic nonlinear oscillator and its classical limit

    International Nuclear Information System (INIS)

    Jafarpour, M.; Ashrafpour, M.

    2000-01-01

    We consider the time evolution of the perturbed coherent states to solve the quantum sex tic nonlinear oscillator, in the framework of time dependent perturbation theory. An appropriate limit, h-bar → 0, (absolute value of α)→ ∞,(absolute value of α )√h-bar fixed, is then taken and the classical Poincare'-Landsat series is retrieved. We observe that a proper renormalization of the amplitude and the frequency is needed, if a meaningful comparison between the quantum and the classical results are to be made

  19. Non-linear effects and thermoelectric efficiency of quantum dot-based single-electron transistors.

    Science.gov (United States)

    Talbo, Vincent; Saint-Martin, Jérôme; Retailleau, Sylvie; Dollfus, Philippe

    2017-11-01

    By means of advanced numerical simulation, the thermoelectric properties of a Si-quantum dot-based single-electron transistor operating in sequential tunneling regime are investigated in terms of figure of merit, efficiency and power. By taking into account the phonon-induced collisional broadening of energy levels in the quantum dot, both heat and electrical currents are computed in a voltage range beyond the linear response. Using our homemade code consisting in a 3D Poisson-Schrödinger solver and the resolution of the Master equation, the Seebeck coefficient at low bias voltage appears to be material independent and nearly independent on the level broadening, which makes this device promising for metrology applications as a nanoscale standard of Seebeck coefficient. Besides, at higher voltage bias, the non-linear characteristics of the heat current are shown to be related to the multi-level effects. Finally, when considering only the electronic contribution to the thermal conductance, the single-electron transistor operating in generator regime is shown to exhibit very good efficiency at maximum power.

  20. Efficiency enhancement of InGaN/GaN multiple quantum wells with graphene layer

    International Nuclear Information System (INIS)

    Deng, Zhen; Li, Zishen; Jiang, Yang; Ma, Ziguang; Fang, Yutao; Li, Yangfeng; Wang, Wenxin; Jia, Haiqiang; Chen, Hong

    2015-01-01

    In this work, a novel hybrid graphene/InGaN-based multiple quantum wells (MQWs) structure has been fabricated. Compared to the sample conventional structure (CS), the utilization of graphene transferred on top GaN layer significantly enhances the internal quantum efficiency and relatively photoluminescence intensity. Furthermore, the excitons in the MQWs of sample hybrid structure (HS) have a shorter decay lifetime of 3.4 ns than that of 6.7 ns for sample CS. These results are probably attributed to the free carriers in the graphene layer, which can screen the piezoelectric field in the active region and thus present a free quantum-confined Stark effect-like behavior. Our work demonstrates that the graphene on the top GaN layer can effectively increase the recombination rate in sample HS, which may further improve LEDs' performance. (orig.)

  1. Efficient learning algorithm for quantum perceptron unitary weights

    OpenAIRE

    Seow, Kok-Leong; Behrman, Elizabeth; Steck, James

    2015-01-01

    For the past two decades, researchers have attempted to create a Quantum Neural Network (QNN) by combining the merits of quantum computing and neural computing. In order to exploit the advantages of the two prolific fields, the QNN must meet the non-trivial task of integrating the unitary dynamics of quantum computing and the dissipative dynamics of neural computing. At the core of quantum computing and neural computing lies the qubit and perceptron, respectively. We see that past implementat...

  2. ZnSe passivation layer for the efficiency enhancement of CuInS2 quantum dots sensitized solar cells

    International Nuclear Information System (INIS)

    Peng, Zhuoyin; Liu, Yueli; Zhao, Yinghan; Chen, Keqiang; Cheng, Yuqing; Kovalev, Valery; Chen, Wen

    2014-01-01

    Highlights: • ZnSe is employed as passivation layer in CuInS 2 quantum dots sensitized solar cells. • Slight red-shift has been occurred in UV–vis absorption spectra with ZnSe coating. • CuInS 2 based solar cells coated by ZnSe have better efficiency than that of ZnS. • Higher rate of charge transport can be produced after coating with ZnSe. -- Abstract: The effect of ZnSe passivation layer is investigated in the CuInS 2 quantum dot sensitized solar cells, which is used to improve the photovoltaic performance. The CuInS 2 quantum dot sensitized TiO 2 photo-anodes are prepared by assembly linking technique, and then deposited by the ZnSe passivation layer using the successive ionic layer absorption and reaction technique. The optical absorption edge and photoluminescence peak have slightly red-shifted after the passivation layer coating. Under solar light illumination, the ZnSe passivation layer based CuInS 2 quantum dot sensitized solar cells have the higher photovoltaic efficiency of 0.95% and incident photon conversion efficiency response than that of pure CuInS 2 based solar cells and ZnS passivation layer based solar cells, as the electron injection rate becomes faster after coating with ZnSe passivation layer

  3. An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement

    International Nuclear Information System (INIS)

    Yang Yuguang; Wen Qiaoyan

    2009-01-01

    Following some ideas of the quantum secret sharing (QSS) protocol (2008, Phys. Lett. A 372, 1957), we propose an efficient quantum private comparison (QPC) protocol for comparing information of equality with the help of a third party (TP). The protocol can ensure fairness, efficiency and security. The protocol is fair, which means that one party knows the sound result of the comparison if and only if the other one knows the result. The protocol is efficient with the help of the TP for calculating. However, the TP cannot learn any information about the players' respective private inputs and even about the comparison result and cannot collude with any player. The protocol is secure for the two players, that is, any information about their respective secret inputs will not leak except the final computation result. A precise proof of security of the protocol is presented. Applications of this protocol may include private bidding and auctions, secret ballot elections, commercial business, identification in a number of scenarios and so on

  4. Efficiency of free-energy calculations of spin lattices by spectral quantum algorithms

    International Nuclear Information System (INIS)

    Master, Cyrus P.; Yamaguchi, Fumiko; Yamamoto, Yoshihisa

    2003-01-01

    Ensemble quantum algorithms are well suited to calculate estimates of the energy spectra for spin-lattice systems. Based on the phase estimation algorithm, these algorithms efficiently estimate discrete Fourier coefficients of the density of states. Their efficiency in calculating the free energy per spin of general spin lattices to bounded error is examined. We find that the number of Fourier components required to bound the error in the free energy due to the broadening of the density of states scales polynomially with the number of spins in the lattice. However, the precision with which the Fourier components must be calculated is found to be an exponential function of the system size

  5. Using DNA origami nanostructures to determine absolute cross sections for UV photon-induced DNA strand breakage.

    Science.gov (United States)

    Vogel, Stefanie; Rackwitz, Jenny; Schürman, Robin; Prinz, Julia; Milosavljević, Aleksandar R; Réfrégiers, Matthieu; Giuliani, Alexandre; Bald, Ilko

    2015-11-19

    We have characterized ultraviolet (UV) photon-induced DNA strand break processes by determination of absolute cross sections for photoabsorption and for sequence-specific DNA single strand breakage induced by photons in an energy range from 6.50 to 8.94 eV. These represent the lowest-energy photons able to induce DNA strand breaks. Oligonucleotide targets are immobilized on a UV transparent substrate in controlled quantities through attachment to DNA origami templates. Photon-induced dissociation of single DNA strands is visualized and quantified using atomic force microscopy. The obtained quantum yields for strand breakage vary between 0.06 and 0.5, indicating highly efficient DNA strand breakage by UV photons, which is clearly dependent on the photon energy. Above the ionization threshold strand breakage becomes clearly the dominant form of DNA radiation damage, which is then also dependent on the nucleotide sequence.

  6. Efficient amplitude-modulated pulses for triple- to single-quantum coherence conversion in MQMAS NMR.

    Science.gov (United States)

    Colaux, Henri; Dawson, Daniel M; Ashbrook, Sharon E

    2014-08-07

    The conversion between multiple- and single-quantum coherences is integral to many nuclear magnetic resonance (NMR) experiments of quadrupolar nuclei. This conversion is relatively inefficient when effected by a single pulse, and many composite pulse schemes have been developed to improve this efficiency. To provide the maximum improvement, such schemes typically require time-consuming experimental optimization. Here, we demonstrate an approach for generating amplitude-modulated pulses to enhance the efficiency of the triple- to single-quantum conversion. The optimization is performed using the SIMPSON and MATLAB packages and results in efficient pulses that can be used without experimental reoptimisation. Most significant signal enhancements are obtained when good estimates of the inherent radio-frequency nutation rate and the magnitude of the quadrupolar coupling are used as input to the optimization, but the pulses appear robust to reasonable variations in either parameter, producing significant enhancements compared to a single-pulse conversion, and also comparable or improved efficiency over other commonly used approaches. In all cases, the ease of implementation of our method is advantageous, particularly for cases with low sensitivity, where the improvement is most needed (e.g., low gyromagnetic ratio or high quadrupolar coupling). Our approach offers the potential to routinely improve the sensitivity of high-resolution NMR spectra of nuclei and systems that would, perhaps, otherwise be deemed "too challenging".

  7. Development of III-Sb Quantum Dot Systems for High Efficiency Intermediate Band Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Huffaker, Diana [Univ. of California, Los Angeles, CA (United States); Hubbard, Seth [Rochester Inst. of Technology, NY (United States); Norman, Andrew [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-07-31

    This project aimed to develop solar cells that can help reduce cost per watt. This work focused on developing solar cells that utilize quantum dot (QD) nanomaterials to provide multijunction solar cell efficiency at the cost of single junction solar cell. We focused on a novel concept known as intermediate band solar cells (IBSC) where an additional energy band is inserted in a single solar cell to accommodate sub-bandgap photons absorption which otherwise are lost through transmission. The additional energy band can be achieved by growing QDs within a solar cell p-n junction. Though numerous studies have been conducted to develop such QD systems, very small improvements in solar energy conversion efficiency have been reported. This is mainly due to non-optimal material parameters such as band gap, band offset etc. In this work, we identified and developed a novel QD material system that meets the requirements of IBSC more closely than the current state-of-the-art technology. To achieve these goals, we focused on three important areas of solar cell design: band structure calculations of new materials, efficient device design for high efficiency, and development of new semiconductor materials. In this project, we focused on III-Sb materials as they possess a wide range of energy bandgaps from 0.2 eV to 2eV. Despite the difficulty involved in realizing these materials, we were successfully developed these materials through a systematic approach. Materials studied in this work are AlAsSb (Aluminum Arsenide Antimonide), InAlAs (Indium Aluminum Arsenide) and InAs (Indium Arsenide). InAs was used to develop QD layers within AlAsSb and InAlAs p-n junctions. As the QDs have very small volume, up to 30 QD layers been inserted into the p-n junction to enhance light absorption. These QD multi-stack devices helped in understanding the challenges associated with the development of quantum dot solar cells. The results from this work show that the quantum dot solar cells indeed

  8. Photon echo quantum random access memory integration in a quantum computer

    International Nuclear Information System (INIS)

    Moiseev, Sergey A; Andrianov, Sergey N

    2012-01-01

    We have analysed an efficient integration of multi-qubit echo quantum memory (QM) into the quantum computer scheme based on squids, quantum dots or atomic resonant ensembles in a quantum electrodynamics cavity. Here, one atomic ensemble with controllable inhomogeneous broadening is used for the QM node and other nodes characterized by the homogeneously broadened resonant line are used for processing. We have found the optimal conditions for the efficient integration of the multi-qubit QM modified for the analysed scheme, and we have determined the self-temporal modes providing a perfect reversible transfer of the photon qubits between the QM node and arbitrary processing nodes. The obtained results open the way for realization of a full-scale solid state quantum computing based on the efficient multi-qubit QM. (paper)

  9. Quantum secure communication models comparison

    Directory of Open Access Journals (Sweden)

    Georgi Petrov Bebrov

    2017-12-01

    Full Text Available The paper concerns the quantum cryptography, more specifically, the quantum secure communication type of schemes. The main focus here is on making a comparison between the distinct secure quantum communication models – quantum secure direct communication and deterministic secure quantum communication, in terms of three parameters: resource efficiency, eavesdropping check efficiency, and security (degree of preserving the confidentiality.

  10. Effects of Mg doping in the quantum barriers on the efficiency droop of GaN based light emitting diodes

    International Nuclear Information System (INIS)

    Liu Yang; Yang Yongchun

    2016-01-01

    The effects of Mg doping in the quantum barriers (QBs) on the efficiency droop of GaN based light emitting diodes (LEDs) were investigated through a duel wavelength method. Barrier Mg doping would lead to the enhanced hole transportation and reduced polarization field in the quantum wells (QWs), both may reduce the efficiency droop. However, heavy Mg doping in the QBs would strongly deteriorate the crystal quality of the QWs grown after the doped QB. When increasing the injection current, the carriers would escape from the QWs between n-GaN and the doped QB and recombine non-radiatively in the QWs grown after the doped QB, leading to a serious efficiency droop. (paper)

  11. Rhodamine 800 as reference substance for fluorescence quantum yield measurements in deep red emission range

    Energy Technology Data Exchange (ETDEWEB)

    Alessi, A., E-mail: andrea.alessi@eni.com [Centro Ricerche per le Energie non Convenzionali, Istituto eni Donegani, e.n.i. S.p.A., Via G. Fauser 4, 28100 Novara (Italy); Salvalaggio, M. [Centro Ricerche per le Energie non Convenzionali, Istituto eni Donegani, e.n.i. S.p.A., Via G. Fauser 4, 28100 Novara (Italy); Ruzzon, G. [HORIBA Jobin Yvon Srl, Via Cesare Pavese 35/AB, 20090 Opera Milano (Italy)

    2013-02-15

    The determination of fluorescence quantum yields ({Phi}{sub f}) of deep red dyes emitting at 635-900 nm is difficult due to lack of suitable standards. In this work, we propose a commercial dye, rhodamine 800 (Rho800), as reference standard which belongs to the family of xanthenes. The quantum yield of rhodamine 800 in absolute ethanol has been studied using a relative method with cresyl violet (CV) and rhodamine 101 (Rho101) as references, and an absolute fluorometric method by integrating sphere measurements. - Highlights: Black-Right-Pointing-Pointer A red emitting dye Rhodamine 800 was electronic spectroscopy characterized. Black-Right-Pointing-Pointer Its fluorescence quantum yield was studied using a relative and an absolute method. Black-Right-Pointing-Pointer The values found are greater than the values currently known in the literature.

  12. Quantum teleportation for continuous variables and related quantum information processing

    International Nuclear Information System (INIS)

    Furusawa, Akira; Takei, Nobuyuki

    2007-01-01

    Quantum teleportation is one of the most important subjects in quantum information science. This is because quantum teleportation can be regarded as not only quantum information transfer but also a building block for universal quantum information processing. Furthermore, deterministic quantum information processing is very important for efficient processing and it can be realized with continuous-variable quantum information processing. In this review, quantum teleportation for continuous variables and related quantum information processing are reviewed from these points of view

  13. Absolute photoionization cross-section measurements of the Kr I isoelectronic sequence

    International Nuclear Information System (INIS)

    Kilbane, D.; Banahan, C.; Kampen, P. van; Costello, J. T.; Folkmann, F.; Kjeldsen, H.; Bizau, J.-M.; Scully, S.; Mansfield, M. W. D.; West, J. B.

    2007-01-01

    Photoionization spectra have been recorded in the 4s, 4p, and 3d resonance regions for the Kr I isoelectronic sequence using both the dual laser produced plasma (DLP) technique (at DCU) to produce photoabsorption spectra, and the merged ion beam and synchrotron radiation technique (at ASTRID) to measure absolute photoionization cross sections. Profile parameters are compared for the 4s-np resonances of Rb + and Sr 2+ . Many 4p→ns, md transitions are identified with the aid of Hartree-Fock calculations, and consistent quantum defects are observed for the various ns and md Rydberg series. Absolute single and double photoionization cross sections recorded in the 3d region for Rb + and Sr 2+ ions show preferential decay via double photoionization. This is only the second report to our knowledge where both the DLP technique and the merged-beam technique have been used simultaneously to record photoionization spectra, and the advantages of both techniques (i.e., better resolution in the case of DLP and values for absolute photoionization cross sections in the case of the merged-beam technique) are highlighted

  14. Extracting the emitter orientation in organic light-emitting diodes from external quantum efficiency measurements

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Tobias D., E-mail: Tobias.Schmidt@physik.uni-augsburg.de; Reichardt, Lukas J.; Wehrmeister, Sebastian; Scholz, Bert J.; Mayr, Christian; Brütting, Wolfgang, E-mail: Wolfgang.Bruetting@physik.uni-augsburg.de [Institute of Physics, University of Augsburg, 86135 Augsburg (Germany); Rausch, Andreas F.; Wehlus, Thomas; Reusch, Thilo C. G. [OSRAM OLED GmbH, Wernerwerkstrasse 2, 93049 Regensburg (Germany); Ciarnáin, Rossá Mac; Danz, Norbert [Fraunhofer Institute for Applied Optics and Precision Engineering, 07745 Jena (Germany)

    2014-07-28

    Emitter orientation will play a major role in future applications of organic light-emitting diodes due to its strong impact on the efficiency of the devices. Up to now, determining the orientation of transition dipole moments required elaborate angular-dependent measurements of the light emission pattern. In this paper, we present a simplified and straightforward method to extract the emitter orientation from external quantum efficiency measurements. We demonstrate the validity of the method on three different dye-doped emitting systems.

  15. On quantum efficiency of photoluminescence in ZnO layers and nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Reshchikov, M.A., E-mail: mreshchi@vcu.ed [Physics Department, Virginia Commonwealth University, 701 W. Grace St., Richmond, VA 23284 (United States); El-Shaer, A.; Behrends, A.; Bakin, A.; Waag, A. [Institute of Semiconductor Technology, Technical University of Braunschweig, Braunschweig D-38106 (Germany)

    2009-12-15

    In this work we studied PL in ZnO layers and nanostructures, including ZnO homoepitaxial layers on ZnO substrate and ZnO-Zn{sub 1-x}Mg{sub x}O single quantum well (SQW) structures grown on sapphire substrates by MBE, and ZnO nanowires grown on sapphire by MOCVD. The external quantum efficiency (QE) of PL in O-face ZnO layers exceeded that in Zn-face ZnO layers by two orders of magnitude at low temperatures. In a sample with SQW the combined external QE from the 4.6-nm-wide SQW and 50-nm-thick Zn{sub 1-x}Mg{sub x}O barriers achieved 28% at 15 K. The highest external QE was observed in one of the samples with ZnO nanowires-52% at 15 K and 2% at 300 K. Contribution of defect-related PL bands in ZnO nanowires samples was extremely low.

  16. Flexible deep-ultraviolet light-emitting diodes for significant improvement of quantum efficiencies by external bending

    KAUST Repository

    Shervin, Shahab

    2018-01-26

    Deep ultraviolet (DUV) light at the wavelength range of 250‒280 nm (UVC spectrum) is essential for numerous applications such as sterilization, purification, sensing, and communication. III-nitride-based DUV light-emitting diodes (DUV LEDs), like other solid-state lighting sources, offer a great potential to replace the conventional gas-discharged lamps with short lifetimes and toxic-element-bearing nature. However, unlike visible LEDs, the DUV LEDs are still suffering from low quantum efficiencies (QEs) and low optical output powers. In this work, reported is a new route to improve QEs of AlGaN-based DUV LEDs using mechanical flexibility of recently developed bendable thin-film structures. Numerical studies show that electronic band structures of AlGaN heterostructures and resulting optical and electrical characteristics of the devices can be significantly modified by external bending through active control of piezoelectric polarization. Internal quantum efficiency (IQE) is enhanced higher than three times, when the DUV LEDs are moderately bent to induce in-plane compressive strain in the heterostructure. Furthermore, efficiency droop at high injection currents is mitigated and turn-on voltage of diodes decreases with the same bending condition. The concept of bendable DUV LEDs with a controlled external strain can provide a new path for high-output-power and high-efficiency devices.

  17. Flexible deep-ultraviolet light-emitting diodes for significant improvement of quantum efficiencies by external bending

    KAUST Repository

    Shervin, Shahab; Oh, Seung Kyu; Park, Hyun Jung; Lee, Keon Hwa; Asadirad, Mojtaba; Kim, Seung Hwan; Kim, Jeomoh; Pouladi, Sara; Lee, Sung-Nam; Li, Xiaohang; Kwak, Joon-Seop; Ryou, Jae-Hyun

    2018-01-01

    Deep ultraviolet (DUV) light at the wavelength range of 250‒280 nm (UVC spectrum) is essential for numerous applications such as sterilization, purification, sensing, and communication. III-nitride-based DUV light-emitting diodes (DUV LEDs), like other solid-state lighting sources, offer a great potential to replace the conventional gas-discharged lamps with short lifetimes and toxic-element-bearing nature. However, unlike visible LEDs, the DUV LEDs are still suffering from low quantum efficiencies (QEs) and low optical output powers. In this work, reported is a new route to improve QEs of AlGaN-based DUV LEDs using mechanical flexibility of recently developed bendable thin-film structures. Numerical studies show that electronic band structures of AlGaN heterostructures and resulting optical and electrical characteristics of the devices can be significantly modified by external bending through active control of piezoelectric polarization. Internal quantum efficiency (IQE) is enhanced higher than three times, when the DUV LEDs are moderately bent to induce in-plane compressive strain in the heterostructure. Furthermore, efficiency droop at high injection currents is mitigated and turn-on voltage of diodes decreases with the same bending condition. The concept of bendable DUV LEDs with a controlled external strain can provide a new path for high-output-power and high-efficiency devices.

  18. The photonic nanowire: an emerging platform for highly efficient single-photon sources for quantum information applications

    DEFF Research Database (Denmark)

    Gregersen, Niels; Munsch, Mathieu; Malik, Nitin S.

    2013-01-01

    Efficient coupling between a localized quantum emitter and a well defined optical channel represents a powerful route to realize single-photon sources and spin-photon interfaces. The tailored fiber-like photonic nanowire embedding a single quantum dot has recently demonstrated an appealing...... potential. However, the device requires a delicate, sharp needle-like taper with performance sensitive to minute geometrical details. To overcome this limitation we demonstrate the photonic trumpet, exploiting an opposite tapering strategy. The trumpet features a strongly Gaussian far-field emission...

  19. Exciplex-triplet energy transfer: A new method to achieve extremely efficient organic light-emitting diode with external quantum efficiency over 30% and drive voltage below 3 V

    Science.gov (United States)

    Seo, Satoshi; Shitagaki, Satoko; Ohsawa, Nobuharu; Inoue, Hideko; Suzuki, Kunihiko; Nowatari, Hiromi; Yamazaki, Shunpei

    2014-04-01

    A novel approach to enhance the power efficiency of an organic light-emitting diode (OLED) by employing energy transfer from an exciplex to a phosphorescent emitter is reported. It was found that excitation energy of an exciplex formed between an electron-transporting material with a π-deficient quinoxaline moiety and a hole-transporting material with aromatic amine structure can be effectively transferred to a phosphorescent iridium complex in an emission layer of a phosphorescent OLED. Moreover, such an exciplex formation increases quantum efficiency and reduces drive voltage. A highly efficient, low-voltage, and long-life OLED based on this energy transfer is also demonstrated. This OLED device exhibited extremely high external quantum efficiency of 31% even without any attempt to enhance light outcoupling and also achieved a low drive voltage of 2.8 V and a long lifetime of approximately 1,000,000 h at a luminance of 1,000 cd/m2.

  20. Direct Determination of Absolute Configuration of Methyl-Substituted Phenyloxiranes: A Combined Experimental and Theoretical Approach

    DEFF Research Database (Denmark)

    Fristrup, Peter; Lassen, Peter Rygaard; Johannessen, Christian

    2006-01-01

    obtained from quantum mechanical calculations (density functional theory with the B3LYP hybrid exchange correlation functional with 6-31++G**, aug-cc-pVDZ, or aug-cc-pVTZ basis set) and related to the physical structure of the compounds. The absolute configuration could be established directly in each case...

  1. Time Dependent Quantum Efficiency and Dark Current Measurements in an RF Photocathode Injector with a High Quantum Efficiency Cathode

    CERN Document Server

    Fliller, Raymond P; Hartung, Walter

    2005-01-01

    A system was developed at INFN Milano for preparing cesium telluride photo-cathodes and transferring them into an RF gun under ultra-high vacuum. This system has been in use at the Fermilab NICADD Photo-Injector Laboratory (FNPL) since 1997. A similar load-lock system is used at the TeSLA Test Facility at DESY-Hamburg. Two 1.625-cell high duty cycle RF guns have been fabricated for the project. Studies of the photo-emission and field emission ("dark current") behavior of both RF guns have been carried out. Unexpected phenomena were observed in one of the RF guns. In situ changes in the cathode's quantum efficiency and dark current with time were seen during operation of the photo-injector. These changes were correlated with the magnetostatic field at the cathode.* In addition, multipacting is observed in the RF guns under certain conditions. Recent measurements indicate a correlation between multipacting, anomalous photo-emission behavior, and anomalous field emission behavior. Results will be presented.

  2. A pH dependence study of CdTe quantum dots fluorescence quantum yields using eclipsing thermal lens spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Estupiñán-López, C. [Laboratory of Biomedical Optics and Imaging, Federal University of Pernambuco, Recife, PE (Brazil); Dominguez, C. Tolentino [Laboratory of Biomedical Optics and Imaging, Federal University of Pernambuco, Recife, PE (Brazil); Centre for Telecommunication Studies, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, RJ (Brazil); Filho, P.E. Cabral [Laboratory of Biomedical Optics and Imaging, Federal University of Pernambuco, Recife, PE (Brazil); Biophysics and Radiobiology Department, Federal University of Pernambuco, Recife, PE (Brazil); Santos, B.S. [Laboratory of Biomedical Optics and Imaging, Federal University of Pernambuco, Recife, PE (Brazil); Pharmaceutical Sciences Department, Federal University of Pernambuco, Recife, PE (Brazil); Fontes, A., E-mail: adriana.fontes.biofisica@gmail.com [Laboratory of Biomedical Optics and Imaging, Federal University of Pernambuco, Recife, PE (Brazil); Biophysics and Radiobiology Department, Federal University of Pernambuco, Recife, PE (Brazil); Araujo, R.E. de, E-mail: renato.earaujo@ufpe.br [Laboratory of Biomedical Optics and Imaging, Federal University of Pernambuco, Recife, PE (Brazil)

    2016-06-15

    In this study we evaluated the absolute fluorescence quantum yield (Φ) of hydrophilic CdTe QDs in function of different pHs, modified from the alkaline to acid, by using two different chemicals compounds, the mercaptosuccinic acid (MSA-the stabilizing agent of the QDs synthesis) or hydrochloric acid (HCl). The pH control of QDs suspensions is essential for the use of fluorescent nanoparticles in biological systems. We used the eclipsing thermal lens spectroscopy technique to determine the absolute fluorescence quantum yield values. The results showed variations on the Φ values as a function of the pH, which allowed a better understanding of QDs emission characteristics, establishing parameters for their use in biomedical applications such as optical images of biological systems, immunoassays, flow cytometry, biosensors and others.

  3. Scaling gross ecosystem production at Harvard Forest with remote sensing: a comparison of estimates from a constrained quantum-use efficiency model and eddy correlation

    International Nuclear Information System (INIS)

    Waring, R.H.; Law, B.E.; Goulden, M.L.; Bassow, S.L.; McCreight, R.W.; Wofsy, S.C.; Bazzaz, F.A.

    1995-01-01

    Two independent methods of estimating gross ecosystem production (GEP) were compared over a period of 2 years at monthly integrals for a mixed forest of conifers and deciduous hardwoods at Harvard Forest in central Massachusetts. Continuous eddy flux measurements of net ecosystem exchange (NEE) provided one estimate of GEP by taking day to night temperature differences into account to estimate autotrophic and heterotrophic respiration. GEP was also estimated with a quantum efficiency model based on measurements of maximum quantum efficiency (Qmax), seasonal variation in canopy phenology and chlorophyll content, incident PAR, and the constraints of freezing temperatures and vapour pressure deficits on stomatal conductance. Quantum efficiency model estimates of GEP and those derived from eddy flux measurements compared well at monthly integrals over two consecutive years (R 2 = 0–98). Remotely sensed data were acquired seasonally with an ultralight aircraft to provide a means of scaling the leaf area and leaf pigmentation changes that affected the light absorption of photosynthetically active radiation to larger areas. A linear correlation between chlorophyll concentrations in the upper canopy leaves of four hardwood species and their quantum efficiencies (R 2 = 0–99) suggested that seasonal changes in quantum efficiency for the entire canopy can be quantified with remotely sensed indices of chlorophyll. Analysis of video data collected from the ultralight aircraft indicated that the fraction of conifer cover varied from < 7% near the instrument tower to about 25% for a larger sized area. At 25% conifer cover, the quantum efficiency model predicted an increase in the estimate of annual GEP of < 5% because unfavourable environmental conditions limited conifer photosynthesis in much of the non-growing season when hardwoods lacked leaves

  4. Absolute measurement of the activity of 222Rn using a proportional counter

    International Nuclear Information System (INIS)

    Busch, Ingo; Greupner, Heinz; Keyser, Uwe

    2002-01-01

    A measuring set-up comprising a proportional counter of calculable 222 Rn efficiency and quantifiable active volume (δ V 222 Rn efficiency is determined by computer simulation of the measured α-spectra. The procedures necessary for absolute measurements by means of the counter are described, and the suitability of the counter for absolute measurements of the 222 Rn activity is proved by experiments. Thus, a new method for the realization of the unit of activity of 222 Rn is obtained, which is independent of the unit of activity of 226 Ra

  5. Type II GaSb/GaAs quantum dot/ring stacks with extended photoresponse for efficient solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Carrington, Peter James, E-mail: p.carrington@lancaster.ac.uk [Physics Department, Lancaster University, Lancaster LA1 4YB (United Kingdom); Mahajumi, Abu Syed [Physics Department, Lancaster University, Lancaster LA1 4YB (United Kingdom); Wagener, Magnus C.; Botha, Johannes Reinhardt [Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Zhuang Qian; Krier, Anthony [Physics Department, Lancaster University, Lancaster LA1 4YB (United Kingdom)

    2012-05-15

    We report on the fabrication of GaAs based p-i-n solar cells containing 5 and 10 layers of type II GaSb quantum rings grown by molecular beam epitaxy. Solar cells containing quantum rings show improved efficiency at longer wavelengths into the near-IR extending up to 1500 nm and show enhanced short-circuit current under 1 sun illumination compared to a GaAs control cell. A reduction in the open-circuit voltage is observed due to the build-up of internal strain. The MBE growth, formation and photoluminescence of single and stacked layers of GaSb/GaAs quantum rings are also presented.

  6. Type II GaSb/GaAs quantum dot/ring stacks with extended photoresponse for efficient solar cells

    International Nuclear Information System (INIS)

    Carrington, Peter James; Mahajumi, Abu Syed; Wagener, Magnus C.; Botha, Johannes Reinhardt; Zhuang Qian; Krier, Anthony

    2012-01-01

    We report on the fabrication of GaAs based p–i–n solar cells containing 5 and 10 layers of type II GaSb quantum rings grown by molecular beam epitaxy. Solar cells containing quantum rings show improved efficiency at longer wavelengths into the near-IR extending up to 1500 nm and show enhanced short-circuit current under 1 sun illumination compared to a GaAs control cell. A reduction in the open-circuit voltage is observed due to the build-up of internal strain. The MBE growth, formation and photoluminescence of single and stacked layers of GaSb/GaAs quantum rings are also presented.

  7. Study on absolute humidity influence of NRL-1 measuring apparatus for radon

    International Nuclear Information System (INIS)

    Shan Jian; Xiao Detao; Zhao Guizhi; Zhou Qingzhi; Liu Yan; Qiu Shoukang; Meng Yecheng; Xiong Xinming; Liu Xiaosong; Ma Wenrong

    2014-01-01

    The absolute humidity and temperature's effects on the NRL-1 measuring apparatus for radon were studied in this paper. By controlling the radon activity concentration of the radon laboratory in University of South China and improving the temperature and humidity adjust strategy, different correction factor values under different absolute humidities were obtained. Moreover, a correction curve between 1.90 and 14.91 g/m"3 was also attained. The results show that in the case of absolute humidity, when it is less than 2.4 g/m"3, collection efficiency of the NRL-1 measuring apparatus for radon tends to be constant, and the correction factor of the absolute humidity closes to 1. However, the correction factor increases nonlinearly along with the absolute humidity. (authors)

  8. Quantum memory for images: A quantum hologram

    International Nuclear Information System (INIS)

    Vasilyev, Denis V.; Sokolov, Ivan V.; Polzik, Eugene S.

    2008-01-01

    Matter-light quantum interface and quantum memory for light are important ingredients of quantum information protocols, such as quantum networks, distributed quantum computation, etc. [P. Zoller et al., Eur. Phys. J. D 36, 203 (2005)]. In this paper we present a spatially multimode scheme for quantum memory for light, which we call a quantum hologram. Our approach uses a multiatom ensemble which has been shown to be efficient for a single spatial mode quantum memory. Due to the multiatom nature of the ensemble and to the optical parallelism it is capable of storing many spatial modes, a feature critical for the present proposal. A quantum hologram with the fidelity exceeding that of classical hologram will be able to store quantum features of an image, such as multimode superposition and entangled quantum states, something that a standard hologram is unable to achieve

  9. Luminescence quantum efficiency determination in LiYF4:Nd3+ using photoacoustic spectroscopy

    International Nuclear Information System (INIS)

    Franca, E.J.

    1989-01-01

    Optical properties of LiYF 4 :Nd 3+ were studied using absorption, emission, excitation and photo acoustic spectroscopies. The Nd 3+ transitions were identified and the Stark sublevels were determined for the 4 I 9/2 , 4 I 11/2 and 4 F 3/2 levels. It is also presented and analysed three methods for the luminescence quantum efficiency determination, based on parameters from the spectra mentioned above. These methods were applied to four groups centered on 517, 577, 743 and 792nm. The first method provided values too high due to its assumption that the material has only one luminescent channel. The values obtained from the second one are still somewhat high but closer to the expected ones. The superestimation can be atributed to the imprecision in the existing branching ratios values, needed in this method. The third one, developed from the other two, provided values closer to the expected ones, but also affected by experimental conditions limitations, mainly related to the spectral resolution of the photoacustic spectra. The obtained results show that this method, once improved and associated to better experimental conditions, will lead to more accurate luminescence quantum efficiency values. (author) [pt

  10. Influence of dislocation density on internal quantum efficiency of GaN-based semiconductors

    Directory of Open Access Journals (Sweden)

    Jiadong Yu

    2017-03-01

    Full Text Available By considering the effects of stress fields coming from lattice distortion as well as charge fields coming from line charges at edge dislocation cores on radiative recombination of exciton, a model of carriers’ radiative and non-radiative recombination has been established in GaN-based semiconductors with certain dislocation density. Using vector average of the stress fields and the charge fields, the relationship between dislocation density and the internal quantum efficiency (IQE is deduced. Combined with related experimental results, this relationship is fitted well to the trend of IQEs of bulk GaN changing with screw and edge dislocation density, meanwhile its simplified form is fitted well to the IQEs of AlGaN multiple quantum well LEDs with varied threading dislocation densities but the same light emission wavelength. It is believed that this model, suitable for different epitaxy platforms such as MOCVD and MBE, can be used to predict to what extent the luminous efficiency of GaN-based semiconductors can still maintain when the dislocation density increases, so as to provide a reasonable rule of thumb for optimizing the epitaxial growth of GaN-based devices.

  11. Absolute risk, absolute risk reduction and relative risk

    Directory of Open Access Journals (Sweden)

    Jose Andres Calvache

    2012-12-01

    Full Text Available This article illustrates the epidemiological concepts of absolute risk, absolute risk reduction and relative risk through a clinical example. In addition, it emphasizes the usefulness of these concepts in clinical practice, clinical research and health decision-making process.

  12. ZnSe passivation layer for the efficiency enhancement of CuInS{sub 2} quantum dots sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Zhuoyin; Liu, Yueli; Zhao, Yinghan; Chen, Keqiang; Cheng, Yuqing [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070 (China); Kovalev, Valery [Department of Mechanics and Mathematics, Moscow State University named after M.V. Lomonosov, Leninskie Gory 1, 119992 Moscow (Russian Federation); Chen, Wen, E-mail: chenw@whut.edu.cn [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070 (China)

    2014-02-25

    Highlights: • ZnSe is employed as passivation layer in CuInS{sub 2} quantum dots sensitized solar cells. • Slight red-shift has been occurred in UV–vis absorption spectra with ZnSe coating. • CuInS{sub 2} based solar cells coated by ZnSe have better efficiency than that of ZnS. • Higher rate of charge transport can be produced after coating with ZnSe. -- Abstract: The effect of ZnSe passivation layer is investigated in the CuInS{sub 2} quantum dot sensitized solar cells, which is used to improve the photovoltaic performance. The CuInS{sub 2} quantum dot sensitized TiO{sub 2} photo-anodes are prepared by assembly linking technique, and then deposited by the ZnSe passivation layer using the successive ionic layer absorption and reaction technique. The optical absorption edge and photoluminescence peak have slightly red-shifted after the passivation layer coating. Under solar light illumination, the ZnSe passivation layer based CuInS{sub 2} quantum dot sensitized solar cells have the higher photovoltaic efficiency of 0.95% and incident photon conversion efficiency response than that of pure CuInS{sub 2} based solar cells and ZnS passivation layer based solar cells, as the electron injection rate becomes faster after coating with ZnSe passivation layer.

  13. Experimental demonstration of selective quantum process tomography on an NMR quantum information processor

    Science.gov (United States)

    Gaikwad, Akshay; Rehal, Diksha; Singh, Amandeep; Arvind, Dorai, Kavita

    2018-02-01

    We present the NMR implementation of a scheme for selective and efficient quantum process tomography without ancilla. We generalize this scheme such that it can be implemented efficiently using only a set of measurements involving product operators. The method allows us to estimate any element of the quantum process matrix to a desired precision, provided a set of quantum states can be prepared efficiently. Our modified technique requires fewer experimental resources as compared to the standard implementation of selective and efficient quantum process tomography, as it exploits the special nature of NMR measurements to allow us to compute specific elements of the process matrix by a restrictive set of subsystem measurements. To demonstrate the efficacy of our scheme, we experimentally tomograph the processes corresponding to "no operation," a controlled-NOT (CNOT), and a controlled-Hadamard gate on a two-qubit NMR quantum information processor, with high fidelities.

  14. Approximate Quantum Adders with Genetic Algorithms: An IBM Quantum Experience

    Directory of Open Access Journals (Sweden)

    Li Rui

    2017-07-01

    Full Text Available It has been proven that quantum adders are forbidden by the laws of quantum mechanics. We analyze theoretical proposals for the implementation of approximate quantum adders and optimize them by means of genetic algorithms, improving previous protocols in terms of efficiency and fidelity. Furthermore, we experimentally realize a suitable approximate quantum adder with the cloud quantum computing facilities provided by IBM Quantum Experience. The development of approximate quantum adders enhances the toolbox of quantum information protocols, paving the way for novel applications in quantum technologies.

  15. Absolute calibration of the neutron yield measurement on JT-60 Upgrade

    International Nuclear Information System (INIS)

    Nishitani, Takeo; Takeuchi, Hiroshi; Barnes, C.W.

    1991-10-01

    Absolutely calibrated measurements of the neutron yield are important for the evaluation of the plasma performance such as the fusion gain Q in DD operating tokamaks. Total neutron yield is measured with 235 U and 238 U fission chambers and 3 He proportional counters in JT-60 Upgrade. The in situ calibration was performed by moving the 252 Cf neutron source toroidally through the JT-60 vacuum vessel. Detection efficiencies of three 235 U and two 3 He detectors were measured for 92 locations of the neutron point source in toroidal scans at two different major radii. The total detection efficiency for the torus neutron source was obtained by averaging the point efficiencies over the whole toroidal angle. The uncertainty of the resulting absolute plasma neutron source calibration is estimated to be ± 10%. (author)

  16. Quantum Secure Dialogue with Quantum Encryption

    International Nuclear Information System (INIS)

    Ye Tian-Yu

    2014-01-01

    How to solve the information leakage problem has become the research focus of quantum dialogue. In this paper, in order to overcome the information leakage problem in quantum dialogue, a novel approach for sharing the initial quantum state privately between communicators, i.e., quantum encryption sharing, is proposed by utilizing the idea of quantum encryption. The proposed protocol uses EPR pairs as the private quantum key to encrypt and decrypt the traveling photons, which can be repeatedly used after rotation. Due to quantum encryption sharing, the public announcement on the state of the initial quantum state is omitted, thus the information leakage problem is overcome. The information-theoretical efficiency of the proposed protocol is nearly 100%, much higher than previous information leakage resistant quantum dialogue protocols. Moreover, the proposed protocol only needs single-photon measurements and nearly uses single photons as quantum resource so that it is convenient to implement in practice. (general)

  17. Recombination dynamics and internal quantum efficiency in InGaN

    International Nuclear Information System (INIS)

    Murotani, Hideaki; Andoh, Hiroya; Tsukamoto, Takehiko; Sugiura, Toko; Yamada, Yoichi; Tabata, Takuya; Honda, Yoshio; Yamaguchi, Masahito; Amano, Hiroshi

    2014-01-01

    Recombination dynamics and internal quantum efficiency (IQE) of green luminescent InGaN nanowires with different crystalline qualities have been studied by means photoluminescence (PL) and time-resolved PL spectroscopy. Temperature- and excitation-power-density-dependent PL spectroscopy enabled to evaluate the IQE as a function of excitation power density. The shape of the efficiency curves at low temperature strongly depended on the magnitude of nonradiative recombination processes. This leads to the misestimation of the IQE in the lower quality nanowire. In addition, the PL decay curves were well described by a double exponential function both at 6 and 300 K. The PL decay time of the faster component was affected by nonradiative recombination processes even at low temperature. This indicated that the radiative recombination lifetime cannot be estimated from the PL decay time in the lower quality nanowire. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Efficient Luminescence from Perovskite Quantum Dot Solids

    KAUST Repository

    Kim, Younghoon; Yassitepe, Emre; Voznyy, Oleksandr; Comin, Riccardo; Walters, Grant; Gong, Xiwen; Kanjanaboos, Pongsakorn; Nogueira, Ana F.; Sargent, Edward H.

    2015-01-01

    © 2015 American Chemical Society. Nanocrystals of CsPbX3 perovskites are promising materials for light-emitting optoelectronics because of their colloidal stability, optically tunable bandgap, bright photoluminescence, and excellent photoluminescence quantum yield. Despite their promise, nanocrystal-only films of CsPbX3 perovskites have not yet been fabricated; instead, highly insulating polymers have been relied upon to compensate for nanocrystals' unstable surfaces. We develop solution chemistry that enables single-step casting of perovskite nanocrystal films and overcomes problems in both perovskite quantum dot purification and film fabrication. Centrifugally cast films retain bright photoluminescence and achieve dense and homogeneous morphologies. The new materials offer a platform for optoelectronic applications of perovskite quantum dot solids.

  19. Efficient Luminescence from Perovskite Quantum Dot Solids

    KAUST Repository

    Kim, Younghoon

    2015-11-18

    © 2015 American Chemical Society. Nanocrystals of CsPbX3 perovskites are promising materials for light-emitting optoelectronics because of their colloidal stability, optically tunable bandgap, bright photoluminescence, and excellent photoluminescence quantum yield. Despite their promise, nanocrystal-only films of CsPbX3 perovskites have not yet been fabricated; instead, highly insulating polymers have been relied upon to compensate for nanocrystals\\' unstable surfaces. We develop solution chemistry that enables single-step casting of perovskite nanocrystal films and overcomes problems in both perovskite quantum dot purification and film fabrication. Centrifugally cast films retain bright photoluminescence and achieve dense and homogeneous morphologies. The new materials offer a platform for optoelectronic applications of perovskite quantum dot solids.

  20. All-photonic quantum repeaters

    Science.gov (United States)

    Azuma, Koji; Tamaki, Kiyoshi; Lo, Hoi-Kwong

    2015-01-01

    Quantum communication holds promise for unconditionally secure transmission of secret messages and faithful transfer of unknown quantum states. Photons appear to be the medium of choice for quantum communication. Owing to photon losses, robust quantum communication over long lossy channels requires quantum repeaters. It is widely believed that a necessary and highly demanding requirement for quantum repeaters is the existence of matter quantum memories. Here we show that such a requirement is, in fact, unnecessary by introducing the concept of all-photonic quantum repeaters based on flying qubits. In particular, we present a protocol based on photonic cluster-state machine guns and a loss-tolerant measurement equipped with local high-speed active feedforwards. We show that, with such all-photonic quantum repeaters, the communication efficiency scales polynomially with the channel distance. Our result paves a new route towards quantum repeaters with efficient single-photon sources rather than matter quantum memories. PMID:25873153

  1. Efficient quantum secret sharing scheme with two-particle entangled states

    International Nuclear Information System (INIS)

    Zhu Zhen-Chao; Fu An-Min; Zhang Yu-Qing

    2011-01-01

    This paper proposes a protocol for multi-party quantum secret sharing utilizing four non-orthogonal two-particle entangled states following some ideas in the schemes proposed by Liu et al. (2006 Chin. Phys. Lett. 23 3148) and Zhang et al. (2009 Chin. Phys. B 18 2149) respectively. The theoretical efficiency for qubits of the new protocol is improved from 50% to approaching 100%. All the entangled states can be used for generating the private key except those used for the eavesdropping check. The validity of a probable attack called opaque cheat attack to this kind of protocols is considered in the paper for the first time. (general)

  2. Highly efficient quantum dot-based photoconductive THz materials and devices

    Science.gov (United States)

    Rafailov, E. U.; Leyman, R.; Carnegie, D.; Bazieva, N.

    2013-09-01

    We demonstrate Terahertz (THz) signal sources based on photoconductive (PC) antenna devices comprising active layers of InAs semiconductor quantum dots (QDs) on GaAs. Antenna structures comprised of multiple active layers of InAs:GaAs PC materials are optically pumped using ultrashort pulses generated by a Ti:Sapphire laser and CW dualwavelength laser diodes. We also characterised THz output signals using a two-antenna coherent detection system. We discuss preliminary performance data from such InAs:GaAs THz devices which exhibit efficient emission of both pulsed and continuous wave (CW) THz signals and significant optical-to-THz conversion at both absorption wavelength ranges, <=850 nm and <=1300 nm.

  3. Expected number of quantum channels in quantum networks

    Science.gov (United States)

    Chen, Xi; Wang, He-Ming; Ji, Dan-Tong; Mu, Liang-Zhu; Fan, Heng

    2015-07-01

    Quantum communication between nodes in quantum networks plays an important role in quantum information processing. Here, we proposed the use of the expected number of quantum channels as a measure of the efficiency of quantum communication for quantum networks. This measure quantified the amount of quantum information that can be teleported between nodes in a quantum network, which differs from classical case in that the quantum channels will be consumed if teleportation is performed. We further demonstrated that the expected number of quantum channels represents local correlations depicted by effective circles. Significantly, capacity of quantum communication of quantum networks quantified by ENQC is independent of distance for the communicating nodes, if the effective circles of communication nodes are not overlapped. The expected number of quantum channels can be enhanced through transformations of the lattice configurations of quantum networks via entanglement swapping. Our results can shed lights on the study of quantum communication in quantum networks.

  4. Improvement of quantum efficiency in green light-emitting diodes with pre-TMIn flow treatment

    International Nuclear Information System (INIS)

    Lee, Ya-Ju; Chen, Yi-Ching; Lu, Tien-Chang

    2011-01-01

    The effects of pre-trimethlyindium (TMIn) flow on the improved electrical characteristics and highly stable temperature properties of InGaN green light-emitting diodes (LEDs) are discussed. For the LED sample with a pre-TMIn flow treatment, the tunnelling of injected carriers associated with threading defects is significantly reduced, which promotes the diffusion-recombination of injected carriers, as well as the overall emission efficiency of the LED. In addition, the pre-TMIn flow treatment evidently reduces the dependence of external quantum efficiency on temperature and efficiency droop of green LEDs. As a result, we conclude that the pre-TMIn flow treatment is a promising scheme for the improvement of output performance of InGaN-based green LEDs.

  5. Simple formalism for efficient derivatives and multi-determinant expansions in quantum Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Filippi, Claudia, E-mail: c.filippi@utwente.nl [MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Assaraf, Roland, E-mail: assaraf@lct.jussieu.fr [Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Chimie Théorique CC 137-4, place Jussieu F-75252 Paris Cedex 05 (France); Moroni, Saverio, E-mail: moroni@democritos.it [CNR-IOM DEMOCRITOS, Istituto Officina dei Materiali, and SISSA Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, I-34136 Trieste (Italy)

    2016-05-21

    We present a simple and general formalism to compute efficiently the derivatives of a multi-determinant Jastrow-Slater wave function, the local energy, the interatomic forces, and similar quantities needed in quantum Monte Carlo. Through a straightforward manipulation of matrices evaluated on the occupied and virtual orbitals, we obtain an efficiency equivalent to algorithmic differentiation in the computation of the interatomic forces and the optimization of the orbital parameters. Furthermore, for a large multi-determinant expansion, the significant computational gain afforded by a recently introduced table method is here extended to the local value of any one-body operator and to its derivatives, in both all-electron and pseudopotential calculations.

  6. Optimal tunneling enhances the quantum photovoltaic effect in double quantum dots

    International Nuclear Information System (INIS)

    Wang, Chen; Cao, Jianshu; Ren, Jie

    2014-01-01

    We investigate the quantum photovoltaic effect in double quantum dots by applying the nonequilibrium quantum master equation. A drastic suppression of the photovoltaic current is observed near the open circuit voltage, which leads to a large filling factor. We find that there always exists an optimal inter-dot tunneling that significantly enhances the photovoltaic current. Maximal output power will also be obtained around the optimal inter-dot tunneling. Moreover, the open circuit voltage behaves approximately as the product of the eigen-level gap and the Carnot efficiency. These results suggest a great potential for double quantum dots as efficient photovoltaic devices

  7. Topics in quantum cryptography, quantum error correction, and channel simulation

    Science.gov (United States)

    Luo, Zhicheng

    In this thesis, we mainly investigate four different topics: efficiently implementable codes for quantum key expansion [51], quantum error-correcting codes based on privacy amplification [48], private classical capacity of quantum channels [44], and classical channel simulation with quantum side information [49, 50]. For the first topic, we propose an efficiently implementable quantum key expansion protocol, capable of increasing the size of a pre-shared secret key by a constant factor. Previously, the Shor-Preskill proof [64] of the security of the Bennett-Brassard 1984 (BB84) [6] quantum key distribution protocol relied on the theoretical existence of good classical error-correcting codes with the "dual-containing" property. But the explicit and efficiently decodable construction of such codes is unknown. We show that we can lift the dual-containing constraint by employing the non-dual-containing codes with excellent performance and efficient decoding algorithms. For the second topic, we propose a construction of Calderbank-Shor-Steane (CSS) [19, 68] quantum error-correcting codes, which are originally based on pairs of mutually dual-containing classical codes, by combining a classical code with a two-universal hash function. We show, using the results of Renner and Koenig [57], that the communication rates of such codes approach the hashing bound on tensor powers of Pauli channels in the limit of large block-length. For the third topic, we prove a regularized formula for the secret key assisted capacity region of a quantum channel for transmitting private classical information. This result parallels the work of Devetak on entanglement assisted quantum communication capacity. This formula provides a new family protocol, the private father protocol, under the resource inequality framework that includes the private classical communication without the assisted secret keys as a child protocol. For the fourth topic, we study and solve the problem of classical channel

  8. Entangling efficiency of linear-optical quantum gates

    Czech Academy of Sciences Publication Activity Database

    Lemr, Karel; Černoch, Antonín; Soubusta, Jan; Dušek, M.

    2012-01-01

    Roč. 86, č. 3 (2012), "032321-1"-"032321-5" ISSN 1050-2947 R&D Projects: GA ČR GAP205/12/0382 Institutional research plan: CEZ:AV0Z10100522 Keywords : linear-optical quantum gates * quantum physics Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.042, year: 2012 http://pra.aps.org/pdf/PRA/v86/i3/e032321

  9. Photovoltaic efficiency of intermediate band solar cells based on CdTe/CdMnTe coupled quantum dots

    Science.gov (United States)

    Prado, Silvio J.; Marques, Gilmar E.; Alcalde, Augusto M.

    2017-11-01

    In this work we show the calculation of optimized efficiencies of intermediate band solar cells (IBSCs) based on Mn-doped II-VI CdTe/CdMnTe coupled quantum dot (QD) structures. We focus our attention on the combined effects of geometrical and Mn-doping parameters on optical properties and solar cell efficiency. In the framework of {k \\cdot p} theory, we accomplish detailed calculations of electronic structure, transition energies, optical selection rules and their corresponding intra- and interband oscillator strengths. With these results and by following the intermediate band model, we have developed a strategy which allows us to find optimal photovoltaic efficiency values. We also show that the effects of band admixture which can lead to degradation of optical transitions and reduction of efficiency can be partly minimized by a careful selection of the structural parameters and Mn-concentration. Thus, the improvement of band engineering is mandatory for any practical implementation of QD systems as IBSC hardware. Finally, our calculations show that it is possible to reach significant efficiency, up to  ∼26%, by selecting a restricted space of parameters such as quantum dot size and shape and Mn-concentration effects, to improve the modulation of optical absorption in the structures.

  10. Photovoltaic efficiency of intermediate band solar cells based on CdTe/CdMnTe coupled quantum dots.

    Science.gov (United States)

    Prado, Silvio J; Marques, Gilmar E; Alcalde, Augusto M

    2017-11-08

    In this work we show the calculation of optimized efficiencies of intermediate band solar cells (IBSCs) based on Mn-doped II-VI CdTe/CdMnTe coupled quantum dot (QD) structures. We focus our attention on the combined effects of geometrical and Mn-doping parameters on optical properties and solar cell efficiency. In the framework of [Formula: see text] theory, we accomplish detailed calculations of electronic structure, transition energies, optical selection rules and their corresponding intra- and interband oscillator strengths. With these results and by following the intermediate band model, we have developed a strategy which allows us to find optimal photovoltaic efficiency values. We also show that the effects of band admixture which can lead to degradation of optical transitions and reduction of efficiency can be partly minimized by a careful selection of the structural parameters and Mn-concentration. Thus, the improvement of band engineering is mandatory for any practical implementation of QD systems as IBSC hardware. Finally, our calculations show that it is possible to reach significant efficiency, up to  ∼26%, by selecting a restricted space of parameters such as quantum dot size and shape and Mn-concentration effects, to improve the modulation of optical absorption in the structures.

  11. Two Quantum Polytropic Cycles

    Science.gov (United States)

    Arias-Hernández, L. A.; Morales-Serrano, A. F.

    2002-11-01

    In this work we follow the Bender et al paper [1] to study the quantum analogues of the Stirling and Ericsson polytropic cycles. In the context of the classical thermodynamics, the Stirling and Ericsson cycles correspond to reversible heat engines with two isothermal processes joined by two polytropic branches which occur in a device called regenerator. If this device is an ideal one, the efficiency of these cycles is the Carnot efficiency. Here, we introduce the quantum analogues of the Stirling and Ericsson cycles, the first one based on a double square potential well with a finite potential barrier, since in this system the tunnel effect could be the analogue to the regeneration classical process, therefore the isochoric quantum branches would really correspond to an internal energy storage, and the last one with an unknown system where the isobaric quantum processes don't induce changes in its quantum state. With these systems the quantum engines have cycles consisting of polytropic and isothermal quantum processes analogues to the corresponding classical processes. We show that in both cases the quantum cycles have an efficiency given by ηCQM = 1 - EC/EH, which is the same expression for the quantum analogue of the Carnot cycle studied by Bender.

  12. A proposal to measure absolute environmental sustainability in lifecycle assessment

    DEFF Research Database (Denmark)

    Bjørn, Anders; Margni, Manuele; Roy, Pierre-Olivier

    2016-01-01

    sustainable are therefore increasingly important. Such absolute indicators exist, but suffer from shortcomings such as incomplete coverage of environmental issues, varying data quality and varying or insufficient spatial resolution. The purpose of this article is to demonstrate that life cycle assessment (LCA...... in supporting decisions aimed at simultaneously reducing environmental impacts efficiently and maintaining or achieving environmental sustainability. We have demonstrated that LCA indicators can be modified from being relative to being absolute indicators of environmental sustainability. Further research should...

  13. Quantum demultiplexer of quantum parameter-estimation information in quantum networks

    Science.gov (United States)

    Xie, Yanqing; Huang, Yumeng; Wu, Yinzhong; Hao, Xiang

    2018-05-01

    The quantum demultiplexer is constructed by a series of unitary operators and multipartite entangled states. It is used to realize information broadcasting from an input node to multiple output nodes in quantum networks. The scheme of quantum network communication with respect to phase estimation is put forward through the demultiplexer subjected to amplitude damping noises. The generalized partial measurements can be applied to protect the transferring efficiency from environmental noises in the protocol. It is found out that there are some optimal coherent states which can be prepared to enhance the transmission of phase estimation. The dynamics of state fidelity and quantum Fisher information are investigated to evaluate the feasibility of the network communication. While the state fidelity deteriorates rapidly, the quantum Fisher information can be enhanced to a maximum value and then decreases slowly. The memory effect of the environment induces the oscillations of fidelity and quantum Fisher information. The adjustment of the strength of partial measurements is helpful to increase quantum Fisher information.

  14. Quantum signature scheme for known quantum messages

    International Nuclear Information System (INIS)

    Kim, Taewan; Lee, Hyang-Sook

    2015-01-01

    When we want to sign a quantum message that we create, we can use arbitrated quantum signature schemes which are possible to sign for not only known quantum messages but also unknown quantum messages. However, since the arbitrated quantum signature schemes need the help of a trusted arbitrator in each verification of the signature, it is known that the schemes are not convenient in practical use. If we consider only known quantum messages such as the above situation, there can exist a quantum signature scheme with more efficient structure. In this paper, we present a new quantum signature scheme for known quantum messages without the help of an arbitrator. Differing from arbitrated quantum signature schemes based on the quantum one-time pad with the symmetric key, since our scheme is based on quantum public-key cryptosystems, the validity of the signature can be verified by a receiver without the help of an arbitrator. Moreover, we show that our scheme provides the functions of quantum message integrity, user authentication and non-repudiation of the origin as in digital signature schemes. (paper)

  15. Quantum computation of multifractal exponents through the quantum wavelet transform

    International Nuclear Information System (INIS)

    Garcia-Mata, Ignacio; Giraud, Olivier; Georgeot, Bertrand

    2009-01-01

    We study the use of the quantum wavelet transform to extract efficiently information about the multifractal exponents for multifractal quantum states. We show that, combined with quantum simulation algorithms, it enables to build quantum algorithms for multifractal exponents with a polynomial gain compared to classical simulations. Numerical results indicate that a rough estimate of fractality could be obtained exponentially fast. Our findings are relevant, e.g., for quantum simulations of multifractal quantum maps and of the Anderson model at the metal-insulator transition.

  16. Impact of light polarization on photoluminescence intensity and quantum efficiency in AlGaN and AlInGaN layers

    Science.gov (United States)

    Netzel, C.; Knauer, A.; Weyers, M.

    2012-12-01

    We analyzed emission intensity, quantum efficiency, and emitted light polarization of c-plane AlGaN and AlInGaN layers (λ = 320-350 nm) by temperature dependent photoluminescence. Low indium content in AlInGaN structures causes a significant intensity increase by change of the polarization of the emitted light. Polarization changes from E ⊥ c to E ‖ c with increasing aluminum content. It switches back to E ⊥ c with the incorporation of indium. The polarization degree decreases with temperature. This temperature dependence can corrupt internal quantum efficiency determination by temperature dependent photoluminescence.

  17. Room temperature PL efficiency of InGaN/GaN quantum well structures with prelayers as a function of number of quantum wells

    International Nuclear Information System (INIS)

    Christian, George M.; Hammersley, Simon; Davies, Matthew J.; Dawson, Philip; Kappers, Menno J.; Massabuau, Fabien C.P.; Oliver, Rachel A.; Humphreys, Colin J.

    2016-01-01

    We report on the effects of varying the number of quantum wells (QWs) in an InGaN/GaN multiple QW (MQW) structure containing a 23 nm thick In0.05Ga0.95N prelayer doped with Si. The calculated conduction and valence bands for the structures show an increasing total electric field across the QWs with increasing number of QWs. This is due to the reduced strength of the surface polarisation field, which opposes the built-in field across the QWs, as its range is increased over thicker samples. Low temperature photoluminescence (PL) measurements show a red shifted QW emission peak energy, which is attributed to the enhanced quantum confined Stark effect with increasing total field strength across the QWs. Low temperature PL time decay measurements and room temperature internal quantum efficiency (IQE) measurements show decreasing radiative recombination rates and decreasing IQE, respectively, with increasing number of QWs. These are attributed to the increased spatial separation of the electron and hole wavefunctions, consistent with the calculated band profiles. It is also shown that, for samples with fewer QWs, the reduction of the total field across the QWs makes the radiative recombination rate sufficiently fast that it is competitive with the efficiency losses associated with the thermal escape of carriers. (copyright 2016 The Authors. Phys. Status Solidi C published by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Formation of CdS/Cd{sub 1−x}Zn{sub x}S sandwich-structured quantum dots with high quantum efficiency in silicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Mengling; Liu, Chao, E-mail: hite@whut.edu.cn; Han, Jianjun; Zhao, Xiujian

    2017-06-15

    CdS/Cd{sub 1−x}Zn{sub x}S sandwich-structured quantum dots (QDs) were precipitated in silicate glasses with high quantum efficiency up to 53%. The QDs were composed by a CdS core with a Cd{sub 1−x}Zn{sub x}S shell of about 1–3 nm in thickness through heat-treatment at 550 °C for 10 h. With the increased heat-treatment temperature, the intensity ratio between the intrinsic emission and the defects emission increased and the Stokes shift decreased from 84 to 4 meV, which was caused by both the increased size and passivated surface defects of the QDs.

  19. Better Solar Cells and Manufacturing Processes Using NREL's Ultrafast Quantum Efficiency Method (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2011-08-01

    Fact sheet on the FlashQE system, a 2011 R&D 100 Award winner. A solid-state optical system by NREL and Tau Science measures solar cell quantum efficiency in less than a second, enabling a suite of new capabilities for solar cell manufacturers.

  20. Emergent mechanics, quantum and un-quantum

    Science.gov (United States)

    Ralston, John P.

    2013-10-01

    There is great interest in quantum mechanics as an "emergent" phenomenon. The program holds that nonobvious patterns and laws can emerge from complicated physical systems operating by more fundamental rules. We find a new approach where quantum mechanics itself should be viewed as an information management tool not derived from physics nor depending on physics. The main accomplishment of quantum-style theory comes in expanding the notion of probability. We construct a map from macroscopic information as data" to quantum probability. The map allows a hidden variable description for quantum states, and efficient use of the helpful tools of quantum mechanics in unlimited circumstances. Quantum dynamics via the time-dependent Shroedinger equation or operator methods actually represents a restricted class of classical Hamiltonian or Lagrangian dynamics, albeit with different numbers of degrees of freedom. We show that under wide circumstances such dynamics emerges from structureless dynamical systems. The uses of the quantum information management tools are illustrated by numerical experiments and practical applications

  1. Encasing the Absolutes

    Directory of Open Access Journals (Sweden)

    Uroš Martinčič

    2014-05-01

    Full Text Available The paper explores the issue of structure and case in English absolute constructions, whose subjects are deduced by several descriptive grammars as being in the nominative case due to its supposed neutrality in terms of register. This deduction is countered by systematic accounts presented within the framework of the Minimalist Program which relate the case of absolute constructions to specific grammatical factors. Each proposal is shown as an attempt of analysing absolute constructions as basic predication structures, either full clauses or small clauses. I argue in favour of the small clause approach due to its minimal reliance on transformations and unique stipulations. Furthermore, I propose that small clauses project a singular category, and show that the use of two cases in English absolute constructions can be accounted for if they are analysed as depictive phrases, possibly selected by prepositions. The case of the subject in absolutes is shown to be a result of syntactic and non-syntactic factors. I thus argue in accordance with Minimalist goals that syntactic case does not exist, attributing its role in absolutes to other mechanisms.

  2. Effect of barrier height and indium composition on the internal quantum efficiency of (In)AlGaN multiple quantum well structures

    Energy Technology Data Exchange (ETDEWEB)

    Ledentsov, Nikolay Jr.; Reich, Christoph; Mehnke, Frank; Kuhn, Christian; Wernicke, Tim; Kolbe, Tim; Lobo Ploch, Neysha; Rass, Jens [Institute of Solid State Physics, Technische Universitaet Berlin (Germany); Kueller, Viola [Ferdinand-Braun-Institut, Berlin (Germany); Kneissl, Michael [Institute of Solid State Physics, Technische Universitaet Berlin (Germany); Ferdinand-Braun-Institut, Berlin (Germany)

    2013-07-01

    We studied (In)AlGaN multiple quantum wells (MQWs) emitting in the UV-B spectral region with photoluminescence and electroluminescence spectroscopy. The internal quantum efficiency (IQE) was determined by temperature dependent measurements (5 K-300 K). The quantum confined Stark effect (QCSE) was investigated by studying the shift of the emission energy with increasing excitation power density. In the first series, Al{sub 0.27}Ga{sub 0.73}N MQWs with different Al{sub x}Ga{sub 1-x}N barriers (0.32

  3. Efficient Quantum Information Transfer Through a Uniform Channel

    Directory of Open Access Journals (Sweden)

    Paola Verrucchi

    2011-06-01

    Full Text Available Effective quantum-state and entanglement transfer can be obtained by inducing a coherent dynamics in quantum wires with homogeneous intrawire interactions. This goal is accomplished by optimally tuning the coupling between the wire endpoints and the two qubits there attached. A general procedure to determine such value is devised, and scaling laws between the optimal coupling and the length of the wire are found. The procedure is implemented in the case of a wire consisting of a spin-1/2 XY chain: results for the time dependence of the quantities which characterize quantum-state and entanglement transfer are found of extremely good quality also for very long wires. The present approach does not require engineered intrawire interactions nor a specific initial pulse shaping, and can be applied to a vast class of quantum channels.

  4. Network-topology-adaptive quantum conference protocols

    International Nuclear Information System (INIS)

    Zhang Sheng; Wang Jian; Tang Chao-Jing; Zhang Quan

    2011-01-01

    As an important application of the quantum network communication, quantum multiparty conference has made multiparty secret communication possible. Previous quantum multiparty conference schemes based on quantum data encryption are insensitive to network topology. However, the topology of the quantum network significantly affects the communication efficiency, e.g., parallel transmission in a channel with limited bandwidth. We have proposed two distinctive protocols, which work in two basic network topologies with efficiency higher than the existing ones. We first present a protocol which works in the reticulate network using Greeberger—Horne—Zeilinger states and entanglement swapping. Another protocol, based on quantum multicasting with quantum data compression, which can improve the efficiency of the network, works in the star-like network. The security of our protocols is guaranteed by quantum key distribution and one-time-pad encryption. In general, the two protocols can be applied to any quantum network where the topology can be equivalently transformed to one of the two structures we propose in our protocols. (general)

  5. Multi-party semi-quantum key distribution-convertible multi-party semi-quantum secret sharing

    Science.gov (United States)

    Yu, Kun-Fei; Gu, Jun; Hwang, Tzonelih; Gope, Prosanta

    2017-08-01

    This paper proposes a multi-party semi-quantum secret sharing (MSQSS) protocol which allows a quantum party (manager) to share a secret among several classical parties (agents) based on GHZ-like states. By utilizing the special properties of GHZ-like states, the proposed scheme can easily detect outside eavesdropping attacks and has the highest qubit efficiency among the existing MSQSS protocols. Then, we illustrate an efficient way to convert the proposed MSQSS protocol into a multi-party semi-quantum key distribution (MSQKD) protocol. The proposed approach is even useful to convert all the existing measure-resend type of semi-quantum secret sharing protocols into semi-quantum key distribution protocols.

  6. An energy and cost efficient majority-based RAM cell in quantum-dot cellular automata

    Science.gov (United States)

    Khosroshahy, Milad Bagherian; Moaiyeri, Mohammad Hossein; Navi, Keivan; Bagherzadeh, Nader

    Nanotechnologies, notably quantum-dot cellular automata, have achieved major attentions for their prominent features as compared to the conventional CMOS circuitry. Quantum-dot cellular automata, particularly owning to its considerable reduction in size, high switching speed and ultra-low energy consumption, is considered as a potential alternative for the CMOS technology. As the memory unit is one of the most essential components in a digital system, designing a well-optimized QCA random access memory (RAM) cell is an important area of research. In this paper, a new five-input majority gate is presented which is suitable for implementing efficient single-layer QCA circuits. In addition, a new RAM cell with set and reset capabilities is designed based on the proposed majority gate, which has an efficient and low-energy structure. The functionality, performance and energy consumption of the proposed designs are evaluated based on the QCADesigner and QCAPro tools. According to the simulation results, the proposed RAM design leads to on average 38% lower total energy dissipation, 25% smaller area, 20% lower cell count, 28% lower delay and 60% lower QCA cost as compared to its previous counterparts.

  7. Quantum memory Quantum memory

    Science.gov (United States)

    Le Gouët, Jean-Louis; Moiseev, Sergey

    2012-06-01

    quest for higher efficiency, better fidelity, broader bandwidth, multimode capacity and longer storage lifetime is pursued in all those approaches, as shown in this special issue. The improvement of quantum memory operation specifically requires in-depth study and control of numerous physical processes leading to atomic decoherence. The present issue reflects the development of rare earth ion doped matrices offering long lifetime superposition states, either as bulk crystals or as optical waveguides. The need for quantum sources and high efficiency detectors at the single photon level is also illustrated. Several papers address the networking of quantum memories either in long-haul cryptography or in the prospect of quantum processing. In this context, much attention has been paid recently to interfacing quantum light with superconducting qubits and with nitrogen-vacancy centers in diamond. Finally, the quantum interfacing of light with matter raises questions on entanglement. The last two papers are devoted to the generation of entanglement by dissipative processes. It is shown that long lifetime entanglement may be built in this way. We hope this special issue will help readers to become familiar with the exciting field of ensemble-based quantum memories and will stimulate them to bring deeper insights and new ideas to this area.

  8. Toward efficient fiber-based quantum interface (Conference Presentation)

    Science.gov (United States)

    Soshenko, Vladimir; Vorobyov, Vadim V.; Bolshedvorsky, Stepan; Lebedev, Nikolay; Akimov, Alexey V.; Sorokin, Vadim; Smolyaninov, Andrey

    2016-04-01

    NV center in diamond is attracting a lot of attention in quantum information processing community [1]. Been spin system in clean and well-controlled environment of diamond it shows outstanding performance as quantum memory even at room temperature, spin control with single shot optical readout and possibility to build up quantum registers even on single NV center. Moreover, NV centers could be used as high-resolution sensitive elements of detectors of magnetic or electric field, temperature, tension, force or rotation. For all of these applications collection of the light emitted by NV center is crucial point. There were number of approaches suggested to address this issue, proposing use of surface plasmoms [2], manufacturing structures in diamond [3] etc. One of the key feature of any practically important interface is compatibility with the fiber technology. Several groups attacking this problem using various approaches. One of them is placing of nanodiamonds in the holes of photonic crystal fiber [4], another is utilization of AFM to pick and place nanodiamond on the tapered fiber[5]. We have developed a novel technique of placing a nanodiamond with single NV center on the tapered fiber by controlled transfer of a nanodiamond from one "donor" tapered fiber to the "target" clean tapered fiber. We verify our ability to transfer only single color centers by means of measurement of second order correlation function. With this technique, we were able to double collection efficiency of confocal microscope. The majority of the factors limiting the collection of photons via optical fiber are technical and may be removed allowing order of magnitude improved in collection. We also discuss number of extensions of this technique to all fiber excitation and integration with nanostructures. References: [1] Marcus W. Doherty, Neil B. Manson, Paul Delaney, Fedor Jelezko, Jörg Wrachtrup, Lloyd C.L. Hollenberg , " The nitrogen-vacancy colour centre in diamond," Physics Reports

  9. Combination of short-length TiO_2 nanorod arrays and compact PbS quantum-dot thin films for efficient solid-state quantum-dot-sensitized solar cells

    International Nuclear Information System (INIS)

    Zhang, Zhengguo; Shi, Chengwu; Chen, Junjun; Xiao, Guannan; Li, Long

    2017-01-01

    Graphical abstract: The TiO_2 nanorod array with the length of 600 nm, the diameter of 20 nm, the areal density of 500 μm"−"2 was successfully prepared. The compact PbS quantum-dot thin film was firstly obtained on the TiO_2 nanorod array by spin-coating-assisted successive ionic layer absorption and reaction with using 1,2-ethanedithiol. The photoelectric conversion efficiency (PCE) of the compact PbS quantum-dot thin film sensitized solar cells achieved 4.10% using spiro-OMeTAD as a hole transporting layer, while the PCE of the PbS quantum-dot sensitized solar cells was only 0.54%. - Highlights: • Preparation of TiO_2 nanorod arrays with the length of 600 nm, diameter of 20 nm. • The compact PbS QD thin film and short-length TiO_2 nanorod array were combined. • EDT addition improved PbS nanoparticle coverage and photovoltaic performance. • The compact PbS QD thin film sensitized solar cell achieved the PCE of 4.10%. - Abstract: Considering the balance of the hole diffusion length and the loading quantity of quantum-dots, the rutile TiO_2 nanorod array with the length of 600 nm, the diameter of 20 nm, and the areal density of 500 μm"−"2 is successfully prepared by the hydrothermal method using the aqueous grown solution of 38 mM titanium isopropoxide and 6 M hydrochloric acid at 170 °C for 105 min. The compact PbS quantum-dot thin film on the TiO_2 nanorod array is firstly obtained by the spin-coating-assisted successive ionic layer absorption and reaction with using 1,2-ethanedithiol (EDT). The result reveals that the strong interaction between lead and EDT is very important to control the crystallite size of PbS quantum-dots and obtain the compact PbS quantum-dot thin film on the TiO_2 nanorod array. The all solid-state sensitized solar cell with the combination of the short-length, high-density TiO_2 nanorod array and the compact PbS quantum-dot thin film achieves the photoelectric conversion efficiency of 4.10%, along with an open

  10. Tools for Multimode Quantum Information: Modulation, Detection, and Spatial Quantum Correlations

    DEFF Research Database (Denmark)

    Lassen, Mikael Østergaard; Delaubert, Vincent; Janousek, Jirí

    2007-01-01

    We present here all the tools required for continuous variable parallel quantum information protocols based on spatial multi-mode quantum correlations and entanglement. We describe techniques for encoding and detecting this quantum information with high efficiency in the individual modes. We use ...

  11. Extending quantum efficiency roll-over threshold with compositionally graded InGaN/GaN LED

    KAUST Repository

    Mishra, Pawan; Ng, Tien Khee; Janjua, Bilal; Shen, Chao; Eid, Jessica; Alyamani, Ahmed Y.; El-Desouki, Munir M.; Ooi, Boon S.

    2014-01-01

    We report a significant improvement in the electrical characteristic of compositionally graded InGaN/GaN multiple-quantum-well (MQWs) micro-LED. The efficiency droop in this device occurred at ∼20 times higher injection levels (∼275 A/cm2) compared to a conventional step-MQWs microLED (∼14 A/cm2).

  12. Extending quantum efficiency roll-over threshold with compositionally graded InGaN/GaN LED

    KAUST Repository

    Mishra, Pawan

    2014-12-01

    We report a significant improvement in the electrical characteristic of compositionally graded InGaN/GaN multiple-quantum-well (MQWs) micro-LED. The efficiency droop in this device occurred at ∼20 times higher injection levels (∼275 A/cm2) compared to a conventional step-MQWs microLED (∼14 A/cm2).

  13. Measurement of the absolute tunneling current density in field emission from tungsten(110)

    International Nuclear Information System (INIS)

    Ehrlich, C.D.; Plummer, E.W.

    1978-01-01

    The phenomenon of quantum-mechanical tunneling of an electron through a barrier in the potential energy has been well established in a variety of experiments. The quantity which is usually measured in these experiments is the rate of change of tunneling current and not the absolute current density. This paper reports on a direct measurement of the tunneling current density, which is found to be in good agreement with free-electron theory for W

  14. The quantum Hall effect in quantum dot systems

    International Nuclear Information System (INIS)

    Beltukov, Y M; Greshnov, A A

    2014-01-01

    It is proposed to use quantum dots in order to increase the temperatures suitable for observation of the integer quantum Hall effect. A simple estimation using Fock-Darwin spectrum of a quantum dot shows that good part of carriers localized in quantum dots generate the intervals of plateaus robust against elevated temperatures. Numerical calculations employing local trigonometric basis and highly efficient kernel polynomial method adopted for computing the Hall conductivity reveal that quantum dots may enhance peak temperature for the effect by an order of magnitude, possibly above 77 K. Requirements to potentials, quality and arrangement of the quantum dots essential for practical realization of such enhancement are indicated. Comparison of our theoretical results with the quantum Hall measurements in InAs quantum dot systems from two experimental groups is also given

  15. ZnSe Light Emitting Diode Quantum Efficiency and Emission Characterization

    Directory of Open Access Journals (Sweden)

    Sahbudin U.K.

    2016-01-01

    Full Text Available ZnSe has demonstrated as a potential candidate in realizing advance LED in some appications for current and future works that utilize a cheaper preparation technique. Blue and white LEDs have been shown to spread across compound semiconductors. This II-VI compound semiconductor with a direct and wide band gap is used in the study which focused on a preparation and its characterization. The device is developed using a circular chip of ZnSe but only part of the active region is designed to allow shorter computation time. Analyses of the proposed LED are performed in an environment that allows optical transition and nonradiative recombination mechanisms. Voltage variation from 0 V to 1.5 V is maintained throughout the observation. The curent-voltage plot shows the p-n junction or diode behavior with central emissive layer. The two dimensions surface emission rate obtained indicates that voltage increment causes the emission concentration to become higher near the central pcontact. The LED efficiency is assessed in terms of internal quantum efficiency and emitting rate.

  16. Intense Visible Luminescence in CdSe Quantum Dots by Efficiency Surface Passivation with H2O Molecules

    Directory of Open Access Journals (Sweden)

    Hyeoung Woo Park

    2012-01-01

    Full Text Available We have investigated the effect of water (H2O cooling and heat treatment on the luminescence efficiency of core CdSe quantum dots (QDs. The photoluminescence (PL quantum yield of the CdSe QDs was enhanced up to ~85%, and some periodic bright points were observed in wide color ranges during the heat treatment of QDs mixed with H2O. The PL enhancement of QDs could be attributed to the recovery of QDs surface traps by unreacted ligands confined within the hydrophilic H2O molecule containers.

  17. Quantum Chemistry on Quantum Computers: A Polynomial-Time Quantum Algorithm for Constructing the Wave Functions of Open-Shell Molecules.

    Science.gov (United States)

    Sugisaki, Kenji; Yamamoto, Satoru; Nakazawa, Shigeaki; Toyota, Kazuo; Sato, Kazunobu; Shiomi, Daisuke; Takui, Takeji

    2016-08-18

    Quantum computers are capable to efficiently perform full configuration interaction (FCI) calculations of atoms and molecules by using the quantum phase estimation (QPE) algorithm. Because the success probability of the QPE depends on the overlap between approximate and exact wave functions, efficient methods to prepare accurate initial guess wave functions enough to have sufficiently large overlap with the exact ones are highly desired. Here, we propose a quantum algorithm to construct the wave function consisting of one configuration state function, which is suitable for the initial guess wave function in QPE-based FCI calculations of open-shell molecules, based on the addition theorem of angular momentum. The proposed quantum algorithm enables us to prepare the wave function consisting of an exponential number of Slater determinants only by a polynomial number of quantum operations.

  18. Absolute advantage

    NARCIS (Netherlands)

    J.G.M. van Marrewijk (Charles)

    2008-01-01

    textabstractA country is said to have an absolute advantage over another country in the production of a good or service if it can produce that good or service using fewer real resources. Equivalently, using the same inputs, the country can produce more output. The concept of absolute advantage can

  19. Multiphoton quantum optics and quantum state engineering

    International Nuclear Information System (INIS)

    Dell'Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio

    2006-01-01

    We present a review of theoretical and experimental aspects of multiphoton quantum optics. Multiphoton processes occur and are important for many aspects of matter-radiation interactions that include the efficient ionization of atoms and molecules, and, more generally, atomic transition mechanisms; system-environment couplings and dissipative quantum dynamics; laser physics, optical parametric processes, and interferometry. A single review cannot account for all aspects of such an enormously vast subject. Here we choose to concentrate our attention on parametric processes in nonlinear media, with special emphasis on the engineering of nonclassical states of photons and atoms that are relevant for the conceptual investigations as well as for the practical applications of forefront aspects of modern quantum mechanics. We present a detailed analysis of the methods and techniques for the production of genuinely quantum multiphoton processes in nonlinear media, and the corresponding models of multiphoton effective interactions. We review existing proposals for the classification, engineering, and manipulation of nonclassical states, including Fock states, macroscopic superposition states, and multiphoton generalized coherent states. We introduce and discuss the structure of canonical multiphoton quantum optics and the associated one- and two-mode canonical multiphoton squeezed states. This framework provides a consistent multiphoton generalization of two-photon quantum optics and a consistent Hamiltonian description of multiphoton processes associated to higher-order nonlinearities. Finally, we discuss very recent advances that by combining linear and nonlinear optical devices allow to realize multiphoton entangled states of the electromagnetic field, either in discrete or in continuous variables, that are relevant for applications to efficient quantum computation, quantum teleportation, and related problems in quantum communication and information

  20. Multiphoton quantum optics and quantum state engineering

    Energy Technology Data Exchange (ETDEWEB)

    Dell' Anno, Fabio [Dipartimento di Fisica ' E. R. Caianiello' , Universita degli Studi di Salerno, CNISM and CNR-INFM Coherentia, and INFN Sezione di Napoli, Gruppo Collegato di Salerno, Via S. Allende, I-84081 Baronissi (Saudi Arabia) (Italy)]. E-mail: dellanno@sa.infn.it; De Siena, Silvio [Dipartimento di Fisica ' E. R. Caianiello' , Universita degli Studi di Salerno, CNISM and CNR-INFM Coherentia, and INFN Sezione di Napoli, Gruppo Collegato di Salerno, Via S. Allende, I-84081 Baronissi (SA) (Italy)]. E-mail: desiena@sa.infn.it; Illuminati, Fabrizio [Dipartimento di Fisica ' E. R. Caianiello' , Universita degli Studi di Salerno, CNISM and CNR-INFM Coherentia, and INFN Sezione di Napoli, Gruppo Collegato di Salerno, Via S. Allende, I-84081 Baronissi (SA) (Italy)]. E-mail: illuminati@sa.infn.it

    2006-05-15

    We present a review of theoretical and experimental aspects of multiphoton quantum optics. Multiphoton processes occur and are important for many aspects of matter-radiation interactions that include the efficient ionization of atoms and molecules, and, more generally, atomic transition mechanisms; system-environment couplings and dissipative quantum dynamics; laser physics, optical parametric processes, and interferometry. A single review cannot account for all aspects of such an enormously vast subject. Here we choose to concentrate our attention on parametric processes in nonlinear media, with special emphasis on the engineering of nonclassical states of photons and atoms that are relevant for the conceptual investigations as well as for the practical applications of forefront aspects of modern quantum mechanics. We present a detailed analysis of the methods and techniques for the production of genuinely quantum multiphoton processes in nonlinear media, and the corresponding models of multiphoton effective interactions. We review existing proposals for the classification, engineering, and manipulation of nonclassical states, including Fock states, macroscopic superposition states, and multiphoton generalized coherent states. We introduce and discuss the structure of canonical multiphoton quantum optics and the associated one- and two-mode canonical multiphoton squeezed states. This framework provides a consistent multiphoton generalization of two-photon quantum optics and a consistent Hamiltonian description of multiphoton processes associated to higher-order nonlinearities. Finally, we discuss very recent advances that by combining linear and nonlinear optical devices allow to realize multiphoton entangled states of the electromagnetic field, either in discrete or in continuous variables, that are relevant for applications to efficient quantum computation, quantum teleportation, and related problems in quantum communication and information.

  1. Enhanced quantum efficiency in blue-emitting polymer/dielectric nanolayer nanocomposite light-emitting devices

    International Nuclear Information System (INIS)

    Park, Jong Hyeok; Lim, Yong Taik; Park, O Ok; Yu, Jae-Woong; Kim, Jai Kyeong; Kim, Young Chul

    2004-01-01

    Light-emitting devices based on environmentally stable, blue-emitting polymer/dielectric nanolayer nanocomposites were fabricated by blending poly(di-octylfluorene) (PDOF) with organo-clay. By reducing the excimer formation that leads to long wavelength tails, the photoluminescence (PL) and electroluminescence (EL) color purity of the device was enhanced. When a conjugated polymer/dielectric nanolayer nanocomposite is applied to an EL device, we expect an electronic structure similar to the well-known quantum well in small nanodomains. The ratio of PDOF/organo-clay was regulated from 2:1 to 0.5:1 (w/w). The light-emitting device of 0.5:1 (w/w) blend demonstrated the highest quantum efficiency (QE), 0.72% (ph/el), which is ∼500 times higher value compared with that of the pure PDOF layer device. However, the driving voltage of the nanocomposite devices tended to increase with increasing organo-clay content

  2. Diamond NV centers for quantum computing and quantum networks

    NARCIS (Netherlands)

    Childress, L.; Hanson, R.

    2013-01-01

    The exotic features of quantum mechanics have the potential to revolutionize information technologies. Using superposition and entanglement, a quantum processor could efficiently tackle problems inaccessible to current-day computers. Nonlocal correlations may be exploited for intrinsically secure

  3. Absolute measurement of 152Eu

    International Nuclear Information System (INIS)

    Baba, Hiroshi; Baba, Sumiko; Ichikawa, Shinichi; Sekine, Toshiaki; Ishikawa, Isamu

    1981-08-01

    A new method of the absolute measurement for 152 Eu was established based on the 4πβ-γ spectroscopic anti-coincidence method. It is a coincidence counting method consisting of a 4πβ-counter and a Ge(Li) γ-ray detector, in which the effective counting efficiencies of the 4πβ-counter for β-rays, conversion electrons, and Auger electrons were obtained by taking the intensity ratios for certain γ-rays between the single spectrum and the spectrum coincident with the pulses from the 4πβ-counter. First, in order to verify the method, three different methods of the absolute measurement were performed with a prepared 60 Co source to find excellent agreement among the results deduced by them. Next, the 4πβ-γ spectroscopic coincidence measurement was applied to 152 Eu sources prepared by irradiating an enriched 151 Eu target in a reactor. The result was compared with that obtained by the γ-ray spectrometry using a 152 Eu standard source supplied by LMRI. They agreed with each other within the error of 2%. (author)

  4. Delayed Slater determinant update algorithms for high efficiency quantum Monte Carlo

    Science.gov (United States)

    McDaniel, T.; D'Azevedo, E. F.; Li, Y. W.; Wong, K.; Kent, P. R. C.

    2017-11-01

    Within ab initio Quantum Monte Carlo simulations, the leading numerical cost for large systems is the computation of the values of the Slater determinants in the trial wavefunction. Each Monte Carlo step requires finding the determinant of a dense matrix. This is most commonly iteratively evaluated using a rank-1 Sherman-Morrison updating scheme to avoid repeated explicit calculation of the inverse. The overall computational cost is, therefore, formally cubic in the number of electrons or matrix size. To improve the numerical efficiency of this procedure, we propose a novel multiple rank delayed update scheme. This strategy enables probability evaluation with an application of accepted moves to the matrices delayed until after a predetermined number of moves, K. The accepted events are then applied to the matrices en bloc with enhanced arithmetic intensity and computational efficiency via matrix-matrix operations instead of matrix-vector operations. This procedure does not change the underlying Monte Carlo sampling or its statistical efficiency. For calculations on large systems and algorithms such as diffusion Monte Carlo, where the acceptance ratio is high, order of magnitude improvements in the update time can be obtained on both multi-core central processing units and graphical processing units.

  5. High Efficiency Multijunction Solar Cells with Finely-Tuned Quantum Wells

    Science.gov (United States)

    Varonides, Argyrios C.

    The field of high efficiency (inorganic) photovoltaics (PV) is rapidly maturing in both efficiency goals and cover all cost reduction of fabrication. On one hand, know-how from space industry in new solar cell design configurations and on the other, fabrication cost reduction challenges for terrestrial uses of solar energy, have paved the way to a new generation of PV devices, capable of capturing most of the solar spectrum. For quite a while now, the goal of inorganic solar cell design has been the total (if possible) capture-absorption of the solar spectrum from a single solar cell, designed in such a way that a multiple of incident wavelengths could be simultaneously absorbed. Multi-absorption in device physics indicates parallel existence of different materials that absorb solar photons of different energies. Bulk solid state devices absorb at specific energy thresholds, depending on their respective energy gap (EG). More than one energy gaps would on principle offer new ways of photon absorption: if such a structure could be fabricated, two or more groups of photons could be absorbed simultaneously. The point became then what lattice-matched semiconductor materials could offer such multiple levels of absorption without much recombination losses. It was soon realized that such layer multiplicity combined with quantum size effects could lead to higher efficiency collection of photo-excited carriers. At the moment, the main reason that slows down quantum effect solar cell production is high fabrication cost, since it involves primarily expensive methods of multilayer growth. Existing multi-layer cells are fabricated in the bulk, with three (mostly) layers of lattice-matched and non-lattice-matched (pseudo-morphic) semiconductor materials (GaInP/InGaN etc), where photo-carrier collection occurs in the bulk of the base (coming from the emitter which lies right under the window layer). These carriers are given excess to conduction via tunnel junction (grown between

  6. Efficiency droop suppression of distance-engineered surface plasmon-coupled photoluminescence in GaN-based quantum well LEDs

    Directory of Open Access Journals (Sweden)

    Yufeng Li

    2017-11-01

    Full Text Available Ag coated microgroove with extreme large aspect-ratio of 500:1 was fabricated on p-GaN capping layer to investigate the coupling behavior between quantum wells and surface plasmon in highly spatial resolution. Significant photoluminescence enhancement was observed when the distance between Ag film and QWs was reduced from 220 nm to about 20 nm. A maximum enhancement ratio of 18-fold was achieved at the groove bottom where the surface plasmonic coupling was considered the strongest. Such enhancement ratio was found highly affected by the excitation power density. It also shows high correlation to the internal quantum efficiency as a function of coupling effect and a maximum Purcell Factor of 1.75 was estimated at maximum coupling effect, which matches number calculated independently from the time-resolved photoluminescence measurement. With such Purcell Factor, the efficiency was greatly enhanced and the droop was significantly suppressed.

  7. Combining neural networks and signed particles to simulate quantum systems more efficiently

    Science.gov (United States)

    Sellier, Jean Michel

    2018-04-01

    Recently a new formulation of quantum mechanics has been suggested which describes systems by means of ensembles of classical particles provided with a sign. This novel approach mainly consists of two steps: the computation of the Wigner kernel, a multi-dimensional function describing the effects of the potential over the system, and the field-less evolution of the particles which eventually create new signed particles in the process. Although this method has proved to be extremely advantageous in terms of computational resources - as a matter of fact it is able to simulate in a time-dependent fashion many-body systems on relatively small machines - the Wigner kernel can represent the bottleneck of simulations of certain systems. Moreover, storing the kernel can be another issue as the amount of memory needed is cursed by the dimensionality of the system. In this work, we introduce a new technique which drastically reduces the computation time and memory requirement to simulate time-dependent quantum systems which is based on the use of an appropriately tailored neural network combined with the signed particle formalism. In particular, the suggested neural network is able to compute efficiently and reliably the Wigner kernel without any training as its entire set of weights and biases is specified by analytical formulas. As a consequence, the amount of memory for quantum simulations radically drops since the kernel does not need to be stored anymore as it is now computed by the neural network itself, only on the cells of the (discretized) phase-space which are occupied by particles. As its is clearly shown in the final part of this paper, not only this novel approach drastically reduces the computational time, it also remains accurate. The author believes this work opens the way towards effective design of quantum devices, with incredible practical implications.

  8. Broadband Epsilon-near-Zero Reflectors Enhance the Quantum Efficiency of Thin Solar Cells at Visible and Infrared Wavelengths

    KAUST Repository

    Labelle, A. J.; Bonifazi, Marcella; Tian, Y.; Wong, C.; Hoogland, S.; Favraud, Gael; Walters, G.; Sutherland, B.; Liu, M.; Li, Jun; Zhang, Xixiang; Kelley, Shana O.; Sargent, E. H.; Fratalocchi, Andrea

    2017-01-01

    The engineering of broadband absorbers to harvest white light in thin-film semiconductors is a major challenge in developing renewable materials for energy harvesting. Many solution-processed materials with high manufacturability and low cost, such as semiconductor quantum dots, require the use of film structures with thicknesses on the order of 1 μm to absorb incoming photons completely. The electron transport lengths in these media, however, are 1 order of magnitude smaller than this length, hampering further progress with this platform. Herein, we show that, by engineering suitably disordered nanoplasmonic structures, we have created a new class of dispersionless epsilon-near-zero composite materials that efficiently harness white light. Our nanostructures localize light in the dielectric region outside the epsilon-near-zero material with characteristic lengths of 10-100 nm, resulting in an efficient system for harvesting broadband light when a thin absorptive film is deposited on top of the structure. By using a combination of theory and experiments, we demonstrate that ultrathin layers down to 50 nm of colloidal quantum dots deposited atop the epsilon-near-zero material show an increase in broadband absorption ranging from 200% to 500% compared to a planar structure of the same colloidal quantum-dot-absorber average thickness. When the epsilon-near-zero nanostructures were used in an energy-harvesting module, we observed a spectrally averaged 170% broadband increase in the external quantum efficiency of the device, measured at wavelengths between 400 and 1200 nm. Atomic force microscopy and photoluminescence excitation measurements demonstrate that the properties of these epsilon-near-zero structures apply to general metals and could be used to enhance the near-field absorption of semiconductor structures more widely. We have developed an inexpensive electrochemical deposition process that enables scaled-up production of this nanomaterial for large

  9. Broadband Epsilon-near-Zero Reflectors Enhance the Quantum Efficiency of Thin Solar Cells at Visible and Infrared Wavelengths

    KAUST Repository

    Labelle, A. J.

    2017-02-03

    The engineering of broadband absorbers to harvest white light in thin-film semiconductors is a major challenge in developing renewable materials for energy harvesting. Many solution-processed materials with high manufacturability and low cost, such as semiconductor quantum dots, require the use of film structures with thicknesses on the order of 1 μm to absorb incoming photons completely. The electron transport lengths in these media, however, are 1 order of magnitude smaller than this length, hampering further progress with this platform. Herein, we show that, by engineering suitably disordered nanoplasmonic structures, we have created a new class of dispersionless epsilon-near-zero composite materials that efficiently harness white light. Our nanostructures localize light in the dielectric region outside the epsilon-near-zero material with characteristic lengths of 10-100 nm, resulting in an efficient system for harvesting broadband light when a thin absorptive film is deposited on top of the structure. By using a combination of theory and experiments, we demonstrate that ultrathin layers down to 50 nm of colloidal quantum dots deposited atop the epsilon-near-zero material show an increase in broadband absorption ranging from 200% to 500% compared to a planar structure of the same colloidal quantum-dot-absorber average thickness. When the epsilon-near-zero nanostructures were used in an energy-harvesting module, we observed a spectrally averaged 170% broadband increase in the external quantum efficiency of the device, measured at wavelengths between 400 and 1200 nm. Atomic force microscopy and photoluminescence excitation measurements demonstrate that the properties of these epsilon-near-zero structures apply to general metals and could be used to enhance the near-field absorption of semiconductor structures more widely. We have developed an inexpensive electrochemical deposition process that enables scaled-up production of this nanomaterial for large

  10. Combination of short-length TiO{sub 2} nanorod arrays and compact PbS quantum-dot thin films for efficient solid-state quantum-dot-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhengguo [School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009 (China); School of Chemistry and Chemical Engineering, Beifang University of Nationalities, Yinchuan 750021 (China); Shi, Chengwu, E-mail: shicw506@foxmail.com [School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009 (China); Chen, Junjun; Xiao, Guannan; Li, Long [School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009 (China)

    2017-07-15

    Graphical abstract: The TiO{sub 2} nanorod array with the length of 600 nm, the diameter of 20 nm, the areal density of 500 μm{sup −2} was successfully prepared. The compact PbS quantum-dot thin film was firstly obtained on the TiO{sub 2} nanorod array by spin-coating-assisted successive ionic layer absorption and reaction with using 1,2-ethanedithiol. The photoelectric conversion efficiency (PCE) of the compact PbS quantum-dot thin film sensitized solar cells achieved 4.10% using spiro-OMeTAD as a hole transporting layer, while the PCE of the PbS quantum-dot sensitized solar cells was only 0.54%. - Highlights: • Preparation of TiO{sub 2} nanorod arrays with the length of 600 nm, diameter of 20 nm. • The compact PbS QD thin film and short-length TiO{sub 2} nanorod array were combined. • EDT addition improved PbS nanoparticle coverage and photovoltaic performance. • The compact PbS QD thin film sensitized solar cell achieved the PCE of 4.10%. - Abstract: Considering the balance of the hole diffusion length and the loading quantity of quantum-dots, the rutile TiO{sub 2} nanorod array with the length of 600 nm, the diameter of 20 nm, and the areal density of 500 μm{sup −2} is successfully prepared by the hydrothermal method using the aqueous grown solution of 38 mM titanium isopropoxide and 6 M hydrochloric acid at 170 °C for 105 min. The compact PbS quantum-dot thin film on the TiO{sub 2} nanorod array is firstly obtained by the spin-coating-assisted successive ionic layer absorption and reaction with using 1,2-ethanedithiol (EDT). The result reveals that the strong interaction between lead and EDT is very important to control the crystallite size of PbS quantum-dots and obtain the compact PbS quantum-dot thin film on the TiO{sub 2} nanorod array. The all solid-state sensitized solar cell with the combination of the short-length, high-density TiO{sub 2} nanorod array and the compact PbS quantum-dot thin film achieves the photoelectric conversion

  11. Quantum Electrodynamics with Semiconductor Quantum Dots Coupled to Anderson‐localized Random Cavities

    DEFF Research Database (Denmark)

    Sapienza, Luca; Nielsen, Henri Thyrrestrup; Stobbe, Søren

    2011-01-01

    of the spontaneous emission decay rate by up to a factor 15 and an efficiency of channeling single photons into Anderson-localized modes reaching values as high as 94%. These results prove that disordered photonic media provide an efficient platform for quantum electrodynamics, offering a novel route to quantum......We demonstrate that the spontaneous emission decay rate of semiconductor quantum dots can be strongly modified by the coupling to disorder-induced Anderson-localized photonic modes. We experimentally measure, by means of time-resolved photoluminescence spectroscopy, the enhancement...

  12. Efficiency Enhanced Colloidal Mn-Doped Type II Core/Shell ZnSe/CdS Quantum Dot Sensitized Hybrid Solar Cells

    Directory of Open Access Journals (Sweden)

    A. Jamshidi

    2015-01-01

    Full Text Available Colloidal Mn-doped ZnSe/CdS core/shell quantum dots (QDs are synthesized for the first time and employed as a strategy to boost the power conversion efficiency of quantum dot sensitized solar cells. By using Mn-doping as a band gap engineering tool for core/shell QDs an effective improvement of absorption spectra could be obtained. The mid-states generated by a proper Mn content alleviate carrier separation and enhance the electron injection rate, thus facilitating electron transport to the TiO2 substrate. It is demonstrated that a device constructed with 0.25% Mn-doped ZnSe/CdS leads to an enhancement of the electron injection rate and power conversion efficiency by 4 times and 1.3, respectively.

  13. Quantum engineering of continuous variable quantum states

    Energy Technology Data Exchange (ETDEWEB)

    Sabuncu, Metin

    2009-10-29

    Quantum information with continuous variables is a field attracting increasing attention recently. In continuous variable quantum information one makes use of the continuous information encoded into the quadrature of a quantized light field instead of binary quantities such as the polarization state of a single photon. This brand new research area is witnessing exciting theoretical and experimental achievements such as teleportation, quantum computation and quantum error correction. The rapid development of the field is mainly due higher optical data rates and the availability of simple and efficient manipulation tools in continuous-variable quantum information processing. We in this thesis extend the work in continuous variable quantum information processing and report on novel experiments on amplification, cloning, minimal disturbance and noise erasure protocols. The promising results we obtain in these pioneering experiments indicate that the future of continuous variable quantum information is bright and many advances can be foreseen. (orig.)

  14. Quantum engineering of continuous variable quantum states

    International Nuclear Information System (INIS)

    Sabuncu, Metin

    2009-01-01

    Quantum information with continuous variables is a field attracting increasing attention recently. In continuous variable quantum information one makes use of the continuous information encoded into the quadrature of a quantized light field instead of binary quantities such as the polarization state of a single photon. This brand new research area is witnessing exciting theoretical and experimental achievements such as teleportation, quantum computation and quantum error correction. The rapid development of the field is mainly due higher optical data rates and the availability of simple and efficient manipulation tools in continuous-variable quantum information processing. We in this thesis extend the work in continuous variable quantum information processing and report on novel experiments on amplification, cloning, minimal disturbance and noise erasure protocols. The promising results we obtain in these pioneering experiments indicate that the future of continuous variable quantum information is bright and many advances can be foreseen. (orig.)

  15. Highly efficient luminescent solar concentrators based on earth-abundant indirect-bandgap silicon quantum dots

    Science.gov (United States)

    Meinardi, Francesco; Ehrenberg, Samantha; Dhamo, Lorena; Carulli, Francesco; Mauri, Michele; Bruni, Francesco; Simonutti, Roberto; Kortshagen, Uwe; Brovelli, Sergio

    2017-02-01

    Building-integrated photovoltaics is gaining consensus as a renewable energy technology for producing electricity at the point of use. Luminescent solar concentrators (LSCs) could extend architectural integration to the urban environment by realizing electrode-less photovoltaic windows. Crucial for large-area LSCs is the suppression of reabsorption losses, which requires emitters with negligible overlap between their absorption and emission spectra. Here, we demonstrate the use of indirect-bandgap semiconductor nanostructures such as highly emissive silicon quantum dots. Silicon is non-toxic, low-cost and ultra-earth-abundant, which avoids the limitations to the industrial scaling of quantum dots composed of low-abundance elements. Suppressed reabsorption and scattering losses lead to nearly ideal LSCs with an optical efficiency of η = 2.85%, matching state-of-the-art semi-transparent LSCs. Monte Carlo simulations indicate that optimized silicon quantum dot LSCs have a clear path to η > 5% for 1 m2 devices. We are finally able to realize flexible LSCs with performances comparable to those of flat concentrators, which opens the way to a new design freedom for building-integrated photovoltaics elements.

  16. Universal quantum interfaces

    International Nuclear Information System (INIS)

    Lloyd, Seth; Landahl, Andrew J.; Slotine, Jean-Jacques E.

    2004-01-01

    To observe or control a quantum system, one must interact with it via an interface. This article exhibits simple universal quantum interfaces--quantum input/output ports consisting of a single two-state system or quantum bit that interacts with the system to be observed or controlled. It is shown that under very general conditions the ability to observe and control the quantum bit on its own implies the ability to observe and control the system itself. The interface can also be used as a quantum communication channel, and multiple quantum systems can be connected by interfaces to become an efficient universal quantum computer. Experimental realizations are proposed, and implications for controllability, observability, and quantum information processing are explored

  17. Quantum Junction Solar Cells

    KAUST Repository

    Tang, Jiang

    2012-09-12

    Colloidal quantum dot solids combine convenient solution-processing with quantum size effect tuning, offering avenues to high-efficiency multijunction cells based on a single materials synthesis and processing platform. The highest-performing colloidal quantum dot rectifying devices reported to date have relied on a junction between a quantum-tuned absorber and a bulk material (e.g., TiO 2); however, quantum tuning of the absorber then requires complete redesign of the bulk acceptor, compromising the benefits of facile quantum tuning. Here we report rectifying junctions constructed entirely using inherently band-aligned quantum-tuned materials. Realizing these quantum junction diodes relied upon the creation of an n-type quantum dot solid having a clean bandgap. We combine stable, chemically compatible, high-performance n-type and p-type materials to create the first quantum junction solar cells. We present a family of photovoltaic devices having widely tuned bandgaps of 0.6-1.6 eV that excel where conventional quantum-to-bulk devices fail to perform. Devices having optimal single-junction bandgaps exhibit certified AM1.5 solar power conversion efficiencies of 5.4%. Control over doping in quantum solids, and the successful integration of these materials to form stable quantum junctions, offers a powerful new degree of freedom to colloidal quantum dot optoelectronics. © 2012 American Chemical Society.

  18. Efficiency Enhancement of Silicon Heterojunction Solar Cells via Photon Management Using Graphene Quantum Dot as Downconverters

    KAUST Repository

    Tsai, Meng-Lin

    2015-12-16

    By employing graphene quantum dots (GQDs), we have achieved a high efficiency of 16.55% in n-type Si heterojunction solar cells. The efficiency enhancement is based on the photon downconversion phenomenon of GQDs to make more photons absorbed in the depletion region for effective carrier separation, leading to the enhanced photovoltaic effect. The short circuit current and the fill factor are increased from 35.31 to 37.47 mA/cm2 and 70.29% to 72.51%, respectively. The work demonstrated here holds the promise for incorporating graphene-based materials in commercially available solar devices for developing ultra-high efficiency photovoltaic cells in the future.

  19. Efficiency Enhancement of Silicon Heterojunction Solar Cells via Photon Management Using Graphene Quantum Dot as Downconverters

    KAUST Repository

    Tsai, Meng-Lin; Tu, Wei-Chen; Tang, Libin; Wei, Tzu-Chiao; Wei, Wan-Rou; Lau, Shu Ping; Chen, Lih-Juann; He, Jr-Hau

    2015-01-01

    By employing graphene quantum dots (GQDs), we have achieved a high efficiency of 16.55% in n-type Si heterojunction solar cells. The efficiency enhancement is based on the photon downconversion phenomenon of GQDs to make more photons absorbed in the depletion region for effective carrier separation, leading to the enhanced photovoltaic effect. The short circuit current and the fill factor are increased from 35.31 to 37.47 mA/cm2 and 70.29% to 72.51%, respectively. The work demonstrated here holds the promise for incorporating graphene-based materials in commercially available solar devices for developing ultra-high efficiency photovoltaic cells in the future.

  20. Switching-on quantum size effects in silicon nanocrystals.

    Science.gov (United States)

    Sun, Wei; Qian, Chenxi; Wang, Liwei; Wei, Muan; Mastronardi, Melanie L; Casillas, Gilberto; Breu, Josef; Ozin, Geoffrey A

    2015-01-27

    The size-dependence of the absolute luminescence quantum yield of size-separated silicon nanocrystals reveals a "volcano" behavior, which switches on around 5 nm, peaks at near 3.7-3.9 nm, and decreases thereafter. These three regions respectively define: i) the transition from bulk to strongly quantum confined emissive silicon, ii) increasing confinement enhancing radiative recombination, and iii) increasing contributions favoring non-radiative recombination. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Correct mutual information, quantum bit error rate and secure transmission efficiency in Wojcik's eavesdropping scheme on ping-pong protocol

    OpenAIRE

    Zhang, Zhanjun

    2004-01-01

    Comment: The wrong mutual information, quantum bit error rate and secure transmission efficiency in Wojcik's eavesdropping scheme [PRL90(03)157901]on ping-pong protocol have been pointed out and corrected

  2. Time-bin quantum RAM

    Science.gov (United States)

    Moiseev, E. S.; Moiseev, S. A.

    2016-11-01

    We have proposed a compact scheme of quantum random access memory (qRAM) based on the impedance matched multi-qubit photon echo quantum memory incorporated with the control four-level atom in two coupled QED cavities. A set of matching conditions for basic physical parameters of the qRAM scheme that provides an efficient quantum control of the fast single photon storage and readout has been found. In particular, it has been discovered that the efficient qRAM operations are determined by the specific properties of the excited photonic molecule coupling the two QED cavities. Herein, the maximal efficiency of the qRAM is realized when the cooperativity parameter of the photonic molecule equals to unity that can be experimentally achievable. We have also elaborated upon the new quantum address scheme where the multi-time-bin photon state is used for the control of the four-level atom during the readout of the photonic qubits from the quantum memory. The scheme reduces the required number of logical elements to one. Experimental implementation by means of current quantum technologies in the optical and microwave domains is also discussed.

  3. Energy resolution measurements of LaBr3:Ce scintillating crystals with an ultra-high quantum efficiency photomultiplier tube

    International Nuclear Information System (INIS)

    Pani, R.; Cinti, M.N.; Scafe, R.; Pellegrini, R.; Vittorini, F.; Bennati, P.; Ridolfi, S.; Lo Meo, S.; Mattioli, M.; Baldazzi, G.; Pisacane, F.; Navarria, F.; Moschini, G.; Boccaccio, P.; Orsolini Cencelli, V.; Sacco, D.

    2009-01-01

    The performance of the new prototype of high quantum efficiency PMT (43% at 380 nm), Hamamatsu R7600U-200, was studied coupled to a LaBr 3 :Ce crystal with the size of o12.5 mmx12.5 mm. The energy resolution results were compared with ones from two PMTs, Hamamatsu R7600U and R6231MOD, with 22% and 30% quantum efficiency (QE), respectively. Moreover, the photodetectors were equipped with tapered and un-tapered voltage dividers to study the non-linearity effects on pulse height distribution, due to very high peak currents induced in the PMT by the fast and intense light pulse of LaBr 3 :Ce. The results show an energy resolution improvement with UBA PMT of about 20%, in the energy range of 80-662 keV, with respect to the BA one.

  4. Absolutely relative or relatively absolute: violations of value invariance in human decision making.

    Science.gov (United States)

    Teodorescu, Andrei R; Moran, Rani; Usher, Marius

    2016-02-01

    Making decisions based on relative rather than absolute information processing is tied to choice optimality via the accumulation of evidence differences and to canonical neural processing via accumulation of evidence ratios. These theoretical frameworks predict invariance of decision latencies to absolute intensities that maintain differences and ratios, respectively. While information about the absolute values of the choice alternatives is not necessary for choosing the best alternative, it may nevertheless hold valuable information about the context of the decision. To test the sensitivity of human decision making to absolute values, we manipulated the intensities of brightness stimuli pairs while preserving either their differences or their ratios. Although asked to choose the brighter alternative relative to the other, participants responded faster to higher absolute values. Thus, our results provide empirical evidence for human sensitivity to task irrelevant absolute values indicating a hard-wired mechanism that precedes executive control. Computational investigations of several modelling architectures reveal two alternative accounts for this phenomenon, which combine absolute and relative processing. One account involves accumulation of differences with activation dependent processing noise and the other emerges from accumulation of absolute values subject to the temporal dynamics of lateral inhibition. The potential adaptive role of such choice mechanisms is discussed.

  5. Distributed construction of quantum fingerprints

    OpenAIRE

    Ambainis, Andris; Shi, Yaoyun

    2003-01-01

    Quantum fingerprints are useful quantum encodings introduced by Buhrman, Cleve, Watrous, and de Wolf (Physical Review Letters, Volume 87, Number 16, Article 167902, 2001; quant-ph/0102001) in obtaining an efficient quantum communication protocol. We design a protocol for constructing the fingerprint in a distributed scenario. As an application, this protocol gives rise to a communication protocol more efficient than the best known classical protocol for a communication problem.

  6. Efficient quantum repeater with respect to both entanglement-concentration rate and complexity of local operations and classical communication

    Science.gov (United States)

    Su, Zhaofeng; Guan, Ji; Li, Lvzhou

    2018-01-01

    Quantum entanglement is an indispensable resource for many significant quantum information processing tasks. However, in practice, it is difficult to distribute quantum entanglement over a long distance, due to the absorption and noise in quantum channels. A solution to this challenge is a quantum repeater, which can extend the distance of entanglement distribution. In this scheme, the time consumption of classical communication and local operations takes an important place with respect to time efficiency. Motivated by this observation, we consider a basic quantum repeater scheme that focuses on not only the optimal rate of entanglement concentration but also the complexity of local operations and classical communication. First, we consider the case where two different two-qubit pure states are initially distributed in the scenario. We construct a protocol with the optimal entanglement-concentration rate and less consumption of local operations and classical communication. We also find a criterion for the projective measurements to achieve the optimal probability of creating a maximally entangled state between the two ends. Second, we consider the case in which two general pure states are prepared and general measurements are allowed. We get an upper bound on the probability for a successful measurement operation to produce a maximally entangled state without any further local operations.

  7. Strongly coupled CdS/graphene quantum dots nanohybrids for highly efficient photocatalytic hydrogen evolution: unraveling the essential roles of graphene quantum dots

    KAUST Repository

    Lei, Yonggang

    2017-05-23

    It have been recognized that the coupling of graphene quantum dots (GQDs) with semiconductor photocatalysts endow the resulting nanocomposites with enhanced photocatalytic performances, however, the essential roles of GQDs have not been clearly revealed yet. Herein, we report that a high efficiency of the photocatalytic H2 evolution was achieved using strongly coupled nanohybrids of CdS with GQDs (CdS/GQDs) as visible-light-driven photocatalysts. CdS/GQDs nanohybrids were synthesized by a facile hydrothermal method in which the crystallization of CdS precursor and coupling of GQDs could be accomplished in one-step. GQDs are firmly decorated on the surface of CdS nanoparticles, forming “dot-on-particle” heterodimer structures. GQDs have no significant influence on the crystallite structure of CdS but render the nanohybrids with strong light absorption at the wavelength beyond the band edge of CdS. Under visible light irradiation (≥420nm), CdS/GQDs nanohybrids reach the highest H2 production rate of 95.4μmol·h−1, about 2.7 times higher than that of pure CdS nanoparticles, at GQDs content of 1.0wt %, and the apparent quantum efficiency (AQE) was determined to be 4.2% at 420nm. Incident light-wavelength dependent experiments reveal that the light absorption of CdS dominated the performance of nanohybrids, and the excess light absorption coming from GQDs hardly contributes to the observed higher activity. Photocurrent response, steady-state and time-resolved PL, and EIS measurements suggest that the high activity of CdS/GQDs is attributed predominantly to the graphene-like nature of GQDs, which can act as an efficient electron acceptor to induce an efficient charge separation. This work clearly reveals that GQDs mainly played a role of electron acceptor instead of a photosensitizer in enhancing the photocatalytic H2 evolution performances of CdS/GQDs nanohybrids, which offers a new insight to understand the essential roles of GQDs in semiconductor

  8. Quantum chemistry simulation on quantum computers: theories and experiments.

    Science.gov (United States)

    Lu, Dawei; Xu, Boruo; Xu, Nanyang; Li, Zhaokai; Chen, Hongwei; Peng, Xinhua; Xu, Ruixue; Du, Jiangfeng

    2012-07-14

    It has been claimed that quantum computers can mimic quantum systems efficiently in the polynomial scale. Traditionally, those simulations are carried out numerically on classical computers, which are inevitably confronted with the exponential growth of required resources, with the increasing size of quantum systems. Quantum computers avoid this problem, and thus provide a possible solution for large quantum systems. In this paper, we first discuss the ideas of quantum simulation, the background of quantum simulators, their categories, and the development in both theories and experiments. We then present a brief introduction to quantum chemistry evaluated via classical computers followed by typical procedures of quantum simulation towards quantum chemistry. Reviewed are not only theoretical proposals but also proof-of-principle experimental implementations, via a small quantum computer, which include the evaluation of the static molecular eigenenergy and the simulation of chemical reaction dynamics. Although the experimental development is still behind the theory, we give prospects and suggestions for future experiments. We anticipate that in the near future quantum simulation will become a powerful tool for quantum chemistry over classical computations.

  9. Dynamics of 'quantumness' measures in the decohering harmonic ...

    Indian Academy of Sciences (India)

    2016-07-26

    Jul 26, 2016 ... are relative measures, using different definitions of the distance between the given quantum states and the set ..... the correspondence principle on the face of it, as they ..... validity of using the negativity – ηW – as an absolute.

  10. High-efficiency wavefunction updates for large scale Quantum Monte Carlo

    Science.gov (United States)

    Kent, Paul; McDaniel, Tyler; Li, Ying Wai; D'Azevedo, Ed

    Within ab intio Quantum Monte Carlo (QMC) simulations, the leading numerical cost for large systems is the computation of the values of the Slater determinants in the trial wavefunctions. The evaluation of each Monte Carlo move requires finding the determinant of a dense matrix, which is traditionally iteratively evaluated using a rank-1 Sherman-Morrison updating scheme to avoid repeated explicit calculation of the inverse. For calculations with thousands of electrons, this operation dominates the execution profile. We propose a novel rank- k delayed update scheme. This strategy enables probability evaluation for multiple successive Monte Carlo moves, with application of accepted moves to the matrices delayed until after a predetermined number of moves, k. Accepted events grouped in this manner are then applied to the matrices en bloc with enhanced arithmetic intensity and computational efficiency. This procedure does not change the underlying Monte Carlo sampling or the sampling efficiency. For large systems and algorithms such as diffusion Monte Carlo where the acceptance ratio is high, order of magnitude speedups can be obtained on both multi-core CPU and on GPUs, making this algorithm highly advantageous for current petascale and future exascale computations.

  11. Quantum computing with incoherent resources and quantum jumps.

    Science.gov (United States)

    Santos, M F; Cunha, M Terra; Chaves, R; Carvalho, A R R

    2012-04-27

    Spontaneous emission and the inelastic scattering of photons are two natural processes usually associated with decoherence and the reduction in the capacity to process quantum information. Here we show that, when suitably detected, these photons are sufficient to build all the fundamental blocks needed to perform quantum computation in the emitting qubits while protecting them from deleterious dissipative effects. We exemplify this by showing how to efficiently prepare graph states for the implementation of measurement-based quantum computation.

  12. Metrology for industrial quantum communications: the MIQC project

    Science.gov (United States)

    Rastello, M. L.; Degiovanni, I. P.; Sinclair, A. G.; Kück, S.; Chunnilall, C. J.; Porrovecchio, G.; Smid, M.; Manoocheri, F.; Ikonen, E.; Kubarsepp, T.; Stucki, D.; Hong, K. S.; Kim, S. K.; Tosi, A.; Brida, G.; Meda, A.; Piacentini, F.; Traina, P.; Natsheh, A. Al; Cheung, J. Y.; Müller, I.; Klein, R.; Vaigu, A.

    2014-12-01

    The ‘Metrology for Industrial Quantum Communication Technologies’ project (MIQC) is a metrology framework that fosters development and market take-up of quantum communication technologies and is aimed at achieving maximum impact for the European industry in this area. MIQC is focused on quantum key distribution (QKD) technologies, the most advanced quantum-based technology towards practical application. QKD is a way of sending cryptographic keys with absolute security. It does this by exploiting the ability to encode in a photon's degree of freedom specific quantum states that are noticeably disturbed if an eavesdropper trying to decode it is present in the communication channel. The MIQC project has started the development of independent measurement standards and definitions for the optical components of QKD system, since one of the perceived barriers to QKD market success is the lack of standardization and quality assurance.

  13. Quantum Glassiness in Strongly Correlated Clean Systems: An Example of Topological Overprotection

    Science.gov (United States)

    Chamon, Claudio

    2005-01-01

    This Letter presents solvable examples of quantum many-body Hamiltonians of systems that are unable to reach their ground states as the environment temperature is lowered to absolute zero. These examples, three-dimensional generalizations of quantum Hamiltonians proposed for topological quantum computing, (1)have no quenched disorder, (2)have solely local interactions, (3)have an exactly solvable spectrum, (4)have topologically ordered ground states, and (5)have slow dynamical relaxation rates akin to those of strong structural glasses.

  14. Finite field-dependent symmetries in perturbative quantum gravity

    International Nuclear Information System (INIS)

    Upadhyay, Sudhaker

    2014-01-01

    In this paper we discuss the absolutely anticommuting nilpotent symmetries for perturbative quantum gravity in general curved spacetime in linear and non-linear gauges. Further, we analyze the finite field-dependent BRST (FFBRST) transformation for perturbative quantum gravity in general curved spacetime. The FFBRST transformation changes the gauge-fixing and ghost parts of the perturbative quantum gravity within functional integration. However, the operation of such symmetry transformation on the generating functional of perturbative quantum gravity does not affect the theory on physical ground. The FFBRST transformation with appropriate choices of finite BRST parameter connects non-linear Curci–Ferrari and Landau gauges of perturbative quantum gravity. The validity of the results is also established at quantum level using Batalin–Vilkovisky (BV) formulation. -- Highlights: •The perturbative quantum gravity is treated as gauge theory. •BRST and anti-BRST transformations are developed in linear and non-linear gauges. •BRST transformation is generalized by making it finite and field dependent. •Connection between linear and non-linear gauges is established. •Using BV formulation the results are established at quantum level also

  15. Quantum Dots in Two-Dimensional Perovskite Matrices for Efficient Near-Infrared Light Emission

    KAUST Repository

    Yang, Zhenyu

    2017-03-13

    Quantum-dot-in-perovskite solids are excellent candidates for infrared light-emitting applications. The first generation of dot-in-perovskite light-emitting diodes (LEDs) has shown bright infrared electroluminescence with tunable emission wavelength; however, their performance has been limited by degradation of the active layer at practical operating voltages. This arises from the instability of the three-dimensional (3D) organolead halide perovskite matrix. Herein we report the first dot-in-perovskite solids that employ two-dimensional (2D) perovskites as the matrix. 2D perovskite passivation is achieved via an in situ alkylammonium/alkylamine substitution carried out during the quantum dot (QD) ligand exchange process. This single-step film preparation process enables deposition of the QD/perovskite active layers with thicknesses of 40 nm, over seven times thinner than the first-generation dot-in-perovskite thin films that relied on a multistep synthesis. The dot-in-perovskite film roughness improved from 31 nm for the first-generation films to 3 nm for films as a result of this new approach. The best devices exhibit external quantum efficiency peaks exceeding 2% and radiances of ∼1 W sr–1 m–2, with an improved breakdown voltage up to 7.5 V. Compared to first-generation dot-in-perovskites, this new process reduces materials consumptions 10-fold and represents a promising step toward manufacturable devices.

  16. Quantum Dots in Two-Dimensional Perovskite Matrices for Efficient Near-Infrared Light Emission

    KAUST Repository

    Yang, Zhenyu; Voznyy, Oleksandr; Walters, Grant; Fan, James Z.; Liu, Min; Kinge, Sachin; Hoogland, Sjoerd; Sargent, Edward H.

    2017-01-01

    Quantum-dot-in-perovskite solids are excellent candidates for infrared light-emitting applications. The first generation of dot-in-perovskite light-emitting diodes (LEDs) has shown bright infrared electroluminescence with tunable emission wavelength; however, their performance has been limited by degradation of the active layer at practical operating voltages. This arises from the instability of the three-dimensional (3D) organolead halide perovskite matrix. Herein we report the first dot-in-perovskite solids that employ two-dimensional (2D) perovskites as the matrix. 2D perovskite passivation is achieved via an in situ alkylammonium/alkylamine substitution carried out during the quantum dot (QD) ligand exchange process. This single-step film preparation process enables deposition of the QD/perovskite active layers with thicknesses of 40 nm, over seven times thinner than the first-generation dot-in-perovskite thin films that relied on a multistep synthesis. The dot-in-perovskite film roughness improved from 31 nm for the first-generation films to 3 nm for films as a result of this new approach. The best devices exhibit external quantum efficiency peaks exceeding 2% and radiances of ∼1 W sr–1 m–2, with an improved breakdown voltage up to 7.5 V. Compared to first-generation dot-in-perovskites, this new process reduces materials consumptions 10-fold and represents a promising step toward manufacturable devices.

  17. Quantum Dot Systems: a versatile platform for quantum simulations

    International Nuclear Information System (INIS)

    Barthelemy, Pierre; Vandersypen, Lieven M.K.

    2013-01-01

    Quantum mechanics often results in extremely complex phenomena, especially when the quantum system under consideration is composed of many interacting particles. The states of these many-body systems live in a space so large that classical numerical calculations cannot compute them. Quantum simulations can be used to overcome this problem: complex quantum problems can be solved by studying experimentally an artificial quantum system operated to simulate the desired hamiltonian. Quantum dot systems have shown to be widely tunable quantum systems, that can be efficiently controlled electrically. This tunability and the versatility of their design makes them very promising quantum simulators. This paper reviews the progress towards digital quantum simulations with individually controlled quantum dots, as well as the analog quantum simulations that have been performed with these systems. The possibility to use large arrays of quantum dots to simulate the low-temperature Hubbard model is also discussed. The main issues along that path are presented and new ideas to overcome them are proposed. (copyright 2013 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Room temperature diode-pumped Yb:CaYAlO4 laser with near quantum limit slope efficiency

    International Nuclear Information System (INIS)

    Tan, W D; Tang, D Y; Zhang, J; Xu, C W; Cong, Z H; Xu, X D; Li, D Z; Xu, J

    2011-01-01

    The room temperature continuous wave (CW) laser performance of a compact Yb:CaYAlO 4 (Yb:CYA) laser with near quantum limit slope efficiency is demonstrated. Pumped with a CW diode operating at 979 nm, the laser emitted a maximum CW output power of 2.3 W at 1050 nm. The corresponding slope efficiency was found to be 92% while the optical to optical conversion efficiency was 70%. The laser can also be continuously tuned from 1008 nm to 1063 nm using an intra-cavity SF 10 prism. The round trip cavity losses of Yb:CYA was 0.6% while the loss coefficient of the crystal was 0.01 cm -1

  19. Quantum optics with quantum dots in photonic nanowires

    DEFF Research Database (Denmark)

    Claudon, Julien; Munsch, Matthieu; Bleuse, Joel

    2012-01-01

    Besides microcavities and photonic crystals, photonic nanowires have recently emerged as a novel resource for solidstate quantum optics. We will review recent studies which demonstrate an excellent control over the spontaneous emission of InAs quantum dots (QDs) embedded in single-mode Ga...... quantum optoelectronic devices. Quite amazingly, this approach has for instance permitted (unlike microcavity-based approaches) to combine for the first time a record-high efficiency (72%) and a negligible g(2) in a QD single photon source....

  20. Efficient amplification of photonic qubits by optimal quantum cloning

    Czech Academy of Sciences Publication Activity Database

    Bartkiewicz, K.; Černoch, A.; Lemr, K.; Soubusta, Jan; Stobińska, M.

    2014-01-01

    Roč. 89, č. 6 (2014), "062322-1"-"062322-10" ISSN 1050-2947 Institutional support: RVO:68378271 Keywords : optimal quantum cloning * cryptography * qubit * phase-independent quantum amplifier Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.808, year: 2014

  1. Enhanced Solar Cell Conversion Efficiency of InGaN/GaN Multiple Quantum Wells by Piezo-Phototronic Effect.

    Science.gov (United States)

    Jiang, Chunyan; Jing, Liang; Huang, Xin; Liu, Mengmeng; Du, Chunhua; Liu, Ting; Pu, Xiong; Hu, Weiguo; Wang, Zhong Lin

    2017-09-26

    The piezo-phototronic effect is the tuning of piezoelectric polarization charges at the interface to largely enhance the efficiency of optoelectronic processes related to carrier separation or recombination. Here, we demonstrated the enhanced short-circuit current density and the conversion efficiency of InGaN/GaN multiple quantum well solar cells with an external stress applied on the device. The external-stress-induced piezoelectric charges generated at the interfaces of InGaN and GaN compensate the piezoelectric charges induced by lattice mismatch stress in the InGaN wells. The energy band realignment is calculated with a self-consistent numerical model to clarify the enhancement mechanism of optical-generated carriers. This research not only theoretically and experimentally proves the piezo-phototronic effect modulated the quantum photovoltaic device but also provides a great promise to maximize the use of solar energy in the current energy revolution.

  2. Role of the substrate reflectance and surface-bulk treatments in CsI quantum efficiency

    CERN Document Server

    Singh, B K; Nitti, M A; Valentini, A

    2003-01-01

    We have experimentally investigated the following aspects related to the quantum efficiency of CsI photocathodes: the type of substrate, the film thickness and the effect of a 'bulk treatment' during the film growth. We discovered that, using a high reflectivity aluminium substrate, the photoemission of very thin CsI film is enhanced. Our study also revealed that photocathodes become less sensitive to moisture when a negative bias voltage is applied to the substrate during the film deposition process.

  3. Optimal and efficient decoding of concatenated quantum block codes

    International Nuclear Information System (INIS)

    Poulin, David

    2006-01-01

    We consider the problem of optimally decoding a quantum error correction code--that is, to find the optimal recovery procedure given the outcomes of partial ''check'' measurements on the system. In general, this problem is NP hard. However, we demonstrate that for concatenated block codes, the optimal decoding can be efficiently computed using a message-passing algorithm. We compare the performance of the message-passing algorithm to that of the widespread blockwise hard decoding technique. Our Monte Carlo results using the five-qubit and Steane's code on a depolarizing channel demonstrate significant advantages of the message-passing algorithms in two respects: (i) Optimal decoding increases by as much as 94% the error threshold below which the error correction procedure can be used to reliably send information over a noisy channel; and (ii) for noise levels below these thresholds, the probability of error after optimal decoding is suppressed at a significantly higher rate, leading to a substantial reduction of the error correction overhead

  4. ACRE: Absolute concentration robustness exploration in module-based combinatorial networks

    KAUST Repository

    Kuwahara, Hiroyuki; Umarov, Ramzan; Almasri, Islam; Gao, Xin

    2017-01-01

    To engineer cells for industrial-scale application, a deep understanding of how to design molecular control mechanisms to tightly maintain functional stability under various fluctuations is crucial. Absolute concentration robustness (ACR) is a category of robustness in reaction network models in which the steady-state concentration of a molecular species is guaranteed to be invariant even with perturbations in the other molecular species in the network. Here, we introduce a software tool, absolute concentration robustness explorer (ACRE), which efficiently explores combinatorial biochemical networks for the ACR property. ACRE has a user-friendly interface, and it can facilitate efficient analysis of key structural features that guarantee the presence and the absence of the ACR property from combinatorial networks. Such analysis is expected to be useful in synthetic biology as it can increase our understanding of how to design molecular mechanisms to tightly control the concentration of molecular species. ACRE is freely available at https://github.com/ramzan1990/ACRE.

  5. ACRE: Absolute concentration robustness exploration in module-based combinatorial networks

    KAUST Repository

    Kuwahara, Hiroyuki

    2017-03-01

    To engineer cells for industrial-scale application, a deep understanding of how to design molecular control mechanisms to tightly maintain functional stability under various fluctuations is crucial. Absolute concentration robustness (ACR) is a category of robustness in reaction network models in which the steady-state concentration of a molecular species is guaranteed to be invariant even with perturbations in the other molecular species in the network. Here, we introduce a software tool, absolute concentration robustness explorer (ACRE), which efficiently explores combinatorial biochemical networks for the ACR property. ACRE has a user-friendly interface, and it can facilitate efficient analysis of key structural features that guarantee the presence and the absence of the ACR property from combinatorial networks. Such analysis is expected to be useful in synthetic biology as it can increase our understanding of how to design molecular mechanisms to tightly control the concentration of molecular species. ACRE is freely available at https://github.com/ramzan1990/ACRE.

  6. Feasible quantum communication complexity protocol

    International Nuclear Information System (INIS)

    Galvao, Ernesto F.

    2002-01-01

    I show that a simple multiparty communication task can be performed more efficiently with quantum communication than with classical communication, even with low detection efficiency η. The task is a communication complexity problem in which distant parties need to compute a function of the distributed inputs, while minimizing the amount of communication between them. A realistic quantum optical setup is suggested that can demonstrate a five-party quantum protocol with higher-than-classical performance, provided η>0.33

  7. Quantum bootstrapping via compressed quantum Hamiltonian learning

    International Nuclear Information System (INIS)

    Wiebe, Nathan; Granade, Christopher; Cory, D G

    2015-01-01

    A major problem facing the development of quantum computers or large scale quantum simulators is that general methods for characterizing and controlling are intractable. We provide a new approach to this problem that uses small quantum simulators to efficiently characterize and learn control models for larger devices. Our protocol achieves this by using Bayesian inference in concert with Lieb–Robinson bounds and interactive quantum learning methods to achieve compressed simulations for characterization. We also show that the Lieb–Robinson velocity is epistemic for our protocol, meaning that information propagates at a rate that depends on the uncertainty in the system Hamiltonian. We illustrate the efficiency of our bootstrapping protocol by showing numerically that an 8 qubit Ising model simulator can be used to calibrate and control a 50 qubit Ising simulator while using only about 750 kilobits of experimental data. Finally, we provide upper bounds for the Fisher information that show that the number of experiments needed to characterize a system rapidly diverges as the duration of the experiments used in the characterization shrinks, which motivates the use of methods such as ours that do not require short evolution times. (fast track communication)

  8. Solvothermal synthesis of InP quantum dots and their enhanced luminescent efficiency by post-synthetic treatments.

    Science.gov (United States)

    Byun, Ho-June; Lee, Ju Chul; Yang, Heesun

    2011-03-01

    InP quantum dots (QDs) were solvothermally synthesized by using a greener phosphorus source of P(N(CH(3))(2))(3) instead of highly toxic P(TMS)(3) widely used, and subsequently subjected to a size-sorting processing. While as-grown QDs showed an undetectably low emission intensity, post-synthetic treatments such as photo-etching, photo-radiation, and photo-assisted ZnS shell coating gave rise to a substantial increase in emission efficiency due to the effective removal and passivation of surface states. The emission efficiency of the photo-etched QDs was further enhanced by a consecutive UV photo-radiation, attributable to the photo-oxidation at QD surface. Furthermore, a relatively thick ZnS shell on the surface of InP QDs that were surface-modified with hydrophilic ligands beforehand was photochemically generated in an aqueous solution at room temperature. The resulting InP/ZnS core/shell QDs, emitting from blue to red wavelengths, were more efficient than the above photo-treated InP QDs, and their luminescent properties (emission bandwidth and quantum yield) were comparable to those of InP QDs synthesized with P(TMS)(3). Structural, size, and compositional analyses on InP/ZnS QDs were also conducted to elucidate their core/shell structure. Copyright © 2010 Elsevier Inc. All rights reserved.

  9. Experimental quantum Hamiltonian learning

    NARCIS (Netherlands)

    Wang, J.; Paesani, S.; Santagati, R.; Knauer, S.; Gentile, A.A.; Wiebe, N.; Petruzzella, M.; O’Brien, J.L.; Rarity, J.G.; Laing, A.; Thompson, M.G.

    2017-01-01

    The efficient characterization of quantum systems1, 2, 3, the verification of the operations of quantum devices4, 5, 6 and the validation of underpinning physical models7, 8, 9, are central challenges for quantum technologies10, 11, 12 and fundamental physics13, 14. The computational cost of such

  10. Low field Monte-Carlo calculations in heterojunctions and quantum wells

    NARCIS (Netherlands)

    Hall, van P.J.; Rooij, de R.; Wolter, J.H.

    1990-01-01

    We present results of low-field Monte-Carlo calculations and compare them with experimental results. The negative absolute mobility of minority electrons in p-type quantum wells, as found in recent experiments, is described quite well.

  11. Quantum computing with trapped ions

    International Nuclear Information System (INIS)

    Haeffner, H.; Roos, C.F.; Blatt, R.

    2008-01-01

    Quantum computers hold the promise of solving certain computational tasks much more efficiently than classical computers. We review recent experimental advances towards a quantum computer with trapped ions. In particular, various implementations of qubits, quantum gates and some key experiments are discussed. Furthermore, we review some implementations of quantum algorithms such as a deterministic teleportation of quantum information and an error correction scheme

  12. Quantum states and their marginals. From multipartite entanglement to quantum error-correcting codes

    International Nuclear Information System (INIS)

    Huber, Felix Michael

    2017-01-01

    At the heart of the curious phenomenon of quantum entanglement lies the relation between the whole and its parts. In my thesis, I explore different aspects of this theme in the multipartite setting by drawing connections to concepts from statistics, graph theory, and quantum error-correcting codes: first, I address the case when joint quantum states are determined by their few-body parts and by Jaynes' maximum entropy principle. This can be seen as an extension of the notion of entanglement, with less complex states already being determined by their few-body marginals. Second, I address the conditions for certain highly entangled multipartite states to exist. In particular, I present the solution of a long-standing open problem concerning the existence of an absolutely maximally entangled state on seven qubits. This sheds light on the algebraic properties of pure quantum states, and on the conditions that constrain the sharing of entanglement amongst multiple particles. Third, I investigate Ulam's graph reconstruction problems in the quantum setting, and obtain legitimacy conditions of a set of states to be the reductions of a joint graph state. Lastly, I apply and extend the weight enumerator machinery from quantum error correction to investigate the existence of codes and highly entangled states in higher dimensions. This clarifies the physical interpretation of the weight enumerators and of the quantum MacWilliams identity, leading to novel applications in multipartite entanglement.

  13. Nanometer-scale monitoring of quantum-confined Stark effect and emission efficiency droop in multiple GaN/AlN quantum disks in nanowires

    Science.gov (United States)

    Zagonel, L. F.; Tizei, L. H. G.; Vitiello, G. Z.; Jacopin, G.; Rigutti, L.; Tchernycheva, M.; Julien, F. H.; Songmuang, R.; Ostasevicius, T.; de la Peña, F.; Ducati, C.; Midgley, P. A.; Kociak, M.

    2016-05-01

    We report on a detailed study of the intensity dependent optical properties of individual GaN/AlN quantum disks (QDisks) embedded into GaN nanowires (NW). The structural and optical properties of the QDisks were probed by high spatial resolution cathodoluminescence (CL) in a scanning transmission electron microscope (STEM). By exciting the QDisks with a nanometric electron beam at currents spanning over three orders of magnitude, strong nonlinearities (energy shifts) in the light emission are observed. In particular, we find that the amount of energy shift depends on the emission rate and on the QDisk morphology (size, position along the NW and shell thickness). For thick QDisks (>4 nm), the QDisk emission energy is observed to blueshift with the increase of the emission intensity. This is interpreted as a consequence of the increase of carriers density excited by the incident electron beam inside the QDisks, which screens the internal electric field and thus reduces the quantum confined Stark effect (QCSE) present in these QDisks. For thinner QDisks (energy shifts, marking the transition from unscreened to partially screened QCSE. From the threshold value we estimate the lifetime in the unscreened regime. These observations suggest that, counterintuitively, electrons of high energy can behave ultimately as single electron-hole pair generators. In addition, when we increase the current from 1 to 10 pA the light emission efficiency drops by more than one order of magnitude. This reduction of the emission efficiency is a manifestation of the "efficiency droop" as observed in nitride-based 2D light emitting diodes, a phenomenon tentatively attributed to the Auger effect.

  14. Spectroscopic investigations of dark Si nanocrystals in SiO2 and their role in external quantum efficiency quenching"

    NARCIS (Netherlands)

    Limpens, R.; Gregorkiewicz, T.

    2013-01-01

    The percentage of dark silicon nanocrystals, i.e., the nanocrystals that are not able to radiatively recombine after absorption of a photon, is investigated by combining measurements of external and internal quantum efficiencies. The study is conducted on samples prepared by co-sputtering and

  15. Atom-chip based quantum gravimetry for the precise determination of absolute local gravity

    Science.gov (United States)

    Abend, S.

    2015-12-01

    We present a novel technique for the precise measurement of absolute local gravity based on cold atom interferometry. Atom interferometry utilizes the interference of matter waves interrogated by laser light to read out inertial forces. Today's generation of these devices typically operate with test mass samples, that consists of ensembles of laser cooled atoms. Their performance is limited by the velocity spread and finite-size of the test masses that impose systematic uncertainties at the level of a few μGal. Rather than laser cooled atoms we employ quantum degenerate ensembles, so called Bose-Einstein condensates, as ultra-sensitive probes for gravity. These sources offer unique properties in temperature as well as in ensemble size that will allow to overcome the current limitations with the next generation of sensors. Furthermore, atom-chip technologies offer the possibility to generate Bose-Einstein condensates in a fast and reliable way. We show a lab-based prototype that uses the atom-chip itself to retro-reflect the interrogation laser and thus serving as inertial reference inside the vacuum. With this setup it is possible to demonstrate all necessary steps to measure gravity, including the preparation of the source, spanning an interferometer as well as the detection of the output signal, within an area of 1 cm3 right below the atom-chip and to analyze relevant systematic effects. In the framework of the center of excellence geoQ a next generation device is under construction at the Institut für Quantenoptik, that will allow for in-field measurements. This device will feature a state-of-the-art atom-chip source with a high-flux of ultra-cold atoms at a repetition rate of 1-2 Hz. In cooperation with the Müller group at the Institut für Erdmessung the sensor will be characterized in the laboratory first, to be ultimately employed in campaigns to measure the Fennoscandian uplift at the level of 1 μGal. The presented work is part of the center of

  16. High-Efficiency InGaN/GaN Quantum Well-Based Vertical Light-Emitting Diodes Fabricated on β-Ga2O3 Substrate

    KAUST Repository

    Muhammed, Mufasila

    2017-09-11

    We demonstrate a state-of-the-art high-efficiency GaN-based vertical light-emitting diode (VLED) grown on a transparent and conductive (-201)-oriented (β-Ga2O3) substrate, obtained using a straightforward growth process that does not require a high cost lift-off technique or complex fabrication process. The high-resolution scanning transmission electron microscopy (STEM) images confirm that we produced high quality upper layers, including a multi-quantum well (MQW) grown on the masked β-Ga2O3 substrate. STEM imaging also shows a well-defined MQW without InN diffusion into the barrier. Electroluminescence (EL) measurements at room temperature indicate that we achieved a very high internal quantum efficiency (IQE) of 78%; at lower temperatures, IQE reaches ~ 86%. The photoluminescence (PL) and time-resolved PL analysis indicate that, at a high carrier injection density, the emission is dominated by radiative recombination with a negligible Auger effect; no quantum-confined Stark effect is observed. At low temperatures, no efficiency droop is observed at a high carrier injection density, indicating the superior VLED structure obtained without lift-off processing, which is cost-effective for large-scale devices.

  17. High-Efficiency InGaN/GaN Quantum Well-Based Vertical Light-Emitting Diodes Fabricated on β-Ga2O3 Substrate

    KAUST Repository

    Muhammed, Mufasila; Alwadai, Norah Mohammed Mosfer; Lopatin, Sergei; Kuramata, Akito; Roqan, Iman S.

    2017-01-01

    We demonstrate a state-of-the-art high-efficiency GaN-based vertical light-emitting diode (VLED) grown on a transparent and conductive (-201)-oriented (β-Ga2O3) substrate, obtained using a straightforward growth process that does not require a high cost lift-off technique or complex fabrication process. The high-resolution scanning transmission electron microscopy (STEM) images confirm that we produced high quality upper layers, including a multi-quantum well (MQW) grown on the masked β-Ga2O3 substrate. STEM imaging also shows a well-defined MQW without InN diffusion into the barrier. Electroluminescence (EL) measurements at room temperature indicate that we achieved a very high internal quantum efficiency (IQE) of 78%; at lower temperatures, IQE reaches ~ 86%. The photoluminescence (PL) and time-resolved PL analysis indicate that, at a high carrier injection density, the emission is dominated by radiative recombination with a negligible Auger effect; no quantum-confined Stark effect is observed. At low temperatures, no efficiency droop is observed at a high carrier injection density, indicating the superior VLED structure obtained without lift-off processing, which is cost-effective for large-scale devices.

  18. Trade-off between bandwidth and efficiency in semipolar (20 2 ¯ 1 ¯) InGaN/GaN single- and multiple-quantum-well light-emitting diodes

    Science.gov (United States)

    Monavarian, M.; Rashidi, A.; Aragon, A. A.; Nami, M.; Oh, S. H.; DenBaars, S. P.; Feezell, D.

    2018-05-01

    InGaN/GaN light-emitting diodes (LEDs) with large modulation bandwidths are desirable for visible-light communication. Along with modulation speed, the consideration of the internal quantum efficiency (IQE) under operating conditions is also important. Here, we report the modulation characteristics of semipolar (20 2 ¯ 1 ¯ ) InGaN/GaN (LEDs) with single-quantum well (SQW) and multiple-quantum-well (MQW) active regions grown on free-standing semipolar GaN substrates with peak internal quantum efficiencies (IQEs) of 0.93 and 0.73, respectively. The MQW LEDs exhibit on average about 40-80% higher modulation bandwidth, reaching 1.5 GHz at 13 kA/cm2, but about 27% lower peak IQE than the SQW LEDs. We extract the differential carrier lifetimes (DLTs), RC parasitics, and carrier escape lifetimes and discuss their role in the bandwidth and IQE characteristics. A coulomb-enhanced capture process is shown to rapidly reduce the DLT of the MQW LED at high current densities. Auger recombination is also shown to play little role in increasing the speed of the LEDs. Finally, we investigate the trade-offs between the bandwidth and efficiency and introduce the bandwidth-IQE product as a potential figure of merit for optimizing speed and efficiency in InGaN/GaN LEDs.

  19. The Wave Function and Quantum Reality

    International Nuclear Information System (INIS)

    Gao Shan

    2011-01-01

    We investigate the meaning of the wave function by analyzing the mass and charge density distributions of a quantum system. According to protective measurement, a charged quantum system has effective mass and charge density distributing in space, proportional to the square of the absolute value of its wave function. In a realistic interpretation, the wave function of a quantum system can be taken as a description of either a physical field or the ergodic motion of a particle. The essential difference between a field and the ergodic motion of a particle lies in the property of simultaneity; a field exists throughout space simultaneously, whereas the ergodic motion of a particle exists throughout space in a time-divided way. If the wave function is a physical field, then the mass and charge density will be distributed in space simultaneously for a charged quantum system, and thus there will exist gravitational and electrostatic self-interactions of its wave function. This not only violates the superposition principle of quantum mechanics but also contradicts experimental observations. Thus the wave function cannot be a description of a physical field but be a description of the ergodic motion of a particle. For the later there is only a localized particle with mass and charge at every instant, and thus there will not exist any self-interaction for the wave function. It is further argued that the classical ergodic models, which assume continuous motion of particles, cannot be consistent with quantum mechanics. Based on the negative result, we suggest that the wave function is a description of the quantum motion of particles, which is random and discontinuous in nature. On this interpretation, the square of the absolute value of the wave function not only gives the probability of the particle being found in certain locations, but also gives the probability of the particle being there. The suggested new interpretation of the wave function provides a natural realistic

  20. Quantum computation in semiconductor quantum dots of electron-spin asymmetric anisotropic exchange

    International Nuclear Information System (INIS)

    Hao Xiang; Zhu Shiqun

    2007-01-01

    The universal quantum computation is obtained when there exists asymmetric anisotropic exchange between electron spins in coupled semiconductor quantum dots. The asymmetric Heisenberg model can be transformed into the isotropic model through the control of two local unitary rotations for the realization of essential quantum gates. The rotations on each qubit are symmetrical and depend on the strength and orientation of asymmetric exchange. The implementation of the axially symmetric local magnetic fields can assist the construction of quantum logic gates in anisotropic coupled quantum dots. This proposal can efficiently use each physical electron spin as a logical qubit in the universal quantum computation

  1. Self-assembled quantum dot structures in a hexagonal nanowire for quantum photonics.

    Science.gov (United States)

    Yu, Ying; Dou, Xiu-Ming; Wei, Bin; Zha, Guo-Wei; Shang, Xiang-Jun; Wang, Li; Su, Dan; Xu, Jian-Xing; Wang, Hai-Yan; Ni, Hai-Qiao; Sun, Bao-Quan; Ji, Yuan; Han, Xiao-Dong; Niu, Zhi-Chuan

    2014-05-01

    Two types of quantum nanostructures based on self-assembled GaAs quantumdots embedded into GaAs/AlGaAs hexagonal nanowire systems are reported, opening a new avenue to the fabrication of highly efficient single-photon sources, as well as the design of novel quantum optics experiments and robust quantum optoelectronic devices operating at higher temperature, which are required for practical quantum photonics applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Light emission efficiency and imaging properties of YAP:Ce granular phosphor screens

    International Nuclear Information System (INIS)

    Kalivas, N.; Valais, I.; Nikolopoulos, D.; Konstantinidis, A.; Cavouras, D.; Kandarakis, I.; Gaitanis, A.; Nomicos, C.D.; Panayiotakis, G.

    2007-01-01

    Phosphor materials are used in medical imaging combined with radiographic film or other photodetectors. Cerium (Ce 3+ ) -doped scintillators are of particular interest for medical imaging, because of their very fast response. YAP:Ce scintillator-based image detectors have already been evaluated in single-crystal form and under conditions of positron emission tomography and synchrotron or γ-ray irradiation. Furthermore, YAP:Ce phosphor has been evaluated in conjunction with radiographic films. The present work reports experimental and theoretical data concerning the light output absolute luminescence efficiency (AE) of the YAP:Ce screens under irradiation conditions employed in medical X-ray projection imaging (i.e., in diagnostic radiology). projection imaging (i.e., in diagnostic radiology). YAP:Ce phosphor screens with surface densities ranging between 53 and 110 mg/cm 2 were prepared by sedimentation on fused silica substrates in our laboratory. The resulted surface density of the screens was determined by dividing the phosphor mass deposited on the screen surface with the area of the surface. Additionally this work addresses the imaging performance of YAP:Ce by estimation of the detective quantum efficiency (DQE), i.e., the square of the signal to noise ratio transfer. Absolute efficiency was found to decrease with X-ray tube voltage for for YAP:Ce phosphor. The highest experimental efficiency was obtained for the 53.7 mg/cm 2 and 88.0 mg/cm 2 YAP:Ce screens. The highest DQE value was found for the 88.0 mg/cm 2 screen irradiated at 60 kVp. (orig.)

  3. Modulation transfer function and detective quantum efficiency of electron bombarded charge coupled device detector for low energy electrons

    Czech Academy of Sciences Publication Activity Database

    Horáček, Miroslav

    2005-01-01

    Roč. 76, č. 9 (2005), 093704:1-6 ISSN 0034-6748 R&D Projects: GA ČR(CZ) GA202/03/1575 Keywords : electron bombarded CCD * modulation transfer function * detective quantum efficiency Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.235, year: 2005

  4. Enhanced and tunable optical quantum efficiencies from plasmon bandwidth engineering in bimetallic CoAg nanoparticles

    Directory of Open Access Journals (Sweden)

    A. Malasi

    2016-10-01

    Full Text Available Plasmonic nanoparticles are amongst the most effective ways to resonantly couple optical energy into and out of nanometer sized volumes. However, controlling and/or tuning the transfer of this incident energy to the surrounding near and far field is one of the most interesting challenges in this area. Due to the dielectric properties of metallic silver (Ag, its nanoparticles have amongst the highest radiative quantum efficiencies (η, i.e., the ability to radiatively transfer the incident energy to the surrounding. Here we report the discovery that bimetallic nanoparticles of Ag made with immiscible and plasmonically weak Co metal can show comparable and/or even higher η values. The enhancement is a result of the narrowing of the plasmon bandwidth from these bimetal systems. The phenomenological explanation of this effect based on the dipolar approximation points to the reduction in radiative losses within the Ag nanoparticles when in contact with cobalt. This is also supported by a model of coupling between poor and good conductors based on the surface to volume ratio. This study presents a new type of bandwidth engineering, one based on using bimetal nanostructures, to tune and/or enhance the quality factor and quantum efficiency for near and far-field plasmonic applications.

  5. Efficient method for computing the maximum-likelihood quantum state from measurements with additive Gaussian noise.

    Science.gov (United States)

    Smolin, John A; Gambetta, Jay M; Smith, Graeme

    2012-02-17

    We provide an efficient method for computing the maximum-likelihood mixed quantum state (with density matrix ρ) given a set of measurement outcomes in a complete orthonormal operator basis subject to Gaussian noise. Our method works by first changing basis yielding a candidate density matrix μ which may have nonphysical (negative) eigenvalues, and then finding the nearest physical state under the 2-norm. Our algorithm takes at worst O(d(4)) for the basis change plus O(d(3)) for finding ρ where d is the dimension of the quantum state. In the special case where the measurement basis is strings of Pauli operators, the basis change takes only O(d(3)) as well. The workhorse of the algorithm is a new linear-time method for finding the closest probability distribution (in Euclidean distance) to a set of real numbers summing to one.

  6. Construction of 3-dimensional ZnO-nanoflower structures for high quantum and photocurrent efficiency in dye sensitized solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Kilic, Bayram, E-mail: bkilic@yalova.edu.tr [Yalova University, Department of Energy Systems Engineering, Faculty of Engineering, 77100 Yalova (Turkey); Günes, Taylan; Besirli, Ilknur; Sezginer, Merve [Yalova University, Department of Energy Systems Engineering, Faculty of Engineering, 77100 Yalova (Turkey); Tuzemen, Sebahattin [Department of Physics, Faculty of Science, Atatürk University, Erzurum 25240 (Turkey)

    2014-11-01

    Graphical abstract: - Highlights: • The structural and optical characterizations of ZnO nanoflowers were carried out on ITO by hydrothermal method. • Dye sensitized solar cell based ZnO nanoflowers were constructed on substrate. • The surface morphology effect on quantum efficiency and solar conversion efficiency were investigated. - Abstract: 3-dimensional ZnO nanoflower were obtained on FTO (F:SnO{sub 2}) substrate by hydrothermal method in order to produce high efficiency dye sensitized solar cells (DSSCs). We showed that nanoflowers structures have nanoscale branches that stretch to fill gaps on the substrate and these branches of nano-leaves provide both a larger surface area and a direct pathway for electron transport along the channels. It was found that the solar conversion efficiency and quantum efficiency (QE) or incident photon to current conversion efficiencies (IPCE) is highly dependent on nanoflower surface due to high electron injection process. The highest solar conversion efficiency of 5.119 and QE of 60% was obtained using ZnO nanoflowers/N719 dye/I{sup −}/I{sup −}{sub 3} electrolyte. In this study, three dimensional (3D)-nanoflower and one dimensional (1D)-nanowires ZnO nanostructures were also compared against each other in respect to solar conversion efficiency and QE measurements. In the case of the 1D-ZnO nanowire conversion efficiency (η) of 2.222% and IPCE 47% were obtained under an illumination of 100 mW/cm{sup 2}. It was confirmed that the performance of the 3D-nanoflowers was better than about 50% that of the 1D-nanowire dye-sensitized solar cells.

  7. Long-term stable stacked CsPbBr3 quantum dot films for highly efficient white light generation in LEDs.

    Science.gov (United States)

    Song, Young Hyun; Yoo, Jin Sun; Kang, Bong Kyun; Choi, Seung Hee; Ji, Eun Kyung; Jung, Hyun Suk; Yoon, Dae Ho

    2016-12-01

    We report highly efficient ethyl cellulose with CsPbBr 3 perovskite QD films for white light generation in LED application. Ethyl cellulose with CsPbBr 3 quantum dots is applied with Sr 2 Si 5 N 8  : Eu 2+ red phosphor on an InGaN blue chip, achieving a highly efficient luminous efficacy of 67.93 lm W -1 under 20 mA current.

  8. Pulsed voltage deposited lead selenide thin film as efficient counter electrode for quantum-dot-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Bin Bin [Key Laboratory of Macromolecular Science of Shaanxi Province & School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710062 (China); Department of Chemical Engineering, Institute of Chemical Industry, Shaanxi Institute of Technology, Xi’an 710300 (China); Wang, Ye Feng [Key Laboratory of Macromolecular Science of Shaanxi Province & School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710062 (China); Wang, Xue Qing [Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116024 (China); Zeng, Jing Hui, E-mail: jhzeng@ustc.edu [Key Laboratory of Macromolecular Science of Shaanxi Province & School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710062 (China)

    2016-04-30

    Highlights: • PbSe thin film is deposited on FTO glass by a pulse voltage electrodeposition method. • The thin film is used as counter electrode (CE) in quantum dot-sensitized solar cell. • Superior electrocatalytic activity and stability in the polysulfide electrolyte is received. • The narrow band gap characteristics and p-type conductivity enhances the cell efficiency. • An efficiency of 4.67% is received for the CdS/CdSe co-sensitized solar cells. - Abstract: Lead selenide (PbSe) thin films were deposited on fluorine doped tin oxide (FTO) glass by a facile one-step pulse voltage electrodeposition method, and used as counter electrode (CE) in CdS/CdSe quantum dot-sensitized solar cells (QDSSCs). A power conversion efficiency of 4.67% is received for the CdS/CdSe co-sensitized solar cells, which is much better than that of 2.39% received using Pt CEs. The enhanced performance is attributed to the extended absorption in the near infrared region, superior electrocatalytic activity and p-type conductivity with a reflection of the incident light at the back electrode in addition. The physical and chemical properties were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS), reflectance spectra, electrochemical impedance spectroscopy (EIS) and Tafel polarization measurements. The present work provides a facile pathway to an efficient CE in the QDSSCs.

  9. Study on the effect factor of the absolute fission rates measured by depleted uranium fission chamber

    International Nuclear Information System (INIS)

    Jiang Li; Liu Rong; Wang Dalun; Wang Mei; Lin Jufang; Wen Zhongwei

    2003-01-01

    The absolute fission rates was measured by the depleted uranium fission chamber. The efficiency of the fission fragments recorded in the fission chamber was analyzed. The factor influencing absolute fission rates was studied in the experiment, including the disturbing effect between detectors and the effect of the structural of the fission chamber, etc

  10. Efficiencies of Dye-Sensitized Solar Cells using Ferritin-Encapsulated Quantum Dots with Various Staining Methods

    Science.gov (United States)

    Perez, Luis

    Dye-sensitized solar cells (DSSC) have the potential to replace traditional and cost-inefficient crystalline silicon or ruthenium solar cells. This can only be accomplished by optimizing DSSC's energy efficiency. One of the major components in a dye-sensitized solar cell is the porous layer of titanium dioxide. This layer is coated with a molecular dye that absorbs sunlight. The research conducted for this paper focuses on the different methods used to dye the porous TiO2 layer with ferritin-encapsulated quantum dots. Multiple anodes were dyed using a method known as SILAR which involves deposition through alternate immersion in two different solutions. The efficiencies of DSSCs with ferritin-encapsulated lead sulfide dye deposited using SILAR were subsequently compared against the efficiencies produced by cells using the traditional immersion method. It was concluded that both methods resulted in similar efficiencies (? .074%) however, the SILAR method dyed the TiO2 coating significantly faster than the immersion method. On a related note, our experiments concluded that conducting 2 SILAR cycles yields the highest possible efficiency for this particular binding method. National Science Foundation.

  11. Charge separation in branched TiO_2 nanorod array homojunction aroused by quantum effect for enhanced photocatalytic decomposition of gaseous benzene

    International Nuclear Information System (INIS)

    Wang, Xiaoxia; Ni, Qian; Zeng, Dawen; Liao, Guanglan; Xie, Changsheng

    2016-01-01

    Highlights: • Charge separation in homojunction based on the broadened band gap by quantum effect. • Absolute charge separation by the passivation effect of TiO_2 nanorod. • Long-distance electron transfer behavior in photocatalysis. • Roughed surface for enhanced light harvesting by light trapping effect. - Abstract: As known, the electron transfer behavior in photocatalysis is short-distance transportation, which leads the photo-induced electrons and holes to be localized. The temporarily separated electrons and holes will recombine with each other in the localized region. In this paper, we successfully achieved electron transfer in a homojunction of branched rutile TiO_2 nanorod @nanoparticle core-shell architecture by quantum confinement effect aroused by the nanoparticle, which is proved by the blue-shifting in UV–vis absorption spectrum of the homojunction. Meanwhile, an absolute charge separation is also achieved by the long-distance electron transfer along the single-crystalline rutile TiO_2 nanorod as uninterrupted high-speed electron transfer channel to FTO substrates. Based on the effective charge separation, the photocatalytic decomposition of gaseous benzene by the homojunction is significantly enhanced, yielding 10 times CO_2 than that of the nanorod array. This homojunction interfacial charge separation, aroused by quantum effect, through long-distance transfer along the single-crystalline nanorod gives us inspiration to achieve efficient charge separation with defect-less interfaces, which might can be utilized for real-time environmental abatement and energy generation simultaneously.

  12. Computer-aided-design-model-assisted absolute three-dimensional shape measurement.

    Science.gov (United States)

    Li, Beiwen; Bell, Tyler; Zhang, Song

    2017-08-20

    Conventional three-dimensional (3D) shape measurement methods are typically generic to all types of objects. Yet, for many measurement conditions, such a level of generality is inessential when having the preknowledge of the object geometry. This paper introduces a novel adaptive algorithm for absolute 3D shape measurement with the assistance of the object computer-aided-design (CAD) model. The proposed algorithm includes the following major steps: (1) export the 3D point cloud data from the CAD model; (2) transform the CAD model into the camera perspective; (3) obtain a wrapped phase map from three phase-shifted fringe images; and (4) retrieve absolute phase and 3D geometry assisted by the CAD model. We demonstrate that if object CAD models are available, such an algorithm is efficient in recovering absolute 3D geometries of both simple and complex objects with only three phase-shifted fringe images.

  13. ABSOLUTE NEUTRINO MASSES

    DEFF Research Database (Denmark)

    Schechter, J.; Shahid, M. N.

    2012-01-01

    We discuss the possibility of using experiments timing the propagation of neutrino beams over large distances to help determine the absolute masses of the three neutrinos.......We discuss the possibility of using experiments timing the propagation of neutrino beams over large distances to help determine the absolute masses of the three neutrinos....

  14. Experimental quantum computing without entanglement.

    Science.gov (United States)

    Lanyon, B P; Barbieri, M; Almeida, M P; White, A G

    2008-11-14

    Deterministic quantum computation with one pure qubit (DQC1) is an efficient model of computation that uses highly mixed states. Unlike pure-state models, its power is not derived from the generation of a large amount of entanglement. Instead it has been proposed that other nonclassical correlations are responsible for the computational speedup, and that these can be captured by the quantum discord. In this Letter we implement DQC1 in an all-optical architecture, and experimentally observe the generated correlations. We find no entanglement, but large amounts of quantum discord-except in three cases where an efficient classical simulation is always possible. Our results show that even fully separable, highly mixed, states can contain intrinsically quantum mechanical correlations and that these could offer a valuable resource for quantum information technologies.

  15. Matroids and quantum-secret-sharing schemes

    International Nuclear Information System (INIS)

    Sarvepalli, Pradeep; Raussendorf, Robert

    2010-01-01

    A secret-sharing scheme is a cryptographic protocol to distribute a secret state in an encoded form among a group of players such that only authorized subsets of the players can reconstruct the secret. Classically, efficient secret-sharing schemes have been shown to be induced by matroids. Furthermore, access structures of such schemes can be characterized by an excluded minor relation. No such relations are known for quantum secret-sharing schemes. In this paper we take the first steps toward a matroidal characterization of quantum-secret-sharing schemes. In addition to providing a new perspective on quantum-secret-sharing schemes, this characterization has important benefits. While previous work has shown how to construct quantum-secret-sharing schemes for general access structures, these schemes are not claimed to be efficient. In this context the present results prove to be useful; they enable us to construct efficient quantum-secret-sharing schemes for many general access structures. More precisely, we show that an identically self-dual matroid that is representable over a finite field induces a pure-state quantum-secret-sharing scheme with information rate 1.

  16. Quantum mechanics and computation

    International Nuclear Information System (INIS)

    Cirac Sasturain, J. I.

    2000-01-01

    We review how some of the basic principles of Quantum Mechanics can be used in the field of computation. In particular, we explain why a quantum computer can perform certain tasks in a much more efficient way than the computers we have available nowadays. We give the requirements for a quantum system to be able to implement a quantum computer and illustrate these requirements in some particular physical situations. (Author) 16 refs

  17. Quantum Correlations in Nonlocal Boson Sampling.

    Science.gov (United States)

    Shahandeh, Farid; Lund, Austin P; Ralph, Timothy C

    2017-09-22

    Determination of the quantum nature of correlations between two spatially separated systems plays a crucial role in quantum information science. Of particular interest is the questions of if and how these correlations enable quantum information protocols to be more powerful. Here, we report on a distributed quantum computation protocol in which the input and output quantum states are considered to be classically correlated in quantum informatics. Nevertheless, we show that the correlations between the outcomes of the measurements on the output state cannot be efficiently simulated using classical algorithms. Crucially, at the same time, local measurement outcomes can be efficiently simulated on classical computers. We show that the only known classicality criterion violated by the input and output states in our protocol is the one used in quantum optics, namely, phase-space nonclassicality. As a result, we argue that the global phase-space nonclassicality inherent within the output state of our protocol represents true quantum correlations.

  18. Quantum Computing and the Limits of the Efficiently Computable

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    I'll discuss how computational complexity---the study of what can and can't be feasibly computed---has been interacting with physics in interesting and unexpected ways. I'll first give a crash course about computer science's P vs. NP problem, as well as about the capabilities and limits of quantum computers. I'll then touch on speculative models of computation that would go even beyond quantum computers, using (for example) hypothetical nonlinearities in the Schrodinger equation. Finally, I'll discuss BosonSampling ---a proposal for a simple form of quantum computing, which nevertheless seems intractable to simulate using a classical computer---as well as the role of computational complexity in the black hole information puzzle.

  19. Architectures for Quantum Simulation Showing a Quantum Speedup

    Science.gov (United States)

    Bermejo-Vega, Juan; Hangleiter, Dominik; Schwarz, Martin; Raussendorf, Robert; Eisert, Jens

    2018-04-01

    One of the main aims in the field of quantum simulation is to achieve a quantum speedup, often referred to as "quantum computational supremacy," referring to the experimental realization of a quantum device that computationally outperforms classical computers. In this work, we show that one can devise versatile and feasible schemes of two-dimensional, dynamical, quantum simulators showing such a quantum speedup, building on intermediate problems involving nonadaptive, measurement-based, quantum computation. In each of the schemes, an initial product state is prepared, potentially involving an element of randomness as in disordered models, followed by a short-time evolution under a basic translationally invariant Hamiltonian with simple nearest-neighbor interactions and a mere sampling measurement in a fixed basis. The correctness of the final-state preparation in each scheme is fully efficiently certifiable. We discuss experimental necessities and possible physical architectures, inspired by platforms of cold atoms in optical lattices and a number of others, as well as specific assumptions that enter the complexity-theoretic arguments. This work shows that benchmark settings exhibiting a quantum speedup may require little control, in contrast to universal quantum computing. Thus, our proposal puts a convincing experimental demonstration of a quantum speedup within reach in the near term.

  20. A three-axis SQUID-based absolute vector magnetometer

    Energy Technology Data Exchange (ETDEWEB)

    Schönau, T.; Schmelz, M.; Stolz, R.; Anders, S.; Linzen, S.; Meyer, H.-G. [Department of Quantum Detection, Leibniz Institute of Photonic Technology, Jena 07745 (Germany); Zakosarenko, V.; Meyer, M. [Supracon AG, An der Lehmgrube 11, Jena 07751 (Germany)

    2015-10-15

    We report on the development of a three-axis absolute vector magnetometer suited for mobile operation in the Earth’s magnetic field. It is based on low critical temperature dc superconducting quantum interference devices (LTS dc SQUIDs) with sub-micrometer sized cross-type Josephson junctions and exhibits a white noise level of about 10 fT/Hz{sup 1/2}. The width of superconducting strip lines is restricted to less than 6 μm in order to avoid flux trapping during cool-down in magnetically unshielded environment. The long-term stability of the flux-to-voltage transfer coefficients of the SQUID electronics is investigated in detail and a method is presented to significantly increase their reproducibility. We further demonstrate the long-term operation of the setup in a magnetic field varying by about 200 μT amplitude without the need for recalibration.

  1. Quantum machine learning.

    Science.gov (United States)

    Biamonte, Jacob; Wittek, Peter; Pancotti, Nicola; Rebentrost, Patrick; Wiebe, Nathan; Lloyd, Seth

    2017-09-13

    Fuelled by increasing computer power and algorithmic advances, machine learning techniques have become powerful tools for finding patterns in data. Quantum systems produce atypical patterns that classical systems are thought not to produce efficiently, so it is reasonable to postulate that quantum computers may outperform classical computers on machine learning tasks. The field of quantum machine learning explores how to devise and implement quantum software that could enable machine learning that is faster than that of classical computers. Recent work has produced quantum algorithms that could act as the building blocks of machine learning programs, but the hardware and software challenges are still considerable.

  2. Highly Efficient Flexible Quantum Dot Solar Cells with Improved Electron Extraction Using MgZnO Nanocrystals.

    Science.gov (United States)

    Zhang, Xiaoliang; Santra, Pralay Kanti; Tian, Lei; Johansson, Malin B; Rensmo, Håkan; Johansson, Erik M J

    2017-08-22

    Colloidal quantum dot (CQD) solar cells have high potential for realizing an efficient and lightweight energy supply for flexible or wearable electronic devices. To achieve highly efficient and flexible CQD solar cells, the electron transport layer (ETL), extracting electrons from the CQD solid layer, needs to be processed at a low-temperature and should also suppress interfacial recombination. Herein, a highly stable MgZnO nanocrystal (MZO-NC) layer is reported for efficient flexible PbS CQD solar cells. Solar cells fabricated with MZO-NC ETL give a high power conversion efficiency (PCE) of 10.4% and 9.4%, on glass and flexible plastic substrates, respectively. The reported flexible CQD solar cell has the record efficiency to date of flexible CQD solar cells. Detailed theoretical simulations and extensive characterizations reveal that the MZO-NCs significantly enhance charge extraction from CQD solids and diminish the charge accumulation at the ETL/CQD interface, suppressing charge interfacial recombination. These important results suggest that the low-temperature processed MZO-NCs are very promising for use in efficient flexible solar cells or other flexible optoelectronic devices.

  3. Go Pink! The Effect of Secondary Quanta on Detective Quantum Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Watson, Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-05

    Photons are never directly observable. Consequently, we often use photoelectric detectors (eg CCDs) to record associated photoelectrons statistically. Nonetheless, it is an implicit goal of radiographic detector designers to achieve the maximum possible detector efficiency1. In part the desire for ever higher efficiency has been due to the fact that detectors are far less expensive than associated accelerator facilities (e.g. DARHT and PHERMEX2). In addition, higher efficiency detectors often have better spatial resolution. Consequently, the optimization of the detector, not the accelerator, is the system component with the highest leverage per dollar. In recent years, imaging scientists have adopted the so-called Detective Quantum Efficiency, or DQE as a summary measure of detector performance. Unfortunately, owing to the complex nature of the trade-space associated with detector components, and the natural desire for simplicity and low(er) cost, there has been a recent trend in Los Alamos to focus only on the zerofrequency efficiency, or DQE(0), when designing such systems. This narrow focus leads to system designs that neglect or even ignore the importance of high-spatial-frequency image components. In this paper we demonstrate the significant negative impact of these design choices on the Noise Power Spectrum1 (NPS) and recommend a more holistic approach to detector design. Here we present a statistical argument which indicates that a very large number (>20) of secondary quanta (typically visible light and/or recorded photo-electrons) are needed to take maximum advantage of the primary quanta (typically x-rays or protons) which are available to form an image. Since secondary particles come in bursts, they are not independent. In short, we want to maximize the pink nature of detector noise at DARHT.

  4. Transfer of an unknown quantum state, quantum networks, and memory

    International Nuclear Information System (INIS)

    Biswas, Asoka; Agarwal, G.S.

    2004-01-01

    We present a protocol for transfer of an unknown quantum state. The protocol is based on a two-mode cavity interacting dispersively in a sequential manner with three-level atoms in the Λ configuration. We propose a scheme for quantum networking using an atomic channel. We investigate the effect of cavity decoherence in the entire process. Further, we demonstrate the possibility of an efficient quantum memory for arbitrary superposition of two modes of a cavity containing one photon

  5. Robust dynamical decoupling for quantum computing and quantum memory.

    Science.gov (United States)

    Souza, Alexandre M; Alvarez, Gonzalo A; Suter, Dieter

    2011-06-17

    Dynamical decoupling (DD) is a popular technique for protecting qubits from the environment. However, unless special care is taken, experimental errors in the control pulses used in this technique can destroy the quantum information instead of preserving it. Here, we investigate techniques for making DD sequences robust against different types of experimental errors while retaining good decoupling efficiency in a fluctuating environment. We present experimental data from solid-state nuclear spin qubits and introduce a new DD sequence that is suitable for quantum computing and quantum memory.

  6. Absolute measurement of 85Sr

    International Nuclear Information System (INIS)

    Miyahara, Hiroshi; Watanabe, Tamaki

    1978-01-01

    An extension of 4πe.x-γ coincidence technique is described to measure the absolute disintegration rate of 85 Sr. This nuclide shows electron capture-gamma decay, and 514keV level of 85 Rb is a meta-stable state with half life of 0.958 μsec. Therefore, the conventional 4 πe.x-γ coincidence technique with about 1 μsec of resolution time can not be applied to this nuclide. To measure the absolute disintegration rate of this, the delayed 4 πe.x-γ coincidence technique with two different resolution time has been used. The disintegration rate was determined from four counting rates of electron-x ray, gamma ray and two coincidences, and the true disintegration rate could be obtained by extraporation of the electron-x ray detection efficiency to 1. Two resolution time appearing in the calculation formulas were determined from the chance coincidence between electron-x ray and delayed gamma ray signals. When the coincidence countings with three different resolution time were carried out by one coincidence circuit, the results calculated from all combinations did not agree each other. However, when the two coincidence circuits of the same type were used to fix the resolution time, a good coincidence absorption function was obtained and the disintegration rate was determined with accuracy of +- 0.5%. To evaluate the validity of the results the disintegration rates were measured by two NaI (Tl) scintillation detectors whose gamma-ray detection efficiency was previously determined and both results were agreed within accuracy of +- 0.5%. This method can be applied with nearly same accuracy for the beta-gamma decay nuclide possessing a meta-stable state of the half life below about 10 μsec. (auth.)

  7. Some analogies between quantum cloning and quantum deleting

    International Nuclear Information System (INIS)

    Qiu Daowen

    2002-01-01

    We further verify the impossibility of deleting an arbitrary unknown quantum state, and also show it is impossible to delete two nonorthogonal quantum states as a consequence of unitarity of quantum mechanics. A quantum approximate (deterministic) deleting machine and a probabilistic (exact) deleting machine are constructed. The estimation for the global fidelity characterizing the efficiency of the quantum approximate deleting is given. We then demonstrate that unknown nonorthogonal states chosen from a set with their multiple copies can evolve into a linear superposition of multiple deletions and failure branches by a unitary process if and only if the states are linearly independent. It is notable that the proof for necessity is somewhat different from Pati's [Phys. Rev. Lett. 83, 2849 (1999)]. Another deleting machine for the input states that are unnecessarily linearly independent is also presented. The bounds on the success probabilities of these deleting machines are derived. So we expound some preliminary analogies between quantum cloning and deleting

  8. QuantumOptics.jl: A Julia framework for simulating open quantum systems

    Science.gov (United States)

    Krämer, Sebastian; Plankensteiner, David; Ostermann, Laurin; Ritsch, Helmut

    2018-06-01

    We present an open source computational framework geared towards the efficient numerical investigation of open quantum systems written in the Julia programming language. Built exclusively in Julia and based on standard quantum optics notation, the toolbox offers speed comparable to low-level statically typed languages, without compromising on the accessibility and code readability found in dynamic languages. After introducing the framework, we highlight its features and showcase implementations of generic quantum models. Finally, we compare its usability and performance to two well-established and widely used numerical quantum libraries.

  9. Charge separation in branched TiO{sub 2} nanorod array homojunction aroused by quantum effect for enhanced photocatalytic decomposition of gaseous benzene

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaoxia [State Key Laboratory of Materials and Processing Die & Mould Technology, Nanomaterials and Smart Sensors Research Laboratory, Department of Materials Science and Engineering, Huazhong University of Science and Technology, No. 1037, Luoyu Road, Wuhan 430074 (China); Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Wuhan 430062 (China); Ni, Qian [State Key Laboratory of Materials and Processing Die & Mould Technology, Nanomaterials and Smart Sensors Research Laboratory, Department of Materials Science and Engineering, Huazhong University of Science and Technology, No. 1037, Luoyu Road, Wuhan 430074 (China); Zeng, Dawen, E-mail: dwzeng@mail.hust.edu.cn [State Key Laboratory of Materials and Processing Die & Mould Technology, Nanomaterials and Smart Sensors Research Laboratory, Department of Materials Science and Engineering, Huazhong University of Science and Technology, No. 1037, Luoyu Road, Wuhan 430074 (China); Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Wuhan 430062 (China); Liao, Guanglan [State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, No. 1037, Luoyu Road, Wuhan 430074 (China); Xie, Changsheng [State Key Laboratory of Materials and Processing Die & Mould Technology, Nanomaterials and Smart Sensors Research Laboratory, Department of Materials Science and Engineering, Huazhong University of Science and Technology, No. 1037, Luoyu Road, Wuhan 430074 (China)

    2016-12-15

    Highlights: • Charge separation in homojunction based on the broadened band gap by quantum effect. • Absolute charge separation by the passivation effect of TiO{sub 2} nanorod. • Long-distance electron transfer behavior in photocatalysis. • Roughed surface for enhanced light harvesting by light trapping effect. - Abstract: As known, the electron transfer behavior in photocatalysis is short-distance transportation, which leads the photo-induced electrons and holes to be localized. The temporarily separated electrons and holes will recombine with each other in the localized region. In this paper, we successfully achieved electron transfer in a homojunction of branched rutile TiO{sub 2} nanorod @nanoparticle core-shell architecture by quantum confinement effect aroused by the nanoparticle, which is proved by the blue-shifting in UV–vis absorption spectrum of the homojunction. Meanwhile, an absolute charge separation is also achieved by the long-distance electron transfer along the single-crystalline rutile TiO{sub 2} nanorod as uninterrupted high-speed electron transfer channel to FTO substrates. Based on the effective charge separation, the photocatalytic decomposition of gaseous benzene by the homojunction is significantly enhanced, yielding 10 times CO{sub 2} than that of the nanorod array. This homojunction interfacial charge separation, aroused by quantum effect, through long-distance transfer along the single-crystalline nanorod gives us inspiration to achieve efficient charge separation with defect-less interfaces, which might can be utilized for real-time environmental abatement and energy generation simultaneously.

  10. Absolute nuclear material assay

    Science.gov (United States)

    Prasad, Manoj K [Pleasanton, CA; Snyderman, Neal J [Berkeley, CA; Rowland, Mark S [Alamo, CA

    2010-07-13

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  11. Efficient controlled-phase gate for single-spin qubits in quantum dots

    NARCIS (Netherlands)

    Meunier, T.; Calado, V.E.; Vandersypen, L.M.K.

    2011-01-01

    Two-qubit interactions are at the heart of quantum information processing. For single-spin qubits in semiconductor quantum dots, the exchange gate has always been considered the natural two-qubit gate. The recent integration of a magnetic field or g-factor gradients in coupled quantum dot systems

  12. Efficient analysis of mode profiles in elliptical microcavity using dynamic-thermal electron-quantum medium FDTD method.

    Science.gov (United States)

    Khoo, E H; Ahmed, I; Goh, R S M; Lee, K H; Hung, T G G; Li, E P

    2013-03-11

    The dynamic-thermal electron-quantum medium finite-difference time-domain (DTEQM-FDTD) method is used for efficient analysis of mode profile in elliptical microcavity. The resonance peak of the elliptical microcavity is studied by varying the length ratio. It is observed that at some length ratios, cavity mode is excited instead of whispering gallery mode. This depicts that mode profiles are length ratio dependent. Through the implementation of the DTEQM-FDTD on graphic processing unit (GPU), the simulation time is reduced by 300 times as compared to the CPU. This leads to an efficient optimization approach to design microcavity lasers for wide range of applications in photonic integrated circuits.

  13. Quantum information entropies of ultracold atomic gases in a ...

    Indian Academy of Sciences (India)

    The position and momentum space information entropies of weakly interacting trapped atomic Bose–Einstein condensates and spin-polarized trapped atomic Fermi gases at absolute zero temperature are evaluated. We find that sum of the position and momentum space information entropies of these quantum systems ...

  14. Arithmetic of quantum entropy function

    International Nuclear Information System (INIS)

    Sen, Ashoke

    2009-01-01

    Quantum entropy function is a proposal for computing the entropy associated with the horizon of a black hole in the extremal limit, and is related via AdS/CFT correspondence to the dimension of the Hilbert space in a dual quantum mechanics. We show that in N = 4 supersymmetric string theories, quantum entropy function formalism naturally explains the origin of the subtle differences between the microscopic degeneracies of quarter BPS dyons carrying different torsion, i.e. different arithmetical properties. These arise from additional saddle points in the path integral - whose existence depends on the arithmetical properties of the black hole charges - constructed as freely acting orbifolds of the original AdS 2 x S 2 near horizon geometry. During this analysis we demonstrate that the quantum entropy function is insensitive to the details of the infrared cutoff used in the computation, and the details of the boundary terms added to the action. We also discuss the role of the asymptotic symmetries of AdS 2 in carrying out the path integral in the definition of quantum entropy function. Finally we show that even though quantum entropy function is expected to compute the absolute degeneracy in a given charge and angular momentum sector, it can also be used to compute the index. This can then be compared with the microscopic computation of the index.

  15. Efficient fiber-coupled single-photon sources based on quantum dots

    DEFF Research Database (Denmark)

    Daveau, Raphaël Sura

    refrigeration with coupled quantum wells. Many photonic quantum information processing applications would benet from a highbrightness, ber-coupled source of triggered single photons. This thesis presents a study of such sources based on quantum dots coupled to unidirectional photonic-crystal waveguide devices.......6 %. This latter method opens a promising future for increasing the eciency and reliability of planar chip-based single-photon sources. Refrigeration of a solid-state system with light has potential applications for cooling small-scale electronic and photonic circuits. We show theoretically that two coupled...... semiconductor quantum wells are ecient cooling media because they support long-lived indirect electron-hole pairs. These pairs can be thermally excited to distinct higher-energy states with faster radiative recombination, thereby creating an ecient escape channel to remove thermal energy from the system. From...

  16. Optimal control and quantum simulations in superconducting quantum devices

    Energy Technology Data Exchange (ETDEWEB)

    Egger, Daniel J.

    2014-10-31

    Quantum optimal control theory is the science of steering quantum systems. In this thesis we show how to overcome the obstacles in implementing optimal control for superconducting quantum bits, a promising candidate for the creation of a quantum computer. Building such a device will require the tools of optimal control. We develop pulse shapes to solve a frequency crowding problem and create controlled-Z gates. A methodology is developed for the optimisation towards a target non-unitary process. We show how to tune-up control pulses for a generic quantum system in an automated way using a combination of open- and closed-loop optimal control. This will help scaling of quantum technologies since algorithms can calibrate control pulses far more efficiently than humans. Additionally we show how circuit QED can be brought to the novel regime of multi-mode ultrastrong coupling using a left-handed transmission line coupled to a right-handed one. We then propose to use this system as an analogue quantum simulator for the Spin-Boson model to show how dissipation arises in quantum systems.

  17. Quantum criticality and black holes

    International Nuclear Information System (INIS)

    Sachdev, Subir; Mueller, Markus

    2009-01-01

    Many condensed matter experiments explore the finite temperature dynamics of systems near quantum critical points. Often, there are no well-defined quasiparticle excitations, and so quantum kinetic equations do not describe the transport properties completely. The theory shows that the transport coefficients are not proportional to a mean free scattering time (as is the case in the Boltzmann theory of quasiparticles), but are completely determined by the absolute temperature and by equilibrium thermodynamic observables. Recently, explicit solutions of this quantum critical dynamics have become possible via the anti-de Sitter/conformal field theory duality discovered in string theory. This shows that the quantum critical theory provides a holographic description of the quantum theory of black holes in a negatively curved anti-de Sitter space, and relates its transport coefficients to properties of the Hawking radiation from the black hole. We review how insights from this connection have led to new results for experimental systems: (i) the vicinity of the superfluid-insulator transition in the presence of an applied magnetic field, and its possible application to measurements of the Nernst effect in the cuprates, (ii) the magnetohydrodynamics of the plasma of Dirac electrons in graphene and the prediction of a hydrodynamic cyclotron resonance.

  18. Thermodynamics of negative absolute pressures

    International Nuclear Information System (INIS)

    Lukacs, B.; Martinas, K.

    1984-03-01

    The authors show that the possibility of negative absolute pressure can be incorporated into the axiomatic thermodynamics, analogously to the negative absolute temperature. There are examples for such systems (GUT, QCD) processing negative absolute pressure in such domains where it can be expected from thermodynamical considerations. (author)

  19. An Absolute Phase Space for the Physicality of Matter

    International Nuclear Information System (INIS)

    Valentine, John S.

    2010-01-01

    We define an abstract and absolute phase space (''APS'') for sub-quantum intrinsic wave states, in three axes, each mapping directly to a duality having fundamental ontological basis. Many aspects of quantum physics emerge from the interaction algebra and a model deduced from principles of 'unique solvability' and 'identifiable entity', and we reconstruct previously abstract fundamental principles and phenomena from these new foundations. The physical model defines bosons as virtual continuous waves pairs in the APS, and fermions as real self-quantizing snapshots of those waves when simple conditions are met. The abstraction and physical model define a template for the constitution of all fermions, a template for all the standard fundamental bosons and their local interactions, in a common framework and compactified phase space for all forms of real matter and virtual vacuum energy, and a distinct algebra for observables and unobservables. To illustrate our scheme's potential, we provide examples of slit experiment variations (where the model finds theoretical basis for interference only occurring between two final sources), QCD (where we may model most attributes known to QCD, and a new view on entanglement), and we suggest approaches for other varied applications. We believe this is a viable candidate for further exploration as a foundational proposition for physics.

  20. Quantum analogue computing.

    Science.gov (United States)

    Kendon, Vivien M; Nemoto, Kae; Munro, William J

    2010-08-13

    We briefly review what a quantum computer is, what it promises to do for us and why it is so hard to build one. Among the first applications anticipated to bear fruit is the quantum simulation of quantum systems. While most quantum computation is an extension of classical digital computation, quantum simulation differs fundamentally in how the data are encoded in the quantum computer. To perform a quantum simulation, the Hilbert space of the system to be simulated is mapped directly onto the Hilbert space of the (logical) qubits in the quantum computer. This type of direct correspondence is how data are encoded in a classical analogue computer. There is no binary encoding, and increasing precision becomes exponentially costly: an extra bit of precision doubles the size of the computer. This has important consequences for both the precision and error-correction requirements of quantum simulation, and significant open questions remain about its practicality. It also means that the quantum version of analogue computers, continuous-variable quantum computers, becomes an equally efficient architecture for quantum simulation. Lessons from past use of classical analogue computers can help us to build better quantum simulators in future.

  1. On the continuous selections of solution sets of Lipschitzian quantum stochastic differential inclusions

    International Nuclear Information System (INIS)

    Ayoola, E.O.

    2004-05-01

    We prove that a multifunction associated with the set of solutions of Lipschitzian quantum stochastic differential inclusion (QSDI) admits a selection continuous from some subsets of complex numbers to the space of the matrix elements of adapted weakly absolutely continuous quantum stochastic processes. In particular, we show that the solution set map as well as the reachable set of the QSDI admit some continuous representations. (author)

  2. Quantum computation with nuclear spins in quantum dots

    International Nuclear Information System (INIS)

    Christ, H.

    2008-01-01

    The role of nuclear spins for quantum information processing in quantum dots is theoretically investigated in this thesis. Building on the established fact that the most strongly coupled environment for the potential electron spin quantum bit are the surrounding lattice nuclear spins interacting via the hyperfine interaction, we turn this vice into a virtue by designing schemes for harnessing this strong coupling. In this perspective, the ensemble of nuclear spins can be considered an asset, suitable for an active role in quantum information processing due to its intrinsic long coherence times. We present experimentally feasible protocols for the polarization, i.e. initialization, of the nuclear spins and a quantitative solution to our derived master equation. The polarization limiting destructive interference effects, caused by the collective nature of the nuclear coupling to the electron spin, are studied in detail. Efficient ways of mitigating these constraints are presented, demonstrating that highly polarized nuclear ensembles in quantum dots are feasible. At high, but not perfect, polarization of the nuclei the evolution of an electron spin in contact with the spin bath can be efficiently studied by means of a truncation of the Hilbert space. It is shown that the electron spin can function as a mediator of universal quantum gates for collective nuclear spin qubits, yielding a promising architecture for quantum information processing. Furthermore, we show that at high polarization the hyperfine interaction of electron and nuclear spins resembles the celebrated Jaynes-Cummings model of quantum optics. This result opens the door for transfer of knowledge from the mature field of quantum computation with atoms and photons. Additionally, tailored specifically for the quantum dot environment, we propose a novel scheme for the generation of highly squeezed collective nuclear states. Finally we demonstrate that even an unprepared completely mixed nuclear spin

  3. Quantum computation with nuclear spins in quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Christ, H.

    2008-01-24

    The role of nuclear spins for quantum information processing in quantum dots is theoretically investigated in this thesis. Building on the established fact that the most strongly coupled environment for the potential electron spin quantum bit are the surrounding lattice nuclear spins interacting via the hyperfine interaction, we turn this vice into a virtue by designing schemes for harnessing this strong coupling. In this perspective, the ensemble of nuclear spins can be considered an asset, suitable for an active role in quantum information processing due to its intrinsic long coherence times. We present experimentally feasible protocols for the polarization, i.e. initialization, of the nuclear spins and a quantitative solution to our derived master equation. The polarization limiting destructive interference effects, caused by the collective nature of the nuclear coupling to the electron spin, are studied in detail. Efficient ways of mitigating these constraints are presented, demonstrating that highly polarized nuclear ensembles in quantum dots are feasible. At high, but not perfect, polarization of the nuclei the evolution of an electron spin in contact with the spin bath can be efficiently studied by means of a truncation of the Hilbert space. It is shown that the electron spin can function as a mediator of universal quantum gates for collective nuclear spin qubits, yielding a promising architecture for quantum information processing. Furthermore, we show that at high polarization the hyperfine interaction of electron and nuclear spins resembles the celebrated Jaynes-Cummings model of quantum optics. This result opens the door for transfer of knowledge from the mature field of quantum computation with atoms and photons. Additionally, tailored specifically for the quantum dot environment, we propose a novel scheme for the generation of highly squeezed collective nuclear states. Finally we demonstrate that even an unprepared completely mixed nuclear spin

  4. High efficiency detection technology on quantum action using radiation excitation

    International Nuclear Information System (INIS)

    Okubo, Masataka; Ukibe, Masahiro; Sakamoto, Isao; Hayashi, Nobuyuki; Shoji, Akira; Kobayashi, Naoto

    2000-01-01

    In 1998 fiscal year, as a local quasi particle loss process, it was elucidated that there was a quasi particle loss induced with magnetic flux quantum trapped by a detector on its cooling. Hitherto, it was reported that action of a tunnel junction detector was different by its magnetic history. That is, the detector had unstability such as variation of its action on its cooling. Therefore, the quasi particle loss induced by magnetic flux quantum forming cause of the unstability was quantitatively evaluated. As a result, it was elucidated that output of the detector was reduced half only by trapping the magnetic flux quantum with numbers corresponding to weak magnetic field like geomagnetism. And, this phenomenon was also described by using a model concept with quasi particle trapping due to the magnetic flux quantum. (G.K.)

  5. Multi-state Quantum Teleportation via One Entanglement State

    International Nuclear Information System (INIS)

    Guo Ying; Zeng Guihua; Lee, Moon Ho

    2008-01-01

    A multi-sender-controlled quantum teleportation scheme is proposed to teleport several secret quantum states from different senders to a distance receiver based on only one Einstein-Podolsky-Rosen (EPR) pair with controlled-NOT (CNOT) gates. In the present scheme, several secret single-qubit quantum states are encoded into a multi-qubit entangled quantum state. Two communication modes, i.e., the detecting mode and the message mode, are employed so that the eavesdropping can be detected easily and the teleported message may be recovered efficiently. It has an advantage over teleporting several different quantum states for one scheme run with more efficiency than the previous quantum teleportation schemes

  6. High-efficiency optical pumping of nuclear polarization in a GaAs quantum well

    Science.gov (United States)

    Mocek, R. W.; Korenev, V. L.; Bayer, M.; Kotur, M.; Dzhioev, R. I.; Tolmachev, D. O.; Cascio, G.; Kavokin, K. V.; Suter, D.

    2017-11-01

    The dynamic polarization of nuclear spins by photoexcited electrons is studied in a high quality GaAs/AlGaAs quantum well. We find a surprisingly high efficiency of the spin transfer from the electrons to the nuclei as reflected by a maximum nuclear field of 0.9 T in a tilted external magnetic field of 1 T strength only. This high efficiency is due to a low leakage of spin out of the polarized nuclear system, because mechanisms of spin relaxation other than the hyperfine interaction are strongly suppressed, leading to a long nuclear relaxation time of up to 1000 s. A key ingredient to that end is the low impurity concentration inside the heterostructure, while the electrostatic potential from charged impurities in the surrounding barriers becomes screened through illumination by which the spin relaxation time is increased compared to keeping the system in the dark. This finding indicates a strategy for obtaining high nuclear spin polarization as required for long-lasting carrier spin coherence.

  7. Spin power and efficiency in an Aharnov-Bohm ring with an embedded magnetic impurity quantum dot

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xi; Guo, Yong, E-mail: guoy66@tsinghua.edu.cn [Department of Physics and State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084 (China); Collaborative Innovation Center of Quantum Matter, Beijing (China); Zheng, Jun [College of New Energy, Bohai University, Jinzhou 121013 (China); Chi, Feng [School of Physical Science and Technology, Inner Mongolia University, Huhehaote 010023 (China)

    2015-05-11

    Spin thermoelectric effects in an Aharnov-Bohm ring with a magnetic impurity quantum dot (QD) are theoretically investigated by using the nonequilibrium Green's function method. It is found that due to the exchange coupling between the impurity and the electrons in QD, spin output power, and efficiency can be significant and be further modulated by the gate voltage. The spin thermoelectric effect can be modulated effectively by adjusting the Rashba spin-orbit interaction (RSOI) and the magnetic flux. The spin power and efficiency show zigzag oscillations, and thus spin thermoelectric effect can be switched by adjusting the magnetic flux phase factor and RSOI ones. In addition, the spin efficiency can be significantly enhanced by the coexistence of the RSOI and the magnetic flux, and the maximal value of normalized spin efficiency η{sub max}/η{sub C} = 0.35 is obtained. Our results show that such a QD ring device may be used as a manipulative spin thermoelectric generator.

  8. Digital Quantum Simulation of Spin Models with Circuit Quantum Electrodynamics

    Directory of Open Access Journals (Sweden)

    Y. Salathé

    2015-06-01

    Full Text Available Systems of interacting quantum spins show a rich spectrum of quantum phases and display interesting many-body dynamics. Computing characteristics of even small systems on conventional computers poses significant challenges. A quantum simulator has the potential to outperform standard computers in calculating the evolution of complex quantum systems. Here, we perform a digital quantum simulation of the paradigmatic Heisenberg and Ising interacting spin models using a two transmon-qubit circuit quantum electrodynamics setup. We make use of the exchange interaction naturally present in the simulator to construct a digital decomposition of the model-specific evolution and extract its full dynamics. This approach is universal and efficient, employing only resources that are polynomial in the number of spins, and indicates a path towards the controlled simulation of general spin dynamics in superconducting qubit platforms.

  9. Quantum theory from first principles an informational approach

    CERN Document Server

    D'Ariano, Giacomo Mauro; Perinotti, Paolo

    2017-01-01

    Quantum theory is the soul of theoretical physics. It is not just a theory of specific physical systems, but rather a new framework with universal applicability. This book shows how we can reconstruct the theory from six information-theoretical principles, by rebuilding the quantum rules from the bottom up. Step by step, the reader will learn how to master the counterintuitive aspects of the quantum world, and how to efficiently reconstruct quantum information protocols from first principles. Using intuitive graphical notation to represent equations, and with shorter and more efficient derivations, the theory can be understood and assimilated with exceptional ease. Offering a radically new perspective on the field, the book contains an efficient course of quantum theory and quantum information for undergraduates. The book is aimed at researchers, professionals, and students in physics, computer science and philosophy, as well as the curious outsider seeking a deeper understanding of the theory.

  10. Systematic optimization of quantum junction colloidal quantum dot solar cells

    KAUST Repository

    Liu, Huan

    2012-01-01

    The recently reported quantum junction architecture represents a promising approach to building a rectifying photovoltaic device that employs colloidal quantum dot layers on each side of the p-n junction. Here, we report an optimized quantum junction solar cell that leverages an improved aluminum zinc oxide electrode for a stable contact to the n-side of the quantum junction and silver doping of the p-layer that greatly enhances the photocurrent by expanding the depletion region in the n-side of the device. These improvements result in greater stability and a power conversion efficiency of 6.1 under AM1.5 simulated solar illumination. © 2012 American Institute of Physics.

  11. Set discrimination of quantum states

    International Nuclear Information System (INIS)

    Zhang Shengyu; Ying Mingsheng

    2002-01-01

    We introduce a notion of set discrimination, which is an interesting extension of quantum state discrimination. A state is secretly chosen from a number of quantum states, which are partitioned into some disjoint sets. A set discrimination is required to identify which set the given state belongs to. Several essential problems are addressed in this paper, including the condition of perfect set discrimination, unambiguous set discrimination, and in the latter case, the efficiency of the discrimination. This generalizes some important results on quantum state discrimination in the literature. A combination of state and set discrimination and the efficiency are also studied

  12. Design of Efficient Full Adder in Quantum-Dot Cellular Automata

    Directory of Open Access Journals (Sweden)

    Bibhash Sen

    2013-01-01

    Full Text Available Further downscaling of CMOS technology becomes challenging as it faces limitation of feature size reduction. Quantum-dot cellular automata (QCA, a potential alternative to CMOS, promises efficient digital design at nanoscale. Investigations on the reduction of QCA primitives (majority gates and inverters for various adders are limited, and very few designs exist for reference. As a result, design of adders under QCA framework is gaining its importance in recent research. This work targets developing multi-layered full adder architecture in QCA framework based on five-input majority gate proposed here. A minimum clock zone (2 clock with high compaction (0.01 μm2 for a full adder around QCA is achieved. Further, the usefulness of such design is established with the synthesis of high-level logic. Experimental results illustrate the significant improvements in design level in terms of circuit area, cell count, and clock compared to that of conventional design approaches.

  13. Growth of a delta-doped silicon layer by molecular beam epitaxy on a charge-coupled device for reflection-limited ultraviolet quantum efficiency

    Science.gov (United States)

    Hoenk, Michael E.; Grunthaner, Paula J.; Grunthaner, Frank J.; Terhune, R. W.; Fattahi, Masoud; Tseng, Hsin-Fu

    1992-01-01

    Low-temperature silicon molecular beam epitaxy is used to grow a delta-doped silicon layer on a fully processed charge-coupled device (CCD). The measured quantum efficiency of the delta-doped backside-thinned CCD is in agreement with the reflection limit for light incident on the back surface in the spectral range of 260-600 nm. The 2.5 nm silicon layer, grown at 450 C, contained a boron delta-layer with surface density of about 2 x 10 exp 14/sq cm. Passivation of the surface was done by steam oxidation of a nominally undoped 1.5 nm Si cap layer. The UV quantum efficiency was found to be uniform and stable with respect to thermal cycling and illumination conditions.

  14. Quantum dense key distribution

    International Nuclear Information System (INIS)

    Degiovanni, I.P.; Ruo Berchera, I.; Castelletto, S.; Rastello, M.L.; Bovino, F.A.; Colla, A.M.; Castagnoli, G.

    2004-01-01

    This paper proposes a protocol for quantum dense key distribution. This protocol embeds the benefits of a quantum dense coding and a quantum key distribution and is able to generate shared secret keys four times more efficiently than the Bennet-Brassard 1984 protocol. We hereinafter prove the security of this scheme against individual eavesdropping attacks, and we present preliminary experimental results, showing its feasibility

  15. Scalable optical quantum computer

    International Nuclear Information System (INIS)

    Manykin, E A; Mel'nichenko, E V

    2014-01-01

    A way of designing a scalable optical quantum computer based on the photon echo effect is proposed. Individual rare earth ions Pr 3+ , regularly located in the lattice of the orthosilicate (Y 2 SiO 5 ) crystal, are suggested to be used as optical qubits. Operations with qubits are performed using coherent and incoherent laser pulses. The operation protocol includes both the method of measurement-based quantum computations and the technique of optical computations. Modern hybrid photon echo protocols, which provide a sufficient quantum efficiency when reading recorded states, are considered as most promising for quantum computations and communications. (quantum computer)

  16. Compositionally Graded Absorber for Efficient and Stable Near-Infrared-Transparent Perovskite Solar Cells.

    Science.gov (United States)

    Fu, Fan; Pisoni, Stefano; Weiss, Thomas P; Feurer, Thomas; Wäckerlin, Aneliia; Fuchs, Peter; Nishiwaki, Shiro; Zortea, Lukas; Tiwari, Ayodhya N; Buecheler, Stephan

    2018-03-01

    Compositional grading has been widely exploited in highly efficient Cu(In,Ga)Se 2 , CdTe, GaAs, quantum dot solar cells, and this strategy has the potential to improve the performance of emerging perovskite solar cells. However, realizing and maintaining compositionally graded perovskite absorber from solution processing is challenging. Moreover, the operational stability of graded perovskite solar cells under long-term heat/light soaking has not been demonstrated. In this study, a facile partial ion-exchange approach is reported to achieve compositionally graded perovskite absorber layers. Incorporating compositional grading improves charge collection and suppresses interface recombination, enabling to fabricate near-infrared-transparent perovskite solar cells with power conversion efficiency of 16.8% in substrate configuration, and demonstrate 22.7% tandem efficiency with 3.3% absolute gain when mechanically stacked on a Cu(In,Ga)Se 2 bottom cell. Non-encapsulated graded perovskite device retains over 93% of its initial efficiency after 1000 h operation at maximum power point at 60 °C under equivalent 1 sun illumination. The results open an avenue in exploring partial ion-exchange to design graded perovskite solar cells with improved efficiency and stability.

  17. Compositionally Graded Absorber for Efficient and Stable Near‐Infrared‐Transparent Perovskite Solar Cells

    Science.gov (United States)

    Pisoni, Stefano; Weiss, Thomas P.; Feurer, Thomas; Wäckerlin, Aneliia; Fuchs, Peter; Nishiwaki, Shiro; Zortea, Lukas; Tiwari, Ayodhya N.

    2018-01-01

    Abstract Compositional grading has been widely exploited in highly efficient Cu(In,Ga)Se2, CdTe, GaAs, quantum dot solar cells, and this strategy has the potential to improve the performance of emerging perovskite solar cells. However, realizing and maintaining compositionally graded perovskite absorber from solution processing is challenging. Moreover, the operational stability of graded perovskite solar cells under long‐term heat/light soaking has not been demonstrated. In this study, a facile partial ion‐exchange approach is reported to achieve compositionally graded perovskite absorber layers. Incorporating compositional grading improves charge collection and suppresses interface recombination, enabling to fabricate near‐infrared‐transparent perovskite solar cells with power conversion efficiency of 16.8% in substrate configuration, and demonstrate 22.7% tandem efficiency with 3.3% absolute gain when mechanically stacked on a Cu(In,Ga)Se2 bottom cell. Non‐encapsulated graded perovskite device retains over 93% of its initial efficiency after 1000 h operation at maximum power point at 60 °C under equivalent 1 sun illumination. The results open an avenue in exploring partial ion‐exchange to design graded perovskite solar cells with improved efficiency and stability. PMID:29593970

  18. Bit-level quantum color image encryption scheme with quantum cross-exchange operation and hyper-chaotic system

    Science.gov (United States)

    Zhou, Nanrun; Chen, Weiwei; Yan, Xinyu; Wang, Yunqian

    2018-06-01

    In order to obtain higher encryption efficiency, a bit-level quantum color image encryption scheme by exploiting quantum cross-exchange operation and a 5D hyper-chaotic system is designed. Additionally, to enhance the scrambling effect, the quantum channel swapping operation is employed to swap the gray values of corresponding pixels. The proposed color image encryption algorithm has larger key space and higher security since the 5D hyper-chaotic system has more complex dynamic behavior, better randomness and unpredictability than those based on low-dimensional hyper-chaotic systems. Simulations and theoretical analyses demonstrate that the presented bit-level quantum color image encryption scheme outperforms its classical counterparts in efficiency and security.

  19. Research Progress of Photoanodes for Quantum Dot Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    LI Zhi-min

    2017-08-01

    Full Text Available This paper presents the development status and tendency of quantum dot sensitized solar cells. Photoanode research progress and its related technologies are analyzed in detail from the three ways of semiconductor thin films, quantum dot co-sensitization and quantum dot doping, deriving from the approach that the conversion efficiency can be improved by photoanode modification for quantum dot sensitized solar cells. According to the key factors which restrict the cell efficiency, the promising future development of quantum dot sensitized solar cells is proposed,for example,optimizing further the compositions and structures of semiconductor thin films for the photoanodes, exploring new quantum dots with broadband absorption and developing high efficient techniques of interface modification.

  20. The ambiguity of simplicity in quantum and classical simulation

    Science.gov (United States)

    Aghamohammadi, Cina; Mahoney, John R.; Crutchfield, James P.

    2017-04-01

    A system's perceived simplicity depends on whether it is represented classically or quantally. This is not so surprising, as classical and quantum physics are descriptive frameworks built on different assumptions that capture, emphasize, and express different properties and mechanisms. What is surprising is that, as we demonstrate, simplicity is ambiguous: the relative simplicity between two systems can change sign when moving between classical and quantum descriptions. Here, we associate simplicity with small model-memory. We see that the notions of absolute physical simplicity at best form a partial, not a total, order. This suggests that appeals to principles of physical simplicity, via Ockham's Razor or to the ;elegance; of competing theories, may be fundamentally subjective. Recent rapid progress in quantum computation and quantum simulation suggest that the ambiguity of simplicity will strongly impact statistical inference and, in particular, model selection.

  1. Quantum optics with nanowires (Conference Presentation)

    Science.gov (United States)

    Zwiller, Val

    2017-02-01

    Nanowires offer new opportunities for nanoscale quantum optics; the quantum dot geometry in semiconducting nanowires as well as the material composition and environment can be engineered with unprecedented freedom to improve the light extraction efficiency. Quantum dots in nanowires are shown to be efficient single photon sources, in addition because of the very small fine structure splitting, we demonstrate the generation of entangled pairs of photons from a nanowire. By doping a nanowire and making ohmic contacts on both sides, a nanowire light emitting diode can be obtained with a single quantum dot as the active region. Under forward bias, this will act as an electrically pumped source of single photons. Under reverse bias, an avalanche effect can multiply photocurrent and enables the detection of single photons. Another type of nanowire under study in our group is superconducting nanowires for single photon detection, reaching efficiencies, time resolution and dark counts beyond currently available detectors. We will discuss our first attempts at combining semiconducting nanowire based single photon emitters and superconducting nanowire single photon detectors on a chip to realize integrated quantum circuits.

  2. Quantum control with NMR methods: Application to quantum simulations

    International Nuclear Information System (INIS)

    Negrevergne, Camille

    2002-01-01

    Manipulating information according to quantum laws allows improvements in the efficiency of the way we treat certain problems. Liquid state Nuclear Magnetic Resonance methods allow us to initialize, manipulate and read the quantum state of a system of coupled spins. These methods have been used to realize an experimental small Quantum Information Processor (QIP) able to process information through around hundred elementary operations. One of the main themes of this work was to design, optimize and validate reliable RF-pulse sequences used to 'program' the QIP. Such techniques have been used to run a quantum simulation algorithm for anionic systems. Some experimental results have been obtained on the determination of Eigen energies and correlation function for a toy problem consisting of fermions on a lattice, showing an experimental proof of principle for such quantum simulations. (author) [fr

  3. Quantum-information processing in disordered and complex quantum systems

    International Nuclear Information System (INIS)

    Sen, Aditi; Sen, Ujjwal; Ahufinger, Veronica; Briegel, Hans J.; Sanpera, Anna; Lewenstein, Maciej

    2006-01-01

    We study quantum information processing in complex disordered many body systems that can be implemented by using lattices of ultracold atomic gases and trapped ions. We demonstrate, first in the short range case, the generation of entanglement and the local realization of quantum gates in a disordered magnetic model describing a quantum spin glass. We show that in this case it is possible to achieve fidelities of quantum gates higher than in the classical case. Complex systems with long range interactions, such as ions chains or dipolar atomic gases, can be used to model neural network Hamiltonians. For such systems, where both long range interactions and disorder appear, it is possible to generate long range bipartite entanglement. We provide an efficient analytical method to calculate the time evolution of a given initial state, which in turn allows us to calculate its quantum correlations

  4. Adiabatic Quantum Transistors

    Directory of Open Access Journals (Sweden)

    Dave Bacon

    2013-06-01

    Full Text Available We describe a many-body quantum system that can be made to quantum compute by the adiabatic application of a large applied field to the system. Prior to the application of the field, quantum information is localized on one boundary of the device, and after the application of the field, this information propagates to the other side of the device, with a quantum circuit applied to the information. The applied circuit depends on the many-body Hamiltonian of the material, and the computation takes place in a degenerate ground space with symmetry-protected topological order. Such “adiabatic quantum transistors” are universal adiabatic quantum computing devices that have the added benefit of being modular. Here, we describe this model, provide arguments for why it is an efficient model of quantum computing, and examine these many-body systems in the presence of a noisy environment.

  5. Anisotropic behavior of quantum transport in graphene superlattices

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor; Cummings, Aron W.; Roche, Stephan

    2014-01-01

    We report on the possibility to generate highly anisotropic quantum conductivity in disordered graphene-based superlattices. Our quantum simulations, based on an efficient real-space implementation of the Kubo-Greenwood formula, show that in disordered graphene superlattices the strength of multi......We report on the possibility to generate highly anisotropic quantum conductivity in disordered graphene-based superlattices. Our quantum simulations, based on an efficient real-space implementation of the Kubo-Greenwood formula, show that in disordered graphene superlattices the strength...

  6. The relative and absolute speed of radiographic screen - film systems

    International Nuclear Information System (INIS)

    Lee, In Ja; Huh, Joon

    1993-01-01

    Recently, a large number of new screen-film systems have become available for use in diagnostic radiology. These new screens are made of materials generally known as rare - earth phosphors which have high x-ray absorption and high x-ray to light conversion efficiency compared to calcium tungstate phosphors. The major advantage of these new systems is reduction of patient exposure due to their high speed or high sensitivity. However, a system with excessively high speed can result in a significant degradation of radiographic image quality. Therefore, the speed is important parameters for users of these system. Our aim of in this was to determine accurately and precisely the absolute speed and relative speeds of both new and conventional screen - film system. We determined the absolute speed in condition of BRH phantom beam quality and the relative speed were measured by a split - screen technique in condition of BRH and ANSI phantom beam quality. The absolute and the relative speed were determined for 8 kinds of screen - 4 kinds of film in regular system and 7 kinds pf screen - 7 kinds of film in ortho system. In this study we could know the New Rx, T - MAT G has the highest film speed, also know Green system's standard deviation of relative speed larger than blue system. It was realized that there were no relationship between the absolute speed and the blue system. It was realized that there were no relationship between the absolute speed and the relative speed in ortho or regular system

  7. Adiabatic quantum search algorithm for structured problems

    International Nuclear Information System (INIS)

    Roland, Jeremie; Cerf, Nicolas J.

    2003-01-01

    The study of quantum computation has been motivated by the hope of finding efficient quantum algorithms for solving classically hard problems. In this context, quantum algorithms by local adiabatic evolution have been shown to solve an unstructured search problem with a quadratic speedup over a classical search, just as Grover's algorithm. In this paper, we study how the structure of the search problem may be exploited to further improve the efficiency of these quantum adiabatic algorithms. We show that by nesting a partial search over a reduced set of variables into a global search, it is possible to devise quantum adiabatic algorithms with a complexity that, although still exponential, grows with a reduced order in the problem size

  8. Self-assembly graphitic carbon nitride quantum dots anchored on TiO_2 nanotube arrays: An efficient heterojunction for pollutants degradation under solar light

    International Nuclear Information System (INIS)

    Su, Jingyang; Zhu, Lin; Geng, Ping; Chen, Guohua

    2016-01-01

    Highlights: • Carbon nitride quantum dots (CNQDs) were decorated onto TiO_2 nanotube arrays (NTAs). • The CNQDs/TiO_2 NTAs exhibits much improved photoelectrochemical activity. • The heterojunction displays efficient removal efficiencies for RhB and phenol. • Pollutants degradation mechanism over CNQDs/TiO_2 NTAs was clarified. - Abstract: In this study, an efficient heterojunction was constructed by anchoring graphitic carbon nitride quantum dots onto TiO_2 nanotube arrays through hydrothermal reaction strategy. The prepared graphitic carbon nitride quantum dots, which were prepared by solid-thermal reaction and sequential dialysis process, act as a sensitizer to enhance light absorption. Furthermore, it was demonstrated that the charge transfer and separation in the formed heterojunction were significantly improved compared with pristine TiO_2. The prepared heterojunction was used as a photoanode, exhibiting much improved photoelectrochemical capability and excellent photo-stability under solar light illumination. The photoelectrocatalytic activities of prepared heterojunction were demonstrated by degradation of RhB and phenol in aqueous solution. The kinetic constants of RhB and phenol degradation using prepared photoelectrode are 2.4 times and 4.9 times higher than those of pristine TiO_2, respectively. Moreover, hydroxyl radicals are demonstrated to be dominant active radicals during the pollutants degradation.

  9. Quantum Machine Learning

    Science.gov (United States)

    Biswas, Rupak

    2018-01-01

    Quantum computing promises an unprecedented ability to solve intractable problems by harnessing quantum mechanical effects such as tunneling, superposition, and entanglement. The Quantum Artificial Intelligence Laboratory (QuAIL) at NASA Ames Research Center is the space agency's primary facility for conducting research and development in quantum information sciences. QuAIL conducts fundamental research in quantum physics but also explores how best to exploit and apply this disruptive technology to enable NASA missions in aeronautics, Earth and space sciences, and space exploration. At the same time, machine learning has become a major focus in computer science and captured the imagination of the public as a panacea to myriad big data problems. In this talk, we will discuss how classical machine learning can take advantage of quantum computing to significantly improve its effectiveness. Although we illustrate this concept on a quantum annealer, other quantum platforms could be used as well. If explored fully and implemented efficiently, quantum machine learning could greatly accelerate a wide range of tasks leading to new technologies and discoveries that will significantly change the way we solve real-world problems.

  10. The MaxEnt extension of a quantum Gibbs family, convex geometry and geodesics

    International Nuclear Information System (INIS)

    Weis, Stephan

    2015-01-01

    We discuss methods to analyze a quantum Gibbs family in the ultra-cold regime where the norm closure of the Gibbs family fails due to discontinuities of the maximum-entropy inference. The current discussion of maximum-entropy inference and irreducible correlation in the area of quantum phase transitions is a major motivation for this research. We extend a representation of the irreducible correlation from finite temperatures to absolute zero

  11. On-Demand Single Photons with High Extraction Efficiency and Near-Unity Indistinguishability from a Resonantly Driven Quantum Dot in a Micropillar

    DEFF Research Database (Denmark)

    Ding, Xing; He, Yu; Duan, Z.-C.

    2016-01-01

    Scalable photonic quantum technologies require on-demand single-photon sources with simultaneously high levels of purity, indistinguishability, and efficiency. These key features, however, have only been demonstrated separately in previous experiments. Here, by s-shell pulsed resonant excitation ...

  12. Simple Atomic Quantum Memory Suitable for Semiconductor Quantum Dot Single Photons

    Science.gov (United States)

    Wolters, Janik; Buser, Gianni; Horsley, Andrew; Béguin, Lucas; Jöckel, Andreas; Jahn, Jan-Philipp; Warburton, Richard J.; Treutlein, Philipp

    2017-08-01

    Quantum memories matched to single photon sources will form an important cornerstone of future quantum network technology. We demonstrate such a memory in warm Rb vapor with on-demand storage and retrieval, based on electromagnetically induced transparency. With an acceptance bandwidth of δ f =0.66 GHz , the memory is suitable for single photons emitted by semiconductor quantum dots. In this regime, vapor cell memories offer an excellent compromise between storage efficiency, storage time, noise level, and experimental complexity, and atomic collisions have negligible influence on the optical coherences. Operation of the memory is demonstrated using attenuated laser pulses on the single photon level. For a 50 ns storage time, we measure ηe2 e 50 ns=3.4 (3 )% end-to-end efficiency of the fiber-coupled memory, with a total intrinsic efficiency ηint=17 (3 )%. Straightforward technological improvements can boost the end-to-end-efficiency to ηe 2 e≈35 %; beyond that, increasing the optical depth and exploiting the Zeeman substructure of the atoms will allow such a memory to approach near unity efficiency. In the present memory, the unconditional read-out noise level of 9 ×10-3 photons is dominated by atomic fluorescence, and for input pulses containing on average μ1=0.27 (4 ) photons, the signal to noise level would be unity.

  13. Compact representations for the design of quantum logic

    CERN Document Server

    Niemann, Philipp

    2017-01-01

    This book discusses modern approaches and challenges of computer-aided design (CAD) of quantum circuits with a view to providing compact representations of quantum functionality. Focusing on the issue of quantum functionality, it presents Quantum Multiple-Valued Decision Diagrams (QMDDs – a means of compactly and efficiently representing and manipulating quantum logic. For future quantum computers, going well beyond the size of present-day prototypes, the manual design of quantum circuits that realize a given (quantum) functionality on these devices is no longer an option. In order to keep up with the technological advances, methods need to be provided which, similar to the design and synthesis of conventional circuits, automatically generate a circuit description of the desired functionality. To this end, an efficient representation of the desired quantum functionality is of the essence. While straightforward representations are restricted due to their (exponentially) large matrix descriptions and other de...

  14. Quantum transport in a ring of quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Sena Junior, Marcone I.; Macedo, Antonio M.C. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Fisica

    2012-07-01

    Full text: Quantum dots play a central role in the recent technological efforts to build efficient devices to storage, process and transmit information in the quantum regime [1]. One of the reasons for this interest is the relative simplicity with which its control parameters can be changed by experimentalists. Systems with one, two and even arrays of quantum dots have been intensively studied with respect to their efficiency in processing information carried by charge, spin and heat [1]. A particularly useful realization of a quantum dot is a ballistic electron cavity formed by electrostatic potentials in a two-dimensional electron gas. In the chaotic regime, the shape of the dot is statistically irrelevant and the ability to change its form via external gates can be used to generate members of an ensemble of identical systems. From a theoretical point of view, such quantum dots are ideal electron systems in which to study theoretical models combining phase-coherence, chaotic dynamics and Coulomb interactions. In this work, we use the Keldysh non-linear sigma model [2] with a counting field to study electron transport through a ring of four chaotic quantum dots pierced by an Aharonov-Bohm flux. This system is particularly well suited for studying ways to use the weak-localization effect to process quantum information. We derive the quantum circuit equations for this system from the saddle-point condition of the Keldysh action. The results are used to build the action of the corresponding supersymmetric (SUSY) non-linear sigma model. The connection with the random scattering matrix approach is then made via the color-flavor transformation. In the perturbative regime, where weak-localization effects appear, the Keldysh, SUSY and random scattering matrix approaches can be compared by means of independent analytical calculations. We conclude by pointing out the many advantages of our unified approach. [1] For a review, see Yu. V. Nazarov, and Ya. M. Blanter, Quantum

  15. Absolute nutrient concentration measurements in cell culture media: 1H q-NMR spectra and data to compare the efficiency of pH-controlled protein precipitation versus CPMG or post-processing filtering approaches

    Directory of Open Access Journals (Sweden)

    Luca Goldoni

    2016-09-01

    Full Text Available The NMR spectra and data reported in this article refer to the research article titled “A simple and accurate protocol for absolute polar metabolite quantification in cell cultures using q-NMR” [1]. We provide the 1H q-NMR spectra of cell culture media (DMEM after removal of serum proteins, which show the different efficiency of various precipitating solvents, the solvent/DMEM ratios, and pH of the solution. We compare the data of the absolute nutrient concentrations, measured by PULCON external standard method, before and after precipitation of serum proteins and those obtained using CPMG (Carr-Purcell-Meiboom-Gill sequence or applying post-processing filtering algorithms to remove, from the 1H q-NMR spectra, the proteins signal contribution. For each of these approaches, the percent error in the absolute value of every measurement for all the nutrients is also plotted as accuracy assessment. Keywords: 1H NMR, pH-controlled serum removal, PULCON, Accuracy, CPMG, Deconvolution

  16. Fundamental rate-loss trade-off for the quantum internet.

    Science.gov (United States)

    Azuma, Koji; Mizutani, Akihiro; Lo, Hoi-Kwong

    2016-11-25

    The quantum internet holds promise for achieving quantum communication-such as quantum teleportation and quantum key distribution (QKD)-freely between any clients all over the globe, as well as for the simulation of the evolution of quantum many-body systems. The most primitive function of the quantum internet is to provide quantum entanglement or a secret key to two points efficiently, by using intermediate nodes connected by optical channels with each other. Here we derive a fundamental rate-loss trade-off for a quantum internet protocol, by generalizing the Takeoka-Guha-Wilde bound to be applicable to any network topology. This trade-off has essentially no scaling gap with the quantum communication efficiencies of protocols known to be indispensable to long-distance quantum communication, such as intercity QKD and quantum repeaters. Our result-putting a practical but general limitation on the quantum internet-enables us to grasp the potential of the future quantum internet.

  17. Efficient classical simulation of the Deutsch-Jozsa and Simon's algorithms

    Science.gov (United States)

    Johansson, Niklas; Larsson, Jan-Åke

    2017-09-01

    A long-standing aim of quantum information research is to understand what gives quantum computers their advantage. This requires separating problems that need genuinely quantum resources from those for which classical resources are enough. Two examples of quantum speed-up are the Deutsch-Jozsa and Simon's problem, both efficiently solvable on a quantum Turing machine, and both believed to lack efficient classical solutions. Here we present a framework that can simulate both quantum algorithms efficiently, solving the Deutsch-Jozsa problem with probability 1 using only one oracle query, and Simon's problem using linearly many oracle queries, just as expected of an ideal quantum computer. The presented simulation framework is in turn efficiently simulatable in a classical probabilistic Turing machine. This shows that the Deutsch-Jozsa and Simon's problem do not require any genuinely quantum resources, and that the quantum algorithms show no speed-up when compared with their corresponding classical simulation. Finally, this gives insight into what properties are needed in the two algorithms and calls for further study of oracle separation between quantum and classical computation.

  18. Quantum Illumination with Noiseless Linear Amplifier

    International Nuclear Information System (INIS)

    Zhang Sheng-Li; Wang -Kun; Guo Jian-Sheng; Shi Jian-Hong

    2015-01-01

    Quantum illumination, that is, quantum target detection, is to detect the potential target with two-mode quantum entangled state. For a given transmitted energy, the quantum illumination can achieve a target-detection probability of error much lower than the illumination scheme without entanglement. We investigate the usefulness of noiseless linear amplification (NLA) for quantum illumination. Our result shows that NLA can help to substantially reduce the number of quantum entangled states collected for joint measurement of multi-copy quantum state. Our analysis on the NLA-assisted scheme could help to develop more efficient schemes for quantum illumination. (paper)

  19. Danish Towns during Absolutism

    DEFF Research Database (Denmark)

    This anthology, No. 4 in the Danish Urban Studies Series, presents in English recent significant research on Denmark's urban development during the Age of Absolutism, 1660-1848, and features 13 articles written by leading Danish urban historians. The years of Absolutism were marked by a general...

  20. Multiple-state quantum Otto engine, 1D box system

    Energy Technology Data Exchange (ETDEWEB)

    Latifah, E., E-mail: enylatifah@um.ac.id [Laboratory of Theoretical Physics and Natural Philosophy, Physics Department, Institut Teknologi Sepuluh Nopember, ITS, Surabaya, Indonesia and Physics Department, Malang State University (Indonesia); Purwanto, A. [Laboratory of Theoretical Physics and Natural Philosophy, Physics Department, Institut Teknologi Sepuluh Nopember, ITS, Surabaya (Indonesia)

    2014-03-24

    Quantum heat engines produce work using quantum matter as their working substance. We studied adiabatic and isochoric processes and defined the general force according to quantum system. The processes and general force are used to evaluate a quantum Otto engine based on multiple-state of one dimensional box system and calculate the efficiency. As a result, the efficiency depends on the ratio of initial and final width of system under adiabatic processes.

  1. Improvement of carrier injection symmetry and quantum efficiency in InGaN light-emitting diodes with Mg delta-doped barriers

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, F.; Can, N.; Hafiz, S.; Monavarian, M.; Das, S.; Avrutin, V.; Özgür, Ü., E-mail: uozgur@vcu.edu; Morkoç, H. [Department of Electrical and Computer Engineering, Virginia Commonwealth University, Richmond, Virginia 23284 (United States)

    2015-05-04

    The effect of δ-doping of In{sub 0.06}Ga{sub 0.94}N barriers with Mg on the quantum efficiency of blue light-emitting-diodes (LEDs) with active regions composed of 6 (hex) 3-nm In{sub 0.15}Ga{sub 0.85}N is investigated. Compared to the reference sample, δ-doping of the first barrier on the n-side of the LED structure improves the peak external quantum efficiency (EQE) by 20%, owing to the increased hole concentration in the wells adjacent to the n-side, as confirmed by numerical simulations of carrier distributions across the active region. Doping the second barrier, in addition to the first one, did not further enhance the EQE, which likely indicates compensation of improved hole injection by degradation of the active region quality due to Mg doping. Both LEDs with Mg δ-doped barriers effectively suppress the drop of efficiency at high injection when compared to the reference sample, and the onset of EQE peak roll-off shifts from ∼80 A/cm{sup 2} in the reference LED to ∼120 A/cm{sup 2} in the LEDs with Mg δ-doped barriers.

  2. Improvement of carrier injection symmetry and quantum efficiency in InGaN light-emitting diodes with Mg delta-doped barriers

    International Nuclear Information System (INIS)

    Zhang, F.; Can, N.; Hafiz, S.; Monavarian, M.; Das, S.; Avrutin, V.; Özgür, Ü.; Morkoç, H.

    2015-01-01

    The effect of δ-doping of In 0.06 Ga 0.94 N barriers with Mg on the quantum efficiency of blue light-emitting-diodes (LEDs) with active regions composed of 6 (hex) 3-nm In 0.15 Ga 0.85 N is investigated. Compared to the reference sample, δ-doping of the first barrier on the n-side of the LED structure improves the peak external quantum efficiency (EQE) by 20%, owing to the increased hole concentration in the wells adjacent to the n-side, as confirmed by numerical simulations of carrier distributions across the active region. Doping the second barrier, in addition to the first one, did not further enhance the EQE, which likely indicates compensation of improved hole injection by degradation of the active region quality due to Mg doping. Both LEDs with Mg δ-doped barriers effectively suppress the drop of efficiency at high injection when compared to the reference sample, and the onset of EQE peak roll-off shifts from ∼80 A/cm 2 in the reference LED to ∼120 A/cm 2 in the LEDs with Mg δ-doped barriers

  3. Improvement of carrier injection symmetry and quantum efficiency in InGaN light-emitting diodes with Mg delta-doped barriers

    Science.gov (United States)

    Zhang, F.; Can, N.; Hafiz, S.; Monavarian, M.; Das, S.; Avrutin, V.; Özgür, Ü.; Morkoç, H.

    2015-05-01

    The effect of δ-doping of In0.06Ga0.94N barriers with Mg on the quantum efficiency of blue light-emitting-diodes (LEDs) with active regions composed of 6 (hex) 3-nm In0.15Ga0.85N is investigated. Compared to the reference sample, δ-doping of the first barrier on the n-side of the LED structure improves the peak external quantum efficiency (EQE) by 20%, owing to the increased hole concentration in the wells adjacent to the n-side, as confirmed by numerical simulations of carrier distributions across the active region. Doping the second barrier, in addition to the first one, did not further enhance the EQE, which likely indicates compensation of improved hole injection by degradation of the active region quality due to Mg doping. Both LEDs with Mg δ-doped barriers effectively suppress the drop of efficiency at high injection when compared to the reference sample, and the onset of EQE peak roll-off shifts from ˜80 A/cm2 in the reference LED to ˜120 A/cm2 in the LEDs with Mg δ-doped barriers.

  4. Laser diode arrays based on AlGaAs/GaAs quantum-well heterostructures with an efficiency up to 62%

    Science.gov (United States)

    Ladugin, M. A.; Marmalyuk, A. A.; Padalitsa, A. A.; Telegin, K. Yu; Lobintsov, A. V.; Sapozhnikov, S. M.; Danilov, A. I.; Podkopaev, A. V.; Simakov, V. A.

    2017-08-01

    The results of development of quasi-cw laser diode arrays operating at a wavelength of 808 nm with a high efficiency are demonstrated. The laser diodes are based on semiconductor AlGaAs/GaAs quantum-well heterostructures grown by MOCVD. The measured spectral, spatial, electric and power characteristics are presented. The output optical power of the array with an emitting area of 5 × 10 mm is 2.7 kW at a pump current of 100 A, and the maximum efficiency reaches 62%.

  5. Geometry of quantum computation with qutrits.

    Science.gov (United States)

    Li, Bin; Yu, Zu-Huan; Fei, Shao-Ming

    2013-01-01

    Determining the quantum circuit complexity of a unitary operation is an important problem in quantum computation. By using the mathematical techniques of Riemannian geometry, we investigate the efficient quantum circuits in quantum computation with n qutrits. We show that the optimal quantum circuits are essentially equivalent to the shortest path between two points in a certain curved geometry of SU(3(n)). As an example, three-qutrit systems are investigated in detail.

  6. Super-activating Quantum Memory with Entanglement

    OpenAIRE

    Guan, Ji; Feng, Yuan; Ying, Mingsheng

    2017-01-01

    Noiseless subsystems were proved to be an efficient and faithful approach to preserve fragile information against decoherence in quantum information processing and quantum computation. They were employed to design a general (hybrid) quantum memory cell model that can store both quantum and classical information. In this Letter, we find an interesting new phenomenon that the purely classical memory cell can be super-activated to preserve quantum states, whereas the null memory cell can only be...

  7. Quantum computation and analysis of Wigner and Husimi functions: toward a quantum image treatment.

    Science.gov (United States)

    Terraneo, M; Georgeot, B; Shepelyansky, D L

    2005-06-01

    We study the efficiency of quantum algorithms which aim at obtaining phase-space distribution functions of quantum systems. Wigner and Husimi functions are considered. Different quantum algorithms are envisioned to build these functions, and compared with the classical computation. Different procedures to extract more efficiently information from the final wave function of these algorithms are studied, including coarse-grained measurements, amplitude amplification, and measure of wavelet-transformed wave function. The algorithms are analyzed and numerically tested on a complex quantum system showing different behavior depending on parameters: namely, the kicked rotator. The results for the Wigner function show in particular that the use of the quantum wavelet transform gives a polynomial gain over classical computation. For the Husimi distribution, the gain is much larger than for the Wigner function and is larger with the help of amplitude amplification and wavelet transforms. We discuss the generalization of these results to the simulation of other quantum systems. We also apply the same set of techniques to the analysis of real images. The results show that the use of the quantum wavelet transform allows one to lower dramatically the number of measurements needed, but at the cost of a large loss of information.

  8. Role of quantum correlations in light-matter quantum heat engines

    Science.gov (United States)

    Barrios, G. Alvarado; Albarrán-Arriagada, F.; Cárdenas-López, F. A.; Romero, G.; Retamal, J. C.

    2017-11-01

    We study a quantum Otto engine embedding a working substance composed of a two-level system interacting with a harmonic mode. The physical properties of the substance are described by a generalized quantum Rabi model arising in superconducting circuit realizations. We show that light-matter quantum correlation reduction during the hot bath stage and adiabatic stages act as an indicator for enhanced work extraction and efficiency, respectively. Also, we demonstrate that the anharmonic spectrum of the working substance has a direct impact on the transition from heat engine into refrigerator as the light-matter coupling is increased. These results shed light on the search for optimal conditions in the performance of quantum heat engines.

  9. A novel usage of hydrogen treatment to improve the indium incorporation and internal quantum efficiency of green InGaN/GaN multiple quantum wells simultaneously

    International Nuclear Information System (INIS)

    Ren, Peng; Zhang, Ning; Xue, Bin; Liu, Zhe; Wang, Junxi; Li, Jinmin

    2016-01-01

    The challenge for improving the internal quantum efficiency (IQE) of InGaN-based light emitting diodes (LED) in the green light range is referred to as the ‘green gap’. However the IQE of InGaN-based LEDs often drops when the emission peak wavelength is adjusted through reducing the growth temperature. Although hydrogen (H 2 ) can improve surface morphology, it reduces the indium incorporation significantly. Here, a novel usage of H 2 treatment on the GaN barrier before the InGaN quantum well is demonstrated to enhance indium incorporation efficiency and improve the IQE simultaneously for the first time. The mechanism behind it is systematically investigated and explained in detail. The possible reason for this phenomenon is the strain relieving function by the undulant GaN barrier surface after H 2 treatment. Test measurements show that applying 0.2 min H 2 treatment on the barrier would reduce defects and enhance indium incorporation, which would improve the localization effect and finally lead to a higher IQE. Although further increasing the treatment time to 0.4 min incorporates more indium atoms, the IQE decreases at the expense of more defects and a larger polarization field than the 0.2 min sample. (paper)

  10. Scalable optical quantum computer

    Energy Technology Data Exchange (ETDEWEB)

    Manykin, E A; Mel' nichenko, E V [Institute for Superconductivity and Solid-State Physics, Russian Research Centre ' Kurchatov Institute' , Moscow (Russian Federation)

    2014-12-31

    A way of designing a scalable optical quantum computer based on the photon echo effect is proposed. Individual rare earth ions Pr{sup 3+}, regularly located in the lattice of the orthosilicate (Y{sub 2}SiO{sub 5}) crystal, are suggested to be used as optical qubits. Operations with qubits are performed using coherent and incoherent laser pulses. The operation protocol includes both the method of measurement-based quantum computations and the technique of optical computations. Modern hybrid photon echo protocols, which provide a sufficient quantum efficiency when reading recorded states, are considered as most promising for quantum computations and communications. (quantum computer)

  11. Technique for long and absolute distance measurement based on laser pulse repetition frequency sweeping

    Science.gov (United States)

    Castro Alves, D.; Abreu, Manuel; Cabral, A.; Jost, Michael; Rebordão, J. M.

    2017-11-01

    In this work we present a technique to perform long and absolute distance measurements based on mode-locked diode lasers. Using a Michelson interferometer, it is possible to produce an optical cross-correlation between laser pulses of the reference arm with the pulses from the measurement arm, adjusting externally their degree of overlap either changing the pulse repetition frequency (PRF) or the position of the reference arm mirror for two (or more) fixed frequencies. The correlation of the travelling pulses for precision distance measurements relies on ultra-short pulse durations, as the uncertainty associated to the method is dependent on the laser pulse width as well as on a highly stable PRF. Mode-locked Diode lasers are a very appealing technology for its inherent characteristics, associated to compactness, size and efficiency, constituting a positive trade-off with regard to other mode-locked laser sources. Nevertheless, main current drawback is the non-availability of frequency-stable laser diodes. The laser used is a monolithic mode-locked semiconductor quantum-dot (QD) laser. The laser PRF is locked to an external stabilized RF reference. In this work we will present some of the preliminary results and discuss the importance of the requirements related to laser PRF stability in the final metrology system accuracy.

  12. Efficiency droop in nonpolar InGaN quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Schade, Lukas; Schwarz, Ulrich [Fraunhofer Institut fuer Angewandte Festkoerperphysik (IAF), Freiburg im Breisgau (Germany); Institut fuer Mikrosystemtechnik (IMTEK), Universitaet Freiburg, Freiburg im Breisgau (Germany); Wernicke, Tim; Rass, Jens; Ploch, Simon [Institut fuer Festkoerperphysik, Technische Universitaet Berlin (Germany); Weyers, Markus [Ferdinand-Braun-Institut (FBH), Berlin (Germany); Kneissl, Michael [Institut fuer Festkoerperphysik, Technische Universitaet Berlin (Germany); Ferdinand-Braun-Institut (FBH), Berlin (Germany)

    2012-07-01

    InGaN quantum wells (QWs) exhibit a decline of the internal efficiency at high charge carrier excitation. This has been observed for polar as well as for semipolar and nonpolar oriented QWs. Polar stands for the (0001) growth direction with strong piezoelectric fields. Due to the vanishing fields, the orthogonal growth directions (a or m) are called nonpolar, while all directions between are merged as semipolar orientations. In contrast to the polar and many semipolar QWs, nonpolar InGaN QWs provide a special property: optical polarization of the radiative transitions, which is a result of the anisotropic strain within pseudomorphic grown nonpolar QWs. Using this property, the broadened effective emission can be resolved into two fundamental transitions. They are spectrally separated by a defined energy which corresponds to the energy distance of the valence subbands. We studied nonpolar InGaN/InGaN Multi-QWs grown on low defect density GaN substrates with a setup for confocal microscopy. To reach high excitation densities of charge carriers, we use either a combination of an UV laser and highly focusing objectives or an electric pulse generator. The emission is spectrally analysed and compared to established models.

  13. Type II GaSb quantum ring solar cells under concentrated sunlight.

    Science.gov (United States)

    Tsai, Che-Pin; Hsu, Shun-Chieh; Lin, Shih-Yen; Chang, Ching-Wen; Tu, Li-Wei; Chen, Kun-Cheng; Lay, Tsong-Sheng; Lin, Chien-Chung

    2014-03-10

    A type II GaSb quantum ring solar cell is fabricated and measured under the concentrated sunlight. The external quantum efficiency confirms the extended absorption from the quantum rings at long wavelength coinciding with the photoluminescence results. The short-circuit current of the quantum ring devices is 5.1% to 9.9% more than the GaAs reference's under various concentrations. While the quantum ring solar cell does not exceed its GaAs counterpart in efficiency under one-sun, the recovery of the open-circuit voltages at higher concentration helps to reverse the situation. A slightly higher efficiency (10.31% vs. 10.29%) is reported for the quantum ring device against the GaAs one.

  14. Quantum Fourier Transform Over Galois Rings

    OpenAIRE

    Zhang, Yong

    2009-01-01

    Galois rings are regarded as "building blocks" of a finite commutative ring with identity. There have been many papers on classical error correction codes over Galois rings published. As an important warm-up before exploring quantum algorithms and quantum error correction codes over Galois rings, we study the quantum Fourier transform (QFT) over Galois rings and prove it can be efficiently preformed on a quantum computer. The properties of the QFT over Galois rings lead to the quantum algorit...

  15. A quantum computer only needs one universe

    OpenAIRE

    Steane, A. M.

    2000-01-01

    The nature of quantum computation is discussed. It is argued that, in terms of the amount of information manipulated in a given time, quantum and classical computation are equally efficient. Quantum superposition does not permit quantum computers to ``perform many computations simultaneously'' except in a highly qualified and to some extent misleading sense. Quantum computation is therefore not well described by interpretations of quantum mechanics which invoke the concept of vast numbers of ...

  16. Quantum transport in the FMO photosynthetic light-harvesting complex.

    Science.gov (United States)

    Karafyllidis, Ioannis G

    2017-06-01

    The very high light-harvesting efficiency of natural photosynthetic systems in conjunction with recent experiments, which showed quantum-coherent energy transfer in photosynthetic complexes, raised questions regarding the presence of non-trivial quantum effects in photosynthesis. Grover quantum search, quantum walks, and entanglement have been investigated as possible effects that lead to this efficiency. Here we explain the near-unit photosynthetic efficiency without invoking non-trivial quantum effects. Instead, we use non-equilibrium Green's functions, a mesoscopic method used to study transport in nano-conductors to compute the transmission function of the Fenna-Matthews-Olson (FMO) complex using an experimentally derived exciton Hamiltonian. The chlorosome antenna and the reaction center play the role of input and output contacts, connected to the FMO complex. We show that there are two channels for which the transmission is almost unity. Our analysis also revealed a dephasing-driven regulation mechanism that maintains the efficiency in the presence of varying dephasing potentials.

  17. Quantum communication in noisy environments

    International Nuclear Information System (INIS)

    Aschauer, H.

    2004-01-01

    In this thesis, we investigate how protocols in quantum communication theory are influenced by noise. Specifically, we take into account noise during the transmission of quantum information and noise during the processing of quantum information. We describe three novel quantum communication protocols which can be accomplished efficiently in a noisy environment: (1) Factorization of Eve: We show that it is possible to disentangle transmitted qubits a posteriori from the quantum channel's degrees of freedom. (2) Cluster state purification: We give multi-partite entanglement purification protocols for a large class of entangled quantum states. (3) Entanglement purification protocols from quantum codes: We describe a constructive method to create bipartite entanglement purification protocols form quantum error correcting codes, and investigate the properties of these protocols, which can be operated in two different modes, which are related to quantum communication and quantum computation protocols, respectively

  18. Folded-light-path colloidal quantum dot solar cells.

    KAUST Repository

    Koleilat, Ghada I; Kramer, Illan J; Wong, Chris T O; Thon, Susanna M; Labelle, André J; Hoogland, Sjoerd; Sargent, Edward H

    2013-01-01

    Colloidal quantum dot photovoltaics combine low-cost solution processing with quantum size-effect tuning to match absorption to the solar spectrum. Rapid advances have led to certified solar power conversion efficiencies of over 7%. Nevertheless, these devices remain held back by a compromise in the choice of quantum dot film thickness, balancing on the one hand the need to maximize photon absorption, mandating a thicker film, and, on the other, the need for efficient carrier extraction, a consideration that limits film thickness. Here we report an architecture that breaks this compromise by folding the path of light propagating in the colloidal quantum dot solid. Using this method, we achieve a substantial increase in short-circuit current, ultimately leading to improved power conversion efficiency.

  19. Effects of InGaN barriers with low indium content on internal quantum efficiency of blue InGaN multiple quantum wells

    International Nuclear Information System (INIS)

    Lai, Wang; Jia-Xing, Wang; Wei, Zhao; Xiang, Zou; Yi, Luo

    2010-01-01

    Blue In 0.2 Ga 0.8 N multiple quantum wells (MQWs) with In x Ga 1–x N (x = 0.01–0.04) barriers are grown by metal organic vapour phase epitaxy. The internal quantum efficiencies (IQEs) of these MQWs are studied in a way of temperature-dependent photoluminescence spectra. Furthermore, a 2-channel Arrhenius model is used to analyse the nonradiative recombination centres (NRCs). It is found that by adopting the InGaN barrier beneath the lowest well, it is possible to reduce the strain hence the NRCs in InGaN MQWs. By optimizing the thickness and the indium content of the InGaN barriers, the IQEs of InGaN/InGaN MQWs can be increased by about 2.5 times compared with conventional InGaN/GaN MQWs. On the other hand, the incorporation of indium atoms into the intermediate barriers between adjacent wells does not improve IQE obviously. In addition, the indium content of the intermediate barriers should match with that of the lowest barrier to avoid relaxation. (condensed matter: structure, thermal and mechanical properties)

  20. Blue phosphorescent organic light-emitting diodes using an exciplex forming co-host with the external quantum efficiency of theoretical limit.

    Science.gov (United States)

    Shin, Hyun; Lee, Sunghun; Kim, Kwon-Hyeon; Moon, Chang-Ki; Yoo, Seung-Jun; Lee, Jeong-Hwan; Kim, Jang-Joo

    2014-07-16

    A high-efficiency blue-emitting organic light-emitting diode (OLED) approaching theoretical efficiency using an exciplex-forming co-host composed of N,N'-dicarbazolyl-3,5-benzene (mCP) and bis-4,6-(3,5-di-3-pyridylphenyl)- 2-methylpyrimidine (B3PYMPM) is fabricated. Iridium(III)bis[(4,6-difluorophenyl)- pyridinato-N,C2']picolinate (FIrpic) is used as the emitter, which turns out to have a preferred horizontal dipole orientation in the emitting layer. The OLED shows a maximum external quantum efficiency of 29.5% (a maximum current efficiency of 62.2 cd A(-1) ), which is in perfect agreement with the theoretical prediction. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.