WorldWideScience

Sample records for absolute neutron activation

  1. Diagnostic Application of Absolute Neutron Activation Analysis in Hematology

    Energy Technology Data Exchange (ETDEWEB)

    Zamboni, C.B.; Oliveira, L.C.; Dalaqua, L. Jr.

    2004-10-03

    The Absolute Neutron Activation Analysis (ANAA) technique was used to determine element concentrations of Cl and Na in blood of healthy group (male and female blood donators), select from Blood Banks at Sao Paulo city, to provide information which can help in diagnosis of patients. This study permitted to perform a discussion about the advantages and limitations of using this nuclear methodology in hematological examinations.

  2. Absolute neutronic performance of SNS from gold foil application

    International Nuclear Information System (INIS)

    The determination of absolute neutron fluxes by white beam activation of thick gold foils in conjuction with spectral analysis by time-of-flight monitors is described. A numerical integration procedure is presented and the method applied to determining the absolute performance of SNS from data obtained during the initial commissioning run in December 1984. (author)

  3. Absolute measurements of fast neutrons using yttrium

    International Nuclear Information System (INIS)

    Yttrium is presented as an absolute neutron detector for pulsed neutron sources. It has high sensitivity for detecting fast neutrons. Yttrium has the property of generating a monoenergetic secondary radiation in the form of a 909 keV gamma-ray caused by inelastic neutron interaction. It was calibrated numerically using MCNPX and does not need periodic recalibration. The total yttrium efficiency for detecting 2.45 MeV neutrons was determined to be fn∼4.1x10-4 with an uncertainty of about 0.27%. The yttrium detector was employed in the NX2 plasma focus experiments and showed the neutron yield of the order of 108 neutrons per discharge.

  4. Absolute measurement of {beta} activities and application to the determination of neutronic densities; Mesure absolue d'activites {beta} et application a la determination des densites neutronique

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, R. [Commissariat a l' Energie Atomique, Lab. du Fort de Chatillon, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1951-01-15

    M. Berthelot, to my entrance to the ''Commissariat a l 'Energie Atomique'', proposed me to study the absolute measurement of neutron densities. Very quickly the problem of the absolute activity of {beta} sources became the central object of this work. In a first part, we will develop the methods of absolute determination for {beta} activities. The use of a 4{pi} counter permits to get the absolute activity of all beta radioactive source, susceptible to be put as thin leaf and of period superior than some minutes. The method is independent of the spectra of the measured radioelement. we will describe in the second part some applications which use neutron densities measurement, neutron sources intensities and ratio of cross sections of capture of thermal neutrons. (M.B.) [French] M. Berthelot, a mon entree au ''Commissariat a l 'Energie Atomique'', m'a propose d'etudier la mesure absolue des densites neutroniques. Tres rapidement le probleme de l'activite absolue des sources beta est devenu l'objet central de ce travail. Dans une premiere partie, on abordera les methodes de determination absolue des activites beta. L'utilisation d'un compteur 4{pi} permet d 'obtenir l'activite absolue de toute source radioactive beta, susceptible d'etre mise sous forme de feuille mince et de periode superieure a quelques minutes. La methode est independante du spectre du radioelement mesure. On decrira dans la seconde partie quelques applications a des mesures de densites neutroniques, d'intensites de sources de neutrons et de rapport de sections efficaces de capture de neutrons thermiques. (M.B.)

  5. Strategy for the absolute neutron emission measurement on ITER.

    Science.gov (United States)

    Sasao, M; Bertalot, L; Ishikawa, M; Popovichev, S

    2010-10-01

    Accuracy of 10% is demanded to the absolute fusion measurement on ITER. To achieve this accuracy, a functional combination of several types of neutron measurement subsystem, cross calibration among them, and in situ calibration are needed. Neutron transport calculation shows the suitable calibration source is a DT/DD neutron generator of source strength higher than 10(10) n/s (neutron/second) for DT and 10(8) n/s for DD. It will take eight weeks at the minimum with this source to calibrate flux monitors, profile monitors, and the activation system.

  6. Strategy for the absolute neutron emission measurement on ITER

    International Nuclear Information System (INIS)

    Accuracy of 10% is demanded to the absolute fusion measurement on ITER. To achieve this accuracy, a functional combination of several types of neutron measurement subsystem, cross calibration among them, and in situ calibration are needed. Neutron transport calculation shows the suitable calibration source is a DT/DD neutron generator of source strength higher than 1010 n/s (neutron/second) for DT and 108 n/s for DD. It will take eight weeks at the minimum with this source to calibrate flux monitors, profile monitors, and the activation system.

  7. Development of an absolute neutron dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Acevedo, C; Birstein, L; Loyola, H [Section de Desarrollos Innovativos, Comision Chilena de EnergIa Nuclear (CCHEN), Casilla 188-D, Santiago (Chile)], E-mail: lbirstei@cchen.cl

    2008-11-01

    An Absolute Neutron Dosimeter was developed to be used as a calibration standard for the Radiation Metrology Laboratory at CCHEN. The main component of the Dosimeter consists of a Proportional Counter of cylindrical shape, with Polyethylene walls and Ethylene gas in its interior. It includes a cage shaped arrangement of graphite bars that operates like the Proportional Counter cathode and a tungsten wire of 25 {mu}m in diameter {mu}m as the anode. Results of a Montecarlo modeling for the Dosimeter operation and results of tests and measurements performed with a radioactive source are presented.

  8. An associated particle technique for absolute neutron counting efficiency determination

    International Nuclear Information System (INIS)

    The 7Li(p,n)7Be reaction has been used to produce neutrons with energies ranging from 8 to 13 MeV in order to measure the absolute neutron counting efficiency of a large NE213 scintillator by the associated particle method. Recoil 7Be nuclei were detected with a ΔE(gas)-E (solid) telescope in coincidence with neutrons. The method is suitable for neutron energies greater than 1.2MeV and could be applied to establish the neutron efficiency response of any detector

  9. Absolute cross-section normalization of magnetic neutron scattering data

    OpenAIRE

    Xu, Guangyong; Xu, Zhijun; Tranquada, J. M.

    2013-01-01

    We discuss various methods to obtain the resolution volume for neutron scattering experiments, in order to perform absolute normalization on inelastic magnetic neutron scattering data. Examples from previous experiments are given. We also try to provide clear definitions of a number of physical quantities which are commonly used to describe neutron magnetic scattering results, including the dynamic spin correlation function and the imaginary part of the dynamic susceptibility. Formulas that c...

  10. Measuring the absolute DT neutron yield using the Magnetic Recoil Spectrometer at OMEGA and the NIF

    Energy Technology Data Exchange (ETDEWEB)

    Mackinnon, A; Casey, D; Frenje, J A; Johnson, M G; Seguin, F H; Li, C K; Petrasso, R D; Glebov, V Y; Katz, J; Knauer, J; Meyerhofer, D; Sangster, T; Bionta, R; Bleuel, D; Hachett, S P; Hartouni, E; Lepape, S; Mckernan, M; Moran, M; Yeamans, C

    2012-05-03

    A Magnetic Recoil Spectrometer (MRS) has been installed and extensively used on OMEGA and the National Ignition Facility (NIF) for measurements of the absolute neutron spectrum from inertial confinement fusion (ICF) implosions. From the neutron spectrum measured with the MRS, many critical implosion parameters are determined including the primary DT neutron yield, the ion temperature, and the down-scattered neutron yield. As the MRS detection efficiency is determined from first principles, the absolute DT neutron yield is obtained without cross-calibration to other techniques. The MRS primary DT neutron measurements at OMEGA and the NIF are shown to be in excellent agreement with previously established yield diagnostics on OMEGA, and with the newly commissioned nuclear activation diagnostics on the NIF.

  11. Automated absolute activation analysis with californium-252 sources

    Energy Technology Data Exchange (ETDEWEB)

    MacMurdo, K.W.; Bowman, W.W.

    1978-09-01

    A 100-mg /sup 252/Cf neutron activation analysis facility is used routinely at the Savannah River Laboratory for multielement analysis of many solid and liquid samples. An absolute analysis technique converts counting data directly to elemental concentration without the use of classical comparative standards and flux monitors. With the totally automated pneumatic sample transfer system, cyclic irradiation-decay-count regimes can be pre-selected for up to 40 samples, and samples can be analyzed with the facility unattended. An automatic data control system starts and stops a high-resolution gamma-ray spectrometer and/or a delayed-neutron detector; the system also stores data and controls output modes. Gamma ray data are reduced by three main programs in the IBM 360/195 computer: the 4096-channel spectrum and pertinent experimental timing, counting, and sample data are stored on magnetic tape; the spectrum is then reduced to a list of significant photopeak energies, integrated areas, and their associated statistical errors; and the third program assigns gamma ray photopeaks to the appropriate neutron activation product(s) by comparing photopeak energies to tabulated gamma ray energies. Photopeak areas are then converted to elemental concentration by using experimental timing and sample data, calculated elemental neutron capture rates, absolute detector efficiencies, and absolute spectroscopic decay data. Calculational procedures have been developed so that fissile material can be analyzed by cyclic neutron activation and delayed-neutron counting procedures. These calculations are based on a 6 half-life group model of delayed neutron emission; calculations include corrections for delayed neutron interference from /sup 17/O. Detection sensitivities of < or = 400 ppB for natural uranium and 8 ppB (< or = 0.5 (nCi/g)) for /sup 239/Pu were demonstrated with 15-g samples at a throughput of up to 140 per day. Over 40 elements can be detected at the sub-ppM level.

  12. Absolute Energy Calibration with the Neutron-Activated Liquid-Source System at BaBar's CsI(Tl) Calorimeter

    OpenAIRE

    Bauer, Johannes M.; Group, for the BaBar Collaboration EMC

    2003-01-01

    The electro-magnetic calorimeter at the BaBar detector, part of the asymmetric B Factory at SLAC, measures photons in the energy range from 20 MeV to 8 GeV with good resolution. The calorimeter is calibrated at the low energy end with 6.13 MeV photons obtained from a liquid source system. During the calibration, a fluorine-rich liquid is activated via a neutron generator and pumped past the front of the calorimeter's crystals. Decays that occur in front of the crystals emit photons of well-de...

  13. Measuring the absolute deuterium-tritium neutron yield using the magnetic recoil spectrometer at OMEGA and the NIF.

    Science.gov (United States)

    Casey, D T; Frenje, J A; Gatu Johnson, M; Séguin, F H; Li, C K; Petrasso, R D; Glebov, V Yu; Katz, J; Knauer, J P; Meyerhofer, D D; Sangster, T C; Bionta, R M; Bleuel, D L; Döppner, T; Glenzer, S; Hartouni, E; Hatchett, S P; Le Pape, S; Ma, T; MacKinnon, A; McKernan, M A; Moran, M; Moses, E; Park, H-S; Ralph, J; Remington, B A; Smalyuk, V; Yeamans, C B; Kline, J; Kyrala, G; Chandler, G A; Leeper, R J; Ruiz, C L; Cooper, G W; Nelson, A J; Fletcher, K; Kilkenny, J; Farrell, M; Jasion, D; Paguio, R

    2012-10-01

    A magnetic recoil spectrometer (MRS) has been installed and extensively used on OMEGA and the National Ignition Facility (NIF) for measurements of the absolute neutron spectrum from inertial confinement fusion implosions. From the neutron spectrum measured with the MRS, many critical implosion parameters are determined including the primary DT neutron yield, the ion temperature, and the down-scattered neutron yield. As the MRS detection efficiency is determined from first principles, the absolute DT neutron yield is obtained without cross-calibration to other techniques. The MRS primary DT neutron measurements at OMEGA and the NIF are shown to be in excellent agreement with previously established yield diagnostics on OMEGA, and with the newly commissioned nuclear activation diagnostics on the NIF.

  14. Absolute reaction rate measurement with D-D neutron source in polyethylene spherical shell

    International Nuclear Information System (INIS)

    The absolute reaction rate distribution measurements in a polyethylene spherical shell with 38.6 cm outside diameter and 10 cm thickness were performed with D-D neutron source. By combining fission method and activation method, rich-uranium fission chamber, depleted-uranium fission chamber, 237Np fission chamber and 115In activation foils were placed at several positions on the equatorial line of the inner face of the shell, and the absolute reaction rates were obtained. The uncertainty of fission rates is 2.5%-4.3%, while the uncertainty of activation rates is about 6.3%. The reaction rates were calculated by MCNP and ENDF/B-VII. 0. The calculated results are lower than the measured results and 238U is typical. (authors)

  15. Musical Activity Tunes Up Absolute Pitch Ability

    DEFF Research Database (Denmark)

    Dohn, Anders; Garza-Villarreal, Eduardo A.; Ribe, Lars Riisgaard;

    2014-01-01

    Absolute pitch (AP) is the ability to identify or produce pitches of musical tones without an external reference. Active AP (i.e., pitch production or pitch adjustment) and passive AP (i.e., pitch identification) are considered to not necessarily coincide, although no study has properly compared...... that APs generally undershoot when adjusting musical pitch, a tendency that decreases when musical activity increases. Finally, APs are less accurate when adjusting the pitch to black key targets than to white key targets. Hence, AP ability may be partly practice-dependent and we speculate that APs may...... benefit from frequent contact with fixed standard chroma to keep in tune....

  16. Absolute measurement of the DT primary neutron yield on the National Ignition Facility

    Directory of Open Access Journals (Sweden)

    Leeper R.J.

    2013-11-01

    Full Text Available The measurement of the absolute neutron yield produced in inertial confinement fusion target experiments conducted on the National Ignition Facility (NIF is essential in benchmarking progress towards the goal of achieving ignition on this facility. This paper describes three independent diagnostic techniques that have been developed to make accurate and precise DT neutron yield measurements on the NIF.

  17. Absolute measurements of neutron cross sections. Progress report

    International Nuclear Information System (INIS)

    In the photoneutron laboratory, we have completed a major refurbishing of experimental facilities and begun work on measurements of the capture cross section in thorium and U-238. In the 14 MeV neutron experimental bay, work continues on the measurement of 14 MeV neutron induced reactions of interest as standards or because of their technological importance. First results have been obtained over the past year, and we are extending these measurements along the lines outlined in our proposal of a year ago

  18. Neutron Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Corliss, William R.

    1968-01-01

    In activation analysis, a sample of an unknown material is first irradiated (activated) with nuclear particles. In practice these nuclear particles are almost always neutrons. The success of activation analysis depends upon nuclear reactions which are completely independent of an atom's chemical associations. The value of activation analysis as a research tool was recognized almost immediately upon the discovery of artificial radioactivity. This book discusses activation analysis experiments, applications and technical considerations.

  19. Isotopic neutron sources for neutron activation analysis

    International Nuclear Information System (INIS)

    This User's Manual is an attempt to provide for teaching and training purposes, a series of well thought out demonstrative experiments in neutron activation analysis based on the utilization of an isotopic neutron source. In some cases, these ideas can be applied to solve practical analytical problems. 19 refs, figs and tabs

  20. High-capacity neutron activation analysis facility

    International Nuclear Information System (INIS)

    A high-capacity neutron activation analysis facility, the Reactor Activation Facility, was designed and built and has been in operation for about a year at one of the Savannah River Plant's production reactors. The facility determines uranium and about 19 other elements in hydrogeochemical samples collected in the National Uranium Resource Evaluation program, which is sponsored and funded by the United States Department of Energy, Grand Junction Office. The facility has a demonstrated average analysis rate of over 10,000 samples per month, and a peak rate of over 16,000 samples per month. Uranium is determined by cyclic activation and delayed neutron counting of the U-235 fission products; other elements are determined from gamma-ray spectra recorded in subsequent irradiation, decay, and counting steps. The method relies on the absolute activation technique and is highly automated for round-the-clock unattended operation

  1. Reference neutron activation library

    International Nuclear Information System (INIS)

    Many scientific endeavors require accurate nuclear data. Examples include studies of environmental protection connected with the running of a nuclear installation, the conceptual designs of fusion energy producing devices, astrophysics and the production of medical isotopes. In response to this need, many national and international data libraries have evolved over the years. Initially nuclear data work concentrated on materials relevant to the commercial power industry which is based on the fission of actinides, but recently the topic of activation has become of increasing importance. Activation of materials occurs in fission devices, but is generally overshadowed by the primary fission process. In fusion devices, high energy (14 MeV) neutrons produced in the D-T fusion reaction cause activation of the structure, and (with the exception of the tritium fuel) is the dominant source of activity. Astrophysics requires cross-sections (generally describing neutron capture) or its studies of nucleosynthesis. Many analytical techniques require activation analysis. For example, borehole logging uses the detection of gamma rays from irradiated materials to determine the various components of rocks. To provide data for these applications, various specialized data libraries have been produced. The most comprehensive of these have been developed for fusion studies, since it has been appreciated that impurities are of the greatest importance in determining the overall activity, and thus data on all elements are required. These libraries contain information on a wide range of reactions: (n,γ), (n,2n), (n,α), (n,p), (n,d), (n,t), (n,3He)and (n,n')over the energy range from 10-5 eV to 15 or 20 MeV. It should be noted that the production of various isomeric states have to be treated in detail in these libraries,and that the range of targets must include long-lived radioactive nuclides in addition to stable nuclides. These comprehensive libraries thus contain almost all the

  2. Measurement of the absolute values of cross-sections in neutron photoproduction (1962)

    International Nuclear Information System (INIS)

    The absolute values of photoneutrons production cross-sections for the case of intermediate and heavy nuclei (lanthanium, cerium, tantalum, gold, lead and bismuth) are determined with an error of 15 per cent. The results obtained agree with theories in which the giant resonance is explained by the collective motion of the protons against the neutrons. The effect of the nuclear deformation on the shape of the giant resonance is seen in the case of Ta181, it will be possible to determine the quadrupole momenta of deformed nuclei with a good accuracy when we shall increase the statistics of measurements. (author)

  3. The magnetic recoil spectrometer for measurements of the absolute neutron spectrum at OMEGA and the NIF.

    Science.gov (United States)

    Casey, D T; Frenje, J A; Johnson, M Gatu; Séguin, F H; Li, C K; Petrasso, R D; Glebov, V Yu; Katz, J; Magoon, J; Meyerhofer, D D; Sangster, T C; Shoup, M; Ulreich, J; Ashabranner, R C; Bionta, R M; Carpenter, A C; Felker, B; Khater, H Y; LePape, S; MacKinnon, A; McKernan, M A; Moran, M; Rygg, J R; Yeoman, M F; Zacharias, R; Leeper, R J; Fletcher, K; Farrell, M; Jasion, D; Kilkenny, J; Paguio, R

    2013-04-01

    The neutron spectrum produced by deuterium-tritium (DT) inertial confinement fusion implosions contains a wealth of information about implosion performance including the DT yield, ion-temperature, and areal-density. The Magnetic Recoil Spectrometer (MRS) has been used at both the OMEGA laser facility and the National Ignition Facility (NIF) to measure the absolute neutron spectrum from 3 to 30 MeV at OMEGA and 3 to 36 MeV at the NIF. These measurements have been used to diagnose the performance of cryogenic target implosions to unprecedented accuracy. Interpretation of MRS data requires a detailed understanding of the MRS response and background. This paper describes ab initio characterization of the system involving Monte Carlo simulations of the MRS response in addition to the commission experiments for in situ calibration of the systems on OMEGA and the NIF.

  4. The magnetic recoil spectrometer for measurements of the absolute neutron spectrum at OMEGA and the NIF

    Energy Technology Data Exchange (ETDEWEB)

    Casey, D. T.; Frenje, J. A.; Gatu Johnson, M.; Seguin, F. H.; Li, C. K.; Petrasso, R. D. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Glebov, V. Yu.; Katz, J.; Magoon, J.; Meyerhofer, D. D.; Sangster, T. C.; Shoup, M.; Ulreich, J. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Ashabranner, R. C.; Bionta, R. M.; Carpenter, A. C.; Felker, B.; Khater, H. Y.; LePape, S.; MacKinnon, A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2013-04-15

    The neutron spectrum produced by deuterium-tritium (DT) inertial confinement fusion implosions contains a wealth of information about implosion performance including the DT yield, ion-temperature, and areal-density. The Magnetic Recoil Spectrometer (MRS) has been used at both the OMEGA laser facility and the National Ignition Facility (NIF) to measure the absolute neutron spectrum from 3 to 30 MeV at OMEGA and 3 to 36 MeV at the NIF. These measurements have been used to diagnose the performance of cryogenic target implosions to unprecedented accuracy. Interpretation of MRS data requires a detailed understanding of the MRS response and background. This paper describes ab initio characterization of the system involving Monte Carlo simulations of the MRS response in addition to the commission experiments for in situ calibration of the systems on OMEGA and the NIF.

  5. Applications of neutron activation spectroscopy

    CERN Document Server

    Silarski, M

    2013-01-01

    Since the discovery in 1932, neutrons became a basis of many methods used not only in research, but also in industry and engineering. Among others, the exceptional role in the modern nuclear engineering is played by the neutron activation spectroscopy, based on the interaction of neutron flux with atomic nuclei. In this article we shortly describe application of this method in medicine and detection of hazardous substances.

  6. Absolute fission rate measurement of 238U induced by 14 MeV neutrons penetrated composite material

    International Nuclear Information System (INIS)

    In order to prove the model calculation method and parameter, the 238U absolute fission rate in the case of 14 MeV neutrons penetrating through the special composite material was measured by minitype slab uranium fission chambers. The measuring spots are distributed in the surface of iron ball hull along the different position of equator. The calculated results are compared with the experiment results. The total error of measured 238U absolute fission rate is 6.1%. (author)

  7. Enhanced NIF neutron activation diagnostics.

    Science.gov (United States)

    Yeamans, C B; Bleuel, D L; Bernstein, L A

    2012-10-01

    The NIF neutron activation diagnostic suite relies on removable activation samples, leading to operational inefficiencies and a fundamental lower limit on the half-life of the activated product that can be observed. A neutron diagnostic system measuring activation of permanently installed samples could remove these limitations and significantly enhance overall neutron diagnostic capabilities. The physics and engineering aspects of two proposed systems are considered: one measuring the (89)Zr/(89 m)Zr isomer ratio in the existing Zr activation medium and the other using potassium zirconate as the activation medium. Both proposed systems could improve the signal-to-noise ratio of the current system by at least a factor of 5 and would allow independent measurement of fusion core velocity and fuel areal density.

  8. On the absolute calibration of a DT fusion neutron yield diagnostic

    Directory of Open Access Journals (Sweden)

    Ruiz C.L.

    2013-11-01

    Full Text Available Recent advances in Inertial Confinement Fusion (ICF experiments at Lawrence Livermore National Laboratory's National Ignition Facility (NIF have underscored the need for accurate total yield measurements of DT neutrons because yield measurements provide a measure of the predicted performance of the experiments. Future gas-puff DT experiments at Sandia National Laboratory's Z facility will also require similar measurements. For ICF DT experiments, the standard technique for measuring the neutron (14.1 MeV yield, counts the activity (counts/minute induced in irradiated copper samples. This activity occurs by the 63Cu(n,2n62Cu reaction where 62Cu decays by positrons (β+ with a half-life of 9.67 minutes. The calibrations discussed here employ the associated-particle method (APM, where the α (4He particles from the T(d,n4He reaction are measured to infer neutron fluxes on a copper sample. The flux induces 62Cu activity, measured in a coincidence counting system. The method leads to a relationship between a DT neutron yield and copper activity known as the F-factor. The goal in future experiments is to apply this calibration to measure the yield at NIF with a combined uncertainty approaching 5%.

  9. Design considerations for neutron activation and neutron source strength monitors for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, C.W. [Los Alamos National Lab., NM (United States); Jassby, D.L.; LeMunyan, G.; Roquemore, A.L. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Walker, C. [ITER Joint Central Team, Garching (Germany)

    1997-12-31

    The International Thermonuclear Experimental Reactor will require highly accurate measurements of fusion power production in time, space, and energy. Spectrometers in the neutron camera could do it all, but experience has taught us that multiple methods with redundancy and complementary uncertainties are needed. Previously, conceptual designs have been presented for time-integrated neutron activation and time-dependent neutron source strength monitors, both of which will be important parts of the integrated suite of neutron diagnostics for this purpose. The primary goals of the neutron activation system are: to maintain a robust relative measure of fusion energy production with stability and wide dynamic range; to enable an accurate absolute calibration of fusion power using neutronic techniques as successfully demonstrated on JET and TFTR; and to provide a flexible system for materials testing. The greatest difficulty is that the irradiation locations need to be close to plasma with a wide field of view. The routing of the pneumatic system is difficult because of minimum radius of curvature requirements and because of the careful need for containment of the tritium and activated air. The neutron source strength system needs to provide real-time source strength vs. time with {approximately}1 ms resolution and wide dynamic range in a robust and reliable manner with the capability to be absolutely calibrated by in-situ neutron sources as done on TFTR, JT-60U, and JET. In this paper a more detailed look at the expected neutron flux field around ITER is folded into a more complete design of the fission chamber system.

  10. Absolute configuration and antimicrobial activity of acylhomoserine lactones.

    Science.gov (United States)

    Pomini, Armando M; Marsaioli, Anita J

    2008-06-01

    (S)-N-Heptanoylhomoserine lactone is an uncommon acyl odd-chain natural product employed by many Gram-negative bacteria as a signaling substance in chemical communication mechanisms known as quorum sensing. The absolute configuration determination of the metabolite produced by the phytopathogen Pantoea ananatis Serrano is reported herein. As with all other substances of this class, the lactone moiety possesses S configuration, corroborating the hypothesis that it shares the same biosynthetic pathway as the (S)-N-hexanoylhomoserine lactone and also that some LuxI homologues can accept both hexanoyl- and heptanoyl-ACP as precursors. Evaluation of the antimicrobial activity of enantiomeric acylhomoserine lactones against three Gram-positive bacteria (Bacillus cereus, B. subtilis, and Staphylococcus aureus) revealed important features between absolute configuration and antimicrobial activity. The N-heptanoylhomoserine lactone was considerably less active than the 3-oxo derivatives. Surprisingly, non-natural (R)-N-(3-oxo-octanoyl)homoserine lactone was as active as the S enantiomer against B. cereus, while the synthetic racemic product was less active than either enantiomer. PMID:18465897

  11. Neutron activation spectrometry and neutron activation analysis in analytical geochemistry

    International Nuclear Information System (INIS)

    The present report is to show the geochemists who are interested in neutron activation spectrometry (NAS) and neutron activation analysis (NAA) which analytical possibilities these methods offer him. As a review of these analytical possibilities, a lieterature compolation is given which is subdivided into two groups: 1) rock (basic, intermediary, acid, sediments, soils and nuds, diverse minerals, tectites, meteorites and lunar material). 2) ore (Al, Au, Be, Cr, Cu, Mn, Mo, Fe, Pb, Pt, Sn, Ti, W, Zn, Zr, U and phosphate ore, polymetallic ores, fluorite, monazite and diverse ores). The applied methods as well as the determinable elements in the given materials can be got from the tables. On the whole, the literature evaluation carried out makes it clear that neutron activation spectrometry is a very useful multi-element method for the analysis of rocks. The analysis of ores, however, is subjected to great limitations. As rock analysis is very frequently of importance in prospecting for ore deposits, the NAS proves to be extremely useful for this very field of application. (orig./LH)

  12. The final power calibration of the IPEN/MB-01 nuclear reactor for various configurations obtained from the measurements of the absolute average neutron flux

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Alexandre Fonseca Povoa da, E-mail: alexandre.povoa@mar.mil.br [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), Sao Paulo, SP (Brazil); Bitelli, Ulysses d' Utra; Mura, Luiz Ernesto Credidio; Lima, Ana Cecilia de Souza; Betti, Flavio; Santos, Diogo Feliciano dos, E-mail: ubitelli@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    The use of neutron activation foils is a widely spread technique applied to obtain nuclear parameters then comparing the results with those calculated using specific methodologies and available nuclear data. By irradiation of activation foils and subsequent measurement of its induced activity, it is possible to determine the neutron flux at the position of irradiation. The power level during operation of the reactor is a parameter which is directly proportional to the average neutron flux throughout the core. The objective of this work is to gather data from irradiation of gold foils symmetrically placed along a cylindrically configured core which presents only a small excess reactivity in order to derive the power generated throughout the spatial thermal and epithermal neutron flux distribution over the core of the IPEN/MB-01 Nuclear Reactor, eventually lending to a proper calibration of its nuclear channels. The foils are fixed in a Lucite plate then irradiated with and without cadmium sheaths so as to obtain the absolute thermal and epithermal neutron flux. The correlation between the average power neutron flux resulting from the gold foils irradiation, and the average power digitally indicated by the nuclear channel number 6, allows for the calibration of the nuclear channels of the reactor. The reactor power level obtained by thermal neutron flux mapping was (74.65 ± 2.45) watts to a mean counting per seconds of 37881 cps to nuclear channel number 10 a pulse detector, and 0.719.10{sup -5} ampere to nuclear linear channel number 6 (a non-compensated ionization chamber). (author)

  13. A method for in situ absolute DD yield calibration of neutron time-of-flight detectors on OMEGA using CR-39-based proton detectors.

    Science.gov (United States)

    Waugh, C J; Rosenberg, M J; Zylstra, A B; Frenje, J A; Séguin, F H; Petrasso, R D; Glebov, V Yu; Sangster, T C; Stoeckl, C

    2015-05-01

    Neutron time of flight (nTOF) detectors are used routinely to measure the absolute DD neutron yield at OMEGA. To check the DD yield calibration of these detectors, originally calibrated using indium activation systems, which in turn were cross-calibrated to NOVA nTOF detectors in the early 1990s, a direct in situ calibration method using CR-39 range filter proton detectors has been successfully developed. By measuring DD neutron and proton yields from a series of exploding pusher implosions at OMEGA, a yield calibration coefficient of 1.09 ± 0.02 (relative to the previous coefficient) was determined for the 3m nTOF detector. In addition, comparison of these and other shots indicates that significant reduction in charged particle flux anisotropies is achieved when bang time occurs significantly (on the order of 500 ps) after the trailing edge of the laser pulse. This is an important observation as the main source of the yield calibration error is due to particle anisotropies caused by field effects. The results indicate that the CR-39-nTOF in situ calibration method can serve as a valuable technique for calibrating and reducing the uncertainty in the DD absolute yield calibration of nTOF detector systems on OMEGA, the National Ignition Facility, and laser megajoule. PMID:26026524

  14. A method for in situ absolute DD yield calibration of neutron time-of-flight detectors on OMEGA using CR-39-based proton detectors

    International Nuclear Information System (INIS)

    Neutron time of flight (nTOF) detectors are used routinely to measure the absolute DD neutron yield at OMEGA. To check the DD yield calibration of these detectors, originally calibrated using indium activation systems, which in turn were cross-calibrated to NOVA nTOF detectors in the early 1990s, a direct in situ calibration method using CR-39 range filter proton detectors has been successfully developed. By measuring DD neutron and proton yields from a series of exploding pusher implosions at OMEGA, a yield calibration coefficient of 1.09 ± 0.02 (relative to the previous coefficient) was determined for the 3m nTOF detector. In addition, comparison of these and other shots indicates that significant reduction in charged particle flux anisotropies is achieved when bang time occurs significantly (on the order of 500 ps) after the trailing edge of the laser pulse. This is an important observation as the main source of the yield calibration error is due to particle anisotropies caused by field effects. The results indicate that the CR-39-nTOF in situ calibration method can serve as a valuable technique for calibrating and reducing the uncertainty in the DD absolute yield calibration of nTOF detector systems on OMEGA, the National Ignition Facility, and laser megajoule

  15. A method for in situ absolute DD yield calibration of neutron time-of-flight detectors on OMEGA using CR-39-based proton detectors

    International Nuclear Information System (INIS)

    Neutron time of flight (nTOF) detectors are used routinely to measure the absolute DD neutron yield at OMEGA. To check the DD yield calibration of these detectors, originally calibrated using indium activation systems, which in turn were cross-calibrated to NOVA nTOF detectors in the early 1990s, a direct in situ calibration method using CR-39 range filter proton detectors has been successfully developed. By measuring DD neutron and proton yields from a series of exploding pusher implosions at OMEGA, a yield calibration coefficient of 1.09 ± 0.02 (relative to the previous coefficient) was determined for the 3m nTOF detector. In addition, comparison of these and other shots indicates that significant reduction in charged particle flux anisotropies is achieved when bang time occurs significantly (on the order of 500 ps) after the trailing edge of the laser pulse. This is an important observation as the main source of the yield calibration error is due to particle anisotropies caused by field effects. The results indicate that the CR-39-nTOF in situ calibration method can serve as a valuable technique for calibrating and reducing the uncertainty in the DD absolute yield calibration of nTOF detector systems on OMEGA, the National Ignition Facility, and laser megajoule

  16. A method for in situ absolute DD yield calibration of neutron time-of-flight detectors on OMEGA using CR-39-based proton detectors

    Energy Technology Data Exchange (ETDEWEB)

    Waugh, C. J., E-mail: cjwaugh@mit.edu; Zylstra, A. B.; Frenje, J. A.; Séguin, F. H.; Petrasso, R. D. [Plasma Science and Fusion Center, MIT, Cambridge, Massachusetts 02139 (United States); Rosenberg, M. J.; Glebov, V. Yu.; Sangster, T. C.; Stoeckl, C. [Laboratory for Laser Energetics, Rochester, New York 14623 (United States)

    2015-05-15

    Neutron time of flight (nTOF) detectors are used routinely to measure the absolute DD neutron yield at OMEGA. To check the DD yield calibration of these detectors, originally calibrated using indium activation systems, which in turn were cross-calibrated to NOVA nTOF detectors in the early 1990s, a direct in situ calibration method using CR-39 range filter proton detectors has been successfully developed. By measuring DD neutron and proton yields from a series of exploding pusher implosions at OMEGA, a yield calibration coefficient of 1.09 ± 0.02 (relative to the previous coefficient) was determined for the 3m nTOF detector. In addition, comparison of these and other shots indicates that significant reduction in charged particle flux anisotropies is achieved when bang time occurs significantly (on the order of 500 ps) after the trailing edge of the laser pulse. This is an important observation as the main source of the yield calibration error is due to particle anisotropies caused by field effects. The results indicate that the CR-39-nTOF in situ calibration method can serve as a valuable technique for calibrating and reducing the uncertainty in the DD absolute yield calibration of nTOF detector systems on OMEGA, the National Ignition Facility, and laser megajoule.

  17. The Atomic Fingerprint: Neutron Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Keisch, Bernard [Carnegie-Mellon University

    1972-01-01

    The nuclei of atoms are stable only when they contain certain numbers of neutrons and protons. Since nuclei can absorb additional neutrons, which in many cases results in the conversion of a stable nucleus to a radioactive one, neutron activation analysis is possible.

  18. Systematic determination of the JET absolute neutron yield using the MPR spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Kronborg-Pettersson, N

    2003-04-01

    This thesis describes the first high-statistics systematic analysis of JET neutron yield and rate measurements obtained by using data acquired with the Magnetic Proton Recoil (MPR) neutron spectrometer. The neutron yield and rate were determined by using the count-rate from the MPR neutron spectrometer together with neutron profile information from other neutron diagnostic systems. This has previously been done manually for a few pulses. To be able to do this in a more systematic way a part of the neutron spectrum evaluation code was extracted and put into a separate custom-made program and modifications were done to extract sets of MPR data automatically. The codes have been used for analysis of a large set of pulses from the deuterium-tritium campaign at JET in 1997. Several results were obtained, the most significant of which was the clear improvement seen when neutron profile corrections were applied. Neutron yield-rates derived from MPR count-rate are shown to be in excellent agreement with other JET neutron diagnostic data.

  19. Instrumentation in neutron activation analysis

    International Nuclear Information System (INIS)

    The rise of neutron activation analysis (NAA) as a tool in geochemical research has parallelled advances in detector, multi-channel analyzer, and computer technology. Micro-computers are now being integrated into NAA systems, and gamma-ray spectrometer instrumentation is evolving towards direct-reading systems. The investigator is faced with a wide range of possibilities and choices when equipping or re-equipping a laboratory. The geoscientist is provided with an overview of the available instrumentation and what soon may be feasible. (L.L.)

  20. Recent activities on neutron beam utilization

    International Nuclear Information System (INIS)

    In Japan, the utilization of neutron beam brought out in research reactors had mainly been carried out in KUR of Kyoto University and JRR-2 of Japan Atomic Energy Research Institute (JAERI) in the fields of neutron scattering experiment, neutron radiography, neutron induced prompt-gamma ray analysis, medical and biological irradiation and so on. After the completion of upgrading work of JRR-3 in JAERI in 1990 (JRR-3M), the quality and quantity for the neutron beam experiments are extremely improved by means of its high intensity of neutron flux and high signal-to-noise ratio of cold and thermal neutron beams at more than twenty neutron beam ports. Especially, the cold neutron beam has brought the field of the utilization expanded and the neutron guide tubes have increased the number of neutron beam facilities as if there are three research reactors. These facilities induced to more active use of research reactors and increased the researchers in the many fields. At present, research reactors are utilized widely in various fields of not only nuclear researches but also non-nuclear researches and industrial uses. The JRR-3M has been operated only for about three years, however, interesting results have already been obtained using cold and thermal neutron beams. The current status of the neutron beam utilization using the research reactors in JAERI is reported and also several research topics obtained at JRR-3M are introduced in this presentation. (author)

  1. Measurements of periods, relative abundances and absolute yields of delayed neutrons from fast neutron induced fission of {sup 237}Np

    Energy Technology Data Exchange (ETDEWEB)

    Piksaikine, V. [Institute of Physics and Power Engineering, Obninsk (Russian Federation)

    1997-03-01

    The experimental method for measurements of the delayed neutron yields and period is presented. The preliminary results of the total yield, relative abundances and periods are shown comparing with the previously reported values. (J.P.N.)

  2. High-yield neutron activation system for the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Cris W.; Murphy, Thomas J.; Oertel, John A.

    2001-01-01

    The most accurate absolutely calibrated measurement of the total yield of neutrons from experiments on the National Ignition Facility will be from activation of threshold nuclear reactions. The high-yield neutron activation system is being designed to provide high-accuracy (similar to the {+-}7% achieved on other fusion experiments) linear measurements over a 9-order-of-magnitude dynamic range from the facility limit of {approx}10{sup 19} neutrons/shot down to a minimum of {approx}3x10{sup 10} neutrons/shot. The system design requirements are presented, and a conceptual design to meet those requirements described.

  3. DD neutron yield diagnosis by indium activation

    International Nuclear Information System (INIS)

    The measurement of DD neutron yield by activation is presented. This method is based on the inelastic scattering reaction of 115In with DD neutron, and the activated γ spectrum is counted by HPGe detector. The relation between the counts of detected y rays and the neutron yield is analyzed. The optimal thickness of sample is given by Monte Carlo simulation, which is 1 cm. The entire counting system has been calibrated on the K-400 accelerator. The result shows that the DD neutron measurement by indium activation can be used in the ICF experiment when the neutron yield is above 2 × 109. The total error of the system is below 10% in this condition. The total error will reduce when the neutron yield is larger. (authors)

  4. Manually controlled neutron-activation system

    Science.gov (United States)

    Johns, R. A.; Carothers, G. A.

    1982-01-01

    A manually controlled neutron activation system, the Manual Reactor Activation System, was designed and built and has been operating at one of the Savannah River Plant's production reactors. With this system, samples can be irradiated for up to 24 hours and pneumatically transferred to a shielded repository for decay until their activity is low enough for them to be handled at a radiobench. The Manual Reactor Activation System was built to provide neutron activation of solid waste forms for the Alternative Waste Forms Leach Testing Program. Neutron activation of the bulk sample prior to leaching permits sensitive multielement radiometric analyses of the leachates.

  5. Instrumental neutron activation analysis - a routine method

    International Nuclear Information System (INIS)

    This thesis describes the way in which at IRI instrumental neutron activation analysis (INAA) has been developed into an automated system for routine analysis. The basis of this work are 20 publications describing the development of INAA since 1968. (Auth.)

  6. Neutron activation analysis of reference materials

    International Nuclear Information System (INIS)

    The importance is pointed out of neutron activation analysis in the preparation of reference materials, and studies are reported conducted recently by UJV. Instrumental neutron activation analysis has been used in testing homogeneity and in determining 28 elements in newly prepared reference standards of coal fly ash designated ENO, EOP and ECH. For accuracy testing, the same method was used in the analysis of NBS SRM-1633a Trace Elements in Coal Fly Ash and IAEA CRM Soil-5 and RM Soil-7. Radiochemical neutron activation analysis was used in determining Cd, Cu, Mn, Mo, and Zn in biological materials NBS SRM-1577 Bovine Liver, Bowen's Kale and in IAEA RM Milk Powder A-11 and Animal Muscle H-4. In all instances very good precision and accuracy of neutron activation analysis results were shown. (author)

  7. Neutron counter based on beryllium activation

    Energy Technology Data Exchange (ETDEWEB)

    Bienkowska, B.; Prokopowicz, R.; Kaczmarczyk, J.; Paducha, M. [Institute of Plasma Physics and Laser Microfusion (IPPLM), Hery 23, 01-497 Warsaw (Poland); Scholz, M.; Igielski, A. [Institute of Nuclear Physics PAS (IFJPAN), Radzikowskiego 152, 31-342 Krakow (Poland); Karpinski, L. [Faculty of Electrical Engineering, Rzeszow University of Technology, Pola 2, 35-959 Rzeszow (Poland); Pytel, K. [National Centre for Nuclear Research (NCBJ), Soltana 7, 05-400 Otwock - Swierk (Poland)

    2014-08-21

    The fusion reaction occurring in DD plasma is followed by emission of 2.45 MeV neutrons, which carry out information about fusion reaction rate and plasma parameters and properties as well. Neutron activation of beryllium has been chosen for detection of DD fusion neutrons. The cross-section for reaction {sup 9}Be(n, α){sup 6}He has a useful threshold near 1 MeV, which means that undesirable multiple-scattered neutrons do not undergo that reaction and therefore are not recorded. The product of the reaction, {sup 6}He, decays with half-life T{sub 1/2} = 0.807 s emitting β{sup −} particles which are easy to detect. Large area gas sealed proportional detector has been chosen as a counter of β–particles leaving activated beryllium plate. The plate with optimized dimensions adjoins the proportional counter entrance window. Such set-up is also equipped with appropriate electronic components and forms beryllium neutron activation counter. The neutron flux density on beryllium plate can be determined from the number of counts. The proper calibration procedure needs to be performed, therefore, to establish such relation. The measurements with the use of known β–source have been done. In order to determine the detector response function such experiment have been modeled by means of MCNP5–the Monte Carlo transport code. It allowed proper application of the results of transport calculations of β{sup −} particles emitted from radioactive {sup 6}He and reaching proportional detector active volume. In order to test the counter system and measuring procedure a number of experiments have been performed on PF devices. The experimental conditions have been simulated by means of MCNP5. The correctness of simulation outcome have been proved by measurements with known radioactive neutron source. The results of the DD fusion neutron measurements have been compared with other neutron diagnostics.

  8. Neutron counter based on beryllium activation

    Science.gov (United States)

    Bienkowska, B.; Prokopowicz, R.; Scholz, M.; Kaczmarczyk, J.; Igielski, A.; Karpinski, L.; Paducha, M.; Pytel, K.

    2014-08-01

    The fusion reaction occurring in DD plasma is followed by emission of 2.45 MeV neutrons, which carry out information about fusion reaction rate and plasma parameters and properties as well. Neutron activation of beryllium has been chosen for detection of DD fusion neutrons. The cross-section for reaction 9Be(n, α)6He has a useful threshold near 1 MeV, which means that undesirable multiple-scattered neutrons do not undergo that reaction and therefore are not recorded. The product of the reaction, 6He, decays with half-life T1/2 = 0.807 s emitting β- particles which are easy to detect. Large area gas sealed proportional detector has been chosen as a counter of β-particles leaving activated beryllium plate. The plate with optimized dimensions adjoins the proportional counter entrance window. Such set-up is also equipped with appropriate electronic components and forms beryllium neutron activation counter. The neutron flux density on beryllium plate can be determined from the number of counts. The proper calibration procedure needs to be performed, therefore, to establish such relation. The measurements with the use of known β-source have been done. In order to determine the detector response function such experiment have been modeled by means of MCNP5-the Monte Carlo transport code. It allowed proper application of the results of transport calculations of β- particles emitted from radioactive 6He and reaching proportional detector active volume. In order to test the counter system and measuring procedure a number of experiments have been performed on PF devices. The experimental conditions have been simulated by means of MCNP5. The correctness of simulation outcome have been proved by measurements with known radioactive neutron source. The results of the DD fusion neutron measurements have been compared with other neutron diagnostics.

  9. KFUPM fast neutron activation analysis facility

    International Nuclear Information System (INIS)

    A newly established Fast Neutron Activation Analysis facility at the Energy Research Laboratory is described. The facility mainly consists of a fast neutron irradiation station and a gamma ray counting station. Both stations are connected by a fast pneumatic sample transfer system which transports the sample from the irradiation station to the counting station in a short time of 3 s. The fast neutron activation analysis facility has been tested by measuring the 27A(n, α)24Na and 115In(n, n')115mIn cross sections at 14.8 and 2.5 MeV neutron energies, respectively. Within the experimental uncertainties, the measured cross sections for these elements agree with the published values. (orig.)

  10. Absolute Wavelength Control of Lasers for Active Sensing in Space Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop compact absolute wavelength references to weak molecular transitions, which is a challenge characteristic to space-based active sensing. The...

  11. Applications of neutron activation analysis in industry

    International Nuclear Information System (INIS)

    Neutron activation analysis technique is discussed in brief. This technique is used for quality control of raw materials, process materials and finished products, as well as activities in research and development for the improvement of the products and new products. The uses of this technique in several experienced industries are mentioned (author)

  12. Neutron Activation analysis of waste water

    International Nuclear Information System (INIS)

    An instrumental neutron activation analysis for the simultaneous determination of chlorine, bromine, sodium, manganese, cobalt, copper, chromium, zinc, nickel, antimony and iron in waste water is described. They were determined in waste water samples under normal conditions by non-destructive neutron activation simultaneously using a suitable monostandard method. Standardized water samples were used and irradiated in polyethylene ampoules at a neutron flux of 1013 cm-2 s-1 for periods of 1 minute, 1 and 10 hours. A Ge hyperpure detector was used for your activity determination, with count times of 60, 180, 300 and 600 seconds. The obtained results show than the method can be utilized for the determination of this elements without realize anything previous treatment of the samples. (Author)

  13. Design of Neutron Activation Analysis Laboratorium Room

    International Nuclear Information System (INIS)

    Base on the planning to increase of the research and service quality in the ''Neutron activation analysis'' (APN),the design of mentioned ''Neutron activation analysis laboratories room'' has been done in the multi purpose reactor G.A. Siwabessy. By the using the designed installation, the irradiation preparation and counting sample can be done. The design doing by determination of installation lay out and maximum particle contain in the air. The design installation required a unit of 1 HP blower, a unit of 1 HP split air condition and 2 units 1200 x 800 mm HEPA filter. This paper concluded that this design is feasible to fabricated

  14. Interferences in reactor neutron activation analyses

    International Nuclear Information System (INIS)

    It has been shown that interfering reactions may occur in neutron activation analyses of aluminum and zinc matrixes, commonly used in nuclear areas. The interferences analysed were: Al2713 (n, α) Na2411 and Zn6430 (n, p) Cu6429. The method used was the non-destructive neutron activation analysis and the spectra were obtained in a 1024 multichannel system coupled with a Ge(Li) detector. Sodium was detected in aluminum samples from the reactor tank and pneumatic transfer system. The independence of the sodium concentration in samples in the range of 0 - 100 ppm is shown by the attenuation obtained with the samples encapsulated in cadmium. (Author)

  15. Metrological activity determination of {sup 133}Ba by sum-peak absolute method

    Energy Technology Data Exchange (ETDEWEB)

    Silva, R.L. da; Delgado, J.U.; Poledna, R.; Santos, A.; Veras, E.V. de; Rangel, J.; Trindade, O.L. [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Almeida, M.C.M. de, E-mail: marcandida@yahoo.com.br, E-mail: candida@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    The National Laboratory for Metrology of Ionizing Radiation provides gamma sources of radionuclide and standardized in activity with reduced uncertainties. Relative methods require standards to determine the sample activity while the absolute methods, as sum-peak, not. The activity is obtained directly with good accuracy and low uncertainties. {sup 133}Ba is used in research laboratories and on calibration of detectors for analysis in different work areas. Classical absolute methods do not calibrate {sup 133}Ba due to its complex decay scheme. The sum-peak method using gamma spectrometry with germanium detector standardizes {sup 133}Ba samples. Uncertainties lower than 1% to activity results were obtained.

  16. Metrological activity determination of 133Ba by sum-peak absolute method

    Science.gov (United States)

    da Silva, R. L.; de Almeida, M. C. M.; Delgado, J. U.; Poledna, R.; Santos, A.; de Veras, E. V.; Rangel, J.; Trindade, O. L.

    2016-07-01

    The National Laboratory for Metrology of Ionizing Radiation provides gamma sources of radionuclide and standardized in activity with reduced uncertainties. Relative methods require standards to determine the sample activity while the absolute methods, as sum-peak, not. The activity is obtained directly with good accuracy and low uncertainties. 133Ba is used in research laboratories and on calibration of detectors for analysis in different work areas. Classical absolute methods don't calibrate 133Ba due to its complex decay scheme. The sum-peak method using gamma spectrometry with germanium detector standardizes 133Ba samples. Uncertainties lower than 1% to activity results were obtained.

  17. Provenience studies using neutron activation analysis: the role of standardization

    International Nuclear Information System (INIS)

    This paper covers the historical background of chemical analysis of archaeological artifacts which dates back to 1790 to the first application of neutron activation analysis to archaeological ceramics and goes on to elaborate on the present day status of neutron activation analysis in provenience studies, and the role of standardization. In principle, the concentrations of elements in a neutron-activated specimen can be calculated from an exact knowledge of neutron flux, its intensity, duration and spectral (energy) distribution, plus an exact gamma ray count calibrated for efficiency, corrected for branching rates, etc. However, in practice it is far easier to compare one's unknown to a standard of known or assumed composition. The practice has been for different laboratories to use different standards. With analyses being run in the thousands throughout the world, a great benefit would be derived if analyses could be exchanged among all users and/or generators of data. The emphasis of this paper is on interlaboratory comparability of ceramic data; how far are we from it, what has been proposed in the past to achieve this goal, and what is being proposed. All of this may be summarized under the general heading of Analytical Quality Control - i.e., how to achieve precise and accurate analysis. The author proposes that anyone wishing to analyze archaeological ceramics should simply use his own standard, but attempt to calibrate that standard as nearly as possible to absolute (i.e., accurate) concentration values. The relationship of Analytical Quality Control to provenience location is also examined

  18. Neutron activation analysis of geochemical samples

    International Nuclear Information System (INIS)

    The present paper will describe the work done at the Technical Research Centre of Finland in developing methods for the large-scale activation analysis of samples for the geochemical prospecting of metals. The geochemical prospecting for uranium started in Finland in 1974 and consequently a manually operated device for the delayed neutron activation analysis of uranium was taken into use. During 1974 9000 samples were analyzed. The small capacity of the analyzer made it necessary to develop a completely automated analyzer which was taken into use in August 1975. Since then 20000-30000 samples have been analyzed annually the annual capacity being about 60000 samples when running seven hours per day. Multielemental instrumental neutron activation analysis is used for the analysis of more than 40 elements. Using instrumental epithermal neutron activation analysis 25-27 elements can be analyzed using one irradiation and 20 min measurement. During 1982 12000 samples were analyzed for mining companies and Geological Survey of Finland. The capacity is 600 samples per week. Besides these two analytical methods the analysis of lanthanoids is an important part of the work. 11 lanthanoids have been analyzed using instrumental neutron activation analysis. Radiochemical separation methods have been developed for several elements to improve the sensitivity of the analysis

  19. Measurement of the neutron activity of a 252Cf source relative to the average number of prompt neutrons emitted per fission for the spontaneous fission

    International Nuclear Information System (INIS)

    A method was developed for measuring the absolute neutron activity of a large 252Cf source. The neutron counting assembly is composed of eight BF3 counters mounted in a large tank filled with water which is used as a moderator. The detection efficiency is determined using a low activity 252Cf source. The method is based on the identification of every fission event, followed by the counting of the fission neutrons detected by the BF3 counters during a time interval equal to the maximum neutron lifetime in the moderator. The efficiency is thus obtained relative to the average number of prompt neutrons emitted per 252Cf spontaneous fission which is commonly used as a standard. The measurement accuracy is estimated to be of the order of 1%

  20. Systematic Uncertainties in the Spectroscopic Measurements of Neutron-Star Masses and Radii from Thermonuclear X-ray Bursts. III. Absolute Flux Calibration

    OpenAIRE

    Guver, Tolga; Ozel, Feryal; Marshall, Herman; Psaltis, Dimitrios; Guainazzi, Matteo; Diaz-Trigo, Maria

    2015-01-01

    Many techniques for measuring neutron star radii rely on absolute flux measurements in the X-rays. As a result, one of the fundamental uncertainties in these spectroscopic measurements arises from the absolute flux calibrations of the detectors being used. Using the stable X-ray burster, GS 1826-238, and its simultaneous observations by Chandra HETG/ACIS-S and RXTE/PCA as well as by XMM-Newton EPIC-pn and RXTE/PCA, we quantify the degree of uncertainty in the flux calibration by assessing the...

  1. New studies in forensic neutron activation analysis

    International Nuclear Information System (INIS)

    Three recently completed studies in forensic neutron activation analysis are reported: a study of 0.22-caliber rimfire cartridge primers, a large-scale study of shotgun pellets, and a new 5-element procedure for the analysis of bullet-lead and shotgun-pellet samples. (author) 12 refs

  2. New studies in forensic neutron activation analysis

    International Nuclear Information System (INIS)

    Earlier studies in forensic neutron activation analysis are being extended in This Laboratory. Three of these new studies are reported here: 1) a study of 0.22-caliber rimfire cartridge primers, 2) a large-scale study of shotgun pellets, and 3) a new 5-element procedure for the analysis of bullet-lead and shotgun-pellet samples. (author)

  3. Antiausterity activity of arctigenin enantiomers: importance of (2R,3R)-absolute configuration.

    Science.gov (United States)

    Awale, Suresh; Kato, Mamoru; Dibwe, Dya Fita; Li, Feng; Miyoshi, Chika; Esumi, Hiroyasu; Kadota, Shigetoshi; Tezuka, Yasuhiro

    2014-01-01

    From a MeOH extract of powdered roots of Wikstroemia indica, six dibenzyl-gamma-butyrolactone-type lignans with (2S,3S)-absolute configuration [(+)-arctigenin (1), (+)-matairesinol (2), (+)-trachelogenin (3), (+)-nortrachelogenin (4), (+)-hinokinin (5), and (+)-kusunokinin (6)] were isolated, whereas three dibenzyl-gamma-butyrolactone-type lignans with (2R,3R)-absolute configuration [(-)-arctigenin (1*), (-)-matairesinol (2*), (-)-trachelogenin (3*)] were isolated from Trachelospermum asiaticum. The in vitro preferential cytotoxic activity of the nine compounds was evaluated against human pancreatic PANC-1 cancer cells in nutrient-deprived medium (NDM), but none of the six lignans (1-6) with (2S,3S)-absolute configuration showed preferential cytotoxicity. On the other hand, three lignans (1*-3*) with (2R,3R)-absolute configuration exhibited preferential cytotoxicity in a concentration-dependent manner with PC50 values of 0.54, 6.82, and 5.85 microM, respectively. Furthermore, the effect of (-)- and (+)-arctigenin was evaluated against the activation of Akt, which is a key process in the tolerance to nutrition starvation. Interestingly, only (-)-arctigenin (1*) strongly suppressed the activation of Akt. These results indicate that the (2R,3R)-absolute configuration of (-)-enantiomers should be required for the preferential cytotoxicity through the inhibition of Akt activation. PMID:24660468

  4. Passive neutron dosemeter with activation detector

    Energy Technology Data Exchange (ETDEWEB)

    Valero L, C.; Banuelos F, A.; Guzman G, K. A.; Borja H, C. G.; Hernandez D, V. M.; Vega C, H. R., E-mail: fermineutron@yahoo.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2011-10-15

    A passive neutron dosemeter with {sup 197}Au activation detector has been developed. The area dosemeter was made as a 20.5 {phi} x 20.5 cm{sup 2} polyethylene moderator, with a polyethylene pug where a {sup 197}Au foil can be located either parallel or perpendicular to moderator axis. Using Monte Carlo methods, with the MCNP5 code. With the fluence response and the fluence-to-equivalent dose conversion coefficients from ICRP-74, responses to H*(10) were also calculated, these were compared against responses of commercially available neutron area monitors and dosemeters. (Author)

  5. Fast-Neutron Surveys Using Indium-Foil Activation

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Lloyd D.; Smith, Alan R.

    1958-08-13

    Activation of indium foils by thermal neutrons has been applied to measurement of fast-neutron fluxes. Foils are encased in paraffin spheres placed in cadmium boxes. The high-energy neutrons that penetrate the cadmium become thermal neutrons; the thermal-neutron flux is proportional to the incident fast-neutron flux over a range of about 20 kev to 20 Mev. The foils are removed from the boxes and counted on a methane-flow proportional counter. High instantaneous neutron fluxes are easily detected and counted by use of these foils. Many simultaneous measurements have been made easily by this method.

  6. A neutron activation spectrometer and neutronic experimental platform for the National Ignition Facility (invited)

    Science.gov (United States)

    Yeamans, C. B.; Gharibyan, N.

    2016-11-01

    At the National Ignition Facility, the diagnostic instrument manipulator-based neutron activation spectrometer is used as a diagnostic of implosion performance for inertial confinement fusion experiments. Additionally, it serves as a platform for independent neutronic experiments and may be connected to fast recording systems for neutron effect tests on active electronics. As an implosion diagnostic, the neutron activation spectrometers are used to quantify fluence of primary DT neutrons, downscattered neutrons, and neutrons above the primary DT neutron energy created by reactions of upscattered D and T in flight. At a primary neutron yield of 1015 and a downscattered fraction of neutrons in the 10-12 MeV energy range of 0.04, the downscattered neutron fraction can be measured to a relative uncertainty of 8%. Significant asymmetries in downscattered neutrons have been observed. Spectrometers have been designed and fielded to measure the tritium-tritium and deuterium-tritium neutron outputs simultaneously in experiments using DT/TT fusion ratio as a direct measure of mix of ablator into the gas.

  7. Low geometry counter for the absolute measurement of the activity of alpha-emitting sources

    International Nuclear Information System (INIS)

    A low-geometry counter is described which allows the absolute determination of the activity for alpha-emitting sources. A Si implanted detector is used to obtain the spectrum of the sample. Two samples are measured with this counter and a 2 π gridded ion chamber. The results an their uncertainties for both instruments are discussed. (Author)

  8. Applications of neutron activation analysis technique

    International Nuclear Information System (INIS)

    The technique was developed as far back as 1936 by G. Hevesy and H. Levy for the analysis of Dy using an isotopic source. Approximately 40 elements can be analyzed by instrumental neutron activation analysis (INNA) technique with neutrons from a nuclear reactor. By applying radiochemical separation, the number of elements that can be analysed may be increased to almost 70. Compared with other analytical methods used in environmental and industrial research, NAA has some unique features. These are multi-element capability, rapidity, reproducibility of results, complementarity to other methods, freedom from analytical blank and independency of chemical state of elements. There are several types of neutron sources namely: nuclear reactors, accelerator-based and radioisotope-based sources, but nuclear reactors with high fluxes of neutrons from the fission of 235U give the most intense irradiation, and hence the highest available sensitivities for NAA. In this paper, the applications of NAA of socio-economic importance are discussed. The benefits of using NAA and related nuclear techniques for on-line applications in industrial process control are highlighted. A brief description of the NAA set-ups at CERT is enumerated. Finally, NAA is compared with other leading analytical techniques

  9. Reactor neutron activation analysis of industrial materials

    International Nuclear Information System (INIS)

    The specific application of neutron activation analysis (n.a.a.) for industrial materials is demonstrated by the determination of impurities in BeO, Al, Si, Cu, Ge, GaP, GaAs, steel, and irradiated uranium. A group scheme gives an orientation about the possibilities of n.a.a. The use of different standards, methods for the measurement of low radioactivities and errors caused by recoil reaction and radiation stimulated diffusion are discussed. (author)

  10. Motor preparatory activity in posterior parietal cortex is modulated by subjective absolute value.

    Directory of Open Access Journals (Sweden)

    Asha Iyer

    Full Text Available For optimal response selection, the consequences associated with behavioral success or failure must be appraised. To determine how monetary consequences influence the neural representations of motor preparation, human brain activity was scanned with fMRI while subjects performed a complex spatial visuomotor task. At the beginning of each trial, reward context cues indicated the potential gain and loss imposed for correct or incorrect trial completion. FMRI-activity in canonical reward structures reflected the expected value related to the context. In contrast, motor preparatory activity in posterior parietal and premotor cortex peaked in high "absolute value" (high gain or loss conditions: being highest for large gains in subjects who believed they performed well while being highest for large losses in those who believed they performed poorly. These results suggest that the neural activity preceding goal-directed actions incorporates the absolute value of that action, predicated upon subjective, rather than objective, estimates of one's performance.

  11. Rapid determination of halogenes in milk by instrumental neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Alfassi, Z.B.; Lavi, N.

    1985-07-01

    The absolute concetrations of iodine, bromine and chlorine in milk were determined by epithermal neutron activation followed by high resolution gamma-ray spectrometry. Two kinds of milk commonly consumed in Israel were investigated. The concentration of iodine, bromine and chlorine were found to be 0.18-0.30 ..mu..g/ml, 2.02-2.85 ..mu..g/ml and 0.65 mg/ml, respectively. The method is fast, selective, accurate and highly sensitive.

  12. Absolute nuclear material assay

    Science.gov (United States)

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2010-07-13

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  13. Introduction of Prompt Gamma Thermal Neutron Activation Analysis at CARR

    Institute of Scientific and Technical Information of China (English)

    WANG; Xing-hua; XIAO; Cai-jin; ZHANG; Gui-ying; YAO; Yong-gang; JIN; Xiang-chun; WANG; Ping-sheng; HUA; Long; NI; Bang-fa

    2013-01-01

    CARR will provide with maximal neutron flux in Asia,the third of the world.By using the high quality neutron beam and the advanced international experience,Prompt Gamma Neutron Activation Analysis(PGNAA)facility will be setup at high level.PGNAA on CARR will promote the development of nuclear analysis technology and improve Chinese status in the nuclear analysis field.

  14. Absolute fission yields in the fast neutron induced fission of sup 2 sup 3 sup 3 U by track etch combined with gamma-ray spectrometry

    CERN Document Server

    Ramaswami, A; Kalsi, P C; Dange, S P

    2003-01-01

    The absolute fission yields of twenty seven fission products were determined in the fast neutron induced fission of sup 2 '3 sup 3 U, employing track etch in combination with gamma-ray spectrometry. The total number of fissions was measured by registering the fission tracks on a small strip of lexan, a solid state track detector. The fission products were analysed by gamma-ray spectrometry. The measured yield values were compared to the ENDF/B-VI compilation and show a good agreement. (author)

  15. Quality assurance in biomedical neutron activation analysis

    International Nuclear Information System (INIS)

    The summary report represents an attempt to identify some of the possible sources of error in in vitro neutron activation analysis of trace elements applied to specimens of biomedical origin and to advise on practical means to avoid them. The report is intended as guidance for all involved in analysis, including sample collection and preparation for analysis. All these recommendations constitute part of quality assurance which is here taken to encompass the two concepts - quality control and quality assessment. Quality control is the mechanism established to control errors, while quality assessment is the mechanism used to verify that the analytical procedure is operating within acceptable limits

  16. Rapid radiochemical separations in neutron activation analysis

    International Nuclear Information System (INIS)

    Rapid radiochemical separation procedures based on the removal of metal ions by columns of C18-bonded silica gel after selective complexation are examined and the simplicity of the method demonstrated by its application to the determination of Mn, Cu and Zn in neutron-activated biological material. The method is rapid and reliable and readily adaptable in all radiochemical laboratories. An alternative separation procedure for selenium in blood plasma involving desalination and concentration of the selenium protein complex by gel filtration or ultrafiltration is briefly discussed. (author)

  17. Neutron activation analysis of Etruscan pottery

    International Nuclear Information System (INIS)

    Neutron activation analysis (NAA) has been widely used in archaeology for compositional analysis of pottery samples taken from sites of archaeological importance. Elemental profiles can determine the place of manufacture. At Cornell, samples from an Etruscan site near Siena, Italy, are being studied. The goal of this study is to compile a trace element concentration profile for a large number of samples. These profiles will be matched with an existing data bank in an attempt to understand the place of origin for these samples. The 500 kW TRIGA reactor at the Ward Laboratory is used to collect NAA data for these samples. Experiments were done to set a procedure for the neutron activation analysis with respect to sample preparation, selection of irradiation container, definition of activation and counting parameters and data reduction. Currently, we are able to analyze some 27 elements in samples of mass 500 mg with a single irradiation of 4 hours and two sequences of counting. Our sensitivity for many of the trace elements is better than 1 ppm by weight under the conditions chosen. In this talk, details of our procedure, including quality assurance as measured by NIST standard reference materials, will be discussed. In addition, preliminary results from data treatment using cluster analysis will be presented. (author)

  18. Reactor neutron activation for multielemental analysis

    International Nuclear Information System (INIS)

    Neutron Activation Analysis using single comparator (K0 NAA method) has been used for obtaining multielemental profiles in a variety of matrices related to environment. Gold was used as the comparator. Neutron flux was characterised by determining f, the epithermal to thermal neutron flux ratio and cc, the deviation from ideal shape of the neutron spectrum. The f and a were determined in different irradiation positions in APSARA reactor, PCF position in CIRUS reactor and tray rod position in Dhruva reactor using both cadmium cut off and multi isotope detector methods. High resolution gamma ray spectrometry was used for radioactive assay of the activation products. This technique is being used for multielement analysis in a variety of matrices like lake sediments, sea nodules and crusts, minerals, leaves, cereals, pulses, leaves, water and soil. Elemental profiles of the sediments corresponding to different depths from Nainital lake were determined and used to understand the history of natural absorption/desorption pattern of the previous 160 years. Ferromanganese crusts from different locations of Indian Ocean were analysed with a view to studying the distribution of some trace elements along with Fe and Mn. Variation of Mn/Fe ratio was used to identify the nature of the crusts as hydrogenous or hydrothermal. Fe-rich and Fe-depleted nodules from Indian Ocean were analysed to understand the REE patterns and it is proposed that REE-Th associated minerals could be the potential Th contributors to the sea water and thus reached ferromanganese nodules. Dolomites (unaltered and altered), two types of serpentines and intrusive rock dolerite from the asbestos mines of Cuddapah basin were analysed for major, minor and trace elements. The elemental concentrations are used for distinguishing and characterising these minerals. From our investigations, it was concluded that both dolomite and dolerite contribute elements in the serpentinisation process. Chemical neutron

  19. Absolute measurement of anti ν/sub p/ for 252Cf using the ORNL large liquid scintillator neutron detector

    International Nuclear Information System (INIS)

    The ORNL large liquid scintillator detector was used in a precise determination of anti ν/sub p/, the number of neutrons emitted promptly, for spontaneous fission of 252Cf. Measurements of the detector efficiency over a broad energy region were made by means of a proton-recoil technique employing the ORELA white neutron source. Monte Carlo calculation of the detector efficiency for a spectrum representative of 252Cf fission neutrons was calibrated with these elaborate measurements. The unusually flat response of the neutron detector resulted in elimination of several known sources of error. Experimental measurement was coupled with calculational methods to correct for other known errors. These measurements lead to an unusually small estimated uncertainty of 0.2% in the value obtained, anti ν/sub p/ = 3.773 +- 0.007

  20. Selected industrial and environmental applications of neutron activation analysis

    International Nuclear Information System (INIS)

    A review of the applications of Instrumental Neutron Activation Analysis (INAA) in the industrial and environmental fields is given. Detection limits for different applications are also given. (author)

  1. Easy Absolute Values? Absolutely

    Science.gov (United States)

    Taylor, Sharon E.; Mittag, Kathleen Cage

    2015-01-01

    The authors teach a problem-solving course for preservice middle-grades education majors that includes concepts dealing with absolute-value computations, equations, and inequalities. Many of these students like mathematics and plan to teach it, so they are adept at symbolic manipulations. Getting them to think differently about a concept that they…

  2. Absolutely connected sets of standard radiation sources for dissemination of the activity unit

    International Nuclear Information System (INIS)

    Sealed gamma sources and plane beta sources to be used as reference standards have been produced in such a way that in connecting measurements certain corrections have been avoided (e.g. self-absorption) or can be eliminated (e.g. backscattering). The production of the radiation sources and the technique of absolute connection to the primary standard of the activity unit are described for one set of gamma and beta radiation sources each, and a survey of the standard radiation source sets available is given, considering nuclides, type of source, activity and measuring accuracy. (author)

  3. Medical application of in vivo neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cohn, S.H.; Ellis, K.J.; Vartsky, D.; Zanzi, I.; Aloia, J.F.

    1978-01-01

    The clinical usefulness of total body neutron activation analysis (TBNAA) was clearly established at an IAEA panel meeting in Vienna in 1972. It is best demonstrated by the studies involving the measurement of total-body calcium. This measurement provides data useful for the diagnosis and management of metabolic bone disorders. It should be emphasized, however, that while most of the applications to date have involved calcium and phosphorus, the measurement of sodium, chlorine and nitrogen also appear to be useful clinically. Total-body calcium measurements utilizing TBNAA have been used in studies of osteoporosis to establish absolute and relative deficits of calcium in patients with this disease in comparison to a normal contrast population. Changes in total-body calcium (skeletal mass) have also been useful for quantitating the efficacy of various therapies in osteoporosis. Serial measurements over periods of years provide long-term balance data by direct measurement with a higher precision (+- 2%) than is possible by the use of any other technique. In the renal osteodystrophy observed in patients with renal failure, disorders of both calcium and phosphorus, as well as electrolyte disturbances, have been studied. The measure of total-body levels of these elements gives the clinician useful data upon which to design dialysis therapy. The measurement of bone changes in endocrine dysfunction has been studied, particularly in patients with thyroid and parathyroid disorders. In parathyroidectomy, the measurement of total-body calcium, post-operatively, can indicate the degree of bone resorption. Skeletal metabolism and body composition in acromegaly and Cushing's disease have also been investigated by TBNAA. Levels of cadmium in liver and kidney have also been measured in-vivo by prompt-gamma neutron activation and associated with hypertension, emphysema and cigarette smoking.

  4. Medical application of in vivo neutron activation analysis

    International Nuclear Information System (INIS)

    The clinical usefulness of total body neutron activation analysis (TBNAA) was clearly established at an IAEA panel meeting in Vienna in 1972. It is best demonstrated by the studies involving the measurement of total-body calcium. This measurement provides data useful for the diagnosis and management of metabolic bone disorders. It should be emphasized, however, that while most of the applications to date have involved calcium and phosphorus, the measurement of sodium, chlorine and nitrogen also appear to be useful clinically. Total-body calcium measurements utilizing TBNAA have been used in studies of osteoporosis to establish absolute and relative deficits of calcium in patients with this disease in comparison to a normal contrast population. Changes in total-body calcium (skeletal mass) have also been useful for quantitating the efficacy of various therapies in osteoporosis. Serial measurements over periods of years provide long-term balance data by direct measurement with a higher precision (+- 2%) than is possible by the use of any other technique. In the renal osteodystrophy observed in patients with renal failure, disorders of both calcium and phosphorus, as well as electrolyte disturbances, have been studied. The measure of total-body levels of these elements gives the clinician useful data upon which to design dialysis therapy. The measurement of bone changes in endocrine dysfunction has been studied, particularly in patients with thyroid and parathyroid disorders. In parathyroidectomy, the measurement of total-body calcium, post-operatively, can indicate the degree of bone resorption. Skeletal metabolism and body composition in acromegaly and Cushing's disease have also been investigated by TBNAA. Levels of cadmium in liver and kidney have also been measured in-vivo by prompt-gamma neutron activation and associated with hypertension, emphysema and cigarette smoking

  5. Estimation of thermal neutron flux from natZr activity

    International Nuclear Information System (INIS)

    Neutron transmutation doped (NTD) Ge thermistors are developed as low temperature thermometry (in mK range) in the cryogenic Tin bolometer, the India-based TIN detector (TIN.TIN). For this purpose, semiconductor grade Ge wafers are irradiated with thermal neutron at Dhruva reactor, BARC and dopant concentration critically depends on thermal neutron fluence. In order to obtain an independent estimate of the thermal neutron flux, natZr is used in one of the irradiations. The irradiated natZr samples have been studied in the Tifr Low background Experimental Setup (TiLES). The thermal neutron flux is estimated from the activity of 95Zr

  6. Improved Fission Neutron Data Base for Active Interrogation of Actinides

    Energy Technology Data Exchange (ETDEWEB)

    Pozzi, Sara; Czirr, J. Bart; Haight, Robert; Kovash, Michael; Tsvetkov, Pavel

    2013-11-06

    This project will develop an innovative neutron detection system for active interrogation measurements. Many active interrogation methods to detect fissionable material are based on the detection of neutrons from fission induced by fast neutrons or high-energy gamma rays. The energy spectrum of the fission neutrons provides data to identify the fissionable isotopes and materials such as shielding between the fissionable material and the detector. The proposed path for the project is as follows. First, the team will develop new neutron detection systems and algorithms by Monte Carlo simulations and bench-top experiments. Next, They will characterize and calibrate detection systems both with monoenergetic and white neutron sources. Finally, high-fidelity measurements of neutron emission from fissions induced by fast neutrons will be performed. Several existing fission chambers containing U-235, Pu-239, U-238, or Th-232 will be used to measure the neutron-induced fission neutron emission spectra. The challenge for making confident measurements is the detection of neutrons in the energy ranges of 0.01 – 1 MeV and above 8 MeV, regions where the basic data on the neutron energy spectrum emitted from fission is least well known. In addition, improvements in the specificity of neutron detectors are required throughout the complete energy range: they must be able to clearly distinguish neutrons from other radiations, in particular gamma rays and cosmic rays. The team believes that all of these challenges can be addressed successfully with emerging technologies under development by this collaboration. In particular, the collaboration will address the area of fission neutron emission spectra for isotopes of interest in the advanced fuel cycle initiative (AFCI).

  7. Feasibility of culvert IED detection using thermal neutron activation

    Science.gov (United States)

    Faust, Anthony A.; McFee, John E.; Clifford, Edward T. H.; Andrews, Hugh Robert; Mosquera, Cristian; Roberts, William C.

    2012-06-01

    Bulk explosives hidden in culverts pose a serious threat to the Canadian and allied armies. Culverts provide an opportunity to conceal insurgent activity, avoid the need for detectable surface disturbances, and limit the applicability of conventional sub-surface sensing techniques. Further, in spite of the large masses of explosives that can be employed, the large sensor{target separation makes detection of the bulk explosive content challeng- ing. Defence R&D Canada { Sueld and Bubble Technology Industries have been developing thermal neutron activation (TNA) sensors for detection of buried bulk explosives for over 15 years. The next generation TNA sensor, known as TNA2, incorporates a number of improvements that allow for increased sensor-to-target dis- tances, making it potentially feasible to detect large improvised explosive devices (IEDs) in culverts using TNA. Experiments to determine the ability of TNA2 to detect improvised explosive devices in culverts are described, and the resulting signal levels observed for relevant quantities of explosives are presented. Observations conrm that bulk explosives detection using TNA against a culvert-IED is possible, with large charges posing a detection challenge at least as dicult as that of a deeply buried anti-tank landmine. Because of the prototype nature of the TNA sensor used, it is not yet possible to make denitive statements about the absolute sensitivity or detection time. Further investigation is warranted.

  8. Large sample neutron activation analysis of a ceramic vase

    OpenAIRE

    Stamatelatos, I.E.; Tzika, F.; Vasilopoulou, T.; Koster-Ammerlaan, M.J.J.

    2010-01-01

    Large Sample Neutron Activation Analysis (LSNAA) was applied to perform non-destructive elemental analysis of a ceramic vase. Appropriate neutron self-shielding and gamma ray detection efficiency calibration factors were derived using Monte Carlo code MCNP5. The results of LSNAA were compared against Instrumental Neutron Activation Analysis (INAA) results and a satisfactory agreement between the two methods was observed. The ratio of derived concentrations between the two methods was within 0...

  9. Neutron activation of gold dental restorations in small primates

    Energy Technology Data Exchange (ETDEWEB)

    Zellmer, R.W.; Hartley, J.L.; Richey, E.O.; Harris, N.O.

    1959-07-01

    Dental gold alloys of various kinds were used to cast inlays which were placed in the molars of 10 small primates. These primates were then exposed to the neutron flux of an atomic detonation. The inlays were removed and the neutron-induced activity of the gold was measured in a scintillation counter. Calculation of the total activity showed a correlation with the neutron dosages received by the primates.

  10. Industrial applications of neutron activation analysis

    International Nuclear Information System (INIS)

    Neutron activation analysis has been widely used in the industry and over the years played a key role in the development of manufacturing process as well as monitoring of the process flow. In this context NAA has been utilized both in R and D, and in the factory as a flexible analytical tool. It has been used successfully in numerous industries including broad categories such as Chemical, Pharmaceutical, Mining, Photographic, Oil and Gas, Automobile, Defense, Semiconductor and Electronic industries. Dow Chemical owns and operates a research reactor for analytical measurements of samples generated in both R and D, and manufacturing area in its plant in Midland, Michigan. Although most industries do not have reactors on their campus but use an off site reactor regularly, and often have in-house neutron sources such as a 252Cf used primarily for NAA. In most industrial materials analysis laboratory NAA is part of a number of analytical techniques such as ICP-MS, AA, SIMS, FTIR, XRF, TXRF etc. Analysis of complex industrial samples may require data from each of these methods to provide a clear picture of the materials issues involved. With the improvement of classical analytical techniques, and the introduction of new techniques, e.g. TXRF, the role of NAA continues to be a key bench mark technique that provides accurate and reliable data. The strength of the NAA in bulk analysis is balanced by its weakness in providing surface sensitive or spatially resolved analysis as is required by many applications. (author)

  11. Active Neutron Interrogation and Delayed Neutron Counting (AIDNEC) for assay of 235U

    International Nuclear Information System (INIS)

    A method has been developed for non destructive assay of 235U using active neutron interrogation followed by delayed neutron counting (AIDNEC) system. The neutrons from a plasma focus (PF) device were used to bombard the samples containing low enriched uranium ranging from 13 mg to 5 g. The PF device generates (1.2±0.3) x109 D-D fusion neutrons per shot with a pulse width of 46±5 ns. The delayed neutrons were monitored using a bank of six 3He detectors. The sensitivity of the system was found to be about 1000 cps per gram over the accumulation time of 25 seconds per neutron pulse of ∼109. The detection limit of the system is estimated to be 18 mg of 235U. (author)

  12. Absolute alpha activity measurements of some plants growing in monazite bearing soils in Sri Lanka

    Energy Technology Data Exchange (ETDEWEB)

    Mahawatte, P.; Hewamanna, R. (Colombo Univ. (Sri Lanka). Radioisotope Centre)

    1991-01-01

    Deposits of monazite bearing soils occur along the Southwest, West and East Coasts of Sri Lanka. High levels of gamma activity in some plant species growing in the West Coast have been reported. The high levels were due to the presence of the daughter nuclides of {sup 232}Th, most of which are alpha emitters. Absolute alpha activity measurements of ash samples of some plants growing in monazite bearing soils were carried out using the alpha sensitive polymeric nuclear track detector CR-39. The values ranged from 60-1900 mBq/g and were in good agreement with the values obtained from conventional scintillation counting method. The activity concentration of {sup 228}Th in the ash samples was also calculated by measuring the activity concentration of emanated thoron trapped inside a glass bottle with the use of a CR-39 track detector. (author).

  13. Absolute alpha activity measurements of some plants growing in monazite bearing soils in Sri Lanka

    International Nuclear Information System (INIS)

    Deposits of monazite bearing soils occur along the Southwest, West and East Coasts of Sri Lanka. High levels of gamma activity in some plant species growing in the West Coast have been reported. The high levels were due to the presence of the daughter nuclides of 232Th, most of which are alpha emitters. Absolute alpha activity measurements of ash samples of some plants growing in monazite bearing soils were carried out using the alpha sensitive polymeric nuclear track detector CR-39. The values ranged from 60-1900 mBq/g and were in good agreement with the values obtained from conventional scintillation counting method. The activity concentration of 228Th in the ash samples was also calculated by measuring the activity concentration of emanated thoron trapped inside a glass bottle with the use of a CR-39 track detector. (author)

  14. Absolute measurements of the alpha-gamma emitters activities by a sum-coincidence method

    International Nuclear Information System (INIS)

    The absolute activity of U-235 contained in a UO2 sample, using a sum-coincidence circuit which selected only the alpha particles which were simultaneous with the well known 184 Kev gamma radiation from Th-231. The alpha particles were detected by ZnS(Ag) scintillator specially designed to show its maximun efficiency for U-235 alpha particles, whereas the gamma radiation was detected by NaI(Tl) scintillation detector. The values obtained for the half-life of U-235 was compared with data from various observers using different experimental techniques. (Author)

  15. Neutron activation analysis of urinary calculi

    International Nuclear Information System (INIS)

    Urinary calculi resulting from disorders in the urinary system are mostly composed of uric acid, urates, calcium oxalate, alkaline earth phosphates (Ca and Mg), triple phosphate (magnesium ammonium phosphate), calcium carbonate, cystine, xanthine, and traces of proteins. The determination of these macro-constituents has been carried out by different analytical procedures. No attempts however, have been reported regarding the determination of trace elements in urinary stones, apart from that of Herring et al., who investigated the consumption of strontium by urolithiasis patients. The present work is a non-destructive neutron activation analysis of urinary calculi, to search the variation in concentration of certain trace elements with the chemical composition of the calculus

  16. Trace Analysis of Ancient Gold Objects Using Radiochemical Neutron Activation

    CERN Document Server

    Olariu, A; Constantinescu, O; Badica, T; Popescu, I V; Besliu, C; Leahu, D; Olariu, Agata; Constantinescu, Mioara; Leahu, Doina

    1999-01-01

    Radiochemical neutron activation analysis has been applied to investigate the microelements in gold samples with archaeological importance. Chemical separation has allowed the determination of traces of Ir, Os, Sb, Zn, Co, Fe, Ni. Instrumental neutron activation analysis has been used for the determination of Cu.

  17. Development of educational program for neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Yong Sam; Moon, Jong Hwa; Kim, Sun Ha; Ryel, Sung; Kang, Young Hwan; Lee, Kil Yong; Yeon, Yeon Yel; Cho, Seung Yeon

    2000-08-01

    This technical report is developed to apply an educational and training program for graduate student and analyst utilizing neutron activation analysis. The contents of guide book consists of five parts as follows; introduction, gamma-ray spectrometry and measurement statistics, its applications, to understand of comprehensive methodology and to utilize a relevant knowledge and information on neutron activation analysis.

  18. Development of educational program for neutron activation analysis

    International Nuclear Information System (INIS)

    This technical report is developed to apply an educational and training program for graduate student and analyst utilizing neutron activation analysis. The contents of guide book consists of five parts as follows; introduction, gamma-ray spectrometry and measurement statistics, its applications, to understand of comprehensive methodology and to utilize a relevant knowledge and information on neutron activation analysis

  19. Coincidence system for the absolute measurement of radionuclides activity using a liquid scintillator

    International Nuclear Information System (INIS)

    A system for the standartization of radioisotopes activity using liquid scintillator detector was developed. The system was set up at Nuclear Metrology Laboratory - L.M.N. (Nuclear Physics Division - IEA). The system performance was checked by absolute activity measurements for two radioisotopes, 60Co and 241Am. The activities were determined by the 4π(α, β-γ) coincidence method. An accuracy of the order of 99,8% was obtained. The results for 60Co were compared with those obtained by 4πβ-γ coincidence method using a proportional counter at L.M.N., while the results for 241Am were compared with those obtained through the linear extrapolation method using the same liquid scintillator. Compared to other systems, the advantages of this one are the simplicity and the short time spent in the sample preparation, and the negligible self-absorption. (Author)

  20. Transmission and Reflection of Neutrons Using Foil Activation Technique

    International Nuclear Information System (INIS)

    A new neutron irradiation facility has been designed, constructed .and located at the Experimental Nuclear Physics Department, NRC, AEA, cairo. The neutrons were obtained from CNIF2 (Second Cairo Neutron Irradiation Facility) that is based on one 241 Am-Be(α, n) isotopic neutron source with a present activity of about 175 GBq results in a neutron yield of about 1.04 x107 n/s. The geometrical arrangements of the facility consider the safety and protection rules aspects. MCNP5 code is used to estimate radiation doses and neutron fluxes. This new irradiation facility provides fast and epithermal neutrons that can be used in basic research and industrial applications. The aim of the present work is to study the characteristics of this new irradiation facility and to develop methods able to use fast and epithermal neutron in some different applications. Experimental measurements for the transmission and reflection of neutrons were carried out via a number of hydrogenous materials using the activation foil technique. A comparison of the experimental results with that calculated by using Monte Carlo simulation method is presented Using the neutron transmission technique in combination with foil activation method, our arrangement is used to measure the total neutron microscopic cross-sections for some compounds. The facility is calibrated and suitable to estimate the hydrogen content H (wt %) and the weight ratios C/H in hydrocarbon materials and was used to measure these ratios for some Egyptian crude oil samples. A brief overview of the neutron activation analysis methods for elemental concentrations in bulk samples in natural conditions is presented.

  1. Layered shielding design for an active neutron interrogation system

    Science.gov (United States)

    Whetstone, Zachary D.; Kearfott, Kimberlee J.

    2016-08-01

    The use of source and detector shields in active neutron interrogation can improve detector signal. In simulations, a shielded detector with a source rotated π/3 rad relative to the opening decreased neutron flux roughly three orders of magnitude. Several realistic source and detector shield configurations were simulated. A layered design reduced neutron and secondary photon flux in the detector by approximately one order of magnitude for a deuterium-tritium source. The shield arrangement can be adapted for a portable, modular design.

  2. Responses of absolute and specific soil enzyme activities to long term additions of organic and mineral fertilizer.

    Science.gov (United States)

    Zhang, Xinyu; Dong, Wenyi; Dai, Xiaoqin; Schaeffer, Sean; Yang, Fengting; Radosevich, Mark; Xu, Lili; Liu, Xiyu; Sun, Xiaomin

    2015-12-01

    Long-term phosphorus (P) and nitrogen (N) applications may seriously affect soil microbial activity. A long-term field fertilizer application trial was established on reddish paddy soils in the subtropical region of southern China in 1998. We assessed the effects of swine manure and seven different rates or ratios of NPK fertilizer treatments on (1) the absolute and specific enzyme activities per unit of soil organic carbon (SOC) or microbial biomass carbon (MBC) involved in C, N, and P transformations and (2) their relationships with soil environmental factors and soil microbial community structures. The results showed that manure applications led to increases in the absolute and specific activities of soil β-1,4-glucosidase(βG), β-1,4-N-acetylglucosaminidase (NAG), and leucine aminopeptidase (LAP). The absolute and specific acid phosphatase (AP) activities decreased as mineral P fertilizer application rates and ratios increased. Redundancy analysis (RDA) showed that there were negative correlations between absolute and specific AP activities, pH, and total P contents, while there were positive correlations between soil absolute and specific βG, NAG, and LAP enzyme activities, and SOC and total N contents. RDA showed that the contents of actinomycete and Gram-positive bacterium PLFA biomarkers are more closely related to the absolute and specific enzyme activities than the other PLFA biomarkers (Pfertilizer application rates to subtropical paddy soils should not exceed 44 kg P ha(-1) year(-1). PMID:26196069

  3. Determination of the absolute activity by the coincidences 4πβ-γ method

    International Nuclear Information System (INIS)

    The 4π beta-gamma coincidence method for absolute determination of activities is extremely important in the production of high-precision radioactive sources. By means of this method it is possible to obtain absolute measurements of decay to within 0.1%. Thanks to the high efficiency of the 4π counter, most of the corrections required - background, random coincidences, dead time, decay scheme and detector efficiency - are small. The paper describes the experimental set-up showing the pulses in the two branches of the system, together with the conditions under which the 4πbeta flux detector functions. To determine whether the system was functioning satisfactorily, the activity of four cobalt-60 standards (supplied by the International Bureau of Weights and Measures based at Sevres in France) was determined and the differences obtained were less than 0.5% with respect to the certificates accompanying the sources. Alterations to the flux detector are suggested so that higher accuracy may be obtained. (author)

  4. Fast neutron activation analysis of ancient mirror

    International Nuclear Information System (INIS)

    About fifty specimens of ancient Chinese bronze mirror from various dynasties are analysed by fast neutron radiated from neutron generator. The contents of copper, tin and lead in the mirror are listed in this paper. Experimental method and measurement equipment are described too

  5. Neutron activation analysis (NAA), radioisotope production via neutron activation (PNA) and fission product gas-jet (GJA)

    Energy Technology Data Exchange (ETDEWEB)

    Gaeggeler, H.W. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1996-11-01

    Three different non-diffractive applications of neutrons are outlined, neutron activation analysis, production of radionuclides, mostly for medical applications, and production of short-lived fission nuclides with a so-called gas-jet. It is shown that all three devices may be incorporated into one single insert at SINQ due to their different requests with respect to thermal neutron flux. Some applications of these three facilities are summarized. (author) 3 figs., 1 tab., 8 refs.

  6. Neutron activation analysis and atomic absorption spectrophotometry for the analysis of fresh, pasteurised and powder milk

    Energy Technology Data Exchange (ETDEWEB)

    Wasim, M.; Rehman, S.; Arif, M.; Fatima, I.; Zaidi, J.H. [Pakistan Inst. of Nuclear Science and Technology, Islamabad (Pakistan). Chemistry Div.

    2012-07-01

    This study shows the application of semi-absolute k{sub 0} instrumental neutron activation analysis (k{sub 0}-INAA), epithermal neutron activation analysis (ENAA) and atomic absorption spectrophotometry (AAS) for the determination of 21 elements (Br, Ca, Cl, Co, Cr, Cs, Cu, Fe, Hf, I, K, Mg, Mn, Na, Ni, P, Pb, Rb, Sc Sr, and Zn) in different types of milk samples. The ENAA was required for the determination of iodine, AAS for Cu, Ni and Pb and the rest of the elements were measured by k{sub 0}-INAA. Thirteen elements (Br, Ca, Cl, Cs, Cu, Fe, K, Mg, Na, P, Rb, Sr and Zn) were identified in all milk samples. Ni was detected in eleven and Pb in two samples. Concentrations of most of the elements were within the ranges of the world reported data. The data was further explored by principal component analysis to find relationships between samples and elements. (orig.)

  7. Neutron activation analysis of human hair

    International Nuclear Information System (INIS)

    As a part of IAEA research project, ''Activation analysis of hair as an indicator of contamination of man by environmental trace element pollutants'', a survey was carried out to elucidate the levels of various trace element concentration in hair of local population in the Tokyo Metropolitan areas, by applying instrumental neutron activation analysis. A total of 202 scalp hair samples were collected from the inhabitants classified by sex and five age classes. Irradiation was made in the Rikkyo University 100 kW TRIGA MARK-II reactor. Using several combinations of irradiation time, cooling time and counting time, forty elements were determined. The relationship between several trace element contents in hair and such factors as sex, age class, hair treatment, smoking habit and dental treatment, was analyzed by using the method of multiple regression. It was shown that (1) Hair treatment had a predominant effect on the contents of bromine, magnesium and calcium in hair, (2) Aging and amoking contributed increasing mercury content in hair, and hair treatment acted reversely. (author)

  8. Absolute frequency synthesis of pulsed coherent light waves through phase-modulation active optical feedback.

    Science.gov (United States)

    Shimizu, K; Horiguchi, T; Koyamada, Y

    1996-11-15

    A novel method for the broadband absolute frequency synthesis of pulsed coherent lightwaves is demonstrated. It is based on pulse recirculation around an active optical feedback ring containing a delay-line fiber, an external phase modulator, an acousto-optic frequency shifter (AOFS), and a high-finesse Fabry-Perot étalon. The modulation frequency F(M) and the frequency shift F(AO) that are due to AOFS are designed so that their sum or difference equals the free-spectral range of the étalon and F(AO) is set at larger than the half-width at full maximum of its resonant peaks. If one of the peak frequencies is tuned to the frequency of the initial pulse, the frequency of the recirculating pulse jumps to the next peak for each round trip. In the experiment the absolute frequency is synthesized over a frequency span of 700 GHz around the initial stabilized frequency of the master laser.

  9. A dosimetry study of deuterium-deuterium neutron generator-based in vivo neutron activation analysis

    Science.gov (United States)

    Sowers, Daniel A.

    A neutron irradiation cavity for in vivo Neutron Activation Analysis (IVNAA) to detect manganese, aluminum, and other potentially toxic elements in human hand bone has been designed and its dosimetric specifications measured. The neutron source is a customized deuterium-deuterium neutron generator which produces neutrons at 2.45 MeV by the fusion reaction 2H(d, n)3He at a calculated flux of 7 x 108 +/-30% s-1. A moderator/reflector/shielding (5 cm high density polyethylene (HDPE), 5.3 cm graphite & 5.7 cm borated HDPE) assembly has been designed and built to maximize the thermal neutron flux inside the hand irradiation cavity and to reduce the extremity dose and effective dose to the human subject. Lead sheets are used to attenuate bremsstrahlung x rays and activation gammas. A Monte Carlo simulation (MCNP6) was used to model the system and calculate extremity dose. The extremity dose was measured with neutron and photon sensitive film badges and Fuji electronic pocket dosimeter (EPD). The neutron ambient dose outside the shielding was measured by Fuji NSN3, and photon dose by a Bicron MicroREM scintillator. Neutron extremity dose was calculated to be 32.3 mSv using MCNP6 simulations given a 10 min IVNAA measurement of manganese. Measurements by EPD and film badge indicate hand dose to be 31.7 +/- 0.8 mSv for neutron and 4.2 +/- 0.2 mSv for photon for 10 mins; whole body effective dose was calculated conservatively to be 0.052 mSv. Experimental values closely match values obtained from MCNP6 simulations. These are acceptable doses to apply the technology for a manganese toxicity study in a human population.

  10. Systematic Uncertainties in the Spectroscopic Measurements of Neutron-Star Masses and Radii from Thermonuclear X-ray Bursts. III. Absolute Flux Calibration

    CERN Document Server

    Guver, Tolga; Marshall, Herman; Psaltis, Dimitrios; Guainazzi, Matteo; Diaz-Trigo, Maria

    2015-01-01

    Many techniques for measuring neutron star radii rely on absolute flux measurements in the X-rays. As a result, one of the fundamental uncertainties in these spectroscopic measurements arises from the absolute flux calibrations of the detectors being used. Using the stable X-ray burster, GS 1826-238, and its simultaneous observations by Chandra HETG/ACIS-S and RXTE/PCA as well as by XMM-Newton EPIC-pn and RXTE/PCA, we quantify the degree of uncertainty in the flux calibration by assessing the differences between the measured fluxes during bursts. We find that the RXTE/PCA and the Chandra gratings measurements agree with each other within their formal uncertainties, increasing our confidence in these flux measurements. In contrast, XMM-Newton EPIC-pn measures 14.0$\\pm$0.3% less flux than the RXTE/PCA. This is consistent with the previously reported discrepancy with the flux measurements of EPIC-pn, compared to EPIC-MOS1, MOS2 and ACIS-S detectors. We also address the calibration uncertainty in the RXTE/PCA int...

  11. Active neutron multiplicity counting of bulk uranium

    International Nuclear Information System (INIS)

    This paper describes a new nondestructive assay technique being developed to assay bulk uranium containing kilogram quantities of 235U. The new technique uses neutron multiplicity analysis of data collected with a coincidence counter outfitted with AmLi neutron sources. We have calculated the expected neutron multiplicity count rate and assay precision for this technique and will report on its expected performance as a function of detector design characteristics, 235U sample mass, AmLi source strength, and source-to-sample coupling. 11 refs., 2 figs., 2 tabs

  12. The synchronous active neutron detection system for spent fuel assay

    Energy Technology Data Exchange (ETDEWEB)

    Pickrell, M.M.; Kendall, P.K.

    1994-10-01

    The authors have begun to develop a novel technique for active neutron assay of fissile material in spent nuclear fuel. This approach will exploit the unique operating features of a 14-MeV neutron generator developed by Schlumberger. This generator and a novel detection system will be applied to the direct measurement of the fissile material content in spent fuel in place of the indirect measures used at present. The technique they are investigating is termed synchronous active neutron detection (SAND). It closely follows a method that has been used routinely in other branches of physics to detect very small signals in the presence of large backgrounds. Synchronous detection instruments are widely available commercially and are termed {open_quotes}lock-in{close_quotes} amplifiers. The authors have implemented a digital lock-in amplifier in conjunction with the Schlumberger neutron generator to explore the possibility of synchronous detection with active neutrons. This approach is possible because the Schlumberger system can operate at up to a 50% duty factor, in effect, a square wave of neutron yield. The results to date are preliminary but quite promising. The system is capable of resolving the fissile material contained in a small fraction of the fuel rods in a cold fuel assembly. It also appears to be quite resilient to background neutron interference. The interrogating neutrons appear to be nonthermal and penetrating. Although a significant amount of work remains to fully explore the relevant physics and optimize the instrument design, the underlying concept appears sound.

  13. Chart of nuclides relating to neutron activation

    International Nuclear Information System (INIS)

    This chart is for frequent use in the prediction of the product species of neutron activation. The first edition of the chart has been made in 1976 after the repeated trial preparation. It has the following good points. (1) Any letter in chart is as large as one can read easily. [This condition has been obtained by the selection of items to be shown in chart. They are the name (the symbol of element, mass number, and half-life) of nuclide or of isomer, and the type of decay.]. (2) Decay product has been shown indirectly for branchings with two-step decay via short-lived daughter in an excited state. [This matter has been realized by use of the new mode of indication.] (3) Nuclides shown in chart are (a) naturally occurring nuclides and (b) nuclides formed from naturally occurring nuclides through one of the following reactions: (n, γ), (n, n'), (n, p), (n, α), (n, 2n), (n, pn), (n, 3n), (n, αn), (n, t), (n, 3He), (n, 2p), and (n, γ)(n, γ). In the revision of the first edition, some modes of indication have become a little simpler, and the isomers of shorter half-lives (0.1 - 1 μs) have been added. (author)

  14. Terpecurcumins A-I from the rhizomes of Curcuma longa: absolute configuration and cytotoxic activity.

    Science.gov (United States)

    Lin, Xionghao; Ji, Shuai; Li, Rui; Dong, Yinhui; Qiao, Xue; Hu, Hongbo; Yang, Wenzhi; Guo, Dean; Tu, Pengfei; Ye, Min

    2012-12-28

    Terpecurcumins A-I (1-9), together with three known analogues (10-12), were isolated from the rhizomes of Curcuma longa (turmeric). They were derived from the hybridization of curcuminoids and bisabolanes. The structures and absolute configurations of 1-9 were elucidated on the basis of extensive spectroscopic data analysis, including NMR and electronic circular dichroism spectra. The configuration of 10 was further confirmed by X-ray crystallography. A plausible biogenetic relationship for 1-12 is proposed. Compounds 4, 6, 7, 10, and 11 showed higher cytotoxic activities (IC(50), 10.3-19.4 μM) than curcumin (IC(50), 31.3-49.2 μM) against human cancer cell lines (A549, HepG2, and MDA-MB-231).

  15. New ursane triterpenoids from Salvia urmiensis Bunge: Absolute configuration and anti-proliferative activity.

    Science.gov (United States)

    Farimani, Mahdi Moridi; Bahadori, Mir Babak; Koulaei, Sheyda Ahmadi; Salehi, Peyman; Ebrahimi, Samad Nejad; Khavasi, Hamid Reza; Hamburger, Matthias

    2015-10-01

    Two new triterpenoids, urmiensolide B (1) and urmiensic acid (2), with rare carbon skeletons together with three known compounds were isolated from the aerial parts of Salvia urmiensis Bunge, an endemic species of Iran. The structures were established by a combination of 1D and 2D NMR, and HRESIMS, and in the case of 2 and 3, their structures were confirmed by single-crystal X-ray analysis. The absolute configuration of 2 was established by electronic circular dichroism (ECD) spectra. The new compounds were evaluated for their anti-proliferative activities against A549 and MCF-7 human cancer cell lines. Compounds 1 and 2 showed IC50 values of 2.8 and 1.6 μM against MCF-7 cells, respectively. PMID:26254275

  16. Self-shielding effects in neutron spectra measurements for neutron capture therapy by means of activation foils.

    Science.gov (United States)

    Pytel, Krzysztof; Józefowicz, Krystyna; Pytel, Beatrycze; Koziel, Alina

    2004-01-01

    The design and optimisation of a neutron beam for neutron capture therapy (NCT) is accompanied by the neutron spectra measurements at the target position. The method of activation detectors was applied for the neutron spectra measurements. Epithermal neutron energy region imposes the resonance structure of activation cross sections resulting in strong self-shielding effects. The neutron self-shielding correction factor was calculated using a simple analytical model of a single absorption event. Such a procedure has been applied to individual cross sections from pointwise ENDF/B-VI library and new corrected activation cross sections were introduced to a spectra unfolding algorithm. The method has been verified experimentally both for isotropic and for parallel neutron beams. Two sets of diluted and non-diluted activation foils covered with cadmium were irradiated in the neutron field. The comparison of activation rates of diluted and non-diluted foils has demonstrated the correctness of the applied self-shielding model.

  17. Absolute measurement of the activity of sup 2 sup 2 sup 2 Rn using a proportional counter

    CERN Document Server

    Busch, I; Keyser, U

    2002-01-01

    A measuring set-up comprising a proportional counter of calculable sup 2 sup 2 sup 2 Rn efficiency and quantifiable active volume (delta sub V <0.1%) is described. On account of the special design of the end caps, the counter is suitable for absolute activity measurements on gaseous radiation sources. The sup 2 sup 2 sup 2 Rn efficiency is determined by computer simulation of the measured alpha-spectra. The procedures necessary for absolute measurements by means of the counter are described, and the suitability of the counter for absolute measurements of the sup 2 sup 2 sup 2 Rn activity is proved by experiments. Thus, a new method for the realization of the unit of activity of sup 2 sup 2 sup 2 Rn is obtained, which is independent of the unit of activity of sup 2 sup 2 sup 6 Ra.

  18. Application of inelastic neutron scattering and prompt neutron activation analysis in coal quality assessment

    International Nuclear Information System (INIS)

    The basic principles are assessed of the determination of ash content in coal based on the measurement of values proportional to the effective proton number. Discussed is the principle of coal quality assessment using the method of inelastic neutron scattering and prompt neutron activation analysis. This is done with respect both to theoretical relations between measured values and coal quality attributes and to practical laboratory measurements of coal sample quality by the said methods. (author)

  19. Diagnosis of mucoviscidosis by neutron activation analysis. Part 1

    International Nuclear Information System (INIS)

    Symptoms pathology, incidence, and gravity of the inherent syndrome called mucoviscidosis, or cystic fibrosis are described in this Part I. The analytical methods used for its diagnosis, both the conventional chemical ones and by neutron activation analysis are also summarised. Finally, an analytical method to study the incidence of mucoviscidosis in Brazil is presented. This , essentially, consists in bromine determination, in fingernails, by resonance neutron activation analysis. (author)

  20. Mutational Analysis of the Absolutely Conserved B8Gly: Consequence on Foldability and Activity of Insulin

    Institute of Scientific and Technical Information of China (English)

    Zhan-Yun GUO; Zhou ZHANG; Xiao-Yuan JIA; Yue-Hua TANG; You-Min FENG

    2005-01-01

    B8Gly is absolutely conserved in insulins during evolution. Moreover, its corresponding position is always occupied by a Gly residue in other members of insulin superfamily. Previous work showed that Ala replacement of B8Gly significantly decreased both the activity and the foldability of insulin. However,the effects of substitution are complicated, and different replacements sometimes cause significantly different results. To analyze the effects of B8 replacement by different amino acids, three new insulin/single-chain insulin mutants with B8Gly replaced by Ser, Thr or Leu were prepared by protein engineering, and both their foldability and activity were analyzed. In general, replacement of B8Gly by other amino acids causes significant detriment to the foldability of single-chain insulin: the conformations of the three B8 mutants are essentially different from that of wild-type molecules as revealed by circular dichroism; their disulfide stabilities in redox buffer are significantly decreased; their in vitro refolding efficiencies are decreased approximately two folds; the structural stabilities of the mutants with Ser or Thr substitution are decreased significantly,while Leu substitution has little effect as measured by equilibrium guanidine denaturation. As far as biological activity is concerned, Ser replacement of B8Gly has only a moderate effect: its insulin receptor-binding activity is 23% of native insulin. But Thr or Leu replacement produces significant detriment: the receptorbinding potencies of the two mutants are less than 0.2% of native insulin. The present results suggest that Gly is likely the only applicable natural amino acid for the B8 position of insulin where both foldability and activity are concerned.

  1. Absolute Configurations and NO Inhibitory Activities of Terpenoids from Curcuma longa.

    Science.gov (United States)

    Xu, Jing; Ji, Feifei; Kang, Jing; Wang, Hao; Li, Shen; Jin, Da-Qing; Zhang, Qiang; Sun, Hongwei; Guo, Yuanqiang

    2015-06-24

    Curcuma longa L., belonging to the Zingiberaceae family, is a perennial herb and has been used as a spice and a pigment in the food industry. In the ongoing search for inhibitory reagents of NO production and survey of the chemical composition of natural vegetable foods, the chemical constituents of C. longa used as spice were investigated. This investigation resulted in the isolation of 2 new terpenoids and 14 known analogues. Their structures were established on the basis of the extensive analyses of 1D and 2D NMR spectroscopic data, and the absolute configurations of 1-4 were elucidated by comparison of the calculated and experimental ECD spectra. Among them, compound 1 is a rare norditerpene with an ent-labdane skeleton, and 2 is a skeletally novel sesquiterpene having an eight-membered ring. All of the compounds were found to possess NO inhibitory activities in murine microglial BV-2 cells. The discovery of two new compounds in this chemical investigation further disclosed the chemical composition of C. longa used a food spice, and the bioassay implied that the natural food spice C. longa, containing terpenoids with NO inhibitory activities, may be potentially promotive to human health.

  2. Transitions, cross sections and neutron binding energy in 186Re by Prompt Gamma Activation Analysis

    Science.gov (United States)

    Lerch, A. G.; Hurst, A. M.; Firestone, R. B.; Revay, Zs.; Szentmiklosi, L.; McHale, S. R.; McClory, J. W.; Detwiler, B.; Carroll, J. J.

    2014-03-01

    The nuclide 186Re possesses an isomer with 200,000 year half-life while its ground state has a half-life of 3.718 days. It is also odd-odd and well-deformed nucleus, so should exhibit a variety of other interesting nuclear-structure phenomena. However, the available nuclear data is rather sparse; for example, the energy of the isomer is only known to within + 7 keV and, with the exception of the J?=1- ground state, every proposed level is tentative in the ENSDF. Previously, Prompt Gamma Activation Analysis (PGAA) was utilized to study natRe with 186,188Re being produced via thermal neutron capture. Recently, an enriched 185Re target was irradiated by thermal neutrons at the Budapest Research Reactor to build on those results. Prompt (primary and secondary) and delayed gamma-ray transitions were measured with a large-volume, Compton-suppressed HPGe detector. Absolute cross sections for each gamma transition were deduced and corrected for self attenuation within the sample. Fifty-two primary gamma-ray transitions were newly identified and used to determine a revised value of the neutron binding energy. DICEBOX was used to simulate the decay scheme and the total radiative thermal neutron capture cross section was found to be 97+/-3 b Supported by DTRA (Detwiler) through HDTRA1-08-1-0014.

  3. Los Alamos second-generation system for passive and active neutron assays of drum-size containers

    International Nuclear Information System (INIS)

    We describe in a comprehensive fashion the Los Alamos second-generation system for passive and active neutron assays of drum-size containers. The developmental history of this 7-year project is presented with emphasis on the pulsed active neutron technique (differential dieaway), which has achieved milligram levels of assay sensitivity for both plutonium and uranium wastes. We describe in detail the matrix effects for both passive and active neutron assays. We present in a thorough fashion our novel approach to achieving comprehensive corrections for these matrix effects using measurements made during the assays. We develop a matrix correction formalism based on separate neutron absorption and moderator indices determined from these measurements. These are presented as a series of analytic functions fitted to the data. Absolute calibrations and calibration standards are discussed, as is a practical means (pink drum measurements) of achieving routine calibration verification at all implementation sites. We present our overall assay algorithm, integrating absolute calibrations with matrix corrections. We also present a systematic error formalism that is based on the matrix response data. Finally, we outline a strategy for the verification of our entire assay formalism. This is based on measurements with a set of salted waste matrix drums combined with systematic assay intercomparisons of well-characterized transuranic wastes

  4. Development of a photonuclear activation file and measurement of delayed neutron spectra

    International Nuclear Information System (INIS)

    This thesis work consists in two parts. The first part is the description of the creation of a photonuclear activation file which will be used to calculated photonuclear activation. To build this file we have used different data sources: evaluations but also calculations done using several cross sections codes (HMS-ALICE, GNASH, ABLA). This file contains photonuclear activation cross sections for more than 600 nuclides and fission fragments distributions for 30 actinides at tree different Bremsstrahlung energies and the delay neutron spectrum associated. These spectra are not in good agreement with experimental data. That is why we decided to launch measurement of delayed neutrons spectra from photofission. The second part of this thesis consists in demonstrating the possibility to do such measurements at the ELSA accelerator facility. To that purpose, we have developed the detection, the acquisition system and the analysis method of such spectra. These were tested for the measurement of the delayed neutron spectrum of uranium-238 after irradiation in a 2 MeV neutron flux. Finally, we have measured the delayed neutron spectrum of uranium-238 after irradiation in a 15 MeV Bremsstrahlung flux. We compare our results with experimental data. The experiment has allowed us to improve the value of νp-bar with an absolute uncertainty below 7%, we propose νp-bar = (3.03 ± 0.02) n/100 fissions, and to correct the Nikotin's parameters for the six group representation. Particularly, we have improved the data concerning the sixth group by taking into account results from different irradiation times

  5. Neutron activation analysis of wheat samples

    Energy Technology Data Exchange (ETDEWEB)

    Galinha, C. [CERENA-IST, Technical University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Instituto Tecnoclogico e Nuclear, URSN, E.N. 10, 2686-953 Sacavem (Portugal); Anawar, H.M. [Instituto Tecnoclogico e Nuclear, URSN, E.N. 10, 2686-953 Sacavem (Portugal); Freitas, M.C., E-mail: cfreitas@itn.pt [Instituto Tecnoclogico e Nuclear, URSN, E.N. 10, 2686-953 Sacavem (Portugal); Pacheco, A.M.G. [CERENA-IST, Technical University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Almeida-Silva, M. [Instituto Tecnoclogico e Nuclear, URSN, E.N. 10, 2686-953 Sacavem (Portugal); Coutinho, J.; Macas, B.; Almeida, A.S. [INRB/INIA-Elvas, National Institute of Biological Resources, Est. Gil Vaz, 7350-228 Elvas (Portugal)

    2011-11-15

    The deficiency of essential micronutrients and excess of toxic metals in cereals, an important food items for human nutrition, can cause public health risk. Therefore, before their consumption and adoption of soil supplementation, concentrations of essential micronutrients and metals in cereals should be monitored. This study collected soil and two varieties of wheat samples-Triticum aestivum L. (Jordao/bread wheat), and Triticum durum L. (Marialva/durum wheat) from Elvas area, Portugal and analyzed concentrations of As, Cr, Co, Fe, K, Na, Rb and Zn using Instrumental Neutron Activation Analysis (INAA) to focus on the risk of adverse public health issues. The low variability and moderate concentrations of metals in soils indicated a lower significant effect of environmental input on metal concentrations in agricultural soils. The Cr and Fe concentrations in soils that ranged from 93-117 and 26,400-31,300 mg/kg, respectively, were relatively high, but Zn concentration was very low (below detection limit <22 mg/kg) indicating that soils should be supplemented with Zn during cultivation. The concentrations of metals in roots and straw of both varieties of wheat decreased in the order of K>Fe>Na>Zn>Cr>Rb>As>Co. Concentrations of As, Co and Cr in root, straw and spike of both varieties were higher than the permissible limits with exception of a few samples. The concentrations of Zn in root, straw and spike were relatively low (4-30 mg/kg) indicating the deficiency of an essential micronutrient Zn in wheat cultivated in Portugal. The elemental transfer from soil to plant decreases with increasing growth of the plant. The concentrations of various metals in different parts of wheat followed the order: Root>Straw>Spike. A few root, straw and spike samples showed enrichment of metals, but the majority of the samples showed no enrichment. Potassium is enriched in all samples of root, straw and spike for both varieties of wheat. Relatively to the seed used for cultivation

  6. Evaluation of new pharmaceuticals using in vivo neutron inelastic scattering and neutron activation analysis

    International Nuclear Information System (INIS)

    Nutritional status of patients can be evaluated by monitoring changes in body composition, including depletion of protein and muscle, adipose tissue distribution and changes in hydration status, bone or cell mass. Fast neutron activation (for N and P) and neutron inelastic scattering (for C and O) are used to assess in vivo elements characteristic of specific body compartments. The fast neutrons are produced with a sealed deuterium-tritium (D-T) neutron generator. This method provides the most direct assessment of body composition. Non-bone phosphorus for muscle is measured by the 31P(n,α)28Al reaction, and nitrogen for protein via the (n,2n) fast neutron reaction. Inelastic neutron scattering is used for the measurement of total body carbon and oxygen. Carbon is used to derive body fat, after subtracting carbon contributions due to protein, bone and glycogen. Carbon-to-oxygen (C/O) ratio is used to measure distribution of fat and lean tissue in the body and to monitor small changes of lean mass and its quality. In addition to evaluating the efficacy of new treatments, the system is used to study the mechanisms of lean tissue depletion with aging and to investigate methods for preserving function and quality of life in the elderly. (author)

  7. Use of proportional gas scintillator in absolute measurements of alpha-gamma emitter activities

    International Nuclear Information System (INIS)

    The absolute activity of U-235 contained in a U3 O8 sample was measured utilizing a sum-coincidence circuit which selects only the alpha particles which are simultaneous with the 143 KeV and 186 KeV gamma radiations from the Th-231 (product nucleus). The alpha particles were detected by means of a new type of a gas scintillating chamber, in which the light emitted by excitation of the gas atoms, due to the passage of a charged incoming particle, has its intensity increased by the action of an applied electric field. The gamma radiations were detected by means of a NaI(Tl) 1'' x 11/2'' scintillation detector. The value obtained for the half-life of U-235 was compared with the data available from various observers which used different experimental techniques. It is shown tht the results, are in excellent agreement with the best international data available on the subject and that, therefore, the sum-coincidence technique constitutes an important method for such measurements. (Author)

  8. The comparison of four neutron sources for Prompt Gamma Neutron Activation Analysis (PGNAA) in vivo detections of boron

    OpenAIRE

    Fantidis, J. G.; Nicolaou, G. E.; C. Potolias; N. Vordos; Bandekas, D. V.

    2011-01-01

    A Prompt Gamma Ray Neutron Activation Analysis (PGNAA) system, incorporating an isotopic neutron source has been simulated using the MCNPX Monte Carlo code. In order to improve the signal to noise ratio different collimators and a filter were placed between the neutron source and the object. The effect of the positioning of the neutron beam and the detector relative to the object has been studied. In this work the optimisation procedure is demonstrated for boron. Monte Carlo calculations were...

  9. Interpretation of active neutron measurements by the heterogeneous theory

    International Nuclear Information System (INIS)

    In this paper are presented results from a study on the application of the heterogeneous method for the interpretation of active neutron measurements. The considered apparatus consists out of a cylindrical lead pile, which is provided with two axial channels: a central channel incorporates an antimony beryllium photoneutron source and an excentric channel serves for the insertion of the sample to be assayed for fissionable materials contents. The mathematical model of this apparatus is the heterogeneous group diffusion theory. Sample and source channel are described by multigroup monopolar and dipolar sources and sinks. Monopolar sources take account of neutron production within energy group and in-scatter from upper groups. Monopolar sinks represent neutron removal by absorption within energy group and outscatter to lower groups. Dipol sources describe radial streaming of neutrons across the sample channel. Multigroup diffusion theory is applied throughout the lead pile. The strengths of the monopolar and dipolar sources and sinks are determined by linear extrapolation distances of azimuthal mean and first harmonic flux values at the channels' surface. In an experiment we may measure the neutrons leaking out of the lead pile and linear extrapolation distances at the channels' surface. Such informations are utilized for interpretation in terms of fission neutron source strengh and mean neutron flux values in the sample. In this paper we summarized the theoretical work in course

  10. Background by neutron activation in GERDA

    International Nuclear Information System (INIS)

    The observation of the neutrinoless double beta decay is a proof of the Majorana nature of the neutrino. The long half-life of this decay requires experiments of very low background rates in the region of interest at Qββ. Prompt γ-rays after neutron capture on germanium and the β-decay of 77Ge contribute to the background in experiments using 76Ge for the search of the neutrinoless double beta decay. The poorly known prompt γ-ray spectra and the neutron capture cross sections for the (n,γ) reactions of 74Ge and 76Ge were measured at the research reactor FRM II (Munich). The obtained data are needed in MC simulations for qualitative and quantitative background prediction in the Gerda experiment. The data and their implication on the background in Gerda are presented.

  11. Background by neutron activation in GERDA

    Energy Technology Data Exchange (ETDEWEB)

    Meierhofer, Georg; Dietrich, Dennis; Freund, Kai; Grabmayr, Peter; Hegai, Alexander; Jochum, Josef; Knapp, Markus; Ritter, Florian [Kepler Center for Astro and Particle Physics, Universitaet Tuebingen (Germany); Canella, Lea [Institut fuer Radiochemie, Technische Universitaet Muenchen (Germany); Jolie, Jan [Institut fuer Kernphysik, Universitaet zu Koeln (Germany); Kudejova, Petra [FRM II, Technische Universitaet Muenchen (Germany)

    2010-07-01

    The observation of the neutrinoless double beta decay is a proof of the Majorana nature of the neutrino. The long half-life of this decay requires experiments of very low background rates in the region of interest at Q{sub {beta}}{sub {beta}}. Prompt {gamma}-rays after neutron capture on germanium and the {beta}-decay of {sup 77}Ge contribute to the background in experiments using {sup 76}Ge for the search of the neutrinoless double beta decay. The poorly known prompt {gamma}-ray spectra and the neutron capture cross sections for the (n,{gamma}) reactions of {sup 74}Ge and {sup 76}Ge were measured at the research reactor FRM II (Munich). The obtained data are needed in MC simulations for qualitative and quantitative background prediction in the Gerda experiment. The data and their implication on the background in Gerda are presented.

  12. Analysis of natural neutron flux in a seismically active zone

    Directory of Open Access Journals (Sweden)

    V. F. Ostapenko

    2003-01-01

    Full Text Available In a seismically active zone in the near Almaty area (Kazakhstan since 1996 observations of variations of a natural neutron flux have been conducted. Sometimes the neutron flux rises sharply within the one-hour interval in comparison with the background. It occurs on the eve of activation of seismic processes. Increase of the neutron flux level had taken place from 1 h to 10 days prior to earthquakes. It is also indicated a tendency of growth of the anomaly level in accordance with the growth of energetic class of the subsequent earthquake. A character of connection between the neutron flux and earthquakes is still not clear. It is proposed that the neutron flux anomalies caused by variations of cosmic radiation intensity under action of fluxes of solar material, which is burst into interplanetary space (solar wind during solar flares. Energy of the solar wind transferred to Earth puts into action a trigger mechanism of the process of initiation of earthquakes at those places where conditions have already been prepared for them. The neutron flux anomalies can be used as substantial additional information for classical geophysical methods of short-term earthquake prediction.

  13. Partial neutron capture cross sections of actinides using cold neutron prompt gamma activation analysis

    International Nuclear Information System (INIS)

    Nuclear waste needs to be characterized for its safe handling and storage. In particular long-lived actinides render the waste characterization challenging. The results described in this thesis demonstrate that Prompt Gamma Neutron Activation Analysis (PGAA) with cold neutrons is a reliable tool for the non-destructive analysis of actinides. Nuclear data required for an accurate identification and quantification of actinides was acquired. Therefore, a sample design suitable for accurate and precise measurements of prompt γ-ray energies and partial cross sections of long-lived actinides at existing PGAA facilities was presented. Using the developed sample design the fundamental prompt γ-ray data on 237Np, 241Am and 242Pu were measured. The data were validated by repetitive analysis of different samples at two individual irradiation and counting facilities - the BRR in Budapest and the FRM II in Garching near Munich. Employing cold neutrons, resonance neutron capture by low energetic resonances was avoided during the experiments. This is an improvement over older neutron activation based works at thermal reactor neutron energies. 152 prompt γ-rays of 237Np were identified, as well as 19 of 241Am, and 127 prompt γ-rays of 242Pu. In all cases, both high and lower energetic prompt γ-rays were identified. The most intense line of 237Np was observed at an energy of Eγ=182.82(10) keV associated with a partial capture cross section of σγ=22.06(39) b. The most intense prompt γ-ray lines of 241Am and of 242Pu were observed at Eγ=154.72(7) keV with σγ=72.80(252) b and Eγ=287.69(8) keV with σγ=7.07(12) b, respectively. The measurements described in this thesis provide the first reported quantifications on partial radiative capture cross sections for 237Np, 241Am and 242Pu measured simultaneously over the large energy range from 45 keV to 12 MeV. Detailed uncertainty assessments were performed and the validity of the given uncertainties was demonstrated. Compared

  14. NaI detector neutron activation spectra for PGNAA applications

    Science.gov (United States)

    Gardner; El; Zheng; Hayden; Mayo

    2000-10-01

    When NaI detectors are used in prompt gamma-ray neutron activation analysis devices, they are activated by neutrons that penetrate the detector. While thermal neutron filters like boron or lithium can be used to reduce this activation, it can never be completely eliminated by this approach since high energy neutrons can penetrate the detector and thermalize inside it. This activation results in the emission of prompt gamma rays from both the I and Na and the production of the radioisotopes 128I and 24Na that subsequently decay and emit their characteristic beta particles and gamma rays. The resulting three spectra represent a background for this measurement. An experimental method for obtaining these three spectra is described and results are reported for 2" x 2", 5" x 5", 6" x 6", and 1" x 6" NaI detectors using the thermal neutron beam of the NCSU PULSTAR nuclear reactor. In addition, Monte Carlo simulation programs have been developed and used for simulating these spectra. Good results have been obtained by the Monte Carlo method for the two radioisotope spectra, and it is anticipated that good results will also be obtained for the prompt gamma-ray spectrum when the I and Na coincidence schemes are known. PMID:11003483

  15. NaI detector neutron activation spectra for PGNAA applications

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, R.P. E-mail: gardner@ncsu.edu; Sayyed, El; Zheng Yuanshui; Hayden, Stephanie; Mayo, C.W

    2000-11-15

    When NaI detectors are used in prompt gamma-ray neutron activation analysis devices, they are activated by neutrons that penetrate the detector. While thermal neutron filters like boron or lithium can be used to reduce this activation, it can never be completely eliminated by this approach since high energy neutrons can penetrate the detector and thermalize inside it. This activation results in the emission of prompt gamma rays from both the I and Na and the production of the radioisotopes {sup 128}I and {sup 24}Na that subsequently decay and emit their characteristic beta particles and gamma rays. The resulting three spectra represent a background for this measurement. An experimental method for obtaining these three spectra is described and results are reported for 2x2, 5x5, 6x6, and 1x6 NaI detectors using the thermal neutron beam of the NCSU PULSTAR nuclear reactor. In addition, Monte Carlo simulation programs have been developed and used for simulating these spectra. Good results have been obtained by the Monte Carlo method for the two radioisotope spectra, and it is anticipated that good results will also be obtained for the prompt gamma-ray spectrum when the I and Na coincidence schemes are known.

  16. Absolute advantage

    NARCIS (Netherlands)

    J.G.M. van Marrewijk (Charles)

    2008-01-01

    textabstractA country is said to have an absolute advantage over another country in the production of a good or service if it can produce that good or service using fewer real resources. Equivalently, using the same inputs, the country can produce more output. The concept of absolute advantage can a

  17. Extraction of polychromatic thermal neutrons by Bragg diffraction to use for prompt gamma neutron activation analysis

    International Nuclear Information System (INIS)

    Extraction method of thermal neutron beam by Bragg diffraction is investigated. A thermal neutron beam is used for the Prompt Gamma Neutron Activation Analysis system at HANARO, a 30 MW research reactor in the Korea Atomic Energy Research Institute. Polychromatic beam including all orders of diffraction is obtained by setting a pair of pyrolytic graphite crystals with a Bragg angle of 45 deg. on a horizontal white beam line. Diffracted neutron flux at the sample position is calculated by considering the integrated reflectivity and mosaic spread of crystals. Due to the divergence effect, the mosaic spread of crystals is optimized to give the maximum and flat flux at the sample position. An experiment has been performed to verify the reflectivities for high order diffractions from pyrolytic graphite. When the focusing technique of bending the crystals is adopted, a design value of 1.0x108 n/cm2s is expected at the sample position. Hence Bragg diffraction is a promising method of extracting thermal neutrons for PGNAA

  18. Neutron activation analysis for environmental sample in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Busamongkol, Arporn; Nouchpramool, Sunun; Bunprapob, Supamatthree [Office of Atomic Energy for Peace, Bangkok (Thailand); Sumitra, Tatchai [Chulalongkorn Univ., Dept. of Nuclear Technology, Bangkok (Thailand)

    2003-03-01

    Neutron Activation Analysis has been applied for the trace elements analysis in environmental samples. Thirty three samples of airborne particulate were collected every week at Ongkharak Nuclear Research Center (ONRC) during the period of June 1998 to March 1999. The Ti, I, Mg, Na, V, K, Cl, Al, Mn, Ca, As, Sm, Sb, Br, La, Ce, Th, Cr, Cs, Sc, Rb, Fe, Zn and Co were analyzed by Neutron Activation Analysis utilizing 2 MW TRIGA MARK III research reactor. The certified reference materials 1632a and 1633a from National Bureau of Standard were select as standard. (author)

  19. Neutron Activation Analysis for investigation of elemental composition of Amarantus

    International Nuclear Information System (INIS)

    In this work instrumental neutron activation analysis is applied for the characterization of the elemental composition of Amaranthus seeds, known in the prehistorical period, a tropical plant with promising nutritional and economic value. The characterization is enriched by the results of radiochemical neutron activation analysis for cobalt, molybdenum and uranium content. The comparison of the results, for three sorts of edible flour, commercially available: Soya Flour, Corn Bean Flour and Amaranthus Flour, is presented. The validation of the analytical methods used was carried out on the basis of participation in the interlaboratory comparison organized by the INCT (INCT-TL-1, INCT-MPH-2) and by NIST (SRM 1575a). (author)

  20. Human hair neutron activation analysis: analysis on population level, mapping

    International Nuclear Information System (INIS)

    Neutron activation analysis is an outstanding analytical method having very wide applications in various fields. Analysis of human hair within last decades mostly based on neutron activation analysis is a very attractive illustration of the application of nuclear analytical techniques. Very interesting question is how the elemental composition differs in different areas or cities. In this connection the present paper gives average data and maps of various localities in the vicinity of drying-out Aral Sea and of various industrial cities in Central Asia. (author)

  1. Analysis of ayurvedic medicinal leaves by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Concentrations of 15 elements were determined in medicinally important ayurvedic medicinal leaves. Instrumental neutron activation analysis was employed for the determination of the elements viz. Na, K, Br, Sm, Cr, Zn, Th, Rb, Sr, Fe, La, Co, Ce, Cs and Eu. The samples were neutron irradiated at 100 kW TRIGA -Mainz nuclear reactor and the induced activities were measured by gamma ray spectrometry using an efficiency calibrated high resolution high purity germanium (HPGe) detector. The concentrations of these elements in the medicinal leaves and their medicinal importance are discussed. (author)

  2. Multielemental analysis of soils by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    The results of an instrumental neutron activation analysis of some elemental concentrations in different soil samples near the industrial areas at Tirupati, India, are reported. Altogether 14 elements, Sm, La, Cr, Co, Zn, Cs, Ce, Th, Rb, Na, K, Sr, Fe and Eu were determined. The samples were irradiated with neutrons at the 100 kW Triga - Mainz research reactor and the induced activities were measured by gamma-ray spectrometry using an efficiency calibrated high resolution high purity germanium (HPGe) detector in connection with a multichannel analyzer. The results are discussed. (author)

  3. Triton burnup measurements in KSTAR using a neutron activation system

    Science.gov (United States)

    Jo, Jungmin; Cheon, MunSeong; Kim, Jun Young; Rhee, T.; Kim, Junghee; Shi, Yue-Jiang; Isobe, M.; Ogawa, K.; Chung, Kyoung-Jae; Hwang, Y. S.

    2016-11-01

    Measurements of the time-integrated triton burnup for deuterium plasma in Korea Superconducting Tokamak Advanced Research (KSTAR) have been performed following the simultaneous detection of the d-d and d-t neutrons. The d-d neutrons were measured using a 3He proportional counter, fission chamber, and activated indium sample, whereas the d-t neutrons were detected using activated silicon and copper samples. The triton burnup ratio from KSTAR discharges is found to be in the range 0.01%-0.50% depending on the plasma conditions. The measured burnup ratio is compared with the prompt loss fraction of tritons calculated with the Lorentz orbit code and the classical slowing-down time. The burnup ratio is found to increase as plasma current and classical slowing-down time increase.

  4. Validation of absolute axial neutron flux distribution calculations with MCNP with 197Au(n,γ)198Au reaction rate distribution measurements at the JSI TRIGA Mark II reactor.

    Science.gov (United States)

    Radulović, Vladimir; Štancar, Žiga; Snoj, Luka; Trkov, Andrej

    2014-02-01

    The calculation of axial neutron flux distributions with the MCNP code at the JSI TRIGA Mark II reactor has been validated with experimental measurements of the (197)Au(n,γ)(198)Au reaction rate. The calculated absolute reaction rate values, scaled according to the reactor power and corrected for the flux redistribution effect, are in good agreement with the experimental results. The effect of different cross-section libraries on the calculations has been investigated and shown to be minor. PMID:24316530

  5. Neutron induced activity in fuel element components

    International Nuclear Information System (INIS)

    A thorough investigation of the importance of various nuclides in neutron-induced radioactivity from fuel element construction materials has been carried out for both BWR and PWR fuel assemblies. The calculations were performed with the ORIGEN computer code. The investigation was directed towards the final storage of the assembly components and special emphasis was put to the examination of the sources of carbon-14, cobalt-60, nickel-59, nickel-63 and zirconium-93/niobium-93m. It is demonstrated that the nuclides nickel-59, in Inconel and stainless steel, and zirconium-93/niobium-93m, in Zircaloy, are the ones which constitute the very long term radiotoxic hazard of the irradiated materials. (author)

  6. The comparison of four neutron sources for Prompt Gamma Neutron Activation Analysis (PGNAA) in vivo detections of boron

    International Nuclear Information System (INIS)

    A Prompt Gamma Ray Neutron Activation Analysis (PGNAA) system, incorporating an isotopic neutron source has been simulated using the MCNPX Monte Carlo code. In order to improve the signal to noise ratio different collimators and a filter were placed between the neutron source and the object. The effect of the positioning of the neutron beam and the detector relative to the object has been studied. In this work the optimisation procedure is demonstrated for boron. Monte Carlo calculations were carried out to compare the performance of the proposed PGNAA system using four different neutron sources (241Am/Be, 252Cf, 241Am/B, and DT neutron generator). Among the different systems the 252Cf neutron based PGNAA system has the best performance. (author)

  7. Current status of neutron activation analysis in HANARO Research Reactor

    International Nuclear Information System (INIS)

    The facilities for neutron activation analysis in the HANARO (Hi-flux Advanced Neutron Application Research Reactor) are described and the main applications of NAA (Neutron Activation Analysis) are reviewed. The sample irradiation tube, automatic and manual pneumatic transfer system were installed at three irradiation holes of HANARO at the end of 1995. The performance of the NAA facility was examined to identify the characteristics of the tube transfer system, irradiation sites and custom-made polyethylene irradiation capsule. The available thermal neutron fluxes at irradiation sites are in the range of 3 x 1013 - 1 x 1014 n/cm2·s and cadmium ratios are in 15 - 250. For an automatic sample changer for gamma-ray counting, a domestic product was designed and manufactured. An integrated computer program (Labview) to analyse the content was developed. In 2001, PGNAA (Prompt Gamma Neutron Activation Analysis) facility has been installed using a diffracted neutron beam of ST1. NAA has been applied in the trace component analysis of nuclear, geological, biological, environmental and high purity materials, and various polymers for research and development. The improvement of analytical procedures and establishment of an analytical quality control and assurance system were studied. Applied research and development for the environment, industry and human health by NAA and its standardization were carried out. For the application of the KOLAS (Korea Laboratory Accreditation Scheme), evaluation of measurement uncertainty and proficiency testing of reference materials were performed. Also to verify the reliability and to validate analytical results, intercomparison studies between laboratories were carried out. (author)

  8. Current status of neutron activation analysis in HANARO Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Yong Sam; Moon, Jong Hwa; Sohn, Jae Min [Korea Atomic Energy Research Institute, Daejeon (Korea)

    2003-03-01

    The facilities for neutron activation analysis in the HANARO (Hi-flux Advanced Neutron Application Research Reactor) are described and the main applications of NAA (Neutron Activation Analysis) are reviewed. The sample irradiation tube, automatic and manual pneumatic transfer system were installed at three irradiation holes of HANARO at the end of 1995. The performance of the NAA facility was examined to identify the characteristics of the tube transfer system, irradiation sites and custom-made polyethylene irradiation capsule. The available thermal neutron fluxes at irradiation sites are in the range of 3 x 10{sup 13} - 1 x 10{sup 14} n/cm{sup 2}{center_dot}s and cadmium ratios are in 15 - 250. For an automatic sample changer for gamma-ray counting, a domestic product was designed and manufactured. An integrated computer program (Labview) to analyse the content was developed. In 2001, PGNAA (Prompt Gamma Neutron Activation Analysis) facility has been installed using a diffracted neutron beam of ST1. NAA has been applied in the trace component analysis of nuclear, geological, biological, environmental and high purity materials, and various polymers for research and development. The improvement of analytical procedures and establishment of an analytical quality control and assurance system were studied. Applied research and development for the environment, industry and human health by NAA and its standardization were carried out. For the application of the KOLAS (Korea Laboratory Accreditation Scheme), evaluation of measurement uncertainty and proficiency testing of reference materials were performed. Also to verify the reliability and to validate analytical results, intercomparison studies between laboratories were carried out. (author)

  9. Progress in small angle neutron scattering activities in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Abdul Aziz Bin Mohamed; Azali Bin Muhamad; Shukri Bin Mohd [Malaysian Institute for Nuclear Technology Research (MINT), Bangi, Kajang (Malaysia)

    1999-10-01

    The current status of SANS (Small Angle Neutron Scattering facility) activities in Malaysia has been presented. Many works need to be done for system improvement before the system can be confidently used as one of effective quality control tools in materials production and engineering sectors. (author)

  10. Analysis by neutron activation analysis a some ancient Dacian ceramics

    CERN Document Server

    Olariu, A

    1999-01-01

    Ancient Dacian ceramics, from three different establishments from Romanian territory have been analyzed by neutron activation analysis. A series of elements has been determined: Ba, Eu, K, La, Mn, Na, Sc, Sm. Ba is the element that could be considered to differentiate relatively the three groups of ceramics.

  11. Neutron activation analysis - an aid to forensic science

    International Nuclear Information System (INIS)

    Forensic Science is oriented towards the examination of evidence specimens, collected from a scene of crime in order to establish the link between the criminal and the crime. This science therefore has a profound role to play in criminal justice delivery system. The importance of neutron activation analysis (NAA) as a specialised technique to aid crime investigation has emerged and has been recognised

  12. Instrumental neutron activation analysis of some ayurvedic medicines: Pt. 1

    Energy Technology Data Exchange (ETDEWEB)

    Rajurkar, N.S.; Vinchurkar, M.S. (Poona Univ., Pune (India). Dept. of Chemistry)

    1992-12-01

    Several medicines have been manufactured and prescribed to overcome mineral deficiencies in the human body. Such medicines are mixtures of several components. The present work is undertaken to analyze various Ayurvedic medicines, mainly of herbal origin and used for different purposes, for their elemental contents, by neutron activation analysis. (author).

  13. Neutron activation analysis of final molasses from the sugar industry

    International Nuclear Information System (INIS)

    Molasses samples from 74 factories were analyzed by neutron activation analysis. The concentration values of the 35 elements was determined. The toxicity and the influence of the presence of theses elements in sugar loss in the molasses and fermentative process is discussed

  14. Determination of rhenium in molybdenite by neutron-activation analysis.

    Science.gov (United States)

    Terada, K; Yoshimura, Y; Osaki, S; Kiba, T

    1967-01-01

    A neutron-activation method is described for the determination of rhenium in molybdenite. Radiochemical separation by a carrier technique was carried out very rapidly by means of successive liquid-liquid extraction processes. The recovery of rhenium, which was determined by a spectrophotometric method, was about 93%. About 10 samples could be analysed within 6 hr in parallel runs. PMID:18960067

  15. Applied research of environmental monitoring using instrumental neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Young Sam; Moon, Jong Hwa; Chung, Young Ju

    1997-08-01

    This technical report is written as a guide book for applied research of environmental monitoring using Instrumental Neutron Activation Analysis. The contents are as followings; sampling and sample preparation as a airborne particulate matter, analytical methodologies, data evaluation and interpretation, basic statistical methods of data analysis applied in environmental pollution studies. (author). 23 refs., 7 tabs., 9 figs.

  16. Intercomparison of Neutron Beam Guides for Cold Neutron Activation Station at HANARO using McStas/VITESS/RESTRAX Codes

    Energy Technology Data Exchange (ETDEWEB)

    Tuan, Hoang Sy Minh; Sun, Gwang Min [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-05-15

    The HANARO (KAERI) research reactor has been developed a neutron guide system for cold neutron (CN) research facilities since July, 2003. The neutron guide system plays an important role in transporting cold neutrons from the CN source to the neutron facilities as CN-NDP, CN-PGAA, SANS, etc. The CN activation station is being installed in the HANARO cold-neutron research project. The CN-NDP and CN-PGAA were selected as two facilities using at this station. At the end position of CG1 and CG2B beam guides, the CN-NDP and CN-PGAA will be installed in the CN guide hall. In order to predict the neutron flux and intensity values at the CG1 and CG2B beam guides, the simulation results of neutron flux at the CG1 and CG2B beam guides are presented by using several Monte Carlo (MC) neutron ray-tracing simulation codes. The intercomparison of neutron flux values between McStas, VITESS and RESTRAX are performed for getting fairly correct results at two neutron beam guides

  17. Active Interrogation of Sensitive Nuclear Material Using Laser Driven Neutron Beams

    Energy Technology Data Exchange (ETDEWEB)

    Favalli, Andrea [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Roth, Markus [Technische Universitaet, Darmstadt (Germany)

    2015-05-01

    An investigation of the viability of a laser-driven neutron source for active interrogation is reported. The need is for a fast, movable, operationally safe neutron source which is energy tunable and has high-intensity, directional neutron production. Reasons for the choice of neutrons and lasers are set forth. Results from the interrogation of an enriched U sample are shown.

  18. Active helium target: Neutron scalar polarizability extraction via Compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Morris, Meg, E-mail: mmorris@mta.ca; Hornidge, David [Mount Allison University, Sackville, New Brunswick (Canada); Annand, John; Strandberg, Bruno [University of Glasgow, Scotland (United Kingdom)

    2015-12-31

    Precise measurement of the neutron scalar polarizabilities has been a lasting challenge because of the lack of a free-neutron target. Led by the University of Glasgow and the Mount Allison University groups of the A2 collaboration in Mainz, Germany, preparations have begun to test a recent theoretical model with an active helium target with the hope of determining these elusive quantities with small statistical, systematic, and model-dependent errors. Apparatus testing and background-event simulations have been carried out, with the full experiment projected to run in 2015. Once determined, these values can be applied to help understand quantum chromodynamics in the nonperturbative region.

  19. Status report of CPHS and neutron activities at Tsinghua University

    Science.gov (United States)

    Wang, X.; Xing, Q.; Zheng, S.; Yang, Y.; Gong, H.; Xiao, Y.; Wu, H.; Guan, X.; Du, T.

    2016-11-01

    The Compact Pulsed Hadron Source (CPHS) project that was launched in September 2009 at Tsinghua University has reached a first commissioning stage in conjunction with ongoing activities to fulfill the eventual design goal of a ˜ 1013 n/s epithermal-to-cold neutron yield for education, instrumentation development, and industrial applications. Here, we report the latest progress on the commissioning and applications of 3MeV proton and neutron beam lines in the last one and half years, and the design, fabrication, engineering of the 13MeV/16kW proton accelerator system.

  20. Neutron imaging and prompt gamma activation analysis using a monolithic capillary neutron lens

    International Nuclear Information System (INIS)

    Neutron focusing lenses have been shown to enhance the measurement capabilities of prompt gamma activation analysis (PGAA) for small samples (∼100 μm in size) using a reactor-based cold neutron beam. As reported in our earlier work, a cold neutron beam emerging from a 58Ni-coated guide, cross section 50 mm x 45 mm, is compressed to a spot size of about 0.54 mm (FWHM). In the current work, we report preliminary prompt gamma measurements performed with a monolithic capillary lens that accepts a 10 mm (hexagon flat-to-flat) size beam and focuses it to a spot size of 40. The smaller focal spot size enables better spatial resolution, but also makes sample alignment more challenging. We have added a neutron imaging technique to the sample positioning procedure that takes advantage of the converging and subsequent diverging nature of the focused beam. The measurement sensitivity for a 2.6 μg Gd sample has improved by a factor of 34. In addition to rastering samples in the lateral plane, we have also explored the possibility of profiling the inhomogeneity of the sample in the direction along the beam axis. (author)

  1. BNL Activities in Advanced Neutron Source Development: Past and Present

    Energy Technology Data Exchange (ETDEWEB)

    Hastings, J.B.; Ludewig, H.; Montanez, P.; Todosow, M.; Smith, G.C.; Larese, J.Z.

    1998-06-14

    Brookhaven National Laboratory has been involved in advanced neutron sources almost from its inception in 1947. These efforts have mainly focused on steady state reactors beginning with the construction of the first research reactor for neutron beams, the Brookhaven Graphite Research Reactor. This was followed by the High Flux Beam Reactor that has served as the design standard for all the subsequent high flux reactors constructed worldwide. In parallel with the reactor developments BNL has focused on the construction and use of high energy proton accelerators. The first machine to operate over 1 GeV in the world was the Cosmotron. The machine that followed this, the AGS, is still operating and is the highest intensity proton machine in the world and has nucleated an international collaboration investigating liquid metal targets for next generation pulsed spallation sources. Early work using the Cosmotron focused on spallation product studies for both light and heavy elements into the several GeV proton energy region. These original studies are still important today. In this report we discuss the facilities and activities at BNL focused on advanced neutron sources. BNL is involved in the proton source for the Spallation Neutron source, spectrometer development at LANSCE, target studies using the AGS and state-of-the-art neutron detector development.

  2. BNL ACTIVITIES IN ADVANCED NEUTRON SOURCE DEVELOPMENT: PAST AND PRESENT

    Energy Technology Data Exchange (ETDEWEB)

    HASTINGS,J.B.; LUDEWIG,H.; MONTANEZ,P.; TODOSOW,M.; SMITH,G.C.; LARESE,J.Z.

    1998-06-14

    Brookhaven National Laboratory has been involved in advanced neutron sources almost from its inception in 1947. These efforts have mainly focused on steady state reactors beginning with the construction of the first research reactor for neutron beams, the Brookhaven Graphite Research Reactor. This was followed by the High Flux Beam Reactor that has served as the design standard for all the subsequent high flux reactors constructed worldwide. In parallel with the reactor developments BNL has focused on the construction and use of high energy proton accelerators. The first machine to operate over 1 GeV in the world was the Cosmotron. The machine that followed this, the AGS, is still operating and is the highest intensity proton machine in the world and has nucleated an international collaboration investigating liquid metal targets for next generation pulsed spallation sources. Early work using the Cosmotron focused on spallation product studies for both light and heavy elements into the several GeV proton energy region. These original studies are still important today. In the sections below the authors discuss the facilities and activities at BNL focused on advanced neutron sources. BNL is involved in the proton source for the Spallation Neutron source, spectrometer development at LANSCE, target studies using the AGS and state-of-the-art neutron detector development.

  3. The activation method for determining neutron spectra and fluences

    International Nuclear Information System (INIS)

    3 mm thick foils of 4 and 17 mm in diameter were used for measurements. NaI scintillation detectors 45 mm in diameter by 50 mm thick and 40 mm in diameter by 1 mm thick, and a Ge-Li spectrometer of 53 cm3 in volume were used for gamma detection. A photopeak or a certain part of the integral spectrum was measured for each radionuclide. Computer code PIKAR was applied in automatic calculation of a simple gamma spectrum obtained using the semiconductor spectrometer. The FACT code was used for calculating foil activity. Codes SAND II and RFSP were used for neutron spectra unfolding. Ge-Li detector spectrometry was used for determining neutron fluence. Code FLUE was used for determining the mean value of neutron flux density and fluence. (J.P.)

  4. Prototyping an active neutron veto for SuperCDMS

    Science.gov (United States)

    Calkins, Robert; Loer, Ben

    2015-08-01

    Neutrons, originating cosmogenically or from radioactive decays, can produce signals in dark matter detectors that are indistinguishable from Weakly Interacting Massive Particles (WIMPs). To combat this background for the SuperCDMS SNOLAB experiment, we are investigating designs for an active neutron veto within the constrained space of the compact SuperCDMS passive shielding. The current design employs an organic liquid scintillator mixed with an agent to enhance thermal neutron captures, with the scintillation light collected using wavelength-shifting fibers and read out by silicon photo-multipliers. We will describe the proposed veto and its predicted efficiency in detail and give some recent results from our R&D and prototyping efforts.

  5. Prototyping an Active Neutron Veto for SuperCDMS

    Energy Technology Data Exchange (ETDEWEB)

    Calkins, Robert [Southern Methodist U.; Loer, Ben [Fermilab

    2015-08-17

    Neutrons, originating cosmogenically or from radioactive decays, can produce signals in dark matter detectors that are indistinguishable from Weakly Interacting Massive Particles (WIMPs). To combat this background for the SuperCDMS SNOLAB experiment, we are investigating designs for an active neutron veto within the constrained space of the compact SuperCDMS passive shielding. The current design employs an organic liquid scintillator mixed with an agent to enhance thermal neutron captures, with the scintillation light collected using wavelength-shifting fibers and read out by silicon photo-multipliers. We will describe the proposed veto and its predicted efficiency in detail and give some recent results from our R&D and prototyping efforts.

  6. Prototyping an Active Neutron Veto for SuperCDMS

    CERN Document Server

    Calkins, Robert

    2015-01-01

    Neutrons, originating cosmogenically or from radioactive decays, can produce signals in dark matter detectors that are indistinguishable from Weakly Interacting Massive Particles (WIMPs). To combat this background for the SuperCDMS SNOLAB experiment, we are investigating designs for an active neutron veto within the constrained space of the compact SuperCDMS passive shielding. The current design employs an organic liquid scintillator mixed with an agent to enhance thermal neutron captures, with the scintillation light collected using wavelength-shifting fibers and read out by silicon photo-multipliers. We will describe the proposed veto and its predicted efficiency in detail and give some recent results from our R&D and prototyping efforts.

  7. Determination of copper in some Myanmar indigenous medicines by neutron activation analysis

    International Nuclear Information System (INIS)

    Copper was determined in two Myanmar indigenous medicines by neutron activation analysis using an Am(Be) radionuclide neutron source. The activity of 511 keV peak of the 64Cu was measured. (author) 2 refs.; 2 tabs

  8. Active Interrogation Using Electronic Neutron Generators for Nuclear Safeguards Applications

    Energy Technology Data Exchange (ETDEWEB)

    David L. Chichester; Edward H. Seabury

    2008-08-01

    Active interrogation, a measurement technique which uses a radiation source to probe materials and generate unique signatures useful for characterizing those materials, is a powerful tool for assaying special nuclear material. The most commonly used technique for performing active interrogation is to use an electronic neutron generator as the probe radiation source. Exploiting the unique operating characteristics of these devices, including their monoenergetic neutron emissions and their ability to operate in pulsed modes, presents a number of options for performing prompt and delayed signature analyses using both photon and neutron sensors. A review of literature in this area shows multiple applications of the active neutron interrogation technique for performing nuclear nonproliferation measurements. Some examples include measuring the plutonium content of spent fuel, assaying plutonium residue in spent fuel hull claddings, assaying plutonium in aqueous fuel reprocessing process streams, and assaying nuclear fuel reprocessing facility waste streams to detect and quantify fissile material. This paper discusses the historical use of this technique and examines its context within the scope and challenges of next-generation nuclear fuel cycles and advanced concept nuclear fuel cycle facilities.

  9. Radioactive waste package assay facility. Volume 2. Investigation of active neutron and active gamma interrogation

    International Nuclear Information System (INIS)

    Volume 2 of this report describes the theoretical and experimental work carried out at Harwell on active neutron and active gamma interrogation of 500 litre cemented intermediate level waste drums. The design of a suitable neutron generating target in conjunction with a LINAC was established. Following theoretical predictions of likely neutron responses, an experimental assay assembly was built. Responses were measured for simulated drums of ILW, based on CAGR, Magnox and PCM wastes. Good correlations were established between quantities of 235-U, nat-U and D2O contained in the drums, and the neutron signals. Expected sensitivities are -1g of fissile actinide and -100g of total actinide. A measure of spatial distribution is obtainable. The neutron time spectra obtained during neutron interrogation were more complex than expected, and more analysis is needed. Another area of discrepancy is the difference between predicted and measured thermal neutron flux in the drum. Clusters of small 3He proportional counters were found to be much superior for fast neutron detection than larger diameter counters. It is necessary to ensure constancy of electron beam position relative to target(s) and drum, and prudent to measure the target neutron or gamma output as appropriate. 59 refs., 77 figs., 11 tabs

  10. Neutron activation analysis of the provenance relation of the ancient Yaozhou porcelain glaze

    International Nuclear Information System (INIS)

    The contents of 29 elements in ancient Yaozhou porcelain glaze samples and the soil ore nearby museum of Yaozhou kiln are measured by neutron activation analysis (NAA), the NAA data are statistically treated by fuzzy cluster method and the trend fuzzy cluster diagram is obtained. The results indicate that the ancient Yaozhou porcelain had absolutely different glaze pigments and were made from different kilns, their sources are comparatively complex. The sources of raw materials of the black glazes in Tang dynasty are very concentrated, the green glazes and the white glazes are scattered. The sources of raw materials of the dark reddish brown glazes and the glaze of rabbit hair in Song dynasty are similar with black glazes in Tang dynasty. The sources of raw material of the green glazes in Song dynasty are similar with bluish white glazes in Jin dynasty. The sources of raw material of the Tang three color are scattered, and obviously not the same as other samples

  11. Analysis of human enamel and dentine by neutron activation analysis

    International Nuclear Information System (INIS)

    Determination of trace elements in dental tissues has been of great interest to study the correlation between element composition and caries as well as food habits of individuals. In the present study dentine and enamel samples from healthy individuals were analysed by neutron activation analysis. The teeth were provided form dental clinics, and they were previously washed using purified water and acetone. Then they were dried at 40 deg C and ground in a agate mortar. The samples and element standards were irradiated with thermal neutrons at the IEA-R1 nuclear reactor. Long irradiations of 8 h under thermal neutron flux of 5x1012 n cm-2 s-1 were used for Ca, Na, Sr and Zn determinations. In short irradiations of 15 s and under neutron flux of 1012 n cm-2 s-1 the elements Mg, Mn, Na e Sr were determined. The induced gamma activities of the samples and standards were measured using a hyperpure Ge detector coupled to a gamma ray spectrometer. Elemental concentrations were calculated by comparative method. Results obtained showed that Ca, Mg and Na are present in both tissues at the level of percentages and the elements Mn, Sr and Zn at the μg g-1 levels. For quality control of the results the certified reference materials NIST 1400 Bone Ash and NIST 1486 Bone Meal were analysed. (author)

  12. The monostandard method in thermal neutron activation analysis

    International Nuclear Information System (INIS)

    A simple method is described for instrumental multielement thermal neutron activation analysis using a monostandard. For geological and air dust samples, iron is used as a comparator, while sodium has advantages for biological materials. To test the capabilities of this method, the values of the effective cross sections of the 23 elements determined were evaluated in a reactor site with an almost pure thermal neutron flux of about 9 x 1012 n x cm-2 x sec-1 and an epithermal neutron contribution of less than 0,03%. The obtained values were found to agree mostly well with the literature best values of thermal neutron cross sections. The results of an analysis by activation in the same site agree well with the relative method using multielement standard and for several standard reference materials with certified element contents. A comparison of the element contents obtained by the monostandard and relative methods together with corresponding precisions and accuracies is given. A brief survey of the monostandard method is presented. (orig.)

  13. Electronic dosimetry and neutron metrology by CMOS active pixel sensor

    International Nuclear Information System (INIS)

    This work aims at demonstrating the possibility to use active pixel sensors as operational neutron dosemeters. To do so, the sensor that has been used has to be γ-transparent and to be able to detect neutrons on a wide energy range with a high detection efficiency. The response of the device, made of the CMOS sensor MIMOSA-5 and a converter in front of the sensor (polyethylene for fast neutron detection and 10B for thermal neutron detection), has been compared with Monte Carlo simulations carried out with MCNPX and GEANT4. These codes have been before-hand validated to check they can be used properly for our application. Experiments to characterize the sensor have been performed at IPHC and at IRSN/LMDN (Cadarache). The results of the sensor irradiation to photon sources and mixed field (241AmBe source) show the γ-transparency of the sensor by applying an appropriate threshold on the deposited energy (around 100 keV). The associated detection efficiency is satisfactory with a value of 10-3, in good agreement with MCNPX and GEANT4. Other features of the device have been tested with the same source, like the angular response. The last part of this work deals with the detection of thermal neutrons (eV-neutrons). Assays have been done in Cadarache (IRSN) with a 252Cf source moderated with heavy water (with and without cadmium shell). Results asserted a very high detection efficiency (up to 6*10-3 for a pure 10B converter) in good agreement with GEANT4. (author)

  14. Activity report of the fusion neutronics source from April 1, 2001 to March 31, 2004

    International Nuclear Information System (INIS)

    The Fusion Neutronics Source (FNS) is an accelerator based 14 MeV neutron generator established in 1981. FNS is a powerful tool for neutronics research aiming the fusion reactor development such as neutron cross section measurements, integral experiments and blanket neutronics experiments. This report reviews the FNS activities in the period from April 1, 2001 to March 31, 2004, including collaboration with universities and other research institutes. The 35 papers are indexed individually. (J.P.N.)

  15. Neutron activation analysis of essential elements in Multani mitti clay using miniature neutron source reactor

    International Nuclear Information System (INIS)

    Multani mitti clay was studied for 19 essential and other elements. Four different radio-assay schemes were adopted for instrumental neutron activation analysis (INAA) using miniature neutron source reactor. The estimated weekly intakes of Cr and Fe are high for men, women, pregnant and lactating women and children while intake of Co is higher in adult categories and Mn by pregnant women. Comparison of MM clay with other type of clays shows that it is a good source of essential elements. - Highlights: ► Multani mitti clay has been studied for 19 essential elements for human adequacy and safety using INAA and AAS. ► Weekly intakes for different consumer categories have been calculated and compared with DRIs. ► Comparison of MM with other type of clays depict that MM clay is a good source of essential elements.

  16. Prompt gamma-ray neutron activation analysis of boron using Deuterium-Deuterium (D-D) neutron generator

    International Nuclear Information System (INIS)

    Prompt gamma-ray neutron activation analysis (PGNAA) is a nuclear analytical technique for the determination of trace and other elements in solid, liquid or gaseous samples. The method consists in observing gamma rays emitted by a sample during neutron irradiation. The PGNAA system was built using a moderated and shielded deuterium-deuterium (D-D) neutron generator. This facility has been developed to determine the chemical composition of materials. The neutron generator is composed of three major components: An RF-Induction Ion Source, the Secondary Electron Shroud, and the Diode Accelerator Structure and Target. The generator produces monoenergetic neutrons (2.5 MeV) with a yield of 1010 n/s using 25-50 mA of beam current and 125 kV of acceleration voltage. Prompt γ-ray neutron activation analysis of 10B concentrations in Si and SiO2 matrices was carried out using a germanium detector (HPGe) and the results obtained are compared with a PGNAA system using a NaI detector. Neutron flux and energy distribution from D-D neutron generator at the sample position was calculated using Monte Carlo simulation. The interaction properties of neutrons in a Germanium detector have been studied. (author)

  17. Some Applications of Fast Neutron Activation Analysis of Oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Owrang, Farshid

    2003-07-01

    In this thesis we focus on applications of neutron activation of oxygen for several purposes: A) measuring the water level in a laboratory tank, B) measuring the water flow in a pipe system set-up, C) analysing the oxygen in combustion products formed in a modern gasoline SI engine, and D) measuring on-line the amount of oxygen in bulk liquids. A) Water level measurements. The purpose of this work was to perform radiation based water level measurements, aimed at nuclear reactor vessels, on a laboratory scale. A laboratory water tank was irradiated by fast neutrons from a neutron generator. The water was activated at different water levels and the water level was decreased. The produced gamma radiation was measured using two detectors at different heights. The results showed that the method is suitable for measurement of water level and that a relatively small experimental set-up can be used for developing methods for water level measurements in real boiling water reactors based on activated oxygen in the water. B) Water flows in pipe. The goal in this work was to investigate the asymmetric distribution of activity in flow measurements with pulsed neutron activation (PNA) in a laboratory piping system. Earlier investigations had shown a discrepancy between the measured velocity of the activated water by PNA and the true mean velocity in the pipe. This discrepancy decreased with larger distances from the activation point. It was speculated that the induced activity in the pipe did not distribute homogeneously. With inhomogeneous radial distribution of activity in combination with a velocity profile in the pipe, the activated water may not have the same velocity as the mean velocity of water in the pipe. To study this phenomenon, a water-soluble colour was injected into a transparent pipe for simulation of the transport of the activated water. The radial concentration of the colour, at different distances from the activation point, was determined. The result

  18. Study of non-1/ ν reaction nuclides using k0 - Neutron Activation Analysis at the Malaysian Nuclear Agency Research Reactor

    International Nuclear Information System (INIS)

    The modified spectral index r(α); the Westcott gLu(Tn) factor and absolute neutron temperature Tn were determined for the handling of non-1/ ν (n, γ) reaction based on the Westcott formalism using k0-neutron activation analysis (k0-NAA) method at the Malaysian Nuclear Agency (MNA) research reactor. The r(α) was determined by the bare bi-isotopic monitor method using measurement of radionuclides of 97Zr and 95Zr. The 176Lu as non-1/ ν and 197Au as 1/ ν monitors were utilized for determination of gLu(Tn). The r(α) and gLu(Tn) values ranged from 0.0715 to 0.1417 with a RSD of 15.24 % and from 1.7832 to 2.0149 with a RSD of 3.58 %, respectively. The accuracy of the method was evaluated based on the calculated absolute neutron temperature (Tn) value. The calculated average value of Tn was 40.56 ± 9.32 degree Celsius while the value reported by MNA was 40 degree Celsius, which represents an acceptable level of consistency. (author)

  19. Absolute activity measurement and gamma-ray emission probability for decay of I-126

    International Nuclear Information System (INIS)

    The accurate knowledge of the gamma-ray emission probability per decay of radionuclides is important in several applications. In the case of 126 I, its importance lies mainly in fast neutron dosimetry as well as in the production of 125 I where 126 I appears as an impurity. In the present work the gamma-ray emission probabilities per decay for the 388 and 666-KeV transitions of 126 I have been measured. This radionuclide was obtained by means of the 127 I(n, 2n)126 I reaction in a fast neutron flux at the IPEN 2 MW research reactor. The methodology for the primary standardization of 126 I is described. For this purpose, two different coincidence systems were used due to the complex decay scheme of this radionuclide. The βbranch measurement was carried out in a 4 π(PC)β-γ coincidence system consisting of a proportional counter, coupled to a pair of 3'x3' Na I (Tl) crystal. The electron capture branch was measured in a X-γ coincidence system using two NaI(Tl) crystals. The gamma-ray measurements were performed in a HPGe system, previously calibrated by means of standard sources supplied by the International Atomic Energy Agency. All the uncertainties evolved were treated rigorously, by means of covariance analysis. (author)

  20. Absolute activity measurement and gamma-ray emission probability for decay of I-126

    CERN Document Server

    Fonseca, K A

    1997-01-01

    The accurate knowledge of the gamma-ray emission probability per decay of radionuclides is important in several applications. In the case of sup 1 sup 2 sup 6 I, its importance lies mainly in fast neutron dosimetry as well as in the production of sup 1 sup 2 sup 5 I where sup 1 sup 2 sup 6 I appears as an impurity. In the present work the gamma-ray emission probabilities per decay for the 388 and 666-KeV transitions of sup 1 sup 2 sup 6 I have been measured. This radionuclide was obtained by means of the sup 1 sup 2 sup 7 I(n, 2n) sup 1 sup 2 sup 6 I reaction in a fast neutron flux at the IPEN 2 MW research reactor. The methodology for the primary standardization of sup 1 sup 2 sup 6 I is described. For this purpose, two different coincidence systems were used due to the complex decay scheme of this radionuclide. The beta branch measurement was carried out in a 4 pi(PC)beta-gamma coincidence system consisting of a proportional counter, coupled to a pair of 3'x3' Na I (Tl) crystal. The electron capture branch ...

  1. [Absolute bioavailability of the adenine derivative VMA-99-82 possessing antiviral activity].

    Science.gov (United States)

    Smirnova, L A; Suchkov, E A; Riabukha, A F; Kuznetsov, K A; Ozerov, A A

    2013-01-01

    Investigation of the main pharmacokinetic parameters of adenine derivative VMA-99-82 in rats showed large values of the half-life (T1/2 = 11.03 h) and the mean retention time of drug molecules in the organism (MRT = 9.53 h). A high rate of the drug concentration decrease in the plasma determines a small value of the area under the pharmacokinetic curve (AUC = 74.96 mg h/ml). The total distribution volume (V(d) = 10.61 l/kg) is 15.8 times greater than the volume of extracellular fluid in the body of rat, which is indicative of a high ability of VMA-99-82 to be distributed and accumulated in the organs and tissues. The absolute bioavailability of VMA-99-82 is 66%. PMID:24605425

  2. Analysis of medicinal plant extracts by neutron activation method

    International Nuclear Information System (INIS)

    This dissertation has presented the results from analysis of medicinal plant extracts using neutron activation method. Instrumental neutron activation analysis was applied to the determination of the elements Al, Br, Ca, Ce, Cl, Cr, Cs, Fe, K, La, Mg, Mn, Na, Rb, Sb, Sc and Zn in medicinal extracts obtained from Achyrolcline satureoides DC, Casearia sylvestris, Centella asiatica, Citrus aurantium L., Solano lycocarpum, Solidago microglossa, Stryphnondedron barbatiman and Zingiber officinale R. plants. The elements Hg and Se were determined using radiochemical separation by means of retention of Se in HMD inorganic exchanger and solvent extraction of Hg by bismuth diethyl-dithiocarbamate solution. Precision and accuracy of the results have been evaluated by analysing reference materials. The therapeutic action of some elements found in plant extracts analyzed was briefly discussed

  3. Applied research and development of neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Yong Sam; Moon, Jong Hwa; Kim, Sun Ha; Baek, Sung Ryel; Kim, Young Gi; Jung, Hwan Sung; Park, Kwang Won; Kang, Sang Hun; Lim, Jong Myoung

    2003-05-01

    The aims of this project are to establish the quality control system of Neutron Activation Analysis(NAA) due to increase of industrial needs for standard analytical method and to prepare and identify the standard operation procedure of NAA through practical testing for different analytical items. R and D implementations of analytical quality system using neutron irradiation facility and gamma-ray measurement system and automation of NAA facility in HANARO research reactor are as following ; 1) Establishment of NAA quality control system for the maintenance of best measurement capability and the promotion of utilization of HANARO research reactor 2) Improvement of analytical sensitivity for industrial applied technologies and establishment of certified standard procedures 3) Standardization and development of Prompt Gamma-ray Activation Analysis (PGAA) technology.

  4. Applied research and development of neutron activation analysis

    International Nuclear Information System (INIS)

    The aims of this project are to establish the quality control system of Neutron Activation Analysis(NAA) due to increase of industrial needs for standard analytical method and to prepare and identify the standard operation procedure of NAA through practical testing for different analytical items. R and D implementations of analytical quality system using neutron irradiation facility and gamma-ray measurement system and automation of NAA facility in HANARO research reactor are as following ; 1) Establishment of NAA quality control system for the maintenance of best measurement capability and the promotion of utilization of HANARO research reactor 2) Improvement of analytical sensitivity for industrial applied technologies and establishment of certified standard procedures 3) Standardization and development of Prompt Gamma-ray Activation Analysis (PGAA) technology

  5. Practical aspects of operating a neutron activation analysis laboratory

    International Nuclear Information System (INIS)

    This book is intended to advise in everyday practical problems related to operating a neutron activation analysis (NAA) laboratory. It gives answers to questions like ''what to use NAA for'', ''how to find relevant research problems'', ''how to find users for the technique'', ''how to estimate the cost of the analysis and how to finance the work'', ''how to organize the work in a rational way'' and ''how to perform the quality control''. It gives advice in choosing staff, equipment, and consumables and how to design facilities and procedures according to need and available resources. Potential applications of economic or environmental importance, reactor facilities, counting and measuring equipment of the lab, cooperation with other analytical groups and competitiveness of NAA are discussed by experienced analysts. The compiled 8 tables of data useful for neutron activation analysts are a valuable asset for research labs as well as industrial quality control units. Refs, figs and tabs

  6. Aspects of precision and accuracy in neutron activation analysis

    International Nuclear Information System (INIS)

    Analytical results without systematic errors and with accurately known random errors are normally distributed around their true values. Such results may be produced by means of neutron activation analysis both with and without radiochemical separation. When all sources of random variation are known a priori, their effect may be combined with the Poisson statistics characteristic of the counting process, and the standard deviation of a single analytical result may be estimated. The various steps of a complete neutron activation analytical procedure are therefore studied in detail with respect to determining their contribution to the overall variability of the final result. Verification of the estimated standard deviation is carried out by demonstrating the absence of significant unknown random errors through analysing, in replicate, samples covering the range of concentrations and matrices anticipated in actual use. Agreement between the estimated and the observed variability of replicate results is then tested by a simple statistic T based on the chi-square distribution. It is found that results from neutron activation analysis on biological samples can be brought into statistical control. In routine application of methods in statistical control the same statistical test may be used for quality control when some of the actual samples are analysed in duplicate. This analysis of precision serves to detect unknown or unexpected sources of variation of the analytical results, and both random and systematic errors have been discovered in practical trace element investigations in different areas of research. Particularly, at the ultratrace level of concentration where there are few or no standard reference materials for ascertaining the accuracy of results, the proposed quality control based on the analysis of precision combined with neutron activation analysis with radiochemical separation, with an a priori precision independent of the level of concentration, becomes a

  7. Multielement determination in soil extracts by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Forest Swiss soils from 39 locations, each sampled at three depths, were extracted with a buffered solution of pH 4.65 containing EDTA. Nearly 30 elements were determined by instrumental neutron activation analysis. The results obtained are discussed in terms of efficiency of the extractant, precision and accuracy. Summarized results are presented for the quantity fractions of the extracted elements. (author) 18 refs.; 4 figs.; 3 tabs

  8. Neutron activation analysis in the investigation of pseudomonas to mercury

    International Nuclear Information System (INIS)

    The aim of this work was to investigate the resistance to mercury in Pseudomonas. The measurements were performed by using neutron activation technique. The TRIGA MARK 1-IPE-R1 reactor was used as the irradiation facility, and the nuclide Hg202 as target element. The experimental results showed that cultures of Pseudomonas during the logarithmic growing phase, have a significant volatilization of the Hg, while during the stationary phase, they absorb and retain this metal. (author)

  9. Instrumental Neutron Activation Analysis Technique using Subsecond Radionuclides

    DEFF Research Database (Denmark)

    Nielsen, H.K.; Schmidt, J.O.

    1987-01-01

    The fast irradiation facility Mach-1 installed at the Danish DR 3 reactor has been used in boron determinations by means of Instrumental Neutron Activation Analysis using12B with 20-ms half-life. The performance characteristics of the system are presented and boron determinations of NBS standard...... reference materials as well as fertilizer materials are compared by literature value and spectrophotometric measurements, respectively. In both cases good agreement is obtained....

  10. Gold determination in massive samples by neutron activation analysis

    CERN Document Server

    Broglio, Eduardo

    2015-01-01

    This work presents the characteristics of the Neutron Activation Analysis (NAA) in the determination of gold in voluminous mineral samples using a linear particle accelerator (Linac) as source of irradiation. The used volumes are one or two orders of magnitude higher than the ones that can be used in nuclear research reactor, which is the source usually used to determine through the NAA. This study was encouraged by a specific legal requirement to determine the gold law in a small Patagonian gold deposit.

  11. Application of neutron activation tracer sediment technique on environmental science

    Institute of Scientific and Technical Information of China (English)

    YinYi; ZhongWei-Ni; 等

    1997-01-01

    Field and laboratory inverstigations were carried out to study the transport and dispersion law of polluted sediments near wastewater outlet using neutron activation tracer technique.The direction of transport and dispersion of polluted sediments,dispersion amount in different directions,sedimentary region of polluted sediment and evaluation of polluted risk are given.This provided a new test method for the study of environmental science and added a new forecasted content for the evaluation of environmental influence.

  12. Aerosol and air pollution study by neutron activation analysis

    International Nuclear Information System (INIS)

    Thermal neutron activation analysis technique was used in air pollution and aerosol elemental content and size distribution investigations. Air pollution samples were collected on Whatman 41 paper filters which were activated along with known quantities of standards in a flux of approximately 1013 nxcm-2xs-1. The activity of the samples was measured with a 40 cm3 Ge(Li) detector and analyzed with the computer program JANE, which identified the isotopes and found their quantities by normalization with the standard measurement results. Correlation between the various elements, in particular those belonging to dust from the desert and those considered typical urban air pollution, is investigated. (author)

  13. Absolute beginners

    OpenAIRE

    Costa, Carlos Casimiro da; Costa, Jacinta Casimiro da

    2012-01-01

    Tomorrow, I m recovering my Thursday child as an absolute beginner , Transporting you to the essential touch of surface skin and space, Only for you, i do not regret, looking for education in a materia set. My love is your love , my materiality is you making things, The legacy of our ethnography, craftsmen s old and disappear, make me strong hard feelings, Recovering experiences and knowledge sprinkled in powder of stone, wood and metal ( ) reflecting in your dirty face the ...

  14. Mercury mass measurement in fluorescent lamps via neutron activation analysis

    Science.gov (United States)

    Viererbl, L.; Vinš, M.; Lahodová, Z.; Fuksa, A.; Kučera, J.; Koleška, M.; Voljanskij, A.

    2015-11-01

    Mercury is an essential component of fluorescent lamps. Not all fluorescent lamps are recycled, resulting in contamination of the environment with toxic mercury, making measurement of the mercury mass used in fluorescent lamps important. Mercury mass measurement of lamps via instrumental neutron activation analysis (NAA) was tested under various conditions in the LVR-15 research reactor. Fluorescent lamps were irradiated in different positions in vertical irradiation channels and a horizontal channel in neutron fields with total fluence rates from 3×108 cm-2 s-1 to 1014 cm-2 s-1. The 202Hg(n,γ)203Hg nuclear reaction was used for mercury mass evaluation. Activities of 203Hg and others induced radionuclides were measured via gamma spectrometry with an HPGe detector at various times after irradiation. Standards containing an Hg2Cl2 compound were used to determine mercury mass. Problems arise from the presence of elements with a large effective cross section in luminescent material (europium, antimony and gadolinium) and glass (boron). The paper describes optimization of the NAA procedure in the LVR-15 research reactor with particular attention to influence of neutron self-absorption in fluorescent lamps.

  15. Neutron shielding and activation of the MASTU device and surrounds

    CERN Document Server

    Taylor, David; Turner, Andrew; Davis, Andrew

    2014-01-01

    A significant functional upgrade is planned for the Mega Ampere Spherical Tokamak (MAST) device, located at Culham in the UK, including the implementation of a notably greater neutral beam injection power. This upgrade will cause the emission of a substantially increased intensity of neutron radiation for a substantially increased amount of time upon operation of the device. Existing shielding and activation precautions are shown to prove insufficient in some regards, and recommendations for improvements are made, including the following areas: shielding doors to MAST shielded facility enclosure (known as "the blockhouse"); north access tunnel; blockhouse roof; west cabling duct. In addition, some specific neutronic dose rate questions are addressed and answered; those discussed here relate to shielding penetrations and dose rate reflected from the air above the device ("skyshine").

  16. The Application of Neutron Activation Analysis in Thailand

    International Nuclear Information System (INIS)

    The technique of neutron activation analysis was introduced at the OAEP about 5 years ago. Since that time, it has become a useful technique for the determination. in particular, of certain trace inorganic elements in biological samples in this country. Scientists here have been working in close co-operation with those in other Government laboratories to meet the requirements of their studies. At present, a high resolution solid state gamma-ray detector is lacking in our laboratory. The results of the work to be described briefly were thus mainly carried out utilising our research reactor as the neutron source and multi-channel analysers together with the technique of radiochemical separation. In some cases, the non-destructive method was found feasible

  17. Neutron activation determination of impurities in molybdenite and galena

    International Nuclear Information System (INIS)

    A method is described for non-destructive neutron-activation determination of 14 chemical elements (Na, Ag, Zn, Sc, La, Eu, Tb, Yb, Sb, Ta, Gr, Se, Fe and Co) in molybdenite and galenite minerals. The samples and standards of Ag, Se, Co and Np have been wrapped in an aluminium foil and packed in an aluminium container; they have been then irradiated for 10 hr in the vertical channel of a nuclear reactor with flux of thermal neutrons (3.0, 0.45)x1013 n/cm2xsec to record the γ-spectra of the samples and standards 1, 5, 16, 65, 265 and 350 days after irradiation on a γ-spectrometer with a Ge(Li)-detector. The results are found to be in a good agreement with the spectra of Ag, Sb, La and Fe

  18. Diagnosis of mucoviscidosis by neutron activation analysis. Part 1; Diagnostico da mucoviscidose utilizando analise por ativacao com neutrons. Parte 1

    Energy Technology Data Exchange (ETDEWEB)

    Bellido, Luis F.; Bellido, Alfredo V

    1997-02-01

    Symptoms pathology, incidence, and gravity of the inherent syndrome called mucoviscidosis, or cystic fibrosis are described in this Part I. The analytical methods used for its diagnosis, both the conventional chemical ones and by neutron activation analysis are also summarised. Finally, an analytical method to study the incidence of mucoviscidosis in Brazil is presented. This , essentially, consists in bromine determination, in fingernails, by resonance neutron activation analysis. (author) 33 refs., 13 figs.

  19. Characterization of hydrogen in concrete by cold neutron prompt gamma-ray activation analysis and neutron incoherent scattering

    Energy Technology Data Exchange (ETDEWEB)

    Paul, R.L.; Chen-Mayer, H.H.; Lindstrom, R.M.; Blaauw, M.

    2000-07-01

    A combination of cold neutron prompt gamma-ray activation analysis (PGAA) and neutron incoherent scattering (NIS) has been used for nondestructive characterization of hydrogen as a function of position in slabs of wet concrete of different composition. Hydrogen was determined by PGAA by scanning each sample across of 5 mm diameter neutron beam in 10 mm increments, and measuring the 2223 keV prompt gamma ray. NIS measurements were performed by scanning the samples across a 5 mm diameter neutron beam at 5 mm increments and detecting scattered neutrons. The measurements demonstrate the feasibility of the techniques for 2D compositional mapping of hydrogen and other elements in materials, and indicate the potential of these methods for monitoring the uniformity of drying concrete.

  20. Tracing footprints of environmental events in tree ring chemistry using neutron activation analysis

    Science.gov (United States)

    Sahin, Dagistan

    The aim of this study is to identify environmental effects on tree-ring chemistry. It is known that industrial pollution, volcanic eruptions, dust storms, acid rain and similar events can cause substantial changes in soil chemistry. Establishing whether a particular group of trees is sensitive to these changes in soil environment and registers them in the elemental chemistry of contemporary growth rings is the over-riding goal of any Dendrochemistry research. In this study, elemental concentrations were measured in tree-ring samples of absolutely dated eleven modern forest trees, grown in the Mediterranean region, Turkey, collected and dated by the Malcolm and Carolyn Wiener Laboratory for Aegean and Near Eastern Dendrochronology laboratory at Cornell University. Correlations between measured elemental concentrations in the tree-ring samples were analyzed using statistical tests to answer two questions. Does the current concentration of a particular element depend on any other element within the tree? And, are there any elements showing correlated abnormal concentration changes across the majority of the trees? Based on the detailed analysis results, the low mobility of sodium and bromine, positive correlations between calcium, zinc and manganese, positive correlations between trace elements lanthanum, samarium, antimony, and gold within tree-rings were recognized. Moreover, zinc, lanthanum, samarium and bromine showed strong, positive correlations among the trees and were identified as possible environmental signature elements. New Dendrochemistry information found in this study would be also useful in explaining tree physiology and elemental chemistry in Pinus nigra species grown in Turkey. Elemental concentrations in tree-ring samples were measured using Neutron Activation Analysis (NAA) at the Pennsylvania State University Radiation Science and Engineering Center (RSEC). Through this study, advanced methodologies for methodological, computational and

  1. Proposed low-energy absolute calibration of nuclear recoils in a dual-phase noble element TPC using D-D neutron scattering kinematics

    CERN Document Server

    Verbus, J R; Malling, D C; Genecov, M; Ghosh, S; Moskowitz, A G; Chan, S; Chapman, J J; de Viveiros, L; Faham, C H; Fiorucci, S; Huang, D Q; Pangilinan, M; Taylor, W C; Gaitskell, R J

    2016-01-01

    We propose a new technique for the calibration of nuclear recoils in large noble element dual-phase time projection chambers used to search for WIMP dark matter in the local galactic halo. This technique provides an $\\textit{in situ}$ measurement of the low-energy nuclear recoil response of the target media using the measured scattering angle between multiple neutron interactions within the detector volume. The low-energy reach and reduced systematics of this calibration have particular significance for the low-mass WIMP sensitivity of several leading dark matter experiments. Multiple strategies for improving this calibration technique are discussed, including the creation of a new type of quasi-monoenergetic 272 keV neutron source. We report results from a time-of-flight based measurement of the neutron energy spectrum produced by an Adelphi Technology, Inc. DD108 neutron generator, confirming its suitability for the proposed nuclear recoil calibration.

  2. Development of a photonuclear activation file and measurement of delayed neutron spectra; Creation d'une bibliotheque d'activation photonucleaire et mesures de spectres d'emission de neutrons retardes

    Energy Technology Data Exchange (ETDEWEB)

    Giacri-Mauborgne, M.L

    2005-11-15

    This thesis work consists in two parts. The first part is the description of the creation of a photonuclear activation file which will be used to calculated photonuclear activation. To build this file we have used different data sources: evaluations but also calculations done using several cross sections codes (HMS-ALICE, GNASH, ABLA). This file contains photonuclear activation cross sections for more than 600 nuclides and fission fragments distributions for 30 actinides at tree different Bremsstrahlung energies and the delay neutron spectrum associated. These spectra are not in good agreement with experimental data. That is why we decided to launch measurement of delayed neutrons spectra from photofission. The second part of this thesis consists in demonstrating the possibility to do such measurements at the ELSA accelerator facility. To that purpose, we have developed the detection, the acquisition system and the analysis method of such spectra. These were tested for the measurement of the delayed neutron spectrum of uranium-238 after irradiation in a 2 MeV neutron flux. Finally, we have measured the delayed neutron spectrum of uranium-238 after irradiation in a 15 MeV Bremsstrahlung flux. We compare our results with experimental data. The experiment has allowed us to improve the value of {nu}{sub p}-bar with an absolute uncertainty below 7%, we propose {nu}{sub p}-bar = (3.03 {+-} 0.02) n/100 fissions, and to correct the Nikotin's parameters for the six group representation. Particularly, we have improved the data concerning the sixth group by taking into account results from different irradiation times.

  3. Measurements of neutrons at JET by means of the activation methods

    Energy Technology Data Exchange (ETDEWEB)

    Prokopowicz, R., E-mail: prokopowicz@ifpilm.waw.p [EURATOM-IPPLM Association, 23, Hery St, Warsaw 01-497 (Poland); Bienkowska, B.; Drozdowicz, K.; Jednorog, S.; Kowalska-Strzeciwilk, E. [EURATOM-IPPLM Association, 23, Hery St, Warsaw 01-497 (Poland); Murari, A. [EURATOM-ENEA Fusion Association, Consorzio RFX, Padova I-35127 (Italy); Popovichev, S. [EURATOM-CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Pytel, K.; Scholz, M.; Szydlowski, A. [EURATOM-IPPLM Association, 23, Hery St, Warsaw 01-497 (Poland); Syme, B. [EURATOM-CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Tracz, G. [EURATOM-IPPLM Association, 23, Hery St, Warsaw 01-497 (Poland)

    2011-05-01

    The neutron diagnostics in tokamaks like Joint European Torus (JET) are essential in estimating fusion power. The neutron activation method, supported by neutron transport calculations, is particularly useful for the evaluation of the total neutron yield from a single plasma discharge. This paper presents the results of activation experiments and calculations carried out for JET plasmas, from the selection of the activation materials to their irradiations in the neutron field of JET discharges. Neutron transport calculations were performed, leading to activation coefficients for new materials. The results of the calculations were used to design new composite samples to obtain information on both the yield and the neutron spectrum. The neutron measurements using these new activation materials were performed during the last JET experimental campaigns. The results are compared with neutron transport calculations. Additionally, application of the cadmium difference method allows revelation of the part of thermal neutrons near the tokamak first wall. The advantages of new activation materials and benchmarking the activation method against neutron transport calculations are also discussed.

  4. A militarily fielded thermal neutron activation sensor for landmine detection

    Energy Technology Data Exchange (ETDEWEB)

    Clifford, E.T.H. [Bubble Technology Industries, Chalk River (Canada); McFee, J.E. [Defence R and D Canada-Suffield, Medicine Hat (Canada)], E-mail: john.mcfee@drdc-rddc.gc.ca; Ing, H.; Andrews, H.R.; Tennant, D.; Harper, E. [Bubble Technology Industries, Chalk River (Canada); Faust, A.A. [Defence R and D Canada-Suffield, Medicine Hat (Canada)

    2007-08-21

    The Canadian Department of National Defence has developed a teleoperated, vehicle-mounted, multi-sensor system to detect anti-tank landmines on roads and tracks in peacekeeping operations. A key part of the system is a thermal neutron activation (TNA) sensor which is placed above a suspect location to within a 30 cm radius and confirms the presence of explosives via detection of the 10.835 MeV gamma ray associated with thermal neutron capture on {sup 14}N. The TNA uses a 100{mu}g{sup 252}Cf neutron source surrounded by four 7.62cmx7.62cm NaI(Tl) detectors. The system, consisting of the TNA sensor head, including source, detectors and shielding, the high-rate, fast pulse processing electronics and the data processing methodology are described. Results of experiments to characterize detection performance are also described. The experiments have shown that anti-tank mines buried 10 cm or less can be detected in roughly a minute or less, but deeper mines and mines significantly displaced horizontally take considerably longer time. Mines as deep as 30 cm can be detected for long count times (1000 s). Four TNA detectors are now in service with the Canadian Forces as part of the four multi-sensor systems, making it the first militarily fielded TNA sensor and the first militarily fielded confirmation sensor for landmines. The ability to function well in adverse climatic conditions has been demonstrated, both in trials and operations.

  5. Magnetar activity mediated by plastic deformations of neutron star crust

    CERN Document Server

    Lyutikov, Maxim

    2014-01-01

    We advance a "Solar flare" model of magnetar activity, whereas a slow evolution of the magnetic field in the upper crust, driven by electron MHD (EMHD) flows, twists the external magnetic flux tubes, producing persistent emission, bursts and flares. At the same time the neutron star crust plastically relieves the imposed magnetic field stress, limiting the strain $ \\epsilon_t $ to values well below the critical strain $ \\epsilon_{crit}$ of a brittle fracture, $ \\epsilon_t \\sim 10^{-2}\\epsilon_{crit} $. Magnetar-like behavior, occurring near the magnetic equator, takes place in all neutron stars, but to a different extent. The persistent luminosity is proportional to cubic power of the magnetic field (at a given age), and hence is hardly observable in most rotationally powered neutron stars. Giant flares can occur only if the magnetic field exceeds some threshold value, while smaller bursts and flares may take place in relatively small magnetic fields. Bursts and flares are magnetospheric reconnection events t...

  6. Coincidence Prompt Gamma-Ray Neutron Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    R.P. gandner; C.W. Mayo; W.A. Metwally; W. Zhang; W. Guo; A. Shehata

    2002-11-10

    The normal prompt gamma-ray neutron activation analysis for either bulk or small beam samples inherently has a small signal-to-noise (S/N) ratio due primarily to the neutron source being present while the sample signal is being obtained. Coincidence counting offers the possibility of greatly reducing or eliminating the noise generated by the neutron source. The present report presents our results to date on implementing the coincidence counting PGNAA approach. We conclude that coincidence PGNAA yields: (1) a larger signal-to-noise (S/N) ratio, (2) more information (and therefore better accuracy) from essentially the same experiment when sophisticated coincidence electronics are used that can yield singles and coincidences simultaneously, and (3) a reduced (one or two orders of magnitude) signal from essentially the same experiment. In future work we will concentrate on: (1) modifying the existing CEARPGS Monte Carlo code to incorporate coincidence counting, (2) obtaining coincidence schemes for 18 or 20 of the common elements in coal and cement, and (3) optimizing the design of a PGNAA coincidence system for the bulk analysis of coal.

  7. Absolute Summ

    Science.gov (United States)

    Phillips, Alfred, Jr.

    Summ means the entirety of the multiverse. It seems clear, from the inflation theories of A. Guth and others, that the creation of many universes is plausible. We argue that Absolute cosmological ideas, not unlike those of I. Newton, may be consistent with dynamic multiverse creations. As suggested in W. Heisenberg's uncertainty principle, and with the Anthropic Principle defended by S. Hawking, et al., human consciousness, buttressed by findings of neuroscience, may have to be considered in our models. Predictability, as A. Einstein realized with Invariants and General Relativity, may be required for new ideas to be part of physics. We present here a two postulate model geared to an Absolute Summ. The seedbed of this work is part of Akhnaton's philosophy (see S. Freud, Moses and Monotheism). Most important, however, is that the structure of human consciousness, manifest in Kenya's Rift Valley 200,000 years ago as Homo sapiens, who were the culmination of the six million year co-creation process of Hominins and Nature in Africa, allows us to do the physics that we do. .

  8. Absolute and Relative Activity of Microencapsulated Natural Essential Oils against the Larvae of Carpet Beetle Anthrenus flavipies (LeConte

    Directory of Open Access Journals (Sweden)

    Jayant Udakhe

    2014-01-01

    Full Text Available This study focuses on finding natural ecofriendly alternatives to the existing commercial Anthrenus flavipies resist chemicals. Eucalyptus, lavender, and citronella microcapsules were explored as natural alternatives. Chemical contents of microcapsules and fragrance releasing property were tested using gas chromatography. Absolute (proofing and relative (repellent activities of microcapsule treated fabrics were tested against the larvae of carpet beetle Anthrenus flavipies (LeConte. Proofing activity test results revealed that natural essential oils act as a deterrent for Anthrenus flavipies, but give lesser protection compared to commercial chemical permethrin. Repellency test results also affirmed these findings and it was observed that Anthrenus flavipies prefers to eat untreated fabric compared to its treated counterpart.

  9. Validation of computational methods for treatment planning of fast-neutron therapy using activation foil techniques

    Energy Technology Data Exchange (ETDEWEB)

    Nigg, D.W.; Wemple, C.A.; Hartwell, J.K.; Harker, Y.D.; Venhuizen, J.R. [Idaho National Engineering and Environmental Lab., Idaho Falls, ID (United States); Risler, R. [Univ. of Washington Medical Center, Seattle, WA (United States)

    1997-12-01

    A closed-form direct method for unfolding neutron spectra from foil activation data is presented. The method is applied to measurements of the free-field neutron spectrum produced by the proton-cyclotron-based fast-neutron radiotherapy facility at the University of Washington (UW) School of Medicine. The results compare favorably with theoretical expectations based on an a-priori calculational model of the target and neutron beamline configuration of the UW facility.

  10. Neutron Activation Analysis of Pre-Columbian Pottery in Venezuela

    International Nuclear Information System (INIS)

    Pre-Hispanic pottery figurines from north-central Venezuela islands and mainland were analysed by neutron activation analysis (INAA and PGAA) at the Budapest Research to establish their provenience. In order to classify the samples of figurines, characteristic molecular and atomic components were determined. Several mass ratios were calculated for significant classification of the object of two origins. Results shed light on the origin of island figurines and suggest specific areas of their production on the mainland, contributing to better understanding of late pre-Hispanic migration patterns in the southeastern Caribbean region

  11. Control of pneumatic transfer system for neutron activation analysis

    International Nuclear Information System (INIS)

    Pneumatic transfer system(PTS) is one of the facilities to be used in irradiation of target materials for neutron activation analysis(NAA) in the research reactor. There are two systems the manual and the automatic system in PTS of HANARO research reactor. The pneumatic transfer system consists of many devices, sends and loads the capsules from NAA laboratory into three holes in the reflector tank of reactor and retrieves irradiated capsules after irradiation. This report describes the part's design, control system and the operation procedures. All the algorithm described in the text will be used for maintenance and upgrading

  12. Elemental characterization of Brazilian beans using neutron activation analysis

    International Nuclear Information System (INIS)

    Beans are important for many developing countries as a source of protein and mineral nutrients. Here, ten commercial types of Brazilian beans, from the species Phaseolus vulgaris (common beans) and Vigna unguiculata (cowpeas), were analyzed by neutron activation analysis for the determination of Br, Ca, Co, Cs, Fe, K, Mo, Na, Rb, Sc and Zn. There were statistical differences (p/0.05) amongst the commercial types, except for Br, Rb and Sc. In general, non-essential elements showed high variability, indicating that the origin of beans had a strong influence on the mass fraction of such elements. (author)

  13. Determination of mercury in dentists through Neutron activation analysis

    International Nuclear Information System (INIS)

    It was determined the mercury levels in urine through Neutron activation analysis to 25 dentists who have been exposed to mercury by several time periods, because of the routine manipulations of amalgams. The determined concentrations of mercury were less to 10 μ g Hg/l of urine. The results were founded inside the safety limits reported in the literature. The mercury levels in the dentists are associated with a wide variety of factors that contribute to their exposure as: number of years of dental practice, number of amalgams manipulated between others. (Author)

  14. Analysis by Neutron activation of the Calakmul jadeite mask

    International Nuclear Information System (INIS)

    It is very important to know the elemental composition of archaeological materials with the purpose to find relations that allow to establish their origin standards. the origin and present localization of pre hispanic archaeological pieces can lead to the determination of commercial routes and of technology transfer among different ancient cultures. In the present work it has been realized a systematic analysis using the Instrumental neutron activation analysis technique of three samples obtained from Calakmul jadeite mask, tomb I, that in addition to give a composition of constituent and trace elements detected by this technique it has leaded to establish an applicable methodology to the routine analysis of ceramics of historical interest. (Author)

  15. Control of pneumatic transfer system for neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jung, H. S.; Chung, Y. S.; Wu, J. S.; Kim, H. K.; Choi, Y. S.; Kim, S. H.; Moon, J. H.; Baek, S. Y

    2000-06-01

    Pneumatic transfer system(PTS) is one of the facilities to be used in irradiation of target materials for neutron activation analysis(NAA) in the research reactor. There are two systems the manual and the automatic system in PTS of HANARO research reactor. The pneumatic transfer system consists of many devices, sends and loads the capsules from NAA laboratory into three holes in the reflector tank of reactor and retrieves irradiated capsules after irradiation. This report describes the part's design, control system and the operation procedures. All the algorithm described in the text will be used for maintenance and upgrading.

  16. Neutron activation analysis of hair from breast cancer patients

    International Nuclear Information System (INIS)

    Hair samples from breast cancer patients were collected at the same time as tumour and normal tissues obtained during mastectomy, in order to determine elemental concentrations and investigate whether hair can act as an epidemiological monitor of the disease. Instrumental neutron activation analysis was used and concentrations for Na, Mg, S, Cl, Ca, Mn, Cu, Zn, Br, I, Sb, Ba, Au and Hg in the hair samples measured. No strong correlations were found between the concentrations of Cl, Cu, Zn and Br in hair and those in tumour tissues and in normal tissues. The level of Zn in the patients hair is low and that of Ca very high

  17. Teaching chemistry with neutron activation analysis at Dalhousie University

    International Nuclear Information System (INIS)

    The Dalhousie University SLOWPOKE-2 Reactor (DUSR) has been operating since July 1976 and has proven to be an invaluable tool in many teaching programs. These reactors are inherently safe and are designed to serve teaching and research needs of the universities, research centers, hospitals, etc. Since the DUSR has been, from its inception, associated with the Trace Analysis Research Centre, which is the Analytical Chemistry Division of the Department of Chemistry, the main thrust of its use continues to be in the field of nuclear analytical chemistry. Both teaching and research programs involve trace element analysis by neutron activation

  18. Current studies of biological materials using instrumental and radiochemical neutron activation analysis

    International Nuclear Information System (INIS)

    Instrumental neutron activation analysis still remains the preferred option when analysing the trace element distribution in a wide rage of materials by neutron activation analysis. However, when lower limits of detection are required or major interferences reduce the effectiveness of this technique, radiochemical neutron activation analysis is applied. This paper examines the current use of both methods and the development of rapid radiochemical techniques for analysis of the biological materials, hair, cow's milk, human's milk, milk powder, blood and blood serum

  19. Enzyme hydration, activity and flexibility : A neutron scattering approach

    Energy Technology Data Exchange (ETDEWEB)

    Kurkal-Siebert, V [University of Heidelberg; Finney, J.L. [University College, London; Daniel, R. M. [University of Waikato, New Zealand; Smith, Jeremy C [ORNL

    2006-01-01

    Recent measurements have demonstrated enzyme activity at hydrations as low as 3%. The question of whether the hydration-induced enzyme flexibility is important for activity is addressed by performing picosecond dynamic neutron scattering experiments on pig liver esterase powders at various temperatures as well as solutions. At all temperatures and hydrations investigated here, significant quasielastic scattering intensity is found in the protein, indicating the presence of anharmonic, diffusive motion. As the hydration increases a temperature-dependent dynamical transition appears and strengthens involving additional diffusive motion. At low temperature, increasing hydration resulted in lower flexibility of the enzyme. At higher temperatures, systems containing sufficient number of water molecules interacting with the protein exhibit increased flexibility. The implication of these results is that, although the additional hydration-induced diffusive motion and flexibility at high temperatures in the enzyme detected here may be related to increased activity, they are not required for the enzyme to function.

  20. Activation of cobalt by neutrons from the Hiroshima bomb

    International Nuclear Information System (INIS)

    A study has been completed of cobalt activation in samples from two new locations in Hiroshima. The samples consisted of a piece of steel from a bridge located at a distance of about 1300 m from the hypocenter and pieces of both steel and concrete from a building located at approximately 700 m. The concrete was analyzed to obtain information needed to calculate the cobalt activation in the two steel samples. Close agreement was found between calculated and measured values for cobalt activation of the steel sample from the building at 700 m. It was found, however, that the measured values for the bridge sample at 1300 m were approximately twice the calculated values. Thus, the new results confirm the existence of a systematic error in the transport calculations for neutrons from the Hiroshima bomb. 52 refs., 32 figs., 16 tabs

  1. [HPLC enantioseparation, absolute configuration determination and anti-HIV-1 activity of (±)-F18 enantiomers].

    Science.gov (United States)

    Zhang, Lei-lei; Xue, Hai; Li, Li; Lu, Xiao-fan; Chen, Zhi-wei; Lu, Gang

    2015-06-01

    Racemic (±)-F18 (10-chloromethyl-11-demethyl-12-oxo-calanolide A), an analog of nature product (+)-calanolide A, is a new anti-HIV-1 nonnucleoside reverse transcript inhibitor (NNRTI). A successful enantioseparation of (±)-F18 offering (R)-F18 and (S)-F18 was achieved by a chiral stationary phase prepared HPLC. Their absolute configurations were determined by measurement of their electronic circular dichroisms combined with modem quantum-chemical calculations. Further investigation revealed that (R)-F18 and (S)-F18 shared a similar anti-HIV activities, however, (R)-F18 was more potent than (S)-F18 against wild-type virus, K101E mutation and P225H mutation pseudoviruses. PMID:26521445

  2. Muscle activation during exercise in severe acute hypoxia: role of absolute and relative intensity.

    Science.gov (United States)

    Torres-Peralta, Rafael; Losa-Reyna, José; González-Izal, Miriam; Perez-Suarez, Ismael; Calle-Herrero, Jaime; Izquierdo, Mikel; Calbet, José A L

    2014-12-01

    The aim of this study was to determine the influence of severe acute hypoxia on muscle activation during whole body dynamic exercise. Eleven young men performed four incremental cycle ergometer tests to exhaustion breathing normoxic (FIO2=0.21, two tests) or hypoxic gas (FIO2=0.108, two tests). Surface electromyography (EMG) activities of rectus femoris (RF), vastus medialis (VL), vastus lateralis (VL), and biceps femoris (BF) were recorded. The two normoxic and the two hypoxic tests were averaged to reduce EMG variability. Peak VO2 was 34% lower in hypoxia than in normoxia (pexercise intensity in all muscles (peffect in hypoxia than in normoxia in the RF and VM (phypoxia in RF, VL, and BF (pexercise intensity (phypoxia than in normoxia in VL (pexercise intensity in VM and VL (peffects of FIO2. No significant FIO2 effects on frequency domain indices were observed when compared at the same relative intensity. In conclusion, muscle activation during whole body exercise increases almost linearly with exercise intensity, following a muscle-specific pattern, which is adjusted depending on the FIO2 and the relative intensity of exercise. Both VL and VM are increasingly involved in power output generation with the increase of intensity and the reduction in FIO2. PMID:25225839

  3. Instrumental neutron activation analysis of sectioned hair strands for arsenic

    Energy Technology Data Exchange (ETDEWEB)

    Guinn, V.P. [Univ. of Maryland, College Park, MD (United States)

    1996-12-31

    Instrumental neutron activation analysis (INAA) is a valuable and proven method for the quantitative analysis of sectioned human head hair specimens for arsenic - and, if arsenic is found to be present at high concentrations, the approximate times when it was ingested. Reactor-flux thermal-neutron activation of the hair samples produces 26.3-h {sup 76}As, which is then detected by germanium gamma-ray spectrometry, measuring the 559.1-keV gamma-ray peak of {sup 76}As. Even normal levels of arsenic in hair, in the range of <1 ppm up to a few parts per million of arsenic can be measured - and the far higher levels associated with large internal doses of arsenic, levels approaching or exceeding 100 ppm arsenic, are readily and accurately measurable. However, all phases of forensic investigations of possible chronic (or in some cases, acute) arsenic poisoning are important, i.e., not just the analysis phase. All of these phases are discussed in this paper, based on the author`s experience and the experience of others, in criminal cases. Cases of chronic arsenic poisoning often reveal a series of two to four doses, perhaps a few months apart, with increasing doses.

  4. Quality Assurance and Control in Laboratory using Neutron Activation Analysis

    International Nuclear Information System (INIS)

    In accordance with the increment of international trade associated with the worldwide globalization, the importance of quality assurance and control for the commodity produced from one's own country has been stressed. ISO (International Organization for Standards) defines quality control as 'the operational techniques and activities that are used to fulfill the requirements for quality'. Since 1996, the HANARO research reactor in the Korea Atomic Energy Research Institute has been operated thereafter initial critical operation on April 1995. Neutron activation analysis system and applied techniques which is one of a nuclear analytical technologies using reactor neutrons has been developed for user's supporting and the establishment of the quality system for a measurement and analysis, testing and inspection was implemented successfully. On the basis of the qualified NAA system, the test and measurement of more than 1500 samples which is requested from 30 organizations including industrial companies, universities and institutes carried out in NAA laboratory annually. Moreover, as the goal of mutual recognition agreement (MRA) which can be removed a technical barrier in international trade, the objectivity and the confidence of analytical quality in NAA laboratory became established through the installation of international accreditation system by implementing analytical quality system in accordance with international standards in 2001. The aim of the report was to summarize the technical management of introduction, methods and the results for a quality control and assurance which should be performed in NAA technique using the HANARO research reactor. The report will help building up effective quality control strategy in the future

  5. Two-phase flow measurement by pulsed neutron activation techniques

    International Nuclear Information System (INIS)

    The Pulsed Neutron Activation (PNA) technique for measuring the mass flow velocity and the average density of two-phase mixtures is described. PNA equipment can be easily installed at different loops, and PNA techniques are non-intrusive and independent of flow regimes. These features of the PNA technique make it suitable for in-situ measurement of two-phase flows, and for calibration of more conventional two-phase flow measurement devices. Analytic relations governing the various PNA methods are derived. The equipment and procedures used in the first air-water flow measurement by PNA techniques are discussed, and recommendations are made for improvement of future tests. In the present test, the mass flow velocity was determined with an accuracy of 2%, and average densities were measured down to 0.08 g/cm3 with an accuracy of 0.04 g/cm3. Both the accuracy of the mass flow velocity measurement and the lower limit of the density measurement are functions of the injected activity and of the total number of counts. By using a stronger neutron source and a larger number of detectors, the measurable density can be decreased by a factor of 12 to .007 g/cm3 for 12.5 cm pipes, and to even lower ranges for larger pipes

  6. Evaluation of Am-Li neutron spectra data for active well type neutron multiplicity measurements of uranium

    Science.gov (United States)

    Goddard, Braden; Croft, Stephen; Lousteau, Angela; Peerani, Paolo

    2016-09-01

    Safeguarding nuclear material is an important and challenging task for the international community. One particular safeguards technique commonly used for uranium assay is active neutron correlation counting. This technique involves irradiating unused uranium with (α, n) neutrons from an Am-Li source and recording the resultant neutron pulse signal which includes induced fission neutrons. Although this non-destructive technique is widely employed in safeguards applications, the neutron energy spectra from an Am-Li sources is not well known. Several measurements over the past few decades have been made to characterize this spectrum; however, little work has been done comparing the measured and theoretical spectra of various Am-Li sources to each other. This paper examines fourteen different Am-Li spectra, focusing on how these spectra affect simulated neutron multiplicity results using the code Monte Carlo N-Particle eXtended (MCNPX). Two measurement and simulation campaigns were completed using Active Well Coincidence Counter (AWCC) detectors and uranium standards of varying enrichment. The results of this work indicate that for standard AWCC measurements, the fourteen Am-Li spectra produce similar doubles and triples count rates. The singles count rates varied by as much as 20% between the different spectra, although they are usually not used in quantitative analysis, being dominated by scattering which is highly dependent on item placement.

  7. Epithermal Neutron Activation Analysis of the Asian Herbal Plants

    International Nuclear Information System (INIS)

    Asian medicinal herbs Chrysanthemum (Spiraea aquilegifolia Pall.) and Red Sandalwood (Pterocarpus Santalinus) are widely used in folk and Ayurvedic medicine for healing and preventing some diseases. The modern medical science has proved that the Chrysanthemum (Spiraea aquilegifolia Pall.) possesses the following functions: reducing blood press, dispelling cancer cell, coronary artery's expanding and bacteriostating and Red Sandalwood (Pterocarpus Santalinus) is recommended against headache, toothache, skin diseases, vomiting and sometimes it is taken for treatment of diabetes. Species of Chrysanthemums were collected in the north-eastern and central Mongolia, and the Red Sandalwood powder was imported from India. Samples of Chrysanthemums (branches, flowers and leaves)(0.5 g) and red sandalwood powder (0.5 g) were subjected to the multi-element instrumental neutron activation analysis using epithermal neutrons (ENAA) at the IBR-2 reactor, Frank Laboratory of Neutron Physics (FLNP) JINR, Dubna. A total of 41 elements (Na, Mg, Al, Cl, K, Ca, Sc, V, Cr, Mn, Fe, Co, Ni, Zn, As, Se, Br, Rb, Sr, Zr, Mo, Cd, Cs, Ba, La, Hf, Ta, W, Sb, Au, Hg, Ce, Nd, Sm, Eu, Tb, Dy, Yb, Th, U, Lu) were determined. For the first time such a large group of elements was determined in the herbal plants used in Mongolia. The quality control of the analytical results was provided by using certified reference material Bowen Cabbage. The results obtained are compared to the ''Reference plant? data (B. Markert, 1992) and interpreted in terms of excess of such elements as Se, Cr, Ca, Fe, Ni, Mo, and rare earth elements.

  8. Epithermal Neutron Activation Analysis of the Asian Herbal Plants

    Science.gov (United States)

    Baljinnyam, N.; Jugder, B.; Norov, N.; Frontasyeva, M. V.; Ostrovnaya, T. M.; Pavlov, S. S.

    2011-06-01

    Asian medicinal herbs Chrysanthemum (Spiraea aquilegifolia Pall.) and Red Sandalwood (Pterocarpus Santalinus) are widely used in folk and Ayurvedic medicine for healing and preventing some diseases. The modern medical science has proved that the Chrysanthemum (Spiraea aquilegifolia Pall.) possesses the following functions: reducing blood press, dispelling cancer cell, coronary artery's expanding and bacteriostating and Red Sandalwood (Pterocarpus Santalinus) is recommended against headache, toothache, skin diseases, vomiting and sometimes it is taken for treatment of diabetes. Species of Chrysanthemums were collected in the north-eastern and central Mongolia, and the Red Sandalwood powder was imported from India. Samples of Chrysanthemums (branches, flowers and leaves) (0.5 g) and red sandalwood powder (0.5 g) were subjected to the multi-element instrumental neutron activation analysis using epithermal neutrons (ENAA) at the IBR-2 reactor, Frank Laboratory of Neutron Physics (FLNP) JINR, Dubna. A total of 41 elements (Na, Mg, Al, Cl, K, Ca, Sc, V, Cr, Mn, Fe, Co, Ni, Zn, As, Se, Br, Rb, Sr, Zr, Mo, Cd, Cs, Ba, La, Hf, Ta, W, Sb, Au, Hg, Ce, Nd, Sm, Eu, Tb, Dy, Yb, Th, U, Lu) were determined. For the first time such a large group of elements was determined in the herbal plants used in Mongolia. The quality control of the analytical results was provided by using certified reference material Bowen Cabbage. The results obtained are compared to the "Reference plant» data (B. Markert, 1992) and interpreted in terms of excess of such elements as Se, Cr, Ca, Fe, Ni, Mo, and rare earth elements.

  9. Fast-neutron activation analysis of light elements

    International Nuclear Information System (INIS)

    Full text: The determination of lithium, carbon, oxygen, nitrogen and other light chemical elements in various modern materials in microgram level is of importance for analytical science. As it is well-known, a thermal neutron activation of C, H, N, and O produces negligible γ-ray activity. 13C (n, γ) 14C and 2H (n, γ) 3H reactions produce very small activities of the non- γ- emitters 3H and 14C, and the 19O (n, γ)19O and 15N(n, γ)16N reactions give very short lived 19O (27 sec) and 16N (7.1 sec). All of these reactions have extremely low thermal neutron cross sections. Therefore a major advantage of the instrumental neutron activation analysis (INAA) is the determination of trace elements in biological, medical and environmental materials. For this reason the above mentioned problems are solved with use of some variants of nuclear analytical techniques based on application of charged particle accelerators. However, there are several non-traditional reactor activation analysis techniques to solve such problems which have been developed and applied in various fields of semiconductor industry, biology, geology. In recent years these techniques were named as the nuclear reactor based charged particles activation analysis (NRCPAA). We distinguished two possible applications of a nuclear reactor as charged particles source. During last years the capabilities of the NRCPAA were investigated intensively and some our results were applied to determine light elements contents [1,2]. The recoil protons are produced as the result of (n, p) elastic and inelastic scattering interaction of fast neutrons with nucleus of light elements, for example, hydrogen. These protons are applied for the development of proton activation analysis for the determination of large concentrations of Li, B and O. The non-destructive activation analysis with use of 14-MeV fast neutrons (FNAA) is the most suitable method for analysis of N, P and Si. FNAA was applied for determination of nitrogen

  10. The calibration of DD neutron indium activation diagnostic for Shenguang-III facility

    CERN Document Server

    Song, Zi-Feng; Liu, Zhong-Jie; Zhan, Xia-Yu; Tang, Qi

    2014-01-01

    The indium activation diagnostic was calibrated on an accelerator neutron source in order to diagnose deuterium-deuterium (DD) neutron yields of implosion experiments on Shenguang-III facility. The scattered neutron background of the accelerator room was measured by placing a polypropylene shield in front of indium sample, in order to correct the calibrated factor of this activation diagnostic. The proper size of this shield was given by Monte Carlo simulation software. The affect from some other activated nuclei on the calibration was verified by judging whether the measured curve obeys exponential decay and contrasting the half life of the activated sample. The calibration results showed that the linear range reached up to 100 cps net count rate in the full energy peak of interest, the scattered neutron background of accelerator room was about 9% of the total neutrons and the possible interferences mixed scarcely in the sample. Subtracting the portion induced by neutron background, the calibrated factor of ...

  11. Research and development activities of the Neutron Physics Division for the period January 1980 - December 1980

    International Nuclear Information System (INIS)

    The highlights of the research and development (R and D) activities of the Neutron Physics Division of the Bhabha Atomic Research Centre, Bombay, during January - December 1980 are summarised. The R and D activities are in the fields of critical and subcritical fission systems, the plasma focus device, applied neutron physics, neutron and X-ray crystallography, materials physics and seismology. (M.G.B.)

  12. Analysis of Some Egyptian Cosmetic Samples by Fast Neutron Activation Analysis

    CERN Document Server

    Medhat, M E; Fayez-Hassan, M

    2001-01-01

    A description of D-T neutron generator (NG) is presented. This generator can be used for fast neutron activation analysis applied to determine some selected elements, especially light elements, in different materials. In our work, the concentration of the elements Na, Mg, Al, Si, K, Cl, Ca and Fe, were determined in two domestic brands of face powder by using 14 MeV neutron activation analysis.

  13. Cosmetics chemical composition characterization by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Brazil is in the third position in the world's cosmetics market. It is an expanding and growing market where new products and manufacturing processes are in a constant and steady expansion. Therefore, it is mandatory that the composition of the products is well known in order to guarantee safety and quality of daily used cosmetics. The Brazilian National Health Surveillance Agency (ANVISA) has issued a resolution, RDC No. 48, March 16, 2006, which defines a 'List of Substances which can not be used in personal hygiene products, cosmetics and perfumes'. In this work, samples of locally manufactured and imported cosmetics (lipsticks, eye shadows, etc.) were analyzed using the Instrumental Neutron Activation Analysis technique. The samples were irradiated in the TRIGA IPR-R1 reactor of the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN), on a 100kW thermal power, with a thermal neutron fluence rate about 8x1011ncm-2s-1. The analysis has detected the chemical elements Br, Ba, Ga, Na, K, Sc, Fe, Cr, Zn, Sm, W, La, Rb, Cs, Ta, Ge, Co, U, Ti, V, Cl, Al, Mn and Cu. The concentrations of these elements are on a range from 5 to 3000μg.g-1. Some chemical elements observed in samples (Cl, Br, Cr, U) are included at ANVISA prohibitive list. (author)

  14. Proposed low-energy absolute calibration of nuclear recoils in a dual-phase noble element TPC using D-D neutron scattering kinematics

    OpenAIRE

    Verbus, J. R.; Rhyne, C. A.; Malling, D.C.; Genecov, M.; Ghosh, S.; Moskowitz, A. G.; Chan, S.; Chapman, J. J.; Viveiros, L. de; Faham, C. H.; Fiorucci, S.; Huang, D. Q.; Pangilinan, M.; Taylor, W C; Gaitskell, R. J.

    2016-01-01

    We propose a new technique for the calibration of nuclear recoils in large noble element dual-phase time projection chambers used to search for WIMP dark matter in the local galactic halo. This technique provides an $\\textit{in situ}$ measurement of the low-energy nuclear recoil response of the target media using the measured scattering angle between multiple neutron interactions within the detector volume. The low-energy reach and reduced systematics of this calibration have particular signi...

  15. Non-destructive assay of fissile materials through active neutron interrogation technique using pulsed neutron (plasma focus) device

    International Nuclear Information System (INIS)

    Pulsed neutrons emitted from a plasma focus (PF) device have been used for the first time for the non-destructive assay of 235U content in different chemical forms (oxide and metal). The PF device generates (1.2±0.3)×109 D–D fusion neutrons per shot with a pulse width of 46±5 ns. The method involves the measurement of delayed neutrons from an irradiated sample 50 ms after exposure to the neutron pulse for a time of about 100 s in the multichannel scaling (MCS) mode. The calibration of the active interrogation delayed neutron counter (AIDNEC) system was carried out by irradiating U3O8 samples of varying amounts (0.1–40 g) containing enriched 235U (14.8%) in the device. The delayed neutrons were monitored using a bank of six 3He detectors. The sensitivity of the system was found to be about 100 counts/s/g over the accumulation time of 25 s per neutron pulse of ∼109. The detection limit of the system is estimated to be 18 mg of 235U. The system can be suitably modified for applications toward non-destructive assay of fissile content in waste packets. -- Highlights: ► Plasma focus device has been used for the first time for non-destructive assay of 235U. ► Delayed neutron counting in the multichannel scaling mode is used for the determination of 235U. ► The total time taken for the measurement is about 100 s. ► The detection limit of the system is estimated to be 18 mg of 235U

  16. Non-destructive assay of fissile materials through active neutron interrogation technique using pulsed neutron (plasma focus) device

    Energy Technology Data Exchange (ETDEWEB)

    Tomar, B.S., E-mail: bstomar@barc.gov.in [Radiochemistry and Isotope Group, Bhabha Atomic Research Centre, Mumbai 400085 (India); Kaushik, T.C.; Andola, Sanjay; Ramniranjan,; Rout, R.K. [Multidisciplinary Research Group, Bhabha Atomic Research Centre, Mumbai 400085 (India); Kumar, Ashwani; Paranjape, D.B.; Kumar, Pradeep; Ramakumar, K.L. [Radiochemistry and Isotope Group, Bhabha Atomic Research Centre, Mumbai 400085 (India); Gupta, S.C.; Sinha, R.K. [Multidisciplinary Research Group, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2013-03-01

    Pulsed neutrons emitted from a plasma focus (PF) device have been used for the first time for the non-destructive assay of {sup 235}U content in different chemical forms (oxide and metal). The PF device generates (1.2±0.3)×10{sup 9} D–D fusion neutrons per shot with a pulse width of 46±5 ns. The method involves the measurement of delayed neutrons from an irradiated sample 50 ms after exposure to the neutron pulse for a time of about 100 s in the multichannel scaling (MCS) mode. The calibration of the active interrogation delayed neutron counter (AIDNEC) system was carried out by irradiating U{sub 3}O{sub 8} samples of varying amounts (0.1–40 g) containing enriched {sup 235}U (14.8%) in the device. The delayed neutrons were monitored using a bank of six {sup 3}He detectors. The sensitivity of the system was found to be about 100 counts/s/g over the accumulation time of 25 s per neutron pulse of ∼10{sup 9}. The detection limit of the system is estimated to be 18 mg of {sup 235}U. The system can be suitably modified for applications toward non-destructive assay of fissile content in waste packets. -- Highlights: ► Plasma focus device has been used for the first time for non-destructive assay of {sup 235}U. ► Delayed neutron counting in the multichannel scaling mode is used for the determination of {sup 235}U. ► The total time taken for the measurement is about 100 s. ► The detection limit of the system is estimated to be 18 mg of {sup 235}U.

  17. Potentialities and practical limitations of absolute neutron dosimetry using thin films of uranium and thorium applied to the fission track dating

    CERN Document Server

    Bigazzi, G; Hadler-Neto, J C; Iunes, P J; Paulo, S R; Oddone, M; Osorio, A M A; Zúñiga, A G

    1999-01-01

    Neutron dosimetry using natural uranium and thorium thin films makes possible that mineral dating by the fission-track method can be accomplished, even when poor thermalized neutron facilities are employed. In this case, the contributions of the fissions of sup 2 sup 3 sup 5 U, sup 2 sup 3 sup 8 U and sup 2 sup 3 sup 2 Th induced by thermal, epithermal and fast neutrons to the population of tracks produced during irradiation are quantified through the combined use of natural uranium and thorium films. If the Th/U ratio of the sample is known, only one irradiation (where the sample and the films of uranium and thorium are present) is necessary to perform the dating. However, if that ratio is unknown, it can be determined through another irradiation where the mineral to be dated and both films are placed inside a cadmium box. Problems related with film manufacturing and calibration are discussed. Special attention is given to the utilization of thin films having very low uranium content. The problems faced sugg...

  18. Implementation of neutron activation analysis in the neutron multiplier CS-ISCTN (first part)

    International Nuclear Information System (INIS)

    The detection limit of 32 elements are determined after experimental evaluation of the neutron flux components in the irradiation position of the neutron multiplier CS-ISCTN. The control of the thermal flux was carry up, comparing the experimental results obtained through three convention used determination of the reaction rate, with the theoretical obtained before

  19. Nitrogen determination in wheat by neutron activation analysis using fast neutron flux from a thermal nuclear reactor

    International Nuclear Information System (INIS)

    This is a study of the technique for the determination of nitrogen and other elements in wheat flour through activation analysis with fast neutrons from a thermal nuclear reactor. The study begins with an introduction about the basis of the analytical methods, the equipment used in activation analysis and a brief description of the neutrons source. In the study are included the experiments carried out in order to determine the flux form in the site of irradiation, the N-13 half life and the interference due to the sample composition. (author)

  20. Notes on neutron flux measurement

    International Nuclear Information System (INIS)

    The main purpose of this work is to get an useful guide to carry out topical neutron flux measurements. Although the foil activation technique is used in the majority of the cases, other techniques, such as those based on fission chambers and self-powered neutron detectors, are also shown. Special interest is given to the description and application of corrections on the measurement of relative and absolute induced activities by several types of detectors (scintillators, G-M and gas proportional counters). The thermal arid epithermal neutron fluxes, as determined in this work, are conventional or effective (West cots fluxes), which are extensively used by the reactor experimentalists; however, we also give some expressions where they are related to the integrated neutron fluxes, which are used in neutron calculations. (Author) 16 refs

  1. Fine structure of the age-chromospheric activity relation in solar-type stars I: The Ca II infrared triplet: Absolute flux calibration

    CERN Document Server

    Lorenzo-Oliveira, Diego; Dutra-Ferreira, Letícia; Ribas, Ignasi

    2016-01-01

    Strong spectral lines are useful indicators of stellar chromospheric activity. They are physically linked to the convection efficiency, differential rotation, and angular momentum evolution and are a potential indicator of age. However, for ages > 2 Gyr, the age-activity relationship remains poorly constrained thus hampering its full application. The Ca II infrared triplet (IRT lines) has been poorly studied compared to classical chromospheric indicators. We report in this paper absolute chromospheric fluxes in the three Ca II IRT lines, based on a new calibration tied to up-to-date model atmospheres. We obtain the Ca II IRT absolute fluxes for 113 FGK stars from high signal-to-noise ratio and high-resolution spectra covering an extensive domain of chromospheric activity levels. We perform an absolute continuum flux calibration for the Ca II IRT lines anchored in atmospheric models calculated as an explicit function of effective temperatures, metallicity, and gravities avoiding the degeneracy present in photo...

  2. Calculation and consideration of the experimental correction factor of the prompt k{sub o}-factors for the development of the PGNAA database[Prompt Gamma Neutron Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sun, K. M.; Choi, H. D. [Seoul National Univ., Seoul (Korea, Republic of)

    1999-10-01

    The prompt k{sub o}-factors are calculated for the light elements(A<45) with Cl comparator to develop a database for Prompt Gamma Neutron Activation Analysis(PGNAA). Calculations are performed by using the Lone table[8] and Firestone data[10], respectively, where both the absolute gamma intensities of the isotope and the element are used. The quality of the Firestone data is checked by comparing the Q-value of (n,{gamma}) reaction with the absolute gamma intensities and gamma energies. For the experimental determination of the prompt k{sub o}-factor, correction factor is derived for the case of the incident neutron spectrum containing epithermal component. For non-1/v absorbers, the correction factor is discussed in terms of the Westcott g-factors of the standard and comparator isotopes. Finally, the correction factor is derived for the polychromatic neutron beam of the PGNAA system in HANARO.

  3. Neutron activation analysis of medieval and early modern times ceramics

    International Nuclear Information System (INIS)

    Provenience studies of medieval and early modern times ceramics from the Eastern Danube area of Austria have been performed by instrumental neutron activation analysis. All sherds examined were selected from pottery which was specially charactrized by pottery marks ('Cross Potent', 'Crossmark within a circle', 'Latin Cross', 'Cross Paty'). With respect to the chemical composition five different pottery groups could be evaluated by cluster analysis. Archaeological results: The'Cross Patent' was used by different potter's workshops whereas the 'Crossmark within a circle' was more likely restricted to one manufacture entre. The distribution of the 'Latin Cross' and The 'Cross Paty' over all five clusters indicated the usage of clay from different deposits. The assignment of the 'Cross Paty' exclusively to the area of Passau could be disproved. (Author)

  4. Clinical applications of in vivo neutron-activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cohn, S.H.

    1982-01-01

    In vivo neutron activation has opened a new era of both clinical diagnosis and therapy evaluation, and investigation into and modelling of body composition. The techniques are new, but it is already clear that considerable strides can be made in increasing accuracy and precision, increasing the number of elements susceptible to measurement, enhancing uniformity, and reducing the dose required for the measurement. The work presently underway will yield significant data on a variety of environmental contaminants such as Cd. Compositional studies are determining the level of vital constituents such as nitrogen and potassium in both normal subjects and in patients with a variety of metabolic disorders. Therapeutic programs can be assessed while in progress.

  5. In-vivo neutron activation analysis: principles and clinical applications

    Energy Technology Data Exchange (ETDEWEB)

    Cohn, S.H.

    1982-01-01

    In vivo neutron activation has opened a new era of both clinical diagnosis and therapy evaluation, and investigation into and modelling of body composition. The techniques are new, but it is already clear that considerable strides can be made in increasing accuracy and precision, increasing the number of elements susceptible to measurement, enhancing uniformity, and reducing the dose required for the measurement. The work presently underway will yield significant data on a variety of environmental contaminants such as Cd. Compositional studies are determining the level of vital constituents such as nitrogen and potassium in both normal subjects and in patients with a variety of metabolic disorders. Therapeutic programs can be assessed while in progress. It seems likely that by the end of this century there will have been significant progress with this research tool, and exciting insights obtained into the nature and dynamics of human body composition.

  6. Neutron activation analysis of stable elements in marine algae

    International Nuclear Information System (INIS)

    The nuclear industry has grown during the last decades and continuing growth is predicted. Although considerable efforts are being made to minimize the release of the increasing amounts of radioactive wastes into marine environment, it is evident that the potential for radioactive contamination will continue to grow. The purposes of marine environment monitoring around nuclear facilities are to verify that they are functioning as it was designed and to detect the unplanned releases of radioactive contaminants. To provide a sufficient assessment with biological indicators of 60Co and 137Cs, most significant radionuclides in waste effluents released with nuclear power station, the concentration of stable elements in the Sargassum and other algae were surveyed with thermal neutron activation method. The results were followed: 1) The concentration of Mn, As, Zn, and Co were seem to be higher in the sargassum than in other algae. 2) The concentration of Co and Cs were higher in S. thunbergit than in other Sargassum. (author)

  7. Clinical applications of in vivo neutron-activation analysis

    International Nuclear Information System (INIS)

    In vivo neutron activation has opened a new era of both clinical diagnosis and therapy evaluation, and investigation into and modelling of body composition. The techniques are new, but it is already clear that considerable strides can be made in increasing accuracy and precision, increasing the number of elements susceptible to measurement, enhancing uniformity, and reducing the dose required for the measurement. The work presently underway will yield significant data on a variety of environmental contaminants such as Cd. Compositional studies are determining the level of vital constituents such as nitrogen and potassium in both normal subjects and in patients with a variety of metabolic disorders. Therapeutic programs can be assessed while in progress

  8. Enhancement of research reactor utilization for neutron activation analysis

    International Nuclear Information System (INIS)

    Analytical Chemistry Division has been utilising NAA for the past 4 decades for trace analysis of a number of materials. Some of the procedures developed recently for the trace element determination of high purity hi-tech and nuclear pure materials, geological, environmental and forensic samples by radiochemical neutron activation analysis (RNAA) are discussed here. Nearly complete characterization of high purity (>4N) As and Ga is possible by the procedures developed which are simple, rapid and elegant and can be used easily for the process samples. It is to be emphasised that though the INAA is simple and being widely followed, the RNAA alone can address the problems of analysis for elements present at ultra trace levels in many matrices. (author)

  9. Semiautomatic exchanger of samples for carry out neutron activation analysis

    International Nuclear Information System (INIS)

    In this paper the design methodology and implementation of a semiautomatic exchanger of samples for the Analysis Laboratory by Neutron Activation of the Reactor department is presented. Taking into account the antecedents, the necessities of improvement are described, as well as the equipment that previously contained the Laboratory. The project of the semiautomatic exchanger of samples was developed at Instituto Nacional de Investigaciones Nucleares, with its own technology to increase independence from commercial equipment. Each element of the semiautomatic exchanger of samples is described both in the design phase as construction. The achieved results are positive and encouraging for the fulfillment of the proposed objective that is to increase the capacity of the Laboratory. (Author)

  10. Neutron activation analysis for monitoring northern terrestrial ecosystems

    International Nuclear Information System (INIS)

    New experimental data have been obtained on heavy metal and rare-earth element concentrations in environmental objects, namely pine needles and soils, caused by atmospheric pollution in different regions of the Kola Peninsula. The investigation was performed with the use of epithermal neutron activation analysis at the IBR-2 fast pulsed reactor. The analysis of nearly 40 element distributions in pine needles and soils from the studied geographical points testifies of a strong contamination source - the nickel smelting complex in Monchegorsk. The contamination levels for Ni, Co, Cr, Se, and others are also high and may be hazardous for this region population because some of these elements are carcinogenic. 6 refs., 1 fig., 2 tabs

  11. Recent developments in environmental research using neutron activation analysis

    International Nuclear Information System (INIS)

    In studies of the origin and fates of trace elements, it is advantageous to be able to analyze samples for a wide spectrum of elements with a high sensitivity and accuracy. This condition is best satisfied with instrumental neutron activation analysis (INAA), since it is one of the most sensitive, selective, and reliable multielement analysis techniques available. In spite of these advantages in environmental studies, use of the technique has been generally limited to aerosol and source material analysis. Over the last few years, the trace analysis and radiochemistry group at the Massachusetts Institute of Technology's Nuclear Reactor Laboratory has applied INAA to various environmental samples for methodology development and/or to provide more information on some important environmental processes. Some examples of these studies are provided in this paper

  12. Neutron activation analysis of organohalogens in Chinese human hair

    International Nuclear Information System (INIS)

    To effectively extract organohalogens from human hair, two factors, the extracting time and hair length on the extraction efficiency of organohalogens were studied by neutron activation analysis (NAA) and gas chromatograph-electron capture detector (GC-ECD), respectively. Furthermore, the concentrations of extractable organohalogens (EOX) and extractable persistent organohalogens (EPOX) in hair samples from angioma and control babies were also measured by the established method. The results indicated that the optimal Soxhlet-extraction time for EOX and EPOX in hair was from 8 to 11 hours, and the extraction efficiencies for organochlorine pesticides in hair were in the order of powder >2 mm>5 mm. Also, the mean levels of EOCl and EPOCl in hair of the angioma babies were significantly higher than those in the control babies (PEOClEPOCl<0.05), which implied the possible relationship between the environmental pollution and angioma. (author)

  13. Instrumental neutron activation analysis of fly ash, aerosols and hair

    International Nuclear Information System (INIS)

    Samples of coal, slag, emissions retained on the separating devices, fly ash, aerosols and hair taken in the area of coal-fired power plant were analyzed by means of instrumental neutron activation analysis. 13 to 23 elements were determined in the samples. The data obtained for emissions and aerosols were further evaluated by calculation of enrichment factors, correlation coefficients and by the ratio matching method. The concentrations of elements determined in the hair of the exposed group were compared with data of control and so called ''out control'' groups as well as with recent data found for hair in other countries. It can be seen from the results that arsenic is the most serious pollutant in the area. (author)

  14. Instrumental neutron activation analysis of the hair of metallurgical workers

    International Nuclear Information System (INIS)

    Hair samples were collected from 20 metallurgical workers (10 males and 10 females) and from 59 control subjects (32 males and 27 females), whose jobs do not indicate a specific occupational exposure. The concentrations of ten minor and trace elements (Al, Co, Cu, Fe, Mg, Mn, Sb, Se, V and Zn) were determined by instrumental neutron activation analysis (INAA). The statistical data distributions, the sex and age influences in these elemental concentrations and the average values obtained for the control group were compared with published data. The effect of occupational exposure to the metallic elements was reflected in elemental compositon of hair by significant higher concentration levels of Al, Co, Cu, Fe, Mg, Mn, Sb, V and Zn in the hair of the exposed group, when compared with the control group. (author)

  15. Human hair identification by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Nondestructive neutron activation technique was used to analyze 17 elements (Al, As, Au, Ba, Br, Cl, Cu, Hg, I, K, Mg, Mn, Na, Sb, Sr, V and Zn) in 75 human hair samples in 5 different locations, respectively, from 15 glassware workers. The analytical results were treated further statistically to find the elemental distribution among different human hairs and to identify the individual's hair. The identifying probability of one's hair by the comparison of elemental concentrations is found to be 104-106 times higher from the same person's than from any other person's. The standard deviation of the elemental concentrations of samples taken from 5 different locations of one person is about 5 time smaller than the standard deviation for individual's hair. These data support the possibility of using NAA of hair for human hair identification. (author)

  16. Study on the methods for analysis of the chemical poison in canister by neutron activity

    International Nuclear Information System (INIS)

    The method that is used to analyse the poison gases in canister by neutron activity is proposed. Through theory analysis and experimental measurement, the feasibility for analysis of the poison gases in a canister by neutron activity has been demonstrated, and it is proved that the method itself do not result in radioactive problem to use again the canister. (authors)

  17. Instrumental neutron activation analysis of carbonatites from Panda Hill and Oldoinyo-Lengai, Tanzania

    International Nuclear Information System (INIS)

    Twenty nine (major and trace) elements including nine rare earth elements (REE) in African carbonatite samples were determined by instrumental neutron activation analysis (INAA). The geochemical behavior of trace elements in carbonatites, especially REE pattern (chondrite normalized), and the efficiency of neutron activation analysis compared to other methods are discussed in this study. (author)

  18. Determination of gold in some Myanmar indigenous medicines by neutron activation analysis

    International Nuclear Information System (INIS)

    Gold has been determined in two Myanmar indigenous medicines TMF 14 (Devaauthada), TMF 15 (Shwe Thwe Say) by neutron activation analysis using an Am(Be) radionuclide neutron source. The activity of 411 keV of the 198Au has been measured. (author). 2 refs., 1 fig., 1 tab

  19. Application of neutron activation analysis system in Xi'an pulsed reactor

    CERN Document Server

    Zhang Wen Shou; Yu Qi

    2002-01-01

    Neutron Activation Analysis System in Xi'an Pulsed Reactor is consist of rabbit fast radiation system and experiment measurement system. The functions of neutron activation analysis are introduced. Based on the radiation system. A set of automatic data handling and experiment simulating system are built. The reliability of data handling and experiment simulating system had been verified by experiment

  20. Using robust statistics to improve neutron activation analysis results

    Energy Technology Data Exchange (ETDEWEB)

    Zahn, Guilherme S.; Genezini, Frederico A.; Ticianelli, Regina B.; Figueiredo, Ana Maria G., E-mail: gzahn@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro do Reator de Pesquisas

    2011-07-01

    Neutron activation analysis (NAA) is an analytical technique where an unknown sample is submitted to a neutron flux in a nuclear reactor, and its elemental composition is calculated by measuring the induced activity produced. By using the relative NAA method, one or more well-characterized samples (usually certified reference materials - CRMs) are irradiated together with the unknown ones, and the concentration of each element is then calculated by comparing the areas of the gamma ray peaks related to that element. When two or more CRMs are used as reference, the concentration of each element can be determined by several different ways, either using more than one gamma ray peak for that element (when available), or using the results obtained in the comparison with each CRM. Therefore, determining the best estimate for the concentration of each element in the sample can be a delicate issue. In this work, samples from three CRMs were irradiated together and the elemental concentration in one of them was calculated using the other two as reference. Two sets of peaks were analyzed for each element: a smaller set containing only the literature-recommended gamma-ray peaks and a larger one containing all peaks related to that element that could be quantified in the gamma-ray spectra; the most recommended transition was also used as a benchmark. The resulting data for each element was then reduced using up to five different statistical approaches: the usual (and not robust) unweighted and weighted means, together with three robust means: the Limitation of Relative Statistical Weight, Normalized Residuals and Rajeval. The resulting concentration values were then compared to the certified value for each element, allowing for discussion on both the performance of each statistical tool and on the best choice of peaks for each element. (author)

  1. Quality Assurance and Control in Laboratory using Neutron Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Y. S.; Moon, J. H.; Sun, G. M.; Kim, S. H.; Baek, S. Y.; Lim, J. M.; Kim, H. R

    2007-01-15

    In accordance with the increment of international trade associated with the worldwide globalization, the importance of quality assurance and control for the commodity produced from one's own country has been stressed. ISO (International Organization for Standards) defines quality control as 'the operational techniques and activities that are used to fulfill the requirements for quality'. Since 1996, the HANARO research reactor in the Korea Atomic Energy Research Institute has been operated thereafter initial critical operation on April 1995. Neutron activation analysis system and applied techniques which is one of a nuclear analytical technologies using reactor neutrons has been developed for user's supporting and the establishment of the quality system for a measurement and analysis, testing and inspection was implemented successfully. On the basis of the qualified NAA system, the test and measurement of more than 1500 samples which is requested from 30 organizations including industrial companies, universities and institutes carried out in NAA laboratory annually. Moreover, as the goal of mutual recognition agreement (MRA) which can be removed a technical barrier in international trade, the objectivity and the confidence of analytical quality in NAA laboratory became established through the installation of international accreditation system by implementing analytical quality system in accordance with international standards in 2001. The aim of the report was to summarize the technical management of introduction, methods and the results for a quality control and assurance which should be performed in NAA technique using the HANARO research reactor. The report will help building up effective quality control strategy in the future.

  2. Monte Carlo Model of TRIGA Reactor to Support Neutron Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Zerovnik, G.; Snoj, L.; Trkov, A. [Reactor Physics Department, Jozef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia)

    2011-07-01

    The TRIGA reactor at Jozef Stefan Institute is used as a neutron source for neutron activation analysis. The accuracy of the method depends on the accuracy of the neutron spectrum characterization. Therefore, computational models on different scales have been developed: Monte Carlo full reactor model, model of an irradiation channel and deterministic code for self-shielding factor calculations. The models have been validated by comparing against experiment and thus provide a very strong support for neutron activation analysis of samples irradiated at the TRIGA reactor. (author)

  3. Calibration of activation detectors in a monoenergetic neutron beam. Contribution to criticality dosimetry

    International Nuclear Information System (INIS)

    Activation detectors have been calibrated for critical dosimetry applications. Measurements are made using a monoenergetic neutron flux. 14 MeV neutrons obtained par (D-T) reaction are produced by 150 kV accelerator. Neutron flux determined by different methods leads us to obtain an accuracy better than 6%. The present dosimetric system (Activation Neutron Spectrometer - SNAC) gives few informations in the (10 keV - 2 MeV) energetic range. The system has been improved and modified so that SNAC detectors must be read out by gamma spectrometer

  4. Tables for simplifying calculations of activities produced by thermal neutrons

    Science.gov (United States)

    Senftle, F.E.; Champion, W.R.

    1954-01-01

    The method of calculation described is useful for the types of work of which examples are given. It is also useful in making rapid comparison of the activities that might be expected from several different elements. For instance, suppose it is desired to know which of the three elements, cobalt, nickel, or vanadium is, under similar conditions, activated to the greatest extent by thermal neutrons. If reference is made to a cross-section table only, the values may be misleading unless properly interpreted by a suitable comparison of half-lives and abundances. In this table all the variables have been combined and the desired information can be obtained directly from the values of A 3??, the activity produced per gram per second of irradiation, under the stated conditions. Hence, it is easily seen that, under similar circumstances of irradiation, vanadium is most easily activated even though the cross section of one of the cobalt isotopes is nearly five times that of vanadium and the cross section of one of the nickel isotopes is three times that of vanadium. ?? 1954 Societa?? Italiana di Fisica.

  5. Status Report on the Neutron Activation Analysis Activities in the Philippines

    International Nuclear Information System (INIS)

    The Philippines has a one megawatt open-pool type nuclear research reactor which is presently utilized in the conduct of nuclear research and development activities. The reactor is operated by the Philippine Atomic Research Center, the research arm of the Philippine Atomic Energy Commission. The reactor is presently utilized in the production of some radioisotopes, nuclear physics experiments and neutron activation analysis. For activation analysis the facilities available include the two 2 inch pneumatic tubes and a 2-inch central core dry-pipe. Although the reactor has been operative since 1963 it was only in the latter part of 1966 that a neutron activation analysis group was organized and almost immediately the training of personnel and setting up of a radiochemical laboratory and nucleonic counting assembly were initiated. Today, the counting system include a 100 channel analyzer with a 3 x 3 inch Nal(Tl) crystal

  6. The IAEA Collaborating Centre for Neutron Activation Based Methodologies of Research Reactors

    International Nuclear Information System (INIS)

    The Reactor Institute Delft was inaugurated in May 2009 as a new IAEA Collaborating Centre for Neutron Activation Based Methodologies of Research Reactors. The collaboration involves education, research and development in (i) Production of reactor-produced, no-carrier added radioisotopes of high specific activity via neutron activation; (ii) Neutron activation analysis with emphasis on automation as well as analysis of large samples, and radiotracer techniques; and, as a cross-cutting activity, (iii) Quality assurance and management in research and application of research reactor based techniques and in research reactor operations. (author)

  7. Elemental analysis of airborne particulate by using thermal and epithermal neutron activation

    International Nuclear Information System (INIS)

    Thermal neutron activation analysis was used to determine Al, Br, Ca, Cl, Mn, Na, V, and Ti concentrations, whereas epithermal neutron activation analysis was used to determine Cu, I and Si concentrations. Counting by Compton suppression both in thermal neutron activation and epithermal neutron activation analysis showed the significantly different on detection limit of element compare with normal counting system. It revealed counting by Compton suppression gave better result. The enrichment factor of elements indicated that V and Mn were enriched in several fine particulate samples. Ca, Si and Na were not enriched, whereas Br, I and Cl were enriched in fine airborne particulate or in coarse one. It was found that Cl and Na did not have correlation, while Br and I showed the same enrichment the same enrichment trend and high correlation (0,9). It means that Br and I were from the same pollutant source. It could concluded that the thermal neutron and epithermal neutron activations analysis combined with counting by Compton suppression could enhance sensitivity of analysis of elemental air bone particulate that was very useful in air pollution study. Key words : activation analysis, thermal neutron, epithermal neutron, Compton

  8. Study of a 4πβ-γ coincidence system for absolute radionuclide activity measurement using plastic scintillators

    International Nuclear Information System (INIS)

    The present work was intended to study a coincidence system 4π(PS)β-γ for absolute activity measurement using plastic scintillators in 4π geometry. Along with experiments on the coincidence system, simulations were also performed applying the Monte Carlo Method, by means of codes PENELOPE and ESQUEMA. These simulations were performed in order to calculate the extrapolation curve of the coincidence system 4π(PS)β-γ and compare it to experimental data. A new geometry was proposed to the coincidence system adding up a second photomultiplier tube to the previous system for improving light collection from the plastic scintillator, as this system presented limitations in the minimum detected energy due to the presence of electronic noise and low gain. The results show that an improvement in the signal-to-noise ratio was obtained, as well as in the minimum detected energy. Moreover, there was an increase in the detection efficiency. With these modifications, it is now possible to calibrate radionuclides which emit low energy electrons or X-rays, increasing the number of radionuclides that can be standardized with this type of system.(author)

  9. Gamma and Neutron Flux of a Prompt Gamma Neutron Activation Analysis Collimator at the PUSPATI TRIGA Reactor

    International Nuclear Information System (INIS)

    A Prompt Gamma Neutron Activation Analysis (PGNAA) facility is being studied for installation at PUSPATI TRIGA Reactor (RTP) under the Thorium Flagship programme. This work presents the preliminary design of a PGNAA collimator at the RTP. The result of calculations for gamma and neutron flux at various positions of the PGNAA collimator in the RTP beam port 1 by using the computer code MCNPX are presented and discussed. The results indicate the technical feasibility of the installation of PGNAA facility at the RTP and the possibility of enhancing the utilization of the RTP. (author)

  10. Determination of hydrogen in niobium by cold neutron prompt gamma ray activation analysis and neutron incoherent scattering

    Energy Technology Data Exchange (ETDEWEB)

    R.L. Paul; H.H. Cheu-Maya; G.R. Myneni

    2002-11-01

    The presence of trace amounts of hydrogen in niobium is believed to have a detrimental effect on the mechanical and superconducting properties. Unfortunately, few techniques are capable of measuring hydrogen at these levels. We have developed two techniques for measuring hydrogen in materials. Cold neutron prompt gamma-ray activation analysis (PGAA) has proven useful for the determination of hydrogen and other elements in a wide variety of materials. Neutron incoherent scattering (NIS), a complementary tool to PGAA, has been used to measure trace hydrogen in titanium. Both techniques were used to study the effects of vacuum heating and chemical polishing on the hydrogen content of superconducting niobium.

  11. Recent progress in fast neutron activation cross section data

    International Nuclear Information System (INIS)

    A brief review is given of some significant investigations performed during the past few years in the area of fast neutron activation cross sections that may be relevant for the use of nuclear techniques in the exploration of mineral resources, in process and quality control in industry as well as for general analytical purposes. Differential capture cross sections are considered for the natural elements or isotopes of Fe, Cu, Se, Y, Nb, Cd, In, Gd, W, Os and Au. Some of the data are compared with statistical model calculations. Experimental and evaluated average cross sections for capture and threshold reactions in the spontaneous fission neutron field of 252Cf are reviewed taking into account the elements or isotopes of Mg, Al, Si, S, Ti, V, Mn, Fe, Co, Ni, Cu, Zn, Sr, Zr, Nb, Cd, In, Ba, Ta and Au. A summary of recent studies of differential cross sections for threshold reactions comprises data on Al, Si, S, Ti, Fe, Co, Ni, Cu, Zn, Zr, Nb, Ta, W and Au. Besides experimental investigations, evaluations and theoretical model calculations are considered. Cross sections at 14 MeV and in the region around this energy are reviewed for Na, Mg, Al, Cl, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Br, Sr, Zr, Nb, In, Er, Yb, Ta, W, Os, Ir, Au and Pb. Particular emphasis is laid on (n,p), (n,2n) and (n,α) reactions. (n,n') reactions are allowed for if the half-life of the metastable state excited permits elemental analyses by common experimental techniques. (orig.)

  12. Recent applications of neutron activation analysis in Korea

    International Nuclear Information System (INIS)

    There are two purposes in this research; first aim is to promote the use of neutron activation analysis (NAA) as a utilization of nuclear research reactor in the field of air pollution studies through a routine and long-term monitoring. Other is to improve NAA with an experimental simplicity, high accuracy, excellent flexibility with respect to irradiation and counting conditions. For the study on air pollution, airborne particulate matter (APM) for the fine (< 2.5 μm EAD) and coarse particle (2.5-10 μm EAD) fractions were collected using the Gent stacked filter unit low volume sampler and two types of Nuclepore polycarbonate filters. Air samples were collected at two regions (suburban and industrial site of Daejeon city in the Republic of Korea) from January to December 2002. Mass concentration and elemental black carbon of APM were measured and the concentration of 25 elements were determined by Instrumental NAA. Analytical quality control is carried out using three certified reference materials (CRM). The monitoring data were treated statistically to assess air pollution source and source apportionment. The results obtained from this project can be used to investigate source identification and apportionment and its trends, and to establish a more cost-effective method for national air quality management. Preliminary experiment for application of ko-standardization method has been carried out to determine the reactor neutron spectrum parameters, i.e.a and f-values as the main factors of irradiation quality at NAA no.1 irradiation hole on HANARO research reactor, to determine peak detection efficiency for the HP Ge(EG and G ORTEC, GEM 35185) detector for the use in the ko-experiments and to compare the measured concentration results with the certified values of some CRMs applying the experimentally determined ko-parameters. (author)

  13. The role of neutron activation analysis in nutritional biomonitoring programs

    International Nuclear Information System (INIS)

    Nutritional biomonitoring is a multidisciplinary task and an integral part of a more general bioenvironmental surveillance. In its comprehensive form, it is a combination of biological, environmental, and nutrient monitoring activities. Nutrient monitoring evaluates the input of essential nutrients required to maintain vital bodily functions; this includes vigilance over extreme fluctuations of nutrient intake in relation to the recommended dietary allowances and estimated safe and adequate daily dietary intakes and adherence to the goals of provisional tolerance limits. Environmental monitoring assesses the external human exposure via ambient pathways, namely, air, water, soil, food, etc. Biological monitoring quantifies a toxic agent and its metabolites in representative biologic specimens of an exposed organ to identify health effects. In practice, coordinating all three components of a nutritional biomonitoring program is complex, expensive, and tedious. Experience gained from the US National Health and Nutrition Examination Surveys demonstrates the problems involved. By far the most critical challenge faced here is the question of analytical quality control, particularly when trace element determinations are involved. Yet, measures to ensure reliability of analytical data are mandatory, and there are no short-cuts to this requirement. The purpose of this presentation is to elucidate the potential of neutron activation analysis (NAA) in nutritional biomonitoring activities

  14. Real-time active cosmic neutron background reduction methods

    Science.gov (United States)

    Mukhopadhyay, Sanjoy; Maurer, Richard; Wolff, Ronald; Mitchell, Stephen; Guss, Paul

    2013-09-01

    Neutron counting using large arrays of pressurized 3He proportional counters from an aerial system or in a maritime environment suffers from the background counts from the primary cosmic neutrons and secondary neutrons caused by cosmic ray‒induced mechanisms like spallation and charge-exchange reaction. This paper reports the work performed at the Remote Sensing Laboratory-Andrews (RSL-A) and results obtained when using two different methods to reduce the cosmic neutron background in real time. Both methods used shielding materials with a high concentration (up to 30% by weight) of neutron-absorbing materials, such as natural boron, to remove the lowenergy neutron flux from the cosmic background as the first step of the background reduction process. Our first method was to design, prototype, and test an up-looking plastic scintillator (BC-400, manufactured by Saint Gobain Corporation) to tag the cosmic neutrons and then create a logic pulse of a fixed time duration (~120 μs) to block the data taken by the neutron counter (pressurized 3He tubes running in a proportional counter mode). The second method examined the time correlation between the arrival of two successive neutron signals to the counting array and calculated the excess of variance (Feynman variance Y2F)1 in the neutron count distribution from Poisson distribution. The dilution of this variance from cosmic background values ideally would signal the presence of manmade neutrons.2 The first method has been technically successful in tagging the neutrons in the cosmic-ray flux and preventing them from being counted in the 3He tube array by electronic veto—field measurement work shows the efficiency of the electronic veto counter to be about 87%. The second method has successfully derived an empirical relationship between the percentile non-cosmic component in a neutron flux and the Y2F of the measured neutron count distribution. By using shielding materials alone, approximately 55% of the neutron flux

  15. Real-Time Active Cosmic Neutron Background Reduction Methods

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, Sanjoy; Maurer, Richard; Wolff, Ronald; Mitchell, Stephen; Guss, Paul

    2013-09-01

    Neutron counting using large arrays of pressurized 3He proportional counters from an aerial system or in a maritime environment suffers from the background counts from the primary cosmic neutrons and secondary neutrons caused by cosmic ray-induced mechanisms like spallation and charge-exchange reaction. This paper reports the work performed at the Remote Sensing Laboratory–Andrews (RSL-A) and results obtained when using two different methods to reduce the cosmic neutron background in real time. Both methods used shielding materials with a high concentration (up to 30% by weight) of neutron-absorbing materials, such as natural boron, to remove the low-energy neutron flux from the cosmic background as the first step of the background reduction process. Our first method was to design, prototype, and test an up-looking plastic scintillator (BC-400, manufactured by Saint Gobain Corporation) to tag the cosmic neutrons and then create a logic pulse of a fixed time duration (~120 μs) to block the data taken by the neutron counter (pressurized 3He tubes running in a proportional counter mode). The second method examined the time correlation between the arrival of two successive neutron signals to the counting array and calculated the excess of variance (Feynman variance Y2F)1 in the neutron count distribution from Poisson distribution. The dilution of this variance from cosmic background values ideally would signal the presence of man-made neutrons.2 The first method has been technically successful in tagging the neutrons in the cosmic-ray flux and preventing them from being counted in the 3He tube array by electronic veto—field measurement work shows the efficiency of the electronic veto counter to be about 87%. The second method has successfully derived an empirical relationship between the percentile non-cosmic component in a neutron flux and the Y2F of the measured neutron count distribution. By using shielding materials alone, approximately 55% of the neutron flux

  16. Phase space representation of neutron monitor count rate and atmospheric electric field in relation to solar activity in cycles 21 and 22

    Science.gov (United States)

    Silva, H. G.; Lopes, I.

    2016-07-01

    Heliospheric modulation of galactic cosmic rays links solar cycle activity with neutron monitor count rate on earth. A less direct relation holds between neutron monitor count rate and atmospheric electric field because different atmospheric processes, including fluctuations in the ionosphere, are involved. Although a full quantitative model is still lacking, this link is supported by solid statistical evidence. Thus, a connection between the solar cycle activity and atmospheric electric field is expected. To gain a deeper insight into these relations, sunspot area (NOAA, USA), neutron monitor count rate (Climax, Colorado, USA), and atmospheric electric field (Lisbon, Portugal) are presented here in a phase space representation. The period considered covers two solar cycles (21, 22) and extends from 1978 to 1990. Two solar maxima were observed in this dataset, one in 1979 and another in 1989, as well as one solar minimum in 1986. Two main observations of the present study were: (1) similar short-term topological features of the phase space representations of the three variables, (2) a long-term phase space radius synchronization between the solar cycle activity, neutron monitor count rate, and potential gradient (confirmed by absolute correlation values above ~0.8). Finally, the methodology proposed here can be used for obtaining the relations between other atmospheric parameters (e.g., solar radiation) and solar cycle activity.

  17. Californium-252 neutron activation facility at the Savannah River Laboratory

    International Nuclear Information System (INIS)

    A neutron irradiation facility has been established to develop new analytical methods and for the support of research programs. A major component of this facility is a 252Cf source which provides both fission spectrum and thermal neutrons. (U.S.)

  18. Development of Distinction Method of Production Area of Ginsengs by Using a Neutron Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Jin; Chung, Yong Sam; Sun, Gwang Min; Lee, Yu Na; Yoo, Sang Ho [KAERI, Daejeon (Korea, Republic of)

    2010-05-15

    Distinction of production area of Korean ginsengs has been tried by using neutron activation techniques such as an instrumental neutron activation analysis (INAA) and a prompt gamma activation analysis (PGAA). A distribution of elements has varied according to the part of plant clue to the difference of enrichment effect and influence from a soil where the plants have been grown. So correlation study between plants and soil has been an Issue. In this study, the distribution of trace elements within a Korean ginseng was investigated by using an instrumental neutron activation analysis

  19. Investigation of distribution of elements in a Korean ginseng by using a neutron activation method

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yu Na; Sun, Gwang Min; Chung, Yong Sam; Kim, Young Jin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-10-15

    The Distinction of production areas of Korean ginsengs has been tried by using neutron activation techniques such as an instrumental neutron activation analysis (INAA) and a prompt gamma activation analysis (PGAA). This study was done as a part of those efforts. As is well known, the distribution of elements varies according to the part of plant due to the difference of enrichment effect and influence from a soil where the plants have been grown. So a correlation study between plants and soil is an important issue. In this study, the distribution of trace elements within a Korean ginseng was investigated by using an instrumental neutron activation analysis.

  20. Gamma-ray-spectroscopy following high-flux 14-MeV neutron activation

    International Nuclear Information System (INIS)

    The Rotating Target Neutron Source (RTNS-I), a high-intensity source of 14-MeV neutrons at the Lawrence Livermore National Laboratory (LLNL), has been used for applications in activation analysis, inertial-confinement-fusion diagnostic development, and fission decay-heat studies. The fast-neutron flux from the RTNS-I is at least 50 times the maximum fluxes available from typical neutron generators, making these applications possible. Facilities and procedures necessary for gamma-ray spectroscopy of samples irradiated at the RTNS-I were developed

  1. Stability evaluation and correction of a pulsed neutron generator prompt gamma activation analysis system

    International Nuclear Information System (INIS)

    Source output stability is important for accurate measurement in prompt gamma neutron activation. This is especially true when measuring low-concentration elements such as in vivo nitrogen (∼2.5 % of body weight). We evaluated the stability of the compact DT neutron generator within an in vivo nitrogen measurement system. Review of gamma event/time patterns and data from an auxiliary detector showed significant variations among repeated phantom runs. Neutron generator instability had a significant effect on measurement precision. The neutron generator used in our system must be monitored for output consistency. Adjustments must be made to measurement results to correct for generator instability. (author)

  2. Radiation damage and activation of CdZnTe by intermediate energy neutrons

    International Nuclear Information System (INIS)

    The authors exposed a CdZnTe detector to MeV neutrons from a 252Cf source and found no performance degradation for fluences below 1010 neutrons cm-2. Detector resolution did show significant degradation at higher neutron fluences. There is evidence of room temperature annealing of the radiation effects over time. Activation lines were observed and the responsible isotopes were identified by the energy and half-life of the lines. These radiation damage studies allow evaluation of the robustness of CdZnTe detectors in high neutron and radiation environments

  3. Gamma-ray-spectroscopy following high-flux 14-MeV neutron activation

    Energy Technology Data Exchange (ETDEWEB)

    Williams, R.E.

    1981-10-12

    The Rotating Target Neutron Source (RTNS-I), a high-intensity source of 14-MeV neutrons at the Lawrence Livermore National Laboratory (LLNL), has been used for applications in activation analysis, inertial-confinement-fusion diagnostic development, and fission decay-heat studies. The fast-neutron flux from the RTNS-I is at least 50 times the maximum fluxes available from typical neutron generators, making these applications possible. Facilities and procedures necessary for gamma-ray spectroscopy of samples irradiated at the RTNS-I were developed.

  4. Search for reaction-in-flight neutrons using thulium activation at the National Ignition Facility

    Science.gov (United States)

    Grim, Gary; Rundberg, Robert; Tonchev, Anton; Fowler, Malcolm; Wilhelmy, Jerry; Archuleta, Tom; Bionta, Richard; Boswell, Mitzi; Gostic, Julie; Griego, Jeff; Knittel, Kenn; Klein, Andi; Moody, Ken; Shaughnessy, Dawn; Wilde, Carl; Yeamans, Charles

    2013-10-01

    We report on measurements of reaction-in-flight (RIF) neutrons at the National Ignition Facility. RIF neutrons are produced in cryogenically layered implision by up-scattered deuterium, or tritium ions that undergo subsequent fusion reactions. The rate of RIF neutron production is proportional to the fuel areal density (| | R) and ion-stopping length in the dense fuel assembly. Thus, RIF neutrons provide information on charge particle stopping in a strongly coupled plasma, where perturbative modeling breaks down. To measure RIF neutrons, a set of thulium activation foils was placed 50 cm from layered cryogenic implosions at the NIF. The reaction 169Tm(n,3n)167Tm has a neutron kinetic energy threshold of 14.96 MeV. We will present results from initial experiments performed during the spring of 2013. Prepared by LANL under Contract DE-AC-52-06-NA25396, TSPA, LA-UR-13-22085.

  5. Fast-Neutron Activation of Long-Lived Nuclides in Natural Pb

    CERN Document Server

    Guiseppe, V E; Fields, N E; Hixon, D

    2012-01-01

    We measured the production of the long-lived nuclides Bi-207, Pb-202, and Hg-194 in a sample of natural Pb due to high-energy neutron interactions using a neutron beam at the Los Alamos Neutron Science Center. The activated sample was counted by a HPGe detector to measure the amount of radioactive nuclides present. These nuclides are critical in understanding potential backgrounds in low background experiments utilizing large amounts of Pb shielding due to cosmogenic neutron interactions in the Pb while residing on the Earth's surface. By scaling the LANSCE neutron flux to a cosmic neutron flux, we measure the sea level cosmic ray production rates of 8.0 +/- 1.3 atoms/kg/day of Hg-194, 120 +/- 25 atoms/kg/day Pb-202, and 0.17 +/- 0.04 atoms/kg/day Bi-207.

  6. Implementation of the k{sub 0}-standardization Method for an Instrumental Neutron Activation Analysis: Use-k{sub 0}-IAEA Software as a Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Yong Sam; Moon, Jong Hwa; Kim, Sun Ha; Kim, Hark Rho [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Ho, Manh Dung [Nuclear Research Institute, Dalat (Viet Nam)

    2006-03-15

    Under the RCA post-doctoral program, from May 2005 through February 2006, it was an opportunity to review the present work being carried out in the Neutron Activation Analysis Laboratory, HANARO Center, KAERI. The scope of this research included: a calibration of the counting system, a characterization of the irradiation facility ,a validation of the established k{sub o}-NAA procedure.The k{sub o}-standardization method for an Neutron Activation Analysis(k{sub o}-NAA), which is becoming increasingly popular and widespread,is an absolute calibration technique where the nuclear data are replaced by compound nuclear constants which are experimentally determined. The k{sub o}-IAEA software distributed by the IAEA in 2005 was used as a demonstration for this work. The NAA no. 3 irradiation hole in the HANARO research reactor and the gamma-ray spectrometers No. 1 and 5 in the NAA Laboratory were used.

  7. Implementation of the k0-standardization Method for an Instrumental Neutron Activation Analysis: Use-k0-IAEA Software as a Demonstration

    International Nuclear Information System (INIS)

    Under the RCA post-doctoral program, from May 2005 through February 2006, it was an opportunity to review the present work being carried out in the Neutron Activation Analysis Laboratory, HANARO Center, KAERI. The scope of this research included: a calibration of the counting system, a characterization of the irradiation facility ,a validation of the established ko-NAA procedure.The ko-standardization method for an Neutron Activation Analysis(ko-NAA), which is becoming increasingly popular and widespread,is an absolute calibration technique where the nuclear data are replaced by compound nuclear constants which are experimentally determined. The ko-IAEA software distributed by the IAEA in 2005 was used as a demonstration for this work. The NAA no. 3 irradiation hole in the HANARO research reactor and the gamma-ray spectrometers No. 1 and 5 in the NAA Laboratory were used

  8. Trace elements in coloured opals using neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    McOrist, G.D.; Smallwood, A. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1996-12-31

    Neutron activation analysis (NAA) is a technique particularly suited to analysing opals since it is non-destructive and the silica matrix of opals is not prone to significant activation. It was used to determine the concentration of trace elements in 50 samples of orange, yellow, green, blue and pink opals as well as 18 samples of colourless opals taken from a number of recognised fields in Australia, Peru, Mexico and USA. The results were then evaluated to determine if a relationship existed between trace element content and opal colour. The mean concentration of most of the elements found in orange, yellow and colourless opals were similar with few exceptions. This indicated that, for these samples, colour is not related to the trace elements present. However, the trace element profile of the green, pink and blue opals was found to be significantly different with each colour having a much higher concentration of certain trace elements when compared with all other opals analysed. 7 refs.

  9. Automatization of the neutron activation analysis method in the nuclear analysis laboratory

    International Nuclear Information System (INIS)

    In the present paper the work done to automatice the Neutron Activation Analysis technic with a neutron generator is described. An interface between an IBM compatible microcomputer and the equipment in use to make this kind of measurement was developed. including the specialized software for this system

  10. Determination of zinc by substoichiometric thermal neutron activation analysis (Paper No. RA-23)

    International Nuclear Information System (INIS)

    Trace amount of Zn in complex matrices has been determined by substoichiometric thermal neutron activation analysis. The method involves radiochemical separation of 65Zn from neutron irradiated samples employing substoichiometric extraction of Zn(II) with 1,2,3-benzotriazole (1,2,3-BT) into n-heptanol. (author). 1 tab

  11. In vivo neutron activation analysis of sodium and chlorine in tumor tissue after fast neutron therapy.

    Science.gov (United States)

    Auberger, T; Koester, L; Knopf, K; Weissfloch, L

    1996-01-01

    In 12 patients with recurrences and metastases of different primaries (head and neck cancer, breast cancer, malignant melanoma, and osteosarcoma) who were treated with reactor fission neutrons the photon emission of irradiated tissue was measured after each radiotherapy fraction. Spectral analyses of the decay rates resulted in data for the exchange of sodium (Na) and chlorine (Cl) between the irradiated tissue and the body. About 60% of Na and Cl exchanged rapidly with a turnover half-life of 13 +/- 2 min. New defined mass exchange rates for Na and Cl amount to an average of 0.8 mval/min/kg of soft tissue. At the beginning of radiotherapy the turnover of the electrolytes in tissues with large tumor volumes was about twice that in tissues with small tumor volumes. Depending on the dose, neutron therapy led in all cases to variation in the metabolism. A maximum of Cl exchange and a minimum of Na exchange occurred after 10 Gy of neutrons (group of six previously untreated patients) or after 85 Gy (photon equivalent dose) of combined photon-neutron therapy. A significant increase in non-exchangeable fraction of Na from about 40 to 80% was observed in three tumors after a neutron dose of 10 Gy administered in five fractions correlated with a rapid reduction of tissue within 4 weeks after end of therapy. These results demonstrate for the first time the local response of the electrolyte metabolism to radiotherapy. PMID:8949749

  12. Development of active environmental and personal neutron dosemeters.

    Science.gov (United States)

    Nakamura, T; Nunomiya, T; Sasaki, M

    2004-01-01

    For neutron dosimetry in the radiation environment surrounding nuclear facilities, two types of environmental neutron dosemeters, the high-sensitivity rem counter and the high-sensitivity multi-moderator, the so-called Bonner ball, have been developed and the former is commercially available from Fuji Electric Co. By using these detectors, the cosmic ray neutrons at sea level have been sequentially measured for about 3 y to investigate the time variation of neutron spectrum and ambient dose equivalent influenced by cosmic and terrestrial effects. Our Bonner ball has also been selected as the neutron detector in the International Space Station and has already been used to measure neutrons in the US experimental module. The real time wide-range personal neutron dosemeter which uses two silicon semiconductor detectors has been developed for personal dosimetry and is commercially available from Fuji Electric Co. This dosemeter has good characteristics, fitted to the fluence-to-dose conversion factor in the energy range from thermal energies to several tens of mega-electron-volts and is now widely used in various nuclear facilities.

  13. Neutron activation analysis: nuclear interference from iron in manganese

    International Nuclear Information System (INIS)

    In the present work, the contribution of iron was verified in the analysis of manganese through the reaction of interference by fast neutron. The irradiation of the samples was accomplished in the channel IC-40 of the rotary rack of the TRIGA MARK I IPR-R1 research reactor, located at Nuclear Technology Development Centre/Brazilian Commission for Nuclear Energy, CDTN/CNEN. In this irradiation device, the average thermal neutron flux is 6.69 x 1011 neutron cm-2 s-1 and fast neutron flux is 7.37 x 1010 neutron cm-2 s-1. Manganese was determined through 56Mn induced by thermal neutron flux according to the reaction 55Mn(n, γ)56Mn. In the analysis of manganese, the contribution of iron was investigated according to the reaction of interference 56Fe(n, p)56Mn produced by the fast neutron. It was verified that the contribution of 1 g of iron is 20 μg of manganese. (author)

  14. Activities of the neutron activation analysis laboratory of the radiochemistry division of IPEN - CNEN/SP

    International Nuclear Information System (INIS)

    Neutron activation analysis (NAA) is one of the relevant applications of nuclear research reactors. Due to the high neutron fluxes available in these reactors, an excellent sensitivity of analysis is attained for many elements. NAA is one of the most sensitive, precise and accurate analytical methods for trace element determination. NAA has been one of the main activities of the Radiochemistry Division of IPEN, since the beginning of the operation of the nuclear reactor IEA-R1. Most of the effort was devoted to research work, aimed to improvements in the method as well as to its applications to several kinds of matrixes (geological, biological, metallic, environmental, forensic). Besides, analytical services were also offered, to the CNEN, to industries, universities, mining companies and research institutes. In the present paper, a review is made of the research work being developed presently at the Radiochesmitry Division of IPEN. A discussion is also made of the planned expansion of the analytical services offered

  15. Measurement of neutron-induced activation cross-sections using spallation source at JINR and neutronic validation of the Dubna code

    Indian Academy of Sciences (India)

    Manish Sharma; V Kumar; H Kumawat; J Adam; V S Barashenkov; S Ganesan; S Golovatiouk; S K Gupta; S Kailas; M I Krivopustov; H S Palsania; V Pronskikh; V M Tsoupko-Sitnikov; N Vladimirova; H Westmeier; W Westmeier

    2007-02-01

    A beam of 1 GeV proton coming from Dubna Nuclotron colliding with a lead target surrounded by 6 cm paraffin produces spallation neutrons. A Th-foil was kept on lead target (neutron spallation source) in a direct stream of neutrons for activation and other samples of 197Au, 209Bi, 59Co, 115In and 181Ta were irradiated by moderated beam of neutrons passing through 6 cm paraffin moderator. The gamma spectra of irradiated samples were analyzed using gamma spectrometry and DEIMOS software to measure the neutron cross-section. For this purpose neutron fluence at the positions of samples is also estimated using PREPRO software. The results of cross-sections for reactions 232Th(, ), 232Th(, 2), 197Au(, ), 197Au(, ), 197Au(, ), 59Co(, ), 59Co(, ), 181Ta(, ) and 181Ta(, ) are given in this paper. Neutronics validation of the Dubna Cascade Code is also done using cross-section data by other experiments.

  16. Optimization in Activation Analysis by Means of Epithermal Neutrons. Determination of Molybdenum in Steel

    International Nuclear Information System (INIS)

    Optimization in activation analysis by means of selective activation with epithermal neutrons is discussed. This method was applied to the determination of molybdenum in a steel alloy without recourse to radiochemical separations. The sensitivity for this determination is estimated to be 10 ppm. With the common form of activation by means of thermal neutrons, the sensitivity would be about one-tenth of this. The sensitivity estimations are based on evaluation of the photo peak ratios of Mo-99/Fe-59

  17. Neutron activation analysis: a powerful tool in provenance investigations

    International Nuclear Information System (INIS)

    It is well known that neutron activation analysis (NAA), both instrumental and destructive, allows the simultaneous determination of a number of elements, mostly trace elements, with high levels of precision and accuracy. These peculiar properties of NAA are very useful when applied to provenance studies, i.e. to the identification of the origin of raw materials with which artifacts had been manufactured in ancient times. Data reduction by statistical procedures, especially multivariate analysis techniques, provides a statistical 'fingerprint' of investigated materials, both raw materials and archaeological artifacts, that, upon comparison, allows the identification of the provenance of prime matters used for artifact manufacturing. Thus information on quarries and flows exploitation in the antiquity, on technological raw materials processing, on trade routes and about the circulation of fakes, can be obtained. In the present paper two case studies are reported. The first one deals with the identification of the provenance of clay used to make ceramic materials, mostly bricks and tiles, recovered from the excavation of a Roman 'villa' in Lomello (Roman name Laumellum) and of Roman settlings in Casteggio (Roman name Clastidium). Both sites are located in the Province of Pavia in areas called Lomellina and Oltrepo respectively. The second one investigates the origin of the white marble used to build medieval arks, Carolingian age, located in the church of San Felice, now property of the University of Pavia. Experimental set-up, analytical results and data reduction procedures are presented and discussed. (author)

  18. Inorganic constituents in herbal medicine by neutron activation analysis

    International Nuclear Information System (INIS)

    The demand for herbal medicines is growing worldwide. The expansion of interest has required the standardization of the sector with implementation and constant review of technical standards for production and marketing of these medicines in order to ensure the safe use, therapeutic efficacy and quality of the products. According to data from the World Health Organization, approximately 80% of world population has resorted to the benefits of certain herbs with therapeutic action popularly recognized. Despite the vast flora and the extensive use of medicinal plants by the population, it is a consensus that scientific studies on the subject are insufficiency. Therefore, it is necessary to stimulate such studies in view of the importance of the results of both individual and social field. The determination of major, minor and trace elements and the research of metabolic processes and their impacts on human health are of great importance due to the growth of environmental pollution that directly affects the plants and therefore the phytotherapics. Therefore, the objective of this work was to determine the content of inorganic constituents in herbal medicine: moisture, total ash and the elements As, Ba, Br, Ca, Cs, Co, Cr, Fe, Hf, K, Na, Rb, Sb, Sc, Se, Ta, Th, U, Zn and Zr by neutron activation analysis in order to verify the quality of the products. It was observed that the elemental concentrations varied in a wide range from plant to plant and elements with higher concentrations were Ba, Fe, Cr and Zn. (author)

  19. Elementary concentration of Peruibe black mud by neutron activation analysis

    International Nuclear Information System (INIS)

    The Peruibe Black Mud is used in therapies such as psoriasis, peripheral dermatitis, acne, seborrehea, myalgia arthritis and rheumatic non-articular processes. This material is characterized by is fine organic matter particles, sulphate reducing bacteria and a high content of potential reduction ions. Although this material is particles, sulphate reducing bacteria and a high content of potential reduction ions. Although this material is considered natural, it may not be free of possible adverse health effects, like toxic chemical elements, when used for therapeutic purposes. In the therapeutic treatments involving clays, clays are used in mud form also called peloids, obtained by maturation process. Five in natura and three maturated Black Mud samples were collected in Peruibe city, Sao Paulo State, Brazil. To investigate the distribution of major, trace and rare earth elements in the in natura and maturated clays that constitute the Peruibe Black Mud, neutron activation analysis (NAA) was used. A comparison between in natura and maturated mud shows that major, trace and rare earth elements follow the same order in both types. Generally, the concentrations in the maturated mud are slightly lower than in natura mud. Enrichment on the upper continental crust could be observed for the elements As, Br, Sb and Se, in these types of mud. (author)

  20. Essential trace elements in edible mushrooms by Neutron Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Moura, Patricia L.C.; Maihara, Vera A.; Castro, Lilian P. de [Instituto de Pesquisa e Energetica e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mail: patricialandim@ig.com.br; vmaihara@ipen.br; lilian.Pavanelli@terra.com.br; Figueira, Rubens C.L. [Universidade Cruzeiro do Sul, Sao Paulo, SP (Brazil)]. E-mail: figueiraru@yahoo.com.br

    2007-07-01

    Mushrooms are excellent nutritional sources since they provide proteins, fibers and mineral, such as K, P, Fe. They have also been the focus of medical research. In Brazil mushrooms are not consumed in large quantities by the general population since people know little about the nutritional and medicinal benefits that mushrooms offer. Hence, this study intends to contribute to a better understanding of the essential element content in edible mushrooms, which are currently commercialized in Sao Paulo state. Br Fe, K, Na and Zn concentrations were determined by Instrumental Neutron Activation Analysis in the following mushroom species: Shitake (Lentinus edodes), Shimeji (Pleurotus ssp), Paris Champignon (Agaricus bisporus), Hiratake ( Pleurotus ssp) and Eringue (Pleurotus Eryngu. The mushroom samples were acquired from commercial establishments in the city of Sao Paulo and directly from the producers. Essential element contents in mushrooms varied between Br 0.03 to 4.1 mg/kg; Fe 20 to 267 mg/kg; K 1.2 to 5.3 g/kg, Na 10 to 582 mg/kg and Zn 60 to 120 mg/kg. The results confirm that mushrooms can be considered a good source of K, Fe and Zn. The low Na level is a good nutritional benefit for the consumer. (author)

  1. Inorganic constituents in herbal medicine by neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Rodolfo D.M.R.; Francisconi, Lucilaine S.; Silva, Paulo S.C. da, E-mail: pscsilva@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN- SP), Sao Paulo, SP (Brazil)

    2011-07-01

    The demand for herbal medicines is growing worldwide. The expansion of interest has required the standardization of the sector with implementation and constant review of technical standards for production and marketing of these medicines in order to ensure the safe use, therapeutic efficacy and quality of the products. According to data from the World Health Organization, approximately 80% of world population has resorted to the benefits of certain herbs with therapeutic action popularly recognized. Despite the vast flora and the extensive use of medicinal plants by the population, it is a consensus that scientific studies on the subject are insufficiency. Therefore, it is necessary to stimulate such studies in view of the importance of the results of both individual and social field. The determination of major, minor and trace elements and the research of metabolic processes and their impacts on human health are of great importance due to the growth of environmental pollution that directly affects the plants and therefore the phytotherapics. Therefore, the objective of this work was to determine the content of inorganic constituents in herbal medicine: moisture, total ash and the elements As, Ba, Br, Ca, Cs, Co, Cr, Fe, Hf, K, Na, Rb, Sb, Sc, Se, Ta, Th, U, Zn and Zr by neutron activation analysis in order to verify the quality of the products. It was observed that the elemental concentrations varied in a wide range from plant to plant and elements with higher concentrations were Ba, Fe, Cr and Zn. (author)

  2. Elementary concentration of Peruibe black mud by neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Torrecilha, Jefferson K.; Ponciano, Ricardo; Silva, Paulo S.C da, E-mail: jeffkoy@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil)

    2013-07-01

    The Peruibe Black Mud is used in therapies such as psoriasis, peripheral dermatitis, acne, seborrehea, myalgia arthritis and rheumatic non-articular processes. This material is characterized by is fine organic matter particles, sulphate reducing bacteria and a high content of potential reduction ions. Although this material is particles, sulphate reducing bacteria and a high content of potential reduction ions. Although this material is considered natural, it may not be free of possible adverse health effects, like toxic chemical elements, when used for therapeutic purposes. In the therapeutic treatments involving clays, clays are used in mud form also called peloids, obtained by maturation process. Five in natura and three maturated Black Mud samples were collected in Peruibe city, Sao Paulo State, Brazil. To investigate the distribution of major, trace and rare earth elements in the in natura and maturated clays that constitute the Peruibe Black Mud, neutron activation analysis (NAA) was used. A comparison between in natura and maturated mud shows that major, trace and rare earth elements follow the same order in both types. Generally, the concentrations in the maturated mud are slightly lower than in natura mud. Enrichment on the upper continental crust could be observed for the elements As, Br, Sb and Se, in these types of mud. (author)

  3. Neutron activation analysis of lipsticks using gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Neutron activation analysis with gamma-ray spectrometry was used to measure the concentrations of various elements in lipsticks of popular Indian and foreign brands. The aim of the present work was to study the possibility of existence of trace elements in samples of lipsticks (the ingredients of which are mostly organic in nature) and to see whether trace elements could distinguish lipsticks of different Indian and foreign brands from the forensic point of view apart from their inter-se differentiation. In the different samples of lipsticks that were analysed the following elements were detected: Au, Ba, Br, Ca, Cs, Fe, Na, Ru, Sb, Sc, Ta, Yb, Zn, Rb and Se. It was found that inter-se differentiation of lipsticks was possible on the basis of concentrations of trace elements and their profile. Concentration of bromine in samples of lipsticks identified lipsticks of different Indian brands. Samples of lipsticks of Indian and foreign brands could be differentiated on the basis of concentrations of cesium, antimony and scandium which were found to be higher in foreign brands as compared to those in Indian brands. (authors)

  4. Residual Chromium in Leather by Instrumental Neutron Activation Analysis

    Directory of Open Access Journals (Sweden)

    S. Okoh

    2012-01-01

    Full Text Available Problem statement: Most tanning processes employ the use of chromium sulphate. For chromium tanned leather, finished products may contain high amount of residual chromium. This may pose some health hazards, since chromium is known to be toxic at elevated concentration. This justifies the need for the study. Approach: Various samples of leather were collected from a tannery, a leather crafts market, a leather dump site and from local tanners all in Kano, Nigeria in 2009. The samples were irradiated for 6 h in the inner site of the Nigerian Research Reactor (NIRR-1 at a flux of 5×1011 ncm-2 sec-1. Results: After evaluating the spectrum, the mean results for chromium in the samples were determined as 2.33±0.3, 2.23±0.3 and 2.93±0.4% for samples from the tannery, leather crafts market and leather dump sites respectively. Chromium concentration in samples collected from local tanners who use tannins from Acacia nilotica as tanning agent was below the detection limit of Instrumental Neutron Activation Analysis (INAA technique used in the study. Conclusion: Although, the concentrations of chromium in the analysed samples were not much higher than what were obtained in literature, they may be enough to sensitize the population that is allergic to chromium.

  5. Calculation of thermal neutron self-shielding correction factors for aqueous bulk sample prompt gamma neutron activation analysis using the MCNP code

    Energy Technology Data Exchange (ETDEWEB)

    Nasrabadi, M.N. [Department of Physics, Faculty of Science, University of Kashan, Km. 6, Ravand Road, Kashan (Iran, Islamic Republic of)], E-mail: mnnasri@kashanu.ac.ir; Jalali, M. [Isfahan Nuclear Science and Technology Research Institute, Atomic Energy organization of Iran (Iran, Islamic Republic of); Mohammadi, A. [Department of Physics, Faculty of Science, University of Kashan, Km. 6, Ravand Road, Kashan (Iran, Islamic Republic of)

    2007-10-15

    In this work thermal neutron self-shielding in aqueous bulk samples containing neutron absorbing materials is studied using bulk sample prompt gamma neutron activation analysis (BSPGNAA) with the MCNP code. The code was used to perform three dimensional simulations of a neutron source, neutron detector and sample of various material compositions. The MCNP model was validated against experimental measurements of the neutron flux performed using a BF{sub 3} detector. Simulations were performed to predict thermal neutron self-shielding in aqueous bulk samples containing neutron absorbing solutes. In practice, the MCNP calculations are combined with experimental measurements of the relative thermal neutron flux over the sample's surface, with respect to a reference water sample, to derive the thermal neutron self-shielding within the sample. The proposed methodology can be used for the determination of the elemental concentration of unknown aqueous samples by BSPGNAA where knowledge of the average thermal neutron flux within the sample volume is required.

  6. Road to J-PARC from JRR2. 50 years' history for neutron scattering research activity in Japan

    International Nuclear Information System (INIS)

    Neutron diffraction researches in Japan started more than 30 years after the discovery of neutrons in 1932, when intense thermal neutrons were delivered in Japan from JRR2 of the research reactor. Today, the most intense pulsed neutrons in the world can be supplied at J-PARC facility in Tokai and various neutron scattering research have been developed. This article covers the road of the research activities from JRR2 to J-PARC for about a half century, which may contain a guide for future developments in Japanese neutron scattering activities. (author)

  7. An Analysis Technique for Active Neutron Multiplicity Measurements Based on First Principles

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Louise G [Los Alamos National Laboratory; Goddard, Braden [Los Alamos National Laboratory; Charlton, William S [Los Alamos National Laboratory; Peerani, Paolo [European Commission, EC-JRC-IPSC

    2012-08-13

    Passive neutron multiplicity counting is commonly used to quantify the total mass of plutonium in a sample, without prior knowledge of the sample geometry. However, passive neutron counting is less applicable to uranium measurements due to the low spontaneous fission rates of uranium. Active neutron multiplicity measurements are therefore used to determine the {sup 235}U mass in a sample. Unfortunately, there are still additional challenges to overcome for uranium measurements, such as the coupling of the active source and the uranium sample. Techniques, such as the coupling method, have been developed to help reduce the dependence of calibration curves for active measurements on uranium samples; although, they still require similar geometry known standards. An advanced active neutron multiplicity measurement method is being developed by Texas A&M University, in collaboration with Los Alamos National Laboratory (LANL) in an attempt to overcome the calibration curve requirements. This method can be used to quantify the {sup 235}U mass in a sample containing uranium without using calibration curves. Furthermore, this method is based on existing detectors and nondestructive assay (NDA) systems, such as the LANL Epithermal Neutron Multiplicity Counter (ENMC). This method uses an inexpensive boron carbide liner to shield the uranium sample from thermal and epithermal neutrons while allowing fast neutrons to reach the sample. Due to the relatively low and constant fission and absorption energy dependent cross-sections at high neutron energies for uranium isotopes, fast neutrons can penetrate the sample without significant attenuation. Fast neutron interrogation therefore creates a homogeneous fission rate in the sample, allowing for first principle methods to be used to determine the {sup 235}U mass in the sample. This paper discusses the measurement method concept and development, including measurements and simulations performed to date, as well as the potential

  8. Present and Future Activities on Neutron Imaging in Argentina

    Science.gov (United States)

    Tartaglione, Aureliano; Blostein, Jerónimo; Cantargi, Florencia; Marín, Julio; Baruj, Alberto; Meyer, Gabriel; Santisteban, Javier; Sánchez, Fernando

    We present here a short review of the main work which has been done in the latest years in neutron imaging in Argentina, and the future plans for the development of this technique in the country, mainly focused in the design of a new neutron imaging instrument to be installed in the future research reactor RA10. We present here the results of the implementation of the technique in samples belonging to the Argentinean cultural heritage and experiments related with hydrogen storage. At the same time, the Argentinean RA10 project for the design and construction of a 30 MW multipurpose research reactor is rapidly progressing. It started to be designed by the National Atomic Energy Commission (CNEA) and the technology company INVAP SE, both from Argentina, in June 2010. The construction will start in the beginning of 2015 in the Ezeiza Atomic Center, at 36 km from Buenos Aires City, and is expected to be finished by 2020. One of the main aims of the project is to offer to the Argentinean scientific and technology system new capabilities based on neutron techniques. We present here the conceptual design of a neutron imaging facility which will use one of the cold neutron beams, and will be installed in the reactor hall. Preliminary simulation results show that at the farthest detection position, at about 17 m from the cold source, a uniform neutron beam on a detection screen with an intensity of about 108 n/cm2/s is expected.

  9. Fine structure of the age-chromospheric activity relation in solar-type stars. I. The Ca II infrared triplet: Absolute flux calibration

    Science.gov (United States)

    Lorenzo-Oliveira, D.; Porto de Mello, G. F.; Dutra-Ferreira, L.; Ribas, I.

    2016-10-01

    Context. Strong spectral lines are useful indicators of stellar chromospheric activity. They are physically linked to the convection efficiency, differential rotation, and angular momentum evolution and are a potential indicator of age. However, for ages > 2 Gyr, the age-activity relationship remains poorly constrained thus hampering its full application. Aims: The Ca II infrared triplet (IRT lines, λλ 8498, 8542, and 8662) has been poorly studied compared to classical chromospheric indicators. We report in this paper absolute chromospheric fluxes in the three Ca II IRT lines, based on a new calibration tied to up-to-date model atmospheres. Methods: We obtain the Ca II IRT absolute fluxes for 113 FGK stars from high signal-to-noise ratio (S/N) and high-resolution spectra covering an extensive domain of chromospheric activity levels. We perform an absolute continuum flux calibration for the Ca II IRT lines anchored in atmospheric models calculated as an explicit function of effective temperatures (Teff), metallicity ([Fe/H]), and gravities (log g) avoiding the degeneracy usually present in photometric continuum calibrations based solely on color indices. Results: The internal uncertainties achieved for continuum absolute flux calculations are ≈2% of the solar chromospheric flux, one order of magnitude lower than for photometric calibrations. Using Monte Carlo simulations, we gauge the impact of observational errors on the final chromospheric fluxes due to the absolute continuum flux calibration and find that Teffuncertainties are properly mitigated by the photospheric correction leaving [Fe/H] as the dominating factor in the chromospheric flux uncertainty. Conclusions: Across the FGK spectral types, the Ca II IRT lines are sensitive to chromospheric activity. The reduced internal uncertainties reported here enable us to build a new chromospheric absolute flux scale and explore the age-activity relation from the active regime down to very low activity levels and

  10. Two non-destructive neutron inspection techniques: prompt gamma-ray activation analysis and cold neutron tomography

    OpenAIRE

    Baechler, Sébastien; Dousse, Jean-Claude; Jolie, Jan

    2005-01-01

    Deux techniques d’inspection non-destructives utilisant des faisceaux de neutrons froids ont été développées à la source de neutrons SINQ de l’Institut Paul Scherrer : (1) l’analyse par activation neutronique prompte (PGAA) et (2) la tomographie neutronique. L’analyse par PGA (Prompt Gamma-ray Activation) est une méthode nucléaire qui permet de déterminer la concentration d’éléments présents dans un échantillon. Cette technique consiste à détecter les rayons gamma prompts émis par l’échantill...

  11. Praseodymium activation detector for measuring bursts of 14 MeV neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Meehan, Tim, E-mail: meehanbt@nv.doe.go [National Security Technologies, LLC, P.O. Box 98521, North Las Vegas, NV 89030 (United States); Hagen, E.C. [National Security Technologies, LLC, P.O. Box 98521, North Las Vegas, NV 89030 (United States); Ruiz, C.L.; Cooper, G.W. [Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185 (United States)

    2010-08-21

    A new, accurate, neutron activation detection scheme for measuring pulsed neutrons has been designed and tested. The detection system is sensitive to neutrons with energies above 10 MeV; importantly, it is insensitive to gamma radiation <10 MeV and to lower-energy (e.g., fission and thermal) neutrons. It is based upon the use of {sup 141}Pr, an element that has a single, naturally occurring isotope, a significant n,2n cross-section, and decays by positron emission that result in two coincident 511 keV photons. Neutron fluences are thus inferred by relating measured reaction product decay activity to fluence. Specific sample activity is measured using the sum-peak method to count gamma-ray coincidences from the annihilation of the positron decay products. The system was tested using 14 and 2.45 MeV neutron bursts produced by NSTec Dense Plasma Focus Laboratory fusion sources. Lead, copper, beryllium, and silver activation detectors were compared. The detection method allows measurement of 14 MeV neutron yield with a total error of {approx}18%.

  12. Proceedings of a specialists' meeting on neutron activation cross sections for fission and fusion energy applications

    International Nuclear Information System (INIS)

    These proceedings of a specialists' meeting on neutron activation cross sections for fission and fusion energy applications are divided into 4 sessions bearing on: - data needs: 4 conferences - experimental work: 11 conferences - theoretical work: 4 conferences - evaluation work: 5 conferences

  13. Prompt Gamma-Ray Neutron Activation Analysis (PGNAA) for Elemental Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Robin P. Gardner

    2006-04-11

    This research project was to improve the prompt gamma-ray neutron activation analysis (PGNAA) measurement approach for bulk analysis, oil well logging, and small sample thermal enutron bean applications.

  14. Studies on thermal neutron perturbation factor needed for bulk sample activation analysis

    CERN Document Server

    Csikai, J; Sanami, T; Michikawa, T

    2002-01-01

    The spatial distribution of thermal neutrons produced by an Am-Be source in a graphite pile was measured via the activation foil method. The results obtained agree well with calculated data using the MCNP-4B code. A previous method used for the determination of the average neutron flux within thin absorbing samples has been improved and extended for a graphite moderator. A procedure developed for the determination of the flux perturbation factor renders the thermal neutron activation analysis of bulky samples of unknown composition possible both in hydrogenous and graphite moderators.

  15. Teaching Absolute Value Meaningfully

    Science.gov (United States)

    Wade, Angela

    2012-01-01

    What is the meaning of absolute value? And why do teachers teach students how to solve absolute value equations? Absolute value is a concept introduced in first-year algebra and then reinforced in later courses. Various authors have suggested instructional methods for teaching absolute value to high school students (Wei 2005; Stallings-Roberts…

  16. Determination of cadmium in water samples by co-precipitation and neutron activation analysis

    International Nuclear Information System (INIS)

    For the determination of cadmium in sea water, a neutron activation analysis method involving a preconcentration step has been developed. Preconcentration is achieved by co-precipitation of cadmium dibenzyldithiocarbamate with phenolphthalein. The precipitate is collected on 0.45 μm membrane filters and cadmium is determined by instrumental neutron activation analysis. A 115mCd radio tracer was used to establish optimum conditions and to evaluate the chemical yield. (author) 14 refs.; 1 fig. ; 2 tabs

  17. JAEA − JRC collaboration on the development of active neutron NDA techniques

    OpenAIRE

    KURETA M.; Koizumi, M.; OHZU A.; Furutaka, K.; Tsuchiya, H.; SEYA M.; Harada, H.; ABOUSAHL Said; HEYSE JAN; Kopecky, Stefan; MONDELAERS Willy; PEDERSEN Bent; SCHILLEBEECKX Peter

    2015-01-01

    The Japan Atomic Energy Agency in collaboration with the Joint Research Centre of the European Commission started a program titled “Development of active neutron NDA techniques”. The program aims at developing an innovative non-destructive analysis (NDA) system for various applications in the field of nuclear safety, security and safeguards. A Non Destructive Analysis (NDA) system is proposed that is based on a combination of different active neutron interrogation techniques, i.e. DDA (Di...

  18. An active pixels spectrometers for neutronic fields metrology

    International Nuclear Information System (INIS)

    The fundamental metrology is responsible for the sustainability of the measurement systems and handles to supply the reference standards. Concerning the metrology of ionizing radiations and, in particular the neutron metrology, detectors standards are used to characterize reference fields, in terms of energy and fluence. The dosimeters or particle detectors are calibrated on these reference fields. This thesis presents the development of a neutron spectrometer neutron candidate to the status of primary standard for the characterization of neutron fields in the range from 5 to 20 MeV. The spectrometer uses the recoil proton telescope as detection principle; the CMOS technology, through three sensor positions, is taking advantage to realize the tracking of protons. A Si(Li) detector handles the measure of the residual proton energy. The device simulations, realized under MCNPX, allow to estimate its performances and to validate the neutron energy reconstruction. An essential step of characterization of the telescope elements and in particular of CMOS sensors is also proposed to guarantee the validity of posterior experimental measurements. The tests realized as well in mono-energy fields as in radionuclide source show the very good performances of the system. The quantification of uncertainties indicates an energy estimation with 1.5 % accuracy and a resolution of less than 6 %. The fluence measurement is performed with an uncertainty about 4 to 6%. (author)

  19. Neutron activation analysis as analytical tool of environmental issue

    International Nuclear Information System (INIS)

    Neutron activation analysis (NAA) ia applicable to the sample of wide range of research fields, such as material science, biology, geochemistry and so on. However, respecting the advantages of NAA, a sample with small amounts or a precious sample is the most suitable samples for NAA, because NAA is capable of trace analysis and non-destructive determination. In this paper, among these fields, NAA of atmospheric particulate matter (PM) sample is discussed emphasizing on the use of obtained data as an analytical tool of environmental issue. Concentration of PM in air is usually very low, and it is not easy to get vast amount of sample even using a high volume air sampling devise. Therefore, high sensitive NAA is suitable to determine elements in PM samples. Main components of PM is crust oriented silicate, and so on in rural/remote area, and carbonic materials and heavy metals are concentrated in PM in urban area, because of automobile exhaust and other anthropogenic emission source. Elemental pattern of PM reflects a condition of air around the monitoring site. Trends of air pollution can be traced by periodical monitoring of PM by NAA method. Elemental concentrations in air change by season. For example, crustal elements increase in dry season, and sea salts components increase their concentration when wind direction from sea is dominant. Elements that emitted from anthropogenic sources are mainly contained in fine portion of PM, and increase their concentration during winter season, when emission from heating system is high and air is stable. For further analysis and understanding of environmental issues, indicator elements for various emission sources, and elemental concentration ratios of some environmental samples and source portion assignment techniques are useful. (author)

  20. A software architectural framework specification for neutron activation analysis

    International Nuclear Information System (INIS)

    Neutron Activation Analysis (NAA) is a sensitive multi-element nuclear analytical technique that has been routinely applied by research reactor (RR) facilities to environmental, nutritional, health related, geological and geochemical studies. As RR facilities face calls to increase their research output and impact, with existing or reducing budgets, automation of NAA offers a possible solution. However, automation has many challenges, not the least of which is a lack of system architecture standards to establish acceptable mechanisms for the various hardware/software and software/software interactions among data acquisition systems, specialised hardware such as sample changers, sample loaders, and data processing modules. This lack of standardization often results in automation hardware and software being incompatible with existing system components, in a facility looking to automate its NAA operations. This limits the availability of automation to a few RR facilities with adequate budgets or in-house engineering resources. What is needed is a modern open system architecture for NAA, that provides the required set of functionalities. This paper describes such an 'architectural framework' (OpenNAA), and portions of a reference implementation. As an example of the benefits, calculations indicate that applying this architecture to the compilation and QA steps associated with the analysis of 35 elements in 140 samples, with 14 SRM's, can reduce the time required by over 80 %. The adoption of open standards in the nuclear industry has been very successful over the years in promoting interchangeability and maximising the lifetime and output of nuclear measurement systems. OpenNAA will provide similar benefits within the NAA application space, safeguarding user investments in their current system, while providing a solid path for development into the future. (author)

  1. Use of research reactors for neutron activation analysis. Report of an advisory group meeting

    International Nuclear Information System (INIS)

    Neutron activation analysis (NAA) is an analytical technique based on the measurement of characteristic radiation from radionuclides formed directly or indirectly by neutron irradiation of the material of interest. In the last three decades, neutron activation analysis has been found to be extremely useful in the determination of trace and minor elements in many disciplines. These include environmental analysis applications, nutritional and health related studies, geological as well as material sciences. The most suitable source of neutrons for NAA is a research reactor. There are several application fields in which NAA has a superior position compared to other analytical methods, and there are good prospects in developing countries for long term growth. Therefore, the IAEA is making concerted efforts to promote neutron activation analysis and at the same time to assist developing Member States in better utilization of their research reactors. The purpose of the meeting was to discuss the benefits and the role of NAA in applications and research areas that may contribute towards improving utilization of research reactors. The participants focused on five specific topics: (1) Current trends in NAA; (2) The role of NAA compared to other methods of chemical analysis; (3) How to increase the number of NAA users through interaction with industries, research institutes, universities and medical institutions; (4) How to reduce costs and to maintain quality and reliability; (5) NAA using low power research reactors. Neutron activation analysis in its various forms is still active and there are good prospects in developing countries for long-term growth. This can be achieved by a more effective use of existing irradiation and counting facilities, a better end-user focus, and perhaps marginal improvements in equipment and techniques. Therefore, it is recommended that the Member States provide financial and other assistance to enhance the effectiveness of their laboratories

  2. Application of active and passive neutron non destructive assay methods to concrete radioactive waste drums

    International Nuclear Information System (INIS)

    This paper deals with the application of non-destructive neutron measurement methods to control and characterize 200 l radioactive waste drums filled with a concrete matrix. Due to its composition, and particularly to hydrogen, concrete penalizes the use of such methods to quantify uranium (U) and plutonium (Pu) components, which are mainly responsible of the α-activity of the waste. The determination of the alpha activity is the main objective of neutron measurements, in view to verify acceptance criteria in surface storage. Calibration experiments of the Active Neutron Interrogation (ANI) method lead to Detection Limit Masses (DLM) of about 1 mg of 239Pueff in the total counting mode, and of about 10 mg of 239Pueff in the coincidence counting mode, in case of a homogeneous Pu source and measurement times between one and two hours. Monte Carlo calculation results show a very satisfactory agreement between experimental values and calculated ones. Results of the application of passive and active neutron methods to control two real drums are presented in the last part of the paper. They show a good agreement between measured data and values declared by the waste producers. The main difficulties that had to be overcome are the low neutron signal in passive and active coincidence counting modes due to concrete, the analysis of the passive neutron signal in presence of 244Cm in the drum, which is a strong spontaneous fission neutron emitter, the variation of the active background with the concrete composition, and the analysis of the active prompt neutron signal due to the simultaneous presence of U and Pu in the drums.

  3. Utilization of recycled neutron source to teach prompt gamma analysis activation-PGNA

    Science.gov (United States)

    Delgado-Correal, Camilo; Munera, Hector

    2008-03-01

    Neutron activation analysis based on prompt gamma ray emission has significantly developed during the past twenty years. The technique is particularly suited for the identification of low atomic number elements, as nitrogen that is a main component of drugs and explosives. Identification of these substances is important in the context of humanitarian demining, and in the control of illicit traffic of drugs and explosives. As a good example of recycling of radioactive sources, a ^241Am-Be neutron source emitting 10^7neutron/s, that was not longer in use for other purposes at Ingeominas, was used to build a neutron irradiator that can be used to teach prompt gamma ray analysis, and other nuclear techniques. We irradiated individual samples, each about 4 gram, of three different elements: nitrogen in urea, silicon in milled rock, and cadmium in cadmium oxide. The prompt gamma rays emitted in the nuclear reactions ^112Cd (neutron,gamma) ^113Cd, ^28Si (neutron,gamma) ^29Si and ^14N (neutron,gamma) ^15N were identified using a well-type NaI (Tl) detector, connected to a multi-channel analyzer.

  4. Applications of neutron activation analysis in agriculture of Uzbekistan

    International Nuclear Information System (INIS)

    Full text: Soil is one of the main components of biosphere, which is subject to Man's economic activity from year to year. Unfortunately, during last 50-60years it became an object of the chemization (the treatment of crop by poison chemicals and the usage of mineral fertilizers).Thus, definite pre-conditions are created to migrate to substances applied along the soil horizon. These substances fall into organism of Man and animals through soil-contacting media: plants, air, water. In this respect the instrumental neutron-activation techniques which allows determination of about 40 chemical elements in soils and other objects of environment, with detection limit equal to 0.001-10.0mg/kg and not more than 30% uncertainty, are provided with the Ge -detector (the Canberra firm). The report discusses some metrological points of INAA concerning the objects of environment, in particular, the influence of space-time non-uniformity of chemical element distributions on the reliability of analysis results. The elaborated techniques make it possible to: - establish the elemental composition of soils, cotton, natural waters, mineral fertilizers, aerosol dust of near land layer of various climatic zones of Uzbekistan, including the airs around the Aral sea. - study of the interrelation between the soil elemental composition and the chemism in the evolution of pathological processes - find the correlation between the cotton returns and Mn contents in soils and to elaborate on this base a new way to value the presown grain quality - choose the wall material of ancient monuments of a region, which were not strongly subjected to ecological impact, as standards to monitor the background of chemical elements in soils - value the ecologically agrochemical conditions of soils for main cotton-sawing zones of Uzbekistan - perform a large scale mapping of soils to find the Mn contents and to elaborate the technology of introduction of Mn - containing microfertilizers - estimate the

  5. Survey on Neutron Activation Analysis Activities at the Dalat Nuclear Research Centre

    International Nuclear Information System (INIS)

    The Dalat Nuclear Research Centre (D.N.R.C.) during the past few years has been involved in conducting an activation analysis service. Work has been carried out in collaboration with other organizations. However, no rigid research programme of our own has been established and thus the Radiochemistry Division of the D.N.R.C. has no personnel and special facilities permanently engaged in this field. The equipment and facilities used are shared with other activities within the Division and the whole Centre. The activities in neutron activation analysis at the D.N.R.C. are sporadically revived by requests for analysis. Up to now, such analyses have been performed free of charge. Most of the work was carried out on biological materials such as vegetables, raw natural rubber (RES smoked sheets of different qualities, crepes and dried rubber films obtained from concentrated natural latex) from hevea tree leaves from various clones

  6. Research activities on dosimetry for high energy neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Yasuhiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    The external dosimetry research group of JAERI has been calculating dose conversion coefficients for high-energy radiations using particle transport simulation codes. The group has also been developing radiation dose measurement techniques for high-energy neutrons in collaboration with some university groups. (author)

  7. Development of the prototype pneumatic transfer system for ITER neutron activation system.

    Science.gov (United States)

    Cheon, M S; Seon, C R; Pak, S; Lee, H G; Bertalot, L

    2012-10-01

    The neutron activation system (NAS) measures neutron fluence at the first wall and the total neutron flux from the ITER plasma, providing evaluation of the fusion power for all operational phases. The pneumatic transfer system (PTS) is one of the key components of the NAS for the proper operation of the system, playing a role of transferring encapsulated samples between the capsule loading machine, irradiation stations, counting stations, and disposal bin. For the validation and the optimization of the design, a prototype of the PTS was developed and capsule transfer tests were performed with the developed system.

  8. Passive and Active Fast-Neutron Imaging in Support of Advanced Fuel Cycle Initiative Safeguards Campaign

    Energy Technology Data Exchange (ETDEWEB)

    Blackston, Matthew A [ORNL; Hausladen, Paul [ORNL

    2010-04-01

    Results from safeguards-related passive and active coded-aperture fast-neutron imaging measurements of plutonium and highly enriched uranium (HEU) material configurations performed at Idaho National Laboratory s Zero Power Physics Reactor facility are presented. The imaging measurements indicate that it is feasible to use fast neutron imaging in a variety of safeguards-related tasks, such as monitoring storage, evaluating holdup deposits in situ, or identifying individual leached hulls still containing fuel. The present work also presents the first demonstration of imaging of differential die away fast neutrons.

  9. Egypt: Overview of activities on Neutron Imaging (NI) and Cultural Heritage (CH) studies

    International Nuclear Information System (INIS)

    Egypt Second Research Reactor (ETRR-2) is a pool-type reactor with an open water surface and variable core arrangement. The core power is 22 MWth cooled by light water, moderated by water and with beryllium reflectors. The design concept is based on the requirement of being a reactor of versatile utilizations, It has been mainly designed for: Basic and applied research in reactor physics and nuclear engineering, neutron radiography for research and industrial purpose, radioisotope production for medical and industrial purposes, beam hole experimentation for neutron scattering experiments and neutron radiography, material testing, material irradiation, activation analysis and training of scientific and technical personnel

  10. Neutron field for activation experiments in horizontal channel of training reactor VR-1

    International Nuclear Information System (INIS)

    The experimental channels of nuclear reactors often serve for nuclear data measurement and validation. The dosimetry-foils activation technique was employed to measure neutron field parameters in the horizontal radial channel of the training reactor VR-1, and to test the possibility of using the reactor for scientific purposes. The reaction rates, energy spectral indexes, and neutron spectrum at several irradiation positions of the experimental channel were determined. The experimental results show the feasibility of the radial channel for irradiating experiments and open new possibilities for data validation by using this nuclear facility. - Highlights: • Neutron activation analysis of various samples. • Neutron spectrometry and gamma-spectrometry. • Study of keff for various types of reactor core

  11. Modern Trends in Neutron Activation Analysis. Applications to some African Environmental Samples

    International Nuclear Information System (INIS)

    This review covers the results of several published articles which deal with the modern trends in neutron activation analysis techniques using some of African research reactors for some environmental samples. The samples used have been collected from different areas in Egypt, South Africa, Ghana, Morocco, Nigeria, and Algeria. The neutron irradiation facilities and the advanced detection systems in each country are outlined. The prompt and delayed gamma-rays emitted due to neutron capture have been applied for investigation of the elemental constituents of such samples. Covered applications include exploration, mining, industrial environment, pollution of air, foodstuffs, soils and irrigation water samples. Some of the developed software programmes as well as the modern methods of data analysis are presented. The thermal and epithermal neutron activation analysis techniques have been applied for estimation of major, minor and trace elements in each material. Some of these data are presented with several comments.

  12. Study on active control methods. Part 3. ; Absolute vibration control system'' by modern control theory. Active seishin gijutsu ni kansuru kenkyu. 3. ; Gendai seigyo wo mochiita zettai seishin ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Kageyama, M.; Nohata, A.; Teramura, A.; Yasui, Y.; Okada, H. (Obayashi Corp., Tokyo (Japan))

    1991-08-10

    The absolute vibration control method by advanced optimal regulator theory was studied in order to reduce the acceleration response of a base-isolated building by active control at the base to hold the building in absolute space. The optimal regulator theory is originally a control method based on the feedback control theory. In the present study, however, application of the feedforward control theory, which is indispensable to the absolute vibration control, was also investigated. The performance by using this control method, in which large conventional actuators were applied to an actual base-isolated building, was analytically compared with that by the classic control method used from the past. As a result, it was found that this control method had a better effect compared with the classic control method. It is considered that absolute vibration control by a generally-used type of large-sized actuator is possible even at the time of a major earthquake. 5 refs., 19 figs.

  13. Application of active neutronic interrogation method to the line analysis in reprocessing plant

    International Nuclear Information System (INIS)

    In a reprocessing plant of irradiated spent fuels, the knowledge in real time (line analysis) of uranium and plutonium quantities present in solutions is an extremely important parameter to control the proceeding and for the apparatus safety. The active neutronic analysis give a nondestructive non intrusive and quick measure to know the concentrations. This method consists in inducing fissions in nuclides with a neutron source and then to detect the particles which come from

  14. Transmission measurements of guides for ultra-cold neutrons using UCN capture activation analysis of vanadium

    Energy Technology Data Exchange (ETDEWEB)

    Frei, A., E-mail: Andreas.Frei@ph.tum.d [Technische Universitaet Muenchen, Physik Department, 85748 Garching (Germany); Schreckenbach, K.; Franke, B.; Hartmann, F.J.; Huber, T.; Picker, R.; Paul, S. [Technische Universitaet Muenchen, Physik Department, 85748 Garching (Germany); Geltenbort, P. [Institut Laue-Langevin, 38042 Grenoble (France)

    2010-01-01

    The efficient transport of ultra-cold neutrons (UCN) from their source to the experimental site is a major issue for various kinds of precision experiments. Neutron guides often have to transport the UCN several tens of meters with acceptable losses. In order to qualify the guides, their UCN transmission properties have to be determined with high precision. For this purpose we have developed a novel method. The transmitted UCN were absorbed at the end of the guide in a vanadium disc producing the {beta}-emitter {sup 52} V (half life 3.74 min). The intensity of the 1434 keV {gamma}-ray following the {beta}-decay was measured. UCN guides of non-magnetic nickel alloys made by the replication technique were studied. They show a high Fermi pseudopotential V{sub F} for UCN and a low surface roughness. For these guides the transmission per meter was determined with a relative error of +-0.6%, resulting in values above 0.95/m. By an absolute calibration of the gamma-ray detection system we also deduced the absolute value of the UCN current absorbed in the vanadium plate. Possible applications of this method are discussed.

  15. Recent progress of neutronics experiments

    International Nuclear Information System (INIS)

    The reflected neutrons from pure cement bombarded by D-T and D-D fusion neutrons, and 252Cf spontaneous fission neutrons were studied using the methods of nuclear activation and uranium fission. The absolute activation reaction rates of six kinds of foils with high threshold energy, and the absolute fission reaction rates of 235U (wrapped by cadmium) and 238U nuclides, were measured. The angular neutron spectra from polyethylene slabs with thicknesses of 4.5, 9, 18, and 27 cm were measured using the method of proton recoil. The neutron energy spectra above 1 MeV were also measured this way in the multi-shell assembly which was made of beryllium, stainless steel and polyethylene. The measuring positions were 0, 9.7,12.8 and 17.3 cm away from the center of the assembly. By the relative measurement method with an Al sample, the (n, 2n) reaction cross sections of Ru and Y nuclides were obtained. The experimental uncertainties in all the results were analyzed. (authors)

  16. Active Neutron and Gamma-Ray Instrumentation for In Situ Planetary Science Applications

    Science.gov (United States)

    Parsons, A.; Bodnarik, J.; Evans, L.; Floyd, A.; Lim, L.; McClanahan, T.; Namkung, M.; Nowicki, S.; Schweitzer, J.; Starr, R.; Trombka, J.

    2011-01-01

    We describe the development of an instrument capable of detailed in situ bulk geochemical analysis of the surface of planets, moons, asteroids, and comets. This instrument technology uses a pulsed neutron generator to excite the solid materials of a planet and measures the resulting neutron and gamma-ray emission with its detector system. These time-resolved neutron and gamma-ray data provide detailed information about the bulk elemental composition, chemical context, and density distribution of the soil within 50 cm of the surface. While active neutron scattering and neutron-induced gamma-ray techniques have been used extensively for terrestrial nuclear well logging applications, our goal is to apply these techniques to surface instruments for use on any solid solar system body. As described, experiments at NASA Goddard Space Flight Center use a prototype neutron-induced gamma-ray instrument and the resulting data presented show the promise of this technique for becoming a versatile, robust, workhorse technology for planetary science, and exploration of any of the solid bodies in the solar system. The detection of neutrons at the surface also provides useful information about the material. This paper focuses on the data provided by the gamma-ray detector.

  17. Eosinophil count - absolute

    Science.gov (United States)

    Eosinophils; Absolute eosinophil count ... the white blood cell count to give the absolute eosinophil count. ... than 500 cells per microliter (cells/mcL). Normal value ranges may vary slightly among different laboratories. Talk ...

  18. Determination of Lithium by Instrumental Neutron Activation Analysis

    DEFF Research Database (Denmark)

    Heydorn, Kaj; Skanborg, Preben Zacho; Gwozdz, R.;

    1977-01-01

    The fast transfer system in the DR 2 reactor for irradiation at a thermal neutron flux density of 1013 n·cm−2·sec−1 was used for the determination of lithium by the7Li(n, γ)8Li reaction. β-counting with a large perspex Cerenkov detector begun at 0.3 s after the end of irradiation, and multi...

  19. Applications of short-lived activation products in neutron activation analysis of bio-environmental specimens

    International Nuclear Information System (INIS)

    This report discusses the advantages and disadvantages, special techniques, and actual and potential applications of neutron activation analysis (NAA) utilizing short-lived neutron-induced products, with special reference to the analysis of samples of biological and environmental origin. Attention is devoted mainly to products having half-lives in roughly the range of 10 milliseconds to 60 seconds, but with some discussion of the usefulness of even shorter-lived species, and ones with half-lives as long as a few minutes. Important aspects of the analytical methodology include sample preparation, irradiation/transfer systems, activity measurements, data processing and analytical quality assurance. It is concluded that several trace elements can be determined in bio-environmental samples (as well as in samples of industrial, geochemical and other origin). In particular, this method provides analytical possibilities for several elements (e.g. B, F, Li and V) that are difficult to determine in some matrices at trace levels by any other technique. These conclusions are illustrated in an annex by results of calculations in which the applicability of the techniques to the analysis of several biological and environmental reference materials is evaluated by means of an advance computer prediction program. The report concludes with an annotated bibliography of relevant publications (including abstracts, where available) taken from the INIS database. (author)

  20. A simple and fast method for the determination of active ingredient in antiperspirant cosmetics by neutron activation analysis

    International Nuclear Information System (INIS)

    Antiperspirant cosmetics are tested for their active ingredient (aluminium chlorohydroxide) by conventional analytical techniques. Aluminium has been determined by instrumental neutron activation analysis in all antiperspirant products and package forms available in the Greek market in order to develop a simple and fast method for quantization. The results show that neutron activation analysis could be established as an official method for the determination of active ingredient in antiperspirant cosmetics. The proposed method is compared with the existing official methods and an alternative sampling method for aerosol package is presented. (author)

  1. Multiple-Coincidence Active Neutron Interrogation of Fissionable Materials

    Energy Technology Data Exchange (ETDEWEB)

    Tinsley, J.R., Hurley, J.P., Trainham, R., Keegan, R.P.

    2008-11-14

    In an extension of the Associated Particle Imaging technique that is used for the detection and imaging of hidden explosives, the present measurements use a beam of tagged 14.1 MeV neutrons in coincidence with two or more gammas to probe for the presence of fissionable materials. We have measured neutron-gamma-gamma coincidences with targets of depleted uranium, tungsten, lead, iron, and carbon and will present results that show the multiple-coincidence counting rate for the depleted uranium is substantially higher than any of the non-fissionable materials. In addition, the presence of coincidences involving delayed particle spectra provides a signature for fissionable materials that is distinct from that for non-fissionable ones. Information from the tagged neutron involved in the coincidence event is used to compute the position of the fissionable material in all three dimensions. The result is an imaging probe for fissionable materials that is compact and portable, and produces relatively low levels of background radiation. Simultaneous measurements on packages of interest for both explosives and fissionable materials are now feasible.

  2. Elemental analysis of some West Malaysian limestones using neutron activation, delayed neutron and electron microprobe analysis

    International Nuclear Information System (INIS)

    Limestone stratigraphy in Malaysia has been and is dependent almost entirely in palaeontology. However fossil localities are sporadic and as such a new fossil discovery mean the necessity for a complete re-appraisal of the stratigraphy. The almost complete dependence upon palaeontology results from the difficulties of stratigraphy correlation of isolated outcrops, from the cover of tropical vegetation and from the often complex folding and faulting which has been imposed on the geosyn-clinical rocks by the Indonesian-Thai-Malayan orogeny. So by studying the elemental composition of limestones accurately, we would be able to correlate outcrops and other stratigraphic samples independent of fossil finds. The use of delayed neutron analysis would also determine the concentration of uranium and thorium accurately. This study, in conjunction with thermoluminescence and fission track studies, would able us to date the age of the limestones

  3. Development of Enhanced, Permanently-Installed, Neutron Activation Diagnostic Hardware for NIF

    Science.gov (United States)

    Edwards, E. R.; Jedlovec, D. R.; Carrera, J. A.; Yeamans, C. B.

    2016-05-01

    Neutron activation diagnostics are baseline neutron yield and flux measurement instruments at the National Ignition Facility. Up to 19 activation samples are distributed around the target chamber. Currently the samples must be removed to be counted, creating a 1-2 week data turn-around time and considerable labor costs. An improved system consisting of a commercially available LaBr3(Ce) scintillator and Power over Ethernet electronics is under development. A machined zirconium-702 cap over the detector is the activation medium to measure the 90Zr(n,2n)89Zr reaction. The detectors are located at the current neutron activation diagnostic sites and monitored remotely. Because they collect data in real time yield values are returned within a few hours after a NIF shot.

  4. Neutron Activation Analysis of Soil Samples from Different Parts of Edirne in Turkey*

    Science.gov (United States)

    Zaim, N.; Dogan, C.; Camtakan, Z.

    2016-05-01

    The concentrations of constituent elements were determined in soil samples collected from different parts of the Maritza Basin, Edirne, Turkey. Neutron activation analysis, an extremely accurate technique, and the comparator method (using a standard) were applied for the first time in this region. After preparing the soil samples for neutron activation analysis, they were activated with thermal neutrons in a nuclear reactor, TRIGA-MARK II, at Istanbul Technical University. The activated samples were analyzed using a high-efficiency high-purity germanium detector, and gamma spectrometry was employed to determine the elemental concentration in the samples. Eight elements (chromium, manganese, cobalt, zinc, arsenic, molybdenum, cadmium, and barium) were qualitatively and quantitatively identified in 36 samples. The concentrations of some elements in the soil samples were high compared with values reported in the literature.

  5. Neutron activation analysis with k{sub 0}-standardisation : general formalism and procedure

    Energy Technology Data Exchange (ETDEWEB)

    Pomme, S.; Hardeman, F. [Centre de l`Etude de l`Energie Nucleaire, Mol (Belgium); Robouch, P.; Etxebarria, N.; Arana, G. [European Commission, Joint Research Centre, Institute for Reference Materials and Measurements, Geel (Belgium)

    1997-09-01

    Instrumental neutron activation analysis (INAA) with k{sub 0}-standardisation is a powerful tool for multi-element analysis at a broad range of trace element concentrations. An overview is given of the basic principles, fundamental equations, and general procedure of this method. Different aspects of the description of the neutron activation reaction rate are discussed, applying the Hogdahl convention. A general activation-decay formula is derived and its application to INAA is demonstrated. Relevant k{sub 0}-definitions for different activation decay schemes are summarised and upgraded to cases of extremely high fluxes. The main standardisation techniques for INAA are discussed, emphasizing the k{sub 0}-standardisation. Some general aspects of the basic equipment and its calibration are discussed, such as the characterisation of the neutron field and the tuning of the spectrometry part. A method for the prediction and optimisation of the analytical performance of INAA is presented.

  6. Neutron activation determination of gold in technogenic raw materials with different mineral composition

    Directory of Open Access Journals (Sweden)

    Yudakov Aleksandr A.

    2015-01-01

    Full Text Available The methods used to determine the gold content in the technogenic objects of gold mining were analyzed regarding their non-homogeneity and complexity of chemical and mineral compositions. A possible application of the neutron activation analysis with the use of the californium source of neutrons for determining the content of fine-grained and extra-fine-grained gold in the technogenic objects, including the bottom-ash waste of energy providers, is considered. It was demonstrated that the chemical composition of the sample affects the neuron flux distribution in the sample, which can essentially distort the results of the neutron activation analysis. In order to eliminate possible systematic errors investigations of the effect of the sample mineral composition on the results of the gold determination using the neutron activation analysis were carried out. Namely, a large mass of rock (3-5 kg was loaded into an activation zone using four matrix types such as silicate, carbon-containing, iron-containing, and titanium magnetite. It was shown that there wereno significant difference between the dispersal of the fluxes of thermal and resonance neutrons emitted from 252Cf during activation of the gold-containing technogenic samples with different mineral compositions.

  7. Neutron activation analysis for the determination of contaminants in food contact materials

    International Nuclear Information System (INIS)

    A neutron activation method has been developed for the analysis of high density polyethylene, low density polyethylene,polypropylene, polyethylene terephthalate and polystyrene. Samples weighing 2-5 g were irradiated in a thermal neutron flux of 1016 neutrons m-2 s-1 and measured with gamma ray spectrometry for 64 elements. With the method developed here over 50 elements can be detected at concentrations below 1 mg/kg. Correction factors were applied for neutron flux variation and counting geometry. The method was validated using reference material citrus leaves (NIST) for Na, Mg, Al, K, Ca, Mn, Cu, Sr and I, and a suite of 'in house' standards doped with Al, Cr, Co, Mg, Zn and Sb confirmed repeatability of the method was used to measure inorganic contaminants in the raw polymers and retail samples of plastic packaging used in contact with food. (author). 3 refs., 6 tabs

  8. Benchmarking of activation reaction distribution in an intermediate energy neutron field.

    Science.gov (United States)

    Ogawa, Tatsuhiko; Morev, Mikhail N; Hirota, Masahiro; Abe, Takuya; Koike, Yuya; Iwai, Satoshi; Iimoto, Takeshi; Kosako, Toshiso

    2011-07-01

    Neutron-induced reaction rate depth profiles inside concrete shield irradiated by intermediate energy neutron were calculated using a Monte-Carlo code and compared with an experiment. An irradiation field of intermediate neutron produced in the forward direction from a thick (stopping length) target bombarded by 400 MeV nucleon(-1) carbon ions was arranged at the heavy ion medical accelerator in Chiba. Ordinary concrete shield of 90 cm thickness was installed 50 cm downstream the iron target. Activation detectors of aluminum, gold and gold covered with cadmium were inserted at various depths. Irradiated samples were extracted after exposure and gamma-ray spectrometry was performed for each sample. Comparison of experimental and calculated shows good agreement for both low- and high-energy neutron-induced reaction except for (27)Al(n,X)(24)Na reaction at the surface. PMID:21515619

  9. 3D neutronic calculations: CAD-MCNP methodology applied to vessel activation in KOYO-F

    Energy Technology Data Exchange (ETDEWEB)

    Herreras, Y; Cabellos, O; Perlado, J M [Instituto de Fusion Nuclear (DENIM)/ETSII/Universidad Politecnica, Madrid (Spain); Lafuente, A; Sordo, F [Universidad Politecnica de Madrid (UPM), Madrid (Spain)], E-mail: yuri@denim.upm.es

    2008-05-15

    This paper presents a methodology for 3D neutronic calculations suitable for complex and extensive geometries. The geometry of the system design is first fully modelled with a CAD program, and subsequently processed through a MCNP-CAD interface in order to generate an MCNP geometry file. Neutronic irradiation results are finally achieved running the MCNPX program, where the geometry input card used is directly the MCNP-CAD interface output. This methodology enables accurate neutronic calculations for complex geometries characterised by high detail levels. This procedure will be applied to the Fast Ignition Fusion Reactor KOYO-F to determine first neutron fluxes calculations along the blanket as well as the material activation in the reduced martensitic 9Cr-1Mo steel vessel.

  10. Beam characteristics of polychromatic diffracted neutrons used for prompt gamma activation analysis

    International Nuclear Information System (INIS)

    The neutron beam is fully characterized for the prompt gamma activation analysis facility at Hanaro in the Korea Atomic Energy Research Institute(KAERI). The facility uses thermal neutrons which are diffracted vertically from a horizontal beam port by a set of pyrolytic graphite(PG) crystals positioned at the Bragg angle of 45 .deg.. Neutron spectra, neutron flux and Cd-ratio are determined for the three extraction modes of diffracted beam by means of the theoretical and experimental efforts. To obtain theoretical result, the reflectivity of pyrolytic graphite is calculated in the diffraction model for mosaic crystal and the angular divergence after diffraction by mosaic crystal is estimated from Monte Carlo simulation. The time-of-flight spectrometer and gold activation wire are used for measuring the neutron spectra. Both the calculated and measured spectra have proven that the unique feature of polychromatic beam obtained by PG crystals are useful for PGAA. The thermal neutron flux of 7.9 x 107 n/cm2s and the Cd-ratio of 266 for gold have been achieved at the sample position while the reactor operates at 24MW. The uniformity of beam flux is 12% in the central 1 x 1 cm2 area. Finally, the beam is briefly characterized by the effective velocity and temperature which are determined by measuring the prompt γ-ray spectra for thin and thick boron samples

  11. Establishment and application of the cyclic neutron activation analysis method on mini-reactor

    International Nuclear Information System (INIS)

    Background: Instrument neutron activation analysis is a nondestructive analytic method. Some elements after irradiation produce short half-life radio-nuclides (<60 s), and others produce both long-lived and short-lived nuclides. For these short-lived nuclides, the single measurement has big error. Purpose: In order to reduce the error, cyclic neutron activation analysis can be used to improve the sensitivity. Methods: A device was designed to be connected to the sample transporter, detector and irradiation pipeline in the reactor, which can automatically control the irradiation time and counting time. According to the nuclear parameters of certain elements, irradiation time and counting time and cycle times were determined by experiment. Cyclic activation analysis method was established at the mini-reactor. Results: This paper studied cyclic activation analysis conditions of 17 kinds of element, and applied to the determination of actual samples. Cyclic epithermal neutron activation analysis (CENAA) method was discussed too. By the analysis of national standard reference materials, the reliability of this method was confirmed. Conclusion: Cyclic neutron activation analysis (CNAA) is an effective analytic method for only short life nuclide elements. For both short and long lived nuclides of elements, the cyclic activation analysis method can make the analytical cycle shorten, from a few days or several weeks to within a few minutes. Cyclic activation analysis has the advantages of high sensitivity, and its precision and accuracy are better than single short irradiation activation analysis. (authors)

  12. Self-shielding coefficient and thermal flux depression factor of voluminous sample in neutron activation analysis

    International Nuclear Information System (INIS)

    Full text: One of the major problems encountered during the irradiation of large inhomogeneous samples in performing activation analysis using neutron is the perturbation of the neutron field due to absorption and scattering of neutron within the sample as well as along the neutron guide in the case of prompt gamma activation analysis. The magnitude of this perturbation shown by self-shielding coefficient and flux depression depend on several factors including the average neutron energy, the size and shape of the sample, as well as the macroscopic absorption cross section of the sample. In this study, we use Monte Carlo N-Particle codes to simulate the variation of neutron self-shielding coefficient and thermal flux depression factor as a function of the macroscopic thermal absorption cross section. The simulation works was carried out using the high performance computing facility available at UTM while the experimental work was performed at the tangential beam port of Reactor TRIGA PUSPATI, Malaysia Nuclear Agency. The neutron flux measured along the beam port is found to be in good agreement with the simulated data. Our simulation results also reveal that total flux perturbation factor decreases as the value of absorption increases. This factor is close to unity for low absorbing sample and tends towards zero for strong absorber. In addition, sample with long mean chord length produces smaller flux perturbation than the shorter mean chord length. When comparing both the graphs of self-shielding factor and total disturbance, we can conclude that the total disturbance of the thermal neutron flux on the large samples is dominated by the self-shielding effect. (Author)

  13. Activation of Tl, Pb and Bi by 10-160 MeV neutrons: possible application to the analysis of Bi

    Energy Technology Data Exchange (ETDEWEB)

    Parekh, P.P.; Finston, H.L.

    1981-01-01

    The medium energy intense neutrons (MEIN) available at the Brookhaven Chemistry Linac Irradiation Facility have an energy distribution up to approx. 160 MeV and an effective neutron flux of approx. 1.3 x 10/sup 11/ cm/sup -2/ s/sup -1/. The present work explores the feasibility of using this facility for the analysis of Tl, Pb and Bi by activation with MEIN. The most sensitive reactions, from a practical standpoint, were found to be Tl (n, xn) /sup 200/Tl (x = 4, 6), Pb (n, xn) /sup 204//sup m/Pb (x = 0, 3, 4, 5) and /sup 209/Bi (n, 6n) /sup 204/Bi. The absolute sensitivities attainable with these reactions are 0.1, 0.05 and 0.08 ..mu..g of Tl, Pb and Bi respectively, for 1 h irradiation at 1.3 x 10/sup 11/ n cm/sup -2/ s/sup -1/ with samples counted 2 h after the end of irradiation. The advantages of the method over thermal neutron activation analysis are that all three elements can be assayed at the sub-microgram concentration levels by ..gamma..-spectrometry with the help of a simple radiochemical purificaton and the analytical results can be verified by cross checking via the multiple (n, xn) reaction products. However, interference from Bi in the determination of Pb and from Pb and Bi in the determination of Tl limits its usefulness to the analysis of Bi.

  14. Measurement of fast-neutron capture cross sections for 75As

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The cross sections of the 75As(n,γ)76As reaction were measured in the neutron energy range from 0.50 to 1.50 MeV by using the activation technique. Neutrons were produced via the T(p,n)3He reaction and the cross sections of the 197Au(n,γ)198Au reaction were used to determine the absolute neutron flux. Present results are compared with existing measurements and evaluations.

  15. Validation of MCNP NPP Activation Simulations for Decommissioning Studies by Analysis of NPP Neutron Activation Foil Measurement Campaigns

    Science.gov (United States)

    Volmert, Ben; Pantelias, Manuel; Mutnuru, R. K.; Neukaeter, Erwin; Bitterli, Beat

    2016-02-01

    In this paper, an overview of the Swiss Nuclear Power Plant (NPP) activation methodology is presented and the work towards its validation by in-situ NPP foil irradiation campaigns is outlined. Nuclear Research and consultancy Group (NRG) in The Netherlands has been given the task of performing the corresponding neutron metrology. For this purpose, small Aluminium boxes containing a set of circular-shaped neutron activation foils have been prepared. After being irradiated for one complete reactor cycle, the sets have been successfully retrieved, followed by gamma-spectrometric measurements of the individual foils at NRG. Along with the individual activities of the foils, the reaction rates and thermal, intermediate and fast neutron fluence rates at the foil locations have been determined. These determinations include appropriate corrections for gamma self-absorption and neutron self-shielding as well as corresponding measurement uncertainties. The comparison of the NPP Monte Carlo calculations with the results of the foil measurements is done by using an individual generic MCNP model functioning as an interface and allowing the simulation of individual foil activation by predetermined neutron spectra. To summarize, the comparison between calculation and measurement serve as a sound validation of the Swiss NPP activation methodology by demonstrating a satisfying agreement between measurement and calculation. Finally, the validation offers a chance for further improvements of the existing NPP models by ensuing calibration and/or modelling optimizations for key components and structures.

  16. Validation of MCNP NPP Activation Simulations for Decommissioning Studies by Analysis of NPP Neutron Activation Foil Measurement Campaigns

    Directory of Open Access Journals (Sweden)

    Volmert Ben

    2016-01-01

    Full Text Available In this paper, an overview of the Swiss Nuclear Power Plant (NPP activation methodology is presented and the work towards its validation by in-situ NPP foil irradiation campaigns is outlined. Nuclear Research and consultancy Group (NRG in The Netherlands has been given the task of performing the corresponding neutron metrology. For this purpose, small Aluminium boxes containing a set of circular-shaped neutron activation foils have been prepared. After being irradiated for one complete reactor cycle, the sets have been successfully retrieved, followed by gamma-spectrometric measurements of the individual foils at NRG. Along with the individual activities of the foils, the reaction rates and thermal, intermediate and fast neutron fluence rates at the foil locations have been determined. These determinations include appropriate corrections for gamma self-absorption and neutron self-shielding as well as corresponding measurement uncertainties. The comparison of the NPP Monte Carlo calculations with the results of the foil measurements is done by using an individual generic MCNP model functioning as an interface and allowing the simulation of individual foil activation by predetermined neutron spectra. To summarize, the comparison between calculation and measurement serve as a sound validation of the Swiss NPP activation methodology by demonstrating a satisfying agreement between measurement and calculation. Finally, the validation offers a chance for further improvements of the existing NPP models by ensuing calibration and/or modelling optimizations for key components and structures.

  17. Simultaneous Determination of Arsenic, Manganese, and Selenium in Biological Materials by Neutron-Activation Analysis

    DEFF Research Database (Denmark)

    Heydorn, Kaj; Damsgaard, Else

    1973-01-01

    A new method was developed for the simultaneous determination of arsenic, manganese, and selenium in biological material by thermal-neutron activation analysis. The use of 81 mSe as indicator for selenium permitted a reduction of activation time to 1 hr for a 1 g sample, and the possibility of loss...

  18. Determination of fast neutron flux distribution in irradiation sites of the Malaysian Nuclear Agency research reactor

    International Nuclear Information System (INIS)

    Determination of thermal to fast neutron flux ratio (ffast) and fast neutron flux (φfast) is required for fast neutron reactions, fast neutron activation analysis, and for correcting interference reactions. The ffast and subsequently φfast were determined using the absolute method. The ffast ranged from 48 to 155, and the φfast was found in the range 1.03x1010-4.89x1010 n cm-2 s-1. These values indicate an acceptable conformity and applicable for installation of the fast neutron facility at the MNA research reactor.

  19. Investigation of the neutron activation of endohedral rare earth metallofullerenes

    International Nuclear Information System (INIS)

    Endohedral lanthanide metallofullerenes and their water-soluble biocompatible derivatives have been synthesized. The effect that fast-neutron irradiation has on the stability and nuclear physical properties of endohedral metallofullerenes that are used as magnetocontrast materials (46Sc, 140La, 141Nd, 153Sm, 152Eu, 154Eu, 153Sm, 160Tb, 169Yb, 170Tm (isomers I and III), and 177Lu) is studied. Our hypothesis, according to which carbon-shell relaxation is based on the fast nonradiative processes of an electron shake-off type, is confirmed.

  20. Development of Several New Reactions and Their Application to the Total Synthesis of Biologically Active Natural Products :Synthesis of Linderol A and Determination of Its Absolute Configuration

    Institute of Scientific and Technical Information of China (English)

    Shunsaku Ohta

    2005-01-01

    @@ 1Introduction Linderol A (1), a monoterpene-polyketide, was isolated in 1995 from the fresh bark of Lindera umbellata (Lauraceae), and its absolute structure was not determined[1]. It was also reported potent inhibitory activity of 1 on the melanin biosynthesis of the cultured B-16 melanoma cells[1]. See Fig. 1. On the other hand,we reported in 1995 an interesting multi-tandem reaction of coumarin derivatives (2; W = electron withdrawing group) by treatment with CH2 = S(O)Me2 to yield stereoselectively a tricyclic 2-substituted cyclopenta [ b ] benzofuran-3-ol derivative (4) via a cyclopropane intermediate (3) (Scheme 1)[2].

  1. First principle active neutron coincidence counting measurements of uranium oxide

    Science.gov (United States)

    Goddard, Braden; Charlton, William; Peerani, Paolo

    2014-03-01

    Uranium is present in most nuclear fuel cycle facilities ranging from uranium mines, enrichment plants, fuel fabrication facilities, nuclear reactors, and reprocessing plants. The isotopic, chemical, and geometric composition of uranium can vary significantly between these facilities, depending on the application and type of facility. Examples of this variation are: enrichments varying from depleted (~0.2 wt% 235U) to high enriched (>20 wt% 235U); compositions consisting of U3O8, UO2, UF6, metallic, and ceramic forms; geometries ranging from plates, cans, and rods; and masses which can range from a 500 kg fuel assembly down to a few grams fuel pellet. Since 235U is a fissile material, it is routinely safeguarded in these facilities. Current techniques for quantifying the 235U mass in a sample include neutron coincidence counting. One of the main disadvantages of this technique is that it requires a known standard of representative geometry and composition for calibration, which opens up a pathway for potential erroneous declarations by the State and reduces the effectiveness of safeguards. In order to address this weakness, the authors have developed a neutron coincidence counting technique which uses the first principle point-model developed by Boehnel instead of the "known standard" method. This technique was primarily tested through simulations of 1000 g U3O8 samples using the Monte Carlo N-Particle eXtended (MCNPX) code. The results of these simulations showed good agreement between the simulated and exact 235U sample masses.

  2. Probing Planetary Bodies for Subsurface Volatiles: GEANT4 Models of Gamma Ray, Fast, Epithermal, and Thermal Neutron Response to Active Neutron Illumination

    Science.gov (United States)

    Chin, G.; Sagdeev, R.; Su, J. J.; Murray, J.

    2014-12-01

    Using an active source of neutrons as an in situ probe of a planetary body has proven to be a powerful tool to extract information about the presence, abundance, and location of subsurface volatiles without the need for drilling. The Dynamic Albedo of Neutrons (DAN) instrument on Curiosity is an example of such an instrument and is designed to detect the location and abundance of hydrogen within the top 50 cm of the Martian surface. DAN works by sending a pulse of neutrons towards the ground beneath the rover and detecting the reflected neutrons. The intensity and time of arrival of the reflection depends on the proportion of water, while the time the pulse takes to reach the detector is a function of the depth at which the water is located. Similar instruments can also be effective probes at the polar-regions of the Moon or on asteroids as a way of detecting sequestered volatiles. We present the results of GEANT4 particle simulation models of gamma ray, fast, epithermal, and thermal neutron responses to active neutron illumination. The results are parameterized by hydrogen abundance, stratification and depth of volatile layers, versus the distribution of neutron and gamma ray energy reflections. Models will be presented to approximate Martian, lunar, and asteroid environments and would be useful tools to assess utility for future NASA exploration missions to these types of planetary bodies.

  3. State-of-the-art of computational tools and data for IFMIF neutronics and activation analyses

    Science.gov (United States)

    Fischer, U.; Klix, A.; Li, J.; Pereslavstev, P.; Simakov, S. P.; Forrest, R. A.; Wasastjerna, F.

    2011-10-01

    An overview is presented of the state-of-the-art of computational tools, data and models developed for neutronics and activation analyses of the IFMIF neutron source. Significant progress has been achieved in making available computational tools for simulating the d-Li neutron (and photon) source term with the McDeLicious Monte Carlo code and associated d+ 6,7Li cross-section data, in generating neutronics Monte Carlo geometry models by the McCad conversion software, and in providing the interface programme MCDO to enable coupled 3D Monte Carlo and discrete ordinates shielding calculations. In the field of nuclear data for IFMIF, a major milestone has been achieved with the launching of the FENDL-3 research project co-ordinated by the IAEA. Another major achievement is the production of the European Activation File, version EAF-2007, which has the neutron energy range extended to the needs of IFMIF and also provides calculated data libraries for deuteron and proton induced activation reactions.

  4. Development of a photonuclear activation file and measurement of delayed neutron spectra

    International Nuclear Information System (INIS)

    This thesis work consists in two parts. The first is the description of the creation of a photonuclear activation file which will be use to calculated photonuclear activation. To build this file we used different data sources: evaluations but also calculations done using several cross sections codes (HMSALICE, GNASH, ABLA). This file contains photonuclear activation cross sections for more than 600 nuclides and fission fragments distributions for 30 actinides at tree different Bremsstrahlung energies and the delay neutron spectrum associated. These spectra are not in good agreement with experimental data. That is why we decided to launch measurement of delayed neutrons spectra from photofission. The second part of this thesis consists in demonstrating the possibility to do such measurements at ELSA For that we developed the detection, the acquisition system and the analysis method of such spectra. These were tested for the measurement of the delayed neutron spectrum of uranium-238 after irradiation in a 2 MeV neutron flux. After all, we measured the delayed neutron spectrum of uranium-238 after irradiation in a 15 MeV Bremsstrahlung flux. We compare our results with experimental data. (author)

  5. Measurement of thermal, epithermal and fast neutron flux in the IEA-R1 reactor by the foil activation method

    International Nuclear Information System (INIS)

    Experimental and theoretical details of the foil activation method applied to neutrons flux measurements at the IEA-R1 reactor are presented. The thermal - and epithermal - neutron flux were determined form activation measurements of gold, cobalt and manganese foils; and for the fast neutron flux determination, aluminum, iron and nickel foils were used. The measurements of the activity induced in the metal foils were performed using a Ge-Li gamma spectrometry system. In each energy range of the reactor neutron spectrum, the agreement among the experimental flux values obtained using the three kind of materials, indicates the consistency of the theoretical approach and of the nuclear parameters selected. (Author)

  6. An evaluation of Compton suppression neutron activation analysis for determination of trace elements in some geological samples.

    Science.gov (United States)

    Landsberger, S; Kapsimalis, R

    2009-12-01

    Compton suppressed neutron activation analysis has been used for a variety of applications, but never has a detailed discussion of its use in far more complex matrices, such as geological samples, been fully addressed. This investigation seeks to serve as a qualitative evaluation of Compton suppression neutron activation analysis (CSNAA) and to illustrate the benefits of using Compton suppression with thermal and epithermal neutrons for the analysis of several geological specimens. PMID:19577479

  7. Neutron activation analysis of rare earths and some other elements in material of geochemical interest

    International Nuclear Information System (INIS)

    ngle-element methods for the determination by neutron activation analysis of antimony, chromium, phosphorus, selenium and silver in international geochemical standard rocks, and the determination of rare earth elements i in standard rocks and apatites are described and discussed in twelve previously published papers, and in an eighteen page summary. Chemical separationtechniques are also discussed and the results are compared with previously obtained results with the same standard rocks. The accuracy of neutron activation analysis is discussed in comparison with isotope dilution mass spectroscopy, atomic absorption, gas chromatography and spark source mass spectrometry. (JIW)

  8. Neutrons formed by heavy ions and activation induced in different materials

    International Nuclear Information System (INIS)

    This work deals with the Spiral project and more particularly with the neutrons flux formed by heavy ions and the activation induced in different materials. Indeed, the beams power suggests the interest of different materials behaviour study for allowing a possible selection to optimize radioprotection. Moreover, it is important to establish the activation mechanisms in order to be able to extrapolate the measures realized at 400 W (actual GANIL) to those of the future running taking into account the radioisotopes real mixtures formed during the reaction and their daughter products. A best knowledge of energizing and angular neutrons distributions is searched too. (O.L.). 11 refs., 23 figs., 9 tabs

  9. Availability of essential trace elements in Ayurvedic Indian medicinal herbs using instrumental neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Singh, V.; Garg, A.N. [Nagpur Univ. (India). Dept. of Chemistry

    1997-01-01

    Specific parts of several plants (fruits, leaves, stem, bark and roots) often used as medicines in the Indian Ayurvedic system have been analysed for 20 elements (As, Ba, Br, Ca, Cl, Co, Cr, Cu, Fe, K, Mn, Mo, Na, P, Rb, Sb, Sc, Se, Sr and Zn) by employing instrumental neutron activation analysis (INAA). The samples were irradiated with thermal neutrons in a nuclear reactor and the induced activity was counted using high resolution gamma ray spectrometry. Most of the medicinal herbs have been found to be rich in one or more of the elements under study. (Author).

  10. Twenty Five Years of Neutron Activation Analysis: A Personal Perspective on Utilization of the Techniques

    International Nuclear Information System (INIS)

    Since the late 1970's there have been enormous changes in the methods, techniques and applications of neutron activation analysis. Having been a research scientist at the National Research Council of Canada and the McMaster Nuclear Reactor, as well as a professor for ten years at the University of Illinois and 15 years at the University of Texas, I have a unique perspective on the research performed by my many MS, PhD and even undergraduate students. Below is a personal perspective on the utilization of the neutron activation analysis. (author)

  11. A method of neutron activation analysis to determine the concentration of alloy elements in steels

    International Nuclear Information System (INIS)

    The determination of the concentration of V, Mn and W in several types of steels was carried out through neutron activation analysis with an isotopic neutron source. Induced activities were detected with a NaI(Tl) gamma spectrometer coupled to a single channel pulse height analyser. Highly significant correlations have been found between specific count rates for each radionuclide and the concentration of the corresponding element (r > = .999 for each element); concentration ranges comprised a number of steel types. The comparison between the results of the application of the method and the ones obtained through conventional chemical analyses showed discrepancies no higher than 10%. (Author)

  12. Ground tests with active neutron instrumentation for the planetary science missions

    Energy Technology Data Exchange (ETDEWEB)

    Litvak, M.L., E-mail: litvak@mx.iki.rssi.ru [Space Research Institute, RAS, Moscow 117997 (Russian Federation); Mitrofanov, I.G.; Sanin, A.B. [Space Research Institute, RAS, Moscow 117997 (Russian Federation); Jun, I. [Jet Propulsion Laboratory, Pasadena, CA USA (United States); Kozyrev, A.S. [Space Research Institute, RAS, Moscow 117997 (Russian Federation); Krylov, A.; Shvetsov, V.N.; Timoshenko, G.N. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Starr, R. [Catholic University of America, Washington DC (United States); Zontikov, A. [Joint Institute for Nuclear Research, Dubna (Russian Federation)

    2015-07-11

    We present results of experimental work performed with a spare flight model of the DAN/MSL instrument in a newly built ground test facility at the Joint Institute for Nuclear Research. This instrument was selected for the tests as a flight prototype of an active neutron spectrometer applicable for future landed missions to various solid solar system bodies. In our experiment we have fabricated simplified samples of planetary material and tested the capability of neutron activation methods to detect thin layers of water/water ice lying on top of planetary dry regolith or buried within a dry regolith at different depths.

  13. 绝对加速度反馈主动控制%Active control with absolute acceleration feedback

    Institute of Scientific and Technical Information of China (English)

    刘晖; 唐家祥

    2001-01-01

    利用绝对加速度测量简单、可靠的特点,提出了一种新的反馈控制方法,即基于绝对加速度的反馈控制算法。同时,考虑到驱动器的时滞,发展了考虑察动器时滞的结构状态方程。实例研究表明,该方法改善了时滞的影响,具有良好的控制效果。%Absolute acceleration response can easily be measured by installing accelerationsensors. So the paper develops a control algorithm utilizing acceleration sensors. The time-delay of the actuator is considered in the control strategy. the state equation considering time-delay of actuator is developed and by the example, it is illustrated that the method improves influence of time-delay and brings a good control effectiveness.

  14. The cross-section data from neutron activation experiments on niobium in the NPI p-7Li quasi-monoenergetic neutron field

    Science.gov (United States)

    Honusek, M.; Bém, P.; Fischer, U.; Götz, M.; Novák, J.; Simakov, S. P.; Šimečková, E.

    2010-10-01

    The reaction of protons on 7Li target produces the high-energy quasi- monoenergetic neutron spectrum with the tail to lower energies. Proton energies of 19.8, 25.1, 27.6, 30.1, 32.6, 35.0 and 37.4 MeV were used to obtain quasi-monoenergetic neutrons with energies of 18, 21.6, 24.8, 27.6, 30.3, 32.9 and 35.6 MeV, respectively. Nb cross-section data for neutron energies higher than 22.5 MeV do not exist in the literature. Nb is the important material for fusion applications (IFMIF) as well. The variable-energy proton beam of NPI cyclotron is utilized for the production of neutron field using thin lithium target. The carbon backing serves as the beam stopper. The system permits to produce neutron flux density about 109 n/cm2/s in peak at 30 MeV neutron energy. The niobium foils of 15 mm in diameter and approx. 0.75 g weight were activated. The nuclear spectroscopy methods with HPGe detector technique were used to obtain the activities of produced isotopes. The large set of neutron energies used in the experiment allows us to make the complex study of the cross-section values. The reactions (n,2n), (n,3n), (n,4n), (n,He3), (n,α) and (n,2nα) are studied. The cross-sections data of the (n,4n) and (n,2nα) are obtained for the first time. The cross-sections of (n,2n) and (n,α) reactions for higher neutron energies are strongly influenced by low energy tail of neutron spectra. This effect is discussed. The results are compared with the EAF-2007 library.

  15. The cross-section data from neutron activation experiments on niobium in the NPI p-7Li quasi-monoenergetic neutron field

    Directory of Open Access Journals (Sweden)

    Simakov S.P.

    2010-10-01

    Full Text Available The reaction of protons on 7Li target produces the high-energy quasi- monoenergetic neutron spectrum with the tail to lower energies. Proton energies of 19.8, 25.1, 27.6, 30.1, 32.6, 35.0 and 37.4 MeV were used to obtain quasi-monoenergetic neutrons with energies of 18, 21.6, 24.8, 27.6, 30.3, 32.9 and 35.6 MeV, respectively. Nb cross-section data for neutron energies higher than 22.5 MeV do not exist in the literature. Nb is the important material for fusion applications (IFMIF as well. The variable-energy proton beam of NPI cyclotron is utilized for the production of neutron field using thin lithium target. The carbon backing serves as the beam stopper. The system permits to produce neutron flux density about 109  n/cm2/s in peak at 30 MeV neutron energy. The niobium foils of 15 mm in diameter and approx. 0.75 g weight were activated. The nuclear spectroscopy methods with HPGe detector technique were used to obtain the activities of produced isotopes. The large set of neutron energies used in the experiment allows us to make the complex study of the cross-section values. The reactions (n,2n, (n,3n, (n,4n, (n,He3, (n,α and (n,2nα are studied. The cross-sections data of the (n,4n and (n,2nα are obtained for the first time. The cross-sections of (n,2n and (n,α reactions for higher neutron energies are strongly influenced by low energy tail of neutron spectra. This effect is discussed. The results are compared with the EAF-2007 library.

  16. Absolute nuclear material assay using count distribution (LAMBDA) space

    Science.gov (United States)

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2012-06-05

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  17. Absolute nuclear material assay using count distribution (LAMBDA) space

    Science.gov (United States)

    Prasad, Mano K.; Snyderman, Neal J.; Rowland, Mark S.

    2015-12-01

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  18. Applied research and development of neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Yong Sam; Moon, Jong Hwa; Kim, Sun Ha; Bak, Sung Ryel; Park, Yong Chul; Kim, Young Ki; Chung, Hwan Sung; Park, Kwang Won; Kang, Sang Hun

    2000-05-01

    This report is written for results of research and development as follows : improvement of neutron irradiation facilities, counting system and development of automation system and capsules for NAA in HANARO ; improvement of analytical procedures and establishment of analytical quality control and assurance system; applied research and development of environment, industry and human health and its standardization. For identification and standardization of analytical method, environmental biological samples and polymer are analyzed and uncertainity of measurement are estimated. Also data intercomparison and proficency test were performed. Using airborne particulate matter chosen as a environmental indicators, trace elemental concentrations of sample collected at urban and rural site are determined and then the calculation of statistics and the factor analysis are carried out for investigation of emission source. International cooperation research project was carried out for utilization of nuclear techniques.

  19. First principle active neutron coincidence counting measurements of uranium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Goddard, Braden, E-mail: goddard.braden@gmail.com [Nuclear Security Science and Policy Institute, Texas A and M University, College Station, Texas 77843 (United States); Charlton, William [Nuclear Security Science and Policy Institute, Texas A and M University, College Station, Texas 77843 (United States); Peerani, Paolo [European Commission, EC-JRC-ITU, Ispra (Italy)

    2014-03-01

    Uranium is present in most nuclear fuel cycle facilities ranging from uranium mines, enrichment plants, fuel fabrication facilities, nuclear reactors, and reprocessing plants. The isotopic, chemical, and geometric composition of uranium can vary significantly between these facilities, depending on the application and type of facility. Examples of this variation are: enrichments varying from depleted (∼0.2 wt% {sup 235}U) to high enriched (>20 wt% {sup 235}U); compositions consisting of U{sub 3}O{sub 8}, UO{sub 2}, UF{sub 6}, metallic, and ceramic forms; geometries ranging from plates, cans, and rods; and masses which can range from a 500 kg fuel assembly down to a few grams fuel pellet. Since {sup 235}U is a fissile material, it is routinely safeguarded in these facilities. Current techniques for quantifying the {sup 235}U mass in a sample include neutron coincidence counting. One of the main disadvantages of this technique is that it requires a known standard of representative geometry and composition for calibration, which opens up a pathway for potential erroneous declarations by the State and reduces the effectiveness of safeguards. In order to address this weakness, the authors have developed a neutron coincidence counting technique which uses the first principle point-model developed by Boehnel instead of the “known standard” method. This technique was primarily tested through simulations of 1000 g U{sub 3}O{sub 8} samples using the Monte Carlo N-Particle eXtended (MCNPX) code. The results of these simulations showed good agreement between the simulated and exact {sup 235}U sample masses.

  20. Measuring neutron yield and ρR anisotropies with activation foils at the National Ignition Facility

    Directory of Open Access Journals (Sweden)

    Bleuel D.L.

    2013-11-01

    Full Text Available Neutron yields at the National Ignition Facility (NIF are measured with a suite of diagnostics, including activation of ∼20–200 g samples of materials undergoing a variety of energy-dependent neutron reactions. Indium samples were mounted on the end of a Diagnostic Instrument Manipulator (DIM, 25–50 cm from the implosion, to measure 2.45 MeV D-D fusion neutron yield. The 336.2 keV gamma rays from the 4.5 hour isomer of 115mIn produced by (n,n′ reactions are counted in high-purity germanium detectors. For capsules producing D-T fusion reactions, zirconium and copper are activated via (n,2n reactions at various locations around the target chamber and bay, measuring the 14 MeV neutron yield to accuracies on order of 7%. By mounting zirconium samples on ports at nine locations around the NIF chamber, anisotropies in the primary neutron emission due to fuel areal density asymmetries can be measured to a relative precision of 3%.

  1. Manganese determination om minerals by activation analysis, using the californium-252 as a neutron source

    International Nuclear Information System (INIS)

    Neutron Activation Analysis, using a Californium-252 neutron source, has been applied for the determination of manganese in ores such as pyrolusite, rodonite (manganese silicate)' and blending used in dry-batteries The favorable nuclear properties of manganese, such as high thermal neutron cross-section for the reaction 55Mn (n.gamma)56 Mn, high concentration of manganese in the matrix and short half - life of 56Mn, are an ideal combination for non-destructive analysis of manganese in ores. Samples and standards of manganese dioxide were irradiated for about 20 minutes, followed by a 4 to 15 minutes decay and counted in a single channel pulse-height discrimination using a NaI(Tl) scintillation detector. Counting time was equal to 10 minutes. The interference of nuclear reactions 56Fe(n,p)56Mn and 59 Co (n, α)56 were studied, as well as problems in connection with neutron shadowing during irradiation, gamma-rays attenuation during counting and influence of granulometry of samples. One sample,was also analysed by wet-chemical method (sodium bismuthate) in order to compare results. As a whole, i t was shown that the analytical method of neutron activation for manganese in ores and blending, is a method simple, rapid and with good precision and accuracy. (author)

  2. Measurements of delayed neutron parameters for U-235 and Np-237

    Energy Technology Data Exchange (ETDEWEB)

    Loaiza, D.

    1997-07-01

    Delayed neutrons are emitted by excited nuclei formed in beta decay of fission products called delayed neutron precursors. About 1% of the total neutrons released in fission are delayed neutrons; however, this small fraction plays an important role in nuclear reactor control. The delayed neutrons determine the time-dependent behavior of reactors, and knowledge of parameters used to predict neutron emission rate is essential for establishing reactivity worths. The delayed neutron yields, decay constants, and the absolute yield for the six-group delayed neutrons have been measured for U-235 and Np-237. This experiment has been called for in the forecast of experiments needed to support operations in the US. The bare U-235 metal assembly Godiva IV at the Los Alamos Critical Experiment Facility (LACEF) provided the source of neutrons. Godiva IV generated about 10{sup 7} total fissions in the samples for the infinite and instantaneous irradiation needed to accentuate the shorter and longer-lived groups of delayed neutrons. The detection system used in the experiment consisted of 20 He-3 tubes embedded in a polyethylene cylinder. The delayed neutron activity resulting from the fast neutron-induced fission has been measured. The measured absolute yield for U-235 was determined to be 0.0163 {+-} 0.009 neutrons/fission. This value compares very well with the well-established Keepin absolute yield of 0.0165 {+-} 0.0005. The newly measured absolute yield value for Np-237 was 0.0126 {+-} 0.0007, which compares well to the recently reported value of 0.0129 {+-} 0.0004 by Saleh and Parish. The measured values for U-235 are corroborated with period (e-folding time) versus reactivity calculations.

  3. SANS-polymer and functional materials with neutron in Indonesia. Progress report on the collaboration activities?

    International Nuclear Information System (INIS)

    Activities on SANS-polymer collaboration program are reported. This paper presents SANS-data from Sodium Dodecyl Sulphate that have been obtained using BATAN's SANS machine in Serpong. Reports are also presented about activities in the groups for functional materials structural determination which includes magnetic, HTc superconducting and superionic conducting materials. Discussions are also given towards the way the collaboration activities were carried out in the last three years as well as impact of neutron scattering facility conditions in Indonesia. (author)

  4. A passive-active neutron device for assaying remote-handled transuranic waste

    International Nuclear Information System (INIS)

    A combined passive-active neutron assay device was constructed for assaying remote-handled transuranic waste. A study of matrix and source position effects in active assays showed that a knowledge of the source position alone is not sufficient to correct for position-related errors in highly moderating or absorbing matrices. An alternate function for the active assay of solid fuel pellets was derived, although the efficacy of this approach remains to be established

  5. Neutron activation analysis of phytotherapic obtained from medicinal plants; Analise por ativacao com neutrons de fitoterapicos obtidos de plantas medicinais

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Henrique S. [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Ciencias Farmaceuticas]. E-mail: hs_moreira@hotmail.com; Saiki, Mitiko; Vasconcellos, Marina B.A. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mails: mitiko@ipen.br; mbvascon@ipen.br

    2007-07-01

    This paper determines the inorganic constituents in phytotherapic samples for posterior study of the relationship existent among the concentrations of the found elements and the their possible therapeutical effects. The samples of phytotherapic pills (Centella asiatica, Ginkgo biloba and Ginseng) were analysed by using neutron activation analysis (NAA). The As, Br, Ca, Co, Cr, Cs, Fe, K, La, Na, Rb, Sc, Se and Zn samples were determined in the phytotherapics, The Centella asiatica presented the higher concentrations of Br, Co, Cr, Fe, K, La, Na, Rb, Sc, Se and Zn. In the sample of Ginko biloba, higher levels of As and Ca were found, while in the sample ol Ginseng the element As were not detected. The found results have shown the the NAA method is appropriated for analysing this type of materials due to his simplicity, multielemental capacity and quality of the results obtained. (author)

  6. TFT-Based Active Pixel Sensors for Large Area Thermal Neutron Detection

    Science.gov (United States)

    Kunnen, George

    Due to diminishing availability of 3He, which is the critical component of neutron detecting proportional counters, large area flexible arrays are being considered as a potential replacement for neutron detection. A large area flexible array, utilizing semiconductors for both charged particle detection and pixel readout, ensures a large detection surface area in a light weight rugged form. Such a neutron detector could be suitable for deployment at ports of entry. The specific approach used in this research, uses a neutron converter layer which captures incident thermal neutrons, and then emits ionizing charged particles. These ionizing particles cause electron-hole pair generation within a single pixel's integrated sensing diode. The resulting charge is then amplified via a low-noise amplifier. This document begins by discussing the current state of the art in neutron detection and the associated challenges. Then, for the purpose of resolving some of these issues, recent design and modeling efforts towards developing an improved neutron detection system are described. Also presented is a low-noise active pixel sensor (APS) design capable of being implemented in low temperature indium gallium zinc oxide (InGaZnO) or amorphous silicon (a-Si:H) thin film transistor process compatible with plastic substrates. The low gain and limited scalability of this design are improved upon by implementing a new multi-stage self-resetting APS. For each APS design, successful radiation measurements are also presented using PiN diodes for charged particle detection. Next, detection array readout methodologies are modeled and analyzed, and use of a matched filter readout circuit is described as well. Finally, this document discusses detection diode integration with the designed TFT-based APSs.

  7. Neutron activation analysis for chemical characterization of Brazilian oxo-biodegradable plastics

    International Nuclear Information System (INIS)

    The chemical characterization of oxo-biodegradable plastic bags was performed by neutron activation analysis. The presence of several chemical elements (As, Br, Ca, Co, Cr, Fe, Hf, K, La, Na, Sb, Sc, Ta and Zn) with large variability of mass fractions amongst samples indicates that these plastics receive additives and may have been contaminated during manufacturing process thereby becoming potential environmental pollutants. (author)

  8. Determination of arsenic in some Myanmar indigenous medicines by neutron activation analysis

    International Nuclear Information System (INIS)

    Am(Be) neutron source was used for activation of samples and 76As radioactivity measured by both β- and γ-counting techniques. The samples analyzed were raw materials traditionally used in formulating Myanmar indigenous medicines. The results were compared with those obtained by volumetric analysis and those reported in the literature. (author) 4 refs.; 5 tabs

  9. Multi elementary analysis in medicinal plants through the neutron activation method

    International Nuclear Information System (INIS)

    A instrumental method by neutron activation in multielementary analysis was applied. Samples of Centelha asiatica (Cairucu) and Paulinia cupana (Guarana) were used. The elements Al, Br, Ca, Cl, Fe, K, Mn, Na, Rb, Sc, and Zn were determined. The results like precision and exactitude were analysed. (L.M.J.)

  10. Multi-element neutron activation analysis of sediment using a californium-252 source

    International Nuclear Information System (INIS)

    The application of a 252Cf source to the neutron activation analysis of several elements in small (approximately 1.5 in. in dia) cores was studied using high-resolution gamma ray spectroscopy and manual data reduction. (U.S.)

  11. New method in the criminalistics: neutron-activation analysis of the human hair

    International Nuclear Information System (INIS)

    The application of the neutron activation analysis for the examination of human hair for criminological purposes is discussed. Earlier Nal scintillation detector and 256-channels analyzer were used and only form trace elements could be detected in the hair. Recently using Ge/Li detector and a 1024-channels analyzer 11 trace elements were detected in the human hair. (H.E.)

  12. A package for gamma-ray spectrum analysis and routine neutron activation analysis

    Indian Academy of Sciences (India)

    M E Medhat; A Abdel-Hafiez; Z Awaad; M A Ali

    2005-08-01

    A package for gamma spectrum analysis (PGSA) was developed using object oriented Borland C++ design for MS-windows. This package consists of five programs which can be used for gamma-ray spectrum analysis and routine neutron activation analysis. The advantages of PGSA are its simple algorithms and its need for only minimum amount of input information.

  13. Research activities on structure materials of spallation neutron source at SINQ

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, G.S.; Dai, Y. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    With the growing interests on powerful spallation neutron sources, especially with liquid metal targets, and accelerator driven energy systems, spallation materials science and technology have been received wide attention. At SINQ, material research activities are focused on: a) liquid metal corrosion; b) radiation damage; and c) interaction of corrosion and radiation damage. (author) 1 fig., refs.

  14. Elemental profiles of soil in and around Tirupati by reactor neutron activation using KO method

    International Nuclear Information System (INIS)

    Soil samples, representatives of various places in and around Tirupati, Andhra Pradesh, that are affected by industrial effluents and sewages, were analysed for the elemental profiles by neutron activation analysis (NAA) using Ko method. Concentrations of 23 elements were measured. Variation in concentration of important elements with respect to influence on vegetation is discussed. (author). 2 refs., 1 tab

  15. Development of the k0-based cyclic neutron activation analysis for short-lived radionuclides

    NARCIS (Netherlands)

    Dung, H.M.; Blaauw, M.; Beasley, D.; Freitas, M.D.C.

    2011-01-01

    The k0-based cyclic neutron activation analysis (k0-CNAA) technique has been studied to explore the applicability at the Portuguese research reactor (RPI). In particular, for the determination of elements which form short-lived radionuclides, particularly fluorine (20F, 11.16 s half-life) and seleni

  16. High-flux white neutron source based on p(35)-Be reactions for activation experiments at NPI

    International Nuclear Information System (INIS)

    The concept of International Fusion Material Irradiation Facility (IFMIF) is based on the d(40)-Li neutron source reaction which produces the white neutron spectrum with mean energy of 14 MeV, energy range with high intensity of neutron beam up to 35 MeV, and weak tail up to 55 MeV. At the Nuclear Physics Institute of the ASCR in Rez near Prague, the source reaction of p+Be was investigated for proton energy of 35 MeV and beam current intensity of 9.2μA. The produced white spectrum with neutron flux up to 1011 cm−2 s−1 was determined by the dosimetry foils activation technique at two sample-to-target distances and validated against the Monte Carlo predictions. The neutron field of these high-flux p(35)-Be white neutron source represents the useful tool for experimental simulation of the spectrum of the IFMIF facility, validating the activation cross-section data in the energy range relevant to the IFMIF, studying the radiation hardness of electronics against the high-energy neutron fields, and various activation experiments. - Highlights: • Development of accelerator-driven neutron sources. • Fast neutron spectrometry. • Multi-foil activation technique. • Nuclear data measurement and validation in the energy range of IFMIF

  17. Radiochemical neutron activation analysis for certification of ion-implanted phosphorus in silicon.

    Science.gov (United States)

    Paul, Rick L; Simons, David S; Guthrie, William F; Lu, John

    2003-08-15

    A radiochemical neutron activation analysis procedure has been developed, critically evaluated, and shown to have the necessary sensitivity, chemical specificity, matrix independence, and precision to certify phosphorus at ion implantation levels in silicon. 32P, produced by neutron capture of 31P, is chemically separated from the sample matrix and measured using a beta proportional counter. The method is used here to certify the amount of phosphorus in SRM 2133 (Phosphorus Implant in Silicon Depth Profile Standard) as (9.58 +/- 0.16) x 10(14) atoms x cm(-2). A detailed evaluation of uncertainties is given.

  18. Target preparation and neutron activation analysis a successful story at IRMM

    CERN Document Server

    Robouch, P; Eguskiza, M; Maguregui, M I; Pommé, S; Ingelbrecht, C

    2002-01-01

    The main task of a target producer is to make well characterized and homogeneous deposits on specific supports. Alpha and/or gamma spectrometry are traditionally used to monitor the quality of actinide deposits. With the increasing demand for enriched stable isotope targets, other analytical techniques, such as ICP-MS and NAA, are needed. This paper presents the application of neutron activation analysis to quality control of 'thin' targets, 'thicker' neutron dosimeters and 'thick' bronze disks prepared by the Reference Materials Unit at the Institute of Reference Materials and Measurements.

  19. Determination of aluminium contents in selected food samples by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Food and food products are the main sources of Aluminium entering the human body. In order to know aluminium contents in food and food products, selected 26 samples from local market were analyzed by instrumental neutron activation analysis (INAA) using reactor neutrons and high resolution gamma-ray spectrometry. INAA using 1,779 keV γ-ray of 28Al (2.24 min) was used for aluminium concentrations in the range of 33-529 mg kg-1. Two NIST standard reference materials (SRMs) and two IAEA reference materials (RMs) were analyzed by INAA for quantification of aluminium as a part of method validation. (author)

  20. Thermally-Activated Post-Glitch Response of the Neutron Star Inner Crust and Core

    CERN Document Server

    Link, Bennett

    2013-01-01

    Pinning of superfluid vortices is predicted to prevail throughout much of a neutron star. Here I develop a description of the coupling through thermally-activated vortex slippage}, and calculate the post-glitch response of a neutron star to a spin glitch. The theory has three robust conclusions: 1) If vortex pinning occurs in the core, typical large glitches decouple the core superfluid from the charged components over observable timescales. Core response to a glitch has a distinct observational signature that could be identified through analyses of existing and future timing data. 2) Post-glitch response over short timescales (days) in pulsars with large glitches (fractional spin jumps of $\\Delta\

  1. Determination of Toxic Elements in Cigarettes Smoke, Using Neutron Activation Method

    International Nuclear Information System (INIS)

    The purpose of the experiments was to get information of the toxic elements content in cigarettes smoke which could be used to estimate the cigarettes smoke contribution in air pollution. The sample were cigarette smoke from the mixture of 7 popular brand cigarettes collected by The Centre Cigarettes Research, University of kentucky, USA. Neutron activation was done in the Hoger Onderwijs Reactor, IRI Delft Netherlands, using thermal neutron flux 4.8 x 10 16n cm-2 second-1 for 4 hours. Result of the analysis showed that the cigarettes smoke contained Cd, As, Sb, and Br which are toxic elements

  2. ABSOLUTE NEUTRINO MASSES

    DEFF Research Database (Denmark)

    Schechter, J.; Shahid, M. N.

    2012-01-01

    We discuss the possibility of using experiments timing the propagation of neutrino beams over large distances to help determine the absolute masses of the three neutrinos.......We discuss the possibility of using experiments timing the propagation of neutrino beams over large distances to help determine the absolute masses of the three neutrinos....

  3. Luminescent and Scintillating Properties of Lanthanum Fluoride Nanocrystals in Response to Gamma/Neutron Irradiation: Codoping with Ce Activator, Yb Wavelength Shifter, and Gd Neutron Captor

    CERN Document Server

    Vargas, José M; Sidelnik, Iván; Brito, David Rondón; Palomino, Luis A Rodríguez; Mayer, Roberto E

    2016-01-01

    A novel concept for detection and spectroscopy of gamma rays, and detection of thermal neutrons based on codoped lanthanum fluoride nanocrystals containing gadolinium is presented.The trends of colloidal synthesis of the mentioned material, LaF3 co-doped with Ce as the activator, Yb as the wavelength-shifter and Gd as the neutron captor, is reported. Nanocrystals of the mentioned material were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), optical absorption, and photoluminescence spectroscopy. Gamma detection and its potential spectroscopy feature have been confirmed. The neutron detection capability has been confirmed by experiments performed using a 252Cf neutron source.

  4. Thick activation detectors for neutron spectrometry using different unfolding methods: sensitivity analysis and dose calculation

    Energy Technology Data Exchange (ETDEWEB)

    Medkour Ishak-Boushaki, Ghania, E-mail: gmedkour@yahoo.com [Laboratoire SNIRM-Faculte de Physique, Universite des Sciences et de la Technologie Houari Boumediene, BP 32 El-Alia BabEzzouar, Algiers (Algeria); Boukeffoussa, Khelifa [Laboratoire SNIRM-Faculte de Physique, Universite des Sciences et de la Technologie Houari Boumediene, BP 32 El-Alia BabEzzouar, Algiers (Algeria); Idiri, Zahir [Centre de Recherche Nucleaire d' Alger, 02 Boulevard Frantz-Fanon, BP 399, Algiers (Algeria); Allab, Malika [Laboratoire SNIRM-Faculte de Physique, Universite des Sciences et de la Technologie Houari Boumediene, BP 32 El-Alia BabEzzouar, Algiers (Algeria)

    2012-03-15

    This paper discusses the use of threshold detectors of extended sizes for low intensity neutron fields' characterization. The detectors were tested by the measurement of the neutron spectrum of an {sup 241}Am-Be source. Integral quantities characterizing the neutron field, required for radiological protection, have been derived by unfolding the measured data. A good agreement is achieved between the obtained results and those deduced using Bonner spheres. In addition, a sensitivity analysis of the results to the deconvolution procedure is given. - Highlights: Black-Right-Pointing-Pointer Low intensity neutron fields' characterization using thick threshold detectors. Black-Right-Pointing-Pointer Low activity {sup 241}Am-Be neutron source spectrum measurement. Black-Right-Pointing-Pointer Integral quantities required for radiological protection have been derived. Black-Right-Pointing-Pointer The results are in good agreement with those deduced using Bonner spheres. Black-Right-Pointing-Pointer The results are not very sensitive to the chosen deconvolution procedure.

  5. Using activation method to measure neutron spectrum in an irradiation chamber of a research reactor

    International Nuclear Information System (INIS)

    Neutron spectrum should be measured before test samples are irradiated. Neutron spectrum in an irradiation chamber of a research reactor was measured by using activation method when the reactor is in normal operation under 2 MW. Sixteen kinds of non-fission foils (19 reaction channels) were selected, of which 10 were sensitive to thermal and intermediate energy regions, while the others were of different threshold energy and sensitive to fast energy regions. By measuring the foil radioactivity, the neutron spectrum was unfolded with the iterative methods SAND-II and MSIT. Finally, shielding corrections of group cross-section and main factors affecting the calculation accuracy were studied and the uncertainty of solution was analyzed using the Monte Carlo method in the process of SAND-II. (authors)

  6. Analysis of some egyptian cosmetic samples by using fast neutron activation analysis

    International Nuclear Information System (INIS)

    A description of our neutron generator (NG) facility for neutron activation analysis is presented. As an example, the concentration of Na, Mg, Al, Si, K, Cl, Ca and Fe elements were determined in two domestic brands of face powder by using a beam of 14 MeV neutrons. An empirical expression for detector efficiency in terms of incident gamma ray energy and the source-detector distance has been obtained for a hyper pure germanium detector (HPGe) using different standard point sources. The comparison of the calculated efficiencies and the measured values in the energy range from 59.5 to 1332.2 keV and for source-to-detector distances of 5-30 cm show the agreement between the calculated values and the measured experimental values

  7. Analysis of elements present in beers and brewing waters by neutron activation analysis

    International Nuclear Information System (INIS)

    Neutron activation analysis (NAA) was used for determination of Si, Na, K, Ca, Sc, V, Cr, Mn, Fe, Co, Zn, Rb, Cs, and La in Czech beers and brewing waters. The Si concentration in beer determined by the reaction 29Si(n,p)29Al with fast neutrons confirmed that beer is an important Si source in human diet. Determination of other trace elements by NAA with the whole spectrum of reactor neutrons aimed at the feasibility of identification of Gambrinus beers brewed in various breweries. The elements Ca and V appeared to be the best candidates for this purpose. The concentrations of elements determined by NAA were also compared with the recommended daily element intake for humans. The accuracy of the method was proved by analysis of reference materials, specifically NIST SRM 2704 Buffalo River Sediment, NIST SRM 1633b Coal Fly Ash, and NIST SRM 1515 Apple Leaves. (author)

  8. Neutron activation analysis of bulk samples from Chinese ancient porcelain to provenance research

    International Nuclear Information System (INIS)

    Neutron activation analysis (NAA) is an important technique to determine the provenance of ancient ceramics. The most common technique used for preparing ancient samples for NAA is to grind them into a powder and then encapsulate them before neutron irradiation. Unfortunately, ceramic materials are typically very hard making it a challenge to grind them into a powder. In this study we utilize bulk porcelain samples cut from ancient shards. The bulk samples are irradiated by neutrons alongside samples that have been conventionally ground into a powder. The NAA for both the bulk samples and powders are compared and shown to provide equivalent information regarding their chemical composition. Also, the multivariate statistical have been employed to the analysis data for check the consistency. The findings suggest that NAA results are less dependent on the state of the porcelain sample, and thus bulk samples cut from shards may be used to effectively determine their provenance. (author)

  9. Measuring neutron spectra in radiotherapy using the nested neutron spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Maglieri, Robert, E-mail: robert.maglieri@mail.mcgill.ca; Evans, Michael; Seuntjens, Jan; Kildea, John [Medical Physics Unit, McGill University, Montreal, Quebec H4A 3J1 (Canada); Licea, Angel [Canadian Nuclear Safety Commission, Ottawa, Ontario K1P 5S9 (Canada)

    2015-11-15

    Purpose: Out-of-field neutron doses resulting from photonuclear interactions in the head of a linear accelerator pose an iatrogenic risk to patients and an occupational risk to personnel during radiotherapy. To quantify neutron production, in-room measurements have traditionally been carried out using Bonner sphere systems (BSS) with activation foils and TLDs. In this work, a recently developed active detector, the nested neutron spectrometer (NNS), was tested in radiotherapy bunkers. Methods: The NNS is designed for easy handling and is more practical than the traditional BSS. Operated in current-mode, the problem of pulse pileup due to high dose-rates is overcome by measuring current, similar to an ionization chamber. In a bunker housing a Varian Clinac 21EX, the performance of the NNS was evaluated in terms of reproducibility, linearity, and dose-rate effects. Using a custom maximum-likelihood expectation–maximization algorithm, measured neutron spectra at various locations inside the bunker were then compared to Monte Carlo simulations of an identical setup. In terms of dose, neutron ambient dose equivalents were calculated from the measured spectra and compared to bubble detector neutron dose equivalent measurements. Results: The NNS-measured spectra for neutrons at various locations in a treatment room were found to be consistent with expectations for both relative shape and absolute magnitude. Neutron fluence-rate decreased with distance from the source and the shape of the spectrum changed from a dominant fast neutron peak near the Linac head to a dominant thermal neutron peak in the moderating conditions of the maze. Monte Carlo data and NNS-measured spectra agreed within 30% at all locations except in the maze where the deviation was a maximum of 40%. Neutron ambient dose equivalents calculated from the authors’ measured spectra were consistent (one standard deviation) with bubble detector measurements in the treatment room. Conclusions: The NNS may

  10. Developments in Pulsed Neutron Activation for Determination of Water Flow in Pipes

    CERN Document Server

    Mattsson, H

    2003-01-01

    In PNA (pulsed neutron activation) it is important that the measured data can be related to the total mass flow. In this thesis two fundamental problems of the measurement technique and data treatment have been investigated: transport/mixing and background radiation. The principle of PNA is to introduce a radioactive substance into a pipe by bombarding fluid in the pipe with neutron pulses. The fluid in the pipe is activated and subsequently transported and mixed with the flow. Gamma radiation emitted from the activity is measured with one or two detectors downstream from the activation point. The time-resolved signal from the detectors is used to calculate the average velocity of the water flow. Due to the short distance between the neutron generator and the pipe the activity in the pipe becomes highly inhomogeneous. The transport and mixing of the activity were simulated using colour which was injected into the flow. It was found that the inhomogeneous activity distribution must be taken into account if the...

  11. Evaluation of equivalent dose from neutrons and activation products from a 15-MV X-ray LINAC

    International Nuclear Information System (INIS)

    A high-energy photon beam that is more than 10 MV can produce neutron contamination. Neutrons are generated by the [γ,n] reactions with a high-Z target material. The equivalent neutron dose and gamma dose from activation products have been estimated in a LINAC equipped with a 15-MV photon beam. A Monte Carlo simulation code was employed for neutron and photon dosimetry due to mixed beam. The neutron dose was also experimentally measured using the Optically Stimulated Luminescence (OSL) under various conditions to compare with the simulation. The activation products were measured by gamma spectrometer system. The average neutron energy was calculated to be 0.25 MeV. The equivalent neutron dose at the isocenter obtained from OSL measurement and MC calculation was 5.39 and 3.44 mSv/Gy, respectively. A gamma dose rate of 4.14 µSv/h was observed as a result of activations by neutron inside the treatment machine. The gamma spectrum analysis showed 28Al, 24Na, 54Mn and 60Co. The results confirm that neutrons and gamma rays are generated, and gamma rays remain inside the treatment room after the termination of X-ray irradiation. The source of neutrons is the product of the [γ,n] reactions in the machine head, whereas gamma rays are produced from the [n,γ] reactions (i.e. neutron activation) with materials inside the treatment room. The most activated nuclide is 28Al, which has a half life of 2.245 min. In practice, it is recommended that staff should wait for a few minutes (several 28Al half-lives) before entering the treatment room after the treatment finishes to minimize the dose received. (author)

  12. Measurement of activation rates of 14 MeV neutron after penetrating iron cylinder

    International Nuclear Information System (INIS)

    The radial distribution of activation rates are measured by D-T neutrons penetrating iron cylinder with four threshold-energy detectors Fe, Al, F, Zr. The experimental results are discussed. MCNP4A/5 code and FENDL-2, ENDF/B-VI library data is used to calculate the activation reaction rates on the experimental setup. The calculated results are compared with the experimental results. The experimental uncertainty is about 6.1%-7.1%. (authors)

  13. Simultaneous determination of nitrogen and phosphorus in cereals using 14 MeV Neutron Activation Analysis

    International Nuclear Information System (INIS)

    A method using 14 MeV neutron activation analysis was developed form non-destructive simultaneous determination of N and P in cereals. The samples were irradiated 5 min. after 0,5 min. decay time. The induced activities were measured using gamma spectrometry with Nal(Tl) well type detector. The accuracy, precision and detection limits obtained are discussed as well as the analytical results for different types of cereals. (Author) 10 refs., 8 tab., 1 fig

  14. Software for neutron activation analysis at reactor IBR-2, FLNP, JINR

    CERN Document Server

    Zlokazov, V B

    2004-01-01

    A Delphi program suite, developed for processing gamma-spectra of induced activity of nuclei, obtained from the neutron activation measurements at the reactor IBR-2, FLNF, JINR, is reported. This suite contains components, intended for carrying out all the operations of the analysis cycle, starling with a data acquisition program for gamma -spectrometers Gamma (written in C++ Builder) and including Delphi programs for steps of the analysis. (6 refs).

  15. Synthetic multi-element standards: a good tool for calibration and quality control of irradiation facilities used for neutron activation analysis

    International Nuclear Information System (INIS)

    Neutron activation analysis (NAA) is a physical technique used for the absolute measurement of the concentration of substances in solids and liquids. The method uses neutron irradiation which is commonly realised using a nuclear reactor in order to activate (make radioactive) different isotopes of the elements present in the sample. The radionuclides produced in this way emit gamma-rays that are characteristic of the elements present in the sample. Using gamma-ray spectrometry these radionuclides can then be identified and quantified, and hence their concentration in the sample can be determined. Although NAA is a straightforward method it requires a sound control of the many physical parameters involved to obtain accurate results and to guarantee a set accuracy in routine analysis. The accuracy of NAA depends on the specific measurement method used. One can perform NAA in a relative way by co-irradiating a known standard and the unknown sample in the same conditions and by comparing the ratio of gamma-rays they emit. Relative NAA has limited applicability since it requires reference standards with a comparable composition as the unknown. A more generally applicable method is the k0-NAA method. In the k0-NAA method all measurements are relative to the element Au resulting in 198Au when irradiated. The k0-NAA method further relies on the fact that the neutron energy spectrum produced in a given position in the reactor can be parameterised with two parameters: the shape factor of the epithermal neutron flux, indicating the deviation of the epithermal neutron spectrum from the ideal 1/E shape approximated by a 1/E1+a distribution, with E the neutron energy; f: the thermal-to-epithermal neutron flux ratio. The parameters f and a are characteristic for the irradiation facility (reactor and irradiation channels) and may change or fluctuate in time according to the irradiation conditions. The way elements activate (become radioactive) when interacting with neutrons is

  16. Active Neutron and Gamma Ray Instrumentation for In Situ Planetary Science Applications

    Science.gov (United States)

    Parsons, A.; Bodnarik, J.; Evans, L.; Floyd, S.; Lim, L.; McClanahan, T.; Namkung, M.; Schweitzer, J.; Starr, R.; Trombka, J.

    2010-01-01

    The Pulsed Neutron Generator-Gamma Ray And Neutron Detectors (PNG-GRAND) experiment is an innovative application of the active neutron-gamma ray technology so successfully used in oil field well logging and mineral exploration on Earth. The objective of our active neutron-gamma ray technology program at NASA Goddard Space Flight Center (NASA-GSFC) is to bring the PNG-GRAND instrument to the point where it can be flown on a variety of surface lander or rover missions to the Moon, Mars, Menus, asteroids, comets and the satellites of the outer planets. Gamma-Ray Spectrometers (GRS) have been incorporated into numerous orbital planetary science missions and, especially its the case of the Mars Odyssey GRS, have contributed detailed maps of the elemental composition over the entire surface of Mars. However, orbital gamma ray measurements have low spatial sensitivity (100's of km) due to their low surface emission rates from cosmic rays and subsequent need to be averaged over large surface areas. PNG-GRAND overcomes this impediment by incorporating a powerful neutron excitation source that permits high sensitivity surface and subsurface measurements of bulk elemental compositions. PNG-GRAND combines a pulsed neutron generator (PNG) with gamma ray and neutron detectors to produce a landed instrument to determine subsurface elemental composition without needing to drill into a planet's surface a great advantage in mission design. We are currently testing PNG-GRAND prototypes at a unique outdoor neutron instrumentation test facility recently constructed at NASA/GSFC that consists of a 2 m x 2 in x 1 m granite structure placed outdoors in an empty field. Because an independent trace elemental analysis has been performed on the material, this granite sample is a known standard with which to compare both Monte Carlo simulations and our experimentally measured elemental composition data. We will present data from operating PNG-GRAND in various experimental configurations on a

  17. Matrix effects in compositional analysis of bulk materials by PGNAA (prompt gamma/neutron activation analysis). Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, V.C.; Sandquist, G.M.; Merrell, G.B.; Gozani, T.

    1984-08-01

    This feasibility study has identified and evaluated the influence of important matrix effects which arise in the commercial application of prompt gamma/neutron activation analysis (PGNAA) methods to bulk-coal analysis as follows: neutron moderation and absorption changes; gamma-ray attenuation in the sample; sample density and volume changes. The neutron-induced capture gamma spectra were found to vary in a similar, predictable manner for all neutron absorbers found in coal such as hydrogen, boron, nitrogen, chlorine, and sulfur. Three different models have been proposed from this study to analyze coal by PGNAA methods and account for the significant matrix effects arising from hydrogen variation and other system perturbations.

  18. Matrix effects in compositional analysis of bulk materials by PGNAA (prompt gamma/neutron activation analysis). Final report

    International Nuclear Information System (INIS)

    This feasibility study has identified and evaluated the influence of important matrix effects which arise in the commercial application of prompt gamma/neutron activation analysis (PGNAA) methods to bulk-coal analysis as follows: neutron moderation and absorption changes; gamma-ray attenuation in the sample; sample density and volume changes. The neutron-induced capture gamma spectra were found to vary in a similar, predictable manner for all neutron absorbers found in coal such as hydrogen, boron, nitrogen, chlorine, and sulfur. Three different models have been proposed from this study to analyze coal by PGNAA methods and account for the significant matrix effects arising from hydrogen variation and other system perturbations

  19. Development of a prompt gamma activation analysis facility using diffracted polychromatic neutron beam

    CERN Document Server

    Byun, S H; Choi, H D

    2002-01-01

    A prompt gamma activation analysis facility has recently been developed at Hanaro, the 24 MW research reactor in the Korea Atomic Energy Research Institute. Polychromatic thermal neutrons are extracted by setting pyrolytic graphite crystals at a Bragg angle of 45 deg. . The detection system comprises a large single n-type HPGe detector, signal electronics and a fast ADC. Neutron beam characterization was performed both theoretically and experimentally. The neutron flux was measured to be 7.9x10 sup 7 n/cm sup 2 s in a 1x1 cm sup 2 beam area at the sample position with a uniformity of 12%. The corresponding Cd-ratio for gold was found to be 266. The beam quality was compared with other representative thermal neutron prompt gamma activation analysis. The detection efficiency was calibrated up to 11 MeV using a set of radionuclides and the (n,gamma) reactions of N and Cl. Finally, the sensitivities and the detection limits were obtained for several elements.

  20. Development of a prompt gamma activation analysis facility using diffracted polychromatic neutron beam

    International Nuclear Information System (INIS)

    A prompt gamma activation analysis facility has recently been developed at Hanaro, the 24 MW research reactor in the Korea Atomic Energy Research Institute. Polychromatic thermal neutrons are extracted by setting pyrolytic graphite crystals at a Bragg angle of 45 deg. . The detection system comprises a large single n-type HPGe detector, signal electronics and a fast ADC. Neutron beam characterization was performed both theoretically and experimentally. The neutron flux was measured to be 7.9x107 n/cm2 s in a 1x1 cm2 beam area at the sample position with a uniformity of 12%. The corresponding Cd-ratio for gold was found to be 266. The beam quality was compared with other representative thermal neutron prompt gamma activation analysis. The detection efficiency was calibrated up to 11 MeV using a set of radionuclides and the (n,γ) reactions of N and Cl. Finally, the sensitivities and the detection limits were obtained for several elements

  1. Evaluation of HYLIFE-II and Sombrero using 175- and 566-group neutron transport and activation cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Latkowski, Jeffery F. E-mail: latkowski1@llnl.gov; Cullen, Dermott E.; Sanz, Javier

    2000-11-01

    Recent modifications to the TART Monte Carlo neutron and photon transport code allow enable calculation of 566-group neutron spectra. This expanded group structure represents a significant improvement over the 50- and 175-group structures that have been previously available. To support use of this new capability, neutron activation cross-section libraries have been created in the 175- and 566-group structures starting from the FENDL/A-2.0 pointwise data. Neutron spectra have been calculated for the first walls of the HYLIFE-II and Sombrero inertial fusion energy power plant designs and have been used in subsequent neutron activation calculations. The results obtained using the two different group structures are compared with each other as well as to those obtained using a 175-group version of the EAF3.1 activation cross-section library.

  2. Results from the CDE phase activity on neutron dosimetry for the international fusion materials irradiation facility test cell

    CERN Document Server

    Esposito, B; Maruccia, G; Petrizzi, L; Bignon, G; Blandin, C; Chauffriat, S; Lebrun, A; Recroix, H; Trapp, J P; Kaschuck, Y

    2000-01-01

    The international fusion materials irradiation facility (IFMIF) project deals with the study of an accelerator-based, deuterium-lithium source, producing high energy neutrons at sufficient intensity and irradiation volume to test samples of candidate materials for fusion energy reactors. IFMIF would also provide calibration and validation of data from fission reactor and other accelerator based irradiation tests. This paper describes the activity on neutron/gamma dosimetry (necessary for the characterization of the specimens' irradiation) performed in the frame of the IFMIF conceptual design evaluation (CDE) neutronics tasks. During the previous phase (conceptual design activity (CDA)) the multifoil activation method was proposed for the measurement of the neutron fluence and spectrum and a set of suitable foils was defined. The cross section variances and covariances of this set of foils have now been used for tests on the sensitivity of the IFMIF neutron spectrum determination to cross section uncertainties...

  3. Computational investigation of the neutron shielding and activation characteristics of borated concrete with polyethylene aggregate

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.J.; Jang, J.G.; Lee, H.K., E-mail: leeh@kaist.ac.kr

    2014-09-15

    This paper presents the result of a computational study to investigate the neutron shielding and activation characteristics of concretes containing boron carbide and polyethylene. Various mixes were considered with changes in the contents of boron carbide and polyethylene aggregate. The Monte Carlo simulation code MCNP-5 was utilized to determine the transmission of neutron through concrete at different energies from 0.1 eV to 1 MeV, and ORIGEN-S code was then used to predict activation characteristics of the concretes. It was shown that the replacement of polyethylene in borated concrete greatly enhanced the shielding efficiency of the concrete, and total activity levels of the concrete were considerably decreased with this replacement. Furthermore, double-layered structures having the first layer of polyethylene aggregate-replaced concrete and the second layer of 2 wt% borated concrete are shown to improve shielding efficiency more significantly than monolithic structures.

  4. The affect of industrial activities on zinc in alluvial Egyptian soil determined using neutron activation analysis

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Thirty-two surface (0-20 cm) soil samples were collected from different locations in Egypt representing non-polluted,moderately and highly polluted soils.The aim of this study was to evaluate total Zn content in alluvial soils of Nile Delta in Egypt by using the delayed neutron activation analysis technique (DNAA),in the irradiation facilities of the first Egyptian research reactor (ET-RR-1).The gamma-ray spectra were recorded with a hyper pure germanium detection system.The well resolved gamma-ray peak at 1116.0 kev was efficiently used for 65Zn content determination.Zn content in non-polluted soil samples ranged between 74.1 and 103.8 ppm with an average of 98.5 + 5.1 ppm.Zn content in moderately polluted soils ranged between 136.0 and 232.5 ppm with an average of 180.1 + 32.6 ppm.The highest Zn levels ranging from 240.0 and 733.0 ppm with an average of 410.3 + 54.4 ppm,were observed in soil samples collected from,either highly polluted agricultural soils exposed to prolonged irrigation with industrial wastewater or surface soil samples from industrial sites.

  5. NGS Absolute Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NGS Absolute Gravity data (78 stations) was received in July 1993. Principal gravity parameters include Gravity Value, Uncertainty, and Vertical Gradient. The...

  6. Deuteron and neutron induced activation in the Eveda accelerator materials: implications for the accelerator maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, M.; Sanz, J.; Garcia, N.; Cabellos, O. [Madrid Univ. Politecnica, C/ Jose Gutierrez Abascal, lnstituto de Fusion Nuclear (Spain); Sauvan, R. [Universidad Nacional de Educacion a Distancia (UNED), Madrid (Spain); Moreno, C.; Sedano, L.A. [CIEMAT-Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, Association Euratom-CIEMAT, Madrid (Spain)

    2007-07-01

    Full text of publication follows: The IFMIF (International Fusion Materials Irradiation Facility) is an accelerator-based DLi neutron source designed to test fusion reactor candidate materials for high fluence neutrons. Before deciding IFMIF construction, an engineering design and associated experimental data acquisition, defined as EVEDA, has been proposed. Along the EVEDA accelerator, deuteron beam losses collide with the accelerator materials, producing activation and consequent radiations responsible of dose. Calculation of the dose rates in the EVEDA accelerator room is necessary in order to analyze the feasibility for manual maintenance. Dose rates due to the activation produced by the deuteron beam losses interaction with the accelerator materials, will be calculated with the ACAB activation code, using EAF2007 library for deuteron activation cross-sections. Also, dose rates from the activation induced by the neutron source produced by the interaction of deuteron beam losses with the accelerator materials and the deuterium implanted in the structural lattice, will be calculated with the SRIM2006, TMAP7, DROSG2000/NEUYIE, MCNPX and ACAB codes. All calculations will be done for the EVEDA accelerator with the room temperature DTL structure, which is based on copper cavities for the DTL. Some calculations will be done for the superconducting DTL structure, based on niobium cavities for the DTL working at cryogenic temperature. Final analysis will show the dominant mechanisms and major radionuclides contributing to the surface dose rates. (authors)

  7. Absolute Pitch on Music

    OpenAIRE

    Çuhadar, C.Hakan

    2008-01-01

    Musicians are debated people in the academic circles with the claim of they have both various characteristics and different cognitive personalities on the analogy those other people. One of these different characteristics is absolute pitch ability. Absolute pitch (AP) is a cognitive ability which can be characterized as to identify any tones (labeling) at a given pitch without using any external references. According to the different studies which were held in different times, the prevalence ...

  8. Absolute polarimetry at RHIC

    OpenAIRE

    Okada, H.; Alekseev, I.; Bravar, A; Bunce, G.; Dhawan, S.; Eyser, K. O.; Gill, R; Haeberli, W.; Huang, H.; Jinnouchi, O.; Makdisi, Y.; Nakagawa, I.; Nass, A.; Saito, N; Stephenson, E.

    2007-01-01

    Precise and absolute beam polarization measurements are critical for the RHIC spin physics program. Because all experimental spin-dependent results are normalized by beam polarization, the normalization uncertainty contributes directly to final physics uncertainties. We aimed to perform the beam polarization measurement to an accuracy of $\\Delta P_{beam}/P_{beam} < 5%$. The absolute polarimeter consists of Polarized Atomic Hydrogen Gas Jet Target and left-right pairs of silicon strip detector...

  9. Rare-earth and thorium in soil and manioc: determination using neutron activation analysis

    International Nuclear Information System (INIS)

    This paper reports the elements rare-earth and Thorium determined in soil and manioc during an assessment carried out to evaluate the elemental concentration in several matrixes connected with the chain food. One site studied is in the Iron Quadrangle, Minas Gerais, Brazil, that presented mineral exploration activity in the past. Another site is without any mining activity and it is outside the Quadrangle. The objective was to evaluate the influence of a mining activity on the elemental concentration in the soil and manioc is grown around the mining area. The elemental determination was achieved by applying the k0-instrumental Neutron Activation. (author)

  10. Neutronic Characterization of the Megapie Target

    CERN Document Server

    Panebianco, Stefano; Bokov, Pavel; Chabod, Sebastien; Chartier, Frederic; Dupont, Emmeric; Dore, Diane; Ledoux, Xavier; Letourneau, Alain; Oriol, Ludovic; Prevost, Aurelien; Ridikas, Danas; Toussaint, Jean-Christian

    2007-01-01

    The MEGAPIE project is one of the key experiments towards the feasibility of Accelerator Driven Systems. On-line operation and post-irradiation analysis will provide the scientific community with unique data on the behavior of a liquid spallation target under realistic irradiation conditions. A good neutronics performance of such a target is of primary importance towards an intense neutron source, where an extended liquid metal loop requires some dedicated verifications related to the delayed neutron activity of the irradiated PbBi. In this paper we report on the experimental characterization of the MEGAPIE neutronics in terms of the prompt neutron (PN) flux inside the target and the delayed neutron (DN) flux on the top of it. For the PN measurements, a complex detector, made of 8 microscopic fission chambers, has been built and installed in the central part of the target to measure the absolute neutron flux and its spatial distribution. Moreover, integral information on the neutron energy distribution as a f...

  11. Minimizing the Levelized Cost of Energy in Single-Phase Photovoltaic Systems with an Absolute Active Power Control

    DEFF Research Database (Denmark)

    Yang, Yongheng; Koutroulis, Eftichios; Sangwongwanich, Ariya;

    2015-01-01

    Several countries with considerable PhotoVoltaic (PV) installations are facing a challenge of overloading the power infrastructure during peak-power production hours. Regulations have been imposed on the PV systems, where more active power control should be flexibly performed. As an advanced...... method is demonstrated on a 3-kW single-phase PV system considering a real-field mission profile (i.e., solar irradiance and ambient temperature). The optimization results have revealed that superior performance in terms of LCOE and energy production can be obtained by enabling the AAPC strategy......, compared to the conventional PV inverter operating only in the maximum power point tracking mode. In the presented case study, the minimum of LCOE is achieved for the system when the power limit is optimized to a certain level of the designed maximum feed-in power (i.e., 3 kW). In addition, the proposed...

  12. Minimizing the Levelized Cost of Energy in Single-Phase Photovoltaic Systems with an Absolute Active Power Control

    DEFF Research Database (Denmark)

    Yang, Yongheng; Koutroulis, Eftichios; Sangwongwanich, Ariya;

    2017-01-01

    Countries with considerable PhotoVoltaic (PV) installations are facing a challenge of overloading their power grid during peak-power production hours if the power infrastructure remains the same. To address this, regulations have been imposed on PV systems, where more active power control should...... Of Energy (LCOE), the power limit is optimized for the AAPC strategy in this paper. The optimization method is demonstrated on a 3-kW single-phase PV system considering a real-field mission profile (i.e., solar irradiance and ambient temperature). The optimization results have revealed that superior...... performance in terms of LCOE and energy production can be obtained by enabling the AAPC strategy, compared to the conventional PV inverter operating only in the maximum power point tracking mode. In the presented case study, the minimum of the LCOE is achieved for the PV system when the power limit...

  13. Critical analysis for nuclear data of thermal neutron capture cross section and the resonance integral from library based on neutron activation measurements

    International Nuclear Information System (INIS)

    For research reactor applications of neutron activation analysis, the evaluated neutron reaction cross sections and resonance integrals in some different libraries available were analyzed comparatively. In order to check these data, the thermal neutron capture cross section (σ0) and the resonance integral (I0) of 23Na(n, γ )24Na, 58Fe(n, γ) 59Fe, 59Co(n, γ )60Co, 27Al(n, γ )28Al, 109Ag(n, γ) 110mAg, 197Au(n, γ)198Au and 238U(n, γ )239U reactions from different libraries were used for comparative analysis with experimental measurements based on fundamental neutron activation equation. The targets were irradiated with neutrons in a research nuclear reactor 100 kW power, Triga Mark I. A high purity Ge detector was used for the gamma ray measurements of the irradiated samples. The evaluated results have been in general agreement with the current data according to different library sources. (author)

  14. Study on bioavailability of zinc for children's diet by using activable isotopic tracer 70Zn and neutron activation analysis techniques

    International Nuclear Information System (INIS)

    Bioavailability of zinc for three groups (low amount of diet zinc, balance amount of diet zinc and high amount of diet zinc) of children's diet is studied by using activable isotopic tracer 70Zn and neutron activation analysis techniques. The results indicate that the fractional absorption of zinc from balance diet zinc group is the highest, up to 33.9%. A procedure of pre-irradiation concentration zinc for fecal samples using anion exchanger is developed, and the enriched 70Zn with isotopic abundance of 18.3% is used for tracer. The mass ratios between 70Zn and 68Zn or 64Zn and their contents between natural zinc and enriched zinc are used to calculate the bioavailability of zinc. Instrumental neutron activation analysis of 64Zn of each original fecal samples and pre-irradiation concentrated zinc samples are used to normalize the chemical yield in order to reduce the uncertainty during the chemical separation procedure

  15. An in-beam Compton-suppressed Ge spectrometer for nondestructive neutron activation analysis

    International Nuclear Information System (INIS)

    A high-efficiency compton background suppressed gamma-ray spectrometer by anti-coincidence counting with a NaI(Tl)-shield around a central HPGe-detector for in-beam prompt gamma-ray neutron activation analysis (AC-PGNAA) using a Cf-252 neutron source has been designed and built to provide simultaneous anti-coincidence spectrometry of natural, industrial and environmental samples. The spectrometer consists of a high-purity germanium detector as the main detector and a large volume cylindrical NaI(Tl) detector as a guard detector. The assembly has the ability to measure instantaneously, simultaneously and nondestructively bulk samples up to about 50 cm3. Major constituent elements in several rocks and minerals such as H, B, N, Na, Mg, Al, Si, Cl, K, Ca, P, S, Ti, Fe, Sm, Nd, Mn and Gd can be determined, while oxygen cannot be measured due to its small capture cross section (0.27 mb). Several important minor and trace elements such as B, Cd and Hg beside the low residual activity, rare earths and short-lived isotopes could be detected. The sensitivity of the AC-PGNAA technique is limited by the available neutron flux at the target matrix and the neutron absorption cross section of the elements of interest. PGNAA has the advantage to estimate the constituent elements which are difficult to be measured through the delayed gamm-ray measurements such as B, Bi, C, H, P, Tl, Be, Cl and S in industrial and reference materials and those elements which are transformed into other stable isotopes when undergoing neutron capture. The design of the spectrometer assembly, its properties and performance are described

  16. Multi-element characterization of silicon nitride powders by instrumental and radiochemical neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Franek, M.; Krivan, V. (Ulm Univ. (Germany). Sektion Analytik und Hoechstreinigung)

    1992-07-15

    An optimized instrumental neutron activation analysis method was applied to the comprehensive trace characterization of good- and high- purity silicon nitride powders of different origins. Experimental modes are given for 55 elements leading to limits of detection below 1 ng g[sup -] [sup 1] for 28 elements, between 1 and 100 ng g[sup -1] for 19 elements and higher than 100 ng g[sup -1] for 8 elements. For the removal of the radionuclides [sup 140]La, [sup 182]Ta and [sup 187]W, which cause the major activity in certain types of materials, radiochemical procedures based in cation exchange from 2 M HCl and anion exchange from 2 M HF were developed. [sup 64]Cu was selectively extracted with dithizone from 10 M HF for counting the 511-keV line. By radiochemical neutron activation analysis, the limits of detection were improved by up to three orders of magnitude. Comparison with results obtained by inductively coupled plasma (ICP) atomic emission spectrometry and ICP mass spectrometry shows satisfactory agreement and demonstrates the advantages of neutron activation analysis especially when low elements contents are to be determined. (author). 30 refs.; 2 figs.; 6 tabs.

  17. Reproducibility of neutron activated Sm-153 oral dose formulations intended for human administration

    Energy Technology Data Exchange (ETDEWEB)

    Yeong, C.H. [Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur (Malaysia); Blackshaw, P.E. [Medical Physics and Clinical Engineering, Nottingham University Hospitals NHS Trust, Nottingham NG7 2UH (United Kingdom); Ng, K.H.; Abdullah, B.J.J. [Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur (Malaysia); Blaauw, M. [Reactor Institute Delft, Faculty of Applied Sciences, Delft University of Technology, 2628 CJ Delft (Netherlands); Dansereau, R.J. [Procter and Gamble Pharmaceuticals, 8700 Mason-Montgomery Rd, Mason (United States); Perkins, A.C., E-mail: alan.perkins@nottingham.ac.uk [Medical Physics and Clinical Engineering, Nottingham University Hospitals NHS Trust, Nottingham NG7 2UH (United Kingdom); Radiological and Imaging Sciences and Nottingham Digestive Diseases Biomedical Research Unit, University of Nottingham, Nottingham NG7 2UH (United Kingdom)

    2011-09-15

    Neutron activation of Sm-152 offers a method of radiolabeling for the in vivo study of oral dose formulations by gamma scintigraphy. Reproducibility measurements are needed to ensure the robustness of clinical studies. 204 enteric-coated guaifenesin core tablets (10 mg of Sm{sub 2}O{sub 3}) were irradiated by thermal neutrons to achieve 1 MBq at 48 h. Administered activities were 0.86{+-}0.03 MBq. Good reproducibility (CV=3.5%) was observed over 24 weeks ensuring that volunteer doses were within the dose reference level of 0.8 mSv. - Highlights: > 204 enteric-coated guaifenesin core tablets were irradiated by thermal neutrons. > Activity measured at 48 h after irradiation was 1.01{+-}0.03 MBq. > Activity administered per subject was 0.88{+-}0.03 MBq. > Good reproducibility (CV=3.5%) of Sm-153 radioactivity was obtained. > Effective doses to volunteers were within dose reference level of 0.8 mSv.

  18. Field Prototype of the ENEA Neutron Active Interrogation Device for the Detection of Dirty Bombs

    Directory of Open Access Journals (Sweden)

    Nadia Cherubini

    2016-10-01

    Full Text Available The Italian National Agency for New Technologies, Energy, and Sustainable Economic Development (ENEA Neutron Active Interrogation (NAI device is a tool designed to improve CBRNE defense. It is designed to uncover radioactive and nuclear threats including those in the form of Improvised Explosive Devices (IEDs, the so-called “dirty bombs”. The NAI device, at its current development stage, allows to detect 6 g of 235U hidden in a package. It is easily transportable, light in weight, and with a real-time response. Its working principle is based on two stages: (1 an “active” stage in which neutrons are emitted by a neutron generator to interact with the item under inspection, and (2 a “passive” stage in which secondary neutrons are detected originating a signal that, once processed, allows recognition of the offence. In particular, a clear indication of the potential threat is obtained by a dedicated software based on the Differential Die-Away Time Analysis method.

  19. Determination of radioactive trace elements in ultra low background detectors by means of neutron activation analysis

    International Nuclear Information System (INIS)

    In this paper new analytical methods for the determination of naturally occurring radionuclides are being presented. They combine neutron activation, radiochemical separation and coincidence counting techniques. For complex matrices such as organic liquids and silicon we have obtained detection limits lower than 10-14 g/g for Th, U, La and lower than 10-12 g/g for Cd, In, K, Lu, and Rb with radiochemical separation methods geared to the nuclides investigated. The β-γ coincidence counting techniques used for the determination of U, Th and Lu in the ultra trace region are discussed in detail, with recorded spectra and applied selection criteria for the evaluation of decay events. Impacts of the results on low level experiments in the field of astro and particle physics are being discussed as well as the advantage of neutron activation analysis which is sensitive to most naturally occurring radionuclides. (author)

  20. Elemental analysis of rain- and fresh water by neutron activation analysis

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Analysis of rain-and fresh water for trace constituents is a manda tory part of environmental monitoring. This text gives a survey of neutron activation analysis (NAA) within the framework of current environmental water research pro grammes, based on the practice developed in co-operation with the Dutch Energy Research Centre at Petten (ECN). While the procedures reported in literature cover about thirty five elements, our routine procedures of instrumental neutron activation analysis (INAA) is limited to ten to fifteen elements. The use of some dedicated ra diochemical separations (RNAA) adds another six, some of which are speciated as well. Current contributions of NAA to water analysis center on determination and speciation of anionic trace elements, notably Br, I, As. and Se, on the assay of some ultra traces like Ag, Au and Hg and on validation.

  1. Stability of biodegradable radioactive rhenium (Re-186 and Re-188) microspheres after neutron-activation

    International Nuclear Information System (INIS)

    Our objective was to determine if microspheres made from the biodegradable polymer poly(lactic acid) that contained rhenium could withstand the conditions of direct neutron activation necessary to produce therapeutic amounts of radioactive rhenium. The radiation damage of the polymer produced by γ-doses of up to 1.05 MGy from Re-186 and Re-188 was examined by scanning electron microscopy and size exclusion chromatography. At a thermal neutron flux of 1.5x1013 n/cm2/s the microspheres melted after 3 h in the nuclear reactor, but suffered little damage after 1 h of radiation and released less than 5% of the radioactivity during incubation in buffer at 37 deg. C. The radioactive microspheres produced in this manner have a specific activity too low for radioembolization for treatment of liver tumors, but could be injected directly into tumors or applied topically to the wound bed of partially resected tumors

  2. Determination of trace impurities of chlorine in zirconium-alloy matrices using neutron activation technique

    Energy Technology Data Exchange (ETDEWEB)

    Naik, H.; Nathaniel, T. Newton [Bhabha Atomic Research Centre, Trombay, Mumbai (India). Radiochemistry Div.; Sant, V.L. [Bhabha Atomic Research Centre, Trombay, Mumbai (India). Fuel Chemistry Div.; Suryanarayana, S.V. [Bhabha Atomic Research Centre, Trombay, Mumbai (India). Nuclear Physics Div.; Prajapati, P.M. [Bhabha Atomic Research Centre, Trombay, Mumbai (India). Reactor Physics Design Div.

    2011-07-01

    Trace impurities of chlorine in the zircaloy-2 and Zr-2.5% Nb alloy matrix have been determined using neutron activation analysis (NAA) and off-line {gamma}-ray spectrometric technique. The results have been compared with the values obtained from pyrohydrolysis-IC and spark source mass spectrometric method. The limit of internal precision error from the neutron activation technique is 6.7% for zircaloy-2 and 9% for Zr-2.5% Nb alloy, which are lower than that of pyrohydrolysis-IC and spark source mass spectrometric measurements respectively. For both alloys the results from present work based on NAA technique are slightly higher than the results based on the other two methods but are comparable within the uncertainty. Read More: http://www.oldenbourg-link.com/doi/abs/10.1524/ract.2011.1863 (orig.)

  3. Determination of mercury contents in head hair of dentists by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Mercury contents in head hair of 32 dentists and 30 controls were determined by instrumental neutron activation analysis. The precision and accuracy of the analytical results were checked by independent analytical techniques comprising cold vapour atomic absorption spectrometry and neutron activation analysis combined with lead diethyldithiocarbamate as a preconcentrating agent. The normal range was from 1.91 to 5.44 ppm with an arithmetic mean of 3.90+-1.01 ppm, and the geometric mean of 3.76x:1.33 ppm. The range, arithmetic and geometric means of the values for dentists were 4.32-24.14 ppm, 11.68+-4.70 ppm, and 10.77x:4.04 ppm, resp. The mercury contents in the hair of the dentists are significantly higher than those of the controls. It indicates that dentists in Taiwan do not practice good mercury hygiene. However, the mercury contents are considerably below the toxicity level. (author)

  4. Neutron flux variations near the Earth’s crust. A possible tectonic activity detection

    Directory of Open Access Journals (Sweden)

    B. M. Kuzhevskij

    2003-01-01

    Full Text Available The present work contains some results of observations of neutron flux variations near the Earth’s surface. The Earth’s crust is determined to be a significant source of thermal and slow neutrons, originated from the interaction between the nuclei of the elements of the Earth’s crust and the atmosphere and α-particles, produced by decay of radioactive gases (Radon, Thoron and Actinon. In turn, variations of radioactive gases exhalation is connected with geodynamical processes in the Earth’s crust, including tectonic activity. This determined relation between the processes in the Earth’s crust and neutrons’ flux allow to use variations of thermal and slow neutrons’ flux in order to observe increasing tectonic activity and to develop methods for short-term prediction of natural hazards.

  5. Experimental research on specific activity of 24Na using Chinese reference man phantom irradiated by 252Cf neutrons source

    International Nuclear Information System (INIS)

    Objective: To investigate the specific activity of '24Na per unit neutron fluence, AB/Φ,in blood produced for Chinese reference man irradiated by 252Cf neutron source,and to analyze the effects of scattering neutrons from ground,wall,and ceiling in irradiation site on it.Methods: A 252Cf neutron source of 3×108 n/s and the anthropomorphic phantom were used for experiments. The phantom was made from 4 mm thick of outer covering by perspex and the liquid tissue-equivalent substitute in it. The data of phantom dimensions fit into Chinese reference man.The weight ratios of H, N, O and C in substitute equal from source to long axis of phantom were 1.1, 2.1, 3.1 and 4.1 m, respectively. Both the neutron source and the position of xiphisternum of the phantom were 1.6 m above the floor. Results: The average specific activity of 24Na per unit neutron fluence was related to the irradiation-distances, d, and its maximum value, AB/ΦM, deduced by experimental data was about 1.85×10-7 Bq·cm2·g-1. Conclusions: The AB/ΦM corresponds to that of phantom irradiated by plane-parallel beams, and the value is about more 3% than that by BOMAB phantom reported in literature. It has shown that floor-(wall-)scattered neutrons in irradiation site have significant contribution to the specific activity of 24Na, but they contributed relatively little to the induced neutron doses. Consequently,using the specific activity of 24Na for assessing accidental neutron doses received by an individual, the contribution of scattered neutrons in accident site will lead dose to be overestimated, and need to be correct. (authors)

  6. Analysis by neutron activation analysis a some ancient ceramics from Romanian territories

    CERN Document Server

    Olariu, A

    1999-01-01

    In this paper we have analyzed samples of Neolithic ceramics from Cucuteni-Scanteia - Vaslui county and Neolithic and Dacian ceramics from Magurele - Bucharest, by the method of neutron activation analysis. The following elements have been observed: Fe, K, La, Mn, Na, Sc and Sm. It has been noticed a relative and a slight clusterization of the analyzed items on the ratios of concentrations Na/Mn, La/Sc and La/Sm.

  7. Neutron activation analysis as applied to instrumental analysis of trace elements from seawater

    International Nuclear Information System (INIS)

    Particulate matter collected from the coastal area delimited by the mouth of the river Volturno and the Sabaudia lake has been analyzed by instrumental neutron activation analysis for its content of twenty-two trace elements. The results for surface water and bottom water are reported separately, thus evidencing the effect of sampling depth on the concentration of many elements. The necessity of accurately 'cleaning' the filters before use is stressed

  8. Calculation of corrections in the neutron activation analysis of oxygen in powdered and granulated materials

    International Nuclear Information System (INIS)

    Presented is a formula for the correction calculation at the analysis of oxygen in materials by the neutron activation method. A nomogram is plotted for the calculation of corrections taking into account the oxygen of capsule material and of air being in the internal volume of the capsule due to its incomplete filling. The accuracy of corrections according to nomogram is 2-3x10-4 mass %

  9. Multielemental analysis by neutron activation of sediments in the Ana Maria Gulf, Cuba

    International Nuclear Information System (INIS)

    In this paper general samples of marine sediments taken from six control stations of the Ana Maria Gulf (Cuba) were analyzed. For this purpose the thermal neutron activation analysis method was used. 18 elements were determinated. They are: Al, Ce, Co, Cs, Cr, Eu, Fe, Hf, La, Lu, Mo, Mn, Rb, Sc, Ta, Th, Yb and Zn. The accuracy varied between 5 and 30% for all elements. 10 refs

  10. Heavy metal pollution determination of Zayandehrood River by instrumental neutron activation analysis (INAA)

    International Nuclear Information System (INIS)

    In previous work, 40 elements in 71 samples from Zayandehrood River sediment analysed by Instrumental Neutron Activation Method. According to element variation curves along the river, all the river path has divided to four region which in each one, concentration of elements are almost constant. Enrichment factors have calculated for mean of element concentrations in each region and it has showed that Ag, As, Au, Cu, Hg, Sb, Zn have concentrated in Isfahan city region due to domestic wastes

  11. Elementary composition in sewer silt and vermicomposting by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    The purpose of this study is to demonstrate elementary composition in sewer silt and vermicomposting method produced by oligoquetas for the application of the technique of instrumental neutron activation analysis. As the gotten results, were possible according to inquire that the texts found in the samples are very below of the acceptable maximum values, North American norm 40 CRF Prat 503, elaborated for the Agency of Ambient Protection of the United States and used as reference in Brazil. (author)

  12. Instrumental neutron activation analysis of human hair and related radiotracer experiments on washing and leaching

    International Nuclear Information System (INIS)

    The work done under the IAEA-contract 2440/RB is summarized. The aim was to develop a fast and reliable system for the determination of tracer elements in human head hair by instrumental neutron activation analysis (INAA) and radiotracer washing experiments. The standardized procedure for INAA was applied to hair samples collected by the Coronel Laboratory of the University of Amsterdam. The correlation between trace element contents is considered

  13. Trace element analysis of human head hair by neutron activation technique

    International Nuclear Information System (INIS)

    28 elements in reference hair sample (HH-1) and 44 hair samples of Seoul, Korea have been analyzed by instrumental neutron activation analysis. The analytical results of reference sample agreed well with those of the IAEA report within 10% deviation except those of some elements. For the 44 hair samples of Seoul, the range of content of each element is fallen in +-3σ from his mean value if rejecting one or two of the highest data. (author)

  14. Determination of trace elements in a cigarette paper by neutron activation analysis

    International Nuclear Information System (INIS)

    The concentration of 19 trace elements in a cigarette paper (Zig-Zag Paper Company, France) which is used in making different brands of Iranian cigarettes, has been measured by neutron activation analysis, employing a high-resolution Ge(Li) detector. They include Na, K, Ca, Sc, Cr, Mn, Fe, Co, Zn, Br, Sr, Sb, Ba, Ce, Eu, Gd, Au, Hg, and Th. (author)

  15. Studies of nutritionally and toxicologically important elements in foods and diets by neutron activation

    International Nuclear Information System (INIS)

    Several neutron activation analysis (NAA) methods in conjunction with conventional and anticoincidence counting have been developed in our laboratory over the years for the quantitative determination of up to 24 elements in foods and diets. Additionally, these methods have been applied to measure bioaccessible, ionic, proteomic, lipidic, and organometallic species of many elements. The overall expanded uncertainties of the methods have also been evaluated. (author)

  16. Elemental concentration determination in certain medicinal leaves by K0 instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Elemental concentrations of two types of medicinal leaves (neem and eucalyptus) are determined by neutron activation analysis using single comparator (K0 NAA) method. Data obtained on one of the varieties studied (neem), collected from two different places, have also been used to see the effect of soil condition. The method was validated by analysing the SRM-1571 and it was found that the measured elemental concentrations in SRM-1571 are within ±9% of the reported values. (author)

  17. The preparation of synthetic standards for use in instrumental neutron-activation analysis

    International Nuclear Information System (INIS)

    An account is given of the formulation and preparation of synthetic standards suitable for the routine analysis of minerals, ores, and ore concentrates by instrumental neutron activation. Fifteen standards were prepared, each containing from one to seven elements. The standards contain forty-four elements that produce isotopes with half-lives longer than 12 hours. An evaluation of the accuracy and precision of the method of preparation is given

  18. Application of the k0 parametric neutron activation technique in the industrial reforestation soil analysis

    International Nuclear Information System (INIS)

    This work identifies and establishes the concentration of some minerals nutrients in Mata Atlantica and Vale do Aco Eucalyptus (Minas Gerais State, Brazil) soils. The k0 method of analysis with neutron activation and X-ray fluorescence were used. Reference material were used to check the accuracy of the analytical results. The k0 method is being introduced in CDTN using the CDTN/CNEN-B H IPR-R1 TRIGA Mark I reactor. (author). 5 refs., 2 tabs

  19. 'Edomite', 'Negbite' and 'Midianite' pottery from the Negev Desert and Jordan: instrumental neutron activation analysis results

    International Nuclear Information System (INIS)

    Edomite, Negbite and Midianite pottery from the Negev desert, Jordan, was subjected to neutron activation analysis to establish the origin of these pottery styles and to shed light on inter-regional contact between different peoples and tribes of the area for the 12th to 6th centuries BC. The pottery is listed with reference to chronological period and style and there are tables giving data on multi-element analysis of the pottery. (UK)

  20. Revision and extensions of neutron capture cross-sections in the European activation file EAF-3

    Energy Technology Data Exchange (ETDEWEB)

    Kopecky, J.; Delfini, M.G.; Kamp, H.A.J. van der; Nierop, D.

    1992-07-01

    This report contains an extensive description of the work performed to compile, extend and revise the neutron capture data subfile of the European Activation File (EAF-3). The starter was the EAF-1 data file from 1989. The present version, EAF/NG-3, contains (n, [gamma]) excitation functions for all nuclides (729 targets) with half-lives exceeding 1/2 day in the mass range from H-1 to Cm-248. (author). 35 refs.; 9 figs.; 7 tabs.

  1. An application of a simple computer program for neutron activation analysis

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A simple computer program is designed for estimation of elemental concentration values in complex samples by neutron activation analysis technique. The program is applied for an Egyptian cement sample which irradiated at the Egyptian Research Reactor-1(ET-RR-1). The data obtained is compared with the reported values. The time consumed for such calculations has a remarkable reduction in comparison with the routine work.

  2. FY15 Status Report on NEAMS Neutronics Activities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C. H. [Argonne National Lab. (ANL), Argonne, IL (United States); Shemon, E. R. [Argonne National Lab. (ANL), Argonne, IL (United States); Smith, M. A. [Argonne National Lab. (ANL), Argonne, IL (United States); Connaway, H. M. [Argonne National Lab. (ANL), Argonne, IL (United States); Aliberti, G. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-30

    This report summarizes the current status of NEAMS activities in FY2015. The tasks this year are (1) to improve solution methods for steady-state and transient conditions, (2) to develop features and user friendliness to increase the usability and applicability of the code, (3) to improve and verify the multigroup cross section generation scheme, (4) to perform verification and validation tests of the code using SFRs and thermal reactor cores, and (5) to support early users of PROTEUS and update the user manuals.

  3. Neutron activation analysis of final molasses from cuban sugar industry

    International Nuclear Information System (INIS)

    Thermal and epithermal non-destructive activation analyses have been performed on samples of final molasses from 14 different sugar factories , covering the most important regions in Cuba. From the first measurement after irradiation at the Triga Mark reactor (VTT), the concentration of more than 15 elements is reported. The almost constant elemental composition shows that they can be used equally for different purposes as animal foodstuff and for the manufacture of biotechnological products. This work is part of a research project developed in order to establish a complete characterization of Cuban sugar molasses. (author). 7 refs., 2 tabs

  4. Determination of Magnesium in Needle Biopsy Samples of Muscle Tissue by Means of Neutron Activation Analysis

    International Nuclear Information System (INIS)

    Magnesium has been determined by means of neutron-activation analysis in needle biopsy samples of the order of magnitude 1 mg dry weight. The procedure applied was to extract the Mg-27 activity from irradiated muscle tissue with concentrated hydrochloric acid followed by a fast hydroxide precipitation and gamma-spectrometric measurements. The Mg activity was recovered in the muscle tissue samples to (97 ± 2) per cent. The sensitivity for the magnesium determination is estimated as 0.3 μg

  5. Elemental analysis of human serum and serum protein fractions by thermal neutron activation

    International Nuclear Information System (INIS)

    Some applications of thermal neutron activation for the determination of elemental contents in human serum and human serum protein fractions are presented. Firstly total serum is dealt with, secondly serum protein fractions obtained by gel filtration are described. A brief review on the role of (trace) elements in human health and disease and a compilation of literature data for elemental contents in human serum, as obtained by neutron activation techniques, are given. The most important sources of statistical and systematic errors are evaluated. Results for the contents of sodium, potassium, magnesium, bromine, iron, copper, zinc, selenium, rubidium, cesium and antimony in serum are given, with emphasis on control of accuracy and precision. The possible relation between selenium in blood and cancer occurrence in humans is discussed. The results of elemental analyses from cancer patients and from a patient receiving a cytostatic treatment are presented. A survey of literature results for the determination of protein-bound elemental contents in serum is presented. Subsequently, results from a study on the behaviour of elements during gel filtration are discussed. Gel-element and protein-element interactions are studied. Finally the protein-bound occurrence of trace elements in human serum is determined by gel filtration and neutron activation analysis. Results for both desalting and fractionation are given, for the elements bromine, copper, manganese, vanadium, selenium, zinc, rubidium, iron and iodine. (Auth.)

  6. Air pollution assessment in two Moroccan cities using instrumental neutron activation analysis on bio-accumulators

    International Nuclear Information System (INIS)

    Full text: Biomonitoring is an appropriate tool for the air pollution assessment studies. In this work, lichens and barks have been used as bio-accumulators in several sites in two Moroccan cities (Rabat and Mohammadia). The specific ability of absorbing and accumulating heavy metals and toxic element from the air, their longevity and resistance to the environmental stresses, make those bioindicators suitable for this kind of studies. The Instrumental Neutron Activation Analysis (INAA) is universally accepted as one of the most reliable analytical tools for trace and ultra-trace elements determination. Its use in trace elements atmospheric pollution related studies has been and is still extensive as can be demonstrated by several specific works and detailed reviews. In this work, a preliminary investigation employing lichens, barks and instrumental neutron activation analysis (INAA) was carried out to evaluate the trace elements distribution in six different areas of Rabat and Mohammadia cities characterised by the presence of many industries and heavy traffic. Samples were irradiated with thermal neutrons in a nuclear reactor and the induced activity was counted using high-resolution Germanium-Lithium detectors. More than 30 elements were determined using two modes : short irradiation (1 minute) and long irradiation (17 hours). Accuracy and quality control were assessed using the reference standard material IAEA-336. This was less than 1% for major and about 5 to 10% for traces.

  7. Measurement and theoretical estimation of induced activity in natIn by high energy neutrons

    Indian Academy of Sciences (India)

    Maitreyee Nandy; P K Sarkar; N Nakao; T Shibata

    2009-10-01

    Induced radioactivity in natural indium (natIn) foils by high energy neutrons was measured at the KENS Facility, KEK, Japan, where a 16.7 cm thick W target was bombarded by protons of 500 MeV. High energy neutrons consequently produced irradiated the In targets placed at different depths inside a 4 m thick concrete shield placed at the beam exit. The measured activities were compared with the results calculated using the nuclear reaction model codes ALICE-91 and EMPIRE-2.18. To estimate the induced activity, excitation functions of the various radionuclides were calculated using the two codes and folded with the appropriate neutron energy distribution at different depths of the concrete shield. The calculated excitation functions of a given nuclide were found to vary widely from one another in some cases. The performances of the codes for different input parameters like level densities and inverse cross-sections are reported in this paper. Our analysis shows that neither of the two codes reproduced all the measured activities satisfactorily, requiring further improvements in the models adopted.

  8. Determination of arsenic in food and dietary supplement standard reference materials by neutron activation analysis

    International Nuclear Information System (INIS)

    Arsenic was measured in food and dietary supplement standard reference materials by neutron activation analysis for the purpose of assigning certified or reference As mass fractions and to assess material homogeneity. Instrumental neutron activation analysis was used to value assign As in candidate SRM 3532 Calcium Dietary Supplement and candidate SRM 3262 Hypericum perforatum (St. John's Wort) Aerial Parts down to about 100 μg/kg. Values were also determined for two additional candidate St. John's Wort SRMs with As mass fractions 24Na and 82Br limited the reproducibility of the method below 100 μg/kg. For measurement of lower As mass fractions, a radiochemical neutron activation analysis method with extraction of As3+ into diethyl-dithiocarbamate in chloroform and detection limits down to 0.1 μg/kg. As was used to value-assign As mass fractions for SRM 3280 Multivitamin/Multielement Tablets and for candidate SRM 3233 Fortified Breakfast Cereal, and at <10 μg/kg in candidate SRM 1845a Whole Egg Powder. (author)

  9. Progress report on neutron activation analysis at Dalat Nuclear Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tuan, Nguyen Ngoc [Nuclear Research Institute, Dalat (Viet Nam)

    2003-03-01

    Neutron Activation Analysis (NAA) is one of most powerful techniques for the simultaneous multi-elements analysis. This technique has been studied and applied to analyze major, minor and trace elements in Geological, Biological and Environmental samples at Dalat Nuclear Research Reactor. At the sixth Workshop, February 8-11, 1999, Yojakarta, Indonesia we had a report on Current Status of Neutron Activation Analysis using Dalat Nuclear Research Reactor. Another report on Neutron Activation Analysis at the Dalat Nuclear Research Reactor also was presented at the seventh Workshop in Taejon, Korea from November 20-24, 2000. So in this report, we would like to present the results obtained of the application of NAA at NRI for one year as follows: (1) Determination of the concentrations of noble, rare earth, uranium, thorium and other elements in Geological samples according to requirement of clients particularly the geologists, who want to find out the mineral resources. (2) The analysis of concentration of radionuclides and nutrient elements in foodstuffs to attend the program on Asian Reference Man. (3) The evaluation of the contents of trace elements in crude oil and basement rock samples to determine original source of the oil. (4) Determination of the elemental composition of airborne particle in the Ho Chi Minh City for studying air pollution. The analytical data of standard reference material, toxic elements and natural radionuclides in seawater are also presented. (author)

  10. Radiography apparatus using gamma rays emitted by water activated by fusion neutrons

    Science.gov (United States)

    Smith, D.L.; Ikeda, Yujiro; Uno, Yoshitomo

    1996-11-05

    Radiography apparatus includes an arrangement for circulating pure water continuously between a location adjacent a source of energetic neutrons, such as a tritium target irradiated by a deuteron beam, and a remote location where radiographic analysis is conducted. Oxygen in the pure water is activated via the {sup 16}O(n,p){sup 16}N reaction using {sup 14}N-MeV neutrons produced at the neutron source via the {sup 3}H(d,n){sup 4}He reaction. Essentially monoenergetic gamma rays at 6.129 (predominantly) and 7.115 MeV are produced by the 7.13-second {sup 16}N decay for use in radiographic analysis. The gamma rays have substantial penetrating power and are useful in determining the thickness of materials and elemental compositions, particularly for metals and high-atomic number materials. The characteristic decay half life of 7.13 seconds of the activated oxygen is sufficient to permit gamma ray generation at a remote location where the activated water is transported, while not presenting a chemical or radioactivity hazard because the radioactivity falls to negligible levels after 1--2 minutes. 15 figs.

  11. Active neutron and active gamma interrogation of 500 litre drums of cement-encapsulated intermediate level waste using an electron accelerator

    International Nuclear Information System (INIS)

    This report describes work carried out on linac-driven active neutron and active gamma interrogation of 500 litre cement encapsulated ILW drums at Harwell Laboratory, as part of a three year research programme on the development of an integrated radioactive waste package assay facility. Active neutron interrogation is sensitive to the fissile inventory and active gamma interrogation is sensitive to the total actinide inventory of the drum. Techniques for the calculation of neutron energy spectra and yields from a linac neutron target were developed and validated by comparison with published and new measurements. Existing Monte Carlo neutron transport codes and extensions of computer codes previously developed for active gamma interrogation work were also used. A facility for operation in either neutron or gamma interrogation mode was constructed in the Low Energy Cell of the Harwell linac HELIOS and was furnished with a bremsstrahlung target, a neutron target (for use in neutron interrogation mode), a variety of fast and thermal neutron detectors, and a flexible computer-controlled data acquisition system. Measurements were made of the system response in both interrogation modes for three 500 litre drums of simulated cemented CAGR, Magnox and PCM ILW each provided with a series of vertical sample holes into which samples of 235U (for active neutron interrogation) or natU and D2O (for active gamma interrogation) were placed. Measurements were made of the system response as a function of position and as a function of mass of the samples. In general the measurements confirmed the feasibility of the interrogation method. (author)

  12. A neutron activation system for Ho, HoZr and Sm brachytherapy seeds for breast radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Wagner L., E-mail: wagner.leite@ifmg.edu.br [Instituto Federal de Minas Gerais (IFMG), Congonhas, MG (Brazil). Departamento de Fisica; Campos, Tarcisio P.R., E-mail: tprcampos@pq.cnpq.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear

    2015-07-01

    This paper addresses a device designed for transmuting nuclides by means of neutron capture reactions. The device is composed by a neutron generator based on d-d reactions, a neutron moderator and a reflection system, enclosed by a radiation shield. The project was modeled on the CST electromagnetic code. Afterwards, a nuclear investigation was carried out by MCNP5 code, where the final activities of a large set of 0.5 x 1.8 mm cylindrical, biodegradable and biocompatible, Ho-165 (Ho and HoZr) and Sm-152 breast brachytherapy seeds were evaluated, considering the neutron capture reactions. The accelerator-head equipotential profiles and the optical beam of deuterons with its energy map were presented. The neutronic evaluation allowed estimating a neutron yield of 10{sup 13} n s{sup -1}. From the seed's group, an individual Ho-166 seed reached activity of 100 MBq in 58 h operation time. Moreover, Sm-153 seed reached 120 MBq during a period of 64 h of operation. The system shows to be able to provide the neutron activation of brachytherapy seeds with suitable individual specific activity able for controlling breast tumors. (author)

  13. New Measurements and Calculations to Characterize the Caliban Pulsed Reactor Cavity Neutron Spectrum by the Foil Activation Method

    Energy Technology Data Exchange (ETDEWEB)

    Jacquet, X.; Casoli, P.; Authier, N.; Rousseau, G. [CEA, Centre de Valduc, 21120 Is-sur-Tille (France); Barsu, C. [Pl. de la fontaine, 25410 Corcelles-Ferrieres (France)

    2011-07-01

    Caliban is a cylindrical metallic core reactor mainly composed of uranium 235. It is operated by the Criticality and Neutron Science Research Laboratory located at the French Atomic Energy Commission research center in Valduc. As with other fast burst reactors, Caliban is used extensively for determining the responses of electronic parts or other objects and materials to neutron-induced displacements. Therefore, Caliban's irradiation characteristics, and especially its central cavity neutron spectrum, have to be very accurately evaluated. The foil activation method has been used in the past by the Criticality and Neutron Science Research Laboratory to evaluate the neutron spectrum of the different facilities it operated, and in particular to characterize the Caliban cavity spectrum. In order to strengthen and to improve our knowledge of the Caliban cavity neutron spectrum and to reduce the uncertainties associated with the available evaluations, new measurements have been performed on the reactor and interpreted by the foil activation method. A sensor set has been selected to sample adequately the studied spectrum. Experimental measured reaction rates have been compared to the results from UMG spectrum unfolding software and to values obtained with the activation code Fispact. Experimental and simulation results are overall in good agreement, although gaps exist for some sensors. UMG software has also been used to rebuild the Caliban cavity neutron spectrum from activation measurements. For this purpose, a default spectrum is needed, and one has been calculated with the Monte-Carlo transport code Tripoli 4 using the benchmarked Caliban description. (authors)

  14. Verification of the viability of virions detection using neutron activation analysis; Verificacao da viabilidade de deteccao de virions atraves da analise por ativacao com neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Wacha, R.; Silva, A.X. da; Crispim, V.R [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Nuclear; Couceiro, J.N.S.S. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Microbiologia Professor Paulo de Goes. Dept. de Virologia

    2002-07-01

    The use of nuclear techniques, as Neutron Activation Analysis, can be an alternative way for the microbiological diagnosis, bringing a significant profit in the analysis time, for not needing pre cultivated samples in appropriate way. In this technique, the samples are collected and submitted to a thermal neutron beam. The interaction of these neutrons with the samples generates gamma rays whose energy spectre is a characteristic of the elemental composition of these samples. Of this done one, a virus presence can be detected in the sample through the distinction of its respective elemental compositions allowing, also, carrying through the analysis in real time. In this work, computational simulations had been become fulfilled using the radiation transport code based on the Monte Carlo Method, MCNP4B, to verify the viability of the application of this system for the virus particle detection in its natural collection environment. (author)

  15. Handbook of nuclear data for neutron activation analysis. Vol. I

    International Nuclear Information System (INIS)

    The first part of a two-volume book which is meant for experimentalists working in instrumental activation analysis and related fields, such as nuclear metrology, materials testing and environmental studies. The volume describes the basic processes of gamma-ray interaction with matter as well as the important phenomena affecting gamma-ray spectra formation in semiconductor spectrometers. A brief account is also given of computation methods commonly employed for spectra evaluation. The results rather than detailed derivations are stressed. A great deal of material si divided into five chapters and nine appendices. The inclusion of many tables of significant spectroscopic data should make the text a useful handbook for those dealing with multi-channel gamma-ray spectra. (author) 26 figs., 82 tabs., 334 refs

  16. In vivo studies on the nitrogen, chlorine, calcium and phosphorus composition of rats by neutron activation analysis

    International Nuclear Information System (INIS)

    The role of neutron activation analysis 'in vivo' to determine the elementary composition of the rat organism is demonstrated. In part one the possibilities offered by certain methods which establish the elementary composition of living organisms are analyzed, together with the contribution and scope of neutron activation analysis. In part two the technical details of the neutron activation of rats in vivo are determined and the problems raised by application of the method considered. This is followed by an application of neutron activation analysis to research on changes in the nitrogen, chlorine, calcium and phosphorus composition of rats during growth (from 30 to 440 days) and important biological events such as puberty in both sexes, reproduction and lactation. Finally a study of the fertility rate and the effects of repeated irradiations on Sprague-Dawley rats are described

  17. Study of the elemental composition of Chenopodium Quinoa Willd by fast neutron activation analysis and X ray fluorescence analysis

    International Nuclear Information System (INIS)

    By means of x-ray fluorescence and fast neutron activation analysis the nitrogen content has been determined in samples of roots, stems, leaf, flowers and grains from Quinua (Chenopodium Quinoa Willd), which was previously treated with fertilizer

  18. Cosmogenic-neutron activation of TeO2 and implications for neutrinoless double-beta decay experiments

    CERN Document Server

    Wang, Barbara S; Scielzo, Nicholas D; Smith, Alan R; Thomas, Keenan J; Wender, Stephen A

    2015-01-01

    Flux-averaged cross sections for cosmogenic-neutron activation of natural tellurium were measured using a neutron beam containing neutrons of kinetic energies up to $\\sim$800 MeV, and having an energy spectrum similar to that of cosmic-ray neutrons at sea-level. Analysis of the radioisotopes produced reveals that 110mAg will be a dominant contributor to the cosmogenic-activation background in experiments searching for neutrinoless double-beta decay of 130Te, such as CUORE and SNO+. An estimate of the cosmogenic-activation background in the CUORE experiment has been obtained using the results of this measurement and cross-section measurements of proton activation of tellurium. Additionally, the measured cross sections in this work are also compared with results from semi-empirical cross-section calculations.

  19. Determination of activable isotopic tracers of zinc by neutron activation analysis for study of bioavailability of zinc

    International Nuclear Information System (INIS)

    A procedure of pre-irradiation concentration of zinc in fecal samples using anion exchanger was developed for the study of the bioavailability of zinc by neutron activation analysis. The mass ratios between 70Zn and 68Zn, or 64Zn and their contents between natural zinc and enriched zinc are used to calculate the bioavailability of zinc when the abundance of the isotope 70Zn is not high enough. (author) 9 refs.; 1 fig.; 2 tabs

  20. Neutron Albedo

    CERN Document Server

    Ignatovich, V K

    2005-01-01

    A new, algebraic, method is applied to calculation of neutron albedo from substance to check the claim that use of ultradispersive fuel and moderator of an active core can help to gain in size and mass of the reactor. In a model of isotropic distribution of incident and reflected neutrons it is shown that coherent scattering on separate grains in the case of thermal neutrons increases transport cross section negligibly, however it decreases albedo from a wall of finite thickness because of decrease of substance density. A visible increase of albedo takes place only for neutrons with wave length of the order of the size of a single grain.

  1. Prompt gamma-ray neutron activation analysis (PGNAA) system by using a 740 GBq 241Am-Be neutron source

    International Nuclear Information System (INIS)

    A PGNAA system consisting of a 740 GBq 241Am-Be neutron source and a gamma spectrometer with a n-type Ge (REGe) detector was installed at Ankara Nuclear Training and Research Center to measure the prompt gamma-rays produced by the interactions of thermal neutrons in the samples for the analysis of light elements such as B, P, S and Cl, and some trace elements with large cross sections (Cd, Hg, Sm, Gd, etc.). In the irradiation system, a 55 cm diameter cylinder tank filled with the water moderator comprises the neutron source placed in a polypropylene tube that was positioned in lead rings (internal diameter - 9 cm and outer diameter - 21 cm) in order to reduce the gamma rays emitted from the source such as 0.0596 MeV (241Am) and 4.43 MeV (0.6 gamma per neutron) from the 9Be(α, n) reaction in the source. The moderator tank was shielded with paraffin in all sides against fast neutrons. The thickness of paraffin at the front side of the tank is 28 cm and 18 cm at other sides. The neutron irradiation system was also shielded by using chevron lead bricks of 18 cm thickness. The background-prominent gamma-rays which is especially the 2.223 MeV gamma ray from the 1H(n, γ) reaction formed in hydrogenous materials used for neutron moderation was reduced remarkably in view of the permissible gamma dose for overall irradiation room. The neutrons thermalized in moderator travel through the hole with 6 cm diameter for the sample irradiation. The detector was shielded with Li2CO3 powder against thermal neutrons to avoid radiation damage and surrounded by additional lead bricks to reduce gamma-background. The measurements are carried out for efficiency calibration of the detector by using the standard source. The characteristics of PGNAA system with the isotopic neutron source and its analysis capability are discussed

  2. Neutron activation analysis of airborne thorium liberated during welding operations

    Energy Technology Data Exchange (ETDEWEB)

    Glasgow, D.C.; Robinson, L.; Janjovic, J.T.

    1996-02-01

    Typically, reactive metals such as aluminum are welded using a thoriated tungsten welding electrode which is attached to a source of argon gas such that the local atmosphere around the weld is inert. The metal is heated by the arc formed between the electrode and the grounded component to be welded. During this process, some of the electrode is vaporized in the arc and is potentially liberated to the surrounding air. This situation may result in a hazardous airborne thorium level. Because the electrode is consumed during welding, the electrode tip must be repeatedly dressed by grinding the tip to a fine point so that the optimal welding conditions are maintained. These grinding activities may also release thorium to the air. Data generated in the 1950s suggested that these electrodes posed no significant health hazard and seemed to justify their exemption from licensing requirements for source material. Since that time, other studies have been performed and present conflicting results as to the level of risk. Values both above and below the health protection limit in use in the United States, have been reported in the literature recently. This study is being undertaken to provide additional data which may be useful in evaluating both the chemical toxicity risk and radiological dose assessment criteria associated with thoriated tungsten welding operations.

  3. Instrumental neutron activation analysis applications in materials science and in forensic surveys

    International Nuclear Information System (INIS)

    Neutron Activation Analysis (NAA) was applied to the characterization of lithious ceramic materials to be used as tritiogenic breeders in future fusion reactors. After neutron irradiation, measurements by γ-spectrometry were performed on the activated impurities, particularly on the ones with large neutron cross section. Irradiated samples were then annealed at rising temperatures, to obtain a fractional release of the tritium [formed by (n,α) reaction on lithium] as element (HT/T2) or tritiated water (HTO/T2O). Barium and antimony were determined by NAA, on request of Italian Courts, as evidence of gunshot residues (GSR), on hands and clothes of suspected people. The sample is left unchanged, even if slightly radioactive, allowing further examinations, in case of controversial results. In some actual cases, NAA was performed on samples already examined by scanning electron microscopy (SEM/EDX), allowing the determination of several more elements and a more definite identification of the ammunitions involved in the crime. (author)

  4. Characterization of trace elements in Casearia medicinal plant by neutron activation analysis

    International Nuclear Information System (INIS)

    Leaves of Casearia sylvestris, Casearia decandra and Casearia obliqua plant species, collected at the Atlantic Forest in Brazil, were analyzed by using instrumental neutron activation analysis (INAA). Short and long irradiations using thermal neutron flux of the IEA-R1 nuclear reactor were carried out for these analyses. Concentrations of Ca, K and Mg were found in these samples at the percentage levels, Br, Cl, Fe, Mn, Na, Rb and Zn at the μg g-1 levels and Co, Cr, Cs, La, and Sc at the μg kg-1 levels. Comparisons were made among the element concentrations obtained in these three Casearia species and significant differences were found for the elements Cl, Co, Cs, Cr, La, Mn, Na and Sc. The precision and the accuracy of the results were evaluated by analyzing the certified reference materials NIST-1515 Apple Leaves and NIST-1573a Tomato Leaves

  5. Estimation of the Performance of Multiple Active Neutron Interrogation Signatures for Detecting Shielded HEU

    Energy Technology Data Exchange (ETDEWEB)

    David L. Chichester; Scott J. Thompson; Scott M. Watson; James T. Johnson; Edward H. Seabury

    2012-10-01

    A comprehensive modeling study has been carried out to evaluate the utility of multiple active neutron interrogation signatures for detecting shielded highly enriched uranium (HEU). The modeling effort focused on varying HEU masses from 1 kg to 20 kg; varying types of shields including wood, steel, cement, polyethylene, and borated polyethylene; varying depths of the HEU in the shields, and varying engineered shields immediately surrounding the HEU including steel, tungsten, and cadmium. Neutron and gamma-ray signatures were the focus of the study and false negative detection probabilities versus measurement time were used as a performance metric. To facilitate comparisons among different approaches an automated method was developed to generate receiver operating characteristic (ROC) curves for different sets of model variables for multiple background count rate conditions. This paper summarizes results or the analysis, including laboratory benchmark comparisons between simulations and experiments. The important impact engineered shields can play towards degrading detectability and methods for mitigating this will be discussed.

  6. The determination of pesticide residues in local vegetables by means of neutron activation technique

    International Nuclear Information System (INIS)

    Analytical methods based on neutron activation have been developed for studying pesticides residues of bromine, arsenic and mercury in local vegetables and fruits. The concentration of bromine, arsenic and mercury in samples are enriched prior to neutron irradiations by a technique of dry-ashing and freeze-drying for the determination of arsenic, bromine and mercury respectively. The element bromine is determined instrumentally while arsenic and mercury are determined destructively using a distillation technique. The limit of detection under the conditions used for bromine, arsenic and mercury as obtained are 0.01, 0.001 and 0.0001 microgram respectively. A total of 45 varieties of vegetables and 20 varieties of fruits are analyzed. The results of the investigation and the concentration range in part per million of bromine, arsenic and mercury are also presented

  7. Analysis of large samples by neutron activation analysis. Quality assurance aspects

    International Nuclear Information System (INIS)

    The need for quality assurance in large sample instrumental neutron activation analysis (INAA) requires the development of unconventional methods of quality control. Certified reference materials are not available at the 1-5 kg scale; moreover, inhomogeneities which might affect the accuracy of the real sample analysis would not be reflected in the analysis of a reference material or in-house control sample even when available. Model studies indicate that inhomogeneities with strong gamma ray absorbing properties have the largest effect on the accuracy of the concentrations. The occurrence of these inhomogeneities may be derived from gamma spectrum analysis. Other opportunities for quality assurance are with the calculated estimates of the parameters describing neutron and gamma ray self-attenuation, and eventually through direct assessment after homogenization of the large sample, subsampling and conventional analysis. (author)

  8. Investigation of Lecturer's Chalk by X-Ray Florescence and Fast Neutron Activation Techniques

    International Nuclear Information System (INIS)

    Different samples of lecturer's chalk were studied, using X-ray florescence (XRF) and Fast Neutron Activation Analysis (FNAA) techniques to ensure the safety of its use. The K (X-rays) and the gamma-rays were measured, using Si(Li) and high-purity germanium (HPGe) spectrometers to detect and determine qualitatively and quantitatively the constituents of the studied samples. For the investigated bulk chalk samples, the XRF was used for determination the average neutron flux of 2×107 n/cm2 sec. The concentrations of the elements (Ca and small traces of Al, Fe, Mg and Si) were measured and their presence was confirmed by γ-ray, lifetime and/or XRF measurements.

  9. Investigation of corrosion of alloys using neutron activation and gamma-ray spectrometry. Pt. 1

    International Nuclear Information System (INIS)

    A simple procedure is proposed for studying differential (selective) corrosion of alloys using the radioactive tracer technique. This procedure is based on the neutron activation of samples, and the measurement of the γ-ray spectra of irradiated samples and their corrosion products. The reliability of the given method has been demonstrated by application to conventional and spheroidal dental amalgams. The method can produce useful results for studying the various factors affecting the properties of dental amalgams as well as other alloys. A week after end of irradiation of dental amalgam only the isotopes 65Zn, sup(110m)Ag, 113Sn and 203Hg are excepted to have significant activites. Samples were irradiated in the Egyptian Reactor (RR-I) at Inshas for 5 hours. The neutron flux was approximately 1x1013n cm-2s-1. (F.G.)

  10. Development of high-activity 252Cf sources for neutron brachytherapy

    International Nuclear Information System (INIS)

    The Gershenson Radiation Oncology Center of Wayne State University (WSU), Detroit, Michigan, is using 252Cf medical sources for neutron brachytherapy. These sources are based on a 20-year-old design containing ≤ 30 microg 252Cf in the form of a cermet wire of Cf2O3 in a palladium matrix. The Radiochemical Engineering Development Center (REDC) of Oak Ridge National Laboratory has been asked to develop tiny high-activity 252Cf neutron sources for use with remote afterloading equipment to reduce treatment times and dose to clinical personnel and to expedite treatment of brain and other tumors. To date, the REDC has demonstrated that 252Cf loadings can be greatly increased in cermet wires much smaller than before. Equipment designed for hot cell fabrication of these wires is being tested. A parallel program is under way to relicense the existing source design for fabrication at the REDC

  11. Neutron activation analysis in an industrial laboratory using an off-site nuclear reactor

    International Nuclear Information System (INIS)

    A multifunctional research laboratory, such as Procter and Gamble's Miami Valley Laboratories, requires elemental analyses on many materials. A general survey technique is important even if the information it provides is incomplete or is less precise than single element analyses. Procter and Gamble has developed neutron activation analysis (NAA) capabilities using a nuclear reactor several hundred miles away. The concentration of 40 to 50 elements can be determined in a variety of matrices. We have found NAA to be a powerful supplement to some of the more classical analytical techniques even without having an on-site neutron source. We have also found an automated data acquisition system to be essential for the successful application of NAA in an industrial laboratory

  12. Determination of phosphorus in kiwicha using analysis for activation with fast neutrons

    International Nuclear Information System (INIS)

    In this study it has been used the technique of activation analysis with fast neutrons for nondestructive of Phosphorus in Kiwicha (amaranthus caudatus l.), as an alternative to the conventionally used technique of spectrophotometry. The samples are irradiated during five minutes in the IPEN's neutron generator under a fast flow of around 109n/cm2.s after 30 seconds of the irradiation end, and are counted for 10 minutes in a NaI(Tl) detector type well jointed to a multichannel analyzer. The testing of method exactness was carried out analyzing the IAEA's H5 and H8 reference materials, obtaining a good correspondence with the certified values. The reproducibility of the method was carried out analyzing by repetition a pure standard sample of phosphorus. In the analysis of 8 samples of kiwicha it was found that the phosphorus content is in the rank of 0.3% to 0.5%. (author). 31 refs., 12 tabs., 19 figs

  13. Self-sustainability of a research reactor facility with neutron activation analysis

    International Nuclear Information System (INIS)

    Long-term self-sustainability of a small reactor facility is possible because there is a large demand for non-destructive chemical analysis of bulk materials that can only be achieved with neutron activation analysis (NAA). The Ecole Polytechnique Montreal SLOWPOKE Reactor Facility has achieved self-sustainability for over twenty years, benefiting from the extreme reliability, ease of use and stable neutron flux of the SLOWPOKE reactor. The industrial clientele developed slowly over the years, mainly because of research users of the facility. A reliable NAA service with flexibility, high accuracy and fast turn-around time was achieved by developing an efficient NAA system, using a combination of the relative and k0 standardisation methods. The techniques were optimized to meet the specific needs of the client, such as low detection limit or high accuracy at high concentration. New marketing strategies are presented, which aim at a more rapid expansion. (author)

  14. Forensic and environmental aspects of neutron activation analysis of single human hairs

    International Nuclear Information System (INIS)

    A new analytical procedure consisting of special washing step, irradiation in a thermal neutron flux of 1014n cm-2s-1, and Ge(Li) spectrometry enabled to determine as many as 14 elements in a 3 cm segment of a single human hair by neutron activation analysis. The criminalistic aspects of hair analysis were studied using a new statistical criterion for elimination/identification and an appropriate computer program was constructed. Hair dimensions as measured microscopically were used as additional individualizing attributes. It was shown that despite the dif--ficulties originating from from a relatively large intrinsic variation of the trace element concentration over one head, elimination of most or nearly all of the ''suspects'' could be achieved in simulated cases. Distincly elevated levels of Au as well as Cu and Ag were found in hair of some groups of persons working under specific conditions thus confirming the importance of the environmental factor related to some kinds of occupation. (author)

  15. Instrumental neutron activation analysis of iron and zinc in compact cosmetic products

    International Nuclear Information System (INIS)

    An instrumental neutron activation analysis method is described for the determination of iron and zinc in compact eye shadow, compact face powder and compact rouge make-up cosmetic products. The steps of the procedure are: Irradiation of samples with thermal neutrons, counting of gamma-radioactivity of the radioisotopes of iron and zinc produced by this irradiation and calculation of the concentration of these elements from the gamma-ray spectra of samples and standards. Analysis of the I.A.E.A. standard reference material by this procedure give results in close agreement with certified values. The limit of quantitation is 45 μg for iron and 0.35 μg for zinc. The developed procedure could possibly be established as an official method for the simultaneous determination of iron and zinc in compact cosmetic products. (orig.)

  16. Determination of hafnium and zirconium in geological materials by neutron activation analysis

    International Nuclear Information System (INIS)

    In this paper, neutron activation analysis was developed for determining hafnium and zirconium in geological materials. The USGS geological standard rocks GSP-1 (granodiorite) and W-1 (di abase). The Brazilian geological standards GB-1 (granite) and BB-1 (basalt) from Instituto de Geociencias da Universidade da Bahia and P-1 a uraniferous rock from Pocos de Caldas, MG, Brazil were analyzed. Hafnium present in these rocks was analyzed by purely instrumental method by irradiating with both thermal and epithermal neutrons from IEA-R1 nuclear research reactor. In the case of zirconium depending on the sample a radiochemical separation was required. 154 Eu and 152 Eu radioisotopes emit gamma rays with energies too close to those emitted by 95 Zr and they cause interferences. (author)

  17. Multi-element determination of sandstone rock by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    The instrumental neutron activation analysis technique (INAA) was used in the qualitative and quantitative analysis of sandstone samples from Aswan area in South Egypt. The samples were properly prepared together with their standards and simultaneously irradiated in a neutron flux of 7 x 1011 n/cm2.s in the TRIGA Mainz research reactor facilities. Gamma spectra from hyper pure germanium HPGe detector were analysed. The present study provides the basic data of elemental concentrations of sandstone rock. The following elements constituents have been determined: Na, K, Fe, Sc, Cr, Co, Zr, Ce, La, Nd, Sm, Eu, Yb, Lu, Hf, Ta, Th and U. The x-ray fluorescence (XRF) was used for comparison and to detect elements which can be detected only by XRF. (author)

  18. Performance of an improved thermal neutron activation detector for buried bulk explosives

    Energy Technology Data Exchange (ETDEWEB)

    McFee, J.E., E-mail: jemcfee@gmail.com [Defence R and D Canada – Suffield, Medicine Hat (Canada); Faust, A.A. [Defence R and D Canada – Suffield, Medicine Hat (Canada); Andrews, H.R.; Clifford, E.T.H. [Bubble Technology Industries Inc., Chalk River (Canada); Mosquera, C.M. [Defence R and D Canada – Suffield, Medicine Hat (Canada)

    2013-06-01

    First generation thermal neutron activation (TNA) sensors, employing an isotopic source and NaI(Tl) gamma ray detectors, were deployed by Canadian Forces in 2002 as confirmation sensors on multi-sensor landmine detection systems. The second generation TNA detector is being developed with a number of improvements aimed at increasing sensitivity and facilitating ease of operation. Among these are an electronic neutron generator to increase sensitivity for deeper and horizontally displaced explosives; LaBr{sub 3}(Ce) scintillators, to improve time response and energy resolution; improved thermal and electronic stability; improved sensor head geometry to minimize spatial response nonuniformity; and more robust data processing. The sensor is described, with emphasis on the improvements. Experiments to characterize the performance of the second generation TNA in detecting buried landmines and improvised explosive devices (IEDs) hidden in culverts are described. Performance results, including comparisons between the performance of the first and second generation systems are presented.

  19. Activation analysis on reactor and 14 MeV neutrons in experimental study of oxoplatinum

    International Nuclear Information System (INIS)

    A procedure of the instrumental neutron activation analysis of biomedical material on reactor and 14 MeV neutrons was described for determination of the platinum, silicon, chlorine, phosphorus, sodium and zinc content. The procedure was tested on rat small intestinal samples within the interval of 10 min - 30 days after a single i.v. administration of oxoplatinum (15 mg per 1 kg of the animal body mass). Platinum redistribution with relative concentration maximum on the 15th day was noted. Changes in the phosphorus, chlorine, sodium and silicon content within the interval of 3-30 days were suggestive of a possible toxic effect of oxoplatinum metabolites during this period. In a clinical application of oxoplatinum one should take into account a possible toxic effect of metabolites in a long-term period after repeated administration of the agent

  20. Workplace testing of the new single sphere neutron spectrometer based on Dysprosium activation foils (Dy-SSS)

    Science.gov (United States)

    Bedogni, R.; Gómez-Ros, J. M.; Esposito, A.; Gentile, A.; Chiti, M.; Palacios-Pérez, L.; Angelone, M.; Tana, L.

    2012-08-01

    A photon insensitive passive neutron spectrometer consisting of a single moderating polyethylene sphere with Dysprosium activation foils arranged along three perpendicular axes was designed by CIEMAT and INFN. The device is called Dy-SSS (Dy foil-based Single Sphere Spectrometer). It shows nearly isotropic response in terms of neutron fluence up to 20 MeV. The first prototype, previously calibrated with 14 MeV neutrons, has been recently tested in workplaces having different energy and directional distributions. These are a 2.5 MeV nearly mono-chromatic and mono-directional beam available at the ENEA Frascati Neutron Generator (FNG) and the photo-neutron field produced in a 15 MV Varian CLINAC DHX medical accelerator, located in the Ospedale S. Chiara (Pisa). Both neutron spectra are known through measurements with a Bonner Sphere Spectrometer. In both cases the experimental response of the Dy-SSS agrees with the reference data. Moreover, it is demonstrated that the spectrometric capability of the new device are independent from the directional distribution of the neutron field. This opens the way to a new generation of moderation-based neutron instruments, presenting all advantages of the Bonner sphere spectrometer without the disadvantage of the repeated exposures. This concept is being developed within the NESCOFI@BTF project of INFN (Commissione Scientifica Nazionale 5).