WorldWideScience

Sample records for absolute instabilities

  1. Absolute instability in viscoelastic mixing layers

    Ray, Prasun K.; Zaki, Tamer A.

    2014-01-01

    The spatiotemporal linear stability of viscoelastic planar mixing layers is investigated. A one-parameter family of velocity profiles is used as the base state with the parameter, S, controlling the amount of shear and backflow. The influence of viscoelasticity in dilute polymer solutions is modeled with the Oldroyd-B and FENE-P constitutive equations. Both models require the specification of the ratio of the polymer-relaxation and convective time scales (the Weissenberg number, We) and the ratio of solvent and solution viscosities (β). The maximum polymer extensibility, L, must also be specified for the FENE-P model. We examine how the variation of these parameters along with the Reynolds number, Re, affects the minimum value of S at which the flow becomes locally absolutely unstable. With the Oldroyd-B model, the influence of viscoelasticity is shown to be almost fully captured by the elasticity, E^* equiv (1-β ) We/Re, and Scrit decreases as elasticity is increased, i.e., elasticity is destabilizing. A simple approximate dispersion relation obtained via long-wave asymptotic analysis is shown to accurately capture this destabilizing influence. Results obtained with the FENE-P model exhibit a rich variety of behavior. At large values of the extensibility, L, results are similar to those for the Oldroyd-B fluid as expected. However, when the extensibility is reduced to more realistic values (L ≈ 100), one must consider the scaled shear rate, η _c equiv We S/2L, in addition to the elasticity. When ηc is large, the base-state polymer stress obtained by the FENE-P model is reduced, and there is a corresponding reduction in the overall influence of viscoelasticity on stability. Additionally, elasticity exhibits a stabilizing effect which is driven by the streamwise-normal perturbation polymer stress. As ηc is reduced, the base-state and perturbation normal polymer stresses predicted by the FENE-P model move towards the Oldroyd-B values, and the destabilizing

  2. Experimental study of absolute instability over a rotating disk

    Othman Bekhit, Hesham Abdel Ghafar

    2005-07-01

    A series of experiments were performed to study the absolute instability of Type I traveling cross-flow modes in the boundary layer on a smooth disk rotating at constant speed. The basic flow agreed with analytic theory, and the growth of natural disturbances matched linear theory predictions. Controlled temporal disturbances were introduced by a short-duration air pulse from a hypodermic tube located above the disk and outside the boundary layer. The air pulse was positioned just outboard of the critical radius for Type I cross-flow modes. A hot-wire sensor primarily sensitive to the azirnuthal velocity component, was positioned at different spatial locations on the disk to document the growth of disturbances produced by the air pulses. Ensemble averages conditioned on the air pulses revealed wave packets that evolved in time and space. Two amplitudes of air pulses were used. The lower amplitude produced wave packets with linear amplitude characteristics that agreed with linear-theory wall-normal eigenfunction distributions and spatial growth rates. The higher amplitude pulse produced wave packets that had nonlinear amplitude characteristics. The space-time evolution of the leading and trailing edges of the wave packets were followed well past the critical radius for the absolute instability based on Lingwood (1995). With the linear amplitudes, the absolute instability was dominated by the convective modes, agreeing with the linear DNS simulations of Davies and Carpenter (2003). With the nonlinear amplitudes, larger temporal growth of the wave packets existed which supports the finite amplitude analysis of Pier (2003), and more closely resembles the wave packet evolution in the experimental study of Lingwood (1996). This suggests that the disturbance levels in the experiment that was intended to demonstrate the linear analysis, were likely fuite.

  3. Absolute parametric instability in a nonuniform plane plasma waveguide

    Khaled Hamed El-Shorbagy; Atef Ahmed El-Bendary; Shatha Jameel Monaquel

    2013-04-01

    The paper reports an analysis of the effect of spatial plasma nonuniformity on absolute parametric instability (API) of electrostatic waves in magnetized plane waveguides subjected to an intense high-frequency (HF) electric field using the separation method. In this case the effect of strong static magnetic field is considered. The problem of strong magnetic field is solved in 1D nonuniform plane plasma waveguide. The equation describing the spatial part of the electric potential is obtained. Also, the growth rates and conditions of the parametric instability for periodic and aperiodic cases are obtained. It is found that the spatial nonuniformity of the plasma exerts a stabilizing effect on the API. It is shown that the growth rates of periodic and aperiodic API in nonuniform plasma are less compared to that of uniform plasma.

  4. Absolute instability from linear conversion of counter-propagating positive and negative energy waves

    Kaufman, A.N.; Brizard, A.J.; Morehead, J.J. [Lawrence Berkeley National Lab., CA (United States); Tracy, E.R. [College of William and Mary, Williamsburg, VA (United States)

    1997-12-31

    The resonant interaction of a negative-energy wave with a positive-energy wave gives rise to a linear instability. Whereas a single crossing of rays in a nonuniform medium leads to a convectively saturated instability, we show that a double crossing can yield an absolute instability.

  5. Inviscid instability of the Batchelor vortex: Absolute-convective transition and spatial branches

    Olendraru, Cornel; Sellier, Antoine; Rossi, Maurice; Huerre, Patrick

    1999-07-01

    The main objective of the study is to examine the spatio-temporal instability properties of the Batchelor q-vortex, as a function of swirl ratio q and external axial flow parameter a. The inviscid dispersion relation between complex axial wave number and frequency is determined by numerical integration of the Howard-Gupta ordinary differential equation. The absolute-convective nature of the instability is then ascertained by application of the Briggs-Bers zero-group-velocity criterion. A moderate amount of swirl is found to promote the onset of absolute instability. In the case of wakes, transition from convective to absolute instability always takes place via the helical mode of azimuthal wave number m=-1. For sufficiently large swirl, co-flowing wakes become absolutely unstable. In the case of jets, transition from absolute to convective instability occurs through various helical modes, the transitional azimuthal wave number m being negative but sensitive to increasing swirl. For sufficiently large swirl, weakly co-flowing jets become absolutely unstable. These results are in good qualitative and quantitative agreement with those obtained by Delbende et al. through a direct numerical simulation of the linear response. Finally, the spatial (complex axial wave number, real frequency) instability characteristics are illustrated for the case of zero-external flow swirling jets.

  6. Absolute and convective instabilities in a one-dimensional Brusselator flow model

    Kuznetsov, S.P.; Mosekilde, Erik; Dewel, G.

    1997-01-01

    The paper considers a one-dimensional Brusselator model with a uniform flow of the mixture of reaction components. An absolute as well as a convective instability can arise for both the Hopf and the Turing modes. The corresponding linear stability analysis is presented and supported by the results...

  7. Absolute versus convective helical magnetorotational instability in a Taylor-Couette flow

    Priede, Jānis

    2008-01-01

    We analyze numerically the magnetorotational instability of a Taylor-Couette flow in a helical magnetic field (HMRI) using the inductionless approximation defined by a zero magnetic Prandtl number (Pm=0). The Chebyshev collocation method is used to calculate the eigenvalue spectrum for small amplitude perturbations. First, we carry out a detailed conventional linear stability analysis with respect to perturbations in the form of Fourier modes that corresponds to the convective instability which is not in general self-sustained. The helical magnetic field is found to extend the instability to a relatively narrow range beyond its purely hydrodynamic limit defined by the Rayleigh line. There is not only a lower critical threshold at which HMRI appears but also an upper one at which it disappears again. The latter distinguishes the HMRI from a magnetically-modified Taylor vortex flow. Second, we find an absolute instability threshold as well. In the hydrodynamically unstable regime before the Rayleigh line, the t...

  8. Experimental investigation of absolute instability of a rotating-disk boundary layer

    Othman, H.; Corke, T. C.

    2006-10-01

    A series of experiments were performed to study the absolute instability of Type I travelling crossflow modes in the boundary layer on a smooth disk rotating at constant speed. The basic flow agreed with analytic theory, and the growth of natural disturbances matched linear theory predictions. Controlled temporal disturbances were introduced by a short-duration air pulse from a hypodermic tube located above the disk and outside the boundary layer. The air pulse was positioned just outboard of the linear-theory critical radius for Type I crossflow modes. A hot-wire sensor primarily sensitive to the azimuthal velocity component, was positioned at different spatial (r,theta) locations on the disk to document the growth of disturbances produced by the air pulses. Ensemble averages conditioned on the air pulses revealed wave packets that evolved in time and space. Two amplitudes of air pulses were used. The lower amplitude was verified to produced wave packets with linear amplitude characteristics. The space time evolution of the leading and trailing edges of the wave packets were followed past the critical radius for the absolute instability, r_{c_{A}}. With the lower amplitudes, the spreading of the disturbance wave packets did not continue to grow in time as r_{c_{A}} was approached. Rather, the spreading of the trailing edge of the wave packet decelerated and asymptotically approached a constant. This result supports previous linear DNS simulations where it was concluded that the absolute instability does not produce a global mode and that linear disturbance wave packets are dominated by the convective instability. The larger-amplitude disturbances were found to produce larger temporal spreading of the wave packets. This was accompanied by a sharp growth in the wave packet amplitude past r_{c_{A}}. Explanations for this are discussed.

  9. Absolute parametric instability of low-frequency waves in a 2D nonuniform anisotropic warm plasma

    N G Zaki

    2010-05-01

    Using the separation method, absolute parametric instability (API) of electrostatic waves in a magnetized pumped warm plasma is investigated. In this case the effect of static strong magnetic field is considered. The problem of strong magnetic field is solved in two-dimensional (2D) nonuniform plane plasma. Equations which describe the spatial part of the electric potential are obtained. Also, the growth rates and conditions of the parametric instability for periodic and aperiodic cases are obtained. It is found that the spatial nonuniformity of the plasma exerts a stabilizing effect on the API. It is shown that the growth rates of periodic and aperiodic API in warm plasma are less when compared to that in cold plasma.

  10. On Novel Mechanism of a Pump Electromagnetic Wave Absolute Two-Plasmon Parametric Decay Instability Excitation in Tokamak ECRH Experiments

    Gusakov, E Z

    2016-01-01

    Novel mechanism leading to excitation of absolute two plasmon parametric decay instability (TPDI) of a pump extraordinary (X) wave is discussed. It is shown that the upper hybrid (UH) plasmon can be 3D trapped in the presence of both a nonmonotonous density profile and a finite-size pump beam in a plane perpendicular to the plasma inhomogeneity direction. This leads to excitation of the absolute TPDI of the pump X wave, which manifests itself in temporal exponential growth of the trapped daughter UH wave amplitude and is perhaps the most dangerous instability for mm-waves, widely utilized nowadays in tokamak and stellarators for local plasma heating and current drive and being considered for application in ITER.

  11. Convective and absolute instabilities in counter-rotating spiral Poiseuille flow

    Langenberg, J.; Heise, M.; Pfister, G. [University of Kiel, Institute of Experimental and Applied Physics, Kiel (Germany); Abshagen, J. [University of Kiel, Leibniz-Institute of Marine Science, Kiel (Germany)

    2004-11-01

    We present results of an experimental study on the stability of Taylor-Couette flow in case of counter-rotating cylinders and an imposed axial through flow. We are able to confirm results form recent numerical investigations done by Pinter et al. [24] by measuring the absolute and convective stability boundaries of both propagating Taylor vortices (PTV) and spiral vortices (SPI). Thus our work shows that these theoretical concepts from hydrodynamic stability in open flows apply to experimental counter-rotating Taylor-Couette systems with an imposed axial through flow. (orig.)

  12. The competition of convective and absolute instabilities in rotating-disk flow transition

    Imayama, Shintaro; Alfredsson, P. Henrik; Lingwood, R. J.

    2014-11-01

    The main objective of this experimental study is to investigate laminar-turbulent transition mechanisms in the rotating-disk boundary-layer flow. Lingwood (1995) found that the flow becomes locally absolutely unstable above a critical Reynolds number and suggested that absolutely unstable travelling waves triggered nonlinearity leading to transition. However, the growth of convectively unstable stationary vortices is also a possible alternative route if the surface roughness of the disk is sufficiently large. The convectively unstable stationary vortices are attributed to an inviscid crossflow mechanism. Flow-visualization studies and hot-wire measurements of the rotating-disk boundary layer typically capture 28-32 stationary vortices in the transition regime (e.g. Imayama et al. 2014). The hot-wire measurements presented here were performed on a smooth glass disk with a diameter of 474 mm. To excite stationary vortices disk-shaped roughness elements with a diameter of 2 mm and a height of 5 micron were put on the disk at a radial position of 110 mm. In the presentation, the details of the convectively unstable stationary vortices in the rotating-disk boundary layer are shown and compared with travelling waves and similarities/differences in the turbulent transition discussed. This work is supported by the Swedish Research Council (VR) and the Linné FLOW Centre.

  13. A tunable CW UV laser with <35 kHz absolute frequency instability for precision spectroscopy of Sr Rydberg states

    Bridge, Elizabeth M; Bounds, Alistair D; Boddy, Danielle; Sadler, Daniel P; Jones, Matthew P A

    2015-01-01

    We present a solid-state laser system that generates over 200 mW of continuous-wave, narrowband light, tunable between 316.3 nm and 319.3 nm. The laser is based on commercially available fiber amplifiers and optical frequency doubling technology, along with sum frequency generation in a periodically poled stoichiometric lithium tantalate crystal. The laser frequency is stabilized to an atomic-referenced high finesse optical transfer cavity. Using a GPS-referenced optical frequency comb we measure a long term frequency instability of <35 kHz. As an application we perform spectroscopy of Sr Rydberg states from n = 37 - 81, demonstrating mode-hop-free scans of 24 GHz. In a cold atomic sample we measure Doppler-limited linewidths of 350 kHz.

  14. Easy Absolute Values? Absolutely

    Taylor, Sharon E.; Mittag, Kathleen Cage

    2015-01-01

    The authors teach a problem-solving course for preservice middle-grades education majors that includes concepts dealing with absolute-value computations, equations, and inequalities. Many of these students like mathematics and plan to teach it, so they are adept at symbolic manipulations. Getting them to think differently about a concept that they…

  15. Absolute advantage

    J.G.M. van Marrewijk (Charles)

    2008-01-01

    textabstractA country is said to have an absolute advantage over another country in the production of a good or service if it can produce that good or service using fewer real resources. Equivalently, using the same inputs, the country can produce more output. The concept of absolute advantage can a

  16. Absolute Summ

    Phillips, Alfred, Jr.

    Summ means the entirety of the multiverse. It seems clear, from the inflation theories of A. Guth and others, that the creation of many universes is plausible. We argue that Absolute cosmological ideas, not unlike those of I. Newton, may be consistent with dynamic multiverse creations. As suggested in W. Heisenberg's uncertainty principle, and with the Anthropic Principle defended by S. Hawking, et al., human consciousness, buttressed by findings of neuroscience, may have to be considered in our models. Predictability, as A. Einstein realized with Invariants and General Relativity, may be required for new ideas to be part of physics. We present here a two postulate model geared to an Absolute Summ. The seedbed of this work is part of Akhnaton's philosophy (see S. Freud, Moses and Monotheism). Most important, however, is that the structure of human consciousness, manifest in Kenya's Rift Valley 200,000 years ago as Homo sapiens, who were the culmination of the six million year co-creation process of Hominins and Nature in Africa, allows us to do the physics that we do. .

  17. Teaching Absolute Value Meaningfully

    Wade, Angela

    2012-01-01

    What is the meaning of absolute value? And why do teachers teach students how to solve absolute value equations? Absolute value is a concept introduced in first-year algebra and then reinforced in later courses. Various authors have suggested instructional methods for teaching absolute value to high school students (Wei 2005; Stallings-Roberts…

  18. Absolute nuclear material assay

    Prasad, Manoj K [Pleasanton, CA; Snyderman, Neal J [Berkeley, CA; Rowland, Mark S [Alamo, CA

    2012-05-15

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  19. Absolute neutrino mass update

    Päs, H; P\\"as, Heinrich; Weiler, Thomas J.

    2002-01-01

    The determination of absolute neutrino masses is crucial for the understanding of theories underlying the standard model, such as SUSY. We review the experimental prospects to determine absolute neutrino masses and the correlations among approaches, using the Delta m^2's inferred from neutrino oscillation experiments and assuming a three neutrino Universe.

  20. ABSOLUTE NEUTRINO MASSES

    Schechter, J.; Shahid, M. N.

    2012-01-01

    We discuss the possibility of using experiments timing the propagation of neutrino beams over large distances to help determine the absolute masses of the three neutrinos.......We discuss the possibility of using experiments timing the propagation of neutrino beams over large distances to help determine the absolute masses of the three neutrinos....

  1. NGS Absolute Gravity Data

    National Oceanic and Atmospheric Administration, Department of Commerce — The NGS Absolute Gravity data (78 stations) was received in July 1993. Principal gravity parameters include Gravity Value, Uncertainty, and Vertical Gradient. The...

  2. Decoherence at absolute zero

    Sinha, Supurna

    2005-01-01

    We present an analytical study of the loss of quantum coherence at absolute zero. Our model consists of a harmonic oscillator coupled to an environment of harmonic oscillators at absolute zero. We find that for an Ohmic bath, the offdiagonal elements of the density matrix in the position representation decay as a power law in time at late times. This slow loss of coherence in the quantum domain is qualitatively different from the exponential decay observed in studies of high temperature envir...

  3. Absolute biological needs.

    McLeod, Stephen

    2014-07-01

    Absolute needs (as against instrumental needs) are independent of the ends, goals and purposes of personal agents. Against the view that the only needs are instrumental needs, David Wiggins and Garrett Thomson have defended absolute needs on the grounds that the verb 'need' has instrumental and absolute senses. While remaining neutral about it, this article does not adopt that approach. Instead, it suggests that there are absolute biological needs. The absolute nature of these needs is defended by appeal to: their objectivity (as against mind-dependence); the universality of the phenomenon of needing across the plant and animal kingdoms; the impossibility that biological needs depend wholly upon the exercise of the abilities characteristic of personal agency; the contention that the possession of biological needs is prior to the possession of the abilities characteristic of personal agency. Finally, three philosophical usages of 'normative' are distinguished. On two of these, to describe a phenomenon or claim as 'normative' is to describe it as value-dependent. A description of a phenomenon or claim as 'normative' in the third sense does not entail such value-dependency, though it leaves open the possibility that value depends upon the phenomenon or upon the truth of the claim. It is argued that while survival needs (or claims about them) may well be normative in this third sense, they are normative in neither of the first two. Thus, the idea of absolute need is not inherently normative in either of the first two senses.

  4. Mechanical instability

    Krysinski, Tomasz

    2013-01-01

    This book presents a study of the stability of mechanical systems, i.e. their free response when they are removed from their position of equilibrium after a temporary disturbance. After reviewing the main analytical methods of the dynamical stability of systems, it highlights the fundamental difference in nature between the phenomena of forced resonance vibration of mechanical systems subjected to an imposed excitation and instabilities that characterize their free response. It specifically develops instabilities arising from the rotor-structure coupling, instability of control systems, the se

  5. Collective instabilities

    K.Y. Ng

    2003-08-25

    The lecture covers mainly Sections 2.VIII and 3.VII of the book ''Accelerator Physics'' by S.Y. Lee, plus mode-coupling instabilities and chromaticity-driven head-tail instability. Besides giving more detailed derivation of many equations, simple interpretations of many collective instabilities are included with the intention that the phenomena can be understood more easily without going into too much mathematics. The notations of Lee's book as well as the e{sup jwt} convention are followed.

  6. Absolute Neutrino Mass Determination

    Päs, H

    2001-01-01

    We discuss four approaches to the determination of absolute neutrino mass. These are the measurement of the zero-neutrino double beta decay rate, of the tritium decay end-point spectrum, of the cosmic ray spectrum above the GZK cutoff, and the cosmological measurement of the power spectrum governing the CMB and large scale structure. The first two approaches are sensitive to the mass eigenstates coupling to the electron neutrino, whereas the latter two are sensitive to the heavy component of the cosmic neutrino background. All mass eigenstates are related by the $\\Delta m^2$'s inferred from neutrino oscillation data. Consequently, the potential for absolute mass determination of each of the four approaches is correlated with the other three, in ways that we point out.

  7. Absolute airborne gravimetry

    Baumann, Henri

    This work consists of a feasibility study of a first stage prototype airborne absolute gravimeter system. In contrast to relative systems, which are using spring gravimeters, the measurements acquired by absolute systems are uncorrelated and the instrument is not suffering from problems like instrumental drift, frequency response of the spring and possible variation of the calibration factor. The major problem we had to resolve were to reduce the influence of the non-gravitational accelerations included in the measurements. We studied two different approaches to resolve it: direct mechanical filtering, and post-processing digital compensation. The first part of the work describes in detail the different mechanical passive filters of vibrations, which were studied and tested in the laboratory and later in a small truck in movement. For these tests as well as for the airborne measurements an absolute gravimeter FG5-L from Micro-G Ltd was used together with an Inertial navigation system Litton-200, a vertical accelerometer EpiSensor, and GPS receivers for positioning. These tests showed that only the use of an optical table gives acceptable results. However, it is unable to compensate for the effects of the accelerations of the drag free chamber. The second part describes the strategy of the data processing. It is based on modeling the perturbing accelerations by means of GPS, EpiSensor and INS data. In the third part the airborne experiment is described in detail, from the mounting in the aircraft and data processing to the different problems encountered during the evaluation of the quality and accuracy of the results. In the part of data processing the different steps conducted from the raw apparent gravity data and the trajectories to the estimation of the true gravity are explained. A comparison between the estimated airborne data and those obtained by ground upward continuation at flight altitude allows to state that airborne absolute gravimetry is feasible and

  8. Recombination instability

    D'Angelo, N.

    1967-01-01

    A recombination instability is considered which may arise in a plasma if the temperature dependence of the volume recombination coefficient, alpha, is sufficiently strong. Two cases are analyzed: (a) a steady-state plasma produced in a neutral gas by X-rays or high energy electrons; and (b) an af...

  9. Absolutely Indecomposable Modules

    Göbel, Rüdiger

    2007-01-01

    A module is called absolutely indecomposable if it is directly indecomposable in every generic extension of the universe. We want to show the existence of large abelian groups that are absolutely indecomposable. This will follow from a more general result about R-modules over a large class of commutative rings R with endomorphism ring R which remains the same when passing to a generic extension of the universe. It turns out that `large' in this context has the precise meaning, namely being smaller then the first omega-Erdos cardinal defined below. We will first apply result on large rigid trees with a similar property established by Shelah in 1982, and will prove the existence of related ` R_omega-modules' (R-modules with countably many distinguished submodules) and finally pass to R-modules. The passage through R_omega-modules has the great advantage that the proofs become very transparent essentially using a few `linear algebra' arguments accessible also for graduate students. The result gives a new constru...

  10. Absolute Gravimetry in Fennoscandia

    Pettersen, B. R; TImmen, L.; Gitlein, O.

    The Fennoscandian postglacial uplift has been mapped geometrically using precise levelling, tide gauges, and networks of permanent GPS stations. The results identify major uplift rates at sites located around the northern part of the Gulf of Bothnia. The vertical motions decay in all directions...... motions) has its major axis in the direction of southwest to northeast and covers a distance of about 2000 km. Absolute gravimetry was made in Finland and Norway in 1976 with a rise-and fall instrument. A decade later the number of gravity stations was expanded by JILAg-5, in Finland from 1988, in Norway...... from 1991, and in Sweden from 1992. FG5 was introduced in these three countries in 1993 (7 stations) and continued with an extended campaign in 1995 (12 stations). In 2003 a project was initiated by IfE, Hannover to collect observations simultaneously with GRACE on an annual cycle. New instruments were...

  11. Optical tweezers absolute calibration

    Dutra, R S; Neto, P A Maia; Nussenzveig, H M

    2014-01-01

    Optical tweezers are highly versatile laser traps for neutral microparticles, with fundamental applications in physics and in single molecule cell biology. Force measurements are performed by converting the stiffness response to displacement of trapped transparent microspheres, employed as force transducers. Usually, calibration is indirect, by comparison with fluid drag forces. This can lead to discrepancies by sizable factors. Progress achieved in a program aiming at absolute calibration, conducted over the past fifteen years, is briefly reviewed. Here we overcome its last major obstacle, a theoretical overestimation of the peak stiffness, within the most employed range for applications, and we perform experimental validation. The discrepancy is traced to the effect of primary aberrations of the optical system, which are now included in the theory. All required experimental parameters are readily accessible. Astigmatism, the dominant effect, is measured by analyzing reflected images of the focused laser spo...

  12. Absolute multilateration between spheres

    Muelaner, Jody; Wadsworth, William; Azini, Maria; Mullineux, Glen; Hughes, Ben; Reichold, Armin

    2017-04-01

    Environmental effects typically limit the accuracy of large scale coordinate measurements in applications such as aircraft production and particle accelerator alignment. This paper presents an initial design for a novel measurement technique with analysis and simulation showing that that it could overcome the environmental limitations to provide a step change in large scale coordinate measurement accuracy. Referred to as absolute multilateration between spheres (AMS), it involves using absolute distance interferometry to directly measure the distances between pairs of plain steel spheres. A large portion of each sphere remains accessible as a reference datum, while the laser path can be shielded from environmental disturbances. As a single scale bar this can provide accurate scale information to be used for instrument verification or network measurement scaling. Since spheres can be simultaneously measured from multiple directions, it also allows highly accurate multilateration-based coordinate measurements to act as a large scale datum structure for localized measurements, or to be integrated within assembly tooling, coordinate measurement machines or robotic machinery. Analysis and simulation show that AMS can be self-aligned to achieve a theoretical combined standard uncertainty for the independent uncertainties of an individual 1 m scale bar of approximately 0.49 µm. It is also shown that combined with a 1 µm m‑1 standard uncertainty in the central reference system this could result in coordinate standard uncertainty magnitudes of 42 µm over a slender 1 m by 20 m network. This would be a sufficient step change in accuracy to enable next generation aerospace structures with natural laminar flow and part-to-part interchangeability.

  13. [Carpal instability].

    Redeker, J; Vogt, P M

    2011-01-01

    Carpal instability can be understood as a disturbed anatomical alignment between bones articulating in the carpus. This disturbed balance occurs either only dynamically (with movement) under the effect of physiological force or even statically at rest. The most common cause of carpal instability is wrist trauma with rupture of the stabilizing ligaments and adaptive misalignment following fractures of the radius or carpus. Carpal collapse plays a special role in this mechanism due to non-healed fracture of the scaphoid bone. In addition degenerative inflammatory alterations, such as chondrocalcinosis or gout, more rarely aseptic bone necrosis of the lunate or scaphoid bones or misalignment due to deposition (Madelung deformity) can lead to wrist instability. Under increased pressure the misaligned joint surfaces lead to bone arrosion with secondary arthritis of the wrist. In order to arrest or slow down this irreversible process, diagnosis must occur as early as possible. Many surgical methods have been thought out to regain stability ranging from direct reconstruction of the damaged ligaments, through ligament replacement to partial stiffening of the wrist joint.

  14. FINANCIAL INSTABILITY AND POLITICAL INSTABILITY

    Ionescu Cristian

    2012-12-01

    Full Text Available There is an important link between the following two variables: financial instability and political instability. Often, the link is bidirectional, so both may influence each other. This is way the lately crisis are becoming larger and increasingly complex. Therefore, the academic environment is simultaneously talking about economic crises, financial crises, political crises, social crises, highlighting the correlation and causality between variables belonging to the economic, financial, political and social areas, with repercussions and spillover effects that extend from one area to another. Given the importance, relevance and the actuality of the ones described above, I consider that at least a theoretical analysis between economic, financial and political factors is needed in order to understand the reality. Thus, this paper aims to find links and connections to complete the picture of the economic reality.

  15. Estimating Absolute Site Effects

    Malagnini, L; Mayeda, K M; Akinci, A; Bragato, P L

    2004-07-15

    The authors use previously determined direct-wave attenuation functions as well as stable, coda-derived source excitation spectra to isolate the absolute S-wave site effect for the horizontal and vertical components of weak ground motion. They used selected stations in the seismic network of the eastern Alps, and find the following: (1) all ''hard rock'' sites exhibited deamplification phenomena due to absorption at frequencies ranging between 0.5 and 12 Hz (the available bandwidth), on both the horizontal and vertical components; (2) ''hard rock'' site transfer functions showed large variability at high-frequency; (3) vertical-motion site transfer functions show strong frequency-dependence, and (4) H/V spectral ratios do not reproduce the characteristics of the true horizontal site transfer functions; (5) traditional, relative site terms obtained by using reference ''rock sites'' can be misleading in inferring the behaviors of true site transfer functions, since most rock sites have non-flat responses due to shallow heterogeneities resulting from varying degrees of weathering. They also use their stable source spectra to estimate total radiated seismic energy and compare against previous results. they find that the earthquakes in this region exhibit non-constant dynamic stress drop scaling which gives further support for a fundamental difference in rupture dynamics between small and large earthquakes. To correct the vertical and horizontal S-wave spectra for attenuation, they used detailed regional attenuation functions derived by Malagnini et al. (2002) who determined frequency-dependent geometrical spreading and Q for the region. These corrections account for the gross path effects (i.e., all distance-dependent effects), although the source and site effects are still present in the distance-corrected spectra. The main goal of this study is to isolate the absolute site effect (as a function of frequency

  16. Notes on absolute Hodge classes

    Charles, François

    2011-01-01

    We survey the theory of absolute Hodge classes. The notes include a full proof of Deligne's theorem on absolute Hodge classes on abelian varieties as well as a discussion of other topics, such as the field of definition of Hodge loci and the Kuga-Satake construction.

  17. INTRINSIC INSTABILITY OF THE LATTICE BGK MODEL

    熊鳌魁

    2002-01-01

    Based on the stability analysis with no linearization and expansion,it is argued that instability in the lattice BGK model is originated from the linearrelaxation hypothesis of collision in the model. The hypothesis stands up only whenthe deviation from the local equilibrium is weak. In this case the computation is abso-lutely stable for real fluids. But for flows of high Reynolds number, this hypothesis isviolated and then instability takes place physically. By performing a transformationa quantified stability criteria is put forward without those approximation. From thecriteria a sufficient condition for stability can be obtained and serve as an estimationof the limited Reynolds number as high as possible.

  18. Database applicaton for absolute spectrophotometry

    Bochkov, Valery V.; Shumko, Sergiy

    2002-12-01

    32-bit database application with multidocument interface for Windows has been developed to calculate absolute energy distributions of observed spectra. The original database contains wavelength calibrated observed spectra which had been already passed through apparatus reductions such as flatfielding, background and apparatus noise subtracting. Absolute energy distributions of observed spectra are defined in unique scale by means of registering them simultaneously with artificial intensity standard. Observations of sequence of spectrophotometric standards are used to define absolute energy of the artificial standard. Observations of spectrophotometric standards are used to define optical extinction in selected moments. FFT algorithm implemented in the application allows performing convolution (deconvolution) spectra with user-defined PSF. The object-oriented interface has been created using facilities of C++ libraries. Client/server model with Windows Socket functionality based on TCP/IP protocol is used to develop the application. It supports Dynamic Data Exchange conversation in server mode and uses Microsoft Exchange communication facilities.

  19. Dark solitons, dispersive shock waves, and transverse instabilities

    Hoefer, M A

    2011-01-01

    The nature of transverse instabilities to dark solitons and dispersive shock waves for the (2+1)-dimensional defocusing nonlinear Schrodinger equation / Gross-Pitaevskii (NLS / GP) equation is considered. Special attention is given to the small (shallow) amplitude regime, which limits to the Kadomtsev-Petviashvili (KP) equation. We study analytically and numerically the eigenvalues of the linearized NLS / GP equation. The dispersion relation for shallow solitons is obtained asymptotically beyond the KP limit. This yields 1) the maximum growth rate and associated wavenumber of unstable perturbations; and 2) the separatrix between convective and absolute instabilities. The latter result is used to study the transition between convective and absolute instabilities of oblique dispersive shock waves (DSWs). Stationary and nonstationary oblique DSWs are constructed analytically and investigated numerically by direct simulations of the NLS / GP equation. The instability properties of oblique DSWs are found to be dir...

  20. Relativistic Absolutism in Moral Education.

    Vogt, W. Paul

    1982-01-01

    Discusses Emile Durkheim's "Moral Education: A Study in the Theory and Application of the Sociology of Education," which holds that morally healthy societies may vary in culture and organization but must possess absolute rules of moral behavior. Compares this moral theory with current theory and practice of American educators. (MJL)

  1. Absolute luminosity measurements at LHCb

    Hopchev, Plamen

    2011-01-01

    Absolute luminosity measurements are of general interest for colliding-beam experiments at storage rings. These measurements are necessary to determine the absolute cross-sections of reaction processes and are valuable to quantify the performance of the accelerator. LHCb has applied two methods to determine the absolute scale of its luminosity measurements for proton-proton collisions at the LHC running at a centre-of-mass energy of 7 TeV. In addition to the classic ``van der Meer'' scan method a novel technique has been developed which makes use of direct imaging of the individual beams using both proton-gas and proton-proton interactions. The beam imaging method is made possible by the high resolution of the LHCb vertex detector and the close proximity of the detector to the beams, and allows beam parameters such as positions, angles and widths to be determined. We describe both methods and compare the two results. In addition, we present the techniques used to transport the absolute luminosity measurement ...

  2. Absolute Standards for Climate Measurements

    Leckey, J.

    2016-10-01

    In a world of changing climate, political uncertainty, and ever-changing budgets, the benefit of measurements traceable to SI standards increases by the day. To truly resolve climate change trends on a decadal time scale, on-orbit measurements need to be referenced to something that is both absolute and unchanging. One such mission is the Climate Absolute Radiance and Refractivity Observatory (CLARREO) that will measure a variety of climate variables with an unprecedented accuracy to definitively quantify climate change. In the CLARREO mission, we will utilize phase change cells in which a material is melted to calibrate the temperature of a blackbody that can then be observed by a spectrometer. A material's melting point is an unchanging physical constant that, through a series of transfers, can ultimately calibrate a spectrometer on an absolute scale. CLARREO consists of two primary instruments: an infrared (IR) spectrometer and a reflected solar (RS) spectrometer. The mission will contain orbiting radiometers with sufficient accuracy to calibrate other space-based instrumentation and thus transferring the absolute traceability. The status of various mission options will be presented.

  3. Electron heat flux instability

    Saeed, Sundas; Sarfraz, M.; Yoon, P. H.; Lazar, M.; Qureshi, M. N. S.

    2017-02-01

    The heat flux instability is an electromagnetic mode excited by a relative drift between the protons and two-component core-halo electrons. The most prominent application may be in association with the solar wind where drifting electron velocity distributions are observed. The heat flux instability is somewhat analogous to the electrostatic Buneman or ion-acoustic instability driven by the net drift between the protons and bulk electrons, except that the heat flux instability operates in magnetized plasmas and possesses transverse electromagnetic polarization. The heat flux instability is also distinct from the electrostatic counterpart in that it requires two electron species with relative drifts with each other. In the literature, the heat flux instability is often called the 'whistler' heat flux instability, but it is actually polarized in the opposite sense to the whistler wave. This paper elucidates all of these fundamental plasma physical properties associated with the heat flux instability starting from a simple model, and gradually building up more complexity towards a solar wind-like distribution functions. It is found that the essential properties of the instability are already present in the cold counter-streaming electron model, and that the instability is absent if the protons are ignored. These instability characteristics are highly reminiscent of the electron firehose instability driven by excessive parallel temperature anisotropy, propagating in parallel direction with respect to the ambient magnetic field, except that the free energy source for the heat flux instability resides in the effective parallel pressure provided by the counter-streaming electrons.

  4. Absolute Stability for Lurie Control System with Unbound Time Delays

    王天成; 王耀才; 洪留荣

    2004-01-01

    Time delay existes widely in various real engineering systems and can result in unsatisfactory performance or even an instability of control systems. Therefore, to investigate the stability for time delay systems is of vitul importance in control theory and its applications. Many researchers have studied the stability criteria of systems with constant delay or bound varying time delay, but few of them studied large time delay or unbound time delay. Large time delay existes commonly in various engineering applications. In this paper, the absolute stability of Lurie type direct control systems and indirect control systems with several time delays are discussed. Based on Lyapunov theory, the new delay dependent absolute stability criteria are derived. In our theorem, time delays can be unbound functions, which shows that the results are less conservative than that of existed criteria.

  5. Evaluating shoulder instability treatment

    van der Linde, J.A.

    2016-01-01

    Shoulder instability common occurs. When treated nonoperatively, the resulting societal costs based on health care utilization and productivity losses are significant. Shoulder function can be evaluated using patient reported outcome measurements (PROMs). For shoulder instability, these include the

  6. Optomechanics for absolute rotation detection

    Davuluri, Sankar

    2016-07-01

    In this article, we present an application of optomechanical cavity for the absolute rotation detection. The optomechanical cavity is arranged in a Michelson interferometer in such a way that the classical centrifugal force due to rotation changes the length of the optomechanical cavity. The change in the cavity length induces a shift in the frequency of the cavity mode. The phase shift corresponding to the frequency shift in the cavity mode is measured at the interferometer output to estimate the angular velocity of absolute rotation. We derived an analytic expression to estimate the minimum detectable rotation rate in our scheme for a given optomechanical cavity. Temperature dependence of the rotation detection sensitivity is studied.

  7. Physics of negative absolute temperatures

    Abraham, Eitan; Penrose, Oliver

    2017-01-01

    Negative absolute temperatures were introduced into experimental physics by Purcell and Pound, who successfully applied this concept to nuclear spins; nevertheless, the concept has proved controversial: a recent article aroused considerable interest by its claim, based on a classical entropy formula (the "volume entropy") due to Gibbs, that negative temperatures violated basic principles of statistical thermodynamics. Here we give a thermodynamic analysis that confirms the negative-temperature interpretation of the Purcell-Pound experiments. We also examine the principal arguments that have been advanced against the negative temperature concept; we find that these arguments are not logically compelling, and moreover that the underlying "volume" entropy formula leads to predictions inconsistent with existing experimental results on nuclear spins. We conclude that, despite the counterarguments, negative absolute temperatures make good theoretical sense and did occur in the experiments designed to produce them.

  8. Shoulder instability; Schulterinstabilitaeten

    Kreitner, Karl-Friedrich [Mainiz Univ. (Germany). Klinik und Poliklinik fuer Diagnostische und Interventionelle Radiologie

    2014-06-15

    In the shoulder, the advantages of range of motion are traded for the disadvantages of vulnerability to injury and the development of instability. Shoulder instability and the lesion it produces represent one of the main causes of shoulder discomfort and pain. Shoulder instability is defined as a symptomatic abnormal motion of the humeral head relative to the glenoid during active shoulder motion. Glenohumeral instabilities are classified according to their causative factors as the pathogenesis of instability plays an important role with respect to treatment options: instabilities are classified in traumatic and atraumatic instabilities as part of a multidirectional instability syndrome, and in microtraumatic instabilities. Plain radiographs ('trauma series') are performed to document shoulder dislocation and its successful reposition. Direct MR arthrography is the most important imaging modality for delineation the different injury patterns on the labral-ligamentous complex and bony structures. Monocontrast CT-arthrography with use of multidetector CT scanners may be an alternative imaging modality, however, regarding the younger patient age, MR imaging should be preferred in the diagnostic work-up of shoulder instabilities. (orig.)

  9. Android Apps for Absolute Beginners

    Jackson, Wallace

    2011-01-01

    Anybody can start building simple apps for the Android platform, and this book will show you how! Android Apps for Absolute Beginners takes you through the process of getting your first Android applications up and running using plain English and practical examples. It cuts through the fog of jargon and mystery that surrounds Android application development, and gives you simple, step-by-step instructions to get you started.* Teaches Android application development in language anyone can understand, giving you the best possible start in Android development * Provides simple, step-by-step exampl

  10. Cosmology with Negative Absolute Temperatures

    Vieira, J P P; Lewis, Antony

    2016-01-01

    Negative absolute temperatures (NAT) are an exotic thermodynamical consequence of quantum physics which has been known since the 1950's (having been achieved in the lab on a number of occasions). Recently, the work of Braun et al (2013) has rekindled interest in negative temperatures and hinted at a possibility of using NAT systems in the lab as dark energy analogues. This paper goes one step further, looking into the cosmological consequences of the existence of a NAT component in the Universe. NAT-dominated expanding Universes experience a borderline phantom expansion ($w<-1$) with no Big Rip, and their contracting counterparts are forced to bounce after the energy density becomes sufficiently large. Both scenarios might be used to solve horizon and flatness problems analogously to standard inflation and bouncing cosmologies. We discuss the difficulties in obtaining and ending a NAT-dominated epoch, and possible ways of obtaining density perturbations with an acceptable spectrum.

  11. Cosmology with negative absolute temperatures

    Vieira, J. P. P.; Byrnes, Christian T.; Lewis, Antony

    2016-08-01

    Negative absolute temperatures (NAT) are an exotic thermodynamical consequence of quantum physics which has been known since the 1950's (having been achieved in the lab on a number of occasions). Recently, the work of Braun et al. [1] has rekindled interest in negative temperatures and hinted at a possibility of using NAT systems in the lab as dark energy analogues. This paper goes one step further, looking into the cosmological consequences of the existence of a NAT component in the Universe. NAT-dominated expanding Universes experience a borderline phantom expansion (w inflation and bouncing cosmologies. We discuss the difficulties in obtaining and ending a NAT-dominated epoch, and possible ways of obtaining density perturbations with an acceptable spectrum.

  12. Transverse Mode Coupling Instability with Space Charge

    Balbekov, V

    2016-01-01

    Transverse mode coupling instability of a bunch with space charge and wake field is considered in frameworks of the boxcar model. Eigenfunctions of the bunch without wake are used as the basis for solution of the equations with the wake field included. Dispersion equation for the bunch eigentunes is obtained in the form of an infinite continued fraction. It is shown that influence of space charge on the instability essentially depends on the wake sign. In particular, threshold of the negative wake increases in absolute value until the space charge tune shift is rather small, and goes to zero at higher space charge. The explanation of this behavior is developed by analysis of the bunch spectrum. A comparison of the results with published articles is represented.

  13. Transverse Mode Coupling Instability with Space Charge

    Balbekov, V. [Fermilab

    2016-03-11

    Transverse mode coupling instability of a bunch with space charge and wake field is considered in frameworks of the boxcar model. Eigenfunctions of the bunch without wake are used as the basis for solution of the equations with the wake field included. Dispersion equation for the bunch eigentunes is obtained in the form of an infinite continued fraction. It is shown that influence of space charge on the instability essentially depends on the wake sign. In particular, threshold of the negative wake increases in absolute value until the space charge tune shift is rather small, and goes to zero at higher space charge. The explanation of this behavior is developed by analysis of the bunch spectrum. A comparison of the results with published articles is represented.

  14. Instability in evolutionary games.

    Zimo Yang

    Full Text Available BACKGROUND: Phenomena of instability are widely observed in many dissimilar systems, with punctuated equilibrium in biological evolution and economic crises being noticeable examples. Recent studies suggested that such instabilities, quantified by the abrupt changes of the composition of individuals, could result within the framework of a collection of individuals interacting through the prisoner's dilemma and incorporating three mechanisms: (i imitation and mutation, (ii preferred selection on successful individuals, and (iii networking effects. METHODOLOGY/PRINCIPAL FINDINGS: We study the importance of each mechanism using simplified models. The models are studied numerically and analytically via rate equations and mean-field approximation. It is shown that imitation and mutation alone can lead to the instability on the number of cooperators, and preferred selection modifies the instability in an asymmetric way. The co-evolution of network topology and game dynamics is not necessary to the occurrence of instability and the network topology is found to have almost no impact on instability if new links are added in a global manner. The results are valid in both the contexts of the snowdrift game and prisoner's dilemma. CONCLUSIONS/SIGNIFICANCE: The imitation and mutation mechanism, which gives a heterogeneous rate of change in the system's composition, is the dominating reason of the instability on the number of cooperators. The effects of payoffs and network topology are relatively insignificant. Our work refines the understanding on the driving forces of system instability.

  15. Cavitation Instabilities in Inducers

    2006-11-01

    gas handling turbomachines . The fluctuation of the cavity length is plotted in Fig.8 under the surge mode oscillation vi . The major differences...Cavitation Instabilities of Turbomachines .” AIAA Journal of Propulsion and Power, Vol.17, No.3, 636-643. [5] Tsujimoto, Y., (2006), “Flow Instabilities in

  16. Noise-Sustained Convective Instability in a Magnetized Taylor-Couette Flow

    W. Liu

    2009-02-20

    The helical magnetorotational instability of the magnetized Taylor-Couette flow is studied numerically in a finite cylinder. A distant upstream insulating boundary is shown to stabilize the convective instability entirely while reducing the growth rate of the absolute instability. The reduction is less severe with larger height. After modeling the boundary conditions properly, the wave patterns observed in the experiment turn out to be a noise-sustained convective instability. After the source of the noise resulted from unstable Ekman and Stewartson layers is switched off, a slowly-decaying inertial oscillation is observed in the simulation. We reach the conclusion that the experiments completed to date have not yet reached the regime of absolute instability.

  17. Noise-Sustained Convective Instability in a Magnetized Taylor-Couette Flow

    Liu, Wei

    2008-01-01

    The helical magnetorotational instability of the magnetized Taylor-Couette flow is studied numerically in a finite cylinder. A distant upstream insulating boundary is shown to stabilize the convective instability entirely while reducing the growth rate of the absolute instability. The reduction is less severe with larger height. After modeling the boundary conditions properly, the wave patterns observed in the experiment turn out to be a noise-sustained convective instability. After the source of the noise resulted from unstable Ekman and Stewartson layers is switched off, a slowly-decaying inertial oscillation is observed in the simulation. We reach the conclusion that the experiments completed to date have not yet reached the regime of absolute instability.

  18. Noise-sustained convective instability in a magnetized Taylor-Couette flow

    Liu, Wei [Los Alamos National Laboratory

    2008-01-01

    The helical magnetorotational instability of the magnetized Taylor-Couette flow is studied numerically in a finite cylinder. A distant upstream insulating boundary is shown to stabilize the convective instability entirely while reducing the growth rate of the absolute instability. The reduction is less severe with larger height. After modeling the boundary conditions properly, the wave patterns observed in the experiment turn out to be a noise-sustained convective instability. After the source of the noise resulted from unstable Ekman and Stewartson layers is switched off, a slowly-decaying inertial oscillation is observed in the simulation. We reach the conclusion that the experiments completed to date have not yet reached the regime of absolute instability.

  19. Nonlinear helical MHD instability

    Zueva, N.M.; Solov' ev, L.S.

    1977-07-01

    An examination is made of the boundary problem on the development of MHD instability in a toroidal plasma. Two types of local helical instability are noted - Alfven and thermal, and the corresponding criteria of instability are cited. An evaluation is made of the maximum attainable kinetic energy, limited by the degree to which the law of conservation is fulfilled. An examination is made of a precise solution to a kinematic problem on the helical evolution of a cylindrical magnetic configuration at a given velocity distribution in a plasma. A numerical computation of the development of MHD instability in a plasma cylinder by a computerized solution of MHD equations is made where the process's helical symmetry is conserved. The development of instability is of a resonance nature. The instability involves the entire cross section of the plasma and leads to an inside-out reversal of the magnetic surfaces when there is a maximum unstable equilibrium configuration in the nonlinear stage. The examined instability in the tore is apparently stabilized by a magnetic hole when certain limitations are placed on the distribution of flows in the plasma. 29 references, 8 figures.

  20. Enabling linear model for the IMGC-02 absolute gravimeter

    Nagornyi, V D; Svitlov, S

    2013-01-01

    Measurement procedures of most rise-and-fall absolute gravimeters has to resolve singularity at the apex of the trajectory caused by the discrete fringe counting in the Michelson-type interferometers. Traditionally the singularity is addressed by implementing non-linear models of the trajectory, but they introduce problems of their own, such as biasness, non-uniqueness, and instability of the gravity estimates. Using IMGC-02 gravimeter as example, we show that the measurement procedure of the rise-and-fall gravimeters can be based on the linear models which successfully resolve the singularity and provide rigorous estimates of the gravity value. The linear models also facilitate further enhancements of the instrument, such as accounting for new types of disturbances and active compensation for the vibrations.

  1. Spondylolisthesis and Posterior Instability

    Niggemann, P.; Beyer, H.K.; Frey, H.; Grosskurth, D. (Privatpraxis fuer Upright MRT, Koeln (Germany)); Simons, P.; Kuchta, J. (Media Park Klinik, Koeln (Germany))

    2009-04-15

    We present the case of a patient with a spondylolisthesis of L5 on S1 due to spondylolysis at the level L5/S1. The vertebral slip was fixed and no anterior instability was found. Using functional magnetic resonance imaging (MRI) in an upright MRI scanner, posterior instability at the level of the spondylolytic defect of L5 was demonstrated. A structure, probably the hypertrophic ligament flava, arising from the spondylolytic defect was displaced toward the L5 nerve root, and a bilateral contact of the displaced structure with the L5 nerve root was shown in extension of the spine. To our knowledge, this is the first case described of posterior instability in patients with spondylolisthesis. The clinical implications of posterior instability are unknown; however, it is thought that this disorder is common and that it can only be diagnosed using upright MRI.

  2. Instabilities in nuclei

    Csernai, László P; Papp, G

    1995-01-01

    The evolution of dynamical perturbations is examined in nuclear multifragmentation in the frame of Vlasov equation. Both plane wave and bubble type of perturbations are investigated in the presence of surface (Yukawa) forces. An energy condition is given for the allowed type of instabilities and the time scale of the exponential growth of the instabilities is calculated. The results are compared to the mechanical spinodal region predictions. PACS: 25.70 Mn

  3. Prediction of Algebraic Instabilities

    Zaretzky, Paula; King, Kristina; Hill, Nicole; Keithley, Kimberlee; Barlow, Nathaniel; Weinstein, Steven; Cromer, Michael

    2016-11-01

    A widely unexplored type of hydrodynamic instability is examined - large-time algebraic growth. Such growth occurs on the threshold of (exponentially) neutral stability. A new methodology is provided for predicting the algebraic growth rate of an initial disturbance, when applied to the governing differential equation (or dispersion relation) describing wave propagation in dispersive media. Several types of algebraic instabilities are explored in the context of both linear and nonlinear waves.

  4. Identifying Instability Pockets

    2014-12-04

    TYPE SAMS Monograph 3. DATES COVERED (From - To) FEB 2014 – DEC 2014 4. TITLE AND SUBTITLE IDENTIFYING INSTABILITY POCKETS 5a. CONTRACT...century, and if the first few years of the new century are indicative of the future, Central Asia is surely destined to be a focus of the world...reasons. First, there is a possibility of the collapse and instability of Afghanistan once all the U.S troops vacate .107 This stability will most

  5. Newton On Absolute Space A Commentary

    Adewole, A I A

    2001-01-01

    Newton seems to have stated a quantitative relationship between the position of a body in relative space and the position of the body in absolute space in the first scholium of his Principia. We show that if this suspected relationship is assumed to hold, it will dispel many errors and misrepresentations that have befallen Newton's ideas on absolute space.

  6. Monolithically integrated absolute frequency comb laser system

    Wanke, Michael C.

    2016-07-12

    Rather than down-convert optical frequencies, a QCL laser system directly generates a THz frequency comb in a compact monolithically integrated chip that can be locked to an absolute frequency without the need of a frequency-comb synthesizer. The monolithic, absolute frequency comb can provide a THz frequency reference and tool for high-resolution broad band spectroscopy.

  7. Absolute Income, Relative Income, and Happiness

    Ball, Richard; Chernova, Kateryna

    2008-01-01

    This paper uses data from the World Values Survey to investigate how an individual's self-reported happiness is related to (i) the level of her income in absolute terms, and (ii) the level of her income relative to other people in her country. The main findings are that (i) both absolute and relative income are positively and significantly…

  8. Propagating Instabilities in Solids

    Kyriakides, Stelios

    1998-03-01

    Instability is one of the factors which limit the extent to which solids can be loaded or deformed and plays a pivotal role in the design of many structures. Such instabilities often result in localized deformation which precipitates catastrophic failure. Some materials have the capacity to recover their stiffness following a certain amount of localized deformation. This local recovery in stiffness arrests further local deformation and spreading of the instability to neighboring material becomes preferred. Under displacement controlled loading the propagation of the transition fronts can be achieved in a steady-state manner at a constant stress level known as the propagation stress. The stresses in the transition fronts joining the highly deformed zone to the intact material overcome the instability nucleation stresses and, as a result, the propagation stress is usually much lower than the stress required to nucleate the instability. The classical example of this class of material instabilities is L/"uders bands which tend to affect mild steels and other metals. Recent work has demonstrated that propagating instabilities occur in several other materials. Experimental and analytical results from four examples will be used to illustrate this point: First the evolution of L=FCders bands in mild steel strips will be revisited. The second example involves the evolution of stress induced phase transformations (austenite to martensite phases and the reverse) in a shape memory alloy under displacement controlled stretching. The third example is the crushing behavior of cellular materials such as honeycombs and foams made from metals and polymers. The fourth example involves the axial broadening/propagation of kink bands in aligned fiber/matrix composites under compression. The microstructure and, as a result, the micromechanisms governing the onset, localization, local arrest and propagation of instabilities in each of the four materials are vastly different. Despite this

  9. Absolute quantitation of protein posttranslational modification isoform.

    Yang, Zhu; Li, Ning

    2015-01-01

    Mass spectrometry has been widely applied in characterization and quantification of proteins from complex biological samples. Because the numbers of absolute amounts of proteins are needed in construction of mathematical models for molecular systems of various biological phenotypes and phenomena, a number of quantitative proteomic methods have been adopted to measure absolute quantities of proteins using mass spectrometry. The liquid chromatography-tandem mass spectrometry (LC-MS/MS) coupled with internal peptide standards, i.e., the stable isotope-coded peptide dilution series, which was originated from the field of analytical chemistry, becomes a widely applied method in absolute quantitative proteomics research. This approach provides more and more absolute protein quantitation results of high confidence. As quantitative study of posttranslational modification (PTM) that modulates the biological activity of proteins is crucial for biological science and each isoform may contribute a unique biological function, degradation, and/or subcellular location, the absolute quantitation of protein PTM isoforms has become more relevant to its biological significance. In order to obtain the absolute cellular amount of a PTM isoform of a protein accurately, impacts of protein fractionation, protein enrichment, and proteolytic digestion yield should be taken into consideration and those effects before differentially stable isotope-coded PTM peptide standards are spiked into sample peptides have to be corrected. Assisted with stable isotope-labeled peptide standards, the absolute quantitation of isoforms of posttranslationally modified protein (AQUIP) method takes all these factors into account and determines the absolute amount of a protein PTM isoform from the absolute amount of the protein of interest and the PTM occupancy at the site of the protein. The absolute amount of the protein of interest is inferred by quantifying both the absolute amounts of a few PTM

  10. Neutrino beam plasma instability

    Vishnu M Bannur

    2001-10-01

    We derive relativistic fluid set of equations for neutrinos and electrons from relativistic Vlasov equations with Fermi weak interaction force. Using these fluid equations, we obtain a dispersion relation describing neutrino beam plasma instability, which is little different from normal dispersion relation of streaming instability. It contains new, nonelectromagnetic, neutrino-plasma (or electroweak) stable and unstable modes also. The growth of the instability is weak for the highly relativistic neutrino flux, but becomes stronger for weakly relativistic neutrino flux in the case of parameters appropriate to the early universe and supernova explosions. However, this mode is dominant only for the beam velocity greater than 0.25 and in the other limit electroweak unstable mode takes over.

  11. Causes of genome instability

    Langie, Sabine A S; Koppen, Gudrun; Desaulniers, Daniel;

    2015-01-01

    chemicals present in our modern society could contribute to carcinogenesis by indirectly affecting genome stability. The selected chemicals with their mechanisms of action proposed to indirectly contribute to genome instability are: heavy metals (DNA repair, epigenetic modification, DNA damage signaling...... function, chromosome segregation, telomere length). The purpose of this review is to describe the crucial aspects of genome instability, to outline the ways in which environmental chemicals can affect this cancer hallmark and to identify candidate chemicals for further study. The overall aim is to make......Genome instability is a prerequisite for the development of cancer. It occurs when genome maintenance systems fail to safeguard the genome's integrity, whether as a consequence of inherited defects or induced via exposure to environmental agents (chemicals, biological agents and radiation). Thus...

  12. Mixing through shear instabilities

    Brüggen, M

    2000-01-01

    In this paper we present the results of numerical simulations of the Kelvin-Helmholtz instability in a stratified shear layer. This shear instability is believed to be responsible for extra mixing in differentially rotating stellar interiors and is the prime candidate to explain the abundance anomalies observed in many rotating stars. All mixing prescriptions currently in use are based on phenomenological and heuristic estimates whose validity is often unclear. Using three-dimensional numerical simulations, we study the mixing efficiency as a function of the Richardson number and compare our results with some semi-analytical formalisms of mixing.

  13. Magnifying absolute instruments for optically homogeneous regions

    Tyc, Tomas

    2011-01-01

    We propose a class of magnifying absolute optical instruments with a positive isotropic refractive index. They create magnified stigmatic images, either virtual or real, of optically homogeneous three-dimensional spatial regions within geometrical optics.

  14. The Simplicity Argument and Absolute Morality

    Mijuskovic, Ben

    1975-01-01

    In this paper the author has maintained that there is a similarity of thought to be found in the writings of Cudworth, Emerson, and Husserl in his investigation of an absolute system of morality. (Author/RK)

  15. Shock instability in dissipative gases

    Radulescu, Matei I.; Sirmas, Nick

    2011-01-01

    Previous experiments have revealed that shock waves in thermally relaxing gases, such as ionizing, dissociating and vibrationally excited gases, can become unstable. To date, the mechanism controlling this instability has not been resolved. Previous accounts of the D'yakov-Kontorovich instability, and Bethe-Zel'dovich-Thompson behaviour could not predict the experimentally observed instability. To address the mechanism controlling the instability, we study the propagation of shock waves in a ...

  16. A global algorithm for estimating Absolute Salinity

    T. J. McDougall

    2012-12-01

    Full Text Available The International Thermodynamic Equation of Seawater – 2010 has defined the thermodynamic properties of seawater in terms of a new salinity variable, Absolute Salinity, which takes into account the spatial variation of the composition of seawater. Absolute Salinity more accurately reflects the effects of the dissolved material in seawater on the thermodynamic properties (particularly density than does Practical Salinity.

    When a seawater sample has standard composition (i.e. the ratios of the constituents of sea salt are the same as those of surface water of the North Atlantic, Practical Salinity can be used to accurately evaluate the thermodynamic properties of seawater. When seawater is not of standard composition, Practical Salinity alone is not sufficient and the Absolute Salinity Anomaly needs to be estimated; this anomaly is as large as 0.025 g kg−1 in the northernmost North Pacific. Here we provide an algorithm for estimating Absolute Salinity Anomaly for any location (x, y, p in the world ocean.

    To develop this algorithm, we used the Absolute Salinity Anomaly that is found by comparing the density calculated from Practical Salinity to the density measured in the laboratory. These estimates of Absolute Salinity Anomaly however are limited to the number of available observations (namely 811. In order to provide a practical method that can be used at any location in the world ocean, we take advantage of approximate relationships between Absolute Salinity Anomaly and silicate concentrations (which are available globally.

  17. Genetic instability in Gynecological Cancer

    ZHAO Qing-hua; ZHOU Hong-lin

    2003-01-01

    Defects of mismatch repair (MMR) genes also have beenidentified in many kinds of tumors. Loss of MMR functionhas been linked to genetic instability especially microsatelliteinstability that results in high mutation rate. In this review, wediscussed the microsatellite instability observed in thegynecological tumors. We also discussed defects in the DNAmismatch repair in these tumors and their correlation to themicrosatellite instability, as well as the gene mutations due tothe microsatellite instability in these tumors. From thesediscussion, we tried to understand the mechanism ofcarcinogenesis in gynecological tumors from the aspect ofgenetic instability due to mismatch repair defects.

  18. Modulation instability: The beginning

    Noskov, Roman; Belov, Pavel; Kivshar, Yuri

    2012-11-01

    The study of metal nanoparticles plays a central role in the emerging novel technologies employing optics beyond the diffraction limit. Combining strong surface plasmon resonances, high intrinsic nonlinearities and deeply subwavelength scales, arrays of metal nanoparticles offer a unique playground to develop novel concepts for light manipulation at the nanoscale. Here we suggest a novel principle to control localized optical energy in chains of nonlinear subwavelength metal nanoparticles based on the fundamental nonlinear phenomenon of modulation instability. In particular, we demonstrate that modulation instability can lead to the formation of long-lived standing and moving nonlinear localized modes of several distinct types such as bright and dark solitons, oscillons, and domain walls. We analyze the properties of these nonlinear localized modes and reveal different scenarios of their dynamics including transformation of one type of mode to another. We believe this work paves a way towards the development of nonlinear nanophotonics circuitry.

  19. Instabilities in sensory processes

    Balakrishnan, J.

    2014-07-01

    In any organism there are different kinds of sensory receptors for detecting the various, distinct stimuli through which its external environment may impinge upon it. These receptors convey these stimuli in different ways to an organism's information processing region enabling it to distinctly perceive the varied sensations and to respond to them. The behavior of cells and their response to stimuli may be captured through simple mathematical models employing regulatory feedback mechanisms. We argue that the sensory processes such as olfaction function optimally by operating in the close proximity of dynamical instabilities. In the case of coupled neurons, we point out that random disturbances and fluctuations can move their operating point close to certain dynamical instabilities triggering synchronous activity.

  20. Instability and internet design

    Sandra Braman

    2016-09-01

    Full Text Available Instability - unpredictable but constant change in one’s environment and the means with which one deals with it - has replaced convergence as the focal problem for telecommunications policy in general and internet policy in particular. Those who designed what we now call the internet during the first decade of the effort (1969-1979, who in essence served simultaneously as its policy-makers, developed techniques for coping with instability of value for network designers today and for those involved with any kind of large-scale sociotechnical infrastructure. Analysis of the technical document series that was medium for and record of that design process reveals coping techniques that began with defining the problem and went on to include conceptual labour, social practices, and technical approaches.

  1. Absolute photoacoustic thermometry in deep tissue.

    Yao, Junjie; Ke, Haixin; Tai, Stephen; Zhou, Yong; Wang, Lihong V

    2013-12-15

    Photoacoustic thermography is a promising tool for temperature measurement in deep tissue. Here we propose an absolute temperature measurement method based on the dual temperature dependences of the Grüneisen parameter and the speed of sound in tissue. By taking ratiometric measurements at two adjacent temperatures, we can eliminate the factors that are temperature irrelevant but difficult to correct for in deep tissue. To validate our method, absolute temperatures of blood-filled tubes embedded ~9 mm deep in chicken tissue were measured in a biologically relevant range from 28°C to 46°C. The temperature measurement accuracy was ~0.6°C. The results suggest that our method can be potentially used for absolute temperature monitoring in deep tissue during thermotherapy.

  2. Quantum theory allows for absolute maximal contextuality

    Amaral, Barbara; Cunha, Marcelo Terra; Cabello, Adán

    2015-12-01

    Contextuality is a fundamental feature of quantum theory and a necessary resource for quantum computation and communication. It is therefore important to investigate how large contextuality can be in quantum theory. Linear contextuality witnesses can be expressed as a sum S of n probabilities, and the independence number α and the Tsirelson-like number ϑ of the corresponding exclusivity graph are, respectively, the maximum of S for noncontextual theories and for the theory under consideration. A theory allows for absolute maximal contextuality if it has scenarios in which ϑ /α approaches n . Here we show that quantum theory allows for absolute maximal contextuality despite what is suggested by the examination of the quantum violations of Bell and noncontextuality inequalities considered in the past. Our proof is not constructive and does not single out explicit scenarios. Nevertheless, we identify scenarios in which quantum theory allows for almost-absolute-maximal contextuality.

  3. Modulation instability: The beginning

    Zakharov, V. E.; Ostrovsky, L. A.

    2009-03-01

    We discuss the early history of an important field of “sturm and drang” in modern theory of nonlinear waves. It is demonstrated how scientific demand resulted in independent and almost simultaneous publications by many different authors on modulation instability, a phenomenon resulting in a variety of nonlinear processes such as envelope solitons, envelope shocks, freak waves, etc. Examples from water wave hydrodynamics, electrodynamics, nonlinear optics, and convection theory are given.

  4. The instability of markets

    Huberman, B A; Huberman, Bernardo A; Youssefmir, Michael

    1995-01-01

    Recent developments in the global liberalization of equity and currency markets, coupled to advances in trading technologies, are making markets increasingly interdependent. This increased fluidity raises questions about the stability of the international financial system. In this paper, we show that as couplings between stable markets grow, the likelihood of instabilities is increased, leading to a loss of general equilibrium as the system becomes increasingly large and diverse.

  5. Carpal instability nondissociative.

    Wolfe, Scott W; Garcia-Elias, Marc; Kitay, Alison

    2012-09-01

    Carpal instability nondissociative (CIND) represents a spectrum of conditions characterized by kinematic dysfunction of the proximal carpal row, often associated with a clinical "clunk." CIND is manifested at the midcarpal and/or radiocarpal joints, and it is distinguished from carpal instability dissociative (CID) by the lack of disruption between bones within the same carpal row. There are four major subcategories of CIND: palmar, dorsal, combined, and adaptive. In palmar CIND, instability occurs across the entire proximal carpal row. When nonsurgical management fails, surgical options include arthroscopic thermal capsulorrhaphy, soft-tissue reconstruction, or limited radiocarpal or intercarpal fusions. In dorsal CIND, the capitate subluxates dorsally from its reduced resting position. Dorsal CIND usually responds to nonsurgical management; refractory cases respond to palmar ligament reefing and/or dorsal intercarpal capsulodesis. Combined CIND demonstrates signs of both palmar and dorsal CIND and can be treated with soft-tissue or bony procedures. In adaptive CIND, the volar carpal ligaments are slackened and are less capable of inducing the physiologic shift of the proximal carpal row from flexion into extension as the wrist ulnarly deviates. Treatment of choice is a corrective osteotomy to restore the normal volar tilt of the distal radius.

  6. Chromosomal instability in meningiomas.

    van Tilborg, Angela A G; Al Allak, Bushra; Velthuizen, Sandra C J M; de Vries, Annie; Kros, Johan M; Avezaat, Cees J J; de Klein, Annelies; Beverloo, H Berna; Zwarthoff, Ellen C

    2005-04-01

    Approximately 60% of sporadic meningiomas are caused by inactivation of the NF2 tumor suppressor gene on chromosome 22. No causative gene is known for the remaining 40%. Cytogenetic analysis shows that meningiomas caused by inactivation of the NF2 gene can be divided into tumors that show monosomy 22 as the sole abnormality and tumors with a more complex karyotype. Meningiomas not caused by the NF2 gene usually have a diploid karyotype. Here we report that, besides the clonal chromosomal aberrations, the chromosome numbers in many meningiomas varied from one metaphase spread to the other, a feature that is indicative of chromosomal instability. Unexpectedly and regardless of genotype, a subgroup of tumors was observed with an average number of 44.9 chromosomes and little variation in the number of chromosomes per metaphase spread. In addition, a second subgroup was recognized with a hyperdiploid number of chromosomes (average 48.5) and considerable variation in numbers per metaphase. However, this numerical instability resulted in a clonal karyotype with chromosomal gains and losses in addition to loss of chromosome 22 only in meningiomas caused by inactivation of the NF2 gene. In cultured cells of all tumor groups, bi- and multinucleated cells were seen, as well as anaphase bridges, residual chromatid strings, multiple spindle poles, and unseparated chromatids, suggesting defects in the mitotic apparatus or kinetochore. Thus, we conclude that even a benign and slow-growing tumor like a meningioma displays chromosomal instability.

  7. Absolute-Magnitude Distributions of Supernovae

    Richardson, Dean; Wright, John; Maddox, Larry

    2014-01-01

    The absolute-magnitude distributions of seven supernova types are presented. The data used here were primarily taken from the Asiago Supernova Catalogue, but were supplemented with additional data. We accounted for both foreground and host-galaxy extinction. A bootstrap method is used to correct the samples for Malmquist bias. Separately, we generate volume-limited samples, restricted to events within 100 Mpc. We find that the superluminous events (M_B -15) make up about 3%. The normal Ia distribution was the brightest with a mean absolute blue magnitude of -19.25. The IIP distribution was the dimmest at -16.75.

  8. Absolute Stability Limit for Relativistic Charged Spheres

    Giuliani, Alessandro

    2007-01-01

    We find an exact solution for the stability limit of relativistic charged spheres for the case of constant gravitational mass density and constant charge density. We argue that this provides an absolute stability limit for any relativistic charged sphere in which the gravitational mass density decreases with radius and the charge density increases with radius. We then provide a cruder absolute stability limit that applies to any charged sphere with a spherically symmetric mass and charge distribution. We give numerical results for all cases. In addition, we discuss the example of a neutral sphere surrounded by a thin, charged shell.

  9. Absolute Asymmetric Synthesis Using A Cocrystal Approach

    H.Koshima

    2007-01-01

    1 Results Absolute asymmetric synthesis by means of solid-state reaction of chiral crystals self-assembled from achiral molecules is an attractive and promising methodology for asymmetric synthesis because it is not necessary to employ any external chiral source like a chiral catalyst.In order to design reliably absolute asymmetric syntheses in the solid state,it is inevitable to prepare and predict the formation of chiral crystals from achiral compounds.We have prepared a number of chiral cocrystals co...

  10. Hall instability of solar flux tubes

    Pandey, B P

    2011-01-01

    The magnetic network which consists of vertical flux tubes located in intergranular lanes is dominated by Hall drift in the photosphere-lower chromosphere region ($\\lesssim 1\\,{Mm}$). In the internetwork regions, Hall drift dominates above $0.25\\,{Mm}$ in the photosphere and below $2.5\\,{Mm}$ in the chromosphere. Although Hall drift does not cause any dissipation in the ambient plasma, it can destabilise flux tubes and magnetic elements in the presence of an azimuthal shear flow, which destabilises whistler waves. The physical mechanism of this instability is quite simple: the shear flow twists the radial magnetic field and generates azimuthal field; torsional oscillations of the azimuthal field in turn generates the radial field completing a feedback loop. The maximum growth rate of the Hall instability is proportional to the absolute value of the shear gradient and is dependent on the ambient diffusivity. The diffusivity also determines the cut--off wavenumber which is narrower for the stronger fields. We a...

  11. Thin-film magnetoresistive absolute position detector

    Groenland, Johannes Petrus Jacobus

    1990-01-01

    The subject of this thesis is the investigation of a digital absolute posi- tion-detection system, which is based on a position-information carrier (i.e. a magnetic tape) with one single code track on the one hand, and an array of magnetoresistive sensors for the detection of the informatio

  12. Det demokratiske argument for absolut ytringsfrihed

    Lægaard, Sune

    2014-01-01

    Artiklen diskuterer den påstand, at absolut ytringsfrihed er en nødvendig forudsætning for demokratisk legitimitet med udgangspunkt i en rekonstruktion af et argument fremsat af Ronald Dworkin. Spørgsmålet er, hvorfor ytringsfrihed skulle være en forudsætning for demokratisk legitimitet, og hvorfor...

  13. New Techniques for Absolute Gravity Measurements.

    1983-01-07

    Hammond, J.A. (1978) Bollettino Di Geofisica Teorica ed Applicata Vol. XX. 8. Hammond, J. A., and Iliff, R. L. (1979) The AFGL absolute gravity system...International Gravimetric Bureau, No. L:I-43. 7. Hammond. J.A. (1978) Bollettino Di Geofisica Teorica ed Applicata Vol. XX. 8. Hammond, J.A., and

  14. Teaching Absolute Value Inequalities to Mature Students

    Sierpinska, Anna; Bobos, Georgeana; Pruncut, Andreea

    2011-01-01

    This paper gives an account of a teaching experiment on absolute value inequalities, whose aim was to identify characteristics of an approach that would realize the potential of the topic to develop theoretical thinking in students enrolled in prerequisite mathematics courses at a large, urban North American university. The potential is…

  15. Time Function and Absolute Black Hole

    Javadi, Hossein; Forouzbakhsh, Farshid

    2006-01-01

    Einstein’s theory of gravity is not consistent with quantum mechanics, because general relativity cannot be quantized. [1] But without conversion of force and energy, it is impossible to find a grand unified theory. A very important result of CPH theory is time function that allows we give a new ...... description of absolute black hole and before the big bang....

  16. Magnetoresistive sensor for absolute position detection

    Groenland, J.P.J.

    1984-01-01

    A digital measurement principle for absolute position is decscribed. The position data is recorded serially into a single track of a hard-magnetic layer with the help of longitudinal saturation recording. Detection is possible by means of an array of sensor elements which can be made of a substrate.

  17. Generalized Norms Inequalities for Absolute Value Operators

    Ilyas Ali

    2014-02-01

    Full Text Available In this article, we generalize some norms inequalities for sums, differences, and products of absolute value operators. Our results based on Minkowski type inequalities and generalized forms of the Cauchy-Schwarz inequality. Some other related inequalities are also discussed.

  18. Stimulus Probability Effects in Absolute Identification

    Kent, Christopher; Lamberts, Koen

    2016-01-01

    This study investigated the effect of stimulus presentation probability on accuracy and response times in an absolute identification task. Three schedules of presentation were used to investigate the interaction between presentation probability and stimulus position within the set. Data from individual participants indicated strong effects of…

  19. Absolute Radiation Thermometry in the NIR

    Bünger, L.; Taubert, R. D.; Gutschwager, B.; Anhalt, K.; Briaudeau, S.; Sadli, M.

    2017-04-01

    A near infrared (NIR) radiation thermometer (RT) for temperature measurements in the range from 773 K up to 1235 K was characterized and calibrated in terms of the "Mise en Pratique for the definition of the Kelvin" (MeP-K) by measuring its absolute spectral radiance responsivity. Using Planck's law of thermal radiation allows the direct measurement of the thermodynamic temperature independently of any ITS-90 fixed-point. To determine the absolute spectral radiance responsivity of the radiation thermometer in the NIR spectral region, an existing PTB monochromator-based calibration setup was upgraded with a supercontinuum laser system (0.45 μm to 2.4 μm) resulting in a significantly improved signal-to-noise ratio. The RT was characterized with respect to its nonlinearity, size-of-source effect, distance effect, and the consistency of its individual temperature measuring ranges. To further improve the calibration setup, a new tool for the aperture alignment and distance measurement was developed. Furthermore, the diffraction correction as well as the impedance correction of the current-to-voltage converter is considered. The calibration scheme and the corresponding uncertainty budget of the absolute spectral responsivity are presented. A relative standard uncertainty of 0.1 % (k=1) for the absolute spectral radiance responsivity was achieved. The absolute radiometric calibration was validated at four temperature values with respect to the ITS-90 via a variable temperature heatpipe blackbody (773 K ...1235 K) and at a gold fixed-point blackbody radiator (1337.33 K).

  20. Radiation Induced Genomic Instability

    Morgan, William F.

    2011-03-01

    Radiation induced genomic instability can be observed in the progeny of irradiated cells multiple generations after irradiation of parental cells. The phenotype is well established both in vivo (Morgan 2003) and in vitro (Morgan 2003), and may be critical in radiation carcinogenesis (Little 2000, Huang et al. 2003). Instability can be induced by both the deposition of energy in irradiated cells as well as by signals transmitted by irradiated (targeted) cells to non-irradiated (non-targeted) cells (Kadhim et al. 1992, Lorimore et al. 1998). Thus both targeted and non-targeted cells can pass on the legacy of radiation to their progeny. However the radiation induced events and cellular processes that respond to both targeted and non-targeted radiation effects that lead to the unstable phenotype remain elusive. The cell system we have used to study radiation induced genomic instability utilizes human hamster GM10115 cells. These cells have a single copy of human chromosome 4 in a background of hamster chromosomes. Instability is evaluated in the clonal progeny of irradiated cells and a clone is considered unstable if it contains three or more metaphase sub-populations involving unique rearrangements of the human chromosome (Marder and Morgan 1993). Many of these unstable clones have been maintained in culture for many years and have been extensively characterized. As initially described by Clutton et al., (Clutton et al. 1996) many of our unstable clones exhibit persistently elevated levels of reactive oxygen species (Limoli et al. 2003), which appear to be due dysfunctional mitochondria (Kim et al. 2006, Kim et al. 2006). Interestingly, but perhaps not surprisingly, our unstable clones do not demonstrate a “mutator phenotype” (Limoli et al. 1997), but they do continue to rearrange their genomes for many years. The limiting factor with this system is the target – the human chromosome. While some clones demonstrate amplification of this chromosome and thus lend

  1. Modulational instability of nematic phase

    T Mithun; K Porsezian

    2014-02-01

    We numerically observe the effect of homogeneous magnetic field on the modulationally stable case of polar phase in = 2 spinor Bose–Einstein condensates (BECs). Also we investigate the modulational instability of uniaxial and biaxial (BN) states of polar phase. Our observations show that the magnetic field triggers the modulational instability and demonstrate that irrespective of the magnetic field effect the uniaxial and biaxial nematic phases show modulational instability.

  2. Weibel instability with nonextensive distribution

    Qiu, Hui-Bin; Liu, Shi-Bing [Strong-field and Ultrafast Photonics Lab, Institute of Laser Engineering, Beijing University of Technology, Beijing 100124 (China)

    2013-10-15

    Weibel instability in plasma, where the ion distribution is isotropic and the electron component of the plasma possesses the anisotropic temperature distribution, is investigated based on the kinetic theory in context of nonextensive statistics mechanics. The instability growth rate is shown to be dependent on the nonextensive parameters of both electron and ion, and in the extensive limit, the result in Maxwellian distribution plasma is recovered. The instability growth rate is found to be enhanced as the nonextensive parameter of electron increases.

  3. Political Instability and Economic Growth

    Swagel, Phillip; Roubini, Nouriel; Ozler, Sule; Alesina, Alberto

    1992-01-01

    This paper investigates the relationship between political instability and per capita GDP growth in a sample of 113 countries for the period 1950-1982. We define ?political instability? as the propensity of a government collapse, and we estimate a model in which political instability and economic growth are jointly determined. The main result of this paper is that in countries and time periods with a high propensity of government collapse, growth is significantly lower than otherwise. This ef...

  4. Libration driven multipolar instabilities

    Cébron, David; Herreman, Wietze

    2014-01-01

    We consider rotating flows in non-axisymmetric enclosures that are driven by libration, i.e. by a small periodic modulation of the rotation rate. Thanks to its simplicity, this model is relevant to various contexts, from industrial containers (with small oscillations of the rotation rate) to fluid layers of terrestial planets (with length-of-day variations). Assuming a multipolar $n$-fold boundary deformation, we first obtain the two-dimensional basic flow. We then perform a short-wavelength local stability analysis of the basic flow, showing that an instability may occur in three dimensions. We christen it the Libration Driven Multipolar Instability (LDMI). The growth rates of the LDMI are computed by a Floquet analysis in a systematic way, and compared to analytical expressions obtained by perturbation methods. We then focus on the simplest geometry allowing the LDMI, a librating deformed cylinder. To take into account viscous and confinement effects, we perform a global stability analysis, which shows that...

  5. Instability of enclosed horizons

    Kay, Bernard S

    2013-01-01

    We study the classical massless scalar wave equation on the region of 1+1-dimensional Minkowski space between the two branches of the hyperbola $x^2-t^2=1$ with vanishing boundary conditions on it. We point out that there are initially finite-energy initially, say, right-going waves for which the stress-energy tensor becomes singular on the null-line $t+x=0$. We also construct the quantum theory of this system and show that, while there is a regular Hartle-Hawking-Israel-like state, there are coherent states built on this for which there is a similar singularity in the expectation value of the renormalized stress-energy tensor. We conjecture that in 1+3-dimensional situations with 'enclosed horizons' such as a (maximally extended) Schwarzschild black hole in equilibrium in a stationary box or the (maximally extended) Schwarzschild-AdS spacetime, there will be a similar singularity at the horizon and that would signal an instability when matter perturbations and/or gravity are switched on. Such an instability ...

  6. [Aspirin suppresses microsatellite instability].

    Wallinger, S; Dietmaier, W; Beyser, K; Bocker, T; Hofstädter, F; Fishel, R; Rüschoff, J

    1999-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) exhibit cancer preventive effects and have been shown to induce regression of adenomas in FAP patients. In order to elucidate the probable underlying mechanism, the effect of NSAIDs on mismatch repair related microsatellite instability was investigated. Six colorectal cancer cell lines all but one deficient for human mismatch repair (MMR) genes were examined for microsatellite instability (MSI) prior and after treatment with Aspirin or Sulindac. For rapid in vitro analysis of MSI a microcloning assay was developed by combining Laser microdissection and random (PEP-) PCR prior to specific MSI-PCR. Effects of NSAIDs on cell cycle and apoptosis were systematically investigated by using flow cytometry and cell-sorting. MSI frequency in cells deficient of MMR genes (hMSH2, hMLH1, hMSH6) was markedly reduced after long-term (> 10 weeks) NSAID treatment. This effect was reversible, time- and concentration dependent. However, in the hPMS2 deficient endometrial cancer cell line (HEC-1-A) the MSI phenotype kept unchanged. According to cell sorting, non-apoptotic cells were stable and apoptotic cells were unstable. These results suggest that aspirin/sulindac induces a genetic selection for microsatellite stability in a subset of MMR-deficient cells and may thus provide an effective prophylactic therapy for HNPCC related colorectal carcinomas.

  7. An absolute measure for a key currency

    Oya, Shunsuke; Aihara, Kazuyuki; Hirata, Yoshito

    It is generally considered that the US dollar and the euro are the key currencies in the world and in Europe, respectively. However, there is no absolute general measure for a key currency. Here, we investigate the 24-hour periodicity of foreign exchange markets using a recurrence plot, and define an absolute measure for a key currency based on the strength of the periodicity. Moreover, we analyze the time evolution of this measure. The results show that the credibility of the US dollar has not decreased significantly since the Lehman shock, when the Lehman Brothers bankrupted and influenced the economic markets, and has increased even relatively better than that of the euro and that of the Japanese yen.

  8. From Hubble's NGSL to Absolute Fluxes

    Heap, Sara R.; Lindler, Don

    2012-01-01

    Hubble's Next Generation Spectral Library (NGSL) consists of R-l000 spectra of 374 stars of assorted temperature, gravity, and metallicity. Each spectrum covers the wavelength range, 0.18-1.00 microns. The library can be viewed and/or downloaded from the website, http://archive.stsci.edu/prepds/stisngsll. Stars in the NGSL are now being used as absolute flux standards at ground-based observatories. However, the uncertainty in the absolute flux is about 2%, which does not meet the requirements of dark-energy surveys. We are therefore developing an observing procedure that should yield fluxes with uncertainties less than 1 % and will take part in an HST proposal to observe up to 15 stars using this new procedure.

  9. Asteroid absolute magnitudes and slope parameters

    Tedesco, Edward F.

    1991-01-01

    A new listing of absolute magnitudes (H) and slope parameters (G) has been created and published in the Minor Planet Circulars; this same listing will appear in the 1992 Ephemerides of Minor Planets. Unlike previous listings, the values of the current list were derived from fits of data at the V band. All observations were reduced in the same fashion using, where appropriate, a single basis default value of 0.15 for the slope parameter. Distances and phase angles were computed for each observation. The data for 113 asteroids was of sufficiently high quality to permit derivation of their H and G. These improved absolute magnitudes and slope parameters will be used to deduce the most reliable bias-corrected asteroid size-frequency distribution yet made.

  10. Learning in a unidimensional absolute identification task.

    Rouder, Jeffrey N; Morey, Richard D; Cowan, Nelson; Pfaltz, Monique

    2004-10-01

    We tested whether there is long-term learning in the absolute identification of line lengths. Line lengths are unidimensional stimuli, and there is a common belief that learning of these stimuli quickly reaches a low-level asymptote of about seven items and progresses no more. We show that this is not the case. Our participants served in a 1.5-h session each day for over a week. Although they did not achieve perfect performance, they continued to improve day by day throughout the week and eventually learned to distinguish between 12 and 20 line lengths. These results are in contrast to common characterizations of learning in absolute identification tasks with unidimensional stimuli. We suggest that this learning reflects improvement in short-term processing.

  11. Absolute and relative dosimetry for ELIMED

    Cirrone, G. A. P.; Schillaci, F.; Scuderi, V. [INFN, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania, Italy and Institute of Physics Czech Academy of Science, ELI-Beamlines project, Na Slovance 2, Prague (Czech Republic); Cuttone, G.; Candiano, G.; Musumarra, A.; Pisciotta, P.; Romano, F. [INFN, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Carpinelli, M. [INFN Sezione di Cagliari, c/o Dipartimento di Fisica, Università di Cagliari, Cagliari (Italy); Leonora, E.; Randazzo, N. [INFN-Sezione di Catania, Via Santa Sofia 64, Catania (Italy); Presti, D. Lo [INFN-Sezione di Catania, Via Santa Sofia 64, Catania, Italy and Università di Catania, Dipartimento di Fisica e Astronomia, Via S. Sofia 64, Catania (Italy); Raffaele, L. [INFN, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania, Italy and INFN-Sezione di Catania, Via Santa Sofia 64, Catania (Italy); Tramontana, A. [INFN, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania, Italy and Università di Catania, Dipartimento di Fisica e Astronomia, Via S. Sofia 64, Catania (Italy); Cirio, R.; Sacchi, R.; Monaco, V. [INFN, Sezione di Torino, Via P.Giuria, 1 10125 Torino, Italy and Università di Torino, Dipartimento di Fisica, Via P.Giuria, 1 10125 Torino (Italy); Marchetto, F.; Giordanengo, S. [INFN, Sezione di Torino, Via P.Giuria, 1 10125 Torino (Italy)

    2013-07-26

    The definition of detectors, methods and procedures for the absolute and relative dosimetry of laser-driven proton beams is a crucial step toward the clinical use of this new kind of beams. Hence, one of the ELIMED task, will be the definition of procedures aiming to obtain an absolute dose measure at the end of the transport beamline with an accuracy as close as possible to the one required for clinical applications (i.e. of the order of 5% or less). Relative dosimetry procedures must be established, as well: they are necessary in order to determine and verify the beam dose distributions and to monitor the beam fluence and the energetic spectra during irradiations. Radiochromic films, CR39, Faraday Cup, Secondary Emission Monitor (SEM) and transmission ionization chamber will be considered, designed and studied in order to perform a fully dosimetric characterization of the ELIMED proton beam.

  12. Absolute and relative dosimetry for ELIMED

    Cirrone, G. A. P.; Cuttone, G.; Candiano, G.; Carpinelli, M.; Leonora, E.; Lo Presti, D.; Musumarra, A.; Pisciotta, P.; Raffaele, L.; Randazzo, N.; Romano, F.; Schillaci, F.; Scuderi, V.; Tramontana, A.; Cirio, R.; Marchetto, F.; Sacchi, R.; Giordanengo, S.; Monaco, V.

    2013-07-01

    The definition of detectors, methods and procedures for the absolute and relative dosimetry of laser-driven proton beams is a crucial step toward the clinical use of this new kind of beams. Hence, one of the ELIMED task, will be the definition of procedures aiming to obtain an absolute dose measure at the end of the transport beamline with an accuracy as close as possible to the one required for clinical applications (i.e. of the order of 5% or less). Relative dosimetry procedures must be established, as well: they are necessary in order to determine and verify the beam dose distributions and to monitor the beam fluence and the energetic spectra during irradiations. Radiochromic films, CR39, Faraday Cup, Secondary Emission Monitor (SEM) and transmission ionization chamber will be considered, designed and studied in order to perform a fully dosimetric characterization of the ELIMED proton beam.

  13. Absolute calibration of TFTR helium proportional counters

    Strachan, J.D.; Diesso, M.; Jassby, D.; Johnson, L.; McCauley, S.; Munsat, T.; Roquemore, A.L. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Barnes, C.W. [Princeton Univ., NJ (United States). Plasma Physics Lab.]|[Los Alamos National Lab., NM (United States); Loughlin, M. [Princeton Univ., NJ (United States). Plasma Physics Lab.]|[JET Joint Undertaking, Abingdon (United Kingdom)

    1995-06-01

    The TFTR helium proportional counters are located in the central five (5) channels of the TFTR multichannel neutron collimator. These detectors were absolutely calibrated using a 14 MeV neutron generator positioned at the horizontal midplane of the TFTR vacuum vessel. The neutron generator position was scanned in centimeter steps to determine the collimator aperture width to 14 MeV neutrons and the absolute sensitivity of each channel. Neutron profiles were measured for TFTR plasmas with time resolution between 5 msec and 50 msec depending upon count rates. The He detectors were used to measure the burnup of 1 MeV tritons in deuterium plasmas, the transport of tritium in trace tritium experiments, and the residual tritium levels in plasmas following 50:50 DT experiments.

  14. Absolute vs. Relative Notion of Wealth Changes

    2009-01-01

    This paper discusses solutions derived from lottery experiments using two alternative assumptions: that people perceive wealth changes as absolute amounts of money; and that people consider wealth changes as a proportion of some reference value dependant on the context of the problem under consideration. The former assumption leads to the design of Prospect Theory, the latter - to a solution closely resembling the utility function hypothesized by Markowitz (1952B). This paper presents several...

  15. The absolute differential calculus (calculus of tensors)

    Levi-Civita, Tullio

    2013-01-01

    Written by a towering figure of twentieth-century mathematics, this classic examines the mathematical background necessary for a grasp of relativity theory. Tullio Levi-Civita provides a thorough treatment of the introductory theories that form the basis for discussions of fundamental quadratic forms and absolute differential calculus, and he further explores physical applications.Part one opens with considerations of functional determinants and matrices, advancing to systems of total differential equations, linear partial differential equations, algebraic foundations, and a geometrical intro

  16. Measurement of absolute gravity acceleration in Firenze

    de Angelis, M.; Greco, F.; Pistorio, A.; Poli, N.; Prevedelli, M.; Saccorotti, G.; Sorrentino, F.; Tino, G. M.

    2011-01-01

    This paper reports the results from the accurate measurement of the acceleration of gravity g taken at two separate premises in the Polo Scientifico of the University of Firenze (Italy). In these laboratories, two separate experiments aiming at measuring the Newtonian constant and testing the Newtonian law at short distances are in progress. Both experiments require an independent knowledge on the local value of g. The only available datum, pertaining to the italian zero-order gravity network, was taken more than 20 years ago at a distance of more than 60 km from the study site. Gravity measurements were conducted using an FG5 absolute gravimeter, and accompanied by seismic recordings for evaluating the noise condition at the site. The absolute accelerations of gravity at the two laboratories are (980 492 160.6 ± 4.0) μGal and (980 492 048.3 ± 3.0) μGal for the European Laboratory for Non-Linear Spectroscopy (LENS) and Dipartimento di Fisica e Astronomia, respectively. Other than for the two referenced experiments, the data here presented will serve as a benchmark for any future study requiring an accurate knowledge of the absolute value of the acceleration of gravity in the study region.

  17. Measurement of absolute gravity acceleration in Firenze

    M. de Angelis

    2011-01-01

    Full Text Available This paper reports the results from the accurate measurement of the acceleration of gravity g taken at two separate premises in the Polo Scientifico of the University of Firenze (Italy. In these laboratories, two separate experiments aiming at measuring the Newtonian constant and testing the Newtonian law at short distances are in progress. Both experiments require an independent knowledge on the local value of g. The only available datum, pertaining to the italian zero-order gravity network, was taken more than 20 years ago at a distance of more than 60 km from the study site. Gravity measurements were conducted using an FG5 absolute gravimeter, and accompanied by seismic recordings for evaluating the noise condition at the site. The absolute accelerations of gravity at the two laboratories are (980 492 160.6 ± 4.0 μGal and (980 492 048.3 ± 3.0 μGal for the European Laboratory for Non-Linear Spectroscopy (LENS and Dipartimento di Fisica e Astronomia, respectively. Other than for the two referenced experiments, the data here presented will serve as a benchmark for any future study requiring an accurate knowledge of the absolute value of the acceleration of gravity in the study region.

  18. Laplace-Fourier analysis and instabilities of a gainy slab

    Hågenvik, Hans Olaf

    2015-01-01

    The idealization of monochromatic plane waves leads to considerable simplifications in the analysis of electromagnetic systems. However, for active systems this idealization may be dangerous due to the presence of growing waves. Here we consider a gainy slab, and use a realistic incident beam, which is both causal and has finite width. This clarifies some apparent paradoxes arising from earlier analyses of this setup. In general it turns out to be necessary to involve complex frequencies $\\omega$ and/or complex transversal wavenumbers $k_x$. Simultaneously real $\\omega$ and $k_x$ cannot describe amplified waves in a slab which is infinite in the transversal direction. We also show that the only possibility to have an absolute instability for a finite width beam, is if a normally incident plane wave would experience an instability.

  19. Bony instability of the shoulder.

    Bushnell, Brandon D; Creighton, R Alexander; Herring, Marion M

    2008-09-01

    Instability of the shoulder is a common problem treated by many orthopaedists. Instability can result from baseline intrinsic ligamentous laxity or a traumatic event-often a dislocation that injures the stabilizing structures of the glenohumeral joint. Many cases involve soft-tissue injury only and can be treated successfully with repair of the labrum and ligamentous tissues. Both open and arthroscopic approaches have been well described, with recent studies of arthroscopic soft-tissue techniques reporting results equal to those of the more traditional open techniques. Over the last decade, attention has focused on the concept of instability of the shoulder mediated by bony pathology such as a large bony Bankart lesion or an engaging Hill-Sachs lesion. Recent literature has identified unrecognized large bony lesions as a primary cause of failure of arthroscopic reconstruction for instability, a major cause of recurrent instability, and a difficult diagnosis to make. Thus, although such bony lesions may be relatively rare compared with soft-tissue pathology, they constitute a critically important entity in the management of shoulder instability. Smaller bony lesions may be amenable to arthroscopic treatment, but larger lesions often require open surgery to prevent recurrent instability. This article reviews recent developments in the diagnosis and treatment of bony instability.

  20. Cinerama sickness and postural instability

    Bos, J.E.; Ledegang, W.D.; Lubeck, A.J.A.; Stins, J.F.

    2013-01-01

    Motion sickness symptoms and increased postural instability induced by motion pictures have been reported in a laboratory, but not in a real cinema. We, therefore, carried out an observational study recording sickness severity and postural instability in 19 subjects before, immediately and 45 min af

  1. Marital instability after midlife.

    Wu, Z; Penning, M J

    1997-09-01

    "Divorce in later life has been shown to produce dramatic declines in the economic, psychological, and physical well-being of marital partners. This study examines the prevalence and determinants of marital disruption after midlife using Becker's theory of marital instability. Using recent Canadian national data, the marital outcomes of women and men who were married as of age 40 are tracked across the remaining years of the marriage. Cox proportional hazard regression models indicate stabilizing effects of the duration of the marriage, the age at first marriage, the presence of young children, as well as of remarriage for middle-aged and older persons. Other significant risk factors include education, heterogamous marital status, premarital cohabitation, number of siblings, and region."

  2. Structural and Material Instability

    Cifuentes, Gustavo Cifuentes

    This work is a small contribution to the general problem of structural and material instability. In this work, the main subject is the analysis of cracking and failure of structural elements made from quasi-brittle materials like concrete. The analysis is made using the finite element method. Three...... use of interface elements) is used successfully to model cases where the path of the discontinuity is known in advance, as is the case of the analysis of pull-out of fibers embedded in a concrete matrix. This method is applied to the case of non-straight fibers and fibers with forces that have....... Numerical problems associated with the use of elements with embedded cracks based on the extended finite element method are presented in the next part of this work. And an alternative procedure is used in order to successfully remove these numerical problems. In the final part of this work, a computer...

  3. The bar instability revisited

    Chiodi, Filippo; Claudin, Philippe

    2012-01-01

    The river bar instability is revisited, using a hydrodynamical model based on Reynolds averaged Navier-Stokes equations. The results are contrasted with the standard analysis based on shallow water Saint-Venant equations. We first show that the stability of both transverse modes (ripples) and of small wavelength inclined modes (bars) predicted by the Saint-Venant approach are artefacts of this hydrodynamical approximation. When using a more reliable hydrodynamical model, the dispersion relation does not present any maximum of the growth rate when the sediment transport is assumed to be locally saturated. The analysis therefore reveals the fundamental importance of the relaxation of sediment transport towards equilibrium as it it is responsible for the stabilisation of small wavelength modes. This dynamical mechanism is characterised by the saturation number, defined as the ratio of the saturation length to the water depth Lsat/H. This dimensionless number controls the transition from ripples (transverse patte...

  4. Instability and Information

    Patzelt, Felix

    2015-01-01

    Many complex systems exhibit extreme events far more often than expected for a normal distribution. This work examines how self-similar bursts of activity across several orders of magnitude can emerge from first principles in systems that adapt to information. Surprising connections are found between two apparently unrelated research topics: hand-eye coordination in balancing tasks and speculative trading in financial markets. Seemingly paradoxically, locally minimising fluctuations can increase a dynamical system's sensitivity to unpredictable perturbations and thereby facilitate global catastrophes. This general principle is studied in several domain-specific models and in behavioural experiments. It explains many findings in both fields and resolves an apparent antinomy: the coexistence of stabilising control or market efficiency and perpetual instabilities resembling critical phenomena in physical systems.

  5. Gravitational Instabilities in Circumstellar Disks

    Kratter, Kaitlin M

    2016-01-01

    [Abridged] Star and planet formation are the complex outcomes of gravitational collapse and angular momentum transport mediated by protostellar and protoplanetary disks. In this review we focus on the role of gravitational instability in this process. We begin with a brief overview of the observational evidence for massive disks that might be subject to gravitational instability, and then highlight the diverse ways in which the instability manifests itself in protostellar and protoplanetary disks: the generation of spiral arms, small scale turbulence-like density fluctuations, and fragmentation of the disk itself. We present the analytic theory that describes the linear growth phase of the instability, supplemented with a survey of numerical simulations that aim to capture the non-linear evolution. We emphasize the role of thermodynamics and large scale infall in controlling the outcome of the instability. Despite apparent controversies in the literature, we show a remarkable level of agreement between analyt...

  6. Beam instability Workshop - plenary sessions

    NONE

    2001-07-01

    The purpose of this workshop was to provide a review of the mechanisms of limiting beam instabilities, their cures, including feedback, and beam measurement for synchrotron radiation light sources. 12 plenary sessions took place whose titles are: 1) challenging brilliance and lifetime issues with increasing currents; 2) limiting instabilities in multibunch; 3) experience from high currents in B factories; 4) longitudinal dynamics in high intensity/bunch; 5) Transverse instabilities for high intensity/bunch; 6) working group introduction from ESRF experience; 7) impedance modelling: simulations, minimization; 8) report on the broadband impedance measurements and modelling workshop; 9) feedback systems for synchrotron light sources; 10) beam instabilities diagnostics; 11) harmonic cavities: the pros and cons; and 12) experimental study of fast beam-ion instabilities at PLS. This document gathers the 12 articles that were presented during these sessions.

  7. Equilibrium Electro-osmotic Instability

    Rubinstein, Isaak

    2014-01-01

    Since its prediction fifteen years ago, electro-osmotic instability has been attributed to non-equilibrium electro-osmosis related to the extended space charge which develops at the limiting current in the course of concentration polarization at a charge-selective interface. This attribution had a double basis. Firstly, it has been recognized that equilibrium electro-osmosis cannot yield instability for a perfectly charge-selective solid. Secondly, it has been shown that non-equilibrium electro-osmosis can. First theoretical studies in which electro-osmotic instability was predicted and analyzed employed the assumption of perfect charge-selectivity for the sake of simplicity and so did the subsequent numerical studies of various time-dependent and nonlinear features of electro-osmotic instability. In this letter, we show that relaxing the assumption of perfect charge-selectivity (tantamount to fixing the electrochemical potential in the solid) allows for equilibrium electro-osmotic instability. Moreover, we s...

  8. Instability in Shocked Granular Gases

    Sirmas, Nick; Radulescu, Matei

    2013-01-01

    Shocks in granular media, such as vertically oscillated beds, have been shown to develop instabilities. Similar jet formation has been observed in explosively dispersed granular media. Our previous work addressed this instability by performing discrete-particle simulations of inelastic media undergoing shock compression. By allowing finite dissipation within the shock wave, instability manifests itself as distinctive high density non-uniformities and convective rolls within the shock structure. In the present study we have extended this work to investigate this instability at the continuum level. We modeled the Euler equations for granular gases with a modified cooling rate to include an impact velocity threshold necessary for inelastic collisions. Our results showed a fair agreement between the continuum and discrete-particle models. Discrepancies, such as higher frequency instabilities in our continuum results may be attributed to the absence of higher order effects.

  9. Instability in shocked granular gases

    Sirmas, Nick; Falle, Sam; Radulescu, Matei

    2014-05-01

    Shocks in granular media, such as vertically oscillated beds, have been shown to develop instabilities. Similar jet formation has been observed in explosively dispersed granular media. Our previous work addressed this instability by performing discrete-particle simulations of inelastic media undergoing shock compression. By allowing finite dissipation within the shock wave, instability manifests itself as distinctive high density non-uniformities and convective rolls within the shock structure. In the present study we have extended this work to investigate this instability at the continuum level. We modeled the Euler equations for granular gases with a modified cooling rate to include an impact velocity threshold necessary for inelastic collisions. Our results showed a fair agreement between the continuum and discrete-particle models. Discrepancies, such as higher frequency instabilities in our continuum results may be attributed to the absence of higher order effects.

  10. Gravitational Instabilities in Circumstellar Disks

    Kratter, Kaitlin; Lodato, Giuseppe

    2016-09-01

    Star and planet formation are the complex outcomes of gravitational collapse and angular momentum transport mediated by protostellar and protoplanetary disks. In this review, we focus on the role of gravitational instability in this process. We begin with a brief overview of the observational evidence for massive disks that might be subject to gravitational instability and then highlight the diverse ways in which the instability manifests itself in protostellar and protoplanetary disks: the generation of spiral arms, small-scale turbulence-like density fluctuations, and fragmentation of the disk itself. We present the analytic theory that describes the linear growth phase of the instability supplemented with a survey of numerical simulations that aim to capture the nonlinear evolution. We emphasize the role of thermodynamics and large-scale infall in controlling the outcome of the instability. Despite apparent controversies in the literature, we show a remarkable level of agreement between analytic predictions and numerical results. In the next part of our review, we focus on the astrophysical consequences of the instability. We show that the disks most likely to be gravitationally unstable are young and relatively massive compared with their host star, Md/M*≥0.1. They will develop quasi-stable spiral arms that process infall from the background cloud. Although instability is less likely at later times, once infall becomes less important, the manifestations of the instability are more varied. In this regime, the disk thermodynamics, often regulated by stellar irradiation, dictates the development and evolution of the instability. In some cases the instability may lead to fragmentation into bound companions. These companions are more likely to be brown dwarfs or stars than planetary mass objects. Finally, we highlight open questions related to the development of a turbulent cascade in thin disks and the role of mode-mode coupling in setting the maximum angular

  11. Achieving Climate Change Absolute Accuracy in Orbit

    Wielicki, Bruce A.; Young, D. F.; Mlynczak, M. G.; Thome, K. J; Leroy, S.; Corliss, J.; Anderson, J. G.; Ao, C. O.; Bantges, R.; Best, F.; Bowman, K.; Brindley, H.; Butler, J. J.; Collins, W.; Dykema, J. A.; Doelling, D. R.; Feldman, D. R.; Fox, N.; Huang, X.; Holz, R.; Huang, Y.; Jennings, D.; Jin, Z.; Johnson, D. G.; Jucks, K.; Kato, S.; Kratz, D. P.; Liu, X.; Lukashin, C.; Mannucci, A. J.; Phojanamongkolkij, N.; Roithmayr, C. M.; Sandford, S.; Taylor, P. C.; Xiong, X.

    2013-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission will provide a calibration laboratory in orbit for the purpose of accurately measuring and attributing climate change. CLARREO measurements establish new climate change benchmarks with high absolute radiometric accuracy and high statistical confidence across a wide range of essential climate variables. CLARREO's inherently high absolute accuracy will be verified and traceable on orbit to Système Internationale (SI) units. The benchmarks established by CLARREO will be critical for assessing changes in the Earth system and climate model predictive capabilities for decades into the future as society works to meet the challenge of optimizing strategies for mitigating and adapting to climate change. The CLARREO benchmarks are derived from measurements of the Earth's thermal infrared spectrum (5-50 micron), the spectrum of solar radiation reflected by the Earth and its atmosphere (320-2300 nm), and radio occultation refractivity from which accurate temperature profiles are derived. The mission has the ability to provide new spectral fingerprints of climate change, as well as to provide the first orbiting radiometer with accuracy sufficient to serve as the reference transfer standard for other space sensors, in essence serving as a "NIST [National Institute of Standards and Technology] in orbit." CLARREO will greatly improve the accuracy and relevance of a wide range of space-borne instruments for decadal climate change. Finally, CLARREO has developed new metrics and methods for determining the accuracy requirements of climate observations for a wide range of climate variables and uncertainty sources. These methods should be useful for improving our understanding of observing requirements for most climate change observations.

  12. ABSOLUT LOMO绝对创意

    婷婷(整理)

    2007-01-01

    ABSOLUT与创意素来有着不解之缘。由Andy Warhal的ABSOLUT WARHOL至今,已有超过400位不同领域的创意大师为ABSOLUT的当代艺术宝库贡献了自己的得意之作。ABSOLUT的创意仿佛永远不会枯竭,而一系列的作品也让惊喜从未落空。

  13. Absolute quantification of myocardial blood flow.

    Yoshinaga, Keiichiro; Manabe, Osamu; Tamaki, Nagara

    2016-07-21

    With the increasing availability of positron emission tomography (PET) myocardial perfusion imaging, the absolute quantification of myocardial blood flow (MBF) has become popular in clinical settings. Quantitative MBF provides an important additional diagnostic or prognostic information over conventional visual assessment. The success of MBF quantification using PET/computed tomography (CT) has increased the demand for this quantitative diagnostic approach to be more accessible. In this regard, MBF quantification approaches have been developed using several other diagnostic imaging modalities including single-photon emission computed tomography, CT, and cardiac magnetic resonance. This review will address the clinical aspects of PET MBF quantification and the new approaches to MBF quantification.

  14. Absolute calibration of the Auger fluorescence detectors

    Bauleo, P.; Brack, J.; Garrard, L.; Harton, J.; Knapik, R.; Meyhandan, R.; Rovero, A.C.; /Buenos Aires, IAFE; Tamashiro, A.; Warner, D.

    2005-07-01

    Absolute calibration of the Pierre Auger Observatory fluorescence detectors uses a light source at the telescope aperture. The technique accounts for the combined effects of all detector components in a single measurement. The calibrated 2.5 m diameter light source fills the aperture, providing uniform illumination to each pixel. The known flux from the light source and the response of the acquisition system give the required calibration for each pixel. In the lab, light source uniformity is studied using CCD images and the intensity is measured relative to NIST-calibrated photodiodes. Overall uncertainties are presently 12%, and are dominated by systematics.

  15. Development of an absolute neutron dosimeter

    Acevedo, C; Birstein, L; Loyola, H [Section de Desarrollos Innovativos, Comision Chilena de EnergIa Nuclear (CCHEN), Casilla 188-D, Santiago (Chile)], E-mail: lbirstei@cchen.cl

    2008-11-01

    An Absolute Neutron Dosimeter was developed to be used as a calibration standard for the Radiation Metrology Laboratory at CCHEN. The main component of the Dosimeter consists of a Proportional Counter of cylindrical shape, with Polyethylene walls and Ethylene gas in its interior. It includes a cage shaped arrangement of graphite bars that operates like the Proportional Counter cathode and a tungsten wire of 25 {mu}m in diameter {mu}m as the anode. Results of a Montecarlo modeling for the Dosimeter operation and results of tests and measurements performed with a radioactive source are presented.

  16. Musical Activity Tunes Up Absolute Pitch Ability

    Dohn, Anders; Garza-Villarreal, Eduardo A.; Ribe, Lars Riisgaard

    2014-01-01

    Absolute pitch (AP) is the ability to identify or produce pitches of musical tones without an external reference. Active AP (i.e., pitch production or pitch adjustment) and passive AP (i.e., pitch identification) are considered to not necessarily coincide, although no study has properly compared...... that APs generally undershoot when adjusting musical pitch, a tendency that decreases when musical activity increases. Finally, APs are less accurate when adjusting the pitch to black key targets than to white key targets. Hence, AP ability may be partly practice-dependent and we speculate that APs may...

  17. Abelianization of QCD plasma instabilities

    Arnold, Peter; Lenaghan, Jonathan

    2004-12-01

    QCD plasma instabilities appear to play an important role in the equilibration of quark-gluon plasmas in heavy-ion collisions in the theoretical limit of weak coupling (i.e. asymptotically high energy). It is important to understand what nonlinear physics eventually stops the exponential growth of unstable modes. It is already known that the initial growth of plasma instabilities in QCD closely parallels that in QED. However, once the unstable modes of the gauge fields grow large enough for non-Abelian interactions between them to become important, one might guess that the dynamics of QCD plasma instabilities and QED plasma instabilities become very different. In this paper, we give suggestive arguments that non-Abelian self-interactions between the unstable modes are ineffective at stopping instability growth, and that the growing non-Abelian gauge fields become approximately Abelian after a certain stage in their growth. This in turn suggests that understanding the development of QCD plasma instabilities in the nonlinear regime may have close parallels to similar processes in traditional plasma physics. We conjecture that the physics of collisionless plasma instabilities in SU(2) and SU(3) gauge theory becomes equivalent, respectively, to (i) traditional plasma physics, which is U(1) gauge theory, and (ii) plasma physics of U(1)×U(1) gauge theory.

  18. ABSOLUTE STABILITY OF GENERAL LURIE TYPE INDIRECT CONTROL SYSTEMS

    甘作新; 葛渭高; 赵素霞; 仵永先

    2001-01-01

    In this paper, by introducing a new concept of absolute stability for a certain argument, necessary and sufficient conditions for absolute stability of general Lurie indirect control systems are obtained, and some practical sufficient conditions are also given.

  19. Instability of ties in compression

    Buch-Hansen, Thomas Cornelius

    2013-01-01

    Masonry cavity walls are loaded by wind pressure and vertical load from upper floors. These loads results in bending moments and compression forces in the ties connecting the outer and the inner wall in a cavity wall. Large cavity walls are furthermore loaded by differential movements from...... exact instability solutions are complex to derive, not to mention the extra complexity introducing dimensional instability from the temperature gradients. Using an inverse variable substitution and comparing an exact theory with an analytical instability solution a method to design tie...

  20. Microsatellite instability in bladder cancer

    Gonzalez-Zulueta, M; Ruppert, J M; Tokino, K;

    1993-01-01

    Somatic instability at microsatellite repeats was detected in 6 of 200 transitional cell carcinomas of the bladder. Instabilities were apparent as changes in (GT)n repeat lengths on human chromosome 9 for four tumors and as alterations in a (CAG)n repeat in the androgen receptor gene on the X...... chromosome for three tumors. Single locus alterations were detected in three tumors, while three other tumors revealed changes in two or more loci. In one tumor we found microsatellite instability in all five loci analyzed on chromosome 9. The alterations detected were either minor 2-base pair changes...

  1. Absolute stereochemistry of altersolanol A and alterporriols.

    Kanamaru, Saki; Honma, Miho; Murakami, Takanori; Tsushima, Taro; Kudo, Shinji; Tanaka, Kazuaki; Nihei, Ken-Ichi; Nehira, Tatsuo; Hashimoto, Masaru

    2012-02-01

    The absolute stereochemistry of altersolanol A (1) was established by observing a positive exciton couplet in the circular dichroism (CD) spectrum of the C3,C4-O-bis(2-naphthoyl) derivative 10 and by chemical correlations with known compound 8. Before the discussion, the relative stereochemistry of 1 was confirmed by X-ray crystallographic analysis. The shielding effect at C7'-OMe group by C1-O-benzoylation established the relative stereochemical relationship between the C8-C8' axial bonding and the C1-C4/C1'-C4' polyol moieties of alterporriols E (3), an atropisomer of the C8-C8' dimer of 1. As 3 could be obtained by dimerization of 1 in vitro, the absolute configuration of its central chirality elements (C1-C4) must be identical to those of 1. Spectral comparison between the experimental and theoretical CD spectra supported the above conclusion. Axial stereochemistry of novel C4-O-deoxy dimeric derivatives, alterporriols F (4) and G (5), were also revealed by comparison of their CD spectra to those of 2 and 3.

  2. Absolute Electron Extraction Efficiency of Liquid Xenon

    Kamdin, Katayun; Mizrachi, Eli; Morad, James; Sorensen, Peter

    2016-03-01

    Dual phase liquid/gas xenon time projection chambers (TPCs) currently set the world's most sensitive limits on weakly interacting massive particles (WIMPs), a favored dark matter candidate. These detectors rely on extracting electrons from liquid xenon into gaseous xenon, where they produce proportional scintillation. The proportional scintillation from the extracted electrons serves to internally amplify the WIMP signal; even a single extracted electron is detectable. Credible dark matter searches can proceed with electron extraction efficiency (EEE) lower than 100%. However, electrons systematically left at the liquid/gas boundary are a concern. Possible effects include spontaneous single or multi-electron proportional scintillation signals in the gas, or charging of the liquid/gas interface or detector materials. Understanding EEE is consequently a serious concern for this class of rare event search detectors. Previous EEE measurements have mostly been relative, not absolute, assuming efficiency plateaus at 100%. I will present an absolute EEE measurement with a small liquid/gas xenon TPC test bed located at Lawrence Berkeley National Laboratory.

  3. Absolute Orientation Based on Distance Kernel Functions

    Yanbiao Sun

    2016-03-01

    Full Text Available The classical absolute orientation method is capable of transforming tie points (TPs from a local coordinate system to a global (geodetic coordinate system. The method is based only on a unique set of similarity transformation parameters estimated by minimizing the total difference between all ground control points (GCPs and the fitted points. Nevertheless, it often yields a transformation with poor accuracy, especially in large-scale study cases. To address this problem, this study proposes a novel absolute orientation method based on distance kernel functions, in which various sets of similarity transformation parameters instead of only one set are calculated. When estimating the similarity transformation parameters for TPs using the iterative solution of a non-linear least squares problem, we assigned larger weighting matrices for the GCPs for which the distances from the point are short. The weighting matrices can be evaluated using the distance kernel function as a function of the distances between the GCPs and the TPs. Furthermore, we used the exponential function and the Gaussian function to describe distance kernel functions in this study. To validate and verify the proposed method, six synthetic and two real datasets were tested. The accuracy was significantly improved by the proposed method when compared to the classical method, although a higher computational complexity is experienced.

  4. A Conceptual Approach to Absolute Value Equations and Inequalities

    Ellis, Mark W.; Bryson, Janet L.

    2011-01-01

    The absolute value learning objective in high school mathematics requires students to solve far more complex absolute value equations and inequalities. When absolute value problems become more complex, students often do not have sufficient conceptual understanding to make any sense of what is happening mathematically. The authors suggest that the…

  5. Invariant and Absolute Invariant Means of Double Sequences

    Abdullah Alotaibi

    2012-01-01

    Full Text Available We examine some properties of the invariant mean, define the concepts of strong σ-convergence and absolute σ-convergence for double sequences, and determine the associated sublinear functionals. We also define the absolute invariant mean through which the space of absolutely σ-convergent double sequences is characterized.

  6. Evaporative instabilities in climbing films

    Hosoi, A. E.; Bush, John W. M.

    2001-09-01

    We consider flow in a thin film generated by partially submerging an inclined rigid plate in a reservoir of ethanol or methanol water solution and wetting its surface. Evaporation leads to concentration and surface tension gradients that drive flow up the plate. An experimental study indicates that the climbing film is subject to two distinct instabilities. The first is a convective instability characterized by flattened convection rolls aligned in the direction of flow and accompanied by free-surface deformations; in the meniscus region, this instability gives rise to pronounced ridge structures aligned with the mean flow. The second instability, evident when the plate is nearly vertical, takes the form of transverse surface waves propagating up the plate.

  7. Intrinsic Instability of Coronal Streamers

    Chen, Y; Song, H Q; Shi, Q Q; Feng, S W; Xia, L D; 10.1088/0004-637X/691/2/1936

    2009-01-01

    Plasma blobs are observed to be weak density enhancements as radially stretched structures emerging from the cusps of quiescent coronal streamers. In this paper, it is suggested that the formation of blobs is a consequence of an intrinsic instability of coronal streamers occurring at a very localized region around the cusp. The evolutionary process of the instability, as revealed in our calculations, can be described as follows: (1) through the localized cusp region where the field is too weak to sustain the confinement, plasmas expand and stretch the closed field lines radially outward as a result of the freezing-in effect of plasma-magnetic field coupling; the expansion brings a strong velocity gradient into the slow wind regime providing the free energy necessary for the onset of a subsequent magnetohydrodynamic instability; (2) the instability manifests itself mainly as mixed streaming sausage-kink modes, the former results in pinches of elongated magnetic loops to provoke reconnections at one or many loc...

  8. Atlantoaxial instability in Down's syndrome

    J Gordon Millichap

    1987-01-01

    The radiographs and clinical evaluations of 90 children with Down’s syndrome were reassessed after an interval of 5 years in a study of atlantoaxial instability (AAI) at the Derbyshire Children’s Hospital and Infirmary, Derby, UK.

  9. Midcarpal instability: a radiological perspective

    Toms, Andoni Paul [Norfolk and Norwich University Hospital NHS Trust, Department of Radiology, Norwich, Norfolk (United Kingdom); Radiology Academy, Cotman Centre, Norwich, Norfolk (United Kingdom); Chojnowski, Adrian [Norfolk and Norwich University Hospital NHS Trust, Department of Orthopaedic Surgery, Norwich, Norfolk (United Kingdom); Cahir, John G. [Norfolk and Norwich University Hospital NHS Trust, Department of Radiology, Norwich, Norfolk (United Kingdom)

    2011-05-15

    Midcarpal instability (MCI) is the result of complex abnormal carpal motion at the midcarpal joint of the wrist. It is a form of non-dissociative carpal instability (CIND) and can be caused by various combinations of extrinsic ligament injuries that then result in one of several subtypes of MCI. The complex patterns of injury and the kinematics are further complicated by competing theories, terminology and classifications of MCI. Palmar, dorsal, ulna midcarpal instability, and capitolunate or chronic capitolunate instability are all descriptions of types of MCI with often overlapping features. Palmar midcarpal instability (PMCI) is the most commonly reported type of MCI. It has been described as resulting from deficiencies in the ulna limb of the palmar arcuate ligament (triquetrohamate-capitate) or the dorsal radiotriquetral ligaments, or both. Unstable carpal articulations can be treated with limited carpal arthrodesis or the ligamentous defects can be treated with capsulorrhaphy or ligament reconstruction. Conventional radiographic abnormalities are usually limited to volar intercalated segment instability (VISI) patterns of carpal alignment and are not specific. For many years stress view radiographs and videofluoroscopy have been the methods of choice for demonstrating carpal instability and abnormal carpal kinematics respectively. Dynamic US can be also used to demonstrate midcarpal dyskinesia including the characteristic triquetral ''catch-up'' clunk. Tears of the extrinsic ligaments can be demonstrated with MR arthrography, and probably with CT arthrography, but intact yet redundant ligaments are more difficult to identify. The exact role of these investigations in the diagnosis, categorisation and management of midcarpal instability has yet to be determined. (orig.)

  10. Material Instabilities in Particulate Systems

    Goddard, J. D.

    1999-01-01

    Following is a brief summary of a theoretical investigation of material (or constitutive) instability associated with shear induced particle migration in dense particulate suspensions or granular media. It is shown that one can obtain a fairly general linear-stability analysis, including the effects of shear-induced anisotropy in the base flow as well as Reynolds dilatancy. A criterion is presented here for simple shearing instability in the absence of inertia and dilatancy.

  11. Use of Absolute and Comparative Performance Feedback in Absolute and Comparative Judgments and Decisions

    Moore, Don A.; Klein, William M. P.

    2008-01-01

    Which matters more--beliefs about absolute ability or ability relative to others? This study set out to compare the effects of such beliefs on satisfaction with performance, self-evaluations, and bets on future performance. In Experiment 1, undergraduate participants were told they had answered 20% correct, 80% correct, or were not given their…

  12. Variance computations for functional of absolute risk estimates.

    Pfeiffer, R M; Petracci, E

    2011-07-01

    We present a simple influence function based approach to compute the variances of estimates of absolute risk and functions of absolute risk. We apply this approach to criteria that assess the impact of changes in the risk factor distribution on absolute risk for an individual and at the population level. As an illustration we use an absolute risk prediction model for breast cancer that includes modifiable risk factors in addition to standard breast cancer risk factors. Influence function based variance estimates for absolute risk and the criteria are compared to bootstrap variance estimates.

  13. Instability of enclosed horizons

    Kay, Bernard S.

    2015-03-01

    We point out that there are solutions to the scalar wave equation on dimensional Minkowski space with finite energy tails which, if they reflect off a uniformly accelerated mirror due to (say) Dirichlet boundary conditions on it, develop an infinite stress-energy tensor on the mirror's Rindler horizon. We also show that, in the presence of an image mirror in the opposite Rindler wedge, suitable compactly supported arbitrarily small initial data on a suitable initial surface will develop an arbitrarily large stress-energy scalar near where the two horizons cross. Also, while there is a regular Hartle-Hawking-Israel-like state for the quantum theory between these two mirrors, there are coherent states built on it for which there are similar singularities in the expectation value of the renormalized stress-energy tensor. We conjecture that in other situations with analogous enclosed horizons such as a (maximally extended) Schwarzschild black hole in equilibrium in a (stationary spherical) box or the (maximally extended) Schwarzschild-AdS spacetime, there will be similar stress-energy singularities and almost-singularities—leading to instability of the horizons when gravity is switched on and matter and gravity perturbations are allowed for. All this suggests it is incorrect to picture a black hole in equilibrium in a box or a Schwarzschild-AdS black hole as extending beyond the past and future horizons of a single Schwarzschild (/Schwarzschild-AdS) wedge. It would thus provide new evidence for 't Hooft's brick wall model while seeming to invalidate the picture in Maldacena's ` Eternal black holes in AdS'. It would thereby also support the validity of the author's matter-gravity entanglement hypothesis and of the paper ` Brick walls and AdS/CFT' by the author and Ortíz.

  14. Vector-Resonance-Multimode Instability

    Sergeyev, S. V.; Kbashi, H.; Tarasov, N.; Loiko, Yu.; Kolpakov, S. A.

    2017-01-01

    The modulation and multimode instabilities are the main mechanisms which drive spontaneous spatial and temporal pattern formation in a vast number of nonlinear systems ranging from biology to laser physics. Using an Er-doped fiber laser as a test bed, here for the first time we demonstrate both experimentally and theoretically a new type of a low-threshold vector-resonance-multimode instability which inherits features of multimode and modulation instabilities. The same as for the multimode instability, a large number of longitudinal modes can be excited without mode synchronization. To enable modulation instability, we modulate the state of polarization of the lasing signal with the period of the beat length by an adjustment of the in-cavity birefringence and the state of polarization of the pump wave. As a result, we show the regime's tunability from complex oscillatory to periodic with longitudinal mode synchronization in the case of resonance matching between the beat and cavity lengths. Apart from the interest in laser physics for unlocking the tunability and stability of dynamic regimes, the proposed mechanism of the vector-resonance-multimode instability can be of fundamental interest for the nonlinear dynamics of various distributed systems.

  15. How is an absolute democracy possible?

    Joanna Bednarek

    2011-01-01

    Full Text Available In the last part of the Empire trilogy, Commonwealth, Negri and Hardt ask about the possibility of the self-governance of the multitude. When answering, they argue that absolute democracy, understood as the political articulation of the multitude that does not entail its unification (construction of the people is possible. As Negri states, this way of thinking about political articulation is rooted in the tradition of democratic materialism and constitutes the alternative to the dominant current of modern political philosophy that identifies political power with sovereignty. The multitude organizes itself politically by means of the constitutive power, identical with the ontological creativity or productivity of the multitude. To state the problem of political organization means to state the problem of class composition: political democracy is at the same time economic democracy.

  16. Absolute geostrophic currents in global tropical oceans

    Yang, Lina; Yuan, Dongliang

    2016-11-01

    A set of absolute geostrophic current (AGC) data for the period January 2004 to December 2012 are calculated using the P-vector method based on monthly gridded Argo profiles in the world tropical oceans. The AGCs agree well with altimeter geostrophic currents, Ocean Surface Current Analysis-Real time currents, and moored current-meter measurements at 10-m depth, based on which the classical Sverdrup circulation theory is evaluated. Calculations have shown that errors of wind stress calculation, AGC transport, and depth ranges of vertical integration cannot explain non-Sverdrup transport, which is mainly in the subtropical western ocean basins and equatorial currents near the Equator in each ocean basin (except the North Indian Ocean, where the circulation is dominated by monsoons). The identified non-Sverdrup transport is thereby robust and attributed to the joint effect of baroclinicity and relief of the bottom (JEBAR) and mesoscale eddy nonlinearity.

  17. WHY DOES LEIBNIZ NEED ABSOLUTE TIME?

    NICOLÁS VAUGHAN C.

    2007-08-01

    Full Text Available Resumen: En este ensayo pongo en contraposición dos doctrinas conspicuamenteleibnicianas: la doctrina del tiempo relacional e ideal, y la doctrina de la armonía preestablecida. Argumentaré que si todas las substancias están necesariamentecoordinadas, entonces no tiene sentido negar el carácter absoluto y real del tiempo. En la primera sección describiré la concepción newtoniana y clarkeana del tiempo absoluto; en la segunda discutiré la crítica leibniciana a dicha concepción, crítica sobre la que se erige su doctrina relacional e ideal del tiempo; en la tercera sección daré un vistazo a la metafísica monádica madura de Leibniz, haciendo especial énfasis en la doctrina de la armonía preestablecida; finalmente, en la última sección sugeriré la existencia de una tensión irreconciliable entre estas dos doctrinas.Abstract: In this paper I bring together two characteristically Leibnizean doctrines:the doctrine of relational and ideal time, and the doctrine of preestablished harmony. I will argue that, if every substance is necessarily connected with another, then it makes no sense to deny absolute and real time. In the first section, I will describe Newton’s and Clarke’s conception of absolute time; then, in the second section, I will consider Leibniz’s critique of that conception, on which he bases his ideal and relational doctrine of time. In the third section I will look briefly at Leibniz’s mature monadic metaphysics, taking special account of his doctrine of preestablished harmony. In the last section, I will suggest that there is an irreconcilable tension between these two doctrines.

  18. Elliptic and magneto-elliptic instabilities

    Lyra Wladimir

    2013-04-01

    Full Text Available Vortices are the fundamental units of turbulent flow. Understanding their stability properties therefore provides fundamental insights on the nature of turbulence itself. In this contribution I briely review the phenomenological aspects of the instability of elliptic streamlines, in the hydro (elliptic instability and hydromagnetic (magneto-elliptic instability regimes. Vortex survival in disks is a balance between vortex destruction by these mechanisms, and vortex production by others, namely, the Rossby wave instability and the baroclinic instability.

  19. Experiments on the global instability of confined axisymmetric dense wakes.

    Li, Larry; Juniper, Matthew

    2007-11-01

    Recent theoretical studies [M. Juniper, J. Fluid Mech. 565, 171-195 (2006); M. Juniper and S. Candel, J. Fluid Mech. 482, 257-269 (2003)] predict that confinement increases the hydrodynamic instability of wakes by causing the transition from convective to absolute instability to occur at lower values of shear. Experimental evidence supporting this prediction is presented here for a confined, axisymmetric wake at density ratios, S ≡ ρ1 /ρ2> 1 (i.e. dense wake). The wake was produced by a pair of convergent nozzles mounted concentrically, one within the other, in a low-turbulence wind tunnel facility. Variations in S were achieved by employing two high density gases (S = 1.53 and 5.11) in the inner flow with air in the outer flow. For a fixed S, there existed a critical value of shear above which dominant peaks appeared abruptly in the near-wake velocity spectra, as quantified by hot-wire anemometry. Corresponding high-speed video sequences revealed large-scale, sinuous wake motions. Results on the confined wake's response to externally-applied, acoustic forcing are also presented. The presence of discrete spectral peaks and coordinated instability oscillations suggests the emergence of a self-sustained, global mode.

  20. PROFIT – THE ABSOLUTE EXPRESSION OF PROFITABILITY

    Daniela SIMTION

    2013-12-01

    Full Text Available Profitability of an economic unit is expressed through a system of indicators, because "no index or economic category can reflect the total, perfect, complex reality of economic phenomena or processes. Each expresses a side of concrete, essential details (indexes, but a full one (economic category. This system of indexes for profitability is characterized by a higher degree of consolidation, of reflection of the economic-financial results. They must be correlated to the other indexes of economic efficiency from the various subsystems that constitute the factors which determine the actual amount of profit and the rate of return. Each indicator has a certain form of expression according to the phenomena to which it refers. Thus, they can be expressed in relative sizes as medium sizes or indexes. They can also be expressed in physical, conventional or value units. The ability to develop monetary results can not be judged independently to the employed means for achieving them. Therefore, the profitability analysis is not limited to investigating its absolute indexes but also the relative ones, obtained by comparing the results to the means employed or consumed for developing the specific activity

  1. Gyrokinetic Statistical Absolute Equilibrium and Turbulence

    Jian-Zhou Zhu and Gregory W. Hammett

    2011-01-10

    A paradigm based on the absolute equilibrium of Galerkin-truncated inviscid systems to aid in understanding turbulence [T.-D. Lee, "On some statistical properties of hydrodynamical and magnetohydrodynamical fields," Q. Appl. Math. 10, 69 (1952)] is taken to study gyrokinetic plasma turbulence: A finite set of Fourier modes of the collisionless gyrokinetic equations are kept and the statistical equilibria are calculated; possible implications for plasma turbulence in various situations are discussed. For the case of two spatial and one velocity dimension, in the calculation with discretization also of velocity v with N grid points (where N + 1 quantities are conserved, corresponding to an energy invariant and N entropy-related invariants), the negative temperature states, corresponding to the condensation of the generalized energy into the lowest modes, are found. This indicates a generic feature of inverse energy cascade. Comparisons are made with some classical results, such as those of Charney-Hasegawa-Mima in the cold-ion limit. There is a universal shape for statistical equilibrium of gyrokinetics in three spatial and two velocity dimensions with just one conserved quantity. Possible physical relevance to turbulence, such as ITG zonal flows, and to a critical balance hypothesis are also discussed.

  2. Interfacial instabilities and Kapitsa pendula

    Krieger, Madison

    2015-11-01

    Determining the critera for onset and amplitude growth of instabilities is one of the central problems of fluid mechanics. We develop a parallel between the Kapitsa effect, in which a pendulum subject to high-frequency low-amplitude vibrations becomes stable in the inverted position, and interfaces separating fluids of different density. It has long been known that such interfaces can be stabilized by vibrations, even when the denser fluid is on top. We demonstrate that the stability diagram for these fluid interfaces is identical to the stability diagram for an appopriate Kapitsa pendulum. We expand the robust, ``dictionary''-type relationship between Kapitsa pendula and interfacial instabilities by considering the classical Rayleigh-Taylor, Kelvin-Helmholtz and Plateau instabilities, as well as less-canonical examples ranging in scale from the micron to the width of a galaxy.

  3. Evaporative Instability in Binary Mixtures

    Narayanan, Ranga; Uguz, Erdem

    2012-11-01

    In this talk we depict the physics of evaporative convection for binary systems in the presence of surface tension gradient effects. Two results are of importance. The first is that a binary system, in the absence of gravity, can generate an instability only when heated from the vapor side. This is to be contrasted with the case of a single component where instability can occur only when heated from the liquid side. The second result is that a binary system, in the presence of gravity, will generate an instability when heated from either the vapor or the liquid side provided the heating is strong enough. In addition to these results we show the conditions at which interfacial patterns can occur. Support from NSF OISE 0968313, Partner Univ. Fund and a Chateaubriand Fellowship is acknowledged.

  4. Laboratory blast wave driven instabilities

    Kuranz, Carolyn

    2008-11-01

    This presentation discusses experiments involving the evolution of hydrodynamic instabilities in the laboratory under high-energy-density (HED) conditions. These instabilities are driven by blast waves, which occur following a sudden, finite release of energy, and consist of a shock front followed by a rarefaction wave. When a blast wave crosses an interface with a decrease in density, hydrodynamic instabilities will develop. Instabilities evolving under HED conditions are relevant to astrophysics. These experiments include target materials scaled in density to the He/H layer in SN1987A. About 5 kJ of laser energy from the Omega Laser facility irradiates a 150 μm plastic layer that is followed by a low-density foam layer. A blast wave structure similar to those in supernovae is created in the plastic layer. The blast wave crosses an interface having a 2D or 3D sinusoidal structure that serves as a seed perturbation for hydrodynamic instabilities. This produces unstable growth dominated by the Rayleigh-Taylor (RT) instability in the nonlinear regime. We have detected the interface structure under these conditions using x-ray backlighting. Recent advances in our diagnostic techniques have greatly improved the resolution of our x-ray radiographic images. Under certain conditions, the improved images show some mass extending beyond the RT spike and penetrating further than previously observed or predicted by current simulations. The observed effect is potentially of great importance as a source of mass transport to places not anticipated by current theory and simulation. I will discuss the amount of mass in these spike extensions, the associated uncertainties, and hypotheses regarding their origin We also plan to show comparisons of experiments using single mode and multimode as well as 2D and 3D initial conditions. This work is sponsored by DOE/NNSA Research Grants DE-FG52-07NA28058 (Stewardship Sciences Academic Alliances) and DE-FG52-04NA00064 (National Laser User

  5. Telomere dysfunction and chromosome instability

    Murnane, John P., E-mail: jmurnane@radonc.ucsf.edu [Department of Radiation Oncology, University of California San Francisco, 2340 Sutter Street, San Francisco, CA 94143-1331 (United States)

    2012-02-01

    The ends of chromosomes are composed of a short repeat sequence and associated proteins that together form a cap, called a telomere, that keeps the ends from appearing as double-strand breaks (DSBs) and prevents chromosome fusion. The loss of telomeric repeat sequences or deficiencies in telomeric proteins can result in chromosome fusion and lead to chromosome instability. The similarity between chromosome rearrangements resulting from telomere loss and those found in cancer cells implicates telomere loss as an important mechanism for the chromosome instability contributing to human cancer. Telomere loss in cancer cells can occur through gradual shortening due to insufficient telomerase, the protein that maintains telomeres. However, cancer cells often have a high rate of spontaneous telomere loss despite the expression of telomerase, which has been proposed to result from a combination of oncogene-mediated replication stress and a deficiency in DSB repair in telomeric regions. Chromosome fusion in mammalian cells primarily involves nonhomologous end joining (NHEJ), which is the major form of DSB repair. Chromosome fusion initiates chromosome instability involving breakage-fusion-bridge (B/F/B) cycles, in which dicentric chromosomes form bridges and break as the cell attempts to divide, repeating the process in subsequent cell cycles. Fusion between sister chromatids results in large inverted repeats on the end of the chromosome, which amplify further following additional B/F/B cycles. B/F/B cycles continue until the chromosome acquires a new telomere, most often by translocation of the end of another chromosome. The instability is not confined to a chromosome that loses its telomere, because the instability is transferred to the chromosome donating a translocation. Moreover, the amplified regions are unstable and form extrachromosomal DNA that can reintegrate at new locations. Knowledge concerning the factors promoting telomere loss and its consequences is

  6. Absolute quantification of somatic DNA alterations in human cancer

    Carter, Scott L.; Cibulskis, Kristian; Helman, Elena; McKenna, Aaron; Shen, Hui; Zack, Travis; Laird, Peter W.; Onofrio, Robert C.; Winckler, Wendy; Weir, Barbara A; Beroukhim, Rameen; Pellman, David; Levine, Douglas A.; Lander, Eric S.; Meyerson, Matthew

    2012-01-01

    We developed a computational method (ABSOLUTE) that infers tumor purity and malignant cell ploidy directly from analysis of somatic DNA alterations. ABSOLUTE can detect subclonal heterogeneity, somatic homozygosity, and calculate statistical sensitivity to detect specific aberrations. We used ABSOLUTE to analyze ovarian cancer data and identified pervasive subclonal somatic point mutations. In contrast, mutations occurring in key tumor suppressor genes, TP53 and NF1 were predominantly clonal ...

  7. Absolute quantification of somatic DNA alterations in human cancer

    Carter, Scott L.; Cibulskis, Kristian; Helman, Elena; McKenna, Aaron; Shen, Hui; Zack, Travis; Laird, Peter W.; Onofrio, Robert C.; Winckler, Wendy; Weir, Barbara A; Beroukhim, Rameen; Pellman, David; Levine, Douglas A.; Lander, Eric S.; Meyerson, Matthew

    2015-01-01

    We developed a computational method (ABSOLUTE) that infers tumor purity and malignant cell ploidy directly from analysis of somatic DNA alterations. ABSOLUTE can detect subclonal heterogeneity, somatic homozygosity, and calculate statistical sensitivity to detect specific aberrations. We used ABSOLUTE to analyze ovarian cancer data and identified pervasive subclonal somatic point mutations. In contrast, mutations occurring in key tumor suppressor genes, TP53 and NF1 were predominantly clonal ...

  8. Positioning, alignment and absolute pointing of the ANTARES neutrino telescope

    Fehr, F [Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1 (Germany); Distefano, C, E-mail: fehr@physik.uni-erlangen.d [INFN Laboratori Nazional del Sud, Via S. Sofia 62, 95123 Catania (Italy)

    2010-01-01

    A precise detector alignment and absolute pointing is crucial for point-source searches. The ANTARES neutrino telescope utilises an array of hydrophones, tiltmeters and compasses for the relative positioning of the optical sensors. The absolute calibration is accomplished by long-baseline low-frequency triangulation of the acoustic reference devices in the deep-sea with a differential GPS system at the sea surface. The absolute pointing can be independently verified by detecting the shadow of the Moon in cosmic rays.

  9. Hydromagnetic Instabilities in Neutron Stars

    Lasky, Paul D; Kokkotas, Kostas D; Glampedakis, Kostas

    2011-01-01

    We model the non-linear ideal magnetohydrodynamics of poloidal magnetic fields in neutron stars in general relativity assuming a polytropic equation of state. We identify familiar hydromagnetic modes, in particular the 'sausage/varicose' mode and 'kink' instability inherent to poloidal magnetic fields. The evolution is dominated by the kink instability, which causes a cataclysmic reconfiguration of the magnetic field. The system subsequently evolves to new, non-axisymmetric, quasi-equilibrium end-states. The existence of this branch of stable quasi-equilibria may have consequences for magnetar physics, including flare generation mechanisms and interpretations of quasi-periodic oscillations.

  10. Mechanical Instabilities of Biological Tubes

    Hannezo, Edouard; Prost, Jacques; Joanny, Jean-François

    2012-07-01

    We study theoretically the morphologies of biological tubes affected by various pathologies. When epithelial cells grow, the negative tension produced by their division provokes a buckling instability. Several shapes are investigated: varicose, dilated, sinuous, or sausagelike. They are all found in pathologies of tracheal, renal tubes, or arteries. The final shape depends crucially on the mechanical parameters of the tissues: Young’s modulus, wall-to-lumen ratio, homeostatic pressure. We argue that since tissues must be in quasistatic mechanical equilibrium, abnormal shapes convey information as to what causes the pathology. We calculate a phase diagram of tubular instabilities which could be a helpful guide for investigating the underlying genetic regulation.

  11. Political instability and illegal immigration.

    Campos, J E; Lien, D

    1995-01-01

    "Economic theory suggests that transnational migration results from the push-pull effect of wage differentials between host and source countries. In this paper, we argue that political instability exacerbates the migration flow, with greater instability leading to relatively larger flows. We conclude then that an optimal solution to the illegal immigration problem requires proper coordination of immigration and foreign policies by the host country. A narrow preoccupation with tougher immigration laws is wasteful and may be marginally effective." Emphasis is on the United States as a host country.

  12. Stringy bounces and gradient instabilities

    Giovannini, Massimo

    2017-01-01

    Bouncing solutions are obtained from a generally covariant action characterized by a potential which is a nonlocal functional of the dilaton field at two separated space-time points. Gradient instabilities are shown to arise in this context but they are argued to be nongeneric. After performing a gauge-invariant and frame-invariant derivation of the evolution equations of the fluctuations, a heuristic criterium for the avoidance of pathological instabilities is proposed and corroborated by a number of explicit examples that turn out to be compatible with a quasi-flat spectrum of curvature inhomogeneities for typical wavelengths larger than the Hubble radius.

  13. Research on aviation fuel instability

    Baker, C. E.; Bittker, D. A.; Cohen, S. M.; Seng, G. T.

    1984-01-01

    The problems associated with aircraft fuel instability are discussed. What is currently known about the problem is reviewed and a research program to identify those areas where more research is needed is discussed. The term fuel instability generally refers to the gums, sediments, or deposits which can form as a result of a set of complex chemical reactions when a fuel is stored for a long period at ambient conditions or when the fuel is thermally stressed inside the fuel system of an aircraft.

  14. Undulation Instability of Epithelial Tissues

    Basan, Markus; Prost, Jacques; Risler, Thomas; 10.1103/PhysRevLett.106.158101

    2011-01-01

    Treating the epithelium as an incompressible fluid adjacent to a viscoelastic stroma, we find a novel hydrodynamic instability that leads to the formation of protrusions of the epithelium into the stroma. This instability is a candidate for epithelial fingering observed in vivo. It occurs for sufficiently large viscosity, cell-division rate and thickness of the dividing region in the epithelium. Our work provides physical insight into a potential mechanism by which interfaces between epithelia and stromas undulate, and potentially by which tissue dysplasia leads to cancerous invasion.

  15. The absolute disparity anomaly and the mechanism of relative disparities.

    Chopin, Adrien; Levi, Dennis; Knill, David; Bavelier, Daphne

    2016-06-01

    There has been a long-standing debate about the mechanisms underlying the perception of stereoscopic depth and the computation of the relative disparities that it relies on. Relative disparities between visual objects could be computed in two ways: (a) using the difference in the object's absolute disparities (Hypothesis 1) or (b) using relative disparities based on the differences in the monocular separations between objects (Hypothesis 2). To differentiate between these hypotheses, we measured stereoscopic discrimination thresholds for lines with different absolute and relative disparities. Participants were asked to judge the depth of two lines presented at the same distance from the fixation plane (absolute disparity) or the depth between two lines presented at different distances (relative disparity). We used a single stimulus method involving a unique memory component for both conditions, and no extraneous references were available. We also measured vergence noise using Nonius lines. Stereo thresholds were substantially worse for absolute disparities than for relative disparities, and the difference could not be explained by vergence noise. We attribute this difference to an absence of conscious readout of absolute disparities, termed the absolute disparity anomaly. We further show that the pattern of correlations between vergence noise and absolute and relative disparity acuities can be explained jointly by the existence of the absolute disparity anomaly and by the assumption that relative disparity information is computed from absolute disparities (Hypothesis 1).

  16. Secondary instabilities of linearly heated falling films

    HU Jun; SUN Dejun; HU Guohui; YIN Xieyuan

    2005-01-01

    Secondary instabilities of linearly heated failing films are studied through three steps. Firstly, the analysis of the primary linear instability on Miladinova's long wave equation of the linearly heated film is performed. Secondly, the similar Landau equation is derived through weak nonlinear theory, and a two-dimensional nonlinear saturation solution of primary instability is obtained within the weak nonlinear domain. Thirdly, the secondary (three-dimensional) instability of the two-dimensional wave is studied by the Floquet theorem.Our secondary instability analysis shows that the Marangoni number has destabilization effect on the secondary instability.

  17. A diode laser spectrometer at 634 nm and absolute frequency measurements using optical frequency comb

    Yi Lin; Yuan Jie; Qi Xiang-Hui; Chen Wen-Lan; Zhou Da-Wei; Zhou Tong; Zhou Xiao-Ji; Chen Xu-Zong

    2009-01-01

    This paper reports that two identical external-cavity-diode-laser(ECDL)based spectrometers are constructed at 634 nm referencing on the hyperfine B-X transition a(80)8-4 of 127I2.The lasers are stabilized on the Doppler-free absorption signals using the third-harmonic detection technique.The instability of the stabilized laser is measured to be 2.8×10-12(after 1000 s)by counting the beat note between the two lasers.The absolute optical frequency of the transition is,for the first time,determined to be 472851936189.5 kHz by using an optical frequency comb referenced on the microwave caesium atomic clock.The uncertainty of the measurement is less than 4.9 kHz.

  18. Analysis, Design and Testing of a Novel Quasi-Zero-Stiffness based Sensor System for Measurement of Absolute Vibration Motion

    Wang, Yu

    2015-01-01

    This study presents the analysis and design of a novel quasi-zero-stiffness (QZS) based vibration sensor system for measuring absolute displacement of vibrating platforms/objects. The sensor system is constructed by using positive and negative-stiffness springs, which makes it possible to achieve an equivalent QZS and consequently to create a broadband vibration-free point for absolute displacement measurement in vibrating platforms. Theoretic analysis is conducted for the analysis and design of the influence of structure parameters on system measurement performance. A prototype is designed which can avoid the drawback of instability in existing QZS systems with negative stiffness, and the corresponding data-processing software is developed to fulfill time domain and frequency domain measurements simultaneously. Both simulation and experiment results verify the effectiveness of this novel sensor system.

  19. Design of a quasi-zero-stiffness based sensor system for the measurement of absolute vibration displacement of moving platforms

    Jing, Xingjian; Wang, Yu; Li, Quankun; Sun, Xiuting

    2016-09-01

    This study presents the analysis and design of a novel sensor system for measuring the absolute vibration displacement of moving platforms based on the concept of quasi-zero-stiffness (QZS). The sensor system is constructed using positive- and negative-stiffness springs, which make it possible to achieve an equivalent QZS and consequently to create a broadband vibration-free point for absolute vibration displacement measurement in moving platforms. Theoretical analysis is conducted for the analysis and design of the influence of structure parameters on system measurement performance. A prototype is designed which can avoid the drawback of instability in existing QZS systems with negative stiffness, and corresponding data-processing software is developed to fulfill time domain measurements. Both the simulation and experimental results verify the effectiveness of this novel sensor system.

  20. Evaluation of the absolute regional temperature potential

    D. T. Shindell

    2012-09-01

    Full Text Available The Absolute Regional Temperature Potential (ARTP is one of the few climate metrics that provides estimates of impacts at a sub-global scale. The ARTP presented here gives the time-dependent temperature response in four latitude bands (90–28° S, 28° S–28° N, 28–60° N and 60–90° N as a function of emissions based on the forcing in those bands caused by the emissions. It is based on a large set of simulations performed with a single atmosphere-ocean climate model to derive regional forcing/response relationships. Here I evaluate the robustness of those relationships using the forcing/response portion of the ARTP to estimate regional temperature responses to the historic aerosol forcing in three independent climate models. These ARTP results are in good accord with the actual responses in those models. Nearly all ARTP estimates fall within ±20% of the actual responses, though there are some exceptions for 90–28° S and the Arctic, and in the latter the ARTP may vary with forcing agent. However, for the tropics and the Northern Hemisphere mid-latitudes in particular, the ±20% range appears to be roughly consistent with the 95% confidence interval. Land areas within these two bands respond 39–45% and 9–39% more than the latitude band as a whole. The ARTP, presented here in a slightly revised form, thus appears to provide a relatively robust estimate for the responses of large-scale latitude bands and land areas within those bands to inhomogeneous radiative forcing and thus potentially to emissions as well. Hence this metric could allow rapid evaluation of the effects of emissions policies at a finer scale than global metrics without requiring use of a full climate model.

  1. Absolute Radiometric Calibration of KOMPSAT-3A

    Ahn, H. Y.; Shin, D. Y.; Kim, J. S.; Seo, D. C.; Choi, C. U.

    2016-06-01

    This paper presents a vicarious radiometric calibration of the Korea Multi-Purpose Satellite-3A (KOMPSAT-3A) performed by the Korea Aerospace Research Institute (KARI) and the Pukyong National University Remote Sensing Group (PKNU RSG) in 2015.The primary stages of this study are summarized as follows: (1) A field campaign to determine radiometric calibrated target fields was undertaken in Mongolia and South Korea. Surface reflectance data obtained in the campaign were input to a radiative transfer code that predicted at-sensor radiance. Through this process, equations and parameters were derived for the KOMPSAT-3A sensor to enable the conversion of calibrated DN to physical units, such as at-sensor radiance or TOA reflectance. (2) To validate the absolute calibration coefficients for the KOMPSAT-3A sensor, we performed a radiometric validation with a comparison of KOMPSAT-3A and Landsat-8 TOA reflectance using one of the six PICS (Libya 4). Correlations between top-of-atmosphere (TOA) radiances and the spectral band responses of the KOMPSAT-3A sensors at the Zuunmod, Mongolia and Goheung, South Korea sites were significant for multispectral bands. The average difference in TOA reflectance between KOMPSAT-3A and Landsat-8 image over the Libya 4, Libya site in the red-green-blue (RGB) region was under 3%, whereas in the NIR band, the TOA reflectance of KOMPSAT-3A was lower than the that of Landsat-8 due to the difference in the band passes of two sensors. The KOMPSAT-3Aensor includes a band pass near 940 nm that can be strongly absorbed by water vapor and therefore displayed low reflectance. Toovercome this, we need to undertake a detailed analysis using rescale methods, such as the spectral bandwidth adjustment factor.

  2. The Nature of the Radiative Hydrodynamic Instabilities in Radiatively Supported Thomson Atmospheres

    Shaviv, N J

    2001-01-01

    Atmospheres having a significant radiative support are shown to be intrinsically unstable at luminosities above a critical fraction Gamma_crit ~ 0.5-0.85 of the Eddington limit, with the exact value depending on the boundary conditions. Two different types of absolute radiation-hydrodynamic instabilities of acoustic waves are found to take place even in the electron scattering dominated limit. Both instabilities grow over dynamical time scales and both operate on non radial modes. One is stationary and arises only after the effects of the boundary conditions are taken into account, while the second is a propagating wave and is insensitive to the boundary conditions. Although a significant wind can be generated by these instabilities even below the classical Eddington luminosity limit, quasi-stable configurations can exist beyond the Eddington limit due to the generally reduced effective opacity. The study is done using a rigorous numerical linear analysis of a gray plane parallel atmosphere under the Eddingto...

  3. GENETIC INSTABILITY IN CERVICAL CARCINOMA

    赵旻; 伍欣星; 邱小萍; 李晖; 戴天力; 谭云

    2002-01-01

    Objective: The role of human papillomavirus (HPV) in the development of cervical carcinoma has been clearly established but other factors could be involved in cervical tumorigenesis such as loss of heterozygosity (LOH) and microsatellite instability (MI). The aim of the present study was to investigate the genetic instability in cervical carcinoma tissues and provide evidence for discoveringnew tumor suppressor genes and screening diagnostic molecular marker of cervical carcinoma. Methods: Fifty primary cervical carcinoma samples from high-incidence area were analyzed by PCR for HPV16 infection, LOH and microsatellite instability. Results: HPV16 was detected in 88% of the cases. Sixty-six percent of total cases showed LOH with no more than 3 different loci per case. The highest frequency of the allelic loss was found in D18S474 (18q21, 40.5%). MI was detected in 4 cases (8%) only. Conclusion: Different percentages of LOH on specific chromosomal regions were found and MI was very infrequent in cervical carcinoma. The putative suppressor gene(s) could be located on specific chromosome regions such as 18q, and genetic instability could be involved in cervical tumorigenesis.

  4. Waves and instabilities in plasmas

    Chen Liu

    1987-01-01

    The topics covered in these notes are selective and tend to emphasize more on kinetic-theory approaches to waves and instabilities in both uniform and non-uniform plasmas, students are assumed to have some basic knowledge of plasma dynamics in terms of single-particle and fluid descriptions.

  5. Lending sociodynamics and economic instability

    Hawkins, Raymond J.

    2011-11-01

    We show how the dynamics of economic instability and financial crises articulated by Keynes in the General Theory and developed by Minsky as the Financial Instability Hypothesis can be formalized using Weidlich’s sociodynamics of opinion formation. The model addresses both the lending sentiment of a lender in isolation as well as the impact on that lending sentiment of the behavior of other lenders. The risk associated with lending is incorporated through a stochastic treatment of loan dynamics that treats prepayment and default as competing risks. With this model we are able to generate endogenously the rapid changes in lending opinion that attend slow changes in lending profitability and find these dynamics to be consistent with the rise and collapse of the non-Agency mortgage-backed securities market in 2007/2008. As the parameters of this model correspond to well-known phenomena in cognitive and social psychology, we can both explain why economic instability has proved robust to advances in risk measurement and suggest how policy for reducing economic instability might be formulated in an experimentally sound manner.

  6. The Chemistry of Beer Instability

    Stewart, Graham G.

    2004-01-01

    Brewing of beer, one of the oldest biotechnology industries was one of the earliest processes to be undertaken on commercial basis. Biological instability involves contamination of bacteria, yeast, or mycelia fungi and there is always a risk in brewing that beer can become contaminated by micro-organisms.

  7. Edge instabilities of topological superconductors

    Hofmann, Johannes S.; Assaad, Fakher F.; Schnyder, Andreas P.

    2016-05-01

    Nodal topological superconductors display zero-energy Majorana flat bands at generic edges. The flatness of these edge bands, which is protected by time-reversal and translation symmetry, gives rise to an extensive ground-state degeneracy. Therefore, even arbitrarily weak interactions lead to an instability of the flat-band edge states towards time-reversal and translation-symmetry-broken phases, which lift the ground-state degeneracy. We examine the instabilities of the flat-band edge states of dx y-wave superconductors by performing a mean-field analysis in the Majorana basis of the edge states. The leading instabilities are Majorana mass terms, which correspond to coherent superpositions of particle-particle and particle-hole channels in the fermionic language. We find that attractive interactions induce three different mass terms. One is a coherent superposition of imaginary s -wave pairing and current order, and another combines a charge-density-wave and finite-momentum singlet pairing. Repulsive interactions, on the other hand, lead to ferromagnetism together with spin-triplet pairing at the edge. Our quantum Monte Carlo simulations confirm these findings and demonstrate that these instabilities occur even in the presence of strong quantum fluctuations. We discuss the implications of our results for experiments on cuprate high-temperature superconductors.

  8. ABSOLUTE STABILITY OF GENERAL LURIE DISCRETE NONLINEAR CONTROL SYSTEMS

    GAN Zuoxin; HAN Jingqing; ZHAO Suxia; WU Yongxian

    2002-01-01

    In the present paper, the absolute stability of general Lurie discrete nonlinear control systems has been discussed by Lyapunov function approach. A sufficient condition of absolute stability for the general Lurie discrete nonlinear control systems is derived, and some necessary and sufficient conditions are obtained in special cases. Meanwhile, we give a simple example to illustrate the effectiveness of the results.

  9. On the Mean Absolute Error in Inverse Binomial Sampling

    Mendo, Luis

    2009-01-01

    A closed-form expression and an upper bound are obtained for the mean absolute error of the unbiased estimator of a probability in inverse binomial sampling. The results given permit the estimation of an arbitrary probability with a prescribed level of the normalized mean absolute error.

  10. A Global Forecast of Absolute Poverty and Employment.

    Hopkins, M. J. D.

    1980-01-01

    Estimates are made of absolute poverty and employment under the hypothesis that existing trends continue. Concludes that while the number of people in absolute poverty is not likely to decline by 2000, the proportion will fall. Jobs will have to grow 3.9% per year in developing countries to achieve full employment. (JOW)

  11. Absolute Humidity and the Seasonality of Influenza (Invited)

    Shaman, J. L.; Pitzer, V.; Viboud, C.; Grenfell, B.; Goldstein, E.; Lipsitch, M.

    2010-12-01

    Much of the observed wintertime increase of mortality in temperate regions is attributed to seasonal influenza. A recent re-analysis of laboratory experiments indicates that absolute humidity strongly modulates the airborne survival and transmission of the influenza virus. Here we show that the onset of increased wintertime influenza-related mortality in the United States is associated with anomalously low absolute humidity levels during the prior weeks. We then use an epidemiological model, in which observed absolute humidity conditions temper influenza transmission rates, to successfully simulate the seasonal cycle of observed influenza-related mortality. The model results indicate that direct modulation of influenza transmissibility by absolute humidity alone is sufficient to produce this observed seasonality. These findings provide epidemiological support for the hypothesis that absolute humidity drives seasonal variations of influenza transmission in temperate regions. In addition, we show that variations of the basic and effective reproductive numbers for influenza, caused by seasonal changes in absolute humidity, are consistent with the general timing of pandemic influenza outbreaks observed for 2009 A/H1N1 in temperate regions. Indeed, absolute humidity conditions correctly identify the region of the United States vulnerable to a third, wintertime wave of pandemic influenza. These findings suggest that the timing of pandemic influenza outbreaks is controlled by a combination of absolute humidity conditions, levels of susceptibility and changes in population mixing and contact rates.

  12. Novalis' Poetic Uncertainty: A "Bildung" with the Absolute

    Mika, Carl

    2016-01-01

    Novalis, the Early German Romantic poet and philosopher, had at the core of his work a mysterious depiction of the "absolute." The absolute is Novalis' name for a substance that defies precise knowledge yet calls for a tentative and sensitive speculation. How one asserts a truth, represents an object, and sets about encountering things…

  13. Determination of Absolute Zero Using a Computer-Based Laboratory

    Amrani, D.

    2007-01-01

    We present a simple computer-based laboratory experiment for evaluating absolute zero in degrees Celsius, which can be performed in college and undergraduate physical sciences laboratory courses. With a computer, absolute zero apparatus can help demonstrators or students to observe the relationship between temperature and pressure and use…

  14. Absolute instruments and perfect imaging in geometrical optics

    Tyc, Tomas; Sarbort, Martin; Bering, Klaus

    2011-01-01

    We investigate imaging by spherically symmetric absolute instruments that provide perfect imaging in the sense of geometrical optics. We derive a number of properties of such devices, present a general method for designing them and use this method to propose several new absolute instruments, in particular a lens providing a stigmatic image of an optically homogeneous region and having a moderate refractive index range.

  15. Observation of Parametric Instability in Advanced LIGO

    Evans, Matthew; Fritschel, Peter; Miller, John; Barsotti, Lisa; Martynov, Denis; Brooks, Aidan; Coyne, Dennis; Abbott, Rich; Adhikari, Rana; Arai, Koji; Bork, Rolf; Kells, Bill; Rollins, Jameson; Smith-Lefebvre, Nicolas; Vajente, Gabriele; Yamamoto, Hiroaki; Derosa, Ryan; Effler, Anamaria; Kokeyama, Keiko; Betzweiser, Joseph; Frolov, Valera; Mullavey, Adam; O`Reilly, Brian; Dwyer, Sheila; Izumi, Kiwamu; Kawabe, Keita; Landry, Michael; Sigg, Daniel; Ballmer, Stefan; Massinger, Thomas J; Staley, Alexa; Mueller, Chris; Grote, Hartmut; Ward, Robert; King, Eleanor; Blair, David; Ju, Li; Zhao, Chunnong

    2015-01-01

    Parametric instabilities have long been studied as a potentially limiting effect in high-power interferometric gravitational wave detectors. Until now, however, these instabilities have never been observed in a kilometer-scale interferometer. In this work we describe the first observation of parametric instability in an Advanced LIGO detector, and the means by which it has been removed as a barrier to progress.

  16. Analogy between thermal convective and magnetohydrodynamic instabilities

    Valdmanis, Ya.Ya.; Kukainis, O.A.

    1977-01-01

    An examination is made of the analogy between thermo-convective instability and instability produced by various electromagnetic forces both in steady and alternating thermal and electromagnetic fields. An example is given for calculating an assumed bubble instability which could occur in an alternating magnetic field. 17 references.

  17. Amplitude Equation for Instabilities Driven at Deformable Surfaces - Rosensweig Instability

    Pleiner, Harald; Bohlius, Stefan; Brand, Helmut R.

    2008-11-01

    The derivation of amplitude equations from basic hydro-, magneto-, or electrodynamic equations requires the knowledge of the set of adjoint linear eigenvectors. This poses a particular problem for the case of a free and deformable surface, where the adjoint boundary conditions are generally non-trivial. In addition, when the driving force acts on the system via the deformable surface, not only Fredholm's alternative in the bulk, but also the proper boundary conditions are required to get amplitude equations. This is explained and demonstrated for the normal field (or Rosensweig) instability in ferrofluids as well as in ferrogels. An important aspect of the problem is its intrinsic dynamic nature, although at the end the instability is stationary. The resulting amplitude equation contains cubic and quadratic nonlinearities as well as first and (in the gel case) second order time derivatives. Spatial variations of the amplitudes cannot be obtained by using simply Newell's method in the bulk.

  18. Tokamak resistive magnetohydrodynamic ballooning instability in the negative shear regime

    Shi Bing-Ren; Lin Jian-Long; Li Ji-Quan

    2007-01-01

    Improved confinement of tokamak plasma with central negative shear is checked against the resistive ballooning mode. In the negative shear regime, the plasma is always unstable for purely growing resistive ballooning mode. For a simplest tokamak equilibrium model, the s-α model, characteristics of this kind of instability are fully clarified by numerically solving the high n resistive magnetohydrodynamic ballooning eigen-equation. Dependences of the growth rate on the resistivity, the absolute shear value, the pressure gradient are scanned in detail. It is found that the growth rate is a monotonically increasing function of a while it is not sensitive to the changes of the shear s, the initial phase θ0 and the resistivity parameter εR.

  19. Competing structural instabilities in cubic perovskites

    Vanderbilt, D

    1994-01-01

    We study the antiferrodistortive instability and its interaction with ferroelectricity in cubic perovskite compounds. Our first-principles calculations show that coexistence of both instabilities is very common. We develop a first-principles scheme to study the thermodynamics of these compounds when both instabilities are present, and apply it to SrTiO$_3$. We find that increased pressure enhances the antiferrodistortive instability while suppressing the ferroelectric one. Moreover, the presence of one instability tends to suppress the other. A very rich $P$--$T$ phase diagram results.

  20. On dynamical (black hole) instabilities

    Coutant, Antonin; Parentani, Renaud

    2016-01-01

    Black hole dynamical instabilities have been mostly studied in specific models. To display their common features, we study the general properties of the complex frequency modes which are responsible for such instabilities. We show that they are square integrable, have a vanishing conserved norm, and appear in mode doublets or quartets. We also study how they appear in the spectrum and how their complex frequencies subsequently evolve when varying some external parameter. When working on an infinite domain, they appear from the reservoir of quasi-normal modes obeying outgoing boundary conditions. This is illustrated by generalizing, in a non-positive definite Krein space, a solvable model (Friedrichs model) which originally describes the appearance of a resonance when coupling an isolated system to a mode continuum. In a finite spatial domain instead, they arise from the fusion of two real frequency modes with opposite norms, through a process that closely resembles avoided crossing.

  1. Stretching Folding Instability and Nanoemulsions

    Chan, Chon U

    2009-01-01

    Here we show a folding-stretching instability in a microfluidic flow focusing device using silicon oil (100cSt) and water. The fluid dynamics video demonstrates an oscillating thread of oil focused by two co-flowing streams of water. We show several high-speed sequences of these oscillations with 30,000 frames/s. Once the thread is decelerated in a slower moving pool downstream an instability sets in and water-in-oil droplets are formed. We reveal the details of the pinch-off with 500,000 frames/s. The pinch-off is so repeatable that complex droplet patterns emerge. Some of droplets are below the resolution limit, thus smaller than 1 micrometer in diameter.

  2. Modern management of patellar instability.

    Rhee, Shin-Jae; Pavlou, George; Oakley, Jeremy; Barlow, David; Haddad, Farres

    2012-12-01

    Recurrent patellofemoral instability is a disabling condition, attributed to a variety of anatomical aetiologies. Trochlear dysplasia, patella alta, an increased tibial tubercle trochlear groove distance of greater than 20 mm and soft tissue abnormalities such as a torn medial patellofemoral ligament and inadequate vastus medialis obliquus are all factors to be considered. Management of this condition remains difficult and controversial and knowledge of the functional anatomy and biomechanics of the patellofemoral joint, a detailed history and clinical examination, and an accurate patient assessment are all imperative to formulate an appropriate management plan. Surgical treatment is based on the underlying anatomical pathology with an aim to restore normal patellofemoral kinematics. We summarise aspects of assessment, treatment and outcome of patellofemoral instability and propose an algorithm of treatment.

  3. Buckling instability of squeezed droplets

    Elfring, Gwynn J

    2015-01-01

    Motivated by recent experiments, we consider theoretically the compression of droplets pinned at the bottom on a surface of finite area. We show that if the droplet is sufficiently compressed at the top by a surface, it will always develop a shape instability at a critical compression. When the top surface is flat, the shape instability occurs precisely when the apparent contact angle of the droplet at the pinned surface is pi, regardless of the contact angle of the upper surface, reminiscent of past work on liquid bridges and sessile droplets as first observed by Plateau. After the critical compression, the droplet transitions from a symmetric to an asymmetric shape. The force required to deform the droplet peaks at the critical point then progressively decreases indicative of catastrophic buckling. We characterize the transition in droplet shape using illustrative examples in two dimensions followed by perturbative analysis as well as numerical simulation in three dimensions. When the upper surface is not f...

  4. Streaming Instabilities in Protoplanetary Disks

    Youdin, A N; Youdin, Andrew N.; Goodman, Jeremy

    2004-01-01

    Interpenetrating streams of solids and gas in a Keplerian disk produce a local, linear instability. The two components mutually interact via aerodynamic drag, which generates radial drift and triggers unstable modes. The secular instability does not require self-gravity, yet it generates growing particle density perturbations that could seed planetesimal formation. Growth rates are slower than dynamical, but faster than radial drift, timescales. Growth rates, like streaming velocities, are maximized for marginal coupling (stopping times comparable dynamical times). Fastest growth occurs when the solid to gas density ratio is order unity and feedback is strongest. Curiously, growth is strongly suppressed when the densities are too nearly equal. The relation between background drift and wave properties is explained by analogy with Howard's semicircle theorem. The three-dimensional, two-fluid equations describe a sixth order (in the complex frequency) dispersion relation. A terminal velocity approximation allows...

  5. Nonlinear evolution of drift instabilities

    Lee, W.W.; Krommes, J.A.; Oberman, C.R.; Smith, R.A.

    1984-01-01

    The nonlinear evolution of collisionless drift instabilities in a shear-free magnetic field has been studied by means of gyrokinetic particle simulation as well as numerical integration of model mode-coupling equations. The purpose of the investigation is to identify relevant nonlinear mechanisms responsible for the steady-state drift wave fluctuations. It is found that the saturation of the instability is mainly caused by the nonlinear E x B convection of the resonant electrons and their associated velocity space nonlinearity. The latter also induces energy exchange between the competing modes, which, in turn, gives rise to enhanced diffusion. The nonlinear E x B convection of the ions, which contributes to the nonlinear frequency shift, is also an important ingredient for the saturation.

  6. Circulation in blast driven instabilities

    Henry de Frahan, Marc; Johnsen, Eric

    2016-11-01

    Mixing in many natural phenomena (e.g. supernova collapse) and engineering applications (e.g. inertial confinement fusion) is often initiated through hydrodynamic instabilities. Explosions in these systems give rise to blast waves which can interact with perturbations at interfaces between different fluids. Blast waves are formed by a shock followed by a rarefaction. This wave profile leads to complex time histories of interface acceleration. In addition to the instabilities induced by the acceleration field, the rarefaction from the blast wave decompresses the material at the interface, further increasing the perturbation growth. After the passage of the wave, circulation circulation generated by the blast wave through baroclinic vorticity continues to act upon the interface. In this talk, we provide scaling laws for the circulation and amplitude growth induced by the blast wave. Numerical simulations of the multifluid Euler equations solved using a high-order accurate Discontinuous Galerkin method are used to validate the theoretical results.

  7. Instability of supersymmetric microstate geometries

    Eperon, Felicity C; Santos, Jorge E

    2016-01-01

    We investigate the classical stability of supersymmetric, asymptotically flat, microstate geometries with five non-compact dimensions. Such geometries admit an "evanescent ergosurface": a timelike hypersurface of infinite redshift. On such a surface, there are null geodesics with zero energy relative to infinity. These geodesics are stably trapped in the potential well near the ergosurface. We present a heuristic argument indicating that this feature is likely to lead to a nonlinear instability of these solutions. We argue that the precursor of such an instability can be seen in the behaviour of linear perturbations: nonlinear stability would require that all linear perturbations decay sufficiently rapidly but the stable trapping implies that some linear perturbation decay very slowly. We study this in detail for the most symmetric microstate geometries. By constructing quasinormal modes of these geometries we show that generic linear perturbations decay slower than any inverse power of time.

  8. Mechanical Instabilities of Biological Tubes

    Hannezo, Edouard; Prost, Jacques; 10.1103/PhysRevLett.109.018101

    2012-01-01

    We study theoretically the shapes of biological tubes affected by various pathologies. When epithelial cells grow at an uncontrolled rate, the negative tension produced by their division provokes a buckling instability. Several shapes are investigated : varicose, enlarged, sinusoidal or sausage-like, all of which are found in pathologies of tracheal, renal tubes or arteries. The final shape depends crucially on the mechanical parameters of the tissues : Young modulus, wall-to-lumen ratio, homeostatic pressure. We argue that since tissues must be in quasistatic mechanical equilibrium, abnormal shapes convey information as to what causes the pathology. We calculate a phase diagram of tubular instabilities which could be a helpful guide for investigating the underlying genetic regulation.

  9. Fluctuations and Instability in Sedimentation

    Guazzelli, Élisabeth

    2011-01-21

    This review concentrates on the fluctuations of the velocities of sedimenting spheres, and on the structural instability of a suspension of settling fibers. For many years, theoretical estimates and numerical simulations predicted the fluctuations of the velocities of spheres to increase with the size of the container, whereas experiments found no such variation. Two ideas have increased our understanding. First, the correlation length of the velocity fluctuations was found experimentally to be 20 interparticle separations. Second, in dilute suspensions, a vertical variation in the concentration due to the spreading of the front with the clear fluid can inhibit the velocity fluctuations. In a very dilute regime, a homogeneous suspension of fibers suffers a spontaneous instability in which fast descending fiber-rich columns are separated by rising fiber-sparse columns. In a semidilute regime, the settling is hindered, more so than for spheres. © 2011 by Annual Reviews. All rights reserved.

  10. Placing Marangoni instabilities under arrest

    Bhamla, M Saad

    2016-01-01

    Soap bubbles occupy the rare position of delighting and fascinating both young children and scientific minds alike. Sir Isaac Newton, Joseph Plateau, Carlo Marangoni, and Pierre-Gilles de Gennes, not to mention countless others, have discovered remarkable results in optics, molecular forces and fluid dynamics from investigating this seemingly simple system. We present here a compilation of curiosity-driven experiments that systematically investigate the surface flows on a rising soap bubble. From childhood experience, we are familiar with the vibrant colors and mesmerizing display of chaotic flows on the surface of a soap bubble. These flows arise due to surface tension gradients, also known as Marangoni flows or instabilities. In Figure 1, we show the surprising effect of layering multiple instabilities on top of each other, highlighting that unexpected new phenomena are still waiting to be discovered, even in the simple soap bubble.

  11. Effects of mass transfer on a resonance instability in the laminar boundary layer flow over a rotating-disk

    M Turkyilmazoglu

    2009-12-01

    Direct spatial resonance phenomenon occurring in the viscous incompressible boundary layer flow due to a rotating-disk is investigated in this paper based on the linear stability theory. The possible effects of suction and injection are explored on the direct spatial resonance instability mechanism detected earlier in the case of zero-suction. This instability leads to an algebraic growth of disturbances while the flow is yet in the laminar regime and this in turn, may initiate the non-linearity and transition, competing with the unboundedly growing time-amplified perturbations. In line with the physical intuition, results show that suction delays the onset of resonance instability by increasing the critical Reynolds number, whereas it is enhanced by the presence of injection. The critical parameter for direct spatial resonance instability always precedes the onset value for absolute instability mechanism, after a comparison with the previous work. Therefore, in the case of suction, the onset parameter is close to the transition value as determined from the earlier experimental observations. It is further examined the inviscid nature of both absolute as well as direct spatial resonance instabilities when suction or injection is applied through the disk, and is demonstrated that these instability mechanisms are not in any way an artifact of the parallel flow approximation assumed during the linearization of viscous incompressible stability equations.

  12. Interfacial instabilities in a stratified flow of two superposed fluids

    Schaflinger, Uwe

    1994-06-01

    Here we shall present a linear stability analysis of a laminar, stratified flow of two superposed fluids which are a clear liquid and a suspension of solid particles. The investigation is based upon the assumption that the concentration remains constant within the suspension layer. Even for moderate flow-rates the base-state results for a shear induced resuspension flow justify the latter assumption. The numerical solutions display the existence of two different branches that contribute to convective instability: long and short waves which coexist in a certain range of parameters. Also, a range exists where the flow is absolutely unstable. That means a convectively unstable resuspension flow can be only observed for Reynolds numbers larger than a lower, critical Reynolds number but still smaller than a second critical Reynolds number. For flow rates which give rise to a Reynolds number larger than the second critical Reynolds number, the flow is absolutely unstable. In some cases, however, there exists a third bound beyond that the flow is convectively unstable again. Experiments show the same phenomena: for small flow-rates short waves were usually observed but occasionally also the coexistence of short and long waves. These findings are qualitatively in good agreement with the linear stability analysis. Larger flow-rates in the range of the second critical Reynolds number yield strong interfacial waves with wave breaking and detached particles. In this range, the measured flow-parameters, like the resuspension height and the pressure drop are far beyond the theoretical results. Evidently, a further increase of the Reynolds number indicates the transition to a less wavy interface. Finally, the linear stability analysis also predicts interfacial waves in the case of relatively small suspension heights. These results are in accordance with measurements for ripple-type instabilities as they occur under laminar and viscous conditions for a mono-layer of particles.

  13. MD 751: Train Instability Threshold

    Carver, Lee Robert; Metral, Elias; Salvant, Benoit; Levens, Tom; Nisbet, David; Zobov, M; CERN. Geneva. ATS Department

    2016-01-01

    The purpose of this MD is to measure the octupole current thresholds for stability for a single bunch, and then make an immediate comparison (with the same operational settings) for a train of 72 bunches separated by 25ns. From theory, the expected thresholds should be similar. Any discrepancy between the two cases will be of great interest as it could indicate the presence of additional mechanisms that contribute to the instability threshold, for example electron cloud.

  14. Polygonal instabilities on interfacial vorticities

    Labousse, Matthieu

    2015-01-01

    We report the results of a theoretical investigation of the stability of a toroidal vortex bound by an interface. Two distinct instability mechanisms are identified that rely on, respectively, surface tension and fluid inertia, either of which may prompt the transformation from a circular to a polygonal torus. Our results are discussed in the context of three experiments, a toroidal vortex ring, the hydraulic jump, and the hydraulic bump.

  15. Instability of colliding metastable strings

    Hiramatsu, Takashi [Kyoto Univ. (Japan). Yukawa Inst. for Theoretical Physics; Eto, Minoru [Yamagata Univ. (Japan). Dept. of Physics; Kamada, Kohei [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kobayashi, Tatsuo [Kyoto Univ. (Japan). Dept. of Physics; Ookouchi, Yutaka [Kyoto Univ. (Japan). Dept. of Physics; Kyoto Univ. (Japan). The Hakubi Center for Advanced Research

    2013-04-15

    We investigate the collision dynamics of two metastable strings which can be viewed as tube-like domain walls with winding numbers interpolating a false vacuum and a true vacuum. We find that depending on the relative angle and speed of two strings, instability of strings increases and the false vacuum is filled out by rapid expansion of the strings or of a remnant of the collision.

  16. Microphysics of cosmic ray driven plasma instabilities

    Bykov, A M; Malkov, M A; Osipov, S M

    2013-01-01

    Energetic nonthermal particles (cosmic rays, CRs) are accelerated in supernova remnants, relativistic jets and other astrophysical objects. The CR energy density is typically comparable with that of the thermal components and magnetic fields. In this review we discuss mechanisms of magnetic field amplification due to instabilities induced by CRs. We derive CR kinetic and magnetohydrodynamic equations that govern cosmic plasma systems comprising the thermal background plasma, comic rays and fluctuating magnetic fields to study CR-driven instabilities. Both resonant and non-resonant instabilities are reviewed, including the Bell short-wavelength instability, and the firehose instability. Special attention is paid to the longwavelength instabilities driven by the CR current and pressure gradient. The helicity production by the CR current-driven instabilities is discussed in connection with the dynamo mechanisms of cosmic magnetic field amplification.

  17. Gravitational instabilities in astrophysical fluids

    Tohline, Joel E.

    1990-01-01

    Over the past decade, the significant advancements that have been made in the development of computational tools and numerical techniques have allowed astrophysicists to begin to model accurately the nonlinear growth of gravitational instabilities in a variety of physical systems. The fragmentation or rotationally driven fission of dynamically evolving, self-gravitating ``drops and bubbles'' is now routinely modeled in full three-dimensional generality as we attempt to understand the behavior of protostellar clouds, rotating stars, galaxies, and even the primordial soup that defined the birth of the universe. A brief review is presented here of the general insights that have been gained from studies of this type, followed by a somewhat more detailed description of work, currently underway, that is designed to explain the process of binary star formation. A short video animation sequence, developed in conjunction with some of the research being reviewed, illustrates the basic-nature of the fission instability in rotating stars and of an instability that can arise in a massive disk that forms in a protostellar cloud.

  18. An All Fiber White Light Interferometric Absolute Temperature Measurement System

    Jeonggon Harrison Kim

    2008-11-01

    Full Text Available Recently the author of this article proposed a new signal processing algorithm for an all fiber white light interferometer. In this article, an all fiber white light interferometric absolute temperature measurement system is presented using the previously proposed signal processing algorithm. Stability and absolute temperature measurement were demonstrated. These two tests demonstrated the feasibility of absolute temperature measurement with an accuracy of 0.015 fringe and 0.0005 fringe, respectively. A hysteresis test from 373K to 873K was also presented. Finally, robustness of the sensor system towards laser diode temperature drift, AFMZI temperature drift and PZT non-linearity was demonstrated.

  19. Secondary instability of laminar separation bubbles in the absence of external disturbances

    Rodriguez, Daniel; Gennaro, Elmer; Souza, Leandro

    2015-11-01

    Previous studies demonstrate that the primary instability of laminar separation bubbles (LSB) on a flat-plate in the absence of external forcing is a three-dimensional centrifugal one. This work develops a weakly non-linear expansion of the associated symmetry-breaking bifurcation, showing that it corresponds to a supercritical pitchfork bifurcation. The secondary instability of the fully 3D bifurcated LSB is then investigated by means of the temporal instability of 3D global modes, computed either as solutions of a 3D (Tri-global) eigenvalue problem, or based on a WKB approximation and the existence of local regions of absolute instability of the cross-stream planes. Both methodologies recover an amplified global oscillator, originated by the spanwise velocity gradients, that can explain the origin of the unsteadiness observed in numerical simulations of unforced LSBs with peak reversed flows below 15 % , as the results of a secondary instability of the 3D separation bubble. Supported by CAPES-Science without borders and FAPESP.

  20. Acoustic instability driven by cosmic-ray streaming

    Begelman, Mitchell C.; Zweibel, Ellen G.

    1994-01-01

    We study the linear stability of compressional waves in a medium through which cosmic rays stream at the Alfven speed due to strong coupling with Alfven waves. Acoustic waves can be driven unstable by the cosmic-ray drift, provided that the streaming speed is sufficiently large compared to the thermal sound speed. Two effects can cause instability: (1) the heating of the thermal gas due to the damping of Alfven waves driven unstable by cosmic-ray streaming; and (2) phase shifts in the cosmic-ray pressure perturbation caused by the combination of cosmic-ray streaming and diffusion. The instability does not depend on the magnitude of the background cosmic-ray pressure gradient, and occurs whether or not cosmic-ray diffusion is important relative to streaming. When the cosmic-ray pressure is small compared to the gas pressure, or cosmic-ray diffusion is strong, the instability manifests itself as a weak overstability of slow magnetosonic waves. Larger cosmic-ray pressure gives rise to new hybrid modes, which can be strongly unstable in the limits of both weak and strong cosmic-ray diffusion and in the presence of thermal conduction. Parts of our analysis parallel earlier work by McKenzie & Webb (which were brought to our attention after this paper was accepted for publication), but our treatment of diffusive effects, thermal conduction, and nonlinearities represent significant extensions. Although the linear growth rate of instability is independent of the background cosmic-ray pressure gradient, the onset of nonlinear eff ects does depend on absolute value of DEL (vector differential operator) P(sub c). At the onset of nonlinearity the fractional amplitude of cosmic-ray pressure perturbations is delta P(sub C)/P(sub C) approximately (kL) (exp -1) much less than 1, where k is the wavenumber and L is the pressure scale height of the unperturbed cosmic rays. We speculate that the instability may lead to a mode of cosmic-ray transport in which plateaus of uniform cosmic

  1. Changes in Absolute Sea Level Along U.S. Coasts

    U.S. Environmental Protection Agency — This map shows changes in absolute sea level from 1960 to 2016 based on satellite measurements. Data were adjusted by applying an inverted barometer (air pressure)...

  2. Monochromator-Based Absolute Calibration of Radiation Thermometers

    Keawprasert, T.; Anhalt, K.; Taubert, D. R.; Hartmann, J.

    2011-08-01

    A monochromator integrating-sphere-based spectral comparator facility has been developed to calibrate standard radiation thermometers in terms of the absolute spectral radiance responsivity, traceable to the PTB cryogenic radiometer. The absolute responsivity calibration has been improved using a 75 W xenon lamp with a reflective mirror and imaging optics to a relative standard uncertainty at the peak wavelength of approximately 0.17 % ( k = 1). Via a relative measurement of the out-of-band responsivity, the spectral responsivity of radiation thermometers can be fully characterized. To verify the calibration accuracy, the absolutely calibrated radiation thermometer is used to measure Au and Cu freezing-point temperatures and then to compare the obtained results with the values obtained by absolute methods, resulting in T - T 90 values of +52 mK and -50 mK for the gold and copper fixed points, respectively.

  3. Significance of absolute energy scale for physics at BESⅢ

    FU Cheng-Dong; MO Xiao-Hu

    2008-01-01

    The effects of absolute energy calibration on BESⅢ physics are discussed in detail,which mainly involve the effects on τ mass measurement,cross section scan measurement,and generic error determination in other measurements.

  4. DIAGNOSTIC TEST FOR GARCH MODELS BASED ON ABSOLUTE RESIDUAL AUTOCORRELATIONS

    Farhat Iqbal

    2013-10-01

    Full Text Available In this paper the asymptotic distribution of the absolute residual autocorrelations from generalized autoregressive conditional heteroscedastic (GARCH models is derived. The correct asymptotic standard errors for the absolute residual autocorrelations are also obtained and based on these results, a diagnostic test for checking the adequacy of GARCH-type models are developed. Our results do not depend on the existence of higher moments and is therefore robust under heavy-tailed distributions.

  5. Absolute Free Energies for Biomolecules in Implicit or Explicit Solvent

    Berryman, Joshua T.; Schilling, Tanja

    Methods for absolute free energy calculation by alchemical transformation of a quantitative model to an analytically tractable one are discussed. These absolute free energy methods are placed in the context of other methods, and an attempt is made to describe the best practice for such calculations given the current state of the art. Calculations of the equilibria between the four free energy basins of the dialanine molecule and the two right- and left-twisted basins of DNA are discussed as examples.

  6. Spectra of absolute instruments from the WKB approximation

    Tyc, Tomas

    2013-01-01

    We calculate frequency spectra of absolute optical instruments using the WKB approximation. The resulting eigenfrequencies approximate the actual values very accurately, in some cases they even give the exact values. Our calculations confirm results obtained previously by a completely different method. In particular, the eigenfrequencies of absolute instruments form tight groups that are almost equidistantly spaced. We demonstrate our method and its results on several examples.

  7. Global trends in relative and absolute wealth concentrations

    2014-01-01

    This paper compares changes in relative and absolute wealth concentrations to establish if both processes have followed similar trajectories. The findings indicate that while the level of relative wealth concentration has increased recently, it is not extraordinarily high in an historical perspective. On the contrary, the level of absolute wealth concentration is most likely higher than that previously occurred because of the increase in the wealth holdings and population size of high net wor...

  8. Modes of storage ring coherent instabilities

    Wang, J.M.

    1986-12-01

    Longitudinal impedance in a beam and various modes of longitudinal coherent instabilities are discussed. The coasting beam coherent instability, microwave instability, and single-bunch longitudinal coherent instabilities are considered. The Vlasov equation is formulated, and a method of solving it is developed. The synchrotron modes are treated, which take the possible bunch shape distortion fully into consideration. A method of treating the synchrotron mode coupling in the case of a small bunch is discussed which takes advantage of the fact that only a few of the synchrotron modes can contribute in such a case. The effect of many bunches on the coherent motion of the beam and the longitudinal symmetric coupled bunch modes are discussed. The transverse impedance is then introduced, and the transverse coasting beam instability is discussed. Various bunched beam instabilities are discussed, including both single bunch instabilities and coupled bunch instabilities. The Vlasov equation for transverse as well as longitudinal motion of particles is introduced as well as a method of solving it within a linear approximation. Head-tail modes and short bunch instabilities and strong coupling instabilities in the long bunch case are covered. (LEW)

  9. Method to obtain absolute impurity density profiles combining charge exchange and beam emission spectroscopy without absolute intensity calibrationa)

    Kappatou, A.; Jaspers, R. J. E.; Delabie, E.; Marchuk, O.; Biel, W.; Jakobs, M. A.

    2012-10-01

    Investigation of impurity transport properties in tokamak plasmas is essential and a diagnostic that can provide information on the impurity content is required. Combining charge exchange recombination spectroscopy (CXRS) and beam emission spectroscopy (BES), absolute radial profiles of impurity densities can be obtained from the CXRS and BES intensities, electron density and CXRS and BES emission rates, without requiring any absolute calibration of the spectra. The technique is demonstrated here with absolute impurity density radial profiles obtained in TEXTOR plasmas, using a high efficiency charge exchange spectrometer with high etendue, that measures the CXRS and BES spectra along the same lines-of-sight, offering an additional advantage for the determination of absolute impurity densities.

  10. Method to obtain absolute impurity density profiles combining charge exchange and beam emission spectroscopy without absolute intensity calibration

    Kappatou, A.; Delabie, E. [FOM Institute DIFFER - Dutch Institute for Fundamental Energy Research, Association EURATOM-FOM, 3430 BE Nieuwegein (Netherlands); Jaspers, R. J. E.; Jakobs, M. A. [Science and Technology of Nuclear Fusion, Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands); Marchuk, O.; Biel, W. [Institute for Energy and Climate Research, Forschungszentrum Julich GmbH, Trilateral Euregio Cluster, 52425 Julich (Germany)

    2012-10-15

    Investigation of impurity transport properties in tokamak plasmas is essential and a diagnostic that can provide information on the impurity content is required. Combining charge exchange recombination spectroscopy (CXRS) and beam emission spectroscopy (BES), absolute radial profiles of impurity densities can be obtained from the CXRS and BES intensities, electron density and CXRS and BES emission rates, without requiring any absolute calibration of the spectra. The technique is demonstrated here with absolute impurity density radial profiles obtained in TEXTOR plasmas, using a high efficiency charge exchange spectrometer with high etendue, that measures the CXRS and BES spectra along the same lines-of-sight, offering an additional advantage for the determination of absolute impurity densities.

  11. Compressor instability with integral methods

    Ng, Y.K. Eddie [Nanyang Technological Univ., Singapore (Singapore). School of Mechanical and Aerospace Engineering; Liu, Ningyu [Singapore National Univ. (Singapore). Dept. of Mechanical Engineering

    2007-07-01

    ''Compressor Instability with Integral Methods'' is a book, to bring together the quick integral approaches and advances in the field for the prediction of stall and surge problem in compressor. This book is useful for people involved in the flow analysis, design and testing of rotating machinery. For students, it can be used as a specialized topic of senior undergraduate or graduate study. The book can also be served as a self-study material to those who keen to acquire this knowledge. In brief, this book focuses on the numerical/computational analysis for the effect of distorted inlet flow propagation on the rotating stall and surge in axial compressors. It gains insight into the basic phenomena controlling these flow instabilities, and reveals the influence of inlet parameters on rotating stall and surge. The book starts from the confirmation and application of Kim et al's integral method and then follows by a development to this method through the proposing and applying a critical distortion line. This line is applied successfully on the stall prediction of in-flight compressor due to flaming of refueling leakage near inlet, a typical real and interesting example of compressor stall and surge operation. Further, after a parametric study on the integral method and the distorted flow field of compressor using Taguchi method, a novel integral method is formulated using more appropriate and practical airfoil characteristics, with a less assumptions needed for derivation. Finally, as an extended work, the famous Greitzer's instability flow model, the well-known B-parameter model applied for analyzing the stall and surge characteristics, is studied parametrically using Taguchi method. (orig.)

  12. Spatiotemporal chaos involving wave instability

    Berenstein, Igal; Carballido-Landeira, Jorge

    2017-01-01

    In this paper, we investigate pattern formation in a model of a reaction confined in a microemulsion, in a regime where both Turing and wave instability occur. In one-dimensional systems, the pattern corresponds to spatiotemporal intermittency where the behavior of the systems alternates in both time and space between stationary Turing patterns and traveling waves. In two-dimensional systems, the behavior initially may correspond to Turing patterns, which then turn into wave patterns. The resulting pattern also corresponds to a chaotic state, where the system alternates in both space and time between standing wave patterns and traveling waves, and the local dynamics may show vanishing amplitude of the variables.

  13. Nonlinear Instability of Liquid Layers.

    Newhouse, Lori Ann

    The nonlinear instability of two superposed viscous liquid layers in planar and axisymmetric configurations is investigated. In the planar configuration, the light layer fluid is bounded below by a wall and above by a heavy semiinfinite fluid. Gravity drives the instability. In the first axisymmetric configuration, the layer is confined between a cylindrical wall and a core of another fluid. In the second, a thread is suspended in an infinite fluid. Surface tension forces drive the instability in the axisymmetric configurations. The nonlinear evolution of the fluid-fluid interface is computed for layers of arbitrary thickness when their dynamics are fully coupled to those of the second fluid. Under the assumption of creeping flow, the flow field is represented by an interfacial distribution of Green's functions. A Fredholm integral equation of the second kind for the strength of the distribution is derived and then solved using an iterative technique. The Green's functions produce flow fields which are periodic in the direction parallel to the wall and have zero velocity on the wall. For small and moderate surface tension, planar layers evolve into a periodic array of viscous plumes which penetrate into the overlying fluid. The morphology of the plumes depends on the surface tension and the ratio of the fluid viscosities. As the viscosity of the layer increases, the plumes change from a well defined drop on top of a narrow stem to a compact column of rising fluid. The capillary instability of cylindrical interfaces and interfaces in which the core thickness varies in the axial direction are investigated. In both the unbounded and wall bounded configurations, the core evolves into a periodic array of elongated fluid drops connected by thin, almost cylindrical fluid links. The characteristics of the drop-link structure depend on the core thickness, the ratio of the core radius to the wall radius, and the ratio of the fluid viscosities. The factors controlling the

  14. Bathtub vortex induced by instability

    Mizushima, Jiro; Abe, Kazuki; Yokoyama, Naoto

    2014-10-01

    The driving mechanism and the swirl direction of the bathtub vortex are investigated by the linear stability analysis of the no-vortex flow as well as numerical simulations. We find that only systems having plane symmetries with respect to vertical planes deserve research for the swirl direction. The bathtub vortex appearing in a vessel with a rectangular cross section having a drain hole at the center of the bottom is proved to be induced by instability when the flow rate exceeds a threshold. The Coriolis force is capable of determining the swirl direction to be cyclonic.

  15. Transverse Instabilities in the Fermilab Recycler

    Prost, L.R.; Burov, A.; Shemyakin, A.; Bhat, C.M.; Crisp, J.; Eddy, N.; /Fermilab

    2011-07-01

    Transverse instabilities of the antiproton beam have been observed in the Recycler ring soon after its commissioning. After installation of transverse dampers, the threshold for the instability limit increased significantly but the instability is still found to limit the brightness of the antiprotons extracted from the Recycler for Tevatron shots. In this paper, we describe observations of the instabilities during the extraction process as well as during dedicated studies. The measured instability threshold phase density agrees with the prediction of the rigid beam model within a factor of 2. Also, we conclude that the instability threshold can be significantly lowered for a bunch contained in a narrow and shallow potential well due to effective exclusion of the longitudinal tails from Landau damping.

  16. Optimal excitation of two dimensional Holmboe instabilities

    Constantinou, Navid C

    2010-01-01

    Highly stratified shear layers are rendered unstable even at high stratifications by Holmboe instabilities when the density stratification is concentrated in a small region of the shear layer. These instabilities may cause mixing in highly stratified environments. However these instabilities occur in tongues for a limited range of parameters. We perform Generalized Stability analysis of the two dimensional perturbation dynamics of an inviscid Boussinesq stratified shear layer and show that Holmboe instabilities at high Richardson numbers can be excited by their adjoints at amplitudes that are orders of magnitude larger than by introducing initially the unstable mode itself. We also determine the optimal growth that obtains for parameters for which there is no instability. We find that there is potential for large transient growth regardless of whether the background flow is exponentially stable or not and that the characteristic structure of the Holmboe instability asymptotically emerges for parameter values ...

  17. Mode-locking via dissipative Faraday instability

    Tarasov, Nikita; Perego, Auro M.; Churkin, Dmitry V.; Staliunas, Kestutis; Turitsyn, Sergei K.

    2016-08-01

    Emergence of coherent structures and patterns at the nonlinear stage of modulation instability of a uniform state is an inherent feature of many biological, physical and engineering systems. There are several well-studied classical modulation instabilities, such as Benjamin-Feir, Turing and Faraday instability, which play a critical role in the self-organization of energy and matter in non-equilibrium physical, chemical and biological systems. Here we experimentally demonstrate the dissipative Faraday instability induced by spatially periodic zig-zag modulation of a dissipative parameter of the system--spectrally dependent losses--achieving generation of temporal patterns and high-harmonic mode-locking in a fibre laser. We demonstrate features of this instability that distinguish it from both the Benjamin-Feir and the purely dispersive Faraday instability. Our results open the possibilities for new designs of mode-locked lasers and can be extended to other fields of physics and engineering.

  18. Mode-locking via dissipative Faraday instability.

    Tarasov, Nikita; Perego, Auro M; Churkin, Dmitry V; Staliunas, Kestutis; Turitsyn, Sergei K

    2016-08-09

    Emergence of coherent structures and patterns at the nonlinear stage of modulation instability of a uniform state is an inherent feature of many biological, physical and engineering systems. There are several well-studied classical modulation instabilities, such as Benjamin-Feir, Turing and Faraday instability, which play a critical role in the self-organization of energy and matter in non-equilibrium physical, chemical and biological systems. Here we experimentally demonstrate the dissipative Faraday instability induced by spatially periodic zig-zag modulation of a dissipative parameter of the system-spectrally dependent losses-achieving generation of temporal patterns and high-harmonic mode-locking in a fibre laser. We demonstrate features of this instability that distinguish it from both the Benjamin-Feir and the purely dispersive Faraday instability. Our results open the possibilities for new designs of mode-locked lasers and can be extended to other fields of physics and engineering.

  19. Fishbone Instability Excited by Barely Trapped Electrons

    WANG Zhong-Tian; LONG Yong-Xing; DONG Jia-Qi; WANG Long; Fulvio Zonca

    2006-01-01

    Fishbone instability excited by barely trapped suprathermal electrons (BTSEs) in tokamaks is investigated theoretically. The frequency of the mode is found to close to procession frequency of BTSEs. The growth rate of the mode is much smaller than that of the ideal magnetohytrodynamic (MHD) internal kink mode that is in contrast to the case of trapped ion driven fishbone instability. The analyses also show that spatial density gradient reversal is necessary for the instability. The correlation of the results with experiments is discussed.

  20. Electron proton instability in the CSNS ring

    WANG Na; QIN Qing; LIU Yu-Dong

    2009-01-01

    The electron proton(e-p)instability has been observed in many proton accelerators.It will induce transverse beam size blow-up,cause beam loss and restrict the machine performance.Much research work has been done on the causes,dynamics and cures of this instability.A simulation code is developed to study the e-p instability in the ring of the China Spallation Neutron Source(CSNS).

  1. Beam Instabilities in the Scale Free Regime

    Folli, Viola; Conti, Claudio; 10.1103/PhysRevLett.108.033901

    2012-01-01

    The instabilities arising in a one-dimensional beam sustained by the diffusive photorefractive nonlinearity in out-of-equilibrium ferroelectrics are theoretically and numerically investigated. In the "scale-free model", in striking contrast with the well-known spatial modulational instability, two different beam instabilities dominate: a defocusing and a fragmenting process. Both are independent of the beam power and are not associated to any specific periodic pattern.

  2. Instabilities and transition in boundary layers

    N Vinod; Rama Govindarajan

    2005-03-01

    Some recent developments in boundary layer instabilities and transition are reviewed. Background disturbance levels determine the instability mechanism that ultimately leads to turbulence. At low noise levels, the traditional Tollmien–Schlichting route is followed, while at high levels, a `by-pass' route is more likely. Our recent work shows that spot birth is related to the pattern of secondary instability in either route.

  3. [Cervical spine instability in the surgical patient].

    Barbeito, A; Guerri-Guttenberg, R A

    2014-03-01

    Many congenital and acquired diseases, including trauma, may result in cervical spine instability. Given that airway management is closely related to the movement of the cervical spine, it is important that the anesthesiologist has detailed knowledge of the anatomy, the mechanisms of cervical spine instability, and of the effects that the different airway maneuvers have on the cervical spine. We first review the normal anatomy and biomechanics of the cervical spine in the context of airway management and the concept of cervical spine instability. In the second part, we review the protocols for the management of cervical spine instability in trauma victims and some of the airway management options for these patients.

  4. Systems and methods for controlling flame instability

    Cha, Min Suk

    2016-07-21

    A system (62) for controlling flame instability comprising: a nozzle (66) coupled to a fuel supply line (70), an insulation housing (74) coupled to the nozzle, a combustor (78) coupled to the nozzle via the insulation housing, where the combustor is grounded (80), a pressure sensor (82) coupled to the combustor and configured to detect pressure in the combustor, and an instability controlling assembly coupled to the pressure sensor and to an alternating current power supply (86), where, the instability controlling assembly can control flame instability of a flame in the system based on pressure detected by the pressure sensor.

  5. Review of two-phase instabilities

    Kang, Han Ok; Seo, Han Ok; Kang, Hyung Suk; Cho, Bong Hyun; Lee, Doo Jeong

    1997-06-01

    KAERI is carrying out a development of the design for a new type of integral reactors. The once-through helical steam generator is important design features. The study on designs and operating conditions which prevent flow instability should precede the introduction of one-through steam generator. Experiments are currently scheduled to understand two-phase instability, evaluate the effect of each design parameter on the critical point, and determine proper inlet throttling for the prevention of instability. This report covers general two-phase instability with review of existing studies on this topics. The general classification of two phase flow instability and the characteristics of each type of instability are first described. Special attention is paid to BWR core flow instability and once-through steam generator instability. The reactivity feedback and the effect of system parameters are treated mainly for BWR. With relation to once-through steam generators, the characteristics of convective heating and dryout point oscillation are first investigated and then the existing experimental studies are summarized. Finally chapter summarized the proposed correlations for instability boundary conditions. (author). 231 refs., 5 tabs., 47 figs

  6. Aeroelastic instability problems for wind turbines

    Hansen, Morten Hartvig

    2007-01-01

    This paper deals with the aeroelostic instabilities that have occurred and may still occur for modem commercial wind turbines: stall-induced vibrations for stall-turbines, and classical flutter for pitch-regulated turbines. A review of previous works is combined with derivations of analytical...... stiffness and chordwise position of the center of gravity along the blades are the main parameters for flutter. These instability characteristics are exemplified by aeroelastic stability analyses of different wind turbines. The review of each aeroelastic instability ends with a list of current research...... issues that represent unsolved aeroelostic instability problems for wind turbines. Copyright (c) 2007 John Wiley & Sons, Ltd....

  7. Two-Fluid Interface Instability Being Studied

    Niederhaus, Charles E.

    2003-01-01

    The interface between two fluids of different density can experience instability when gravity acts normal to the surface. The relatively well known Rayleigh-Taylor (RT) instability results when the gravity is constant with a heavy fluid over a light fluid. An impulsive acceleration applied to the fluids results in the Richtmyer-Meshkov (RM) instability. The RM instability occurs regardless of the relative orientation of the heavy and light fluids. In many systems, the passing of a shock wave through the interface provides the impulsive acceleration. Both the RT and RM instabilities result in mixing at the interface. These instabilities arise in a diverse array of circumstances, including supernovas, oceans, supersonic combustion, and inertial confinement fusion (ICF). The area with the greatest current interest in RT and RM instabilities is ICF, which is an attempt to produce fusion energy for nuclear reactors from BB-sized pellets of deuterium and tritium. In the ICF experiments conducted so far, RM and RT instabilities have prevented the generation of net-positive energy. The $4 billion National Ignition Facility at Lawrence Livermore National Laboratory is being constructed to study these instabilities and to attempt to achieve net-positive yield in an ICF experiment.

  8. Instabilities of flows and transition to turbulence

    Sengupta, Tapan K

    2012-01-01

    Introduction to Instability and TransitionIntroductionWhat Is Instability?Temporal and Spatial InstabilitySome Instability MechanismsComputing Transitional and Turbulent FlowsFluid Dynamical EquationsSome Equilibrium Solutions of the Basic EquationBoundary Layer TheoryControl Volume Analysis of Boundary LayersNumerical Solution of the Thin Shear Layer (TSL) EquationLaminar Mixing LayerPlane Laminar JetIssues of Computing Space-Time Dependent FlowsWave Interaction: Group Velocity and Energy FluxIssues of Space-Time Scale Resolution of FlowsTemporal Scales in Turbulent FlowsComputing Time-Averag

  9. Cosmic Rays and Radiative Instabilities

    Hartquist, T W; Falle, S A E G; Pittard, J M; Van Loo, S

    2011-01-01

    In the absence of magnetic fields and cosmic rays, radiative cooling laws with a range of dependences on temperature affect the stability of interstellar gas. For about four and a half decades, astrophysicists have recognised the importance of the thermal instablity for the formation of clouds in the interstellar medium. Even in the past several years, many papers have concerned the role of the thermal instability in the production of molecular clouds. About three and a half decades ago, astrophysicists investigating radiative shocks noticed that for many cooling laws such shocks are unstable. Attempts to address the effects of cosmic rays on the stablity of radiative media that are initially uniform or that have just passed through shocks have been made. The simplest approach to such studies involves the assumption that the cosmic rays behave as a fluid. Work based on such an approach is described. Cosmic rays have no effect on the stability of initially uniform, static media with respect to isobaric perturb...

  10. Visco-Resistive Plasmoid Instability

    Comisso, Luca

    2016-01-01

    The plasmoid instability in visco-resistive current sheets is analyzed in both the linear and nonlinear regimes. The linear growth rate and the wavenumber are found to scale as $S^{1/4} {\\left( {1 + {P_m}} \\right)}^{-5/8}$ and $S^{3/8} {\\left( {1 + {P_m}} \\right)}^{-3/16}$ with respect to the Lundquist number $S$ and the magnetic Prandtl number $P_m$. Furthermore, the linear layer width is shown to scale as $S^{-1/8} {(1+P_m)}^{1/16}$. The growth of the plasmoids slows down from an exponential growth to an algebraic growth when they enter into the nonlinear regime. In particular, the time-scale of the nonlinear growth of the plasmoids is found to be $\\tau_{NL} \\sim S^{-3/16} {(1 + P_m)^{19/32}}{\\tau _{A,L}}$. The nonlinear growth of the plasmoids is radically different from the linear one and it is shown to be essential to understand the global current sheet disruption. It is also discussed how the plasmoid instability enables fast magnetic reconnection in visco-resistive plasmas. In particular, it is shown t...

  11. Combustion instability modeling and analysis

    Santoro, R.J.; Yang, V.; Santavicca, D.A. [Pennsylvania State Univ., University Park, PA (United States)] [and others

    1995-10-01

    It is well known that the two key elements for achieving low emissions and high performance in a gas turbine combustor are to simultaneously establish (1) a lean combustion zone for maintaining low NO{sub x} emissions and (2) rapid mixing for good ignition and flame stability. However, these requirements, when coupled with the short combustor lengths used to limit the residence time for NO formation typical of advanced gas turbine combustors, can lead to problems regarding unburned hydrocarbons (UHC) and carbon monoxide (CO) emissions, as well as the occurrence of combustion instabilities. Clearly, the key to successful gas turbine development is based on understanding the effects of geometry and operating conditions on combustion instability, emissions (including UHC, CO and NO{sub x}) and performance. The concurrent development of suitable analytical and numerical models that are validated with experimental studies is important for achieving this objective. A major benefit of the present research will be to provide for the first time an experimentally verified model of emissions and performance of gas turbine combustors.

  12. The Chemistry of Beer Instability

    Stewart, Graham G.

    2004-07-01

    Compared to most other alcoholic beverages, beer is unique because it is unstable when in the final package. This instability can be divided into biological and nonbiological instability. Nonbiological stability of beer involves a wide range of chemical processes and can be considered in a number of categories: physical, flavor, light, foam, and gushing. It is the balance between flavanoid polyphenols (tannoids) and sensitive proteins that specifically combine with polyphenols to form haze that largely dictates physical stability. The flavor stability of beer primarily depends on the oxygen concentration of packaged beer but is influenced by all stages of the brewing process. Foam stability in a glass of beer reflects the quality of the beverage. The backbone of foam is hydrophobic polypeptides. Novel brewing processes such as high-gravity brewing result in a disproportionate loss of these polypeptides and have a negative effect on the foam stability of the resulting beer. Beer is light sensitive, especially in the 350 500 nm range. Beer exposed to this wavelength range in clear or green glass containers quickly develop nauseous skunky-like off-flavors resulting from the formation of 3-methyl-2-butene-1-thiol. Methods of enhancing all of these types of beer stability are discussed.

  13. Absolute quantification of somatic DNA alterations in human cancer.

    Carter, Scott L; Cibulskis, Kristian; Helman, Elena; McKenna, Aaron; Shen, Hui; Zack, Travis; Laird, Peter W; Onofrio, Robert C; Winckler, Wendy; Weir, Barbara A; Beroukhim, Rameen; Pellman, David; Levine, Douglas A; Lander, Eric S; Meyerson, Matthew; Getz, Gad

    2012-05-01

    We describe a computational method that infers tumor purity and malignant cell ploidy directly from analysis of somatic DNA alterations. The method, named ABSOLUTE, can detect subclonal heterogeneity and somatic homozygosity, and it can calculate statistical sensitivity for detection of specific aberrations. We used ABSOLUTE to analyze exome sequencing data from 214 ovarian carcinoma tumor-normal pairs. This analysis identified both pervasive subclonal somatic point-mutations and a small subset of predominantly clonal and homozygous mutations, which were overrepresented in the tumor suppressor genes TP53 and NF1 and in a candidate tumor suppressor gene CDK12. We also used ABSOLUTE to infer absolute allelic copy-number profiles from 3,155 diverse cancer specimens, revealing that genome-doubling events are common in human cancer, likely occur in cells that are already aneuploid, and influence pathways of tumor progression (for example, with recessive inactivation of NF1 being less common after genome doubling). ABSOLUTE will facilitate the design of clinical sequencing studies and studies of cancer genome evolution and intra-tumor heterogeneity.

  14. Absolute neutrophil values in malignant patients on cytotoxic chemotherapy.

    Madu, A J; Ibegbulam, O G; Ocheni, S; Madu, K A; Aguwa, E N

    2011-01-01

    A total of eighty patients with various malignancies seen between September 2008 and April 2009 at the University of Nigeria Teaching Hospital (UNTH) Ituku Ozalla, Enugu, Nigeria, had their absolute neutrophil counts, done at Days 0 and 12 of the first cycle of their various chemotherapeutic regimens. They were adult patients who had been diagnosed of various malignancies, consisting of Breast cancer 36 (45%), Non-Hodgkin's lymphoma 8 (10%), Hodgkin's lymphoma 13 (16.25%), Colorectal carcinoma 6 (7.5%), Multiple myeloma 7 (8.75%), Cervical carcinoma 1 (1.25%) and other malignancies 9 (11.25%), Manual counting of absolute neutrophil count was done using Turks solution and improved Neubauer counting chamber and Galen 2000 Olympus microscope. The socio demographic data of the patients were assessed from a questionnaire. There were 27 males (33.75%) and 53 females (66.25%). Their ages ranged from 18 - 80 years with a median of 45 years. The mean absolute neutrophil count of the respondents pre-and post chemotherapy was 3.7 +/- 2.1 x 10(9)/L and 2.5 +/- 1.6 x 10(9)/L respectively. There were significant differences in both the absolute neutrophil count (p=0.00) compared to the pre-chemotherapy values. Chemotherapeutic combinations containing cyclophosphamide and Adriamycin were observed to cause significant reduction in absolute neutrophil.

  15. Interfacial instabilities in vibrated fluids

    Porter, Jeff; Laverón-Simavilla, Ana; Tinao Perez-Miravete, Ignacio; Fernandez Fraile, Jose Javier

    2016-07-01

    Vibrations induce a range of different interfacial phenomena in fluid systems depending on the frequency and orientation of the forcing. With gravity, (large) interfaces are approximately flat and there is a qualitative difference between vertical and horizontal forcing. Sufficient vertical forcing produces subharmonic standing waves (Faraday waves) that extend over the whole interface. Horizontal forcing can excite both localized and extended interfacial phenomena. The vibrating solid boundaries act as wavemakers to excite traveling waves (or sloshing modes at low frequencies) but they also drive evanescent bulk modes whose oscillatory pressure gradient can parametrically excite subharmonic surface waves like cross-waves. Depending on the magnitude of the damping and the aspect ratio of the container, these locally generated surfaces waves may interact in the interior resulting in temporal modulation and other complex dynamics. In the case where the interface separates two fluids of different density in, for example, a rectangular container, the mass transfer due to vertical motion near the endwalls requires a counterflow in the interior region that can lead to a Kelvin-Helmholtz type instability and a ``frozen wave" pattern. In microgravity, the dominance of surface forces favors non-flat equilibrium configurations and the distinction between vertical and horizontal applied forcing can be lost. Hysteresis and multiplicity of solutions are more common, especially in non-wetting systems where disconnected (partial) volumes of fluid can be established. Furthermore, the vibrational field contributes a dynamic pressure term that competes with surface tension to select the (time averaged) shape of the surface. These new (quasi-static) surface configurations, known as vibroequilibria, can differ substantially from the hydrostatic state. There is a tendency for the interface to orient perpendicular to the vibrational axis and, in some cases, a bulge or cavity is induced

  16. The mixed Littlewood conjecture for pseudo-absolute values

    Harrap, Stephen

    2010-01-01

    In this paper we prove the mixed Littlewood conjecture for a p-adic absolute value and any pseudo-absolute value with bounded ratios. More precisely we show that if p is a prime and D is a pseudo-absolute value sequence with elements divisible by finitely many primes not equal to p, and if the terms of D grow more slowly than the exponential of a polynomial then the infimum over natural numbers n of the quantity n.|n|_p.|n|_D.||nx|| equals 0 for all real x. Our proof relies on two deep results, a measure rigidity theorem due to Lindenstrauss and lower bounds for linear forms in logarithms due to Baker and Wustholz. We also deduce the answer to the related metric question of how fast the infimum above tends to zero, for almost every x.

  17. Absolute Uniqueness of Phase Retrieval with Random Illumination

    Fannjiang, Albert

    2011-01-01

    Random phase or amplitude illumination is proposed to remove at once all types of ambiguity, trivial or nontrivial, at once from phase retrieval. Almost sure irreducibility is proved for {\\em any} complex-valued object of arbitrary sparsity. While this irreducibility result can be viewed as a probabilistic version of the classical result by Bruck, Sodin and Hayes, it provides a new perspective and an effective method for achieving absolute uniqueness in phase retrieval for {\\em every} object, not just objects outside of a measure-zero set. In particular, almost sure absolute uniqueness is proved for complex-valued objects under a general two-point assumption. For objects of nonnegative real and imaginary parts, absolute uniqueness is proved to hold with probability exponentially close to unity as the object sparsity increases.

  18. Absolute distance sensing by two laser optical interferometry.

    Thurner, Klaus; Braun, Pierre-François; Karrai, Khaled

    2013-11-01

    We have developed a method for absolute distance sensing by two laser optical interferometry. A particularity of this technique is that a target distance is determined in absolute and is no longer limited to within an ambiguity range affecting usually multiple wavelength interferometers. We implemented the technique in a low-finesse Fabry-Pérot miniature fiber based interferometer. We used two diode lasers, both operating in the 1550 nm wavelength range. The wavelength difference is chosen to create a 25 μm long periodic beating interferometric pattern allowing a nanometer precise position measurement but limited to within an ambiguity range of 25 μm. The ambiguity is then eliminated by scanning one of the wavelengths over a small range (3.4 nm). We measured absolute distances in the sub-meter range and this with just few nanometer repeatability.

  19. Relative Significance of the Stimulated Raman Scattering and Two-Plasmon-Decay Instabilities at Quarter-Critical Density

    Short, R. W.; Wen, H.; Maximov, A. V.; Myatt, J. F.; Seka, W.

    2016-10-01

    In direct-drive experiments on OMEGA, correlated signals of half-harmonic light and hot-electron production have usually been ascribed to two-plasmon decay (TPD). However, as scale lengths and temperatures increase, absolute stimulated Raman scattering (SRS) is expected to play a larger role in generating hot electrons and half-harmonic light. This may already be occurring in more-recent OMEGA experiments. Both instabilities occur at quarter-critical density, and for obliquely incident light, they can merge into a ``hybrid'' instability with a threshold differing from SRS and TPD thresholds considered separately. This talk analyzes how the thresholds of the quarter-critical instabilities vary with the incidence angle and polarization of the incident light, as well as the plasma parameters, and the expected significance for direct-drive experiments. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  20. Numerical investigation of Richtmyer-Meshkov instability driven by cylindrical shocks

    Baolin Tian; Dexun FU; Yanwen Ma

    2006-01-01

    In this Paper,a numerical method with high order accuracy and high resolution was developed to simulate the Richtmyer-Meshkov(RM) instability driven by cylindrical shock waves.Compressible Euler equations in cylindrical coordinate were adopted for the cylindrical geometry and a third order accurate group control scheme was adopted to discretize the equations.Moreover,an adaptive grid technique was developed to refine the grid near the moving interface to improve the resolution of numerical solutions.The results of simulation exhibited the evolution process of RM instability,and the effect of Atwood number was studied.The larger the absolute value of Atwood number,the larger the perturbation amplitude.The nonlinear effect manifests more evidently in cylindrical geometry.The shock reflected from the pole center accelerates the interface for the second time,considerably complicating the interface evolution process,and such phenomena of reshock and secondary shock were studied.

  1. Impact of fuelling and impurity on pedestal dynamics and instabilities in the HL-2A tokamak

    Zhong, W. L.; Zou, X. L.; Gao, J. M.; Shi, Z. B.; Feng, B. B.; Cui, Z. Y.; Xu, M.; Shen, Y.; Dong, J. Q.; Ding, X. T.; Duan, X. R.; Liu, Yong; HL-2A Team

    2017-01-01

    In recent experiments of the HL-2A tokamak, the effect on the pedestal dynamics by the plasma fuelling with supersonic molecular beam injection (SMBI) has been intensively investigated. Experimental results in several tokamaks suggested that SMBI is a promising technique for ELM mitigation. In addition to the fuelling, the impact of impurities on the pedestal dynamics and instabilities has been investigated in HL-2A. Experimental results have shown that during the H-mode phase, a broadband electromagnetic (EM) turbulence was driven by peaked impurity density profile at the edge plasma region, and governed by double critical gradients of the impurity density. The absolute value of the threshold in positive gradient region is much lower than that in the negative region. This strong asymmetry in the critical gradients has been predicted by theoretical simulation. The results reveal that pedestal dynamics and heat loads can be actively controlled by exciting or changing pedestal instabilities.

  2. On the descriptions of beam instabilities

    Maillard, Antoine

    2016-01-01

    We investigate two interesting features of beam instabilities in accelerators : First, we provide the equivalence between two models to describe transverse instabilities, the circulant matrix model (based on a longitudinal phase space discretization) and the Vlasov formalism. Secondly, we show how to derive dispersion integrals for transverse detuning effects in the Vlasov formalism, thus allowing for Landau damping mechanism.

  3. The short circuit instability in protoplanetary disks

    Hubbard, A.; McNally, C.P.; Mac Low, M.M.;

    2013-01-01

    We introduce a magneto-hydrodynamic instability which occurs, among other locations, in the inner, hot regions of protoplanetary disks, and which alters the way in which resistive dissipation of magnetic energy into heat proceeds. This instability can be likened to both an electrical short circuit...

  4. Energetic particle instabilities in fusion plasmas

    Sharapov, S. E.; Alper, B.; Berk, H. L.; Borba, D. N.; Breizman, B. N.; Challis, C. D.; Classen, I.G.J.; Edlund, E. M.; Eriksson, J.; Fasoli, A.; Fredrickson, E. D.; Fu, G. Y.; Garcia-Munoz, M.; Gassner, T.; Ghantous, K.; Goloborodko, V.; Gorelenkov, N. N.; Gryaznevich, M. P.; Hacquin, S.; Heidbrink, W. W.; Hellesen, C.; Kiptily, V. G.; Kramer, G. J.; Lauber, P.; Lilley, M. K.; Lisak, M.; Nabais, F.; Nazikian, R.; Nyqvist, R.; Osakabe, M.; C. Perez von Thun,; Pinches, S. D.; Podesta, M.; Porkolab, M.; Shinohara, K.; Schoepf, K.; Todo, Y.; Toi, K.; VanZeeland, M. A.; Voitsekhovich, I.; White, R. B.; Yavorskij, V.; ITPA EP TG Contributors,; JET-EFDA Contributors,

    2013-01-01

    Remarkable progress has been made in diagnosing energetic particle instabilities on present-day machines and in establishing a theoretical framework for describing them. This overview describes the much improved diagnostics of Alfvén instabilities and modelling tools developed world-wide, and discus

  5. Cultural diversity, economic development and societal instability

    Nettle, D.; Grace, J.B.; Choisy, M.; Cornell, H.V.; Guegan, J.-F.; Hochberg, M.E.

    2007-01-01

    Background. Social scientists have suggested that cultural diversity in a nation leads to societal instability. However, societal instability may be affected not only by within-nation on ?? diversity, but also diversity between a nation and its neighbours or ?? diversity. It is also necessary to distinguish different domains of diversity, namely linguistic, ethnic and religious, and to distinguish between the direct effects of diversity on societal instability, and effects that are mediated by economic conditions. Methodology/Principal Findings. We assembled a large cross-national dataset with information on ?? and ?? cultural diversity, economic conditions, and indices of societal instability. Structural equation modeling was used to evaluate the direct and indirect effects of cultural diversity on economics and societal stability. Results show that different type and domains of diversity have interacting effects. As previously documented, linguistic ?? diversity has a negative effect on economic performance, and we show that it is largely through this economic mechanism that it affects societal instability. For ?? diversity, the higher the linguistic diversity among nations in a region, the less stable the nation. But, religious ?? diversity has the opposite effect, reducing instability, particularly in the presence of high linguistic diversity. Conclusions. Within-nation linguistic diversity is associated with reduced economic performance, which, in turn, increases societal instability. Nations which differ linguistically from their neighbors are also less stable. However, religious diversity between, neighboring nations has the opposite effect, decreasing societal instability.

  6. Total Synthesis and Absolute Configuration of the Marine Norditerpenoid Xestenone

    Hiroaki Miyaoka

    2009-11-01

    Full Text Available Xestenone is a marine norditerpenoid found in the northeastern Pacific sponge Xestospongia vanilla. The relative configuration of C-3 and C-7 in xestenone was determined by NOESY spectral analysis. However the relative configuration of C-12 and the absolute configuration of this compound were not determined. The authors have now achieved the total synthesis of xestenone using their developed one-pot synthesis of cyclopentane derivatives employing allyl phenyl sulfone and an epoxy iodide as a key step. The relative and absolute configurations of xestenone were thus successfully determined by this synthesis.

  7. Absolute cross-sections from X-{gamma} coincidence measurements

    Lemasson, A. [GANIL, CEA/DSM - CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5 (France); Shrivastava, A. [Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Navin, A. [GANIL, CEA/DSM - CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5 (France)], E-mail: navin@ganil.fr; Rejmund, M. [GANIL, CEA/DSM - CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5 (France); Nanal, V. [Department of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Mumbai 400005 (India); Bhattacharyya, S. [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata 700064 (India); Chatterjee, A.; Kailas, S.; Mahata, K.; Parkar, V.V. [Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Pillay, R.G. [Department of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Mumbai 400005 (India); Ramachandran, K.; Rout, P.C. [Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2009-01-11

    An activation technique using coincidences between characteristic X-rays and {gamma}-rays to obtain absolute cross-sections is described. This method is particularly useful in the case of nuclei that decay by electron capture. In addition to the reduction of possible contamination, an improved detection sensitivity is achieved as compared to inclusive measurements, thereby allowing the extraction of absolute fusion cross-sections in the nano-barn range. Results of this technique for {sup 6}Li+{sup 198}Pt system, at energies around the Coulomb barrier are described. Future applications with low intensity radioactive ion beams are also discussed.

  8. Absolute gravimetry - for monitoring climate change and geodynamics in Greenland

    Nielsen, Jens Emil

    with the GPS data, it is possible to separate the different signals. The method used in this study is absolute gravimetry. An absolute gravimeter of the A10 type has been purchased by DTU Space for this purpose. This instrument can measure gravity changes as small as 6µGal (= 60nm=s2), which provides...... the studies of the instrument it is found that it performs better than the manufacture specifications. The presence of a noise signal in the data, which originates from the instrument itself, has been the motivation to investigate different processing schemes. This noise is called the system response...

  9. Absolute, Extreme-Ultraviolet, Solar Spectral Irradiance Monitor (AESSIM)

    Huber, Martin C. E.; Smith, Peter L.; Parkinson, W. H.; Kuehne, M.; Kock, M.

    1988-01-01

    AESSIM, the Absolute, Extreme-Ultraviolet, Solar Spectral Irradiance Monitor, is designed to measure the absolute solar spectral irradiance at extreme-ultraviolet (EUV) wavelengths. The data are required for studies of the processes that occur in the earth's upper atmosphere and for predictions of atmospheric drag on space vehicles. AESSIM is comprised of sun-pointed spectrometers and newly-developed, secondary standards of spectral irradiance for the EUV. Use of the in-orbit standard sources will eliminate the uncertainties caused by changes in spectrometer efficiency that have plagued all previous measurements of the solar spectral EUV flux.

  10. Properties of Absolute Stability in the Presence of Time Lags

    M. De la Sen

    2005-01-01

    Full Text Available This study is concerned with the properties of absolute stability independent of the delays of time-delay systems, possessing non commensurate internal point delays, for any nonlinearity satisfying a Popov’s- type time positivity inequality. That property holds if an associate delay-free system is absolutely stable and the size of the delayed dynamics is sufficiently small. The results are obtained for nonlinearities belonging to sectors [0, k] and [h, k+h], and are based on a parabola test type.

  11. Stability comparison of two absolute gravimeters: optical versus atomic interferometers

    Gillot, Pierre; Landragin, Arnaud; Santos, Franck Pereira Dos; Merlet, Sébastien

    2014-01-01

    We report the direct comparison between the stabilities of two mobile absolute gravimeters of different technology: the LNE-SYRTE Cold Atom Gravimeter and FG5X\\#216 of the Universit\\'e du Luxembourg. These instruments rely on two different principles of operation: atomic and optical interferometry. The comparison took place in the Walferdange Underground Laboratory for Geodynamics in Luxembourg, at the beginning of the last International Comparison of Absolute Gravimeters, ICAG-2013. We analyse a 2h10 duration common measurement, and find that the CAG shows better immunity with respect to changes in the level of vibration noise, as well as a slightly better short term stability.

  12. Absolute small-angle measurement based on optical feedback interferometry

    Jingang Zhong; Xianhua Zhang; Zhixiang Ju

    2008-01-01

    We present a simple but effective method for small-angle measurement based on optical feedback inter-ferometry (or laser self-mixing interferometry). The absolute zero angle can be defined at the biggest fringe amplitude point, so this method can also achieve absolute angle measurement. In order to verify the method, we construct an angle measurement system. The Fourier-transform method is used to analysis the interference signal. Rotation angles are experimentally measured with a resolution of 10-6 rad and a measurement range of approximately from -0.0007 to +0.0007 rad.

  13. Mapping Instabilities in Polymer Friction

    Rand, Charles; Crosby, Alfred

    2005-03-01

    Schallamach waves are instabilities that occur as interfaces between a soft elastomer and rigid surface slide past each other.(1) The presence of Schallamach waves can lead to drastic changes in frictional properties. Although the occurrence of Schallamach waves has been studied for the past several decades, a general map relating fundamental material properties, geometry, and operating conditions (i.e. speed and temperature) has not been established. Using a combinatorial approach, we illustrate the role of modulus, testing velocity and surface energetics of crosslinked poly(dimethyl siloxane) on the generation Schallamach waves. This knowledge will be used with polymer patterning processes to fabricate responsive coatings for applications such as anti-fouling coatings. (1)Schallamach, A.;Wear 1971,17, 301-312.

  14. Transient spirals as superposed instabilities

    Sellwood, J A

    2014-01-01

    We present evidence that recurrent spiral activity, long manifested in simulations of disk galaxies, results from the super-position of a few transient spiral modes. Each mode lasts between five and ten rotations at its corotation radius where its amplitude is greatest. The scattering of stars as each wave decays takes place over narrow ranges of angular momentum, causing abrupt changes to the impedance of the disk to subsequent traveling waves. Partial reflections of waves at these newly created features, allows new standing-wave instabilities to appear that saturate and decay in their turn, scattering particles at new locations, creating a recurring cycle. The spiral activity causes the general level of random motion to rise, gradually decreasing the ability of the disk to support further activity unless the disk contains a dissipative gas component from which stars form on near-circular orbits. We also show that this interpretation is consistent with the behavior reported in other recent simulations with l...

  15. Gravitational Instability of a Kink

    Barreto, W; Lehner, L; Winicour, J

    1996-01-01

    We study the equilibria of a self-gravitating scalar field in the region outside a reflecting barrier. By introducing a potential difference between the barrier and infinity, we create a kink which cannot decay to a zero energy state. In the realm of small amplitude, the kink decays to a known static solution of the Einstein-Klein-Gordon equation. However, for larger kinks the static equilibria are degenerate, forming a system with two energy levels. The upper level is unstable and, under small perturbations, decays to the lower energy stable equilibrium. Under large perturbations, the unstable upper level undergoes collapse to a black hole. The equilibrium of the system provides a remarkably simple and beautiful illustration of a turning point instability.

  16. Chromosomal instability determines taxane response

    Swanton, C.; Nicke, B.; Schuett, M.;

    2009-01-01

    -positive breast cancer and occurs frequently in basal-like and Her2-positive cases. In diploid cells, but not in chromosomally unstable cells, paclitaxel causes repression of CIN-survival genes, followed by cell death. In the OV01 ovarian cancer clinical trial, a high level of CIN was associated with taxane...... chromosomal instability (CIN). Silencing 22/50 of these genes, many of which are involved in DNA repair, caused cancer cell death, suggesting that these genes are involved in the survival of aneuploid cells. Overexpression of these "CIN-survival'' genes is associated with poor outcome in estrogen receptor...... resistance but carboplatin sensitivity, indicating that CIN may determine MTS response in vivo. Thus, pretherapeutic assessment of CIN may optimize treatment stratification and clinical trial design using these agents....

  17. Hydrodynamic Instabilities in Rotating Fluids

    KarlBuehler

    2000-01-01

    Rotating flow systems are often used to study stability phenomena and structure developments.The closed spherical gap prblem is generalized into an open flow system by superimposing a mass flux in meridional direction.The basic solutions at low Reynolds numbers are described by analytical methods.The nonlinear supercritical solutions are simulated numerically and realized in experiments.Novel steady and time-dependent modes of flows are obtained.The extensive results concern the stability behaviour.non-uniqueness of supercritical solutions,symmetry behaviour and transitions between steady and time-dependent solutions.The experimental investigations concern the visualization of the various instabilities and the quatitative description of the flow structures including the laminar-turbulent transition.A Comparison between theoretical and experimental results shows good agreement within the limit of rotational symmetric solutions from the theory.

  18. Secondary instability in boundary-layer flows

    Nayfeh, A. H.; Bozatli, A. N.

    1979-01-01

    The stability of a secondary Tollmien-Schlichting wave, whose wavenumber and frequency are nearly one half those of a fundamental Tollmien-Schlichting instability wave is analyzed using the method of multiple scales. Under these conditions, the fundamental wave acts as a parametric exciter for the secondary wave. The results show that the amplitude of the fundamental wave must exceed a critical value to trigger this parametric instability. This value is proportional to a detuning parameter which is the real part of k - 2K, where k and K are the wavenumbers of the fundamental and its subharmonic, respectively. For Blasius flow, the critical amplitude is approximately 29% of the mean flow, and hence many other secondary instabilities take place before this parametric instability becomes significant. For other flows where the detuning parameter is small, such as free-shear layer flows, the critical amplitude can be small, thus the parametric instability might play a greater role.

  19. Tensile Instability in a Thick Elastic Body

    Overvelde, Johannes T. B.; Dykstra, David M. J.; de Rooij, Rijk; Weaver, James; Bertoldi, Katia

    2016-08-01

    A range of instabilities can occur in soft bodies that undergo large deformation. While most of them arise under compressive forces, it has previously been shown analytically that a tensile instability can occur in an elastic block subjected to equitriaxial tension. Guided by this result, we conducted centimeter-scale experiments on thick elastomeric samples under generalized plane strain conditions and observed for the first time this elastic tensile instability. We found that equibiaxial stretching leads to the formation of a wavy pattern, as regions of the sample alternatively flatten and extend in the out-of-plane direction. Our work uncovers a new type of instability that can be triggered in elastic bodies, enlarging the design space for smart structures that harness instabilities to enhance their functionality.

  20. Taylor instability in rhyolite lava flows

    Baum, B. A.; Krantz, W. B.; Fink, J. H.; Dickinson, R. E.

    1989-01-01

    A refined Taylor instability model is developed to describe the surface morphology of rhyolite lava flows. The effect of the downslope flow of the lava on the structures resulting from the Taylor instability mechanism is considered. Squire's (1933) transformation is developed for this flow in order to extend the results to three-dimensional modes. This permits assessing why ridges thought to arise from the Taylor instability mechanism are preferentially oriented transverse to the direction of lava flow. Measured diapir and ridge spacings for the Little and Big Glass Mountain rhyolite flows in northern California are used in conjunction with the model in order to explore the implications of the Taylor instability for flow emplacement. The model suggests additional lava flow features that can be measured in order to test whether the Taylor instability mechanism has influenced the flows surface morphology.

  1. 3-D nonlinear evolution of MHD instabilities

    Bateman, G.; Hicks, H. R.; Wooten, J. W.

    1977-03-01

    The nonlinear evolution of ideal MHD internal instabilities is investigated in straight cylindrical geometry by means of a 3-D initial-value computer code. These instabilities are characterized by pairs of velocity vortex cells rolling off each other and helically twisted down the plasma column. The cells persist until the poloidal velocity saturates at a few tenths of the Alfven velocity. The nonlinear phase is characterized by convection around these essentially fixed vortex cells. For example, the initially centrally peaked temperature profile is convected out and around to form an annulus of high temperature surrounding a small region of lower temperature. Weak, centrally localized instabilities do not alter the edge of the plasma. Strong, large-scale instabilities, resulting from a stronger longitudinal equilibrium current, drive the plasma against the wall. After three examples of instability are analyzed in detail, the numerical methods and their verification are discussed.

  2. Whipping Instabilities in Electrified Liquid Jets

    Marin, Alvaro G; Loscertales, Ignacio G; Barrero, Antonio

    2008-01-01

    A liquid jet may develop different types of instabilities, like the so-called Rayleigh-Plateau instability, which breaks the jet into droplets. However, another type of instabilities may appear when we electrify a liquid jet and induce some charge at his surface. Among them, the most common is the so-called Whipping Instability, which is characterized by violent and fast lashes of the jet. In the submitted fluid dynamic video(see http://hdl.handle.net/1813/11422), we will show an unstable charged glycerine jet in a dielectric liquid bath, which permits an enhanced visualization of the instability. For this reason, it is probably the first time that these phenomena are visualized with enough clarity to analyze features as the effect of the feeding liquid flow rate through the jet or as the surprising spontaneous stabilization at some critical distance to the ground electrode.

  3. Stationary instability of an axiosymmetric fluid flow in a rotating magnetic field

    Kapusta, A.B.; Zibol' d, A.F.

    1977-07-01

    A study is made in a noninduction approximation of the effect that the profile deformation of a primary velocity and the interactions between secondary flows and a primary magnetic field have on the stationary instability of an axiosymmetric fluid flow in a rotating magnetic field. The critical state was shown to be determined by two or three independent criteria. Two regions of absolute primary flow stability were identified, and the critical values for the Reynolds number for these regions were calculated. Profiles of velocity perturbances and secondary flow lines were constructed for various sets of values. 6 references, 3 figures, 2 tables.

  4. Multipliers for the Absolute Euler Summability of Fourier Series

    Prem Chandra

    2001-05-01

    In this paper, the author has investigated necessary and sufficient conditions for the absolute Euler summability of the Fourier series with multipliers. These conditions are weaker than those obtained earlier by some workers. It is further shown that the multipliers are best possible in certain sense.

  5. Confirmation of the absolute configuration of (−)-aurantioclavine

    Behenna, Douglas C.

    2011-04-01

    We confirm our previous assignment of the absolute configuration of (-)-aurantioclavine as 7R by crystallographically characterizing an advanced 3-bromoindole intermediate reported in our previous synthesis. This analysis also provides additional support for our model of enantioinduction in the palladium(II)-catalyzed oxidative kinetic resolution of secondary alcohols. © 2010 Elsevier Ltd. All rights reserved.

  6. Absolute configurations of zingiberenols isolated from ginger (Zingiber officinale) rhizomes

    The sesquiterpene alcohol zingiberenol, or 1,10-bisaboladien-3-ol, was isolated some time ago from ginger, Zingiber officinale, rhizomes, but its absolute configuration had not been determined. With three chiral centers present in the molecule, zingiberenol can exist in eight stereoisomeric forms. ...

  7. Two methods for absolute calibration of dynamic pressure transducers

    Swift, G. W.; Migliori, A.; Garrett, S. L.; Wheatley, J. C.

    1982-12-01

    Two techniques are described for absolute calibration of a dynamic pressure transducer from 0 to 400 Hz in 1-MPa helium gas. One technique is based on a comparison to a mercury manometer; the other is based on the principle of reciprocity. The two techniques agree within the instrumental uncertainties of 1%.

  8. Partial sums of arithmetical functions with absolutely convergent Ramanujan expansions

    BISWAJYOTI SAHA

    2016-08-01

    For an arithmetical function $f$ with absolutely convergent Ramanujan expansion, we derive an asymptotic formula for the $\\sum_{n\\leq N}$ f(n)$ with explicit error term. As a corollary we obtain new results about sum-of-divisors functions and Jordan’s totient functions.

  9. Absolute Value Inequalities: High School Students' Solutions and Misconceptions

    Almog, Nava; Ilany, Bat-Sheva

    2012-01-01

    Inequalities are one of the foundational subjects in high school math curricula, but there is a lack of academic research into how students learn certain types of inequalities. This article fills part of the research gap by presenting the findings of a study that examined high school students' methods of approaching absolute value inequalities,…

  10. Individual Differences in Absolute and Relative Metacomprehension Accuracy

    Maki, Ruth H.; Shields, Micheal; Wheeler, Amanda Easton; Zacchilli, Tammy Lowery

    2005-01-01

    The authors investigated absolute and relative metacomprehension accuracy as a function of verbal ability in college students. Students read hard texts, revised texts, or a mixed set of texts. They then predicted their performance, took a multiple-choice test on the texts, and made posttest judgments about their performance. With hard texts,…

  11. Absolute configuration and antiprotozoal activity of minquartynoic acid

    Rasmussen, H B; Christensen, Søren Brøgger; Kvist, L P;

    2000-01-01

    Minquartynoic acid (1) was isolated as an antimalarial and antileishmanial constituent of the Peruvian tree Minquartia guianensis and its absolute configuration at C-17 established to be (+)-S through conversion to the known (+)-(S)-17-hydroxystearic acid (2) and confirmed using Mosher's method....

  12. Fabricating the absolute fake: America in contemporary pop culture

    Kooijman, J.

    2008-01-01

    Onze wereld wordt gedomineerd door de Amerikaanse popcultuur. Fabricating the Absolute Fake onderzoekt de dynamiek van Amerikanisering aan de hand van hedendaagse films, televisieprogramma's en popsterren die reflecteren op de vraag wat het betekent om Amerikaan in een mondiale popcultuur te zijn. J

  13. Ophthalmoplegic migraine. Two patients with an absolute response to indomethacin.

    Pareja, J A; Churruca, J; de la Casa Fages, B; de Silanes, C López; Sánchez, C; Barriga, F J

    2010-06-01

    Two patients suffering from ophthalmoplegic migraine had a strictly unilateral headache absolutely responsive to indomethacin, but not to other non-steroidal anti-inflammatory drugs, analgesics or corticosteroids. Such observations raise a therapeutic alternative and suggest that ophthalmoplegic migraine may present with different headache phenotypes.

  14. Absolute measurements of chlorine Cl+ cation single photoionization cross section

    Hernandez, E. M.; Juarez, A. M.; Kilcoyne, A. L. D.; Aguilar, A.; Hernandez, L.; Antillon, A.; Macaluso, D.; Morales-Mori, A.; Gonzalez-Magana, O.; Hanstorp, D.; Covington, A. M.; Davis, V.; Calabrese, D.; Hinojosa, G.

    2015-01-01

    The photoionization of Cl+ leading to Cl2+ was measured in the photon energy range of 19.5-28.0 eV. A spectrum with a photon energy resolution of 15 meV normalized to absolute cross-section measurements is presented. The measurements were carried out by merging a Cl+ ion beam with a photon beam of h

  15. Absolute luminosity measurements with the LHCb detector at the LHC

    Aaij, R; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amhis, Y; Anderson, J; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Arrabito, L; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Bachmann, S; Back, J J; Bailey, D S; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bates, A; Bauer, C; Bauer, Th; Bay, A; Bediaga, I; Belous, K; Belyaev, I; Ben-Haim, E; Benayoun, M; Bencivenni, G; Benson, S; Benton, J; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blanks, C; Blouw, J; Blusk, S; Bobrov, A; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Brisbane, S; Britsch, M; Britton, T; Brook, N H; Brown, H; Büchler-Germann, A; Burducea, I; Bursche, A; Buytaert, J; Cadeddu, S; Caicedo Carvajal, J M; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casse, G; Cattaneo, M; Charles, M; Charpentier, Ph; Chiapolini, N; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Collins, P; Constantin, F; Conti, G; Contu, A; Cook, A; Coombes, M; Corti, G; Cowan, G A; Currie, R; D'Almagne, B; D'Ambrosio, C; David, P; De Bonis, I; De Capua, S; De Cian, M; De Lorenzi, F; De Miranda, J M; De Paula, L; De Simone, P; Decamp, D; Deckenhoff, M; Degaudenzi, H; Deissenroth, M; Del Buono, L; Deplano, C; Deschamps, O; Dettori, F; Dickens, J; Dijkstra, H; Diniz Batista, P; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Dzhelyadin, R; Eames, C; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisele, F; Eisenhardt, S; Ekelhof, R; Eklund, L; Elsasser, Ch; d'Enterria, D G; Esperante Pereira, D; Estève, L; Falabella, A; Fanchini, E; Färber, C; Fardell, G; Farinelli, C; Farry, S; Fave, V; Fernandez Albor, V; Ferro-Luzzi, M; Filippov, S; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Frank, M; Frei, C; Frosini, M; Furcas, S; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garnier, J-C; Garofoli, J; Garra Tico, J; Garrido, L; Gaspar, C; Gauvin, N; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Gregson, S; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Haefeli, G; Haen, C; Haines, S C; Hampson, T; Hansmann-Menzemer, S; Harji, R; Harnew, N; Harrison, J; Harrison, P F; He, J; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicks, E; Hofmann, W; Holubyev, K; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Huston, R S; Hutchcroft, D; Hynds, D; Iakovenko, V; Ilten, P; Imong, J; Jacobsson, R; Jaeger, A; Jahjah Hussein, M; Jans, E; Jansen, F; Jaton, P; Jean-Marie, B; Jing, F; John, M; Johnson, D; Jones, C R; Jost, B; Kandybei, S; Karacson, M; Karbach, T M; Keaveney, J; Kerzel, U; Ketel, T; Keune, A; Khanji, B; Kim, Y M; Knecht, M; Koblitz, S; Koppenburg, P; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kruzelecki, K; Kucharczyk, M; Kukulak, S; Kumar, R; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leroy, O; Lesiak, T; Li, L; Li Gioi, L; Lieng, M; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; Lopes, J H; Lopez Asamar, E; Lopez-March, N; Luisier, J; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Magnin, J; Malde, S; Mamunur, R M D; Manca, G; Mancinelli, G; Mangiafave, N; Marconi, U; Märki, R; Marks, J; Martellotti, G; Martens, A; Martin, L; Martín Sánchez, A; Martinez Santos, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Matveev, M; Maurice, E; Maynard, B; Mazurov, A; McGregor, G; McNulty, R; Mclean, C; Meissner, M; Merk, M; Merkel, J; Messi, R; Miglioranzi, S; Milanes, D A; Minard, M-N; Monteil, S; Moran, D; Morawski, P; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Musy, M; Mylroie-Smith, J; Naik, P; Nakada, T; Nandakumar, R; Nardulli, J; Nasteva, I; Nedos, M; Needham, M; Neufeld, N; Nguyen-Mau, C; Nicol, M; Nies, S; Niess, V; Nikitin, N; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Pal, B; Palacios, J; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Paterson, S K; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perego, D L; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pessina, G; Petrella, A; Petrolini, A; Pie Valls, B; Pietrzyk, B; Pilar, T; Pinci, D; Plackett, R; Playfer, S; Plo Casasus, M; Polok, G; Poluektov, A; Polycarpo, E; Popov, D; Popovici, B; Potterat, C; Powell, A; du Pree, T; Prisciandaro, J; Pugatch, V; Puig Navarro, A; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Raven, G; Redford, S; Reid, M M; dos Reis, A C; Ricciardi, S; Rinnert, K; Roa Romero, D A; Robbe, P; Rodrigues, E; Rodrigues, F; Rodriguez Perez, P; Rogers, G J; Roiser, S; Romanovsky, V; Rouvinet, J; Ruf, T; Ruiz, H; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salzmann, C; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santinelli, R; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schleich, S; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M -H; Schwemmer, R; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shao, B; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Skottowe, H P; Skwarnicki, T; Smith, A C; Smith, N A; Sobczak, K; Soler, F J P; Solomin, A; Soomro, F; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Styles, N; Subbiah, V K; Swientek, S; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Topp-Joergensen, S; Tran, M T; Tsaregorodtsev, A; Tuning, N; Ubeda Garcia, M; Ukleja, A; Urquijo, P; Uwer, U; Vagnoni, V; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; Velthuis, J J; Veltri, M; Vervink, K; Viaud, B; Videau, I; Vilasis-Cardona, X; Visniakov, J; Vollhardt, A; Voong, D; Vorobyev, A; Voss, H; Wacker, K; Wandernoth, S; Wang, J; Ward, D R; Webber, A D; Websdale, D; Whitehead, M; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wishahi, J; Witek, M; Witzeling, W; Wotton, S A; Wyllie, K; Xie, Y; Xing, F; Yang, Z; Young, R; Yushchenko, O; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhong, L; Zverev, E; Zvyagin, A

    2012-01-01

    Absolute luminosity measurements are of general interest for colliding-beam experiments at storage rings. These measurements are necessary to determine the absolute cross-sections of reaction processes and are valuable to quantify the performance of the accelerator. LHCb has applied two methods to determine the absolute scale of its luminosity measurements for proton-proton collisions at the LHC with a centre-of-mass energy of 7 TeV. In addition to the classic ``van der Meer scan'' method a novel technique has been developed which makes use of direct imaging of the individual beams using beam-gas and beam-beam interactions. This beam imaging method is made possible by the high resolution of the LHCb vertex detector and the close proximity of the detector to the beams, and allows beam parameters such as positions, angles and widths to be determined. The results of the two methods have comparable precision and are in good agreement. Combining the two methods, an overall precision of 3.5\\% in the absolute lumi...

  16. Absolute Stability of Discrete-Time Systems with Delay

    Medina Rigoberto

    2008-01-01

    Full Text Available We investigate the stability of nonlinear nonautonomous discrete-time systems with delaying arguments, whose linear part has slowly varying coefficients, and the nonlinear part has linear majorants. Based on the "freezing" technique to discrete-time systems, we derive explicit conditions for the absolute stability of the zero solution of such systems.

  17. Absolute magnitudes and phase coefficients of trans-Neptunian objects

    Alvarez-Candal, A; Ortiz, J L; Duffard, R; Morales, N; Santos-Sanz, P; Thirouin, A; Silva, J S

    2015-01-01

    Context: Accurate measurements of diameters of trans-Neptunian objects are extremely complicated to obtain. Thermal modeling can provide good results, but accurate absolute magnitudes are needed to constrain the thermal models and derive diameters and geometric albedos. The absolute magnitude, Hv, is defined as the magnitude of the object reduced to unit helio- and geocentric distances and a zero solar phase angle and is determined using phase curves. Phase coefficients can also be obtained from phase curves. These are related to surface properties, yet not many are known. Aims: Our objective is to measure accurate V band absolute magnitudes and phase coefficients for a sample of trans-Neptunian objects, many of which have been observed, and modeled, within the 'TNOs are cool' program, one of Herschel Space Observatory key projects. Methods: We observed 56 objects using the V and R filters. These data, along with those available in the literature, were used to obtain phase curves and measure V band absolute m...

  18. Lyman alpha SMM/UVSP absolute calibration and geocoronal correction

    Fontenla, Juan M.; Reichmann, Edwin J.

    1987-01-01

    Lyman alpha observations from the Ultraviolet Spectrometer Polarimeter (UVSP) instrument of the Solar Maximum Mission (SMM) spacecraft were analyzed and provide instrumental calibration details. Specific values of the instrument quantum efficiency, Lyman alpha absolute intensity, and correction for geocoronal absorption are presented.

  19. On absolute stability of nonlinear systems with small delays

    M. I. Gil

    1998-01-01

    Full Text Available Nonlinear nonautonomous retarded systems with separated autonomous linear parts and continuous nonlinear ones are considered. It is assumed that deviations of the argument are sufficiently small. Absolute stability conditions are derived. They are formulated in terms of eigenvalues of auxiliary matrices.

  20. Gray- and White-Matter Anatomy of Absolute Pitch Possessors

    Dohn, Anders; Garza-Villarreal, Eduardo A.; Chakravarty, Mallar

    2015-01-01

    Absolute pitch (AP), the ability to identify a musical pitch without a reference, has been examined behaviorally in numerous studies for more than a century, yet only a few studies have examined the neuroanatomical correlates of AP. Here, we used MRI and diffusion tensor imaging to investigate...

  1. Toward The Absolute Age of M92 With MIST

    Choi, Jieun; Conroy, Charlie; Dotter, Aaron; Weisz, Daniel; Rosenfield, Philip; Dolphin, Andrew

    2016-08-01

    Globular clusters provide a fundamental link between stars and galaxies. For example, it has been suggested that ultra faint dwarf galaxies formed all of their stars prior to the epoch of reionization, but this conclusion hinges entirely on the striking similarity of their stellar populations to the ancient, metal-poor globular cluster M92. The accurate measurement of absolute ages of ancient globular clusters therefore has direct implications for the formation histories of the smallest galaxies in the Universe. However, a reliable determination of the absolute ages of globular clusters has proven to be a challenge due to uncertainties in stellar physics and complications in how the models are compared to observations. I will present preliminary results from a comprehensive study to measure the absolute age of M92 using high-quality HST archival imaging data. We pair our new MESA Isochrones and Stellar Tracks (MIST) models with a full CMD fitting framework to jointly fit multi-color CMDs, taking into account the uncertainties in abundances, distance, and stellar physics. The goal of this project is two-fold. First, we aim to provide the most secure absolute age of M92 to date with robustly estimated uncertainties. Second, we explore and quantify the degeneracies between uncertain physical quantities and model variables, such as the distance, mixing-length-alpha parameter, and helium abundance, with the ultimate goal of better constraining these unknowns with data from ongoing and future surveys such as K2, Gaia, TESS, JWST, and WFIRST.

  2. Absolute Gravity Datum in the Age of Cold Atom Gravimeters

    Childers, V. A.; Eckl, M. C.

    2014-12-01

    The international gravity datum is defined today by the International Gravity Standardization Net of 1971 (IGSN-71). The data supporting this network was measured in the 1950s and 60s using pendulum and spring-based gravimeter ties (plus some new ballistic absolute meters) to replace the prior protocol of referencing all gravity values to the earlier Potsdam value. Since this time, gravimeter technology has advanced significantly with the development and refinement of the FG-5 (the current standard of the industry) and again with the soon-to-be-available cold atom interferometric absolute gravimeters. This latest development is anticipated to provide improvement in the range of two orders of magnitude as compared to the measurement accuracy of technology utilized to develop ISGN-71. In this presentation, we will explore how the IGSN-71 might best be "modernized" given today's requirements and available instruments and resources. The National Geodetic Survey (NGS), along with other relevant US Government agencies, is concerned about establishing gravity control to establish and maintain high order geodetic networks as part of the nation's essential infrastructure. The need to modernize the nation's geodetic infrastructure was highlighted in "Precise Geodetic Infrastructure, National Requirements for a Shared Resource" National Academy of Science, 2010. The NGS mission, as dictated by Congress, is to establish and maintain the National Spatial Reference System, which includes gravity measurements. Absolute gravimeters measure the total gravity field directly and do not involve ties to other measurements. Periodic "intercomparisons" of multiple absolute gravimeters at reference gravity sites are used to constrain the behavior of the instruments to ensure that each would yield reasonably similar measurements of the same location (i.e. yield a sufficiently consistent datum when measured in disparate locales). New atomic interferometric gravimeters promise a significant

  3. Networks of Absolute Calibration Stars for SST, AKARI, and WISE

    Cohen, M.

    2007-04-01

    I describe the Cohen-Walker-Witteborn (CWW) network of absolute calibration stars built to support ground-based, airborne, and space-based sensors, and how they are used to calibrate instruments on the SPITZER Space Telescope (SST and Japan's AKARI (formerly ASTRO-F), and to support NASA's planned MidEx WISE (the Wide-field Infrared Survey Explorer). All missions using this common calibration share a self-consistent framework embracing photometry and low-resolution spectroscopy. CWW also underpins COBE/DIRBE several instruments used on the Kuiper Airborne Observatory ({KAO}), the joint Japan-USA ``IR Telescope in Space" (IRTS) Near-IR and Mid-IR spectrometers, the European Space Agency's IR Space Observatory (ISO), and the US Department of Defense's Midcourse Space eXperiment (MSX). This calibration now spans the far-UV to mid-infrared range with Sirius (one specific Kurucz synthetic spectrum) as basis, and zero magnitude defined from another Kurucz spectrum intended to represent an ideal Vega (not the actual star with its pole-on orientation and mid-infrared dust excess emission). Precision 4-29 μm radiometric measurements on MSX validate CWW's absolute Kurucz spectrum of Sirius, the primary, and a set of bright K/MIII secondary standards. Sirius is measured to be 1.0% higher than predicted. CWW's definitions of IR zero magnitudes lie within 1.1% absolute of MSX measurements. The US Air Force Research Laboratory's independent analysis of on-orbit {MSX} stellar observations compared with emissive reference spheres show CWW primary and empirical secondary spectra lie well within the ±1.45% absolute uncertainty associated with this 15-year effort. Our associated absolute calibration for the InfraRed Array Camera (IRAC) on the SST lies within ˜2% of the recent extension of the calibration of the Hubble Space Telescope's STIS instrument to NICMOS (Bohlin, these Proceedings), showing the closeness of these two independent approaches to calibration.

  4. Absolute V-R colors of trans-Neptunian objects

    Alvarez-Candal, Alvaro; Ayala-Loera, Carmen; Ortiz, Jose-Luis; Duffard, Rene; Estela, Fernandez-Valenzuela; Santos-Sanz, Pablo

    2016-10-01

    The absolute magnitude of a minor body is the apparent magnitude that the body would have if observed from the Sun at a distance of 1AU. Absolute magnitudes are measured using phase curves, showing the change of the magnitude, normalized to unit helio and geo-centric distance, vs. phase angle. The absolute magnitude is then the Y-intercept of the curve. Absolute magnitudes are related to the total reflecting surface of the body and thus bring information of its size, coupled with the reflecting properties.Since 2011 our team has been collecting data from several telescopes spread in Europe and South America. We complemented our data with those available in the literature in order to construct phase curves of trans-Neptunian objects with at least three points. In a first release (Alvarez-Candal et al. 2016, A&A, 586, A155) we showed results for 110 trans-Neptunian objects using V magnitudes only, assuming an overall linear trend and taking into consideration rotational effects, for objects with known light-curves.In this contribution we show results for more than 130 objects, about 100 of them with phase curves in two filters: V and R. We compute absolute magnitudes and phase coefficients in both filters, when available. The average values are HV = 6.39 ± 2.37, βV = (0.09 ± 0.32) mag per degree, HR = 5.38 ± 2.30, and βR = (0.08 ± 0.42) mag per degree.

  5. Quantum effects in beam-plasma instabilities

    Bret, A

    2015-01-01

    Among the numerous works on quantum effects that have been published in recent years, streaming instabilities in plasma have also been revisited. Both the fluid quantum and the kinetic Wigner-Maxwell models have been used to explore quantum effects on the Weibel, Filamentation and Two-Stream instabilities. While quantum effects usually tend to reduce the instabilities, they can also spur new unstable branches. A number of theoretical results will be reviewed together with the implications to one physical setting, namely the electron driven fast ignition scenario.

  6. Fingering instability in combustion: an extended view.

    Zik, O; Moses, E

    1999-07-01

    We detail the experimental situation concerning the fingering instability that occurs when a solid fuel is forced to burn against a horizontal oxidizing wind. The instability appears when the Rayleigh number for convection is below criticality. The focus is on the developed fingering state. We present direct measurements of the depletion of oxygen by the front as well as new results that connect heat losses to the characteristic scale of the instability. In addition, we detail the experimental system, elaborate (qualitatively and quantitatively) on the results that were previously presented, and discuss new observations. We also show that the same phenomenological model applies to electrochemical deposition.

  7. More on core instabilities of magnetic monopoles

    Striet, J

    2003-01-01

    In this paper we present new results on the core instability of the 't Hooft Polyakov monopoles we reported on before. This instability, where the spherical core decays in a toroidal one, typically occurs in models in which charge conjugation is gauged. In this paper we also discuss a third conceivable configuration denoted as ``split core'', which brings us to some details of the numerical methods we employed. We argue that a core instability of 't Hooft Polyakov type monopoles is quite a generic feature of models with charged Higgs particles.

  8. Careers in conditions of instability

    Hohlova Valentina Vasil'evna

    2016-04-01

    Full Text Available The purpose of this work is the research of the social-economic phenomenon of a career as a result of conscious human position and behaviour in the field of employment, which is connected with job and professional growth, as a chain of events which are components of life, the sequence of professional activities and other biographical roles, which all together express the commitment of a person’s activity according to his generalized model of self-development. On the basis of the theoretical analysis the dependence of making a career in the condition of instability and indefiniteness on job market flexibility, erosion and even the destruction of the usual way of life and labor relations. The career concepts under the conditions of flexible capitalism and of career policy as the typology of empiric differences of job biographic models are considered. The peculiarity of the proposed career policy concept is that its individual alternatives of career making oppose to organization management and personal demands: the difference between a professional’s wishes and a specific strategy of the development phases are quite noticeable. According to the results of empiric research carried out through the methods of interview, polling, expert assessment, the analysis of the received results, the mathematical data processing the basic types of the career policy and its connection with the organization’s personal development are revealed.

  9. Boyle's law and gravitational instability

    Lombardi, M; Lombardi, Marco; Bertin, Giuseppe

    2001-01-01

    We have re-examined the classical problem of the macroscopic equation of state for a hydrostatic isothermal self-gravitating gas cloud bounded by an external medium at constant pressure. We have obtained analytical conditions for its equilibrium and stability without imposing any specific shape and symmetry to the cloud density distribution. The equilibrium condition can be stated in the form of an upper limit to the cloud mass; this is found to be inversely proportional to the power 3/2 of a form factor \\mu characterizing the shape of the cloud. In this respect, the spherical solution, associated with the maximum value of the form factor, \\mu = 1, turns out to correspond to the shape that is most difficult to realize. Surprisingly, the condition that defines the onset of the Bonnor instability (or gravothermal catastrophe) can be cast in the form of an upper limit to the density contrast within the cloud that is independent of the cloud shape. We have then carried out a similar analysis in the two-dimensiona...

  10. Magnetorotational instability in protoplanetary discs

    Salmeron, Roberto Aureliano; Salmeron, Raquel; Wardle, Mark

    2004-01-01

    We investigate the linear growth and vertical structure of the magnetorotational instability (MRI) in weakly ionised, stratified accretion discs. The magnetic field is initially vertical and dust grains are assumed to have settled towards the midplane, so charges are carried by electrons and ions only. Solutions are obtained at representative radial locations from the central protostar for different choices of the initial magnetic field strength, sources of ionisation, and disc surface density. The MRI is active over a wide range of magnetic field strengths and fluid conditions in low conductivity discs. For the minimum-mass solar nebula model, incorporating cosmic ray ionisation, perturbations grow at 1 AU for B < 8 G. For a significant subset of these strengths (0.2 - 5 G), the growth rate is of order the ideal MHD rate (0.75 Omega). Similarly, when cosmic rays are assumed to be excluded from the disc by the winds emitted by the magnetically active protostar, unstable modes grow at this radius for B less...

  11. The azimuthal magnetorotational instability (AMRI)

    Ruediger, G; Schultz, M; Hollerbach, R; Stefani, F

    2013-01-01

    We consider the interaction of differential rotation and toroidal fields that are current-free in the gap between two corotating axially unbounded cylinders. It is shown that nonaxisymmetric perturbations are unstable if the rotation rate and Alfven frequency of the field are of the same order almost independent of the magnetic Prandtl number Pm. For the very steep rotation law \\Omega\\propto R^{-2} (the Rayleigh limit) this Azimuthal MagnetoRotational Instability (AMRI) scales with the ordinary Reynolds number and the Hartmann number, which allows a laboratory experiment with liquid metals like sodium or gallium in a Taylor-Couette container. The growth rate of AMRI scales with \\Omega^2 in the low-conductivity limit and with \\Omega in the high-conductivity limit. For the weakly nonlinear system the numerical values of the kinetic energy and the magnetic energy are derived for magnetic Prandtl numbers between 0.05 and unity. We find that the magnetic energy scales with the magnetic Reynolds number Rm, while th...

  12. Thermal instability of cell nuclei

    Warmt, Enrico; Kießling, Tobias R.; Stange, Roland; Fritsch, Anatol W.; Zink, Mareike; Käs, Josef A.

    2014-07-01

    DNA is known to be a mechanically and thermally stable structure. In its double stranded form it is densely packed within the cell nucleus and is thermo-resistant up to 70\\:^\\circ {\\rm{C}}. In contrast, we found a sudden loss of cell nuclei integrity at relatively moderate temperatures ranging from 45 to 55\\:^\\circ {\\rm{C}}. In our study, suspended cells held in an optical double beam trap were heated under controlled conditions while monitoring the nuclear shape. At specific critical temperatures, an irreversible sudden shape transition of the nuclei was observed. These temperature induced transitions differ in abundance and intensity for various normal and cancerous epithelial breast cells, which clearly characterizes different cell types. Our results show that temperatures slightly higher than physiological conditions are able to induce instabilities of nuclear structures, eventually leading to cell death. This is a surprising finding since recent thermorheological cell studies have shown that cells have a lower viscosity and are thus more deformable upon temperature increase. Since the nucleus is tightly coupled to the outer cell shape via the cytoskeleton, the force propagation of nuclear reshaping to the cell membrane was investigated in combination with the application of cytoskeletal drugs.

  13. Transient spirals as superposed instabilities

    Sellwood, J. A. [Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Carlberg, R. G., E-mail: sellwood@physics.rutgers.edu, E-mail: carlberg@astro.utoronto.ca [Department of Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3H4 (Canada)

    2014-04-20

    We present evidence that recurrent spiral activity, long manifested in simulations of disk galaxies, results from the superposition of a few transient spiral modes. Each mode lasts between 5 and 10 rotations at its corotation radius where its amplitude is greatest. The scattering of stars as each wave decays takes place over narrow ranges of angular momentum, causing abrupt changes to the impedance of the disk to subsequent traveling waves. Partial reflections of waves at these newly created features allows new standing-wave instabilities to appear that saturate and decay in their turn, scattering particles at new locations, creating a recurring cycle. The spiral activity causes the general level of random motion to rise, gradually decreasing the ability of the disk to support further activity unless the disk contains a dissipative gas component from which stars form on near-circular orbits. We also show that this interpretation is consistent with the behavior reported in other recent simulations with low-mass disks.

  14. Pulsational-Pair Instability Supernovae

    Woosley, S E

    2016-01-01

    The final evolution of stars in the mass range 60 - 150 solar masses is explored. Depending upon their mass loss and rotation rates, many of these stars will end their lives as pulsational pair-instability supernovae. Even a non-rotating 70 solar mass star is pulsationally unstable during oxygen shell burning and can power a sub-luminous supernova. Rotation decreases the limit further. For more massive stars, the pulsations are less frequent, span a longer time, and are more powerful. Violent pulsations eject not only any residual low density envelope, but also that fraction of the helium core mass outside about 35 - 50 solar masses. The remaining core of helium and heavy elements continues to evolve, ultimately forming an iron core of about 2.5 solar masses that probably collapses to a black hole. A variety of observational transients result with total durations ranging from days to 10,000 years, and luminosities from 10$^{41}$ to 10$^{44}$ erg s$^{-1}$. Many transients resemble ordinary Type IIp supernovae,...

  15. Taylor Instability of Incompressible Liquids

    Fermi, E.; von Neumann, J.

    1955-11-01

    A discussion is presented in simplified form of the problem of the growth of an initial ripple on the surface of an incompressible liquid in the presence of an acceleration, g, directed from the outside into the liquid. The model is that of a heavy liquid occupying at t = 0 the half space above the plane z = 0, and a rectangular wave profile is assumed. The theory is found to represent correctly one feature of experimental results, namely the fact that the half wave of the heavy liquid into the vacuum becomes rapidly narrower while the half wave pushing into the heavy liquid becomes more and more blunt. The theory fails to account for the experimental results according to which the front of the wave pushing into the heavy liquid moves with constant velocity. The case of instability at the boundary of 2 fluids of different densities is also explored. Similar results are obtained except that the acceleration of the heavy liquid into the light liquid is reduced.

  16. Nonlinear electrostatic drift Kelvin-Helmholtz instability

    Sharma, Avadhesh C.; Srivastava, Krishna M.

    1993-01-01

    Nonlinear analysis of electrostatic drift Kelvin-Helmholtz instability is performed. It is shown that the analysis leads to the propagation of the weakly nonlinear dispersive waves, and the nonlinear behavior is governed by the nonlinear Burger's equation.

  17. Can dust coagulation trigger streaming instability?

    Drazkowska, Joanna

    2014-01-01

    Streaming instability can be a very efficient way of overcoming growth and drift barriers to planetesimal formation. However, it was shown that strong clumping, which leads to planetesimal formation, requires a considerable number of large grains. State-of-the-art streaming instability models do not take into account realistic size distributions resulting from the collisional evolution of dust. We investigate whether a sufficient quantity of large aggregates can be produced by sticking and what the interplay of dust coagulation and planetesimal formation is. We develop a semi-analytical prescription of planetesimal formation by streaming instability and implement it in our dust coagulation code based on the Monte Carlo algorithm with the representative particles approach. We find that planetesimal formation by streaming instability may preferentially work outside the snow line, where sticky icy aggregates are present. The efficiency of the process depends strongly on local dust abundance and radial pressure g...

  18. Electrocapillary instability of magnetic fluid peak

    Mkrtchyan, Levon; Dikansky, Yuri

    2013-01-01

    The paper presents an experimental study of the capillary electrostatic instability occurring under effect of a constant electric field on a magnetic fluid individual peak. The peaks under study occur at disintegration of a magnetic fluid layer applied on a flat electrode surface under effect of a perpendicular magnetic field. The electrocapillary instability shows itself as an emission of charged drops jets from the peak point in direction of the opposing electrode. The charged drops emission repeats periodically and results in the peak shape pulsations. It is shown that a magnetic field affects the electrocapillary instability occurrence regularities and can stimulate its development. The critical electric and magnetic field strengths at which the instability occurs have been measured; their dependence on the peak size is shown. The hysteresis in the system has been studied; it consists in that the charged drops emission stops at a lesser electric (or magnetic) field strength than that of the initial occurr...

  19. Interfacial fluid instabilities and Kapitsa pendula

    Krieger, Madison Ski

    2015-01-01

    The onset and development of instabilities is one of the central problems in fluid mechanics. Here we develop a connection between instabilities of free fluid interfaces and inverted pendula. When acted upon solely by the gravitational force, the inverted pendulum is unstable. This position can be stabilised by the Kapitsa phenomenon, in which high-frequency low-amplitude vertical vibrations of the base creates a fictitious force which opposes the gravitational force. By transforming the dynamical equations governing a fluid interface into an appropriate pendulum, we demonstrate how stability can be induced in fluid systems by properly tuned vibrations. We construct a "dictionary"-type relationship between various pendula and the classical Rayleigh-Taylor, Kelvin-Helmholtz, Rayleigh-Plateau and the self-gravitational instabilities. This makes several results in control theory and dynamical systems directly applicable to the study of "tunable" fluid instabilities, where the critical wavelength depends on the e...

  20. Fluid description for the resonant Weibel instability

    Sarrat, M; Ghizzo, A

    2016-01-01

    We discuss a fluid model with inclusion of the complete pressure tensor dynamics for the description of Weibel type instabilities in a counterstreaming beams configuration. Differently from the case recently studied in Sarrat et al. 2016, where perturbations perpendicular to the beams were considered, here we focus only on modes propagating along the beams. Such a configuration is responsible for the growth of two kind of instabilities, the Two-Stream Instability and the Weibel instability, which in this geometry becomes "time-resonant", i.e. propagative. This fluid description agrees with the kinetic one and makes it possible e.g. to identify the transition between non-propagative and propagative Weibel modes, already evidenced by Lazar et al. 2009 as a "slope-breaking" of the growth rate, in terms of a merger of two non propagative Weibel modes.

  1. Experimental Replication of an Aeroengine Combustion Instability

    Cohen, J. M.; Hibshman, J. R.; Proscia, W.; Rosfjord, T. J.; Wake, B. E.; McVey, J. B.; Lovett, J.; Ondas, M.; DeLaat, J.; Breisacher, K.

    2000-01-01

    Combustion instabilities in gas turbine engines are most frequently encountered during the late phases of engine development, at which point they are difficult and expensive to fix. The ability to replicate an engine-traceable combustion instability in a laboratory-scale experiment offers the opportunity to economically diagnose the problem (to determine the root cause), and to investigate solutions to the problem, such as active control. The development and validation of active combustion instability control requires that the causal dynamic processes be reproduced in experimental test facilities which can be used as a test bed for control system evaluation. This paper discusses the process through which a laboratory-scale experiment was designed to replicate an instability observed in a developmental engine. The scaling process used physically-based analyses to preserve the relevant geometric, acoustic and thermo-fluid features. The process increases the probability that results achieved in the single-nozzle experiment will be scalable to the engine.

  2. The Growth Effects of Institutional Instability

    Berggren, Niclas; Bergh, Andreas; Bjørnskov, Christian

    the growth effects of institutional quality and instability, using the political risk index from the ICRG in a cross-country study of 132 countries, measuring instability as the coefficient of variation. Using the aggregate index, we find evidence that institutional quality is positively linked to growth...... Both institutional quality and institutional stability have been argued to stimulate economic growth. But to improve institutional quality, a country must endure a period of institutional change, which implies at least a little and possibly a lot of institutional instability. We investigate....... While institutional instability is negatively related to growth in the baseline case, there are indications that the effect can be positive in rich countries, suggesting that institutional reform is not necessarily costly even during a transition period. Sensitivity analysis, e.g., decomposing...

  3. Elliptical instability in terrestrial planets and moons

    Cébron, David; Moutou, Claire; Gal, Patrice Le; 10.1051/0004-6361/201117741

    2012-01-01

    The presence of celestial companions means that any planet may be subject to three kinds of harmonic mechanical forcing: tides, precession/nutation, and libration. These forcings can generate flows in internal fluid layers, such as fluid cores and subsurface oceans, whose dynamics then significantly differ from solid body rotation. In particular, tides in non-synchronized bodies and libration in synchronized ones are known to be capable of exciting the so-called elliptical instability, i.e. a generic instability corresponding to the destabilization of two-dimensional flows with elliptical streamlines, leading to three-dimensional turbulence. We aim here at confirming the relevance of such an elliptical instability in terrestrial bodies by determining its growth rate, as well as its consequences on energy dissipation, on magnetic field induction, and on heat flux fluctuations on planetary scales. Previous studies and theoretical results for the elliptical instability are re-evaluated and extended to cope with ...

  4. Zonostrophic instability driven by discrete particle noise

    St-Onge, D A

    2016-01-01

    The consequences of discrete particle noise for a system possessing a possibly unstable collective mode are discussed. It is argued that a zonostrophic instability (of homogeneous turbulence to the formation of zonal flows) occurs just below the threshold for linear instability. The scenario provides a new interpretation of the random forcing that is ubiquitously invoked in stochastic models such as the second-order cumulant expansion (CE2) or stochastic structural instability theory (SSST); neither intrinsic turbulence nor coupling to extrinsic turbulence is required. A representative calculation of the zonostrophic neutral curve is made for a simple two-field model of toroidal ion-temperature-gradient-driven modes. To the extent that the damping of zonal flows is controlled by the ion--ion collision rate, the point of zonostrophic instability is independent of that rate.

  5. Magnetorotational Explosive Instability in Keplerian Disks

    Shtemler, Yuri; Mond, Michael

    2015-01-01

    In this paper it is shown that deferentially rotating disks that are in the presence of weak axial magnetic field are prone to a new nonlinear explosive instability. The latter occurs due to the near-resonance three-wave interactions of a magnetorotational instability with stable Alfven-Coriolis and magnetosonic modes. The dynamical equations that govern the temporal evolution of the amplitudes of the three interacting modes are derived. Numerical solutions of the dynamical equations indicate that small frequency mismatch gives rise to two types of behavior: 1. explosive instability which leads to infinite values of the three amplitudes within a finite time, and 2. bounded irregular oscillations of all three amplitudes. Asymptotic solutions of the dynamical equations are obtained for the explosive instability regimes and are shown to match the numerical solutions near the explosion time.

  6. Shear instabilities in shallow-water magnetohydrodynamics

    Mak, Julian; Hughes, D W

    2016-01-01

    Within the framework of shallow-water magnetohydrodynamics, we investigate the linear instability of horizontal shear flows, influenced by an aligned magnetic field and stratification. Various classical instability results, such as H{\\o}iland's growth rate bound and Howard's semi-circle theorem, are extended to this shallow-water system for quite general profiles. Two specific piecewise-constant velocity profiles, the vortex sheet and the rectangular jet, are studied analytically and asymptotically; it is found that the magnetic field and stratification (as measured by the Froude number) are generally both stabilising, but weak instabilities can be found at arbitrarily large Froude number. Numerical solutions are computed for corresponding smooth velocity profiles, the hyperbolic-tangent shear layer and the Bickley jet, for a uniform background field. A generalisation of the long-wave asymptotic analysis of Drazin & Howard (1962) is employed in order to understand the instability characteristics for both ...

  7. Overview of Rayleigh-Taylor instability

    Sharp, D.H.

    1983-01-01

    The aim of this talk is to survey Rayleigh-Taylor instability, describing the phenomenology that occurs at a Taylor unstable interface, and reviewing attempts to understand these phenomena quantitatively.

  8. Correction due to finite speed of light in absolute gravimeters

    Nagornyi, V D; Zanimonskiy, Y Y

    2010-01-01

    Correction due to finite speed of light is among the most inconsistent ones in absolute gravimetry. Formulas reported by different authors yield corrections scattered up to 8 $\\mu$Gal with no obvious reasons. The problem, though noted before, has never been studied, and nowadays the correction is rather postulated than rigorously proven. In this paper we investigate the problem from several prospectives, find the corrections for different types of absolute gravimeters, and establish relationships between different ways of implement them. The obtained results enabled us to analyze and understand the discrepancies in the results of other authors. We found that the correction derived from the Doppler effect is accountable only for $\\tfrac{2}{3}$ of the total correction due to finite speed of light, if no signal delays are considered. Another major source of inconsistency was found in the tacit use of simplified trajectory models.

  9. Combinatorial Selection and Least Absolute Shrinkage via the CLASH Algorithm

    Kyrillidis, Anastasios

    2012-01-01

    The least absolute shrinkage and selection operator (LASSO) for linear regression exploits the geometric interplay of the $\\ell_2$-data error objective and the $\\ell_1$-norm constraint to arbitrarily select sparse models. Guiding this uninformed selection process with sparsity models has been precisely the center of attention over the last decade in order to improve learning performance. To this end, we alter the selection process of LASSO to explicitly leverage combinatorial sparsity models (CSMs) via the combinatorial selection and least absolute shrinkage (CLASH) operator. We provide concrete guidelines how to leverage combinatorial constraints within CLASH, and characterize CLASH's guarantees as a function of the set restricted isometry constants of the sensing matrix. Finally, our experimental results show that CLASH can outperform both LASSO and model-based compressive sensing in sparse estimation.

  10. Determination of absolute internal conversion coefficients using the SAGE spectrometer

    Sorri, J.; Greenlees, P. T.; Papadakis, P.; Konki, J.; Cox, D. M.; Auranen, K.; Partanen, J.; Sandzelius, M.; Pakarinen, J.; Rahkila, P.; Uusitalo, J.; Herzberg, R.-D.; Smallcombe, J.; Davies, P. J.; Barton, C. J.; Jenkins, D. G.

    2016-03-01

    A non-reference based method to determine internal conversion coefficients using the SAGE spectrometer is carried out for transitions in the nuclei of 154Sm, 152Sm and 166Yb. The Normalised-Peak-to-Gamma method is in general an efficient tool to extract internal conversion coefficients. However, in many cases the required well-known reference transitions are not available. The data analysis steps required to determine absolute internal conversion coefficients with the SAGE spectrometer are presented. In addition, several background suppression methods are introduced and an example of how ancillary detectors can be used to select specific reaction products is given. The results obtained for ground-state band E2 transitions show that the absolute internal conversion coefficients can be extracted using the methods described with a reasonable accuracy. In some cases of less intense transitions only an upper limit for the internal conversion coefficient could be given.

  11. Automated absolute phase retrieval in across-track interferometry

    Madsen, Soren N.; Zebker, Howard A.

    1992-01-01

    Discussed is a key element in the processing of topographic radar maps acquired by the NASA/JPL airborne synthetic aperture radar configured as an across-track interferometer (TOPSAR). TOPSAR utilizes a single transmit and two receive antennas; the three-dimensional target location is determined by triangulation based on a known baseline and two measured slant ranges. The slant range difference is determined very accurately from the phase difference between the signals received by the two antennas. This phase is measured modulo 2pi, whereas it is the absolute phase which relates directly to the difference in slant range. It is shown that splitting the range bandwidth into two subbands in the processor and processing each individually allows for the absolute phase. The underlying principles and system errors which must be considered are discussed, together with the implementation and results from processing data acquired during the summer of 1991.

  12. Absolute configuration of labdane diterpenoids from Physalis nicandroides.

    Maldonado, Emma; Pérez-Castorena, Ana L; Romero, Yunuen; Martínez, Mahinda

    2015-02-27

    A mixture of the new epimeric labdenetriols 1 and 2 was isolated from the aerial parts of Physalis nicandroides. The structures of 1 and 2, including their absolute configurations, were established by analyses of their spectroscopic data, together with the X-ray diffraction analysis of acetonide 3 and chemical correlation with (-)-(13E)-labd-13-ene-8α,15-diol (6), whose absolute configuration was also confirmed by X-ray analysis of its dibromo derivative 7. The epimeric labdenediols 8 and 9, the known labdanes 6 and 11, and the acylsucroses 12 and 13 were also isolated. Labdanes 6 and 11 showed moderate anti-inflammatory activities in the induced ear edema model.

  13. Determination of absolute internal conversion coefficients using the SAGE spectrometer

    Sorri, J., E-mail: juha.m.t.sorri@jyu.fi [University of Jyvaskyla, Department of Physics, P.O. Box 35, FI-40014 University of Jyvaskyla (Finland); Greenlees, P.T.; Papadakis, P.; Konki, J. [University of Jyvaskyla, Department of Physics, P.O. Box 35, FI-40014 University of Jyvaskyla (Finland); Cox, D.M. [University of Jyvaskyla, Department of Physics, P.O. Box 35, FI-40014 University of Jyvaskyla (Finland); Department of Physics, University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom); Auranen, K.; Partanen, J.; Sandzelius, M.; Pakarinen, J.; Rahkila, P.; Uusitalo, J. [University of Jyvaskyla, Department of Physics, P.O. Box 35, FI-40014 University of Jyvaskyla (Finland); Herzberg, R.-D. [Department of Physics, University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom); Smallcombe, J.; Davies, P.J.; Barton, C.J.; Jenkins, D.G. [Department of Physics, University of York, Heslington, York YO10 5DD (United Kingdom)

    2016-03-11

    A non-reference based method to determine internal conversion coefficients using the SAGE spectrometer is carried out for transitions in the nuclei of {sup 154}Sm, {sup 152}Sm and {sup 166}Yb. The Normalised-Peak-to-Gamma method is in general an efficient tool to extract internal conversion coefficients. However, in many cases the required well-known reference transitions are not available. The data analysis steps required to determine absolute internal conversion coefficients with the SAGE spectrometer are presented. In addition, several background suppression methods are introduced and an example of how ancillary detectors can be used to select specific reaction products is given. The results obtained for ground-state band E2 transitions show that the absolute internal conversion coefficients can be extracted using the methods described with a reasonable accuracy. In some cases of less intense transitions only an upper limit for the internal conversion coefficient could be given.

  14. Remote ultrasound palpation for robotic interventions using absolute elastography.

    Schneider, Caitlin; Baghani, Ali; Rohling, Robert; Salcudean, Septimiu

    2012-01-01

    Although robotic surgery has addressed many of the challenges presented by minimally invasive surgery, haptic feedback and the lack of knowledge of tissue stiffness is an unsolved problem. This paper presents a system for finding the absolute elastic properties of tissue using a freehand ultrasound scanning technique, which utilizes the da Vinci Surgical robot and a custom 2D ultrasound transducer for intraoperative use. An external exciter creates shear waves in the tissue, and a local frequency estimation method computes the shear modulus. Results are reported for both phantom and in vivo models. This system can be extended to any 6 degree-of-freedom tracking method and any 2D transducer to provide real-time absolute elastic properties of tissue.

  15. Demonstrating an absolute quantum advantage in direct absorption measurement

    Moreau, Paul-Antoine; Whittaker, Rebecca; Joshi, Siddarth K; Birchall, Patrick; McMillan, Alex; Rarity, John G; Matthews, Jonathan C F

    2016-01-01

    Engineering apparatus that harness quantum theory offers practical advantages over current technology. A fundamentally more powerful prospect is the long-standing prediction that such quantum technologies could out-perform any future iteration of their classical counterparts, no matter how well the attributes of those classical strategies can be improved. Here, we experimentally demonstrate such an instance of \\textit{absolute} advantage per photon probe in the precision of optical direct absorption measurement. We use correlated intensity measurements of spontaneous parametric downconversion using a commercially available air-cooled CCD, a new estimator for data analysis and a high heralding efficiency photon-pair source. We show this enables improvement in the precision of measurement, per photon probe, beyond what is achievable with an ideal coherent state (a perfect laser) detected with $100\\%$ efficient and noiseless detection. We see this absolute improvement for up to $50\\%$ absorption, with a maximum ...

  16. Absolute limit on rotation of gravitationally bound stars

    Glendenning, N. K.

    1994-03-01

    The authors seek an absolute limit on the rotational period for a neutron star as a function of its mass, based on the minimal constraints imposed by Einstein's theory of relativity, Le Chatelier's principle, causality, and a low-density equation of state, uncertainties which can be evaluated as to their effect on the result. This establishes a limiting curve in the mass-period plane below which no pulsar that is a neutron star can lie. For example, the minimum possible Kepler period, which is an absolute limit on rotation below which mass-shedding would occur, is 0.33 ms for a M = 1.442 solar mass neutron star (the mass of PSR1913+16). If the limit were found to be broken by any pulsar, it would signal that the confined hadronic phase of ordinary nucleons and nuclei is only metastable.

  17. Simultaneously improving the sensitivity and absolute accuracy of CPT magnetometer.

    Liang, Shang-Qing; Yang, Guo-Qing; Xu, Yun-Fei; Lin, Qiang; Liu, Zhi-Heng; Chen, Zheng-Xiang

    2014-03-24

    A new method to improve the sensitivity and absolute accuracy simultaneously for coherent population trapping (CPT) magnetometer based on the differential detection method is presented. Two modulated optical beams with orthogonal circular polarizations are applied, in one of which two magnetic resonances are excited simultaneously by modulating a 3.4GHz microwave with Larmor frequency. When a microwave frequency shift is introduced, the difference in the power transmitted through the cell in each beam shows a low noise resonance. The sensitivity of 2pT/Hz @ 10Hz is achieved. Meanwhile, the absolute accuracy of ± 0.5nT within the magnetic field ranging from 20000nT to 100000nT is realized.

  18. Determination of the Absolute Luminosity at the LHC

    White, Simon Mathieu; Puzo, P

    2010-01-01

    For particle colliders, the most important performance parameters are the beam energy and the luminosity. High energies allow the particle physics experiments to study and observe new effects. The luminosity describes the ability of the collider to produce the required number of useful interactions or events. It is defined as the proportionality factor between the event rate, measured by the experiments, and the cross section of the observed event which describes its probability to occur. The absolute knowledge of the luminosity therefore allows for the experiments to measure the absolute cross sections. The Large Hadron Collider (LHC) was designed to produce proton proton collisions at a center of mass energy of 14 TeV. This energy would be the highest ever reached in a particle accelerator. The knowledge and understanding of particle physics at such high energy is based on simulations and theoretical predictions. As opposed to e+ e- colliders, for which the Bhabba scattering cross section can be accurately ...

  19. Enantiomers of a nonylphenol isomer: absolute configurations and estrogenic potencies.

    Zhang, Haifeng; Oppel, Iris M; Spiteller, Michael; Guenther, Klaus; Boehmler, Gabriele; Zuehlke, Sebastian

    2009-02-01

    Enantiomers of 4-(1,1,2-trimethylhexyl)phenol, a chiral isomer of the endocrine disrupting chemical nonylphenol, have been resolved and isolated by preparative chiral HPLC. The absolute configurations of the enantiomers were then determined by an X-ray crystallographic study of the (-)-camphanoyl derivative of the first eluted enantiomer NP(35)E1. The first enantiomer (NP(35)E1) and the second enantiomer (NP(35)E2) eluted were found to have the S and R absolute configurations, respectively. The estrogenic potencies of the S and R enantiomers were tested by the E-screen assay. A slight difference was observed in the relative proliferative effect between the S enantiomer and R enantiomer in the E-screen assay.

  20. Rational functions with maximal radius of absolute monotonicity

    Loczi, Lajos

    2014-05-19

    We study the radius of absolute monotonicity R of rational functions with numerator and denominator of degree s that approximate the exponential function to order p. Such functions arise in the application of implicit s-stage, order p Runge-Kutta methods for initial value problems and the radius of absolute monotonicity governs the numerical preservation of properties like positivity and maximum-norm contractivity. We construct a function with p=2 and R>2s, disproving a conjecture of van de Griend and Kraaijevanger. We determine the maximum attainable radius for functions in several one-parameter families of rational functions. Moreover, we prove earlier conjectured optimal radii in some families with 2 or 3 parameters via uniqueness arguments for systems of polynomial inequalities. Our results also prove the optimality of some strong stability preserving implicit and singly diagonally implicit Runge-Kutta methods. Whereas previous results in this area were primarily numerical, we give all constants as exact algebraic numbers.

  1. ON THE INSTABILITY OF THE RAILWAY VEHICLES

    Traian MAZILU

    2011-11-01

    Full Text Available The railway vehicles have two sources of instability. The most common is the hunting induced by the reversed conic shape of the rolling surfaces of the wheels. The other one is related by the anomalous Doppler effect that can occurs when the train velocity exceeds the phase velocity of the waves induced in the track structure. Some aspects regarding the two sources of instability are presented.

  2. Systematics of shoulder instability; Systematik der Schulterinstabilitaet

    Kreitner, K.F.; Maehringer-Kunz, A. [Johannes-Gutenberg-Universitaet Mainz, Klinik und Poliklinik fuer Diagnostische und Interventionelle Radiologie, Mainz (Germany)

    2015-03-01

    Shoulder instability is defined as a symptomatic abnormal motion of the humeral head relative to the glenoid during active shoulder motion. Glenohumeral instabilities are classified according to the causative factors as the pathogenesis of instability plays an important role with respect to treatment options. Instabilities are classified into traumatic and atraumatic instabilities as part of a multidirectional instability syndrome and into microtraumatic instabilities. For diagnostics plain radiographs (''trauma series'') are performed to document shoulder dislocation and its successful repositioning. Direct magnetic resonance (MR) arthrography is the most important imaging modality for delineation of the different injury patterns of the labral-ligamentous complex and bony structures. Monocontrast computed tomography (CT) arthrography with the use of multidetector CT scanners represents an alternative imaging modality; however, MR imaging should be preferred in the work-up of shoulder instabilities due to the mostly younger age of patients. (orig.) [German] Unter einer Schulterinstabilitaet versteht man jede zu Beschwerden fuehrende Translation des Humeruskopfs in Relation zur Gelenkpfanne waehrend einer aktiven Bewegung der Schulter. Glenohumerale Instabilitaeten werden heute nach ihrer Aetiologie eingeteilt, da bei der Wahl der Therapie der Entstehungsmechanismus der Instabilitaet eine wichtige Rolle spielt. Danach unterscheidet man primaer traumatisch von atraumatisch entstandenen Instabilitaeten sowie Mikroinstabilitaeten. Bei der Diagnostik dienen konventionelle Roentgenuebersichtsaufnahmen nur noch zur Dokumentation einer Luxation und zur Beurteilung der Reposition. Die durch eine Instabilitaet hervorgerufenen Verletzungsfolgen am labroligamentaeren Komplex und den knoechernen Strukturen werden heute bevorzugt mit der direkten MR-Arthrographie dargestellt. Hierbei koennen unterschiedliche Verletzungsmuster dargestellt werden. Nach

  3. Resonant Triad Instability in Stratified Fluids

    Joubaud, Sylvain; Odier, Philippe; Dauxois, Thierry

    2012-01-01

    Internal gravity waves contribute to fluid mixing and energy transport, not only in oceans but also in the atmosphere and in astrophysical bodies. We provide here the first experimental measurement of the growth rate of a resonant triad instability (also called parametric subharmonic instability) transferring energy to smaller scales where it is dissipated. We make careful and quantitative comparisons with theoretical predictions for propagating vertical modes in laboratory experiments.

  4. Weibel instability in relativistic quantum plasmas

    Mendonça, J. T.; Brodin, G.

    2015-08-01

    Generation of quasi-static magnetic fields, due to the Weibel instability is studied in a relativistic quantum plasma. This instability is induced by a temperature anisotropy. The dispersion relation and growth rates for low frequency electromagnetic perturbations are derived using a wave-kinetic equation which describes the evolution of the electron Wigner quasi-distribution. The influence of parallel kinetic effects is discussed in detail.

  5. A hydrodynamic approach to QGP instabilities

    Calzetta, E

    2013-01-01

    We show that the usual linear analysis of QGP Weibel instabilities based on the Maxwell-Boltzmann equation may be reproduced in a purely hydrodynamic model. The latter is derived by the Entropy Production Variational Method from a transport equation including collisions, and can describe highly nonequilibrium flow. We find that, as expected, collisions slow down the growth of Weibel instabilities. Finally, we discuss the strong momentum anisotropy limit.

  6. Jeans instability in the linearized Burnett regime

    García-Colin, L S

    2005-01-01

    Jeans instability is derived for the case of a low density self-gravitating gas beyond the Navier-Stokes equations. The Jeans instability criterium is shown to depend on a Burnett coefficient if the formalism is taken up to fourth order in the wave number. It is also shown that previously known viscosity corrections to the Jeans wave-number are enhanced if the full fourth order formalism is applied to the stability analysis.

  7. Energetic particle instabilities in fusion plasmas

    Sharapov, S E; Berk, H L; Borba, D N; Breizman, B N; Challis, C D; Classen, I G J; Edlund, E M; Eriksson, J; Fasoli, A; Fredrickson, E D; Fu, G Y; Garcia-Munoz, M; Gassner, T; Ghantous, K; Goloborodko, V; Gorelenkov, N N; Gryaznevich, M P; Hacquin, S; Heidbrink, W W; Hellesen, C; Kiptily, V G; Kramer, G J; Lauber, P; Lilley, M K; Lisak, M; Nabais, F; Nazikian, R; Nyqvist, R; Osakabe, M; von Thun, C Perez; Pinches, S D; Podesta, M; Porkolab, M; Shinohara, K; Schoepf, K; Todo, Y; Toi, K; Van Zeeland, M A; Voitsekhovich, I; White, R B; Yavorskij, V; TG, ITPA EP; Contributors, JET-EFDA

    2013-01-01

    Remarkable progress has been made in diagnosing energetic particle instabilities on present-day machines and in establishing a theoretical framework for describing them. This overview describes the much improved diagnostics of Alfven instabilities and modelling tools developed world-wide, and discusses progress in interpreting the observed phenomena. A multi-machine comparison is presented giving information on the performance of both diagnostics and modelling tools for different plasma conditions outlining expectations for ITER based on our present knowledge.

  8. Summary of impedance issues and beam instabilities

    Zimmermann, Frank

    2016-01-01

    This paper summarizes the session on impedance issues and beam instabilities at the ICFA workshop on future circular electron-positron factories “eeFACT2016” [1] held at the Cockcroft Institute, Daresbury, from 24 to 27 October 2016. This session also covered active beam stabilization by feedback systems. Beam-beam effects and coherent beambeam instabilities were addressed separately and, therefore, are not included here.

  9. Plasma wave instabilities in nonequilibrium graphene

    Aryal, Chinta M.; Hu, Ben Yu-Kuang; Jauho, Antti-Pekka

    2016-01-01

    We study two-stream instabilities in a nonequilibrium system in which a stream of electrons is injected into doped graphene. As with equivalent nonequilibrium parabolic band systems, we find that the graphene systems can support unstable charge-density waves whose amplitudes grow with time. We...... of the injected electrons that maximizes the growth rate increases with increasing | q |. We compare the range and strength of the instability in graphene to that of two- and three-dimensional parabolic band systems....

  10. Electroweak Absolute, Meta-, and Thermal Stability in Neutrino Mass Models

    Lindner, Manfred; Radovčić, Branimir

    2015-01-01

    We analyze the stability of the electroweak vacuum in neutrino mass models containing right handed neutrinos or fermionic isotriplets. In addition to considering absolute stability, we place limits on the Yukawa couplings of new fermions based on metastability and thermal stability in the early Universe. Our results reveal that the upper limits on the neutrino Yukawa couplings can change significantly when the top quark mass is allowed to vary within the experimental range of uncertainty in its determination.

  11. Relative or Absolute Poverty Lines - A New Approach

    Madden, David

    1999-01-01

    When measuring poverty over time analysts must choose the value of the income elasticity of the poverty line, which essentially determines whether an absolute or relative poverty line is being used. The choice of this parameter is ultimately a value judgement but this paper suggests an approach which has some empirical basis. Borrowing from the life-style and deprivation approach to poverty various dimensions of poverty and deprivation are identified and the income elasticity of these items i...

  12. Crystal structure of meteoritic schreibersites: determination of absolute structure

    Skála, Roman; Císařová, Ivana

    Minerals of the schreibersite nickelphosphide series (Fe,Ni)3P crystallize in the non-centrosymmetric space group Ibar 4. As a consequence, they can possess two different spatial arrangements of the constituting atoms within the unit cell, related by the inversion symmetry operation. Here, we present the crystal structure refinements from single crystal X-ray diffraction data for schreibersite grains from iron meteorites Acuña, Carlton, Hex River Mts. (three different crystals), Odessa (two different crystals), Sikhote Alin, and Toluca aiming for the determination of the absolute structure of the examined crystals. The crystals studied cover the composition range from 58 mol% to 80 mol% Fe3P end-member. Unit-cell parameter a and volume of the unit cell V, as well as certain topological structural parameters tightly correlate with Fe3P content. Unit-cell parameter c, on the other hand, does not show such strong correlation. Eight of the nine crystal structure refinements allowed unambiguous absolute structure assignment. The single crystal extracted from Toluca is, however, of poor quality and consequently the structure refinement did not provide as good results as the rest of the materials. Also, this crystal has only weak inversion distinguishing power to provide unequivocal absolute structure determination. Six of the eight unambiguous absolute structure determinations indicated inverted atomic arrangement compared to that reported in earlier structure refinements (here called standard). Only two grains, one taken from Odessa iron and the other from the Hex River Mts. meteorite, reveal the dominance of standard crystal structure setting.

  13. ABSTRACT FUNCTIONS OF BOUNDED VARIATION AND ABSOLUTE CONTINUITY

    WuCongxin; LiuTiefu

    1994-01-01

    As well known that in 1938,I. M. Gelfand firstly introduced abstract functions of bounded variation from [a,b] to a Banach space. After Gelfand's work,many mathematicians investigated various properties and of this kind of abstract functions, and also paid attention to the abstract functions of absolute continuity In this paper, we summarize to explain our work [1-17] about this topic.

  14. Blastic plasmacytoid dendritic cell neoplasm with absolute monocytosis at presentation

    Jaworski JM

    2015-02-01

    Full Text Available Joseph M Jaworski,1,2 Vanlila K Swami,1 Rebecca C Heintzelman,1 Carrie A Cusack,3 Christina L Chung,3 Jeremy Peck,3 Matthew Fanelli,3 Micheal Styler,4 Sanaa Rizk,4 J Steve Hou1 1Department of Pathology and Laboratory Medicine, Hahnemann University Hospital/Drexel University College of Medicine, Philadelphia, PA, USA; 2Department of Pathology, Mercy Fitzgerald Hospital, Darby, PA, USA; 3Department of Dermatology, Hahnemann University Hospital/Drexel University College of Medicine, Philadelphia, PA, USA; 4Department of Hematology/Oncology, Hahnemann University Hospital/Drexel University College of Medicine, Philadelphia, PA, USA Abstract: Blastic plasmacytoid dendritic cell neoplasm is an uncommon malignancy derived from precursors of plasmacytoid dendritic cells. Nearly all patients present initially with cutaneous manifestations, with many having extracutaneous disease additionally. While response to chemotherapy initially is effective, relapse occurs in most, with a leukemic phase ultimately developing. The prognosis is dismal. While most of the clinical and pathologic features are well described, the association and possible prognostic significance between peripheral blood absolute monocytosis (>1.0 K/µL and blastic plasmacytoid dendritic cell neoplasm have not been reported. We report a case of a 68-year-old man who presented with a rash for 4–5 months. On physical examination, there were multiple, dull-pink, indurated plaques on the trunk and extremities. Complete blood count revealed thrombocytopenia, absolute monocytosis of 1.7 K/µL, and a negative flow cytometry study. Biopsy of an abdominal lesion revealed typical features of blastic plasmacytoid dendritic cell neoplasm. Patients having both hematologic and nonhematologic malignancies have an increased incidence of absolute monocytosis. Recent studies examining Hodgkin and non-Hodgkin lymphoma patients have suggested that this is a negative prognostic factor. The association between

  15. Measurement of the absolute branching fraction of the Ds+- meson

    Abe, K; Dragic, J; Fujii, H; Gershon, T; Haba, J; Hazumi, M; Higuchi, T; Igarashi, Y; Itoh, R; Iwasaki, Y; Katayama, N; Kichimi, H; Krokovnyi, P P; Limosani, A; Nakamura, I; Nakao, M; Nakazawa, H; Nishida, S; Nozaki, T; Ozaki, H; Ronga, F J; Saitoh, S; Sakai, Y; Stamen, R; Sumisawa, K; Suzuki, S Y; Tajima, O; Takasaki, F; Tamai, K; Tanaka, M; Trabelsi, K; Tsuboyama, T; Tsukamoto, T; Uehara, S; Unno, Y; Uno, S; Ushiroda, Y; Yamauchi, M; Zhang, J; Hoshi, Y; Neichi, K; Aihara, H; Hastings, N C; Ishikawa, A; Itoh, K; Iwasaki, M; Kakuno, H; Kusaka, A; Nakahama, Y; Tanabe, K; Anipko, D; Arinstein, K; Aulchenko, V; Bedny, I; Bondar, A; Eidelman, S; Epifanov, D A; Gabyshev, N; Kuzmin, A; Poluektov, A; Root, N; Shwartz, B; Sidorov, V; Usov, Yu; Zhilich, V; Aoki, K; Enari, Y; Hara, K; Hayasaka, K; Hokuue, T; Iijima, T; Ikado, K; Inami, K; Kishimoto, N; Kozakai, Y; Kubota, T; Miyazaki, Y; Ohshima, T; Okabe, T; Sato, N; Senyo, K; Yoshino, S; Arakawa, T; Kawasaki, T; Miyata, H; Tamura, N; Watanabe, M; Asano, Y; Aso, T; Aushev, T; Bay, A; Hinz, L; Jacoby, C; Schietinger, T; Schneider, O; Villa, S; Wicht, J; Zürcher, D; Aziz, T; Banerjee, S; Gokhroo, G; Majumder, G; Bahinipati, S; Drutskoy, A; Goldenzweig, P; Kinoshita, K; Kulasiri, R; Sayeed, K; Schwartz, A J; Somov, A; Bakich, A M; Cole, S; McOnie, S; Parslow, N; Peak, L S; Stöck, H; Varvell, K E; Yabsley, B D; Balagura, V; Chistov, R; Danilov, M; Liventsev, D; Medvedeva, T; Mizuk, R; Pakhlov, P; Pakhlova, G; Tikhomirov, I; Uglov, T; Tian, Y BanX C; Barberio, E; Dalseno, J; Dowd, R; Moloney, G R; Sevior, M E; Taylor, G N; Tse, Y F; Urquijo, P; Barbero, M; Browder, T E; Guler, H; Jones, M; Li, J; Nishimura, K; Olsen, S L; Peters, M; Rorie, J; Sahoo, H; Uchida, K; Varner, G; Belous, K S; Shapkin, M; Sokolov, A; Bitenc, U; Bizjak, I; Fratina, S; Gorisek, A; Pestotnik, R; Staric, M; Zupanc, A; Blyth, S; Chen, A; Chen, W T; Go, A; Hou, S; Kuo, C C; Bozek, A; Kapusta, P; Lesiak, T; Matyja, A; Natkaniec, Z; Ostrowicz, W; Palka, H; Rózanska, M; Wiechczynski, J; Bracko, M; Korpar S; Brodzicka, J; Chang, M C; Kikuchi, N; Mikami, Y; Nagamine, T; Schonmeier, P; Yamaguchi, A; Yamamoto, H; Chang, P; Chao, Y; Chen, K F; Hou, W S; Hsiung, Y B; Lee, Y J; Lin, C Y; Lin, S W; Shen, Y T; Tsai, Y T; Ueno, K; Wang, C C; Wang, M Z; Wu, C H; Cheon, B G; Choi, J H; Ha, H; Kang, J S; Won, E; Choi, S K; Choi, Y; Choi, Y K; Kim, H O; Kim, J H; Park, C W; Park, K S; Chuvikov, A; Garmash, A; Marlow, D; Ziegler, T; Dash, M; Mohapatra, D; Piilonen, L E; Yusa, Y; Fujikawa, M; Hayashii, H; Imoto, A; Kataoka, S U; Miyabayashi, K; Noguchi, S; Krizan, P; Golob, B; Seidl, R; Grosse-Perdekamp, M; Hara, T; Heffernan, D; Miyake, H; Hasegawa, Y; Satoyama, N; Takada, N; Nitoh, O; Hoshina, K; Ishino, H; Khan, H R; Kibayashi, A; Mori, T; Ono, S; Watanabe, Y; Iwabuchi, M; Kim, Y J; Liu, Y; Sarangi, T R; Uchida, Y; Kang, J H; Kim, T H; Kwon, Y J; Kurihara, E; Kawai, H; Park, H; Kim, H J; Kim, S K; Lee, J; Lee, S E; Yang He Young; Kumar, R; Singh, J B; Soni, N; Lange, J S; Leder, G; MacNaughton, J; Mandl, F; Mitaroff, W A; Pernicka, M; Schwanda, C; Widhalm, L; Matsumoto, T; Nakagawa, T; Seki, T; Sumiyoshi, T; Yamamoto, S; Müller, J; Murakami, A; Sugiyama, A; Suzuki, S; Nagasaka, Y; Nakano, E; Sakaue, H; Teramoto, Y; Ogawa, A; Shibuya, H; Ogawa, S; Okuno, S; Sakamoto, H; Wang, C H; Schümann, J; Stanic, S; Xie, Q L; Yuan, Y; Zang, S L; Zhang, C C; Yamashita, Y; Zhang, L M; Zhang, Z P

    2006-01-01

    The Ds+- -> K+-K-+pi+- absolute branching fraction is measured using e+e- -> Ds*+- Ds1-+(2536) events collected by the Belle detector at the KEKB e+e- asymmetric energy collider. Using the ratio of yields when either the Ds1 or Ds* is fully reconstructed, we find Br(Ds+- -> K+-K-+pi+-)= (4.0+-0.4(stat)+-0.4(sys))%.

  16. Diagnostic Application of Absolute Neutron Activation Analysis in Hematology

    Zamboni, C.B.; Oliveira, L.C.; Dalaqua, L. Jr.

    2004-10-03

    The Absolute Neutron Activation Analysis (ANAA) technique was used to determine element concentrations of Cl and Na in blood of healthy group (male and female blood donators), select from Blood Banks at Sao Paulo city, to provide information which can help in diagnosis of patients. This study permitted to perform a discussion about the advantages and limitations of using this nuclear methodology in hematological examinations.

  17. Electroweak absolute, meta-, and thermal stability in neutrino mass models

    Lindner, Manfred; Patel, Hiren H.; Radovčić, Branimir

    2016-04-01

    We analyze the stability of the electroweak vacuum in neutrino mass models containing right-handed neutrinos or fermionic isotriplets. In addition to considering absolute stability, we place limits on the Yukawa couplings of new fermions based on metastability and thermal stability in the early Universe. Our results reveal that the upper limits on the neutrino Yukawa couplings can change significantly when the top quark mass is allowed to vary within the experimental range of uncertainty in its determination.

  18. Absolute configuration of novel bioactive flavonoids from Tephrosia purpurea.

    Chang, L C; Chávez, D; Song, L L; Farnsworth, N R; Pezzuto, J M; Kinghorn, A D

    2000-02-24

    [structure: see text] Three novel flavonoids, (+)-tephrorins A (1) and B (2) and (+)-tephrosone (3), were isolated from Tephrosia purpurea. Their structures were elucidated by NMR spectral analysis, and their absolute configurations were determined by Mosher ester methodology. Compounds 1 and 2 are flavanones containing an unusual tetrahydrofuran moiety. Compounds 1-3 were evaluated for their potential cancer chemopreventive properties using a cell-based quinone reductase induction assay.

  19. Absolute Stability of Discrete-Time Systems with Delay

    Rigoberto Medina

    2008-02-01

    Full Text Available We investigate the stability of nonlinear nonautonomous discrete-time systems with delaying arguments, whose linear part has slowly varying coefficients, and the nonlinear part has linear majorants. Based on the “freezing” technique to discrete-time systems, we derive explicit conditions for the absolute stability of the zero solution of such systems.

  20. Measuring absolute spectral radiance using an Erbium Doped Fibre Amplifier

    Sanguinetti, Bruno; Monteiro, Fernando; Gisin, Nicolas; Zbinden, Hugo

    2012-01-01

    We describe a method to measure the spectral radiance of a source in an absolute way without the need of a reference. Here we give the necessary detail to allow for the device to be reproduced from standard fiber-optic components. The device is suited for fiber-optic applications at telecom wavelengths and calibration of powermeters and spectrometers at light levels from 1nW to 1uW.

  1. The United States and assassination policy : diluting the absolute

    2003-01-01

    Approved for public release; distribution is unlimited The U.S. has reached a crossroads with its policy regarding assassination. Executive Order 12333, which explicitly and absolutely prohibits assassination, is still in effect. The ban, however, has been diluted and circumvented since its inception. Past administrations have targeted enemy leaders with "indirect" strikes such as the 1986 attacks against Libya and the 1998 missile strikes in Afghanistan and Sudan. Currently, the U.S. deli...

  2. Absolute configuration determination using enantiomeric pairs of molecularly imprinted polymers.

    Meador, Danielle S; Spivak, David A

    2014-03-07

    A new method for determination of absolute configuration (AC) is demonstrated using an enantiomeric pair of molecularly imprinted polymers, referred to as "DuoMIPs". The ratio of HPLC capacity factors (k') for the analyte on each of the DuoMIPs is defined as the γ factor and can be used to determine AC when above 1.2. A mnemonic based on the complementary binding geometry of the DuoMIPs was used to aid in understanding and prediction of AC.

  3. Predictive visual tracking based on least absolute deviation estimation

    Rongtai Cai; Yanjie Wang

    2008-01-01

    To cope with the occlusion and intersection between targets and the environment, location prediction is employed in the visual tracking system. Target trace is fitted by sliding subsection polynomials based on least absolute deviation (LAD) estimation, and the future location of target is predicted with the fitted trace. Experiment results show that the proposed location prediction algorithm based on LAD estimation has significant robustness advantages over least square (LS) estimation, and it is more effective than LS-based methods in visual tracking.

  4. Spinal instability in ankylosing spondylitis

    Badve Siddharth

    2010-01-01

    Full Text Available Background: Unstable spinal lesions in patients with ankylosing spondylitis are common and have a high incidence of associated neurological deficit. The evolution and presentation of these lesions is unclear and the management strategies can be confusing. We present retrospective analysis of the cases of ankylosing spondylitis developing spinal instability either due to spondylodiscitis or fractures for mechanisms of injury, presentations, management strategies and outcome. Materials and Methods: In a retrospective analysis of 16 cases of ankylosing spondylitis, treated surgically for unstable spinal lesions over a period of 12 years (1995-2007; 87.5% (n=14 patients had low energy (no obvious/trivial trauma while 12.5% (n=2 patients sustained high energy trauma. The most common presentation was pain associated with neurological deficit. The surgical indications included neurological deficit, chronic pain due to instability and progressive deformity. All patients were treated surgically with anterior surgery in 18.8% (n=3 patients, posterior in 56.2% (n=9 patients and combined approach in 25% (n=4 patients. Instrumented fusion was carried out in 87.5% (n=14 patients. Average surgical duration was 3.84 (Range 2-7.5 hours, blood loss 765.6 (± 472.5 ml and follow-up 54.5 (Range 18-54 months. The patients were evaluated for pain score, Frankel neurological grading, deformity progression and radiological fusion. One patient died of medical complications a week following surgery. Results: Intra-operative adverse events like dural tears and inadequate deformity correction occurred in 18.7% (n=3 patients (Cases 6, 7 and 8 which could be managed conservatively. There was a significant improvement in the Visual analogue score for pain from a pre-surgical median of 8 to post-surgical median of 2 (P=0.001, while the neurological status improved in 90% (n=9 patients among those with preoperative neurological deficit who could be followed-up (n =10. Frankel

  5. The Abelianization of QCD Plasma Instabilities

    Arnold, P; Arnold, Peter; Lenaghan, Jonathan

    2004-01-01

    QCD plasma instabilities appear to play an important role in the equilibration of quark-gluon plasmas in heavy-ion collisions in the theoretical limit of weak coupling (i.e. asymptotically high energy). It is important to understand what non-linear physics eventually stops the exponential growth of unstable modes. It is already known that the initial growth of plasma instabilities in QCD closely parallels that in QED. However, once the unstable modes of the gauge-fields grow large enough for non-Abelian interactions between them to become important, one might guess that the dynamics of QCD plasma instabilities and QED plasma instabilities become very different. In this paper, we give suggestive arguments that non-Abelian self-interactions between the unstable modes are ineffective at stopping instability growth, and that the growing non-Abelian gauge fields become approximately Abelian after a certain stage in their growth. This in turn suggests that understanding the development of QCD plasma instabilities i...

  6. On the chiral imbalance and Weibel instabilities

    Kumar, Avdhesh; Bhatt, Jitesh R.; Kaw, P. K.

    2016-06-01

    We study the chiral-imbalance and the Weibel instabilities in presence of the quantum anomaly using the Berry-curvature modified kinetic equation. We argue that in many realistic situations, e.g. relativistic heavy-ion collisions, both the instabilities can occur simultaneously. The Weibel instability depends on the momentum anisotropy parameter ξ and the angle (θn) between the propagation vector and the anisotropy direction. It has maximum growth rate at θn = 0 while θn = π / 2 corresponds to a damping. On the other hand the pure chiral-imbalance instability occurs in an isotropic plasma and depends on difference between the chiral chemical potentials of right and left-handed particles. It is shown that when θn = 0, only for a very small values of the anisotropic parameter ξ ∼ξc, growth rates of the both instabilities are comparable. For the cases ξc Weibel modes dominate over the chiral-imbalance instability if μ5 / T ≤ 1. However, when μ5 / T ≥ 1, it is possible to have dominance of the chiral-imbalance modes at certain values of θn for an arbitrary ξ.

  7. On the absolute value of the air-fluorescence yield

    Rosado, J; Arqueros, F

    2014-01-01

    The absolute value of the air-fluorescence yield is a key parameter for the energy reconstruction of extensive air showers registered by fluorescence telescopes. In previous publications, we reported a detailed Monte Carlo simulation of the air-fluorescence generation that allowed the theoretical evaluation of this parameter. This simulation has been upgraded in the present work. As a result, we determined an updated absolute value of the fluorescence yield of 7.9+-2.0 ph/MeV for the band at 337 nm in dry air at 800 hPa and 293 K, in agreement with experimental values. We have also performed a critical analysis of available absolute measurements of the fluorescence yield with the assistance of our simulation. Corrections have been applied to some measurements to account for a bias in the evaluation of the energy deposition. Possible effects of other experimental aspects have also been discussed. From this analysis, we determined an average fluorescence yield of 7.04+-0.24 ph/MeV at the above conditions.

  8. 灵动的性感 Absolut Volvo C30

    傅微芳; 杨洲

    2008-01-01

    <正>绝对伏特加酒(Absolut Vodka)永恒的个性化包装,对每一个人来说都不陌生。短颈圆肩的水晶瓶,独创性地将所有标注Absolut Vodka的文字信息用彩色粗体字体直接印在瓶身,透过完全透明的酒瓶,感触到纯正、净爽、自信的Absolut Vodka。同样来自瑞典经典轿车沃尔沃(Volvo)家族的C30就像斯堪的纳维亚的烈酒一样展现着恒久魅力,为人们的眼球、心境带来激情与渴望的强力冲击,Volvo C30那种灵动的性感气质让钟爱者静静地迷醉其中。

  9. Bio-Inspired Stretchable Absolute Pressure Sensor Network.

    Guo, Yue; Li, Yu-Hung; Guo, Zhiqiang; Kim, Kyunglok; Chang, Fu-Kuo; Wang, Shan X

    2016-01-02

    A bio-inspired absolute pressure sensor network has been developed. Absolute pressure sensors, distributed on multiple silicon islands, are connected as a network by stretchable polyimide wires. This sensor network, made on a 4'' wafer, has 77 nodes and can be mounted on various curved surfaces to cover an area up to 0.64 m × 0.64 m, which is 100 times larger than its original size. Due to Micro Electro-Mechanical system (MEMS) surface micromachining technology, ultrathin sensing nodes can be realized with thicknesses of less than 100 µm. Additionally, good linearity and high sensitivity (~14 mV/V/bar) have been achieved. Since the MEMS sensor process has also been well integrated with a flexible polymer substrate process, the entire sensor network can be fabricated in a time-efficient and cost-effective manner. Moreover, an accurate pressure contour can be obtained from the sensor network. Therefore, this absolute pressure sensor network holds significant promise for smart vehicle applications, especially for unmanned aerial vehicles.

  10. The Absolute Magnitudes of Type Ia Supernovae in the Ultraviolet

    Brown, Peter J; Milne, Peter; Bufano, Filomena; Ciardullo, Robin; Elias-Rosa, Nancy; Filippenko, Alexei V; Foley, Ryan J; Gehrels, Neil; Gronwall, Caryl; Hicken, Malcolm; Holland, Stephen T; Hoversten, Erik A; Immler, Stefan; Kirshner, Robert P; Li, Weidong; Mazzali, Paolo; Phillips, Mark M; Pritchard, Tyler; Still, Martin; Turatto, Massimo; Berk, Daniel Vanden

    2010-01-01

    We examine the absolute magnitudes and light-curve shapes of 14 nearby(redshift z = 0.004--0.027) Type Ia supernovae (SNe~Ia) observed in the ultraviolet (UV) with the Swift Ultraviolet/Optical Telescope. Colors and absolute magnitudes are calculated using both a standard Milky Way (MW) extinction law and one for the Large Magellanic Cloud that has been modified by circumstellar scattering. We find very different behavior in the near-UV filters (uvw1_rc covering ~2600-3300 A after removing optical light, and u ~3000--4000 A) compared to a mid-UV filter (uvm2 ~2000-2400 A). The uvw1_rc-b colors show a scatter of ~0.3 mag while uvm2-b scatters by nearly 0.9 mag. Similarly, while the scatter in colors between neighboring filters is small in the optical and somewhat larger in the near-UV, the large scatter in the uvm2-uvw1 colors implies significantly larger spectral variability below 2600 A. We find that in the near-UV the absolute magnitudes at peak brightness of normal SNe Ia in our sample are correlated with ...

  11. Son preference in Indian families: absolute versus relative wealth effects.

    Gaudin, Sylvestre

    2011-02-01

    The desire for male children is prevalent in India, where son preference has been shown to affect fertility behavior and intrahousehold allocation of resources. Economic theory predicts less gender discrimination in wealthier households, but demographers and sociologists have argued that wealth can exacerbate bias in the Indian context. I argue that these apparently conflicting theories can be reconciled and simultaneously tested if one considers that they are based on two different notions of wealth: one related to resource constraints (absolute wealth), and the other to notions of local status (relative wealth). Using cross-sectional data from the 1998-1999 and 2005-2006 National Family and Health Surveys, I construct measures of absolute and relative wealth by using principal components analysis. A series of statistical models of son preference is estimated by using multilevel methods. Results consistently show that higher absolute wealth is strongly associated with lower son preference, and the effect is 20%-40% stronger when the household's community-specific wealth score is included in the regression. Coefficients on relative wealth are positive and significant although lower in magnitude. Results are robust to using different samples, alternative groupings of households in local areas, different estimation methods, and alternative dependent variables.

  12. The absolute infrared magnitudes of type Ia supernovae

    Meikle, W P S

    2000-01-01

    The absolute luminosities and homogeneity of early-time infrared (IR) light curves of type Ia supernovae are examined. Eight supernovae are considered. These are selected to have accurately known epochs of maximum blue light as well as having reliable distance estimates and/or good light curve coverage. Two approaches to extinction correction are considered. Owing to the low extinction in the IR, the differences in the corrections via the two methods are small. Absolute magnitude light curves in the J, H and K-bands are derived. Six of the events, including five established ``Branch-normal'' supernovae show similar coeval magnitudes. Two of these, SNe 1989B and 1998bu, were observed near maximum infrared light. This occurs about 5 days {\\it before} maximum blue light. Absolute peak magnitudes of about -19.0, -18.7 and -18.8 in J, H & K respectively were obtained. The two spectroscopically peculiar supernovae in the sample, SNe 1986G and 1991T, also show atypical IR behaviour. The light curves of the six s...

  13. Absolute surface reconstruction by slope metrology and photogrammetry

    Dong, Yue

    Developing the manufacture of aspheric and freeform optical elements requires an advanced metrology method which is capable of inspecting these elements with arbitrary freeform surfaces. In this dissertation, a new surface measurement scheme is investigated for such a purpose, which is to measure the absolute surface shape of an object under test through its surface slope information obtained by photogrammetric measurement. A laser beam propagating toward the object reflects on its surface while the vectors of the incident and reflected beams are evaluated from the four spots they leave on the two parallel transparent windows in front of the object. The spots' spatial coordinates are determined by photogrammetry. With the knowledge of the incident and reflected beam vectors, the local slope information of the object surface is obtained through vector calculus and finally yields the absolute object surface profile by a reconstruction algorithm. An experimental setup is designed and the proposed measuring principle is experimentally demonstrated by measuring the absolute surface shape of a spherical mirror. The measurement uncertainty is analyzed, and efforts for improvement are made accordingly. In particular, structured windows are designed and fabricated to generate uniform scattering spots left by the transmitted laser beams. Calibration of the fringe reflection instrument, another typical surface slope measurement method, is also reported in the dissertation. Finally, a method for uncertainty analysis of a photogrammetry measurement system by optical simulation is investigated.

  14. The new Absolute Quantum Gravimeter (AQG): first results and perspectives

    Bonvalot, Sylvain; Le Moigne, Nicolas; Merlet, Sebastien; Desruelle, Bruno; Lautier-Gaud, Jean; Menoret, Vincent; Vermeulen, Pierre

    2016-04-01

    Cold atom gravimetry represents one of the most innovative evolution in gravity instrumentation since the last 20 years. The concept of measuring the gravitational acceleration by dropping atoms and the development of the first instrumental devices during this last decade quickly revealed the promising perspectives of this new generation of gravity meters enabling accurate and absolute measurements of the Earth's gravity field for a wide range of applications (geophysics, geodesy, metrology, etc.). The Absolute Quantum Gravimeter (AQG) gravity meter, developed by MUQUANS (Talence, France - http://www.muquans.com/) with the support of RESIF, the French Seismologic and Geodetic Network (http://www.resif.fr/) belongs to this new generation of instruments. It also represents the first commercial device based on the utilization of advanced matter-wave interferometry techniques, which allow to characterize precisely the vertical acceleration experienced by a cloud of cold atoms. Recently, the first operational unit (AQG01) has been achieved as a compact transportable gravimeter with the aim of satisfying absolute gravity measurements in laboratory conditions under the following specifications: measurements the μGal level at a few Hz cycling frequency, sensitivity of 50μGal/√Hz, immunity to ground vibrations, easy and quickness of operation, automated continuous data acquisition for several months, etc. In order to evaluate the current performances of the AQG01, several experiments are carried out in collaboration between RESIF user's teams and the MUQUANS manufacturer on different reference gravity sites and laboratories in France. These measurements performed in indoor conditions including simultaneous observations with classical reference gravity instruments (corner-cube absolute gravity meters, relative superconducting meters) as well with the Cold Atom Gravity meter (CAG) developed by LNE-SYRTE, lead to a first objective characterization of the performances of

  15. Laser pulse modulation instabilities in partially stripped plasma

    Hu Qiang-Lin; Liu Shi-Bing; Jiang Yi-Jian

    2005-01-01

    The laser pulse modulation instabilities in partially stripped plasma were discussed based on the phase and group velocities of the laser pulse and the two processes that modulation instabilities excited. The excitation condition and growth rate of the modulation instability were obtained. It was found that the positive chirp and competition between normal and abnormal dispersions play important roles in the modulation instability. In the partially stripped plasma,the increased positive chirp enhances the modulation instability, and the dispersion competition reduces it.

  16. Beam-Ion Instability in PEP-II

    Heifets, S.; Kulikov, A.; Wang, Min-Huey; Wienands, U.; /SLAC

    2007-11-07

    The instability in the PEP-II electron ring has been observed while reducing the clearing gap in the bunch train. We study the ion effects in the ring summarizing existing theories of the beam-ion interaction, comparing them with observations, and estimating effect on luminosity in the saturation regime. Considering the gap instability we suggest that the instability is triggered by the beam-ion instability, and discuss other mechanisms pertinent to the instability.

  17. Dynamic Instability of Rapidly Rotating Protostars

    Pickett, B. K.; Durisen, R. H.; Johnson, M. S.; Davis, G. A.

    1994-12-01

    Modern studies of collapse and fragmentation of protostellar clouds suggest a wide variety of outcomes, depending on the assumed initial conditions. Individual equilibrium objects which result from collapse are likely to be in rapid rotation and can have a wide range of structures. We have undertaken a survey of parameter space in order to examine the role of dynamic instabilities in the subsequent evolution of these objects. For the purposes of conducting a systematic study, we so far have considered only the n = 3/2 polytropic equilibrium states that might form from the collapse of uniformly rotating spherical clouds. By varying the central concentration of the assumed initial cloud, we obtain equilibrium states distinguished primarily by their different specific angular momentum distributions. These equilibrium states span the range between starlike objects with angular momentum distributions analogous to the Maclaurin spheroids and objects more accurately described as massive Keplerian disks around stars. Using a new SCF code to generate the n = 3/2 axisymmetric equilibrium states and an improved 3D hydrodynamics code, we have investigated the the onset and nature of global dynamic instabilities in these objects. The starlike objects are unstable to barlike instabilities at T/|W| gtorder 0.27, where T/|W| is the ratio of total rotational kinetic energy to gravitational potential energy. These instabilities are vigorous and lead to violent ejection of mass and angular momentum. As the angular momentum distribution shifts to the other extreme, one- and two-armed spiral instabilities begin to dominate at considerably lower T/|W|. These instabilities appear to be driven by the SLING and swing mechanisms. In extremely flattened disks, one-armed spirals dominate all other disturbances but eventually saturate at nonlinear amplitude without producing fragmentation. We conclude that the nature of the global instabilities encountered during the process of star formation

  18. Effects of Exchange Rate Instability on Imports and Exports of Pakistan

    Atif Kafayat

    2014-04-01

    Full Text Available The instability in exchange rate (appreciation and depreciation in home currency is an important factor indetermination of trade balance of a country. Fluctuating exchange rates impacts the decision making of investors and traders, it shatters their confidence which ultimately leads to the slowness of trade process. In this research paper the effect of exchange rate instability is measured on imports and exports of Pakistan. For this purpose Regression analysis is used and it is calculated that if instability is created due to depreciation in home currency (Pak rupee then it has positive impact on Pakistan‘s exports, while it has absolutely no effect on imports of Pakistan. Since Pak rupee has very limited appreciation during last 20 years so appreciation effect of home currency can not be calculated on Imports and exports of Pakistan. In theoretical prospective the devaluation of home currency should decrease the volume of imports, because it will cost more for Pakistan to import goods from other countries. But our empirical findings show that, this is not the case between exchange rate and imports of Pakistan. The imports of Pakistan grew even in large figure as the home currency depreciated against other currencies. So this shows that depreciation of home currency do not effect the imports in of Pakistan. Our findings through regression analysis show that by decrease in value of home currency imports of Pakistan increase. So depreciation in home currency has no effect on imports volume.

  19. Competition between Buneman and Langmuir Instabilities

    GUO Jun; YU Bin

    2012-01-01

    The electron-ion beam instabilities are studied by one-dimensional electrostatic particle-in-cell simulation.The simulation results show that both the low-frequency Buneman mode and high-frequency Langmuir wave (LW) are excited in the nonlinear phase. The power of Buneman instability is stronger than that of the LW.The Buneman instability is firstly excited.Then the backward LW appears,which is probably excited by the particles trapped in the wave potential and moving opposite to the original beam direction.After some time,the forward LW can be found,which has a larger maximum frequency than that of the backward LW.With the decrease of the electron drift velocity,the instabilities become weaker; the LW appears to have almost equal intensities and becomes symmetric for forward and backward propagation directions. The LW can also heat the electron,so the relative drift speed cannot far exceed the electron thermal speed,which is not helpful to the development of Buneman instability.

  20. Tidal instability in exoplanetary systems evolution

    Le Gal P.

    2011-02-01

    Full Text Available A new element is proposed to play a role in the evolution of extrasolar planetary systems: the tidal (or elliptical instability. It comes from a parametric resonance and takes place in any rotating fluid whose streamlines are (even slightly elliptically deformed. Based on theoretical, experimental and numerical works, we estimate the growth rate of the instability for hot-jupiter systems, when the rotation period of the star is known. We present the physical process, its application to stars, and preliminary results obtained on a few dozen systems, summarized in the form of a stability diagram. Most of the systems are trapped in the so-called "forbidden zone", where the instability cannot grow. In some systems, the tidal instability is able to grow, at short timescales compared to the system evolution. Implications are discussed in the framework of misaligned transiting systems, as the rotational axis of the star would be unstable in systems where this elliptical instability grows.

  1. On the Chiral imbalance and Weibel Instabilities

    Kumar, Avdhesh; Kaw, Predhiman K

    2016-01-01

    We study the chiral-imbalance and the Weibel instabilities in presence of the quantum anomaly using the Berry-curvature modified kinetic equation. We argue that in many realistic situations, e.g. relativistic heavy-ion collisions, both the instabilities can occur simultaneously. The Weibel instability depends on the momentum anisotropy parameter $\\xi$ and the angle ($\\theta_n$) between the propagation vector and the anisotropy direction. It has maximum growth rate at $\\theta_n=0$ while $\\theta_n=\\pi/2$ corresponds to a damping. On the other hand the pure chiral-imbalance instability occurs in an isotropic plasma and depends on difference between the chiral chemical potentials of right and left-handed particles. It is shown that when $\\theta_n=0$, only for a very small values of the anisotropic parameter $\\xi\\sim \\xi_c$, growth rates of the both instabilities are comparable. For the cases $\\xi_c<\\xi\\ll1$, $\\xi\\approx 1$ or $\\xi \\geq 1$ at $\\theta_n=0$, the Weibel modes dominate over the chiral-imbalance ins...

  2. Diffusive Magnetohydrodynamic Instabilities beyond the Chandrasekhar Theorem

    Rüdiger, Günther; Schultz, Manfred; Stefani, Frank; Mond, Michael

    2015-10-01

    We consider the stability of axially unbounded cylindrical flows that contain a toroidal magnetic background field with the same radial profile as their azimuthal velocity. For ideal fluids, Chandrasekhar had shown the stability of this configuration if the Alfvén velocity of the field equals the velocity of the background flow, i.e., if the magnetic Mach number {Mm}=1. We demonstrate that magnetized Taylor-Couette flows with such profiles become unstable against non-axisymmetric perturbations if at least one of the diffusivities is finite. We also find that for small magnetic Prandtl numbers {Pm} the lines of marginal instability scale with the Reynolds number and the Hartmann number. In the limit {Pm}\\to 0 the lines of marginal instability completely lie below the line for {Mm}=1 and for {Pm}\\to ∞ they completely lie above this line. For any finite value of {Pm}, however, the lines of marginal instability cross the line {Mm}=1, which separates slow from fast rotation. The minimum values of the field strength and the rotation rate that are needed for the instability (slightly) grow if the rotation law becomes flat. In this case, the electric current of the background field becomes so strong that the current-driven Tayler instability (which also exists without rotation) appears in the bifurcation map at low Hartmann numbers.

  3. Coherent Instabilities of ILC Damping Ring

    Heifets, S.; Stupakov, G.; Bane, K.; /SLAC

    2006-09-27

    The paper presents the first attempt to estimates the ILC damping ring impedance and compare thresholds of the classical instabilities for several designs initially proposed for the DR. The work was carried out in the spring of 2006. Since then the choice of the DR is narrowed. Nevertheless, the analysis described may be useful for the next iterations of the beam stability. Overall, the conventional instabilities will have little impact on the ring performance provided the careful design of the ring minimizes the impedance below acceptable level indicated above. The only exception is the transverse CB instability. The longitudinal CB is less demanding. However, even the transverse CB instability would have threshold current above nominal provided the aperture in the wigglers is increased from 8 mm to 16 mm. The microwave instability needs more studies. Nevertheless, we should remember that the ILC DR is different from existing high-current machines at least in two respects: absence of the beam-beam tune spread stabilizing beams in colliders, and unusual strict requirements for low emittance. That may cause new problems such as bunch emittance dilution due to high-frequency wakes (BPMs, grooves), etc. Even if such a possibility exists, it probably universal for all machines and ought be addressed in the design of vacuum components rather than have effect on the choice of the machine design.

  4. Dynamical instabilities in disc-planet interactions

    Lin, Min-Kai

    2012-01-01

    Protoplanetary discs may become dynamically unstable due to structure induced by an embedded giant planet. In this thesis, I discuss the stability of such systems and explore the consequence of instability on planetary migration. I begin with non-self-gravitating, low viscosity discs and show that giant planets induce shocks inside its co-orbital region, leading to a profile unstable to vortex formation around a potential vorticity minimum. This instability is commonly known as the vortex or Rossby wave instability. Vortex-planet interaction lead to episodic phases of migration, which can be understood in the framework of type III migration. I then examine the effect of disc self-gravity on gap stability. The linear theory of the Rossby wave instability is extended to include disc gravity, which shows that self-gravity is effective at stabilising the vortex instability at small azimuthal wavenumber. This is consistent with the observation that more vortices develop with increasing disc mass in hydrodynamic si...

  5. Pressure-driven instabilities in astrophysical jets

    Longaretti, Pierre-Yves

    2008-01-01

    Astrophysical jets are widely believed to be self-collimated by the hoop-stress due to the azimuthal component of their magnetic field. However this implies that the magnetic field is largely dominated by its azimuthal component in the outer jet region. In the fusion context, it is well-known that such configurations are highly unstable in static columns, leading to plasma disruption. It has long been pointed out that a similar outcome may follow for MHD jets, and the reasons preventing disruption are still not elucidated, although some progress has been accomplished in the recent years. In these notes, I review the present status of this open problem for pressure-driven instabilities, one of the two major sources of ideal MHD instability in static columns (the other one being current-driven instabilities). I first discuss in a heuristic way the origin of these instabilities. Magnetic resonances and magnetic shear are introduced, and their role in pressure-driven instabilities discussed in relation to Suydam'...

  6. Absolute versus relative ascertainment of pedophilia in men.

    Blanchard, Ray; Kuban, Michael E; Blak, Thomas; Cantor, James M; Klassen, Philip E; Dickey, Robert

    2009-12-01

    There are at least two different criteria for assessing pedophilia in men: absolute ascertainment (their sexual interest in children is intense) and relative ascertainment (their sexual interest in children is greater than their interest in adults). The American Psychiatric Association's Diagnostic and Statistical Manual of Mental Disorders, 3rd edition (DSM-III) used relative ascertainment in its diagnostic criteria for pedophilia; this was abandoned and replaced by absolute ascertainment in the DSM-III-R and all subsequent editions. The present study was conducted to demonstrate the continuing need for relative ascertainment, particularly in the laboratory assessment of pedophilia. A total of 402 heterosexual men were selected from a database of patients referred to a specialty clinic. These had undergone phallometric testing, a psychophysiological procedure in which their penile blood volume was monitored while they were presented with a standardized set of laboratory stimuli depicting male and female children, pubescents, and adults.The 130 men selected for the Teleiophilic Profile group responded substantially to prepubescent girls but even more to adult women; the 272 men selected for the Pedophilic Profile group responded weakly to prepubescent girls but even less to adult women. In terms of absolute magnitude, every patient in the Pedophilic Profile group had a lesser penile response to prepubescent girls than every patient in the Teleiophilic Profile group. Nevertheless, the Pedophilic Profile group had a significantly greater number of known sexual offenses against prepubescent girls, indicating that they contained a higher proportion of true pedophiles. These results dramatically demonstrate the utility-or perhaps necessity-of relative ascertainment in the laboratory assessment of erotic age-preference.

  7. Absolute Memory for Tempo in Musicians and Non-Musicians

    Brandimonte, Maria A.; Bruno, Nicola

    2016-01-01

    The ability to remember tempo (the perceived frequency of musical pulse) without external references may be defined, by analogy with the notion of absolute pitch, as absolute tempo (AT). Anecdotal reports and sparse empirical evidence suggest that at least some individuals possess AT. However, to our knowledge, no systematic assessments of AT have been performed using laboratory tasks comparable to those assessing absolute pitch. In the present study, we operationalize AT as the ability to identify and reproduce tempo in the absence of rhythmic or melodic frames of reference and assess these abilities in musically trained and untrained participants. We asked 15 musicians and 15 non-musicians to listen to a seven-step `tempo scale’ of metronome beats, each associated to a numerical label, and then to perform two memory tasks. In the first task, participants heard one of the tempi and attempted to report the correct label (identification task), in the second, they saw one label and attempted to tap the correct tempo (production task). A musical and visual excerpt was presented between successive trials as a distractor to prevent participants from using previous tempi as anchors. Thus, participants needed to encode tempo information with the corresponding label, store the information, and recall it to give the response. We found that more than half were able to perform above chance in at least one of the tasks, and that musical training differentiated between participants in identification, but not in production. These results suggest that AT is relatively wide-spread, relatively independent of musical training in tempo production, but further refined by training in tempo identification. We propose that at least in production, the underlying motor representations are related to tactus, a basic internal rhythmic period that may provide a body-based reference for encoding tempo. PMID:27760198

  8. Predicting accurate absolute binding energies in aqueous solution

    Jensen, Jan Halborg

    2015-01-01

    Recent predictions of absolute binding free energies of host-guest complexes in aqueous solution using electronic structure theory have been encouraging for some systems, while other systems remain problematic. In this paper I summarize some of the many factors that could easily contribute 1-3 kcal......-represented by continuum models. While I focus on binding free energies in aqueous solution the approach also applies (with minor adjustments) to any free energy difference such as conformational or reaction free energy differences or activation free energies in any solvent....

  9. Absolute Measurement Fiber-optic Sensors in Large Structural Monitoring

    2003-01-01

    The security of civil engineering is an important task due to the economic, social and environmental significance. Compared with conventional sensors, the optical fiber sensors have their unique characteristics.Being durable, stable and insensitive to external perturbations,they are particular interesting for the long-term monitoring of civil structures.Focus is on absolute measurement optical fiber sensors, which are emerging from the monitoring large structural, including SOFO system, F-P optical fiber sensors, and fiber Bragg grating sensors. The principle, characteristic and application of these three kinds of optical fiber sensors are described together with their future prospects.

  10. Absolute cross-section normalization of magnetic neutron scattering data

    Xu, Guangyong; Xu, Zhijun; Tranquada, J. M.

    2013-08-01

    We discuss various methods to obtain the resolution volume for neutron scattering experiments, in order to perform absolute normalization on inelastic magnetic neutron scattering data. Examples from previous experiments are given. We also try to provide clear definitions of a number of physical quantities which are commonly used to describe neutron magnetic scattering results, including the dynamic spin correlation function and the imaginary part of the dynamic susceptibility. Formulas that can be used for general purposes are provided and the advantages of the different normalization processes are discussed.

  11. Dichotomy and perceptual distortions in absolute pitch ability

    Athos, E. Alexandra; Levinson, Barbara; Kistler, Amy; Zemansky, Jason; Bostrom, Alan; Freimer, Nelson; Gitschier, Jane

    2007-01-01

    Absolute pitch (AP) is the rare ability to identify the pitch of a tone without the aid of a reference tone. Understanding both the nature and genesis of AP can provide insights into neuroplasticity in the auditory system. We explored factors that may influence the accuracy of pitch perception in AP subjects both during the development of the trait and in later age. We used a Web-based survey and a pitch-labeling test to collect perceptual data from 2,213 individuals, 981 (44%) of whom proved...

  12. System Design of the ATLAS Absolute Luminosity Monitor

    Anghinolfi, Francis; Franz, Sebastien; Iwanski, W; Lundberg, B; PH-EP

    2007-01-01

    The ATLAS absolute luminosity monitor is composed of 8 roman pots symmetrically located in the LHC tunnel. Each pot contains 23 multi anode photomultiplier tubes, and each one of those is fitted with a front-end assembly called PMF. A PMF provides the high voltage biasing of the tube, the frontend readout chip and the readout logic in a very compact arrangement. The 25 PMFs contained in one roman pot are connected to a motherboard used as an interface to the backend electronics. The system allows to configure the front-end electronics from the ATLAS detector control system and to transmit the luminosity data over Slink.

  13. Absolute efficiency measurements with the 10B based Jalousie detector

    Modzel, G.; Henske, M.; Houben, A.; Klein, M.; Köhli, M.; Lennert, P.; Meven, M.; Schmidt, C. J.; Schmidt, U.; Schweika, W.

    2014-04-01

    The 10B based Jalousie detector is a replacement for 3He counter tubes, which are nowadays less affordable for large area detectors due to the 3He crisis. In this paper we investigate and verify the performance of the new 10B based detector concept and its adoption for the POWTEX diffractometer, which is designed for the detection of thermal neutrons with predicted detection efficiencies of 75-50% for neutron energies of 10-100 meV, respectively. The predicted detection efficiency has been verified by absolute measurements using neutrons with a wavelength of 1.17 Å (59 meV).

  14. Electromagnetic Hydrophone with Tomographic System for Absolute Velocity Field Mapping

    Grasland-Mongrain, Pol; Mari, Jean-Martial; Chapelon, Jean-Yves; Lafon, Cyril; 10.1063/1.4726178

    2012-01-01

    The velocity and pressure of an ultrasonic wave can be measured by an electromagnetic hydrophone made of a thin wire and a magnet. The ultrasonic wave vibrates the wire inside a magnetic field, inducing an electrical current. Previous articles reported poor spatial resolution of comparable hydrophones along the axis of the wire. In this study, submillimetric spatial resolution has been achieved by using a tomographic method. Moreover, a physical model is presented for obtaining absolute measurements. A pressure differential of 8% has been found between piezoelectric and electromagnetic hydrophone measurements. These characteristics show this technique as an alternative to standard hydrophones.

  15. Results from an absolute gravity survey in the United States

    Zumberge, M. A.; Faller, J. E.; Gschwind, J.

    1983-01-01

    Using the recently completed JTLA absolute gravity meter, we made a survey of twelve sites in the United States. Over a period of eight weeks, the instrument was driven a total distance of nearly 20,000 km to sites in California, New Mexico, Colorado, Wyoming, Maryland and Massachusetts. The time spent in carrying out a measurement at a single location was typically one day. We report the results of the measurements in this survey along with earlier measurements made with the instrument, discuss the measurement accuracy and compare our results with other measurements. Previously announced in STAR as N83-20480

  16. Absolute Photoionization Cross Sections of Two Cyclic Ketones: Cyclopentanone & Cyclohexanone.

    Price, Chelsea; Fathi, Yasmin; Meloni, Giovanni

    2017-02-23

    Absolute photoionization cross sections for cyclopentanone and cyclohexanone, as well as partial ionization cross sections for the dissociative ionized fragments, are presented in this investigation. Experiments are performed via a multiplexed photoionization mass spectrometer utilizing VUV synchrotron radiation supplied by the Advanced Light Source of Lawrence Berkeley National Laboratory. These results allow the quantification of these species that is relevant to investigate the kinetics and combustion reactions of potential biofuels. The CBS-QB3 calculated values for the adiabatic ionization energies agree well with the experimental values and the identification of possible dissociative fragments is discussed for both systems.

  17. The absolute frequency of the 87Sr optical clock transition

    Campbell, Gretchen K.; Ludlow, Andrew D.; Blatt, Sebastian;

    2008-01-01

    The absolute frequency of the 1S0–3P0 clock transition of 87Sr has been measured to be 429 228 004 229 873.65 (37) Hz using lattice-confined atoms, where the fractional uncertainty of 8.6 × 10-16 represents one of the most accurate measurements of an atomic transition frequency to date. After a d...... is made possible using a femtosecond laser based optical frequency comb to phase coherently connect the optical and microwave spectral regions and by a 3.5 km fibre transfer scheme to compare the remotely located clock signals....

  18. Absolute band gaps in two-dimensional graphite photonic crystal

    Gaoxin Qiu(仇高新); Fanglei Lin(林芳蕾); Hua Wang(王华); Yongping Li(李永平)

    2003-01-01

    The off-plane propagation of electromagnetic (EM) waves in a two-dimensional (2D) graphite photoniccrystal structure was studied using transfer matrix method. Transmission spectra calculations indicatethat such a 2D structure has a common band gap from 0.202 to 0.2035 c/a for both H and E polarizationsand for all off-plane angles form 0° up to 90°. The presence of such an absolute band gap implies that 2Dgraphite photonic crystal, which is much easier and more feasible to fabricate, can exhibit some propertiesof a three-dimensional (3D) photonic crystal.

  19. Strategy for the absolute neutron emission measurement on ITER.

    Sasao, M; Bertalot, L; Ishikawa, M; Popovichev, S

    2010-10-01

    Accuracy of 10% is demanded to the absolute fusion measurement on ITER. To achieve this accuracy, a functional combination of several types of neutron measurement subsystem, cross calibration among them, and in situ calibration are needed. Neutron transport calculation shows the suitable calibration source is a DT/DD neutron generator of source strength higher than 10(10) n/s (neutron/second) for DT and 10(8) n/s for DD. It will take eight weeks at the minimum with this source to calibrate flux monitors, profile monitors, and the activation system.

  20. Quantum bath refrigeration towards absolute zero: challenging the unattainability principle.

    Kolář, M; Gelbwaser-Klimovsky, D; Alicki, R; Kurizki, G

    2012-08-31

    A minimal model of a quantum refrigerator, i.e., a periodically phase-flipped two-level system permanently coupled to a finite-capacity bath (cold bath) and an infinite heat dump (hot bath), is introduced and used to investigate the cooling of the cold bath towards absolute zero (T=0). Remarkably, the temperature scaling of the cold-bath cooling rate reveals that it does not vanish as T→0 for certain realistic quantized baths, e.g., phonons in strongly disordered media (fractons) or quantized spin waves in ferromagnets (magnons). This result challenges Nernst's third-law formulation known as the unattainability principle.

  1. Absolute distance measurement based on multiple self-mixing interferometry

    Duan, Zhiwei; Yu, Yangyang; Gao, Bingkun; Jiang, Chunlei

    2017-04-01

    To improve the precision of distance measurement using laser Self-Mixing Interferometry (SMI) and compute short distance, we propose a method of Multiple Self-Mixing Interferometry (MSMI) that is modulated with a triangular wave. The principle of this method has been described in this paper. Experiments at different distances and amplitudes of modulation current are based on the proposed method. Low-priced and easily operated experimental devices are built. Experimental results show that a resolution of 2.7 mm can be achieved for absolute distance ranging from 2.2 to 23 cm.

  2. Analysis of Absolute Stability for Time-delay Teleoperation Systems

    Qi-Wen Deng; Qing Wei; Ze-Xiang Li

    2007-01-01

    In this paper, a new bilateral control algorithm based on absolute stability theory is put forward, which aims at the time-delay teleoperation system with force feedback from the slave directly. In the new control algorithm, the delay-dependent stability,instead of delay-independent stability, is taken as the aim of control design. It improves the transparency of the system at the price of unnecessary stability. With this algorithm, the time-delay teleoperation systems have good transparency and stability. A simulation system is established to verify the effect of this algorithm.

  3. 3D measurement of absolute radiation dose in grid therapy

    Trapp, J V [Joint Department of Physics, Institute of Cancer Research and Royal Marsden Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT (United Kingdom); Department of Applied Physics, RMIT University, GPO Box 2476V, Melbourne 3001 (Australia); Warrington, A P [Joint Department of Physics, Institute of Cancer Research and Royal Marsden Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT (United Kingdom); Partridge, M [Joint Department of Physics, Institute of Cancer Research and Royal Marsden Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT (United Kingdom); Philps, A [Joint Department of Physics, Institute of Cancer Research and Royal Marsden Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT (United Kingdom); Leach, M O [Cancer Research UK Clinical MR Research Group, Institute of Cancer Research and Royal Marsden Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT (United Kingdom); Webb, S [Joint Department of Physics, Institute of Cancer Research and Royal Marsden Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT (United Kingdom)

    2004-01-01

    Spatially fractionated radiotherapy through a grid is a concept which has a long history and was routinely used in orthovoltage radiation therapy in the middle of last century to minimize damage to the skin and subcutaneous tissue. With the advent of megavoltage radiotherapy and its skin sparing effects the use of grids in radiotherapy declined in the 1970s. However there has recently been a revival of the technique for use in palliative treatments with a single fraction of 10 to 20 Gy. In this work the absolute 3D dose distribution in a grid irradiation is measured for photons using a combination of film and gel dosimetry.

  4. Method of differential-phase/absolute-amplitude QAM

    Dimsdle, Jeffrey William

    2007-07-17

    A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.

  5. Absolute Measurement of Quantum-Limited Interferometric Displacements

    Thiel, Valérian; Treps, Nicolas; Roslund, Jonathan

    2016-01-01

    A methodology is introduced that enables an absolute, quantum-limited measurement of sub-wavelength interferometric displacements. The technique utilizes a high-frequency optical path modulation within an interferometer operated in a homodyne configuration. All of the information necessary to fully characterize the resultant path displacement is contained within the relative strengths of the various harmonics of the phase modulation. The method, which is straightforward and readily implementable, allows a direct measurement of the theoretical Cram\\'er-Rao limit of detection without any assumptions on the nature of the light source.

  6. Effects of electron temperature anisotropy on proton mirror instability evolution

    Ahmadi, Narges; Raeder, Joachim

    2016-01-01

    Proton mirror modes are large amplitude nonpropagating structures frequently observed in the magnetosheath. It has been suggested that electron temperature anisotropy can enhance the proton mirror instability growth rate while leaving the proton cyclotron instability largely unaffected, therefore causing the proton mirror instability to dominate the proton cyclotron instability in Earth's magnetosheath. Here, we use particle-in-cell simulations to investigate the electron temperature anisotropy effects on proton mirror instability evolution. Contrary to the hypothesis, electron temperature anisotropy leads to excitement of the electron whistler instability. Our results show that the electron whistler instability grows much faster than the proton mirror instability and quickly consumes the electron free energy, so that there is no electron temperature anisotropy left to significantly impact the evolution of the proton mirror instability.

  7. Effects of electron temperature anisotropy on proton mirror instability evolution

    Ahmadi, Narges; Germaschewski, Kai; Raeder, Joachim

    2016-06-01

    Proton mirror modes are large amplitude nonpropagating structures frequently observed in the magnetosheath. It has been suggested that electron temperature anisotropy can enhance the proton mirror instability growth rate while leaving the proton cyclotron instability largely unaffected, therefore causing the proton mirror instability to dominate the proton cyclotron instability in Earth's magnetosheath. Here we use particle-in-cell simulations to investigate the electron temperature anisotropy effects on proton mirror instability evolution. Contrary to the hypothesis, electron temperature anisotropy leads to excitement of the electron whistler instability. Our results show that the electron whistler instability grows much faster than the proton mirror instability and quickly consumes the electron-free energy so that there is no electron temperature anisotropy left to significantly impact the evolution of the proton mirror instability.

  8. ABSOLUTELY E-PURE MODULES AND E-PURE SPLIT MODULES

    Yan Hangyu

    2011-01-01

    We first introduce the concepts of absolutely E-pure modules and Epure split modules. Then, we characterize the IF rings in terms of absolutely E-pure modules. The E-pure split modules are also characterized.

  9. Structure and Absolute Configuration of Nyasol and Hinokiresinol via Synthesis and Vibrational Circular Dichroism Spectroscopy

    Lassen, Peter Rygaard

    2005-01-01

    The absolute configuration of the norlignan (+)-nyasol was determined to be S by comparison of the experimental vibrational circular dichroism data with first-principle calculations taking into account the eight lowest energy conformations. The established absolute configuration of (+)-nyasol...

  10. Mirror Instability in the Turbulent Solar Wind

    Hellinger, Petr; Landi, Simone; Matteini, Lorenzo; Verdini, Andrea; Franci, Luca

    2017-04-01

    The relationship between a decaying strong turbulence and the mirror instability in a slowly expanding plasma is investigated using two-dimensional hybrid expanding box simulations. We impose an initial ambient magnetic field perpendicular to the simulation box, and we start with a spectrum of large-scale, linearly polarized, random-phase Alfvénic fluctuations that have energy equipartition between kinetic and magnetic fluctuations and a vanishing correlation between the two fields. A turbulent cascade rapidly develops, magnetic field fluctuations exhibit a Kolmogorov-like power-law spectrum at large scales and a steeper spectrum at sub-ion scales. The imposed expansion (taking a strictly transverse ambient magnetic field) leads to the generation of an important perpendicular proton temperature anisotropy that eventually drives the mirror instability. This instability generates large-amplitude, nonpropagating, compressible, pressure-balanced magnetic structures in a form of magnetic enhancements/humps that reduce the perpendicular temperature anisotropy.

  11. INSTABILITY OF GAS/LIQUID COAXIAL JET

    2007-01-01

    In this article the emphasis was given to the discussion of the effects of diameter ratio and swirling on instability character for the gas/liquid coaxial jet used by Liao, et al.[1]. The results indicate that the finite diameter ratio markedly increases the maximum growth rate, the most unstable wavenumber, as well as the cutoff wavenumber. It implies that the finite diameter ratio will lead to the liquid jet breakup length shorter and the liquid drop size smaller. The effect of the swirling jets is much more complex: for the axisymmetric perturbation mode, the swirling enhances the flow stability, for helical perturbation, the dominant instability mode occurs at n<0. And it is found that in long wave region there exists a new kind of instability modes at n=1 that was not mentioned in Liao et al.'s article. For this new mode, there appears a dominated swirling ratio at which the flow has the maximum growth rate.

  12. Pathways towards instability in financial networks

    Bardoscia, Marco; Battiston, Stefano; Caccioli, Fabio; Caldarelli, Guido

    2017-02-01

    Following the financial crisis of 2007-2008, a deep analogy between the origins of instability in financial systems and complex ecosystems has been pointed out: in both cases, topological features of network structures influence how easily distress can spread within the system. However, in financial network models, the details of how financial institutions interact typically play a decisive role, and a general understanding of precisely how network topology creates instability remains lacking. Here we show how processes that are widely believed to stabilize the financial system, that is, market integration and diversification, can actually drive it towards instability, as they contribute to create cyclical structures which tend to amplify financial distress, thereby undermining systemic stability and making large crises more likely. This result holds irrespective of the details of how institutions interact, showing that policy-relevant analysis of the factors affecting financial stability can be carried out while abstracting away from such details.

  13. The Parker Instability in Disk Galaxies

    Rodrigues, Luiz Felippe S; Shukurov, Anvar; Bushby, Paul J; Fletcher, Andrew

    2016-01-01

    We examine the evolution of the Parker instability in galactic disks using 3D numerical simulations. We consider a local Cartesian box section of a galactic disk, where gas, magnetic fields and cosmic rays are all initially in a magnetohydrostatic equilibrium. This is done for different choices of initial cosmic ray density and magnetic field. The growth rates and characteristic scales obtained from the models, as well as their dependences on the density of cosmic rays and magnetic fields, are in broad agreement with previous (linearized, ideal) analytical work. However, this non-ideal instability develops a multi-modal 3D structure, which cannot be quantitatively predicted from the earlier linearized studies. This 3D signature of the instability will be of importance in interpreting observations. As a preliminary step towards such interpretations, we calculate synthetic polarized intensity and Faraday rotation measure maps, and the associated structure functions of the latter, from our simulations; these sug...

  14. Rational Instability in the Natural Coalition Forming

    Vinogradova, Galina

    2012-01-01

    We are investigating a paradigm of instability in coalition forming among countries, which indeed is intrinsic to any collection of individual groups or other social aggregations. Coalitions among countries are formed by the respective attraction or repulsion caused by the historical bond propensities between the countries, which produced an intricate circuit of bilateral bonds. Contradictory associations into coalitions occur due to the independent evolution of the bonds. Those coalitions tend to be unstable and break down frequently. The model extends some features of the physical theory of Spin Glasses. Within the frame of this model, the instability is viewed as a consequence of decentralized maximization processes searching for the best coalition allocations. In contrast to the existing literature, a rational instability is found to result from forecast rationality of countries. Using a general theoretical framework allowing to analyze the countries' decision making in coalition forming, we feature a sys...

  15. Ion sound instability driven by ion beam

    Koshkarov, O; Kaganovich, I D; Ilgisonis, V I

    2014-01-01

    In many natural and laboratory conditions, plasmas are often in the non-equilibrium state due to presence of stationary flows, when one particle species (or a special group, such as group of high energy particles, i.e. beam) is mowing with respect to the other plasma components. Such situations are common for a number of different plasma application such as diagnostics with emissive plasma probes, plasma electronics devices and electric propulsion devices. The presence of plasma flows often lead to the instabilities in such systems and subsequent development of large amplitude perturbations. The goal of this work is to develop physical insights and numerical tools for studies of stability of the excitation of the ion sound waves by the ion beam in the configuration similar to the plasma Pierce diode. This systems, in some limiting cases, reduce to mathematically similar equations originally proposed for Pierce instability. The finite length effect are crucial for this instability which generally belong to the...

  16. On stability and instability criteria for magnetohydrodynamics.

    Friedlander, Susan; Vishik, Misha M.

    1995-06-01

    It is shown that for most, but not all, three-dimensional magnetohydrodynamic (MHD) equilibria the second variation of the energy is indefinite. Thus the class of such equilibria whose stability might be determined by the so-called Arnold criterion is very restricted. The converse question, namely conditions under which MHD equilibria will be unstable is considered in this paper. The following sufficient condition for linear instability in the Eulerian representation is presented: The maximal real part of the spectrum of the MHD equations linearized about an equilibrium state is bounded from below by the growth rate of an operator defined by a system of local partial differential equations (PDE). This instability criterion is applied to the case of axisymmetric toroidal equilibria. Sufficient conditions for instability, stronger than those previously known, are obtained for rotating MHD. (c) 1995 American Institute of Physics.

  17. Metal pad instabilities in liquid metal batteries

    Zikanov, Oleg

    2016-11-01

    Strong variations between the electrical conductivities of electrolyte and metal layers in a liquid metal battery indicate the possibility of 'metal pad' instabilities. Deformations of the electrolyte-metal interfaces cause strong perturbations of electric currents, which, hypothetically, can generate Lorentz forces enhancing the deformations. We investigate this possibility using two models: a mechanical analogy and a two-dimensional linearized approximation. It is found that the battery is prone to instabilities of two types. One is similar to the sloshing-wave instability observed in the Hall-Héroult aluminum reduction cells. Another is new and related to the interactions of current perturbations with the azimuthal magnetic field induced by the base current. Financial support was provided by the U.S. National Science Foundation (Grant CBET 1435269).

  18. Photofluid Instabilities of Hot Stellar Envelopes

    Spiegel, E A; Spiegel, Edward A.; Tao, Louis

    1999-01-01

    Beginning from a relatively simple set of dynamical equations for a fluid permeated by a radiative field strong enough to produce significant forces, we find the structure of plane-parallel equilibria and study their stability to small acoustic disturbances. In doing this, we neglect viscous effects and complications of nongreyness. We find that acoutic instabilities occur over a wide range of conditions below the Eddington limit. This result is in line with findings reported twenty years ago but it contradicts some more recent reports of the absence of instabilities. We briefly attempt to identify the causes of the discrepancies and then close with a discussion of the possible astrophysical interest of such instabilities.

  19. Control and simulation of thermoacoustic instabilities

    Poinsot, Thierry

    2014-11-01

    Combustion instabilities (CI), due to thermoacoustic coupling between acoustic waves and chemical reaction, constitute a major danger for all combustion systems. They can drive the system to unstable states where the whole combustor can oscillate, vibrate, quench or in extreme cases explode or burn. Such phenomena are commonly observed in the final phases of development programs, leading to major difficulties and significant additional costs. One of the most famous examples of combustion instabilities is the F1 engine of the Apollo program which required more than 1000 engine tests to obtain a stable regime satisfying all other constraints (performance, ignition, etc). CIs constitute one of the most challenging problems in fluid mechanics: they combine turbulence, acoustics, chemistry, unsteady two-phase flow in complex geometries. Since combustion instabilities have been identified (more than hundred years ago), the combustion community has followed two paths: (1) improve our understanding of the phenomena controlling stability to build engines which would be ``stable by design'' and (2) give up on a detailed understanding of mechanisms and add control systems either in open or closed loop devices to inhibit unstable modes. Of course, understanding phenomena driving combustion instabilities to suppress them would be the most satisfying approach but there is no fully reliable theory or numerical method today which can predict whether a combustor will be stable or not before it is fired. This talk will present an overview of combustion instabilities phenomenology before focusing on: (1) active control methods for combustion instabilities and (2) recent methods to predict unstable modes in combustors. These methods are based on recent Large Eddy Simulation codes for compressible reacting flows on HPC systems but we will also describe recent fully analytical methods which provide new insights into unstable modes in annular combustion chambers. Support: European

  20. Automatic section thickness determination using an absolute gradient focus function.

    Elozory, D T; Kramer, K A; Chaudhuri, B; Bonam, O P; Goldgof, D B; Hall, L O; Mouton, P R

    2012-12-01

    Quantitative analysis of microstructures using computerized stereology systems is an essential tool in many disciplines of bioscience research. Section thickness determination in current nonautomated approaches requires manual location of upper and lower surfaces of tissue sections. In contrast to conventional autofocus functions that locate the optimally focused optical plane using the global maximum on a focus curve, this study identified by two sharp 'knees' on the focus curve as the transition from unfocused to focused optical planes. Analysis of 14 grey-scale focus functions showed, the thresholded absolute gradient function, was best for finding detectable bends that closely correspond to the bounding optical planes at the upper and lower tissue surfaces. Modifications to this function generated four novel functions that outperformed the original. The 'modified absolute gradient count' function outperformed all others with an average error of 0.56 μm on a test set of images similar to the training set; and, an average error of 0.39 μm on a test set comprised of images captured from a different case, that is, different staining methods on a different brain region from a different subject rat. We describe a novel algorithm that allows for automatic section thickness determination based on just out-of-focus planes, a prerequisite for fully automatic computerized stereology.

  1. Communication: The absolute shielding scales of oxygen and sulfur revisited

    Komorovsky, Stanislav; Repisky, Michal; Malkin, Elena; Ruud, Kenneth, E-mail: kenneth.ruud@uit.no [Centre for Theoretical and Computational Chemistry, University of Tromsø — The Arctic University of Norway, N-9037 Tromsø (Norway); Gauss, Jürgen [Institut für Physikalische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz (Germany)

    2015-03-07

    We present an updated semi-experimental absolute shielding scale for the {sup 17}O and {sup 33}S nuclei. These new shielding scales are based on accurate rotational microwave data for the spin–rotation constants of H{sub 2}{sup 17}O [Puzzarini et al., J. Chem. Phys. 131, 234304 (2009)], C{sup 17}O [Cazzoli et al., Phys. Chem. Chem. Phys. 4, 3575 (2002)], and H{sub 2}{sup 33}S [Helgaker et al., J. Chem. Phys. 139, 244308 (2013)] corrected both for vibrational and temperature effects estimated at the CCSD(T) level of theory as well as for the relativistic corrections to the relation between the spin–rotation constant and the absolute shielding constant. Our best estimate for the oxygen shielding constants of H{sub 2}{sup 17}O is 328.4(3) ppm and for C{sup 17}O −59.05(59) ppm. The relativistic correction for the sulfur shielding of H{sub 2}{sup 33}S amounts to 3.3%, and the new sulfur shielding constant for this molecule is 742.9(4.6) ppm.

  2. Communication: The absolute shielding scales of oxygen and sulfur revisited

    Komorovsky, Stanislav; Repisky, Michal; Malkin, Elena; Ruud, Kenneth; Gauss, Jürgen

    2015-03-01

    We present an updated semi-experimental absolute shielding scale for the 17O and 33S nuclei. These new shielding scales are based on accurate rotational microwave data for the spin-rotation constants of H217O [Puzzarini et al., J. Chem. Phys. 131, 234304 (2009)], C17O [Cazzoli et al., Phys. Chem. Chem. Phys. 4, 3575 (2002)], and H233S [Helgaker et al., J. Chem. Phys. 139, 244308 (2013)] corrected both for vibrational and temperature effects estimated at the CCSD(T) level of theory as well as for the relativistic corrections to the relation between the spin-rotation constant and the absolute shielding constant. Our best estimate for the oxygen shielding constants of H217O is 328.4(3) ppm and for C17O -59.05(59) ppm. The relativistic correction for the sulfur shielding of H233S amounts to 3.3%, and the new sulfur shielding constant for this molecule is 742.9(4.6) ppm.

  3. Absolute properties of the spotted eclipsing binary star CV Bootis

    Torres, Guillermo; Lacy, Claud H Sandberg

    2008-01-01

    We present new V-band differential brightness measurements as well as new radial-velocity measurements of the detached, circular, 0.84-day period, double-lined eclipsing binary system CV Boo. These data along with other observations from the literature are combined to derive improved absolute dimensions of the stars for the purpose of testing various aspects of theoretical modeling. Despite complications from intrinsic variability we detect in the system, and despite the rapid rotation of the components, we are able to determine the absolute masses and radii to better than 1.3% and 2%, respectively. We obtain M(A) = 1.032 +/- 0.013 M(Sun) and R(B) = 1.262 +/- 0.023 R(Sun) for the hotter, larger, and more massive primary (star A), and M(B) = 0.968 +/- 0.012 M(Sun) and R(B) = 1.173 +/- 0.023 R(Sun) for the secondary. The estimated effective temperatures are 5760 +/- 150 K and 5670 +/- 150 K. The intrinsic variability with a period about 1% shorter than the orbital period is interpreted as being due to modulatio...

  4. Accurate absolute parameters of the binary system V4089 Sgr

    Veramendi, M E

    2014-01-01

    We carried out a spectroscopic-photometric analysis of the binary V4089 Sgr with the aim to obtain absolute masses and radii of the components and to contrast these parameters with stellar evolution theoretical models. We took high-resolution spectra and measured radial velocity using standard cross-correlations and a technique of spectral disentangling. Absolute parameters of the components were determined through the simultaneous fitting of measured radial velocities and Geneva photometric data available in the literature. In this way we obtained Ma=2.584+-0.008 Msun, Mb=1.607+-0.007 Msun, Ra=3.959+-0.013 Rsun, and Rb=1.605+-0.016 Rsun. The comparison of these parameters with two grids of theoretical models led to estimate narrow ranges of possible values for system metallicity and age. According circularization theory it is not expected that the binary had been achieved a circular orbit as a result of tidal friction, so the null eccentricity found is an interesting fact. On the other hand, we measured proj...

  5. Absolute rotation detection by Coriolis force measurement using optomechanics

    Davuluri, Sankar; Li, Yong

    2016-10-01

    In this article, we present an application of the optomechanical cavities for absolute rotation detection. Two optomechanical cavities, one in each arm, are placed in a Michelson interferometer. The interferometer is placed on a rotating table and is moved with a uniform velocity of \\dot{\\bar{y}} with respect to the rotating table. The Coriolis force acting on the interferometer changes the length of the optomechanical cavity in one arm, while the length of the optomechanical cavity in the other arm is not changed. The phase shift corresponding to the change in the optomechanical cavity length is measured at the interferometer output to estimate the angular velocity of the absolute rotation. An analytic expression for the minimum detectable rotation rate corresponding to the standard quantum limit of measurable Coriolis force in the interferometer is derived. Squeezing technique is discussed to improve the rotation detection sensitivity by a factor of \\sqrt{{γ }m/{ω }m} at 0 K temperature, where {γ }m and {ω }m are the damping rate and angular frequency of the mechanical oscillator. The temperature dependence of the rotation detection sensitivity is studied.

  6. DI3 - A New Procedure for Absolute Directional Measurements

    A Geese

    2011-06-01

    Full Text Available The standard observatory procedure for determining a geomagnetic field's declination and inclination absolutely is the DI-flux measurement. The instrument consists of a non-magnetic theodolite equipped with a single-axis fluxgate magnetometer. Additionally, a scalar magnetometer is needed to provide all three components of the field. Using only 12 measurement steps, all systematic errors can be accounted for, but if only one of the readings is wrong, the whole measurement has to be rejected. We use a three-component sensor on top of the theodolites telescope. By performing more measurement steps, we gain much better control of the whole procedure: As the magnetometer can be fully calibrated by rotating about two independent directions, every combined reading of magnetometer output and theodolite angles provides the absolute field vector. We predefined a set of angle positions that the observer has to try to achieve. To further simplify the measurement procedure, the observer is guided by a pocket pc, in which he has only to confirm the theodolite position. The magnetic field is then stored automatically, together with the horizontal and vertical angles. The DI3 measurement is periodically performed at the Niemegk Observatory, allowing for a direct comparison with the traditional measurements.

  7. The Absolute Magnitude of RRc Variables From Statistical Parallax

    Kollmeier, Juna A; Burns, Christopher R; Gould, Andrew; Thompson, Ian B; Preston, George W; Sneden, Christopher; Crane, Jeffrey D; Dong, Subo; Madore, Barry F; Morrell, Nidia; Prieto, Jose L; Shectman, Stephen; Simon, Joshua D; Villanueva, Edward

    2012-01-01

    We present the first definitive measurement of the absolute magnitude of RR Lyrae c-type variable stars (RRc) determined purely from statistical parallax. We use a sample of 247 RRc selected from the All Sky Automated Survey (ASAS) for which high-quality light curves, photometry and proper motions are available. We obtain high-resolution echelle spectra for these objects to determine radial velocities and abundances as part of the Carnegie RR Lyrae Survey (CARRS). We find that M_(V,RRc) = 0.52 +/- 0.11 at a mean metallicity of [Fe/H] = -1.59. This is to be compared with previous estimates for RRab stars (M_(V,RRab) = 0.75 +/- 0.13 and the only direct measurement of an RRc absolute magnitude (RZ Cephei, M_(V, RRc) = 0.27 +/- 0.17). We find the bulk velocity of the halo to be (W_pi, W_theta, W_z) = (10.9,34.9,7.2) km/s in the radial, rotational and vertical directions with dispersions (sigma_(W_pi), sigma_(W_theta), sigma_(W_z)) = (154.7, 103.6, 93.8) km/s. For the disk, we find (W_pi, W_theta, W_z) = (8.5, 213...

  8. Absolute counting of neutrophils in whole blood using flow cytometry.

    Brunck, Marion E G; Andersen, Stacey B; Timmins, Nicholas E; Osborne, Geoffrey W; Nielsen, Lars K

    2014-12-01

    Absolute neutrophil count (ANC) is used clinically to monitor physiological dysfunctions such as myelosuppression or infection. In the research laboratory, ANC is a valuable measure to monitor the evolution of a wide range of disease states in disease models. Flow cytometry (FCM) is a fast, widely used approach to confidently identify thousands of cells within minutes. FCM can be optimised for absolute counting using spiked-in beads or by measuring the sample volume analysed. Here we combine the 1A8 antibody, specific for the mouse granulocyte protein Ly6G, with flow cytometric counting in straightforward FCM assays for mouse ANC, easily implementable in the research laboratory. Volumetric and Trucount™ bead assays were optimized for mouse neutrophils, and ANC values obtained with these protocols were compared to ANC measured by a dual-platform assay using the Orphee Mythic 18 veterinary haematology analyser. The single platform assays were more precise with decreased intra-assay variability compared with ANC obtained using the dual protocol. Defining ANC based on Ly6G expression produces a 15% higher estimate than the dual protocol. Allowing for this difference in ANC definition, the flow cytometry counting assays using Ly6G can be used reliably in the research laboratory to quantify mouse ANC from a small volume of blood. We demonstrate the utility of the volumetric protocol in a time-course study of chemotherapy induced neutropenia using four drug regimens.

  9. Ranitidine: single dose pharmacokinetics and absolute bioavailability in man.

    van Hecken, A M; Tjandramaga, T B; Mullie, A; Verbesselt, R; de Schepper, P J

    1982-08-01

    1 Ranitidine single dose pharmacokinetics and absolute bioavailability have been studied in five healthy male volunteers. Following an overnight fast, 150 mg was given intravenously as a bolus injection or orally as a tablet formulation to each subject on separate occasions. 2 Following intravenous administration, plasma levels declined biexponentially. The mean (+/- s.d.) distribution half-life (t 1/2 alpha) was 6.6 +/- 1.6 min; plasma half-life (t 1/2 beta) was 1.7 +/- 0.2 h; the volume of distribution (V) was 96 +/- 9 1; total body clearance (CL) was 647 +/- 94 ml/min and renal clearance (CLR) 520 +/- 123 ml/min. 3 Following oral administration plasma levels showed a bimodal pattern with a first peak at 1.1 +/- 0.4 h and a second peak at 3 +/- 0 h. The absolute availability was 60 +/- 17%. The plasma half-life (t 1/2) of 2.3 +/- 0.4 h was significantly longer (P less than 0.05) after oral than after i.v. administration. 4 Renal excretion of unchanged ranitidine accounted for 79 +/- 9% of the dose after i.v. administration and for 27 +/- 7% after oral administration. 5 Our results suggest a more extensive biotransformation of ranitidine and biliary excretion of metabolites after oral administration while i.v. administration ranitidine is preferentially excreted unchanged in the urine.

  10. Absolute calibration of a multilayer-based XUV diagnostic

    Stuik, R; Tümmler, J; Bijkerk, F

    2002-01-01

    A portable, universal narrowband XUV diagnostic suitable for calibration of various XUV light sources, was built, tested and fully calibrated. The diagnostic allows measurement of the absolute XUV energy and average power in two selected wavelength bands, at 11.4 and 13.4 nm. In addition, the pulse-to-pulse and long-term XUV stability of the source can be assessed, as well as the contamination of multilayer XUV optics exposed to the source. This paper describes the full calibration procedure: all optical elements were calibrated at the wavelength of operation by Physikalisch-Technische Bundesanstalt at the storage ring Bessy II, a full analysis of geometrical factors was done, and the influence of the spectral emissivity of the source on the calibration was analyzed in detail. The calibration was performed both for the centroid wavelength as for the full bandwidth of the diagnostic. The total uncertainty in the absolute calibration allowed measurement of source characteristics with an uncertainty of less than...

  11. Absolute Quantification of Selected Proteins in the Human Osteoarthritic Secretome

    Mandy J. Peffers

    2013-10-01

    Full Text Available Osteoarthritis (OA is characterized by a loss of extracellular matrix which is driven by catabolic cytokines. Proteomic analysis of the OA cartilage secretome enables the global study of secreted proteins. These are an important class of molecules with roles in numerous pathological mechanisms. Although cartilage studies have identified profiles of secreted proteins, quantitative proteomics techniques have been implemented that would enable further biological questions to be addressed. To overcome this limitation, we used the secretome from human OA cartilage explants stimulated with IL-1β and compared proteins released into the media using a label-free LC-MS/MS-based strategy. We employed QconCAT technology to quantify specific proteins using selected reaction monitoring. A total of 252 proteins were identified, nine were differentially expressed by IL-1 β stimulation. Selected protein candidates were quantified in absolute amounts using QconCAT. These findings confirmed a significant reduction in TIMP-1 in the secretome following IL-1β stimulation. Label-free and QconCAT analysis produced equivocal results indicating no effect of cytokine stimulation on aggrecan, cartilage oligomeric matrix protein, fibromodulin, matrix metalloproteinases 1 and 3 or plasminogen release. This study enabled comparative protein profiling and absolute quantification of proteins involved in molecular pathways pertinent to understanding the pathogenesis of OA.

  12. Absolute poverty measures for the developing world, 1981-2004.

    Chen, Shaohua; Ravallion, Martin

    2007-10-23

    We report new estimates of measures of absolute poverty for the developing world for the period 1981-2004. A clear trend decline in the percentage of people who are absolutely poor is evident, although with uneven progress across regions. We find more mixed success in reducing the total number of poor. Indeed, the developing world outside China has seen little or no sustained progress in reducing the number of poor, with rising poverty counts in some regions, notably sub-Saharan Africa. There are encouraging signs of progress in all regions after 2000, although it is too early to say whether this is a new trend. We also summarize results from estimating a new series incorporating an allowance for the higher cost of living facing poor people in urban areas. This reveals a marked urbanization of poverty in the developing world, which is stronger in some regions than others, although it remains that three-quarters of the poor live in rural areas.

  13. Metal pad instabilities in liquid metal batteries

    Zikanov, Oleg

    2015-01-01

    A mechanical analogy is used to analyze the interaction between the magnetic field, electric current and deformation of interfaces in liquid metal batteries. It is found that, during charging or discharging, a sufficiently large battery is prone to instabilities of two types. One is similar to the metal pad instability known for aluminum reduction cells. Another type is new. It is related to the destabilizing effect of the Lorentz force formed by the azimuthal magnetic field induced by the base current and the current perturbations caused by the local variations of the thickness of the electrolyte layer.

  14. Instabilities in numerical loop quantum cosmology

    Rosen, J; Khanna, G; Jung, Jae-Hun; Khanna, Gaurav; Rosen, Jessica

    2006-01-01

    In this article we perform von Neumann analysis of the difference equations that arise as a result of loop quantum gravity being applied to models of cosmology and black holes. In particular, we study the numerical stability of Bianchi I LRS (symmetric and non-symmetric constraint) and Schwarzschild interior (symmetric constraint) models, and find that there exist domains over which there are instabilities, generically. We also present explicit evolutions of wave-packets in these models and clearly demonstrate the presence of these instabilities.

  15. Theory of electrohydrodynamic instabilities in electrolytic cells

    Bruinsma, R.; Alexander, S.

    1990-01-01

    The paper develops the theory of the hydrodynamic stability of an electrolytic cell as a function of the imposed electric current. A new electrohydrodynamic instability is encountered when the current is forced to exceed the Nernst limit. The convection is driven by the volume force exerted by the electric field on space charges in the electrolyte. This intrinsic instability is found to be easily masked by extrinsic convection sources such as gravity or stirring. A linear stability analysis is performed and a dimensionless number Le is derived whose value determines the convection pattern.

  16. Low energy ghosts and the Jeans' instability

    Gümrükçüoǧlu, A. Emir; Mukohyama, Shinji; Sotiriou, Thomas P.

    2016-09-01

    We show that a massless canonical scalar field minimally coupled to general relativity can become a tachyonic ghost at low energies around a background in which the scalar's gradient is spacelike. By performing a canonical transformation we demonstrate that this low energy ghost can be recast, at the level of the action, in a form of a fluid that undergoes a Jeans-like instability affecting only modes with large wavelength. This illustrates that low energy tachyonic ghosts do not lead to a catastrophic quantum vacuum instability, unlike the usual high-energy ghost degrees of freedom.

  17. An instability in neutron stars at birth

    Burrows, Adam; Fryxell, Bruce A.

    1992-01-01

    Calculations with a two-dimensional hydrodynamic simulation show that a generic Raleigh-Taylor-like instability occurs in the mantles of nascent neutron stars, that it is possibly violent, and that the standard spherically symmetric models of neutron star birth and supernova explosion may be inadequate. Whether this 'convective' instability is pivotal to the supernova mechanism, pulsar nagnetic fields, or a host of other important issues that attend stellar collapse remains to be seen, but its existence promises to modify all questions concerning this most energetic of astronomical phenomena.

  18. Efficiency Versus Instability in Plasma Accelerators

    Lebedev, Valeri [Fermilab; Burov, Alexey [Fermilab; Nagaitsev, Sergei [Fermilab

    2017-01-05

    Plasma wake-field acceleration in a strongly nonlinear (a.k.a. the blowout) regime is one of the main candidates for future high-energy colliders. For this case, we derive a universal efficiency-instability relation, between the power efficiency and the key instability parameter of the witness bunch. We also show that in order to stabilize the witness bunch in a regime with high power efficiency, the bunch needs to have high energy spread, which is not presently compatible with collider-quality beam properties. It is unclear how such limitations could be overcome for high-luminosity linear colliders.

  19. THREE-BEAM INSTABILITY IN THE LHC*

    Burov, A

    2013-01-01

    In the LHC, a transverse instability is regularly observed at 4TeV right after the beta-squeeze, when the beams are separated by about their ten transverse rms sizes [1-3], and only one of the two beams is seen as oscillating. So far only a single hypothesis is consistent with all the observations and basic concepts, one about a third beam - an electron cloud, generated by the two proton beams in the high-beta areas of the interaction regions. The instability results from a combined action of the cloud nonlinear focusing and impedance.

  20. Plasma instabilities in high electric fields

    Morawetz, K.; Jauho, Antti-Pekka

    1994-01-01

    We analyze nonequilibrium screening with nonequilibrium Green function techniques. By employing the generalized Kadanoff-Baym ansatz to relate the correlation function to the nonequilibrium distribution function, the latter of which is assumed to be a shifted Maxwellian, an analytically tractable...... expression is derived for the nonequilibrium dielectric function epsilon(K, omega). For certain values of momenta K and frequency omega, Imepsilon(K, omega) becomes negative, implying a plasma instability. This new instability exists only for strong electric fields, underlining its nonequilibrium origin....

  1. Stream instabilities in relativistically hot plasma

    Shaisultanov, Rashid; Eichler, David

    2011-01-01

    The instabilities of relativistic ion beams in a relativistically hot electron background are derived for general propagation angles. It is shown that the Weibel instability in the direction perpendicular to the streaming direction is the fastest growing mode, and probably the first to appear, consistent with the aligned filaments that are seen in PIC simulations. Oblique, quasiperpendicular modes grow almost as fast, as the growth rate varies only moderately with angle, and they may distort or corrugate the filaments after the perpendicular mode saturates.

  2. The Farley Instability: A Laboratory Test

    D'Angelo, N.; Pécseli, Hans; Petersen, P. I.

    1974-01-01

    An experiment is described that was performed in an alkali plasma (Cs) device in order to test the theory of the Farley instability. With υ E×B > Cs (the speed of sound) and νι ≳ ω cι (ν e ≪ ω ce ) wave excitation occurs, the waves traveling normal to the magnetic field B at the υ E×B speed....... The perturbations are strongly elongated along the B field lines, with λ∥ ≫ λ⊥. A comparison with theoretical predictions is given for the observed excitation conditions of the instability....

  3. White-light parametric instabilities in plasmas.

    Santos, J E; Silva, L O; Bingham, R

    2007-06-08

    Parametric instabilities driven by partially coherent radiation in plasmas are described by a generalized statistical Wigner-Moyal set of equations, formally equivalent to the full wave equation, coupled to the plasma fluid equations. A generalized dispersion relation for stimulated Raman scattering driven by a partially coherent pump field is derived, revealing a growth rate dependence, with the coherence width sigma of the radiation field, scaling with 1/sigma for backscattering (three-wave process), and with 1/sigma1/2 for direct forward scattering (four-wave process). Our results demonstrate the possibility to control the growth rates of these instabilities by properly using broadband pump radiation fields.

  4. Polyhedral (in-)stability of protein crystals

    Nanev, Christo N.; Penkova, Anita N.

    2002-04-01

    The polyhedral (in-)stability of monoclinic hen-egg white lysozyme (HEWL) crystals, grown by means of PEG-6000, and that of orthorhombic trypsin crystals has been investigated experimentally. On the basis of a quantitative theoretical analysis, it is compared with the polyhedral (in-)stability of tetragonal HEWL and cubic ferritin crystals. The unambiguous conclusion is that the phenomenon is due to the diffusive supply of matter. This conclusion is also supported by the fact that the phenomenon has common features for both proteins and small molecular crystals.

  5. Dissipation-induced instabilities and symmetry

    Oleg N. Kirillov; Ferdinand Verhulst

    2011-01-01

    The paradox of destabilization of a conservative or non-conservative system by small dissipation, or Ziegler's paradox (1952), has stimulated a growing interest in the sensitivity of reversible and Hamiltonian systems with respect to dissipative perturbations. Since the last decade it has been widely accepted that dissipation-induced instabilities are closely related to singularities arising on the stability boundary, associated with Whitney's umbrella. The first explanation of Ziegler's paradox was given (much earlier) by Oene Bottema in 1956. The aspects of the mechanics and geometry of dissipation-induced instabilities with an application to rotor dynamics are discussed.

  6. Relativistic Cyclotron Instability in Anisotropic Plasmas

    López, Rodrigo A.; Moya, Pablo S.; Navarro, Roberto E.; Araneda, Jaime A.; Muñoz, Víctor; Viñas, Adolfo F.; Alejandro Valdivia, J.

    2016-11-01

    A sufficiently large temperature anisotropy can sometimes drive various types of electromagnetic plasma micro-instabilities, which can play an important role in the dynamics of relativistic pair plasmas in space, astrophysics, and laboratory environments. Here, we provide a detailed description of the cyclotron instability of parallel propagating electromagnetic waves in relativistic pair plasmas on the basis of a relativistic anisotropic distribution function. Using plasma kinetic theory and particle-in-cell simulations, we study the influence of the relativistic temperature and the temperature anisotropy on the collective and noncollective modes of these plasmas. Growth rates and dispersion curves from the linear theory show a good agreement with simulations results.

  7. A fast beam-ion instability

    Stupakov, G.V. [Stanford Linear Accelerator Center, Menlo Park, CA (United States)

    1996-08-01

    The ionization of residual gas by an electron beam in an accelerator generates ions that can resonantly couple to the beam through a wave propagating in the beam-ion system. Results of the study of a beam-ion instability are presented for a multi-bunch train taking into account the decoherence of ion oscillations due to the ion frequency spread and spatial variation of the ion frequency. It is shown that the combination of both effects can substantially reduce the growth rate of the instability. (author)

  8. Managing incontinence due to detrusor instability.

    2001-08-01

    Urinary incontinence affects around 3.5 million people of all ages in the UK. For many, incontinence severely restricts their routine activities and damages their quality of life and self-esteem. In about one-third of women sufferers, and around a half of all men with incontinence, the cause is detrusor instability. This condition is characterised by involuntary bladder contractions or pressure rises during bladder filling, which result in a strong or uncontrollable urge to pass urine and, often, incontinence. Here, we consider a primary care-based approach to managing urinary incontinence in adults, concentrating on the medical management of detrusor instability.

  9. Nonlinear evolution of whistler wave modulational instability

    Karpman, V.I.; Lynov, Jens-Peter; Michelsen, Poul;

    1995-01-01

    The nonlinear evolution of the modulational instability of whistler waves coupled to fast magnetosonic waves (FMS) and to slow magnetosonic waves (SMS) is investigated. Results from direct numerical solutions in two spatial dimensions agree with simplified results from a set of ordinary different......The nonlinear evolution of the modulational instability of whistler waves coupled to fast magnetosonic waves (FMS) and to slow magnetosonic waves (SMS) is investigated. Results from direct numerical solutions in two spatial dimensions agree with simplified results from a set of ordinary...

  10. Methods for Simulating the Heavy Core Instability

    Chang Philip

    2013-04-01

    Full Text Available Vortices have been proposed as the sites of planet formation, where dust collects and grows into planetesimals, the building blocks of planets. However, for very small dust particles that can be treated as a pressure-less fluid, we have recently discovered the “heavy core” instability, driven by the density gradient in the vortex. In order to understand the eventual outcome of this instability, we need to study its non-linear development. Here, we describe our ongoing work to develop highly accurate numerical models of a vortex with a density gradient embedded within a protoplanetary disk.

  11. Transient convective instabilities in directional solidification

    Meca, Esteban

    2010-01-01

    We study the convective instability of the melt during the initial transient in a directional solidification experiment in a vertical configuration. We obtain analytically the dispersion relation, and perform an additional asymptotic expansion for large Rayleigh number that permits a simpler analytical analysis and a better numerical behavior. We find a transient instability, i.e. a regime in which the system destabilizes during the transient whereas the final unperturbed steady state is stable. This could be relevant to growth mode predictions in solidification.

  12. Influence of Helium in Gravitational Instabilities

    Corona-Galindo, M. G.; Cardona, O.; Klapp, J.

    1990-11-01

    RESUMEN. Hemos analizado los modos hid rod inamicos de un modelo de fluido de dos componentes (hidr6geno y helio), y hemos obtenido la condici6n de inestabilidad para masas mayores que 1.39 veces la bien conocida masa dejeans. ABSTRACT, We have analysed the hydrodynamical modes of a two component fluid model (hydrogen and helium), and we have obtained the instability condition for masses greater than 1.39 times the well-known Jeans mass. K words: COSMOLOGY - GRAVITATION - INSTABILITIES

  13. A Special Application of Absolute Value Techniques in Authentic Problem Solving

    Stupel, Moshe

    2013-01-01

    There are at least five different equivalent definitions of the absolute value concept. In instances where the task is an equation or inequality with only one or two absolute value expressions, it is a worthy educational experience for learners to solve the task using each one of the definitions. On the other hand, if more than two absolute value…

  14. Constraint on Absolute Accuracy of Metacomprehension Assessments: The Anchoring and Adjustment Model vs. the Standards Model

    Kwon, Heekyung

    2011-01-01

    The objective of this study is to provide a systematic account of three typical phenomena surrounding absolute accuracy of metacomprehension assessments: (1) the absolute accuracy of predictions is typically quite low; (2) there exist individual differences in absolute accuracy of predictions as a function of reading skill; and (3) postdictions…

  15. Absolute neutrino masses physics beyond SM, double beta decay and cosmic rays

    Päs, H; P\\"as, Heinrich; Weiler, Thomas J.

    2002-01-01

    Absolute neutrino masses provide a key to physics beyond the standard model. We discuss the impact of absolute neutrinos masses on physics beyond the standard model, the experimental possibilities to determine absolute neutrinos masses, and the intriguing connection with the Z-burst model for extreme-energy cosmic rays.

  16. A snapshot of internal waves and hydrodynamic instabilities in the southern Bay of Bengal

    Lozovatsky, Iossif; Wijesekera, Hemantha; Jarosz, Ewa; Lilover, Madis-Jaak; Pirro, Annunziata; Silver, Zachariah; Centurioni, Luca; Fernando, H. J. S.

    2016-08-01

    Measurements conducted in the southern Bay of Bengal (BoB) as a part of the ASIRI-EBoB Program portray the characteristics of high-frequency internal waves in the upper pycnocline as well as the velocity structure with episodic events of shear instability. A 20 h time series of CTD, ADCP, and acoustic backscatter profiles down to 150 m as well as temporal CTD measurements in the pycnocline at z = 54 m were taken to the east of Sri Lanka. Internal waves of periods ˜10-40 min were recorded at all depths below a shallow (˜20-30 m) surface mixed layer in the background of an 8 m amplitude internal tide. The absolute values of vertical displacements associated with high-frequency waves followed the Nakagami distribution with a median value of 2.1 m and a 95% quintile 6.5 m. The internal wave amplitudes are normally distributed. The tails of the distribution deviate from normality due to episodic high-amplitude displacements. The sporadic appearance of internal waves with amplitudes exceeding ˜5 m usually coincided with patches of low Richardson numbers, pointing to local shear instability as a possible mechanism of internal-wave-induced turbulence. The probability of shear instability in the summer BoB pycnocline based on an exponential distribution of the inverse Richardson number, however, appears to be relatively low, not exceeding 4% for Ri < 0.25 and about 10% for Ri < 0.36 (K-H billows). The probability of the generation of asymmetric breaking internal waves and Holmboe instabilities is above ˜25%.

  17. Buoyancy Effects on Flow Structure and Instability of Low-Density Gas Jets

    Pasumarthi, Kasyap Sriramachandra

    2004-01-01

    Reynolds number was varied from 200 to 1500 and jet Richardson number was varied from 0.72 to 0.002. Power spectra plots generated from Fast Fourier Transform (FFT) analysis of angular deflection data acquired at a temporal resolution of 1000Hz reveal substantial damping of the oscillation amplitude in microgravity at low Richardson numbers (0.002). Quantitative concentration data in the form of spatial and temporal evolutions of the instability data in Earth gravity and microgravity reveal significant variations in the jet flow structure upon removal of buoyancy forces. Radial variation of the frequency spectra and time traces of helium concentration revealed the importance of gravitational effects in the jet shear layer region. Linear temporal and spatio-temporal stability analyses of a low-density round gas jet injected into a high-density ambient gas were performed by assuming hyper-tan mean velocity and density profiles. The flow was assumed to be non parallel. Viscous and diffusive effects were ignored. The mean flow parameters were represented as the sum of the mean value and a small normal-mode fluctuation. A second order differential equation governing the pressure disturbance amplitude was derived from the basic conservation equations. The effects of the inhomogeneous shear layer and the Froude number (signifying the effects of gravity) on the temporal and spatio-temporal results were delineated. A decrease in the density ratio (ratio of the density of the jet to the density of the ambient gas) resulted in an increase in the temporal amplification rate of the disturbances. The temporal growth rate of the disturbances increased as the Froude number was reduced. The spatio-temporal analysis performed to determine the absolute instability characteristics of the jet yield positive absolute temporal growth rates at all Fr and different axial locations. As buoyancy was removed (Fr . 8), the previously existing absolute instability disappeared at all locations

  18. Swarm Absolute Scalar Magnetometers first in-orbit results

    Fratter, Isabelle; Léger, Jean-Michel; Bertrand, François; Jager, Thomas; Hulot, Gauthier; Brocco, Laura; Vigneron, Pierre

    2016-04-01

    The ESA Swarm mission will provide the best ever survey of the Earth's magnetic field and its temporal evolution. This will be achieved by a constellation of three identical satellites, launched together on the 22nd of November 2013. In order to observe the magnetic field thoroughly, each satellite carries two magnetometers: a Vector Field Magnetometer (VFM) coupled with a star tracker camera, to measure the direction of the magnetic field in space, and an Absolute Scalar Magnetometer (ASM), to measure its intensity. The ASM is the French contribution to the Swarm mission. This new generation instrument was designed by CEA-Leti and developed in close partnership with CNES, with scientific support from IPGP. Its operating principle is based on the atomic spectroscopy of the helium 4 metastable state. It makes use of the Zeeman's effect to transduce the magnetic field into a frequency, the signal being amplified by optical pumping. The primary role of the ASM is to provide absolute measurements of the magnetic field's strength at 1 Hz, for the in-flight calibration of the VFM. As the Swarm magnetic reference, the ASM scalar performance is crucial for the mission's success. Thanks to its innovative design, the ASM offers the best precision, resolution and absolute accuracy ever attained in space, with similar performance all along the orbit. In addition, thanks to an original architecture, the ASM implements on an experimental basis a capacity for providing simultaneously vector measurements at 1 Hz. This new feature makes it the first instrument capable of delivering both scalar and vector measurements simultaneously at the same point. Swarm offers a unique opportunity to validate the ASM vector data in orbit by comparison with the VFM's. Furthermore, the ASM can provide scalar data at a much higher sampling rate, when run in "burst" mode at 250 Hz, with a 100 Hz measurement bandwidth. An analysis of the spectral content of the magnetic field above 1 Hz becomes thus

  19. Landsat-7 ETM+ radiometric stability and absolute calibration

    Markham, B.L.; Barker, J.L.; Barsi, J.A.; Kaita, E.; Thome, K.J.; Helder, D.L.; Palluconi, Frank Don; Schott, J.R.; Scaramuzza, P.; ,

    2002-01-01

    Launched in April 1999, the Landsat-7 ETM+ instrument is in its fourth year of operation. The quality of the acquired calibrated imagery continues to be high, especially with respect to its three most important radiometric performance parameters: reflective band instrument stability to better than ??1%, reflective band absolute calibration to better than ??5%, and thermal band absolute calibration to better than ??0.6 K. The ETM+ instrument has been the most stable of any of the Landsat instruments, in both the reflective and thermal channels. To date, the best on-board calibration source for the reflective bands has been the Full Aperture Solar Calibrator, which has indicated changes of at most -1.8% to -2.0% (95% C.I.) change per year in the ETM+ gain (band 4). However, this change is believed to be caused by changes in the solar diffuser panel, as opposed to a change in the instrument's gain. This belief is based partially on ground observations, which bound the changes in gain in band 4 at -0.7% to +1.5%. Also, ETM+ stability is indicated by the monitoring of desert targets. These image-based results for four Saharan and Arabian sites, for a collection of 35 scenes over the three years since launch, bound the gain change at -0.7% to +0.5% in band 4. Thermal calibration from ground observations revealed an offset error of +0.31 W/m 2 sr um soon after launch. This offset was corrected within the U. S. ground processing system at EROS Data Center on 21-Dec-00, and since then, the band 6 on-board calibration has indicated changes of at most +0.02% to +0.04% (95% C.I.) per year. The latest ground observations have detected no remaining offset error with an RMS error of ??0.6 K. The stability and absolute calibration of the Landsat-7 ETM+ sensor make it an ideal candidate to be used as a reference source for radiometric cross-calibrating to other land remote sensing satellite systems.

  20. Perception and self-organised instability

    Karl eFriston

    2012-07-01

    Full Text Available This paper considers state-dependent dynamics that mediate perception in the brain. In particular, it considers the formal basis of self-organised instabilities that enable perceptual transitions during Bayes-optimal perception. The basic phenomena we consider are perceptual transitions that lead to conscious ignition (Dehaene & Changeux, 2011 and how they depend on dynamical instabilities that underlie chaotic itinerancy (Tsuda, 2001; Breakspear, 2001 and self-organised criticality (Shew, Yang, Yu, Roy, & Plenz, 2011; Plenz & Thiagarajan, 2007; Beggs & Plenz, 2003. Our approach is based on a dynamical formulation of perception as approximate Bayesian inference, in terms of variational free energy minimisation. This formulation suggests that perception has an inherent tendency to induce dynamical instabilities (critical slowing that enable the brain to respond sensitively to sensory perturbations. We briefly review the dynamics of perception, in terms of generalised Bayesian filtering and free energy minimisation, present a formal conjecture about self-organised instability and then test this conjecture, using neuronal (numerical simulations of perceptual categorisation.

  1. Rossby Wave Instability of Keplerian Accretion Disks

    Lovelace, R V E; Colgate, S A; Nelson, A F

    1999-01-01

    We find a linear instability of non-axisymmetric Rossby waves in a thin non-magnetized Keplerian disk when there is a local maximum in the radial profile of a key function ${\\cal L}(r) \\equiv {\\cal F}(r) S^{2/\\Gamma}(r)$, where ${\\cal F}^{-1} = \\hat {\\bf z}\\cdot ({\\bf \

  2. Modelling Fluidelastic Instability Forces in Tube Arrays

    Anderson, J. Burns

    Historically, heat exchangers have been among the most failure prone components in nuclear power plants. Most of these failures are due to tube failures as a result of corrosion, fatigue and fretting wear. Fatigue and fretting wear are a result of flow induced vibration through turbulent buffeting and fluidelastic instability mechanisms. Fluidelastic instability is by far the most important and complex mechanism. This research deals with modelling fluidelastic instability and the resulting tube response. The proposed time domain model uses the concept of a flow cell (Hassan & Hayder [16]) to represent the complex flow field inside a shell and tube heat exchanger and accounts for temporal variations in the flow separation points as a result of tube motion. The fluidelastic forces are determined by predicting the attachment lengths. The predicted forces are used to simulate the response of a single flexible tube inside a shell and tube heat exchanger. It was found that accounting for temporal variations in the separation points predicted lower critical flow velocities, than that of fixed attachment and separation points. Once unstable a phase lag is predicted between the fluidelastic forces and tube response. It was determined that the predicted critical flow velocities agreed well with available experimental data. The developed model represents an important step towards a realistic fluidelastic instability model which can be used to design the new generation nuclear steam generators.

  3. On cavitation instabilities with interacting voids

    Tvergaard, Viggo

    2012-01-01

    voids so far apart that the radius of the plastic zone around each void is less than 1% of the current spacing between the voids, can still affect each others at the occurrence of a cavitation instability such that one void stops growing while the other grows in an unstable manner. On the other hand...

  4. Collisionless shock waves mediated by Weibel Instability

    Naseri, Neda; Ruan, Panpan; Zhang, Xi; Khudik, Vladimir; Shvets, Gennady

    2015-11-01

    Relativistic collisionless shocks are common events in astrophysical environments. They are thought to be responsible for generating ultra-high energy particles via the Fermi acceleration mechanism. It has been conjectured that the formation of collisionless shocks is mediated by the Weibel instability that takes place when two initially cold, unmagnetized plasma shells counter-propagate into each other with relativistic drift velocities. Using a PIC code, VLPL, which is modified to suppress numerical Cherenkov instabilities, we study the shock formation and evolution for asymmetric colliding shells with different densities in their own proper reference frame. Plasma instabilities in the region between the shock and the precursor are also investigated using a moving-window simulation that advances the computational domain at the shock's speed. This method helps both to save computation time and avoid severe numerical Cherenkov instabilities, and it allows us to study the shock evolution in a longer time period. Project is supported by US DOE grants DE-FG02-04ER41321 and DE-FG02-07ER54945.

  5. Nonlinear Kinetic Dynamics of Magnetized Weibel Instability

    Palodhi, L; Pegoraro, F

    2010-01-01

    Kinetic numerical simulations of the evolution of the Weibel instability during the full nonlinear regime are presented. The formation of strong distortions in the electron distribution function resulting in formation of strong peaks in it and their influence on the resulting electrostatic waves are shown.

  6. Laboratory experiments on arc deflection and instability

    Zweben, S.; Karasik, M.

    2000-03-21

    This article describes experiments on arc deflection instability carried out during the past few years at the Princeton University Plasma Physics Laboratory (PPPL). The approach has been that of plasma physicists interested in arcs, but they believe these results may be useful to engineers who are responsible for controlling arc behavior in large electric steel furnaces.

  7. Longitudinal Single Bunch Instability Study on BEPCII

    Dou, Wang; Zhe, Duan; Na, Wang; Li, Wang; Lin, Wang; Jie, Gao

    2013-01-01

    In order to study the single bunch longitudinal instability in BEPCII, experiments on the positron ring (BPR) for the bunch lengthening phenomenon were made. By analyzing the experimental data based on Gao's theory, the longitudinal loss factor for the bunch are obtained. Also, the total wake potential and the beam current threshold are estimated.

  8. Regional Educational Inequality and Political Instability.

    Monchar, Philip Harris

    1981-01-01

    From a study of 46 nations over the period 1957 to 1973, it is argued that regional educational inequality indicates the presence of other regional social, political, and economic inequalities, and it is all of these factors together that generate feelings of relative deprivation and the pursuant political instability. (Author/SJL)

  9. Political instability and country risk : new evidence

    DeHaan, J; Siermann, CLJ; VanLubek, E

    1997-01-01

    This note presents new estimates of a probit model for the debt rescheduling, using a sample of 65 countries over the period 1984-93. Apart from economic variables, a whole range of indicators for political instability are included in the model as explanatory variables. It turns out, that none is si

  10. Fisher Information, Sustainability, Development and Political Instability

    Fisher information is a measure of order inherent in the timer series data for any dynamic system. We have computed the Fisher Information for nation-states using the data from 1960 to 1997 from the State Instability Task Force. We find that nation-states fall into two categories...

  11. Genome organization, instabilities, stem cells, and cancer

    Senthil Kumar Pazhanisamy

    2009-01-01

    Full Text Available It is now widely recognized that advances in exploring genome organization provide remarkable insights on the induction and progression of chromosome abnormalities. Much of what we know about how mutations evolve and consequently transform into genome instabilities has been characterized in the spatial organization context of chromatin. Nevertheless, many underlying concepts of impact of the chromatin organization on perpetuation of multiple mutations and on propagation of chromosomal aberrations remain to be investigated in detail. Genesis of genome instabilities from accumulation of multiple mutations that drive tumorigenesis is increasingly becoming a focal theme in cancer studies. This review focuses on structural alterations evolve to raise a variety of genome instabilities that are manifested at the nucleotide, gene or sub-chromosomal, and whole chromosome level of genome. Here we explore an underlying connection between genome instability and cancer in the light of genome architecture. This review is limited to studies directed towards spatial organizational aspects of origin and propagation of aberrations into genetically unstable tumors.

  12. Genomic instability and cancer: an introduction

    Zhiyuan Shen

    2011-01-01

    @@ Genomic instability as a major driving force of tumorigenesis.The ultimate goal of cell division for most non-cancerous somatic cells is to accurately duplicate the genome and then evenly divide the duplicated genome into the two daughter cells.This ensures that the daughter cells will have exactly the same genetic material as their parent cell.

  13. FLARE FLAME INSTABILITY AND BURNER COMBUSTION CONTROL

    БОНДАРЕНКО А.В.; В. Э. Волков; Максимов, М. В.

    2014-01-01

    Research of the flare instability development and the laminar-to-turbulent transition for the flares was executed. It was proved that the effects of viscosity and compressibility have the stabilizing influence on the gas flame. The study of the individual flare stability makes the theoretical basis of the fuel burning technology in combustion chambers and for the burner combustion control.

  14. Modulational instability in periodic quadratic nonlinear materials

    Corney, Joel Frederick; Bang, Ole

    2001-01-01

    We investigate the modulational instability of plane waves in quadratic nonlinear materials with linear and nonlinear quasi-phase-matching gratings. Exact Floquet calculations, confirmed by numerical simulations, show that the periodicity can drastically alter the gain spectrum but never complete...

  15. Study of Fast Instability in Fermilab Recycler

    Antipov, Sergey [Chicago U.; Adamson, Philip [Fermilab; Nagaitsev, Sergei [Fermilab; Yang, Ming-Jen [Fermilab

    2016-06-01

    One of the factors which may limit the intensity in the Fermilab Recycler is a fast transverse instability. It develops within a hundred turns and, in certain conditions, may lead to a beam loss. Various peculiar features of the instability: its occurrence only above a certain intensity threshold, and only in horizontal plane, as well as the rate of the instability, suggest that its cause is electron cloud. We studied the phenomena by observing the dynamics of stable and unstable beam. We found that beam motion can be stabilized by a clearing bunch, which confirms the electron cloud nature of the instability. The findings suggest electron cloud trapping in Recycler combined function mag-nets. Bunch-by-bunch measurements of betatron tune show a tune shift towards the end of the bunch train and allow the estimation of the density of electron cloud and the rate of its build-up. The experimental results are in agreement with numerical simulations of electron cloud build-up and its interaction with the beam.

  16. Instabilities in power law gradient hardening materials

    Niordson, Christian Frithiof; Tvergaard, Viggo

    2005-01-01

    Tension and compression instabilities are investigated for specimens with dimensions in the micron range. A finite strain generalization of a higher order strain gradient plasticity theory is implemented in a finite element scheme capable of modeling power law hardening materials. Effects...

  17. Kinetic Simulations of Rayleigh-Taylor Instabilities

    Sagert, Irina; Colbry, Dirk; Howell, Jim; Staber, Alec; Strother, Terrance

    2014-01-01

    We report on an ongoing project to develop a large scale Direct Simulation Monte Carlo code. The code is primarily aimed towards applications in astrophysics such as simulations of core-collapse supernovae. It has been tested on shock wave phenomena in the continuum limit and for matter out of equilibrium. In the current work we focus on the study of fluid instabilities. Like shock waves these are routinely used as test-cases for hydrodynamic codes and are discussed to play an important role in the explosion mechanism of core-collapse supernovae. As a first test we study the evolution of a single-mode Rayleigh-Taylor instability at the interface of a light and a heavy fluid in the presence of a gravitational acceleration. To suppress small-wavelength instabilities caused by the irregularity in the separation layer we use a large particle mean free path. The latter leads to the development of a diffusion layer as particles propagate from one fluid into the other. For small amplitudes, when the instability is i...

  18. Nonlinear parametric instability of wind turbine wings

    Larsen, Jesper Winther; Nielsen, Søren R.K.

    2006-01-01

    Nonlinear rotor dynamic is characterized by parametric excitation of both linear and nonlinear terms caused by centrifugal and Coriolis forces when formulated in a moving frame of reference. Assuming harmonically varying support point motions from the tower, the nonlinear parametric instability...

  19. Surface instabilities during straining of anisotropic materials

    Legarth, Brian Nyvang; Richelsen, Ann Bettina

    2006-01-01

    The development of instabilities in traction-free surfaces is investigated numerically using a unit cell model. Full finite strain analyses are conducted using isotropic as well as anisotropic yield criteria and both plane strain tension and compression are considered. In the load range of tension...

  20. Electronegative Plasma Instabilities in Industrial Pulsed Plasmas

    Pribyl, Patrick; Hansen, Anders; Gekelman, Walter

    2016-10-01

    Electronegative gases that are important for industrial etch processes have a series of instabilities that occur at process relevant conditions. These have been studied since the 1990s, but are becoming a much more important today as plasma reactors are being pushed to produce ever finer features, and tight control of the etch process is becoming crucial. The experiments are being done in a plasma etch tool that closely simulates a working industrial device. ICP coils in different configurations are driven by a pulsed RF generators operating at 2-5 MHz. A computer controlled automated probe drive can access a volume above the substrate. The probe can be a Langmuir probe, a ``Bdot'' probe, or an emissive probe the latter used for more accurate determination of plasma potential. A microwave interferometer is available to measure line-averaged electron density. The negative ion instability is triggered depending upon the gas mix (Ar,SF6) , pressure and RF power. The instability can be ``burned through'' by rapidly pulsing the RF power. In this study we present measurements of plasma current and density distribution over the wafer before, after and during the rapid onset of the instability. Work suported by NSF-GOALI Award and done at the BAPSF.

  1. Instabilities of soft films on compliant substrates

    Holland, M. A.; Li, B.; Feng, X. Q.; Kuhl, E.

    2017-01-01

    Instabilities in bilayered systems can generate a wide variety of patterns ranging from simple folds, wrinkles, and creases to complex checkerboards, hexagons, and herringbones. Physics-based theories traditionally model these systems as a thin film on a thick substrate under confined compression and assume that the film is orders of magnitude stiffer than the substrate. However, instability phenomena in soft films on soft substrates remain insufficiently understood. Here we show that soft bilayered systems are highly sensitive to the stiffness ratio, boundary conditions, and mode of compression. In a systematic analysis over a wide range of stiffness ratios, from 0.1 domain compression, substrate prestretch, and film growth, we observe significantly different instability characteristics in the low-stiffness-contrast regime, for β domain compression are unstable for a wide range of wrinkling modes, under film-only compression, the same systems display distinct wrinkling modes.Strikingly, these discrepancies disappear when using measures of effective strain, effective stiffness, and effective wavelength. Our study suggests that future instability studies should use these effective measures to standardize their findings. Our results have important applications in soft matter and living matter physics, where stiffness contrasts are low and small environmental changes can have large effects on morphogenesis, pattern tabselection, and the evolution of shape.

  2. Final State of Gregory-Laflamme Instability

    Lehner, Luis

    2011-01-01

    We describe the behavior of a perturbed 5-dimensional black string subject to the Gregory-Laflamme instability. We show that the horizon evolves in a self-similar manner, where at any moment in the late-time development of the instability the horizon can be described as a sequence of 3-dimensional spherical black holes of varying size, joined by black string segments of similar radius. As with the initial black string, each local string segment is itself unstable, and this fuels the self-similar cascade to (classically) arbitrarily small scales; in the process the horizon develops a fractal structure. In finite asymptotic time, the remaining string segments shrink to zero-size, yielding a naked singularity. Since no fine-tuning is required to excite the instability, this constitutes a generic violation of cosmic censorship. We further discuss how this behavior is related to satellite formation in low-viscosity fluid streams subject to the Rayleigh-Plateau instability, and estimate the fractal dimension of the...

  3. Theory and Experiments on Chemical Instabilities.

    1983-12-31

    following institutions and conferences: 1981 Jan. 8 X Reunion de Fisica Estadistica , Cocoyoc, Mexico, Resonances and Control Features Feb. 13 Michigan State...Aeronautics and Astronautics, Invited Remarks, Palo Alto, CA 1982 Feb. 25,26 Industrial Affiliates Program ": .’ Hydrodynamic and Chemical Instabilities

  4. Upstream and Downstream Influence in STBLI Instability

    Martin, Pino; Priebe, Stephan; Helm, Clara

    2016-11-01

    Priebe and Martín (JFM, 2012) show that the low-frequency unsteadiness in shockwave and turbulent boundary layer interactions (STBLI) is governed by an inviscid instability. Priebe, Tu, Martín and Rowley (JFM, 2016) show that the instability is an inviscid centrifugal one, i.e Görtlerlike vortices. Previous works had given differing conclusions as to whether the low-frequency unsteadiness in STBLI is caused by an upstream or downstream mechanism. In this paper, we reconcile these opposite views and show that upstream and downstream correlations co-exist in the context of the nature of Görtler vortices. We find that the instability is similar to that in separated subsonic and laminar flows. Since the turbulence is modulated but passive to the global mode, the turbulent separated flows are amenable to linear global analysis. As such, the characteristic length and time scales, and the receptivity of the global mode might be determined, and low-order models that represent the low-frequency dynamics in STBLI might be developed. The centrifugal instability persists even under hypersonic conditions. This work is funded by the AFOSR Grant Number AF9550-15-1-0284 with Dr. Ivett Leyva.

  5. Gravitational Instability of a Nonrotating Galaxy

    Chao, Alexander W.; /SLAC

    2005-12-14

    Gravitational instability of the distribution of stars in a galaxy is a well-known phenomenon in astrophysics. This work is a preliminary attempt to analyze this phenomenon using the standard tools developed in accelerator physics. By applying this analysis, it is found that a stable nonrotating galaxy would become unstable if its size exceeds a certain limit that depends on its mass density.

  6. Swarm's absolute magnetometer experimental vector mode, an innovative capability for space magnetometry

    Hulot, Gauthier; Vigneron, Pierre; Leger, Jean-Michel;

    2015-01-01

    ESA's Swarm satellites carry a new generation of 4He absolute magnetometers (ASM), designed by CEA-Leti and developed in partnership with CNES. These instruments are the rst-ever space-born magnetometers to use a common sensor to simultaneously deliver 1Hz independent absolute scalar and vector r...... be monitored from space with such absolute vector magnetometers.......ESA's Swarm satellites carry a new generation of 4He absolute magnetometers (ASM), designed by CEA-Leti and developed in partnership with CNES. These instruments are the rst-ever space-born magnetometers to use a common sensor to simultaneously deliver 1Hz independent absolute scalar and vector...

  7. Vortex shedding in high Reynolds number axisymmetric bluff-body wakes: Local linear instability and global bleed control

    Sevilla, A.; Martínez-Bazán, C.

    2004-09-01

    In the present work we study the large-scale helical vortex shedding regime in the wake of an axisymmetric body with a blunt trailing edge at high Reynolds numbers, both experimentally and by means of local, linear, and spatiotemporal stability analysis. In the instability analysis we take into account the detailed downstream evolution of the basic flow behind the body base. The study confirms the existence of a finite region of absolute instability for the first azimuthal number in the near field of the wake. Such instability is believed to trigger the large-scale helical vortex shedding downstream of the recirculating zone. Inhibition of vortex shedding is examined by blowing a given flow rate of fluid through the base of the slender body. The extent of the locally absolute region of the flow is calculated as a function of the bleed coefficient, Cb=qb/(πR2u∞), where qb is the bleed flow rate, R is the radius of the base, and u∞ is the incident free-stream velocity. It is shown that the basic flow becomes convectively unstable everywhere for a critical value of the bleed coefficient of Cb*˜0.13, such that no self-excited regime is expected for Cb>Cb*. In addition, we report experimental results of flow visualizations and hot-wire measurements for increasing values of the bleed coefficient. When a sufficient amount of base bleed is applied, flow visualizations indicate that vortex shedding is suppressed and that the mean flow becomes axisymmetric. The critical bleed coefficient predicted by linear instability analysis is shown to fall within the experimental values in the range of Reynolds numbers analyzed here.

  8. Cosmic backgrounds of relic gravitons and their absolute normalization

    Giovannini, Massimo

    2014-01-01

    Provided the consistency relations are not violated, the recent Bicep2 observations pin down the absolute normalization, the spectral slope and the maximal frequency of the cosmic graviton background produced during inflation. The properly normalized spectra are hereby computed from the lowest frequencies (of the order of the present Hubble rate) up to the highest frequency range in the GHz region. Deviations from the conventional paradigm cannot be excluded and are examined by allowing for different physical possibilities including, in particular, a running of the tensor spectral index, an explicit breaking of the consistency relations and a spike in the high-frequency tail of the spectrum coming either from a post-inflationary phase dominated by a stiff fluid of from the contribution of waterfall fields in a hybrid inflationary context. The direct determinations of the tensor to scalar ratio at low frequencies, if confirmed by the forthcoming observations, will also affect and constrain the high-frequencies...

  9. Negative absolute temperature for motional degrees of freedom.

    Braun, S; Ronzheimer, J P; Schreiber, M; Hodgman, S S; Rom, T; Bloch, I; Schneider, U

    2013-01-04

    Absolute temperature is usually bound to be positive. Under special conditions, however, negative temperatures-in which high-energy states are more occupied than low-energy states-are also possible. Such states have been demonstrated in localized systems with finite, discrete spectra. Here, we prepared a negative temperature state for motional degrees of freedom. By tailoring the Bose-Hubbard Hamiltonian, we created an attractively interacting ensemble of ultracold bosons at negative temperature that is stable against collapse for arbitrary atom numbers. The quasimomentum distribution develops sharp peaks at the upper band edge, revealing thermal equilibrium and bosonic coherence over several lattice sites. Negative temperatures imply negative pressures and open up new parameter regimes for cold atoms, enabling fundamentally new many-body states.

  10. Early results from the Far Infrared Absolute Spectrophotometer (FIRAS)

    Mather, J. C.; Cheng, E. S.; Shafer, R. A.; Eplee, R. E.; Isaacman, R. B.; Fixsen, D. J.; Read, S. M.; Meyer, S. S.; Weiss, R.; Wright, E. L.

    1991-01-01

    The Far Infrared Absolute Spectrophotometer (FIRAS) on the Cosmic Background Explorer (COBE) mapped 98 percent of the sky, 60 percent of it twice, before the liquid helium coolant was exhausted. The FIRAS covers the frequency region from 1 to 100/cm with a 7 deg angular resolution. The spectral resolution is 0.2/cm for frequencies less than 20/cm and 0.8/cm for higher frequencies. Preliminary results include: a limit on the deviations from a Planck curve of 1 percent of the peak brightness from 1 to 20/cm, a temperature of 2.735 +/- 0.06 K, a limit on the Comptonization parameter y of 0.001, on the chemical potential parameter mu of 0.01, a strong limit on the existence of a hot smooth intergalactic medium, and a confirmation that the dipole anisotropy spectrum is that of a Doppler shifted blackbody.

  11. Lagrangian Velocity Correlations and Absolute Dispersion in the Midlatitude Troposphere

    Sukhatme, J

    2004-01-01

    Employing daily wind data from the ECMWF, we perform passive particle advection to estimate the Lagrangian velocity correlation functions (LVCF) associated with the midlatitude tropospheric flow. In particular we decompose the velocity field into time mean and transient (or eddy) components to better understand the nature of the LVCF's.A closely related quantity, the absolute dispersion (AD) is also examined. Given the anisotropy of the flow, meridional and zonal characteristics are considered separately. The zonal LVCF is seen to be non-exponential. In fact, for a broad set of intermediate timescales it is better described as a power law of the form $\\tau^{-\\alpha}$ with $ 0<\\alpha<1$. Indeed, the implied long time correlation in the zonal flow results in a superdiffusive zonal AD regime. On the other hand, the meridional LVCF decays rapidly to zero. Interestingly, before approaching to zero it shows a region of negative correlation. A physical argument based on the rotational inhibition of latitudinal...

  12. Predicting accurate absolute binding energies in aqueous solution

    Jensen, Jan Halborg

    2015-01-01

    Recent predictions of absolute binding free energies of host-guest complexes in aqueous solution using electronic structure theory have been encouraging for some systems, while other systems remain problematic. In this paper I summarize some of the many factors that could easily contribute 1-3 kcal...... mol(-1) errors at 298 K: three-body dispersion effects, molecular symmetry, anharmonicity, spurious imaginary frequencies, insufficient conformational sampling, wrong or changing ionization states, errors in the solvation free energy of ions, and explicit solvent (and ion) effects that are not well......-represented by continuum models. While I focus on binding free energies in aqueous solution the approach also applies (with minor adjustments) to any free energy difference such as conformational or reaction free energy differences or activation free energies in any solvent....

  13. Absolute calibration of fiber-coupled single-photon detector.

    Lunghi, Tommaso; Korzh, Boris; Sanguinetti, Bruno; Zbinden, Hugo

    2014-07-28

    We show a setup for characterising the efficiency of a single-photon-detector absolutely and with a precision better than 1%. Since the setup does not rely on calibrated devices and can be implemented with standard-optic components, it can be realised in any laboratory. Our approach is based on an Erbium-Doped-Fiber-Amplifier (EDFA) radiometer as a primary measurement standard for optical power, and on an ultra-stable source of spontaneous emission. As a proof of principle, we characterise the efficiency of an InGaAs/InP single-photon detector. We verified the correctness of the characterisation with independent measurements. In particular, the measurement of the optical power made with the EDFA radiometer has been compared to that of the Federal Institute of Metrology using a transfer power meter. Our approach is suitable for frequent characterisations of high-efficient single-photon detectors.

  14. Absolute calibration of fiber-coupled single-photon detector

    Lunghi, Tommaso; Sanguinetti, Bruno; Zbinden, Hugo

    2014-01-01

    We show a setup for characterising the efficiency of a single-photon-detector absolutely and with a precision better of 1%. Since the setup does not rely on calibrated devices and can be implemented with standard-optic components, it can be realised in any laboratory. Our approach is based on an Erbium-Doped-Fiber-Amplifier (EDFA) radiometer as a primary measurement standard for optical power, and on an ultra-stable source of spontaneous emission. As a proof of principle, we characterise the efficiency of an InGaAs/InP single-photon detector. We verified the correctness of the characterisation with independent measurements. In particular, the measurement of the optical power made with the EDFA radiometer has been compared to that of the Swiss Federal Office of Metrology using a transfer power meter. Our approach is suitable for frequent characterisations of high-efficient single-photon detectors.

  15. Absolute and specific measures of research group excellence

    Mryglod, O; Holovatch, Yu; Berche, B

    2012-01-01

    A desirable goal of scientific management is to introduce, if it exists, a simple and reliable way to measure the scientific excellence of publicly-funded research institutions and universities to serve as a basis for their ranking and financing. While citation-based indicators and metrics are easily accessible, they are far from being universally accepted as way to automate or inform evaluation processes or to replace evaluations based on peer review. Here we consider absolute measurements of research excellence at an amalgamated, institutional level and specific measures of research excellence as performance per head. Using biology research institutions in the UK as a test case, we examine the correlations between peer-review-based and citation-based measures of research excellence on these two scales. We find that citation-based indicators are very highly correlated with peer-evaluated measures of group strength but are poorly correlated with group quality. Thus, and almost paradoxically, our analysis indi...

  16. Conductance and Absolutely Continuous Spectrum of 1D Samples

    Bruneau, L.; Jakšić, V.; Last, Y.; Pillet, C.-A.

    2016-06-01

    We characterize the absolutely continuous spectrum of the one-dimensional Schrödinger operators {h = -Δ + v} acting on {ℓ^2(mathbb{Z}_+)} in terms of the limiting behaviour of the Landauer-Büttiker and Thouless conductances of the associated finite samples. The finite sample is defined by restricting h to a finite interval {[1, L] \\cap mathbb{Z}_+} and the conductance refers to the charge current across the sample in the open quantum system obtained by attaching independent electronic reservoirs to the sample ends. Our main result is that the conductances associated to an energy interval {I} are non-vanishing in the limit {L to infty} iff {sp_ac(h) \\cap I neq emptyset}. We also discuss the relationship between this result and the Schrödinger Conjecture (Avila, J Am Math Soc 28:579-616, 2015; Bruneau et al., Commun Math Phys 319:501-513, 2013).

  17. Self-attraction effect and correction on three absolute gravimeters

    Biolcati, Emanuele; Germak, Alessandro

    2012-01-01

    The perturbations of the gravitational field due to the mass distribution of an absolute gravimeter have been studied. The so called Self Attraction Effect (SAE) is crucial for the measurement accuracy, especially for the International Comparisons, and for the uncertainty budget evaluation. Three instruments have been analysed: MPG-2, FG5-238 and IMPG-02. The SAE has been calculated using a numerical method based on FEM simulation. The observed effect has been treated as an additional vertical gravity gradient. The correction (SAC) to be applied to the computed g value has been associated with the specific height level, where the measurement result is typically reported. The magnitude of the obtained corrections is of order 1E-8 m/s2.

  18. The Absolute Calibration of the EUV Imaging Spectrometer on Hinode

    Warren, Harry P; Landi, Enrico

    2013-01-01

    We investigate the absolute calibration of the EUV Imaging Spectrometer (EIS) on Hinode by comparing EIS full-disk mosaics with irradiance observations from the EUV Variability Experiment (EVE) on the Solar Dynamics Observatory. We also use ultra-deep (>10^5s) exposures of the quiet corona above the limb combined with a simple differential emission measure model to establish new effective area curves that incorporate information from the most recent atomic physics calculations. We find that changes to the EIS instrument sensitivity are a complex function of both time and wavelength. We find that the sensitivity is decaying exponentially with time and that the decay constants vary with wavelength. The EIS short wavelength channel shows significantly longer decay times than the long wavelength channel.

  19. Absolute analytical prediction of photonic crystal guided mode resonance wavelengths

    Hermannsson, Pétur Gordon; Vannahme, Christoph; Smith, Cameron;

    2014-01-01

    A class of photonic crystal resonant reflectors known as guided mode resonant filters are optical structures that are widely used in the field of refractive index sensing, particularly in biosensing. For the purposes of understanding and design, their behavior has traditionally been modeled...... numerically with methods such as rigorous coupled wave analysis. Here it is demonstrated how the absolute resonance wavelengths of such structures can be predicted by analytically modeling them as slab waveguides in which the propagation constant is determined by a phase matching condition. The model...... into account. Furthermore, it is demonstrated that the model is valid beyond the limit of low grating modulation, for periodically discontinuous waveguide layers, high refractive index contrasts, and highly dispersive media....

  20. Absolute Position Total Internal Reflection Microscopy with an Optical Tweezer

    Liu, Lulu; Rodriguez, Alejandro W; Capasso, Federico

    2014-01-01

    A non-invasive, in-situ calibration method for Total Internal Reflection Microscopy (TIRM) based on optical tweezing is presented which greatly expands the capabilities of this technique. We show that by making only simple modifications to the basic TIRM sensing setup and procedure, a probe particle's absolute position relative to a dielectric interface may be known with better than 10 nm precision out to a distance greater than 1 $\\mu$m from the surface. This represents an approximate 10x improvement in error and 3x improvement in measurement range over conventional TIRM methods. The technique's advantage is in the direct measurement of the probe particle's scattering intensity vs. height profile in-situ, rather than relying on calculations or inexact system analogs for calibration. To demonstrate the improved versatility of the TIRM method in terms of tunability, precision, and range, we show our results for the hindered near-wall diffusion coefficient for a spherical dielectric particle.