WorldWideScience

Sample records for absolute fission yields

  1. Absolute fission yields in the fast neutron induced fission of sup 2 sup 3 sup 3 U by track etch combined with gamma-ray spectrometry

    CERN Document Server

    Ramaswami, A; Kalsi, P C; Dange, S P

    2003-01-01

    The absolute fission yields of twenty seven fission products were determined in the fast neutron induced fission of sup 2 '3 sup 3 U, employing track etch in combination with gamma-ray spectrometry. The total number of fissions was measured by registering the fission tracks on a small strip of lexan, a solid state track detector. The fission products were analysed by gamma-ray spectrometry. The measured yield values were compared to the ENDF/B-VI compilation and show a good agreement. (author)

  2. Measurements of periods, relative abundances and absolute yields of delayed neutrons from fast neutron induced fission of {sup 237}Np

    Energy Technology Data Exchange (ETDEWEB)

    Piksaikine, V. [Institute of Physics and Power Engineering, Obninsk (Russian Federation)

    1997-03-01

    The experimental method for measurements of the delayed neutron yields and period is presented. The preliminary results of the total yield, relative abundances and periods are shown comparing with the previously reported values. (J.P.N.)

  3. Fission yield measurements at IGISOL

    Directory of Open Access Journals (Sweden)

    Lantz M.

    2016-01-01

    Full Text Available The fission product yields are an important characteristic of the fission process. In fundamental physics, knowledge of the yield distributions is needed to better understand the fission process. For nuclear energy applications good knowledge of neutroninduced fission-product yields is important for the safe and efficient operation of nuclear power plants. With the Ion Guide Isotope Separator On-Line (IGISOL technique, products of nuclear reactions are stopped in a buffer gas and then extracted and separated by mass. Thanks to the high resolving power of the JYFLTRAP Penning trap, at University of Jyväskylä, fission products can be isobarically separated, making it possible to measure relative independent fission yields. In some cases it is even possible to resolve isomeric states from the ground state, permitting measurements of isomeric yield ratios. So far the reactions U(p,f and Th(p,f have been studied using the IGISOL-JYFLTRAP facility. Recently, a neutron converter target has been developed utilizing the Be(p,xn reaction. We here present the IGISOL-technique for fission yield measurements and some of the results from the measurements on proton induced fission. We also present the development of the neutron converter target, the characterization of the neutron field and the first tests with neutron-induced fission.

  4. Fission yield studies at the IGISOL facility

    Energy Technology Data Exchange (ETDEWEB)

    Penttilae, H.; Elomaa, V.V.; Eronen, T.; Hakala, J.; Jokinen, A.; Kankainen, A.; Moore, I.D.; Rahaman, S.; Rinta-Antila, S.; Rissanen, J.; Saastamoinen, A.; Weber, C.; Aeystoe, J. [University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland); Rubchenya, V. [University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland); V.G. Khlopin Radium Institute, St. Petersburg (Russian Federation)

    2012-04-15

    Low-energy-particle-induced fission is a cost-effective way to produce neutron-rich nuclei for spectroscopic studies. Fission has been utilized at the IGISOL to produce isotopes for decay and nuclear structure studies, collinear laser spectroscopy and precision mass measurements. The ion guide technique is also very suitable for the fission yield measurements, which can be performed very efficiently by using the Penning trap for fission fragment identification and counting. The proton- and neutron-induced fission yield measurements at the IGISOL are reviewed, and the independent isotopic yields of Zn, Ga, Rb, Sr, Cd and In in 25MeV deuterium-induced fission are presented for the first time. Moving to a new location next to the high intensity MCC30/15 light-ion cyclotron will allow also the use of the neutron-induced fission to produce the neutron rich nuclei at the IGISOL in the future. (orig.)

  5. Measurement of Fission Product Yields from Fast-Neutron Fission

    Science.gov (United States)

    Arnold, C. W.; Bond, E. M.; Bredeweg, T. A.; Fowler, M. M.; Moody, W. A.; Rusev, G.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Henderson, R.; Kenneally, J.; Macri, R.; McNabb, D.; Ryan, C.; Sheets, S.; Stoyer, M. A.; Tonchev, A. P.; Bhatia, C.; Bhike, M.; Fallin, B.; Gooden, M. E.; Howell, C. R.; Kelley, J. H.; Tornow, W.

    2014-09-01

    One of the aims of the Stockpile Stewardship Program is a reduction of the uncertainties on fission data used for analyzing nuclear test data [1,2]. Fission products such as 147Nd are convenient for determining fission yields because of their relatively high yield per fission (about 2%) and long half-life (10.98 days). A scientific program for measuring fission product yields from 235U,238U and 239Pu targets as a function of bombarding neutron energy (0.1 to 15 MeV) is currently underway using monoenergetic neutron beams produced at the 10 MV Tandem Accelerator at TUNL. Dual-fission chambers are used to determine the rate of fission in targets during activation. Activated targets are counted in highly shielded HPGe detectors over a period of several weeks to identify decaying fission products. To date, data have been collected at neutron bombarding energies 4.6, 9.0, 14.5 and 14.8 MeV. Experimental methods and data reduction techniques are discussed, and some preliminary results are presented.

  6. The SPIDER fission fragment spectrometer for fission product yield measurements

    Energy Technology Data Exchange (ETDEWEB)

    Meierbachtol, K.; Tovesson, F. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Shields, D. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Colorado School of Mines, Golden, CO 80401 (United States); Arnold, C. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Blakeley, R. [University of New Mexico, Albuquerque, NM 87131 (United States); Bredeweg, T.; Devlin, M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Hecht, A.A.; Heffern, L.E. [University of New Mexico, Albuquerque, NM 87131 (United States); Jorgenson, J.; Laptev, A. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Mader, D. [University of New Mexico, Albuquerque, NM 87131 (United States); O' Donnell, J.M.; Sierk, A.; White, M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2015-07-11

    The SPectrometer for Ion DEtermination in fission Research (SPIDER) has been developed for measuring mass yield distributions of fission products from spontaneous and neutron-induced fission. The 2E–2v method of measuring the kinetic energy (E) and velocity (v) of both outgoing fission products has been utilized, with the goal of measuring the mass of the fission products with an average resolution of 1 atomic mass unit (amu). The SPIDER instrument, consisting of detector components for time-of-flight, trajectory, and energy measurements, has been assembled and tested using {sup 229}Th and {sup 252}Cf radioactive decay sources. For commissioning, the fully assembled system measured fission products from spontaneous fission of {sup 252}Cf. Individual measurement resolutions were met for time-of-flight (250 ps FWHM), spacial resolution (2 mm FHWM), and energy (92 keV FWHM for 8.376 MeV). Mass yield results measured from {sup 252}Cf spontaneous fission products are reported from an E–v measurement.

  7. Fission Product Yield Study of 235U, 238U and 239Pu Using Dual-Fission Ionization Chambers

    Science.gov (United States)

    Bhatia, C.; Fallin, B.; Howell, C.; Tornow, W.; Gooden, M.; Kelley, J.; Arnold, C.; Bond, E.; Bredeweg, T.; Fowler, M.; Moody, W.; Rundberg, R.; Rusev, G.; Vieira, D.; Wilhelmy, J.; Becker, J.; Macri, R.; Ryan, C.; Sheets, S.; Stoyer, M.; Tonchev, A.

    2014-05-01

    To resolve long-standing differences between LANL and LLNL regarding the correct fission basis for analysis of nuclear test data [M.B. Chadwick et al., Nucl. Data Sheets 111, 2891 (2010); H. Selby et al., Nucl. Data Sheets 111, 2891 (2010)], a collaboration between TUNL/LANL/LLNL has been established to perform high-precision measurements of neutron induced fission product yields. The main goal is to make a definitive statement about the energy dependence of the fission yields to an accuracy better than 2-3% between 1 and 15 MeV, where experimental data are very scarce. At TUNL, we have completed the design, fabrication and testing of three dual-fission chambers dedicated to 235U, 238U, and 239Pu. The dual-fission chambers were used to make measurements of the fission product activity relative to the total fission rate, as well as for high-precision absolute fission yield measurements. The activation method was employed, utilizing the mono-energetic neutron beams available at TUNL. Neutrons of 4.6, 9.0, and 14.5 MeV were produced via the 2H(d,n)3He reaction, and for neutrons at 14.8 MeV, the 3H(d,n)4He reaction was used. After activation, the induced γ-ray activity of the fission products was measured for two months using high-resolution HPGe detectors in a low-background environment. Results for the yield of seven fission fragments of 235U, 238U, and 239Pu and a comparison to available data at other energies are reported. For the first time results are available for neutron energies between 2 and 14 MeV.

  8. Revision of the JENDL FP Fission Yield Data

    Directory of Open Access Journals (Sweden)

    Katakura Jun-ichi

    2016-01-01

    Full Text Available Some fission yields data of JENDL FP Fission Yields Data File 2011 (JENDL/FPY-2011 revealed inadequacies when applied to delayed neutron related subjects. The sensitivity analyses of decay heat summation calculations also showed some problems. From these results the fission yields of JENDL/FPY-2011 have been revised. The present report describes the revision of the yield data by emphasizing the sensitivity analyses.

  9. Measurement of 235U Fission Yield Induced by 252Cf Fission Neutron

    Institute of Scientific and Technical Information of China (English)

    YANG; Yi; LIU; Shi-long; JIANG; Wen-gang

    2015-01-01

    We measured fission yields of 235U by 252Cf fission neutrons with the directγray spectrometric method.Square sample foils of 15 mm,abundance of 235U is 90.2%,mass of 0.7gram,covered by pure aluminum foil.After irradiations every sample was measured by HPGe spectrometry for about 2months.Based on 140Ba’s fission yield,we get relative fission yields and the results were shown in Fig.1.

  10. Determination of fission gas yields from isotope ratios

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg

    1983-01-01

    This paper describes a method of calculating the actual fission yield of Kr and Xe in nuclear fuel including the effect of neutron capture reactions and decay. The bases for this calculation are the cumulative yields (ref. 1) of Kr and Xe isotopes (or pairs of isotopes) which are unaffected...... by neutron capture reactions, and measured Kr and Xe isotope ratios. Also the burnup contribution from the different fissile heavy isotopes must be known in order to get accurate fission gas yields....

  11. Study of Relationship Between Neutron Energy and Fission Yields of 95Zr, 140Ba and 147Nd From 235U

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This work measures fission yields of 235U induced by neutrons with energy of thermal, 3.0, 5.0, 5.5, 8.0 and 14.8 MeV. The main purpose is to study the relationship between neutron energy and fission fields of 95Zr,140Ba and 147Nd from 235U by measuring the radioactivity of foil with direct gamma spectrometry. The fission yields induced by fast neutrons are get by fast-thermal-ratio method which based on yields from thermal neutrons, yields by thermal neutron are come from absolute measurement. Since fast-thermal-ratio method eliminates uncertainties of gamma intensity, gamma

  12. Relative fission product yield determination in the USGS TRIGA Mark I reactor

    Science.gov (United States)

    Koehl, Michael A.

    Fission product yield data sets are one of the most important and fundamental compilations of basic information in the nuclear industry. This data has a wide range of applications which include nuclear fuel burnup and nonproliferation safeguards. Relative fission yields constitute a major fraction of the reported yield data and reduce the number of required absolute measurements. Radiochemical separations of fission products reduce interferences, facilitate the measurement of low level radionuclides, and are instrumental in the analysis of low-yielding symmetrical fission products. It is especially useful in the measurement of the valley nuclides and those on the extreme wings of the mass yield curve, including lanthanides, where absolute yields have high errors. This overall project was conducted in three stages: characterization of the neutron flux in irradiation positions within the U.S. Geological Survey TRIGA Mark I Reactor (GSTR), determining the mass attenuation coefficients of precipitates used in radiochemical separations, and measuring the relative fission products in the GSTR. Using the Westcott convention, the Westcott flux, modified spectral index, neutron temperature, and gold-based cadmium ratios were determined for various sampling positions in the USGS TRIGA Mark I reactor. The differential neutron energy spectrum measurement was obtained using the computer iterative code SAND-II-SNL. The mass attenuation coefficients for molecular precipitates were determined through experiment and compared to results using the EGS5 Monte Carlo computer code. Difficulties associated with sufficient production of fission product isotopes in research reactors limits the ability to complete a direct, experimental assessment of mass attenuation coefficients for these isotopes. Experimental attenuation coefficients of radioisotopes produced through neutron activation agree well with the EGS5 calculated results. This suggests mass attenuation coefficients of molecular

  13. Evaluation and compilation of fission product yields 1993

    Energy Technology Data Exchange (ETDEWEB)

    England, T.R.; Rider, B.F.

    1995-12-31

    This document is the latest in a series of compilations of fission yield data. Fission yield measurements reported in the open literature and calculated charge distributions have been used to produce a recommended set of yields for the fission products. The original data with reference sources, and the recommended yields axe presented in tabular form. These include many nuclides which fission by neutrons at several energies. These energies include thermal energies (T), fission spectrum energies (F), 14 meV High Energy (H or HE), and spontaneous fission (S), in six sets of ten each. Set A includes U235T, U235F, U235HE, U238F, U238HE, Pu239T, Pu239F, Pu241T, U233T, Th232F. Set B includes U233F, U233HE, U236F, Pu239H, Pu240F, Pu241F, Pu242F, Th232H, Np237F, Cf252S. Set C includes U234F, U237F, Pu240H, U234HE, U236HE, Pu238F, Am241F, Am243F, Np238F, Cm242F. Set D includes Th227T, Th229T, Pa231F, Am241T, Am241H, Am242MT, Cm245T, Cf249T, Cf251T, Es254T. Set E includes Cf250S, Cm244S, Cm248S, Es253S, Fm254S, Fm255T, Fm256S, Np237H, U232T, U238S. Set F includes Cm243T, Cm246S, Cm243F, Cm244F, Cm246F, Cm248F, Pu242H, Np237T, Pu240T, and Pu242T to complete fission product yield evaluations for 60 fissioning systems in all. This report also serves as the primary documentation for the second evaluation of yields in ENDF/B-VI released in 1993.

  14. Dual-fission chamber and neutron beam characterization for fission product yield measurements using monoenergetic neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Bhatia, C.; Fallin, B. [Department of Physics, Duke University, Durham, NC 27708 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Gooden, M.E., E-mail: megooden@tunl.duke.edu [Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Department of Physics, North Carolina State University, Raleigh, NC 27605 (United States); Howell, C.R. [Department of Physics, Duke University, Durham, NC 27708 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Kelley, J.H. [Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Department of Physics, North Carolina State University, Raleigh, NC 27605 (United States); Tornow, W. [Department of Physics, Duke University, Durham, NC 27708 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Arnold, C.W.; Bond, E.M.; Bredeweg, T.A.; Fowler, M.M.; Moody, W.A.; Rundberg, R.S.; Rusev, G.; Vieira, D.J.; Wilhelmy, J.B. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Becker, J.A.; Macri, R.; Ryan, C.; Sheets, S.A.; Stoyer, M.A. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); and others

    2014-09-01

    A program has been initiated to measure the energy dependence of selected high-yield fission products used in the analysis of nuclear test data. We present out initial work of neutron activation using a dual-fission chamber with quasi-monoenergetic neutrons and gamma-counting method. Quasi-monoenergetic neutrons of energies from 0.5 to 15 MeV using the TUNL 10 MV FM tandem to provide high-precision and self-consistent measurements of fission product yields (FPY). The final FPY results will be coupled with theoretical analysis to provide a more fundamental understanding of the fission process. To accomplish this goal, we have developed and tested a set of dual-fission ionization chambers to provide an accurate determination of the number of fissions occurring in a thick target located in the middle plane of the chamber assembly. Details of the fission chamber and its performance are presented along with neutron beam production and characterization. Also presented are studies on the background issues associated with room-return and off-energy neutron production. We show that the off-energy neutron contribution can be significant, but correctable, while room-return neutron background levels contribute less than <1% to the fission signal.

  15. Neutron source capability assessment for cumulative fission yields measurements

    Energy Technology Data Exchange (ETDEWEB)

    Descalle, M A; Dekin, W; Kenneally, J

    2011-04-06

    A recent analysis of high-quality cumulative fission yields data for Pu-239 published in the peer-reviewed literature showed that the quoted experimental uncertainties do not allow a clear statement on how the fission yields vary as a function of energy. [Prussin2009] To make such a statement requires a set of experiments with well 'controlled' and understood sources of experimental errors to reduce uncertainties as low as possible, ideally in the 1 to 2% range. The Inter Laboratory Working Group (ILWOG) determined that Directed Stockpile Work (DSW) would benefit from an experimental program with the stated goal to reduce the measurement uncertainties significantly in order to make a definitive statement of the relationship of energy dependence to the cumulative fission yields. Following recent discussions between Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory (LANL), there is a renewed interest in developing a concerted experimental program to measure fission yields in a neutron energy range from thermal energy (0.025 eV) to 14 MeV with an emphasis on discrete energies from 0.5 to 4 MeV. Ideally, fission yields would be measured at single energies, however, in practice there are only 'quasi-monoenergetic' neutrons sources of finite width. This report outlines a capability assessment as of June 2011 of available neutron sources that could be used as part of a concerted experimental program to measure cumulative fission yields. In a framework of international collaborations, capabilities available in the United States, at the Atomic Weapons Establishment (AWE) in the United Kingdom and at the Commissariat Energie Atomique (CEA) in France are listed. There is a need to develop an experimental program that will reduce the measurement uncertainties significantly in order to make a definitive statement of the relationship of energy dependence to the cumulative fission yields. Fission and monoenergetic neutron sources

  16. Comparison of Fission Product Yields and Their Impact

    Energy Technology Data Exchange (ETDEWEB)

    S. Harrison

    2006-02-01

    This memorandum describes the Naval Reactors Prime Contractor Team (NRPCT) Space Nuclear Power Program (SNPP) interest in determining the expected fission product yields from a Prometheus-type reactor and assessing the impact of these species on materials found in the fuel element and balance of plant. Theoretical yield calculations using ORIGEN-S and RACER computer models are included in graphical and tabular form in Attachment, with focus on the desired fast neutron spectrum data. The known fission product interaction concerns are the corrosive attack of iron- and nickel-based alloys by volatile fission products, such as cesium, tellurium, and iodine, and the radiological transmutation of krypton-85 in the coolant to rubidium-85, a potentially corrosive agent to the coolant system metal piping.

  17. Yields of fission products from various uranium and thorium targets

    Energy Technology Data Exchange (ETDEWEB)

    Kronenberg, A.; Spejewski, E.H.; Mervin, B.; Jost, C.; Carter, H.K. [Oak Ridge Associated Universities, Oak Ridge, TN 37831 (United States); Stracener, D.W. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Greene, J.P. [Argonne National Laboratory, Argonne, IL 60439 (United States)], E-mail: greene@anl.gov; Nolen, J.A. [Argonne National Laboratory, Argonne, IL 60439 (United States); Talbert, W.L. [TechSource, Inc., Santa Fe, NM 87501 (United States)

    2008-10-15

    Yield measurements from proton-induced fission have been performed on a number of actinide targets, both Th and U, at the on-line test facility at Oak Ridge National Laboratory. The results are discussed with a focus on the production process and physical and chemical properties of the targets.

  18. Yields of Fission Products from Various Uranium and Thorium Targets

    Energy Technology Data Exchange (ETDEWEB)

    Kronenberg, Andreas [Oak Ridge Associated Universities (ORAU); Spejewski, Eugene H. [Oak Ridge Associated Universities (ORAU); Mervin, Brenden T. [Oak Ridge Associated Universities (ORAU); Jost, Cara [Oak Ridge Associated Universities (ORAU); Carter, H Kennon [Oak Ridge Associated Universities (ORAU); Stracener, Daniel W [ORNL; Greene, John P. [Argonne National Laboratory (ANL); Nolen, Jerry A. [Argonne National Laboratory (ANL); Talbert, Willard L. [TechSource, Inc.

    2008-01-01

    Yield measurements from proton-induced fission have been performed on a number of actinide targets, both Th and U, at the on-line test facility at Oak Ridge National Laboratory. The results are discussed with a focus on the production process and physical and chemical properties of the targets.

  19. Yields of fission products from various uranium and thorium targets.

    Energy Technology Data Exchange (ETDEWEB)

    Kronenberg, A.; Spejewski, E. H.; Mervin, B.; Jost, C.; Carter, H. K.; Stracener, D. W.; Greene, J. P.; Nolen, J. A.; Talbert, W. L.; Physics; Oak Ridge Associated Univ.; ORNL; TechSource, Inc.

    2008-10-31

    Yield measurements from proton-induced fission have been performed on a number of actinide targets, both Th and U, at the on-line test facility at Oak Ridge National Laboratory. The results are discussed with a focus on the production process and physical and chemical properties of the targets.

  20. The Oklo natural reactor: Cumulative fission yields and retentivity of the symmetric mass region fission products

    Science.gov (United States)

    De Laeter, J. R.; Rosman, K. J. R.; Smith, C. L.

    1980-10-01

    Solid source mass spectrometry has been used to determine the relative cumulative fission yields of five elements in three samples of uranium ore from reactor zones in the Oklo mine site. Eighteen fission chains covering the mass range from 105 ≤ A ≤ 130 have been measured for Pd, Ag, Cd, Sn and Te. These measurements have enabled a number of nuclear parameters to be calculated including the relative proportions of 235U, 238U and 239Pu involved in the fission process. The concentration of the five elements in the Oklo samples have also been measured using the stable isotope dilution technique. These values have then been compared to the estimates of the amount of these elements produced by fission under the conditions that are appropriate to the three samples. This procedure enables the retentivity of the elements in the reactor zones to be evaluated. Our work confirms the fact that Pd and Te are retained almost in their entirety in the samples, whereas the other three elements have been partially lost from the reactor site. Almost all the Cd fission products have been lost, and more than 50% of the Ag and Sn fission-produced material has been removed.

  1. Fission product yield distribution in the 12, 14, and 16 MeV bremsstrahlung-induced fission of {sup 232}Th

    Energy Technology Data Exchange (ETDEWEB)

    Naik, H. [Bhabha Atomic Research Centre, Radiochemistry Division, Mumbai (India); Kyungpook National University, Department of Physics and Center for High Energy Physics, Daegu (Korea, Republic of); Kim, G.N.; Kim, K. [Kyungpook National University, Department of Physics and Center for High Energy Physics, Daegu (Korea, Republic of); Schwengner, R.; John, R.; Massarczyk, R.; Junghans, A.; Wagner, A. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Goswami, A. [Bhabha Atomic Research Centre, Radiochemistry Division, Mumbai (India)

    2015-11-15

    The absolute cumulative yields of various fission products in the 12, 14, and 16 MeV bremsstrahlung-induced fission of {sup 232}Th were determined using a recoil catcher and an off-line γ -ray spectrometric technique using the ELBE electron linac of Helmholtz-Zentrum Dresden-Rossendorf in Dresden, Germany. The mass chain yields were obtained from the absolute cumulative yields by correcting the charge distribution. The peak-to-valley ratio, average light mass (left angle A{sub L} right angle) and heavy mass (left angle A{sub H} right angle) values, and average number of neutrons (left angle n right angle {sub exp}) in the bremsstrahlung-induced fission of {sup 232}Th at different excitation energies were obtained from the mass chain yield data. The present study and existing literature data for the {sup 232}Th(γ, f) reaction are compared with similar data for the {sup 238}U(γ, f) reaction at various excitation energies, and surprisingly different behavior was found in the two fissioning systems. (orig.)

  2. Absolute measurements of the uranium concentration in thick samples using fission-track detectors

    Science.gov (United States)

    Enkelmann, Eva; Jonckheere, Raymond; Ratschbacher, Lothar

    2005-04-01

    We propose an improved equation for calculating the uranium concentration in thick samples based on induced fission-track counts in an external detector that takes into consideration (1) the fission-fragment ranges in the sample and external detector, (2) the etchable track length and (3) the track counting efficiency in the external detector. The values of these parameters have been determined by calculation and experiment and are shown to have a significant effect on the calculated uranium concentrations. The new equation was tested by calculating the uranium concentrations in standard uranium glasses (CN-5; IRMM-540R) and apatite samples (Durango; horse tooth) in which the uranium content was also determined with independent methods (INAA; ENAA; TIMS). The results show that: (1) accurate measurements with the fission-track method are feasible within a broad range of uranium concentrations and (2) uranium determinations based on standards are only accurate if the standard and sample are made of the same material. Because the absolute fission-tack dating method is also based on accurate thermal neutron fluence measurements and similar correction factors for the track registration and counting efficiencies, this study provides a strong endorsement for the fact that absolute fission-track ages are accurate.

  3. NEANDC specialists meeting on yields and decay data of fission product nuclides

    Energy Technology Data Exchange (ETDEWEB)

    Chrien, R.E.; Burrows, T.W. (eds.)

    1983-01-01

    Separate abstracts were prepared for the 29 papers presented. Workshop reports on decay heat, fission yields, beta- and gamma-ray spectroscopy, and delayed neutrons are included. An appendix contains a survey of the most recent compilations and evaluations containing fission product yield, fission product decay data, and delayed neutron yield information. (WHK)

  4. Modification of apparent fission yields by Chemical Fractionation following Fission (CFF)

    Science.gov (United States)

    Hohenberg, Charles; Meshik, Alex

    2008-04-01

    Grain-by-grain studies of the 2 billion year old Oklo natural reactor, using laser micro-extraction^1,2, yield detailed information about Oklo, a water-moderated pulsed reactor, cycle times, total neutron fluence and duration, but it also demonstrates Chemical Fractionation following Fission. In the CFF process, members of an isobaric yield chain with long half-lives are subject to migration before decay can occur. Of particular interest is the 129 isobar where 17 million ^129I can migrate out of the host grain before decay, and iodine compounds are water soluble. This is amply demonstated by the variation of Xe spectra between micron-sized uranium-bearing minerals and adjacent uranium-free minerals. Fission 129 yields for the spontaneous fission of ^238U generally come from measured ^129Xe in pitchblend^2, ores emplaced by aqueous activity, and are incorrect due to the CFF process. ^238U yields for the 131 and 129 chains, reported in Hyde^3, as 0.455 +- .02 and < 0.012, respectively, the latter being anomalously low. ^1A Meshik, C Hohenberg and O Pravdivtesva, PRL 93, 182302 (2004); A Meshik Sci. Am. Nov (2005), 55; ^2E K Hyde, Nucl Prop of Heavy Elements III (1964).

  5. On the absolute value of the air-fluorescence yield

    CERN Document Server

    Rosado, J; Arqueros, F

    2014-01-01

    The absolute value of the air-fluorescence yield is a key parameter for the energy reconstruction of extensive air showers registered by fluorescence telescopes. In previous publications, we reported a detailed Monte Carlo simulation of the air-fluorescence generation that allowed the theoretical evaluation of this parameter. This simulation has been upgraded in the present work. As a result, we determined an updated absolute value of the fluorescence yield of 7.9+-2.0 ph/MeV for the band at 337 nm in dry air at 800 hPa and 293 K, in agreement with experimental values. We have also performed a critical analysis of available absolute measurements of the fluorescence yield with the assistance of our simulation. Corrections have been applied to some measurements to account for a bias in the evaluation of the energy deposition. Possible effects of other experimental aspects have also been discussed. From this analysis, we determined an average fluorescence yield of 7.04+-0.24 ph/MeV at the above conditions.

  6. Fission Product Yields from Fission Spectrum n+ 239Pu for ENDF/B-VII.1

    Science.gov (United States)

    Chadwick, M. B.; Kawano, T.; Barr, D. W.; Mac Innes, M. R.; Kahler, A. C.; Graves, T.; Selby, H.; Burns, C. J.; Inkret, W. C.; Keksis, A. L.; Lestone, J. P.; Sierk, A. J.; Talou, P.

    2010-12-01

    We describe a new cumulated fission product yield (FPY) evaluation for fission spectrum neutrons on plutonium that updates the ENDF/B-VI evaluation by England and Rider, for the forthcoming ENDF/B-VII.1 database release. We focus on FPs that are needed for high accuracy burnup assessments; that is, for inferring the number of fissions in a neutron environment. Los Alamos conducted an experiment in the 1970s in the Bigten fast critical assembly to determine fission product yields as part of the Interlaboratory Reaction Rate (ILRR) collaboration, and this has defined the Laboratory's fission standard to this day. Our evaluation includes use of the LANL-ILRR measurements (not previously available to evaluators) as well as other Laboratory FPY measurements published in the literature, especially the high-accuracy mass spectrometry data from Maeck and others. Because the measurement database for some of the FPs is small — especially for 99Mo — we use a meta-analysis that incorporates insights from other accurately-measured benchmark FP data, using R-value ratio measurements. The meta-analysis supports the FP measurements from the LANL-ILRR experiment. Differences between our new evaluations and ENDF/B-VI are small for some FPs (less than 1-2%-relative for 95Zr, 140Ba, 144Ce), but are larger for 99Mo (4%-relative) and 147Nd (5%-relative, at 1.5 MeV) respectively. We present evidence for an incident neutron energy dependence to the 147Nd fission product yield that accounts for observed differences in the FPY at a few-hundred keV average energy in fast reactors versus measurements made at higher average neutron energies in Los Alamos' fast critical assemblies. Accounting for such FPY neutron energy dependencies is important if one wants to reach a goal of determining the number of fissions to accuracies of 1-2%. An evaluation of the energy-dependence of fission product yields is given for all A values based on systematical trends in the measured data, with a focus on

  7. Fission yield calculation using toy model based on Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Jubaidah, E-mail: jubaidah@student.itb.ac.id [Nuclear Physics and Biophysics Division, Department of Physics, Bandung Institute of Technology. Jl. Ganesa No. 10 Bandung – West Java, Indonesia 40132 (Indonesia); Physics Department, Faculty of Mathematics and Natural Science – State University of Medan. Jl. Willem Iskandar Pasar V Medan Estate – North Sumatera, Indonesia 20221 (Indonesia); Kurniadi, Rizal, E-mail: rijalk@fi.itb.ac.id [Nuclear Physics and Biophysics Division, Department of Physics, Bandung Institute of Technology. Jl. Ganesa No. 10 Bandung – West Java, Indonesia 40132 (Indonesia)

    2015-09-30

    Toy model is a new approximation in predicting fission yield distribution. Toy model assumes nucleus as an elastic toy consist of marbles. The number of marbles represents the number of nucleons, A. This toy nucleus is able to imitate the real nucleus properties. In this research, the toy nucleons are only influenced by central force. A heavy toy nucleus induced by a toy nucleon will be split into two fragments. These two fission fragments are called fission yield. In this research, energy entanglement is neglected. Fission process in toy model is illustrated by two Gaussian curves intersecting each other. There are five Gaussian parameters used in this research. They are scission point of the two curves (R{sub c}), mean of left curve (μ{sub L}) and mean of right curve (μ{sub R}), deviation of left curve (σ{sub L}) and deviation of right curve (σ{sub R}). The fission yields distribution is analyses based on Monte Carlo simulation. The result shows that variation in σ or µ can significanly move the average frequency of asymmetry fission yields. This also varies the range of fission yields distribution probability. In addition, variation in iteration coefficient only change the frequency of fission yields. Monte Carlo simulation for fission yield calculation using toy model successfully indicates the same tendency with experiment results, where average of light fission yield is in the range of 90fission yield is in about 135

  8. Evaluation of fission product yields from fission spectrum n+239Pu using a meta analysis of benchmark data

    Science.gov (United States)

    Chadwick, Mark B.

    2009-10-01

    Los Alamos conducted a dual fission-chamber experiment in the 1970s in the Bigten critical assembly to determine fission product data in a fast (fission neutron spectrum) environment, and this defined the Laboratory's fission basis today. We describe how the data from this experiment are consistent with other benchmark fission product yield measurements for 95,97Zr, 140Ba, 143,144Ce, 137Cs from the NIST-led ILRR fission chamber experiments, and from Maeck's mass-spectrometry data. We perform a new evaluation of the fission product yields that is planned for ENDF/B-VII.1. Because the measurement database for some of the FPs is small—especially for 147Nd and 99Mo—we use a meta-analysis that incorporates insights from other accurately-measured benchmark FP data. The %-relative changes compared to ENDF/B-VI are small for some FPs (less than 1% for 95Zr, 140Ba, 144Ce), but are larger for 99Mo (3%) and 147Nd (5%). We suggest an incident neutron energy dependence to the 147Nd fission product yield that accounts for observed differences in the FPY at a few-hundred keV average energy in fast reactors versus measurements made at higher average energies.

  9. Energy Dependence of Neutron-Induced Fission Product Yields of 235U, 238U and 239Pu Between 0.5 and 14.8 MeV

    Science.gov (United States)

    Gooden, Matthew; Tornow, Werner; Tonchev, Anton; Vieira, Dave; Wilhelmy, Jerry; Arnold, Charles; Fowler, Malcolm; Stoyer, Mark

    2014-09-01

    Under a joint collaboration between TUNL-LANL-LLNL, a set of absolute fission product yield measurements have been performed. The energy dependence of a number of cumulative fission products between 0.5 and 14.8 MeV have been measured using quasi-monoenergetic neutron beams for three actinide targets, 235U, 238U and 239Pu, between 0.5 and 14.8 MeV. The FPYs were measured by a combination of activation utilizing specially designed dual-fission chambers and γ-ray counting. The dual-fission chambers are back-to-back ionization chambers encasing a target with thin deposits of the same target isotope in each chamber. This method allows for the direct measurement of the fission rate in the activation target with no reference to the fission cross-section, reducing uncertainties. γ-ray counting was performed on well-shield HPGe detectors over a period of 2 months per activation to properly identify fission products. Reported are absolute cumulative fission product yields for incident neutron energies of 0.5, 1.37, 2.4, 4.6 and 14.8 MeV.

  10. Evolution of isotopic fission-fragment yields with excitation energy

    Directory of Open Access Journals (Sweden)

    Bazin D.

    2012-07-01

    Full Text Available Two fission experiments have been performed at GANIL using 238U beams at different energies and light targets. Different fissioning systems were produced with excitation energies from 10 to 230 MeV and their decay by fission was investigated with GANIL spectrometers. Preliminary fission-fragment isotopic distributions have been obtained. The evolution with impinging energy of their properties, the neutron excess and the width of the neutron-number distributions, gives important insights into the dynamics of fusion-fission mechanism.

  11. Development of a “Fission-proxy” Method for the Measurement of 14-MeV Neutron Fission Yields at CAMS

    Energy Technology Data Exchange (ETDEWEB)

    Gharibyan, Narek [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-25

    Relative fission yield measurements were made for 50 fission products from 25.6±0.5 MeV alpha-induced fission of Th-232. Quantitative comparison of these experimentally measured fission yields with the evaluated fission yields from 14-MeV neutron-induced fission of U-235 demonstrates the feasibility of the proposed fission-proxy method. This new technique, based on the Bohr-independence hypothesis, permits the measurement of fission yields from an alternate reaction pathway (Th-232 + 25.6 MeV α → U-236* vs. U-235 + 14-MeV n → U-236*) given that the fission process associated with the same compound nucleus is independent of its formation. Other suitable systems that can potentially be investigated in this manner include (but are not limited to) Pu-239 and U-237.

  12. Measurements of actinide-fission product yields in Caliban and Prospero metallic core reactor fission neutron fields

    Energy Technology Data Exchange (ETDEWEB)

    Casoli, P.; Authier, N. [CEA, Centre de Valduc, 21120 Is-sur-Tille (France); Laurec, J.; Bauge, E.; Granier, T. [CEA, Centre DIF, 91297 Arpajon (France)

    2011-07-01

    In the 1970's and early 1980's, an experimental program was performed on the facilities of the CEA Valduc Research Center to measure several actinide-fission product yields. Experiments were, in particular, completed on the Caliban and Prospero metallic core reactors to study fission-neutron-induced reactions on {sup 233}U, {sup 235}U, and {sup 239}Pu. Thick actinide samples were irradiated and the number of nuclei of each fission product was determined by gamma spectrometry. Fission chambers were irradiated simultaneously to measure the numbers of fissions in thin deposits of the same actinides. The masses of the thick samples and the thin deposits were determined by mass spectrometry and alpha spectrometry. The results of these experiments will be fully presented in this paper for the first time. A description of the Caliban and Prospero reactors, their characteristics and performances, and explanations about the experimental approach will also be given in the article. A recent work has been completed to analyze and reinterpret these measurements and particularly to evaluate the associated uncertainties. In this context, calculations have also been carried out with the Monte Carlo transport code Tripoli-4, using the published benchmarked Caliban description and a three-dimensional model of Prospero, to determine the average neutron energy causing fission. Simulation results will be discussed in this paper. Finally, new fission yield measurements will be proposed on Caliban and Prospero reactors to strengthen the results of the first experiments. (authors)

  13. Comparison of available measurements of the absolute fluorescence yield

    CERN Document Server

    Rosado, J; Arqueros, F

    2010-01-01

    The uncertainty in the absolute value of the fluorescence yield is still one of the main contributions to the total error in the reconstruction of the primary energy of ultra-energetic air showers using the fluorescence technique. A significant number of experimental values of the fluorescence yield have been published in the last years, however reported results are given very often in different units (photons/MeV or photons/m) and for different wavelength intervals. In this work we present a comparison of available results normalized to its value in photons/MeV for the 337 nm band at 800 hPa and 293 K. Possible sources of systematic errors on these measurements are discussed. In particular, the conversion of photons/m to photons/MeV requires an accurate determination of the energy deposited by the electrons in the field of view of the experimental setup. We have calculated the energy deposition for each experiment by means of a detailed Monte Carlo simulation including when possible the geometrical details o...

  14. Role of energy cost in the yield of cold ternary fission of 252Cf

    Indian Academy of Sciences (India)

    P V Kunhikrishnan; K P Santhosh

    2013-01-01

    The energy costs in the cold ternary fission of 252Cf for various light charged particle emission are calculated by includingWong's correction for Coulomb potential. Energy cost is found to be higher in cold fission than in normal fission. It is found that energy cost always increases with decrease in experimental yield in all the light charged particle emissions. The higher ground state deformation of the fragments, the odd–even effect and the enhanced yield in the octupole region observed in cold fission are found to be consistent with the concept of energy cost.

  15. Advanced model for the prediction of the neutron-rich fission product yields

    Directory of Open Access Journals (Sweden)

    Rubchenya V. A.

    2013-12-01

    Full Text Available The consistent models for the description of the independent fission product formation cross sections in the spontaneous fission and in the neutron and proton induced fission at the energies up to 100 MeV is developed. This model is a combination of new version of the two-component exciton model and a time-dependent statistical model for fusion-fission process with inclusion of dynamical effects for accurate calculations of nucleon composition and excitation energy of the fissioning nucleus at the scission point. For each member of the compound nucleus ensemble at the scission point, the primary fission fragment characteristics: kinetic and excitation energies and their yields are calculated using the scission-point fission model with inclusion of the nuclear shell and pairing effects, and multimodal approach. The charge distribution of the primary fragment isobaric chains was considered as a result of the frozen quantal fluctuations of the isovector nuclear matter density at the scission point with the finite neck radius. Model parameters were obtained from the comparison of the predicted independent product fission yields with the experimental results and with the neutron-rich fission product data measured with a Penning trap at the Accelerator Laboratory of the University of Jyväskylä (JYFLTRAP.

  16. Independent isotopic yields in 25 MeV and 50 MeV proton-induced fission of {sup nat}U

    Energy Technology Data Exchange (ETDEWEB)

    Penttilae, H.; Gorelov, D.; Elomaa, V.V.; Eronen, T.; Hager, U.; Hakala, J.; Jokinen, A.; Kankainen, A.; Karvonen, P.; Moore, I.D.; Parkkonen, J.; Pohjalainen, I.; Rahaman, S.; Rinta-Antila, S.; Rissanen, J.; Saastamoinen, A.; Simutkin, V.; Sonoda, T.; Weber, C.; Voss, A.; Aeystoe, J. [Department of Physics, University of Jyvaskylae (Finland); Peraejaervi, K. [STUK - Radiation and Nuclear Safety Authority, Helsinki (Finland); Rubchenya, V.A. [Department of Physics, University of Jyvaskylae (Finland); V.G. Khlopin Radium Institute, St. Petersburg (Russian Federation)

    2016-04-15

    Independent isotopic yields for elements from Zn to La in the 25 MeV proton-induced fission of {sup nat}U were determined with the JYFLTRAP facility. In addition, isotopic yields for Zn, Ga, Rb, Sr, Zr, Pd and Xe in the 50 MeV proton-induced fission of {sup nat}U were measured. The deduced isotopic yield distributions are compared with a Rubchenya model, the GEF model with universal parameters and the semi-empirical Wahl model. Of these, the Rubchenya model gives the best overall agreement with the obtained data. Combining the isotopic yield data with mass yield data to obtain the absolute independent yields was attempted. The result depends on the mass yield distribution. (orig.)

  17. The LANL C-NR counting room and fission product yields

    Energy Technology Data Exchange (ETDEWEB)

    Jackman, Kevin Richard [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)

    2015-09-21

    This PowerPoint presentation focused on the following areas: LANL C-NR counting room; Fission product yields; Los Alamos Neutron wheel experiments; Recent experiments ad NCERC; and Post-detonation nuclear forensics

  18. Neutron and fission yields from high-energy deuterons in infinite /sup 238/U targets

    Energy Technology Data Exchange (ETDEWEB)

    Canfield, E.

    1965-06-28

    Early work on the interaction of high energy deuterons with large /sup 238/U targets is reexamined and current theoretical study is discussed. Results of fission and neutron yield calculations are compared with experiment. (SDF)

  19. Independent yields of neutron-rich nuclei in charged-particle induced fission

    NARCIS (Netherlands)

    Huhta, M; Dendooven, P; Honkanen, A; Lhersonneau, G; Oinonen, M; Penttila, H; Perajarvi, K; Rubchenya, V.; Aysto, J

    1997-01-01

    Yields of fission products have been studied at the recently upgraded IGISOL facility in Jyvaskyla using 50 MeV H-2(+) beam (E-q = 25 MeV) and thin (nat)Tn and U-nat targets. The independent yields of fission products in the mass regions A = 99-112 (elements Y, Nb and Tc) and A = 127-134(elements Sn

  20. Semi-empirical Study on Yield Mass Distribution for n+238U Fission

    Institute of Scientific and Technical Information of China (English)

    XU; Yong-mei; LIU; Li-le; SHU; Neng-chuan; CHEN; Yong-jing; LIU; Ting-jin; SUN; Zheng-jun

    2015-01-01

    A semi-empirical model method is developed for calculating the yield mass distributions and energy dependence for neutron-induced 238 fission.The system potential energy is consisting ofthe macro-energy and 2shell corrections,corresponding to the SL,SI and SII fission channels.The yield could be expressed with a five-Gaussianlike formula with 13 parameters,which were

  1. Determination of Fission Product Yields of 235U, 238U and 239Pu for Neutron Energies from 0.5 to 14.8 MeV

    Science.gov (United States)

    Gooden, Matthew; Arnold, Charles; Becker, John; Bhatia, Chitra; Bhike, Megha; Fowler, Malcolm; Howell, Calvin; Kelley, John; Stoyer, Mark; Tonchev, Anton; Tornow, Werner; Vieira, Dave; Wilhelmy, Jerry

    2014-03-01

    A joint TUNL-LANL-LLNL collaboration has been formed to study the issue of possible energy dependences for certain fission product isotopes. Work has been carried out at the TUNL 10 MV Tandem accelerator which produces nearly mono-energetic neutrons via either 2H(d,n)3He,3H(d,n)4He,or3H(p,n)3He reactions. Three dual fission ionization chambers dedicated to 235U, 238U and 239Pu thick target foils and thin monitor foils respectively, were exposed to the neutron beams. After irradiation, thick target foils were gamma counted over a period of 1-2 months and characteristic gamma rays from fission products were recorded using HPGe detectors at TUNL's low background counting area. Using the dual fission chambers, relative fission product yield were determined at a high precision of 2-3 % as well as absolute fission product yields at a lower precision of 5-6 %. Preliminary results will be presented for a number of fission product isotopes over the incident neutron energy range of 0.5 to 14.8 MeV.

  2. Investigation of inconsistent ENDF/B-VII.1 independent and cumulative fission product yields with proposed revisions

    Energy Technology Data Exchange (ETDEWEB)

    Pigni, Marco T [ORNL; Francis, Matthew W [ORNL; Gauld, Ian C [ORNL

    2015-01-01

    A recent implementation of ENDF/B-VII. independent fission product yields and nuclear decay data identified inconsistencies in the data caused by the use of updated nuclear scheme in the decay sub-library that is not reflected in legacy fission product yield data. Recent changes in the decay data sub-library, particularly the delayed neutron branching fractions, result in calculated fission product concentrations that are incompatible with the cumulative fission yields in the library, and also with experimental measurements. A comprehensive set of independent fission product yields was generated for thermal and fission spectrum neutron induced fission for 235,238U and 239,241Pu in order to provide a preliminary assessment of the updated fission product yield data consistency. These updated independent fission product yields were utilized in the ORIGEN code to evaluate the calculated fission product inventories with experimentally measured inventories, with particular attention given to the noble gases. An important outcome of this work is the development of fission product yield covariance data necessary for fission product uncertainty quantification. The evaluation methodology combines a sequential Bayesian method to guarantee consistency between independent and cumulative yields along with the physical constraints on the independent yields. This work was motivated to improve the performance of the ENDF/B-VII.1 library in the case of stable and long-lived cumulative yields due to the inconsistency of ENDF/B-VII.1 fission p;roduct yield and decay data sub-libraries. The revised fission product yields and the new covariance data are proposed as a revision to the fission yield data currently in ENDF/B-VII.1.

  3. The dependence of cumulative 238U(n,f) fission yield on incident-neutron energy

    Institute of Scientific and Technical Information of China (English)

    ZHENG Na; ZHONG Chunlai; MA Liyong; CHEN Zhongjing; LI Xiangqing; LIU Tingjin; CHEN Jinxiang; FAN Tieshuan

    2009-01-01

    This work is aim at studying the dependence of fission yields on incident neutron energy,so as to produce evaluated yield sets of the energy dependence.Experimental data at different neutron energies for gas fission products 85m,87,88Kr and 138Xe resulting from the 238U(n,f) reaction are processed using codes AVERAGE for weighed average and ZOTT for simultaneous evaluation.Energy dependence of the cumulative fission product yields on the incident neutron is presented.The evaluated curve of product yield is compared with the results calculated by the TALYS-0.64 code.The present evaluation is consistent with other main libraries in error permission.The fit curve of 87,88Kr can be recommended to predict the unmeasured fission yields.Comparisons of the evaluated energy dependence curves with theoretical calculated results show that the predictions using purely theoretical model for the fission process are not sufficiently accurate and reliable for the calculations of the cumulative fission yields for the 238U(n,f).

  4. Determination of relative krypton fission product yields from 14 MeV neutron induced fission of 238U at the National Ignition Facility

    Science.gov (United States)

    Edwards, E. R.; Cassata, W. S.; Velsko, C. A.; Yeamans, C. B.; Shaughnessy, D. A.

    2016-11-01

    Precisely-known fission yield distributions are needed to determine a fissioning isotope and the incident neutron energy in nuclear security applications. 14 MeV neutrons from DT fusion at the National Ignition Facility induce fission in depleted uranium contained in the target assembly hohlraum. The fission yields of Kr isotopes (85m, 87, 88, and 89) are measured relative to the cumulative yield of 88Kr and compared to previously tabulated values. The results from this experiment and England and Rider are in agreement, except for the 85mKr/88Kr ratio, which may be the result of incorrect nuclear data.

  5. Semi-empirical Calculation for Yield of 240Pu Spontaneous Fission

    Institute of Scientific and Technical Information of China (English)

    SHU; Neng-chuan; LIU; Li-le; CHEN; Xiao-song; LIU; Ting-jin; SUN; Zheng-jun; CHEN; Yong-jing; QIAN; Jing

    2012-01-01

    <正>The spontaneous fission yield has important implication in the nuclear engineering. This work used semi-empirical model to calculate its chain yield, the result shows good agreement with the measured data. There are only 3 sets of measured data, and only too gave the chain yields and cumulative yields, covering 17 chains. It is not enough to satisfy the requirement of users. So it is needed to use theoretical model to calculate the chain yield without measured data.

  6. SOFIA: An innovative setup to measure complete isotopic yield of fission fragments

    Directory of Open Access Journals (Sweden)

    Pellereau E.

    2013-12-01

    Full Text Available We performed an experiment dedicated to the accurate isotopic yield measurement of fission fragments over the whole range. SOFIA exploits the inverse kinematics technique: using heavy ion beams at relativistic energies, fission is induced by Coulomb excitation in a high-Z target. The fragments are emitted forward and both of them are identified in charge and mass. The setup will be presented, as well as preliminary spectra.

  7. Independent yields of neutron-rich nuclei in charged-particle induced fission

    Energy Technology Data Exchange (ETDEWEB)

    Huhta, M.; Dendooven, P.; Honkanen, A.; Lhersonneau, G.; Oinonen, M.; Penttilae, H.; Peraejaervi, K.; Rubchenya, V.; Aeystoe, J. [Jyvaeskylae Univ. (Finland). Dept. of Physics

    1997-04-01

    Yields of fission products have been studied at the recently upgraded IGISOL facility in Jyvaeskylaeusing 50 MeV H{sup +}{sub 2} beam (E{sub p}=25 MeV) and thin {sup nat}Th and {sup nat}U targets. The independent yields of fission products in the mass regions A=99-112 (elements Y, Nb and Tc) and A=127-134 (elements Sn, Sb and Te) have been obtained. Comparisons of the experimental isotopic distributions with theoretical ones are presented. Enhancement of the production rate of the doubly magic {sup 132}Sn is observed in the experimental yield curve. (orig.). 5 refs.

  8. Yield-Energy Evaluation of 85Kr of 239Pu+n Fission

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>The yields of 85Kr, the important production of the 239Pu fission, were re-evaluated over the incident neutron energy 1-15 MeV, based upon all the experimental data. The yields as function of energ

  9. Effects of Fission Yield Data in the Calculation of Antineutrino Spectra for 235U (n ,fission) at Thermal and Fast Neutron Energies

    Science.gov (United States)

    Sonzogni, A. A.; McCutchan, E. A.; Johnson, T. D.; Dimitriou, P.

    2016-04-01

    Fission yields form an integral part of the prediction of antineutrino spectra generated by nuclear reactors, but little attention has been paid to the quality and reliability of the data used in current calculations. Following a critical review of the thermal and fast ENDF/B-VII.1 235U 235 fission yields, deficiencies are identified and improved yields are obtained, based on corrections of erroneous yields, consistency between decay and fission yield data, and updated isomeric ratios. These corrected yields are used to calculate antineutrino spectra using the summation method. An anomalous value for the thermal fission yield of 86Ge generates an excess of antineutrinos at 5-7 MeV, a feature which is no longer present when the corrected yields are used. Thermal spectra calculated with two distinct fission yield libraries (corrected ENDF/B and JEFF) differ by up to 6% in the 0-7 MeV energy window, allowing for a basic estimate of the uncertainty involved in the fission yield component of summation calculations. Finally, the fast neutron antineutrino spectrum is calculated, which at the moment can only be obtained with the summation method and may be relevant for short baseline reactor experiments using highly enriched uranium fuel.

  10. Effects of Fission Yield Data in the Calculation of Antineutrino Spectra for ^{235}U(n,fission) at Thermal and Fast Neutron Energies.

    Science.gov (United States)

    Sonzogni, A A; McCutchan, E A; Johnson, T D; Dimitriou, P

    2016-04-01

    Fission yields form an integral part of the prediction of antineutrino spectra generated by nuclear reactors, but little attention has been paid to the quality and reliability of the data used in current calculations. Following a critical review of the thermal and fast ENDF/B-VII.1 ^{235}U fission yields, deficiencies are identified and improved yields are obtained, based on corrections of erroneous yields, consistency between decay and fission yield data, and updated isomeric ratios. These corrected yields are used to calculate antineutrino spectra using the summation method. An anomalous value for the thermal fission yield of ^{86}Ge generates an excess of antineutrinos at 5-7 MeV, a feature which is no longer present when the corrected yields are used. Thermal spectra calculated with two distinct fission yield libraries (corrected ENDF/B and JEFF) differ by up to 6% in the 0-7 MeV energy window, allowing for a basic estimate of the uncertainty involved in the fission yield component of summation calculations. Finally, the fast neutron antineutrino spectrum is calculated, which at the moment can only be obtained with the summation method and may be relevant for short baseline reactor experiments using highly enriched uranium fuel.

  11. Influence of asymmetry and fissility on even-odd effect in fission-fragment yields

    Directory of Open Access Journals (Sweden)

    Rejmund F.

    2010-10-01

    Full Text Available Based on a wide systematics of fragment distributions measured in thermal-neutron induced fission, the even-odd staggering in the fission-fragment element yields is investigated. The asymmetry evolution of the element yield distribution with the fissility of the fissioning nucleus is shown to be for an important part responsible for the decrease of the even-odd staggering with the fissility. The even-odd staggering close to symmetry is shown to be a small contribution to the global even-odd effect, and seems to vary little with the fissility of the nucleus. These experimental observations show that the established interpretation in which the intrinsic excitation energy at scission is accountable for the even-odd staggering amplitude has to be reconsidered.

  12. Theoretical and experimental studies of the neutron rich fission product yields at intermediate energies

    Directory of Open Access Journals (Sweden)

    Äystö J.

    2012-02-01

    Full Text Available A new method to measure the fission product independent yields employing the ion guide technique and a Penning trap as a precision mass filter, which allows an unambiguous identification of the nuclides is presented. The method was used to determine the independent yields in the proton-induced fission of 232Th and 238U at 25 MeV. The data were analyzed with the consistent model for description of the fission product formation cross section at the projectile energies up to 100 MeV. Pre-compound nucleon emission is described with the two-component exciton model using Monte Carlo method. Decay of excited compound nuclei is treated within time-dependent statistical model with inclusion of the nuclear friction effect. The charge distribution of the primary fragment isobaric chain was considered as a result of frozen quantal fluctuations of the isovector nuclear density. The theoretical predictions of the independent fission product cross sections are used for normalization of the measured fission product isotopic distributions.

  13. Two Birds with One Stone: Tailoring Singlet Fission for Both Triplet Yield and Exciton Diffusion Length

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Tong [Department of Chemistry, Purdue University, West Lafayette IN 47907 USA; Wan, Yan [Department of Chemistry, Purdue University, West Lafayette IN 47907 USA; Guo, Zhi [Department of Chemistry, Purdue University, West Lafayette IN 47907 USA; Johnson, Justin [National Renewable Energy Laboratory, 15013 Denver West Pkwy Golden CO 80401 USA; Huang, Libai [Department of Chemistry, Purdue University, West Lafayette IN 47907 USA

    2016-06-27

    By direct imaging of singlet and triplet populations with ultrafast microscopy, it is shown that the triplet diffusion length and singlet fission yield can be simultaneously optimized for tetracene and its derivatives, making them ideal structures for application in bilayer solar cells.

  14. Discrimination between roles of fissioning nucleus and asymmetry degree of freedom on the even-odd structure in fission-fragment yields

    CERN Document Server

    Caamano, M; Schmidt, K -H

    2009-01-01

    Based on a wide systematics of fission-fragment distributions measured at Lohengrin and at GSI, the even-odd staggering in the fission-fragment nuclear-charge yields is investigated. The general increase of the even-odd staggering with asymmetry is attributed to the absorption of the unpaired nucleons by the heavy fragment. As a consequence, the well established trend of even-odd staggering in the fission-fragment charge yields to decrease with the fissility is accredited in part to the asymmetry evolution of the charge distribution. This interpretation is strongly supported by the data measured at GSI, which cover the complete charge distribution and include precise yields at symmetry. They reveal that the even-odd effect at symmetry remains constant over a broad range of fissioning nuclei.

  15. Absolute measurement of the DT primary neutron yield on the National Ignition Facility

    Directory of Open Access Journals (Sweden)

    Leeper R.J.

    2013-11-01

    Full Text Available The measurement of the absolute neutron yield produced in inertial confinement fusion target experiments conducted on the National Ignition Facility (NIF is essential in benchmarking progress towards the goal of achieving ignition on this facility. This paper describes three independent diagnostic techniques that have been developed to make accurate and precise DT neutron yield measurements on the NIF.

  16. Fission Product Yields of 233U, 235U, 238U and 239Pu in Fields of Thermal Neutrons, Fission Neutrons and 14.7-MeV Neutrons

    Science.gov (United States)

    Laurec, J.; Adam, A.; de Bruyne, T.; Bauge, E.; Granier, T.; Aupiais, J.; Bersillon, O.; Le Petit, G.; Authier, N.; Casoli, P.

    2010-12-01

    The yields of more than fifteen fission products have been carefully measured using radiochemical techniques, for 235U(n,f), 239Pu(n,f) in a thermal spectrum, for 233U(n,f), 235U(n,f), and 239Pu(n,f) reactions in a fission neutron spectrum, and for 233U(n,f), 235U(n,f), 238U(n,f), and 239Pu(n,f) for 14.7 MeV monoenergetic neutrons. Irradiations were performed at the EL3 reactor, at the Caliban and Prospero critical assemblies, and at the Lancelot electrostatic accelerator in CEA-Valduc. Fissions were counted in thin deposits using fission ionization chambers. The number of fission products of each species were measured by gamma spectrometry of co-located thick deposits.

  17. Fission Product Yields from 232Th, 238U, and 235U Using 14 MeV Neutrons

    Science.gov (United States)

    Pierson, B. D.; Greenwood, L. R.; Flaska, M.; Pozzi, S. A.

    2017-01-01

    Neutron-induced fission yield studies using deuterium-tritium fusion-produced 14 MeV neutrons have not yet directly measured fission yields from fission products with half-lives on the order of seconds (far from the line of nuclear stability). Fundamental data of this nature are important for improving and validating the current models of the nuclear fission process. Cyclic neutron activation analysis (CNAA) was performed on three actinide targets-thorium-oxide, depleted uranium metal, and highly enriched uranium metal-at the University of Michigan's Neutron Science Laboratory (UM-NSL) using a pneumatic system and Thermo-Scientific D711 accelerator-based fusion neutron generator. This was done to measure the fission yields of short-lived fission products and to examine the differences between the delayed fission product signatures of the three actinides. The measured data were compared against previously published results for 89Kr, -90, and -92 and 138Xe, -139, and -140. The average percent deviation of the measured values from the Evaluated Nuclear Data Files VII.1 (ENDF/B-VII.1) for thorium, depleted-uranium, and highly-enriched uranium were -10.2%, 4.5%, and -12.9%, respectively. In addition to the measurements of the six known fission products, 23 new fission yield measurements from 84As to 146La are presented.

  18. Microscopic predictions of fission yields based on the time dependent GCM formalism

    Science.gov (United States)

    Regnier, D.; Dubray, N.; Schunck, N.; Verrière, M.

    2016-03-01

    Accurate knowledge of fission fragment yields is an essential ingredient of numerous applications ranging from the formation of elements in the r-process to fuel cycle optimization in nuclear energy. The need for a predictive theory applicable where no data is available, together with the variety of potential applications, is an incentive to develop a fully microscopic approach to fission dynamics. One of the most promising theoretical frameworks is the time-dependent generator coordinate method (TDGCM) applied under the Gaussian overlap approximation (GOA). Previous studies reported promising results by numerically solving the TDGCM+GOA equation with a finite difference technique. However, the computational cost of this method makes it difficult to properly control numerical errors. In addition, it prevents one from performing calculations with more than two collective variables. To overcome these limitations, we developed the new code FELIX-1.0 that solves the TDGCM+GOA equation based on the Galerkin finite element method. In this article, we briefly illustrate the capabilities of the solver FELIX-1.0, in particular its validation for n+239Pu low energy induced fission. This work is the result of a collaboration between CEA,DAM,DIF and LLNL on nuclear fission theory.

  19. Microscopic predictions of fission yields based on the time dependent GCM formalism

    Directory of Open Access Journals (Sweden)

    Regnier D.

    2016-01-01

    Full Text Available Accurate knowledge of fission fragment yields is an essential ingredient of numerous applications ranging from the formation of elements in the r-process to fuel cycle optimization in nuclear energy. The need for a predictive theory applicable where no data is available, together with the variety of potential applications, is an incentive to develop a fully microscopic approach to fission dynamics. One of the most promising theoretical frameworks is the time-dependent generator coordinate method (TDGCM applied under the Gaussian overlap approximation (GOA. Previous studies reported promising results by numerically solving the TDGCM+GOA equation with a finite difference technique. However, the computational cost of this method makes it difficult to properly control numerical errors. In addition, it prevents one from performing calculations with more than two collective variables. To overcome these limitations, we developed the new code FELIX-1.0 that solves the TDGCM+GOA equation based on the Galerkin finite element method. In this article, we briefly illustrate the capabilities of the solver FELIX-1.0, in particular its validation for n+239Pu low energy induced fission. This work is the result of a collaboration between CEA,DAM,DIF and LLNL on nuclear fission theory.

  20. Studies on fission with ALADIN. Precise and simultaneous measurement of fission yields, total kinetic energy and total prompt neutron multiplicity at GSI

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Julie-Fiona; Taieb, Julien; Chatillon, Audrey; Belier, Gilbert; Boutoux, Guillaume; Ebran, Adeline; Gorbinet, Thomas; Grente, Lucie; Laurent, Benoit; Pellereau, Eric [CEA DAM Bruyeres-le-Chatel, Arpajon (France); Alvarez-Pol, Hector; Ayyad, Yassid; Benlliure, Jose; Cortina Gil, Dolores; Caamano, Manuel; Fernandez Dominguez, Beatriz; Paradela, Carlos; Ramos, Diego; Rodriguez-Sanchez, Jose-Luis; Vargas, Jossitt [Universidad de Santiago de Compostela, Santiago de Compostela (Spain); Audouin, Laurent; Tassan-Got, Laurent [CNRS/IN2P3, IPNO, Orsay (France); Aumann, Thomas [Technische Universitaet Darmstadt, Darmstadt (Germany); Casarejos, Enrique [Universidad de Vigo, Vigo (Spain); Farget, Fanny; Rodriguez-Tajes, Carme [CNRS/IN2P3, GANIL, Caen (France); Heinz, Andreas [Chalmers University of Technology, Gothenburg (Sweden); Jurado, Beatriz [CNRS/IN2P3, CENBG, Gradignan (France); Kelic-Heil, Aleksandra; Kurz, Nikolaus; Nociforo, Chiara; Pietri, Stephane; Rossi, Dominic; Schmidt, Karl-Heinz; Simon, Haik; Voss, Bernd; Weick, Helmut [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany)

    2015-12-15

    A novel technique for fission studies, based on the inverse kinematics approach, is presented. Following pioneering work in the nineties, the SOFIA Collaboration has designed and built an experimental set-up dedicated to the simultaneous measurement of isotopic yields, total kinetic energies and total prompt neutron multiplicities, by fully identifying both fission fragments in coincidence, for the very first time. This experiment, performed at GSI, permits to study the fission of a wide variety of fissioning systems, ranging from mercury to neptunium, possibly far from the valley of stability. A first experiment, performed in 2012, has provided a large array of unprecedented data regarding the nuclear fission process. An excerpt of the results is presented. With this solid starter, further improvements of the experimental set-up are considered, which are consistent with the expected developments at the GSI facility, in order to measure more fission observables in coincidence. The completeness reached in the SOFIA data, permits to scrutinize the correlations between the interesting features of fission, offering a very detailed insight in this still unraveled mechanism. (orig.)

  1. Measuring the absolute DT neutron yield using the Magnetic Recoil Spectrometer at OMEGA and the NIF

    Energy Technology Data Exchange (ETDEWEB)

    Mackinnon, A; Casey, D; Frenje, J A; Johnson, M G; Seguin, F H; Li, C K; Petrasso, R D; Glebov, V Y; Katz, J; Knauer, J; Meyerhofer, D; Sangster, T; Bionta, R; Bleuel, D; Hachett, S P; Hartouni, E; Lepape, S; Mckernan, M; Moran, M; Yeamans, C

    2012-05-03

    A Magnetic Recoil Spectrometer (MRS) has been installed and extensively used on OMEGA and the National Ignition Facility (NIF) for measurements of the absolute neutron spectrum from inertial confinement fusion (ICF) implosions. From the neutron spectrum measured with the MRS, many critical implosion parameters are determined including the primary DT neutron yield, the ion temperature, and the down-scattered neutron yield. As the MRS detection efficiency is determined from first principles, the absolute DT neutron yield is obtained without cross-calibration to other techniques. The MRS primary DT neutron measurements at OMEGA and the NIF are shown to be in excellent agreement with previously established yield diagnostics on OMEGA, and with the newly commissioned nuclear activation diagnostics on the NIF.

  2. A novel method for the absolute fluorescence yield measurement by AIRFLY

    CERN Document Server

    Ave, M

    2008-01-01

    One of the goals of the AIRFLY (AIR FLuorescence Yield) experiment is to measure the absolute fluorescence yield induced by electrons in air to better than 10% precision. We introduce a new technique for measurement of the absolute fluorescence yield of the 337 nm line that has the advantage of reducing the systematic uncertainty due to the detector calibration. The principle is to compare the measured fluorescence yield to a well known process - the Cerenkov emission. Preliminary measurements taken in the BFT (Beam Test Facility) in Frascati, Italy with 350 MeV electrons are presented. Beam tests in the Argonne Wakefield Accelerator at the Argonne National Laboratory, USA with 14 MeV electrons have also shown that this technique can be applied at lower energies.

  3. Cumulative fission yields of short-lived isotopes under natural-abundance-boron-carbide-moderated neutron spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Finn, Erin C.; Metz, Lori A.; Greenwood, Lawrence R.; Pierson, Bruce; Wittman, Richard S.; Friese, Judah I.; Kephart, Rosara F.

    2015-04-09

    The availability of gamma spectroscopy data on samples containing mixed fission products at short times after irradiation is limited. Due to this limitation, data interpretation methods for gamma spectra of mixed fission product samples, where the individual fission products have not been chemically isolated from interferences, are not well-developed. The limitation is particularly pronounced for fast pooled neutron spectra because of the lack of available fast reactors in the United States. Samples containing the actinide isotopes 233, 235, 238U, 237Np, and 239Pu individually were subjected to a 2$ pulse in the Washington State University 1 MW TRIGA reactor. To achieve a fission-energy neutron spectrum, the spectrum was tailored using a natural abundance boron carbide capsule to absorb neutrons in the thermal and epithermal region of the spectrum. Our tailored neutron spectrum is unique to the WSU reactor facility, consisting of a soft fission spectrum that contains some measurable flux in the resonance region. This results in a neutron spectrum at greater than 0.1 keV with an average energy of 70 keV, similar to fast reactor spectra and approaching that of 235U fission. Unique fission product gamma spectra were collected from 4 minutes to 1 week after fission using single-crystal high purity germanium detectors. Cumulative fission product yields measured in the current work generally agree with published fast pooled fission product yield values from ENDF/B-VII, though a bias was noted for 239Pu. The present work contributes to the compilation of energy-resolved fission product yield nuclear data for nuclear forensic purposes.

  4. Isotopic yield in cold binary fission of even-even $^{244-258}$Cf isotopes

    CERN Document Server

    Santhosh, K P; Krishnan, Sreejith

    2016-01-01

    The cold binary fission of even-even 244-258Cf isotopes has been studied by taking the interacting barrier as the sum of Coulomb and proximity potential. The favorable fragment combinations are obtained from the cold valley plot (plot of driving potential vs. mass number of fragments) and by calculating the yield for charge minimized fragments. It is found that highest yield for 244,246,248Cf isotopes are for the fragments with isotope of Pb (Z=82) as one fragment, whereas for 250Cf and 252Cf isotopes the highest yield is for the fragments with isotope of Hg (Z=80) as one fragment. In the case of 254,256,258Cf isotopes the highest yield is for the fragments with Sn (Z=50) as one fragment. Thus, the fragment combinations with maximum yield reveal the role of doubly magic and near doubly magic nuclei in binary fission. It is found that asymmetric splitting is favoured for Cf isotopes with mass number A 252. In the case of Cf isotope with A=252, there is an equal probability for asymmetric and symmetric splitti...

  5. Isotopic Yield Distributions of Transfer- and Fusion-Induced Fission from 238U+12C Reactions in Inverse Kinematics

    CERN Document Server

    Caamaño, M; Farget, F; Derkx, X; Schmidt, K -H; Audouin, L; Bacri, C -O; Barreau, G; Benlliure, J; Casarejos, E; Chbihi, A; Fernandez-Dominguez, B; Gaudefroy, L; Golabek, C; Jurado, B; Lemasson, A; Navin, A; Rejmund, M; Roger, T; Shrivastava, A; Schmitt, C

    2013-01-01

    A novel method to access the complete identification in atomic number Z and mass A of fragments produced in low-energy fission of actinides is presented. This method, based on the use of multi- nucleon transfer and fusion reactions in inverse kinematics, is applied in this work to reactions between a 238U beam and a 12C target to produce and induce fission of moderately excited actinides. The fission fragments are detected and fully identified with the VAMOS spectrometer of GANIL, allowing the measurement of fragment yields of several hundreds of isotopes in a range between A ~ 80 and ~ 160, and from Z ~ 30 to ~ 64. For the first time, complete isotopic yield distributions of fragments from well-defined fissioning systems are available. Together with the precise measurement of the fragment emission angles and velocities, this technique gives further insight into the nuclear-fission process.

  6. Absolute measurement of the nitrogen fluorescence yield in air between 300 and 430 nm

    CERN Document Server

    Lefeuvre, G; Gorodetzky, P; Patzak, T; Salin, P

    2007-01-01

    The nitrogen fluorescence induced in air is used to detect ultra-high energy cosmic rays and to measure their energy. The precise knowledge of the absolute fluorescence yield is the key quantity to improve the accuracy on the cosmic ray energy. The total yield has been measured in dry air using a 90Sr source and a [300-430 nm] filter. The fluorescence yield in air is 4.23 $\\pm$ 0.20 photons per meter when normalized to 760 mmHg, 15 degrees C and with an electron energy of 0.85 MeV. This result is consistent with previous experiments made at various energies, but with an accuracy improved by a factor of about 3. For the first time, the absolute continuous spectrum of nitrogen excited by 90Sr electrons has also been measured with a spectrometer. Details of this experiment are given in one of the author's PhD thesis [32].

  7. Mass yield distributions of fission products from photo-fission of {sup 238}U induced by 11.5-17.3 MeV bremsstrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Naik, H.; Goswami, A. [Bhabha Atomic Research Centre, Radiochemistry Division, Mumbai (India); Carrel, Frederick; Laine, Frederic; Sari, Adrien [SAPHIR Facility, Gif-sur-Yvette (France); Kim, G.N. [Kyungpook National University, Department of Physics, Daegu (Korea, Republic of); Normand, S. [Laboratory of Sensors and Elctronics Architectures CEA, Gif-sur-Yvette (France)

    2013-07-15

    The yields of various fission products in the 11.5, 13.4, 15.0 and 17.3 MeV bremsstrahlung-induced fission of {sup 238}U have been determined by recoil catcher and an off-line {gamma}-ray spectrometric technique using the electron linac, SAPHIR at CEA, Saclay, France. The mass yield distributions were obtained from the fission product yields using charge-distribution corrections. The peak-to-valley (P/V) ratio, average light mass (left angle A{sub L} right angle) and heavy mass (left angle A{sub H} right angle) and average number of neutrons (left angle v right angle) in the bremsstrahlung-induced fission of {sup 238}U at different excitation energies were obtained from the mass yield data. From the present and literature data in the {sup 238}U ({gamma}, f) and {sup 238}U (n, f) reactions at various energies, the following observations were obtained: i) The mass yield distributions in the {sup 238}U ({gamma}, f) reaction at various energies of the present work are double-humped, similar to those of the {sup 238}U (n, f) reaction of comparable excitation energy. ii) The yields of fission products for A = 133-134, A = 138-140, and A = 143-144 and their complementary products in the {sup 238}U ({gamma}, f) reaction are higher than other fission products due to the nuclear structure effect. iii) The yields of fission products for A = 133-134 and their complementary products are slightly higher in the {sup 238}U ({gamma}, f) than in the {sup 238}U (n, f), whereas for A = 138-140 and 143-144 and their complementary products are comparable. iv) With excitation energy, the increase of yields of symmetric products and the decrease of the peak-to-valley (P/V ratio in the {sup 238}U ({gamma}, f) reaction is similar to the {sup 238}U (n, f) reaction. v) The increase of left angle v right angle with excitation energy is also similar between the {sup 238}U ({gamma}, f) and {sup 238}U (n, f) reactions. However, it is surprising to see that the left angle A{sub L} right angle and

  8. Mass yield distributions of fission products from photo-fission of 238U induced by 11.5-17.3 MeV bremsstrahlung

    Science.gov (United States)

    Naik, H.; Carrel, Frédérick; Kim, G. N.; Laine, Frédéric; Sari, Adrien; Normand, S.; Goswami, A.

    2013-07-01

    The yields of various fission products in the 11.5, 13.4, 15.0 and 17.3 MeV bremsstrahlung-induced fission of 238U have been determined by recoil catcher and an off-line γ-ray spectrometric technique using the electron linac, SAPHIR at CEA, Saclay, France. The mass yield distributions were obtained from the fission product yields using charge-distribution corrections. The peak-to-valley ( P/ V ratio, average light mass () and heavy mass () and average number of neutrons () in the bremsstrahlung-induced fission of 238U at different excitation energies were obtained from the mass yield data. From the present and literature data in the 238U ( γ, f ) and 238U ( n, f ) reactions at various energies, the following observations were obtained: i) The mass yield distributions in the 238U ( γ, f ) reaction at various energies of the present work are double-humped, similar to those of the 238U ( n, f ) reaction of comparable excitation energy. ii) The yields of fission products for A = 133-134, A = 138-140, and A = 143-144 and their complementary products in the 238U ( γ, f) reaction are higher than other fission products due to the nuclear structure effect. iii) The yields of fission products for A = 133-134 and their complementary products are slightly higher in the 238U ( γ, f ) than in the 238U ( n, f ) , whereas for A = 138-140 and 143-144 and their complementary products are comparable. iv) With excitation energy, the increase of yields of symmetric products and the decrease of the peak-to-valley ( P/ V ratio in the 238U ( γ, f) reaction is similar to the 238U ( n, f) reaction. v) The increase of with excitation energy is also similar between the 238U ( γ, f ) and 238U ( n, f) reactions. However, it is surprising to see that the and values with excitation energy behave entirely differently from the 238U ( γ, f ) and 238U ( n, f ) reactions.

  9. Design of a High Intensity Neutron Source for Neutron-Induced Fission Yield Studies

    CERN Document Server

    Lantz, M; Jokinen, A; Kolhinen, V S; Mattera, A; Penttilä, H; Pomp, S; Rakopoulos, V; Rinta-Antila, S; Solders, A

    2013-01-01

    The upgraded IGISOL facility with JYFLTRAP, at the accelerator laboratory of the University of Jyv\\"askyl\\"a, has been supplied with a new cyclotron which will provide protons of the order of 100 {\\mu}A with up to 30 MeV energy, or deuterons with half the energy and intensity. This makes it an ideal place for measurements of neutron-induced fission products from various actinides, in view of proposed future nuclear fuel cycles. The groups at Uppsala University and University of Jyv\\"askyl\\"a are working on the design of a neutron converter that will be used as neutron source in fission yield studies. The design is based on simulations with Monte Carlo codes and a benchmark measurement that was recently performed at The Svedberg Laboratory in Uppsala. In order to obtain a competitive count rate the fission targets will be placed very close to the neutron converter. The goal is to have a flexible design that will enable the use of neutron fields with different energy distributions. In the present paper, some co...

  10. Accurate measurements of fission-fragment yields in 234,235,236,238U(γ,f with the SOFIA set-up

    Directory of Open Access Journals (Sweden)

    Chatillon A.

    2016-01-01

    Full Text Available SOFIA (Studies On Fission with Aladin is a new experimental set-up dedicated to accurate measurement of fission-fragments isotopic yields. It is located at GSI, the only place to use inverse kinematics at relativistic energies in order to study the (γ,f electromagnetic-induced fission. The SOFIA set-up is a large-acceptance magnetic spectrometer, which allows to fully identify both fission fragments in coincidence on the whole fission-fragment range. This paper will report on fission yields obtained in 234,235,236,238U(γ,f reactions.

  11. Measurement of the isomeric yield ratios of fission products with JYFLTRAP

    CERN Document Server

    Gorelov, D; Hakala, J; Jokinen, A; Kolhinen, V S; Koponen, J; Lantz, M; Matteram, A; Moore, I; Penttilä, H; Pohjalainen, I; Pomp, S; Rakopoulos, V; Reponen, M; Rinta-Antilav, S; Schonnenschein, V; Simutkin, V; Solders, A; Voss, A; Äystö, J

    2014-01-01

    Several isomeric yield ratios of fission products in 25 MeV pr oton-induced fis- sion of 238 U were measured recently at the JYFLTRAP facility. The ion-g uide separator on-line method was utilized to produce radioacti ve ions. The dou- ble Penning-trap mass spectrometer was used to separate iso meric and ground states by their masses. To verify the new experimental techn ique γ -spectro- scopy method was used to obtain the same isomeric ratios.

  12. Precise Measurement of the Absolute Yield of Fluorescence Photons in Atmospheric Gases

    CERN Document Server

    Ave, M; Daumiller, K; Di Carlo, P; Di Giulio, C; Luis, P Facal San; Gonzales, D; Hojvat, C; Hörandel, J R; Hrabovský, M; Iarlori, M; Keilhauer, B; Klages, H; Kleifges, M; Kuehn, F; Monasor, M; Nožka, L; Palatka, M; Petrera, S; Privitera, P; Ridky, J; Rizi, V; d'Orfeuil, B Rouillé; Salamida, F; Schovánek, P; Šmida, R; Spinka, H; Ulrich, A; Verzi, V; Williams, C

    2011-01-01

    We have performed a measurement of the absolute yield of fluorescence photons at the Fermilab Test Beam. A systematic uncertainty at 5% level was achieved by the use of Cherenkov radiation as a reference calibration light source. A cross-check was performed by an independent calibration using a laser light source. A significant improvement on the energy scale uncertainty of Ultra-High Energy Cosmic Rays is expected.

  13. Precise measurement of the absolute yield of fluorescence photons in atmospheric gases

    Energy Technology Data Exchange (ETDEWEB)

    Ave, M. [Karlsruhe Institute of Technology, IK, Postfach 6980, D - 76021 Karlsruhe (Germany); Bohacova, M. [University of Chicago, Enrico Fermi Institute and Kavli Institute for Cosmological Physics, 5640 S. Ellis Ave., Chicago, IL 60637 (United States); Institute of Physics of the Academy of Sciences of the Czech Republic, Na Slovance 2, CZ-182 21 Praha 8 (Czech Republic); Daumiller, K. [Karlsruhe Institute of Technology, IK, Postfach 6980, D - 76021 Karlsruhe (Germany); Di Carlo, P. [Dipartimento di Fisica dell' Universita de l' Aquila and INFN, Via Vetoio, I-67010 Coppito, Aquila (Italy); Di Giulio, C. [Dipartimento di Fisica dell' Universita di Roma Tor Vergata and Sezione INFN, Via della Ricerca Scientifica, I-00133 Roma (Italy); Facal San Luis, Pedro, E-mail: facal@kicp.uchicago.edu [University of Chicago, Enrico Fermi Institute and Kavli Institute for Cosmological Physics, 5640 S. Ellis Ave., Chicago, IL 60637 (United States); Gonzales, D. [Karlsruhe Institute of Technology, IEKP, Postfach 3640, D - 76021 Karlsruhe (Germany); Hojvat, C. [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Hoerandel, J.R. [IMAPP, Radboud University Nijmegen, 6500 GL Nijmegen (Netherlands); Hrabovsky, M. [Palacky University, RCATM, Olomuc (Czech Republic); Iarlori, M. [Dipartimento di Fisica dell' Universita de l' Aquila and INFN, Via Vetoio, I-67010 Coppito, Aquila (Italy); Keilhauer, B.; Klages, H. [Karlsruhe Institute of Technology, IK, Postfach 6980, D - 76021 Karlsruhe (Germany); Kleifges, M. [Karlsruhe Institute of Technology, IPE, Postfach 3640, D - 76021 Karlsruhe (Germany); Kuehn, F. [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Monasor, M. [University of Chicago, Enrico Fermi Institute and Kavli Institute for Cosmological Physics, 5640 S. Ellis Ave., Chicago, IL 60637 (United States); Nozka, L.; Palatka, M. [Institute of Physics of the Academy of Sciences of the Czech Republic, Na Slovance 2, CZ-182 21 Praha 8 (Czech Republic)

    2011-03-15

    We have performed a measurement of the absolute yield of fluorescence photons at the Fermilab Test Beam. A systematic uncertainty at 5% level was achieved by the use of Cherenkov radiation as a reference calibration light source. A cross-check was performed by an independent calibration using a laser light source. A significant improvement on the energy scale uncertainty of Ultra-High Energy Cosmic Rays is expected.

  14. Photo-fission Product Yield Measurements at Eγ=13 MeV on 235U, 238U, and 239Pu

    Science.gov (United States)

    Tornow, W.; Bhike, M.; Finch, S. W.; Krishichayan, Fnu; Tonchev, A. P.

    2016-09-01

    We have measured Fission Product Yields (FPYs) in photo-fission of 235U, 238U, and 239Pu at TUNL's High-Intensity Gamma-ray Source (HI γS) using mono-energetic photons of Eγ = 13 MeV. Details of the experimental setup and analysis procedures will be discussed. Yields for approximately 20 fission products were determined. They are compared to neutron-induced FPYs of the same actinides at the equivalent excitation energies of the compound nuclear systems. In the future photo-fission data will be taken at Eγ = 8 . 0 and 10.5 MeV to find out whether photo-fission exhibits the same so far unexplained dependence of certain FPYs on the energy of the incident probe, as recently observed in neutron-induced fission, for example, for the important fission product 147Nd. Work supported by the U. S. Dept. of Energy, under Grant No. DE-FG02-97ER41033, and by the NNSA, Stewardship Science Academic Alliances Program, Grant No. DE-NA0001838 and the Lawrence Livermore, National Security, LLC under Contract No. DE-AC52-07NA27344.

  15. Investigation of the fission yields of the fast neutron-induced fission of {sup 233}U; Mesure de la distribution en masse et en charge des produits de la fission rapide de l'{sup 233}U

    Energy Technology Data Exchange (ETDEWEB)

    Galy, J

    1999-09-01

    As a stars, a survey of the different methods of investigations of the fission product yields and the experimental data status have been studied, showing advantages and shortcomings for the different approaches. An overview of the existing models for the fission product distributions has been as well intended. The main part of this thesis was the measurement of the independent yields of the fast neutron-induced fission of{sup 233}U, never investigated before this work. The experiment has been carried out using the mass separator OSIRIS (Isotope Separator On-Line). Its integrated ion-source and its specific properties required an analysis of the delay-parameter and ionisation efficiency for each chemical species. On the other hand, this technique allows measurement of independent yields and cumulative yields for elements from Cu to Ba, covering most of the fission yield distribution. Thus, we measured about 180 independent yields from Zn (Z=30) to Sr (Z=38) in the mass range A=74-99 and from Pd (Z=46) to Ba (Z=56) in the mass range A=113-147, including many isomeric states. An additional experiment using direct {gamma}-spectroscopy of aggregates of fission products was used to determine more than 50 cumulative yields of element with half-life from 15 min to a several days. All experimental data have been compared to estimates from a semi-empirical model, to calculated values and to evaluated values from the European library JEF 2.2. Furthermore, a study of both thermal and fast neutron-induced fission of {sup 233}U measured at Studsvik, the comparison of the OSIRIS and LOHENGRIN facilities and the trends in new data for the Reactors Physics have been discussed. (author)

  16. Beta decay of the fission product 125Sb and a new complete evaluation of absolute gamma ray transition intensities

    Science.gov (United States)

    Rajput, M. U.; Ali, N.; Hussain, S.; Mujahid, S. A.; MacMahon, D.

    2012-04-01

    The radionuclide 125Sb is a long-lived fission product, which decays to 125Te by negative beta emission with a half-life of 1008 day. The beta decay is followed by the emission of several gamma radiations, ranging from low to medium energy, that can suitably be used for high-resolution detector calibrations, decay heat calculations and in many other applications. In this work, the beta decay of 125Sb has been studied in detail. The complete published experimental data of relative gamma ray intensities in the beta decay of the radionuclide 125Sb has been compiled. The consistency analysis was performed and discrepancies found at several gamma ray energies. Evaluation of the discrepant data was carried out using Normalized Residual and RAJEVAL methods. The decay scheme balance was carried out using beta branching ratios, internal conversion coefficients, populating and depopulating gamma transitions to 125Te levels. The work has resulted in the consistent conversion factor equal to 29.59(13) %, and determined a new evaluated set of the absolute gamma ray emission probabilities. The work has also shown 22.99% of the delayed intensity fraction as outgoing from the 58 d isomeric 144 keV energy level and 77.01% of the prompt intensity fraction reaching to the ground state from the other excited states. The results are discussed and compared with previous evaluations. The present work includes additional experimental data sets which were not included in the previous evaluations. A new set of recommended relative and absolute gamma ray emission probabilities is presented.

  17. Exploratory study of fission product yields of neutron-induced fission of 235U , 238U , and 239Pu at 8.9 MeV

    Science.gov (United States)

    Bhatia, C.; Fallin, B. F.; Gooden, M. E.; Howell, C. R.; Kelley, J. H.; Tornow, W.; Arnold, C. W.; Bond, E.; Bredeweg, T. A.; Fowler, M. M.; Moody, W.; Rundberg, R. S.; Rusev, G. Y.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Macri, R.; Ryan, C.; Sheets, S. A.; Stoyer, M. A.; Tonchev, A. P.

    2015-06-01

    Using dual-fission chambers each loaded with a thick (200 -400 -mg /c m2) actinide target of 235 ,238U or 239Pu and two thin (˜10 -100 -μ g /c m2) reference foils of the same actinide, the cumulative yields of fission products ranging from 92Sr to 147Nd have been measured at En= 8.9 MeV . The 2H(d ,n ) 3He reaction provided the quasimonoenergetic neutron beam. The experimental setup and methods used to determine the fission product yield (FPY) are described, and results for typically eight high-yield fission products are presented. Our FPYs for 235U(n ,f ) , 238U(n ,f ) , and 239Pu(n ,f ) at 8.9 MeV are compared with the existing data below 8 MeV from Glendenin et al. [Phys. Rev. C 24, 2600 (1981), 10.1103/PhysRevC.24.2600], Nagy et al. [Phys. Rev. C 17, 163 (1978), 10.1103/PhysRevC.17.163], Gindler et al. [Phys. Rev. C 27, 2058 (1983), 10.1103/PhysRevC.27.2058], and those of Mac Innes et al. [Nucl. Data Sheets 112, 3135 (2011), 10.1016/j.nds.2011.11.009] and Laurec et al. [Nucl. Data Sheets 111, 2965 (2010), 10.1016/j.nds.2010.11.004] at 14.5 and 14.7 MeV, respectively. This comparison indicates a negative slope for the energy dependence of most fission product yields obtained from 235U and 239Pu , whereas for 238U the slope issue remains unsettled.

  18. Precise measurement of the absolute fluorescence yield of the 337 nm band in atmospheric gases

    CERN Document Server

    Ave, M; Curry, E; Di Carlo, P; Di Giulio, C; Luis, P Facal San; Gonzales, D; Hojvat, C; Hörandel, J; Hrabovsky, M; Iarlori, M; Keilhauer, B; Klages, H; Kleifges, M; Kuehn, F; Li, S; Monasor, M; Nozka, L; Palatka, M; Petrera, S; Privitera, P; Ridky, J; Rizi, V; D'Orfeuil, B Rouille; Salamida, F; Schovanek, P; Smida, R; Spinka, H; Ulrich, A; Verzi, V; Williams, C

    2012-01-01

    A measurement of the absolute fluorescence yield of the 337 nm nitrogen band, relevant to ultra-high energy cosmic ray (UHECR) detectors, is reported. Two independent calibrations of the fluorescence emission induced by a 120 GeV proton beam were employed: Cherenkov light from the beam particle and calibrated light from a nitrogen laser. The fluorescence yield in air at a pressure of 1013 hPa and temperature of 293 K was found to be $Y_{337} = 5.61\\pm 0.06_{stat} \\pm 0.21_{syst}$ photons/MeV. When compared to the fluorescence yield currently used by UHECR experiments, this measurement improves the uncertainty by a factor of three, and has a significant impact on the determination of the energy scale of the cosmic ray spectrum.

  19. Mass yields and kinetic energy of fragments from fission of highly-excited nuclei with A≲220

    Science.gov (United States)

    Denisov, V. Yu.; Margitych, T. O.; Sedykh, I. Yu.

    2017-02-01

    It is shown that the potential energy surface of the two separated fragments has the saddle point, which takes place at small distance between the surfaces of well-deformed fragments. The height of this two-body saddle point is larger than the height of one-body fission barrier for nuclei with A ≲ 220. The mass yields of the fission fragments, which are appearing at the fission of nuclei with A ≲ 220, are related to the number of states of the two-fragment systems at the two-body saddle points. The characteristics of kinetic energy of fragments are described by using the trajectory motion equations with the dissipation terms. The Gaussian distribution of the final kinetic energy around the classical value of this energy induced by the stochastic fluctuations is taken into account at an evaluation of the total kinetic energy distributions of the fission fragments.

  20. Characterization of a Be(p,xn) neutron source for fission yields measurements

    CERN Document Server

    Mattera, A; Hjalmarsson, A; Lantz, M; Pomp, S; Rakopoulos, V; Solders, A; Valldor-Blücher, J; Gorelov, D; Penttilä, H; Rinta-Antila, S; Prokofiev, A V; Passoth, E; Bedogni, R; Gentile, A; Bortot, D; Esposito, A; Introini, M V; Pola, A

    2013-01-01

    We report on measurements performed at The Svedberg Laboratory (TSL) to characterize a proton-neutron converter for independent fission yield studies at the IGISOL-JYFLTRAP facility (Jyv\\"askyl\\"a, Finland). A 30 MeV proton beam impinged on a 5 mm water-cooled Beryllium target. Two independent experimental techniques have been used to measure the neutron spectrum: a Time of Flight (TOF) system used to estimate the high-energy contribution, and a Bonner Sphere Spectrometer able to provide precise results from thermal energies up to 20 MeV. An overlap between the energy regions covered by the two systems will permit a cross-check of the results from the different techniques. In this paper, the measurement and analysis techniques will be presented together with some preliminary results.

  1. Absolute prompt-gamma yield measurements for ion beam therapy monitoring

    Science.gov (United States)

    Pinto, M.; Bajard, M.; Brons, S.; Chevallier, M.; Dauvergne, D.; Dedes, G.; De Rydt, M.; Freud, N.; Krimmer, J.; La Tessa, C.; Létang, J. M.; Parodi, K.; Pleskač, R.; Prieels, D.; Ray, C.; Rinaldi, I.; Roellinghoff, F.; Schardt, D.; Testa, E.; Testa, M.

    2015-01-01

    Prompt-gamma emission detection is a promising technique for hadrontherapy monitoring purposes. In this regard, obtaining prompt-gamma yields that can be used to develop monitoring systems based on this principle is of utmost importance since any camera design must cope with the available signal. Herein, a comprehensive study of the data from ten single-slit experiments is presented, five consisting in the irradiation of either PMMA or water targets with lower and higher energy carbon ions, and another five experiments using PMMA targets and proton beams. Analysis techniques such as background subtraction methods, geometrical normalization, and systematic uncertainty estimation were applied to the data in order to obtain absolute prompt-gamma yields in units of prompt-gamma counts per incident ion, unit of field of view, and unit of solid angle. At the entrance of a PMMA target, where the contribution of secondary nuclear reactions is negligible, prompt-gamma counts per incident ion, per millimetre and per steradian equal to (124 ± 0.7stat ± 30sys) × 10-6 for 95 MeV u-1 carbon ions, (79 ± 2stat ± 23sys) × 10-6 for 310 MeV u-1 carbon ions, and (16 ± 0.07stat ± 1sys) × 10-6 for 160 MeV protons were found for prompt gammas with energies higher than 1 MeV. This shows a factor 5 between the yields of two different ions species with the same range in water (160 MeV protons and 310 MeV u-1 carbon ions). The target composition was also found to influence the prompt-gamma yield since, for 300/310 MeV u-1 carbon ions, a 42% greater yield ((112 ± 1stat ± 22sys) × 10-6 counts ion-1 mm-1 sr-1) was obtained with a water target compared to a PMMA one.

  2. Average value of available measurements of the absolute air-fluorescence yield

    CERN Document Server

    Rosado, J; Arqueros, F

    2011-01-01

    The air-fluorescence yield is a key parameter for determining the energy scale of ultra-high-energy cosmic rays detected by fluorescence telescopes. A compilation of the available measurements of the absolute air-fluorescence yield normalized to its value in photons per MeV for the 337 nm band at given pressure and temperature has been recently presented in Ref. [1]. Also, in that paper, some corrections in the evaluation of the energy deposited in the corresponding experimental collision chambers have been proposed. In this note this comparison is updated. In addition, a simple statistical analysis is carried out showing that our corrections favor the compatibility among the various experiments. As a result, an average value of 5.45 ph/MeV for the fluorescence yield of the 337 nm band (20.1 ph/MeV for the spectral interval 300-420 nm) at 1013 hPa and 293 K with an uncertainty of 5% is found. This result is fully compatible with that recently presented by the AIRFLY collaboration (still preliminary) in such a...

  3. Energy dependence of 238U fission yields investigated in inverse kinematics

    Directory of Open Access Journals (Sweden)

    Veselsky M.

    2010-03-01

    Full Text Available The production cross sections of neutron-rich fission residues produced in reactions induced by a 238U beam impinging onto Pb and Be targets were investigated at the Fragment Separator (FRS at GSI using the inverse kinematic technique. These data allowed us to discuss the optimum energies in fission for producing the most neutron-rich residues.

  4. Variability for components of yield induced in soybeans by seed treatment with gamma radiation, fission neutrons, and ethylmethane sulfonate

    Energy Technology Data Exchange (ETDEWEB)

    Conger, B.V.; Skinner, L.W.; Skold, L.N.

    1976-01-01

    The variability for individual components of yield in soybean (Glycine max (L.) Merr.) induced by seed treatment with fission neutrons, gamma radiation, and ethylmethane sulfonate was studied. Nine M/sub 3/ populations, including three doses of each mutagen, were compared with a control for pods/plant, wt/100 seeds, and total seed wt/plant. The means for individual yield components were not significantly altered by the mutagenic treatments. A comparison of frequency distributions of populations from mutagen-treated seed vs. the control revealed differences for certain treatments. The most effective mutagen for increasing variability of the yield components was ethylmethane sulfonate.

  5. Measuring the absolute deuterium-tritium neutron yield using the magnetic recoil spectrometer at OMEGA and the NIF.

    Science.gov (United States)

    Casey, D T; Frenje, J A; Gatu Johnson, M; Séguin, F H; Li, C K; Petrasso, R D; Glebov, V Yu; Katz, J; Knauer, J P; Meyerhofer, D D; Sangster, T C; Bionta, R M; Bleuel, D L; Döppner, T; Glenzer, S; Hartouni, E; Hatchett, S P; Le Pape, S; Ma, T; MacKinnon, A; McKernan, M A; Moran, M; Moses, E; Park, H-S; Ralph, J; Remington, B A; Smalyuk, V; Yeamans, C B; Kline, J; Kyrala, G; Chandler, G A; Leeper, R J; Ruiz, C L; Cooper, G W; Nelson, A J; Fletcher, K; Kilkenny, J; Farrell, M; Jasion, D; Paguio, R

    2012-10-01

    A magnetic recoil spectrometer (MRS) has been installed and extensively used on OMEGA and the National Ignition Facility (NIF) for measurements of the absolute neutron spectrum from inertial confinement fusion implosions. From the neutron spectrum measured with the MRS, many critical implosion parameters are determined including the primary DT neutron yield, the ion temperature, and the down-scattered neutron yield. As the MRS detection efficiency is determined from first principles, the absolute DT neutron yield is obtained without cross-calibration to other techniques. The MRS primary DT neutron measurements at OMEGA and the NIF are shown to be in excellent agreement with previously established yield diagnostics on OMEGA, and with the newly commissioned nuclear activation diagnostics on the NIF.

  6. Measurements of the effective cumulative fission yields of 143Nd, 145Nd, 146Nd, 148Nd and 150Nd for 235U in the PHENIX fast reactor

    Directory of Open Access Journals (Sweden)

    Privas Edwin

    2016-01-01

    Full Text Available The effective Neodymium cumulative fission yields for 235U have been measured in the fast reactor PHENIX relatively to the 235U fission cross-section. The data were derived from isotope-ratio measurements obtained in the frame of the PROFIL-1, PROFIL-2A and PROFIL-2B programs. The interpretations of the experimental programs were performed with the ERANOS code in association with the Joint Evaluated Fission and Fusion library JEFF-3.1.1. Final results for 143Nd, 145Nd, 146Nd, 148Nd and 150Nd were 5.61%, 3.70%, 2.83%, 1.64% and 0.66%, respectively. The relative uncertainties attached to each of the cumulative fission yields lie between 2.1% and 2.4%. The main source of uncertainty is due to the fluence scaling procedure (<2%. The uncertainties on the Neodymium capture cross-sections provide a contribution lower than 1%. The energy dependence of the fission yields was studied with the GEF code from the thermal energy to 20 MeV. Neutron spectrum average corrections, deduced from GEF calculations, were applied to our effective fission yields with the aim of estimating fission yields at 400 keV and 500 keV, as given in the International Evaluated Nuclear Data Files (JEFF, ENDF/B and JENDL. The neutron spectrum average correction calculated for the PROFIL results remains lower than 1.5%.

  7. Absolute I(asterisk) quantum yields for the ICN A state by diode laser gain-vs-absorption spectroscopy

    Science.gov (United States)

    Hess, Wayne P.; Leone, Stephen R.

    1987-01-01

    Absolute I(asterisk) quantum yields have been measured as a function of wavelength for room temperature photodissociation of the ICN A state continuum. The yields are obtained by the technique of time-resolved diode laser gain-vs-absorption spectroscopy. Quantum yields are evaluated at seven wavelengths from 248 to 284 nm. The yield at 266 nm is 66.0 + or - 2 percent and it falls off to 53.4 + or - 2 percent and 44.0 + or - 4 percent at 284 and 248 nm, respectively. The latter values are significantly higher than those obtained by previous workers using infrared fluorescence. Estimates of I(asterisk) quantum yields obtained from analysis of CN photofragment rotational distributions, as discussed by other workers, are in good agreement with the I(asterisk) yields reported here. The results are considered in conjunction with recent theoretical and experimental work on the CN rotational distributions and with previous I(asterisk) quantum yield results.

  8. ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data

    Energy Technology Data Exchange (ETDEWEB)

    G. Palmiotti

    2011-12-01

    The ENDF/B-VII.1 library is our latest recommended evaluated nuclear data file for use in nuclear science and technology applications, and incorporates advances made in the five years since the release of ENDF/B-VII.0. These advances focus on neutron cross sections, covariances, fission product yields and decay data, and represent work by the US Cross Section Evaluation Working Group (CSEWG) in nuclear data evaluation that utilizes developments in nuclear theory, modeling, simulation, and experiment. The principal advances in the new library are: (1) An increase in the breadth of neutron reaction cross section coverage, extending from 393 nuclides to 418 nuclides; (2) Covariance uncertainty data for 185 of the most important nuclides, as documented in companion papers in this edition; (3) R-matrix analyses of neutron reactions on light nuclei, including isotopes of He, Li, and Be; (4) Resonance parameter analyses at lower energies and statistical high energy reactions at higher energies for isotopes of F, Cl, K, Ti, V, Mn, Cr, Ni, Zr and W; (5) Modifications to thermal neutron reactions on fission products (isotopes of Mo, Tc, Rh, Ag, Cs, Nd, Sm, Eu) and neutron absorber materials (Cd, Gd); (6) Improved minor actinide evaluations for isotopes of U, Np, Pu, and Am (we are not making changes to the major actinides 235,238U and 239Pu at this point, except for delayed neutron data, and instead we intend to update them after a further period of research in experiment and theory), and our adoption of JENDL-4.0 evaluations for isotopes of Cm, Bk, Cf, Es, Fm, and some other minor actinides; (7) Fission energy release evaluations; (8) Fission product yield advances for fission-spectrum neutrons and 14 MeV neutrons incident on 239Pu; and (9) A new Decay Data sublibrary. Integral validation testing of the ENDF/B-VII.1 library is provided for a variety of quantities: For nuclear criticality, the VII.1 library maintains the generally-good performance seen for VII.0 for a wide

  9. Fission-product yields for thermal-neutron fission of /sup 243/Cm determined from measurements with a high-resolution low-energy germanium gamma-ray detector

    Energy Technology Data Exchange (ETDEWEB)

    Merriman, L.D.

    1984-04-01

    Cumulative fission-product yields have been determined for 13 gamma rays emitted during the decay of 12 fission products created by thermal-neutron fission of /sup 243/Cm. A high-resolution low-energy germanium detector was used to measure the pulse-height spectra of gamma rays emitted from a 77-nanogram sample of /sup 243/Cm after the sample had been irradiated by thermal neutrons. Analysis of the data resulted in the identification and matching of gamma-ray energies and half-lives to individual radioisotopes. From these results, 12 cumulative fission product yields were deduced for radionuclides with half-lives between 4.2 min and 84.2 min. 7 references.

  10. Modernizing the Fission Basis

    Science.gov (United States)

    Tonchev, Anton; Henderson, Roger; Schunck, Nicolas; Sroyer, Mark; Vogt, Ramona

    2016-09-01

    In 1939, Niels Bohr and John Wheeler formulated a theory of neutron-induced nuclear fission based on the hypothesis of the compound nucleus. Their theory, the so-called ``Bohr hypothesis,'' is still at the heart of every theoretical fission model today and states that the decay of a compound nucleus for a given excitation energy, spin, and parity is independent of its formation. We propose the first experiment to validate to 1-2% absolute uncertainties the practical consequences of the Bohr hypothesis during induced nuclear fission. We will compare the fission product yields (FPYs) of the same 240Pu compound nucleus produced via two different reactions (i) n+239Pu and (ii) γ+240 Pu. These high-precision FPYs measurements will be extremely beneficial for our fundamental understanding of the nuclear fission process and nuclear reactions from first principles. This work was performed under the auspices of US DOE by LLNL under Contract DE-AC52-07NA27344. Funding was provided via the LDRD-ERD-069 project.

  11. Determination of critical assembly absolute power using post-irradiation activation measurement of week-lived fission products.

    Science.gov (United States)

    Košťál, Michal; Švadlenková, Marie; Milčák, Ján; Rypar, Vojtěch; Koleška, Michal

    2014-07-01

    The work presents a detailed comparison of calculated and experimentally determined net peak areas of longer-living fission products after 100 h irradiation on a reactor with power of ~630 W and several days cooling. Specifically the nuclides studied are (140)Ba, (103)Ru, (131)I, (141)Ce, (95)Zr. The good agreement between the calculated and measured net peak areas, which is better than in determination using short lived (92)Sr, is reported. The experiment was conducted on the VVER-1000 mock-up installed on the LR-0 reactor. The Monte Carlo approach has been used for calculations. The influence of different data libraries on results of calculation is discussed as well.

  12. A Proposed Method for Measurement of Absolute Air Fluorescence Yield based on High Resolution Optical Emission Spectroscopy

    CERN Document Server

    Gika, V; Maltezos, S

    2016-01-01

    In this work, we present a method for absolute measurement of air fluorescence yield based on high resolution optical emission spectroscopy. The absolute measurement of the air fluorescence yield is feasible using the Cherenkov light, emitted by an electron beam simultaneously with the fluorescence light, as a "standard candle". The separation of these two radiations can be accomplished exploiting the "dark" spectral regions of the emission band systems of the molecular spectrum of nitrogen. In these "dark" regions the net Cherenkov light can be recorded experimentally and be compared with the calculated one. The instrumentation for obtaining the nitrogen molecular spectra in high resolution and the noninvasive method for monitoring the rotational temperature of the emission process are also described. For the experimental evaluation of the molecular spectra analysis we used DC normal glow discharges in air performed in an appropriate spectral lamp considered as an air-fluorescence light emulator. The propose...

  13. ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data

    Science.gov (United States)

    Chadwick, M. B.; Herman, M.; Obložinský, P.; Dunn, M. E.; Danon, Y.; Kahler, A. C.; Smith, D. L.; Pritychenko, B.; Arbanas, G.; Arcilla, R.; Brewer, R.; Brown, D. A.; Capote, R.; Carlson, A. D.; Cho, Y. S.; Derrien, H.; Guber, K.; Hale, G. M.; Hoblit, S.; Holloway, S.; Johnson, T. D.; Kawano, T.; Kiedrowski, B. C.; Kim, H.; Kunieda, S.; Larson, N. M.; Leal, L.; Lestone, J. P.; Little, R. C.; McCutchan, E. A.; MacFarlane, R. E.; MacInnes, M.; Mattoon, C. M.; McKnight, R. D.; Mughabghab, S. F.; Nobre, G. P. A.; Palmiotti, G.; Palumbo, A.; Pigni, M. T.; Pronyaev, V. G.; Sayer, R. O.; Sonzogni, A. A.; Summers, N. C.; Talou, P.; Thompson, I. J.; Trkov, A.; Vogt, R. L.; van der Marck, S. C.; Wallner, A.; White, M. C.; Wiarda, D.; Young, P. G.

    2011-12-01

    The ENDF/B-VII.1 library is our latest recommended evaluated nuclear data file for use in nuclear science and technology applications, and incorporates advances made in the five years since the release of ENDF/B-VII.0. These advances focus on neutron cross sections, covariances, fission product yields and decay data, and represent work by the US Cross Section Evaluation Working Group (CSEWG) in nuclear data evaluation that utilizes developments in nuclear theory, modeling, simulation, and experiment. The principal advances in the new library are: (1) An increase in the breadth of neutron reaction cross section coverage, extending from 393 nuclides to 423 nuclides; (2) Covariance uncertainty data for 190 of the most important nuclides, as documented in companion papers in this edition; (3) R-matrix analyses of neutron reactions on light nuclei, including isotopes of He, Li, and Be; (4) Resonance parameter analyses at lower energies and statistical high energy reactions for isotopes of Cl, K, Ti, V, Mn, Cr, Ni, Zr and W; (5) Modifications to thermal neutron reactions on fission products (isotopes of Mo, Tc, Rh, Ag, Cs, Nd, Sm, Eu) and neutron absorber materials (Cd, Gd); (6) Improved minor actinide evaluations for isotopes of U, Np, Pu, and Am (we are not making changes to the major actinides 235,238U and 239Pu at this point, except for delayed neutron data and covariances, and instead we intend to update them after a further period of research in experiment and theory), and our adoption of JENDL-4.0 evaluations for isotopes of Cm, Bk, Cf, Es, Fm, and some other minor actinides; (7) Fission energy release evaluations; (8) Fission product yield advances for fission-spectrum neutrons and 14 MeV neutrons incident on 239Pu; and (9) A new decay data sublibrary. Integral validation testing of the ENDF/B-VII.1 library is provided for a variety of quantities: For nuclear criticality, the VII.1 library maintains the generally-good performance seen for VII.0 for a wide range

  14. ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data

    Energy Technology Data Exchange (ETDEWEB)

    Chadwick, M.B.; Herman, M.; Author(s): Chadwick,M.B.; Herman,M.; Oblozinsky,P.; Dunn,M.E.; Danon,Y.; Kahler,A.C.; Smith,D.L.; Pritychenko,B.; Arbanas,G.; Arcilla,R.; Brewer,R.; Brown,D.A.; Capote,R.; Carlson,A.D.; Cho,Y.S.; Derrien,H.; Guber,K.; Hale,G.M.; Hoblit,S.; Holloway,S.: Johnson,T.D.; Kawano,T.; Kiedrowski,B.C.; Kim,H.; Kunieda,S.; Larson,N.M.; Leal,L.; Lestone,J.P.; Little,R.C.; McCutchan,E.A.; MacFarlane,R.E.; MacInnes,M.; Mattoon,C.M.; McKnight,R.D.; Mughabghab,S.F.; Nobre,G.P.A.; Palmiotti,G.; Palumbo,A.; Pigni,M.T.; Pronyaev,V.G.; Sayer,R.O.; Sonzogni,A.A.; Summers,N.C.; Talou,P.; Thompson,I.J.; Trkov,A.; Vogt,R.L.; van der Marck,S.C.; Wallner,A.; White,M.C.; Wiarda,D.; Young,P.G.

    2011-12-01

    The ENDF/B-VII.1 library is our latest recommended evaluated nuclear data file for use in nuclear science and technology applications, and incorporates advances made in the five years since the release of ENDF/B-VII.0. These advances focus on neutron cross sections, covariances, fission product yields and decay data, and represent work by the US Cross Section Evaluation Working Group (CSEWG) in nuclear data evaluation that utilizes developments in nuclear theory, modeling, simulation, and experiment. The principal advances in the new library are: (1) An increase in the breadth of neutron reaction cross section coverage, extending from 393 nuclides to 423 nuclides; (2) Covariance uncertainty data for 190 of the most important nuclides, as documented in companion papers in this edition; (3) R-matrix analyses of neutron reactions on light nuclei, including isotopes of He, Li, and Be; (4) Resonance parameter analyses at lower energies and statistical high energy reactions for isotopes of Cl, K, Ti, V, Mn, Cr, Ni, Zr and W; (5) Modifications to thermal neutron reactions on fission products (isotopes of Mo, Tc, Rh, Ag, Cs, Nd, Sm, Eu) and neutron absorber materials (Cd, Gd); (6) Improved minor actinide evaluations for isotopes of U, Np, Pu, and Am (we are not making changes to the major actinides {sup 235,238}U and {sup 239}Pu at this point, except for delayed neutron data and covariances, and instead we intend to update them after a further period of research in experiment and theory), and our adoption of JENDL-4.0 evaluations for isotopes of Cm, Bk, Cf, Es, Fm, and some other minor actinides; (7) Fission energy release evaluations; (8) Fission product yield advances for fission-spectrum neutrons and 14 MeV neutrons incident on {sup 239}Pu; and (9) A new decay data sublibrary. Integral validation testing of the ENDF/B-VII.1 library is provided for a variety of quantities: For nuclear criticality, the VII.1 library maintains the generally-good performance seen for VII.0

  15. ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data

    Energy Technology Data Exchange (ETDEWEB)

    Chadwick, M. B. [Los Alamos National Laboratory (LANL); Herman, Micheal W [Brookhaven National Laboratory (BNL); Oblozinsky, Pavel [Brookhaven National Laboratory (BNL); Dunn, Michael E [ORNL; Danon, Y. [Rensselaer Polytechnic Institute (RPI); Kahler, A. [Los Alamos National Laboratory (LANL); Smith, Donald L. [Argonne National Laboratory (ANL); Pritychenko, B [Brookhaven National Laboratory (BNL); Arbanas, Goran [ORNL; Arcilla, r [Brookhaven National Laboratory (BNL); Brewer, R [Los Alamos National Laboratory (LANL); Brown, D A [Brookhaven National Laboratory (BNL); Capote, R. [International Atomic Energy Agency (IAEA); Carlson, A. D. [National Institute of Standards and Technology (NIST); Cho, Y S [Korea Atomic Energy Research Institute; Derrien, Herve [ORNL; Guber, Klaus H [ORNL; Hale, G. M. [Los Alamos National Laboratory (LANL); Hoblit, S [Brookhaven National Laboratory (BNL); Holloway, Shannon T. [Los Alamos National Laboratory (LANL); Johnson, T D [Brookhaven National Laboratory (BNL); Kawano, T. [Los Alamos National Laboratory (LANL); Kiedrowski, B C [Los Alamos National Laboratory (LANL); Kim, H [Korea Atomic Energy Research Institute; Kunieda, S [Los Alamos National Laboratory (LANL); Larson, Nancy M [ORNL; Leal, Luiz C [ORNL; Lestone, J P [Los Alamos National Laboratory (LANL); Little, R C [Los Alamos National Laboratory (LANL); Mccutchan, E A [Brookhaven National Laboratory (BNL); Macfarlane, R E [Los Alamos National Laboratory (LANL); MacInnes, M [Los Alamos National Laboratory (LANL); Matton, C M [Lawrence Livermore National Laboratory (LLNL); Mcknight, R D [Argonne National Laboratory (ANL); Mughabghab, S F [Brookhaven National Laboratory (BNL); Nobre, G P [Brookhaven National Laboratory (BNL); Palmiotti, G [Idaho National Laboratory (INL); Palumbo, A [Brookhaven National Laboratory (BNL); Pigni, Marco T [ORNL; Pronyaev, V. G. [Institute of Physics and Power Engineering (IPPE), Obninsk, Russia; Sayer, Royce O [ORNL; Sonzogni, A A [Brookhaven National Laboratory (BNL); Summers, N C [Lawrence Livermore National Laboratory (LLNL); Talou, P [Los Alamos National Laboratory (LANL); Thompson, I J [Lawrence Livermore National Laboratory (LLNL); Trkov, A. [Jozef Stefan Institute, Slovenia; Vogt, R L [Lawrence Livermore National Laboratory (LLNL); Van der Marck, S S [Nucl Res & Consultancy Grp, Petten, Netherlands; Wallner, A [University of Vienna, Austria; White, M C [Los Alamos National Laboratory (LANL); Wiarda, Dorothea [ORNL; Young, P C [Los Alamos National Laboratory (LANL)

    2011-01-01

    The ENDF/B-VII.1 library is our latest recommended evaluated nuclear data file for use in nuclear science and technology applications, and incorporates advances made in the five years since the release of ENDF/B-VII.0. These advances focus on neutron cross sections, covariances, fission product yields and decay data, and represent work by the US Cross Section Evaluation Working Group (CSEWG) in nuclear data evaluation that utilizes developments in nuclear theory, modeling, simulation, and experiment. The principal advances in the new library are: (1) An increase in the breadth of neutron reaction cross section coverage, extending from 393 nuclides to 423 nuclides; (2) Covariance uncertainty data for 190 of the most important nuclides, as documented in companion papers in this edition; (3) R-matrix analyses of neutron reactions on light nuclei, including isotopes of He; Li, and Be; (4) Resonance parameter analyses at lower energies and statistical high energy reactions for isotopes of Cl; K; Ti, V, Mn, Cr, Ni, Zr and W; (5) Modifications to thermal neutron reactions on fission products (isotopes of Mo, Tc, Rh, Ag, Cs, Nd, Sm, Eu) and neutron absorber materials (Cd, Gd); (6) Improved minor actinide evaluations for isotopes of U, Np, Pu, and Am (we are not making changes to the major actinides (235,238)U and (239)Pu at this point, except for delayed neutron data and covariances, and instead we intend to update them after a further period of research in experiment and theory), and our adoption of JENDL-4.0 evaluations for isotopes of Cm, Bk, Cf, Es; Fm; and some other minor actinides; (7) Fission energy release evaluations; (8) Fission product yield advances for fission-spectrum neutrons and 14 MeV neutrons incident on (239)Pu; and (9) A new decay data sublibrary. Integral validation testing of the ENDF/B-VII.1 library is provided for a variety of quantities: For nuclear criticality, the VII.1 library maintains the generally-good performance seen for VII.0 for a wide

  16. Absolute nuclear material assay

    Science.gov (United States)

    Prasad, Manoj K [Pleasanton, CA; Snyderman, Neal J [Berkeley, CA; Rowland, Mark S [Alamo, CA

    2012-05-15

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  17. On the absolute calibration of a DT fusion neutron yield diagnostic

    Directory of Open Access Journals (Sweden)

    Ruiz C.L.

    2013-11-01

    Full Text Available Recent advances in Inertial Confinement Fusion (ICF experiments at Lawrence Livermore National Laboratory's National Ignition Facility (NIF have underscored the need for accurate total yield measurements of DT neutrons because yield measurements provide a measure of the predicted performance of the experiments. Future gas-puff DT experiments at Sandia National Laboratory's Z facility will also require similar measurements. For ICF DT experiments, the standard technique for measuring the neutron (14.1 MeV yield, counts the activity (counts/minute induced in irradiated copper samples. This activity occurs by the 63Cu(n,2n62Cu reaction where 62Cu decays by positrons (β+ with a half-life of 9.67 minutes. The calibrations discussed here employ the associated-particle method (APM, where the α (4He particles from the T(d,n4He reaction are measured to infer neutron fluxes on a copper sample. The flux induces 62Cu activity, measured in a coincidence counting system. The method leads to a relationship between a DT neutron yield and copper activity known as the F-factor. The goal in future experiments is to apply this calibration to measure the yield at NIF with a combined uncertainty approaching 5%.

  18. Miniature high-throughput chemosensing of yield, ee, and absolute configuration from crude reaction mixtures

    Science.gov (United States)

    Bentley, Keith W.; Zhang, Peng; Wolf, Christian

    2016-01-01

    High-throughput experimentation (HTE) has emerged as a widely used technology that accelerates discovery and optimization processes with parallel small-scale reaction setups. A high-throughput screening (HTS) method capable of comprehensive analysis of crude asymmetric reaction mixtures (eliminating product derivatization or isolation) would provide transformative impact by matching the pace of HTE. We report how spontaneous in situ construction of stereodynamic metal probes from readily available, inexpensive starting materials can be applied to chiroptical chemosensing of the total amount, enantiomeric excess (ee), and absolute configuration of a wide variety of amines, diamines, amino alcohols, amino acids, carboxylic acids, α-hydroxy acids, and diols. This advance and HTS potential are highlighted with the analysis of 1 mg of crude reaction mixtures of a catalytic asymmetric reaction. This operationally simple assay uses a robust mix-and-measure protocol, is amenable to microscale platforms and automation, and provides critical time efficiency and sustainability advantages over traditional serial methods. PMID:26933684

  19. High-Yield Excited Triplet States in Pentacene Self-Assembled Monolayers on Gold Nanoparticles through Singlet Exciton Fission.

    Science.gov (United States)

    Kato, Daiki; Sakai, Hayato; Tkachenko, Nikolai V; Hasobe, Taku

    2016-04-18

    One of the major drawbacks of organic-dye-modified self-assembled monolayers on metal nanoparticles when employed for efficient use of light energy is the fact that singlet excited states on dye molecules can be easily deactivated by means of energy transfer to the metal surface. In this study, a series of 6,13-bis(triisopropylsilylethynyl)pentacene-alkanethiolate monolayer protected gold nanoparticles with different particle sizes and alkane chain lengths were successfully synthesized and were employed for the efficient generation of excited triplet states of the pentacene derivatives by singlet fission. Time-resolved transient absorption measurements revealed the formation of excited triplet states in high yield (172±26 %) by suppressing energy transfer to the gold surface.

  20. Comparison of available measurements of the absolute air-fluorescence yield and determination of its global average value

    CERN Document Server

    Rosado, J; Arqueros, F

    2011-01-01

    Experimental results of the absolute air-fluorescence yield are given very often in different units (photons/MeV or photons/m) and for different wavelength intervals. In this work we present a comparison of available results normalized to its value in photons/MeV for the 337 nm band at 1013 hPa and 293 K. The conversion of photons/m to photons/MeV requires an accurate determination of the energy deposited by the electrons in the field of view of the experimental set-up. We have calculated the energy deposition for each experiment by means of a detailed Monte Carlo simulation and the results have been compared with those assumed or calculated by the authors. As a result, corrections to the reported fluorescence yields are proposed. These corrections improve the compatibility between measurements in such a way that a reliable average value with uncertainty at the level of 5% is obtained.

  1. Decay Heat Analyses after Thermal-Neutron Fission of {sup 235}U and {sup 239}Pu by SCALE-6.1.3 with Recently Available Fission Product Yield Data

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Do Heon; Gil, Choong-Sup; Lee, Young-Ouk [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    The heat reaches about 1.5% after one hour and falls to 0.4% after a day. After a week it will be about 0.2%. The reactor, however, still requires further cooling for several years to keep the fuel rods safe. In general, the decay heat in the reactors can be calculated using a summation calculation method, which is simply the sum of the activities of the fission products produced during the fission process and after the reactor shutdown weighted by the mean decay energies. Consequently, the method is strongly dependent on the available nuclear structure data. Nowadays, the method has been implemented in various burnup and depletion programs such as ORIGEN and CINDER. In this study, the decay heat measurements after thermal-neutron fission of {sup 235}U and {sup 239}Pu have been evaluated by the ORIGEN-S with the decay data and fission product yield libraries included in the SCALE-6.1.3 software package. The new libraries were applied to the decay heat calculations, and the results were compared with those by the ORIGEN reference calculation. The decay heat measurements for very short cooling times after thermal-neutron fission of {sup 235}U and {sup 239}Pu have been evaluated by the ORIGEN-S summation calculation. The reference calculation results by the latest ORIGEN data libraries of the SCALE-6.1.3 have been validated with the measurements by ORNL and Studsvik. In addition, the generation of the new ORIGEN yield libraries has been completed based on the ENDF/B-VII.1, JEFF-3.1.1, JENDL/FPY-2011, and JENDL-4.0. The new libraries have been successfully applied to the decay heat calculations and comparative analyses have been devoted to verifying the importance of the fission product yield data when estimating the decay heat values for each isotope in a very short time. The decay data library occupies an important position in the ORIGEN summation calculation along with the fission product yield library.

  2. Measurements of extinct fission products in nuclear bomb debris: Determination of the yield of the Trinity nuclear test 70 y later.

    Science.gov (United States)

    Hanson, Susan K; Pollington, Anthony D; Waidmann, Christopher R; Kinman, William S; Wende, Allison M; Miller, Jeffrey L; Berger, Jennifer A; Oldham, Warren J; Selby, Hugh D

    2016-07-19

    This paper describes an approach to measuring extinct fission products that would allow for the characterization of a nuclear test at any time. The isotopic composition of molybdenum in five samples of glassy debris from the 1945 Trinity nuclear test has been measured. Nonnatural molybdenum isotopic compositions were observed, reflecting an input from the decay of the short-lived fission products (95)Zr and (97)Zr. By measuring both the perturbation of the (95)Mo/(96)Mo and (97)Mo/(96)Mo isotopic ratios and the total amount of molybdenum in the Trinity nuclear debris samples, it is possible to calculate the original concentrations of the (95)Zr and (97)Zr isotopes formed in the nuclear detonation. Together with a determination of the amount of plutonium in the debris, these measurements of extinct fission products allow for new estimates of the efficiency and yield of the historic Trinity test.

  3. Development of ionization technique for measurement of fast neutron induced fission products yields of {sup 237}Np

    Energy Technology Data Exchange (ETDEWEB)

    Goverdovski, A.A.; Khryachkov, V.A.; Ketlerov, V.V.; Mitrofanov, V.F.; Ostapenko, Yu.B.; Semenova, N.N.; Fomichev, A.N.; Rodina, L.F. [Institute of Physics and Power Engineering, Obninsk (Russian Federation)

    1997-03-01

    Twin gridded ionization chamber and corresponding software was designed for measurements of masses, kinetic energies and nuclear charges of fission fragments from fast neutron induced fission of {sup 237}Np. The ionization detector design, electronics, data acquisition and processing system and the test results are presented in this paper. (J.P.N.)

  4. Fission Product Library and Resource

    Energy Technology Data Exchange (ETDEWEB)

    Burke, J. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Padgett, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-09-29

    Fission product yields can be extracted from an irradiated sample by performing gamma ray spectroscopy on the whole sample post irradiation. There are several pitfalls to avoid when trying to determine a specific isotope's fission product yield.

  5. ABSOLUTE ASYMMETRIC SYNTHESIS. I. ON THE MECHANISM OF THEPHOTOCHEMICAL ABSOLUTE ASYMMETRIC SYNTHESIS OF HELICENES WITH CIRCULARLYPOLARIZED LIGHT. . WAVELENGTH DEPENDENCE OF THE OPTICAL YIELD OFOCTAHELICENE.

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, William J.; Calvin, Melvin; Buchardt, Ole.

    1971-05-01

    The synthesis of nonracemic yields of hexa-, hepta-, octa-, and nonhelicene with circular light was observed, and the structural and wavelength dependence of the induced optical yields was examined. The results obtained, together with a detailed consideration of the mechanism of helicene synthesis from the parent diarylolefins, indicate that the induced optical activity is due to selective reaction of enantiomeric conformations of the parent cis diarylolefins by circular light.

  6. Comparison of various hours living fission products for absolute power density determination in VVER-1000 mock up in LR-0 reactor.

    Science.gov (United States)

    Košťál, Michal; Švadlenková, Marie; Koleška, Michal; Rypar, Vojtěch; Milčák, Ján

    2015-11-01

    Measuring power level of zero power reactor is a quite difficult task. Due to the absence of measurable cooling media heating, it is necessary to employ a different method. The gamma-ray spectroscopy of fission products induced within reactor operation is one of possible ways of power determination. The method is based on the proportionality between fission product buildup and released power. The (92)Sr fission product was previously preferred as nuclide for LR-0 power determination for short-time irradiation experiments. This work aims to find more appropriate candidates, because the (92)Sr, however suitable, has a short half-life, which limits the maximal measurable amount of fuel pins within a single irradiation batch. The comparison of various isotopes is realized for (92)Sr, (97)Zr, (135)I, (91)Sr, and (88)Kr. The comparison between calculated and experimentally determined (C/E-1 values) net peak areas is assessed for these fission products. Experimental results show that studied fission products, except (88)Kr, are in comparable agreement with (92)Sr results. Since (91)Sr has notably higher half-life than (92)Sr, (91)Sr seems to be more appropriate marker in experiments with a large number of measured fuel pins.

  7. Experimental Neutron-Induced Fission Fragment Mass Yields of 232Th and 238U at Energies from 10 to 33 MeV

    CERN Document Server

    Simutkin, V D; Blomgren, J; Österlund, M; Bevilacqua, R; Ryzhov, I V; Tutin, G A; Yavshits, S G; Vaishnene, L A; Onegin, M S; Meulders, J P; Prieels, R

    2013-01-01

    Development of nuclear energy applications requires data for neutron-induced reactions for actinides in a wide neutron energy range. Here we describe measurements of pre-neutron emission fission fragment mass yields of 232Th and 238U at incident neutron energies from 10 to 33 MeV. The measurements were done at the quasi-monoenergetic neutron beam of the Louvain-la-Neuve cyclotron facility CYCLONE; a multi-section twin Frisch-gridded ionization chamber was used to detect fission fragments. For the peak neutron energies at 33, 45 and 60 MeV, the details of the data analysis and the experimental results have been published before and in this work we present data analysis in the low-energy tail of the neutron energy spectra. The preliminary measurement results are compared with available experimental data and theoretical predictions.

  8. Methodology and experimental setup for measuring short-lives fission product yields in actinides induced fission by charged particles; Metodologia e montagem experimental para a medicao de rendimentos de produtos de fissao de meia vida curta na fissao de actinideos por particulas carregadas

    Energy Technology Data Exchange (ETDEWEB)

    Bellido, A.V.

    1995-07-01

    The theoretical principles and the laboratory set-up for the fission products yields measurements are described. The procedures for the experimental determinations are explain in detail. (author). 43 refs., 5 figs.

  9. A method for in situ absolute DD yield calibration of neutron time-of-flight detectors on OMEGA using CR-39-based proton detectors.

    Science.gov (United States)

    Waugh, C J; Rosenberg, M J; Zylstra, A B; Frenje, J A; Séguin, F H; Petrasso, R D; Glebov, V Yu; Sangster, T C; Stoeckl, C

    2015-05-01

    Neutron time of flight (nTOF) detectors are used routinely to measure the absolute DD neutron yield at OMEGA. To check the DD yield calibration of these detectors, originally calibrated using indium activation systems, which in turn were cross-calibrated to NOVA nTOF detectors in the early 1990s, a direct in situ calibration method using CR-39 range filter proton detectors has been successfully developed. By measuring DD neutron and proton yields from a series of exploding pusher implosions at OMEGA, a yield calibration coefficient of 1.09 ± 0.02 (relative to the previous coefficient) was determined for the 3m nTOF detector. In addition, comparison of these and other shots indicates that significant reduction in charged particle flux anisotropies is achieved when bang time occurs significantly (on the order of 500 ps) after the trailing edge of the laser pulse. This is an important observation as the main source of the yield calibration error is due to particle anisotropies caused by field effects. The results indicate that the CR-39-nTOF in situ calibration method can serve as a valuable technique for calibrating and reducing the uncertainty in the DD absolute yield calibration of nTOF detector systems on OMEGA, the National Ignition Facility, and laser megajoule.

  10. Measurements of yields of fission products in the reaction of {sup 238}U with high-energy p, d and n beams

    Energy Technology Data Exchange (ETDEWEB)

    Nolen, J.A.; Ahmad, I.; Back, B.B. [and others

    1995-08-01

    An experiment was performed at the Michigan State University cyclotron to determine the yields of neutron-rich fission products in the reaction of {sup 238}U with 100-MeV neutrons, 200-MeV deuterons and 200-MeV protons. Several 1-mm-thick {sup 238}U foils were irradiated for 100-second intervals sequentially for each configuration and the ten spectra were added for higher statistics. The three successive spectra, each for a 40 s period, were accumulated for each sample. Ten foils were irradiated. Successive spectra allowed us to determine approximate half-lives of the gamma peaks. Several arrangements, which were similar to the setup we plan to use in our radioactive beam proposal, were used for the production of fission products. For the high-energy neutron irradiation, U foils were placed after a 5-inch-long, 1-inch-diameter Be cylinder which stopped the 200-MeV deuteron beam generating 100-MeV neutrons. Arrangements for deuteron irradiation included direct irradiation of U foils, placing U foils after different lengths of (0.5 inch, 1.0 inch and 1.5 inch) 2-inch diameter U cylinder. Since the deuteron range in uranium is 17 mm, some of the irradiations were due to the secondary neutrons from the deuteron-induced fission of U. Similar arrangements were also used for the 200-MeV proton irradiation of the {sup 238}U foils. In all cases, several neutron-rich fission products were identified and their yields determined. In particular, we were able to observe Sn in all the runs and determine its yield. The data show that with our proposed radioactive device we will be able to produce more than 10{sup 12} {sup 132}Sn atoms per second in the target. Assuming an overall efficiency of 1 %, we will be able to deliver one particle nanoampere of {sup 132}Sn beam at a target location. Detailed analysis of the {gamma}-ray spectra is in progress.

  11. To fission or not to fission

    CERN Document Server

    Pomorski, Krzysztof; Ivanyuk, Fedir A

    2016-01-01

    The fission-fragments mass-yield of 236U is obtained by an approximate solution of the eigenvalue problem of the collective Hamiltonian that describes the dynamics of the fission process whose degrees of freedom are: the fission (elongation), the neck and the mass-asymmetry mode. The macroscopic-microscopic method is used to evaluate the potential energy surface. The macroscopic energy part is calculated using the liquid drop model and the microscopic corrections are obtained using the Woods-Saxon single-particle levels. The four dimensional modified Cassini ovals shape parametrization is used to describe the shape of the fissioning nucleus. The mass tensor is taken within the cranking-type approximation. The final fragment mass distribution is obtained by weighting the adiabatic density distribution in the collective space with the neck-dependent fission probability. The neck degree of freedom is found to play a significant role in determining that final fragment mass distribution.

  12. Potentialities and practical limitations of absolute neutron dosimetry using thin films of uranium and thorium applied to the fission track dating

    CERN Document Server

    Bigazzi, G; Hadler-Neto, J C; Iunes, P J; Paulo, S R; Oddone, M; Osorio, A M A; Zúñiga, A G

    1999-01-01

    Neutron dosimetry using natural uranium and thorium thin films makes possible that mineral dating by the fission-track method can be accomplished, even when poor thermalized neutron facilities are employed. In this case, the contributions of the fissions of sup 2 sup 3 sup 5 U, sup 2 sup 3 sup 8 U and sup 2 sup 3 sup 2 Th induced by thermal, epithermal and fast neutrons to the population of tracks produced during irradiation are quantified through the combined use of natural uranium and thorium films. If the Th/U ratio of the sample is known, only one irradiation (where the sample and the films of uranium and thorium are present) is necessary to perform the dating. However, if that ratio is unknown, it can be determined through another irradiation where the mineral to be dated and both films are placed inside a cadmium box. Problems related with film manufacturing and calibration are discussed. Special attention is given to the utilization of thin films having very low uranium content. The problems faced sugg...

  13. Delayed fission

    Energy Technology Data Exchange (ETDEWEB)

    Hatsukawa, Yuichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-07-01

    Delayed fission is a nuclear decay process that couples {beta} decay and fission. In the delayed fission process, a parent nucleus undergoes {beta} decay and thereby populates excited states in the daughter. If these states are of energies comparable to or greater than the fission barrier of the daughter, then fission may compete with other decay modes of the excited states in the daughter. In this paper, mechanism and some experiments of the delayed fission will be discussed. (author)

  14. Easy Absolute Values? Absolutely

    Science.gov (United States)

    Taylor, Sharon E.; Mittag, Kathleen Cage

    2015-01-01

    The authors teach a problem-solving course for preservice middle-grades education majors that includes concepts dealing with absolute-value computations, equations, and inequalities. Many of these students like mathematics and plan to teach it, so they are adept at symbolic manipulations. Getting them to think differently about a concept that they…

  15. Absolute quantum yield measurements for the formation of oxygen atoms after UV laser excitation of SO2 at 222.4 nm

    Indian Academy of Sciences (India)

    Mohammed Abu-Bajeh; Melanie Cameron; Kyung-Hoon Jung; Christoph Kappel; Almuth Läuter; Kyoung-Seok Lee; Hari P Upadhyaya; Rajesh K Vatsa; Hans-Robert Volpp

    2002-12-01

    The dynamics of formation of oxygen atoms after UV photoexcitation of SO2 in the gas-phase was studied by pulsed laser photolysis-laser-induced fluorescence `pump-and-probe' technique in a flow reactor. SO2 at room-temperature was excited at the KrCl excimer laser wavelength (222.4 nm) and O(3P) photofragments were detected under collision-free conditions by vacuum ultraviolet laser-induced fluorescence. The use of narrow-band probe laser radiation, generated via resonant third-order sum-difference frequency conversion of dye laser radiation in Krypton, allowed the measurement of the nascent O(3P=2,1,0) fine-structure state distribution: =2/=1/=0 = (0.88 ± 0.02)/(0.10 ± 0.01)/(0.02 ± 0.01). Employing NO2 photolysis as a reference, a value of O(3P) = 0.13 ± 0.05 for the absolute O(3P) atom quantum yield was determined. The measured O(3P) quantum yield is compared with the results of earlier fluorescence quantum yield measurements. A suitable mechanism is suggested in which the dissociation proceeds via internal conversion from high rotational states of the initially excited SO2(∼ 1 B2) (1, 2, 2) vibronic level to nearby continuum states of the electronic ground state.

  16. Energy Dependence of Fission Product Yields from 235U, 238U and 239Pu for Incident Neutron Energies Between 0.5 and 14.8 MeV

    Science.gov (United States)

    Gooden, M. E.; Arnold, C. W.; Becker, J. A.; Bhatia, C.; Bhike, M.; Bond, E. M.; Bredeweg, T. A.; Fallin, B.; Fowler, M. M.; Howell, C. R.; Kelley, J. H.; Krishichayan; Macri, R.; Rusev, G.; Ryan, C.; Sheets, S. A.; Stoyer, M. A.; Tonchev, A. P.; Tornow, W.; Vieira, D. J.; Wilhelmy, J. B.

    2016-01-01

    Fission Product Yields (FPY) have historically been one of the most observable features of the fission process. They are known to have strong variations that are dependent on the fissioning species, the excitation energy, and the angular momentum of the compound system. However, consistent and systematic studies of the variation of these FPY with energy have proved challenging. This is caused primarily by the nature of the experiments that have traditionally relied on radiochemical procedures to isolate specific fission products. Although radiochemical procedures exist that can isolate all products, each element presents specific challenges and introduces varying degrees of systematic errors that can make inter-comparison of FPY uncertain. Although of high importance in fields such as nuclear forensics and Stockpile Stewardship, accurate information about the energy dependence of neutron induced FPY are sparse, due primarily to the lack of suitable monoenergetic neutron sources. There is a clear need for improved data, and to address this issue, a collaboration was formed between Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL) and the Triangle Universities Nuclear Laboratory (TUNL) to measure the energy dependence of FPY for 235U, 238U and 239Pu. The measurements have been performed at TUNL, using a 10 MV Tandem Van de Graaff accelerator to produce monoenergetic neutrons at energies between 0.6 MeV to 14.8 MeV through a variety of reactions. The measurements have utilized a dual-fission chamber, with thin (10-100 μg/cm2) reference foils of similar material to a thick (100-400 mg) activation target held in the center between the chambers. This method allows for the accurate determination of the number of fissions that occurred in the thick target without requiring knowledge of the fission cross section or neutron fluence on target. Following activation, the thick target was removed from the dual-fission chamber and gamma

  17. Radiochemistry and the Study of Fission

    Energy Technology Data Exchange (ETDEWEB)

    Rundberg, Robert S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-14

    These are slides from a lecture given at UC Berkeley. Radiochemistry has been used to study fission since it’ discovery. Radiochemical methods are used to determine cumulative mass yields. These measurements have led to the two-mode fission hypothesis to model the neutron energy dependence of fission product yields. Fission product yields can be used for the nuclear forensics of nuclear explosions. The mass yield curve depends on both the fuel and the neutron spectrum of a device. Recent studies have shown that the nuclear structure of the compound nucleus can affect the mass yield distribution. The following topics are covered: In the beginning: the discovery of fission; forensics using fission products: what can be learned from fission products, definitions of R-values and Q-values, fission bases, K-factors and fission chambers, limitations; the neutron energy dependence of the mass yield distribution (the two mode fission hypothesis); the influence of nuclear structure on the mass yield distribution. In summary: Radiochemistry has been used to study fission since it’s discovery. Radiochemical measurement of fission product yields have provided the highest precision data for developing fission models and for nuclear forensics. The two-mode fission hypothesis provides a description of the neutron energy dependence of the mass yield curve. However, data is still rather sparse and more work is needed near second and third chance fission. Radiochemical measurements have provided evidence for the importance of nuclear states in the compound nucleus in predicting the mass yield curve in the resonance region.

  18. The role of off-line mass spectrometry in nuclear fission.

    Science.gov (United States)

    De Laeter, J R

    1996-01-01

    The role of mass spectrometry in nuclear fission has been invaluable since 1940, when A. O. C. Nier separated microgram quantities of (235) U from (238) U, using a gas source mass spectrometer. This experiment enabled the fissionable nature of (235) U to be established. During the Manhattan Project, the mass spectrometer was used to measure the isotope abundances of uranium after processing in various separation systems, in monitoring the composition of the gaseous products in the Oak Ridge Diffusion Plant, and as a helium leak detector. Following the construction of the first reactor at the University of Chicago, it was necessary to unravel the nuclear systematics of the various fission products produced in the fission process. Off-line mass spectrometry was able to identify stable and long-lived isotopes produced in fission, but more importantly, was used in numerous studies of the distribution of mass of the cumulative fission yields. Improvements in sensitivity enabled off-line mass spectrometric studies to identify fine structure in the mass-yield curve and, hence, demonstrate the importance of shell structure in nuclear fission. Solid-source mass spectrometry was also able to measure the cumulative fission yields in the valley of symmetry in the mass-yield curve, and enabled spontaneous fission yields to be quantified. Apart from the accurate measurement of abundances, the stable isotope mass spectrometric technique has been invaluable in establishing absolute cumulative fission yields for many isotopes making up the mass-yield distribution curve for a variety of fissile nuclides. Extensive mass spectrometric studies of noble gases in primitive meteorites revealed the presence of fission products from the now extinct nuclide (244) Pu, and have eliminated the possibility of fission products from a super-heavy nuclide contributing to isotopic anomalies in meteoritic material. Numerous mass spectrometric studies of the isotopic and elemental abundances of

  19. Hidden systematics of fission channels

    Directory of Open Access Journals (Sweden)

    Schmidt Karl-Heinz

    2013-12-01

    Full Text Available It is a common procedure to describe the fission-fragment mass distributions of fissioning systems in the actinide region by a sum of at least 5 Gaussian curves, one for the symmetric component and a few additional ones, together with their complementary parts, for the asymmetric components. These components have been attributed to the influence of fragment shells, e.g. in the statistical scission-point model of Wilkins, Steinberg and Chasman. They have also been associated with valleys in the potential-energy landscape between the outer saddle and the scission configuration in the multi-channel fission model of Brosa. When the relative yields, the widths and the mean mass-asymmetry values of these components are fitted to experimental data, the mass distributions can be very well reproduced. Moreover, these fission channels are characterised by specific values of charge polarisation, total kinetic energy and prompt-neutron yields. The present contribution investigates the systematic variation of the characteristic fission-channel properties as a function of the composition and the excitation energy of the fissioning system. The mean position of the asymmetric fission channels in the heavy fragment is almost constant in atomic number. The deformation of the nascent fragments at scission, which is the main source of excitation energy of the separated fission fragments ending up in prompt-neutron emission, is found to be a unique function of Z for the light and the heavy fragment of the asymmetric fission channels. A variation of the initial excitation energy of the fissioning system above the fission saddle is only seen in the neutron yield of the heavy fragment. The charge polarisation in the two most important asymmetric fission channels is found to be constant and to appreciably exceed the macroscopic value. The variation of the relative yields and of the positions of the fission channels as a function of the composition and excitation energy

  20. Short-Lived Fission Products Yield Measurement for 239pu(nth ,f)%239Pu(nth,f)短寿命裂变产物产额测量

    Institute of Scientific and Technical Information of China (English)

    刘世龙; 杨毅; 冯晶

    2012-01-01

    采用γ能谱相对测量方法,以97Zr为内标参考核素,完成了239Pu( nth,f)短寿命裂变产物88Rb、95Y、101Mo、101Tc、…Csg、142 La等核素的累积产额测量.实验测得88Rb、”Y、101Mo、101Tc、38Csg、142La的累积产额数据分别为(1.32±0.05)%、(4.69±0.22)%、(6.13±0.32)%、(6.10土0.22)%、(6.24±0.24)%、(4.74±o.17)%.对高纯锗探测器中高能端效率刻度、样品封装与辐照、γ谱测量几何条件设计、γ谱测量与数据分析进行了研究.实验测量裂变产物核素分别位于非对称裂变质量分布双驼峰曲线轻峰的左侧、中部和右侧,重峰的中部与右侧.%The cumulative fission yields of short-lived nuclides 88Rb, 95Y, 101Mo, 101Tc, 119 Cs81 and 14!La in thermal neutron induced fission of 230Pu have been determined by gamma-ray spectrometry relative method. "Zr is selected as the reference nuclide. The determined cumulative fission yields are given as following: the Y(88Rb) = (1. 32 + 0. 05) %, Y(95Y) = (4.69 + 0.22)%, Y(101Mo) = (6. 13 + 0. 32 )%, Y(10'Tc)= (6.10 + 0.22)%, Y(I38Cse) = (6. 24 + 0. 24)%, Y(14ELa) = (4. 74 + 0. 17)%. The major work include HPGe detector efficiency calibration, sample sealing and irradiation, gamma-ray measurement and data analysis. The determined nuclides are located in left, middle, right of light group, and in middle, right of heavy group for asymmetric fission model. The accurate yields data supply a gap for domestic nuclear database, and reflect the fission products mass distribution character in thermal neutron induced fission of 239Pu.

  1. 1.4MeV-5MeV中子诱发238U裂变产额测量%Fission Product Yield Measurement of 238 U Induced by 1.4-5 MeV Neutrons

    Institute of Scientific and Technical Information of China (English)

    李映映; 肖军; 王攀; 李子越; 汪超; 罗小兵

    2016-01-01

    238 U fission yield measurement has a significant meaning in nuclear data measurement .This thesis a-dopts1.4 MeV-5 MeV mono -energetic neutrons generated by 2.5 MeV proton electrostatic accelerator to stimulate 238U fission, and then measures the yield of fission product nuclide 135I、133I、105Ru and 91Sr through measuring fission product radioactivity .Neutron flux during irradiation process is determined by activation meth-od .Subsequently , this thesis analyzes multiple components influencing experiment measurement , including cor-rection on neutron′s multiple scattering and self -shielding effect in target head and sample on the basis of MC-NPX program as well as correction on sample′s self-absorption of γ-ray.Typical deviation of yield data is concluded as 3.5%.Finally, this thesis compares measurement consequences with existing fission yield data .%238 U裂变产额测量工作在核数据测量中有着重要意义,本工作利用2.5MeV质子静电加速器产生的1.4MeV-5MeV单能中子诱发238 U裂变,通过对裂变产物放射性的测量对裂变产物核素135 I、133 I、105 Ru和91 Sr的产额进行了测定。照射过程中中子通量用活化法确定。分析了影响实验测量的多个因素,包括用MCNPX程序对中子在靶头及样品中的多次散射和自屏蔽效应进行了修正,对γ射线在样品中的自吸收进行修正等。得到产额数据典型误差为3.5%,最后把测量结果与已有的裂变产额数据进行比对。

  2. Temperature dependent fission fragment distribution in the Langevin equation

    Institute of Scientific and Technical Information of China (English)

    WANG Kun; MA Yu-Gang; ZHENG Qing-Shan; CAI Xiang-Zhou; FANG De-Qing; FU Yao; LU Guang-Cheng; TIAN Wen-Dong; WANG Hong-Wei

    2009-01-01

    The temperature dependent width of the fission fragment distributions was simulated in the Langevin equation by taking two-parameter exponential form of the fission fragment mass variance at scission point for each fission event. The result can reproduce experimental data well, and it permits to make reliable estimate for unmeasured product yields near symmetry fission.

  3. Absolute rate constant determinations for the deactivation of O/1D/ by time resolved decay of O/1D/ yields O/3P/ emission

    Science.gov (United States)

    Davidson, J. A.; Sadowski, C. M.; Schiff, H. I.; Howard, C. J.; Schmeltekopf, A. L.; Jennings, D. A.; Streit, G. E.

    1976-01-01

    Absolute rate constants for the deactivation of O(1D) atoms by some atmospheric gases have been determined by observing the time-resolved emission of O(1D) at 630 nm. O(1D) atoms were produced by the dissociation of ozone via repetitive laser pulses at 266 nm. Absolute rate constants for the relaxation of O(1D) at 298 K are reported for N2, O2, CO2, O3, H2, D2, CH4, HCl, NH3, H2O, N2O, and Ne. The results obtained are compared with previous relative and absolute measurements reported in the literature.

  4. Method of fission product beta spectra measurements for predicting reactor anti-neutrino emission

    Energy Technology Data Exchange (ETDEWEB)

    Asner, D.M.; Burns, K.; Campbell, L.W.; Greenfield, B.; Kos, M.S., E-mail: markskos@gmail.com; Orrell, J.L.; Schram, M.; VanDevender, B.; Wood, L.S.; Wootan, D.W.

    2015-03-11

    The nuclear fission process that occurs in the core of nuclear reactors results in unstable, neutron-rich fission products that subsequently beta decay and emit electron antineutrinos. These reactor neutrinos have served neutrino physics research from the initial discovery of the neutrino to today's precision measurements of neutrino mixing angles. The prediction of the absolute flux and energy spectrum of the emitted reactor neutrinos hinges upon a series of seminal papers based on measurements performed in the 1970s and 1980s. The steadily improving reactor neutrino measurement techniques and recent reconsiderations of the agreement between the predicted and observed reactor neutrino flux motivates revisiting the underlying beta spectra measurements. A method is proposed to use an accelerator proton beam delivered to an engineered target to yield a neutron field tailored to reproduce the neutron energy spectrum present in the core of an operating nuclear reactor. Foils of the primary reactor fissionable isotopes placed in this tailored neutron flux will ultimately emit beta particles from the resultant fission products. Measurement of these beta particles in a time projection chamber with a perpendicular magnetic field provides a distinctive set of systematic considerations for comparison to the original seminal beta spectra measurements. Ancillary measurements such as gamma-ray emission and post-irradiation radiochemical analysis will further constrain the absolute normalization of beta emissions per fission. The requirements for unfolding the beta spectra measured with this method into a predicted reactor neutrino spectrum are explored.

  5. Method of fission product beta spectra measurements for predicting reactor anti-neutrino emission

    Energy Technology Data Exchange (ETDEWEB)

    Asner, David M.; Burns, Kimberly A.; Campbell, Luke W.; Greenfield, Bryce A.; Kos, Marek S.; Orrell, John L.; Schram, Malachi; VanDevender, Brent A.; Wood, Lynn S.; Wootan, David W.

    2015-03-01

    The nuclear fission process that occurs in the core of nuclear reactors results in unstable, neutron-rich fission products that subsequently beta decay and emit electron antineutrinos. These reactor neutrinos have served neutrino physics research from the initial discovery of the neutrino to today's precision measurements of neutrino mixing angles. The prediction of the absolute flux and energy spectrum of the emitted reactor neutrinos hinges upon a series of seminal papers based on measurements performed in the 1970s and 1980s. The steadily improving reactor neutrino measurement techniques and recent reconsiderations of the agreement between the predicted and observed reactor neutrino flux motivates revisiting the underlying beta spectra measurements. A method is proposed to use an accelerator proton beam delivered to an engineered target to yield a neutron field tailored to reproduce the neutron energy spectrum present in the core of an operating nuclear reactor. Foils of the primary reactor fissionable isotopes placed in this tailored neutron flux will ultimately emit beta particles from the resultant fission products. Measurement of these beta particles in a time projection chamber with a perpendicular magnetic field provides a distinctive set of systematic considerations for comparison to the original seminal beta spectra measurements. Ancillary measurements such as gamma-ray emission and post-irradiation radiochemical analysis will further constrain the absolute normalization of beta emissions per fission. The requirements for unfolding the beta spectra measured with this method into a predicted reactor neutrino spectrum are explored.

  6. Absolute advantage

    NARCIS (Netherlands)

    J.G.M. van Marrewijk (Charles)

    2008-01-01

    textabstractA country is said to have an absolute advantage over another country in the production of a good or service if it can produce that good or service using fewer real resources. Equivalently, using the same inputs, the country can produce more output. The concept of absolute advantage can a

  7. Method of Fission Product Beta Spectra Measurements for Predicting Reactor Anti-neutrino Emission

    CERN Document Server

    Asner, D M; Campbell, L W; Greenfield, B; Kos, M S; Orrell, J L; Schram, M; VanDevender, B; Wood, 1 L S; Wootan, D W

    2014-01-01

    The nuclear fission process that occurs in the core of nuclear reactors results in unstable, neutron rich fission products that subsequently beta decay and emit electron anti-neutrinos. These reactor neutrinos have served neutrino physics research from the initial discovery of the neutrino to current precision measurements of neutrino mixing angles. The prediction of the absolute flux and energy spectrum of the emitted reactor neutrinos hinges upon a series of seminal papers based on measurements performed in the 1970s and 1980s. The steadily improving reactor neutrino measurement techniques and recent re-considerations of the agreement between the predicted and observed reactor neutrino flux motivates revisiting the underlying beta spectra measurements. A method is proposed to use an accelerator proton beam delivered to an engineered target to yield a neutron field tailored to reproduce the neutron energy spectrum present in the core of an operating nuclear reactor. Foils of the primary reactor fissionable i...

  8. Ternary fission

    Indian Academy of Sciences (India)

    M Balasubramaniam; K R Vijayaraghavan; C Karthikraj

    2015-09-01

    We present the ternary fission of 252Cf and 236U within a three-cluster model as well as in a level density approach. The competition between collinear and equatorial geometry is studied by calculating the ternary fragmentation potential as a function of the angle between the lines joining the stationary middle fragment and the two end fragments. The obtained results for the 16O accompanying ternary fission indicate that collinear configuration is preferred to equatorial configuration. Further, for all the possible third fragments, the potential energy surface (PES) is calculated corresponding to an arrangement in which the heaviest and the lightest fragments are considered at the end in a collinear configuration. The PES reveals several possible ternary modes including true ternary modes where the three fragments are of similar size. The complete mass distributions of Si and Ca which accompanied ternary fission of 236U is studied within a level density picture. The obtained results favour several possible ternary combinations.

  9. Fission Spectrum

    Science.gov (United States)

    Bloch, F.; Staub, H.

    1943-08-18

    Measurements of the spectrum of the fission neutrons of 25 are described, in which the energy of the neutrons is determined from the ionization produced by individual hydrogen recoils. The slow neutrons producing fission are obtained by slowing down the fast neutrons from the Be-D reaction of the Stanford cyclotron. In order to distinguish between fission neutrons and the remaining fast cyclotron neutrons both the cyclotron current and the pusle amplifier are modulated. A hollow neutron container, in which slow neutrons have a lifetime of about 2 milliseconds, avoids the use of large distances. This method results in much higher intensities than the usual modulation arrangement. The results show a continuous distribution of neutrons with a rather wide maximum at about 0.8 MV falling off to half of its maximum value at 2.0 MV. The total number of netrons is determined by comparison with the number of fission fragments. The result seems to indicate that only about 30% of the neutrons have energies below .8 MV. Various tests are described which were performed in order to rule out modification of the spectrum by inelastic scattering. Decl. May 4, 1951

  10. A compact proton spectrometer for measurement of the absolute DD proton spectrum from which yield and ρR are determined in thin-shell inertial-confinement-fusion implosions.

    Science.gov (United States)

    Rosenberg, M J; Zylstra, A B; Frenje, J A; Rinderknecht, H G; Johnson, M Gatu; Waugh, C J; Séguin, F H; Sio, H; Sinenian, N; Li, C K; Petrasso, R D; Glebov, V Yu; Hohenberger, M; Stoeckl, C; Sangster, T C; Yeamans, C B; LePape, S; Mackinnon, A J; Bionta, R M; Talison, B; Casey, D T; Landen, O L; Moran, M J; Zacharias, R A; Kilkenny, J D; Nikroo, A

    2014-10-01

    A compact, step range filter proton spectrometer has been developed for the measurement of the absolute DD proton spectrum, from which yield and areal density (ρR) are inferred for deuterium-filled thin-shell inertial confinement fusion implosions. This spectrometer, which is based on tantalum step-range filters, is sensitive to protons in the energy range 1-9 MeV and can be used to measure proton spectra at mean energies of ∼1-3 MeV. It has been developed and implemented using a linear accelerator and applied to experiments at the OMEGA laser facility and the National Ignition Facility (NIF). Modeling of the proton slowing in the filters is necessary to construct the spectrum, and the yield and energy uncertainties are ±DD-neutron yield diagnostics at the NIF.

  11. Thorium-uranium fission radiography

    Science.gov (United States)

    Haines, E. L.; Weiss, J. R.; Burnett, D. S.; Woolum, D. S.

    1976-01-01

    Results are described for studies designed to develop routine methods for in-situ measurement of the abundance of Th and U on a microscale in heterogeneous samples, especially rocks, using the secondary high-energy neutron flux developed when the 650 MeV proton beam of an accelerator is stopped in a 42 x 42 cm diam Cu cylinder. Irradiations were performed at three different locations in a rabbit tube in the beam stop area, and thick metal foils of Bi, Th, and natural U as well as polished silicate glasses of known U and Th contents were used as targets and were placed in contact with mica which served as a fission track detector. In many cases both bare and Cd-covered detectors were exposed. The exposed mica samples were etched in 48% HF and the fission tracks counted by conventional transmitted light microscopy. Relative fission cross sections are examined, along with absolute Th track production rates, interaction tracks, and a comparison of measured and calculated fission rates. The practicality of fast neutron radiography revealed by experiments to data is discussed primarily for Th/U measurements, and mixtures of other fissionable nuclei are briefly considered.

  12. Assessment of experimental d-PIGE γ-ray production cross sections for 12C, 14N and 16O and comparison with absolute thick target yields

    Science.gov (United States)

    Csedreki, L.; Halász, Z.; Kiss, Á. Z.

    2016-08-01

    Measured differential cross sections for deuteron induced γ-ray emission from the reactions 12C(d,pγ)13C, (Eγ = 3089 keV), 14N(d,pγ)15N (Eγ = 8310 keV) and 16O(d,pγ)17O (Eγ = 871 keV) available in the literature were assessed. In order to cross check the assessed γ-ray production cross section data, thick target γ-yields calculated from the differential cross sections were compared with available measured thick target yields. Recommended differential cross section data for each reaction were deduced for particle induced γ-ray emission (PIGE) applications.

  13. Mass Distribution Measurement of 252Cf Spontaneous Fission

    Institute of Scientific and Technical Information of China (English)

    LIU; Shi-long; YANG; Yi; ZHANG; Chun-li; HAN; Hong-yin

    2015-01-01

    The E-v method of measuring the kinetic energy(E)and velocity(v)of outgoing fission products has been utilized,with the goal of measuring the mass resolution better than 1atomic mass units(amu),and could identify every mass for light fission products of unsymmetrical fission.This work measured mass yield distribution

  14. Ideological Fission

    DEFF Research Database (Denmark)

    Christiansen, Steen Ledet

    ; it is a materialisation of an ideological fission which attempts to excise certain ideological constructions, yet paradoxically casting them in a form that is recognizable and familiar. The monstrous metonomy which is used shows us glimpses of a horrid being, intended to vilify the attack on New York City. However......, it is a being which is reminiscent of earlier monsters - from Godzilla to The Blob. It is evident that the Cloverfield monster is a paradoxical construction which attempts to articulate fear and loathing about terrorism, but ends up trapped in an ideological dead-end maze, unable to do anything other than...

  15. Absolute Summ

    Science.gov (United States)

    Phillips, Alfred, Jr.

    Summ means the entirety of the multiverse. It seems clear, from the inflation theories of A. Guth and others, that the creation of many universes is plausible. We argue that Absolute cosmological ideas, not unlike those of I. Newton, may be consistent with dynamic multiverse creations. As suggested in W. Heisenberg's uncertainty principle, and with the Anthropic Principle defended by S. Hawking, et al., human consciousness, buttressed by findings of neuroscience, may have to be considered in our models. Predictability, as A. Einstein realized with Invariants and General Relativity, may be required for new ideas to be part of physics. We present here a two postulate model geared to an Absolute Summ. The seedbed of this work is part of Akhnaton's philosophy (see S. Freud, Moses and Monotheism). Most important, however, is that the structure of human consciousness, manifest in Kenya's Rift Valley 200,000 years ago as Homo sapiens, who were the culmination of the six million year co-creation process of Hominins and Nature in Africa, allows us to do the physics that we do. .

  16. Spontaneous fission of superheavy nuclei

    Indian Academy of Sciences (India)

    R A Gherghescu; D N Poenaru

    2015-09-01

    The macroscopic–microscopic method is extended to calculate the deformation energy and penetrability for binary nuclear configurations typical for fission processes. The deformed two-centre shell model is used to obtain single-particle energy levels for the transition region of two partially overlapped daughter and emitted fragment nuclei. The macroscopic part is obtained using the Yukawa-plus-exponential potential. The microscopic shell and pairing corrections are obtained using the Strutinsky and BCS approaches and the cranking formulae yield the inertia tensor. Finally, the WKB method is used to calculate penetrabilities and spontaneous fission half-lives. Calculations are performed for the decay of 282,292120 nuclei.

  17. Assessment of fissionable material behaviour in fission chambers

    Energy Technology Data Exchange (ETDEWEB)

    Cabellos, O., E-mail: oscar.cabellos@upm.e [Instituto de Fusion Nuclear, Universidad Politecnica de Madrid, 28006 Madrid (Spain); Department of Nuclear Engineering, Universidad Politecnica de Madrid, 28006 Madrid (Spain); Fernandez, P. [Department of Nuclear Engineering, Universidad Politecnica de Madrid, 28006 Madrid (Spain); Rapisarda, D. [Laboratorio Nacional de Fusion, EURATOM-CIEMAT, 28040 Madrid (Spain); Garcia-Herranz, N. [Instituto de Fusion Nuclear, Universidad Politecnica de Madrid, 28006 Madrid (Spain); Department of Nuclear Engineering, Universidad Politecnica de Madrid, 28006 Madrid (Spain)

    2010-06-21

    A comprehensive study is performed in order to assess the pertinence of fission chambers coated with different fissile materials for high neutron flux detection. Three neutron scenarios are proposed to study the fast component of a high neutron flux: (i) high neutron flux with a significant thermal contribution such as BR2, (ii) DEMO magnetic fusion reactor, and (iii) IFMIF high flux test module. In this study, the inventory code ACAB is used to analyze the following questions: (i) impact of different deposits in fission chambers; (ii) effect of the irradiation time/burn-up on the concentration; (iii) impact of activation cross-section uncertainties on the composition of the deposit for all the range of burn-up/irradiation neutron fluences of interest. The complete set of nuclear data (decay, fission yield, activation cross-sections, and uncertainties) provided in the EAF2007 data library are used for this evaluation.

  18. SPIDER Progress Towards High Resolution Correlated Fission Product Data

    Science.gov (United States)

    Shields, Dan; Meierbachtol, Krista; Tovesson, Fredrik; Arnold, Charles; Blackeley, Rick; Bredeweg, Todd; Devlin, Matt; Hecht, Adam; Jandel, Marian; Jorgenson, Justin; Nelson, Ron; White, Morgan; Spider Team

    2014-09-01

    The SPIDER detector (SPectrometer for Ion DEtermination in fission Research) is under development with the goal of obtaining high-resolution, high-efficiency, correlated fission product data needed for many applications including the modeling of next generation nuclear reactors, stockpile stewardship, and the fundamental understanding of the fission process. SPIDER simultaneously measures velocity and energy of both fission products to calculate fission product yields (FPYs), neutron multiplicity (ν), and total kinetic energy (TKE). A detailed description of the prototype SPIDER detector components will be presented. Characterization measurements with alpha and spontaneous fission sources will also be discussed. LA-UR-14-24875. The SPIDER detector (SPectrometer for Ion DEtermination in fission Research) is under development with the goal of obtaining high-resolution, high-efficiency, correlated fission product data needed for many applications including the modeling of next generation nuclear reactors, stockpile stewardship, and the fundamental understanding of the fission process. SPIDER simultaneously measures velocity and energy of both fission products to calculate fission product yields (FPYs), neutron multiplicity (ν), and total kinetic energy (TKE). A detailed description of the prototype SPIDER detector components will be presented. Characterization measurements with alpha and spontaneous fission sources will also be discussed. LA-UR-14-24875. This work is in part supported by LANL Laboratory Directed Research and Development Projects 20110037DR and 20120077DR.

  19. Los Alamos National Laboratory Fission Basis

    Energy Technology Data Exchange (ETDEWEB)

    Keksis, A.L.; Chadwick, M.B.; Selby, H.D.; Mac Innes, M.R.; Barr, D.W.; Meade, R.A.; Burns, C.J.; Wallstrom, T.C. [Los Alamos National Laboratory, NM 87545 (United States)

    2011-07-01

    This report is an overview of two main publications that provide a comprehensive review of the Los Alamos National Laboratory (LANL) Fission Basis. The first is the experimental paper, {sup F}ission Product Data Measured at Los Alamos for Fission Spectrum and Thermal Neutrons on {sup 239}Pu, {sup 235}U, {sup 238}U, [Selby, H. D., et al., Nucl. Data Sheets, Vol. 111 2010, pp. 2891-2922] and the second is the theoretical paper, Fission Product Yields from Fission Spectrum n+ {sup 239}Pu for ENDF/B-VII.1, [Chadwick, M. B., et al., Nucl. Data Sheets, Vol. 111, 2010, pp. 2923-2964]. One important note is that none of this work would have been possible without the great documentation of the experimental details and results by G.W. Knobeloch, G. Butler, C.I. Browne, B. Erdal, B. Bayhurst, R. Prestwood, V. Armijo, J. Hasty and many others. (authors)

  20. Excitation-energy dependence of the nuclear fission characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Baba, H.; Saito, T.; Takahashi, N. [Osaka City Univ. (Japan). Faculty of Science] [and others

    1996-03-01

    It is known that the width parameter of the fragment mass yield distribution follows a beautiful systematics with respect to the excitation energy. According to this systematics, the fission characteristics following the systematics should disappear when the excitation energy Ex goes down to 14 MeV. The present purpose is to elucidate if, where, how and why a transition takes place in the fission characteristics of the asymmetric fission of light actinide elements. Two types of experiments are performed, one is the double-energy measurement of the kinetic energies of complementary fragments in the thermal-neutron fission of {sup 235,233}U and proton-induced fission of {sup 238}U at 13.3- and 15.7-MeV excitations, and the other is the radiochemical study of proton-induced fission and photofission of {sup 238}U at various excitation energies. In conclusion, it has demonstrated that there are two distinctive fission mechanisms in the low-energy fission of light actinide elements and the transition between them takes place around 14-MeV excitation. The characteristics of proton fission and photofission in the energy range lower than the above transition point are the essentially the same as those of thermal-neutron fission and also spontaneous fission. The results of GDR fission indicates the fission in the high-energy side starts from the nuclear collective states, whereas the lower-energy fission is of non-collective nature. It is likely that thermal-neutron fission is rather of the barrier-penetrating type like spontaneous fission than the threshold fission. (S.Y.)

  1. Correlation measurements of fission-fragment properties

    Directory of Open Access Journals (Sweden)

    Oberstedt A.

    2010-10-01

    Full Text Available For the development of future nuclear fission applications and for a responsible handling of nuclear waste the a-priori assessment of the fission-fragments’ heat production and toxicity is a fundamental necessity. The success of an indispensable modelling of the fission process strongly depends on a good understanding of the particular mechanism of scission, the mass fragmentation and partition of excitation energy. Experimental observables are fission-fragment properties like mass- and energy-distributions, and the prompt neutron as well as γ-ray multiplicities and emission spectra. The latter quantities should preferably be known as a function of fragment mass and excitation energy. Those data are highly demanded as published by the OECD-NEA in its high priority data request list. With the construction of the double (v, E spectrometer VERDI we aim at measuring pre- and post-neutron masses directly and simultaneously to avoid prompt neutron corrections. From the simultaneous measurement of pre- and post-neutron fission-fragment data the prompt neutron multiplicity may then be inferred fully correlated with fragment mass yield and total kinetic energy. Using an ultra-fast fission event trigger spectral prompt fission γ-ray measurements may be performed. For that purpose recently developed lanthanum-halide detectors, with excellent timing characteristics, were coupled to the VERDI spectrometer allowing for a very good discrimination of fission γ-rays and prompt neutrons due to their different time-of-flight.

  2. Development of fission Mo-99 production technology

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Ho; Choung, W. M.; Lee, K. I. and others

    2000-05-01

    Fission Mo-99 is the only parent nuclide of Tc-99m, an extremely useful tool for mdeical diagnosis, with an estimated usage of greater than 80% of nuclear medicine applicatons. HEU and LEU targets to optimize in HANARO irradiation condition suggested and designed for domestic production of fission Mo-99. The optimum process conditions are established in each unit process to meet quality requirements of fission Mo-99 products, and the results of performance test in combined process show Mo separation and purification yield of the above 97%. The concept of Tc generator production process is established, and the result of performance test show Tc production yield of 98.4% in Tc generator procuction process. The drafts is prepared for cooperation of technical cooperation and business investment with foreign country. Evaluation on economic feasibility is accompanied for fission Mo-99 and Tc-99m generator production.

  3. Study on fluorescence absolute quantum yield and lifetime of europium complexes by doping yttrium%掺杂钇的铕稀土配合物的荧光绝对量子产率和寿命的研究

    Institute of Scientific and Technical Information of China (English)

    费邦忠; 陶栋梁; 张宏; 崔玉民; 张坤; 王永忠; 杨森林; 鲁仕梅

    2016-01-01

    A series of Co-luminescence EuxY1-x(TTA)3phen were synthesized in anhydrous ethanol by using Eu3+and Y3+as central ions and 2-Thenoyltrifluoroacetone (TTA) and 1,10-phenanthroline (phen) as ligands. IR spectra of the ligand TTA and EuxY1-x(TTA)3phen were determined. The absolute fluorescence quantum yields and average fluorescence lifetimes of europium complexes undergo great change after the europium complexes are doped Y into. With the Y content increasing, the absolute quantum yields of EuxY1- x(TTA)3phen first increase and then decrease, and the average fluorescence lifetimes of EuxY1- x (TTA)3phen become shorter in a wave-like pattern. These results indicate that Y-doped results in intramolecular microstructure change of EuxY1-x(TTA)3phen, which results in change of intramolecular energy transfer system of EuxY1-x(TTA)3phen.%在无水乙醇中,利用Eu3+和Y3+作为中心离子,α-噻吩甲酰三氟丙酮(TTA)和1,10-邻菲啰啉(phen)作为配体制备了一系列共发光稀土配合物EuxY1-x(TTA)3phen,并对TTA和EuxY1-x(TTA)3phen进行了红外表征。掺杂钇的铕配合物与没掺杂钇相比,荧光绝对量子产率和平均寿命都发生了很大变化,随着钇含量的增大,EuxY1-x(TTA)3phen的荧光绝对量子产率先增大,然后减小,而平均寿命则以波动方式逐渐减小,说明钇的掺杂改变了EuxY1-x(TTA)3phen的分子微观结构,从而改变了EuxY1-x(TTA)3phen的能量传递方式。

  4. Systematics in delayed neutron yields

    Energy Technology Data Exchange (ETDEWEB)

    Ohsawa, Takaaki [Kinki Univ., Higashi-Osaka, Osaka (Japan). Atomic Energy Research Inst.

    1998-03-01

    An attempt was made to reproduce the systematic trend observed in the delayed neutron yields for actinides on the basis of the five-Gaussian representation of the fission yield together with available data sets for delayed neutron emission probability. It was found that systematic decrease in DNY for heavier actinides is mainly due to decrease of fission yields of precursors in the lighter side of the light fragment region. (author)

  5. Fission and Properties of Neutron-Rich Nuclei

    Science.gov (United States)

    Hamilton, Joseph H.; Ramayya, A. V.; Carter, H. K.

    2008-08-01

    . Fission-fragment spectroscopy with STEFF / A. G. Smith ... [et al.]. Gamma ray multiplicity of [symbol]Cf spontaneous fission using LiBerACE / D. L. Bleuel ... [et al.]. Excitation energy dependence of fragment mass and total kinetic energy distributions in proton-induced fission of light actinides / I. Nishinaka ... [et al.]. A dynamical calculation of multi-modal nuclear fission / T. Wada and T. Asano. Structure of fission potential energy surfaces in ten-dimensional spaces / V. V. Pashkevich, Y. K Pyatkov and A. V. Unzhakova. A possible enhancement of nuclear fission in scattering with low energy charged particles / V. Gudkov. Dynamical multi-break processes in the [symbol]Sn + [symbol]Ni system at 35 MeV/Nucleon / M. Papa and ISOSPIN-RE VERSE collaboration -- New experimental techniques. MTOF - a high resolution isobar separator for studies of exotic decays / A. Piechaczek ... [et al.]. Development of ORRUBA: a silicon array for the measurement of transfer reactions in inverse kinematics / S. D. Pain ... [et al.]. Indian national gamma array: present & future / R. K. Bhowmik. Absolute intensities of [symbol] rays emitted in the decay of [symbol]U / H. C. Griffin -- Superheavy elements theory and experiments / M. G. Itkis ... [et al.]. Study of superheavy elements at SHIP / S. Hofinann. Heaviest nuclei from [symbol]Ca-induced reactions / Yu. Ts. Oaanessian. Superheavy nuclei and giant nuclear systems / W. Greiner and V. Zagrebaev. Fission approach to alpha-decay of superheavy nuclei / D.N. Poenaru and W. Greiner. Superheavy elements in the Magic Islands / C. Samanta. Relativistic mean field studies of superheavy nuclei / A. V. Afanas jev. Understanding the synthesis of the heaviest nuclei / W. Loveland -- Mass measurements and g-factors. G factor measurements in neutron-rich [symbol]Cf fission fragments, measured using the gammasphere array / R. Orlandi ... [et al.]. Technique for measuring angular correlations and g-factors in neutron rich nuclei produced by the

  6. Determining isotopic distributions of fission products with a penning trap

    Energy Technology Data Exchange (ETDEWEB)

    Penttilae, H.; Karvonen, P.; Eronen, T.; Elomaa, V.V.; Hager, U.; Hakala, J.; Jokinen, A.; Kankainen, A.; Moore, I.D.; Peraejaervi, K.; Rahaman, S.; Rinta-Antila, S.; Saastamoinen, A.; Sonoda, T.; Aeystoe, J. [University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland); Rubchenya, V. [University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland); V.G. Khlopin Radium Institute, St. Petersburg (Russian Federation)

    2010-04-15

    A novel method to determine independent yields in particle-induced fission employing the ion guide technique and ion counting after a Penning trap has been developed. The method takes advantage of the fact that a Penning trap can be used as a precision mass filter, which allows an unambiguous identification of the fission fragments. The method was tested with 25MeV and 50MeV proton-induced fission of {sup 238}U. The data is internally reproducible with an accuracy of a few per cent. A satisfactory agreement was obtained with older ion guide yield measurements in 25MeV proton-induced fission. The results for Rb and Cs yields in 50MeV proton-induced fission agree with previous measurements performed at an isotope separator equipped with a chemically selective ion source. (orig.)

  7. Teaching Absolute Value Meaningfully

    Science.gov (United States)

    Wade, Angela

    2012-01-01

    What is the meaning of absolute value? And why do teachers teach students how to solve absolute value equations? Absolute value is a concept introduced in first-year algebra and then reinforced in later courses. Various authors have suggested instructional methods for teaching absolute value to high school students (Wei 2005; Stallings-Roberts…

  8. EMISSION OF PHOTONS IN SPONTANEOUS FISSION OF CF-252

    NARCIS (Netherlands)

    VANDERPLOEG, H; BACELAR, JCS; BUDA, A; LAURENS, CR; VANDERWOUDE, A; GAARDHOJE, JJ; ZELAZNY, Z; VANTHOF, G; KALANTARNAYESTANAKI, N

    1995-01-01

    High energy photon emission accompanying the spontaneous fission of Cf-252 is measured for different mass splits. The photon yields up to an energy of 20 MeV are obtained at several angles relative to the fission direction. Statistical model calculations are used to interpret the data. The photon yi

  9. Antiproton Induced Fission and Fragmentation of Nuclei

    CERN Multimedia

    2002-01-01

    The annihilation of slow antiprotons with nuclei results in a large highly localized energy deposition primarily on the nuclear surface. \\\\ \\\\ The study of antiproton induced fission and fragmentation processes is expected to yield new information on special nuclear matter states, unexplored fission modes, multifragmentation of nuclei, and intranuclear cascades.\\\\ \\\\ In order to investigate the antiproton-nucleus interaction and the processes following the antiproton annihilation at the nucleus, we propose the following experiments: \\item A)~Measurement of several fragments from fission and from multifragmentation in coincidence with particle spectra, especially neutrons and kaons. \\item B)~Precise spectra of $\\pi$, K, n, p, d and t with time-of-flight techniques. \\item C)~Installation of the Berlin 4$\\pi$ neutron detector with a 4$\\pi$ Si detector placed inside for fragments and charged particles. This yields neutron multiplicity distributions and consequently distributions of thermal excitation energies and...

  10. Modeling Fission Product Sorption in Graphite Structures

    Energy Technology Data Exchange (ETDEWEB)

    Szlufarska, Izabela [University of Wisconsin, Madison, WI (United States); Morgan, Dane [University of Wisconsin, Madison, WI (United States); Allen, Todd [University of Wisconsin, Madison, WI (United States)

    2013-04-08

    The goal of this project is to determine changes in adsorption and desorption of fission products to/from nuclear-grade graphite in response to a changing chemical environment. First, the project team will employ principle calculations and thermodynamic analysis to predict stability of fission products on graphite in the presence of structural defects commonly observed in very high- temperature reactor (VHTR) graphites. Desorption rates will be determined as a function of partial pressure of oxygen and iodine, relative humidity, and temperature. They will then carry out experimental characterization to determine the statistical distribution of structural features. This structural information will yield distributions of binding sites to be used as an input for a sorption model. Sorption isotherms calculated under this project will contribute to understanding of the physical bases of the source terms that are used in higher-level codes that model fission product transport and retention in graphite. The project will include the following tasks: Perform structural characterization of the VHTR graphite to determine crystallographic phases, defect structures and their distribution, volume fraction of coke, and amount of sp2 versus sp3 bonding. This information will be used as guidance for ab initio modeling and as input for sorptivity models; Perform ab initio calculations of binding energies to determine stability of fission products on the different sorption sites present in nuclear graphite microstructures. The project will use density functional theory (DFT) methods to calculate binding energies in vacuum and in oxidizing environments. The team will also calculate stability of iodine complexes with fission products on graphite sorption sites; Model graphite sorption isotherms to quantify concentration of fission products in graphite. The binding energies will be combined with a Langmuir isotherm statistical model to predict the sorbed concentration of fission

  11. Thermal fission rates with temperature dependent fission barriers

    CERN Document Server

    Zhu, Yi

    2016-01-01

    \\item[Background] The fission processes of thermal excited nuclei are conventionally studied by statistical models which rely on inputs of phenomenological level densities and potential barriers. Therefore the microscopic descriptions of spontaneous fission and induced fission are very desirable for a unified understanding of various fission processes. \\item[Purpose] We propose to study the fission rates, at both low and high temperatures, with microscopically calculated temperature-dependent fission barriers and mass parameters. \\item[Methods] The fission barriers are calculated by the finite-temperature Skyrme-Hartree-Fock+BCS method. The mass parameters are calculated by the temperature-dependent cranking approximation. The thermal fission rates can be obtained by the imaginary free energy approach at all temperatures, in which fission barriers are naturally temperature dependent. The fission at low temperatures can be described mainly as a barrier-tunneling process. While the fission at high temperatures ...

  12. Study on fission blanket fuel cycling of a fusion-fission hybrid energy generation system

    Science.gov (United States)

    Zhou, Z.; Yang, Y.; Xu, H.

    2011-10-01

    This paper presents a preliminary study on neutron physics characteristics of a light water cooled fission blanket for a new type subcritical fusion-fission hybrid reactor aiming at electric power generation with low technical limits of fission fuel. The major objective is to study the fission fuel cycling performance in the blanket, which may possess significant impacts on the feasibility of the new concept of fusion-fission hybrid reactor with a high energy gain (M) and tritium breeding ratio (TBR). The COUPLE2 code developed by the Institute of Nuclear and New Energy Technology of Tsinghua University is employed to simulate the neutronic behaviour in the blanket. COUPLE2 combines the particle transport code MCNPX with the fuel depletion code ORIGEN2. The code calculation results show that soft neutron spectrum can yield M > 20 while maintaining TBR >1.15 and the conversion ratio of fissile materials CR > 1 in a reasonably long refuelling cycle (>five years). The preliminary results also indicate that it is rather promising to design a high-performance light water cooled fission blanket of fusion-fission hybrid reactor for electric power generation by directly loading natural or depleted uranium if an ITER-scale tokamak fusion neutron source is achievable.

  13. The VERDI fission fragment spectrometer

    Directory of Open Access Journals (Sweden)

    Frégeau M.O.

    2013-12-01

    Full Text Available The VERDI time-of-flight spectrometer is dedicated to measurements of fission product yields and of prompt neutron emission data. Pre-neutron fission-fragment masses will be determined by the double time-of-flight (TOF technique. For this purpose an excellent time resolution is required. The time of flight of the fragments will be measured by electrostatic mirrors located near the target and the time signal coming from silicon detectors located at 50 cm on both sides of the target. This configuration, where the stop detector will provide us simultaneously with the kinetic energy of the fragment and timing information, significantly limits energy straggling in comparison to legacy experimental setup where a thin foil was usually used as a stop detector. In order to improve timing resolution, neutron transmutation doped silicon will be used. The high resistivity homogeneity of this material should significantly improve resolution in comparison to standard silicon detectors. Post-neutron fission fragment masses are obtained form the time-of-flight and the energy signal in the silicon detector. As an intermediary step a diamond detector will also be used as start detector located very close to the target. Previous tests have shown that poly-crystalline chemical vapour deposition (pCVD diamonds provides a coincidence time resolution of 150 ps not allowing complete separation between very low-energy fission fragments, alpha particles and noise. New results from using artificial single-crystal diamonds (sCVD show similar time resolution as from pCVD diamonds but also sufficiently good energy resolution.

  14. Fission Measurements with Dance

    Science.gov (United States)

    Jandel, M.; Bredeweg, T. A.; Fowler, M. M.; Bond, E. M.; Chadwick, M. B.; Clement, R. R.; Couture, A.; O'Donnell, J. M.; Haight, R. C.; Keksis, A. L.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.; Agvaanluvsan, U.; Dashdorj, D.; Macri, R. A.; Parker, W. E.; Wilk, P. A.; Wu, C. Y.; Becker, J. A.; Angell, C. T.; Tonchev, A. P.; Baker, J. D.

    2008-08-01

    Neutron capture cross section measurements on actinides are complicated by the presence of neutron-induced fission. An efficient fission tagging detector used in coincidence with the Detector for Advanced Neutron Capture Experiments (DANCE) provides a powerful tool in undertaking simultaneous measurements of (n,γ) and (n,f) cross sections. Preliminary results on 235U(n,γ) and (n,f) and 242mAm(n,f) cross sections measured with DANCE and a custom fission-tagging parallel plate avalanche counter (PPAC) are presented. Additional measurements of γ-ray cluster multiplicity distributions for neutron-induced fission of 235U and 242mAm and spontaneous fission of 252Cf are shown, as well as γ-ray energy and average γ-ray energy distributions.

  15. Monte Carlo simulation based toy model for fission process

    Science.gov (United States)

    Kurniadi, Rizal; Waris, Abdul; Viridi, Sparisoma

    2016-09-01

    Nuclear fission has been modeled notoriously using two approaches method, macroscopic and microscopic. This work will propose another approach, where the nucleus is treated as a toy model. The aim is to see the usefulness of particle distribution in fission yield calculation. Inasmuch nucleus is a toy, then the Fission Toy Model (FTM) does not represent real process in nature completely. The fission event in FTM is represented by one random number. The number is assumed as width of distribution probability of nucleon position in compound nuclei when fission process is started. By adopting the nucleon density approximation, the Gaussian distribution is chosen as particle distribution. This distribution function generates random number that randomizes distance between particles and a central point. The scission process is started by smashing compound nucleus central point into two parts that are left central and right central points. The yield is determined from portion of nuclei distribution which is proportional with portion of mass numbers. By using modified FTM, characteristic of particle distribution in each fission event could be formed before fission process. These characteristics could be used to make prediction about real nucleons interaction in fission process. The results of FTM calculation give information that the γ value seems as energy.

  16. Fission in intermediate energy heavy ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Wilhelmy, J.B.; Begemann-Blaich, M.; Blaich, T.; Boissevain, J.; Fowler, M.M.; Gavron, A.; Jacak, B.V.; Lysaght, P.S. (Los Alamos National Lab., NM (USA)); Britt, H.C.; Fields, D.J.; Hansen, L.F.; Lanier, R.G.; Massoletti, D.J.; Namboodiri, M.M.; Remington, B.A.; Sangster, T.C.; Struble, G.L.; Webb, M.L. (Lawrence Livermore National Lab., CA (USA)); Chan, Y.D.; Dacai, A.; Harmon, A.; Leyba, J.; Pouliot, J.; Stokstad, R.G. (Lawrence Berkeley Lab., CA (USA)); Hansen, O.; Levine, M.J.; Thorn, C.E.; Trautmann, W. (Brookhaven National Lab., Upton, NY (USA)); Dichter, B.; Kaufman, S.; Videbaek, F. (Argonne National Lab. (USA)); Fraenkel, Z.; Mamane, G. (Weizmann Inst. of Science, Rehovoth (Israel)); Cebra, D.; Westfall, G.D. (Michigan State Univ., East Lansing (USA))

    1989-10-09

    A systematic study of reaction mechanisms at intermediate energies (50-100 MeV/A) has been performed at the Lawrence Berkeley Laboratory's BeValac using medium weight projectiles on medium and heavy element targets. A gas and plastic phoswich detector system was employed which gave large geometric coverage and a wide dynamic response. The particles identified with the gas detectors could be characterized into three components - intermediate mass fragments (IMF), fission fragments (FF) and heavy residues (HR). Major observed features are: The reaction yields are similar in the 50 to 100 MeV/A range, central collisions have high multiplicty of IMF's with broad angular correlations consistent with a large participant region, effects of final state Coulomb interactions are observed and give information on the size and temporal behavior of the source, true fission yields are dependent on target fissility and correlated with relatively peripheral collisions. Analysis of fission and evaporation yields implies limiting conditions for which fission decay remains a viable deexcitation channel. (orig.).

  17. Studies on Neutron, Photon (Bremsstrahlung and Proton Induced Fission of Actinides and Pre-Actinides

    Directory of Open Access Journals (Sweden)

    H. Naik

    2015-08-01

    Full Text Available We present the yields of various fission products determined in the reactor neutron, 3.7-18.1 MeV quasi-mono energetic neutron, 8-80 MeV bremsstrahlung and 20-45 MeV proton induced fission of 232Th and 238U using radiochemical and off-line beta or gamma ray counting. The yields of the fission products in the bremsstrahlung induced fission natPb and 209Bi with 50- 70 MeV and 2.5 GeV based on off-line gamma ray spectrometric technique were also presented. From the yields of fission products, the mass chains yields were obtained using charge distribution correction. From the mass yield distribution, the peak-to-valley (P/V ratio was obtained. The role of excitation energy on the peak-to-valley ratio and fine structure such as effect of shell closure proximity and even-odd effect of mass yield distribution were examined. The higher yields of the fission products around A=133-134, 138-140 and 143-144 and their complementary products explained from the nuclear structure effect and role of standard I and II mode of asymmetric fission. In the neutron, photon (bremsstrahlung and proton induced fission, the asymmetric mass distribution for actinides (Th, U and symmetric distribution for pre-actinides (Pb, Bi were explained from different type of potential fission barrier

  18. Neutron induced fission of 234U

    Directory of Open Access Journals (Sweden)

    Pomp S.

    2012-02-01

    Full Text Available The fission fragment properties of 234U(n,f were investigated as a function of incident neutron energy from 0.2 MeV up to 5 MeV. The fission fragment mass, angular distribution and kinetic energy were measured with a double Frisch-grid ionization chamber using both analogue and digital data acquisition techniques. The reaction 234U(n,f is relevant, since it involves the same compound nucleus as formed after neutron evaporation from highly excited 236U*, the so-called second-chance fission of 235U. Experimental data on fission fragment properties like fission fragment mass and total kinetic energy (TKE as a function of incident neutron energy are rather scarce for this reaction. For the theoretical modelling of the reaction cross sections for Uranium isotopes this information is a crucial input parameter. In addition, 234U is also an important isotope in the Thorium-based fuel cycle. The strong anisotropy of the angular distribution around the vibrational resonance at En = 0.77 MeV could be confirmed using the full angular range. Fluctuations in the fragment TKE have been observed in the threshold region around the strong vibrational resonance at En = 0.77 MeV. The present results are in contradiction with corresponding literature values. Changes in the mass yield around the vibrational resonance and at En = 5 MeV relative to En = 2 MeV show a different signature. The drop in mean TKE around 2.5 to 3 MeV points to pair breaking as also observed in 235,238U(n,f. The measured two-dimensional mass yield and TKE distribution have been described in terms of fission modes. The yield of the standard 1 (S1 mode shows fluctuations in the threshold of the fission cross section due to the influence of the resonance and levels off at about 20% yield for higher incident neutron energies. The S2 mode shows the respective opposite behaviour. The mean TKE of both modes decreases with En. The decrease in mean TKE overrules the increase in S1 yield, so the mean

  19. Fission in a Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Younes, W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-26

    A three-year theory project was undertaken to study the fission process in extreme astrophysical environments, such as the crust of neutron stars. In the first part of the project, the effect of electron screening on the fission process was explored using a microscopic approach. For the first time, these calculations were carried out to the breaking point of the nucleus. In the second part of the project, the population of the fissioning nucleus was calculated within the same microscopic framework. These types of calculations are extremely computer-intensive and have seldom been applied to heavy deformed nuclei, such as fissioning actinides. The results, tools and methodologies produced in this work will be of interest to both the basic-science and nuclear-data communities.

  20. Characterization of the scission point from fission-fragment velocities

    CERN Document Server

    Caamaño, M; Delaune, O; Schmidt, K -H; Schmitt, C; Audouin, L; Bacri, C -O; Benlliure, J; Casarejos, E; Derkx, X; Fernández-Domínguez, B; Gaudefroy, L; Golabek, C; Jurado, B; Lemasson, A; Ramos, D; Rodríguez-Tajes, C; Roger, T; Shrivastava, A

    2015-01-01

    The isotopic-yield distributions and kinematic properties of fragments produced in transfer-induced fission of 240Pu and fusion-induced fission of 250Cf, with 9 MeV and 45 MeV of excitation energy respectively, were measured in inverse kinematics with the spectrometer VAMOS. The kinematic properties of identified fission fragments allow to derive properties of the scission configuration such as the distance between fragments, the total kinetic energy, the neutron multiplicity, the total excitation energy, and, for the first time, the proton- and neutron-number sharing during the emergence of the fragments. These properties of the scission point are studied as functions of the fragment atomic number. The correlation between these observables, gathered in one single experiment and for two different fissioning systems at different excitation energies, give valuable information for the understanding and modeling of the fission process.

  1. Fission fragment mass distributions via prompt -ray spectroscopy

    Indian Academy of Sciences (India)

    L S Danu; D C Biswas; B K Nayak; R K Choudhury

    2015-09-01

    The distribution of fragment masses formed in nuclear fission is one of the most striking features of the process. Such measurements are very important to understand the shape evolution of the nucleus from ground state to scission through intermediate saddle points. The fission fragment mass distributions, generally obtained via conventional methods (i.e., by measuring the energy and/or the velocity of the correlated fission fragments) are limited to a mass resolution of 4–5 units. On the other hand, by employing the -ray spectroscopy, it is possible to estimate the yield of individual fission fragments. In this work, determination of the fission fragment mass distribution by employing prompt -ray spectroscopy is described along with the recent results on 238U(18O, f) and 238U(32S, f) systems.

  2. Applications of Event-by-Event Fission Modeling with FREYA

    Directory of Open Access Journals (Sweden)

    Vogt R.

    2012-02-01

    Full Text Available The recently developed code FREYA (Fission Reaction Event Yield Algorithm generates large samples of complete fission events, consisting of two receding product nuclei as well as a number of neutrons and photons, all with complete kinematic information. Thus it is possible to calculate arbitrary correlation observables whose behavior may provide unique insight into the fission process. We first discuss the present status of FREYA, which has now been extended to include spontaneous fission. Concentrating on 239Pu(nth,f, 240Pu(sf and 252Cf(sf, we discuss the neutron multiplicity correlations, the dependence of the neutron energy spectrum on the neutron multiplicity, and the relationship between the fragment kinetic energy and the number of neutrons and their energies. We also suggest novel fission observables that could be measured with modern detectors.

  3. Microscopic modeling of mass and charge distributions in the spontaneous fission of 240Pu

    Science.gov (United States)

    Sadhukhan, Jhilam; Nazarewicz, Witold; Schunck, Nicolas

    2016-01-01

    We propose a methodology to calculate microscopically the mass and charge distributions of spontaneous fission yields. We combine the multidimensional minimization of collective action for fission with stochastic Langevin dynamics to track the relevant fission paths from the ground-state configuration up to scission. The nuclear potential energy and collective inertia governing the tunneling motion are obtained with nuclear density functional theory in the collective space of shape deformations and pairing. We obtain a quantitative agreement with experimental data and find that both the charge and mass distributions in the spontaneous fission of 240Pu are sensitive both to the dissipation in collective motion and to adiabatic fission characteristics.

  4. Thermal fission rates with temperature dependent fission barriers

    Science.gov (United States)

    Zhu, Yi; Pei, J. C.

    2016-08-01

    Background: The fission processes of thermal excited nuclei are conventionally studied by statistical models which rely on inputs of phenomenological level densities and potential barriers. Therefore the microscopic descriptions of spontaneous fission and induced fission are very desirable for a unified understanding of various fission processes. Purpose: We propose to study the fission rates, at both low and high temperatures, with microscopically calculated temperature-dependent fission barriers and collective mass parameters. Methods: The fission barriers are calculated by the finite-temperature Skyrme-Hartree-Fock+BCS method. The mass parameters are calculated by the temperature-dependent cranking approximation. The thermal fission rates can be obtained by the imaginary free energy approach at all temperatures, in which fission barriers are naturally temperature dependent. The fission at low temperatures can be described mainly as a barrier-tunneling process. While the fission at high temperatures has to incorporate the reflection above barriers. Results: Our results of spontaneous fission rates reasonably agree with other studies and experiments. The temperature dependencies of fission barrier heights and curvatures have been discussed. The temperature dependent behaviors of mass parameters have also been discussed. The thermal fission rates from low to high temperatures with a smooth connection have been given by different approaches. Conclusions: Since the temperature dependencies of fission barrier heights and curvatures, and the mass parameters can vary rapidly for different nuclei, the microscopic descriptions of thermal fission rates are very valuable. Our studies without free parameters provide a consistent picture to study various fissions such as that in fast-neutron reactors, astrophysical environments, and fusion reactions for superheavy nuclei.

  5. Absolute neutrino mass update

    CERN Document Server

    Päs, H; P\\"as, Heinrich; Weiler, Thomas J.

    2002-01-01

    The determination of absolute neutrino masses is crucial for the understanding of theories underlying the standard model, such as SUSY. We review the experimental prospects to determine absolute neutrino masses and the correlations among approaches, using the Delta m^2's inferred from neutrino oscillation experiments and assuming a three neutrino Universe.

  6. ABSOLUTE NEUTRINO MASSES

    DEFF Research Database (Denmark)

    Schechter, J.; Shahid, M. N.

    2012-01-01

    We discuss the possibility of using experiments timing the propagation of neutrino beams over large distances to help determine the absolute masses of the three neutrinos.......We discuss the possibility of using experiments timing the propagation of neutrino beams over large distances to help determine the absolute masses of the three neutrinos....

  7. Fission waves can oscillate

    CERN Document Server

    Osborne, Andrew G

    2016-01-01

    Under the right conditions, self sustaining fission waves can form in fertile nuclear materials. These waves result from the transport and absorption of neutrons and the resulting production of fissile isotopes. When these fission, additional neutrons are produced and the chain reaction propagates until it is poisoned by the buildup of fission products. It is typically assumed that fission waves are soliton-like and self stabilizing. However, we show that in uranium, coupling of the neutron field to the 239U->239Np->239Pu decay chain can lead to a Hopf bifurcation. The fission reaction then ramps up and down, along with the wave velocity. The critical driver for the instability is a delay, caused by the half-life of 239U, between the time evolution of the neutron field and the production of 239Pu. This allows the 239Pu to accumulate and burn out in a self limiting oscillation that is characteristic of a Hopf bifurcation. Time dependent results are obtained using a numerical implementation of a reduced order r...

  8. Binary scission configurations in fission of light actinides

    Energy Technology Data Exchange (ETDEWEB)

    Ohtsuki, Tsutomu [Tohoku Univ., Sendai (Japan). Lab. of Nuclear Science; Nagame, Y.; Nishinaka, I.; Tsukada, K.; Ikezoe, H.; Tanikawa, M.; Zhao, Y.L.; Sueki, K.; Nakahara, H.

    1997-07-01

    Mass and kinetic energy distributions of fission fragments have been accurately measured by a double velocity time-of-flight technique in the 13 MeV proton-induced fissions of {sup 232}Th and {sup 238}U. A binary structure is observed in total kinetic energy distributions in the fragments with mass number around A=130 for both the fissions, indicating that there are at least two kinds of scission configurations. A correlation between the scission configurations and mass yield distributions reveals that elongated scission configurations are associated with the symmetric mass distribution and compact scission configurations with the asymmetric mass distribution. (author)

  9. A generalized method for characterization of 235U and 239Pu content using short-lived fission product gamma spectroscopy

    Science.gov (United States)

    Knowles, Justin; Skutnik, Steven; Glasgow, David; Kapsimalis, Roger

    2016-10-01

    Rapid nondestructive assay methods for trace fissile material analysis are needed in both nuclear forensics and safeguards communities. To address these needs, research at the Oak Ridge National Laboratory High Flux Isotope Reactor Neutron Activation Analysis facility has developed a generalized nondestructive assay method to characterize materials containing fissile isotopes. This method relies on gamma-ray emissions from short-lived fission products and makes use of differences in fission product yields to identify fissile compositions of trace material samples. Although prior work has explored the use of short-lived fission product gamma-ray measurements, the proposed method is the first to provide a complete characterization of isotopic identification, mass ratios, and absolute mass determination. Successful single fissile isotope mass recoveries of less than 6% recovery bias have been conducted on standards of 235U and 239Pu as low as 12 ng in less than 10 minutes. Additionally, mixtures of fissile isotope standards containing 235U and 239Pu have been characterized as low as 198 ng of fissile mass with less than 7% recovery bias. The generalizability of this method is illustrated by evaluating different fissile isotopes, mixtures of fissile isotopes, and two different irradiation positions in the reactor. It is anticipated that this method will be expanded to characterize additional fissile nuclides, utilize various irradiation facilities, and account for increasingly complex sample matrices.

  10. Fission modelling with FIFRELIN

    Energy Technology Data Exchange (ETDEWEB)

    Litaize, Olivier; Serot, Olivier; Berge, Leonie [CEA, DEN, DER, SPRC, Saint Paul Lez Durance (France)

    2015-12-15

    The nuclear fission process gives rise to the formation of fission fragments and emission of particles (n,γ, e{sup -}). The particle emission from fragments can be prompt and delayed. We present here the methods used in the FIFRELIN code, which simulates the prompt component of the de-excitation process. The methods are based on phenomenological models associated with macroscopic and/or microscopic ingredients. Input data can be provided by experiment as well as by theory. The fission fragment de-excitation can be performed within Weisskopf (uncoupled neutron and gamma emission) or a Hauser-Feshbach (coupled neutron/gamma emission) statistical theory. We usually consider five free parameters that cannot be provided by theory or experiments in order to describe the initial distributions required by the code. In a first step this set of parameters is chosen to reproduce a very limited set of target observables. In a second step we can increase the statistics to predict all other fission observables such as prompt neutron, gamma and conversion electron spectra but also their distributions as a function of any kind of parameters such as, for instance, the neutron, gamma and electron number distributions, the average prompt neutron multiplicity as a function of fission fragment mass, charge or kinetic energy, and so on. Several results related to different fissioning systems are presented in this work. The goal in the next decade will be i) to replace some macroscopic ingredients or phenomenological models by microscopic calculations when available and reliable, ii) to be a support for experimentalists in the design of detection systems or in the prediction of necessary beam time or count rates with associated statistics when measuring fragments and emitted particle in coincidence iii) extend the model to be able to run a calculation when no experimental input data are available, iv) account for multiple chance fission and gamma emission before fission, v) account for

  11. Fission modelling with FIFRELIN

    Science.gov (United States)

    Litaize, Olivier; Serot, Olivier; Berge, Léonie

    2015-12-01

    The nuclear fission process gives rise to the formation of fission fragments and emission of particles (n,γ , e-) . The particle emission from fragments can be prompt and delayed. We present here the methods used in the FIFRELIN code, which simulates the prompt component of the de-excitation process. The methods are based on phenomenological models associated with macroscopic and/or microscopic ingredients. Input data can be provided by experiment as well as by theory. The fission fragment de-excitation can be performed within Weisskopf (uncoupled neutron and gamma emission) or a Hauser-Feshbach (coupled neutron/gamma emission) statistical theory. We usually consider five free parameters that cannot be provided by theory or experiments in order to describe the initial distributions required by the code. In a first step this set of parameters is chosen to reproduce a very limited set of target observables. In a second step we can increase the statistics to predict all other fission observables such as prompt neutron, gamma and conversion electron spectra but also their distributions as a function of any kind of parameters such as, for instance, the neutron, gamma and electron number distributions, the average prompt neutron multiplicity as a function of fission fragment mass, charge or kinetic energy, and so on. Several results related to different fissioning systems are presented in this work. The goal in the next decade will be i) to replace some macroscopic ingredients or phenomenological models by microscopic calculations when available and reliable, ii) to be a support for experimentalists in the design of detection systems or in the prediction of necessary beam time or count rates with associated statistics when measuring fragments and emitted particle in coincidence iii) extend the model to be able to run a calculation when no experimental input data are available, iv) account for multiple chance fission and gamma emission before fission, v) account for the

  12. FREYA-a new Monte Carlo code for improved modeling of fission chains

    Energy Technology Data Exchange (ETDEWEB)

    Hagmann, C A; Randrup, J; Vogt, R L

    2012-06-12

    A new simulation capability for modeling of individual fission events and chains and the transport of fission products in materials is presented. FREYA ( Fission Yield Event Yield Algorithm ) is a Monte Carlo code for generating fission events providing correlated kinematic information for prompt neutrons, gammas, and fragments. As a standalone code, FREYA calculates quantities such as multiplicity-energy, angular, and gamma-neutron energy sharing correlations. To study materials with multiplication, shielding effects, and detectors, we have integrated FREYA into the general purpose Monte Carlo code MCNP. This new tool will allow more accurate modeling of detector responses including correlations and the development of SNM detectors with increased sensitivity.

  13. Dependence of Fission-Fragment Properties On Excitation Energy For Neutron-Rich Actinides

    Directory of Open Access Journals (Sweden)

    Ramos D.

    2016-01-01

    Isotopic fission yields of 250Cf, 244Cm, 240Pu, 239Np and 238U are presented in this work. With this information, the average number of neutrons as a function of the atomic number of the fragments is calculated, which reflects the impact of nuclear structure around Z=50, N=80 on the production of fission fragments. The characteristics of the Super Long, Standard I, Standard II, and Standard III fission channels were extracted from fits of the fragment yields for different ranges of excitation energy. The position and contribution of the fission channels as function of excitation energy are presented.

  14. Discoveries of isotopes by fission

    Indian Academy of Sciences (India)

    M Thoennessen

    2015-09-01

    Of the about 3000 isotopes presently known, about 20% have been discovered in fission. The history of fission as it relates to the discovery of isotopes as well as the various reaction mechanisms leading to isotope discoveries involving fission are presented.

  15. Fission dynamics of hot nuclei

    Indian Academy of Sciences (India)

    Santanu Pal; Jhilam Sadhukhan

    2014-04-01

    Experimental evidence accumulated during the last two decades indicates that the fission of excited heavy nuclei involves a dissipative dynamical process. We shall briefly review the relevant dynamical model, namely the Langevin equations for fission. Statistical model predictions using the Kramers’ fission width will also be discussed.

  16. NGS Absolute Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NGS Absolute Gravity data (78 stations) was received in July 1993. Principal gravity parameters include Gravity Value, Uncertainty, and Vertical Gradient. The...

  17. Decoherence at absolute zero

    OpenAIRE

    Sinha, Supurna

    2005-01-01

    We present an analytical study of the loss of quantum coherence at absolute zero. Our model consists of a harmonic oscillator coupled to an environment of harmonic oscillators at absolute zero. We find that for an Ohmic bath, the offdiagonal elements of the density matrix in the position representation decay as a power law in time at late times. This slow loss of coherence in the quantum domain is qualitatively different from the exponential decay observed in studies of high temperature envir...

  18. Absolute quantitation of protein posttranslational modification isoform.

    Science.gov (United States)

    Yang, Zhu; Li, Ning

    2015-01-01

    Mass spectrometry has been widely applied in characterization and quantification of proteins from complex biological samples. Because the numbers of absolute amounts of proteins are needed in construction of mathematical models for molecular systems of various biological phenotypes and phenomena, a number of quantitative proteomic methods have been adopted to measure absolute quantities of proteins using mass spectrometry. The liquid chromatography-tandem mass spectrometry (LC-MS/MS) coupled with internal peptide standards, i.e., the stable isotope-coded peptide dilution series, which was originated from the field of analytical chemistry, becomes a widely applied method in absolute quantitative proteomics research. This approach provides more and more absolute protein quantitation results of high confidence. As quantitative study of posttranslational modification (PTM) that modulates the biological activity of proteins is crucial for biological science and each isoform may contribute a unique biological function, degradation, and/or subcellular location, the absolute quantitation of protein PTM isoforms has become more relevant to its biological significance. In order to obtain the absolute cellular amount of a PTM isoform of a protein accurately, impacts of protein fractionation, protein enrichment, and proteolytic digestion yield should be taken into consideration and those effects before differentially stable isotope-coded PTM peptide standards are spiked into sample peptides have to be corrected. Assisted with stable isotope-labeled peptide standards, the absolute quantitation of isoforms of posttranslationally modified protein (AQUIP) method takes all these factors into account and determines the absolute amount of a protein PTM isoform from the absolute amount of the protein of interest and the PTM occupancy at the site of the protein. The absolute amount of the protein of interest is inferred by quantifying both the absolute amounts of a few PTM

  19. Absolute biological needs.

    Science.gov (United States)

    McLeod, Stephen

    2014-07-01

    Absolute needs (as against instrumental needs) are independent of the ends, goals and purposes of personal agents. Against the view that the only needs are instrumental needs, David Wiggins and Garrett Thomson have defended absolute needs on the grounds that the verb 'need' has instrumental and absolute senses. While remaining neutral about it, this article does not adopt that approach. Instead, it suggests that there are absolute biological needs. The absolute nature of these needs is defended by appeal to: their objectivity (as against mind-dependence); the universality of the phenomenon of needing across the plant and animal kingdoms; the impossibility that biological needs depend wholly upon the exercise of the abilities characteristic of personal agency; the contention that the possession of biological needs is prior to the possession of the abilities characteristic of personal agency. Finally, three philosophical usages of 'normative' are distinguished. On two of these, to describe a phenomenon or claim as 'normative' is to describe it as value-dependent. A description of a phenomenon or claim as 'normative' in the third sense does not entail such value-dependency, though it leaves open the possibility that value depends upon the phenomenon or upon the truth of the claim. It is argued that while survival needs (or claims about them) may well be normative in this third sense, they are normative in neither of the first two. Thus, the idea of absolute need is not inherently normative in either of the first two senses.

  20. Development of fission Mo-99 production technology

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Ho; Choung, W. M.; Lee, K. I. and others

    2001-05-01

    This R and D project is planed to supply domestic demands of Mo-99 through fission route, and consequently this project will be expected to rise up utilization of HANARO and KAERI's capability for marketing extension into domestic and oversea radiopharmaceutical market. HEU and LEU target types are decided and designed for fission Mo-99 production in domestic. Experimental study of target fabrication technology was performed and developed processing equipments. And conceptual design of target loading/unloading in/from HANARO device are performed. Tracer test of Mo-99 separation and purification process was performed, test results reach to Mo-99 recovery yield above 80% and decontamination factor above 1600. Combined Mo-99 separation and purification process was decided for hot test scheduled from next year, and performance test was performed. Conceptual design for modification of existing hot cell for fission Mo-99 production facility was performed and will be used for detail design. Assumption for the comparison of LEU and HEU target in fission Mo-99 production process were suggested and compared of merits and demerits in view of fabrication technology and economy feasibility.

  1. Fission modes of mercury isotopes

    CERN Document Server

    Warda, M; Nazarewicz, W

    2012-01-01

    Recent experiments on beta-delayed fission in the mercury-lead region and the discovery of asymmetric fission in $^{180}$Hg [1] have stimulated renewed interest in the mechanism of fission in heavy nuclei. Here we study fission modes and fusion valleys in $^{180}$Hg and $^{198}$Hg using the self-consistent nuclear density functional theory employing Skyrme and Gogny energy density functionals. We show that the observed transition from asymmetric fission in $^{180}$Hg towards more symmetric distribution of fission fragments in $^{198}$Hg can be explained in terms of competing fission modes of different geometries that are governed by shell effects in pre-scission configurations. The density distributions at scission configurations are studied and related to the experimentally observed mass splits.

  2. Dynamical features of nuclear fission

    Indian Academy of Sciences (India)

    Santanu Pal

    2015-08-01

    It is now established that the transition-state theory of nuclear fission due to Bohr and Wheeler underestimates several observables in heavy-ion-induced fusion–fission reactions. Dissipative dynamical models employing either the Langevin equation or equivalently the Fokker–Planck equation have been developed for fission of heavy nuclei at high excitations (T ∼1 MeV or higher). Here, we first present the physical picture underlying the dissipative fission dynamics. We mainly concentrate upon the Kramers’ prescription for including dissipation in fission dynamics. We discuss, in some detail, the results of a statistical model analysis of the pre-scission neutron multiplicity data from the reactions 19F+194,196,198Pt using Kramers’ fission width. We also discuss the multi-dimensional Langevin equation in the context of kinetic energy and mass distribution of the fission fragments.

  3. Monte Carlo Based Toy Model for Fission Process

    CERN Document Server

    Kurniadi, R; Viridi, S

    2014-01-01

    Fission yield has been calculated notoriously by two calculations approach, macroscopic approach and microscopic approach. This work will proposes another calculation approach which the nucleus is treated as a toy model. The toy model of fission yield is a preliminary method that use random number as a backbone of the calculation. Because of nucleus as a toy model hence the fission process does not represent real fission process in nature completely. Fission event is modeled by one random number. The number is assumed as width of distribution probability of nucleon position in compound nuclei when fission process is started. The toy model is formed by Gaussian distribution of random number that randomizes distance like between particle and central point. The scission process is started by smashing compound nucleus central point into two parts that are left central and right central points. These three points have different Gaussian distribution parameters such as mean ({\\mu}CN, {\\mu}L, {\\mu}R), and standard d...

  4. Accurate fission data for nuclear safety

    CERN Document Server

    Solders, A; Jokinen, A; Kolhinen, V S; Lantz, M; Mattera, A; Penttila, H; Pomp, S; Rakopoulos, V; Rinta-Antila, S

    2013-01-01

    The Accurate fission data for nuclear safety (AlFONS) project aims at high precision measurements of fission yields, using the renewed IGISOL mass separator facility in combination with a new high current light ion cyclotron at the University of Jyvaskyla. The 30 MeV proton beam will be used to create fast and thermal neutron spectra for the study of neutron induced fission yields. Thanks to a series of mass separating elements, culminating with the JYFLTRAP Penning trap, it is possible to achieve a mass resolving power in the order of a few hundred thousands. In this paper we present the experimental setup and the design of a neutron converter target for IGISOL. The goal is to have a flexible design. For studies of exotic nuclei far from stability a high neutron flux (10^12 neutrons/s) at energies 1 - 30 MeV is desired while for reactor applications neutron spectra that resembles those of thermal and fast nuclear reactors are preferred. It is also desirable to be able to produce (semi-)monoenergetic neutrons...

  5. Fission decay properties of ultra neutron-rich uranium isotopes

    Indian Academy of Sciences (India)

    L Satpathy; S K Patra; R K Choudhury

    2008-01-01

    The fission decay of highly neutron-rich uranium isotopes is investigated which shows interesting new features in the barrier properties and neutron emission characteristics in the fission process. 233U and 235U are the nuclei in the actinide region in the beta stability valley which are thermally fissile and have been mainly used in reactors for power generation. The possibility of occurrence of thermally fissile members in the chain of neutron-rich uranium isotopes is examined here. The neutron number = 162 or 164 has been predicted to be magic in numerous theoretical studies carried out over the years. The series of uranium isotopes around it with = 154-172 are identified to be thermally fissile on the basis of the fission barrier and neutron separation energy systematics; a manifestation of the close shell nature of = 162 (or 164). We consider here the thermal neutron fission of a typical representative 249U nucleus in the highly neutron-rich region. Semiempirical study of fission barrier height and width shows that 250U nucleus is stable against spontaneous fission due to increase in barrier width arising out of excess neutrons. On the basis of the calculation of the probability of fragment mass yields and the microscopic study in relativistic mean field theory, this nucleus is shown to undergo exotic decay mode of thermal neutron fission (multi-fragmentation fission) whereby a number of prompt scission neutrons are expected to be simultaneously released along with the two heavy fission fragments. Such properties will have important implications in stellar evolution involving -process nucleosynthesis.

  6. The fission time scale measured with an atomic clock

    NARCIS (Netherlands)

    Kravchuk, VL; Wilschut, HW; Hunyadi, M; Kopecky, S; Lohner, H; Rogachevskiy, A; Siemssen, RH; Krasznahorkay, A; Hamilton, JH; Ramayya, AV; Carter, HK

    2003-01-01

    We present a new direct method of measuring the fission absolute time scale using an atomic clock based on the lifetime of a vacancy in the atomic K-shell. We studied the reaction Ne-20 + Th-232 -> O-16 + U-236* at 30 MeV/u. The excitation energy of about 115 MeV in such a reaction is in the range w

  7. New fission fragment distributions and r-process origin of the rare-earth elements

    CERN Document Server

    Goriely, S; Lemaitre, J -F; Panebianco, S; Dubray, N; Hilaire, S; Bauswein, A; Janka, H -Thomas

    2013-01-01

    Neutron star (NS) merger ejecta offer a viable site for the production of heavy r-process elements with nuclear mass numbers A > 140. The crucial role of fission recycling is responsible for the robustness of this site against many astrophysical uncertainties, but calculations sensitively depend on nuclear physics. In particular the fission fragment yields determine the creation of 110 140.

  8. Separation of proton-induced fission isotopes from dominant evaporation residues by adapted target stacking

    NARCIS (Netherlands)

    Beijers, JPM; Duijvestijn, MC; Fraiquin, H; van Klinken, J; Ostendorf, RW

    1999-01-01

    To study low yields of fission products from proton-induced reactions we introduce two activation methods based on target stacking with suppression of otherwise dominating evaporation and spallation products; one method using thin Mylar foils which only transmit the fission products, the other one u

  9. Superasymmetric fission at intermediate energy and production of neutron-rich nuclei with A

    NARCIS (Netherlands)

    Huhta, M; Dendooven, P; Honkanen, A; Jokinen, A; Lhersonneau, G; Oinonen, M; Penttila, H; Perajarvi, K; Rubchenya, VA; Aysto, J

    1997-01-01

    The yields of neutron-rich Ni, Cu, Zn, Ga and Ge-isotopes were measured in 25 MeV proton induced fission of U-238 using the ion guide-based isotope separator technique. The results indicate enhancement for superasymmetric mass division at intermediate excitation energy of the fissioning nucleus and

  10. General Description of Fission Observables: GEF Model Code

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, K.-H. [CENBG, CNRS/IN2 P3, Chemin du Solarium, B.P. 120, F-33175 Gradignan (France); Jurado, B., E-mail: jurado@cenbg.in2p3.fr [CENBG, CNRS/IN2 P3, Chemin du Solarium, B.P. 120, F-33175 Gradignan (France); Amouroux, C. [CEA, DSM-Saclay (France); Schmitt, C., E-mail: schmitt@ganil.fr [GANIL, Bd. Henri Becquerel, B.P. 55027, F-14076 Caen Cedex 05 (France)

    2016-01-15

    The GEF (“GEneral description of Fission observables”) model code is documented. It describes the observables for spontaneous fission, neutron-induced fission and, more generally, for fission of a compound nucleus from any other entrance channel, with given excitation energy and angular momentum. The GEF model is applicable for a wide range of isotopes from Z = 80 to Z = 112 and beyond, up to excitation energies of about 100 MeV. The results of the GEF model are compared with fission barriers, fission probabilities, fission-fragment mass- and nuclide distributions, isomeric ratios, total kinetic energies, and prompt-neutron and prompt-gamma yields and energy spectra from neutron-induced and spontaneous fission. Derived properties of delayed neutrons and decay heat are also considered. The GEF model is based on a general approach to nuclear fission that explains a great part of the complex appearance of fission observables on the basis of fundamental laws of physics and general properties of microscopic systems and mathematical objects. The topographic theorem is used to estimate the fission-barrier heights from theoretical macroscopic saddle-point and ground-state masses and experimental ground-state masses. Motivated by the theoretically predicted early localisation of nucleonic wave functions in a necked-in shape, the properties of the relevant fragment shells are extracted. These are used to determine the depths and the widths of the fission valleys corresponding to the different fission channels and to describe the fission-fragment distributions and deformations at scission by a statistical approach. A modified composite nuclear-level-density formula is proposed. It respects some features in the superfluid regime that are in accordance with new experimental findings and with theoretical expectations. These are a constant-temperature behaviour that is consistent with a considerably increased heat capacity and an increased pairing condensation energy that is

  11. Microscopic modeling of mass and charge distributions in the spontaneous fission of 240Pu

    CERN Document Server

    Sadhukhan, Jhilam; Schunck, Nicolas

    2016-01-01

    In this letter, we outline a methodology to calculate microscopically mass and charge distributions of spontaneous fission yields. We combine the multi-dimensional minimization of collective action for fission with stochastic Langevin dynamics to track the relevant fission paths from the ground-state configuration up to scission. The nuclear potential energy and collective inertia governing the tunneling motion are obtained with nuclear density functional theory in the collective space of shape deformations and pairing. We obtain a quantitative agreement with experimental data and find that both the charge and mass distributions in the spontaneous fission of 240Pu are sensitive both to the dissipation in collective motion and to adiabatic characteristics.

  12. Fission approach to cluster radioactivity

    Indian Academy of Sciences (India)

    D N Poenaru; R A Gherghescu

    2015-09-01

    Fission theory is used to explain decay. Also, the analytical superasymmetric fission (ASAF) model is successfully employed to make a systematic search and to predict, with other models, cluster radioactivity. The macroscopic–microscopic method is illustrated for the superheavy nucleus 286Fl. Then a few results of the theoretical approach of decay (ASAF, UNIV and semFIS models), cluster decay (ASAF and UNIV) and spontaneous fission dynamics are described with Werner–Wheeler and cranking inertia. UNIV denotes universal curve and semFIS the fission-based semiempirical formula.

  13. Fission and Properties of Neutron-Rich Nuclei - Proceedings of the Second International Conference

    Science.gov (United States)

    Hamilton, J. H.; Phillips, W. R.; Carter, H. K.

    The Table of Contents for the book is as follows: * Preface * Structure of Elementary Matter: Cold Valleys and Their Importance in Fission, Fusion and for Superheavy Nuclei * Tunnelling Phenomena in Nuclear Physics * Heavy Nuclei Studies Using Transfer Reactions * Isomeric Properties of Nuclei Near 78Ni * Investigation of Light Actinide Nuclei at Yale and Beyond * U-Projectile Fission at Relativistic Energies * Cluster Description of Cold Fission Modes in 252Cf * Neutron-pair Transfer Theory for Pear-shaped Ba Fission Fragments * New RMFA Parameters of Normal and Exotic Nuclei * Study of Fission Fragments from 12C+238U Reactions: Prompt and Delayed Spectroscopy * γ-Ray Angular Correlations in 252Cf and 248Cm Fission Fragments * Fragment Angular Momentum and Descent Dynamics in 252Cf Spontaneous Fission * The Experimental Investigation of Neutron-Rich Nuclei * High-Spin Structure of Some Odd-Z Nuclei with A ≈ 100 From Heavy-Ion Induced Fission * Coexistence of Symmetric and Asymmetric Nuclear Shapes and 10Be Ternary Fission * Octupole Effects in the Lanthanides * High Spin Structure of the 113-1l6Cd Isotopes Produced by Heavy-Ion Induced Fission Reaction * Temperature-Dependent Fission Barriers and Mass Distributions for 239U * Strength Distributions for Gamow Teller Transitions in Very Weakly Bound Systems * High Spin Fragmentation Spectroscopy * Search for a Four-Neutron Transfer From 8He to 4He * Microsecond Isomers in Fission Fragments in the Vicinity of the Doubly Magic 132Sn * Recent On-Line NMR/on Nuclear Magnetic Dipole Moments Near 132Sn: Meson Exchange Current Effects at the Shell Closure and Shell Model Treatment of Variation with Proton and Neutron Number * High-spin K-Isomers Beyond the Fusion Limit * High Energy Neutron Induced Fission: Charge Yield Distributions and Search and Spectroscopy of New Isomers * Hartree-Fock Mean-Field Models Using Separable Interactions * Variation of Fission Characteristics Over the Nuclear Chart * Investigation of

  14. Proton-induced fission at 190 MeV of W-nat, Au-197, Pb-nat, Pb-208, and Th-232

    NARCIS (Netherlands)

    Duijvestijn, MC; Koning, AJ; Beijers, JPM; Gastal, M; van Klinken, J; Ostendorf, RW

    1999-01-01

    Proton-induced fission at 190 MeV of W-nat, Au-197, Pb-nat, Pb-208, and Th-232 is studied by means of an innovative method based on activation analysis. The fission-product mass distribution is reconstructed from the fission-product yields, which are obtained from off-line observed gamma-ray spectra

  15. Precise measurement of the absolute fluorescence yield of nitrogen in air. Consequences on the detection of ultra-high energy cosmic rays; Mesure precise du rendement absolu de la fluorescence de l'azote dans l'air. Consequences sur la detection des rayons cosmiques d'ultra-haute energie

    Energy Technology Data Exchange (ETDEWEB)

    Lefeuvre, G

    2006-07-15

    The study of the energy spectrum of ultra-high energy cosmic rays (E > 10{sup 20} eV) requires to determine the energy with much more precision than what is currently achieved. The shower of particles created in the atmosphere can be detected either by sampling particle on the ground, or by detecting the fluorescence induced by the excitation of nitrogen by shower electrons. At present, the measurement of the fluorescence is the simplest and the most reliable method, since it does not call upon hadronic physics laws at extreme energies, a field still inaccessible to accelerators. The precise knowledge of the conversion factor between deposited energy and the number of fluorescence photons produced (the yield) is thus essential. Up to now, it has been determined with an accuracy of 15 % only. This main goal of this work is to measure this yield to better than 5 per cent. To do this, 1 MeV electrons from a radioactive source excite nitrogen of the air. The accuracy has been reached thanks to the implementation of a new method for the absolute calibration of the photomultipliers detecting the photons, to better than 2 per cent. The fluorescence yield, measured and normalized to 0.85 MeV, 760 mmHg and 15 Celsius degrees, is (4.23 {+-} 0.20) photons per meter, or (20.46 {+-} 0.98) photons per deposited MeV. In addition, and for the first time, the absolute fluorescence spectrum of nitrogen excited by a source has been measured with an optical grating spectrometer. (author)

  16. Absolute Neutrino Mass Determination

    CERN Document Server

    Päs, H

    2001-01-01

    We discuss four approaches to the determination of absolute neutrino mass. These are the measurement of the zero-neutrino double beta decay rate, of the tritium decay end-point spectrum, of the cosmic ray spectrum above the GZK cutoff, and the cosmological measurement of the power spectrum governing the CMB and large scale structure. The first two approaches are sensitive to the mass eigenstates coupling to the electron neutrino, whereas the latter two are sensitive to the heavy component of the cosmic neutrino background. All mass eigenstates are related by the $\\Delta m^2$'s inferred from neutrino oscillation data. Consequently, the potential for absolute mass determination of each of the four approaches is correlated with the other three, in ways that we point out.

  17. Energy from nuclear fission(*

    Directory of Open Access Journals (Sweden)

    Ripani M.

    2015-01-01

    Full Text Available The main features of nuclear fission as physical phenomenon will be revisited, emphasizing its peculiarities with respect to other nuclear reactions. Some basic concepts underlying the operation of nuclear reactors and the main types of reactors will be illustrated, including fast reactors, showing the most important differences among them. The nuclear cycle and radioactive-nuclear-waste production will be also discussed, along with the perspectives offered by next generation nuclear assemblies being proposed. The current situation of nuclear power in the world, its role in reducing carbon emission and the available resources will be briefly illustrated.

  18. Fission-fragment and neutron data traced back to the macroscopic and microscopic properties of the fissioning systems

    Directory of Open Access Journals (Sweden)

    Schmidt K.-H.

    2010-10-01

    Full Text Available A new model description of fission-fragment yields and prompt neutron emission is developed. The yields of the different fission channels and their properties are attributed to the number of relevant states above the potential-energy landscape on the fission path at the moment of dynamical freeze-out, which is specific to the collective coordinate considered. The model combines well established ideas with novel concepts. The separability principle of macroscopic properties of the compound nucleus and microscopic properties of the fragments strongly reduces the number of model parameters and assures a high predictive power. The recently discovered energy-sorting mechanism in superfluid nuclear dynamics determines the sharing of intrinsic excitation energy at scission and the enhancement of even-odd structure in asymmetric splits.

  19. Membrane biology: fission behind BARs.

    Science.gov (United States)

    Haucke, Volker

    2012-06-05

    Membrane bending is accomplished in part by amphipathic helix insertion into the bilayer and the assembly of BAR domain scaffolds preparing the membrane for fission. Two recent studies highlight the roles of amphipathic helices and BAR scaffolds in membrane fission and establish the structural basis of membrane bending by the N-BAR protein endophilin.

  20. Absolute airborne gravimetry

    Science.gov (United States)

    Baumann, Henri

    This work consists of a feasibility study of a first stage prototype airborne absolute gravimeter system. In contrast to relative systems, which are using spring gravimeters, the measurements acquired by absolute systems are uncorrelated and the instrument is not suffering from problems like instrumental drift, frequency response of the spring and possible variation of the calibration factor. The major problem we had to resolve were to reduce the influence of the non-gravitational accelerations included in the measurements. We studied two different approaches to resolve it: direct mechanical filtering, and post-processing digital compensation. The first part of the work describes in detail the different mechanical passive filters of vibrations, which were studied and tested in the laboratory and later in a small truck in movement. For these tests as well as for the airborne measurements an absolute gravimeter FG5-L from Micro-G Ltd was used together with an Inertial navigation system Litton-200, a vertical accelerometer EpiSensor, and GPS receivers for positioning. These tests showed that only the use of an optical table gives acceptable results. However, it is unable to compensate for the effects of the accelerations of the drag free chamber. The second part describes the strategy of the data processing. It is based on modeling the perturbing accelerations by means of GPS, EpiSensor and INS data. In the third part the airborne experiment is described in detail, from the mounting in the aircraft and data processing to the different problems encountered during the evaluation of the quality and accuracy of the results. In the part of data processing the different steps conducted from the raw apparent gravity data and the trajectories to the estimation of the true gravity are explained. A comparison between the estimated airborne data and those obtained by ground upward continuation at flight altitude allows to state that airborne absolute gravimetry is feasible and

  1. Fission modes in charged-particle induced fission

    Energy Technology Data Exchange (ETDEWEB)

    Matthies, A.; Kotte, R.; Seidel, W.; Stary, F.; Wohlfarth, D. (Zentralinstitut fuer Kernforschung, Rossendorf bei Dresden (German Democratic Republic))

    1990-12-01

    The population of the three fission modes predicted by Brosa's multi-channel fission model for the uranium region was studied in different fissioning systems. They were produced bombarding {sup 232}Th and {sup 238}U targets by light charged particles with energies slightly above the Coulomb barrier. Though the maximum excitation energy of the compound nucleus amounted to about 22 MeV, the influences of various spherical and deformed nuclear shells on the mass and total kinetic energy distributions of fission fragments are still pronounced. The larger variances of the total kinetic energy distributions compared to those of thermal neutron induced fission were explained by temperature dependent fluctuations of the amount and velocity of alteration of the scission point elongation of the fissioning system. From the ratio of these variances the portion of the potential energy dissipated among intrinsic degrees of freedom before scission was deduced for the different fission channels. It was found that the excitation remaining after pre-scission neutron emission is mainly transferred into intrinsic heat and less into pre-scission kinetic energy. (orig.).

  2. Absolutely Indecomposable Modules

    CERN Document Server

    Göbel, Rüdiger

    2007-01-01

    A module is called absolutely indecomposable if it is directly indecomposable in every generic extension of the universe. We want to show the existence of large abelian groups that are absolutely indecomposable. This will follow from a more general result about R-modules over a large class of commutative rings R with endomorphism ring R which remains the same when passing to a generic extension of the universe. It turns out that `large' in this context has the precise meaning, namely being smaller then the first omega-Erdos cardinal defined below. We will first apply result on large rigid trees with a similar property established by Shelah in 1982, and will prove the existence of related ` R_omega-modules' (R-modules with countably many distinguished submodules) and finally pass to R-modules. The passage through R_omega-modules has the great advantage that the proofs become very transparent essentially using a few `linear algebra' arguments accessible also for graduate students. The result gives a new constru...

  3. Observation of fission residues in the 16O + 181Ta system at Elab ≈ 6 MeV/A

    Directory of Open Access Journals (Sweden)

    Singh B. P.

    2011-10-01

    Full Text Available Present paper reports on the production cross-section of 24 fission like events (30 ≤ Z ≤ 60 formed via complete fusion-fission and/or incomplete fusion-fission processes in 16O+181Ta system at energies ≈ 6 MeV/A. Experiments have been performed using the recoil-catcher technique followed by off-line γ-spectroscopy. The measured cross-section of fission-like events is satisfactorily described by a statistical model code. Further, an attempt has been made to study the mass and isotopic yield distributions of fission fragments. The variance of the presently measured isotopic yield distributions has been found to be in agreement with the literature values for some other fissioning systems.

  4. Beta-delayed fission probabilities of transfermium nuclei, involved in the r-process

    Science.gov (United States)

    Panov, I.; Lutostansky, Yu; Thielemann, F.-K.

    2016-01-01

    For the nucleosynthesis of heavy and superheavy nuclei fission becomes very important when the r-process runs in a very high neutron density environment. In part, fission is responsible for the formation of heavy nuclei due to the inclusion of fission products as new seed nuclei (fission cycling). More than that, beta-delayed fission, along with spontaneous fission, is responsible in the late stages of the r-process for the suppression of superheavy element yields. For beta-delayed fission probability calculations a model description of the beta-strength- functions is required. Extended theoretical predictions for astro-physical applications were provided long ago, and new predictions also for superheavy nuclei with uptodate nuclear input are needed. For the further extension of data to heavier transactinides the models of strength- functions should be modified, taking into account more complicated level schemes. In our present calculations the strength-function model is based on the quasi-particle approximation of Finite Fermi Systems Theory. The probabilities of beta-delayed fission and beta-delayed neutron emission are calculated for some transfermium neutron-rich nuclei, and the influence of beta-delayed fission upon superheavy element formation is discussed.

  5. Fission Fragment Mass Distributions and Total Kinetic Energy Release of 235-Uranium and 238-Uranium in Neutron-Induced Fission at Intermediate and Fast Neutron Energies

    Energy Technology Data Exchange (ETDEWEB)

    Duke, Dana Lynn [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-12

    This Ph.D. dissertation describes a measurement of the change in mass distributions and average total kinetic energy (TKE) release with increasing incident neutron energy for fission of 235U and 238U. Although fission was discovered over seventy-five years ago, open questions remain about the physics of the fission process. The energy of the incident neutron, En, changes the division of energy release in the resulting fission fragments, however, the details of energy partitioning remain ambiguous because the nucleus is a many-body quantum system. Creating a full theoretical model is difficult and experimental data to validate existing models are lacking. Additional fission measurements will lead to higher-quality models of the fission process, therefore improving applications such as the development of next-generation nuclear reactors and defense. This work also paves the way for precision experiments such as the Time Projection Chamber (TPC) for fission cross section measurements and the Spectrometer for Ion Determination in Fission (SPIDER) for precision mass yields.

  6. The spectroscopy of fission fragments

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, W.R. [Department of Physics and Astronomy, University of Manchester, Manchester, M13 9PL (United Kingdom); Collaboration: La Direction des Sciences de la Matiere du CEA (FR); Le Fonds National de la Recherche Scientifique de Belgique (BE)

    1998-12-31

    High-resolution measurements on {gamma} rays from fission fragments have provided a rich source of information, unobtainable at the moment in any other way, on the spectroscopy of neutron-rich nuclei. In recent years important data have been obtained on the yrast- and near yrast-structure of neutron-rich fission fragments. We discuss the scope of measurements which can be made on prompt gamma rays from secondary fission fragments, the techniques used in the experiments and some results recently obtained. (author) 24 refs., 8 figs., 1 tab.

  7. Intrinsic energy partition in fission

    Directory of Open Access Journals (Sweden)

    Mirea M.

    2013-03-01

    Full Text Available The intrinsic energy partition between two complementary fission fragments is investigated microscopically. The intrinsic excitation energy of fission fragments is dynamically evaluated in terms of the time-dependent pairing equations. These equations are corroborated with two conditions. One of them fixes the number of particles and the other separates the pairing active spaces associated to the two fragments in the vicinity of the scission configuration. The excitation energy in a wide distribution of fission fragments is calculated for the 234U parent nucleus.

  8. Absolute Gravimetry in Fennoscandia

    DEFF Research Database (Denmark)

    Pettersen, B. R; TImmen, L.; Gitlein, O.

    The Fennoscandian postglacial uplift has been mapped geometrically using precise levelling, tide gauges, and networks of permanent GPS stations. The results identify major uplift rates at sites located around the northern part of the Gulf of Bothnia. The vertical motions decay in all directions...... motions) has its major axis in the direction of southwest to northeast and covers a distance of about 2000 km. Absolute gravimetry was made in Finland and Norway in 1976 with a rise-and fall instrument. A decade later the number of gravity stations was expanded by JILAg-5, in Finland from 1988, in Norway...... from 1991, and in Sweden from 1992. FG5 was introduced in these three countries in 1993 (7 stations) and continued with an extended campaign in 1995 (12 stations). In 2003 a project was initiated by IfE, Hannover to collect observations simultaneously with GRACE on an annual cycle. New instruments were...

  9. Optical tweezers absolute calibration

    CERN Document Server

    Dutra, R S; Neto, P A Maia; Nussenzveig, H M

    2014-01-01

    Optical tweezers are highly versatile laser traps for neutral microparticles, with fundamental applications in physics and in single molecule cell biology. Force measurements are performed by converting the stiffness response to displacement of trapped transparent microspheres, employed as force transducers. Usually, calibration is indirect, by comparison with fluid drag forces. This can lead to discrepancies by sizable factors. Progress achieved in a program aiming at absolute calibration, conducted over the past fifteen years, is briefly reviewed. Here we overcome its last major obstacle, a theoretical overestimation of the peak stiffness, within the most employed range for applications, and we perform experimental validation. The discrepancy is traced to the effect of primary aberrations of the optical system, which are now included in the theory. All required experimental parameters are readily accessible. Astigmatism, the dominant effect, is measured by analyzing reflected images of the focused laser spo...

  10. Absolute multilateration between spheres

    Science.gov (United States)

    Muelaner, Jody; Wadsworth, William; Azini, Maria; Mullineux, Glen; Hughes, Ben; Reichold, Armin

    2017-04-01

    Environmental effects typically limit the accuracy of large scale coordinate measurements in applications such as aircraft production and particle accelerator alignment. This paper presents an initial design for a novel measurement technique with analysis and simulation showing that that it could overcome the environmental limitations to provide a step change in large scale coordinate measurement accuracy. Referred to as absolute multilateration between spheres (AMS), it involves using absolute distance interferometry to directly measure the distances between pairs of plain steel spheres. A large portion of each sphere remains accessible as a reference datum, while the laser path can be shielded from environmental disturbances. As a single scale bar this can provide accurate scale information to be used for instrument verification or network measurement scaling. Since spheres can be simultaneously measured from multiple directions, it also allows highly accurate multilateration-based coordinate measurements to act as a large scale datum structure for localized measurements, or to be integrated within assembly tooling, coordinate measurement machines or robotic machinery. Analysis and simulation show that AMS can be self-aligned to achieve a theoretical combined standard uncertainty for the independent uncertainties of an individual 1 m scale bar of approximately 0.49 µm. It is also shown that combined with a 1 µm m‑1 standard uncertainty in the central reference system this could result in coordinate standard uncertainty magnitudes of 42 µm over a slender 1 m by 20 m network. This would be a sufficient step change in accuracy to enable next generation aerospace structures with natural laminar flow and part-to-part interchangeability.

  11. Cold fission description with constant and varying mass asymmetries

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, S.B.; Rodriguez, O.; Tavares, O.A.P. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Goncalves, M. [Instituto de Radioprotecao e Dosimetria (IRD), Rio de Janeiro, RJ (Brazil); Garcia, F.; Guzman, F. [Sao Paulo Univ., SP (Brazil). Inst. de Fisica

    1998-01-01

    Different description for varying the mass asymmetry in the fragmentation process are used to calculate the cold fission barrier penetrability. The relevance of the appropriate choice for both the description of the pre-scission phase and inertia coefficient to unify alpha decay, cluster radioactivity, and spontaneous cold fission processes in the same theoretical framework is explicitly shown. We calculate the half-life of all possible partition modes of nuclei of A > 200 following the most recent Mass Table by Audi and Wapstra. It is shown that if one uses the description in which the mass asymmetry is maintained constant during the fragmentation process, the experimental half-life-values and mass yield of {sup 234} U cold fission are satisfactorily reproduced. (author) 39 refs., 6 figs., 2 tabs.; e-mail: telo at ird.gov.br

  12. Systematics on fission fragment mass distribution of neutron induced 235U fission

    Institute of Scientific and Technical Information of China (English)

    LIU Ting-Jin; SUN Zheng-Jun; SHU Neng-Chuan

    2008-01-01

    Based on the neutron induced fission fragment mass distribution data up to neutron energy 20 MeV measured with the double kinetic energy method (KEM) and the radio active method (RAM), the systematics of fission fragment mass distribution was investigated by using 5 Gaussian model and the systematics parameters were obtained by fitting the experimental data. With the systematics, the yields of any mass A and at any energy in the region from 0 to 20 MeV of neutron energy can be calculated. The calculated results could well reproduce the experimental data measured with KEM, but show some systematical deviation from the data measured by RAM, which reflects some systematical deviations between the two kinds of measured data.The error of systematics yield was calculated in an exact error transformation way, including from the error of the experimental yield data to the error of the discrete parameters, then to the systematics parameters,and at last to the yield calculated with systematics.

  13. Advanced Space Fission Propulsion Systems

    Science.gov (United States)

    Houts, Michael G.; Borowski, Stanley K.

    2010-01-01

    Fission has been considered for in-space propulsion since the 1940s. Nuclear Thermal Propulsion (NTP) systems underwent extensive development from 1955-1973, completing 20 full power ground tests and achieving specific impulses nearly twice that of the best chemical propulsion systems. Space fission power systems (which may eventually enable Nuclear Electric Propulsion) have been flown in space by both the United States and the Former Soviet Union. Fission is the most developed and understood of the nuclear propulsion options (e.g. fission, fusion, antimatter, etc.), and fission has enjoyed tremendous terrestrial success for nearly 7 decades. Current space nuclear research and technology efforts are focused on devising and developing first generation systems that are safe, reliable and affordable. For propulsion, the focus is on nuclear thermal rockets that build on technologies and systems developed and tested under the Rover/NERVA and related programs from the Apollo era. NTP Affordability is achieved through use of previously developed fuels and materials, modern analytical techniques and test strategies, and development of a small engine for ground and flight technology demonstration. Initial NTP systems will be capable of achieving an Isp of 900 s at a relatively high thrust-to-weight ratio. The development and use of first generation space fission power and propulsion systems will provide new, game changing capabilities for NASA. In addition, development and use of these systems will provide the foundation for developing extremely advanced power and propulsion systems capable of routinely and affordably accessing any point in the solar system. The energy density of fissile fuel (8 x 10(exp 13) Joules/kg) is more than adequate for enabling extensive exploration and utilization of the solar system. For space fission propulsion systems, the key is converting the virtually unlimited energy of fission into thrust at the desired specific impulse and thrust

  14. Fission hindrance and nuclear viscosity

    Indian Academy of Sciences (India)

    Indranil Mazumdar

    2015-08-01

    We discuss the role of nuclear viscosity in hindering the fission of heavy nuclei as observed in the experimental measurements of GDR -ray spectra from the fissioning nuclei. We review a set of experiments carried out and reported by us previously [see Dioszegi et al, Phys. Rev. C 61, 024613 (2000); Shaw et al, Phys. Rev. C 61, 044612 (2000)] and argue that the nuclear viscosity parameter has no apparent dependence on temperature. However, it may depend upon the deformation of the nucleus.

  15. SPY: A new scission point model based on microscopic ingredients to predict fission fragments properties

    Science.gov (United States)

    Lemaître, J.-F.; Dubray, N.; Hilaire, S.; Panebianco, S.; Sida, J.-L.

    2013-12-01

    Our purpose is to determine fission fragments characteristics in a framework of a scission point model named SPY for Scission Point Yields. This approach can be considered as a theoretical laboratory to study fission mechanism since it gives access to the correlation between the fragments properties and their nuclear structure, such as shell correction, pairing, collective degrees of freedom, odd-even effects. Which ones are dominant in final state? What is the impact of compound nucleus structure? The SPY model consists in a statistical description of the fission process at the scission point where fragments are completely formed and well separated with fixed properties. The most important property of the model relies on the nuclear structure of the fragments which is derived from full quantum microscopic calculations. This approach allows computing the fission final state of extremely exotic nuclei which are inaccessible by most of the fission model available on the market.

  16. SPY: A new scission point model based on microscopic ingredients to predict fission fragments properties

    Directory of Open Access Journals (Sweden)

    Lemaître J.-F.

    2013-12-01

    Full Text Available Our purpose is to determine fission fragments characteristics in a framework of a scission point model named SPY for Scission Point Yields. This approach can be considered as a theoretical laboratory to study fission mechanism since it gives access to the correlation between the fragments properties and their nuclear structure, such as shell correction, pairing, collective degrees of freedom, odd-even effects. Which ones are dominant in final state? What is the impact of compound nucleus structure? The SPY model consists in a statistical description of the fission process at the scission point where fragments are completely formed and well separated with fixed properties. The most important property of the model relies on the nuclear structure of the fragments which is derived from full quantum microscopic calculations. This approach allows computing the fission final state of extremely exotic nuclei which are inaccessible by most of the fission model available on the market.

  17. High-Resolution Correlated Fission Product Measurements of 235U (nth , f) with SPIDER

    Science.gov (United States)

    Shields, Dan; Spider Team

    2015-10-01

    The SPIDER detector (SPectrometer for Ion DEtermination in fission Research) has obtained high-resolution, moderate-efficiency, correlated fission product data needed for many applications including the modeling of next generation nuclear reactors, stockpile stewardship, and the fundamental understanding of the fission process. SPIDER simultaneously measures velocity and energy of both fission products to calculate fission product yields (FPYs), neutron multiplicity (ν), and total kinetic energy (TKE). These data will be some of the first of their kind available to nuclear data evaluations. An overview of the SPIDER detector, analytical method, and preliminary results for 235U (nth , f) will be presented. LA-UR-15-20130 This work benefited from the use of the LANSCE accelerator facility and was performed under the auspices of the US Department of Energy by Los Alamos Security, LLC under Contract DE-AC52-06NA25396.

  18. Thermo-tectonics of the Calabrian Arc, southern Italy: Constraints from fission track analysis

    Science.gov (United States)

    Thomson, Stuart Nigel

    This study uses fission track analysis to provide temperature and time constraints on the cooling and exhumation history of the basement rocks of the Calabrian Arc of southern Italy. Fission track analysis also provides information on the provenance and burial history of the terrigenous Oligo-Miocene Stilo-Capo d'Orlando Formation. 65 samples from the basement rocks have yielded 57 apatite fission track ages, 54 zircon fission track ages and 25 apatite track length distributions. 9 samples from the Stilo- Capo d'Orlando Formation have yielded 8 apatite fission track ages, 8 zircon fission track ages and 6 apatite track length distributions. Qualitative and quantitative analysis of the fission track data reveals that the majority of the basement rocks underwent a phase of increased cooling related to exhumation between about 35 Ma (Early Oligocene) and 15 Ma (Middle Miocene). Evidence from the local sedimentary record indicates that erosion played an important role in the exhumation process. Extensional tectonism also contributes to some of the increased exhumation. Analysis of the fission track results obtained from the Stilo-Capo d'Orlando Formation confirm a Calabrian basement provenance for the sediments. The previously debated origin of volcanic conglomerate clasts from the formation is also resolved. Finally apatite fission track analysis indicates post-depositional burial at the base of the formation to temperatures greater than 80° C. The final part of this thesis uses the fission track age and temperature constraints to produce an improved tectonic model for the Oligo-Miocene tectonic evolution of the Calabrian Arc. This model proposes that increased exhumation is a consequence of the dynamics of an overthickened orogenic wedge. The model is related to the overall plate dynamics of the western Mediterranean orogeny.

  19. Excitation energy dependence of fission in the mercury region

    CERN Document Server

    McDonnell, J D; Sheikh, J A; Staszczak, A; Warda, M

    2014-01-01

    Background: Recent experiments on beta-delayed fission reported an asymmetric mass yield in the neutron-deficient nucleus 180Hg. Earlier experiments in the mass region A=190-200 close to the beta-stability line, using the (p,f) and (\\alpha,f) reactions, observed a more symmetric distribution of fission fragments. While the beta-delayed fission of 180Hg can be associated with relatively low excitation energy, this is not the case for light-ion reactions, which result in warm compound nuclei. Purpose: To elucidate the roles of proton and neutron numbers and excitation energy in determining symmetric and asymmetric fission yields, we compute and analyze the isentropic potential energy surfaces of 174,180,198Hg and 196,210Po. Methods: We use the finite-temperature superfluid nuclear density functional theory, for excitation energies up to E*=30MeV and zero angular momentum. For our theoretical framework, we consider the Skyrme energy density functional SkM* and a density-dependent pairing interaction. Results: Fo...

  20. Estimating Absolute Site Effects

    Energy Technology Data Exchange (ETDEWEB)

    Malagnini, L; Mayeda, K M; Akinci, A; Bragato, P L

    2004-07-15

    The authors use previously determined direct-wave attenuation functions as well as stable, coda-derived source excitation spectra to isolate the absolute S-wave site effect for the horizontal and vertical components of weak ground motion. They used selected stations in the seismic network of the eastern Alps, and find the following: (1) all ''hard rock'' sites exhibited deamplification phenomena due to absorption at frequencies ranging between 0.5 and 12 Hz (the available bandwidth), on both the horizontal and vertical components; (2) ''hard rock'' site transfer functions showed large variability at high-frequency; (3) vertical-motion site transfer functions show strong frequency-dependence, and (4) H/V spectral ratios do not reproduce the characteristics of the true horizontal site transfer functions; (5) traditional, relative site terms obtained by using reference ''rock sites'' can be misleading in inferring the behaviors of true site transfer functions, since most rock sites have non-flat responses due to shallow heterogeneities resulting from varying degrees of weathering. They also use their stable source spectra to estimate total radiated seismic energy and compare against previous results. they find that the earthquakes in this region exhibit non-constant dynamic stress drop scaling which gives further support for a fundamental difference in rupture dynamics between small and large earthquakes. To correct the vertical and horizontal S-wave spectra for attenuation, they used detailed regional attenuation functions derived by Malagnini et al. (2002) who determined frequency-dependent geometrical spreading and Q for the region. These corrections account for the gross path effects (i.e., all distance-dependent effects), although the source and site effects are still present in the distance-corrected spectra. The main goal of this study is to isolate the absolute site effect (as a function of frequency

  1. Dynamical approach to isotopic-distribution of fission fragments from actinide nuclei

    Directory of Open Access Journals (Sweden)

    Ishizuka Chikako

    2016-01-01

    Full Text Available Measurements of the isotope distribution of fission fragments, often denoted as the primary fission yield (pre-neutron yield or independent fission yield (post-neutron yield are still challenging at low excitation energies, so that it is important to investigate it within a theory. Such quantities are vital for applications as well. In this study, fragment distributions from the fission of U isotopes at low excitation energies are studied using a dynamical model. The potential energy surface is derived from the two center shell model including the shell and pairing corrections. In order to calculate the charge distribution of fission fragments, we introduce a new parameter ηZ as the charge asymmetry, in addition to three parameters describing a nuclear shape, z as the distance between two centers of mass, δ as fragment deformation, and ηA as the mass asymmetry. Using this model, we calculated the isotopic distribution of 236U for the n-induced process 235U + n → 236U at low excitation energies. As a result, we found that the current model can well reproduce isotopic fission-fragment distribution which can be compared favorably with major libraries.

  2. Dynamical approach to isotopic-distribution of fission fragments from actinide nuclei

    Science.gov (United States)

    Ishizuka, Chikako; Chiba, Satoshi; Karpov, Alexander V.; Aritomo, Yoshihiro

    2016-06-01

    Measurements of the isotope distribution of fission fragments, often denoted as the primary fission yield (pre-neutron yield) or independent fission yield (post-neutron yield) are still challenging at low excitation energies, so that it is important to investigate it within a theory. Such quantities are vital for applications as well. In this study, fragment distributions from the fission of U isotopes at low excitation energies are studied using a dynamical model. The potential energy surface is derived from the two center shell model including the shell and pairing corrections. In order to calculate the charge distribution of fission fragments, we introduce a new parameter ηZ as the charge asymmetry, in addition to three parameters describing a nuclear shape, z as the distance between two centers of mass, δ as fragment deformation, and ηA as the mass asymmetry. Using this model, we calculated the isotopic distribution of 236U for the n-induced process 235U + n → 236U at low excitation energies. As a result, we found that the current model can well reproduce isotopic fission-fragment distribution which can be compared favorably with major libraries.

  3. Transfer-induced fission in inverse kinematics: Impact on experimental and evaluated nuclear data bases

    Science.gov (United States)

    Farget, F.; Caamaño, M.; Ramos, D.; Rodrıguez-Tajes, C.; Schmidt, K.-H.; Audouin, L.; Benlliure, J.; Casarejos, E.; Clément, E.; Cortina, D.; Delaune, O.; Derkx, X.; Dijon, A.; Doré, D.; Fernández-Domınguez, B.; Gaudefroy, L.; Golabek, C.; Heinz, A.; Jurado, B.; Lemasson, A.; Paradela, C.; Roger, T.; Salsac, M. D.; Schmitt, C.

    2015-12-01

    Inverse kinematics is a new tool to study nuclear fission. Its main advantage is the possibility to measure with an unmatched resolution the atomic number of fission fragments, leading to new observables in the properties of fission-fragment distributions. In addition to the resolution improvement, the study of fission based on nuclear collisions in inverse kinematics beneficiates from a larger view with respect to the neutron-induced fission, as in a single experiment the number of fissioning systems and the excitation energy range are widden. With the use of spectrometers, mass and kinetic-energy distributions may now be investigated as a function of the proton and neutron number sharing. The production of fissioning nuclei in transfer reactions allows studying the isotopic yields of fission fragments as a function of the excitation energy. The higher excitation energy resulting in the fusion reaction leading to the compound nucleus 250Cf at an excitation energy of 45MeV is also presented. With the use of inverse kinematics, the charge polarisation of fragments at scission is now revealed with high precision, and it is shown that it cannot be neglected, even at higher excitation energies. In addition, the kinematical properties of the fragments inform on the deformation configuration at scission.

  4. Transfer-induced fission in inverse kinematics: Impact on experimental and evaluated nuclear data bases

    Energy Technology Data Exchange (ETDEWEB)

    Farget, F.; Schmidt, K.H.; Clement, E.; Delaune, O.; Derkx, X.; Dijon, A.; Golabek, C.; Lemasson, A.; Roger, T.; Schmitt, C. [CEA/DSM-CNRS/IN2P3, GANIL, Caen (France); Caamano, M.; Ramos, D.; Benlliure, J.; Cortina, D.; Fernandez-Dominguez, B.; Paradela, C. [Universidade de Santiago de Compostela, Santiago de Compostela (Spain); Rodriguez-Tajes, C. [CEA/DSM-CNRS/IN2P3, GANIL, Caen (France); Universidade de Santiago de Compostela, Santiago de Compostela (Spain); Audouin, L. [Universite Paris-Sud 11, CNRS/IN2P3, Institut de Physique Nucleaire, Orsay (France); Casarejos, E. [Universidade de Vigo, Vigo (Spain); Dore, D.; Salsac, M.D. [Centre de Saclay, CEA, Irfu, Gif-sur-Yvette (France); Gaudefroy, L. [CEA DAM Ile-de-France, BP 12, Bruyeres-le-Chatel (France); Heinz, A. [Chalmers Tekniska Hoegskola, Fundamental Fysik, Goeteborg (Sweden); Jurado, B. [Universite Bordeaux, CENBG, UMR 5797 CNRS/IN2P3, Gradignan (France)

    2015-12-15

    Inverse kinematics is a new tool to study nuclear fission. Its main advantage is the possibility to measure with an unmatched resolution the atomic number of fission fragments, leading to new observables in the properties of fission-fragment distributions. In addition to the resolution improvement, the study of fission based on nuclear collisions in inverse kinematics beneficiates from a larger view with respect to the neutron-induced fission, as in a single experiment the number of fissioning systems and the excitation energy range are widden. With the use of spectrometers, mass and kinetic-energy distributions may now be investigated as a function of the proton and neutron number sharing. The production of fissioning nuclei in transfer reactions allows studying the isotopic yields of fission fragments as a function of the excitation energy. The higher excitation energy resulting in the fusion reaction leading to the compound nucleus {sup 250}Cf at an excitation energy of 45MeV is also presented. With the use of inverse kinematics, the charge polarisation of fragments at scission is now revealed with high precision, and it is shown that it cannot be neglected, even at higher excitation energies. In addition, the kinematical properties of the fragments inform on the deformation configuration at scission. (orig.)

  5. From Hubble's NGSL to Absolute Fluxes

    Science.gov (United States)

    Heap, Sara R.; Lindler, Don

    2012-01-01

    Hubble's Next Generation Spectral Library (NGSL) consists of R-l000 spectra of 374 stars of assorted temperature, gravity, and metallicity. Each spectrum covers the wavelength range, 0.18-1.00 microns. The library can be viewed and/or downloaded from the website, http://archive.stsci.edu/prepds/stisngsll. Stars in the NGSL are now being used as absolute flux standards at ground-based observatories. However, the uncertainty in the absolute flux is about 2%, which does not meet the requirements of dark-energy surveys. We are therefore developing an observing procedure that should yield fluxes with uncertainties less than 1 % and will take part in an HST proposal to observe up to 15 stars using this new procedure.

  6. Fission gas in thoria

    Science.gov (United States)

    Kuganathan, Navaratnarajah; Ghosh, Partha S.; Galvin, Conor O. T.; Arya, Ashok K.; Dutta, Bijon K.; Dey, Gautam K.; Grimes, Robin W.

    2017-03-01

    The fission gases Xe and Kr, formed during normal reactor operation, are known to degrade fuel performance, particularly at high burn-up. Using first-principles density functional theory together with a dispersion correction (DFT + D), in ThO2 we calculate the energetics of neutral and charged point defects, the di-vacancy (DV), different neutral tri-vacancies (NTV), the charged tetravacancy (CTV) defect cluster geometries and their interaction with Xe and Kr. The most favourable incorporation point defect site for Xe or Kr in defective ThO2 is the fully charged thorium vacancy. The lowest energy NTV in larger supercells of ThO2 is NTV3, however, a single Xe atom is most stable when accommodated within a NTV1. The di-vacancy (DV) is a significantly less favoured incorporation site than the NTV1 but the CTV offers about the same incorporation energy. Incorporation of a second gas atom in a NTV is a high energy process and more unfavourable than accommodation within an existing Th vacancy. The bi-NTV (BNTV) cluster geometry studied will accommodate one or two gas atoms with low incorporation energies but the addition of a third gas atom incurs a high energy penalty. The tri-NTV cluster (TNTV) forms a larger space which accommodates three gas atoms but again there is a penalty to accommodate a fourth gas atom. By considering the energy to form the defect sites, solution energies were generated showing that in ThO2-x the most favourable solution equilibrium site is the NTV1 while in ThO2 it is the DV.

  7. Comparison of actinides and fission products recycling scheme with the normal plutonium recycling scheme in fast reactors

    Directory of Open Access Journals (Sweden)

    Salahuddin Asif

    2013-01-01

    Full Text Available Multiple recycling of actinides and non-volatile fission products in fast reactors through the dry re-fabrication/reprocessing atomics international reduction oxidation process has been studied as a possible way to reduce the long-term potential hazard of nuclear waste compared to that resulting from reprocessing in a wet PUREX process. Calculations have been made to compare the actinides and fission products recycling scheme with the normal plutonium recycling scheme in a fast reactor. For this purpose, the Karlsruhe version of isotope generation and depletion code, KORIGEN, has been modified accordingly. An entirely novel fission product yields library for fast reactors has been created which has replaced the old KORIGEN fission products library. For the purposes of this study, the standard 26 groups data set, KFKINR, developed at Forschungszentrum Karlsruhe, Germany, has been extended by the addition of the cross-sections of 13 important actinides and 68 most important fission products. It has been confirmed that these 68 fission products constitute about 95% of the total fission products yield and about 99.5% of the total absorption due to fission products in fast reactors. The amount of fissile material required to guarantee the criticality of the reactor during recycling schemes has also been investigated. Cumulative high active waste per ton of initial heavy metal is also calculated. Results show that the recycling of actinides and fission products in fast reactors through the atomics international reduction oxidation process results in a reduction of the potential hazard of radioactive waste.

  8. Fission fragment charge and mass distributions in 239Pu(n,f) in the adiabatic nuclear energy density functional theory

    CERN Document Server

    Regnier, D; Schunck, N; Verriere, M

    2016-01-01

    Accurate knowledge of fission fragment yields is an essential ingredient of numerous applications ranging from the formation of elements in the r-process to fuel cycle optimization for nuclear energy. The need for a predictive theory applicable where no data is available is an incentive to develop a fully microscopic approach to fission dynamics. In this work, we calculate the pre-neutron emission charge and mass distributions of the fission fragments formed in the neutron-induced fission of 239Pu using a microscopic method based on nuclear energy density functional (EDF) method, where large amplitude collective motion is treated adiabatically using the time dependent generator coordinate method (TDGCM) under the Gaussian overlap approximation (GOA). Fission fragment distributions are extracted from the flux of the collective wave packet through the scission line. We find that the main characteristics of the fission charge and mass distributions can be well reproduced by existing energy functionals even in tw...

  9. Notes on absolute Hodge classes

    CERN Document Server

    Charles, François

    2011-01-01

    We survey the theory of absolute Hodge classes. The notes include a full proof of Deligne's theorem on absolute Hodge classes on abelian varieties as well as a discussion of other topics, such as the field of definition of Hodge loci and the Kuga-Satake construction.

  10. Light charged particle accompanied ternary fission of {sup 242}Cm using the Coulomb and proximity potential

    Energy Technology Data Exchange (ETDEWEB)

    Santhosh, K.P.; Krishnan, Sreejith; Priyanka, B. [Kannur University, School of Pure and Applied Physics, Kerala (India)

    2014-04-15

    The cold ternary fission of {sup 242}Cm with {sup 4}He, {sup 10}Be and {sup 14}C as light charged particle has been studied by taking the interacting barrier as the sum of Coulomb and proximity potential with the fragments in equatorial configuration. The favorable fragment combinations are obtained from the cold valley plot (plot of driving potential vs. mass number of fragments) and by calculating the yield for charge minimized fragments. The maximum yield in the {sup 4}He accompanied ternary fission is obtained for the fragmentation channel {sup 104}Mo + {sup 134}Te + {sup 4}He and for the {sup 10}Be accompanied ternary fission, the maximum yield is found for the fragmentation channel {sup 98}Zr + {sup 134}Te + {sup 10}Be. It is to be noted that, in the case of {sup 14}C accompanied ternary fission, the maximum yield is obtained for the fragmentation channel {sup 94}Sr + {sup 134}Te + {sup 14}C and the next higher yield is found for the fragmentation channel {sup 96}Zr + {sup 132}Sn + {sup 14}C. Thus, the fragment combinations with maximum yields reveal the role of doubly magic and near doubly magic nuclei in cold ternary fission. (orig.)

  11. Exciton Correlations in Intramolecular Singlet Fission.

    Science.gov (United States)

    Sanders, Samuel N; Kumarasamy, Elango; Pun, Andrew B; Appavoo, Kannatassen; Steigerwald, Michael L; Campos, Luis M; Sfeir, Matthew Y

    2016-06-15

    We have synthesized a series of asymmetric pentacene-tetracene heterodimers with a variable-length conjugated bridge that undergo fast and efficient intramolecular singlet fission (iSF). These compounds have distinct singlet and triplet energies, which allow us to study the spatial dynamics of excitons during the iSF process, including the significant role of exciton correlations in promoting triplet pair generation and recombination. We demonstrate that the primary photoexcitations in conjugated dimers are delocalized singlets that enable fast and efficient iSF. However, in these asymmetric dimers, the singlet becomes more localized on the lower energy unit as the length of the bridge is increased, slowing down iSF relative to analogous symmetric dimers. We resolve the recombination kinetics of the inequivalent triplets produced via iSF, and find that they primarily decay via concerted processes. By identifying different decay channels, including delayed fluorescence via triplet-triplet annihilation, we can separate transient species corresponding to both correlated triplet pairs and uncorrelated triplets. Recombination of the triplet pair proceeds rapidly despite our experimental and theoretical demonstration that individual triplets are highly localized and unable to be transported across the conjugated linker. In this class of compounds, the rate of formation and yield of uncorrelated triplets increases with bridge length. Overall, these constrained, asymmetric systems provide a unique platform to isolate and study transient species essential for singlet fission, which are otherwise difficult to observe in symmetric dimers or condensed phases.

  12. Nuclear fission and neutron-induced fission cross-sections

    CERN Document Server

    James, G D; Michaudon, A; Michaudon, A; Cierjacks, S W; Chrien, R E

    2013-01-01

    Nuclear Fission and Neutron-Induced Fission Cross-Sections is the first volume in a series on Neutron Physics and Nuclear Data in Science and Technology. This volume serves the purpose of providing a thorough description of the many facets of neutron physics in different fields of nuclear applications. This book also attempts to bridge the communication gap between experts involved in the experimental and theoretical studies of nuclear properties and those involved in the technological applications of nuclear data. This publication will be invaluable to those interested in studying nuclear fis

  13. Experimental approach to fission process of actinides

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Hiroshi [Osaka Univ., Toyonaka (Japan). Faculty of Science

    1997-07-01

    From experimental views, it seems likely that the mechanism of nuclear fission process remains unsolved even after the Bohr and Weeler`s study in 1939. Especially, it is marked in respect of mass distribution in unsymmetric nuclear fission. The energy dependency of mass distribution can be explained with an assumption of 2-mode nuclear fission. Further, it was demonstrated that the symmetrical fission components and the unsymmetrical ones have different saddle and fission points. Thus, the presence of the 2-mode fission mechanism was confirmed. Here, transition in the nuclear fission mechanism and its cause were investigated here. As the cause of such transition, plausible four causes; a contribution of multiple-chance fission, disappearance of shell effects, beginning of fission following collective excitation due to GDR and nuclear phase transition were examined in the condition of excitation energy of 14.0 MeV. And it was suggested that the transition in the nuclear fission concerned might be related to phase transition. In addition, the mechanism of nuclear fission at a low energy and multi-mode hypothesis were examined by determination of the energy for thermal neutron fission ({sup 233,235}U and {sup 239}Pu) and spontaneous nuclear fission ({sup 252}Cf). (M.N.)

  14. Background and Derivation of ANS-5.4 Standard Fission Product Release Model

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, Carl E.; Turnbull, Andrew J.

    2010-01-29

    This background report describes the technical basis for the newly proposed American Nuclear Society (ANS) 5.4 standard, Methods for Calculating the Fractional Release of Volatile Fission Products from Oxide Fuels. The proposed ANS 5.4 standard provides a methodology for determining the radioactive fission product releases from the fuel for use in assessing radiological consequences of postulated accidents that do not involve abrupt power transients. When coupled with isotopic yields, this method establishes the 'gap activity,' which is the inventory of volatile fission products that are released from the fuel rod if the cladding are breached.

  15. 233U mass yield measurements around and within the symmetry region with the ILL Lohengrin spectrometer

    Directory of Open Access Journals (Sweden)

    Chebboubi A.

    2016-01-01

    Full Text Available The study of fission yields has a major impact on the characterization and understanding of the fission process and is mandatory for reactor applications. The LPSC in collaboration with ILL and CEA has developed a measurement program on fission fragment distributions at the Lohengrin spectrometer of the ILL, with a special focus on the masses constituting the heavy peak. We will present in this paper our measurement of the very low fission yields in the symmetry mass region and the heavy mass wing of the distribution for 233U thermal neutron induced fission. The difficulty due to the strong contamination by other masses with much higher yields will be addressed in the form of a new analysis method featuring the required contaminant correction. The apparition of structures in the kinetic energy distributions and possible interpretations will be discussed, such as a possible evidence of fission modes.

  16. 233U mass yield measurements around and within the symmetry region with the ILL Lohengrin spectrometer

    Science.gov (United States)

    Chebboubi, A.; Kessedjian, G.; Sage, C.; Bernard, D.; Blanc, A.; Faust, H.; Köster, U.; Litaize, O.; Mutti, P.; Serot, O.

    2016-03-01

    The study of fission yields has a major impact on the characterization and understanding of the fission process and is mandatory for reactor applications. The LPSC in collaboration with ILL and CEA has developed a measurement program on fission fragment distributions at the Lohengrin spectrometer of the ILL, with a special focus on the masses constituting the heavy peak. We will present in this paper our measurement of the very low fission yields in the symmetry mass region and the heavy mass wing of the distribution for 233U thermal neutron induced fission. The difficulty due to the strong contamination by other masses with much higher yields will be addressed in the form of a new analysis method featuring the required contaminant correction. The apparition of structures in the kinetic energy distributions and possible interpretations will be discussed, such as a possible evidence of fission modes.

  17. RAPID QUANTITATION OF URANIUM FROM MIXED FISSION PRODUCT SAMPLES

    Energy Technology Data Exchange (ETDEWEB)

    Haney, Morgan M.; Seiner, Brienne N.; Finn, Erin C.; Friese, Judah I.

    2016-03-09

    Chemical similarities between U(VI) and Mo(VI) create challenges for separation and quantification of uranium from a mixed fission product sample. The purpose of this work was to demonstrate the feasibility of using Eichrom’s® UTEVA resin in addition to a tellurium spontaneous deposition to improve the quantitation of 235U using gamma spectroscopy. The optimized method demonstrated a consistent chemical yield of 74 ± 3 % for uranium. This procedure was evaluated using 1.41x1012 fissions produced from an irradiated HEU sample. The uranium was isotopically yielded by HPGe, and the minimum detectable activity (MDA) determined from the gamma spectra. The MDA for 235U, 237U, and 238U was reduced by a factor of two. The chemical isolation of uranium was successfully achieved in less than four hours, with a separation factor of 1.41x105 from molybdenum.

  18. Search for Singlet Fission Chromophores

    Energy Technology Data Exchange (ETDEWEB)

    Havlas, Z.; Akdag, A.; Smith, M. B.; Dron, P.; Johnson, J. C.; Nozik, A. J.; Michl, J.

    2012-01-01

    Singlet fission, in which a singlet excited chromophore shares its energy with a ground-state neighbor and both end up in their triplet states, is of potential interest for solar cells. Only a handful of compounds, mostly alternant hydrocarbons, are known to perform efficiently. In view of the large number of conditions that a successful candidate for a practical cell has to meet, it appears desirable to extend the present list of high performers to additional classes of compounds. We have (i) identified design rules for new singlet fission chromophores and for their coupling to covalent dimers, (ii) synthesized them, and (iii) evaluated their performance as neat solids or covalent dimers.

  19. Status update on the NIFFTE high precision fission cross section measurement program

    Energy Technology Data Exchange (ETDEWEB)

    Laptev, Alexander B [Los Alamos National Laboratory; Tovesson, Fredrik [Los Alamos National Laboratory; Burgett, Eric [GEORGIA INSTITUTE OF TECH; Greife, Uwe [COLORADO SCHOOL OF THE MINES; Grimes, Steven [OHIO UNIV; Heffner, Michael D [LLNL; Hertel, Nolan E [GEORGIA INSTITUTE OF TECH; Hill, Tony [IDAHO NATIONAL LABORATORY; Isenhower, Donald [ABILENE CHRISTIN UNIV; Klay, Jennifer L [CALIFORNIA POLYTECHNIC STATE UNIV; Kornilov, Nickolay [OHIO UNIV; Kudo, Ryuho [CALIFORNIA POLYTECHNIC STATE UNIV; Loveland, Walter [OREGON STATE UNIV; Massey, Thomas [OHIO UNIV; Mc Grath, Chris [IDAHO NATIONAL LABORATORY; Pickle, Nathan [ABILENE CHRISTIAN UNIV; Qu, Hai [ABILENE CHRISTIAN UNIV; Sharma, Sarvagya [ABILENE CHRISTIAN UNIV; Snyder, Lucas [COLORADO SCHOOL OF THE MINES; Thornton, Tyler [ABILENE CHRISTIAN UNIV; Towell, Rusty S [ABILENE CHRISTIAN UNIV; Watson, Shon [ABILENE CHRISTIAN UNIV

    2010-01-01

    The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) program has been underway for nearly two years. The program's mission is to measure fission cross sections of the primary fissionable and fissile materials ({sup 235}U, {sup 239}Pu, {sup 238}U) as well as the minor actinides across energies from approximately 50 keV up to 20 MeV with an absolute uncertainty of less than one percent while investigating energy ranges from below an eV to 600 MeV. This basic nuclear physics data is being reinvestigated to support the next generation power plants and a fast burner reactor program. Uncertainties in the fast, resolved and unresolved resonance regions in plutonium and other transuranics are extremely large, dominating safety margins in the next generation nuclear power plants and power plants of today. This basic nuclear data can be used to support all aspects of the nuciear renaissance. The measurement campaign is utilizing a Time Projection Chamber or TPC as the tool to measure these cross sections to these unprecedented levels. Unlike traditional fission cross section measurements using time-of-flight and a multiple fission foil configurations in which fission cross sections in relation to that of {sup 235}U are performed, the TPC project uses time-of-flight and hydrogen as the benchmark cross section. Using the switch to hydrogen, a simple, smooth cross section that can be used which removes the uncertainties associated with the resolved and unresolved resonances in {sup 235}U.

  20. Fission products, activity calculation of spent-fuel

    Energy Technology Data Exchange (ETDEWEB)

    Souka, N.; El-Hakiem, M.N.

    1981-01-01

    This work is a scrutiny of the activity of burned up fuel elements of the ET-RR-1. A knowledge of this activity as well as its decay with time is quite helpful in shielding calculations related to construction purposes of hot facilities. The present treatment is based on a knowledge of: fuel composition, percentage burnup, and fission yields of produced isotopes. Cooling periods ranging from 1 hr to 10 years were considered.

  1. 基于最小一乘准则的中国粮食产量与影响因素的相关性分析%Relative analysis of China’s grain yield and influence factors based on criterion of least absolute deviation

    Institute of Scientific and Technical Information of China (English)

    顾乐民

    2013-01-01

    的定量值。该文并对2012年粮食产量进行了预测,其值为59133万t,预测的误差为0.3%;也对2013年粮食产量进行了预测,其值为61148万 t。该文最后对最小一乘法、指数型生产函数等存在的问题进行了必要的讨论。最小一乘准则意义下的指数型生产函数,对中国粮食产量与主要影响因素之间关系的描述具有一定的准确性和指导意义。%The relations between China’s grain yield and some main factors influencing the grain yield, more present the exponential function and few exponent sign function relations. To describe with a new type of exponential production function can obtain a better result because of less error. The paper pointed out that the least absolute deviations (LAD) method, as its excellent properties, may be a best method to find the“implicit function”which is behind the data and control the data. To knead the two together, with the LAD method to fit the exponential production function, trying to find out some rules for China's grain change is a subject that is worth of exploring in theory and application. The paper introduces the LAD method and the exponential production function, establishes correlations between the China’s grain yield and its 5 major influencing factors (consumption of chemical fertilizer, total sown area, total area affected by natural disaster, total agricultural machinery power, and total employed persons of primary industry). The production function model was fit with the LAD method, and the data of 1983-2011 were calculated. The results with Mae (mean absolute error) not over 3.93 million tons and Mape (mean absolute percentage error) not more than 0.87%for China’s grain yield during the 29 years were obtained, and the conclusions were explained and analyzed;The analysis showed that, in the 29 years of 1983-2011, the growth of China’s nation grain yield mainly depended on the consumption of chemical fertilizer and the total agricultural machinery power

  2. Development of Fission Chamber Assembly

    Institute of Scientific and Technical Information of China (English)

    YANGJinwei; ZHANGWei; SONGXianying; LIXu

    2003-01-01

    The fission chambers which are gas counters with fissile material inside chamber,provide essential information for plasma opcharacteristics. In conjunction with the neutron flux monitor system these provide time-resolved measurements of the global neutron source strength and fusion power from thermal nuclear fusion reactor as ITER for all plasma conditions for which neutrons are produced.

  3. Two neutron correlations in photo-fission

    Science.gov (United States)

    Dale, D. S.; Kosinov, O.; Forest, T.; Burggraf, J.; Stave, S.; Warren, G.; Starovoitova, V.

    2016-09-01

    A large body of experimental work has established the strong kinematical correlation between fission fragments and fission neutrons. Here, we report on the progress of investigations of the potential for strong two neutron correlations arising from the nearly back-to-back nature of the two fission fragments that emit these neutrons in the photo-fission process. In initial measurements, a pulsed electron linear accelerator was used to generate bremsstrahlung photons that impinged upon an actinide target, and the energy and opening angle distributions of coincident neutrons were measured using a large acceptance neutron detector array. A planned comprehensive set of measurements of two neutron correlations in the photo-fission of actinides is expected to shed light on several fundamental aspects of the fission process including the multiplicity distributions associated with the light and heavy fission fragments, the nuclear temperatures of the fission fragments, and the mass distribution of the fission fragments as a function of energy released. In addition to these measurements providing important nuclear data, the unique kinematics of fission and the resulting two neutron correlations have the potential to be the basis for a new tool to detect fissionable materials. A key technical challenge of this program arises from the need to perform coincidence measurements with a low duty factor, pulsed electron accelerator. This has motivated the construction of a large acceptance neutron detector array, and the development of data analysis techniques to directly measure uncorrelated two neutron backgrounds.

  4. Fission dynamics at low excitation energy

    CERN Document Server

    Aritomo, Y

    2013-01-01

    The origin of mass asymmetry in the fission of uranium at a low excitation energy is clarified by a trajectory analysis of the Langevin equation. The positions of the peaks in the mass distribution of fission fragments are mainly determined by fission saddle points originating from the shell correction energy. The widths of the peaks, on the other hand, result from a shape fluctuation around the scission point caused by the random force in the Langevin equation. We found that a random vibration in the oblate direction of fissioning fragments is essential for the fission process. According to this picture, fission does not occur with continuous stretching in the prolate direction, similarly to that observed in starch syrup. This is expected to lead to a new viewpoint of fission dynamics and the splitting mechanism.

  5. Minor actinide fission induced by multi-nucleon transfer reaction in inverse kinematics

    Directory of Open Access Journals (Sweden)

    Taieb J.

    2010-03-01

    Full Text Available In the framework of nuclear waste incineration and design of new generation nuclear reactors, experimental data on fission probabilities and on fission fragment yields of minor actinides are crucial to design prototypes. Transfer-induced fission has proven to be an efficient method to study fission probabilities of actinides which cannot be investigated with standard techniques due to their high radioactivity. We report on the preliminary results of an experiment performed at GANIL that investigates fission probabilities with multi-nucleon transfer reactions in inverse kinematics between a 238U beam on a 12C target. Actinides from U to Cm were produced with an excitation energy range from 0 to 30 MeV. In addition, inverse kinematics allowed to characterize the fission fragments in mass and charge. A key point of the analysis resides in the identification of the actinides produced in the different transfer channels. The new annular telescope SPIDER was used to tag the target-like recoil nucleus of the transfer reaction and to determine the excitation energy of the actinide. The fission probability for each transfer channel is accessible and the preliminary results for 238U are promising.

  6. Development of a Gas Filled Magnet spectrometer coupled with the Lohengrin spectrometer for fission study

    Directory of Open Access Journals (Sweden)

    Materna T.

    2013-03-01

    Full Text Available The accurate knowledge of the fission of actinides is necessary for studies of innovative nuclear reactor concepts. The fission yields have a direct influence on the evaluation of the fuel inventory or the reactor residual power after shutdown. A collaboration between the ILL, LPSC and CEA has developed a measurement program on fission fragment distributions at ILL in order to measure the isotopic and isomeric yields. The method is illustrated using the 233U(n,f98Y reaction. However, the extracted beam from the Lohengrin spectrometer is not isobaric ions which limits the low yield measurements. Presently, the coupling of the Lohengrin spectrometer with a Gas Filled Magnet (GFM is studied at the ILL in order to define and validate the enhanced purification of the extracted beam. This work will present the results of the spectrometer characterisation, along with a comparison with a dedicated Monte Carlo simulation especially developed for this purpose.

  7. A fission fragment detector for correlated fission output studies

    Energy Technology Data Exchange (ETDEWEB)

    Mosby, S., E-mail: smosby@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Tovesson, F.; Couture, A. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Duke, D.L. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Colorado School of Mines, Golden, CO 80401 (United States); Kleinrath, V. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Idaho State University, Pocatello, ID 83201 (United States); Meharchand, R.; Meierbachtol, K.; O' Donnell, J.M.; Perdue, B.; Richman, D. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Shields, D. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Colorado School of Mines, Golden, CO 80401 (United States)

    2014-09-01

    A digital data acquisition system has been combined with a double Frisch gridded ionization chamber for use at both moderated and unmoderated neutron sources at the Los Alamos Neutron Science (LANSCE) facility. The high efficiency of the instrument combined with intense LANSCE beams and new acquisition system permits fission output measurements across 11 orders of magnitude incident neutron energy. The acquisition and analysis system is presented along with the first in-beam performance tests of the setup.

  8. Cluster fission from the standpoint of nuclear fission

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sangmoo [Tsukuba Univ., Ibaraki (Japan). Inst. of Physics

    1996-03-01

    Atomic nucleus belongs to a quantal finite many body system. Nucleus shows great resemblance to cluster, above all metal cluster, although the strength of interaction is different. The works of Brechignac group, Saunder, Martin and P. Froeblich are explained by the critical size Nc as the central term. The differences between cluster and nucleus are investigated and a future view of cluster fission is explained. (S.Y.)

  9. DSP Algorithms for Fission Fragment and Prompt Fission Neutron Spectroscopy

    Science.gov (United States)

    Zeynalova, O.; Zeynalov, Sh.; Hambsch, F.-J.; Oberstedt, S.; Fabry, I.

    2009-10-01

    Digital signal processing (DSP) algorithms are in high demand for modern nuclear fission investigation due to importance of increase the accuracy of fissile nuclear data for new generation of nuclear power stations. DSP algorithms for fission fragment (FF) and prompt fission neutron (PFN) spectroscopy are described in the present work. The twin Frisch-grid ionization chamber (GTIC) is used to measure the kinetic energy-, mass- and angular distributions of the FF in the 252Cf(SF) reaction. Along with the neutron time-of-flight (TOF) measurement the correlation between neutron emission and FF mass and energy is investigated. The TOF is measured between common cathode of the GTIC and the neutron detector (ND) pulses. Waveform digitizers (WFD) having 12 bit amplitude resolution and 100 MHz sampling frequency are used for the detector pulse sampling. DSP algorithms are developed as recursive procedures to perform the signal processing, similar to those available in various nuclear electronics modules, such as constant fraction discriminator (CFD), pulse shape discriminator (PSD), peak-sensitive analogue-to-digital converter (pADC) and pulse shaping amplifier (PSA). To measure the angle between FF and the cathode plane normal to the GTIC a new algorithm is developed having advantage over the traditional analogue pulse processing schemes. Algorithms are tested by comparing the numerical simulation of the data analysis of the 252Cf(SF) reaction with data available from literature.

  10. Database applicaton for absolute spectrophotometry

    Science.gov (United States)

    Bochkov, Valery V.; Shumko, Sergiy

    2002-12-01

    32-bit database application with multidocument interface for Windows has been developed to calculate absolute energy distributions of observed spectra. The original database contains wavelength calibrated observed spectra which had been already passed through apparatus reductions such as flatfielding, background and apparatus noise subtracting. Absolute energy distributions of observed spectra are defined in unique scale by means of registering them simultaneously with artificial intensity standard. Observations of sequence of spectrophotometric standards are used to define absolute energy of the artificial standard. Observations of spectrophotometric standards are used to define optical extinction in selected moments. FFT algorithm implemented in the application allows performing convolution (deconvolution) spectra with user-defined PSF. The object-oriented interface has been created using facilities of C++ libraries. Client/server model with Windows Socket functionality based on TCP/IP protocol is used to develop the application. It supports Dynamic Data Exchange conversation in server mode and uses Microsoft Exchange communication facilities.

  11. Fission properties for r-process nuclei

    CERN Document Server

    Erler, J; Loens, H P; Martínez-Pinedo, G; Reinhard, P -G

    2011-01-01

    We present a systematics of fission barriers and fission lifetimes for the whole landscape of super-heavy elements (SHE), i.e. nuclei with Z>100. The fission lifetimes are also compared with the alpha-decay half-lives. The survey is based on a self-consistent description in terms of the Skyrme-Hartree-Fock (SHF) approach. Results for various different SHF parameterizations are compared to explore the robustness of the predictions. The fission path is computed by quadrupole constrained SHF. The computation of fission lifetimes takes care of the crucial ingredients of the large-amplitude collective dynamics along the fission path, as self-consistent collective mass and proper quantum corrections. We discuss the different topologies of fission landscapes which occur in the realm of SHE (symmetric versus asymmetric fission, regions of triaxial fission, bi-modal fission, and the impact of asymmetric ground states). The explored region is extended deep into the regime of very neutron-rich isotopes as they are expec...

  12. Fission studies by prompt gamma-ray spectrometry

    Directory of Open Access Journals (Sweden)

    Materna T.

    2015-01-01

    Full Text Available The feasibility of retrieving accurate fission observables with a Ge-detector array around a fissile target placed in a cold neutron beam was tested. In three measurement campaigns performed at ILL with the EXILL setup, 235U and 241Pu targets were placed in the high flux cold neutron beam available at the PF1B neutron guide. Gamma-rays following fission were detected by an array of 16 Ge detectors. In the following study, part of data was analyzed as a proof of principle. A set of yields belonging to the Kr-Ba pair were extracted using a gamma-gamma coincidence technique. Preliminary results were compared to the predictions of two phenomenological models: GEF and FIFRELIN.

  13. Fission-Produced (99)Mo Without a Nuclear Reactor.

    Science.gov (United States)

    Youker, Amanda J; Chemerisov, Sergey D; Tkac, Peter; Kalensky, Michael; Heltemes, Thad A; Rotsch, David A; Vandegrift, George F; Krebs, John F; Makarashvili, Vakho; Stepinski, Dominique C

    2017-03-01

    (99)Mo, the parent of the widely used medical isotope (99m)Tc, is currently produced by irradiation of enriched uranium in nuclear reactors. The supply of this isotope is encumbered by the aging of these reactors and concerns about international transportation and nuclear proliferation. Methods: We report results for the production of (99)Mo from the accelerator-driven subcritical fission of an aqueous solution containing low enriched uranium. The predominately fast neutrons generated by impinging high-energy electrons onto a tantalum convertor are moderated to thermal energies to increase fission processes. The separation, recovery, and purification of (99)Mo were demonstrated using a recycled uranyl sulfate solution. Conclusion: The (99)Mo yield and purity were found to be unaffected by reuse of the previously irradiated and processed uranyl sulfate solution. Results from a 51.8-GBq (99)Mo production run are presented.

  14. Measurements of delayed neutrons yields and time spectra from 1 GeV protons interacting with thick {sup nat}Pb, {sup 209}Bi and {sup nat}Fe targets

    Energy Technology Data Exchange (ETDEWEB)

    Ridikas, D.; Blideanu, V.; David, J.C.; Dore, D.; Prevost, A. [CEA Saclay, Dept. d' Astrophysique, de Physique des Particules de Physique Nucleaire et de l' Instrumentation Associee, 91- Gif sur Yvette (France); Ledoux, X. [CEA Bruyeres-le-Chatel (CEA/DIF, DPTA/SPN), 91 (France); Barzakh, A.; Fedorov, D.; Moroz, F.; Panteleev, V.; Shcherbakov, O.; Vorobyev, A. [Petersburg Nuclear Physics Institute, Leningrad district (Russian Federation); Plukiene, R.; Plukis, A. [Institute of Physics, Vilnius (Lithuania)

    2008-07-01

    This paper presents the experimental results on the delayed neutrons (DN) yields and time spectra from 1 GeV protons interacting with natural lead, {sup 209}Bi and natural iron targets of variable thicknesses from 5 cm to 55 cm. Both absolute yields and time constants were obtained. In parallel, the MCNPX and PHITS codes were used to predict the DN precursors and construct the theoretical DN tables. Different model parameters are examined and show significant dependence on the choice of the intra-nuclear cascade and fission-evaporation models used. These data and modelling are of great importance for the new generation spallation neutron sources based on liquid metal technologies. Finally, the above experiment allowed the determination of the production cross sections of a number of delayed neutrons precursors as, {sup 87}Br, {sup 88}Br and {sup 17}N. For the 3 targets the emission of delayed neutrons is dominated by light reaction products such as {sup 9}Li and {sup 17}N during decay times from 0 to 20-30 s. In the case of fissile targets after longer decay times the fission fragments such as {sup 88}Br and {sup 87}Br are the major contributors. These results permit the examination of two different reaction mechanisms, namely fission and fragmentation, implemented in high energy transport codes. (authors)

  15. Technical Application of Nuclear Fission

    Science.gov (United States)

    Denschlag, J. O.

    The chapter is devoted to the practical application of the fission process, mainly in nuclear reactors. After a historical discussion covering the natural reactors at Oklo and the first attempts to build artificial reactors, the fundamental principles of chain reactions are discussed. In this context chain reactions with fast and thermal neutrons are covered as well as the process of neutron moderation. Criticality concepts (fission factor η, criticality factor k) are discussed as well as reactor kinetics and the role of delayed neutrons. Examples of specific nuclear reactor types are presented briefly: research reactors (TRIGA and ILL High Flux Reactor), and some reactor types used to drive nuclear power stations (pressurized water reactor [PWR], boiling water reactor [BWR], Reaktor Bolshoi Moshchnosti Kanalny [RBMK], fast breeder reactor [FBR]). The new concept of the accelerator-driven systems (ADS) is presented. The principle of fission weapons is outlined. Finally, the nuclear fuel cycle is briefly covered from mining, chemical isolation of the fuel and preparation of the fuel elements to reprocessing the spent fuel and conditioning for deposit in a final repository.

  16. Evaluation of fission cross sections and covariances for {sup 233}U, {sup 235}U, {sup 238}U, {sup 239}Pu, {sup 240}Pu, and {sup 241}Pu

    Energy Technology Data Exchange (ETDEWEB)

    Kawano, Toshihiko [Kyushu Univ., Fukuoka (Japan); Matsunobu, Hiroyuki [Data Engineering, Inc. (Japan); Murata, Toru [AITEL Corporation, Tokyo (JP)] [and others

    2000-02-01

    A simultaneous evaluation code SOK (Simultaneous evaluation on KALMAN) has been developed, which is a least-squares fitting program to absolute and relative measurements. The SOK code was employed to evaluate the fission cross sections of {sup 233}U, {sup 235}U, {sup 238}U, {sup 239}Pu, {sup 240}Pu, and {sup 241}Pu for the evaluated nuclear data library JENDL-3.3. Procedures of the simultaneous evaluation and the experimental database of the fission cross sections are described. The fission cross sections obtained were compared with evaluated values given in JENDL-3.2 and ENDF/B-VI. (author)

  17. Radiochemical studies on nuclear fission at Trombay

    Indian Academy of Sciences (India)

    Asok Goswami

    2015-08-01

    Since the discovery of nuclear fission in the year 1939, both physical and radiochemical techniques have been adopted for the study of various aspects of the phenomenon. Due to the ability to separate individual elements from a complex reaction mixture with a high degree of sensitivity and selectivity, a chemist plays a significant role in the measurements of mass, charge, kinetic energy, angular momentum and angular distribution of fission products in various fissioning systems. At Trombay, a small group of radiochemists initiated the work on radiochemical studies of mass distribution in the early sixties. Since then, radiochemical investigations on various fission observables have been carried out at Trombay in , , and heavy-ion-induced fissions. An attempt has been made to highlight the important findings of such studies in this paper, with an emphasis on medium energy and heavy-ion-induced fission.

  18. Collective spectra along the fission barrier

    Directory of Open Access Journals (Sweden)

    Pigni M. T.

    2012-12-01

    Full Text Available Discrete and continuous spectra of fissioning nuclei at the humps of fission barriers (Bohr transition states and in the intermediate wells (superdeformed and hyperdeformed states play a key role in the calculation of fission cross sections. A theoretical evaluation of the collective parts of the spectra is possible within the framework of the dinuclear system model, which treats the wave function of the fissioning nucleus as a superposition of a mononucleus configuration and two–cluster configurations in a dynamical way, permitting exchange of upper–shell nucleons between clusters. The impact of theoretical spectra on neutron–induced fission cross sections and, in combination with an improved version of the scission–point model, on angular distribution of fission fragments is evaluated for plutonium isotopes of interest to nuclear energy applications.

  19. Absolute measurements of the /sup 233/U (n,f) cross section between 0. 13 and 8. 0 MeV. [Cross sections, 0. 13 to 8. 0 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Poenitz, W.P.

    1978-04-01

    The fast neutron fission cross section of /sup 233/U was measured absolutely between 0.13 and 8.0 MeV. The absolute cross section values were obtained by low geometry alpha counting and isotopic dilution analysis of various /sup 233/U samples, 2..pi..-detection of the fission fragments with an ionization chamber, and the measurement of the neutron flux with several black neutron detectors. Absolute cross sections were obtained with a 2 to 3% uncertainty over the most important energy range.

  20. Comparative evaluation of solar, fission, fusion, and fossil energy resources. Part 2: Power from nuclear fission

    Science.gov (United States)

    Clement, J. D.

    1973-01-01

    Different types of nuclear fission reactors and fissionable materials are compared. Special emphasis is placed upon the environmental impact of such reactors. Graphs and charts comparing reactor facilities in the U. S. are presented.

  1. Fission dynamics within time-dependent Hartree-Fock: deformation-induced fission

    CERN Document Server

    Goddard, P M; Rios, A

    2015-01-01

    Background: Nuclear fission is a complex large-amplitude collective decay mode in heavy nuclei. Microscopic density functional studies of fission have previously concentrated on adiabatic approaches based on constrained static calculations ignoring dynamical excitations of the fissioning nucleus, and the daughter products. Purpose: To explore the ability of dynamic mean-field methods to describe fast fission processes beyond the fission barrier, using the nuclide $^{240}$Pu as an example. Methods: Time-dependent Hartree-Fock calculations based on the Skyrme interaction are used to calculate non-adiabatic fission paths, beginning from static constrained Hartree-Fock calculations. The properties of the dynamic states are interpreted in terms of the nature of their collective motion. Fission product properties are compared to data. Results: Parent nuclei constrained to begin dynamic evolution with a deformation less than the fission barrier exhibit giant-resonance-type behaviour. Those beginning just beyond the ...

  2. Relativistic Absolutism in Moral Education.

    Science.gov (United States)

    Vogt, W. Paul

    1982-01-01

    Discusses Emile Durkheim's "Moral Education: A Study in the Theory and Application of the Sociology of Education," which holds that morally healthy societies may vary in culture and organization but must possess absolute rules of moral behavior. Compares this moral theory with current theory and practice of American educators. (MJL)

  3. Absolute luminosity measurements at LHCb

    CERN Document Server

    Hopchev, Plamen

    2011-01-01

    Absolute luminosity measurements are of general interest for colliding-beam experiments at storage rings. These measurements are necessary to determine the absolute cross-sections of reaction processes and are valuable to quantify the performance of the accelerator. LHCb has applied two methods to determine the absolute scale of its luminosity measurements for proton-proton collisions at the LHC running at a centre-of-mass energy of 7 TeV. In addition to the classic ``van der Meer'' scan method a novel technique has been developed which makes use of direct imaging of the individual beams using both proton-gas and proton-proton interactions. The beam imaging method is made possible by the high resolution of the LHCb vertex detector and the close proximity of the detector to the beams, and allows beam parameters such as positions, angles and widths to be determined. We describe both methods and compare the two results. In addition, we present the techniques used to transport the absolute luminosity measurement ...

  4. Absolute Standards for Climate Measurements

    Science.gov (United States)

    Leckey, J.

    2016-10-01

    In a world of changing climate, political uncertainty, and ever-changing budgets, the benefit of measurements traceable to SI standards increases by the day. To truly resolve climate change trends on a decadal time scale, on-orbit measurements need to be referenced to something that is both absolute and unchanging. One such mission is the Climate Absolute Radiance and Refractivity Observatory (CLARREO) that will measure a variety of climate variables with an unprecedented accuracy to definitively quantify climate change. In the CLARREO mission, we will utilize phase change cells in which a material is melted to calibrate the temperature of a blackbody that can then be observed by a spectrometer. A material's melting point is an unchanging physical constant that, through a series of transfers, can ultimately calibrate a spectrometer on an absolute scale. CLARREO consists of two primary instruments: an infrared (IR) spectrometer and a reflected solar (RS) spectrometer. The mission will contain orbiting radiometers with sufficient accuracy to calibrate other space-based instrumentation and thus transferring the absolute traceability. The status of various mission options will be presented.

  5. Comparison of yield and decay data among JNDC2, ENDF/B-VI and JEF2.2

    Energy Technology Data Exchange (ETDEWEB)

    Oyamatsu, Kazuhiro; Sagisaka, Mitsuyuki; Miyazono, Toshimitsu [Nagoya Univ. (Japan)

    1997-03-01

    Fission yields and decay data for fission product summation calculations are compared among JNDC2 and ENDF/B-VI and JEF2.2. Special attention is paid to the summation calculation of the total delayed neutrons per fission because it requires the data of the most unstable nuclides among all fission products. The cumulative fission yields of delayed neutron precursors are found to be appreciably different among the libraries even though values of the independent fission yields and the total number of delayed neutrons are chosen to be in fair agreement with each other. This suggests that there still exist large uncertainties in delayed neutron emission probabilities (or decay chains) for the precursors far from the stability line. (author)

  6. Fission-product retention in HTGR fuels

    Energy Technology Data Exchange (ETDEWEB)

    Homan, F.J.; Kania, M.J.; Tiegs, T.N.

    1982-01-01

    Retention data for gaseous and metallic fission products are presented for both Triso-coated and Biso-coated HTGR fuel particles. Performance trends are established that relate fission product retention to operating parameters, such as temperature, burnup, and neutron exposure. It is concluded that Biso-coated particles are not adequately retentive of fission gas or metallic cesium, and Triso-coated particles which retain cesium still lose silver. Design implications related to these performance trends are identified and discussed.

  7. Rapid Separation of Fission Product 141La

    Institute of Scientific and Technical Information of China (English)

    XIA; Wen; YE; Hong-sheng; LIN; Min; CHEN; Ke-sheng; XU; Li-jun; ZHANG; Wei-dong; CHEN; Yi-zhen

    2013-01-01

    141La was separated and purified from fission products in this work for physical measurements aimed at improving the accuracy of its decay parameters.As the impact of 142La and other fission products,cesium(141Cs,142Cs included)was rapid separated from the fission products,141Cs and 142Ba separation was prepared after a cooling time about 25 s when 142Cs decays to daughter 142Ba,141La purification then

  8. Fission Product Decay Heat Calculations for Neutron Fission of 232Th

    Science.gov (United States)

    Son, P. N.; Hai, N. X.

    2016-06-01

    Precise information on the decay heat from fission products following times after a fission reaction is necessary for safety designs and operations of nuclear-power reactors, fuel storage, transport flasks, and for spent fuel management and processing. In this study, the timing distributions of fission products' concentrations and their integrated decay heat as function of time following a fast neutron fission reaction of 232Th were exactly calculated by the numerical method with using the DHP code.

  9. Effect of nuclear viscosity on fission process

    Energy Technology Data Exchange (ETDEWEB)

    Li Shidong; Kuang Huishun; Zhang Shufa; Xing Jingru; Zhuo Yizhong; Wu Xizhen; Feng Renfa

    1989-02-01

    According to the fission diffusion model, the deformation motion of fission nucleuses is regarded as a diffusion process of quasi-Brownian particles under fission potential. Through simulating such Brownian motion in two dimensional phase space by Monte-Carlo mehtod, the effect of nuclear visocity on Brownian particle diffusion is studied. Dynamical quanties, such as fission rate, kinetic energy distribution on scission, and soon are numerically calculated for various viscosity coefficients. The results are resonable in physics. This method can be easily extended to deal with multi-dimensional diffusion problems.

  10. Theoretical Description of the Fission Process

    Energy Technology Data Exchange (ETDEWEB)

    Witold Nazarewicz

    2003-07-01

    The main goals of the project can be summarized as follows: Development of effective energy functionals that are appropriate for the description of heavy nuclei. Our goal is to improve the existing energy density (Skyrme) functionals to develop a force that will be used in calculations of fission dynamics. Systematic self-consistent calculations of binding energies and fission barriers of actinide and trans-actinide nuclei using modern density functionals. This will be followed by calculations of spontaneous fission lifetimes and mass and charge divisions using dynamic adiabatic approaches based on the WKB approximation. Investigate novel microscopic (non-adiabatic) methods to study the fission process.

  11. Some aspects of fission and quasifission processes

    Indian Academy of Sciences (India)

    B B Back

    2015-08-01

    The discovery of nuclear fission in 1938–1939 had a profound influence on the field of nuclear physics and it brought this branch of physics into the forefront as it was recognized for having the potential for its seminal influence on modern society. Although many of the basic features of actinide fission were described in a ground-breaking paper by Bohr and Wheeler only six months after the discovery, the fission process is very complex and it has been a challenge for both experimentalists and theorists to achieve a complete and satisfactory understanding of this phenomenon. Many aspects of nuclear physics are involved in fission and it continues to be a subject of intense study even three quarters of a century after its discovery. In this talk, I will review an incomplete subset of the major milestones in fission research, and briefly discuss some of the topics that I have been involved in during my career. These include studies of vibrational resonances and fission isomers that are caused by the second minimum in the fission barrier in actinide nuclei, studies of heavy-ion-induced fission in terms of the angular distributions and the mass–angle correlations of fission fragments. Some of these studies provided evidence for the importance of the quasifission process and the attendant suppression of the complete fusion process. Finally, some of the circumstances around the establishment of large-scale nuclear research in India will be discussed.

  12. Absolute Orientation Based on Distance Kernel Functions

    Directory of Open Access Journals (Sweden)

    Yanbiao Sun

    2016-03-01

    Full Text Available The classical absolute orientation method is capable of transforming tie points (TPs from a local coordinate system to a global (geodetic coordinate system. The method is based only on a unique set of similarity transformation parameters estimated by minimizing the total difference between all ground control points (GCPs and the fitted points. Nevertheless, it often yields a transformation with poor accuracy, especially in large-scale study cases. To address this problem, this study proposes a novel absolute orientation method based on distance kernel functions, in which various sets of similarity transformation parameters instead of only one set are calculated. When estimating the similarity transformation parameters for TPs using the iterative solution of a non-linear least squares problem, we assigned larger weighting matrices for the GCPs for which the distances from the point are short. The weighting matrices can be evaluated using the distance kernel function as a function of the distances between the GCPs and the TPs. Furthermore, we used the exponential function and the Gaussian function to describe distance kernel functions in this study. To validate and verify the proposed method, six synthetic and two real datasets were tested. The accuracy was significantly improved by the proposed method when compared to the classical method, although a higher computational complexity is experienced.

  13. Nuclear charge and mass yields for $^{235}U(n_{th}, f)$

    CERN Document Server

    Clerc, H G; Schmidt, K H; Schrader, H; Wohlfarth, H

    1976-01-01

    The fission product mass spectrometer 'Lohengrin' has been used to determine the mass and nuclear charge yields of light fission products as a function of their kinetic energy in the range 88.5 MeVor=60 at high kinetic energy are tentatively explained by an oblate deformation of these nuclei at the scission point. (16 refs).

  14. Calculation of the absolute detection efficiency of a moderated /sup 235/U neutron detector on the Tokamak Fusion Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ku, L.P.; Hendel, H.W.; Liew, S.L.

    1989-02-01

    Neutron transport simulations have been carried out to calculate the absolute detection efficiency of a moderated /sup 235/U neutron detector which is used on the TFTR as a part of the primary fission detector diagnostic system for measuring fusion power yields. Transport simulations provide a means by which the effects of variations in various shielding and geometrical parameters can be explored. These effects are difficult to study in calibration experiments. The calculational model, benchmarked against measurements, can be used to complement future detector calibrations, when the high level of radioactivity resulting from machine operation may severely restrict access to the tokamak. We present a coupled forward-adjoint algorithm, employing both the deterministic and Monte Carlo sampling methods, to model the neutron transport in the complex tokamak and detector geometries. Sensitivities of the detector response to the major and minor radii, and angular anisotropy of the neutron emission are discussed. A semi-empirical model based on matching the calculational results with a small set of experiments produces good agreement (+-15%) for a wide range of source energies and geometries. 20 refs., 6 figs., 4 tabs.

  15. The contrasting fission potential-energy structure of actinides and mercury isotopes

    CERN Document Server

    Ichikawa, Takatoshi; Möller, Peter; Sierk, Arnold J

    2012-01-01

    Fission-fragment mass distributions are asymmetric in fission of typical actinide nuclei for nucleon number $A$ in the range $228 \\lnsim A \\lnsim 258$ and proton number $Z$ in the range $90\\lnsim Z \\lnsim 100$. For somewhat lighter systems it has been observed that fission mass distributions are usually symmetric. However, a recent experiment showed that fission of $^{180}$Hg following electron capture on $^{180}$Tl is asymmetric. An earlier experiment has shown fission of $^{198}$Hg and nearby nuclei is symmetric, but with hints of asymmetric yield distributions up to about 10 MeV above the saddle-point energy. We calculate potential-energy surfaces for a typical actinide nucleus and for 12 even isotopes in the range $^{178}$Hg--$^{200}$Hg, demonstrating the radical differences between actinide and mercury potential surfaces. We discuss these differences and how the changing potential-energy structure along the mercury isotope chain affects the observed (a)symmetry of the fission fragments. We show that the ...

  16. Multi-modal fission in collinear ternary cluster decay of 252Cf(sf, fff

    Directory of Open Access Journals (Sweden)

    W. von Oertzen

    2015-06-01

    Full Text Available We discuss the multiple decay modes of collinear fission in 252Cf(sf, fff, with three fragments as suggested by the potential energy surface (PES. Fission as a statistical decay is governed by the phase space of the different decay channels, which are suggested in the PES-landscape. The population of the fission modes is determined by the minima in the PES at the scission points and on the internal potential barriers. The ternary collinear decay proceeds as a sequential process, in two steps. The originally observed ternary decay of 252Cf(sf into three different masses (e.g. 132–140Sn, 52–48Ca, 68–72Ni, observed by the FOBOS group in the FLNR (Flerov Laboratory for Nuclear Reactions of the JINR (Dubna the collinear cluster tripartition (CCT, is one of the ternary fission modes. This kind of “true ternary fission” of heavy nuclei has often been predicted in theoretical works during the last decades. In the present note we discuss different ternary fission modes in the same system. The PES shows pronounced minima, which correspond to several modes of ternary fragmentations. These decays have very similar dynamical features as the previously observed CCT-decays. The data obtained in the experiments on CCT allow us to extract the yields for different decay modes using specific gates on the measured parameters, and to establish multiple modes of the ternary fission decay.

  17. Meso-Cenozoic uplifting and exhumation on Yunkaidashan: Evidence from fission track thermochronology

    Institute of Scientific and Technical Information of China (English)

    LI Xiaoming; WANG Yuejun; TAN Kaixuan; PENG Touping

    2005-01-01

    Yunkaidashan, located at the southern South China block (SCB) and closely adjacent to the Indochina block, is an ideal region for better understanding the temporal and spatial framework of tectonothermal overprinting at the southern SCB since Mesozoic. Apatite and zircon fission track thermochronology of various-type rocks from Yunkaidashan is presented in this paper. The results show, no matter what rocks are, the apparent ages of zircon fission track range from 97.4 to 133.0 Ma, and those of apatite fission track from 43.2 to 68.4 Ma. The length of apatite fission track yields an average confined track length of ~13 μm and shows normal distribution of unimodal frequency. It is inferred that the uplifting amplitude has been more than 5 km in Yunkaidashan since late Mesozoic. The difference of fission track apparent ages at different locations in Yunkaidashan suggests a paleophysiognomic scenario of the heterogeneous uplift/denudation. These data of the fission track thermochronology provide new constraints for better understanding the tectonophysiognomic pattern of the SCB since late Mesozoic.

  18. Spectroscopy of neutron rich nuclei using cold neutron induced fission of actinide targets at the ILL: The EXILL campaign

    Directory of Open Access Journals (Sweden)

    Blanc A.

    2013-12-01

    Full Text Available One way to explore exotic nuclei is to study their structure by performing γ-ray spectroscopy. At the ILL, we exploit a high neutron flux reactor to induce the cold fission of actinide targets. In this process, fission products that cannot be accessed using standard spontaneous fission sources are produced with a yield allowing their detailed study using high resolution γ-ray spectroscopy. This is what was pursued at the ILL with the EXILL (for EXOGAM at the ILL campaign. In the present work, the EXILL setup and performance will be presented.

  19. Isoscaling of the Fission Fragments with Langevin Equation

    Institute of Scientific and Technical Information of China (English)

    WANG Kun; TIAN Wen-Dong; ZHONG Chen; ZHOU Xing-Fei; MA Yu-Gang; WEI Yi-Bin; CAI Xiang-Zhou; CHEN Jin-Gen; FANG De-Qing; GUO Wei; MA Guo-Liang; SHEN Wen-Qing

    2005-01-01

    @@ The Langevin equation is used to simulate the fission process of 112Sn + 112Sn and 116Sn + 116Sn. The mass distribution of the fission fragments are given by assuming the process of symmetric fission or asymmetric fission with the Gaussian probability sampling. The isoscaling behaviour has been observed from the analysis of fission fragments of both the reactions, and the isoscaling parameter α seems to be sensitive to the width of fission probability and the beam energy.

  20. Yield-Energy Dependence for 147Nd and 144Ce Under Strong Neutron Field

    Institute of Scientific and Technical Information of China (English)

    QIAN; Jing; LIU; Ting-jin; SUN; Zheng-jun; SHU; Neng-chuan

    2012-01-01

    <正>The data of the fission product yield play an important role in the nuclear science technology and nuclear engineering because they are the key data in the calculation of the decay heat, shield design, nuclear verification, radiochemistry reprocessing and nuclear safety, etc. Especially, it is the essential data in fission power estimation for a fission device. It is well known that there exists a consecutive neutron spectrum with the energy from 1 keV to 15 MeV for a fission-fusion device. So in order to estimate the

  1. Optomechanics for absolute rotation detection

    Science.gov (United States)

    Davuluri, Sankar

    2016-07-01

    In this article, we present an application of optomechanical cavity for the absolute rotation detection. The optomechanical cavity is arranged in a Michelson interferometer in such a way that the classical centrifugal force due to rotation changes the length of the optomechanical cavity. The change in the cavity length induces a shift in the frequency of the cavity mode. The phase shift corresponding to the frequency shift in the cavity mode is measured at the interferometer output to estimate the angular velocity of absolute rotation. We derived an analytic expression to estimate the minimum detectable rotation rate in our scheme for a given optomechanical cavity. Temperature dependence of the rotation detection sensitivity is studied.

  2. Physics of negative absolute temperatures

    Science.gov (United States)

    Abraham, Eitan; Penrose, Oliver

    2017-01-01

    Negative absolute temperatures were introduced into experimental physics by Purcell and Pound, who successfully applied this concept to nuclear spins; nevertheless, the concept has proved controversial: a recent article aroused considerable interest by its claim, based on a classical entropy formula (the "volume entropy") due to Gibbs, that negative temperatures violated basic principles of statistical thermodynamics. Here we give a thermodynamic analysis that confirms the negative-temperature interpretation of the Purcell-Pound experiments. We also examine the principal arguments that have been advanced against the negative temperature concept; we find that these arguments are not logically compelling, and moreover that the underlying "volume" entropy formula leads to predictions inconsistent with existing experimental results on nuclear spins. We conclude that, despite the counterarguments, negative absolute temperatures make good theoretical sense and did occur in the experiments designed to produce them.

  3. Spectroscopy of heavy fissionable nuclei

    Indian Academy of Sciences (India)

    S K Tandel

    2015-09-01

    Structural studies of heavy nuclei are quite challenging due to increased competition from fission, particularly at high spins. Nuclei in the actinide region exhibit a variety of interesting phenomena. Recent advances in instrumentation and analysis techniques have made feasible sensitive measurements of nuclei populated with quite low cross-sections. These include isomers and rotational band structures in isotopes of Pu ( = 94) to Rf ( = 104), and octupole correlations in the Th ( = 90) region. The obtained experimental data have provided insights on various aspects like moments of inertia and nucleon alignments at high spins, quasiparticle energies and evolution of quadrupole and octupole collectivity, among others. An overview of some of these results is presented.

  4. Fusion-Fission Hybrid for Fissile Fuel Production without Processing

    Energy Technology Data Exchange (ETDEWEB)

    Fratoni, M; Moir, R W; Kramer, K J; Latkowski, J F; Meier, W R; Powers, J J

    2012-01-02

    Two scenarios are typically envisioned for thorium fuel cycles: 'open' cycles based on irradiation of {sup 232}Th and fission of {sup 233}U in situ without reprocessing or 'closed' cycles based on irradiation of {sup 232}Th followed by reprocessing, and recycling of {sup 233}U either in situ or in critical fission reactors. This study evaluates a third option based on the possibility of breeding fissile material in a fusion-fission hybrid reactor and burning the same fuel in a critical reactor without any reprocessing or reconditioning. This fuel cycle requires the hybrid and the critical reactor to use the same fuel form. TRISO particles embedded in carbon pebbles were selected as the preferred form of fuel and an inertial laser fusion system featuring a subcritical blanket was combined with critical pebble bed reactors, either gas-cooled or liquid-salt-cooled. The hybrid reactor was modeled based on the earlier, hybrid version of the LLNL Laser Inertial Fusion Energy (LIFE1) system, whereas the critical reactors were modeled according to the Pebble Bed Modular Reactor (PBMR) and the Pebble Bed Advanced High Temperature Reactor (PB-AHTR) design. An extensive neutronic analysis was carried out for both the hybrid and the fission reactors in order to track the fuel composition at each stage of the fuel cycle and ultimately determine the plant support ratio, which has been defined as the ratio between the thermal power generated in fission reactors and the fusion power required to breed the fissile fuel burnt in these fission reactors. It was found that the maximum attainable plant support ratio for a thorium fuel cycle that employs neither enrichment nor reprocessing is about 2. This requires tuning the neutron energy towards high energy for breeding and towards thermal energy for burning. A high fuel loading in the pebbles allows a faster spectrum in the hybrid blanket; mixing dummy carbon pebbles with fuel pebbles enables a softer spectrum in

  5. Uncertainties in fission-product decay-heat calculations

    Energy Technology Data Exchange (ETDEWEB)

    Oyamatsu, K.; Ohta, H.; Miyazono, T.; Tasaka, K. [Nagoya Univ. (Japan)

    1997-03-01

    The present precision of the aggregate decay heat calculations is studied quantitatively for 50 fissioning systems. In this evaluation, nuclear data and their uncertainty data are taken from ENDF/B-VI nuclear data library and those which are not available in this library are supplemented by a theoretical consideration. An approximate method is proposed to simplify the evaluation of the uncertainties in the aggregate decay heat calculations so that we can point out easily nuclei which cause large uncertainties in the calculated decay heat values. In this paper, we attempt to clarify the justification of the approximation which was not very clear at the early stage of the study. We find that the aggregate decay heat uncertainties for minor actinides such as Am and Cm isotopes are 3-5 times as large as those for {sup 235}U and {sup 239}Pu. The recommended values by Atomic Energy Society of Japan (AESJ) were given for 3 major fissioning systems, {sup 235}U(t), {sup 239}Pu(t) and {sup 238}U(f). The present results are consistent with the AESJ values for these systems although the two evaluations used different nuclear data libraries and approximations. Therefore, the present results can also be considered to supplement the uncertainty values for the remaining 17 fissioning systems in JNDC2, which were not treated in the AESJ evaluation. Furthermore, we attempt to list nuclear data which cause large uncertainties in decay heat calculations for the future revision of decay and yield data libraries. (author)

  6. Fission and spallation data evaluation using induced-activity method

    CERN Document Server

    Karapetyan, G S

    2015-01-01

    The induced-activity investigations in off-line analysis performed in different experiments, concerning pre-actinide and actinide nuclei, are here presented and discussed. Generalized expressions for the determination of independent yields/cross sections of radioactive nuclei, formed in the targets, are derived and analysed. The fragment mass distribution from U-238, Th-232 and Ta-181 photofission at the bremsstrahlung end-point energies of 50 and 3500 MeV, and from Am-241, U-238 and Np-237 fission induced by 660-MeV protons, are scrutinized from the point of view of the multimodal fission approach. The results of these studies are hence compared with theoretical model calculations using the CRISP code. We subsequently discuss the complex particle-induced reaction, such as heavy-ions and deuterons, by using the thick-target thick-catcher technique and the two-step vector model framework as well. This is accomplished in order to present the investigation of the main processes (fission, spallation and (multi)fr...

  7. Nuclear Power from Fission Reactors. An Introduction.

    Science.gov (United States)

    Department of Energy, Washington, DC. Technical Information Center.

    The purpose of this booklet is to provide a basic understanding of nuclear fission energy and different fission reaction concepts. Topics discussed are: energy use and production, current uses of fuels, oil and gas consumption, alternative energy sources, fossil fuel plants, nuclear plants, boiling water and pressurized water reactors, the light…

  8. Prompt fission neutron spectrum of actinides

    Energy Technology Data Exchange (ETDEWEB)

    Capote, R. [International Atomic Energy Agency, Vienna (Austria); Chen, Y. -J. [China Institute of Atomic Energy, Beijing (China); Hambsch, F. J. [European Commission, Joint Research Centre - IRRM, Geel (Belgium); Jurado, B. [CENBG, CNRS/IN2P3, Gradignan (France); Kornilov, N. [Ohio Univ., Athens, OH (United States); Lestone, J. P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Litaize, O. [CEA, DEN, DER, SPRC, Saint-Paul-Lez-Durance (France); Morillon, B. [CEA, DAM, DIF, Arpajon (France); Neudecker, D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Oberstedt, S. [European Commission, Joint Research Centre - IRRM, Geel (Belgium); Ohsawa, T. [Kinki Univ., Osaka-fu (Japan); Otuka, N. [International Atomic Energy Agency, Vienna (Austria); Pronyaev, V. G. [Institute of Physics and Power Engineering, Obninsk (Russian Federation); Saxena, A. [Bhabha Atomic Research Centre, Mumbai (India); Schmidt, K. H. [CENBG, CNRS/IN2P3, Gradignan (France); Serot, O. [CEA, DEN, DER, SPRC, Saint-Paul-Lez-Durance (France); Shcherbakov, O. A. [Petersburg Nuclear Physics Institute of NRC " Kurchatov Institute" , Gatchina (Russian Federation); Shu, N. -C. [China Institute of Atomic Energy, Beijing (China); Smith, D. L. [Argonne National Lab. (ANL), Argonne, IL (United States); Talou, P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Trkov, A. [International Atomic Energy Agency, Vienna (Austria); Tudora, A. C. [Univ. of Bucharest, Magurele (Romania); Vogt, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Univ. of California, Davis, CA (United States); Vorobyev, A. S. [Petersburg Nuclear Physics Institute of NRC " Kurchatov Institute" , Gatchina (Russian Federation)

    2016-01-06

    Here, the energy spectrum of prompt neutron emitted in fission (PFNS) plays a very important role in nuclear science and technology. A Coordinated Research Project (CRP) "Evaluation of Prompt Fission Neutron Spectra of Actinides" was established by the IAEA Nuclear Data Section in 2009, with the major goal to produce new PFNS evaluations with uncertainties for actinide nuclei.

  9. Theoretical Description of the Fission Process

    Energy Technology Data Exchange (ETDEWEB)

    Witold Nazarewicz

    2009-10-25

    Advanced theoretical methods and high-performance computers may finally unlock the secrets of nuclear fission, a fundamental nuclear decay that is of great relevance to society. In this work, we studied the phenomenon of spontaneous fission using the symmetry-unrestricted nuclear density functional theory (DFT). Our results show that many observed properties of fissioning nuclei can be explained in terms of pathways in multidimensional collective space corresponding to different geometries of fission products. From the calculated collective potential and collective mass, we estimated spontaneous fission half-lives, and good agreement with experimental data was found. We also predicted a new phenomenon of trimodal spontaneous fission for some transfermium isotopes. Our calculations demonstrate that fission barriers of excited superheavy nuclei vary rapidly with particle number, pointing to the importance of shell effects even at large excitation energies. The results are consistent with recent experiments where superheavy elements were created by bombarding an actinide target with 48-calcium; yet even at high excitation energies, sizable fission barriers remained. Not only does this reveal clues about the conditions for creating new elements, it also provides a wider context for understanding other types of fission. Understanding of the fission process is crucial for many areas of science and technology. Fission governs existence of many transuranium elements, including the predicted long-lived superheavy species. In nuclear astrophysics, fission influences the formation of heavy elements on the final stages of the r-process in a very high neutron density environment. Fission applications are numerous. Improved understanding of the fission process will enable scientists to enhance the safety and reliability of the nation’s nuclear stockpile and nuclear reactors. The deployment of a fleet of safe and efficient advanced reactors, which will also minimize radiotoxic

  10. Fission dynamics at low excitation energy. 2

    CERN Document Server

    Aritomo, Y; Ivanyuk, F A

    2014-01-01

    The mass asymmetry in the fission of U-236 at low excitation energy is clarified by the analysis of the trajectories obtained by solving the Langevin equations for the shape degrees of freedom. It is demonstrated that the position of the peaks in the mass distribution of fission fragments is determined mainly by the saddle point configuration originating from the shell correction energy. The width of the peaks, on the other hand, results from the shape fluctuations close to the scission point caused by the random force in the Langevin equation. We have found out that the fluctuations between elongated and compact shapes are essential for the fission process. According to our results the fission does not occur with continuous stretching in the prolate direction, similarly to that observed in starch syrup, but is accompanied by the fluctuations between elongated and compact shapes. This picture presents a new viewpoint of fission dynamics and the splitting mechanism.

  11. Cold fission as heavy ion emission

    Energy Technology Data Exchange (ETDEWEB)

    Poenaru, D.N.; Maruhn, J.A.; Greiner, W.; Ivascu, M.; Mazilu, D.; Gherghescu, R.

    1987-11-01

    The last version of the analytical superasymmetric fission model is applied to study cold fission processes. Strong shell effects are present either in one or both fission fragments. A smooth behaviour is observed when the proton or the neutron numbers are changed by four units. Increasing Z and N, in the transuranium region, a sharp transition from asymmetry with a large peak-to-valley ratio to symmetry at Z=100 and/or N=164 is obtained. The transition toward asymmetry at higher Z and N is much smoother. The most probable cold fission light fragments from /sup 234/U, /sup 236/U, /sup 239/Np and /sup 240/Pu are /sup 100/Zr, /sup 104/Mo, /sup 106/Mo and /sup 106/Mo, respectively, in good agreement with experimental data. The unified treatment of alpha decay, heavy ion radioactivities and cold fission is illustrated for /sup 234/U - the first nucleus in which all three groups have been already observed.

  12. Fission dynamics with systems of intermediate fissility

    Indian Academy of Sciences (India)

    E Vardaci; A Di Nitto; P N Nadtochy; A Brondi; G La Rana; R Moro; M Cinausero; G Prete; N Gelli; E M Kozulin; G N Knyazheva; I M Itkis

    2015-08-01

    A 4 light charged particle spectrometer, called 8 LP, is in operation at the Laboratori Nazionali di Legnaro, Italy, for studying reaction mechanisms in low-energy heavy-ion reactions. Besides about 300 telescopes to detect light charged particles, the spectrometer is also equipped with an anular PPAC system to detect evaporation residues and a two-arm time-of-flight spectrometer to detect fission fragments. The spectrometer has been used in several fission dynamics studies using as a probe light charged particles in the fission and evaporation residues (ER) channels. This paper proposes a journey within some open questions about the fission dynamics and a review of the main results concerning nuclear dissipation and fission time-scale obtained from several of these studies. In particular, the advantages of using systems of intermediate fissility will be discussed.

  13. A Covalently Linked Tetracene Trimer: Synthesis and Singlet Exciton Fission Property.

    Science.gov (United States)

    Liu, Heyuan; Wang, Rui; Shen, Li; Xu, Yanqing; Xiao, Min; Zhang, Chunfeng; Li, Xiyou

    2017-02-03

    A linear tetracene trimer linked by phenyl groups has been prepared for the first time. The triplet quantum yield formed via intramolecular singlet fission can reach up to 96% in this trimer, which is enhanced significantly compared with that in the dimer. This can be attributed to the stronger electronic coupling between tetracene subunits and more delocalized excitons in the trimer.

  14. Purification of Fission 99Mo by AG1-X8 Anion Exchange Chromatography

    Institute of Scientific and Technical Information of China (English)

    LIANG; Ji-xin; WU; Yu-xuan; YU; Ning-wen; SHEN; Yi-jia; WANG; Qing-gui; GUO; Shu

    2015-01-01

    For the development of 99Mo production procedure,both of recovery yield of 99Mo and the removal of other impurities should be taken into account.Anion exchange chromatography is usually employed for purification of 99Mo from fission products.AG1-X8resin is a kind of strong

  15. {\\alpha}-accompanied cold ternary fission of $^{238-244}$Pu isotopes in equatorial and collinear configuration

    CERN Document Server

    Santhosh, K P; Priyanka, B

    2015-01-01

    The cold ternary fission of $^{238}$Pu, $^{240}$Pu, $^{242}$Pu and $^{244}$Pu isotopes, with $^{4}$He as light charged particle, in equatorial and collinear configuration has been studied within the Unified ternary fission model (UTFM). The fragment combination $^{100}$Zr+$^{4}$He+$^{134}$Te possessing the near doubly magic nuclei $^{134}$Te (N=82, Z=52) gives the highest yield in the alpha accompanied ternary fission of $^{238}$Pu. For the alpha accompanied ternary fission of $^{240}$Pu, $^{242}$Pu and $^{244}$Pu isotopes, the highest yield was found for the fragment combination with doubly magic nuclei $^{132}$Sn (N=82, Z=50) as the heavier fragment. The deformation and orientation of fragments have also been taken into account for the alpha accompanied ternary fission of $^{238-244}$Pu isotopes, and it has been found that in addition to closed shell effect, ground state deformation also plays an important role in determining the isotopic yield in the ternary fission process. The emission probability and ki...

  16. Android Apps for Absolute Beginners

    CERN Document Server

    Jackson, Wallace

    2011-01-01

    Anybody can start building simple apps for the Android platform, and this book will show you how! Android Apps for Absolute Beginners takes you through the process of getting your first Android applications up and running using plain English and practical examples. It cuts through the fog of jargon and mystery that surrounds Android application development, and gives you simple, step-by-step instructions to get you started.* Teaches Android application development in language anyone can understand, giving you the best possible start in Android development * Provides simple, step-by-step exampl

  17. Determination of the fission barrier height in fission of heavy radioactive beams induced by the (d,p)-transfer

    CERN Multimedia

    A theoretical framework is described, allowing to determine the fission barrier height using the observed cross sections of fission induced by the (d,p)-transfer with accuracy, which is not achievable in another type of low-energy fission of neutron-deficient nuclei, the $\\beta$-delayed fission. The primary goal is to directly determine the fission barrier height of proton-rich fissile nuclei, preferably using the radio-active beams of isotopes of odd elements, and thus confirm or exclude the low values of fission barrier heights, typically extracted using statistical calculations in the compound nucleus reactions at higher excitation energies. Calculated fission cross sections in transfer reactions of the radioactive beams show sufficient sensitivity to fission barrier height. In the probable case that fission rates will be high enough, mass asymmetry of fission fragments can be determined. Results will be relevant for nuclear astrophysics and for production of super-heavy nuclei. Transfer induced fission of...

  18. Delayed neutrons as a probe of nuclear charge distribution in fission of heavy nuclei by neutrons

    CERN Document Server

    Isaev, S G; Piksaikin, V M; Roshchenko, V A

    2001-01-01

    A method of the determination of cumulative yields of delayed neutron precursors is developed. This method is based on the iterative least-square procedure applied to delayed neutron decay curves measured after irradiation of sup 2 sup 3 sup 5 U sample by thermal neutrons. Obtained cumulative yields in turns were used for deriving the values of the most probable charge in low-energy fission of the above-mentioned nucleus.

  19. Critical temperature for the nuclear liquid-gas phase transition (from multifragmentation and fission)

    CERN Document Server

    Karnaukhov, V A; Budzanowski, A; Avdeyev, S P; Botvina, A S; Cherepanov, E A; Karcz, W; Kirakosyan, V V; Rukoyatkin, P A; Skwirczynska, I; Norbeck, E

    2008-01-01

    Critical temperature Tc for the nuclear liquid-gas phase transition is stimated both from the multifragmentation and fission data. In the first case,the critical temperature is obtained by analysis of the IMF yields in p(8.1 GeV)+Au collisions within the statistical model of multifragmentation (SMM). In the second case, the experimental fission probability for excited 188Os is compared with the calculated one with Tc as a free parameter. It is concluded for both cases that the critical temperature is higher than 16 MeV.

  20. Recovery and use of fission product noble metals

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, G.A.; Rohmann, C.A.; Perrigo, L.D.

    1980-06-01

    Noble metals in fission products are of strategic value. Market prices for noble metals are rising more rapidly than recovery costs. A promising concept has been developed for recovery of noble metals from fission product waste. Although the assessment was made only for the three noble metal fission products (Rh, Pd, Ru), there are other fission products and actinides which have potential value. (DLC)

  1. Fission-fragment properties in 238U(n ,f ) between 1 and 30 MeV

    Science.gov (United States)

    Duke, D. L.; Tovesson, F.; Laptev, A. B.; Mosby, S.; Hambsch, F.-J.; Bryś, T.; Vidali, M.

    2016-11-01

    The fragment mass and kinetic energy in neutron-induced fission of 238U has been measured for incident energies from 1 to 30 MeV at the Los Alamos Neutron Science Center. The change in mass distributions over this energy range were studied, and the transition from highly asymmetric to more symmetric mass distributions is observed. A decrease in average total kinetic energy (TKE ¯) with increasing excitation energy is observed, consistent with previous experimental work. Additional structure at multichance fission thresholds is present in the TKE ¯ data. The correlations between fragment masses and total kinetic energy and how that changes with excitation energy of the fissioning compound nucleus were also measured. The fission mass yields and average total kinetic energy are important for fission-based technologies such as nuclear reactors to understand nuclear waste generation and energy output when developing new and advanced concepts. The correlations between fragment mass and kinetic energy are needed both as input for theoretical calculations of the deexcitation process in fission fragments by prompt radiation emission and for validating advanced theoretical fission models describing the formation of the primordial fragments.

  2. Rearrangement of cluster structure during fission processes

    DEFF Research Database (Denmark)

    Lyalin, Andrey G.; Obolensky, Oleg I.; Solov'yov, Andrey V.

    2004-01-01

    Results of molecular dynamics simulations of fission reactions $Na_10^2+ -->Na_7^++ Na_3^+ and Na_18^2+--> 2Na_9^+ are presented. The dependence of the fission barriers on the isomer structure of the parent cluster is analysed. It is demonstrated that the energy necessary for removing homothetic...... groups of atoms from the parent cluster is largely independent of the isomer form of the parent cluster. The importance of rearrangement of the cluster structure during the fission process is elucidated. This rearrangement may include transition to another isomer state of the parent cluster before actual...

  3. Fission induced by nucleons at intermediate energies

    CERN Document Server

    Meo, Sergio Lo; Massimi, Cristian; Vannini, Gianni; Ventura, Alberto

    2014-01-01

    Monte Carlo calculations of fission of actinides and pre-actinides induced by protons and neutrons in the energy range from 100 MeV to 1 GeV are carried out by means of a recent version of the Li\\`ege Intranuclear Cascade Model, INCL++, coupled with two different evaporation-fission codes, GEMINI++ and ABLA07. In order to reproduce experimental fission cross sections, model parameters are usually adjusted on available (p,f) cross sections and used to predict (n,f) cross sections for the same isotopes.

  4. Fission cross section measurements for minor actinides

    Energy Technology Data Exchange (ETDEWEB)

    Fursov, B. [IPPE, Obninsk (Russian Federation)

    1997-03-01

    The main task of this work is the measurement of fast neutron induced fission cross section for minor actinides of {sup 238}Pu, {sup 242m}Am, {sup 243,244,245,246,247,248}Cm. The task of the work is to increase the accuracy of data in MeV energy region. Basic experimental method, fissile samples, fission detectors and electronics, track detectors, alpha counting, neutron generation, fission rate measurement, corrections to the data and error analysis are presented in this paper. (author)

  5. Correlation of yield and yield components for afila and normal leave pea, Pissum sativum L.

    Directory of Open Access Journals (Sweden)

    Đorđević Radiša

    2004-01-01

    Full Text Available In order to research the correlation of yield and yield components of Afila and normal leaf Pea, we conducted a three years research (1993 - 1995. We have researched a correlative junction of yield and yield components (number of pods, number of grains per pod, number of grains per plant and the absolute grain weight of 8 Afila lines and 4 parent varieties. The results showed that the yield and yield components are highly related r - 0.82 - 0.95, while the absolute weight is not related to the yield r - 0, 19 and due to that it does not represent the yield component. The determined correlative values for all researched genotypes and parents were the same as previously researched by other authors, which leads us to the conclusion that the absence of leaves does not directly impact the change of correlative values.

  6. Measurement of the absolute branching fraction of the Ds+- meson

    CERN Document Server

    Abe, K; Dragic, J; Fujii, H; Gershon, T; Haba, J; Hazumi, M; Higuchi, T; Igarashi, Y; Itoh, R; Iwasaki, Y; Katayama, N; Kichimi, H; Krokovnyi, P P; Limosani, A; Nakamura, I; Nakao, M; Nakazawa, H; Nishida, S; Nozaki, T; Ozaki, H; Ronga, F J; Saitoh, S; Sakai, Y; Stamen, R; Sumisawa, K; Suzuki, S Y; Tajima, O; Takasaki, F; Tamai, K; Tanaka, M; Trabelsi, K; Tsuboyama, T; Tsukamoto, T; Uehara, S; Unno, Y; Uno, S; Ushiroda, Y; Yamauchi, M; Zhang, J; Hoshi, Y; Neichi, K; Aihara, H; Hastings, N C; Ishikawa, A; Itoh, K; Iwasaki, M; Kakuno, H; Kusaka, A; Nakahama, Y; Tanabe, K; Anipko, D; Arinstein, K; Aulchenko, V; Bedny, I; Bondar, A; Eidelman, S; Epifanov, D A; Gabyshev, N; Kuzmin, A; Poluektov, A; Root, N; Shwartz, B; Sidorov, V; Usov, Yu; Zhilich, V; Aoki, K; Enari, Y; Hara, K; Hayasaka, K; Hokuue, T; Iijima, T; Ikado, K; Inami, K; Kishimoto, N; Kozakai, Y; Kubota, T; Miyazaki, Y; Ohshima, T; Okabe, T; Sato, N; Senyo, K; Yoshino, S; Arakawa, T; Kawasaki, T; Miyata, H; Tamura, N; Watanabe, M; Asano, Y; Aso, T; Aushev, T; Bay, A; Hinz, L; Jacoby, C; Schietinger, T; Schneider, O; Villa, S; Wicht, J; Zürcher, D; Aziz, T; Banerjee, S; Gokhroo, G; Majumder, G; Bahinipati, S; Drutskoy, A; Goldenzweig, P; Kinoshita, K; Kulasiri, R; Sayeed, K; Schwartz, A J; Somov, A; Bakich, A M; Cole, S; McOnie, S; Parslow, N; Peak, L S; Stöck, H; Varvell, K E; Yabsley, B D; Balagura, V; Chistov, R; Danilov, M; Liventsev, D; Medvedeva, T; Mizuk, R; Pakhlov, P; Pakhlova, G; Tikhomirov, I; Uglov, T; Tian, Y BanX C; Barberio, E; Dalseno, J; Dowd, R; Moloney, G R; Sevior, M E; Taylor, G N; Tse, Y F; Urquijo, P; Barbero, M; Browder, T E; Guler, H; Jones, M; Li, J; Nishimura, K; Olsen, S L; Peters, M; Rorie, J; Sahoo, H; Uchida, K; Varner, G; Belous, K S; Shapkin, M; Sokolov, A; Bitenc, U; Bizjak, I; Fratina, S; Gorisek, A; Pestotnik, R; Staric, M; Zupanc, A; Blyth, S; Chen, A; Chen, W T; Go, A; Hou, S; Kuo, C C; Bozek, A; Kapusta, P; Lesiak, T; Matyja, A; Natkaniec, Z; Ostrowicz, W; Palka, H; Rózanska, M; Wiechczynski, J; Bracko, M; Korpar S; Brodzicka, J; Chang, M C; Kikuchi, N; Mikami, Y; Nagamine, T; Schonmeier, P; Yamaguchi, A; Yamamoto, H; Chang, P; Chao, Y; Chen, K F; Hou, W S; Hsiung, Y B; Lee, Y J; Lin, C Y; Lin, S W; Shen, Y T; Tsai, Y T; Ueno, K; Wang, C C; Wang, M Z; Wu, C H; Cheon, B G; Choi, J H; Ha, H; Kang, J S; Won, E; Choi, S K; Choi, Y; Choi, Y K; Kim, H O; Kim, J H; Park, C W; Park, K S; Chuvikov, A; Garmash, A; Marlow, D; Ziegler, T; Dash, M; Mohapatra, D; Piilonen, L E; Yusa, Y; Fujikawa, M; Hayashii, H; Imoto, A; Kataoka, S U; Miyabayashi, K; Noguchi, S; Krizan, P; Golob, B; Seidl, R; Grosse-Perdekamp, M; Hara, T; Heffernan, D; Miyake, H; Hasegawa, Y; Satoyama, N; Takada, N; Nitoh, O; Hoshina, K; Ishino, H; Khan, H R; Kibayashi, A; Mori, T; Ono, S; Watanabe, Y; Iwabuchi, M; Kim, Y J; Liu, Y; Sarangi, T R; Uchida, Y; Kang, J H; Kim, T H; Kwon, Y J; Kurihara, E; Kawai, H; Park, H; Kim, H J; Kim, S K; Lee, J; Lee, S E; Yang He Young; Kumar, R; Singh, J B; Soni, N; Lange, J S; Leder, G; MacNaughton, J; Mandl, F; Mitaroff, W A; Pernicka, M; Schwanda, C; Widhalm, L; Matsumoto, T; Nakagawa, T; Seki, T; Sumiyoshi, T; Yamamoto, S; Müller, J; Murakami, A; Sugiyama, A; Suzuki, S; Nagasaka, Y; Nakano, E; Sakaue, H; Teramoto, Y; Ogawa, A; Shibuya, H; Ogawa, S; Okuno, S; Sakamoto, H; Wang, C H; Schümann, J; Stanic, S; Xie, Q L; Yuan, Y; Zang, S L; Zhang, C C; Yamashita, Y; Zhang, L M; Zhang, Z P

    2006-01-01

    The Ds+- -> K+-K-+pi+- absolute branching fraction is measured using e+e- -> Ds*+- Ds1-+(2536) events collected by the Belle detector at the KEKB e+e- asymmetric energy collider. Using the ratio of yields when either the Ds1 or Ds* is fully reconstructed, we find Br(Ds+- -> K+-K-+pi+-)= (4.0+-0.4(stat)+-0.4(sys))%.

  7. Fission dynamics within time-dependent Hartree-Fock: boost-induced fission

    CERN Document Server

    Goddard, P M; Rios, A

    2015-01-01

    Background: Nuclear fission is a complex large-amplitude collective decay mode in heavy nuclei. Microscopic density functional studies of fission have previously concentrated on adiabatic approaches based on constrained static calculations ignoring dynamical excitations of the fissioning nucleus, and the daughter products. Purpose: To explore the ability of dynamic mean-field methods to describe induced fission processes, using quadrupole boosts in the nuclide $^{240}$Pu as an example. Methods: Quadrupole constrained Hartree-Fock calculations are used to create a potential energy surface. An isomeric state and a state beyond the second barrier peak are excited by means of instantaneous as well as temporally extended gauge boosts with quadrupole shapes. The subsequent deexcitation is studied in a time-dependent Hartree-Fock simulation, with emphasis on fissioned final states. The corresponding fission fragment mass numbers are studied. Results: In general, the energy deposited by the quadrupole boost is quickl...

  8. Effects of fissioning nuclei distributions on fragment mass distributions for high energy fission

    Directory of Open Access Journals (Sweden)

    Rossi P C R

    2012-02-01

    Full Text Available We study the effects of fissioning nuclei mass- and energy-distributions on the formation of fragments for fission induced by high energy probes. A Monte Carlo code called CRISP was used for obtaining mass distributions and spectra of the fissioning nuclei for reactions induced by 660 MeV protons on 241Am and on 239Np, by 500 MeV protons on 208Pb, and by Bremsstrahlung photons with end-point energies at 50 MeV and 3500 MeV on 238U. The results show that even at high excitation energies, asymmetric fission may still contribute significantly to the fission cross section of actinide nuclei, while it is the dominante mode in the case of lead. However, more precise data for high energy fission on actinide are necessary in order to allow definite conclusions.

  9. Quasifission and fusion-fission in massive nuclei reactions. Comparison of reactions leading to the Z=120 element

    CERN Document Server

    Nasirov, A K; Hanappe, F; Heinz, S; Hofmann, S; Mandaglio, G; Manganaro, M; Muminov, A I; Scheid, W

    2008-01-01

    The yields of evaporation residues, fusion-fission and quasifission fragments in the $^{48}$Ca+$^{144,154}$Sm and $^{16}$O+$^{186}$W reactions are analyzed in the framework of the combined theoretical method based on the dinuclear system concept and advanced statistical model. The measured yields of evaporation residues for the $^{48}$Ca+$^{154}$Sm reaction can be well reproduced. The measured yields of fission fragments are decomposed into contributions coming from fusion-fission, quasifission, and fast-fission. The decrease in the measured yield of quasifission fragments in $^{48}$Ca+$^{154}$Sm at the large collision energies and the lack of quasifission fragments in the $^{48}$Ca+$^{144}$Sm reaction are explained by the overlap in mass-angle distributions of the quasifission and fusion-fission fragments. The investigation of the optimal conditions for the synthesis of the new element $Z$=120 ($A$=302) show that the $^{54}$Cr+$^{248}$Cm reaction is preferable in comparison with the $^{58}$Fe+$^{244}$Pu and ...

  10. (d,p)-transfer induced fission of heavy radioactive beams

    CERN Document Server

    Veselsky, Martin

    2012-01-01

    (d,p)-transfer induced fission is proposed as a tool to study low energy fission of exotic heavy nuclei. Primary goal is to directly determine the fission barrier height of proton-rich fissile nuclei, preferably using the radio-active beams of isotopes of odd elements, and thus confirm or exclude the low values of fission barrier heights, typically extracted using statistical calculations in the compound nucleus reactions at higher excitation energies. Calculated fission cross sections in transfer reactions of the radioactive beams show sufficient sensitivity to fission barrier height. In the probable case that fission rates will be high enough, mass asymmetry of fission fragments can be determined. Results will be relevant for nuclear astrophysics and for production of super-heavy nuclei. Transfer induced fission offers a possibility for systematic study the low energy fission of heavy exotic nuclei at the ISOLDE.

  11. Fission fragment mass and angular distributions: Probes to study non-equilibrium fission

    Indian Academy of Sciences (India)

    R G Thomas

    2015-08-01

    Synthesis of heavy and superheavy elements is severely hindered by fission and fission-like processes. The probability of these fission-like, non-equilibrium processes strongly depends on the entrance channel parameters. This article attempts to summarize the recent experimental findings and classify the signatures of these non-equilibrium processes based on macroscopic variables. The importance of the sticking time of the dinuclear complex with respect to the equilibration times of various degrees of freedom is emphasized.

  12. Determination of Nuclear Charge Distributions of Fission Fragments from ^{235}U (n_th, f) with Calorimetric Low Temperature Detectors

    Science.gov (United States)

    Grabitz, P.; Andrianov, V.; Bishop, S.; Blanc, A.; Dubey, S.; Echler, A.; Egelhof, P.; Faust, H.; Gönnenwein, F.; Gomez-Guzman, J. M.; Köster, U.; Kraft-Bermuth, S.; Mutterer, M.; Scholz, P.; Stolte, S.

    2016-08-01

    Calorimetric low temperature detectors (CLTD's) for heavy-ion detection have been combined with the LOHENGRIN recoil separator at the ILL Grenoble for the determination of nuclear charge distributions of fission fragments produced by thermal neutron-induced fission of ^{235}U. The LOHENGRIN spectrometer separates fission fragments according to their mass-to-ionic-charge ratio and their kinetic energy, but has no selectivity with respect to nuclear charges Z. For the separation of the nuclear charges, one can exploit the nuclear charge-dependent energy loss of the fragments passing through an energy degrader foil (absorber method). This separation requires detector systems with high energy resolution and negligible pulse height defect, as well as degrader foils which are optimized with respect to thickness, homogeneity, and energy loss straggling. In the present, contribution results of test measurements at the Maier Leibnitz tandem accelerator facility in Munich with ^{109}Ag and ^{127}I beams with the aim to determine the most suitable degrader material, as well as measurements at the Institut Laue-Langevin will be presented. These include a systematic study of the quality of Z-separation of fission fragments in the mass range 82le A le 132 and a systematic measurement of ^{92}Rb fission yields, as well as investigations of fission yields toward the symmetry region.

  13. Cosmology with Negative Absolute Temperatures

    CERN Document Server

    Vieira, J P P; Lewis, Antony

    2016-01-01

    Negative absolute temperatures (NAT) are an exotic thermodynamical consequence of quantum physics which has been known since the 1950's (having been achieved in the lab on a number of occasions). Recently, the work of Braun et al (2013) has rekindled interest in negative temperatures and hinted at a possibility of using NAT systems in the lab as dark energy analogues. This paper goes one step further, looking into the cosmological consequences of the existence of a NAT component in the Universe. NAT-dominated expanding Universes experience a borderline phantom expansion ($w<-1$) with no Big Rip, and their contracting counterparts are forced to bounce after the energy density becomes sufficiently large. Both scenarios might be used to solve horizon and flatness problems analogously to standard inflation and bouncing cosmologies. We discuss the difficulties in obtaining and ending a NAT-dominated epoch, and possible ways of obtaining density perturbations with an acceptable spectrum.

  14. Cosmology with negative absolute temperatures

    Science.gov (United States)

    Vieira, J. P. P.; Byrnes, Christian T.; Lewis, Antony

    2016-08-01

    Negative absolute temperatures (NAT) are an exotic thermodynamical consequence of quantum physics which has been known since the 1950's (having been achieved in the lab on a number of occasions). Recently, the work of Braun et al. [1] has rekindled interest in negative temperatures and hinted at a possibility of using NAT systems in the lab as dark energy analogues. This paper goes one step further, looking into the cosmological consequences of the existence of a NAT component in the Universe. NAT-dominated expanding Universes experience a borderline phantom expansion (w inflation and bouncing cosmologies. We discuss the difficulties in obtaining and ending a NAT-dominated epoch, and possible ways of obtaining density perturbations with an acceptable spectrum.

  15. Fifth International Conference on Fission and Properties of Neutron-Rich Nuclei

    CERN Document Server

    Ramayya, A V; ICFN5

    2014-01-01

    These proceedings are the fifth in the series of International Conferences covering fission and properties of neutron-rich nuclei, which are at the forefront of nuclear research. The time interval of 5 years between each conference allows for significant new results to be achieved. Recently, world leaders in theory and experiments in research and the development of new facilities for research presented their latest results in areas such as synthesis of superheavy elements, new facilities for and recent results with radioactive ion beams, structure of neutron-rich nuclei, nuclear fission process, fission yields and nuclear astrophysics. This book is a major source of the latest research in these areas and plans for the future. The conference brought together a unique group of over 100 speakers including leaders from the major nuclear laboratories in Canada, China, France, Finland, Germany, Italy, Japan, Russia, Switerzland and the US along with leading research scientists from around the world.

  16. Yield stress determination of a physical gel

    DEFF Research Database (Denmark)

    Hvidt, Søren

    2013-01-01

    Pluronic F127 solutions form gels in water with high elastic moduli. Pluronic gels can, however, only withstand small deformations and stresses. Different steady shear and oscillatory methods traditionally used to determine yield stress values are compared. The results show that the yield stresses...... values of these gels depend on test type and measurement time, and no absolute yield stress value can be determined for these physical gels....

  17. Fission fragment angular distribution in heavy-ion-induced fission with anomalous behavior

    Science.gov (United States)

    Soheyli, S.; Feizi, B.

    2014-08-01

    Fission fragment angular distribution in heavy-ion-induced fission reactions is of particular importance. Transition state theory is provided to determine the angular distribution of fission fragments which includes standard saddle-point statistical and standard scission-point statistical models. The standard saddle-point statistical model was not able to reproduce the experimental fission fragment angular anisotropies for several heavy-ion-induced fission systems. In contrast to the standard saddle-point model, the standard scission-point statistical model was fairly successful in the prediction of angular anisotropy in heavy-ion-induced fission reaction systems with an anomalous behavior in angular anisotropy of fission fragments, but this model is not widely used as the standard saddle-point statistical model. In this research, a generalized model is introduced for the prediction of fission fragments angular anisotropy in the heavy-ion-induced fission reaction systems having an anomalous behavior. For this purpose, we study the N14,O16,F19+Th232;O16,F19+U238;Mg24,Si28,S32+Pb208;S32+Au197; and O16+Cm248 reaction systems. Finally, it is shown that the presented model is much more successful than previous models.

  18. Etude de la production de fragments dans la fission induite par neutrons sur l'uranium 238.

    CERN Document Server

    Casoli, P

    2003-01-01

    Mass and charge distributions of fission fragments from the fission induced on uranium 238 by neutrons from 1 to 150 MeV were studied by experimental data and theoretical calculations. Measurements in prompt gamma and x-ray spectroscopy, completed at the LANSCE laboratory of Los Alamos allowed us to determine the secondary fission fragment production yields. Photovoltaic cells were used as a fission trigger. About one hundred fragments were identified and about thirty excitation functions were extracted. Mass and charge distributions at different incident energies were obtained. The comparison with evaluated data (Wahl systematics) shows that the calculations are consistent with the measurements below 20 MeV but not predictive enough above. A potential energy surface was drawn from microscopic constrained self-consistent HFB calculations. We obtained a fragment mass distribution by solving the dynamic Schrodinger equation on this surface.

  19. An examination of the potential fission-bomb weaponizability of nuclides other than 235U and 239Pu

    Science.gov (United States)

    Reed, B. Cameron

    2017-01-01

    Long-lived fissionable isotopes other than uranium-235 and plutonium-239 are examined for possible use in fission weapons. A few other isotopes are potentially weaponizable and in some cases have been tried or their criticality experimentally demonstrated. In most cases, however, promising isotopes are either extremely rare, difficult to produce in quantity, or hazardous to handle. Some isotopes can serve to boost the yield of fission weapons, but 235U and 239Pu are likely to remain the only practical primary fuels for nuclear weapons. In view of this, and the fact that this analysis gives no engineering details on the design of nuclear weapons, this paper will be of no assistance to putative bomb-makers; rather, my purpose is to clarify the physics similarities between 235U and 239Pu that make them suitable candidates for fission weapons.

  20. Energy from nuclear fission an introduction

    CERN Document Server

    De Sanctis, Enzo; Ripani, Marco

    2016-01-01

    This book provides an overview on nuclear physics and energy production from nuclear fission. It serves as a readable and reliable source of information for anyone who wants to have a well-balanced opinion about exploitation of nuclear fission in power plants. The text is divided into two parts; the first covers the basics of nuclear forces and properties of nuclei, nuclear collisions, nuclear stability, radioactivity, and provides a detailed discussion of nuclear fission and relevant topics in its application to energy production. The second part covers the basic technical aspects of nuclear fission reactors, nuclear fuel cycle and resources, safety, safeguards, and radioactive waste management. The book also contains a discussion of the biological effects of nuclear radiation and of radiation protection, and a summary of the ten most relevant nuclear accidents. The book is suitable for undergraduates in physics, nuclear engineering and other science subjects. However, the mathematics is kept at a level that...

  1. Advanced modeling of prompt fission neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Talou, Patrick [Los Alamos National Laboratory

    2009-01-01

    Theoretical and numerical studies of prompt fission neutrons are presented. The main results of the Los Alamos model often used in nuclear data evaluation work are reviewed briefly, and a preliminary assessment of uncertainties associated with the evaluated prompt fission neutron spectrum for n (0.5 MeV)+{sup 239}Pu is discussed. Advanced modeling of prompt fission neutrons is done by Monte Carlo simulations of the evaporation process of the excited primary fission fragments. The successive emissions of neutrons are followed in the statistical formalism framework, and detailed information, beyond average quantities, can be inferred. This approach is applied to the following reactions: {sup 252}Cf (sf), n{sub th} + {sup 239}Pu, n (0.5 MeV)+{sup 235}U, and {sup 236}Pu (sf). A discussion on the merits and present limitations of this approach concludes this presentation.

  2. "UCx fission targets oxidation test stand"

    CERN Document Server

    Lacroix, Rachel

    2014-01-01

    "Set up a rig dedicated to the oxidation of UCx and define a procedure for repeatable, reliable and safe method for converting UC2 fission targets into an acceptable uranium carbide oxide waste for subsequent disposal by the Swiss Authorities."

  3. A theoretical study of volatile fission products release from oxide fuels

    Energy Technology Data Exchange (ETDEWEB)

    Paraschiv, M.C.; Paraschiv, A. [Inst. for Nucl. Res., Pitesti (Romania); Grecu, V.V. [University of Bucharest, Faculty of Physics, P.O. Box MG-11, Bucharest (Romania)

    1999-11-01

    Treating the average volume grains as thermodynamically closed subsystems, a method to evaluate the volatile fission products migration at the grain boundary and their release in the void volume of the fuel elements is proposed. The method considers the phenomena of the intergranular bubble growth and interlinkage, grain growth and grain boundary resolution. Analytical solutions of the diffusion problem associated with the volatile fission products behaviour taking into account their direct yield from fission and from precursors simultaneously with the diffusion and decay, irradiation induced resolution and fuel grain growth, during a time-step varying irradiation history have also been derived. The results are very accurate and point out the strong effect of the boundary condition changes on the volatile fission products behaviour when the simultaneous effects of the intergranular bubble coalescence, the precursors, the irradiation induced resolution and grain growth are considered. Comparative analyses versus other similar models of the diffusion of only stable gas species of fission products are also presented. (orig.)

  4. The 235U Prompt Fission Neutron Spectrum in the BR1 Reactor at SCK•CEN

    Directory of Open Access Journals (Sweden)

    Wagemans Jan

    2016-01-01

    Full Text Available The BR1 research reactor at SCK•CEN has a spherical cavity in the graphite above the reactor core. In this cavity an accurately characterised Maxwellian thermal neutron field is present. Different converters can be loaded in the cavity in order to obtain other types of neutron (and gamma irradiation fields. Inside the so-called MARK III converter a fast 235U(n,f prompt fission neutron field can be obtained. With the support of MCNP calculations, irradiations in MARK III can be directly related to the pure 235U(n,f prompt fission neutron spectrum. For this purpose MARK III spectrum averaged cross sections for the most relevant fluence dosimetry reactions have been determined. A calibration factor for absolute measurements has been determined applying activation dosimetry following ISO/IEC 17025 standards.

  5. The 235U Prompt Fission Neutron Spectrum in the BR1 Reactor at SCK•CEN

    Science.gov (United States)

    Wagemans, Jan; Malambu, Edouard; Borms, Luc; Fiorito, Luca

    2016-02-01

    The BR1 research reactor at SCK•CEN has a spherical cavity in the graphite above the reactor core. In this cavity an accurately characterised Maxwellian thermal neutron field is present. Different converters can be loaded in the cavity in order to obtain other types of neutron (and gamma) irradiation fields. Inside the so-called MARK III converter a fast 235U(n,f) prompt fission neutron field can be obtained. With the support of MCNP calculations, irradiations in MARK III can be directly related to the pure 235U(n,f) prompt fission neutron spectrum. For this purpose MARK III spectrum averaged cross sections for the most relevant fluence dosimetry reactions have been determined. A calibration factor for absolute measurements has been determined applying activation dosimetry following ISO/IEC 17025 standards.

  6. Fission cross section measurement of Am-242m using lead slowing-down spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Kai, Tetsuya; Kobayashi, Katsuhei; Yamamoto, Shuji; Fujita, Yoshiaki [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.; Kimura, Itsuro; Ohkawachi, Yasushi; Wakabayashi, Toshio

    1998-03-01

    By making use of double fission chamber and lead slowing-down spectrometer coupled to an electron linear accelerator, fission cross section for the {sup 242m}Am(n,f) reaction has been measured relative to that for the {sup 235}U(n,f) reaction in the energy range from 0.1 eV to 10 keV. The measured result was compared with the evaluated nuclear data appeared in ENDF/B-VI and JENDL-3.2, of which evaluated data were broadened by the energy resolution function of the spectrometer. Although the JENDL-3.2 data seem to be a little smaller than the present measurement, good agreement can be seen in the general shape and the absolute values. The ENDF/B-VI data are larger more than 50 % than the present values above 3 eV. (author)

  7. Absolute Gravity Datum in the Age of Cold Atom Gravimeters

    Science.gov (United States)

    Childers, V. A.; Eckl, M. C.

    2014-12-01

    The international gravity datum is defined today by the International Gravity Standardization Net of 1971 (IGSN-71). The data supporting this network was measured in the 1950s and 60s using pendulum and spring-based gravimeter ties (plus some new ballistic absolute meters) to replace the prior protocol of referencing all gravity values to the earlier Potsdam value. Since this time, gravimeter technology has advanced significantly with the development and refinement of the FG-5 (the current standard of the industry) and again with the soon-to-be-available cold atom interferometric absolute gravimeters. This latest development is anticipated to provide improvement in the range of two orders of magnitude as compared to the measurement accuracy of technology utilized to develop ISGN-71. In this presentation, we will explore how the IGSN-71 might best be "modernized" given today's requirements and available instruments and resources. The National Geodetic Survey (NGS), along with other relevant US Government agencies, is concerned about establishing gravity control to establish and maintain high order geodetic networks as part of the nation's essential infrastructure. The need to modernize the nation's geodetic infrastructure was highlighted in "Precise Geodetic Infrastructure, National Requirements for a Shared Resource" National Academy of Science, 2010. The NGS mission, as dictated by Congress, is to establish and maintain the National Spatial Reference System, which includes gravity measurements. Absolute gravimeters measure the total gravity field directly and do not involve ties to other measurements. Periodic "intercomparisons" of multiple absolute gravimeters at reference gravity sites are used to constrain the behavior of the instruments to ensure that each would yield reasonably similar measurements of the same location (i.e. yield a sufficiently consistent datum when measured in disparate locales). New atomic interferometric gravimeters promise a significant

  8. A revised calculational model for fission

    Energy Technology Data Exchange (ETDEWEB)

    Atchison, F.

    1998-09-01

    A semi-empirical parametrization has been developed to calculate the fission contribution to evaporative de-excitation of nuclei with a very wide range of charge, mass and excitation-energy and also the nuclear states of the scission products. The calculational model reproduces measured values (cross-sections, mass distributions, etc.) for a wide range of fissioning systems: Nuclei from Ta to Cf, interactions involving nucleons up to medium energy and light ions. (author)

  9. Seventy-five years of nuclear fission

    Indian Academy of Sciences (India)

    S S Kapoor

    2015-08-01

    Nuclear fission process is one of the most important discoveries of the twentieth century. In these 75 years since its discovery, the nuclear fission related research has not only provided new insights in the physics of large scale motion, deformation and subsequent division of a heavy nucleus, but has also opened several new frontiers of research in nuclear physics. This article is a narrative giving an overview of the landmarks of the progress in the field.

  10. Detector instrumentation for nuclear fission studies

    Indian Academy of Sciences (India)

    Akhil Jhingan

    2015-09-01

    The study of heavy-ion-induced fusion–fission reactions require nuclear instrumentation that include particle detectors such as proportional counters, ionization chambers, silicon detectors, scintillation detectors, etc., and the front-end electronics for these detectors. Using the detectors mentioned above, experimental facilities have been developed for carrying out fusion–fission experiments. This paper reviews the development of detector instrumentation at IUAC.

  11. MCNP6 Fission Multiplicity with FMULT Card

    Energy Technology Data Exchange (ETDEWEB)

    Wilcox, Trevor [Los Alamos National Laboratory; Fensin, Michael Lorne [Los Alamos National Laboratory; Hendricks, John S. [Los Alamos National Laboratory; James, Michael R. [Los Alamos National Laboratory; McKinney, Gregg W. [Los Alamos National Laboratory

    2012-06-18

    With the merger of MCNPX and MCNP5 into MCNP6, MCNP6 now provides all the capabilities of both codes allowing the user to access all the fission multiplicity data sets. Detailed in this paper is: (1) the new FMULT card capabilities for accessing these different data sets; (2) benchmark calculations, as compared to experiment, detailing the results of selecting these separate data sets for thermal neutron induced fission on U-235.

  12. Spontaneous fission of the heaviest elements

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, D.C.

    1989-04-01

    Although spontaneous fission was discovered in /sup 238/U in 1940, detailed studies of the process were first made possible in the 1960's with the availability of milligram quantities of /sup 252/Cf. The advent of solid-state detectors made it possible to perform measurements of coincident fission fragments from even very short-lived spontaneous fission activities or those available in only very small quantities. Until 1971 it was believed that the main features of the mass and kinetic-energy distributions were essentially the same as those for thermal neutron-induced fission and that all low-energy fission proceeded via asymmetric mass division with total kinetic energies which could be derived by linear extrapolation from those of lighter elements. In 1971, measurements of /sup 257/Fm showed an increase in symmetric mass division with anomalously high TKE's. Subsequent experiments showed that in /sup 258/Fm and /sup 259/Fm, the most probable mass split was symmetric with very high total kinetic energy. Measurements for the heavier elements have shown symmetric mass distributions with both high and low total kinetic energies. Recent results for spontaneous fission properties of the heaviest elements are reviewed and compared with theory. 31 refs., 8 figs., 1 tab.

  13. Decay characteristics of fission products and summation calculation

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Tadashi [Faculty of Engineering, Musashi Institute of Technology, Tokyo (Japan)

    1999-02-01

    This paper reviews the decay characteristics of fission products on the viewpoint of summation calculation. The fission products (FPs) are accumulated in the operating power reactors. As they are neutron-rich at the time of scission, they undergo successive beta decays toward stable nuclides. To grasp the quantity of an arbitrary nuclide, fission yields, decay constants and blanching ratios of the nuclide in the same decay chain ( a mass chain of the fixed mass is sufficient) must be known. As a neutron capture increases the mass, and release of a delayed neutron decreases the mass, capture cross sections and delayed neutron emitting ratios are also required. If these values of all FP are known, the quantities such as time dependent decay heat and the delayed neutron fraction can be calculated by summation of the contribution of the nuclides. A computer code ORIGEN-2 is a typical example to compute these quantities. The more important than computer code is the data library for summation calculation which includes physical constants such as fission yields, decay constants, blanching ratio, beta and gamma energy emitted at a beta decay, delayed neutron emitting ratios, and neutron capture cross sections for more than 1000 FP nuclides. They are realized in JNDC FP Decay Data Library-Version 2 of Japan, JEF-2 by western European countries, and ENDF/B-VI of USA. The early versions (until early 80's) of these full-scale libraries showed worse agreement with experiment than the old libraries based on approximations and estimates. The application of the gross theory to beta-decay' to short-lived FPs could solve the problem. The above disagreement is explained by having dropped of high excitation levels of short lived daughter nuclides. This is called as Pandemonium Problem. The summation calculation for the gamma ray spectrum succeeded to predict the experimental value by correcting theoretical spectrum. However, there remains still an underestimate for cooling

  14. Inclusive spectra of hadrons created by color tube fission; 1, Probability of tube fission

    CERN Document Server

    Gedalin, E V

    1997-01-01

    The probability of color tube fission that includes the tube surface small oscillation corrections is obtained with pre-exponential factor accuracy on the basis of previously constructed color tube model. Using these expressions the probability of the tube fission in $n$ point is obtained that is the basis for calculation of inclusive spectra of produced hadrons.

  15. Uncertainties on decay heat power due to fission product data uncertainties; Incertitudes sur la puissance residuelle dues aux incertitudes sur les donnees de produits de fission

    Energy Technology Data Exchange (ETDEWEB)

    Rebah, J

    1998-08-01

    Following a reactor shutdown, after the fission process has completely faded out, a significant quantity of energy known as 'decay heat' continues to be generated in the core. The knowledge with a good precision of the decay heat released in a fuel after reactor shutdown is necessary for: residual heat removal for normal operation or emergency shutdown condition, the design of cooling systems and spent fuel handling. By the summation calculations method, the decay heat is equal to the sum of the energies released by individual fission products. Under taking into account all nuclides that contribute significantly to the total decay heat, the results from summation method are comparable with the measured ones. Without the complete covariance information of nuclear data, the published uncertainty analyses of fission products decay heat summation calculation give underestimated errors through the variance/covariance analysis in consideration of correlation between the basic nuclear data, we calculate in this work the uncertainties on the decay heat associated with the summation calculations. Contribution to the total error of decay heat comes from uncertainties in three terms: fission yields, half-lives and average beta and gamma decay energy. (author)

  16. Fission-product energy release for times following thermal-neutron fission of /sup 235/U between 2 and 14000 seconds

    Energy Technology Data Exchange (ETDEWEB)

    Dickens, J.K.; Emery, J.F.; Love, T.A.; McConnell, J.W.; Northcutt, K.J.; Peelle, R.W.; Weaver, H.

    1977-10-01

    Fission-product decay energy-releases rates were measured for thermal-neutron fission of /sup 235/U. Samples of mass 1 to 10 ..mu..g were irradiated for 1 to 100 sec by use of the fast pneumatic-tube facility at the Oak Ridge Research Reactor. The resulting beta- and gamma-ray emissions were counted for times-after-fission between 2 and 14,000 seconds. The data were obtained for beta and gamma rays separately as spectral distributions, N(E/sub ..gamma../) vs E/sub ..gamma../ and N(E/sub beta/) vs E/sub ..beta../. For the gamma-ray data the spectra were obtained by using a NaI detector, while for the beta-ray data the spectra were obtained by using an NE-110 detector with an anticoincidence mantle. The raw data were unfolded to provide spectral distributions of modest resolution. These were integrated over E/sub ..gamma../ and E/sub ..beta../ to provide total yield and energy integrals as a function of time after fission. Results are low compared to the present 1973 ANS Decay-heat standard. A complete description of the experimental apparatus and data-reduction techniques is presented. The final integral data are given in tabular and graphical form and are compared with published data. 41 figures, 13 tables.

  17. Isotopic fission fragment distributions as a deep probe to fusion-fission dynamics

    CERN Document Server

    Farget, F; Delaune, O; Tarasov, O B; Derkx, X; Schmidt, K -H; Amthor, A M; Audouin, L; Bacri, C -O; Barreau, G; Bastin, B; Bazin, D; Blank, B; Benlliure, J; Caceres, L; Casarejos, E; Chibihi, A; Fernandez-Dominguez, B; Gaudefroy, L; Golabek, C; Grevy, S; Jurado, B; Kamalou, O; Lemasson, A; Lukyanov, S; Mittig, W; Morrissey, D J; Navin, A; Pereira, J; Perrot, L; Rejmund, M; Roger, T; Saint-Laurent, M -G; Savajols, H; Schmitt, C; Sherill, B M; Stodel, C; Taieb, J; Thomas, J -C; Villari, A C

    2012-01-01

    During the fission process, the nucleus deforms and elongates up to the two fragments inception and their final separation at scission deformation. The evolution of the nucleus energy with deformation is determined by the macroscopic properties of the nucleus, and is also strongly influenced by the single-particle structure of the nucleus. The fission fragment distribution is a direct consequence of the deformation path the nucleus has encountered, and therefore is the most genuine experimental observation of the potential energy landscape of the deforming nucleus. Very asymmetric fusion-fission reactions at energy close to the Coulomb barrier, produce well-defined conditions of the compound nucleus formation, where processes such as quasi-fission, pre-equilibrium emission and incomplete fusion are negligible. In the same time, the excitation energy is sufficient to reduce significantly structural effects, and mostly the macroscopic part of the potential is responsible for the formation of the fission fragmen...

  18. Transport of fission products with a helium gas-jet at TRIGA-SPEC

    Energy Technology Data Exchange (ETDEWEB)

    Eibach, M., E-mail: martin.eibach@uni-mainz.d [Institut fuer Kernchemie, Johannes Gutenberg-Universitaet Mainz, Fritz-Strassmann-Weg 2, 55128 Mainz (Germany); Physikalisches Institut, Ruprecht-Karls-Universitaet Heidelberg, Philosophenweg 12, 69120 Heidelberg (Germany); Beyer, T.; Blaum, K. [Physikalisches Institut, Ruprecht-Karls-Universitaet Heidelberg, Philosophenweg 12, 69120 Heidelberg (Germany); Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Block, M. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Planckstrasse 1, 64291 Darmstadt (Germany); Eberhardt, K. [Institut fuer Kernchemie, Johannes Gutenberg-Universitaet Mainz, Fritz-Strassmann-Weg 2, 55128 Mainz (Germany); Herfurth, F. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Planckstrasse 1, 64291 Darmstadt (Germany); Geppert, C. [Institut fuer Kernchemie, Johannes Gutenberg-Universitaet Mainz, Fritz-Strassmann-Weg 2, 55128 Mainz (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Planckstrasse 1, 64291 Darmstadt (Germany); Ketelaer, J. [Institut fuer Physik, Johannes Gutenberg-Universitaet Mainz, Staudinger Weg 7, 55128 Mainz (Germany); Ketter, J. [Physikalisches Institut, Ruprecht-Karls-Universitaet Heidelberg, Philosophenweg 12, 69120 Heidelberg (Germany); Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Kraemer, J.; Krieger, A. [Institut fuer Kernchemie, Johannes Gutenberg-Universitaet Mainz, Fritz-Strassmann-Weg 2, 55128 Mainz (Germany); Knuth, K. [Institut fuer Physik, Johannes Gutenberg-Universitaet Mainz, Staudinger Weg 7, 55128 Mainz (Germany); Nagy, Sz. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Planckstrasse 1, 64291 Darmstadt (Germany)

    2010-02-01

    A helium gas-jet system for the transport of fission products from the research reactor TRIGA Mainz has been developed, characterized and tested within the TRIGA-SPEC experiment. For the first time at TRIGA Mainz carbon aerosol particles have been used for the transport of radionuclides from a target chamber with high efficiency. The radionuclides have been identified by means of gamma-spectroscopy. Transport time, efficiency as well as the absolute number of transported radionuclides for several species have been determined. The design and the characterization of the gas-jet system are described and discussed.

  19. Study on Mass Distribution of n+233U Fission With Phenomenological Model

    Institute of Scientific and Technical Information of China (English)

    LIU; Li-le; SHU; Neng-chuan; LIU; Ting-jin; CHEN; Xiao-song; SUN; Zheng-jun; CHEN; Yong-jing; QIAN; Jing

    2012-01-01

    <正>The yields, as well as the dependences on incident energy, of n+233U fission are important in study of the Th/U fuel cycle. A phenomenological model was used to study the yield mass distribution over the incident neutron energy of 0-20 MeV, which has 11 parameters and were determined by fitting to the measured cumulative yields. The model could well reproduce the measured data, which had a significant improvement, comparing with the results of systematic calculation program CYFP and Talys.

  20. Brownian shape motion on five-dimensional potential-energy surfaces: Nuclear fission-fragment mass distributions

    CERN Document Server

    Randrup, Jorgen

    2011-01-01

    Although nuclear fission can be understood qualitatively as an evolution of the nuclear shape, a quantitative description has proven to be very elusive. In particular, until now, there exists no model with demonstrated predictive power for the fission fragment mass yields. Exploiting the expected strongly damped character of nuclear dynamics, we treat the nuclear shape evolution in analogy with Brownian motion and perform random walks on five-dimensional fission potential-energy surfaces which were calculated previously and are the most comprehensive available. Test applications give good reproduction of highly variable experimental mass yields. This novel general approach requires only a single new global parameter, namely the critical neck size at which the mass split is frozen in, and the results are remarkably insensitive to its specific value.

  1. Brownian shape motion on five-dimensional potential-energy surfaces:nuclear fission-fragment mass distributions.

    Science.gov (United States)

    Randrup, Jørgen; Möller, Peter

    2011-04-01

    Although nuclear fission can be understood qualitatively as an evolution of the nuclear shape, a quantitative description has proven to be very elusive. In particular, until now, there existed no model with demonstrated predictive power for the fission-fragment mass yields. Exploiting the expected strongly damped character of nuclear dynamics, we treat the nuclear shape evolution in analogy with Brownian motion and perform random walks on five-dimensional fission potential-energy surfaces which were calculated previously and are the most comprehensive available. Test applications give good reproduction of highly variable experimental mass yields. This novel general approach requires only a single new global parameter, namely, the critical neck size at which the mass split is frozen in, and the results are remarkably insensitive to its specific value.

  2. Anatomy of neck configuration in fission decay

    CERN Document Server

    Patra, S K; Satpathy, L

    2010-01-01

    The anatomy of neck configuration in the fission decay of Uranium and Thorium isotopes is investigated in a microscopic study using Relativistic mean field theory. The study includes $^{236}U$ and $^{232}Th$ in the valley of stability and exotic neutron rich isotopes $^{250}U$, $^{256}U$, $^{260}U$, $^{240}Th$, $^{250}Th$, $^{256}Th$ likely to play important role in the r-process nucleosynthesis in stellar evolution. Following the static fission path, the neck configurations are generated and their composition in terms of the number of neutrons and protons are obtained showing the progressive rise in the neutron component with the increase of mass number. Strong correlation between the neutron multiplicity in the fission decay and the number of neutrons in the neck is seen. The maximum neutron-proton ratio is about 5 for $^{260}$U and $^{256}$Th suggestive of the break down of liquid-drop picture and inhibition of the fission decay in still heavier isotopes. Neck as precursor of a new mode of fission decay li...

  3. Correction due to finite speed of light in absolute gravimeters

    CERN Document Server

    Nagornyi, V D; Zanimonskiy, Y Y

    2010-01-01

    Correction due to finite speed of light is among the most inconsistent ones in absolute gravimetry. Formulas reported by different authors yield corrections scattered up to 8 $\\mu$Gal with no obvious reasons. The problem, though noted before, has never been studied, and nowadays the correction is rather postulated than rigorously proven. In this paper we investigate the problem from several prospectives, find the corrections for different types of absolute gravimeters, and establish relationships between different ways of implement them. The obtained results enabled us to analyze and understand the discrepancies in the results of other authors. We found that the correction derived from the Doppler effect is accountable only for $\\tfrac{2}{3}$ of the total correction due to finite speed of light, if no signal delays are considered. Another major source of inconsistency was found in the tacit use of simplified trajectory models.

  4. Fission xenon in trinities from the first nuclear test

    Science.gov (United States)

    Meshik, Alexander; Pravdivtseva, Olga; Hohenberg, Charles

    2008-04-01

    Trinitites, greenish glassy remnants found in the crater of the first nuclear test, refer to the molten material of the desert where the Trinity test was conducted. Recently the Los Alamos Lab^1 suggested that the sand was first vaporized by the fireball and then precipitated onto a cooler desert surface forming trinitites. We measured the Xe mass-spectra during stepped pyrolysis of two trinitites and found an unusual Xe isotopic structure, dominated by ^132Xe and ^131Xe compared to the nominal fission yield spectra, which cannot be due to n-capture or any other nuclear processes. This structure is caused by the chemical separation of the immediate neutron-rich fission products, a process similar to CFF observed in the Oklo natural reactor^2. When quantitatively applied to our observations it suggests that 17 min after the test one of the samples had a temperature of 1390^oC, while 5 min after the test the other was at 1320^oC. These results contribute to a reconstruction of the cooling history of the trinities and a demonstration of which formation scenario is the more likely. ^1V. Montoya et al, Denver X-ray Conf. (2007), ^2A. Meshik, C. Hohenberg and O. Pravdivtseva, PRL 93, 182302 (2004).

  5. Fusion-fission study at IUAC: Recent results

    Science.gov (United States)

    Pullanhiotan, Sugathan

    2016-10-01

    Several properties observed in heavy ion induced fission led to the conclusion that fission is not always originated from fully equilibrated compound nucleus. Soon after the collision of two nuclei, it forms a di-nuclear system than can fission before a compound nucleus is formed. This process termed quasi-fission is a major hurdle to the formation of heavier elements by fusion. Fission originated before complete equilibration showed anomalously large angular anisotropy and mass distribution wider than what is expected from compound nucleus fission. The standard statistical model fails to predict the outcome of quasi-fission and currently no dynamical model is fully developed to predict all the features of quasi-fission. Though much progress has been made in recent times, a full understanding of the fission dynamics is still missing. Experiments identifying the influence of entrance channel parameters on dynamics of fusion-fission showed contrasting results. At IUAC accelerator facility many experiments have been performed to make a systematic study of fission dynamics using mass distribution, angular distribution and neutron multiplicity measurements in mass region around A ∼ 200. Recent measurement on mass distribution of fission fragment from reaction 19 F +206,208 Pb around fusion barrier energy showed the influence of multi-mode fission in enhancing the mass variance at low excitation energy. In this talk I will present some of these results.

  6. Monte Carlo Models for the Production of beta-delayed Gamma Rays Following Fission of Special Nuclear Materials

    Energy Technology Data Exchange (ETDEWEB)

    Pruet, J; Prussin, S; Descalle, M; Hall, J

    2004-02-03

    A Monte Carlo method for the estimation of {beta}-delayed {gamma}-ray spectra following fission is described that can accommodate an arbitrary time-dependent fission rate and photon collection history. The method invokes direct sampling of the independent fission yield distributions of the fissioning system, the branching ratios for decay of individual fission products and the spectral distributions for photon emission for each decay mode. Though computationally intensive, the method can provide a detailed estimate of the spectrum that would be recorded by an arbitrary spectrometer, and can prove useful in assessing the quality of evaluated data libraries, for identifying gaps in these libraries, etc. The method is illustrated by a first comparison of calculated and experimental spectra from decay of short-lived fission products following the reactions {sup 235}U(n{sub th}, f) and {sup 239}Pu(n{sub th}, f). For general purpose transport calculations, where detailed consideration of the large number of individual {gamma}-ray transitions in a spectrum may be unnecessary, it is shown that an accurate and simple parameterization of a {gamma}-ray source function can be obtained. These parametrizations should provide high-quality average spectral distributions that should prove useful in calculations describing photons escaping from thick attenuating media.

  7. Newton On Absolute Space A Commentary

    CERN Document Server

    Adewole, A I A

    2001-01-01

    Newton seems to have stated a quantitative relationship between the position of a body in relative space and the position of the body in absolute space in the first scholium of his Principia. We show that if this suspected relationship is assumed to hold, it will dispel many errors and misrepresentations that have befallen Newton's ideas on absolute space.

  8. Monolithically integrated absolute frequency comb laser system

    Energy Technology Data Exchange (ETDEWEB)

    Wanke, Michael C.

    2016-07-12

    Rather than down-convert optical frequencies, a QCL laser system directly generates a THz frequency comb in a compact monolithically integrated chip that can be locked to an absolute frequency without the need of a frequency-comb synthesizer. The monolithic, absolute frequency comb can provide a THz frequency reference and tool for high-resolution broad band spectroscopy.

  9. Absolute Income, Relative Income, and Happiness

    Science.gov (United States)

    Ball, Richard; Chernova, Kateryna

    2008-01-01

    This paper uses data from the World Values Survey to investigate how an individual's self-reported happiness is related to (i) the level of her income in absolute terms, and (ii) the level of her income relative to other people in her country. The main findings are that (i) both absolute and relative income are positively and significantly…

  10. Nuclear fission problem and Langevin equation

    Directory of Open Access Journals (Sweden)

    M Sakhaee

    2011-12-01

    Full Text Available  A combined dynamical and statistical model for fission was employed in our calculation. There is no doubt that a Langevin description plus a Monte Carlo treatment of the evaporation processes provide the most adequate dynamical description. In this paper, we would consider a strongly shaped dependent friction force and we use the numerical method rather than the analytical one. The objective of this article is to calculate the time dependent fission widths of the 224Th nucleus. The fission widths were calculated with both chaos-weighted wall friction (CWWF and wall friction (WF dissipations. The calculations are repeated for 100000 trajectories. The result was compared to the others' work. We use nuclear elongation coordinate with time and it is necessary to repeat the small steps many times to improve the accuracy.

  11. Energy partition in low energy fission

    CERN Document Server

    Mirea, M

    2011-01-01

    The intrinsic excitation energy of fission fragments is dynamically evaluated in terms of the time dependent pairing equations. These equations are corroborated with two conditions. One of them fixes the number of particles and the another separates the pairing active spaces associated to the two fragments in the vicinity of the scission configuration. The fission path is obtained in the frame of the macroscopic-microscopic model. The single particle level schemes are obtained within the two center Woods-Saxon shell model. It is shown that the available intrinsic dissipated energy is not shared proportionally to the masses of the two fission fragments. If the heavy fragment possesses nucleon numbers close to the magic ones, the accumulated intrinsic excitation energy is lower than that of the light fragment.

  12. Solar vs. Fission Surface Power for Mars

    Science.gov (United States)

    Rucker, Michelle A.; Oleson, Steve; George, Pat; Landis, Geoffrey A.; Fincannon, James; Bogner, Amee; Jones, Robert E.; Turnbull, Elizabeth; Martini, Michael C.; Gyekenyesi, John Z.; Colozza, Anthony J.; Schmitz, Paul C.; Packard, Thomas W.

    2016-01-01

    A multi-discipline team of experts from the National Aeronautics and Space Administration (NASA) developed Mars surface power system point design solutions for two conceptual missions. The primary goal of this study was to compare the relative merits of solar- versus fission-powered versions of each surface mission. First, the team compared three different solar power options against a fission power system concept for a sub-scale, uncrewed demonstration mission. The 4.5 meter (m) diameter pathfinder lander's primary mission would be to demonstrate Mars entry, descent, and landing techniques. Once on the Martian surface, the lander's In Situ Resource Utilization (ISRU) payload would demonstrate liquid oxygen propellant production using atmospheric resources. For the purpose of this exercise, location was assumed to be at the Martian equator. The three solar concepts considered included a system that only operated during daylight hours (at roughly half the daily propellant production rate of a round-the-clock fission design), a battery-augmented system that operated through the night (matching the fission concept's propellant production rate), and a system that operated only during daylight, but at a higher rate (again, matching the fission concept's propellant production rate). Including 30% mass growth allowance, total payload masses for the three solar concepts ranged from 1,116 to 2,396 kg, versus the 2,686 kg fission power scheme. However, solar power masses are expected to approach or exceed the fission payload mass at landing sites further from the equator, making landing site selection a key driver in the final power system decision. The team also noted that detailed reliability analysis should be performed on daytime-only solar power schemes to assess potential issues with frequent ISRU system on/off cycling. Next, the team developed a solar-powered point design solution for a conceptual four-crew, 500-day surface mission consisting of up to four landers per

  13. Prompt fission neutron emission: Problems and challenges

    Directory of Open Access Journals (Sweden)

    Hambsch F.-J.

    2013-12-01

    Full Text Available This paper presents some of the challenges ahead of us even after 75 years of the discovery of the fission process and large progress made since then. The focus is on application orientation, which requires improved measurements on fission cross-sections and neutron and γ-ray multiplicities. Experimental possibilities have vastly improved the past decade leading to developments of highly sophisticated detector systems and the use of digital data acquisition and signal processing. The development of innovative fast nuclear reactor technology needs improved respective nuclear data. Advancements in theoretical modelling also require better experimental data. Theory has made progress in calculating fission fragment distributions (i.e. GEF code as well as prompt neutron and γ-ray emission to catch up with the improved experiments.

  14. Dissipative dynamics in quasi-fission

    CERN Document Server

    Oberacker, V E; Simenel, C

    2014-01-01

    Quasi-fission is the primary reaction mechanism that prevents the formation of superheavy elements in heavy-ion fusion experiments. Employing the time-dependent density functional theory approach we study quasi-fission in the systems $^{40,48}$Ca+$^{238}$U. Results show that for $^{48}$Ca projectiles the quasi-fission is substantially reduced in comparison to the $^{40}$Ca case. This partly explains the success of superheavy element formation with $^{48}$Ca beams. For the first time, we also calculate the repartition of excitation energies of the two fragments in a dynamic microscopic theory. The system is found in quasi-thermal equilibrium only for reactions with $^{40}$Ca. The differences between both systems are interpreted in terms of initial neutron to proton asymmetry of the colliding partners.

  15. Fission Enhanced diffusion of uranium in zirconia

    CERN Document Server

    Bérerd, N; Moncoffre, N; Sainsot, P; Faust, H; Catalette, H

    2005-01-01

    This paper deals with the comparison between thermal and Fission Enhanced Diffusion (FED) of uranium into zirconia, representative of the inner face of cladding tubes. The experiments under irradiation are performed at the Institut Laue Langevin (ILL) in Grenoble using the Lohengrin spectrometer. A thin $^{235}UO\\_2$ layer in direct contact with an oxidized zirconium foil is irradiated in the ILL high flux reactor. The fission product flux is about 10$^{11}$ ions cm$^{-2}$ s$^{-1}$ and the target temperature is measured by an IR pyrometer. A model is proposed to deduce an apparent uranium diffusion coefficient in zirconia from the energy distribution broadening of two selected fission products. It is found to be equal to 10$^{-15}$ cm$^2$ s$^{-1}$ at 480$\\circ$C and compared to uranium thermal diffusion data in ZrO$\\_2$ in the same pressure and temperature conditions. The FED results are analysed in comparison with literature data.

  16. Phase Transition Induced Fission in Lipid Vesicles

    CERN Document Server

    Leirer, C; Myles, V M; Schneider, M F

    2010-01-01

    In this work we demonstrate how the first order phase transition in giant unilamellar vesicles (GUVs) can function as a trigger for membrane fission. When driven through their gel-fluid phase transition GUVs exhibit budding or pearl formation. These buds remain connected to the mother vesicle presumably by a small neck. Cooling these vesicles from the fluid phase (T>Tm) through the phase transition into the gel state (Tfission of the neck, while the mother vesicle remains intact. Pearling tubes which formed upon heating break-up and decay into multiple individual vesicles which then diffuse freely. Finally we demonstrate that mimicking the intracellular bulk viscosity by increasing the bulk viscosity to 40cP does not affect the overall fission process, but leads to a significant decrease in size of the released vesicles.

  17. Research on Nuclear Reaction Network Equation for Fission Product Nuclides

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Nuclear Reaction Network Equation calculation system for fission product nuclides was developed. With the system, the number of the fission product nuclides at different time can be calculated in the different neutron field intensity and neutron energy spectra

  18. Solar Versus Fission Surface Power for Mars

    Science.gov (United States)

    Rucker, Michelle A.; Oleson, Steve; George, Pat; Landis, Geoffrey A.; Fincannon, James; Bogner, Amee; Jones, Robert E.; Turnbull, Elizabeth; McNatt, Jeremiah; Martini, Michael C.; Gyekenyesi, John Z.; Colozza, Anthony J.; Schmitz, Paul C.; Packard, Thomas W.

    2016-01-01

    A multi-discipline team of experts from the National Aeronautics and Space Administration (NASA) developed Mars surface power system point design solutions for two conceptual missions to Mars using In-situ resource utilization (ISRU). The primary goal of this study was to compare the relative merits of solar- versus fission-powered versions of each surface mission. First, the team compared three different solar-power options against a fission power system concept for a sub-scale, uncrewed demonstration mission. This “pathfinder” design utilized a 4.5 meter diameter lander. Its primary mission would be to demonstrate Mars entry, descent, and landing techniques. Once on the Martian surface, the lander’s ISRU payload would demonstrate liquid oxygen propellant production from atmospheric resources. For the purpose of this exercise, location was assumed to be at the Martian equator. The three solar concepts considered included a system that only operated during daylight hours (at roughly half the daily propellant production rate of a round-the-clock fission design), a battery-augmented system that operated through the night (matching the fission concept’s propellant production rate), and a system that operated only during daylight, but at a higher rate (again, matching the fission concept’s propellant production rate). Including 30% mass growth allowance, total payload masses for the three solar concepts ranged from 1,128 to 2,425 kg, versus the 2,751 kg fission power scheme. However, solar power masses increase as landing sites are selected further from the equator, making landing site selection a key driver in the final power system decision. The team also noted that detailed reliability analysis should be performed on daytime-only solar power schemes to assess potential issues with frequent ISRU system on/off cycling.

  19. A fission-fragment-sensitive target for X-ray spectroscopy in neutron-induced fission

    CERN Document Server

    Ethvignot, T; Giot, L; Casoli, P; Nelson, R O

    2002-01-01

    A fission-fragment-sensitive detector built for low-energy photon spectroscopy applications at the WNR 'white' neutron source at Los Alamos is described. The detector consists of eight layers of thin photovoltaic cells, onto which 1 mg/cm sup 2 of pure sup 2 sup 3 sup 8 U is deposited. The detector serves as an active target to select fission events from background and other reaction channels. The fairly small thickness of the detector with respect to transmission of 20-50 keV photons permits the measurement of prompt fission-fragment X-rays. Results with the GEANIE photon spectrometer are presented.

  20. Uranium arc fission reactor for space propulsion

    Science.gov (United States)

    Watanabe, Yoichi; Maya, Isaac; Vitali, Juan; Appelbaum, Jacob; Schneider, Richard T.

    1991-01-01

    Combining the proven technology of solid core reactors with uranium arc confinement and non-equilibrium ionization by fission fragments can lead to an attractive propulsion system which has a higher specific impulse than a solid core propulsion system and higher thrust than an electric propulsion systems. A preliminary study indicates that a system with 300 MW of fission power can achieve a gas exhaust velocity of 18,000 m/sec and a thrust of 10,000 Newtons utilizing a magnetohydrodynamic generator and accelerator. An experimental program is underway to examine the major mass and energy transfer issues.

  1. Actinide and fission product separation and transmutation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-07-01

    The second international information exchange meeting on actinide and fission product separation and transmutation, took place in Argonne National Laboratory in Illinois United States, on 11-13 November 1992. The proceedings are presented in four sessions: Current strategic system of actinide and fission product separation and transmutation, progress in R and D on partitioning processes wet and dry, progress in R and D on transmutation and refinements of neutronic and other data, development of the fuel cycle processes fuel types and targets. (A.L.B.)

  2. Ionization Chamber for Prompt Fission Neutron Investigations

    OpenAIRE

    ZEYNALOV Sh.; ZEYNALOVA O. V.; Hambsch, Franz-Josef; Sedyshev, P.; SHVETSOV V.

    2014-01-01

    In this work we report recent achievements in design of twin back-to-back ionization chamber (TIC) for fission fragment (FF) mass and kinetic energy measurement. Correlated FF kinetic energies, their masses and the angle of FF in respect to the axes in 3D Cartesian coordinates can be determined from analysis of the heights and shapes of the pulses induced by the fission fragments on the anodes of TIC. Anodes of TIC were designed as consisting of isolated strips each having independent electro...

  3. Fission Yeast Cell Cycle Synchronization Methods.

    Science.gov (United States)

    Tormos-Pérez, Marta; Pérez-Hidalgo, Livia; Moreno, Sergio

    2016-01-01

    Fission yeast cells can be synchronized by cell cycle arrest and release or by size selection. Cell cycle arrest synchronization is based on the block and release of temperature-sensitive cell cycle mutants or treatment with drugs. The most widely used approaches are cdc10-129 for G1; hydroxyurea (HU) for early S-phase; cdc25-22 for G2, and nda3-KM311 for mitosis. Cells can also be synchronized by size selection using centrifugal elutriation or a lactose gradient. Here we describe the methods most commonly used to synchronize fission yeast cells.

  4. Alpha decay from fission isomeric states

    Energy Technology Data Exchange (ETDEWEB)

    Poenaru, D.N.; Ivascu, M. (Institutul de Fizica si Inginerie Nucleara, Bucharest (Romania))

    1981-07-01

    Alpha-decay half-lives from shape isomeric states of some even-even isotopes of U, Pu and Cm nuclei are calculated by using fission theory in the parametrisation of a spheroid intersected with a sphere. The potential barrier was calculated in the framework of the liquid-drop model of Myers and Swiatecki (Art. Fys.; 36: 343 (1967)) extended for systems with different charge densities; a phenomenological shell correction was introduced. The WKB computed lifetimes are many orders of magnitude longer than that of the spontaneous fission process, in agreement with experimental results.

  5. Optimally moderated nuclear fission reactor and fuel source therefor

    Science.gov (United States)

    Ougouag, Abderrafi M.; Terry, William K.; Gougar, Hans D.

    2008-07-22

    An improved nuclear fission reactor of the continuous fueling type involves determining an asymptotic equilibrium state for the nuclear fission reactor and providing the reactor with a moderator-to-fuel ratio that is optimally moderated for the asymptotic equilibrium state of the nuclear fission reactor; the fuel-to-moderator ratio allowing the nuclear fission reactor to be substantially continuously operated in an optimally moderated state.

  6. Energy Partition in n+233U Fission Reaction

    Institute of Scientific and Technical Information of China (English)

    CHEN; Yong-jing; LIU; Ting-jin; SHU; Neng-chuan

    2012-01-01

    <正>The partition of the total excitation energy between the fission fragments for the n+233U fission reactions are analyzed with a semi-empirical model, and it is a key point for calculating the prompt fission neutron spectrum, and it is still a long-standing problem for nuclear fission, and attracts more and more attention. With the available experimental data, such as the average total number of emitted neutrons, the

  7. Overview of research by the fission group in Trombay

    Indian Academy of Sciences (India)

    R K Chourdhury

    2015-08-01

    Nuclear fission studies in Trombay began nearly six decades ago, with the commissioning of the APSARA research reactor. Early experimental work was based on mass, kinetic energy distributions, neutron and X-ray emission in thermal neutron fission of 235U, which were carried out with indigenously developed detectors and electronics instrumentation. With the commissioning of CIRUS reactor and the availability of higher neutron flux, advanced experiments were carried out on ternary fission, pre-scission neutron emission, fragment charge distributions, quarternary fission, etc. In the late eighties, heavy-ion beams from the pelletron-based medium energy heavy-ion accelerator were available, which provided a rich variety of possibilities in nuclear fission studies. Pioneering work on fragment angular distributions, fission time-scales, transfer-induced fission, -ray multiplicities and mass–energy correlations were carried out, providing important information on the dynamics of the fission process. More recently, work on fission fragment -ray spectroscopy has been initiated, to understand the nuclear structure aspects of the neutron-rich fission fragment nuclei. There have also been parallel efforts to carry out theoretical studies in the areas of shell effects, superheavy nuclei, fusion–fission dynamics, fragment angular distributions, etc. to complement the experimental studies. This paper will provide a glimpse of the work carried out by the fission group at Trombay in the above-mentioned topics.

  8. Developing an "atomic clock" for fission lifetime measurements

    NARCIS (Netherlands)

    Wilschut, H.W.E.M.; Kravchuk, V.

    2004-01-01

    The relevance of measuring fission lifetimes of hot nuclei is briefly discussed. It is shown that K X-ray emission prior to fission can be used to measure fission lifetimes. The preparation of the K-shell hole, the simultaneous nuclear excitation, and the analysis of the X-ray spectra is described.

  9. SYMMETRICAL AND ASYMMETRIC TERNARY FISSION OF HOT NUCLEI

    NARCIS (Netherlands)

    SIWEKWILCZYNSKA, K; WILCZYNSKI, J; LEEGTE, HKW; SIEMSSEN, RH; WILSCHUT, HW; GROTOWSKI, K; PANASIEWICZ, A; SOSIN, Z; WIELOCH, A

    1993-01-01

    Emission of a particles accompanying fusion-fission processes in the Ar-40 + Th-232 reaction at E(Ar-40) = 365 MeV was studied in a wide range of in-fission-plane and out-of-plane angles. The exact determination of the emission angles of both fission fragments combined with the time-of-flight measur

  10. Design and Simulation of High Radioactivity Fission Ionization Chamber

    Institute of Scientific and Technical Information of China (English)

    WANG; Qi

    2012-01-01

    <正>It is great effect that the fission neutron release in 239Pu(n, 2n) cross section measurement by using multi-unit gadolinium loaded liquid scintillation detector system, for the 239Pu fission cross section is larger than (n, 2n) cross section one order of magnitude. In order to deduct the effect of fission neutrons,

  11. Fission barrier heights in the A ∼ 200 mass region

    Indian Academy of Sciences (India)

    K Mahata

    2015-08-01

    Statistical model analysis is carried out for - and -induced fission reactions using a consistent description for fission barrier and level density in A ∼ 200 mass region. A continuous damping of shell correction with excitation energy is considered. Extracted fission barriers agree well with the recent microscopic–macroscopic model. The shell corrections at the saddle point were found to be insignificant.

  12. Total kinetic energy release in the fast neutron-induced fission of $^{235}$U

    CERN Document Server

    Yanez, R; King, J; Barrett, J S; Fotiades, N; Lee, H Y

    2016-01-01

    We have measured the total kinetic energy (TKE) release for the $^{235}$U(n,f) reaction for $E_{n}$=2-100 MeV using the 2E method with an array of Si PIN diode detectors. The neutron energies were determined by time of flight measurements using the white spectrum neutron beam at the LANSCE facility. To benchmark the TKE measurement, the TKE release for $^{235}$U(n$_{th}$,f) was also measured using a thermal neutron beam from the Oregon State University TRIGA reactor, giving pre-neutron emission $E^*_{TKE}=170.7\\pm0.4$ MeV in good agreement with known values. Our measurements are thus absolute measurements. The TKE in $^{235}$U(n,f) decreases non-linearly from 169.0 MeV to 161.4 MeV for $E_{n}$=2-90 MeV. Comparison of the data with the multi-modal fission model of Brosa indicates the TKE decrease is a consequence of the growth of symmetric fission and the corresponding decrease of asymmetric fission with increasing neutron energy. The average TKE associated with the Brosa superlong, standard I and standard II ...

  13. Fission Matrix Capability for MCNP Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Carney, Sean E. [Los Alamos National Laboratory; Brown, Forrest B. [Los Alamos National Laboratory; Kiedrowski, Brian C. [Los Alamos National Laboratory; Martin, William R. [Los Alamos National Laboratory

    2012-09-05

    In a Monte Carlo criticality calculation, before the tallying of quantities can begin, a converged fission source (the fundamental eigenvector of the fission kernel) is required. Tallies of interest may include powers, absorption rates, leakage rates, or the multiplication factor (the fundamental eigenvalue of the fission kernel, k{sub eff}). Just as in the power iteration method of linear algebra, if the dominance ratio (the ratio of the first and zeroth eigenvalues) is high, many iterations of neutron history simulations are required to isolate the fundamental mode of the problem. Optically large systems have large dominance ratios, and systems containing poor neutron communication between regions are also slow to converge. The fission matrix method, implemented into MCNP[1], addresses these problems. When Monte Carlo random walk from a source is executed, the fission kernel is stochastically applied to the source. Random numbers are used for: distances to collision, reaction types, scattering physics, fission reactions, etc. This method is used because the fission kernel is a complex, 7-dimensional operator that is not explicitly known. Deterministic methods use approximations/discretization in energy, space, and direction to the kernel. Consequently, they are faster. Monte Carlo directly simulates the physics, which necessitates the use of random sampling. Because of this statistical noise, common convergence acceleration methods used in deterministic methods do not work. In the fission matrix method, we are using the random walk information not only to build the next-iteration fission source, but also a spatially-averaged fission kernel. Just like in deterministic methods, this involves approximation and discretization. The approximation is the tallying of the spatially-discretized fission kernel with an incorrect fission source. We address this by making the spatial mesh fine enough that this error is negligible. As a consequence of discretization we get a

  14. Fission fragment charge and mass distributions in 239Pu(n ,f ) in the adiabatic nuclear energy density functional theory

    Science.gov (United States)

    Regnier, D.; Dubray, N.; Schunck, N.; Verrière, M.

    2016-05-01

    Background: Accurate knowledge of fission fragment yields is an essential ingredient of numerous applications ranging from the formation of elements in the r process to fuel cycle optimization for nuclear energy. The need for a predictive theory applicable where no data are available, together with the variety of potential applications, is an incentive to develop a fully microscopic approach to fission dynamics. Purpose: In this work, we calculate the pre-neutron emission charge and mass distributions of the fission fragments formed in the neutron-induced fission of 239Pu using a microscopic method based on nuclear density functional theory (DFT). Methods: Our theoretical framework is the nuclear energy density functional (EDF) method, where large-amplitude collective motion is treated adiabatically by using the time-dependent generator coordinate method (TDGCM) under the Gaussian overlap approximation (GOA). In practice, the TDGCM is implemented in two steps. First, a series of constrained EDF calculations map the configuration and potential-energy landscape of the fissioning system for a small set of collective variables (in this work, the axial quadrupole and octupole moments of the nucleus). Then, nuclear dynamics is modeled by propagating a collective wave packet on the potential-energy surface. Fission fragment distributions are extracted from the flux of the collective wave packet through the scission line. Results: We find that the main characteristics of the fission charge and mass distributions can be well reproduced by existing energy functionals even in two-dimensional collective spaces. Theory and experiment agree typically within two mass units for the position of the asymmetric peak. As expected, calculations are sensitive to the structure of the initial state and the prescription for the collective inertia. We emphasize that results are also sensitive to the continuity of the collective landscape near scission. Conclusions: Our analysis confirms

  15. Fission yeast meets a legend in Kobe: report of the Eighth International Fission Yeast Meeting.

    Science.gov (United States)

    Asakawa, Haruhiko; Yamamoto, Takaharu G; Hiraoka, Yasushi

    2015-12-01

    The Eighth International Fission Yeast Meeting, which was held at Ikuta Shrine Hall in Kobe, Japan, from 21 to 26 June 2015, was attended by 327 fission yeast researchers from 25 countries (190 overseas and 137 domestic participants). At this meeting, 124 talks were held and 145 posters were presented. In addition, newly developed database tools were introduced to the community during a workshop. Researchers shared cutting-edge knowledge across broad fields of study, ranging from molecules to evolution, derived from the superior model organism commonly used within the fission yeast community. Intensive discussions and constructive suggestions generated in this meeting will surely advance the understanding of complex biological systems in fission yeast, extending to general eukaryotes.

  16. Fission barriers and probabilities of spontaneous fission for elements with Z$\\geq$100

    CERN Document Server

    Baran, A; Reinhard, P -G; Robledo, L M; Staszczak, A; Warda, M

    2015-01-01

    This is a short review of methods and results of calculations of fission barriers and fission half-lives of even-even superheavy nuclei. An approvable agreement of the following approaches is shown and discussed: The macroscopic-microscopic approach based on the stratagem of the shell correction to the liquid drop model and a vantage point of microscopic energy density functionals of Skyrme and Gogny type selfconsistently calculated within Hartree-Fock-Bogoliubov method. Mass parameters are calculated in the Hartree-Fock-Bogoliubov cranking approximation. A short part of the paper is devoted to the nuclear fission dynamics. We also discuss the predictive power of Skyrme functionals applied to key properties of the fission path of $^{266}$Hs. It applies the standard techniques of error estimates in the framework of a $\\chi^2$ analysis.

  17. Fission Product Sorptivity in Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Tompson, Jr., Robert V. [Univ. of Missouri, Columbia, MO (United States); Loyalka, Sudarshan [Univ. of Missouri, Columbia, MO (United States); Ghosh, Tushar [Univ. of Missouri, Columbia, MO (United States); Viswanath, Dabir [Univ. of Missouri, Columbia, MO (United States); Walton, Kyle [Univ. of Missouri, Columbia, MO (United States); Haffner, Robert [Univ. of Missouri, Columbia, MO (United States)

    2015-04-01

    Both adsorption and absorption (sorption) of fission product (FP) gases on/into graphite are issues of interest in very high temperature reactors (VHTRs). In the original proposal, we proposed to use packed beds of graphite particles to measure sorption at a variety of temperatures and to use an electrodynamic balance (EDB) to measure sorption onto single graphite particles (a few μm in diameter) at room temperature. The use of packed beds at elevated temperature is not an issue. However, the TPOC requested revision of this initial proposal to included single particle measurements at elevated temperatures up to 1100 °C. To accommodate the desire of NEUP to extend the single particle EDB measurements to elevated temperatures it was necessary to significantly revise the plan and the budget. These revisions were approved. In the EDB method, we levitate a single graphite particle (the size, surface characteristics, morphology, purity, and composition of the particle can be varied) or agglomerate in the balance and measure the sorption of species by observing the changes in mass. This process involves the use of an electron stepping technique to measure the total charge on a particle which, in conjunction with the measured suspension voltages for the particle, allows for determinations of mass and, hence, of mass changes which then correspond to measurements of sorption. Accommodating elevated temperatures with this type of system required a significant system redesign and required additional time that ultimately was not available. These constraints also meant that the grant had to focus on fewer species as a result. Overall, the extension of the original proposed single particle work to elevated temperatures added greatly to the complexity of the proposed project and added greatly to the time that would eventually be required as well. This means that the bulk of the experimental progress was made using the packed bed sorption systems. Only being able to recruit one

  18. Evaluation of Pakgen {sup 99m}Tc generators loaded with indigenous fission {sup 99}Mo

    Energy Technology Data Exchange (ETDEWEB)

    Mushtaq, A.; Pervez, S.; Hussain, S.; Mirza, J.A.; Asif, M.; Siddique, M.U.; Khalid, U.; Khan, B.; Khalid, M. [Pakistan Institute of Nuclear Science and Technology, Islamabad (Pakistan). Isotope Production Div.; Khan, M.M.

    2012-07-01

    Fission produced {sup 99}Mo/{sup 99m}Tc generators, called Pakgen, have been manufactured at the PINSTECH generator production facility since 2000 for nuclear medicine applications in Pakistan. These generators were loaded with fission {sup 99}Mo imported from NTP South Africa. Recently production of fission {sup 99}Mo has begun in the Molybdenum-99 Production Facility at PINSTECH. Prior to use in the clinic, eight sets of generators were produced, 23 GBq and 74 GBq at time of calibration, and they were subjected to various quality control procedures recommended in the pharmacopoeia to assess their performance. The elution profile, volume, activity, pH, radionuclidic, chemical, radiochemical and biological purity, and expiry time of the eluates were examined. Labeling efficiency tests were also carried out with a number of the more widely used in vivo radiopharmaceutical kits like DTPA, MDP and MIBI. Performance of {sup 99m}Tc generators loaded with locally produced and imported fission {sup 99}Mo was comparable, and the users of Pakgen generators were fully satisfied. The effect of a wet vs. a dry column on {sup 99m}Tc yields of generators loaded with low and high activity was also studied for the first time. (orig.)

  19. Propagation of a constant velocity fission wave

    Science.gov (United States)

    Deinert, Mark

    2011-10-01

    The ideal nuclear fuel cycle would require no enrichment, minimize the need fresh uranium, and produce few, if any, transuranic elements. Importantly, the latter goal would be met without the reprocessing. For purely physical reasons, no reactor system or fuel cycle can meet all of these objectives. However, a traveling-wave reactor, if feasible, could come remarkably close. The concept is simple: a large cylinder of natural (or depleted) uranium is subjected to a fast neutron source at one end, the neutrons would transmute the uranium downstream and produce plutonium. If the conditions were right, a self-sustaining fission wave would form, producing yet more neutrons which would breed more plutonium and leave behind little more than short-lived fission products. Numerical studies have shown that fission waves of this type are also possible. We have derived an exact solution for the propagation velocity of a fission wave through fertile material. The results show that these waves fall into a class of traveling wave phenomena that have been encountered in other systems. The solution places a strict conditions on the shapes of the flux, diffusive, and reactive profiles that would be required for such a phenomenon to persist. The results are confirmed numerically.

  20. Actinide and fission product partitioning and transmutation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    The third international information exchange meeting on actinide and fission product partitioning and transmutation, took place in Cadarache France, on 12-14 December 1994. The proceedings are presented in six sessions : an introduction session, the major programmes and international cooperation, the systems studies, the reactors fuels and targets, the chemistry and a last discussions session. (A.L.B.)

  1. UBA domain containing proteins in fission yeast

    DEFF Research Database (Denmark)

    Hartmann-Petersen, Rasmus; Semple, Colin A M; Ponting, Chris P;

    2003-01-01

    characterised on both the functional and structural levels. One example of a widespread ubiquitin binding module is the ubiquitin associated (UBA) domain. Here, we discuss the approximately 15 UBA domain containing proteins encoded in the relatively small genome of the fission yeast Schizosaccharomyces pombe...

  2. After Apollo: Fission Origin of the Moon

    Science.gov (United States)

    O'Keefe, John A.

    1973-01-01

    Presents current ideas about the fission process of the Moon, including loss of mass. Saturnian rings, center of the Moon, binary stars, and uniformitarianism. Indicates that planetary formation may be best explained as a destructive, rather than a constructive process. (CC)

  3. Formation of asteroid pairs by rotational fission.

    Science.gov (United States)

    Pravec, P; Vokrouhlický, D; Polishook, D; Scheeres, D J; Harris, A W; Galád, A; Vaduvescu, O; Pozo, F; Barr, A; Longa, P; Vachier, F; Colas, F; Pray, D P; Pollock, J; Reichart, D; Ivarsen, K; Haislip, J; Lacluyze, A; Kusnirák, P; Henych, T; Marchis, F; Macomber, B; Jacobson, S A; Krugly, Yu N; Sergeev, A V; Leroy, A

    2010-08-26

    Pairs of asteroids sharing similar heliocentric orbits, but not bound together, were found recently. Backward integrations of their orbits indicated that they separated gently with low relative velocities, but did not provide additional insight into their formation mechanism. A previously hypothesized rotational fission process may explain their formation-critical predictions are that the mass ratios are less than about 0.2 and, as the mass ratio approaches this upper limit, the spin period of the larger body becomes long. Here we report photometric observations of a sample of asteroid pairs, revealing that the primaries of pairs with mass ratios much less than 0.2 rotate rapidly, near their critical fission frequency. As the mass ratio approaches 0.2, the primary period grows long. This occurs as the total energy of the system approaches zero, requiring the asteroid pair to extract an increasing fraction of energy from the primary's spin in order to escape. We do not find asteroid pairs with mass ratios larger than 0.2. Rotationally fissioned systems beyond this limit have insufficient energy to disrupt. We conclude that asteroid pairs are formed by the rotational fission of a parent asteroid into a proto-binary system, which subsequently disrupts under its own internal system dynamics soon after formation.

  4. Brownian shape motion: Fission fragment mass distributions

    Directory of Open Access Journals (Sweden)

    Sierk Arnold J.

    2012-02-01

    Full Text Available It was recently shown that remarkably accurate fission-fragment mass distributions can be obtained by treating the nuclear shape evolution as a Brownian walk on previously calculated five-dimensional potential-energy surfaces; the current status of this novel method is described here.

  5. Energy-loss distributions of fission fragments

    Energy Technology Data Exchange (ETDEWEB)

    Demidovich, N.N.; Nakhutin, I.E.; Shatunov, V.G.

    1976-03-05

    The f-f coincidence method was used to investigate the change in the form of the energy-loss distributions of Cf/sup 252/ fission fragments in air, down to fragment energies approx.0.8 MeV. A theoretical model is considered for the estimate of the mean-squared deviations of the fragment energy-loss distributions. (AIP)

  6. Liquid uranium alloy-helium fission reactor

    Science.gov (United States)

    Minkov, V.

    1984-06-13

    This invention describes a nuclear fission reactor which has a core vessel and at least one tandem heat exchanger vessel coupled therewith across upper and lower passages to define a closed flow loop. Nuclear fuel such as a uranium alloy in its liquid phase fills these vessels and flow passages. Solid control elements in the reactor core vessel are adapted to be adjusted relative to one another to control fission reaction of the liquid fuel therein. Moderator elements in the other vessel and flow passages preclude fission reaction therein. An inert gas such as helium is bubbled upwardly through the heat exchanger vessel operable to move the liquid fuel upwardly therein and unidirectionally around the closed loop and downwardly through the core vessel. This helium gas is further directed to heat conversion means outside of the reactor vessels to utilize the heat from the fission reaction to generate useful output. The nuclear fuel operates in the 1200 to 1800/sup 0/C range, and even higher to 2500/sup 0/C.

  7. Fission neutron output measurements at LANSCE

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Ronald Owen [Los Alamos National Laboratory; Haight, Robert C [Los Alamos National Laboratory; Devlin, Matthew J [Los Alamos National Laboratory; Fotiadis, Nikolaos [Los Alamos National Laboratory; Laptev, Alexander [Los Alamos National Laboratory; O' Donnell, John M [Los Alamos National Laboratory; Taddeucci, Terry N [Los Alamos National Laboratory; Tovesson, Fredrik [Los Alamos National Laboratory; Ullmann, J L [Los Alamos National Laboratory; Wender, Stephen A [Los Alamos National Laboratory; Bredeweg, T A [Los Alamos National Laboratory; Jandel, M [Los Alamos National Laboratory; Vieira, D J [Los Alamos National Laboratory; Wu, Ching - Yen [LLNL; Becker, J A [LLNL; Stoyer, M A [LLNL; Henderson, R [LLNL; Sutton, M [LLNL; Belier, Gilbert [BRUYERES-LE-CHATEL, FRANCE; Chatillon, A [BRUYERES-LE-CHATEL, FRANCE; Granier, Thierry [CEA, BRUYERES-LE-CHATEL, FRANCE; Laurent, Benoit [CEA, BRUYERES-LE-CHATEL, FRANCE; Taieb, Julien [CEA, BRUYERES-LE-CHATEL, FRANCE

    2010-01-01

    Accurate data for both physical properties and fission properties of materials are necessary to properly model dynamic fissioning systems. To address the need for accurate data on fission neutron energy spectra, especially at outgoing neutron energies below about 200 keV and at energies above 8 MeV, ongoing work at LANSCE involving collaborators from LANL, LLNL and CEA Bruyeres-le-Chatel is extending the energy range, efficiency and accuracy beyond previous measurements. Initial work in the outgoing neutron energy range from 1 to 7 MeV is consistent with current evaluations and provides a foundation for extended measurements. As part of these efforts, a new fission fragment detector that reduces backgrounds and improves timing has been designed fabricated and tested, and new neutron detectors are being assessed for optimal characteristics. Simulations of experimental designs are in progress to ensure that accuracy goals are met. Results of these measurements will be incorporated into evaluations and data libraries as they become available.

  8. The partial fission of fast spinning asteroids

    Science.gov (United States)

    Tardivel, Simon; Sanchez, Paul; Scheeres, Daniel J.

    2016-10-01

    The spin rates of asteroids systematically change over time due the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect. Above a certain spin rate that depends on the body's density, regions of an asteroid can enter in tension, with components held to the body by cohesive forces. When the body fails, deformation or fission can occur. Catastrophic fission leading to complete disruption has been directly observed in active asteroid P/2013 R3. Partial fission, the loss of only part of the body, has been proposed as a mechanism for the formation of binaries and is explored here.The equatorial cavities of (341843) 2008 EV5 and of (185851) 2000 DP107 (a binary system) are consistent with a localized partial fission of the body (LPSC 2016 #1036). The examination of the gravity field of these bodies reveals that a mass placed within these cavities could be shed. In this mechanism, the outward pull of inertial forces creates an average stress at the cavity interface of ≈1 Pa for 2008 EV5 and ≈3 Pa for 2000 DP107 at spin periods of ≈3.15 h for the assumed densities of 1.3 g/cm3.This work continues the study of this partial, localized fission. Specifically, it addresses the issue of the low cohesion necessary to the mechanism. These cohesion values are typically lower than global strength values inferred on other asteroids (10 - 200 Pa), meaning that partial fission may occur prior to larger-scale deformations. Yet, several processes can explain the discrepancy, as they can naturally segregate particles by size. For instance, landslides or granular convection (Brazil nut effect) could bring larger boulders to the equator of the body, while finer particles are left at higher latitudes or sink to the center. Conversely, failure of the interior could bring boulders to the surface. The peculiar profile shape of these asteroids, shared by many binaries (e.g. 1999 KW4, 1996 FG3) may also be a clue of this heterogeneity, as this "spin top" shape is obtained in simulations with

  9. Absolute surface reconstruction by slope metrology and photogrammetry

    Science.gov (United States)

    Dong, Yue

    Developing the manufacture of aspheric and freeform optical elements requires an advanced metrology method which is capable of inspecting these elements with arbitrary freeform surfaces. In this dissertation, a new surface measurement scheme is investigated for such a purpose, which is to measure the absolute surface shape of an object under test through its surface slope information obtained by photogrammetric measurement. A laser beam propagating toward the object reflects on its surface while the vectors of the incident and reflected beams are evaluated from the four spots they leave on the two parallel transparent windows in front of the object. The spots' spatial coordinates are determined by photogrammetry. With the knowledge of the incident and reflected beam vectors, the local slope information of the object surface is obtained through vector calculus and finally yields the absolute object surface profile by a reconstruction algorithm. An experimental setup is designed and the proposed measuring principle is experimentally demonstrated by measuring the absolute surface shape of a spherical mirror. The measurement uncertainty is analyzed, and efforts for improvement are made accordingly. In particular, structured windows are designed and fabricated to generate uniform scattering spots left by the transmitted laser beams. Calibration of the fringe reflection instrument, another typical surface slope measurement method, is also reported in the dissertation. Finally, a method for uncertainty analysis of a photogrammetry measurement system by optical simulation is investigated.

  10. Microscopic theory of nuclear fission: a review

    Science.gov (United States)

    Schunck, N.; Robledo, L. M.

    2016-11-01

    This article reviews how nuclear fission is described within nuclear density functional theory. A distinction should be made between spontaneous fission, where half-lives are the main observables and quantum tunnelling the essential concept, and induced fission, where the focus is on fragment properties and explicitly time-dependent approaches are often invoked. Overall, the cornerstone of the density functional theory approach to fission is the energy density functional formalism. The basic tenets of this method, including some well-known tools such as the Hartree-Fock-Bogoliubov (HFB) theory, effective two-body nuclear potentials such as the Skyrme and Gogny force, finite-temperature extensions and beyond mean-field corrections, are presented succinctly. The energy density functional approach is often combined with the hypothesis that the time-scale of the large amplitude collective motion driving the system to fission is slow compared to typical time-scales of nucleons inside the nucleus. In practice, this hypothesis of adiabaticity is implemented by introducing (a few) collective variables and mapping out the many-body Schrödinger equation into a collective Schrödinger-like equation for the nuclear wave-packet. The region of the collective space where the system transitions from one nucleus to two (or more) fragments defines what are called the scission configurations. The inertia tensor that enters the kinetic energy term of the collective Schrödinger-like equation is one of the most essential ingredients of the theory, since it includes the response of the system to small changes in the collective variables. For this reason, the two main approximations used to compute this inertia tensor, the adiabatic time-dependent HFB and the generator coordinate method, are presented in detail, both in their general formulation and in their most common approximations. The collective inertia tensor enters also the Wentzel-Kramers-Brillouin (WKB) formula used to extract

  11. Specific fission J-window and angular momentum dependence of the fission barrier

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Hiroshi; Saito, Tadashi; Takahashi, Naruto; Yokoyama, Akihiko [Osaka Univ., Suita (Japan); Shinohara, Atsushi

    1997-04-01

    A method to determine a unique J-window in the fission process was devised and the fissioning nuclide associated with thus extracted J-window was identified for each of the heavy-ion reaction systems. Obtained fission barriers at the resulting J-window were compared with the calculated values by the rotating finite range model (RFRM). The deduced barriers for individual nuclides were compared with the RFRM barriers to reproduce more or less the angular momentum dependence the RFRM prediction. The deduced systematic behavior of the fission barrier indicates no even-odd and shell corrections are necessary. The nuclear dissipation effect based on Kramer`s model revealed substantial reduction of the statistically deduced barrier heights and brought a fairly large scattering from the RFRM J-dependence. However, introduction of the temperature-dependent friction coefficient ({gamma} = 2 for T {>=} 1.0 MeV and 0.5 for T < 1.0 MeV) was found to bring about satisfactory agreement with both RFRM fission barriers and the pre-fission neutron multiplicity systematics. (author). 81 refs.

  12. Magnifying absolute instruments for optically homogeneous regions

    CERN Document Server

    Tyc, Tomas

    2011-01-01

    We propose a class of magnifying absolute optical instruments with a positive isotropic refractive index. They create magnified stigmatic images, either virtual or real, of optically homogeneous three-dimensional spatial regions within geometrical optics.

  13. The Simplicity Argument and Absolute Morality

    Science.gov (United States)

    Mijuskovic, Ben

    1975-01-01

    In this paper the author has maintained that there is a similarity of thought to be found in the writings of Cudworth, Emerson, and Husserl in his investigation of an absolute system of morality. (Author/RK)

  14. Application of the dinuclear system model to fission process

    Directory of Open Access Journals (Sweden)

    Andreev A. V.

    2016-01-01

    Full Text Available A theoretical evaluation of the collective excitation spectra of nucleus at large deformations is possible within the framework of the dinuclear system model, which treats the wave function of the fissioning nucleus as a superposition of a mononucleus configuration and two-cluster configurations in a dynamical way, permitting exchange of nucleons between clusters. In this work the method of calculation of the potential energy and the collective spectrum of fissioning nucleus at scission point is presented. Combining the DNS model calculations and the statistical model of fission we calculate the mass, total kinetic energy, and angular distribution of fission fragments for the neutron–induced fission of 239Pu.

  15. Fifty years of nuclear fission: Nuclear data and measurements series

    Energy Technology Data Exchange (ETDEWEB)

    Lynn, J.E.

    1989-06-01

    This report is the written version of a colloquium first presented at Argonne National Laboratory in January 1989. The paper begins with an historical preamble about the events leading to the discovery of nuclear fission. This leads naturally to an account of early results and understanding of the fission phenomena. Some of the key concepts in the development of fission theory are then discussed. The main theme of this discussion is the topography of the fission barrier, in which the interplay of the liquid-drop model and nucleon shell effects lead to a wide range of fascinating phenomena encompassing metastable isomers, intermediate-structure effects in fission cross-sections, and large changes in fission product properties. It is shown how study of these changing effects and theoretical calculations of the potential energy of the deformed nucleus have led to broad qualitative understanding of the nature of the fission process. 54 refs., 35 figs.

  16. Upgrade and yields of the IGISOL facility

    Energy Technology Data Exchange (ETDEWEB)

    Karvonen, P. [Department of Physics, P.O. Box 35 (YFL), University of Jyvaeskylae, FI-40014 (Finland)], E-mail: Pasi.Karvonen@phys.jyu.fi; Penttilae, H.; Aystoe, J. [Department of Physics, P.O. Box 35 (YFL), University of Jyvaeskylae, FI-40014 (Finland); Billowes, J.; Campbell, P. [Schuster Laboratory, University of Manchester, Manchester M13 9PL (United Kingdom); Elomaa, V-V. [Department of Physics, P.O. Box 35 (YFL), University of Jyvaeskylae, FI-40014 (Finland); Hager, U. [Department of Physics, P.O. Box 35 (YFL), University of Jyvaeskylae, FI-40014 (Finland); TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, V6T 2A3 (Canada); Hakala, J.; Jokinen, A.; Kessler, T.; Kankainen, A.; Moore, I.D. [Department of Physics, P.O. Box 35 (YFL), University of Jyvaeskylae, FI-40014 (Finland); Peraejaervi, K. [Department of Physics, P.O. Box 35 (YFL), University of Jyvaeskylae, FI-40014 (Finland); STUK, Radiation and Nuclear Safety Authority, P.O. Box 14, FI-00881 (Finland); Rahaman, S. [Department of Physics, P.O. Box 35 (YFL), University of Jyvaeskylae, FI-40014 (Finland); Rinta-Antila, S. [Department of Physics, P.O. Box 35 (YFL), University of Jyvaeskylae, FI-40014 (Finland); Department of Physics, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Rissanen, J.; Ronkainen, J.; Saastamoinen, A. [Department of Physics, P.O. Box 35 (YFL), University of Jyvaeskylae, FI-40014 (Finland); Sonoda, T. [Department of Physics, P.O. Box 35 (YFL), University of Jyvaeskylae, FI-40014 (Finland); K. U. Leuven, Instituut voor Kern- en Stralingsfysica, University of Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Tordoff, B. [Department of Physics, P.O. Box 35 (YFL), University of Jyvaeskylae, FI-40014 (Finland); Schuster Laboratory, University of Manchester, Manchester M13 9PL (United Kingdom)] (and others)

    2008-10-15

    The front end of the Jyvaeskylae IGISOL facility was upgraded in 2003 by increasing its pumping capacity and by improving the radiation shielding. In late 2005, the skimmer electrode of the mass separator was replaced by a sextupole ion guide, which improved the mass separator efficiency up to an order of magnitude. The current design of the facility is described. The updated yield data, achieved with and without the additional JYFLTRAP purification, using both fusion evaporation reactions and particle induced fission is presented to give an overview of the capability of the facility. These data have been determined either by radioactivity measurements or by direct ion counting after the Penning trap system.

  17. Mitochondrial localization of fission yeast manganese superoxide dismutase is required for its lysine acetylation and for cellular stress resistance and respiratory growth

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hidekazu, E-mail: hidetakahashi@riken.jp [Chemical Genetics Laboratory/Chemical Genomics Research Group, RIKEN Advanced Science Institute, Wako, Saitama 351-0198 (Japan); Suzuki, Takehiro [Biomolecular Characterization Team, RIKEN Advanced Science Institute, Wako, Saitama 351-0198 (Japan); CREST Research Project, Japan Science and Technology Corporation, Kawaguchi, Saitama 332-0012 (Japan); Shirai, Atsuko; Matsuyama, Akihisa [Chemical Genetics Laboratory/Chemical Genomics Research Group, RIKEN Advanced Science Institute, Wako, Saitama 351-0198 (Japan); Dohmae, Naoshi [Biomolecular Characterization Team, RIKEN Advanced Science Institute, Wako, Saitama 351-0198 (Japan); CREST Research Project, Japan Science and Technology Corporation, Kawaguchi, Saitama 332-0012 (Japan); Yoshida, Minoru, E-mail: yoshidam@riken.jp [Chemical Genetics Laboratory/Chemical Genomics Research Group, RIKEN Advanced Science Institute, Wako, Saitama 351-0198 (Japan); CREST Research Project, Japan Science and Technology Corporation, Kawaguchi, Saitama 332-0012 (Japan)

    2011-03-04

    Research highlights: {yields} Fission yeast manganese superoxide dismutase (MnSOD) is acetylated. {yields} The mitochondrial targeting sequence (MTS) is required for the acetylation of MnSOD. {yields} The MTS is not crucial for MnSOD activity, but is important for respiratory growth. {yields} Posttranslational regulation of MnSOD differs between budding and fission yeast. -- Abstract: Manganese-dependent superoxide dismutase (MnSOD) is localized in the mitochondria and is important for oxidative stress resistance. Although transcriptional regulation of MnSOD has been relatively well studied, much less is known about the protein's posttranslational regulation. In budding yeast, MnSOD is activated after mitochondrial import by manganese ion incorporation. Here we characterize posttranslational modification of MnSOD in the fission yeast Schizosaccharomyces pombe. Fission yeast MnSOD is acetylated at the 25th lysine residue. This acetylation was diminished by deletion of N-terminal mitochondrial targeting sequence, suggesting that MnSOD is acetylated after import into mitochondria. Mitochondrial localization of MnSOD is not essential for the enzyme activity, but is crucial for oxidative stress resistance and growth under respiratory conditions of fission yeast. These results suggest that, unlike the situation in budding yeast, S. pombe MnSOD is already active even before mitochondrial localization; nonetheless, mitochondrial localization is critical to allow the cell to cope with reactive oxygen species generated inside or outside of mitochondria.

  18. Measurement of isotopic cross sections of the fission fragments produced in 500 AMeV {sup 208}Pb + p reaction; Etude de la production des fragments de fission issus de la reaction {sup 208}Pb + p a 500 AMeV

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Dominguez, B

    2003-03-01

    The aim of this work is the study of the fission fragments produced in the spallation reaction {sup 208}Pb + p at 500 AMeV. The fission fragments from Z=23 up to Z=59 have been detected and identified by using the inverse kinematics technique with the high-resolution spectrometer FRS. The production cross sections and the recoil velocities of 430 nuclei have been measured. The measured data have been compared with previous data. The isotopic distributions show a high precision. However, the absolute value of the fission cross section is higher than expected. From the experimental data the characteristics of the average fissioning system have been reconstructed (Z{sub fis}, A{sub fis}, E*{sub fis}). In addition, the number of post-fission neutrons emitted from the fission fragments, v{sub post}, has been determined by using a new method. The experimental data have been compared to the two-steps models describing the spallation reaction. The impact of the model parameters on the observables has been analysed and the reasons Leading to the observed differences between the codes are also presented. This analyse shows a good agreement with the INCL4+ABLA code. (author)

  19. Sub-library of Updated Fission Barrier Parameters(CENPL-FBP2)

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The fission barrier parameters are important to determine the fission character of a nucleus. The fission barrier parameters and fission level densities are key ingredients in calculations of not only fission cross section but also various cross sections, and spectra for the fissile nuclides, even heavy nuclides at higher incident energies. It is necessaries that the accuracy of fission barrier parameters requires even higher, and nuclides with fission barrier parameters can cover even wider nuclear range.

  20. A global algorithm for estimating Absolute Salinity

    Directory of Open Access Journals (Sweden)

    T. J. McDougall

    2012-12-01

    Full Text Available The International Thermodynamic Equation of Seawater – 2010 has defined the thermodynamic properties of seawater in terms of a new salinity variable, Absolute Salinity, which takes into account the spatial variation of the composition of seawater. Absolute Salinity more accurately reflects the effects of the dissolved material in seawater on the thermodynamic properties (particularly density than does Practical Salinity.

    When a seawater sample has standard composition (i.e. the ratios of the constituents of sea salt are the same as those of surface water of the North Atlantic, Practical Salinity can be used to accurately evaluate the thermodynamic properties of seawater. When seawater is not of standard composition, Practical Salinity alone is not sufficient and the Absolute Salinity Anomaly needs to be estimated; this anomaly is as large as 0.025 g kg−1 in the northernmost North Pacific. Here we provide an algorithm for estimating Absolute Salinity Anomaly for any location (x, y, p in the world ocean.

    To develop this algorithm, we used the Absolute Salinity Anomaly that is found by comparing the density calculated from Practical Salinity to the density measured in the laboratory. These estimates of Absolute Salinity Anomaly however are limited to the number of available observations (namely 811. In order to provide a practical method that can be used at any location in the world ocean, we take advantage of approximate relationships between Absolute Salinity Anomaly and silicate concentrations (which are available globally.

  1. Axisymmetric Magnetic Mirror Fusion-Fission Hybrid

    Energy Technology Data Exchange (ETDEWEB)

    Moir, R. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Martovetsky, N. N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Molvik, A. W. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ryutov, D. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Simonen, T. C. [Univ. of California, Berkeley, CA (United States)

    2011-05-13

    The achieved performance of the gas dynamic trap version of magnetic mirrors and today’s technology we believe are sufficient with modest further efforts for a neutron source for material testing (Q=Pfusion/Pinput~0.1). The performance needed for commercial power production requires considerable further advances to achieve the necessary high Q>>10. An early application of the mirror, requiring intermediate performance and intermediate values of Q~1 are the hybrid applications. The Axisymmetric Mirror has a number of attractive features as a driver for a fusion-fission hybrid system: geometrical simplicity, inherently steady-state operation, and the presence of the natural divertors in the form of end tanks. This level of physics performance has the virtue of low risk and only modest R&D needed and its simplicity promises economy advantages. Operation at Q~1 allows for relatively low electron temperatures, in the range of 4 keV, for the DT injection energy ~ 80 keV. A simple mirror with the plasma diameter of 1 m and mirror-to-mirror length of 35 m is discussed. Simple circular superconducting coils are based on today’s technology. The positive ion neutral beams are similar to existing units but designed for steady state. A brief qualitative discussion of three groups of physics issues is presented: axial heat loss, MHD stability in the axisymmetric geometry, microstability of sloshing ions. Burning fission reactor wastes by fissioning actinides (transuranics: Pu, Np, Am, Cm, .. or just minor actinides: Np, Am, Cm, …) in the hybrid will multiply fusion’s energy by a factor of ~10 or more and diminish the Q needed to less than 1 to overcome the cost of recirculating power for good economics. The economic value of destroying actinides by fissioning is rather low based on either the cost of long-term storage or even deep geologic disposal so most of the revenues of hybrids will come from electrical power. Hybrids that obtain revenues from

  2. I-Xe systematics of the impact plume produced chondrules from the CB carbonaceous chondrites: Implications for the half-life value of 129I and absolute age normalization of 129I-129Xe chronometer

    Science.gov (United States)

    Pravdivtseva, O.; Meshik, A.; Hohenberg, C. M.; Krot, A. N.

    2017-03-01

    It is inferred that magnesian non-porphyritic chondrules in the CB (Bencubbin-type) carbonaceous chondrites formed in an impact generated plume of gas and melt at 4562.49 ± 0.21 Ma (Bollard et al., 2015) and could be suitable for the absolute age normalization of relative chronometers. Here xenon isotopic compositions of neutron irradiated chondrules from the CB chondrites Gujba and Hammadah al Hamra (HH) 237 have been analyzed in an attempt to determine closure time of their I-Xe isotope systematics. One of the HH 237 chondrules, #1, yielded a well-defined I-Xe isochron that corresponds to a closure time of 0.29 ± 0.16 Ma after the Shallowater aubrite standard. Release profiles and diffusion properties of radiogenic 129*Xe and 128*Xe, extracted from this chondrule by step-wise pyrolysis, indicate presence of two iodine host phases with distinct activation energies of 73 and 120 kcal/mol. In spite of the activation energy differences, the I-Xe isotope systematics of these two phases closed simultaneously, suggesting rapid heating and cooling (possibly quenching) of the CB chondrules. The release profiles of U-fission Xe and I-derived Xe correlate in the high temperature host phase supporting simultaneous closure of 129I-129Xe and 207Pb-206Pb systematics. The absolute I-Xe age of Shallowater standard is derived from the observed correlation between I-Xe and Pb-Pb ages in a number of samples. It is re-evaluated here using Pb-Pb ages adjusted for an updated 238U/235U ratio of 137.794 and meteorite specific U-isotope ratios. With the addition of the new data for HH 237 chondrule #1, the re-evaluated absolute I-Xe age of Shallowater is 4562.4 ± 0.2 Ma. The absolute I-Xe age of the HH 237 chondrule #1 is 4562.1 ± 0.3 Ma, in good agreement with U-corrected Pb-Pb ages of the Gujba chondrules (Bollard et al., 2015) and HH 237 silicates (Krot et al., 2005). All I-Xe data used here, and in previous estimates of the absolute age of Shallowater, are calculated using 15.7

  3. Prompt fission γ -ray spectrum characteristics from 240Pu(sf ) and 242Pu(sf )

    Science.gov (United States)

    Oberstedt, S.; Oberstedt, A.; Gatera, A.; Göök, A.; Hambsch, F.-J.; Moens, A.; Sibbens, G.; Vanleeuw, D.; Vidali, M.

    2016-05-01

    In this paper we present first results for prompt fission γ -ray spectra (PFGS) characteristics from the spontaneous fission (sf) of 240Pu and 242Pu. For 242Pu(sf ) we obtained, after proper unfolding of the detector response, an average energy per photon ɛ¯γ=(0.843 ±0.012 ) MeV, an average multiplicity M¯γ=(6.72 ±0.07 ) , and an average total γ -ray energy release per fission E¯γ ,tot = (5.66 ± 0.06) MeV. The 240Pu(sf ) emission spectrum was obtained by applying a so-called detector-response transformation function determined from the 242Pu spectrum measured in exactly the same geometry. The results are an average energy per photon ɛ¯γ=(0.80 ±0.07 ) MeV, the average multiplicity M¯γ = (8.2 ± 0.4), and an average total γ -ray energy release per fission E¯γ ,tot = (6.6 ± 0.5) MeV. The PFGS characteristics for 242Pu(sf ) are in very good agreement with those from thermal-neutron-induced fission on 241Pu and scales well with the corresponding prompt neutron multiplicity. Our results in the case of 240Pu(sf ), although drawn from a limited number of events, show a significantly enhanced average multiplicity and average total energy, but may be understood from a different fragment yield distribution in 240Pu(sf ) compared to that of 242Pu(sf ).

  4. alpha-Synuclein fission yeast model: concentration-dependent aggregation without plasma membrane localization or toxicity.

    Science.gov (United States)

    Brandis, Katrina A; Holmes, Isaac F; England, Samantha J; Sharma, Nijee; Kukreja, Lokesh; DebBurman, Shubhik K

    2006-01-01

    Despite fission yeast's history of modeling salient cellular processes, it has not yet been used to model human neurodegeneration-linked protein misfolding. Because alpha-synuclein misfolding and aggregation are linked to Parkinson's disease (PD), here, we report a fission yeast (Schizosaccharomyces pombe) model that evaluates alpha-synuclein misfolding, aggregation, and toxicity and compare these properties with those recently characterized in budding yeast (Saccharomyces cerevisiae). Wild-type alpha-synuclein and three mutants (A30P, A53T, and A30P/A53T) were expressed with thiamine-repressible promoters (using vectors of increasing promoter strength: pNMT81, pNMT41, and pNMT1) to test directly in living cells the nucleation polymerization hypothesis for alpha-synuclein misfolding and aggregation. In support of the hypothesis, wild-type and A53T alpha-synuclein formed prominent intracellular cytoplasmic inclusions within fission yeast cells in a concentration- and time-dependent manner, whereas A30P and A30P/A53T remained diffuse throughout the cytoplasm. A53T alpha-synuclein formed aggregates faster than wild-type alpha-synuclein and at a lower alpha-synuclein concentration. Unexpectedly, unlike in budding yeast, wild-type and A53T alpha-synuclein did not target to the plasma membrane in fission yeast, not even at low alpha-synuclein concentrations or as a precursor step to forming aggregates. Despite alpha-synuclein's extensive aggregation, it was surprisingly nontoxic to fission yeast. Future genetic dissection might yield molecular insight into this protection against toxicity. We speculate that alpha-synuclein toxicity might be linked to its membrane binding capacity. To conclude, S. pombe and S. cerevisiae model similar yet distinct aspects of alpha-synuclein biology, and both organisms shed insight into alpha-synuclein's role in PD pathogenesis.

  5. On determining absolute entropy without quantum theory or the third law of thermodynamics

    Science.gov (United States)

    Steane, Andrew M.

    2016-04-01

    We employ classical thermodynamics to gain information about absolute entropy, without recourse to statistical methods, quantum mechanics or the third law of thermodynamics. The Gibbs-Duhem equation yields various simple methods to determine the absolute entropy of a fluid. We also study the entropy of an ideal gas and the ionization of a plasma in thermal equilibrium. A single measurement of the degree of ionization can be used to determine an unknown constant in the entropy equation, and thus determine the absolute entropy of a gas. It follows from all these examples that the value of entropy at absolute zero temperature does not need to be assigned by postulate, but can be deduced empirically.

  6. The quantum coherent mechanism for singlet fission: experiment and theory.

    Science.gov (United States)

    Chan, Wai-Lun; Berkelbach, Timothy C; Provorse, Makenzie R; Monahan, Nicholas R; Tritsch, John R; Hybertsen, Mark S; Reichman, David R; Gao, Jiali; Zhu, X-Y

    2013-06-18

    The absorption of one photon by a semiconductor material usually creates one electron-hole pair. However, this general rule breaks down in a few organic semiconductors, such as pentacene and tetracene, where one photon absorption may result in two electron-hole pairs. This process, where a singlet exciton transforms to two triplet excitons, can have quantum yields as high as 200%. Singlet fission may be useful to solar cell technologies to increase the power conversion efficiency beyond the so-called Shockley-Queisser limit. Through time-resolved two-photon photoemission (TR-2PPE) spectroscopy in crystalline pentacene and tetracene, our lab has recently provided the first spectroscopic signatures in singlet fission of a critical intermediate known as the multiexciton state (also called a correlated triplet pair). More importantly, we found that population of the multiexciton state rises at the same time as the singlet state on the ultrafast time scale upon photoexcitation. This observation does not fit with the traditional view of singlet fission involving the incoherent conversion of a singlet to a triplet pair. However, it provides an experimental foundation for a quantum coherent mechanism in which the electronic coupling creates a quantum superposition of the singlet and the multiexciton state immediately after optical excitation. In this Account, we review key experimental findings from TR-2PPE experiments and present a theoretical analysis of the quantum coherent mechanism based on electronic structural and density matrix calculations for crystalline tetracene lattices. Using multistate density functional theory, we find that the direct electronic coupling between singlet and multiexciton states is too weak to explain the experimental observation. Instead, indirect coupling via charge transfer intermediate states is two orders of magnitude stronger, and dominates the dynamics for ultrafast multiexciton formation. Density matrix calculation for the crystalline

  7. Recent studies in heavy ion induced fission reactions

    Science.gov (United States)

    Choudhury, R. K.

    2001-08-01

    Nuclear fission process involves large scale shape changes of the nucleus, while it evolves from a nearly spherical configuration to two separated fission fragments. The dynamics of these shape changes in the nuclear many body system is governed by a strong interplay of the collective and single particle degrees of freedom. With the availability of heavy ion accelerators, there has been an impetus to study the nuclear dynamics through the investigations of nucleus--nucleus collisions involving fusion and fission process. From the various investigations carried out in the past years, it is now well recognized that there is large scale damping of collective modes in heavy ion induced fission reactions, which in other words implies that nuclear motion is highly viscous. In recent years, there have been many experimental observations in heavy ion induced fission reactions at medium bombarding energies, which suggest possible occurrence of various non-equilibrium modes of fission such as quasi-fission, fast fission and pre-equilibrium fission, where some of the internal degrees of freedom of the nucleus is not fully equilibrated. We have carried out extensive investigations on the fission fragment angular distributions at near barrier bombarding energies using heavy fissile targets. The measured fragment anisotropies when compared with the standard saddle point model (SSPM) calculations show that for projectile-target systems having zero or low ground state spins, the angular anisotropy exhibits a peak-like behaviour at the sub barrier energies, which cannot be explained by the SSPM calculations. For projectiles or targets with large ground state spins, the anomalous peaking gets washed out due to smearing of the K-distribution by the intrinsic entrance channel spins. Recently studies have been carried out on the spin distributions of fission fragments through the gamma ray multiplicity measurements. The fission fragments acquire spin mainly from two sources: (i) due to

  8. Investigation of fine-structure dips in fission-fragment mass distribution: An asymmetric two centre shell model approach

    Science.gov (United States)

    Malik, Sham S.

    2017-04-01

    The fission fragment mass distribution followed by neutron emission is studied for the 208Pb (18O , f) reaction using the asymmetric two centre shell model. The measured mass distribution spectrum reveals new kind of systematics on shell structure and leads to an improved understanding of structure effects in nuclear fission. A detailed investigation of shell effects both in potential and cranking mass parameter has been carried out for explaining the observed fine structure dips (i.e., less probable distributions) corresponding to shell closure (Z = 50 and/or N = 82) of fission fragments and their complementary partners. The available energy states for the decay process are obtained by solving the Schrödinger equation and found that first-five eigenstates are sufficient in reproducing the observed mass distribution spectrum. An outcome of the asymmetric two centre shell model also completely favours the observed claim that ;the total number of emitted neutrons between correlated pairs of fission fragments should not exceed 6;. A complete observed spectrum is obtained by adding the mass distribution yields of all 6-neutron emission channels. This suggests a possible importance of extending these calculations to get new insight into an understanding of the dynamical behaviour of fragment formation in the fission process.

  9. A new approach to prompt fission neutron TOF data treatment

    Science.gov (United States)

    Zeynalov, Sh.; Zeynalova, O. V.; Hambsch, F.-J.; Oberstedt, S.

    The prompt neutron emission in spontaneous fission of 252Cf has been investigated applying digital signal electronics along with associated digital signal processing algorithms. A new mathematical approach, applicable to single events, was developed for prompt fission neutron (PFN) time-offlight distribution unfolding. The main goal was to understand the reasons of the long existing discrepancy between theoretical calculations and the measurements of prompt fission neutron (PFN) emission dependence on the total kinetic energy (TKE) of the fission fragments (FF). Since the 252Cf (sf) reaction is one of the main references for nuclear data the understanding of the PFN emission mechanism is very important both for nuclear fission theory and nuclear data. The experimental data were taken with a twin Frisch-grid ionization chamber and a NE213-equivalent neutron detector in an experimental setup similar to the well known work of C. Budtz-Jorgensen and H.-H. Knitter. About 2.5 × 105 coincidences between fission fragment (FF) and neutron detector response to prompt fission neutron detection have been registered (∼ 1.6 × 107 of total recorded fission events). Fission fragment kinetic energy, mass and angular distribution, neutron time-of-flight and pulse shape have been investigated using a 12-bit waveform digitizer. The signal waveforms have been analyzed using digital signal processing algorithms. The main goal of this work was a detailed description of the prompt fission neutron treatment.

  10. A new role for myosin II in vesicle fission.

    Science.gov (United States)

    Flores, Juan A; Balseiro-Gomez, Santiago; Cabeza, Jose M; Acosta, Jorge; Ramirez-Ponce, Pilar; Ales, Eva

    2014-01-01

    An endocytic vesicle is formed from a flat plasma membrane patch by a sequential process of invagination, bud formation and fission. The scission step requires the formation of a tubular membrane neck (the fission pore) that connects the endocytic vesicle with the plasma membrane. Progress in vesicle fission can be measured by the formation and closure of the fission pore. Live-cell imaging and sensitive biophysical measurements have provided various glimpses into the structure and behaviour of the fission pore. In the present study, the role of non-muscle myosin II (NM-2) in vesicle fission was tested by analyzing the kinetics of the fission pore with perforated-patch clamp capacitance measurements to detect single vesicle endocytosis with millisecond time resolution in peritoneal mast cells. Blebbistatin, a specific inhibitor of NM-2, dramatically increased the duration of the fission pore and also prevented closure during large endocytic events. Using the fluorescent markers FM1-43 and pHrodo Green dextran, we found that NM-2 inhibition greatly arrested vesicle fission in a late phase of the scission event when the pore reached a final diameter of ∼ 5 nm. Our results indicate that loss of the ATPase activity of myosin II drastically reduces the efficiency of membrane scission by making vesicle closure incomplete and suggest that NM-2 might be especially relevant in vesicle fission during compound endocytosis.

  11. Detection of fission fragments by secondary emission; Detection des fragments de fission par emission secondaire

    Energy Technology Data Exchange (ETDEWEB)

    Audias, A. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-07-01

    This fission fragment detecting apparatus is based on the principle that fragments traversing a thin foil will cause emission of secondary electrons. These electrons are then accelerated (10 kV) and directly detected by means of a plastic scintillator and associated photomultiplier. Some of the advantages of such a detector are, its rapidity, its discriminating power between alpha particles and fission fragments, its small energy loss in detecting the fragments and the relatively great amount of fissionable material which it can contain. This paper is subdivided as follows: a) theoretical considerations b) constructional details of apparatus and some experimental details and c) a study of the secondary emission effect itself. (author) [French] Le detecteur de fragments de fission que nous avons realise est base sur le principe de l'emission secondaire produite par les fragments de fission traversant une feuille mince: les electrons secondaires emis sont acceleres a des tensions telles (de l'ordre de 10 kV), qu'ils soient directement detectables par un scintillateur plastique associe a un photomultiplicateur. L'interet d'un tel detecteur reside: dans sa rapidite, sa tres bonne discrimination alpha, fission, la possibilite de detecter les fragments de fission avec une perte d'energie pouvant rester relativement faible, et la possibilite d'introduire des quantites de matiere fissile plus importantes que dans les autres types de detecteurs. Ce travail comporte: -) un apercu bibliographique de la theorie du phenomene, -) realisation et mise au point du detecteur avec etude experimentale de quelques parametres intervenant dans l'emission secondaire, -) etude de l'emission secondaire (sur la face d'emergence des fragments de fission) en fonction de l'energie du fragment et en fonction de l'epaisseur de matiere traversee avant emission secondaire, et -) une etude comparative de l'emission secondaire sur la

  12. SABR Fusion-Fission Hybrid Studies

    Science.gov (United States)

    Stewart, Chris

    2012-03-01

    The Subcritical Advanced Burner Reactor (SABR) concept is a fast reactor comprised of a tokamak fusion neutron source based on ITER surrounded by an annular fission core adapted from Integral Fast Reactor designs. Previous work has examined SABR used to help close the nuclear fuel cycle by fissioning the transuranics from spent nuclear fuel. One focus of the present work is a SABR Breeder Reactor to achieve tritium self-sufficieny and a Pu breeding ratio significantly above 1 in order to provide fuel for SABR as well as for MOX-fueled LWR's and other fast reactors. Another focus of this research is the dynamic safety simulation of lloss-of-flow loss-of-heat-sink, loss-of-power, and positive reactivity accidents in the TRU fuel SABR burner reactor. The reactivity effect of thermal-induced bowing of fuel pins has been modeled, which is expected to provide passive safety.

  13. Nuclear Fission Investigation with Twin Ionization Chamber

    Science.gov (United States)

    Zeynalova, O.; Zeynalov, Sh.; Nazarenko, M.; Hambsch, F.-J.; Oberstedt, S.

    2011-11-01

    The purpose of the present paper was to report the recent results, obtained in development of digital pulse processing mathematics for prompt fission neutron (PFN) investigation using twin ionization chamber (TIC) along with fast neutron time-of-flight detector (ND). Due to well known ambiguities in literature (see refs. [4, 6, 9 and 11]), concerning a pulse induction on TIC electrodes by FF ionization, we first presented detailed mathematical analysis of fission fragment (FF) signal formation on TIC anode. The analysis was done using Ramo-Shockley theorem, which gives relation between charged particle motion between TIC electrodes and so called weighting potential. Weighting potential was calculated by direct numerical solution of Laplace equation (neglecting space charge) for the TIC geometry and ionization, caused by FF. Formulae for grid inefficiency (GI) correction and digital pulse processing algorithms for PFN time-of-flight measurements and pulse shape analysis are presented and discussed.

  14. Microscopic Calculations of 240Pu Fission

    Energy Technology Data Exchange (ETDEWEB)

    Younes, W; Gogny, D

    2007-09-11

    Hartree-Fock-Bogoliubov calculations have been performed with the Gogny finite-range effective interaction for {sup 240}Pu out to scission, using a new code developed at LLNL. A first set of calculations was performed with constrained quadrupole moment along the path of most probable fission, assuming axial symmetry but allowing for the spontaneous breaking of reflection symmetry of the nucleus. At a quadrupole moment of 345 b, the nucleus was found to spontaneously scission into two fragments. A second set of calculations, with all nuclear moments up to hexadecapole constrained, was performed to approach the scission configuration in a controlled manner. Calculated energies, moments, and representative plots of the total nuclear density are shown. The present calculations serve as a proof-of-principle, a blueprint, and starting-point solutions for a planned series of more comprehensive calculations to map out a large set of scission configurations, and the associated fission-fragment properties.

  15. Fusion-fission energy systems evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Teofilo, V.L.; Aase, D.T.; Bickford, W.E.

    1980-01-01

    This report serves as the basis for comparing the fusion-fission (hybrid) energy system concept with other advanced technology fissile fuel breeding concepts evaluated in the Nonproliferation Alternative Systems Assessment Program (NASAP). As such, much of the information and data provided herein is in a form that meets the NASAP data requirements. Since the hybrid concept has not been studied as extensively as many of the other fission concepts being examined in NASAP, the provided data and information are sparse relative to these more developed concepts. Nevertheless, this report is intended to provide a perspective on hybrids and to summarize the findings of the rather limited analyses made to date on this concept.

  16. Decay spectroscopy of exotic fission products

    Science.gov (United States)

    Rykaczewski, Krzysztof

    2014-09-01

    The beta decay studies of exotic fission products have been performed at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory. The scientific program was focused on the beta-strength function measurements and resulting new half-lives and beta-delayed neutron properties. These observables are important for nuclear structure analysis and modeling of the nucleosynthesis within rapid neutron capture process. The highlights include ten new beta half-lives and several Pn branching ratios including an observation of beta-delayed two-neutron emitter 86Ga. In addition, the measurements of the beta-strength within beta-gamma emission window were performed using a Modular Total Absorption Spectrometer for 22 fission products. These MTAS results are also important for the analysis of reactor anti-neutrino anomaly. The beta decay studies of exotic fission products have been performed at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory. The scientific program was focused on the beta-strength function measurements and resulting new half-lives and beta-delayed neutron properties. These observables are important for nuclear structure analysis and modeling of the nucleosynthesis within rapid neutron capture process. The highlights include ten new beta half-lives and several Pn branching ratios including an observation of beta-delayed two-neutron emitter 86Ga. In addition, the measurements of the beta-strength within beta-gamma emission window were performed using a Modular Total Absorption Spectrometer for 22 fission products. These MTAS results are also important for the analysis of reactor anti-neutrino anomaly. Supported by the U.S. DOE Office of Nuclear Physics under Contracts DE-AC05-00R22725 (ORNL), DE-FG02-96ER40983 (UTK).

  17. Singlet fission: Towards efficient solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Havlas, Zdeněk; Wen, Jin [Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 16610 Prague 6 (Czech Republic); Michl, Josef [Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215 (United States); Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 16610 Prague 6 (Czech Republic)

    2015-12-31

    Singlet fission (SF) offers an opportunity to improve solar cell efficiency, but its practical use is hindered by the limited number of known efficient materials, limited knowledge of SF mechanism, mainly the relation between the dimer structure and SF efficiency and diffusion of the triplet states allowing injection of electrons into the solar cell semiconductor band. Here we report on our attempt to design new classes of chromophores and to study the relation between the structure and SF efficiency.

  18. Actinide and fission product partitioning and transmutation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The fourth international information exchange meeting on actinide and fission product partitioning and transmutation, took place in Mito City in Japan, on 111-13 September 1996. The proceedings are presented in six sessions: the major programmes and international cooperation, the partitioning and transmutation programs, feasibility studies, particular separation processes, the accelerator driven transmutation, and the chemistry of the fuel cycle. (A.L.B.)

  19. An overview of the recent results on fission dynamics from the NAND facility

    Indian Academy of Sciences (India)

    B R Behera

    2015-08-01

    This paper summarizes the results of some of the recent fusion–fission experiments carried out at the National Array of Neutron Detectors (NAND) Phase-01 installed at the Pelletron+LINAC accelerator facility of Inter-University Accelerator Centre (IUAC), New Delhi. Pre-scission neutron multiplicity excitation functions are measured for the 213,215,217Fr, 210,212,214,216Rn and 206,210Po compound nuclei populated through the fusion of the 19F+194,196,198Pt, 16,18O+194,198Pt and 12C+194,198Pt systems, respectively. Pre-scission neutron yields from these reactions are compared with the extensive statistical model calculations to look for the effects due to the compound nucleus shell closure, / ratio of the compound nucleus, magnitude of the saddle-point shell corerction and fission time-scale.

  20. Absolute photoacoustic thermometry in deep tissue.

    Science.gov (United States)

    Yao, Junjie; Ke, Haixin; Tai, Stephen; Zhou, Yong; Wang, Lihong V

    2013-12-15

    Photoacoustic thermography is a promising tool for temperature measurement in deep tissue. Here we propose an absolute temperature measurement method based on the dual temperature dependences of the Grüneisen parameter and the speed of sound in tissue. By taking ratiometric measurements at two adjacent temperatures, we can eliminate the factors that are temperature irrelevant but difficult to correct for in deep tissue. To validate our method, absolute temperatures of blood-filled tubes embedded ~9 mm deep in chicken tissue were measured in a biologically relevant range from 28°C to 46°C. The temperature measurement accuracy was ~0.6°C. The results suggest that our method can be potentially used for absolute temperature monitoring in deep tissue during thermotherapy.

  1. Quantum theory allows for absolute maximal contextuality

    Science.gov (United States)

    Amaral, Barbara; Cunha, Marcelo Terra; Cabello, Adán

    2015-12-01

    Contextuality is a fundamental feature of quantum theory and a necessary resource for quantum computation and communication. It is therefore important to investigate how large contextuality can be in quantum theory. Linear contextuality witnesses can be expressed as a sum S of n probabilities, and the independence number α and the Tsirelson-like number ϑ of the corresponding exclusivity graph are, respectively, the maximum of S for noncontextual theories and for the theory under consideration. A theory allows for absolute maximal contextuality if it has scenarios in which ϑ /α approaches n . Here we show that quantum theory allows for absolute maximal contextuality despite what is suggested by the examination of the quantum violations of Bell and noncontextuality inequalities considered in the past. Our proof is not constructive and does not single out explicit scenarios. Nevertheless, we identify scenarios in which quantum theory allows for almost-absolute-maximal contextuality.

  2. Capture and fission with DANCE and NEUANCE

    Science.gov (United States)

    Jandel, M.; Baramsai, B.; Bond, E.; Rusev, G.; Walker, C.; Bredeweg, T. A.; Chadwick, M. B.; Couture, A.; Fowler, M. M.; Hayes, A.; Kawano, T.; Mosby, S.; Stetcu, I.; Taddeucci, T. N.; Talou, P.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.

    2015-12-01

    A summary of the current and future experimental program at DANCE is presented. Measurements of neutron capture cross sections are planned for many actinide isotopes with the goal to reduce the present uncertainties in nuclear data libraries. Detailed studies of capture gamma rays in the neutron resonance region will be performed in order to derive correlated data on the de-excitation of the compound nucleus. New approaches on how to remove the DANCE detector response from experimental data and retain the correlations between the cascade gamma rays are presented. Studies on 235U are focused on quantifying the population of short-lived isomeric states in 236U after neutron capture. For this purpose, a new neutron detector array NEUANCE is under construction. It will be installed in the central cavity of the DANCE array and enable the highly efficient tagging of fission and capture events. In addition, developments of fission fragment detectors are also underway to expand DANCE capabilities to measurements of fully correlated data on fission observables.

  3. Capture and fission with DANCE and NEUANCE

    Energy Technology Data Exchange (ETDEWEB)

    Jandel, M.; Baramsai, B.; Bond, E.; Rusev, G.; Walker, C.; Bredeweg, T.A.; Chadwick, M.B.; Couture, A.; Fowler, M.M.; Hayes, A.; Kawano, T.; Mosby, S.; Stetcu, I.; Taddeucci, T.N.; Talou, P.; Ullmann, J.L.; Vieira, D.J.; Wilhelmy, J.B. [Los Alamos National Laboratory, Los Alamos, New Mexico (United States)

    2015-12-15

    A summary of the current and future experimental program at DANCE is presented. Measurements of neutron capture cross sections are planned for many actinide isotopes with the goal to reduce the present uncertainties in nuclear data libraries. Detailed studies of capture gamma rays in the neutron resonance region will be performed in order to derive correlated data on the de-excitation of the compound nucleus. New approaches on how to remove the DANCE detector response from experimental data and retain the correlations between the cascade gamma rays are presented. Studies on {sup 235}U are focused on quantifying the population of short-lived isomeric states in {sup 236}U after neutron capture. For this purpose, a new neutron detector array NEUANCE is under construction. It will be installed in the central cavity of the DANCE array and enable the highly efficient tagging of fission and capture events. In addition, developments of fission fragment detectors are also underway to expand DANCE capabilities to measurements of fully correlated data on fission observables. (orig.)

  4. Undergraduate Measurements For Fission Reactor Applications

    Science.gov (United States)

    Hicks, S. F.; Kersting, L. J.; Lueck, C. J.; McDonough, P.; Crider, B. P.; McEllistrem, M. T.; Peters, E. E.; Vanhoy, J. R.

    2011-06-01

    Undergraduate students at the University of Dallas (UD) have investigated elastic and inelastic neutron scattering cross sections on structural materials important for criticality considerations in nuclear fission processes. Neutrons scattered off of 23Na and NatFe were detected using neutron time-of-flight techniques at the University of Kentucky Low-Energy Nuclear Accelerator Facility. These measurements are part of an effort to increase the efficiency of power generation from existing fission reactors in the US and in the design of new fission systems. Students have learned the basics of how to operate the Model CN Van de Graaff generator at the laboratory, setup detectors and electronics, use data acquisition systems, and they are currently analyzing the angular dependence of the scattered neutrons for incident neutron energies of 3.57 and 3.80 MeV. Most students participating in the project will use the research experience as the material for their undergraduate research thesis required for all Bachelor of Science students at the University of Dallas. The first student projects on this topic were completed during the summer of 2010; an overview of student participation in this investigation and their preliminary results will be presented.

  5. Simulating an Exploding Fission-Bomb Core

    Science.gov (United States)

    Reed, Cameron

    2016-03-01

    A time-dependent desktop-computer simulation of the core of an exploding fission bomb (nuclear weapon) has been developed. The simulation models a core comprising a mixture of two isotopes: a fissile one (such as U-235) and an inert one (such as U-238) that captures neutrons and removes them from circulation. The user sets the enrichment percentage and scattering and fission cross-sections of the fissile isotope, the capture cross-section of the inert isotope, the number of neutrons liberated per fission, the number of ``initiator'' neutrons, the radius of the core, and the neutron-reflection efficiency of a surrounding tamper. The simulation, which is predicated on ordinary kinematics, follows the three-dimensional motions and fates of neutrons as they travel through the core. Limitations of time and computer memory render it impossible to model a real-life core, but results of numerous runs clearly demonstrate the existence of a critical mass for a given set of parameters and the dramatic effects of enrichment and tamper efficiency on the growth (or decay) of the neutron population. The logic of the simulation will be described and results of typical runs will be presented and discussed.

  6. Spontaneous fission of superheavy nucleus $^{286}$Fl

    CERN Document Server

    Poenaru, Dorin N

    2016-01-01

    The decimal logarithm of spontaneous fission half-life of the superheavy nucleus $^{286}$Fl experimentally determined is $\\log_{10} T_f^{exp} (s) = -0.632$. We present a method to calculate the half-life based on the cranking inertia and the deformation energy, functions of two independent surface coordinates, using the best asymmetric two center shell model. In the first stage we study the statics. At a given mass asymmetry up to about $\\eta=0.5$ the potential barrier has a two hump shape, but for larger $\\eta$ it has only one hump. The touching point deformation energy versus mass asymmetry shows the three minima, produced by shell effects, corresponding to three decay modes: spontaneous fission, cluster decay and $\\alpha$~decay. The least action trajectory is determined in the plane $(R,\\eta)$ where $R$ is the separation distance of the fission fragments and $\\eta$ is the mass asymmetry. We may find a sequence of several trajectories one of which gives the least action. The parametrization with two deforma...

  7. Total synthesis and absolute configuration of avenolide, extracellular factor in Streptomyces avermitilis.

    Science.gov (United States)

    Uchida, Miho; Takamatsu, Satoshi; Arima, Shiho; Miyamoto, Kiyoko T; Kitani, Shigeru; Nihira, Takuya; Ikeda, Haruo; Nagamitsu, Tohru

    2011-12-01

    The first total synthesis of extracellular factor, "Avenolide", in Streptomyces avermitilis has been achieved using a convergent approach. The stereogenic centers in two key segments were installed using Sharpless epoxidation and dihydroxylation. This synthetic study allowed the determination of the absolute configuration of avenolide as 4S,10R, and yielded important information on its structure-activity relationship.

  8. Absolute instability from linear conversion of counter-propagating positive and negative energy waves

    Energy Technology Data Exchange (ETDEWEB)

    Kaufman, A.N.; Brizard, A.J.; Morehead, J.J. [Lawrence Berkeley National Lab., CA (United States); Tracy, E.R. [College of William and Mary, Williamsburg, VA (United States)

    1997-12-31

    The resonant interaction of a negative-energy wave with a positive-energy wave gives rise to a linear instability. Whereas a single crossing of rays in a nonuniform medium leads to a convectively saturated instability, we show that a double crossing can yield an absolute instability.

  9. Absolute-Magnitude Distributions of Supernovae

    CERN Document Server

    Richardson, Dean; Wright, John; Maddox, Larry

    2014-01-01

    The absolute-magnitude distributions of seven supernova types are presented. The data used here were primarily taken from the Asiago Supernova Catalogue, but were supplemented with additional data. We accounted for both foreground and host-galaxy extinction. A bootstrap method is used to correct the samples for Malmquist bias. Separately, we generate volume-limited samples, restricted to events within 100 Mpc. We find that the superluminous events (M_B -15) make up about 3%. The normal Ia distribution was the brightest with a mean absolute blue magnitude of -19.25. The IIP distribution was the dimmest at -16.75.

  10. Absolute Stability Limit for Relativistic Charged Spheres

    CERN Document Server

    Giuliani, Alessandro

    2007-01-01

    We find an exact solution for the stability limit of relativistic charged spheres for the case of constant gravitational mass density and constant charge density. We argue that this provides an absolute stability limit for any relativistic charged sphere in which the gravitational mass density decreases with radius and the charge density increases with radius. We then provide a cruder absolute stability limit that applies to any charged sphere with a spherically symmetric mass and charge distribution. We give numerical results for all cases. In addition, we discuss the example of a neutral sphere surrounded by a thin, charged shell.

  11. Absolute Asymmetric Synthesis Using A Cocrystal Approach

    Institute of Scientific and Technical Information of China (English)

    H.Koshima

    2007-01-01

    1 Results Absolute asymmetric synthesis by means of solid-state reaction of chiral crystals self-assembled from achiral molecules is an attractive and promising methodology for asymmetric synthesis because it is not necessary to employ any external chiral source like a chiral catalyst.In order to design reliably absolute asymmetric syntheses in the solid state,it is inevitable to prepare and predict the formation of chiral crystals from achiral compounds.We have prepared a number of chiral cocrystals co...

  12. Prompt Fission Gamma-ray Studies at DANCE

    Science.gov (United States)

    Jandel, M.; Rusev, G.; Bond, E. M.; Bredeweg, T. A.; Chadwick, M. B.; Couture, A.; Fowler, M. M.; Haight, R. C.; Kawano, T.; Keksis, A. L.; Mosby, S. M.; O'Donnell, J. M.; Rundberg, R. S.; Stetcu, I.; Talou, P.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Stoyer, M. A.; Haslett, R. J.; Henderson, R. A.; Becker, J. A.; Wu, C. Y.

    Measurements of correlated data on prompt-fission γ-rays (PFG) have been carried out for various actinide isotopes in recent years using the Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory (LANL). We have developed a model that conveniently parametrizes the correlated data of γ-ray multiplicity and energy. New results on two- dimensional prompt-fission γ-ray multiplicity versus energy distributions from spontaneous fission on 252Cf and neutron-induced fission on 242mAm are presented together with previously obtained results on 233,235U and 239Pu. Correlated PFG data from 252Cf are also compared to results of the detailed theoretical model developed at LANL, for different thresholds of PFG energies. Future plans to measure correlated data on fission fragments, prompt fission neutrons and γ-rays at DANCE are presented.

  13. Negative Pion Induced Fission with Heavy Target Nuclei

    Institute of Scientific and Technical Information of China (English)

    G. Sher; Mukhtar A. Rana; S. Manzoor; M. I. Shahzad

    2011-01-01

    We investigate fission induced by negative pions in copper and bismuth targets using CR-39 dielectric track detectors. The target-detector assemblies in Air-geometric configuration were exposed at the AGS facility of Brookhaven National Laboratory, USA. The exposed detectors were chemically etched under appropriate etching conditions and scanned to collect data in the form of fission fragments tracks produced as a result of interaction of pions with the target nuclei. Using the track counts, the experimental fission cross sections for copper and bismuth have been measured at energies of 500, 672, 1068 and 1665 MeV and compared with the calculation using the Cascade-Exciton Model code (CEM95). The values of fission probability based on experimental fission cross-sections have been compared with the theoretically calculated values of fission probabilities obtained using the CEM95 code. Good agreement is observed between the measured and computed results.

  14. Prompt Fission Neutron Spectra of Actinides

    Energy Technology Data Exchange (ETDEWEB)

    Capote, R; Chen, Y J; Hambsch, F J; Kornilov, N V; Lestone, J P; Litaize, O; Morillon, B; Neudecker, D; Oberstedt, S; Ohsawa, T; Smith, D. L.

    2016-01-01

    The energy spectrum of prompt neutrons emitted in fission (PFNS) plays a very important role in nuclear science and technology. A Coordinated Research Project (CRP) “Evaluation of Prompt Fission Neutron Spectra of Actinides”was established by the IAEA Nuclear Data Section in 2009, with the major goal to produce new PFNS evaluations with uncertainties for actinide nuclei. The following technical areas were addressed: (i) experiments and uncertainty quantification (UQ): New data for neutron-induced fission of 233U, 235U, 238U, and 239Pu have been measured, and older data have been compiled and reassessed. There is evidence from the experimental work of this CRP that a very small percentage of neutrons emitted in fission are actually scission neutrons; (ii) modeling: The Los Alamos model (LAM) continues to be the workhorse for PFNS evaluations. Monte Carlo models have been developed that describe the fission phenomena microscopically, but further development is needed to produce PFNS evaluations meeting the uncertainty targets; (iii) evaluation methodologies: PFNS evaluations rely on the use of the least-squares techniques for merging experimental and model data. Considerable insight was achieved on how to deal with the problem of too small uncertainties in PFNS evaluations. The importance of considering that all experimental PFNS data are “shape” data was stressed; (iv) PFNS evaluations: New evaluations, including covariance data, were generated for major actinides including 1) non-model GMA evaluations of the 235U(nth,f), 239Pu(nth,f), and 233U(nth,f) PFNS based exclusively on experimental data (0.02 ≤ E ≤ 10 MeV), which resulted in PFNS average energies E of 2.00±0.01, 2.073±0.010, and 2.030±0.013 MeV, respectively; 2) LAM evaluations of neutron-induced fission spectra on uranium and plutonium targets with improved UQ for incident energies from thermal up to 30 MeV; and 3) Point-by-Point calculations for 232Th, 234U and 237Np targets; and (v) data

  15. The wastes of nuclear fission; Les dechets de la fission nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Doubre, H. [Paris-11 Univ., Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse, IN2P3/CNRS, 91 - Orsay (France)

    2005-07-01

    In this paper the author presents the problems of the radioactive wastes generated by the nuclear fission. The first part devoted to the fission phenomenon explains the incident neutron energy and the target nuclei role. The second part devoted to the nuclear wastes sources presents the production of wastes upstream of the reactors, in the reactors and why these wastes are dangerous. The third part discusses the radioactive wastes management in France (classification, laws). The last part details the associated research programs: the radionuclides separation, the disposal, the underground storage, the transmutation and the thorium cycle. (A.L.B.)

  16. Proton induced fission of 181-Ta at relativistic energies

    CERN Document Server

    Ayyad, Y; Casarejos, E; Álvarez-Pol, H; Bacquias, A; Boudard, A; Caamaño, M; Enqvist, T; Föhr, V; Kelić-Heil, A; Kezzar, K; Leray, S; Paradela, C; Pérez-Loureiro, D; Pleskač, R; Tarrío, D

    2012-01-01

    Total fission cross sections of 181-Ta induced by protons at different relativistic energies have been measured at GSI, Darmstadt. The inverse kinematics technique used together with a dedicated set-up, made it possible to determine these cross sections with high accuracy. The new data obtained in this experiment will contribute to the understanding of the fission process at high excitation energies. The results are compared with data from previous experiments and systematics for proton-induced fission cross sections.

  17. Fission fragment mass distributions in reactions populating 200Pb

    CERN Document Server

    Chaudhuri, A; Ghosh, T K; Banerjee, K; Sadhukhan, Jhilam; Bhattacharya, S; Roy, P; Roy, T; Bhattacharya, C; Asgar, Md A; Dey, A; Kundu, S; Manna, S; Meena, J K; Mukherjee, G; Pandey, R; Rana, T K; Srivastava, V; Dubey, R; Kaur, Gurpreet; Saneesh, N; Sugathan, P; Bhattacharya, P

    2016-01-01

    The fission fragment mass distributions have been measured in the reactions 16O + 184W and 19F+ 181Ta populating the same compound nucleus 200Pb? at similar excitation energies. It is found that the widths of the mass distribution increases monotonically with excitation energy, indicating the absence of quasi-fission for both reactions. This is contrary to two recent claims of the presence of quasi-fission in the above mentioned reactions.

  18. Exact Wave Packet Dynamics of Singlet Fission in Unsubstituted and Substituted Polyene Chains within Long-Range Interacting Models

    CERN Document Server

    Prodhan, Suryoday

    2016-01-01

    Singlet fission is a potential pathway for significant enhancement of efficiency in organic solar cells. In this article, we have studied singlet fission in a pair of polyene molecules employing exact many-body wave packet dynamics. The individual molecules are treated within Hubbard and Pariser-Parr-Pople (PPP) models and the interaction between them involves transfer terms, intersite electron repulsions and site charge-bond charge repulsion terms. Initial wave packet is constructed from excited singlet state of one molecule and ground state of the other. Time development of this wave packet under the influence of intermolecular interactions is followed within the Schr\\"{o}dinger picture by an efficient predictor-corrector scheme. In unsubstituted Hubbard and PPP chains, $2{}^1A$ excited singlet state leads to significant fission yield while the $1{}^1B$ state gives negligible fission yield. On substitution by donor-acceptor groups of moderate strength, singlet state derived from $1{}^1B$ state also gives si...

  19. Thin-film magnetoresistive absolute position detector

    NARCIS (Netherlands)

    Groenland, Johannes Petrus Jacobus

    1990-01-01

    The subject of this thesis is the investigation of a digital absolute posi- tion-detection system, which is based on a position-information carrier (i.e. a magnetic tape) with one single code track on the one hand, and an array of magnetoresistive sensors for the detection of the informatio

  20. Det demokratiske argument for absolut ytringsfrihed

    DEFF Research Database (Denmark)

    Lægaard, Sune

    2014-01-01

    Artiklen diskuterer den påstand, at absolut ytringsfrihed er en nødvendig forudsætning for demokratisk legitimitet med udgangspunkt i en rekonstruktion af et argument fremsat af Ronald Dworkin. Spørgsmålet er, hvorfor ytringsfrihed skulle være en forudsætning for demokratisk legitimitet, og hvorfor...

  1. New Techniques for Absolute Gravity Measurements.

    Science.gov (United States)

    1983-01-07

    Hammond, J.A. (1978) Bollettino Di Geofisica Teorica ed Applicata Vol. XX. 8. Hammond, J. A., and Iliff, R. L. (1979) The AFGL absolute gravity system...International Gravimetric Bureau, No. L:I-43. 7. Hammond. J.A. (1978) Bollettino Di Geofisica Teorica ed Applicata Vol. XX. 8. Hammond, J.A., and

  2. Teaching Absolute Value Inequalities to Mature Students

    Science.gov (United States)

    Sierpinska, Anna; Bobos, Georgeana; Pruncut, Andreea

    2011-01-01

    This paper gives an account of a teaching experiment on absolute value inequalities, whose aim was to identify characteristics of an approach that would realize the potential of the topic to develop theoretical thinking in students enrolled in prerequisite mathematics courses at a large, urban North American university. The potential is…

  3. Time Function and Absolute Black Hole

    DEFF Research Database (Denmark)

    Javadi, Hossein; Forouzbakhsh, Farshid

    2006-01-01

    Einstein’s theory of gravity is not consistent with quantum mechanics, because general relativity cannot be quantized. [1] But without conversion of force and energy, it is impossible to find a grand unified theory. A very important result of CPH theory is time function that allows we give a new ...... description of absolute black hole and before the big bang....

  4. Magnetoresistive sensor for absolute position detection

    NARCIS (Netherlands)

    Groenland, J.P.J.

    1984-01-01

    A digital measurement principle for absolute position is decscribed. The position data is recorded serially into a single track of a hard-magnetic layer with the help of longitudinal saturation recording. Detection is possible by means of an array of sensor elements which can be made of a substrate.

  5. Generalized Norms Inequalities for Absolute Value Operators

    Directory of Open Access Journals (Sweden)

    Ilyas Ali

    2014-02-01

    Full Text Available In this article, we generalize some norms inequalities for sums, differences, and products of absolute value operators. Our results based on Minkowski type inequalities and generalized forms of the Cauchy-Schwarz inequality. Some other related inequalities are also discussed.

  6. Stimulus Probability Effects in Absolute Identification

    Science.gov (United States)

    Kent, Christopher; Lamberts, Koen

    2016-01-01

    This study investigated the effect of stimulus presentation probability on accuracy and response times in an absolute identification task. Three schedules of presentation were used to investigate the interaction between presentation probability and stimulus position within the set. Data from individual participants indicated strong effects of…

  7. Increased Exploration Capacity Promotes Group Fission in Gregarious Foraging Herbivores

    Science.gov (United States)

    Lardy, Sophie; Fortin, Daniel; Pays, Olivier

    2016-01-01

    Many gregarious species display rapid fission-fusion dynamics with individuals frequently leaving their groups to reunite or to form new ones soon after. The adaptive value of such ephemeral associations might reflect a frequent tilt in the balance between the costs and benefits of maintaining group cohesion. The lack of information on the short-term advantages of group fission, however, hampers our understanding of group dynamics. We investigated the effect of group fission on area-restricted search, a search tactic that is commonly used when food distribution is spatially autocorrelated. Specifically, we determine if roe deer (Capreolus capreolus) improve key aspects of their extensive search mode immediately after fission. We found that groups indeed moved faster and farther over time immediately after than before fission. This gain was highest for the smallest group that resulted from fission, which was more likely to include the fission’s initiator. Sex of group members further mediated the immediate gain in search capacity, as post-fission groups moved away at farthest rate when they were only comprised of males. Our study suggests that social conflicts during the extensive search mode can promote group fission and, as such, can be a key determinant of group fission-fusion dynamics that are commonly observed in gregarious herbivores. PMID:27907143

  8. Absolute Radiation Thermometry in the NIR

    Science.gov (United States)

    Bünger, L.; Taubert, R. D.; Gutschwager, B.; Anhalt, K.; Briaudeau, S.; Sadli, M.

    2017-04-01

    A near infrared (NIR) radiation thermometer (RT) for temperature measurements in the range from 773 K up to 1235 K was characterized and calibrated in terms of the "Mise en Pratique for the definition of the Kelvin" (MeP-K) by measuring its absolute spectral radiance responsivity. Using Planck's law of thermal radiation allows the direct measurement of the thermodynamic temperature independently of any ITS-90 fixed-point. To determine the absolute spectral radiance responsivity of the radiation thermometer in the NIR spectral region, an existing PTB monochromator-based calibration setup was upgraded with a supercontinuum laser system (0.45 μm to 2.4 μm) resulting in a significantly improved signal-to-noise ratio. The RT was characterized with respect to its nonlinearity, size-of-source effect, distance effect, and the consistency of its individual temperature measuring ranges. To further improve the calibration setup, a new tool for the aperture alignment and distance measurement was developed. Furthermore, the diffraction correction as well as the impedance correction of the current-to-voltage converter is considered. The calibration scheme and the corresponding uncertainty budget of the absolute spectral responsivity are presented. A relative standard uncertainty of 0.1 % (k=1) for the absolute spectral radiance responsivity was achieved. The absolute radiometric calibration was validated at four temperature values with respect to the ITS-90 via a variable temperature heatpipe blackbody (773 K ...1235 K) and at a gold fixed-point blackbody radiator (1337.33 K).

  9. Absolute calibration of TFTR neutron detectors for D-T plasma operation

    Energy Technology Data Exchange (ETDEWEB)

    Jassby, D.L.; Johnson, L.C.; Roquemore, A.L.; Strachan, J.D.; Johnson, D.W.; Medley, S.S.; Young, K.M. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Barnes, C.W. [Los Alamos National Lab., NM (United States)

    1995-03-01

    The two most sensitive TFTR fission-chamber detectors were absolutely calibrated in situ by a D-T neutron generator ({approximately}5 {times} 10{sup 7} n/s) rotated once around the torus in each direction, with data taken at about 45 positions. The combined uncertainty for determining fusion neutron rates, including the uncertainty in the total neutron generator output ({plus_minus}9%), counting statistics, the effect of coil coolant, detector stability, cross-calibration to the current mode or log Campbell mode and to other fission chambers, and plasma position variation, is about {plus_minus}13%. The NE-451 (ZnS) scintillators and {sup 4}He proportional counters that view the plasma in up to 10 collimated sightlines were calibrated by scanning. the neutron generator radially and toroidally in the horizontal midplane across the flight tubes of 7 cm diameter. Spatial integration of the detector responses using the calibrated signal per unit chord-integrated neutron emission gives the global neutron source strength with an overall uncertainty of {plus_minus}14% for the scintillators and {plus_minus}15% for the {sup 4}He counters.

  10. Deformation effects in the alpha accompanied cold ternary fission of even-even {sup 244-260}Cf isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Santhosh, K.P.; Krishnan, Sreejith [Kannur University, School of Pure and Applied Physics, Payyanur, Kerala (India)

    2016-04-15

    Within the unified ternary fission model (UTFM), the alpha accompanied ternary fission of even-even {sup 244-260}Cf isotopes has been studied by taking the interacting barrier as the sum of Coulomb and proximity potential. For the alpha accompanied ternary fission of the {sup 244}Cf isotope, the highest yield is obtained for the fragment combination {sup 108}Ru + {sup 4}He + {sup 132}Te, which contains the near doubly magic nucleus {sup 132}Te (N = 80, Z = 52). In the case of {sup 246}Cf and {sup 248}Cf isotopes, the highest yield is obtained for the fragment combinations with the near doubly magic nucleus {sup 134}Te (N = 82, Z = 52) as the heaviest fragment. The highest yield obtained for {sup 250}Cf, {sup 252}Cf, {sup 254}Cf, {sup 256}Cf, {sup 258}Cf and {sup 260}Cf isotopes is for the fragment combination with the doubly magic nucleus {sup 132}Sn (N = 82), Z = 50 as the heaviest fragment. We have included the effect of deformation and orientation of fragments and this has revealed that in addition to the closed shell effect, ground-state deformation also plays an important role in the calculation of the relative yield of favorable fragment combinations. The computed isotopic yields for the alpha accompanied ternary fission of the {sup 252}Cf isotope are found to be in agreement with the experimental data. The emission probability and kinetic energy of the long-range alpha particle is calculated for the various isotopes of Cf and are found to be in good agreement with the experimental data. (orig.)

  11. Deformation effects in the alpha accompanied cold ternary fission of even-even $^{244-260}$Cf isotopes

    CERN Document Server

    Santhosh, K P

    2016-01-01

    Within the Unified ternary fission model (UTFM), the alpha accompanied ternary fission of even-even $^{244-260}$Cf isotopes has been studied by taking the interacting barrier as the sum of Coulomb and proximity potential. For the alpha accompanied ternary fission of 244^Cf isotope, the highest yield is obtained for the fragment combination 108^Ru+4^He+132^Te, which contain near doubly magic nuclei 132^Te (N=80, Z=52). In the case of 246^Cf and 248^Cf isotopes, the highest yield is obtained for the fragment combinations with near doubly magic nuclei 134^Te (N=82, Z=52) as the heavier fragment. The highest yield obtained for 250^Cf, 252^Cf, 254^Cf, 256^Cf, 258^Cf and 260^Cf isotopes is for the fragment combination with doubly magic nuclei 132^Sn (N=82, Z=50) as the heavier fragment. We have included the effect of deformation and orientation of fragments and this has revealed that in addition to closed shell effect, ground state deformation also plays an important role in the calculation of relative yield of fav...

  12. Mechanism of Ternary Fission in System 197Au+197Au at 15 AMeV

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>For very heavy nuclear systems there is very clear evidence for fission into three comparable mass fragments. The responsible mechanisms for this type of fission are the direct ternary fission and

  13. Stability of superheavy elements around Z=120 probed by the study of their fission time obtained by the crystal blocking method; Stabilite d'elements superlourds au voisinage de Z=120 testee par l'etude de leurs temps de fission deduits par la methode du blocage cristallin

    Energy Technology Data Exchange (ETDEWEB)

    Laget, M

    2007-10-15

    While the existence of an island of stability beyond Z=110 is theoretically acquired, the location of this island ranges from Z=114 to Z=126 depending on models. In this work, the stability of super-heavy nuclei is probed through the study of their fission time. The chosen experimental method, the crystal blocking method, is sensitive to the presence of possible long time components in the fission time distribution which indicates a fission mechanism occurring after the formation of a compound nucleus. The blocking dips were therefore constituted for the various products of the reaction U{sup 238} + Ni (6.6 MeV/A) {yields} 120, the experimental set-up allowing us to clearly identify and select the reaction mechanisms. The comparison of the blocking dip constituted for quasi-elastic scattering events with the one obtained for the fission fragments of a Z=120, combined with the study of kinematical properties of these fission fragments, give evidences of the existence of very long fission times (> 10{sup -18} s) only compatible with a fusion-fission mechanism implying a non vanishing fission barrier height for Z=120. The second part outlines microscopic calculations of fission barrier heights, carried out in the framework of the finite temperature of the Hartree-Fock-Bogoliubov (HFB) theory. Because of the progressive vanishing of the pairing correlation with T, which happens differently at the ground state and at the top of the barrier, B{sub f} first grows until T {approx_equal} 0.8 MeV before dropping with T owing to shell-effects damping with temperature. (author)

  14. Molecular distinction between true centric fission and pericentric duplication-fission

    NARCIS (Netherlands)

    Perry, J; Nouri, S; La, P; Daniel, A; Wu, ZH; Purvis-Smith, S; Northrop, E; Choo, KHA; Slater, HR

    2005-01-01

    Centromere (centric) fission, also known as transverse or lateral centric misdivision, has been defined as the splitting of one functional centromere of a metacentric or submetacentric chromosome to produce two derivative centric chromosomes. It has been observed in a range of organisms and has been

  15. Fission neutron spectra measurements at LANSCE - status and plans

    Energy Technology Data Exchange (ETDEWEB)

    Haight, Robert C [Los Alamos National Laboratory; Noda, Shusaku [Los Alamos National Laboratory; Nelson, Ronald O [Los Alamos National Laboratory; O' Donnell, John M [Los Alamos National Laboratory; Devlin, Matt [Los Alamos National Laboratory; Chatillon, Audrey [CEA-FRANCE; Granier, Thierry [CEA-FRANCE; Taieb, Julien [CEA-FRANCE; Laurent, Benoit [CEA-FRANCE; Belier, Gilbert [CEA-FRANCE; Becker, John A [LLNL; Wu, Ching - Yen [LLNL

    2009-01-01

    A program to measure fission neutron spectra from neutron-induced fission of actinides is underway at the Los Alamos Neutron Science Center (LANSCE) in a collaboration among the CEA laboratory at Bruyeres-le-Chatel, Lawrence Livermore National Laboratory and Los Alamos National Laboratory. The spallation source of fast neutrons at LANSCE is used to provide incident neutron energies from less than 1 MeV to 100 MeV or higher. The fission events take place in a gas-ionization fission chamber, and the time of flight from the neutron source to that chamber gives the energy of the incident neutron. Outgoing neutrons are detected by an array of organic liquid scintillator neutron detectors, and their energies are deduced from the time of flight from the fission chamber to the neutron detector. Measurements have been made of the fission neutrons from fission of {sup 235}U, {sup 238}U, {sup 237}Np and {sup 239}Pu. The range of outgoing energies measured so far is from 1 MeV to approximately 8 MeV. These partial spectra and average fission neutron energies are compared with evaluated data and with models of fission neutron emission. Results to date will be presented and a discussion of uncertainties will be given in this presentation. Future plans are to make significant improvements in the fission chambers, neutron detectors, signal processing, data acquisition and the experimental environment to provide high fidelity data including mea urements of fission neutrons below 1 MeV and improvements in the data above 8 MeV.

  16. Measurements of Fission and Radioactive Capture Reaction Rates Inside the Fuel of the Ipen/MB-01

    Science.gov (United States)

    Mura, Luís Felipe L.; Bitelli, Ulysses d'Utra; Fanaro, Leda C. C. B.

    2011-05-01

    This work presents the measures of the nuclear reaction rates along the radial direction of the fuel pellet by irradiation and posterior gamma spectrometry of a thin slice of fuel pellet of UO2 at 4.3% enrichment. From its irradiation, the rate of radioactive capture and fission had been measured as a function of the radius of the pellet disk using a Ortec GMX HPGe detector. Lead collimators had been used for this purpose. Simulating the fuel pellet in the pin fuel of the IPEN/MB-01 reactor, a thin UO2 disk is used, being inserted in the interior of a dismountable fuel rod. This fuel rod is then placed in the central position of the IPEN/MB-01 reactor core and irradiated during 1 h under a neutron flux of 5 ×108 n/cm2 s. In gamma spectrometry, 10 collimators with different diameters have been used; consequently, the nuclear reactions of radioactive capture that occurs in atoms of 238U and the fission that occurs on both 235U and 238U are measured in function of 10 different regions (diameter of collimator) of the UO2 fuel pellet disk. Nuclear fission produces different fission products such as 143Ce with a yield fission of 5.9% which decay is monitored in this work. Corrections in geometric efficiency due to introduction of collimators on HPGe detection system were estimated using photon transport of MCNP-4C code. Some calculated values of nuclear reaction rate of radioactive capture and fission along the radial direction of the fuel pellet obtained by Monte Carlo methodology, using the MCNP-4C code, are presented and compared to the experimental data showing very good agreement.

  17. Some aspects of the nuclear fission process; Quelques aspects du processus de fission nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Netter, F. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    In the following report one can find first a short general view on the present situation of our knowledge concerning the nuclear fission process, namely on the nucleus going through the saddle-point. Then there are some aspects connected with the excitation energy of the fissioning nucleus. The measurements made at Saclay on the fast neutron fission cross-section of U{sup 233}, U{sup 235}, Pu{sup 239}, U{sup 238} are described at the beginning of this work. It appears that for U{sup 233} there is some characteristic shape modulation of the cross-section curve, in relation with the collective excited state of the deformed nucleus at the saddle-point. Good evidence of this is also given by the study of the relative fission rate with emission of long-range particles; it appears also that this ternary fission rate does not change substantially for neutron between thermal energy and 2 MeV, but that is very lower for the compound nucleus U{sup 239} than for even-even compound nuclei. At the end there are some experiments on the strong 4,5 MeV gamma-ray originated by slow neutron absorption in U{sup 235}. Time-of-flight device is used to establish that this 4,5 MeV gamma-ray seems mostly connected with radiative capture. (author) [French] Le present travail debute par un apercu de l'etat actuel de nos connaissances sur le processus de fission nucleaire, notamment sur le passage par le point-seuil. Puis sont evoques des aspects lies au niveau d'energie d'excitation auquel est porte le noyau qui subit la fission. Les mesures de sections efficaces de fission induite dans {sup 233}U, {sup 235}U, {sup 239}Pu et {sup 238}U par des neutrons rapides effectuees a Saclay sont decrites en premier lieu; elles font apparaitre pour {sup 233}U une ondulation caracteristique du role des etats collectifs d'excitation du noyau deforme au point-seuil. Des experiences sur la fission avec emission de particules de long parcours confirment cet aspect tout en demontrant que

  18. Material recognition using fission gamma rays

    Energy Technology Data Exchange (ETDEWEB)

    Viesti, G. [Dipartimento di Fisica dell' Universita di Padova, Via Marzolo 8, I-35131 Padova (Italy); INFN Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy)], E-mail: giuseppe.viesti@pd.infn.it; Sajo-Bohus, L. [Universidad Simon-Bolivar, Laboratorio Fisica Nuclear, Apartado 8900, 1080 A. Caracas (Venezuela, Bolivarian Republic of); Fabris, D. [INFN Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Lunardon, M.; Moretto, S. [Dipartimento di Fisica dell' Universita di Padova, Via Marzolo 8, I-35131 Padova (Italy); INFN Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Nebbia, G.; Pesente, S. [INFN Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy)

    2009-07-21

    Material recognition is studied by measuring the transmission spectrum of {sup 252}Cf fission gamma rays in the energy range E{sub {gamma}}=0.1-5.5 MeV for 0.1-MeV-wide energy bins through a number of elementary samples. Each transmitted spectrum is compared with a library of reference spectra for different elements providing the possibility of material identification. In case of elemental samples with known thickness, this procedure allows the identification of the sample Z with uncertainty typically lower than 3 Z-units over a wide range of elements. Applications to composite materials are also reported.

  19. Ceramics in fission and fusion technology

    Energy Technology Data Exchange (ETDEWEB)

    Olander, D.R.

    1986-04-01

    The role of ceramic components in fission and fusion reactors is described. Almost all of the functions normally performed by ceramics, except mechanical, are required of nuclear ceramics. The oxides of uranium and plutonium are of predominant importance in nuclear applications, but a number of other ceramics play peripheral roles. The unique service conditions under which nuclear ceramics must operate include intense radiation fields, high temperatures and large temperature gradients, and aggressive chemical environments. Examples of laboratory research designed to broaden understanding of the behavior of uranium dioxide in such conditions are given. The programs described include high temperature vaporization, diffusional processes, and interaction with hydrogen.

  20. From EXILL (EXogam at the ILL to FIPPS (FIssion Product Prompt γ-ray Spectrometer

    Directory of Open Access Journals (Sweden)

    Blanc A.

    2015-01-01

    Full Text Available Within the EXILL campaign a large and efficient cluster of Ge-detectors was installed around a very well collimated neutron beam. This has allowed to carry out rather complete spectroscopic studies close to the line of stability using the (n,γ reaction. Neutron rich isotopes were produced by neutron induced fission and prompt spectroscopy was carried out. The isotope selection in this setup was based on a partially known level scheme and the use of triple coincidences. The latter is limiting the statistical sensitivity in the case of weak production yields. Based on the experiences of these campaigns we are currently developing a new setup: FIPPS (FIssion Product Prompt Spectroscopy. This setup combines a collimated neutron beam, a highly efficient cluster of Ge detectors, a gas filled magnet and auxiliary detectors. The presence of the gas filled magnet will allow us to identify fission products directly and should give access to a new quality of studies if compared to the EXILL campaign. The EXILL campaign and the FIPPS project are presented.

  1. Technology for Fissionable Materials Detection by Use of 100 MeV Variable Linac

    CERN Document Server

    Karasyov, Sergey P; Dovbnja, Anatoliy N; Eran, L; Kiryukhin, Nikolay M; Melnik, Yu M; Ran'iuk, Yu; Shlyakhov, Il'ya N; Trubnikov, Sergiy V

    2005-01-01

    A new concept for a two-step facility to increase the accuracy/reliability of detecting heavily shielded fissionable materials (FM) in marine containers is presented. The facility will detect FM in two steps. An existing dual-view; dual-energy X-ray scanner, which is based on 7 MeV electron accelerator, will select the suspicious places inside container. The linac with variable energy (up to 100 MeV) will be used for the second step. The technology will detect fissionable nuclei by gamma induced fission reactions and delayed neutron registration. A little-known Ukrainian experimental data obtained in Chernobil' clean-up program will be presented to ground proposed concept. The theoretical calculations of neutron fluxes scale these results to marine container size. Modified GEANT code for electron/gamma penetration and authors' own software for neutron yield/penetration are used for these calculations. Available facilities (X-ray scanners; linac; detectors), which will be used for concept proof, are described....

  2. Development of industrial-scale fission {sup 99}Mo production process using low enriched uranium target

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Kon; Lee, Jun Sig [Radioisotope Research Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Beyer, Gerd J. [Grunicke Strasse 15, Leipzig (Germany)

    2016-06-15

    Molybdenum-99 ({sup 99}Mo) is the most important isotope because its daughter isotope, technetium-99m ({sup 99}mTc), has been the most widely used medical radioisotope for more than 50 years, accounting for > 80% of total nuclear diagnostics worldwide. In this review, radiochemical routes for the production of {sup 99}Mo, and the aspects for selecting a suitable process strategy are discussed from the historical viewpoint of {sup 99}Mo technology developments. Most of the industrial-scale {sup 99}Mo processes have been based on the fission of {sup 235}U. Recently, important issues have been raised for the conversion of fission {sup 99}Mo targets from highly enriched uranium to low enriched uranium (LEU). The development of new LEU targets with higher density was requested to compensate for the loss of {sup 99}Mo yield, caused by a significant reduction of {sup 235}U enrichment, from the conversion. As the dramatic increment of intermediate level liquid waste is also expected from the conversion, an effective strategy to reduce the waste generation from the fission {sup 99}Mo production is required. The mitigation of radioxenon emission from medical radioisotope production facilities is discussed in relation with the monitoring of nuclear explosions and comprehensive nuclear test ban. Lastly, the {sup 99}Mo production process paired with the Korea Atomic Energy Research Institute's own LEU target is proposed as one of the most suitable processes for the LEU target.

  3. Fission energy program of the US Department of Energy, FY 1981

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, Robert L.

    1980-03-01

    Information is presented concerning the National Energy Plan and fission energy policy; fission energy program management; converter reactor systems; breeder reactor systems; and special nuclear evaluations and systems.

  4. Low-Yield Cigarettes

    Science.gov (United States)

    ... Program Division of Reproductive Health More CDC Sites Low-Yield Cigarettes Recommend on Facebook Tweet Share Compartir ... they compensate when smoking them. Smokers Who Use Low-Yield Cigarettes Many smokers consider smoking low-yield ...

  5. An absolute measure for a key currency

    Science.gov (United States)

    Oya, Shunsuke; Aihara, Kazuyuki; Hirata, Yoshito

    It is generally considered that the US dollar and the euro are the key currencies in the world and in Europe, respectively. However, there is no absolute general measure for a key currency. Here, we investigate the 24-hour periodicity of foreign exchange markets using a recurrence plot, and define an absolute measure for a key currency based on the strength of the periodicity. Moreover, we analyze the time evolution of this measure. The results show that the credibility of the US dollar has not decreased significantly since the Lehman shock, when the Lehman Brothers bankrupted and influenced the economic markets, and has increased even relatively better than that of the euro and that of the Japanese yen.

  6. Asteroid absolute magnitudes and slope parameters

    Science.gov (United States)

    Tedesco, Edward F.

    1991-01-01

    A new listing of absolute magnitudes (H) and slope parameters (G) has been created and published in the Minor Planet Circulars; this same listing will appear in the 1992 Ephemerides of Minor Planets. Unlike previous listings, the values of the current list were derived from fits of data at the V band. All observations were reduced in the same fashion using, where appropriate, a single basis default value of 0.15 for the slope parameter. Distances and phase angles were computed for each observation. The data for 113 asteroids was of sufficiently high quality to permit derivation of their H and G. These improved absolute magnitudes and slope parameters will be used to deduce the most reliable bias-corrected asteroid size-frequency distribution yet made.

  7. Learning in a unidimensional absolute identification task.

    Science.gov (United States)

    Rouder, Jeffrey N; Morey, Richard D; Cowan, Nelson; Pfaltz, Monique

    2004-10-01

    We tested whether there is long-term learning in the absolute identification of line lengths. Line lengths are unidimensional stimuli, and there is a common belief that learning of these stimuli quickly reaches a low-level asymptote of about seven items and progresses no more. We show that this is not the case. Our participants served in a 1.5-h session each day for over a week. Although they did not achieve perfect performance, they continued to improve day by day throughout the week and eventually learned to distinguish between 12 and 20 line lengths. These results are in contrast to common characterizations of learning in absolute identification tasks with unidimensional stimuli. We suggest that this learning reflects improvement in short-term processing.

  8. Absolute and relative dosimetry for ELIMED

    Energy Technology Data Exchange (ETDEWEB)

    Cirrone, G. A. P.; Schillaci, F.; Scuderi, V. [INFN, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania, Italy and Institute of Physics Czech Academy of Science, ELI-Beamlines project, Na Slovance 2, Prague (Czech Republic); Cuttone, G.; Candiano, G.; Musumarra, A.; Pisciotta, P.; Romano, F. [INFN, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Carpinelli, M. [INFN Sezione di Cagliari, c/o Dipartimento di Fisica, Università di Cagliari, Cagliari (Italy); Leonora, E.; Randazzo, N. [INFN-Sezione di Catania, Via Santa Sofia 64, Catania (Italy); Presti, D. Lo [INFN-Sezione di Catania, Via Santa Sofia 64, Catania, Italy and Università di Catania, Dipartimento di Fisica e Astronomia, Via S. Sofia 64, Catania (Italy); Raffaele, L. [INFN, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania, Italy and INFN-Sezione di Catania, Via Santa Sofia 64, Catania (Italy); Tramontana, A. [INFN, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania, Italy and Università di Catania, Dipartimento di Fisica e Astronomia, Via S. Sofia 64, Catania (Italy); Cirio, R.; Sacchi, R.; Monaco, V. [INFN, Sezione di Torino, Via P.Giuria, 1 10125 Torino, Italy and Università di Torino, Dipartimento di Fisica, Via P.Giuria, 1 10125 Torino (Italy); Marchetto, F.; Giordanengo, S. [INFN, Sezione di Torino, Via P.Giuria, 1 10125 Torino (Italy)

    2013-07-26

    The definition of detectors, methods and procedures for the absolute and relative dosimetry of laser-driven proton beams is a crucial step toward the clinical use of this new kind of beams. Hence, one of the ELIMED task, will be the definition of procedures aiming to obtain an absolute dose measure at the end of the transport beamline with an accuracy as close as possible to the one required for clinical applications (i.e. of the order of 5% or less). Relative dosimetry procedures must be established, as well: they are necessary in order to determine and verify the beam dose distributions and to monitor the beam fluence and the energetic spectra during irradiations. Radiochromic films, CR39, Faraday Cup, Secondary Emission Monitor (SEM) and transmission ionization chamber will be considered, designed and studied in order to perform a fully dosimetric characterization of the ELIMED proton beam.

  9. Absolute and relative dosimetry for ELIMED

    Science.gov (United States)

    Cirrone, G. A. P.; Cuttone, G.; Candiano, G.; Carpinelli, M.; Leonora, E.; Lo Presti, D.; Musumarra, A.; Pisciotta, P.; Raffaele, L.; Randazzo, N.; Romano, F.; Schillaci, F.; Scuderi, V.; Tramontana, A.; Cirio, R.; Marchetto, F.; Sacchi, R.; Giordanengo, S.; Monaco, V.

    2013-07-01

    The definition of detectors, methods and procedures for the absolute and relative dosimetry of laser-driven proton beams is a crucial step toward the clinical use of this new kind of beams. Hence, one of the ELIMED task, will be the definition of procedures aiming to obtain an absolute dose measure at the end of the transport beamline with an accuracy as close as possible to the one required for clinical applications (i.e. of the order of 5% or less). Relative dosimetry procedures must be established, as well: they are necessary in order to determine and verify the beam dose distributions and to monitor the beam fluence and the energetic spectra during irradiations. Radiochromic films, CR39, Faraday Cup, Secondary Emission Monitor (SEM) and transmission ionization chamber will be considered, designed and studied in order to perform a fully dosimetric characterization of the ELIMED proton beam.

  10. Absolute calibration of TFTR helium proportional counters

    Energy Technology Data Exchange (ETDEWEB)

    Strachan, J.D.; Diesso, M.; Jassby, D.; Johnson, L.; McCauley, S.; Munsat, T.; Roquemore, A.L. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Barnes, C.W. [Princeton Univ., NJ (United States). Plasma Physics Lab.]|[Los Alamos National Lab., NM (United States); Loughlin, M. [Princeton Univ., NJ (United States). Plasma Physics Lab.]|[JET Joint Undertaking, Abingdon (United Kingdom)

    1995-06-01

    The TFTR helium proportional counters are located in the central five (5) channels of the TFTR multichannel neutron collimator. These detectors were absolutely calibrated using a 14 MeV neutron generator positioned at the horizontal midplane of the TFTR vacuum vessel. The neutron generator position was scanned in centimeter steps to determine the collimator aperture width to 14 MeV neutrons and the absolute sensitivity of each channel. Neutron profiles were measured for TFTR plasmas with time resolution between 5 msec and 50 msec depending upon count rates. The He detectors were used to measure the burnup of 1 MeV tritons in deuterium plasmas, the transport of tritium in trace tritium experiments, and the residual tritium levels in plasmas following 50:50 DT experiments.

  11. Absolute vs. Relative Notion of Wealth Changes

    OpenAIRE

    2009-01-01

    This paper discusses solutions derived from lottery experiments using two alternative assumptions: that people perceive wealth changes as absolute amounts of money; and that people consider wealth changes as a proportion of some reference value dependant on the context of the problem under consideration. The former assumption leads to the design of Prospect Theory, the latter - to a solution closely resembling the utility function hypothesized by Markowitz (1952B). This paper presents several...

  12. The absolute differential calculus (calculus of tensors)

    CERN Document Server

    Levi-Civita, Tullio

    2013-01-01

    Written by a towering figure of twentieth-century mathematics, this classic examines the mathematical background necessary for a grasp of relativity theory. Tullio Levi-Civita provides a thorough treatment of the introductory theories that form the basis for discussions of fundamental quadratic forms and absolute differential calculus, and he further explores physical applications.Part one opens with considerations of functional determinants and matrices, advancing to systems of total differential equations, linear partial differential equations, algebraic foundations, and a geometrical intro

  13. Immobilization of fission products in phosphate ceramic waste forms

    Energy Technology Data Exchange (ETDEWEB)

    Singh, D. [Argonne National Lab., IL (United States)

    1996-10-01

    The goal of this project is to develop and demonstrate the feasibility of a novel low-temperature solidification/stabilization (S/S) technology for immobilizing waste streams containing fission products such as cesium, strontium, and technetium in a chemically bonded phosphate ceramic. This technology can immobilize partitioned tank wastes and decontaminate waste streams containing volatile fission products.

  14. Metal cluster fission: jellium model and Molecular dynamics simulations

    DEFF Research Database (Denmark)

    Lyalin, Andrey G.; Obolensky, Oleg I.; Solov'yov, Ilia;

    2004-01-01

    Fission of doubly charged sodium clusters is studied using the open-shell two-center deformed jellium model approximation and it ab initio molecular dynamic approach accounting for all electrons in the system. Results of calculations of fission reactions Na_10^2+ --> Na_7^+ + Na_3^+ and Na_18^2+ ...

  15. Fission Product Neutron Cross Section Library and Its Reliability Assessment

    Institute of Scientific and Technical Information of China (English)

    QIAN; Jing; SUN; Zheng-jun; LIU; Ting-jin; SHU; Neng-chuan

    2013-01-01

    A complete library of neutron cross section data has been developed for fission product nuclides.It contains data for 1 121 fission product nuclides of mass number A from 66 to 172 and atomic numbers Z from 22 to 72,where involves a lot of very short-lived radioactive ones.The data were taken from better

  16. Neutron angular distribution in plutonium-240 spontaneous fission

    Energy Technology Data Exchange (ETDEWEB)

    Marcath, Matthew J., E-mail: mmarcath@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Boulevard, Ann Arbor, MI 48109 (United States); Shin, Tony H.; Clarke, Shaun D. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Boulevard, Ann Arbor, MI 48109 (United States); Peerani, Paolo [European Commission at the Joint Research Centre, Ispra (Italy); Pozzi, Sara A. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Boulevard, Ann Arbor, MI 48109 (United States)

    2016-09-11

    Nuclear safeguards applications require accurate fission models that exhibit prompt neutron anisotropy. In the laboratory reference frame, an anisotropic neutron angular distribution is observed because prompt fission neutrons carry momentum from fully accelerated fission fragments. A liquid organic scintillation detector array was used with pulse shape discrimination techniques to produce neutron-neutron cross-correlation time distributions and angular distributions from spontaneous fission in a {sup 252}Cf, a 0.84 g {sup 240}Pu{sub eff} metal, and a 1.63 g {sup 240}Pu{sub eff} metal sample. The effect of cross-talk, estimated with MCNPX-PoliMi simulations, is removed from neutron-neutron coincidences as a function of the angle between detector pairs. Fewer coincidences were observed at detector angles near 90°, relative to higher and lower detector angles. As light output threshold increases, the observed anisotropy increases due to spectral effects arising from fission fragment momentum transfer to emitted neutrons. Stronger anisotropy was observed in Cf-252 spontaneous fission prompt neutrons than in Pu-240 neutrons. - Highlights: • Pu-240 prompt fission fast-neutron anisotropy was quantified for the first time. • MCNPX-PoliMi and MPPost codes were used to remove cross-talk neutron detections from experiment results. • Cf-252 spontaneous fission neutrons were found to be more anisotropic than Pu-240 neutrons.

  17. Fission-track ages from the Precambrian of Shropshire.

    Science.gov (United States)

    Naeser, C.W.; Toghill, P.; Ross, R.J.

    1982-01-01

    Four samples of Longmyndian and Uriconian strata from S of Shrewsbury, England have been processed for apatite and/or zircon fission-track ages. The resultant ages illustrate how depth of burial may affect fission-track ages. The analytical procedures followed were as described in Naeser (1979).-from Authors

  18. Late Time Emission of Prompt Fission Gamma Rays

    CERN Document Server

    Talou, P; Stetcu, I; Lestone, J P; McKigney, E; Chadwick, M B

    2016-01-01

    The emission of prompt fission $\\gamma$ rays within a few nanoseconds to a few microseconds following the scission point is studied in the Hauser-Feshbach formalism applied to the deexcitation of primary excited fission fragments. Neutron and $\\gamma$-ray evaporations from fully accelerated fission fragments are calculated in competition at each stage of the decay, and the role of isomers in the fission products, before $\\beta$-decay, is analyzed. The time evolution of the average total $\\gamma$-ray energy, average total $\\gamma$-ray multiplicity, and fragment-specific $\\gamma$-ray spectra, is presented in the case of neutron-induced fission reactions of $^{235}$U and $^{239}$Pu, as well as spontaneous fission of $^{252}$Cf. The production of specific isomeric states is calculated and compared to available experimental data. About 7% of all prompt fission $\\gamma$ rays are predicted to be emitted between 10 nsec and 5 $\\mu$sec following fission, in the case of $^{235}$U and $^{239}$Pu $(n_{\\rm th},f)$ reactio...

  19. Measurement of absolute gravity acceleration in Firenze

    Science.gov (United States)

    de Angelis, M.; Greco, F.; Pistorio, A.; Poli, N.; Prevedelli, M.; Saccorotti, G.; Sorrentino, F.; Tino, G. M.

    2011-01-01

    This paper reports the results from the accurate measurement of the acceleration of gravity g taken at two separate premises in the Polo Scientifico of the University of Firenze (Italy). In these laboratories, two separate experiments aiming at measuring the Newtonian constant and testing the Newtonian law at short distances are in progress. Both experiments require an independent knowledge on the local value of g. The only available datum, pertaining to the italian zero-order gravity network, was taken more than 20 years ago at a distance of more than 60 km from the study site. Gravity measurements were conducted using an FG5 absolute gravimeter, and accompanied by seismic recordings for evaluating the noise condition at the site. The absolute accelerations of gravity at the two laboratories are (980 492 160.6 ± 4.0) μGal and (980 492 048.3 ± 3.0) μGal for the European Laboratory for Non-Linear Spectroscopy (LENS) and Dipartimento di Fisica e Astronomia, respectively. Other than for the two referenced experiments, the data here presented will serve as a benchmark for any future study requiring an accurate knowledge of the absolute value of the acceleration of gravity in the study region.

  20. Measurement of absolute gravity acceleration in Firenze

    Directory of Open Access Journals (Sweden)

    M. de Angelis

    2011-01-01

    Full Text Available This paper reports the results from the accurate measurement of the acceleration of gravity g taken at two separate premises in the Polo Scientifico of the University of Firenze (Italy. In these laboratories, two separate experiments aiming at measuring the Newtonian constant and testing the Newtonian law at short distances are in progress. Both experiments require an independent knowledge on the local value of g. The only available datum, pertaining to the italian zero-order gravity network, was taken more than 20 years ago at a distance of more than 60 km from the study site. Gravity measurements were conducted using an FG5 absolute gravimeter, and accompanied by seismic recordings for evaluating the noise condition at the site. The absolute accelerations of gravity at the two laboratories are (980 492 160.6 ± 4.0 μGal and (980 492 048.3 ± 3.0 μGal for the European Laboratory for Non-Linear Spectroscopy (LENS and Dipartimento di Fisica e Astronomia, respectively. Other than for the two referenced experiments, the data here presented will serve as a benchmark for any future study requiring an accurate knowledge of the absolute value of the acceleration of gravity in the study region.

  1. Quantitative analysis of relationships between irradiation parameters and the reproducibility of cyclotron-produced (99m)Tc yields.

    Science.gov (United States)

    Tanguay, J; Hou, X; Buckley, K; Schaffer, P; Bénard, F; Ruth, T J; Celler, A

    2015-05-21

    Cyclotron production of (99m)Tc through the (100)Mo(p,2n) (99m)Tc reaction channel is actively being investigated as an alternative to reactor-based (99)Mo generation by nuclear fission of (235)U. An exciting aspect of this approach is that it can be implemented using currently-existing cyclotron infrastructure to supplement, or potentially replace, conventional (99m)Tc production methods that are based on aging and increasingly unreliable nuclear reactors. Successful implementation will require consistent production of large quantities of high-radionuclidic-purity (99m)Tc. However, variations in proton beam currents and the thickness and isotopic composition of enriched (100)Mo targets, in addition to other irradiation parameters, may degrade reproducibility of both radionuclidic purity and absolute (99m)Tc yields. The purpose of this article is to present a method for quantifying relationships between random variations in production parameters, including (100)Mo target thicknesses and proton beam currents, and reproducibility of absolute (99m)Tc yields (defined as the end of bombardment (EOB) (99m)Tc activity). Using the concepts of linear error propagation and the theory of stochastic point processes, we derive a mathematical expression that quantifies the influence of variations in various irradiation parameters on yield reproducibility, quantified in terms of the coefficient of variation of the EOB (99m)Tc activity. The utility of the developed formalism is demonstrated with an example. We show that achieving less than 20% variability in (99m)Tc yields will require highly-reproducible target thicknesses and proton currents. These results are related to the service rate which is defined as the percentage of (99m)Tc production runs that meet the minimum daily requirement of one (or many) nuclear medicine departments. For example, we show that achieving service rates of 84.0%, 97.5% and 99.9% with 20% variations in target thicknesses requires producing on average

  2. Fission of highly excited nuclei investigated in complete kinematic measurements

    Directory of Open Access Journals (Sweden)

    Rodríguez-Sánchez J.L.

    2013-12-01

    Full Text Available Fission is an extremely complex mechanism that requires a dynamical approach to describe the evolution of the process in terms of intrinsic and collective excitations of the nuclear constituents. In order to determine these effects a complex experimental setup was mounted at GSI, which allowed us for the first time the full identification in charge and mass of all fission fragments thanks to a magnetic separation and the use of the inverse kinematic technique. Moreover, we also measured the neutron multiplicities and the light-charged particles emitted in coincidence with fission. These complete kinematic measurements will be used to define sensitive observables to dissipative and transient effects in fission. In this manuscript we present the first results for the total fission cross sections.

  3. Simple estimate of fission rate during JCO criticality accident

    Energy Technology Data Exchange (ETDEWEB)

    Oyamatsu, Kazuhiro [Faculty of Studies on Contemporary Society, Aichi Shukutoku Univ., Nagakute, Aichi (Japan)

    2000-03-01

    The fission rate during JCO criticality accident is estimated from fission-product (FP) radioactivities in a uranium solution sample taken from the preparation basin 20 days after the accident. The FP radioactivity data are taken from a report by JAERI released in the Accident Investigation Committee. The total fission number is found quite dependent on the FP radioactivities and estimated to be about 4x10{sup 16} per liter, or 2x10{sup 18} per 16 kgU (assuming uranium concentration 278.9 g/liter). On the contrary, the time dependence of the fission rate is rather insensitive to the FP radioactivities. Hence, it is difficult to determine the fission number in the initial burst from the radioactivity data. (author)

  4. ISOLDE experiment explores new territory in nuclear fission

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    An international collaboration led by the University of Leuven, Belgium, exploiting ISOLDE’s radioactive beams, has recently discovered an unexpected new type of asymmetric nuclear fission, which challenges current theories. The surprising result opens the way for new nuclear structure models and further theories to elucidate the question.   Resonance Ionization Laser Ion Source (RILIS) in action at ISOLDE. RILIS was instrumental in providing the pure beam necessary for the successful nuclear fission experiment. In nuclear fission, the nucleus splits into two fragments (daughter nuclei), releasing a huge amount of energy. Nuclear fission is exploited in power plants to produce energy. From the fundamental research point of view, fission is not yet fully understood decades after its discovery and its properties can still surprise nuclear physicists. The way the process occurs can tell us a lot about the internal structure of the nucleus and the interactions taking place inside the com...

  5. Modelling the widths of fission observables in GEF

    Directory of Open Access Journals (Sweden)

    Schmidt K.-H.

    2013-03-01

    Full Text Available The widths of the mass distributions of the different fission channels are traced back to the probability distributions of the corresponding quantum oscillators that are coupled to the heat bath, which is formed by the intrinsic degrees of freedom of the fissioning system under the influence of pairing correlations and shell effects. Following conclusion from stochastic calculations of Adeev and Pashkevich, an early freezing due to dynamical effects is assumed. It is shown that the mass width of the fission channels in low-energy fission is strongly influenced by the zero-point motion of the corresponding quantum oscillator. The observed variation of the mass widths of the asymmetric fission channels with excitation energy is attributed to the energy-dependent properties of the heat bath and not to the population of excited states of the corresponding quantum oscillator.

  6. a High Resolution Ionization Chamber for the SPIDER Fission Fragment Detector

    Science.gov (United States)

    Meierbachtol, K.; Tovesson, F.; Arnold, C. W.; Laptev, A. B.; Bredeweg, T. A.; Jandel, M.; Nelson, R. O.; White, M. C.; Hecht, A. A.; Mader, D.

    2014-09-01

    An ionization chamber for measuring the energy loss and kinetic energy of fragments produced through neutron-induced fission at the Los Alamos Neutron Science Center (LANSCE) has been designed as a component of the the new SPIDER detector. Design criteria included energy resolutions of <1% for high energy resolution and increased charge resolution. The ionization chamber will be combined with a high resolution time-of-flight detector to achieve fragment yield measurements with mass and nuclear charge resolutions of 1 amu and Z=1. The present status of the ionization chamber will be presented.

  7. Study of Rapid Radiochemical Separation of 90Rb from Fission Product

    Institute of Scientific and Technical Information of China (English)

    YUE; Yuan-zhen; MAO; Guo-shu; YANG; Lei; DING; You-qian; MA; Peng

    2015-01-01

    90Rb is a high yield and short-lived fission product,and it is a sensitive monitor at low burnup.The decay data of 90Rb are important,however the uncertainty of the decay data of 90Rb tends to be large,such as the half-life data(58±5)s(with an uncertainty of 3.2%)from ENSDF.In order to get the half-life measured more accurately,a carrier-free 90Rb sample of

  8. Ceramic Hosts for Fission Products Immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Peter C Kong

    2010-07-01

    Natural spinel, perovskite and zirconolite rank among the most leach resistant of mineral forms. They also have a strong affinity for a large number of other elements and including actinides. Specimens of natural perovskite and zirconolite were radioisotope dated and found to have survived at least 2 billion years of natural process while still remain their loading of uranium and thorium . Developers of the Synroc waste form recognized and exploited the capability of these minerals to securely immobilize TRU elements in high-level waste . However, the Synroc process requires a relatively uniform input and hot pressing equipment to produce the waste form. It is desirable to develop alternative approaches to fabricate these durable waste forms to immobilize the radioactive elements. One approach is using a high temperature process to synthesize these mineral host phases to incorporate the fission products in their crystalline structures. These mineral assemblages with immobilized fission products are then isolated in a durable high temperature glass for periods measured on a geologic time scale. This is a long term research concept and will begin with the laboratory synthesis of the pure spinel (MgAl2O4), perovskite (CaTiO3) and zirconolite (CaZrTi2O7) from their constituent oxides. High temperature furnace and/or thermal plasma will be used for the synthesis of these ceramic host phases. Nonradioactive strontium oxide will be doped into these ceramic phases to investigate the development of substitutional phases such as Mg1-xSrxAl2O4, Ca1-xSrxTiO3 and Ca1-xSrxZrTi2O7. X-ray diffraction will be used to establish the crystalline structures of the pure ceramic hosts and the substitution phases. Scanning electron microscopy and energy dispersive X-ray analysis (SEM-EDX) will be performed for product morphology and fission product surrogates distribution in the crystalline hosts. The range of strontium doping is planned to reach the full substitution of the divalent

  9. Improved Fission Neutron Data Base for Active Interrogation of Actinides

    Energy Technology Data Exchange (ETDEWEB)

    Pozzi, Sara; Czirr, J. Bart; Haight, Robert; Kovash, Michael; Tsvetkov, Pavel

    2013-11-06

    This project will develop an innovative neutron detection system for active interrogation measurements. Many active interrogation methods to detect fissionable material are based on the detection of neutrons from fission induced by fast neutrons or high-energy gamma rays. The energy spectrum of the fission neutrons provides data to identify the fissionable isotopes and materials such as shielding between the fissionable material and the detector. The proposed path for the project is as follows. First, the team will develop new neutron detection systems and algorithms by Monte Carlo simulations and bench-top experiments. Next, They will characterize and calibrate detection systems both with monoenergetic and white neutron sources. Finally, high-fidelity measurements of neutron emission from fissions induced by fast neutrons will be performed. Several existing fission chambers containing U-235, Pu-239, U-238, or Th-232 will be used to measure the neutron-induced fission neutron emission spectra. The challenge for making confident measurements is the detection of neutrons in the energy ranges of 0.01 – 1 MeV and above 8 MeV, regions where the basic data on the neutron energy spectrum emitted from fission is least well known. In addition, improvements in the specificity of neutron detectors are required throughout the complete energy range: they must be able to clearly distinguish neutrons from other radiations, in particular gamma rays and cosmic rays. The team believes that all of these challenges can be addressed successfully with emerging technologies under development by this collaboration. In particular, the collaboration will address the area of fission neutron emission spectra for isotopes of interest in the advanced fuel cycle initiative (AFCI).

  10. Emplacement time of the Loe-Shilman carbonatite from NW Pakistan: Constraints from fission-track dating

    Energy Technology Data Exchange (ETDEWEB)

    Khattak, N.U. [National Centre of Excellence in Geology, University of Peshawar (Pakistan)], E-mail: nimat_khattak@yahoo.com; Akram, M. [Physics Division, PINSTECH, P.O. Nilore, Islamabad (Pakistan); Khan, M.A. [National Centre of Excellence in Geology, University of Peshawar (Pakistan); Khan, H.A. [COMSATS Headquarters, 4th Floor, Shahrah-e-Jamhuriat, G-5/2 Islamabad 44000 (Pakistan)

    2008-08-15

    The Loe-Shilman carbonatite complex is situated in the extreme west of the Peshawar Plain Alkaline Igneous Province (PAIP), near the Pakistan-Afghanistan border. It comprises sill-form bodies emplaced along an E-W trending and N dipping fault zone in Paleozoic to Precambrian metasedimentary rocks of Khyber Agency. Fission-track dating studies on the apatite crystals using the external detector method and age standard approach (the {zeta} method) yielded an age of 30.0{+-}1.5Ma for the Loe-Shilman carbonatite. Close agreement between the previously determined radiometric ages from the same as well as the neighboring carbonatite complexes of the PAIP and the fission-track apatite age of this study indicates that the Loe-Shilman carbonatite was emplaced at relatively shallow crustal level and quickly cooled to low temperatures (<60{sup 0}C) required for the complete retention of fission tracks in apatite and that the fission-track age of this study is the emplacement age of the Loe-Shilman carbonatite.

  11. Report on simulation of fission gas and fission product diffusion in UO2

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Anders David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Perriot, Romain Thibault [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Pastore, Giovanni [Idaho National Lab. (INL), Idaho Falls, ID (United States). Fuel Modeling and Simulation Dept.; Tonks, Michael R. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Fuel Modeling and Simulation Dept.; Cooper, Michael William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Liu, Xiang-Yang [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Goyal, Anuj [Univ. of Florida, Gainesville, FL (United States). Dept. of Materials Science and Engineering; Uberuaga, Blas P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Stanek, Christopher Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division

    2016-07-22

    In UO2 nuclear fuel, the retention and release of fission gas atoms such as xenon (Xe) are important for nuclear fuel performance by, for example, reducing the fuel thermal conductivity, causing fuel swelling that leads to mechanical interaction with the clad, increasing the plenum pressure and reducing the fuel–clad gap thermal conductivity. We use multi-­scale simulations to determine fission gas diffusion mechanisms as well as the corresponding rates in UO2 under both intrinsic and irradiation conditions. In addition to Xe and Kr, the fission products Zr, Ru, Ce, Y, La, Sr and Ba have been investigated. Density functional theory (DFT) calculations are used to study formation, binding and migration energies of small clusters of Xe atoms and vacancies. Empirical potential calculations enable us to determine the corresponding entropies and attempt frequencies for migration as well as investigate the properties of large clusters or small fission gas bubbles. A continuum reaction-­diffusion model is developed for Xe and point defects based on the mechanisms and rates obtained from atomistic simulations. Effective fission gas diffusivities are then obtained by solving this set of equations for different chemical and irradiation conditions using the MARMOT phase field code. The predictions are compared to available experimental data. The importance of the large XeU3O cluster (a Xe atom in a uranium + oxygen vacancy trap site with two bound uranium vacancies) is emphasized, which is a consequence of its high mobility and high binding energy. We find that the XeU3O cluster gives Xe diffusion coefficients that are higher for intrinsic conditions than under irradiation over a wide range of temperatures. Under irradiation the fast-­moving XeU3O cluster recombines quickly with irradiation induced interstitial U ions, while this mechanism is less important for intrinsic conditions. The net result is higher

  12. Report on simulation of fission gas and fission product diffusion in UO2

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Anders David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Perriot, Romain Thibault [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Pastore, Giovanni [Idaho National Lab. (INL), Idaho Falls, ID (United States). Fuel Modeling and Simulation Dept.; Tonks, Michael R. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Fuel Modeling and Simulation Dept.; Cooper, Michael William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Liu, Xiang-Yang [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Goyal, Anuj [Univ. of Florida, Gainesville, FL (United States). Dept. of Materials Science and Engineering; Uberuaga, Blas P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Stanek, Christopher Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division

    2016-07-22

    In UO2 nuclear fuel, the retention and release of fission gas atoms such as xenon (Xe) are important for nuclear fuel performance by, for example, reducing the fuel thermal conductivity, causing fuel swelling that leads to mechanical interaction with the clad, increasing the plenum pressure and reducing the fuel–clad gap thermal conductivity. We use multi-­scale simulations to determine fission gas diffusion mechanisms as well as the corresponding rates in UO2 under both intrinsic and irradiation conditions. In addition to Xe and Kr, the fission products Zr, Ru, Ce, Y, La, Sr and Ba have been investigated. Density functional theory (DFT) calculations are used to study formation, binding and migration energies of small clusters of Xe atoms and vacancies. Empirical potential calculations enable us to determine the corresponding entropies and attempt frequencies for migration as well as investigate the properties of large clusters or small fission gas bubbles. A continuum reaction-­diffusion model is developed for Xe and point defects based on the mechanisms and rates obtained from atomistic simulations. Effective fission gas diffusivities are then obtained by solving this set of equations for different chemical and irradiation conditions using the MARMOT phase field code. The predictions are compared to available experimental data. The importance of the large XeU3O cluster (a Xe atom in a uranium + oxygen vacancy trap site with two bound uranium vacancies) is emphasized, which is a consequence of its high mobility and high binding energy. We find that the XeU3O cluster gives Xe diffusion coefficients that are higher for intrinsic conditions than under irradiation over a wide range of temperatures. Under irradiation the fast-­moving XeU3O cluster recombines quickly with irradiation-induced interstitial U ions, while this mechanism is less important for intrinsic conditions. The net result is higher

  13. Achieving Climate Change Absolute Accuracy in Orbit

    Science.gov (United States)

    Wielicki, Bruce A.; Young, D. F.; Mlynczak, M. G.; Thome, K. J; Leroy, S.; Corliss, J.; Anderson, J. G.; Ao, C. O.; Bantges, R.; Best, F.; Bowman, K.; Brindley, H.; Butler, J. J.; Collins, W.; Dykema, J. A.; Doelling, D. R.; Feldman, D. R.; Fox, N.; Huang, X.; Holz, R.; Huang, Y.; Jennings, D.; Jin, Z.; Johnson, D. G.; Jucks, K.; Kato, S.; Kratz, D. P.; Liu, X.; Lukashin, C.; Mannucci, A. J.; Phojanamongkolkij, N.; Roithmayr, C. M.; Sandford, S.; Taylor, P. C.; Xiong, X.

    2013-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission will provide a calibration laboratory in orbit for the purpose of accurately measuring and attributing climate change. CLARREO measurements establish new climate change benchmarks with high absolute radiometric accuracy and high statistical confidence across a wide range of essential climate variables. CLARREO's inherently high absolute accuracy will be verified and traceable on orbit to Système Internationale (SI) units. The benchmarks established by CLARREO will be critical for assessing changes in the Earth system and climate model predictive capabilities for decades into the future as society works to meet the challenge of optimizing strategies for mitigating and adapting to climate change. The CLARREO benchmarks are derived from measurements of the Earth's thermal infrared spectrum (5-50 micron), the spectrum of solar radiation reflected by the Earth and its atmosphere (320-2300 nm), and radio occultation refractivity from which accurate temperature profiles are derived. The mission has the ability to provide new spectral fingerprints of climate change, as well as to provide the first orbiting radiometer with accuracy sufficient to serve as the reference transfer standard for other space sensors, in essence serving as a "NIST [National Institute of Standards and Technology] in orbit." CLARREO will greatly improve the accuracy and relevance of a wide range of space-borne instruments for decadal climate change. Finally, CLARREO has developed new metrics and methods for determining the accuracy requirements of climate observations for a wide range of climate variables and uncertainty sources. These methods should be useful for improving our understanding of observing requirements for most climate change observations.

  14. ABSOLUT LOMO绝对创意

    Institute of Scientific and Technical Information of China (English)

    婷婷(整理)

    2007-01-01

    ABSOLUT与创意素来有着不解之缘。由Andy Warhal的ABSOLUT WARHOL至今,已有超过400位不同领域的创意大师为ABSOLUT的当代艺术宝库贡献了自己的得意之作。ABSOLUT的创意仿佛永远不会枯竭,而一系列的作品也让惊喜从未落空。

  15. Absolute quantification of myocardial blood flow.

    Science.gov (United States)

    Yoshinaga, Keiichiro; Manabe, Osamu; Tamaki, Nagara

    2016-07-21

    With the increasing availability of positron emission tomography (PET) myocardial perfusion imaging, the absolute quantification of myocardial blood flow (MBF) has become popular in clinical settings. Quantitative MBF provides an important additional diagnostic or prognostic information over conventional visual assessment. The success of MBF quantification using PET/computed tomography (CT) has increased the demand for this quantitative diagnostic approach to be more accessible. In this regard, MBF quantification approaches have been developed using several other diagnostic imaging modalities including single-photon emission computed tomography, CT, and cardiac magnetic resonance. This review will address the clinical aspects of PET MBF quantification and the new approaches to MBF quantification.

  16. Absolute calibration of the Auger fluorescence detectors

    Energy Technology Data Exchange (ETDEWEB)

    Bauleo, P.; Brack, J.; Garrard, L.; Harton, J.; Knapik, R.; Meyhandan, R.; Rovero, A.C.; /Buenos Aires, IAFE; Tamashiro, A.; Warner, D.

    2005-07-01

    Absolute calibration of the Pierre Auger Observatory fluorescence detectors uses a light source at the telescope aperture. The technique accounts for the combined effects of all detector components in a single measurement. The calibrated 2.5 m diameter light source fills the aperture, providing uniform illumination to each pixel. The known flux from the light source and the response of the acquisition system give the required calibration for each pixel. In the lab, light source uniformity is studied using CCD images and the intensity is measured relative to NIST-calibrated photodiodes. Overall uncertainties are presently 12%, and are dominated by systematics.

  17. Development of an absolute neutron dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Acevedo, C; Birstein, L; Loyola, H [Section de Desarrollos Innovativos, Comision Chilena de EnergIa Nuclear (CCHEN), Casilla 188-D, Santiago (Chile)], E-mail: lbirstei@cchen.cl

    2008-11-01

    An Absolute Neutron Dosimeter was developed to be used as a calibration standard for the Radiation Metrology Laboratory at CCHEN. The main component of the Dosimeter consists of a Proportional Counter of cylindrical shape, with Polyethylene walls and Ethylene gas in its interior. It includes a cage shaped arrangement of graphite bars that operates like the Proportional Counter cathode and a tungsten wire of 25 {mu}m in diameter {mu}m as the anode. Results of a Montecarlo modeling for the Dosimeter operation and results of tests and measurements performed with a radioactive source are presented.

  18. Musical Activity Tunes Up Absolute Pitch Ability

    DEFF Research Database (Denmark)

    Dohn, Anders; Garza-Villarreal, Eduardo A.; Ribe, Lars Riisgaard

    2014-01-01

    Absolute pitch (AP) is the ability to identify or produce pitches of musical tones without an external reference. Active AP (i.e., pitch production or pitch adjustment) and passive AP (i.e., pitch identification) are considered to not necessarily coincide, although no study has properly compared...... that APs generally undershoot when adjusting musical pitch, a tendency that decreases when musical activity increases. Finally, APs are less accurate when adjusting the pitch to black key targets than to white key targets. Hence, AP ability may be partly practice-dependent and we speculate that APs may...

  19. I. Fission Probabilities, Fission Barriers, and Shell Effects. II. Particle Structure Functions

    Energy Technology Data Exchange (ETDEWEB)

    Jing, Kexing [Univ. of California, Berkeley, CA (United States)

    1999-05-01

    In Part I, fission excitation functions of osmium isotopes 185,186, 187, 189 Os produced in 3He +182,183, 184, 186W reactions, and of polonium isotopes 209,210, 211, 212Po produced in 3He/4He + 206, 207, 208Pb reactions, were measured with high precision. These excitation functions have been analyzed in detail based upon the transition state formalism. The fission barriers, and shell effects for the corresponding nuclei are extracted from the detailed analyses. A novel approach has been developed to determine upper limits of the transient time of the fission process. The upper limits are constrained by the fission probabilities of neighboring isotopes. The upper limits for the transient time set with this new method are 15x 10–21 sec and 25x 10–21 sec for 0s and Po compound nuclei, respectively. In Part II, we report on a search for evidence of the optical modulations in the energy spectra of alpha particles emitted from hot compound nuclei. The optical modulations are expected to arise from the ~-particle interaction with the rest of the nucleus as the particle prepares to exit. Some evidence for the modulations has been observed in the alpha spectra measured in the 3He-induced reactions, 3He + natAg in particular. The identification of the modulations involves a technique that subtracts the bulk statistical background from the measured alpha spectra, in order for the modulations to become visible in the residuals. Due to insufficient knowledge of the background spectra, however, the presented evidence should only be regarded as preliminary and tentative.

  20. Fission-product SiC reaction in HTGR fuel

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, F.

    1981-07-13

    The primary barrier to release of fission product from any of the fuel types into the primary circuit of the HTGR are the coatings on the fuel particles. Both pyrolytic carbon and silicon carbide coatings are very effective in retaining fission gases under normal operating conditions. One of the possible performance limitations which has been observed in irradiation tests of TRISO fuel is chemical interaction of the SiC layer with fission products. This reaction reduces the thickness of the SiC layer in TRISO particles and can lead to release of fission products from the particles if the SiC layer is completely penetrated. The experimental section of this report describes the results of work at General Atomic concerning the reaction of fission products with silicon carbide. The discussion section describes data obtained by various laboratories and includes (1) a description of the fission products which have been found to react with SiC; (2) a description of the kinetics of silicon carbide thinning caused by fission product reaction during out-of-pile thermal gradient heating and the application of these kinetics to in-pile irradiation; and (3) a comparison of silicon carbide thinning in LEU and HEU fuels.