WorldWideScience

Sample records for absolute fission yields

  1. Absolute fission yields in the fast neutron induced fission of sup 2 sup 3 sup 3 U by track etch combined with gamma-ray spectrometry

    CERN Document Server

    Ramaswami, A; Kalsi, P C; Dange, S P

    2003-01-01

    The absolute fission yields of twenty seven fission products were determined in the fast neutron induced fission of sup 2 '3 sup 3 U, employing track etch in combination with gamma-ray spectrometry. The total number of fissions was measured by registering the fission tracks on a small strip of lexan, a solid state track detector. The fission products were analysed by gamma-ray spectrometry. The measured yield values were compared to the ENDF/B-VI compilation and show a good agreement. (author)

  2. Fission product yields

    International Nuclear Information System (INIS)

    Data are summed up necessary for determining the yields of individual fission products from different fissionable nuclides. Fractional independent yields, cumulative and isobaric yields are presented here for the thermal fission of 235U, 239Pu, 241Pu and for fast fission (approximately 1 MeV) of 235U, 238U, 239Pu, 241Pu; these values are included into the 5th version of the YIELDS library, supplementing the BIBFP library. A comparison is made of experimental data and possible improvements of calculational methods are suggested. (author)

  3. Absolute calibration technique for spontaneous fission sources

    International Nuclear Information System (INIS)

    An absolute calibration technique for a spontaneously fissioning nuclide (which involves no arbitrary parameters) allows unique determination of the detector efficiency for that nuclide, hence of the fission source strength

  4. Measurements of periods, relative abundances and absolute yields of delayed neutrons from fast neutron induced fission of {sup 237}Np

    Energy Technology Data Exchange (ETDEWEB)

    Piksaikine, V. [Institute of Physics and Power Engineering, Obninsk (Russian Federation)

    1997-03-01

    The experimental method for measurements of the delayed neutron yields and period is presented. The preliminary results of the total yield, relative abundances and periods are shown comparing with the previously reported values. (J.P.N.)

  5. Fission yield measurements at IGISOL

    Science.gov (United States)

    Lantz, M.; Al-Adili, A.; Gorelov, D.; Jokinen, A.; Kolhinen, V. S.; Mattera, A.; Moore, I.; Penttilä, H.; Pomp, S.; Prokofiev, A. V.; Rakopoulos, V.; Rinta-Antila, S.; Simutkin, V.; Solders, A.

    2016-06-01

    The fission product yields are an important characteristic of the fission process. In fundamental physics, knowledge of the yield distributions is needed to better understand the fission process. For nuclear energy applications good knowledge of neutroninduced fission-product yields is important for the safe and efficient operation of nuclear power plants. With the Ion Guide Isotope Separator On-Line (IGISOL) technique, products of nuclear reactions are stopped in a buffer gas and then extracted and separated by mass. Thanks to the high resolving power of the JYFLTRAP Penning trap, at University of Jyväskylä, fission products can be isobarically separated, making it possible to measure relative independent fission yields. In some cases it is even possible to resolve isomeric states from the ground state, permitting measurements of isomeric yield ratios. So far the reactions U(p,f) and Th(p,f) have been studied using the IGISOL-JYFLTRAP facility. Recently, a neutron converter target has been developed utilizing the Be(p,xn) reaction. We here present the IGISOL-technique for fission yield measurements and some of the results from the measurements on proton induced fission. We also present the development of the neutron converter target, the characterization of the neutron field and the first tests with neutron-induced fission.

  6. Fission yield measurements at IGISOL

    Directory of Open Access Journals (Sweden)

    Lantz M.

    2016-01-01

    Full Text Available The fission product yields are an important characteristic of the fission process. In fundamental physics, knowledge of the yield distributions is needed to better understand the fission process. For nuclear energy applications good knowledge of neutroninduced fission-product yields is important for the safe and efficient operation of nuclear power plants. With the Ion Guide Isotope Separator On-Line (IGISOL technique, products of nuclear reactions are stopped in a buffer gas and then extracted and separated by mass. Thanks to the high resolving power of the JYFLTRAP Penning trap, at University of Jyväskylä, fission products can be isobarically separated, making it possible to measure relative independent fission yields. In some cases it is even possible to resolve isomeric states from the ground state, permitting measurements of isomeric yield ratios. So far the reactions U(p,f and Th(p,f have been studied using the IGISOL-JYFLTRAP facility. Recently, a neutron converter target has been developed utilizing the Be(p,xn reaction. We here present the IGISOL-technique for fission yield measurements and some of the results from the measurements on proton induced fission. We also present the development of the neutron converter target, the characterization of the neutron field and the first tests with neutron-induced fission.

  7. Study on the effect factor of the absolute fission rates measured by depleted uranium fission chamber

    International Nuclear Information System (INIS)

    The absolute fission rates was measured by the depleted uranium fission chamber. The efficiency of the fission fragments recorded in the fission chamber was analyzed. The factor influencing absolute fission rates was studied in the experiment, including the disturbing effect between detectors and the effect of the structural material of the fission chamber, etc

  8. Status of fission yield data

    International Nuclear Information System (INIS)

    In this paper we summarize the current status of the recent US evaluation for 34 fissioning nuclides at one or more neutron incident energies and for spontaneous fission. Currently there are 50 yields sets, and for each we have independent and cumulative yields and uncertainties for approximately 1100 fission products. When finalized the recommended data will become part of Version VI of the US ENDF/B. Other major evaluations in progress that are included in a recently formed IAEA Coordinated Research Program are also summarized. In a second part we review two empirical models in use to estimate independent yields. Comparison of model estimates with measured data is presented, including a comparison with some recent data obtained from Lohengrin (Cf-249 T). 18 refs., 13 figs., 3 tabs

  9. Status of fission yield evaluations

    International Nuclear Information System (INIS)

    Very few yield compilations are also evaluations, and very few contain an extensive global library of measured data and extensive models for unmeasured data. The earlier U.K. evaluations and US evaluations were comparable up to the retirements of the primary evaluators. Only the effort in the US has been continued and expanded. The previous U.K. evaluations have been published. In this paper we summarize the current status of the US evaluation, philosophy, and various integral yield tests for 34 fissioning nuclides at one or more neutron incident energies and/or for spontaneous fission. Currently there are 50 yield sets and for each we have independent and cumulative yields and uncertainties for approximately 1100 fission products. When finalized, the recommended data will become part of the next version of the US Evaluated Nuclear Data File (ENDF/B-VI). The complete set of data, including the basic input of measured yields, will be issued as a sequel to the General Electric evaluation reports (better known by the authors' names: Rider - or earlier - Meek and Rider). 16 references

  10. Fission yield studies at the IGISOL facility

    Energy Technology Data Exchange (ETDEWEB)

    Penttilae, H.; Elomaa, V.V.; Eronen, T.; Hakala, J.; Jokinen, A.; Kankainen, A.; Moore, I.D.; Rahaman, S.; Rinta-Antila, S.; Rissanen, J.; Saastamoinen, A.; Weber, C.; Aeystoe, J. [University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland); Rubchenya, V. [University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland); V.G. Khlopin Radium Institute, St. Petersburg (Russian Federation)

    2012-04-15

    Low-energy-particle-induced fission is a cost-effective way to produce neutron-rich nuclei for spectroscopic studies. Fission has been utilized at the IGISOL to produce isotopes for decay and nuclear structure studies, collinear laser spectroscopy and precision mass measurements. The ion guide technique is also very suitable for the fission yield measurements, which can be performed very efficiently by using the Penning trap for fission fragment identification and counting. The proton- and neutron-induced fission yield measurements at the IGISOL are reviewed, and the independent isotopic yields of Zn, Ga, Rb, Sr, Cd and In in 25MeV deuterium-induced fission are presented for the first time. Moving to a new location next to the high intensity MCC30/15 light-ion cyclotron will allow also the use of the neutron-induced fission to produce the neutron rich nuclei at the IGISOL in the future. (orig.)

  11. Measurement of Fission Product Yields from Fast-Neutron Fission

    Science.gov (United States)

    Arnold, C. W.; Bond, E. M.; Bredeweg, T. A.; Fowler, M. M.; Moody, W. A.; Rusev, G.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Henderson, R.; Kenneally, J.; Macri, R.; McNabb, D.; Ryan, C.; Sheets, S.; Stoyer, M. A.; Tonchev, A. P.; Bhatia, C.; Bhike, M.; Fallin, B.; Gooden, M. E.; Howell, C. R.; Kelley, J. H.; Tornow, W.

    2014-09-01

    One of the aims of the Stockpile Stewardship Program is a reduction of the uncertainties on fission data used for analyzing nuclear test data [1,2]. Fission products such as 147Nd are convenient for determining fission yields because of their relatively high yield per fission (about 2%) and long half-life (10.98 days). A scientific program for measuring fission product yields from 235U,238U and 239Pu targets as a function of bombarding neutron energy (0.1 to 15 MeV) is currently underway using monoenergetic neutron beams produced at the 10 MV Tandem Accelerator at TUNL. Dual-fission chambers are used to determine the rate of fission in targets during activation. Activated targets are counted in highly shielded HPGe detectors over a period of several weeks to identify decaying fission products. To date, data have been collected at neutron bombarding energies 4.6, 9.0, 14.5 and 14.8 MeV. Experimental methods and data reduction techniques are discussed, and some preliminary results are presented.

  12. The SPIDER fission fragment spectrometer for fission product yield measurements

    Energy Technology Data Exchange (ETDEWEB)

    Meierbachtol, K.; Tovesson, F. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Shields, D. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Colorado School of Mines, Golden, CO 80401 (United States); Arnold, C. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Blakeley, R. [University of New Mexico, Albuquerque, NM 87131 (United States); Bredeweg, T.; Devlin, M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Hecht, A.A.; Heffern, L.E. [University of New Mexico, Albuquerque, NM 87131 (United States); Jorgenson, J.; Laptev, A. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Mader, D. [University of New Mexico, Albuquerque, NM 87131 (United States); O' Donnell, J.M.; Sierk, A.; White, M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2015-07-11

    The SPectrometer for Ion DEtermination in fission Research (SPIDER) has been developed for measuring mass yield distributions of fission products from spontaneous and neutron-induced fission. The 2E–2v method of measuring the kinetic energy (E) and velocity (v) of both outgoing fission products has been utilized, with the goal of measuring the mass of the fission products with an average resolution of 1 atomic mass unit (amu). The SPIDER instrument, consisting of detector components for time-of-flight, trajectory, and energy measurements, has been assembled and tested using {sup 229}Th and {sup 252}Cf radioactive decay sources. For commissioning, the fully assembled system measured fission products from spontaneous fission of {sup 252}Cf. Individual measurement resolutions were met for time-of-flight (250 ps FWHM), spacial resolution (2 mm FHWM), and energy (92 keV FWHM for 8.376 MeV). Mass yield results measured from {sup 252}Cf spontaneous fission products are reported from an E–v measurement.

  13. Precise Measurement of the Absolute Fluorescence Yield

    Science.gov (United States)

    Ave, M.; Bohacova, M.; Daumiller, K.; Di Carlo, P.; di Giulio, C.; San Luis, P. Facal; Gonzales, D.; Hojvat, C.; Hörandel, J. R.; Hrabovsky, M.; Iarlori, M.; Keilhauer, B.; Klages, H.; Kleifges, M.; Kuehn, F.; Monasor, M.; Nozka, L.; Palatka, M.; Petrera, S.; Privitera, P.; Ridky, J.; Rizi, V.; D'Orfeuil, B. Rouille; Salamida, F.; Schovanek, P.; Smida, R.; Spinka, H.; Ulrich, A.; Verzi, V.; Williams, C.

    2011-09-01

    We present preliminary results of the absolute yield of fluorescence emission in atmospheric gases. Measurements were performed at the Fermilab Test Beam Facility with a variety of beam particles and gases. Absolute calibration of the fluorescence yield to 5% level was achieved by comparison with two known light sources--the Cherenkov light emitted by the beam particles, and a calibrated nitrogen laser. The uncertainty of the energy scale of current Ultra-High Energy Cosmic Rays experiments will be significantly improved by the AIRFLY measurement.

  14. Fission Product Yield Study of 235U, 238U and 239Pu Using Dual-Fission Ionization Chambers

    Science.gov (United States)

    Bhatia, C.; Fallin, B.; Howell, C.; Tornow, W.; Gooden, M.; Kelley, J.; Arnold, C.; Bond, E.; Bredeweg, T.; Fowler, M.; Moody, W.; Rundberg, R.; Rusev, G.; Vieira, D.; Wilhelmy, J.; Becker, J.; Macri, R.; Ryan, C.; Sheets, S.; Stoyer, M.; Tonchev, A.

    2014-05-01

    To resolve long-standing differences between LANL and LLNL regarding the correct fission basis for analysis of nuclear test data [M.B. Chadwick et al., Nucl. Data Sheets 111, 2891 (2010); H. Selby et al., Nucl. Data Sheets 111, 2891 (2010)], a collaboration between TUNL/LANL/LLNL has been established to perform high-precision measurements of neutron induced fission product yields. The main goal is to make a definitive statement about the energy dependence of the fission yields to an accuracy better than 2-3% between 1 and 15 MeV, where experimental data are very scarce. At TUNL, we have completed the design, fabrication and testing of three dual-fission chambers dedicated to 235U, 238U, and 239Pu. The dual-fission chambers were used to make measurements of the fission product activity relative to the total fission rate, as well as for high-precision absolute fission yield measurements. The activation method was employed, utilizing the mono-energetic neutron beams available at TUNL. Neutrons of 4.6, 9.0, and 14.5 MeV were produced via the 2H(d,n)3He reaction, and for neutrons at 14.8 MeV, the 3H(d,n)4He reaction was used. After activation, the induced γ-ray activity of the fission products was measured for two months using high-resolution HPGe detectors in a low-background environment. Results for the yield of seven fission fragments of 235U, 238U, and 239Pu and a comparison to available data at other energies are reported. For the first time results are available for neutron energies between 2 and 14 MeV.

  15. Revision of the JENDL FP Fission Yield Data

    Directory of Open Access Journals (Sweden)

    Katakura Jun-ichi

    2016-01-01

    Full Text Available Some fission yields data of JENDL FP Fission Yields Data File 2011 (JENDL/FPY-2011 revealed inadequacies when applied to delayed neutron related subjects. The sensitivity analyses of decay heat summation calculations also showed some problems. From these results the fission yields of JENDL/FPY-2011 have been revised. The present report describes the revision of the yield data by emphasizing the sensitivity analyses.

  16. Revision of the JENDL FP Fission Yield Data

    Science.gov (United States)

    Katakura, Jun-ichi; Minato, Futoshi; Ohgama, Kazuya

    2016-03-01

    Some fission yields data of JENDL FP Fission Yields Data File 2011 (JENDL/FPY-2011) revealed inadequacies when applied to delayed neutron related subjects. The sensitivity analyses of decay heat summation calculations also showed some problems. From these results the fission yields of JENDL/FPY-2011 have been revised. The present report describes the revision of the yield data by emphasizing the sensitivity analyses.

  17. Study of Relationship Between Neutron Energy and Fission Yields of 95Zr, 140Ba and 147Nd From 235U

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This work measures fission yields of 235U induced by neutrons with energy of thermal, 3.0, 5.0, 5.5, 8.0 and 14.8 MeV. The main purpose is to study the relationship between neutron energy and fission fields of 95Zr,140Ba and 147Nd from 235U by measuring the radioactivity of foil with direct gamma spectrometry. The fission yields induced by fast neutrons are get by fast-thermal-ratio method which based on yields from thermal neutrons, yields by thermal neutron are come from absolute measurement. Since fast-thermal-ratio method eliminates uncertainties of gamma intensity, gamma

  18. FFTF (FAST FLUX TEST FACILITY) REACTOR CHARACTERIZATION PROGRAM ABSOLUTE FISSION RATE MEASUREMENTS

    Energy Technology Data Exchange (ETDEWEB)

    FULLER JL; GILLIAM DM; GRUNDL JA; RAWLINS JA; DAUGHTRY JW

    1981-05-01

    Absolute fission rate measurements using modified National Bureau of Standards fission chambers were performed in the Fast Flux Test Facility at two core locations for isotopic deposits of {sup 232}Th, {sup 233}U, {sup 235}U, {sup 238}U, {sup 237}Np, {sup 239}Pu, {sup 240}Pu, and {sup 241}Pu. Monitor chamber results at a third location were analyzed to support other experiments involving passive dosimeter fission rate determinations.

  19. FFTF (Fast Flux Test Facility) Reactor Characterization Program: Absolute Fission-rate Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, J.L.; Gilliam, D.M.; Grundl, J.A.; Rawlins, J.A.; Daughtry, J.W.

    1981-05-01

    Absolute fission rate measurements using modified National Bureau of Standards fission chambers were performed in the Fast Flux Test Facility at two core locations for isotopic deposits of {sup 232}Th, {sup 233}U, {sup 235}U, {sup 238}U, {sup 237}Np, {sup 239}Pu, {sup 240}Pu, and {sup 241}Pu. Monitor chamber results at a third location were analyzed to support other experiments involving passive dosimeter fission rate determinations.

  20. Compilation of fission product yields Vallecitos Nuclear Center

    International Nuclear Information System (INIS)

    This document is the ninth in a series of compilations of fission yield data made at Vallecitos Nuclear Center in which fission yield measurements reported in the open literature and calculated charge distributions have been utilized to produce a recommended set of yields for the known fission products. The original data with reference sources, as well as the recommended yields are presented in tabular form for the fissionable nuclides U-235, Pu-239, Pu-241, and U-233 at thermal neutron energies; for U-235, U-238, Pu-239, and Th-232 at fission spectrum energies; and U-235 and U-238 at 14 MeV. In addition, U-233, U-236, Pu-240, Pu-241, Pu-242, Np-237 at fission spectrum energies; U-233, Pu-239, Th-232 at 14 MeV and Cf-252 spontaneous fission are similarly treated. For 1979 U234F, U237F, Pu249H, U234He, U236He, Pu238F, Am241F, Am243F, Np238F, and Cm242F yields were evaluated. In 1980, Th227T, Th229T, Pa231F, Am241T, Am241H, Am242Mt, Cm245T, Cf249T, Cf251T, and Es254T are also evaluated

  1. Relative fission product yield determination in the USGS TRIGA Mark I reactor

    Science.gov (United States)

    Koehl, Michael A.

    Fission product yield data sets are one of the most important and fundamental compilations of basic information in the nuclear industry. This data has a wide range of applications which include nuclear fuel burnup and nonproliferation safeguards. Relative fission yields constitute a major fraction of the reported yield data and reduce the number of required absolute measurements. Radiochemical separations of fission products reduce interferences, facilitate the measurement of low level radionuclides, and are instrumental in the analysis of low-yielding symmetrical fission products. It is especially useful in the measurement of the valley nuclides and those on the extreme wings of the mass yield curve, including lanthanides, where absolute yields have high errors. This overall project was conducted in three stages: characterization of the neutron flux in irradiation positions within the U.S. Geological Survey TRIGA Mark I Reactor (GSTR), determining the mass attenuation coefficients of precipitates used in radiochemical separations, and measuring the relative fission products in the GSTR. Using the Westcott convention, the Westcott flux, modified spectral index, neutron temperature, and gold-based cadmium ratios were determined for various sampling positions in the USGS TRIGA Mark I reactor. The differential neutron energy spectrum measurement was obtained using the computer iterative code SAND-II-SNL. The mass attenuation coefficients for molecular precipitates were determined through experiment and compared to results using the EGS5 Monte Carlo computer code. Difficulties associated with sufficient production of fission product isotopes in research reactors limits the ability to complete a direct, experimental assessment of mass attenuation coefficients for these isotopes. Experimental attenuation coefficients of radioisotopes produced through neutron activation agree well with the EGS5 calculated results. This suggests mass attenuation coefficients of molecular

  2. Evaluation and compilation of fission product yields 1993

    International Nuclear Information System (INIS)

    This document is the latest in a series of compilations of fission yield data. Fission yield measurements reported in the open literature and calculated charge distributions have been used to produce a recommended set of yields for the fission products. The original data with reference sources, and the recommended yields axe presented in tabular form. These include many nuclides which fission by neutrons at several energies. These energies include thermal energies (T), fission spectrum energies (F), 14 meV High Energy (H or HE), and spontaneous fission (S), in six sets of ten each. Set A includes U235T, U235F, U235HE, U238F, U238HE, Pu239T, Pu239F, Pu241T, U233T, Th232F. Set B includes U233F, U233HE, U236F, Pu239H, Pu240F, Pu241F, Pu242F, Th232H, Np237F, Cf252S. Set C includes U234F, U237F, Pu240H, U234HE, U236HE, Pu238F, Am241F, Am243F, Np238F, Cm242F. Set D includes Th227T, Th229T, Pa231F, Am241T, Am241H, Am242MT, Cm245T, Cf249T, Cf251T, Es254T. Set E includes Cf250S, Cm244S, Cm248S, Es253S, Fm254S, Fm255T, Fm256S, Np237H, U232T, U238S. Set F includes Cm243T, Cm246S, Cm243F, Cm244F, Cm246F, Cm248F, Pu242H, Np237T, Pu240T, and Pu242T to complete fission product yield evaluations for 60 fissioning systems in all. This report also serves as the primary documentation for the second evaluation of yields in ENDF/B-VI released in 1993

  3. Evaluation and compilation of fission product yields 1993

    Energy Technology Data Exchange (ETDEWEB)

    England, T.R.; Rider, B.F.

    1995-12-31

    This document is the latest in a series of compilations of fission yield data. Fission yield measurements reported in the open literature and calculated charge distributions have been used to produce a recommended set of yields for the fission products. The original data with reference sources, and the recommended yields axe presented in tabular form. These include many nuclides which fission by neutrons at several energies. These energies include thermal energies (T), fission spectrum energies (F), 14 meV High Energy (H or HE), and spontaneous fission (S), in six sets of ten each. Set A includes U235T, U235F, U235HE, U238F, U238HE, Pu239T, Pu239F, Pu241T, U233T, Th232F. Set B includes U233F, U233HE, U236F, Pu239H, Pu240F, Pu241F, Pu242F, Th232H, Np237F, Cf252S. Set C includes U234F, U237F, Pu240H, U234HE, U236HE, Pu238F, Am241F, Am243F, Np238F, Cm242F. Set D includes Th227T, Th229T, Pa231F, Am241T, Am241H, Am242MT, Cm245T, Cf249T, Cf251T, Es254T. Set E includes Cf250S, Cm244S, Cm248S, Es253S, Fm254S, Fm255T, Fm256S, Np237H, U232T, U238S. Set F includes Cm243T, Cm246S, Cm243F, Cm244F, Cm246F, Cm248F, Pu242H, Np237T, Pu240T, and Pu242T to complete fission product yield evaluations for 60 fissioning systems in all. This report also serves as the primary documentation for the second evaluation of yields in ENDF/B-VI released in 1993.

  4. Dual-fission chamber and neutron beam characterization for fission product yield measurements using monoenergetic neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Bhatia, C.; Fallin, B. [Department of Physics, Duke University, Durham, NC 27708 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Gooden, M.E., E-mail: megooden@tunl.duke.edu [Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Department of Physics, North Carolina State University, Raleigh, NC 27605 (United States); Howell, C.R. [Department of Physics, Duke University, Durham, NC 27708 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Kelley, J.H. [Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Department of Physics, North Carolina State University, Raleigh, NC 27605 (United States); Tornow, W. [Department of Physics, Duke University, Durham, NC 27708 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Arnold, C.W.; Bond, E.M.; Bredeweg, T.A.; Fowler, M.M.; Moody, W.A.; Rundberg, R.S.; Rusev, G.; Vieira, D.J.; Wilhelmy, J.B. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Becker, J.A.; Macri, R.; Ryan, C.; Sheets, S.A.; Stoyer, M.A. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); and others

    2014-09-01

    A program has been initiated to measure the energy dependence of selected high-yield fission products used in the analysis of nuclear test data. We present out initial work of neutron activation using a dual-fission chamber with quasi-monoenergetic neutrons and gamma-counting method. Quasi-monoenergetic neutrons of energies from 0.5 to 15 MeV using the TUNL 10 MV FM tandem to provide high-precision and self-consistent measurements of fission product yields (FPY). The final FPY results will be coupled with theoretical analysis to provide a more fundamental understanding of the fission process. To accomplish this goal, we have developed and tested a set of dual-fission ionization chambers to provide an accurate determination of the number of fissions occurring in a thick target located in the middle plane of the chamber assembly. Details of the fission chamber and its performance are presented along with neutron beam production and characterization. Also presented are studies on the background issues associated with room-return and off-energy neutron production. We show that the off-energy neutron contribution can be significant, but correctable, while room-return neutron background levels contribute less than <1% to the fission signal.

  5. Microscopic description of Cf-252 cold fission yields

    OpenAIRE

    Mirea, M.; Delion, D. S.; Sandulescu, A.

    2009-01-01

    We investigate the cold fission of 252Cf within the two center shell model to compute the potential energy surface. The fission yields are estimated by using the semiclassical penetration approach. It turns out that the inner cold valley of the total potential energy is strongly connected with Z=50 magic number. The agreement with experimental values is very much improved only by considering mass and charge asymmetry degrees of freedom. Thus, indeed cold fission of 252Cf is a Sn-like radioact...

  6. Development of JENDL Decay and Fission Yield Data Libraries

    Science.gov (United States)

    Katakura, J.

    2014-04-01

    Decay and fission yield data of fission products have been developed for decay heat calculations to constitute one of the special purpose files of JENDL (Japanese Nuclear Data Library). The decay data in the previous JENDL decay data file have been updated based on the data extracted from ENSDF (Evaluated Nuclear Structure Data File) and those by Total Absorption Gamma-ray Spectroscopy (TAGS) measurements reported recently. Fission yield data have also been updated in order to maintain consistency between the decay and yield data files. Decay heat calculations were performed using the updated decay and yield data, and the results were compared with measured decay heat data to demonstrate their applicability. The uncertainties of the calculated results were obtained by sensitivity analyses. The resulting JENDL calculations and their uncertainty were compared with those from the ENDF and JEFF evaluated files.

  7. On the absolute value of the air-fluorescence yield

    OpenAIRE

    Rosado Vélez, Jaime; Blanco Ramos, Francisco; Arqueros Martínez, Fernando

    2014-01-01

    The absolute value of the air-fluorescence yield is a key parameter for the energy reconstruction of extensive air showers registered by fluorescence telescopes. In previous publications, we reported a detailed Monte Carlo simulation of the air-fluorescence generation that allowed the theoretical evaluation of this parameter. This simulation has been upgraded in the present work. As a result, we determined an updated absolute value of the fluorescence yield of 7.9 +/- 2.0 ph/MeV for the band ...

  8. A Covariance Generation Methodology for Fission Product Yields

    Directory of Open Access Journals (Sweden)

    Terranova N.

    2016-01-01

    Full Text Available Recent safety and economical concerns for modern nuclear reactor applications have fed an outstanding interest in basic nuclear data evaluation improvement and completion. It has been immediately clear that the accuracy of our predictive simulation models was strongly affected by our knowledge on input data. Therefore strong efforts have been made to improve nuclear data and to generate complete and reliable uncertainty information able to yield proper uncertainty propagation on integral reactor parameters. Since in modern nuclear data banks (such as JEFF-3.1.1 and ENDF/BVII.1 no correlations for fission yields are given, in the present work we propose a covariance generation methodology for fission product yields. The main goal is to reproduce the existing European library and to add covariance information to allow proper uncertainty propagation in depletion and decay heat calculations. To do so, we adopted the Generalized Least Square Method (GLSM implemented in CONRAD (COde for Nuclear Reaction Analysis and Data assimilation, developed at CEA-Cadarache. Theoretical values employed in the Bayesian parameter adjustment are delivered thanks to a convolution of different models, representing several quantities in fission yield calculations: the Brosa fission modes for pre-neutron mass distribution, a simplified Gaussian model for prompt neutron emission probability, theWahl systematics for charge distribution and the Madland-England model for the isomeric ratio. Some results will be presented for the thermal fission of U-235, Pu-239 and Pu-241.

  9. A Covariance Generation Methodology for Fission Product Yields

    Science.gov (United States)

    Terranova, N.; Serot, O.; Archier, P.; Vallet, V.; De Saint Jean, C.; Sumini, M.

    2016-03-01

    Recent safety and economical concerns for modern nuclear reactor applications have fed an outstanding interest in basic nuclear data evaluation improvement and completion. It has been immediately clear that the accuracy of our predictive simulation models was strongly affected by our knowledge on input data. Therefore strong efforts have been made to improve nuclear data and to generate complete and reliable uncertainty information able to yield proper uncertainty propagation on integral reactor parameters. Since in modern nuclear data banks (such as JEFF-3.1.1 and ENDF/BVII.1) no correlations for fission yields are given, in the present work we propose a covariance generation methodology for fission product yields. The main goal is to reproduce the existing European library and to add covariance information to allow proper uncertainty propagation in depletion and decay heat calculations. To do so, we adopted the Generalized Least Square Method (GLSM) implemented in CONRAD (COde for Nuclear Reaction Analysis and Data assimilation), developed at CEA-Cadarache. Theoretical values employed in the Bayesian parameter adjustment are delivered thanks to a convolution of different models, representing several quantities in fission yield calculations: the Brosa fission modes for pre-neutron mass distribution, a simplified Gaussian model for prompt neutron emission probability, theWahl systematics for charge distribution and the Madland-England model for the isomeric ratio. Some results will be presented for the thermal fission of U-235, Pu-239 and Pu-241.

  10. Measurement of the fission yields of selected prompt and decay fission

    Energy Technology Data Exchange (ETDEWEB)

    E.L. Reber; R.J. Gehrke; R. Aryaeinejad; J.K. Hartwell

    2005-03-01

    Gamma-ray spectrometry measurements have been made of the fission yields of selected ?-rays emitted by the spontaneously fissioning isotopes 252Cf and 244Cm. The measured ?-rays were selected based on their relative abundance in the spectrum and their freedom from interference or, in a few instances, ease of interference correction. From these data and the cumulative and independent yield data of ENGLAND and RIDER, those ?-rays that are primarily produced by radioactive decay, as opposed to direct yield, were converted into the decays per spontaneous fission expressed in percent and compared to cumulative yield values of ENGLAND and RIDER. For those ?-rays whose production is dominated by direct (independent) yield, the ratio of ?-rays per spontaneous fission is reported. The ?-ray yield can be compared to the independent yield values of ENGLAND and RIDER when 100% of the direct feeding passes through the ?-ray. In those cases where both cumulative and independent yields contribute to the observed ?-ray emission rate, a direct comparison is not possible but a method to quantify the contribution from each is proposed.

  11. Comparison of Fission Product Yields and Their Impact

    Energy Technology Data Exchange (ETDEWEB)

    S. Harrison

    2006-02-01

    This memorandum describes the Naval Reactors Prime Contractor Team (NRPCT) Space Nuclear Power Program (SNPP) interest in determining the expected fission product yields from a Prometheus-type reactor and assessing the impact of these species on materials found in the fuel element and balance of plant. Theoretical yield calculations using ORIGEN-S and RACER computer models are included in graphical and tabular form in Attachment, with focus on the desired fast neutron spectrum data. The known fission product interaction concerns are the corrosive attack of iron- and nickel-based alloys by volatile fission products, such as cesium, tellurium, and iodine, and the radiological transmutation of krypton-85 in the coolant to rubidium-85, a potentially corrosive agent to the coolant system metal piping.

  12. Fission fragment formation and fission yields in the model of octupole neutron-proton oscillations

    Directory of Open Access Journals (Sweden)

    Yavshits S.

    2010-03-01

    Full Text Available The fission fragment formation is considered as a result of neck instability in the process of octupole oscillations of neutrons and protons near the scission point. To describe such a phenomenon the potential surface of fissionning nucleus with neck radius about 1 fm was calculated with shell correction approach. The new version of smooth liquid drop part of deformation energy is proposed. The liquid drop part is formulated in a double folding model with n-n, p-p, and n-p Yukawa interaction potential. Fission fragment mass and charge distributions correspond approximately to isoscalar and isovector modes of vibrations and are defined by wave functions of oscillations. The preliminary calculation results have shown a rather good description of main integral fission yield observables.

  13. The SOFIA experiment: Measurement of 236U fission fragment yields in inverse kinematics

    Directory of Open Access Journals (Sweden)

    Grente L.

    2016-01-01

    Full Text Available The SOFIA (Studies On FIssion with Aladin experiment aims at measuring fission-fragments isotopic yields with high accuracy using inverse kinematics at relativistic energies. This experimental technique allows to fully identify the fission fragments in nuclear charge and mass number, thus providing very accurate isotopic yields for low energy fission of a large variety of fissioning systems. This report focuses on the latest results obtained with this set-up concerning electromagnetic-induced fission of 236U.

  14. On the absolute value of the air-fluorescence yield

    CERN Document Server

    Rosado, J; Arqueros, F

    2014-01-01

    The absolute value of the air-fluorescence yield is a key parameter for the energy reconstruction of extensive air showers registered by fluorescence telescopes. In previous publications, we reported a detailed Monte Carlo simulation of the air-fluorescence generation that allowed the theoretical evaluation of this parameter. This simulation has been upgraded in the present work. As a result, we determined an updated absolute value of the fluorescence yield of 7.9+-2.0 ph/MeV for the band at 337 nm in dry air at 800 hPa and 293 K, in agreement with experimental values. We have also performed a critical analysis of available absolute measurements of the fluorescence yield with the assistance of our simulation. Corrections have been applied to some measurements to account for a bias in the evaluation of the energy deposition. Possible effects of other experimental aspects have also been discussed. From this analysis, we determined an average fluorescence yield of 7.04+-0.24 ph/MeV at the above conditions.

  15. Absolute fission rate measurement of 238U induced by 14 MeV neutrons penetrated composite material

    International Nuclear Information System (INIS)

    In order to prove the model calculation method and parameter, the 238U absolute fission rate in the case of 14 MeV neutrons penetrating through the special composite material was measured by minitype slab uranium fission chambers. The measuring spots are distributed in the surface of iron ball hull along the different position of equator. The calculated results are compared with the experiment results. The total error of measured 238U absolute fission rate is 6.1%. (author)

  16. The Oklo natural reactor: Cumulative fission yields and retentivity of the symmetric mass region fission products

    Science.gov (United States)

    De Laeter, J. R.; Rosman, K. J. R.; Smith, C. L.

    1980-10-01

    Solid source mass spectrometry has been used to determine the relative cumulative fission yields of five elements in three samples of uranium ore from reactor zones in the Oklo mine site. Eighteen fission chains covering the mass range from 105 ≤ A ≤ 130 have been measured for Pd, Ag, Cd, Sn and Te. These measurements have enabled a number of nuclear parameters to be calculated including the relative proportions of 235U, 238U and 239Pu involved in the fission process. The concentration of the five elements in the Oklo samples have also been measured using the stable isotope dilution technique. These values have then been compared to the estimates of the amount of these elements produced by fission under the conditions that are appropriate to the three samples. This procedure enables the retentivity of the elements in the reactor zones to be evaluated. Our work confirms the fact that Pd and Te are retained almost in their entirety in the samples, whereas the other three elements have been partially lost from the reactor site. Almost all the Cd fission products have been lost, and more than 50% of the Ag and Sn fission-produced material has been removed.

  17. SOFIA, a Next-Generation Facility for Fission Yields Measurements and Fission Study. First Results and Perspectives

    Science.gov (United States)

    Audouin, L.; Pellereau, E.; Taieb, J.; Boutoux, G.; Béliera, G.; Chatillon, A.; Ebran, A.; Gorbinet, T.; Laurent, B.; Martin, J.-F.; Tassan-Got, L.; Jurado, B.; Alvarez-Pol, H.; Ayyad, Y.; Benlliure, J.; Caamano, M.; Cortina-Gil, D.; Fernandez-Dominguez, B.; Paradela, C.; Rodriguez-Sanchez, J.-L.; Vargas, J.; Casarejos, E.; Heinz, A.; Kelic-Heil, A.; Kurz, N.; Nociforo, C.; Pietri, S.; Prochazka, A.; Rossi, D.; Schmidt, K.-H.; Simon, H.; Voss, B.; Weick, H.; Winfield, J. S.

    2015-10-01

    Fission fragments play an important role in nuclear reactors evolution and safety. However, fragments yields are poorly known : data are essentially limited to mass yields from thermal neutron-induced fissions on a very few nuclei. SOFIA (Study On FIssion with Aladin) is an innovative experimental program on nuclear fission carried out at the GSI facility, which aims at providing isotopic yields on a broad range of fissioning systems. Relativistic secondary beams of actinides and pre-actinides are selected by the Fragment Separator (FRS) and their fission is triggered by electromagnetic interaction. The resulting excitation energy is comparable to the result of an interaction with a low-energy neutron, thus leading to useful data for reactor simulations. For the first time ever, both fission fragments are completely identified in charge and mass in a new recoil spectrometer, allowing for precise yields measurements. The yield of prompt neutrons can then be deduced, and the fission mechanism can be ascribed, providing new constraints for fission models. During the first experiment, all the technical challenges were matched : we have thus set new experimental standards in the measurements of relativistic heavy ions (time of flight, position, energy loss).This communication presents a first series of results obtained on the fission of 238U; many other fissioning systems have also been measured and are being analyzed presently. A second SOFIA experiment is planned in September 2014, and will be focused on the measurement of the fission of 236U, the analog of 235U+n.

  18. Microscopic description of Cf-252 cold fission yields

    CERN Document Server

    Mirea, M; Sandulescu, A

    2009-01-01

    We investigate the cold fission of 252Cf within the two center shell model to compute the potential energy surface. The fission yields are estimated by using the semiclassical penetration approach. It turns out that the inner cold valley of the total potential energy is strongly connected with Z=50 magic number. The agreement with experimental values is very much improved only by considering mass and charge asymmetry degrees of freedom. Thus, indeed cold fission of 252Cf is a Sn-like radioactivity, related the other two "magic radioactivities", namely alpha-decay and heavy-cluster decay, called also Pb-like radioactivity. This calculation provides the necessary theoretical confidence to estimate the penetration cross section in producing superheavy nuclei, by using the inverse fusion process.

  19. Modification of apparent fission yields by Chemical Fractionation following Fission (CFF)

    Science.gov (United States)

    Hohenberg, Charles; Meshik, Alex

    2008-04-01

    Grain-by-grain studies of the 2 billion year old Oklo natural reactor, using laser micro-extraction^1,2, yield detailed information about Oklo, a water-moderated pulsed reactor, cycle times, total neutron fluence and duration, but it also demonstrates Chemical Fractionation following Fission. In the CFF process, members of an isobaric yield chain with long half-lives are subject to migration before decay can occur. Of particular interest is the 129 isobar where 17 million ^129I can migrate out of the host grain before decay, and iodine compounds are water soluble. This is amply demonstated by the variation of Xe spectra between micron-sized uranium-bearing minerals and adjacent uranium-free minerals. Fission 129 yields for the spontaneous fission of ^238U generally come from measured ^129Xe in pitchblend^2, ores emplaced by aqueous activity, and are incorrect due to the CFF process. ^238U yields for the 131 and 129 chains, reported in Hyde^3, as 0.455 +- .02 and < 0.012, respectively, the latter being anomalously low. ^1A Meshik, C Hohenberg and O Pravdivtesva, PRL 93, 182302 (2004); A Meshik Sci. Am. Nov (2005), 55; ^2E K Hyde, Nucl Prop of Heavy Elements III (1964).

  20. NEANDC specialists meeting on yields and decay data of fission product nuclides

    International Nuclear Information System (INIS)

    Separate abstracts were prepared for the 29 papers presented. Workshop reports on decay heat, fission yields, beta- and gamma-ray spectroscopy, and delayed neutrons are included. An appendix contains a survey of the most recent compilations and evaluations containing fission product yield, fission product decay data, and delayed neutron yield information

  1. NEANDC specialists meeting on yields and decay data of fission product nuclides

    Energy Technology Data Exchange (ETDEWEB)

    Chrien, R.E.; Burrows, T.W. (eds.)

    1983-01-01

    Separate abstracts were prepared for the 29 papers presented. Workshop reports on decay heat, fission yields, beta- and gamma-ray spectroscopy, and delayed neutrons are included. An appendix contains a survey of the most recent compilations and evaluations containing fission product yield, fission product decay data, and delayed neutron yield information. (WHK)

  2. Absolute Energy Calibration of Solid-State Detectors for Fission Fragments and Heavy Ions

    International Nuclear Information System (INIS)

    Detailed measurements of the pulse-height response of silicon solid-state detectors to energetic heavy ions and fission fragments have been made. These studies have now led to a reliable method of absolute energy calibration of solid-state detectors for fission fragments, as well as to a better understanding of the somewhat peculiar response characteristics of the detectors to fission fragments and heavy ions. The use of silicon solid-state detectors in fragment kinetic energy measurements in recent years has been widespread; at the same time, questions have been raised about the detailed interpretation of such measurements because of the increasing evidence for anomalous behaviour in charge production, charge collection and charge multiplication in the case of densely ionizing particles. The present report discusses systematics and possible origins of these effects. Application of the absolute energy calibration method, which takes into account the mass and energy dependence of the response, is based simply on a Cf252 or U235 fragment pulse- height spectrum. Our studies were carried out with mono-energetic Br71, Br81 and I127 ions of energies from 30 to 120 MeV, and with fission fragments from spontaneous fission of Cf252 and neutron-induced fission of U235 and Pu239. It is shown that for a given fragment mass, over a wide energy range, the fragment energy versus pulse-height relationship is of the form E = ax + b, where E is the fragment energy and x is the measured pulse height. A dependence of pulse height on fragment mass has also been established, which leads to an energy versus pulse-height relationship, for the range of fission-fragment masses and energies, of the form E = (a + a'm)x + b + b'M, where M is the fragment mass. The effect of detector window and of detector type, resistivity and electric field have been studied. Guides to the selection of detectors and to their use with fission fragments are given. The effect of the more exact calibration

  3. Evaluation of independent and cumulative fission product yields with gamma spectrometry

    International Nuclear Information System (INIS)

    Fission product yields are critical data for a variety of nuclear science and engineering applications; however, independent yields have not been extensively measured to date. We have previously documented a methodology to measure the cumulative and independent fission product yields using gamma spectrometry and nuclide buildup and decay modeling, and numerical optimization. We have produced fission products by bombarding 235U with 14.1 MeV neutrons and made measurements of fission product yields. In this paper, we summarize our approach, describe initial experiments, and present preliminary results where we have determined nine fission product yields for long-lived nuclides. (author)

  4. UKFY2: The UK fission product yield library version 2, 1991

    International Nuclear Information System (INIS)

    The UKFY2 Fission Product Yields Library contains 7 files with fission yield information in different formats and references, as received at the IAEA Nuclear Data Section in February 1991. File 2 contains the complete set of adjusted independent and cumulative yields in ENDF-6 format as adopted for the JEF-2 fission product yield file. It contains yields for 21 different fissioning nuclides. Many more chain yield and fractional yield sets are given in tabular form in other files of this library. The data are available costfree on magnetic tape from the IAEA Nuclear Data Section. (author)

  5. Fission yield calculation using toy model based on Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Jubaidah, E-mail: jubaidah@student.itb.ac.id [Nuclear Physics and Biophysics Division, Department of Physics, Bandung Institute of Technology. Jl. Ganesa No. 10 Bandung – West Java, Indonesia 40132 (Indonesia); Physics Department, Faculty of Mathematics and Natural Science – State University of Medan. Jl. Willem Iskandar Pasar V Medan Estate – North Sumatera, Indonesia 20221 (Indonesia); Kurniadi, Rizal, E-mail: rijalk@fi.itb.ac.id [Nuclear Physics and Biophysics Division, Department of Physics, Bandung Institute of Technology. Jl. Ganesa No. 10 Bandung – West Java, Indonesia 40132 (Indonesia)

    2015-09-30

    Toy model is a new approximation in predicting fission yield distribution. Toy model assumes nucleus as an elastic toy consist of marbles. The number of marbles represents the number of nucleons, A. This toy nucleus is able to imitate the real nucleus properties. In this research, the toy nucleons are only influenced by central force. A heavy toy nucleus induced by a toy nucleon will be split into two fragments. These two fission fragments are called fission yield. In this research, energy entanglement is neglected. Fission process in toy model is illustrated by two Gaussian curves intersecting each other. There are five Gaussian parameters used in this research. They are scission point of the two curves (R{sub c}), mean of left curve (μ{sub L}) and mean of right curve (μ{sub R}), deviation of left curve (σ{sub L}) and deviation of right curve (σ{sub R}). The fission yields distribution is analyses based on Monte Carlo simulation. The result shows that variation in σ or µ can significanly move the average frequency of asymmetry fission yields. This also varies the range of fission yields distribution probability. In addition, variation in iteration coefficient only change the frequency of fission yields. Monte Carlo simulation for fission yield calculation using toy model successfully indicates the same tendency with experiment results, where average of light fission yield is in the range of 90fission yield is in about 135

  6. Fission yield calculation using toy model based on Monte Carlo simulation

    International Nuclear Information System (INIS)

    Toy model is a new approximation in predicting fission yield distribution. Toy model assumes nucleus as an elastic toy consist of marbles. The number of marbles represents the number of nucleons, A. This toy nucleus is able to imitate the real nucleus properties. In this research, the toy nucleons are only influenced by central force. A heavy toy nucleus induced by a toy nucleon will be split into two fragments. These two fission fragments are called fission yield. In this research, energy entanglement is neglected. Fission process in toy model is illustrated by two Gaussian curves intersecting each other. There are five Gaussian parameters used in this research. They are scission point of the two curves (Rc), mean of left curve (μL) and mean of right curve (μR), deviation of left curve (σL) and deviation of right curve (σR). The fission yields distribution is analyses based on Monte Carlo simulation. The result shows that variation in σ or µ can significanly move the average frequency of asymmetry fission yields. This also varies the range of fission yields distribution probability. In addition, variation in iteration coefficient only change the frequency of fission yields. Monte Carlo simulation for fission yield calculation using toy model successfully indicates the same tendency with experiment results, where average of light fission yield is in the range of 90fission yield is in about 135

  7. Final report on ARPA fission yield project work at Battelle-Northwest, April 1970--April 1973

    International Nuclear Information System (INIS)

    The overall objective has been to measure the independent and cumulative fission yields of selected halogen and rare gas nuclides for application to characterization of underground nuclear detonations. The studies have included fission yield measurements for thermal, fission spectrum, and 15 MeV neutron-induced fission events. Target materials included 235U, 238U and 239Pu. The research effort was divided into two basic parts. In one part, the nuclides of interest were separated radiochemically and determined by gamma-ray spectrometry. This approach provides information on the independent and cumulative yields of nuclides with half-lives of a few seconds or greater. The second part of our effort involved the use of on-line mass separation techniques. This approach yields information on independent fission yields of nuclides with half-lives ranging down to fractions of a second and provides data on all significant isotopes of a given fission product element in one set of measurements. The main effort in the radiochemistry program was centered on measurements of the cumulative fission yield of 89Kr. Cumulative fission yields of 89Kr were measured for thermal-neutron fission of 239Pu and for fission-spectrum and 15-MeV neutron fission of 235U, 238U and 239Pu. In addition, cumulative fission yields of the other rare gas radionuclides, /sup 85m/Kr, 87Kr, 88Kr, 137Xe, 138Xe, were measured for the same fission type events. Fractional independent yields of 89Rb and 138Cs were also measured for a limited number of fission systems. On-line mass spectrometer facilities were established at a Van de Graaff accelerator and at a nuclear reactor. Measurements were made of relative independent fission yields of rubidium isotopes of masses 89 through 97 and of cesium isotopes of masses 139 through 145.(U.S.)

  8. Comparison of available measurements of the absolute fluorescence yield

    CERN Document Server

    Rosado, J; Arqueros, F

    2010-01-01

    The uncertainty in the absolute value of the fluorescence yield is still one of the main contributions to the total error in the reconstruction of the primary energy of ultra-energetic air showers using the fluorescence technique. A significant number of experimental values of the fluorescence yield have been published in the last years, however reported results are given very often in different units (photons/MeV or photons/m) and for different wavelength intervals. In this work we present a comparison of available results normalized to its value in photons/MeV for the 337 nm band at 800 hPa and 293 K. Possible sources of systematic errors on these measurements are discussed. In particular, the conversion of photons/m to photons/MeV requires an accurate determination of the energy deposited by the electrons in the field of view of the experimental setup. We have calculated the energy deposition for each experiment by means of a detailed Monte Carlo simulation including when possible the geometrical details o...

  9. Testing actinide fission yield treatment in CINDER90 for use in MCNP6 burnup calculations

    International Nuclear Information System (INIS)

    Most of the development of the MCNPX/6 burnup capability focused on features that were applied to the Boltzman transport or used to prepare coefficients for use in CINDER90, with little change to CINDER90 or the CINDER90 data. Though a scheme exists for best solving the coupled Boltzman and Bateman equations, the most significant approximation is that the employed nuclear data are correct and complete. Thus, the CINDER90 library file contains 60 different actinide fission yields encompassing 36 fissionable actinides (thermal, fast, high energy and spontaneous fission). Fission reaction data exists for more than 60 actinides and as a result, fission yield data must be approximated for actinides that do not possess fission yield information. Several types of approximations are used for estimating fission yields for actinides which do not possess explicit fission yield data. The objective of this study is to test whether or not certain approximations of fission yield selection have any impact on predictability of major actinides and fission products. Further we assess which other fission products, available in MCNP6 Tier 3, result in the largest difference in production. Because the CINDER90 library file is in ASCII format and therefore easily amendable, we assess reasons for choosing, as well as compare actinide and major fission product prediction for the H. B. Robinson benchmark for, three separate fission yield selection methods: (1) the current CINDER90 library file method (Base); (2) the element method (Element); and (3) the isobar method (Isobar). Results show that the three methods tested result in similar prediction of major actinides, Tc-99 and Cs-137; however, certain fission products resulted in significantly different production depending on the method of choice

  10. Energy Dependence of Neutron-Induced Fission Product Yields of 235U, 238U and 239Pu Between 0.5 and 14.8 MeV

    Science.gov (United States)

    Gooden, Matthew; Tornow, Werner; Tonchev, Anton; Vieira, Dave; Wilhelmy, Jerry; Arnold, Charles; Fowler, Malcolm; Stoyer, Mark

    2014-09-01

    Under a joint collaboration between TUNL-LANL-LLNL, a set of absolute fission product yield measurements have been performed. The energy dependence of a number of cumulative fission products between 0.5 and 14.8 MeV have been measured using quasi-monoenergetic neutron beams for three actinide targets, 235U, 238U and 239Pu, between 0.5 and 14.8 MeV. The FPYs were measured by a combination of activation utilizing specially designed dual-fission chambers and γ-ray counting. The dual-fission chambers are back-to-back ionization chambers encasing a target with thin deposits of the same target isotope in each chamber. This method allows for the direct measurement of the fission rate in the activation target with no reference to the fission cross-section, reducing uncertainties. γ-ray counting was performed on well-shield HPGe detectors over a period of 2 months per activation to properly identify fission products. Reported are absolute cumulative fission product yields for incident neutron energies of 0.5, 1.37, 2.4, 4.6 and 14.8 MeV.

  11. Measurement of fission products yields in the quasi-mono-energetic neutron-induced fission of 232Th

    Science.gov (United States)

    Naik, H.; Mukherji, Sadhana; Suryanarayana, S. V.; Jagadeesan, K. C.; Thakare, S. V.; Sharma, S. C.

    2016-08-01

    The cumulative yields of various fission products in the 232Th(n, f) reaction at average neutron energies of 5.42, 7.75, 9.35 and 12.53 MeV have been determined by using an off-line γ-ray spectrometric technique. The neutron beam was produced from the 7Li(p, n) reaction by using the proton energies of 7.8, 12, 16 and 20 MeV. The mass chain yields were obtained from the cumulative fission yields by using the charge distribution correction of medium energy fission. The fine structure in the mass yield distribution was interpreted from the point of nuclear structure effect. On the other hand, the higher yield around mass number 133-134 and 143-144 as well as their complementary products were explained based on the standard I and standard II asymmetric mode of fission. From the mass yield data, the average value of light mass (), heavy mass (), the average number of neutrons () and the peak-to-valley (P / V) ratios at different neutron energies of present work and literature data were obtained in the 232Th(n, f) reaction. The different parameters of the mass yield distribution in the 232Th(n, f) reaction were compared with the similar data in the 232Th(γ, f) reaction at comparable excitation energy and a surprising difference was observed.

  12. Role of energy cost in the yield of cold ternary fission of 252Cf

    Indian Academy of Sciences (India)

    P V Kunhikrishnan; K P Santhosh

    2013-01-01

    The energy costs in the cold ternary fission of 252Cf for various light charged particle emission are calculated by includingWong's correction for Coulomb potential. Energy cost is found to be higher in cold fission than in normal fission. It is found that energy cost always increases with decrease in experimental yield in all the light charged particle emissions. The higher ground state deformation of the fragments, the odd–even effect and the enhanced yield in the octupole region observed in cold fission are found to be consistent with the concept of energy cost.

  13. Assessment of fission product yields data needs in nuclear reactor applications

    International Nuclear Information System (INIS)

    Studies on the build-up of fission products in fast reactors have been performed, with particular emphasis on the effects related to the physics of the nuclear fission process. Fission product yields, which are required for burn-up calculations, depend on the proton and neutron number of the target nucleus as well as on the incident neutron energy. Evaluated nuclear data on fission product yields are available for all relevant target nuclides in reactor applications. However, the description of their energy dependence in evaluated data is still rather rudimentary, which is due to the lack of experimental fast fission data and reliable physical models. Additionally, physics studies of evaluated JEFF-3.1.1 fission yields data have shown potential improvements, especially for various fast fission data sets of this evaluation. In recent years, important progress in the understanding of the fission process has been made, and advanced model codes are currently being developed. This paper deals with the semi-empirical approach to the description of the fission process, which is used in the GEF code being developed by K.-H. Schmidt and B. Jurado on behalf of the OECD Nuclear Energy Agency, and with results from the corresponding author's diploma thesis. An extended version of the GEF code, supporting the calculation of spectrum weighted fission product yields, has been developed. It has been applied to the calculation of fission product yields in the fission rate spectra of a MOX fuelled sodium-cooled fast reactor. Important results are compared to JEFF-3.1.1 data and discussed in this paper. (authors)

  14. Absolute Fluorescence Spectrum and Yield Measurements for a wide range of experimental conditions

    OpenAIRE

    Monnier Ragaigne, D.; Gorodetzky, P.; Moretto, C; Blaksley, C.; Dagoret-Campagne, D.; Gonnin, A.; Miyamoto, H.; Monard, H.; Wicek, F.

    2013-01-01

    For the JEM-EUSO Collaboration The fluorescence yield is a key ingredient in cosmic ray energy determination. It is sensitive to pressure, temperature and humidity. Up to now the fluorescence yield of the brightest line at 337 nm has been measured in an absolute way in one set of conditions, whereas fluorescence yields at the other wavelengths have been relatively measured for different conditions. Thus, absolute calibration for all the lines is unclear. We will do all measurements at once...

  15. Independent isotopic yields in 25 MeV and 50 MeV proton-induced fission of {sup nat}U

    Energy Technology Data Exchange (ETDEWEB)

    Penttilae, H.; Gorelov, D.; Elomaa, V.V.; Eronen, T.; Hager, U.; Hakala, J.; Jokinen, A.; Kankainen, A.; Karvonen, P.; Moore, I.D.; Parkkonen, J.; Pohjalainen, I.; Rahaman, S.; Rinta-Antila, S.; Rissanen, J.; Saastamoinen, A.; Simutkin, V.; Sonoda, T.; Weber, C.; Voss, A.; Aeystoe, J. [Department of Physics, University of Jyvaskylae (Finland); Peraejaervi, K. [STUK - Radiation and Nuclear Safety Authority, Helsinki (Finland); Rubchenya, V.A. [Department of Physics, University of Jyvaskylae (Finland); V.G. Khlopin Radium Institute, St. Petersburg (Russian Federation)

    2016-04-15

    Independent isotopic yields for elements from Zn to La in the 25 MeV proton-induced fission of {sup nat}U were determined with the JYFLTRAP facility. In addition, isotopic yields for Zn, Ga, Rb, Sr, Zr, Pd and Xe in the 50 MeV proton-induced fission of {sup nat}U were measured. The deduced isotopic yield distributions are compared with a Rubchenya model, the GEF model with universal parameters and the semi-empirical Wahl model. Of these, the Rubchenya model gives the best overall agreement with the obtained data. Combining the isotopic yield data with mass yield data to obtain the absolute independent yields was attempted. The result depends on the mass yield distribution. (orig.)

  16. The LANL C-NR counting room and fission product yields

    Energy Technology Data Exchange (ETDEWEB)

    Jackman, Kevin Richard [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)

    2015-09-21

    This PowerPoint presentation focused on the following areas: LANL C-NR counting room; Fission product yields; Los Alamos Neutron wheel experiments; Recent experiments ad NCERC; and Post-detonation nuclear forensics

  17. The dependence of cumulative 238U(n,f) fission yield on incident-neutron energy

    Institute of Scientific and Technical Information of China (English)

    ZHENG Na; ZHONG Chunlai; MA Liyong; CHEN Zhongjing; LI Xiangqing; LIU Tingjin; CHEN Jinxiang; FAN Tieshuan

    2009-01-01

    This work is aim at studying the dependence of fission yields on incident neutron energy,so as to produce evaluated yield sets of the energy dependence.Experimental data at different neutron energies for gas fission products 85m,87,88Kr and 138Xe resulting from the 238U(n,f) reaction are processed using codes AVERAGE for weighed average and ZOTT for simultaneous evaluation.Energy dependence of the cumulative fission product yields on the incident neutron is presented.The evaluated curve of product yield is compared with the results calculated by the TALYS-0.64 code.The present evaluation is consistent with other main libraries in error permission.The fit curve of 87,88Kr can be recommended to predict the unmeasured fission yields.Comparisons of the evaluated energy dependence curves with theoretical calculated results show that the predictions using purely theoretical model for the fission process are not sufficiently accurate and reliable for the calculations of the cumulative fission yields for the 238U(n,f).

  18. Determination of Fission Product Yields of 235U, 238U and 239Pu for Neutron Energies from 0.5 to 14.8 MeV

    Science.gov (United States)

    Gooden, Matthew; Arnold, Charles; Becker, John; Bhatia, Chitra; Bhike, Megha; Fowler, Malcolm; Howell, Calvin; Kelley, John; Stoyer, Mark; Tonchev, Anton; Tornow, Werner; Vieira, Dave; Wilhelmy, Jerry

    2014-03-01

    A joint TUNL-LANL-LLNL collaboration has been formed to study the issue of possible energy dependences for certain fission product isotopes. Work has been carried out at the TUNL 10 MV Tandem accelerator which produces nearly mono-energetic neutrons via either 2H(d,n)3He,3H(d,n)4He,or3H(p,n)3He reactions. Three dual fission ionization chambers dedicated to 235U, 238U and 239Pu thick target foils and thin monitor foils respectively, were exposed to the neutron beams. After irradiation, thick target foils were gamma counted over a period of 1-2 months and characteristic gamma rays from fission products were recorded using HPGe detectors at TUNL's low background counting area. Using the dual fission chambers, relative fission product yield were determined at a high precision of 2-3 % as well as absolute fission product yields at a lower precision of 5-6 %. Preliminary results will be presented for a number of fission product isotopes over the incident neutron energy range of 0.5 to 14.8 MeV.

  19. The Criticality Calculation Of Fission Yield Of U-235 Solution And Its Radiation Dose

    International Nuclear Information System (INIS)

    The calculation assesment of fission yield of U-235 solution in the extraction and evaporation units has been performed for the prediction of that when the criticality accident occurs in the production of fuel element for the research reactor. The Grover Tuck and fission distribution probability methods are used in this case. The calculation result using the fission distribution probability methods show the fission of 2,7 x 1018 for the uranium concentration of 200 grams/litre and that of 2,5 x 1018 fissions for U of 40 grams/litre in the extraction unit. The calculation results from the evaporation unit revealed the fission of 3,1 x 1018 for 400 grams/litre uranium and 1,77 x 1018 fissions for 80 grams/litre uranium. Using the Grover Tuck calculation method give results that 8,267 x 1017 fissions and 2,878 x 1017 fissions respectively. Radiation dose of 200 gram/litre solution is about 1450,29 Rad for neutron and 4785,96 Rad for gamma ray

  20. Compilation of data related to fission products. I - Chain total yields

    International Nuclear Information System (INIS)

    As the theoretical study of the formation and evolution of fission products in a pile fuel requires the knowledge of a large number of data (fission product characteristics, parameters related to fission mechanism), and in the frame of such a type a study which aimed at taking, non only fuel irradiation conditions and fuel composition, but also the evolution of these features in time into account, the authors have been leaded to perform a large compilation of data required by the calculation, and also to make a choice among the available data. This volume gathers data related to the total yields of fission product chains. The first part contains chain total yields from different documents. These data deal with various energies and concern the following products: 233U, 235U, 238U, 239Pu, 241Pu. The second part proposes curves which, for 235U and 239Pu, give the total yields as a function of incident neutron energy

  1. Semi-empirical Calculation for Yield of 240Pu Spontaneous Fission

    Institute of Scientific and Technical Information of China (English)

    SHU; Neng-chuan; LIU; Li-le; CHEN; Xiao-song; LIU; Ting-jin; SUN; Zheng-jun; CHEN; Yong-jing; QIAN; Jing

    2012-01-01

    <正>The spontaneous fission yield has important implication in the nuclear engineering. This work used semi-empirical model to calculate its chain yield, the result shows good agreement with the measured data. There are only 3 sets of measured data, and only too gave the chain yields and cumulative yields, covering 17 chains. It is not enough to satisfy the requirement of users. So it is needed to use theoretical model to calculate the chain yield without measured data.

  2. Determination of relative krypton fission product yields from 14 MeV neutron induced fission of 238U at the National Ignition Facility

    Science.gov (United States)

    Edwards, E. R.; Cassata, W. S.; Velsko, C. A.; Yeamans, C. B.; Shaughnessy, D. A.

    2016-11-01

    Precisely-known fission yield distributions are needed to determine a fissioning isotope and the incident neutron energy in nuclear security applications. 14 MeV neutrons from DT fusion at the National Ignition Facility induce fission in depleted uranium contained in the target assembly hohlraum. The fission yields of Kr isotopes (85m, 87, 88, and 89) are measured relative to the cumulative yield of 88Kr and compared to previously tabulated values. The results from this experiment and England and Rider are in agreement, except for the 85mKr/88Kr ratio, which may be the result of incorrect nuclear data.

  3. Isotopic yield distribution of neutron-rich fragment nuclei produced in thermal neutron induced fission

    International Nuclear Information System (INIS)

    Nuclear fission allows us to produce and study the properties of the nuclei with a higher neutron to proton ratio. Spectroscopic studies of such neutron-rich fragment nuclei provide direct information on the nuclear excited states. Such studies help to explore the new regions of nuclear deformations, and to extend the theoretical model(s) to regions which have hitherto been inaccessible. A lot of work has already been done on these set of nuclei by means of spontaneous fission of 252Cf and 248Cm sources, heavy-ion induced fusion-fission reactions, and also using deep-inelastic reactions. More recently, spectroscopic studies were performed using thermal neutron induced fission of 235U using CIRUS reactor facility. Here we report the yield distribution of the isotopes, produced in thermal neutron induced fission of 235U, using prompt γ-γ coincidence measurement technique

  4. Comparison of Yields of neutron rich nuclei in Proton and Photon induced $^{238}$U fission

    CERN Document Server

    Khan, F A; Basu, D N; Farooq, M; Chakrabarti, Alok

    2016-01-01

    A comparative study of fission of actinides specially $^{238}$U, by proton and bremsstrahlung photon is performed. Relative mass distribution of $^{238}$U fission fragments have been explored theoretically for both proton and photon induced fission. The integrated yield along with charge distribution of the products are calculated to find out the neutron richness in comparison to the nuclei produced by r-process in nucleosynthesis. Some r-process nuclei in intermediate mass range for symmetric fission mode are found to be produced almost two order of magnitude more for proton induced fission than photofission, although rest of the neutron rich nuclei in the asymmetric mode are produced in comparable proportion for both the processes.

  5. Absolute measurement of the DT primary neutron yield on the National Ignition Facility

    Directory of Open Access Journals (Sweden)

    Leeper R.J.

    2013-11-01

    Full Text Available The measurement of the absolute neutron yield produced in inertial confinement fusion target experiments conducted on the National Ignition Facility (NIF is essential in benchmarking progress towards the goal of achieving ignition on this facility. This paper describes three independent diagnostic techniques that have been developed to make accurate and precise DT neutron yield measurements on the NIF.

  6. Measurement of the hydrogen yield in the radiolysis of water by dissolved fission products

    International Nuclear Information System (INIS)

    Hydrogen from the radiolysis of water by dissolved fission products is stripped from the solution and collected by bubbling CO2 through the solution. Quantitative measurements of the G value for hydrogen show that the yield is essentially the same as would be obtained by external gamma radiolysis of nonradioactive solutions of the same chemical composition. The hydrogen yield can be enhanced by addition of a hydrogen-atom donor, such as formic acid, to the solution. The yield of hydrogen from fission-waste solutions is discussed with respect to the question of whether it represents a significant energy source

  7. SOFIA: An innovative setup to measure complete isotopic yield of fission fragments

    Directory of Open Access Journals (Sweden)

    Pellereau E.

    2013-12-01

    Full Text Available We performed an experiment dedicated to the accurate isotopic yield measurement of fission fragments over the whole range. SOFIA exploits the inverse kinematics technique: using heavy ion beams at relativistic energies, fission is induced by Coulomb excitation in a high-Z target. The fragments are emitted forward and both of them are identified in charge and mass. The setup will be presented, as well as preliminary spectra.

  8. Yield-Energy Evaluation of 85Kr of 239Pu+n Fission

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>The yields of 85Kr, the important production of the 239Pu fission, were re-evaluated over the incident neutron energy 1-15 MeV, based upon all the experimental data. The yields as function of energ

  9. Optimal version of a detector for relative measuring of fission neutron yield

    International Nuclear Information System (INIS)

    A fission neutron detector ( anti ν-detector), registration efficiency E of which does not depend on neutron energy is discussed. The detector represents a cylindrical moderator (polyethylene) along the axis of which a channel for the fission detector is located. Coaxially with the central channel 3He or BF3 cylindrical counters are located in several raws. The account of neutron energy effect on E is carried out by simultaneous measurement of anti ν and THETA, where anti ν - fission neutron yield, THETA-neutron ''temperature'', connected with the mean energy by the relation anti E=3/2 THETA. The method of simultaneous measurements of anti ν and THETA suggests the pulse coincidence registration from the BF3 or 3H counters with pulses from the fission detector. Ratio of the coincidence numbers is used for determining THETA and the sum for anti ν. As an example presented are the results of measuring the 244Cm fission neutron yield with respect to anti νsub(o) in the case of 252Cf spontaneous fission by means of the detector, containing four raws of counters. The data obtained satisfactorily agree with the data published earlier

  10. Effects of Fission Yield Data in the Calculation of Antineutrino Spectra for ^{235}U(n,fission) at Thermal and Fast Neutron Energies.

    Science.gov (United States)

    Sonzogni, A A; McCutchan, E A; Johnson, T D; Dimitriou, P

    2016-04-01

    Fission yields form an integral part of the prediction of antineutrino spectra generated by nuclear reactors, but little attention has been paid to the quality and reliability of the data used in current calculations. Following a critical review of the thermal and fast ENDF/B-VII.1 ^{235}U fission yields, deficiencies are identified and improved yields are obtained, based on corrections of erroneous yields, consistency between decay and fission yield data, and updated isomeric ratios. These corrected yields are used to calculate antineutrino spectra using the summation method. An anomalous value for the thermal fission yield of ^{86}Ge generates an excess of antineutrinos at 5-7 MeV, a feature which is no longer present when the corrected yields are used. Thermal spectra calculated with two distinct fission yield libraries (corrected ENDF/B and JEFF) differ by up to 6% in the 0-7 MeV energy window, allowing for a basic estimate of the uncertainty involved in the fission yield component of summation calculations. Finally, the fast neutron antineutrino spectrum is calculated, which at the moment can only be obtained with the summation method and may be relevant for short baseline reactor experiments using highly enriched uranium fuel. PMID:27081973

  11. Effects of Fission Yield Data in the Calculation of Antineutrino Spectra for 235U (n ,fission) at Thermal and Fast Neutron Energies

    Science.gov (United States)

    Sonzogni, A. A.; McCutchan, E. A.; Johnson, T. D.; Dimitriou, P.

    2016-04-01

    Fission yields form an integral part of the prediction of antineutrino spectra generated by nuclear reactors, but little attention has been paid to the quality and reliability of the data used in current calculations. Following a critical review of the thermal and fast ENDF/B-VII.1 235U 235 fission yields, deficiencies are identified and improved yields are obtained, based on corrections of erroneous yields, consistency between decay and fission yield data, and updated isomeric ratios. These corrected yields are used to calculate antineutrino spectra using the summation method. An anomalous value for the thermal fission yield of 86Ge generates an excess of antineutrinos at 5-7 MeV, a feature which is no longer present when the corrected yields are used. Thermal spectra calculated with two distinct fission yield libraries (corrected ENDF/B and JEFF) differ by up to 6% in the 0-7 MeV energy window, allowing for a basic estimate of the uncertainty involved in the fission yield component of summation calculations. Finally, the fast neutron antineutrino spectrum is calculated, which at the moment can only be obtained with the summation method and may be relevant for short baseline reactor experiments using highly enriched uranium fuel.

  12. Effects of Fission Yield Data in the Calculation of Antineutrino Spectra for ^{235}U(n,fission) at Thermal and Fast Neutron Energies.

    Science.gov (United States)

    Sonzogni, A A; McCutchan, E A; Johnson, T D; Dimitriou, P

    2016-04-01

    Fission yields form an integral part of the prediction of antineutrino spectra generated by nuclear reactors, but little attention has been paid to the quality and reliability of the data used in current calculations. Following a critical review of the thermal and fast ENDF/B-VII.1 ^{235}U fission yields, deficiencies are identified and improved yields are obtained, based on corrections of erroneous yields, consistency between decay and fission yield data, and updated isomeric ratios. These corrected yields are used to calculate antineutrino spectra using the summation method. An anomalous value for the thermal fission yield of ^{86}Ge generates an excess of antineutrinos at 5-7 MeV, a feature which is no longer present when the corrected yields are used. Thermal spectra calculated with two distinct fission yield libraries (corrected ENDF/B and JEFF) differ by up to 6% in the 0-7 MeV energy window, allowing for a basic estimate of the uncertainty involved in the fission yield component of summation calculations. Finally, the fast neutron antineutrino spectrum is calculated, which at the moment can only be obtained with the summation method and may be relevant for short baseline reactor experiments using highly enriched uranium fuel.

  13. Study of asymmetric fission yield behavior from neutron-deficient Hg isotope

    Energy Technology Data Exchange (ETDEWEB)

    Perkasa, Y. S. [Department of Physics, Sunan Gunung Djati State Islamic University Bandung, Jl. A.H Nasution No. 105 Cibiru, Bandung (Indonesia); Waris, A., E-mail: awaris@fi.itb.ac.id; Kurniadi, R., E-mail: awaris@fi.itb.ac.id; Su' ud, Z., E-mail: awaris@fi.itb.ac.id [Nuclear Physics and Biophysics Research Division, Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesa No. 10 Bandung 40132 (Indonesia)

    2014-09-30

    A study of asymmetric fission yield behavior from a neutron-deficient Hg isotope has been conducted. The fission yield calculation of the neutron-deficient Hg isotope using Brownian Metropolis shape had showed unusual result at decreasing energy. In this paper, this interesting feature will be validated by using nine degree of scission shapes parameterization from Brosa model that had been implemented in TALYS nuclear reaction code. This validation is intended to show agreement between both model and the experiment result. The expected result from these models considered to be different due to dynamical properties that implemented in both models.

  14. Model-based generation of neutron induced fission yields up to 20 MeV by the GEF code

    International Nuclear Information System (INIS)

    Model-based fission product yields from the fission of various important target nuclides have been calculated for incident neutron energies up to 20 MeV, divided into a 77 energy group structure. The calculations have been performed with two versions of the GEF code, which have been externally coupled to TALYS-1.4. In this application, the TALYS-1.4 code calculates any pre-fission nucleon or gamma emission from the compound nucleus as well as the probabilities of excitation states at the time it undergoes fission. The obtained quantities, fully characterizing the fissioning nucleus, are then passed to GEF, which generates the corresponding primary fission product yields in a Monte Carlo calculation. Cumulative fission product yields have been calculated using these primary fission product yields together with evaluated radioactive decay data as input. The interim and final results from the modelling, i.e. cross-sections, independent and cumulative fission yields, have been compared to experimental data. Important results from this, as well as sensitivities and reliabilities of the models, are discussed in this paper. The objective of this work was to generate energy dependent fission product yields data to serve as a basis for further investigations on potential improvements of evaluated data for nuclear reactor applications, which are beyond the scope of this publication. (author)

  15. A novel method for the absolute fluorescence yield measurement by AIRFLY

    CERN Document Server

    Ave, M

    2008-01-01

    One of the goals of the AIRFLY (AIR FLuorescence Yield) experiment is to measure the absolute fluorescence yield induced by electrons in air to better than 10% precision. We introduce a new technique for measurement of the absolute fluorescence yield of the 337 nm line that has the advantage of reducing the systematic uncertainty due to the detector calibration. The principle is to compare the measured fluorescence yield to a well known process - the Cerenkov emission. Preliminary measurements taken in the BFT (Beam Test Facility) in Frascati, Italy with 350 MeV electrons are presented. Beam tests in the Argonne Wakefield Accelerator at the Argonne National Laboratory, USA with 14 MeV electrons have also shown that this technique can be applied at lower energies.

  16. Measuring the absolute DT neutron yield using the Magnetic Recoil Spectrometer at OMEGA and the NIF

    Energy Technology Data Exchange (ETDEWEB)

    Mackinnon, A; Casey, D; Frenje, J A; Johnson, M G; Seguin, F H; Li, C K; Petrasso, R D; Glebov, V Y; Katz, J; Knauer, J; Meyerhofer, D; Sangster, T; Bionta, R; Bleuel, D; Hachett, S P; Hartouni, E; Lepape, S; Mckernan, M; Moran, M; Yeamans, C

    2012-05-03

    A Magnetic Recoil Spectrometer (MRS) has been installed and extensively used on OMEGA and the National Ignition Facility (NIF) for measurements of the absolute neutron spectrum from inertial confinement fusion (ICF) implosions. From the neutron spectrum measured with the MRS, many critical implosion parameters are determined including the primary DT neutron yield, the ion temperature, and the down-scattered neutron yield. As the MRS detection efficiency is determined from first principles, the absolute DT neutron yield is obtained without cross-calibration to other techniques. The MRS primary DT neutron measurements at OMEGA and the NIF are shown to be in excellent agreement with previously established yield diagnostics on OMEGA, and with the newly commissioned nuclear activation diagnostics on the NIF.

  17. Two Birds with One Stone: Tailoring Singlet Fission for Both Triplet Yield and Exciton Diffusion Length

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Tong; Wan, Yan; Guo, Zhi; Johnson, Justin; Huang, Libai

    2016-09-14

    By direct imaging of singlet and triplet populations with ultrafast microscopy, it is shown that the triplet diffusion length and singlet fission yield can be simultaneously optimized for tetracene and its derivatives, making them ideal structures for application in bilayer solar cells.

  18. Theoretical and experimental studies of the neutron rich fission product yields at intermediate energies

    Directory of Open Access Journals (Sweden)

    Äystö J.

    2012-02-01

    Full Text Available A new method to measure the fission product independent yields employing the ion guide technique and a Penning trap as a precision mass filter, which allows an unambiguous identification of the nuclides is presented. The method was used to determine the independent yields in the proton-induced fission of 232Th and 238U at 25 MeV. The data were analyzed with the consistent model for description of the fission product formation cross section at the projectile energies up to 100 MeV. Pre-compound nucleon emission is described with the two-component exciton model using Monte Carlo method. Decay of excited compound nuclei is treated within time-dependent statistical model with inclusion of the nuclear friction effect. The charge distribution of the primary fragment isobaric chain was considered as a result of frozen quantal fluctuations of the isovector nuclear density. The theoretical predictions of the independent fission product cross sections are used for normalization of the measured fission product isotopic distributions.

  19. Absolute measurement of the nitrogen fluorescence yield in air between 300 and 430 nm

    CERN Document Server

    Lefeuvre, G; Gorodetzky, P; Patzak, T; Salin, P

    2007-01-01

    The nitrogen fluorescence induced in air is used to detect ultra-high energy cosmic rays and to measure their energy. The precise knowledge of the absolute fluorescence yield is the key quantity to improve the accuracy on the cosmic ray energy. The total yield has been measured in dry air using a 90Sr source and a [300-430 nm] filter. The fluorescence yield in air is 4.23 $\\pm$ 0.20 photons per meter when normalized to 760 mmHg, 15 degrees C and with an electron energy of 0.85 MeV. This result is consistent with previous experiments made at various energies, but with an accuracy improved by a factor of about 3. For the first time, the absolute continuous spectrum of nitrogen excited by 90Sr electrons has also been measured with a spectrometer. Details of this experiment are given in one of the author's PhD thesis [32].

  20. Effect of fission yield libraries on the irradiated fuel composition in Monte Carlo depletion calculations

    International Nuclear Information System (INIS)

    Improving the prediction of radiation parameters and reliability of fuel behaviour under different irradiation modes is particularly relevant for new fuel compositions, including recycled nuclear fuel. For fast reactors there is a strong dependence of nuclide accumulations on the nuclear data libraries. The effect of fission yield libraries on irradiated fuel is studied in MONTEBURNS-MCNP5-ORIGEN2 calculations of sodium fast reactors. Fission yield libraries are generated for sodium fast reactors with MOX fuel, using ENDF/B-VII.0, JEFF3.1, original library FY-Koldobsky, and GEFY 3.3 as sources. The transport libraries are generated from ENDF/B-VII.0 and JEFF-3.1. Analysis of irradiated MOX fuel using different fission yield libraries demonstrates the considerable spread in concentrations of fission products. The discrepancies in concentrations of inert gases being ∼25%, up to 5 times for stable and long-life nuclides, and up to 10 orders of magnitude for short-lived nuclides. (authors)

  1. Precise Measurement of the Absolute Yield of Fluorescence Photons in Atmospheric Gases

    Energy Technology Data Exchange (ETDEWEB)

    Ave, M.; /Karlsruhe, Inst. Technol.; Bohacova, M.; /Chicago U., EFI; Daumiller, K.; /Karlsruhe, Inst. Technol.; Di Carlo, P.; /INFN, Aquila; Di Giulio, C.; /INFN, Rome; Luis, P.Facal San; /Chicago U., EFI; Gonzales, D.; /Karlsruhe U., EKP; Hojvat, C.; /Fermilab; Horandel, J.R.; /Nijmegen U., IMAPP; Hrabovsky, M.; /Palacky U.; Iarlori, M.; /INFN, Aquila /Karlsruhe, Inst. Technol.

    2011-01-01

    We have performed a measurement of the absolute yield of fluorescence photons at the Fermilab Test Beam. A systematic uncertainty at 5% level was achieved by the use of Cherenkov radiation as a reference calibration light source. A cross-check was performed by an independent calibration using a laser light source. A significant improvement on the energy scale uncertainty of Ultra-High Energy Cosmic Rays is expected.

  2. Measurement of Am-242 fission yields at the Lohengrin spectrometer; improvement and Benchmarking of the semi-empirical code GEF

    International Nuclear Information System (INIS)

    The study of fission yields has a major impact on the characterization and understanding of the fission process and is mandatory for reactor applications. While the yields are known for the major actinides (U-235, Pu-239) in the thermal neutron-induced fission, only few measurements were performed on Am-242. Moreover, the two main data libraries do not agree among each other on the light peak. Am-241 and Am-242 are nuclei of interest for the MOX-fuel reactors and for the reduction of nuclear waste radiotoxicity using transmutation reactions. Thus, a campaign of precise measurement of the fission mass yields from the reaction Am-241(2n,f) was performed at the Lohengrin mass spectrometer (ILL, France) for both the light and the heavy peak. Forty-one masses were measured. Moreover, the measurement of the isotopic fission yields on the heavy peak by gamma-ray spectrometry led to the extraction of 20 independent isotopic yields. Our measurement was also meant to determine whether there is a difference in fission yields between the Am-242 isomeric state and its ground state as it exists in fission cross sections. The experimental method used to answer this question is based on the measurement a set of fission mass yields as a function of the ratio of Am-242gs to Am-242m fission rate. Results show that the mass yields are independent of the fission rate ratio. A future experimental campaign is proposed to observe a possible influence on the isomeric yields. The theoretical models are nowadays unable to predict the fission yields with enough accuracy and therefore we have to rely on experimental data and phenomenological models. The accuracy of the predictions of the semi empirical GEF fission model predictions makes it a useful tool for evaluation. This thesis also presents the physical content and part of the development of this model. Validation of the kinetic energy distributions, isomeric yields and fission yields predictions was performed. The extension of the GEF

  3. Relative Yields of 149-153Pr in Spontaneous Fission of 252Cf

    Science.gov (United States)

    Eldridge, Jonathan; Wang, Enhong; Hwang, J. K.; Hamilton, Joe; Ramayya, A. V.; Luo, Y. X.; Rasmussen, J. O.; Zhu, S. J.; Liu, S. H.; Ter-Akopian, G. M.; Oganessian, Yu. Ts.

    2013-10-01

    The relative yields of the fission partners of 149-153Pr, resulting from the spontaneous fission of 252Cf, were studied. This study was done by means of γ - γ - γ , and γ - γ - γ - γ coincidence data taken in 2000 by the multi-HPGe, Compton-suppressed, gamma detector array, Gammasphere, at Lawrence Berkeley National Lab. The coincidence data were analyzed by double- and triple-gating on transitions in 149-153Pr and obtaining the intensities of the 93-101Y transitions. For 150 , 151 , 152 , 153Pr the 3n channel was found to be the strongest. The 149Pr, however, was found to peak at the 4n channel. These results were used to verify the assignments of the level schemes of 151 , 152 , 153Pr. The data are found to be in agreement with Wahl's independent yield tables.

  4. Fission-product yields for thermal-neutron fission of 243Cm determined from measurements with a high-resolution low-energy germanium gamma-ray detector

    International Nuclear Information System (INIS)

    Cumulative fission-product yields have been determined for 13 gamma rays emitted during the decay of 12 fission products created by thermal-neutron fission of 243Cm. A high-resolution low-energy germanium detector was used to measure the pulse-height spectra of gamma rays emitted from a 77-nanogram sample of 243Cm after the sample had been irradiated by thermal neutrons. Analysis of the data resulted in the identification and matching of gamma-ray energies and half-lives to individual radioisotopes. From these results, 12 cumulative fission product yields were deduced for radionuclides with half-lives between 4.2 min and 84.2 min. 7 references

  5. Testing JEFF-3.1.1 and ENDF/B-VII.1 Decay and Fission Yield Nuclear Data Libraries with Fission Pulse Neutron Emission and Decay Heat Experiments

    Science.gov (United States)

    Cabellos, O.; de Fusco, V.; Diez de la Obra, C. J.; Martinez, J. S.; Gonzalez, E.; Cano-Ott, D.; Alvarez-Velarde, F.

    2014-04-01

    The aim of this work is to test the present status of Evaluated Nuclear Decay and Fission Yield Data Libraries to predict decay heat and delayed neutron emission rate, average neutron energy and neutron delayed spectra after a neutron fission pulse. Calculations are performed with JEFF-3.1.1 and ENDF/B-VII.1, and these are compared with experimental values. An uncertainty propagation assessment of the current nuclear data uncertainties is performed.

  6. Fractional independent yields of 141La and 142La from thermal-neutron-induced fission of 233U

    International Nuclear Information System (INIS)

    The fractional independent yields of 141La and 142La from thermal-neutron-induced fission of 233U were found to be 0.026 +- 0.006 and 0.068 +- 0.010, respectively. These yields are consistent with charge distributions for which σ = 0.56 +- 0.02 and 0.52 +- 0.02, respectively. These results are in good agreement with similar yields measured for fission of 235U, but not with those from fission of 249Cf. (author)

  7. Microscopic predictions of fission yields based on the time dependent GCM formalism

    Directory of Open Access Journals (Sweden)

    Regnier D.

    2016-01-01

    Full Text Available Accurate knowledge of fission fragment yields is an essential ingredient of numerous applications ranging from the formation of elements in the r-process to fuel cycle optimization in nuclear energy. The need for a predictive theory applicable where no data is available, together with the variety of potential applications, is an incentive to develop a fully microscopic approach to fission dynamics. One of the most promising theoretical frameworks is the time-dependent generator coordinate method (TDGCM applied under the Gaussian overlap approximation (GOA. Previous studies reported promising results by numerically solving the TDGCM+GOA equation with a finite difference technique. However, the computational cost of this method makes it difficult to properly control numerical errors. In addition, it prevents one from performing calculations with more than two collective variables. To overcome these limitations, we developed the new code FELIX-1.0 that solves the TDGCM+GOA equation based on the Galerkin finite element method. In this article, we briefly illustrate the capabilities of the solver FELIX-1.0, in particular its validation for n+239Pu low energy induced fission. This work is the result of a collaboration between CEA,DAM,DIF and LLNL on nuclear fission theory.

  8. Microscopic predictions of fission yields based on the time dependent GCM formalism

    Science.gov (United States)

    Regnier, D.; Dubray, N.; Schunck, N.; Verrière, M.

    2016-03-01

    Accurate knowledge of fission fragment yields is an essential ingredient of numerous applications ranging from the formation of elements in the r-process to fuel cycle optimization in nuclear energy. The need for a predictive theory applicable where no data is available, together with the variety of potential applications, is an incentive to develop a fully microscopic approach to fission dynamics. One of the most promising theoretical frameworks is the time-dependent generator coordinate method (TDGCM) applied under the Gaussian overlap approximation (GOA). Previous studies reported promising results by numerically solving the TDGCM+GOA equation with a finite difference technique. However, the computational cost of this method makes it difficult to properly control numerical errors. In addition, it prevents one from performing calculations with more than two collective variables. To overcome these limitations, we developed the new code FELIX-1.0 that solves the TDGCM+GOA equation based on the Galerkin finite element method. In this article, we briefly illustrate the capabilities of the solver FELIX-1.0, in particular its validation for n+239Pu low energy induced fission. This work is the result of a collaboration between CEA,DAM,DIF and LLNL on nuclear fission theory.

  9. Precise measurement of the absolute fluorescence yield of the 337 nm band in atmospheric gases

    Science.gov (United States)

    Ave, M.; Bohacova, M.; Curry, E.; Di Carlo, P.; Di Giulio, C.; Facal San Luis, P.; Gonzales, D.; Hojvat, C.; Hörandel, J.; Hrabovsky, M.; Iarlori, M.; Keilhauer, B.; Klages, H.; Kleifges, M.; Kuehn, F.; Li, S.; Monasor, M.; Nozka, L.; Palatka, M.; Petrera, S.; Privitera, P.; Ridky, J.; Rizi, V.; Rouille D'Orfeuil, B.; Salamida, F.; Schovanek, P.; Smida, R.; Spinka, H.; Ulrich, A.; Verzi, V.; Williams, C.

    2013-02-01

    A measurement of the absolute fluorescence yield of the 337 nm nitrogen band, relevant to ultra-high energy cosmic ray (UHECR) detectors, is reported. Two independent calibrations of the fluorescence emission induced by a 120 GeV proton beam were employed: Cherenkov light from the beam particle and calibrated light from a nitrogen laser. The fluorescence yield in air at a pressure of 1013 hPa and temperature of 293 K was found to be Y337=5.61±0.06stat±0.22syst photons/MeV. When compared to the fluorescence yield currently used by UHECR experiments, this measurement improves the uncertainty by a factor of three, and has a significant impact on the determination of the energy scale of the cosmic ray spectrum.

  10. Precise measurement of the absolute fluorescence yield of the 337 nm band in atmospheric gases

    CERN Document Server

    Ave, M; Curry, E; Di Carlo, P; Di Giulio, C; Luis, P Facal San; Gonzales, D; Hojvat, C; Hörandel, J; Hrabovsky, M; Iarlori, M; Keilhauer, B; Klages, H; Kleifges, M; Kuehn, F; Li, S; Monasor, M; Nozka, L; Palatka, M; Petrera, S; Privitera, P; Ridky, J; Rizi, V; D'Orfeuil, B Rouille; Salamida, F; Schovanek, P; Smida, R; Spinka, H; Ulrich, A; Verzi, V; Williams, C

    2012-01-01

    A measurement of the absolute fluorescence yield of the 337 nm nitrogen band, relevant to ultra-high energy cosmic ray (UHECR) detectors, is reported. Two independent calibrations of the fluorescence emission induced by a 120 GeV proton beam were employed: Cherenkov light from the beam particle and calibrated light from a nitrogen laser. The fluorescence yield in air at a pressure of 1013 hPa and temperature of 293 K was found to be $Y_{337} = 5.61\\pm 0.06_{stat} \\pm 0.21_{syst}$ photons/MeV. When compared to the fluorescence yield currently used by UHECR experiments, this measurement improves the uncertainty by a factor of three, and has a significant impact on the determination of the energy scale of the cosmic ray spectrum.

  11. Isotopic yield in cold binary fission of even-even $^{244-258}$Cf isotopes

    CERN Document Server

    Santhosh, K P; Krishnan, Sreejith

    2016-01-01

    The cold binary fission of even-even 244-258Cf isotopes has been studied by taking the interacting barrier as the sum of Coulomb and proximity potential. The favorable fragment combinations are obtained from the cold valley plot (plot of driving potential vs. mass number of fragments) and by calculating the yield for charge minimized fragments. It is found that highest yield for 244,246,248Cf isotopes are for the fragments with isotope of Pb (Z=82) as one fragment, whereas for 250Cf and 252Cf isotopes the highest yield is for the fragments with isotope of Hg (Z=80) as one fragment. In the case of 254,256,258Cf isotopes the highest yield is for the fragments with Sn (Z=50) as one fragment. Thus, the fragment combinations with maximum yield reveal the role of doubly magic and near doubly magic nuclei in binary fission. It is found that asymmetric splitting is favoured for Cf isotopes with mass number A 252. In the case of Cf isotope with A=252, there is an equal probability for asymmetric and symmetric splitti...

  12. Studies on fission with ALADIN. Precise and simultaneous measurement of fission yields, total kinetic energy and total prompt neutron multiplicity at GSI

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Julie-Fiona; Taieb, Julien; Chatillon, Audrey; Belier, Gilbert; Boutoux, Guillaume; Ebran, Adeline; Gorbinet, Thomas; Grente, Lucie; Laurent, Benoit; Pellereau, Eric [CEA DAM Bruyeres-le-Chatel, Arpajon (France); Alvarez-Pol, Hector; Ayyad, Yassid; Benlliure, Jose; Cortina Gil, Dolores; Caamano, Manuel; Fernandez Dominguez, Beatriz; Paradela, Carlos; Ramos, Diego; Rodriguez-Sanchez, Jose-Luis; Vargas, Jossitt [Universidad de Santiago de Compostela, Santiago de Compostela (Spain); Audouin, Laurent; Tassan-Got, Laurent [CNRS/IN2P3, IPNO, Orsay (France); Aumann, Thomas [Technische Universitaet Darmstadt, Darmstadt (Germany); Casarejos, Enrique [Universidad de Vigo, Vigo (Spain); Farget, Fanny; Rodriguez-Tajes, Carme [CNRS/IN2P3, GANIL, Caen (France); Heinz, Andreas [Chalmers University of Technology, Gothenburg (Sweden); Jurado, Beatriz [CNRS/IN2P3, CENBG, Gradignan (France); Kelic-Heil, Aleksandra; Kurz, Nikolaus; Nociforo, Chiara; Pietri, Stephane; Rossi, Dominic; Schmidt, Karl-Heinz; Simon, Haik; Voss, Bernd; Weick, Helmut [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany)

    2015-12-15

    A novel technique for fission studies, based on the inverse kinematics approach, is presented. Following pioneering work in the nineties, the SOFIA Collaboration has designed and built an experimental set-up dedicated to the simultaneous measurement of isotopic yields, total kinetic energies and total prompt neutron multiplicities, by fully identifying both fission fragments in coincidence, for the very first time. This experiment, performed at GSI, permits to study the fission of a wide variety of fissioning systems, ranging from mercury to neptunium, possibly far from the valley of stability. A first experiment, performed in 2012, has provided a large array of unprecedented data regarding the nuclear fission process. An excerpt of the results is presented. With this solid starter, further improvements of the experimental set-up are considered, which are consistent with the expected developments at the GSI facility, in order to measure more fission observables in coincidence. The completeness reached in the SOFIA data, permits to scrutinize the correlations between the interesting features of fission, offering a very detailed insight in this still unraveled mechanism. (orig.)

  13. Relative yields of U-235 fission products measured in a high level radioactive sludge at Savannah River Site

    International Nuclear Information System (INIS)

    This paper presents measurements of the concentrations of 42 of the long-lived U-235 fission products in a high-level radioactive waste sludge stored at Savannah River Site. The 42 fision products make up 98% of the waste sludge. We used inductively coupled plasma-mass spectroscopy for the analysis. The relative yields for most of the fission products are in complete agreement with the known relative yields for the beta decay chains of the two asymmetric branches of the slow neutron fission of U-235. Disagreements can be reconciled based on the chemistry of the fission products in the caustic waste sludges, the neutron fluences in SRS reactors, or interferences in the ICP-MS analyses. This paper presents measurements of the concentrations of 42 (98%) of the long-lived U-235 fission products in a high-level radioactive waste sludge stored at the Savannah River Site. We analyzed the sludge with inductively coupled plasma-mass spectroscopy. The relative yields for most of the fission products agree completely with the known relative vields for the beta decay chains of the two asymmetric: branches of the slow neutron fission of U-235. The chemistry of the fission products in the caustic waste sludges, the neutron fluences in SRS reactors, or interferences in the ICP-MS analyses explain the differences in the measured and calculated results

  14. Cumulative fission yields of short-lived isotopes under natural-abundance-boron-carbide-moderated neutron spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Finn, Erin C.; Metz, Lori A.; Greenwood, Lawrence R.; Pierson, Bruce; Wittman, Richard S.; Friese, Judah I.; Kephart, Rosara F.

    2015-04-09

    The availability of gamma spectroscopy data on samples containing mixed fission products at short times after irradiation is limited. Due to this limitation, data interpretation methods for gamma spectra of mixed fission product samples, where the individual fission products have not been chemically isolated from interferences, are not well-developed. The limitation is particularly pronounced for fast pooled neutron spectra because of the lack of available fast reactors in the United States. Samples containing the actinide isotopes 233, 235, 238U, 237Np, and 239Pu individually were subjected to a 2$ pulse in the Washington State University 1 MW TRIGA reactor. To achieve a fission-energy neutron spectrum, the spectrum was tailored using a natural abundance boron carbide capsule to absorb neutrons in the thermal and epithermal region of the spectrum. Our tailored neutron spectrum is unique to the WSU reactor facility, consisting of a soft fission spectrum that contains some measurable flux in the resonance region. This results in a neutron spectrum at greater than 0.1 keV with an average energy of 70 keV, similar to fast reactor spectra and approaching that of 235U fission. Unique fission product gamma spectra were collected from 4 minutes to 1 week after fission using single-crystal high purity germanium detectors. Cumulative fission product yields measured in the current work generally agree with published fast pooled fission product yield values from ENDF/B-VII, though a bias was noted for 239Pu. The present work contributes to the compilation of energy-resolved fission product yield nuclear data for nuclear forensic purposes.

  15. Beta decay of the fission product 125Sb and a new complete evaluation of absolute gamma ray transition intensities

    Science.gov (United States)

    Rajput, M. U.; Ali, N.; Hussain, S.; Mujahid, S. A.; MacMahon, D.

    2012-04-01

    The radionuclide 125Sb is a long-lived fission product, which decays to 125Te by negative beta emission with a half-life of 1008 day. The beta decay is followed by the emission of several gamma radiations, ranging from low to medium energy, that can suitably be used for high-resolution detector calibrations, decay heat calculations and in many other applications. In this work, the beta decay of 125Sb has been studied in detail. The complete published experimental data of relative gamma ray intensities in the beta decay of the radionuclide 125Sb has been compiled. The consistency analysis was performed and discrepancies found at several gamma ray energies. Evaluation of the discrepant data was carried out using Normalized Residual and RAJEVAL methods. The decay scheme balance was carried out using beta branching ratios, internal conversion coefficients, populating and depopulating gamma transitions to 125Te levels. The work has resulted in the consistent conversion factor equal to 29.59(13) %, and determined a new evaluated set of the absolute gamma ray emission probabilities. The work has also shown 22.99% of the delayed intensity fraction as outgoing from the 58 d isomeric 144 keV energy level and 77.01% of the prompt intensity fraction reaching to the ground state from the other excited states. The results are discussed and compared with previous evaluations. The present work includes additional experimental data sets which were not included in the previous evaluations. A new set of recommended relative and absolute gamma ray emission probabilities is presented.

  16. Design of a High Intensity Neutron Source for Neutron-Induced Fission Yield Studies

    CERN Document Server

    Lantz, M; Jokinen, A; Kolhinen, V S; Mattera, A; Penttilä, H; Pomp, S; Rakopoulos, V; Rinta-Antila, S; Solders, A

    2013-01-01

    The upgraded IGISOL facility with JYFLTRAP, at the accelerator laboratory of the University of Jyv\\"askyl\\"a, has been supplied with a new cyclotron which will provide protons of the order of 100 {\\mu}A with up to 30 MeV energy, or deuterons with half the energy and intensity. This makes it an ideal place for measurements of neutron-induced fission products from various actinides, in view of proposed future nuclear fuel cycles. The groups at Uppsala University and University of Jyv\\"askyl\\"a are working on the design of a neutron converter that will be used as neutron source in fission yield studies. The design is based on simulations with Monte Carlo codes and a benchmark measurement that was recently performed at The Svedberg Laboratory in Uppsala. In order to obtain a competitive count rate the fission targets will be placed very close to the neutron converter. The goal is to have a flexible design that will enable the use of neutron fields with different energy distributions. In the present paper, some co...

  17. A new evaluation of fission product yields and the production of a new library (UKFY2) of independent and cumulative yields. Pt. 2

    International Nuclear Information System (INIS)

    A new evaluation has been prepared of the independent and cumulative yields of the products of fission induced by thermal, fast, and 14 MeV neutrons in nuclides important for reactor design and operation and for fuel and waste management. Three spontaneously fissioning nuclides were also considered. The evaluation used a database that is considered to be complete up to early 1989. Careful study was made of experimental uncertainties and discrepancies, emphasising the need for further measurements. Gaps in the data were filled by interpolation and extrapolation, using fits to empirical models. The yields were adjusted to fit physical constraints of the fissioning process. The present report contains Tables of cumulative and chain yields, and of fractional independent yields. Each set of Tables gives all the relevant measurements in the database, with uncertainties. Recommended weighted averages are included with standard deviations, discrepant sets of measurements are clearly indicated and references to all the entries in the database are listed. (author)

  18. Accurate measurements of fission-fragment yields in 234,235,236,238U(γ,f with the SOFIA set-up

    Directory of Open Access Journals (Sweden)

    Chatillon A.

    2016-01-01

    Full Text Available SOFIA (Studies On Fission with Aladin is a new experimental set-up dedicated to accurate measurement of fission-fragments isotopic yields. It is located at GSI, the only place to use inverse kinematics at relativistic energies in order to study the (γ,f electromagnetic-induced fission. The SOFIA set-up is a large-acceptance magnetic spectrometer, which allows to fully identify both fission fragments in coincidence on the whole fission-fragment range. This paper will report on fission yields obtained in 234,235,236,238U(γ,f reactions.

  19. Average value of available measurements of the absolute air-fluorescence yield

    CERN Document Server

    Rosado, J; Arqueros, F

    2011-01-01

    The air-fluorescence yield is a key parameter for determining the energy scale of ultra-high-energy cosmic rays detected by fluorescence telescopes. A compilation of the available measurements of the absolute air-fluorescence yield normalized to its value in photons per MeV for the 337 nm band at given pressure and temperature has been recently presented in Ref. [1]. Also, in that paper, some corrections in the evaluation of the energy deposited in the corresponding experimental collision chambers have been proposed. In this note this comparison is updated. In addition, a simple statistical analysis is carried out showing that our corrections favor the compatibility among the various experiments. As a result, an average value of 5.45 ph/MeV for the fluorescence yield of the 337 nm band (20.1 ph/MeV for the spectral interval 300-420 nm) at 1013 hPa and 293 K with an uncertainty of 5% is found. This result is fully compatible with that recently presented by the AIRFLY collaboration (still preliminary) in such a...

  20. Investigation of the fission yields of the fast neutron-induced fission of {sup 233}U; Mesure de la distribution en masse et en charge des produits de la fission rapide de l'{sup 233}U

    Energy Technology Data Exchange (ETDEWEB)

    Galy, J

    1999-09-01

    As a stars, a survey of the different methods of investigations of the fission product yields and the experimental data status have been studied, showing advantages and shortcomings for the different approaches. An overview of the existing models for the fission product distributions has been as well intended. The main part of this thesis was the measurement of the independent yields of the fast neutron-induced fission of{sup 233}U, never investigated before this work. The experiment has been carried out using the mass separator OSIRIS (Isotope Separator On-Line). Its integrated ion-source and its specific properties required an analysis of the delay-parameter and ionisation efficiency for each chemical species. On the other hand, this technique allows measurement of independent yields and cumulative yields for elements from Cu to Ba, covering most of the fission yield distribution. Thus, we measured about 180 independent yields from Zn (Z=30) to Sr (Z=38) in the mass range A=74-99 and from Pd (Z=46) to Ba (Z=56) in the mass range A=113-147, including many isomeric states. An additional experiment using direct {gamma}-spectroscopy of aggregates of fission products was used to determine more than 50 cumulative yields of element with half-life from 15 min to a several days. All experimental data have been compared to estimates from a semi-empirical model, to calculated values and to evaluated values from the European library JEF 2.2. Furthermore, a study of both thermal and fast neutron-induced fission of {sup 233}U measured at Studsvik, the comparison of the OSIRIS and LOHENGRIN facilities and the trends in new data for the Reactors Physics have been discussed. (author)

  1. Exploratory study of fission product yields of neutron-induced fission of 235U , 238U , and 239Pu at 8.9 MeV

    Science.gov (United States)

    Bhatia, C.; Fallin, B. F.; Gooden, M. E.; Howell, C. R.; Kelley, J. H.; Tornow, W.; Arnold, C. W.; Bond, E.; Bredeweg, T. A.; Fowler, M. M.; Moody, W.; Rundberg, R. S.; Rusev, G. Y.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Macri, R.; Ryan, C.; Sheets, S. A.; Stoyer, M. A.; Tonchev, A. P.

    2015-06-01

    Using dual-fission chambers each loaded with a thick (200 -400 -mg /c m2) actinide target of 235 ,238U or 239Pu and two thin (˜10 -100 -μ g /c m2) reference foils of the same actinide, the cumulative yields of fission products ranging from 92Sr to 147Nd have been measured at En= 8.9 MeV . The 2H(d ,n ) 3He reaction provided the quasimonoenergetic neutron beam. The experimental setup and methods used to determine the fission product yield (FPY) are described, and results for typically eight high-yield fission products are presented. Our FPYs for 235U(n ,f ) , 238U(n ,f ) , and 239Pu(n ,f ) at 8.9 MeV are compared with the existing data below 8 MeV from Glendenin et al. [Phys. Rev. C 24, 2600 (1981), 10.1103/PhysRevC.24.2600], Nagy et al. [Phys. Rev. C 17, 163 (1978), 10.1103/PhysRevC.17.163], Gindler et al. [Phys. Rev. C 27, 2058 (1983), 10.1103/PhysRevC.27.2058], and those of Mac Innes et al. [Nucl. Data Sheets 112, 3135 (2011), 10.1016/j.nds.2011.11.009] and Laurec et al. [Nucl. Data Sheets 111, 2965 (2010), 10.1016/j.nds.2010.11.004] at 14.5 and 14.7 MeV, respectively. This comparison indicates a negative slope for the energy dependence of most fission product yields obtained from 235U and 239Pu , whereas for 238U the slope issue remains unsettled.

  2. Measurement of fission yields from the 241Am(2nth,f reaction at the Lohengrin Spectrometer

    Directory of Open Access Journals (Sweden)

    Amouroux Ch.

    2013-12-01

    Full Text Available The study of fission yields has a major impact on the characterization and understanding of the fission process and is mandatory for reactor applications. While the yields are known for the major actinides (235U, 239Pu in the thermal neutron-induced fission, only few measurements have been performed on 242Am. This paper presents the results of a measurement at the Lohengrin mass spectrometer (ILL, France on the reaction 241Am(2nth,f: a total of 41 mass yields in the light and the heavy peaks have been measured and compared with the fission process simulation code GEF. Modus operandi and first results of a second experiment performed in May 2013 on the same reaction but with the goal of extracting the isotopic yields are presented as well: 8 mass yields were re-measured and 18 isotopic yields have been investigated and are being analyzed. Results concerning the kinetic energy and its comparison with the GEF Code are also presented in this paper.

  3. Characterization of a Be(p,xn) neutron source for fission yields measurements

    CERN Document Server

    Mattera, A; Hjalmarsson, A; Lantz, M; Pomp, S; Rakopoulos, V; Solders, A; Valldor-Blücher, J; Gorelov, D; Penttilä, H; Rinta-Antila, S; Prokofiev, A V; Passoth, E; Bedogni, R; Gentile, A; Bortot, D; Esposito, A; Introini, M V; Pola, A

    2013-01-01

    We report on measurements performed at The Svedberg Laboratory (TSL) to characterize a proton-neutron converter for independent fission yield studies at the IGISOL-JYFLTRAP facility (Jyv\\"askyl\\"a, Finland). A 30 MeV proton beam impinged on a 5 mm water-cooled Beryllium target. Two independent experimental techniques have been used to measure the neutron spectrum: a Time of Flight (TOF) system used to estimate the high-energy contribution, and a Bonner Sphere Spectrometer able to provide precise results from thermal energies up to 20 MeV. An overlap between the energy regions covered by the two systems will permit a cross-check of the results from the different techniques. In this paper, the measurement and analysis techniques will be presented together with some preliminary results.

  4. Determination of 235U isotope abundance by difference method of fission yield

    International Nuclear Information System (INIS)

    Background: Determination of the uranium isotope abundance ratio of fuel pins is a significant stage for the quality control in safe operations of reactor. Purpose: The aim is to establish a method to examine the 235U abundance of fuel rod with fast neutron as an excitation source. Methods: Taking the fission-yield ratios of Y-bar88Rb/Y-bar104Tc and Y-bar92Sr/Y-bar104Tc as the subjects of research, the relation curves between the average yield ratios and the 235U isotopic abundance as well as the expressions Y-bar1/Y-bar2=f(H0), in which the average yield ratio (Y-bari/Y-barj ) is a function of the 235U isotopic abundance (H0), were obtained and presented based on the previous studies. Results: In order to testify the accuracy of the method, the simulation sample of 72.2% is measured by working curve, and RSD is less than 2%. Within the limit of error, the results of sample analysis are in correspondence with those of passive gamma ray method. Conclusion: All of these results indicate that the method is feasible to determine the 235U abundance of fuel rod. (authors)

  5. Measuring the absolute deuterium-tritium neutron yield using the magnetic recoil spectrometer at OMEGA and the NIF.

    Science.gov (United States)

    Casey, D T; Frenje, J A; Gatu Johnson, M; Séguin, F H; Li, C K; Petrasso, R D; Glebov, V Yu; Katz, J; Knauer, J P; Meyerhofer, D D; Sangster, T C; Bionta, R M; Bleuel, D L; Döppner, T; Glenzer, S; Hartouni, E; Hatchett, S P; Le Pape, S; Ma, T; MacKinnon, A; McKernan, M A; Moran, M; Moses, E; Park, H-S; Ralph, J; Remington, B A; Smalyuk, V; Yeamans, C B; Kline, J; Kyrala, G; Chandler, G A; Leeper, R J; Ruiz, C L; Cooper, G W; Nelson, A J; Fletcher, K; Kilkenny, J; Farrell, M; Jasion, D; Paguio, R

    2012-10-01

    A magnetic recoil spectrometer (MRS) has been installed and extensively used on OMEGA and the National Ignition Facility (NIF) for measurements of the absolute neutron spectrum from inertial confinement fusion implosions. From the neutron spectrum measured with the MRS, many critical implosion parameters are determined including the primary DT neutron yield, the ion temperature, and the down-scattered neutron yield. As the MRS detection efficiency is determined from first principles, the absolute DT neutron yield is obtained without cross-calibration to other techniques. The MRS primary DT neutron measurements at OMEGA and the NIF are shown to be in excellent agreement with previously established yield diagnostics on OMEGA, and with the newly commissioned nuclear activation diagnostics on the NIF.

  6. Energy dependence of 238U fission yields investigated in inverse kinematics

    Directory of Open Access Journals (Sweden)

    Veselsky M.

    2010-03-01

    Full Text Available The production cross sections of neutron-rich fission residues produced in reactions induced by a 238U beam impinging onto Pb and Be targets were investigated at the Fragment Separator (FRS at GSI using the inverse kinematic technique. These data allowed us to discuss the optimum energies in fission for producing the most neutron-rich residues.

  7. Extremely efficient exciton fission and fusion and its dominant contribution to the photoluminescence yield in rubrene single crystals

    Science.gov (United States)

    Biaggio, Ivan; Irkhin, Pavel

    2013-12-01

    Measurements of photoluminescence yield over a wide range of excitation power in rubrene single crystals reveal a transition between a low-yield region and a region with a yield more than an order of magnitude larger. This transition occurs at an excitation density of 3 × 1020 cm-3 absorbed photons per second. This power dependence is predicted in case of an extremely efficient conversion between singlet and triplet excitons through fission and fusion. Triplet fusion starts contributing to rubrene's photoluminescence already at intensities of a few mW/cm2 at room temperature, corresponding to triplet densities of ˜1016 cm-3.

  8. Identification of fission-like events in the 16O + 181Ta system: Mass and isotopic yield distribution

    International Nuclear Information System (INIS)

    In this paper, nuclear reaction cross sections for 24 fission-like fragments (30≤Z≤60) have been measured for the 6.5 MeV/A 16O + 181Ta system. The recoil-catcher activation technique was employed followed by off-line γ spectroscopy. The isotopic yield distributions for yttrium and indium isotopes have been obtained from the experimental data. The variance of the presently measured isotopic yield distributions have been found to be in agreement with the literature values. However, the variance of the mass distribution of fission residues has found to be narrower as compared to other relatively heavier systems. A self-consistent approach to determining the isobaric charge dispersion parameters has been adopted. The measured fission cross sections at 97 and 100 MeV are satisfactorily described by a statistical model code. An attempt has been made to explain the production cross sections of intermediate mass residues in the fission of heavy residues populated via complete and/or incomplete fusion processes.

  9. A new evaluation of fission product yields and the production of a new library (UKFY2) of independent and cumulative yields. Pt. 3

    International Nuclear Information System (INIS)

    A new evaluation has been prepared of the independent and cumulative yields of the products of fission induced by thermal, fast, and 14 MeV neutrons in nuclides important for reactor design and operation and for fuel and waste management. Three spontaneously fissioning nuclides were also considered. The evaluation used a database that is considered to be complete up to early 1989. Careful study was made of experimental uncertainties and discrepancies, emphasising the need for further measurements. Gaps in the data were filled by interpolation and extrapolation, using fits to empirical models. The yields were adjusted to fit physical constraints of the fissioning process. The present report contains lists of chain and independent yields for which the experimental data may be regarded as inadequate. An entry is made if (i) there are no measurements, (ii) there is only one measurement, or (iii) there are several measurements but they are discrepant in the sense that the probability of the calculated value of χ2 arising by chance is less than 10%. So that the source of each measurement may be identified, the database reference list is included as an Appendix. (author)

  10. A Proposed Method for Measurement of Absolute Air Fluorescence Yield based on High Resolution Optical Emission Spectroscopy

    CERN Document Server

    Gika, V; Maltezos, S

    2016-01-01

    In this work, we present a method for absolute measurement of air fluorescence yield based on high resolution optical emission spectroscopy. The absolute measurement of the air fluorescence yield is feasible using the Cherenkov light, emitted by an electron beam simultaneously with the fluorescence light, as a "standard candle". The separation of these two radiations can be accomplished exploiting the "dark" spectral regions of the emission band systems of the molecular spectrum of nitrogen. In these "dark" regions the net Cherenkov light can be recorded experimentally and be compared with the calculated one. The instrumentation for obtaining the nitrogen molecular spectra in high resolution and the noninvasive method for monitoring the rotational temperature of the emission process are also described. For the experimental evaluation of the molecular spectra analysis we used DC normal glow discharges in air performed in an appropriate spectral lamp considered as an air-fluorescence light emulator. The propose...

  11. Isoscaling and fission modes in the yields of the Kr and Xe isotopes from photofission of actinides

    Science.gov (United States)

    Drnoyan, J.; Zhemenik, V. I.; Mishinsky, G. V.

    2016-05-01

    Yields of Kr and Xe isotopes in photofission of 232Th, 238U, 237Np, 244Pu, 243Am, and 248Cm were tested for isoscaling dependence. Isoscaling for Kr is revealed. For Xe, isoscaling is found to be affected by the STI and STII fission modes governed by the N = 82 and N = 88 neutron shells. The work was performed at the Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research (JINR).

  12. Measurements of the effective cumulative fission yields of 143Nd, 145Nd, 146Nd, 148Nd and 150Nd for 235U in the PHENIX fast reactor

    Directory of Open Access Journals (Sweden)

    Privas Edwin

    2016-01-01

    Full Text Available The effective Neodymium cumulative fission yields for 235U have been measured in the fast reactor PHENIX relatively to the 235U fission cross-section. The data were derived from isotope-ratio measurements obtained in the frame of the PROFIL-1, PROFIL-2A and PROFIL-2B programs. The interpretations of the experimental programs were performed with the ERANOS code in association with the Joint Evaluated Fission and Fusion library JEFF-3.1.1. Final results for 143Nd, 145Nd, 146Nd, 148Nd and 150Nd were 5.61%, 3.70%, 2.83%, 1.64% and 0.66%, respectively. The relative uncertainties attached to each of the cumulative fission yields lie between 2.1% and 2.4%. The main source of uncertainty is due to the fluence scaling procedure (<2%. The uncertainties on the Neodymium capture cross-sections provide a contribution lower than 1%. The energy dependence of the fission yields was studied with the GEF code from the thermal energy to 20 MeV. Neutron spectrum average corrections, deduced from GEF calculations, were applied to our effective fission yields with the aim of estimating fission yields at 400 keV and 500 keV, as given in the International Evaluated Nuclear Data Files (JEFF, ENDF/B and JENDL. The neutron spectrum average correction calculated for the PROFIL results remains lower than 1.5%.

  13. Simultaneous measurement of the neutron capture and fission yields of {sup 233}U

    Energy Technology Data Exchange (ETDEWEB)

    Berthoumieux, E.; Abbondanno, U.; Aerts, G.; Alvarez, H.A.; Alvarez-Velarde, F.A.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, G.; Baumann, P.; Becvar, F.; Calvino, F.; Calviani, M.; Cano Ott, D.; Capote, R.; Carrapic, C.; Cennini, P.; Chepel, V.; Chiaveri, E.; Colonna, N.; Cortes, G.; Couture, A.; Cox, J.; Dahlfors, M.; David, S.; Dillmann, I.; Domingo-Pardo, C.; Dridi, W.; Duran, I.; Eleftheriadis, C.; Embid-Segura, M.; Ferrant, L.; Ferrari, A.; Ferreira-Marques, R.; Fujii, K.; Furman, W.; Goncalves, I.; Gonzalez-Romero, E.; Gramegna, F.; Guerrero, C.; Gunsing, F.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Igashira, M.; Jericha, E.; Kappeler, F.; Kadi, Y.; Karadimos, D.; Karamanis, D.; Kerveno, M.; Koehler, P.; Kossionides, E.; Krticka, M.; Lampoudis, C.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, S.; Marganiec, J.; Marrone, S.; Martinez, T.; Massimi, C.; Mastinu, P.; Mengoni, A.; Milazzo, P.M.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; O' Brien, S.; Pancin, J.; Papachristodoulou, C.; Papadopoulos, C.; Paradela, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Pigni, M.T.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Praena, J.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Santos, C.; Sarchiapone, L.; Savvidis, I.; Stephan, C.; Tagliente, G.; Tain, J.L.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vincente, M.C.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Walter, S.; Wiescher, M.; Wisshak, K

    2008-07-01

    We have measured the neutron capture and fission cross section of {sup 233}U at the neutron time-of-flight facility n-TOF at CERN in the energy range from 1 eV to 1 MeV with high accuracy by using a high performance 4{pi} BaF{sub 2} Total Absorption Calorimeter (TAC) as a detection device. The method, based on the shape analysis of the TAC energy response, allowing to disentangle between {gamma}'s originating from fission and capture will be presented as well as the first very preliminary results. (authors)

  14. Determination of critical assembly absolute power using post-irradiation activation measurement of week-lived fission products.

    Science.gov (United States)

    Košťál, Michal; Švadlenková, Marie; Milčák, Ján; Rypar, Vojtěch; Koleška, Michal

    2014-07-01

    The work presents a detailed comparison of calculated and experimentally determined net peak areas of longer-living fission products after 100 h irradiation on a reactor with power of ~630 W and several days cooling. Specifically the nuclides studied are (140)Ba, (103)Ru, (131)I, (141)Ce, (95)Zr. The good agreement between the calculated and measured net peak areas, which is better than in determination using short lived (92)Sr, is reported. The experiment was conducted on the VVER-1000 mock-up installed on the LR-0 reactor. The Monte Carlo approach has been used for calculations. The influence of different data libraries on results of calculation is discussed as well.

  15. On the absolute calibration of a DT fusion neutron yield diagnostic

    Directory of Open Access Journals (Sweden)

    Ruiz C.L.

    2013-11-01

    Full Text Available Recent advances in Inertial Confinement Fusion (ICF experiments at Lawrence Livermore National Laboratory's National Ignition Facility (NIF have underscored the need for accurate total yield measurements of DT neutrons because yield measurements provide a measure of the predicted performance of the experiments. Future gas-puff DT experiments at Sandia National Laboratory's Z facility will also require similar measurements. For ICF DT experiments, the standard technique for measuring the neutron (14.1 MeV yield, counts the activity (counts/minute induced in irradiated copper samples. This activity occurs by the 63Cu(n,2n62Cu reaction where 62Cu decays by positrons (β+ with a half-life of 9.67 minutes. The calibrations discussed here employ the associated-particle method (APM, where the α (4He particles from the T(d,n4He reaction are measured to infer neutron fluxes on a copper sample. The flux induces 62Cu activity, measured in a coincidence counting system. The method leads to a relationship between a DT neutron yield and copper activity known as the F-factor. The goal in future experiments is to apply this calibration to measure the yield at NIF with a combined uncertainty approaching 5%.

  16. Miniature high-throughput chemosensing of yield, ee, and absolute configuration from crude reaction mixtures.

    Science.gov (United States)

    Bentley, Keith W; Zhang, Peng; Wolf, Christian

    2016-02-01

    High-throughput experimentation (HTE) has emerged as a widely used technology that accelerates discovery and optimization processes with parallel small-scale reaction setups. A high-throughput screening (HTS) method capable of comprehensive analysis of crude asymmetric reaction mixtures (eliminating product derivatization or isolation) would provide transformative impact by matching the pace of HTE. We report how spontaneous in situ construction of stereodynamic metal probes from readily available, inexpensive starting materials can be applied to chiroptical chemosensing of the total amount, enantiomeric excess (ee), and absolute configuration of a wide variety of amines, diamines, amino alcohols, amino acids, carboxylic acids, α-hydroxy acids, and diols. This advance and HTS potential are highlighted with the analysis of 1 mg of crude reaction mixtures of a catalytic asymmetric reaction. This operationally simple assay uses a robust mix-and-measure protocol, is amenable to microscale platforms and automation, and provides critical time efficiency and sustainability advantages over traditional serial methods. PMID:26933684

  17. Detection of sputtered and evaporated carbon aggregates: relative and absolute electron ionization fragmentation yields

    International Nuclear Information System (INIS)

    The present study is a first attempt to determine electron impact ionization efficiencies for C2 and C3. A novel method has been applied to obtain the partial cross-section values for the reactions C2+e→C+,C2+e→C2+ and C3+e→C+,C3+e→C2+ and C3+e→C3+. The neutral target consisting of C, C2 and C3 is produced by thermal evaporation from a heated graphite sample and the neutral precursors in the subsequent ionization process can be distinguished by their different flight-time distributions acquired in the evaporation process. The partial ionization cross-section ratios obtained in this experiment have been calibrated with calculated absolute total ionization cross section curves of C2 and C3 using the Deutsch-Maerk (DM) formalism

  18. Absolute nuclear material assay

    Science.gov (United States)

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2010-07-13

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  19. Use of proportional counter in X-Ray spectrometry between 5 and 100 keV. Application to the detection of fission products and to the determination of absolute X-Ray disintegration rates

    International Nuclear Information System (INIS)

    The measurement of electromagnetic radiations is difficult in the energy range 20-100 keV. We made suitable for this purpose a regular proportional counter, modifying both the nature and pressure of the gaseous mixture filling the detector volume. We selected the CPEN-SAIP counter, which is able to withstand such modifications. In the energy range considered, the counter is to be standardized with radioactive sources. Such standards were selected according to their disintegration schemes. We thus defined the conditions of use (resolution, yield) of the CPN counter, filled with an argon-methane mixture under a pressure of about 3 bars, in the energy range 5-100 keV. With such an equipment, we were able to measure the absolute disintegration rate for the X-rays of 133 Ba and 75 Se, then to perform the study of a mixed fission products sample. In the same way, we used xenon-based gaseous mixtures, in order to improve the detector yield; in the later case, we carefully examined the limitations introduced by the presence of many parasite rays emitted by the gas. We thus displayed in addition to the leakage peak, the fluorescence ray of the gas, whose origin is difficult to explain. (author)

  20. Extremely efficient exciton fission and fusion and its dominant contribution to the photoluminescence yield in rubrene single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Biaggio, Ivan; Irkhin, Pavel [Department of Physics, Lehigh University, Bethlehem, Pennsylvania 18015 (United States)

    2013-12-23

    Measurements of photoluminescence yield over a wide range of excitation power in rubrene single crystals reveal a transition between a low-yield region and a region with a yield more than an order of magnitude larger. This transition occurs at an excitation density of 3 × 10{sup 20} cm{sup −3} absorbed photons per second. This power dependence is predicted in case of an extremely efficient conversion between singlet and triplet excitons through fission and fusion. Triplet fusion starts contributing to rubrene's photoluminescence already at intensities of a few mW/cm{sup 2} at room temperature, corresponding to triplet densities of ∼10{sup 16} cm{sup −3}.

  1. Systematic determination of the JET absolute neutron yield using the MPR spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Kronborg-Pettersson, N

    2003-04-01

    This thesis describes the first high-statistics systematic analysis of JET neutron yield and rate measurements obtained by using data acquired with the Magnetic Proton Recoil (MPR) neutron spectrometer. The neutron yield and rate were determined by using the count-rate from the MPR neutron spectrometer together with neutron profile information from other neutron diagnostic systems. This has previously been done manually for a few pulses. To be able to do this in a more systematic way a part of the neutron spectrum evaluation code was extracted and put into a separate custom-made program and modifications were done to extract sets of MPR data automatically. The codes have been used for analysis of a large set of pulses from the deuterium-tritium campaign at JET in 1997. Several results were obtained, the most significant of which was the clear improvement seen when neutron profile corrections were applied. Neutron yield-rates derived from MPR count-rate are shown to be in excellent agreement with other JET neutron diagnostic data.

  2. Comparison of available measurements of the absolute air-fluorescence yield and determination of its global average value

    CERN Document Server

    Rosado, J; Arqueros, F

    2011-01-01

    Experimental results of the absolute air-fluorescence yield are given very often in different units (photons/MeV or photons/m) and for different wavelength intervals. In this work we present a comparison of available results normalized to its value in photons/MeV for the 337 nm band at 1013 hPa and 293 K. The conversion of photons/m to photons/MeV requires an accurate determination of the energy deposited by the electrons in the field of view of the experimental set-up. We have calculated the energy deposition for each experiment by means of a detailed Monte Carlo simulation and the results have been compared with those assumed or calculated by the authors. As a result, corrections to the reported fluorescence yields are proposed. These corrections improve the compatibility between measurements in such a way that a reliable average value with uncertainty at the level of 5% is obtained.

  3. Fission product data library

    International Nuclear Information System (INIS)

    A library is described of data for 584 isotopes of fission products, including decay constants, branching ratios (both burn-up and decay), the type of emitted radiation, relative and absolute yields, capture cross sections for thermal neutrons, and resonance integrals. When a detailed decay scheme is not known, the mean energies of beta particles and neutrino and gamma radiations are given. In the ZVJE SKODA system the library is named BIBFP and is stored on film No 49 of the NE 803 B computer. It is used in calculating the inventory of fission products in fuel elements (and also determining absorption cross sections for burn-up calculations, gamma ray sources, heat generation) and in solving radioactivity transport problems in the primary circuit. It may also be used in the spectrometric method for burn-up determination of fuel elements. The library comprises the latest literary data available. It serves as the basis for library BIBGRFP storing group constants of fission products with independent yields of isotopes from fission. This, in turn, forms the basis for the BIBDN library collecting data on the precursors of delayed neutron emitters. (author)

  4. ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data

    Science.gov (United States)

    Chadwick, M. B.; Herman, M.; Obložinský, P.; Dunn, M. E.; Danon, Y.; Kahler, A. C.; Smith, D. L.; Pritychenko, B.; Arbanas, G.; Arcilla, R.; Brewer, R.; Brown, D. A.; Capote, R.; Carlson, A. D.; Cho, Y. S.; Derrien, H.; Guber, K.; Hale, G. M.; Hoblit, S.; Holloway, S.; Johnson, T. D.; Kawano, T.; Kiedrowski, B. C.; Kim, H.; Kunieda, S.; Larson, N. M.; Leal, L.; Lestone, J. P.; Little, R. C.; McCutchan, E. A.; MacFarlane, R. E.; MacInnes, M.; Mattoon, C. M.; McKnight, R. D.; Mughabghab, S. F.; Nobre, G. P. A.; Palmiotti, G.; Palumbo, A.; Pigni, M. T.; Pronyaev, V. G.; Sayer, R. O.; Sonzogni, A. A.; Summers, N. C.; Talou, P.; Thompson, I. J.; Trkov, A.; Vogt, R. L.; van der Marck, S. C.; Wallner, A.; White, M. C.; Wiarda, D.; Young, P. G.

    2011-12-01

    The ENDF/B-VII.1 library is our latest recommended evaluated nuclear data file for use in nuclear science and technology applications, and incorporates advances made in the five years since the release of ENDF/B-VII.0. These advances focus on neutron cross sections, covariances, fission product yields and decay data, and represent work by the US Cross Section Evaluation Working Group (CSEWG) in nuclear data evaluation that utilizes developments in nuclear theory, modeling, simulation, and experiment. The principal advances in the new library are: (1) An increase in the breadth of neutron reaction cross section coverage, extending from 393 nuclides to 423 nuclides; (2) Covariance uncertainty data for 190 of the most important nuclides, as documented in companion papers in this edition; (3) R-matrix analyses of neutron reactions on light nuclei, including isotopes of He, Li, and Be; (4) Resonance parameter analyses at lower energies and statistical high energy reactions for isotopes of Cl, K, Ti, V, Mn, Cr, Ni, Zr and W; (5) Modifications to thermal neutron reactions on fission products (isotopes of Mo, Tc, Rh, Ag, Cs, Nd, Sm, Eu) and neutron absorber materials (Cd, Gd); (6) Improved minor actinide evaluations for isotopes of U, Np, Pu, and Am (we are not making changes to the major actinides 235,238U and 239Pu at this point, except for delayed neutron data and covariances, and instead we intend to update them after a further period of research in experiment and theory), and our adoption of JENDL-4.0 evaluations for isotopes of Cm, Bk, Cf, Es, Fm, and some other minor actinides; (7) Fission energy release evaluations; (8) Fission product yield advances for fission-spectrum neutrons and 14 MeV neutrons incident on 239Pu; and (9) A new decay data sublibrary. Integral validation testing of the ENDF/B-VII.1 library is provided for a variety of quantities: For nuclear criticality, the VII.1 library maintains the generally-good performance seen for VII.0 for a wide range

  5. ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data

    Energy Technology Data Exchange (ETDEWEB)

    Chadwick, M.B.; Herman, M.; Author(s): Chadwick,M.B.; Herman,M.; Oblozinsky,P.; Dunn,M.E.; Danon,Y.; Kahler,A.C.; Smith,D.L.; Pritychenko,B.; Arbanas,G.; Arcilla,R.; Brewer,R.; Brown,D.A.; Capote,R.; Carlson,A.D.; Cho,Y.S.; Derrien,H.; Guber,K.; Hale,G.M.; Hoblit,S.; Holloway,S.: Johnson,T.D.; Kawano,T.; Kiedrowski,B.C.; Kim,H.; Kunieda,S.; Larson,N.M.; Leal,L.; Lestone,J.P.; Little,R.C.; McCutchan,E.A.; MacFarlane,R.E.; MacInnes,M.; Mattoon,C.M.; McKnight,R.D.; Mughabghab,S.F.; Nobre,G.P.A.; Palmiotti,G.; Palumbo,A.; Pigni,M.T.; Pronyaev,V.G.; Sayer,R.O.; Sonzogni,A.A.; Summers,N.C.; Talou,P.; Thompson,I.J.; Trkov,A.; Vogt,R.L.; van der Marck,S.C.; Wallner,A.; White,M.C.; Wiarda,D.; Young,P.G.

    2011-12-01

    The ENDF/B-VII.1 library is our latest recommended evaluated nuclear data file for use in nuclear science and technology applications, and incorporates advances made in the five years since the release of ENDF/B-VII.0. These advances focus on neutron cross sections, covariances, fission product yields and decay data, and represent work by the US Cross Section Evaluation Working Group (CSEWG) in nuclear data evaluation that utilizes developments in nuclear theory, modeling, simulation, and experiment. The principal advances in the new library are: (1) An increase in the breadth of neutron reaction cross section coverage, extending from 393 nuclides to 423 nuclides; (2) Covariance uncertainty data for 190 of the most important nuclides, as documented in companion papers in this edition; (3) R-matrix analyses of neutron reactions on light nuclei, including isotopes of He, Li, and Be; (4) Resonance parameter analyses at lower energies and statistical high energy reactions for isotopes of Cl, K, Ti, V, Mn, Cr, Ni, Zr and W; (5) Modifications to thermal neutron reactions on fission products (isotopes of Mo, Tc, Rh, Ag, Cs, Nd, Sm, Eu) and neutron absorber materials (Cd, Gd); (6) Improved minor actinide evaluations for isotopes of U, Np, Pu, and Am (we are not making changes to the major actinides {sup 235,238}U and {sup 239}Pu at this point, except for delayed neutron data and covariances, and instead we intend to update them after a further period of research in experiment and theory), and our adoption of JENDL-4.0 evaluations for isotopes of Cm, Bk, Cf, Es, Fm, and some other minor actinides; (7) Fission energy release evaluations; (8) Fission product yield advances for fission-spectrum neutrons and 14 MeV neutrons incident on {sup 239}Pu; and (9) A new decay data sublibrary. Integral validation testing of the ENDF/B-VII.1 library is provided for a variety of quantities: For nuclear criticality, the VII.1 library maintains the generally-good performance seen for VII.0

  6. ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data

    Energy Technology Data Exchange (ETDEWEB)

    Chadwick, M. B. [Los Alamos National Laboratory (LANL); Herman, Micheal W [Brookhaven National Laboratory (BNL); Oblozinsky, Pavel [Brookhaven National Laboratory (BNL); Dunn, Michael E [ORNL; Danon, Y. [Rensselaer Polytechnic Institute (RPI); Kahler, A. [Los Alamos National Laboratory (LANL); Smith, Donald L. [Argonne National Laboratory (ANL); Pritychenko, B [Brookhaven National Laboratory (BNL); Arbanas, Goran [ORNL; Arcilla, r [Brookhaven National Laboratory (BNL); Brewer, R [Los Alamos National Laboratory (LANL); Brown, D A [Brookhaven National Laboratory (BNL); Capote, R. [International Atomic Energy Agency (IAEA); Carlson, A. D. [National Institute of Standards and Technology (NIST); Cho, Y S [Korea Atomic Energy Research Institute; Derrien, Herve [ORNL; Guber, Klaus H [ORNL; Hale, G. M. [Los Alamos National Laboratory (LANL); Hoblit, S [Brookhaven National Laboratory (BNL); Holloway, Shannon T. [Los Alamos National Laboratory (LANL); Johnson, T D [Brookhaven National Laboratory (BNL); Kawano, T. [Los Alamos National Laboratory (LANL); Kiedrowski, B C [Los Alamos National Laboratory (LANL); Kim, H [Korea Atomic Energy Research Institute; Kunieda, S [Los Alamos National Laboratory (LANL); Larson, Nancy M [ORNL; Leal, Luiz C [ORNL; Lestone, J P [Los Alamos National Laboratory (LANL); Little, R C [Los Alamos National Laboratory (LANL); Mccutchan, E A [Brookhaven National Laboratory (BNL); Macfarlane, R E [Los Alamos National Laboratory (LANL); MacInnes, M [Los Alamos National Laboratory (LANL); Matton, C M [Lawrence Livermore National Laboratory (LLNL); Mcknight, R D [Argonne National Laboratory (ANL); Mughabghab, S F [Brookhaven National Laboratory (BNL); Nobre, G P [Brookhaven National Laboratory (BNL); Palmiotti, G [Idaho National Laboratory (INL); Palumbo, A [Brookhaven National Laboratory (BNL); Pigni, Marco T [ORNL; Pronyaev, V. G. [Institute of Physics and Power Engineering (IPPE), Obninsk, Russia; Sayer, Royce O [ORNL; Sonzogni, A A [Brookhaven National Laboratory (BNL); Summers, N C [Lawrence Livermore National Laboratory (LLNL); Talou, P [Los Alamos National Laboratory (LANL); Thompson, I J [Lawrence Livermore National Laboratory (LLNL); Trkov, A. [Jozef Stefan Institute, Slovenia; Vogt, R L [Lawrence Livermore National Laboratory (LLNL); Van der Marck, S S [Nucl Res & Consultancy Grp, Petten, Netherlands; Wallner, A [University of Vienna, Austria; White, M C [Los Alamos National Laboratory (LANL); Wiarda, Dorothea [ORNL; Young, P C [Los Alamos National Laboratory (LANL)

    2011-01-01

    The ENDF/B-VII.1 library is our latest recommended evaluated nuclear data file for use in nuclear science and technology applications, and incorporates advances made in the five years since the release of ENDF/B-VII.0. These advances focus on neutron cross sections, covariances, fission product yields and decay data, and represent work by the US Cross Section Evaluation Working Group (CSEWG) in nuclear data evaluation that utilizes developments in nuclear theory, modeling, simulation, and experiment. The principal advances in the new library are: (1) An increase in the breadth of neutron reaction cross section coverage, extending from 393 nuclides to 423 nuclides; (2) Covariance uncertainty data for 190 of the most important nuclides, as documented in companion papers in this edition; (3) R-matrix analyses of neutron reactions on light nuclei, including isotopes of He; Li, and Be; (4) Resonance parameter analyses at lower energies and statistical high energy reactions for isotopes of Cl; K; Ti, V, Mn, Cr, Ni, Zr and W; (5) Modifications to thermal neutron reactions on fission products (isotopes of Mo, Tc, Rh, Ag, Cs, Nd, Sm, Eu) and neutron absorber materials (Cd, Gd); (6) Improved minor actinide evaluations for isotopes of U, Np, Pu, and Am (we are not making changes to the major actinides (235,238)U and (239)Pu at this point, except for delayed neutron data and covariances, and instead we intend to update them after a further period of research in experiment and theory), and our adoption of JENDL-4.0 evaluations for isotopes of Cm, Bk, Cf, Es; Fm; and some other minor actinides; (7) Fission energy release evaluations; (8) Fission product yield advances for fission-spectrum neutrons and 14 MeV neutrons incident on (239)Pu; and (9) A new decay data sublibrary. Integral validation testing of the ENDF/B-VII.1 library is provided for a variety of quantities: For nuclear criticality, the VII.1 library maintains the generally-good performance seen for VII.0 for a wide

  7. Microstructural origins of yield strength changes in AISI 316 during fission or fusion irradiation

    International Nuclear Information System (INIS)

    The changes in yield strength of AISI 316 irradiated in breeder reactors have been successfully modeled in terms of concurrent changes in microstructural components. Two new insights involving the strength contributions of voids and Frank loops have been incorporated into the hardening models. Both the radiation-induced microstructure and the yield strength exhibit transients which are then followed by saturation at a level dependent on the irradiation temperature. Extrapolation to anticipated fusion behavior based on microstructural comparisons leads to the conclusion that the primary influence of transmutational differences is only to alter the transient behavior and not the saturation level of yield strength

  8. Reliability of Monte Carlo simulations in modeling neutron yields from a shielded fission source

    Science.gov (United States)

    McArthur, Matthew S.; Rees, Lawrence B.; Czirr, J. Bart

    2016-08-01

    Using the combination of a neutron-sensitive 6Li glass scintillator detector with a neutron-insensitive 7Li glass scintillator detector, we are able to make an accurate measurement of the capture rate of fission neutrons on 6Li. We used this detector with a 252Cf neutron source to measure the effects of both non-borated polyethylene and 5% borated polyethylene shielding on detection rates over a range of shielding thicknesses. Both of these measurements were compared with MCNP calculations to determine how well the calculations reproduced the measurements. When the source is highly shielded, the number of interactions experienced by each neutron prior to arriving at the detector is large, so it is important to compare Monte Carlo modeling with actual experimental measurements. MCNP reproduces the data fairly well, but it does generally underestimate detector efficiency both with and without polyethylene shielding. For non-borated polyethylene it underestimates the measured value by an average of 8%. This increases to an average of 11% for borated polyethylene.

  9. Decay Heat Analyses after Thermal-Neutron Fission of {sup 235}U and {sup 239}Pu by SCALE-6.1.3 with Recently Available Fission Product Yield Data

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Do Heon; Gil, Choong-Sup; Lee, Young-Ouk [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    The heat reaches about 1.5% after one hour and falls to 0.4% after a day. After a week it will be about 0.2%. The reactor, however, still requires further cooling for several years to keep the fuel rods safe. In general, the decay heat in the reactors can be calculated using a summation calculation method, which is simply the sum of the activities of the fission products produced during the fission process and after the reactor shutdown weighted by the mean decay energies. Consequently, the method is strongly dependent on the available nuclear structure data. Nowadays, the method has been implemented in various burnup and depletion programs such as ORIGEN and CINDER. In this study, the decay heat measurements after thermal-neutron fission of {sup 235}U and {sup 239}Pu have been evaluated by the ORIGEN-S with the decay data and fission product yield libraries included in the SCALE-6.1.3 software package. The new libraries were applied to the decay heat calculations, and the results were compared with those by the ORIGEN reference calculation. The decay heat measurements for very short cooling times after thermal-neutron fission of {sup 235}U and {sup 239}Pu have been evaluated by the ORIGEN-S summation calculation. The reference calculation results by the latest ORIGEN data libraries of the SCALE-6.1.3 have been validated with the measurements by ORNL and Studsvik. In addition, the generation of the new ORIGEN yield libraries has been completed based on the ENDF/B-VII.1, JEFF-3.1.1, JENDL/FPY-2011, and JENDL-4.0. The new libraries have been successfully applied to the decay heat calculations and comparative analyses have been devoted to verifying the importance of the fission product yield data when estimating the decay heat values for each isotope in a very short time. The decay data library occupies an important position in the ORIGEN summation calculation along with the fission product yield library.

  10. Measurements of extinct fission products in nuclear bomb debris: Determination of the yield of the Trinity nuclear test 70 y later.

    Science.gov (United States)

    Hanson, Susan K; Pollington, Anthony D; Waidmann, Christopher R; Kinman, William S; Wende, Allison M; Miller, Jeffrey L; Berger, Jennifer A; Oldham, Warren J; Selby, Hugh D

    2016-07-19

    This paper describes an approach to measuring extinct fission products that would allow for the characterization of a nuclear test at any time. The isotopic composition of molybdenum in five samples of glassy debris from the 1945 Trinity nuclear test has been measured. Nonnatural molybdenum isotopic compositions were observed, reflecting an input from the decay of the short-lived fission products (95)Zr and (97)Zr. By measuring both the perturbation of the (95)Mo/(96)Mo and (97)Mo/(96)Mo isotopic ratios and the total amount of molybdenum in the Trinity nuclear debris samples, it is possible to calculate the original concentrations of the (95)Zr and (97)Zr isotopes formed in the nuclear detonation. Together with a determination of the amount of plutonium in the debris, these measurements of extinct fission products allow for new estimates of the efficiency and yield of the historic Trinity test.

  11. Development of ionization technique for measurement of fast neutron induced fission products yields of {sup 237}Np

    Energy Technology Data Exchange (ETDEWEB)

    Goverdovski, A.A.; Khryachkov, V.A.; Ketlerov, V.V.; Mitrofanov, V.F.; Ostapenko, Yu.B.; Semenova, N.N.; Fomichev, A.N.; Rodina, L.F. [Institute of Physics and Power Engineering, Obninsk (Russian Federation)

    1997-03-01

    Twin gridded ionization chamber and corresponding software was designed for measurements of masses, kinetic energies and nuclear charges of fission fragments from fast neutron induced fission of {sup 237}Np. The ionization detector design, electronics, data acquisition and processing system and the test results are presented in this paper. (J.P.N.)

  12. Seminar on Fission VI

    Science.gov (United States)

    Wagemans, Cyriel; Wagemans, Jan; D'Hondt, Pierre

    2008-04-01

    Topical reviews. Angular momentum in fission / F. Gönnenwein ... [et al.]. The processes of fusion-fission and quasi-fission of heavy and super-heavy nuclei / M. G. Itkis ... [et al.] -- Fission cross sections and fragment properties. Minor-actinides fission cross sections and fission fragment mass yields via the surrogate reaction technique / B. Jurado ... [et al.]. Proton-induced fission on actinide nuclei at medium energy / S. Isaev ... [et al.]. Fission cross sections of minor actinides and application in transmutation studies / A. Letourneau ... [et al.]. Systematics on even-odd effects in fission fragments yields: comparison between symmetric and asymmetric splits / F. Rejmund, M Caamano. Measurement of kinetic energy distributions, mass and isotopic yields in the heavy fission products region at Lohengrin / A. Bail ... [et al.] -- Ternary fission. On the Ternary [symbol] spectrum in [symbol]Cf(sf) / M. Mutterer ... [et al.]. Energy degrader technique for light-charged particle spectroscopy at LOHENGRIN / A. Oberstedt, S. Oberstedt, D. Rochman. Ternary fission of Cf isotopes / S. Vermote ... [et al.]. Systematics of the triton and alpha particle emission in ternary fission / C. Wagemans, S. Vermote, O. Serot -- Neutron emission in fission. Scission neutron emission in fission / F.-J. Hambsch ... [et al.]. At and beyond the Scission point: what can we learn from Scission and prompt neutrons? / P. Talou. Fission prompt neutron and gamma multiplicity by statistical decay of fragments / S. Perez-Martin, S. Hilaire, E. Bauge -- Fission theory. Structure and fission properties of actinides with the Gogny force / H. Goutte ... [et al.]. Fission fragment properties from a microscopic approach / N. Dubray, H. Goutte, J.-P. Delaroche. Smoker and non-smoker neutron-induced fission rates / I. Korneev ... [et al.] -- Facilities and detectors. A novel 2v2E spectrometer in Manchester: new development in identification of fission fragments / I. Tsekhanovich ... [et al

  13. Comparison of various hours living fission products for absolute power density determination in VVER-1000 mock up in LR-0 reactor.

    Science.gov (United States)

    Košťál, Michal; Švadlenková, Marie; Koleška, Michal; Rypar, Vojtěch; Milčák, Ján

    2015-11-01

    Measuring power level of zero power reactor is a quite difficult task. Due to the absence of measurable cooling media heating, it is necessary to employ a different method. The gamma-ray spectroscopy of fission products induced within reactor operation is one of possible ways of power determination. The method is based on the proportionality between fission product buildup and released power. The (92)Sr fission product was previously preferred as nuclide for LR-0 power determination for short-time irradiation experiments. This work aims to find more appropriate candidates, because the (92)Sr, however suitable, has a short half-life, which limits the maximal measurable amount of fuel pins within a single irradiation batch. The comparison of various isotopes is realized for (92)Sr, (97)Zr, (135)I, (91)Sr, and (88)Kr. The comparison between calculated and experimentally determined (C/E-1 values) net peak areas is assessed for these fission products. Experimental results show that studied fission products, except (88)Kr, are in comparable agreement with (92)Sr results. Since (91)Sr has notably higher half-life than (92)Sr, (91)Sr seems to be more appropriate marker in experiments with a large number of measured fuel pins.

  14. A method for in situ absolute DD yield calibration of neutron time-of-flight detectors on OMEGA using CR-39-based proton detectors.

    Science.gov (United States)

    Waugh, C J; Rosenberg, M J; Zylstra, A B; Frenje, J A; Séguin, F H; Petrasso, R D; Glebov, V Yu; Sangster, T C; Stoeckl, C

    2015-05-01

    Neutron time of flight (nTOF) detectors are used routinely to measure the absolute DD neutron yield at OMEGA. To check the DD yield calibration of these detectors, originally calibrated using indium activation systems, which in turn were cross-calibrated to NOVA nTOF detectors in the early 1990s, a direct in situ calibration method using CR-39 range filter proton detectors has been successfully developed. By measuring DD neutron and proton yields from a series of exploding pusher implosions at OMEGA, a yield calibration coefficient of 1.09 ± 0.02 (relative to the previous coefficient) was determined for the 3m nTOF detector. In addition, comparison of these and other shots indicates that significant reduction in charged particle flux anisotropies is achieved when bang time occurs significantly (on the order of 500 ps) after the trailing edge of the laser pulse. This is an important observation as the main source of the yield calibration error is due to particle anisotropies caused by field effects. The results indicate that the CR-39-nTOF in situ calibration method can serve as a valuable technique for calibrating and reducing the uncertainty in the DD absolute yield calibration of nTOF detector systems on OMEGA, the National Ignition Facility, and laser megajoule. PMID:26026524

  15. A method for in situ absolute DD yield calibration of neutron time-of-flight detectors on OMEGA using CR-39-based proton detectors

    International Nuclear Information System (INIS)

    Neutron time of flight (nTOF) detectors are used routinely to measure the absolute DD neutron yield at OMEGA. To check the DD yield calibration of these detectors, originally calibrated using indium activation systems, which in turn were cross-calibrated to NOVA nTOF detectors in the early 1990s, a direct in situ calibration method using CR-39 range filter proton detectors has been successfully developed. By measuring DD neutron and proton yields from a series of exploding pusher implosions at OMEGA, a yield calibration coefficient of 1.09 ± 0.02 (relative to the previous coefficient) was determined for the 3m nTOF detector. In addition, comparison of these and other shots indicates that significant reduction in charged particle flux anisotropies is achieved when bang time occurs significantly (on the order of 500 ps) after the trailing edge of the laser pulse. This is an important observation as the main source of the yield calibration error is due to particle anisotropies caused by field effects. The results indicate that the CR-39-nTOF in situ calibration method can serve as a valuable technique for calibrating and reducing the uncertainty in the DD absolute yield calibration of nTOF detector systems on OMEGA, the National Ignition Facility, and laser megajoule

  16. A method for in situ absolute DD yield calibration of neutron time-of-flight detectors on OMEGA using CR-39-based proton detectors

    International Nuclear Information System (INIS)

    Neutron time of flight (nTOF) detectors are used routinely to measure the absolute DD neutron yield at OMEGA. To check the DD yield calibration of these detectors, originally calibrated using indium activation systems, which in turn were cross-calibrated to NOVA nTOF detectors in the early 1990s, a direct in situ calibration method using CR-39 range filter proton detectors has been successfully developed. By measuring DD neutron and proton yields from a series of exploding pusher implosions at OMEGA, a yield calibration coefficient of 1.09 ± 0.02 (relative to the previous coefficient) was determined for the 3m nTOF detector. In addition, comparison of these and other shots indicates that significant reduction in charged particle flux anisotropies is achieved when bang time occurs significantly (on the order of 500 ps) after the trailing edge of the laser pulse. This is an important observation as the main source of the yield calibration error is due to particle anisotropies caused by field effects. The results indicate that the CR-39-nTOF in situ calibration method can serve as a valuable technique for calibrating and reducing the uncertainty in the DD absolute yield calibration of nTOF detector systems on OMEGA, the National Ignition Facility, and laser megajoule

  17. A method for in situ absolute DD yield calibration of neutron time-of-flight detectors on OMEGA using CR-39-based proton detectors

    Energy Technology Data Exchange (ETDEWEB)

    Waugh, C. J., E-mail: cjwaugh@mit.edu; Zylstra, A. B.; Frenje, J. A.; Séguin, F. H.; Petrasso, R. D. [Plasma Science and Fusion Center, MIT, Cambridge, Massachusetts 02139 (United States); Rosenberg, M. J.; Glebov, V. Yu.; Sangster, T. C.; Stoeckl, C. [Laboratory for Laser Energetics, Rochester, New York 14623 (United States)

    2015-05-15

    Neutron time of flight (nTOF) detectors are used routinely to measure the absolute DD neutron yield at OMEGA. To check the DD yield calibration of these detectors, originally calibrated using indium activation systems, which in turn were cross-calibrated to NOVA nTOF detectors in the early 1990s, a direct in situ calibration method using CR-39 range filter proton detectors has been successfully developed. By measuring DD neutron and proton yields from a series of exploding pusher implosions at OMEGA, a yield calibration coefficient of 1.09 ± 0.02 (relative to the previous coefficient) was determined for the 3m nTOF detector. In addition, comparison of these and other shots indicates that significant reduction in charged particle flux anisotropies is achieved when bang time occurs significantly (on the order of 500 ps) after the trailing edge of the laser pulse. This is an important observation as the main source of the yield calibration error is due to particle anisotropies caused by field effects. The results indicate that the CR-39-nTOF in situ calibration method can serve as a valuable technique for calibrating and reducing the uncertainty in the DD absolute yield calibration of nTOF detector systems on OMEGA, the National Ignition Facility, and laser megajoule.

  18. Experimental Neutron-Induced Fission Fragment Mass Yields of 232Th and 238U at Energies from 10 to 33 MeV

    CERN Document Server

    Simutkin, V D; Blomgren, J; Österlund, M; Bevilacqua, R; Ryzhov, I V; Tutin, G A; Yavshits, S G; Vaishnene, L A; Onegin, M S; Meulders, J P; Prieels, R

    2013-01-01

    Development of nuclear energy applications requires data for neutron-induced reactions for actinides in a wide neutron energy range. Here we describe measurements of pre-neutron emission fission fragment mass yields of 232Th and 238U at incident neutron energies from 10 to 33 MeV. The measurements were done at the quasi-monoenergetic neutron beam of the Louvain-la-Neuve cyclotron facility CYCLONE; a multi-section twin Frisch-gridded ionization chamber was used to detect fission fragments. For the peak neutron energies at 33, 45 and 60 MeV, the details of the data analysis and the experimental results have been published before and in this work we present data analysis in the low-energy tail of the neutron energy spectra. The preliminary measurement results are compared with available experimental data and theoretical predictions.

  19. The Energies, Angular Distribution and Yields of the Prompt Neutrons from Individual Fragments in the Thermal-Neutron Fission of U233 and U235

    International Nuclear Information System (INIS)

    An apparatus for simultaneously recording the velocities of both fission fragments and the velocity of a neutron at any one of four angles to the fragment direction has been used to investigate the neutron-emission properties of individual fragments. Early results for U233 exhibit the saw-tooth variation of v, the neutron yield per fragment, observed in the spontaneous fission of Cf252 The yields in the vicinity of mass 130 are consistent with no neutrons being emitted from these fragments. Unlike the neutron yields, the average neutron kinetic energy is symmetric about the symmetric mass point, being high near this point and low at the most probable mass division. The paradox between very small yields and high apparent nuclear temperatures has been qualitatively explained on the basis of a model that takes account of shell structure in the level densities and assumes that at the time of scission the fragments are cold but in some cases highly deformed, in others nearly spherical. The model is supported by the fact that in fissions with more than the average total excitation energy, the fragments near mass 130 and 80 receive much less than half the increase in energy and the other fragment of the pair much more. The experiment is now being conducted with U235 under considerably improved conditions. The background per channel under the neutron spectrum has been reduced by nearly a factor of three, so that 0.39 of all recorded events in the 10° detector are useful neutron events with a corresponding increase in statistical accuracy. Better time resolution in the fragment system (1.5 ns, full width at half maximum) has allowed the. flight paths to be shortened to 125 and 100 cm (formerly 145-145 cm) with a concomitant higher countings rate. (author)

  20. Methodology and experimental setup for measuring short-lives fission product yields in actinides induced fission by charged particles; Metodologia e montagem experimental para a medicao de rendimentos de produtos de fissao de meia vida curta na fissao de actinideos por particulas carregadas

    Energy Technology Data Exchange (ETDEWEB)

    Bellido, A.V.

    1995-07-01

    The theoretical principles and the laboratory set-up for the fission products yields measurements are described. The procedures for the experimental determinations are explain in detail. (author). 43 refs., 5 figs.

  1. Technique of absolute efficiency determination for gamma radiation semiconductor detectors

    International Nuclear Information System (INIS)

    Simple technique is suggested to determine the absolute efficiency (E) of semiconductor detectors (SCD) which employes low-intensity neutron sources wide spread in scientific laboratories. The technique is based on using radioactive nuclide gamma radiation in decay chains of heavy element fission fragments, uranium-235, for example. Cumulative yields of a number of nulcides following heavy element fission are measured to a high accuracy (1-5%), which permits to . the value E is determined for a wide energy range (from X- ray to some MeV); using a nuclide with a well known decay scheme and measured to a high accuracy cumulative yield 140La, for example, one can calibrate in absolute values comparatively easily obtained plots of the SCD relative efficiency. The technique allows to determine the E value for extended plane (and volumetric) sources of an arbitrary form. Some nuclides, convenient for the determination of E, and their nuclear characteristics are tabulated

  2. Potentialities and practical limitations of absolute neutron dosimetry using thin films of uranium and thorium applied to the fission track dating

    CERN Document Server

    Bigazzi, G; Hadler-Neto, J C; Iunes, P J; Paulo, S R; Oddone, M; Osorio, A M A; Zúñiga, A G

    1999-01-01

    Neutron dosimetry using natural uranium and thorium thin films makes possible that mineral dating by the fission-track method can be accomplished, even when poor thermalized neutron facilities are employed. In this case, the contributions of the fissions of sup 2 sup 3 sup 5 U, sup 2 sup 3 sup 8 U and sup 2 sup 3 sup 2 Th induced by thermal, epithermal and fast neutrons to the population of tracks produced during irradiation are quantified through the combined use of natural uranium and thorium films. If the Th/U ratio of the sample is known, only one irradiation (where the sample and the films of uranium and thorium are present) is necessary to perform the dating. However, if that ratio is unknown, it can be determined through another irradiation where the mineral to be dated and both films are placed inside a cadmium box. Problems related with film manufacturing and calibration are discussed. Special attention is given to the utilization of thin films having very low uranium content. The problems faced sugg...

  3. Measurements of yields of fission products in the reaction of {sup 238}U with high-energy p, d and n beams

    Energy Technology Data Exchange (ETDEWEB)

    Nolen, J.A.; Ahmad, I.; Back, B.B. [and others

    1995-08-01

    An experiment was performed at the Michigan State University cyclotron to determine the yields of neutron-rich fission products in the reaction of {sup 238}U with 100-MeV neutrons, 200-MeV deuterons and 200-MeV protons. Several 1-mm-thick {sup 238}U foils were irradiated for 100-second intervals sequentially for each configuration and the ten spectra were added for higher statistics. The three successive spectra, each for a 40 s period, were accumulated for each sample. Ten foils were irradiated. Successive spectra allowed us to determine approximate half-lives of the gamma peaks. Several arrangements, which were similar to the setup we plan to use in our radioactive beam proposal, were used for the production of fission products. For the high-energy neutron irradiation, U foils were placed after a 5-inch-long, 1-inch-diameter Be cylinder which stopped the 200-MeV deuteron beam generating 100-MeV neutrons. Arrangements for deuteron irradiation included direct irradiation of U foils, placing U foils after different lengths of (0.5 inch, 1.0 inch and 1.5 inch) 2-inch diameter U cylinder. Since the deuteron range in uranium is 17 mm, some of the irradiations were due to the secondary neutrons from the deuteron-induced fission of U. Similar arrangements were also used for the 200-MeV proton irradiation of the {sup 238}U foils. In all cases, several neutron-rich fission products were identified and their yields determined. In particular, we were able to observe Sn in all the runs and determine its yield. The data show that with our proposed radioactive device we will be able to produce more than 10{sup 12} {sup 132}Sn atoms per second in the target. Assuming an overall efficiency of 1 %, we will be able to deliver one particle nanoampere of {sup 132}Sn beam at a target location. Detailed analysis of the {gamma}-ray spectra is in progress.

  4. Easy Absolute Values? Absolutely

    Science.gov (United States)

    Taylor, Sharon E.; Mittag, Kathleen Cage

    2015-01-01

    The authors teach a problem-solving course for preservice middle-grades education majors that includes concepts dealing with absolute-value computations, equations, and inequalities. Many of these students like mathematics and plan to teach it, so they are adept at symbolic manipulations. Getting them to think differently about a concept that they…

  5. Experimental studies of fission properties utilized in reactor design

    International Nuclear Information System (INIS)

    Experimental studies of fission properties utilized in reactor design. A programme of experimental studies of fission parameters useful in reactor design is described including the following: (a) The periods and yields of delayed-neutron groups emitted following the neutron-induced fission of Pu241 are measured. Evidence for systematic isotopic dependence of delayed-neutron yields is presented. An experimental investigation of the relation between the time behaviour of delayed-neutron emission and the energy of the incident neutron inducing fission is described. (b) The cross-section for the inducing, of fission in Am243, Pu242 and Pu241 with neutrons in the energy range 0.030 to 1.8 MeV is measured. Emphasis is placed upon the detailed dependence of the fission cross-section on the incident-neutron energy. The absolute values of the cross-sections are given to a precision of ∼25%. (c) Detailed results of a measurement of the Pu241 fission-neutron spectrum are given, including the spectral shape and average fission-neutron energy. Techniques and methods of measuring prompt-fission-neutron spectra are described. (d) The dependence of #-v# (the average number of neutrons emitted per fission) of U235 on the incident neutron energy is measured from 100 keV to 1.6 MeV. #-v# of U238 and other fissile isotopes is compared to #-v# of U235 (thermal). The relative precision of the measurements is #>approx#1.2%. (author)

  6. Absolute quantum yield measurements for the formation of oxygen atoms after UV laser excitation of SO2 at 222.4 nm

    Indian Academy of Sciences (India)

    Mohammed Abu-Bajeh; Melanie Cameron; Kyung-Hoon Jung; Christoph Kappel; Almuth Läuter; Kyoung-Seok Lee; Hari P Upadhyaya; Rajesh K Vatsa; Hans-Robert Volpp

    2002-12-01

    The dynamics of formation of oxygen atoms after UV photoexcitation of SO2 in the gas-phase was studied by pulsed laser photolysis-laser-induced fluorescence `pump-and-probe' technique in a flow reactor. SO2 at room-temperature was excited at the KrCl excimer laser wavelength (222.4 nm) and O(3P) photofragments were detected under collision-free conditions by vacuum ultraviolet laser-induced fluorescence. The use of narrow-band probe laser radiation, generated via resonant third-order sum-difference frequency conversion of dye laser radiation in Krypton, allowed the measurement of the nascent O(3P=2,1,0) fine-structure state distribution: =2/=1/=0 = (0.88 ± 0.02)/(0.10 ± 0.01)/(0.02 ± 0.01). Employing NO2 photolysis as a reference, a value of O(3P) = 0.13 ± 0.05 for the absolute O(3P) atom quantum yield was determined. The measured O(3P) quantum yield is compared with the results of earlier fluorescence quantum yield measurements. A suitable mechanism is suggested in which the dissociation proceeds via internal conversion from high rotational states of the initially excited SO2(∼ 1 B2) (1, 2, 2) vibronic level to nearby continuum states of the electronic ground state.

  7. Relative quantifying technique to measure mass of fission plate in a fission chamber

    International Nuclear Information System (INIS)

    Under the same neutron radiation conditions, fission counts are proportional to the number of fission nuclei. Based on this concept, a relative quantifying method has been developed to measure the mass of fission plate in fission chamber on a 14 MeV accelerator neutron source at the Neutron Physics Laboratory, INPC, CAEP. The experimental assembly was introduced and mass of the fission material in several fission chambers was measured. The results by this method agree well (within 1%) with the α-quantifying method. Therefore, it is absolutely feasible to quantify the fission plate mass in fission chambers. The measurement uncertainty is 2%-4%. (authors)

  8. To fission or not to fission

    CERN Document Server

    Pomorski, Krzysztof; Ivanyuk, Fedir A

    2016-01-01

    The fission-fragments mass-yield of 236U is obtained by an approximate solution of the eigenvalue problem of the collective Hamiltonian that describes the dynamics of the fission process whose degrees of freedom are: the fission (elongation), the neck and the mass-asymmetry mode. The macroscopic-microscopic method is used to evaluate the potential energy surface. The macroscopic energy part is calculated using the liquid drop model and the microscopic corrections are obtained using the Woods-Saxon single-particle levels. The four dimensional modified Cassini ovals shape parametrization is used to describe the shape of the fissioning nucleus. The mass tensor is taken within the cranking-type approximation. The final fragment mass distribution is obtained by weighting the adiabatic density distribution in the collective space with the neck-dependent fission probability. The neck degree of freedom is found to play a significant role in determining that final fragment mass distribution.

  9. Reaction rate, fission product yield, and Rossi-α measurements using a HEU metal, copper reflected critical assembly

    International Nuclear Information System (INIS)

    A critical experiment was performed on the Comet assembly to provide nuclear data in a non-thermal neutron spectrum and to re-establish experimental measurement capabilities relevant to the United States Department of Energy's general purpose nuclear criticality experiments capability and to the Technical Nuclear Forensic program. Activation and fission foils were placed at specific locations in the Zeus all-oralloy core, copper reflected critical experiment to infer spectral indices data and obtain reaction rates data. After the irradiation, passive gamma-ray measurements were performed on all the foils and several of them were packaged and shipped to Los Alamos National Laboratory for further radiochemical analysis. The results from the non-destructive and radiochemical analyses are presented in this paper. Finally, Rossi-α measurements were performed on a slightly modified configuration from the configuration used for the activation measurements. The Rossi-α results are presented and compared to past measurements performed using other critical assemblies. (author)

  10. Absolute rate constant and O(3P yield for the O(1D+N2O reaction in the temperature range 227 K to 719 K

    Directory of Open Access Journals (Sweden)

    S. A. Carl

    2008-10-01

    Full Text Available The absolute rate constant for the reaction that is the major source of stratospheric NOx, O(1D+N2O → products, has been determined in the temperature range 227 K to 719 K, and, in the temperature range 248 K to 600 K, the fraction of the reaction that yields O(3P. Both the rate constants and product yields were determined using a recently-developed chemiluminescence technique for monitoring O(1D that allows for higher precision determinations for both rate constants, and, particularly, O(3P yields, than do other methods. We found the rate constant, kR1, to be essentially independent of temperature between 400 K and 227 K, having a value of (1.37±0.11×10−10 cm3 s−1, and for temperatures greater than 450 K a marked decrease in rate constant was observed, with a rate constant of only (0.94±0.11×10−10 cm3 s−1 at 719 K. The rate constants determined over the 227 K–400 K range show very low scatter and are significantly greater, by 20% at room temperature and 15% at 227 K, than the current recommended values. The fraction of O(3P produced in this reaction was determined to be 0.002±0.002 at 250 K rising steadily to 0.010±0.004 at 600 K, thus the channel producing O(3P can be entirely neglected in atmospheric kinetic modeling calculations. A further result of this study is an expression of the relative quantum yields as a function of temperature for the chemiluminescence reactions (kCL1C2H + O(1D → CH(A + CO and (kCL2C2H + O(3P → CH(A + CO, both followed by CH(A → CH(X + hν, as kCL1(T/kCL2(T=(32.8T−3050/(6.29T+398.

  11. Intermediate energy nuclear fission

    International Nuclear Information System (INIS)

    Nuclear fission has been investigated with the double-kinetic-energy method using silicon surface barrier detectors. Fragment energy correlation measurements have been made for U, Th and Bi with bremsstrahlung of 600 MeV maximum energy. Distributions of kinetic energy as a function of fragment mass are presented. The results are compared with earlier photofission data and in the case of bismuth, with calculations based on the liquid drop model. The binary fission process in U, Yb, Tb, Ce, La, Sb, Ag and Y induced by 600 MeV protons has been investigated yielding fission cross sections, fragment kinetic energies, angular correlations and mass distributions. Fission-spallation competition calculations are used to deduce values of macroscopic fission barrier heights and nuclear level density parameter values at deformations corresponding to the saddle point shapes. We find macroscopic fission barriers lower than those predicted by macroscopic theories. No indication is found of the Businaro Gallone limit expected to occur somewhere in the mass range A = 100 to A = 140. For Ce and La asymmetric mass distributions similar to those in the actinide region are found. A method is described for the analysis of angular correlations between complementary fission products. The description is mainly concerned with fission induced by medium-energy protons but is applicable also to other projectiles and energies. It is shown that the momentum and excitation energy distributions of cascade residuals leading to fission can be extracted. (Author)

  12. Energy Dependence of Fission Product Yields from 235U, 238U and 239Pu for Incident Neutron Energies Between 0.5 and 14.8 MeV

    Science.gov (United States)

    Gooden, M. E.; Arnold, C. W.; Becker, J. A.; Bhatia, C.; Bhike, M.; Bond, E. M.; Bredeweg, T. A.; Fallin, B.; Fowler, M. M.; Howell, C. R.; Kelley, J. H.; Krishichayan; Macri, R.; Rusev, G.; Ryan, C.; Sheets, S. A.; Stoyer, M. A.; Tonchev, A. P.; Tornow, W.; Vieira, D. J.; Wilhelmy, J. B.

    2016-01-01

    Fission Product Yields (FPY) have historically been one of the most observable features of the fission process. They are known to have strong variations that are dependent on the fissioning species, the excitation energy, and the angular momentum of the compound system. However, consistent and systematic studies of the variation of these FPY with energy have proved challenging. This is caused primarily by the nature of the experiments that have traditionally relied on radiochemical procedures to isolate specific fission products. Although radiochemical procedures exist that can isolate all products, each element presents specific challenges and introduces varying degrees of systematic errors that can make inter-comparison of FPY uncertain. Although of high importance in fields such as nuclear forensics and Stockpile Stewardship, accurate information about the energy dependence of neutron induced FPY are sparse, due primarily to the lack of suitable monoenergetic neutron sources. There is a clear need for improved data, and to address this issue, a collaboration was formed between Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL) and the Triangle Universities Nuclear Laboratory (TUNL) to measure the energy dependence of FPY for 235U, 238U and 239Pu. The measurements have been performed at TUNL, using a 10 MV Tandem Van de Graaff accelerator to produce monoenergetic neutrons at energies between 0.6 MeV to 14.8 MeV through a variety of reactions. The measurements have utilized a dual-fission chamber, with thin (10-100 μg/cm2) reference foils of similar material to a thick (100-400 mg) activation target held in the center between the chambers. This method allows for the accurate determination of the number of fissions that occurred in the thick target without requiring knowledge of the fission cross section or neutron fluence on target. Following activation, the thick target was removed from the dual-fission chamber and gamma

  13. Absolute advantage

    NARCIS (Netherlands)

    J.G.M. van Marrewijk (Charles)

    2008-01-01

    textabstractA country is said to have an absolute advantage over another country in the production of a good or service if it can produce that good or service using fewer real resources. Equivalently, using the same inputs, the country can produce more output. The concept of absolute advantage can a

  14. The role of off-line mass spectrometry in nuclear fission.

    Science.gov (United States)

    De Laeter, J R

    1996-01-01

    The role of mass spectrometry in nuclear fission has been invaluable since 1940, when A. O. C. Nier separated microgram quantities of (235) U from (238) U, using a gas source mass spectrometer. This experiment enabled the fissionable nature of (235) U to be established. During the Manhattan Project, the mass spectrometer was used to measure the isotope abundances of uranium after processing in various separation systems, in monitoring the composition of the gaseous products in the Oak Ridge Diffusion Plant, and as a helium leak detector. Following the construction of the first reactor at the University of Chicago, it was necessary to unravel the nuclear systematics of the various fission products produced in the fission process. Off-line mass spectrometry was able to identify stable and long-lived isotopes produced in fission, but more importantly, was used in numerous studies of the distribution of mass of the cumulative fission yields. Improvements in sensitivity enabled off-line mass spectrometric studies to identify fine structure in the mass-yield curve and, hence, demonstrate the importance of shell structure in nuclear fission. Solid-source mass spectrometry was also able to measure the cumulative fission yields in the valley of symmetry in the mass-yield curve, and enabled spontaneous fission yields to be quantified. Apart from the accurate measurement of abundances, the stable isotope mass spectrometric technique has been invaluable in establishing absolute cumulative fission yields for many isotopes making up the mass-yield distribution curve for a variety of fissile nuclides. Extensive mass spectrometric studies of noble gases in primitive meteorites revealed the presence of fission products from the now extinct nuclide (244) Pu, and have eliminated the possibility of fission products from a super-heavy nuclide contributing to isotopic anomalies in meteoritic material. Numerous mass spectrometric studies of the isotopic and elemental abundances of

  15. A method to calculate fission-fragment yields Y(Z,N) versus proton and neutron number in the Brownian shape-motion model. Application to calculations of U and Pu charge yields

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, Peter [Los Alamos National Laboratory, Theoretical Division, Los Alamos, NM (United States); Ichikawa, Takatoshi [Kyoto University, Yukawa Institute for Theoretical Physics, Kyoto (Japan)

    2015-12-15

    We propose a method to calculate the two-dimensional (2D) fission-fragment yield Y(Z,N) versus both proton and neutron number, with inclusion of odd-even staggering effects in both variables. The approach is to use the Brownian shape-motion on a macroscopic-microscopic potential-energy surface which, for a particular compound system is calculated versus four shape variables: elongation (quadrupole moment Q{sub 2}), neck d, left nascent fragment spheroidal deformation ε{sub f1}, right nascent fragment deformation ε{sub f2} and two asymmetry variables, namely proton and neutron numbers in each of the two fragments. The extension of previous models 1) introduces a method to calculate this generalized potential-energy function and 2) allows the correlated transfer of nucleon pairs in one step, in addition to sequential transfer. In the previous version the potential energy was calculated as a function of Z and N of the compound system and its shape, including the asymmetry of the shape. We outline here how to generalize the model from the ''compound-system'' model to a model where the emerging fragment proton and neutron numbers also enter, over and above the compound system composition. (orig.)

  16. A Method to Calculate Fission-Fragment Yields $Y(Z,N)$ versus Proton and Neutron Number in the Brownian Shape-Motion Model. Application to calculations of U and Pu charge yields

    CERN Document Server

    Moller, P

    2015-01-01

    We propose a method to calculate the two-dimensional (2D) fission-fragment yield $Y(Z,N)$ versus both proton and neutron number, with inclusion of odd-even staggering effects in both variables. The approach is to use Brownian shape-motion on a macroscopic-microscopic potential-energy surface which, for a particular compound system is calculated versus four shape variables: elongation (quadrupole moment $Q_2$), neck $d$, left nascent fragment spheroidal deformation $\\epsilon_{\\rm f1}$, right nascent fragment deformation $\\epsilon_{\\rm f2}$ and two asymmetry variables, namely proton and neutron numbers in each of the two fragments. The extension of previous models 1) introduces a method to calculate this generalized potential-energy function and 2) allows the correlated transfer of nucleon pairs in one step, in addition to sequential transfer. In the previous version the potential energy was calculated as a function of $Z$ and $N$ of the compound system and its shape, including the asymmetry of the shape. We ou...

  17. Prompt Neutrons from Fission

    International Nuclear Information System (INIS)

    A survey is given of the present state of knowledge of the spectrum, angular distribution and number of prompt fission neutrons, as functions of incident neutron energy and individual fragment mass, for low-energy fission. The energy spectrum of prompt neutrons has been found to be of the same form (nearly Maxwellian) for many different types of fission. It has been shown that this type of spectrum is to be expected on the basis of evaporation from moving fragments, and theoretical predictions of the spectrum agree very accurately with experimental data. Some data are now available on the variation of the neutron spectrum with fragment mass and angle of emission. Only recently has it become possible to take accurate data on the angular distribution of the neutrons. It appears that the neutrons have the angular distribution to be expected if emitted almost isotropically from the moving fragments, with a possibility that some small fraction are not emitted in this way, but directly from the fissioning nuclide. Much work has been done on the variation of fission neutron number v with incident neutron energy for neutron-induced fission. The neutron number increases roughly linearly with energy, with a slope of about 0.15 n/MeV. There is now evidence that this slope changes somewhat with energy. This change must be associated with other changes in the-fission process. The most interesting recent discovery concerning fission neutrons is the strong dependence of neutron number on individual fragment mass. The data are being rapidly improved by means of the newer techniques of determining fragment mass yields from velocity and pulse-height data, and of determining neutron yields from cumulative mass yields. There is evidence of similar dependence of neutron yield on fragment mass in a number of cases. It has been suggested that this property is directly connected with the deformability of the fragments, and in particular with the near-spherical shapes of magic

  18. Observation of cold fission in 242Pu spontaneous fission

    International Nuclear Information System (INIS)

    Coincidence γ-ray data from the spontaneous fission of 242Pu were collected at the Lawrence Berkeley Laboratory high purity Ge (HPGe) array, GAMMASPHERE. Data from several cold-fission (0 neutron emission) isotopic pairs were observed and are presented. An interesting trend in the fractional population of cold-fission events was observed and is discussed. Relative yields of Zr-Xe, Sr-Ba, and Mo-Te pairs were measured. The Zr-Xe system has the most complete data set. Some speculations on the trend in the number of neutrons emitted as a function of the mass of the Xe isotope populated are presented. Comparisons between the yields from the spontaneous fission of 242Pu and the yields from thermal-neutron-induced fission of 241Pu are also presented. copyright 1996 The American Physical Society

  19. Absolute nuclear material assay using count distribution (LAMBDA) space

    Science.gov (United States)

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2012-06-05

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  20. Absolute nuclear material assay using count distribution (LAMBDA) space

    Science.gov (United States)

    Prasad, Mano K.; Snyderman, Neal J.; Rowland, Mark S.

    2015-12-01

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  1. Absolute rate constant and O(3P) yield for the O(1D)+N2O reaction in the temperature range 227 K to 719 K

    OpenAIRE

    Carl, S. A.; Peeters, J.; Vranckx, S.

    2008-01-01

    The absolute rate constant for the reaction that is the major source of stratospheric NOx, O(1D)+N2O → products, has been determined in the temperature range 227 K to 719 K, and, in the temperature range 248 K to 600 K, the fraction of the reaction that yields O(3P). Both the rate constants and product yields were determined using a recently-developed chemiluminescence technique for monitoring O(1D) that allows for higher precision determinations for both rate constants, and, particularl...

  2. Spontaneous fission

    International Nuclear Information System (INIS)

    Recent experimental results for spontaneous fission half-lives and fission fragment mass and kinetic-energy distributions and other properties of the fragments are reviewed and compared with recent theoretical models. The experimental data lend support to the existence of the predicted deformed shells near Z = 108 and N = 162. Prospects for extending detailed studies of spontaneous fission properties to elements beyond hahnium (element 105) are considered. (orig.)

  3. Hidden systematics of fission channels

    Directory of Open Access Journals (Sweden)

    Schmidt Karl-Heinz

    2013-12-01

    Full Text Available It is a common procedure to describe the fission-fragment mass distributions of fissioning systems in the actinide region by a sum of at least 5 Gaussian curves, one for the symmetric component and a few additional ones, together with their complementary parts, for the asymmetric components. These components have been attributed to the influence of fragment shells, e.g. in the statistical scission-point model of Wilkins, Steinberg and Chasman. They have also been associated with valleys in the potential-energy landscape between the outer saddle and the scission configuration in the multi-channel fission model of Brosa. When the relative yields, the widths and the mean mass-asymmetry values of these components are fitted to experimental data, the mass distributions can be very well reproduced. Moreover, these fission channels are characterised by specific values of charge polarisation, total kinetic energy and prompt-neutron yields. The present contribution investigates the systematic variation of the characteristic fission-channel properties as a function of the composition and the excitation energy of the fissioning system. The mean position of the asymmetric fission channels in the heavy fragment is almost constant in atomic number. The deformation of the nascent fragments at scission, which is the main source of excitation energy of the separated fission fragments ending up in prompt-neutron emission, is found to be a unique function of Z for the light and the heavy fragment of the asymmetric fission channels. A variation of the initial excitation energy of the fissioning system above the fission saddle is only seen in the neutron yield of the heavy fragment. The charge polarisation in the two most important asymmetric fission channels is found to be constant and to appreciably exceed the macroscopic value. The variation of the relative yields and of the positions of the fission channels as a function of the composition and excitation energy

  4. A compact proton spectrometer for measurement of the absolute DD proton spectrum from which yield and ρR are determined in thin-shell inertial-confinement-fusion implosions

    International Nuclear Information System (INIS)

    A compact, step range filter proton spectrometer has been developed for the measurement of the absolute DD proton spectrum, from which yield and areal density (ρR) are inferred for deuterium-filled thin-shell inertial confinement fusion implosions. This spectrometer, which is based on tantalum step-range filters, is sensitive to protons in the energy range 1-9 MeV and can be used to measure proton spectra at mean energies of ∼1-3 MeV. It has been developed and implemented using a linear accelerator and applied to experiments at the OMEGA laser facility and the National Ignition Facility (NIF). Modeling of the proton slowing in the filters is necessary to construct the spectrum, and the yield and energy uncertainties are ±<10% in yield and ±120 keV, respectively. This spectrometer can be used for in situ calibration of DD-neutron yield diagnostics at the NIF

  5. Chromosome aberrations induced in human lymphocytes by U-235 fission neutrons. Pt. 3. Evaluation of the effect of the induced α and β activity on the chromosomal aberration yield

    International Nuclear Information System (INIS)

    Aim: Further experiments were performed to explain a difference in chromosomal aberration yield found between samples cultivated immediately after fission neutron irradiation and samples which were cultivated with 96 h delay after irradiation. Material and Method: Human peripheral blood samples were irradiated in mixed fission neutron/gamma field (1800 s) and biological effect assessed in the mean of analysis of unstable chromosome aberrations with a time delay in culturing cells of 12, 24, 48 and 96 h. Additional measurements were performed on irradiated and blank blood samples with the aim to detect any increase in α and β activity after fission neutron irradiation. No difference was found. Results were compared to theoretically calculated values of the α and β activity released from natural radioactive isotopes. Result and Conclusion: As a conclusion it is shown that in our experimental conditions the secondary effects resulting from nuclear transformations of natural or induced radioactive isotopes, recoil reactions and accompanying α, β, and γ radiation are not the reason for the increase observed in chromosomal aberration yield in blood samples cultured with a time delay of at least 24 hours. (orig.)

  6. 1.4MeV-5MeV中子诱发238U裂变产额测量%Fission Product Yield Measurement of 238 U Induced by 1.4-5 MeV Neutrons

    Institute of Scientific and Technical Information of China (English)

    李映映; 肖军; 王攀; 李子越; 汪超; 罗小兵

    2016-01-01

    238 U fission yield measurement has a significant meaning in nuclear data measurement .This thesis a-dopts1.4 MeV-5 MeV mono -energetic neutrons generated by 2.5 MeV proton electrostatic accelerator to stimulate 238U fission, and then measures the yield of fission product nuclide 135I、133I、105Ru and 91Sr through measuring fission product radioactivity .Neutron flux during irradiation process is determined by activation meth-od .Subsequently , this thesis analyzes multiple components influencing experiment measurement , including cor-rection on neutron′s multiple scattering and self -shielding effect in target head and sample on the basis of MC-NPX program as well as correction on sample′s self-absorption of γ-ray.Typical deviation of yield data is concluded as 3.5%.Finally, this thesis compares measurement consequences with existing fission yield data .%238 U裂变产额测量工作在核数据测量中有着重要意义,本工作利用2.5MeV质子静电加速器产生的1.4MeV-5MeV单能中子诱发238 U裂变,通过对裂变产物放射性的测量对裂变产物核素135 I、133 I、105 Ru和91 Sr的产额进行了测定。照射过程中中子通量用活化法确定。分析了影响实验测量的多个因素,包括用MCNPX程序对中子在靶头及样品中的多次散射和自屏蔽效应进行了修正,对γ射线在样品中的自吸收进行修正等。得到产额数据典型误差为3.5%,最后把测量结果与已有的裂变产额数据进行比对。

  7. Calculations of fission rates for r-process nucleosynthesis

    OpenAIRE

    Panov, I. V.; Kolbe, E.; Pfeiffer, B.; Rauscher, T.; Kratz, K.-L.; Thielemann, F. -K.

    2004-01-01

    Fission plays an important role in the r-process which is responsible not only for the yields of transuranium isotopes, but may have a strong influence on the formation of the majority of heavy nuclei due to fission recycling. We present calculations of beta-delayed and neutron-induced fission rates, taking into account different fission barriers predictions and mass formulae. It is shown that an increase of fission barriers results naturally in a reduction of fission rates, but that neverthe...

  8. Absolute beginners

    OpenAIRE

    Costa, Carlos Casimiro da; Costa, Jacinta Casimiro da

    2012-01-01

    Tomorrow, I m recovering my Thursday child as an absolute beginner , Transporting you to the essential touch of surface skin and space, Only for you, i do not regret, looking for education in a materia set. My love is your love , my materiality is you making things, The legacy of our ethnography, craftsmen s old and disappear, make me strong hard feelings, Recovering experiences and knowledge sprinkled in powder of stone, wood and metal ( ) reflecting in your dirty face the ...

  9. Method of fission product beta spectra measurements for predicting reactor anti-neutrino emission

    Energy Technology Data Exchange (ETDEWEB)

    Asner, David M.; Burns, Kimberly A.; Campbell, Luke W.; Greenfield, Bryce A.; Kos, Marek S.; Orrell, John L.; Schram, Malachi; VanDevender, Brent A.; Wood, Lynn S.; Wootan, David W.

    2015-03-01

    The nuclear fission process that occurs in the core of nuclear reactors results in unstable, neutron-rich fission products that subsequently beta decay and emit electron antineutrinos. These reactor neutrinos have served neutrino physics research from the initial discovery of the neutrino to today's precision measurements of neutrino mixing angles. The prediction of the absolute flux and energy spectrum of the emitted reactor neutrinos hinges upon a series of seminal papers based on measurements performed in the 1970s and 1980s. The steadily improving reactor neutrino measurement techniques and recent reconsiderations of the agreement between the predicted and observed reactor neutrino flux motivates revisiting the underlying beta spectra measurements. A method is proposed to use an accelerator proton beam delivered to an engineered target to yield a neutron field tailored to reproduce the neutron energy spectrum present in the core of an operating nuclear reactor. Foils of the primary reactor fissionable isotopes placed in this tailored neutron flux will ultimately emit beta particles from the resultant fission products. Measurement of these beta particles in a time projection chamber with a perpendicular magnetic field provides a distinctive set of systematic considerations for comparison to the original seminal beta spectra measurements. Ancillary measurements such as gamma-ray emission and post-irradiation radiochemical analysis will further constrain the absolute normalization of beta emissions per fission. The requirements for unfolding the beta spectra measured with this method into a predicted reactor neutrino spectrum are explored.

  10. Assessment of experimental d-PIGE γ-ray production cross sections for 12C, 14N and 16O and comparison with absolute thick target yields

    Science.gov (United States)

    Csedreki, L.; Halász, Z.; Kiss, Á. Z.

    2016-08-01

    Measured differential cross sections for deuteron induced γ-ray emission from the reactions 12C(d,pγ)13C, (Eγ = 3089 keV), 14N(d,pγ)15N (Eγ = 8310 keV) and 16O(d,pγ)17O (Eγ = 871 keV) available in the literature were assessed. In order to cross check the assessed γ-ray production cross section data, thick target γ-yields calculated from the differential cross sections were compared with available measured thick target yields. Recommended differential cross section data for each reaction were deduced for particle induced γ-ray emission (PIGE) applications.

  11. Singlet exciton fission photovoltaics.

    Science.gov (United States)

    Lee, Jiye; Jadhav, Priya; Reusswig, Philip D; Yost, Shane R; Thompson, Nicholas J; Congreve, Daniel N; Hontz, Eric; Van Voorhis, Troy; Baldo, Marc A

    2013-06-18

    Singlet exciton fission, a process that generates two excitons from a single photon, is perhaps the most efficient of the various multiexciton-generation processes studied to date, offering the potential to increase the efficiency of solar devices. But its unique characteristic, splitting a photogenerated singlet exciton into two dark triplet states, means that the empty absorption region between the singlet and triplet excitons must be filled by adding another material that captures low-energy photons. This has required the development of specialized device architectures. In this Account, we review work to develop devices that harness the theoretical benefits of singlet exciton fission. First, we discuss singlet fission in the archetypal material, pentacene. Pentacene-based photovoltaic devices typically show high external and internal quantum efficiencies. They have enabled researchers to characterize fission, including yield and the impact of competing loss processes, within functional devices. We review in situ probes of singlet fission that modulate the photocurrent using a magnetic field. We also summarize studies of the dissociation of triplet excitons into charge at the pentacene-buckyball (C60) donor-acceptor interface. Multiple independent measurements confirm that pentacene triplet excitons can dissociate at the C60 interface despite their relatively low energy. Because triplet excitons produced by singlet fission each have no more than half the energy of the original photoexcitation, they limit the potential open circuit voltage within a solar cell. Thus, if singlet fission is to increase the overall efficiency of a solar cell and not just double the photocurrent at the cost of halving the voltage, it is necessary to also harvest photons in the absorption gap between the singlet and triplet energies of the singlet fission material. We review two device architectures that attempt this using long-wavelength materials: a three-layer structure that uses

  12. Absolute Summ

    Science.gov (United States)

    Phillips, Alfred, Jr.

    Summ means the entirety of the multiverse. It seems clear, from the inflation theories of A. Guth and others, that the creation of many universes is plausible. We argue that Absolute cosmological ideas, not unlike those of I. Newton, may be consistent with dynamic multiverse creations. As suggested in W. Heisenberg's uncertainty principle, and with the Anthropic Principle defended by S. Hawking, et al., human consciousness, buttressed by findings of neuroscience, may have to be considered in our models. Predictability, as A. Einstein realized with Invariants and General Relativity, may be required for new ideas to be part of physics. We present here a two postulate model geared to an Absolute Summ. The seedbed of this work is part of Akhnaton's philosophy (see S. Freud, Moses and Monotheism). Most important, however, is that the structure of human consciousness, manifest in Kenya's Rift Valley 200,000 years ago as Homo sapiens, who were the culmination of the six million year co-creation process of Hominins and Nature in Africa, allows us to do the physics that we do. .

  13. Method of Fission Product Beta Spectra Measurements for Predicting Reactor Anti-neutrino Emission

    CERN Document Server

    Asner, D M; Campbell, L W; Greenfield, B; Kos, M S; Orrell, J L; Schram, M; VanDevender, B; Wood, 1 L S; Wootan, D W

    2014-01-01

    The nuclear fission process that occurs in the core of nuclear reactors results in unstable, neutron rich fission products that subsequently beta decay and emit electron anti-neutrinos. These reactor neutrinos have served neutrino physics research from the initial discovery of the neutrino to current precision measurements of neutrino mixing angles. The prediction of the absolute flux and energy spectrum of the emitted reactor neutrinos hinges upon a series of seminal papers based on measurements performed in the 1970s and 1980s. The steadily improving reactor neutrino measurement techniques and recent re-considerations of the agreement between the predicted and observed reactor neutrino flux motivates revisiting the underlying beta spectra measurements. A method is proposed to use an accelerator proton beam delivered to an engineered target to yield a neutron field tailored to reproduce the neutron energy spectrum present in the core of an operating nuclear reactor. Foils of the primary reactor fissionable i...

  14. Ternary fission

    Indian Academy of Sciences (India)

    M Balasubramaniam; K R Vijayaraghavan; C Karthikraj

    2015-09-01

    We present the ternary fission of 252Cf and 236U within a three-cluster model as well as in a level density approach. The competition between collinear and equatorial geometry is studied by calculating the ternary fragmentation potential as a function of the angle between the lines joining the stationary middle fragment and the two end fragments. The obtained results for the 16O accompanying ternary fission indicate that collinear configuration is preferred to equatorial configuration. Further, for all the possible third fragments, the potential energy surface (PES) is calculated corresponding to an arrangement in which the heaviest and the lightest fragments are considered at the end in a collinear configuration. The PES reveals several possible ternary modes including true ternary modes where the three fragments are of similar size. The complete mass distributions of Si and Ca which accompanied ternary fission of 236U is studied within a level density picture. The obtained results favour several possible ternary combinations.

  15. Fission Spectrum

    Science.gov (United States)

    Bloch, F.; Staub, H.

    1943-08-18

    Measurements of the spectrum of the fission neutrons of 25 are described, in which the energy of the neutrons is determined from the ionization produced by individual hydrogen recoils. The slow neutrons producing fission are obtained by slowing down the fast neutrons from the Be-D reaction of the Stanford cyclotron. In order to distinguish between fission neutrons and the remaining fast cyclotron neutrons both the cyclotron current and the pusle amplifier are modulated. A hollow neutron container, in which slow neutrons have a lifetime of about 2 milliseconds, avoids the use of large distances. This method results in much higher intensities than the usual modulation arrangement. The results show a continuous distribution of neutrons with a rather wide maximum at about 0.8 MV falling off to half of its maximum value at 2.0 MV. The total number of netrons is determined by comparison with the number of fission fragments. The result seems to indicate that only about 30% of the neutrons have energies below .8 MV. Various tests are described which were performed in order to rule out modification of the spectrum by inelastic scattering. Decl. May 4, 1951

  16. Progress in fission product nuclear data

    International Nuclear Information System (INIS)

    This is the eleventh issue of a report series on Fission Product Nuclear Data (FPND) which is published by the Nuclear Data Section (NDS) of the International Atomic Energy Agency (IAEA). The purpose of this series is to inform scientists working on FPND, or using such data, about all activities in this field which are planned, ongoing, or have recently been completed. The types of activities being included in this report are measurements, compilations and evaluations of: Fission product yields (neutron induced and spontaneous fission); Neutron reaction cross sections of fission products; Data related to the radioactive decay of fission products; Delayed neutron data of fission products; and lumped fission product data (decay heat, absorption etc.). The main part of this report consists of unaltered original contributions which the authors have sent to IAEA/NDS

  17. Calculations of fission rates for r-process nucleosynthesis

    CERN Document Server

    Panov, I V; Pfeiffer, B; Rauscher, T; Kratz, K L; Thielemann, F K

    2005-01-01

    Fission plays an important role in the r-process which is responsible not only for the yields of transuranium isotopes, but may have a strong influence on the formation of the majority of heavy nuclei due to fission recycling. We present calculations of beta-delayed and neutron-induced fission rates, taking into account different fission barriers predictions and mass formulae. It is shown that an increase of fission barriers results naturally in a reduction of fission rates, but that nevertheless fission leads to the termination of the r-process. Furthermore, it is discussed that the probability of triple fission could be high for $A>260$ and have an effect on the formation of the abundances of heavy nuclei. Fission after beta-delayed neutron emission is discussed as well as different aspects of the influence of fission upon r-process calculations.

  18. Experiments and Theoretical Data for Studying the Impact of Fission Yield Uncertainties on the Nuclear Fuel Cycle with TALYS/GEF and the Total Monte Carlo Method

    Energy Technology Data Exchange (ETDEWEB)

    Pomp, S., E-mail: stephan.pomp@physics.uu.se [Department of Physics and Astronomy, Uppsala University, Box 516, 751 20 Uppsala (Sweden); Al-Adili, A.; Alhassan, E.; Gustavsson, C.; Helgesson, P.; Hellesen, C. [Department of Physics and Astronomy, Uppsala University, Box 516, 751 20 Uppsala (Sweden); Koning, A.J. [Nuclear Research and Consultancy Group NRG, P.O.Box 25, 1755 ZG Petten (Netherlands); Department of Physics and Astronomy, Uppsala University, Box 516, 751 20 Uppsala (Sweden); Lantz, M.; Österlund, M. [Department of Physics and Astronomy, Uppsala University, Box 516, 751 20 Uppsala (Sweden); Rochman, D. [Nuclear Research and Consultancy Group NRG, P.O.Box 25, 1755 ZG Petten (Netherlands); Simutkin, V.; Sjöstrand, H.; Solders, A. [Department of Physics and Astronomy, Uppsala University, Box 516, 751 20 Uppsala (Sweden)

    2015-01-15

    We describe the research program of the nuclear reactions research group at Uppsala University concerning experimental and theoretical efforts to quantify and reduce nuclear data uncertainties relevant for the nuclear fuel cycle. We briefly describe the Total Monte Carlo (TMC) methodology and how it can be used to study fuel cycle and accident scenarios, and summarize our relevant experimental activities. Input from the latter is to be used to guide the nuclear models and constrain parameter space for TMC. The TMC method relies on the availability of good nuclear models. For this we use the TALYS code which is currently being extended to include the GEF model for the fission channel. We present results from TALYS-1.6 using different versions of GEF with both default and randomized input parameters and compare calculations with experimental data for {sup 234}U(n,f) in the fast energy range. These preliminary studies reveal some systematic differences between experimental data and calculations but give overall good and promising results.

  19. Experiments and Theoretical Data for Studying the Impact of Fission Yield Uncertainties on the Nuclear Fuel Cycle with TALYS/GEF and the Total Monte Carlo Method

    Science.gov (United States)

    Pomp, S.; Al-Adili, A.; Alhassan, E.; Gustavsson, C.; Helgesson, P.; Hellesen, C.; Koning, A. J.; Lantz, M.; Österlund, M.; Rochman, D.; Simutkin, V.; Sjöstrand, H.; Solders, A.

    2015-01-01

    We describe the research program of the nuclear reactions research group at Uppsala University concerning experimental and theoretical efforts to quantify and reduce nuclear data uncertainties relevant for the nuclear fuel cycle. We briefly describe the Total Monte Carlo (TMC) methodology and how it can be used to study fuel cycle and accident scenarios, and summarize our relevant experimental activities. Input from the latter is to be used to guide the nuclear models and constrain parameter space for TMC. The TMC method relies on the availability of good nuclear models. For this we use the TALYS code which is currently being extended to include the GEF model for the fission channel. We present results from TALYS-1.6 using different versions of GEF with both default and randomized input parameters and compare calculations with experimental data for 234U(n,f) in the fast energy range. These preliminary studies reveal some systematic differences between experimental data and calculations but give overall good and promising results.

  20. Thorium-uranium fission radiography

    Science.gov (United States)

    Haines, E. L.; Weiss, J. R.; Burnett, D. S.; Woolum, D. S.

    1976-01-01

    Results are described for studies designed to develop routine methods for in-situ measurement of the abundance of Th and U on a microscale in heterogeneous samples, especially rocks, using the secondary high-energy neutron flux developed when the 650 MeV proton beam of an accelerator is stopped in a 42 x 42 cm diam Cu cylinder. Irradiations were performed at three different locations in a rabbit tube in the beam stop area, and thick metal foils of Bi, Th, and natural U as well as polished silicate glasses of known U and Th contents were used as targets and were placed in contact with mica which served as a fission track detector. In many cases both bare and Cd-covered detectors were exposed. The exposed mica samples were etched in 48% HF and the fission tracks counted by conventional transmitted light microscopy. Relative fission cross sections are examined, along with absolute Th track production rates, interaction tracks, and a comparison of measured and calculated fission rates. The practicality of fast neutron radiography revealed by experiments to data is discussed primarily for Th/U measurements, and mixtures of other fissionable nuclei are briefly considered.

  1. Research of the Mass Spectra of the Fission Products and Yields of (n, gamma) and (n, 2n) Reactions in a Model Subcritical Uranium Blanket of the Electronuclear System "Energy Plus Transmutation" on Proton Beam of the Dubna Synchrophasotron at 1.5 Ge

    CERN Document Server

    Chultem, D; Krivopustov, M I; Gerbish, S; Tumendemberel, B; Pavlyuk, A B; Zaveryukha, O S

    2002-01-01

    This paper is devoted to the research of the spatial distributions of the yields of (n, f), (n, gamma) and (n, 2n) reactions in a two-section model of the uranium blanket electronuclear installation constructed at the Laboratory of High Energies, JINR (Dubna) for experiments according to the program "Research of physical aspects of the electronuclear method of energy production and of radioactive waste transmutation in atomic power-engineering on beams of the synchrophasotron and nuclotron" - project "Energy plus Transmutation". The mass spectrum of the fission products and yields of above reactions in uranium activation detectors placed on the radii of the so-called detector plates is determined. The experimental results testify that the fission of nuclei in the uranium blanket is made by fast neutrons. This conclusion coincides with the result obtained with track integrators of uranium fission.

  2. A transferable model for singlet-fission kinetics.

    Science.gov (United States)

    Yost, Shane R; Lee, Jiye; Wilson, Mark W B; Wu, Tony; McMahon, David P; Parkhurst, Rebecca R; Thompson, Nicholas J; Congreve, Daniel N; Rao, Akshay; Johnson, Kerr; Sfeir, Matthew Y; Bawendi, Moungi G; Swager, Timothy M; Friend, Richard H; Baldo, Marc A; Van Voorhis, Troy

    2014-06-01

    Exciton fission is a process that occurs in certain organic materials whereby one singlet exciton splits into two independent triplets. In photovoltaic devices these two triplet excitons can each generate an electron, producing quantum yields per photon of >100% and potentially enabling single-junction power efficiencies above 40%. Here, we measure fission dynamics using ultrafast photoinduced absorption and present a first-principles expression that successfully reproduces the fission rate in materials with vastly different structures. Fission is non-adiabatic and Marcus-like in weakly interacting systems, becoming adiabatic and coupling-independent at larger interaction strengths. In neat films, we demonstrate fission yields near unity even when monomers are separated by >5 Å. For efficient solar cells, however, we show that fission must outcompete charge generation from the singlet exciton. This work lays the foundation for tailoring molecular properties like solubility and energy level alignment while maintaining the high fission yield required for photovoltaic applications. PMID:24848234

  3. Spontaneous fission of superheavy nuclei

    Indian Academy of Sciences (India)

    R A Gherghescu; D N Poenaru

    2015-09-01

    The macroscopic–microscopic method is extended to calculate the deformation energy and penetrability for binary nuclear configurations typical for fission processes. The deformed two-centre shell model is used to obtain single-particle energy levels for the transition region of two partially overlapped daughter and emitted fragment nuclei. The macroscopic part is obtained using the Yukawa-plus-exponential potential. The microscopic shell and pairing corrections are obtained using the Strutinsky and BCS approaches and the cranking formulae yield the inertia tensor. Finally, the WKB method is used to calculate penetrabilities and spontaneous fission half-lives. Calculations are performed for the decay of 282,292120 nuclei.

  4. Teaching Absolute Value Meaningfully

    Science.gov (United States)

    Wade, Angela

    2012-01-01

    What is the meaning of absolute value? And why do teachers teach students how to solve absolute value equations? Absolute value is a concept introduced in first-year algebra and then reinforced in later courses. Various authors have suggested instructional methods for teaching absolute value to high school students (Wei 2005; Stallings-Roberts…

  5. Assessment of fissionable material behaviour in fission chambers

    Energy Technology Data Exchange (ETDEWEB)

    Cabellos, O., E-mail: oscar.cabellos@upm.e [Instituto de Fusion Nuclear, Universidad Politecnica de Madrid, 28006 Madrid (Spain); Department of Nuclear Engineering, Universidad Politecnica de Madrid, 28006 Madrid (Spain); Fernandez, P. [Department of Nuclear Engineering, Universidad Politecnica de Madrid, 28006 Madrid (Spain); Rapisarda, D. [Laboratorio Nacional de Fusion, EURATOM-CIEMAT, 28040 Madrid (Spain); Garcia-Herranz, N. [Instituto de Fusion Nuclear, Universidad Politecnica de Madrid, 28006 Madrid (Spain); Department of Nuclear Engineering, Universidad Politecnica de Madrid, 28006 Madrid (Spain)

    2010-06-21

    A comprehensive study is performed in order to assess the pertinence of fission chambers coated with different fissile materials for high neutron flux detection. Three neutron scenarios are proposed to study the fast component of a high neutron flux: (i) high neutron flux with a significant thermal contribution such as BR2, (ii) DEMO magnetic fusion reactor, and (iii) IFMIF high flux test module. In this study, the inventory code ACAB is used to analyze the following questions: (i) impact of different deposits in fission chambers; (ii) effect of the irradiation time/burn-up on the concentration; (iii) impact of activation cross-section uncertainties on the composition of the deposit for all the range of burn-up/irradiation neutron fluences of interest. The complete set of nuclear data (decay, fission yield, activation cross-sections, and uncertainties) provided in the EAF2007 data library are used for this evaluation.

  6. Fission investigations and evaluation activities at IRMM

    International Nuclear Information System (INIS)

    The IRMM has a longstanding tradition in the field of neutron induced fission physics studies. It is especially well equipped with world-class facilities as the high resolution neutron time-of-flight spectrometer GELINA and the 7 MV Van de Graaff accelerator for the quasi-monoenergetic neutron production. During the past decade several neutron induced fission reactions have been studied in the energy range from eV up to 6 MeV and spontaneous fission. The isotopes under investigation were 235,238 U(n,f), 239 Pu(n,f), 237 Np(n,f), 252 Cf(SF) and 233 Pa(n,f). For all isotopes but 233 Pa, the fission fragment mass-yield and total kinetic energy distributions were measured. 233 Pa was only investigated for the fission cross-section. The results have been described within the multi-modal fission model. The three most dominant fission modes, the two asymmetric standard I (S1) and standard II (S2) as well as the the symmetric superlong mode were used for all the isotopes but 252 Cf. For this isotope at least one other fission mode had to be taken into account, the so--called standard III (S3) mode. Since the theoretical interpretation of experimental results was rather successful also an attempt was made to improve the evaluation of the respective fission cross-section as well as their neutron multiplicities and spectra. Here, the statistical model for fission cross-section evaluation was extended by including the multi-modality concept for fission. Based on the underlying model, separate outer fission barriers have been considered for each mode, while the inner barriers and isomeric wells are assumed to be the same. The self-consistent calculations of the fission cross-section as well as total, capture, elastic and inelastic cross-sections were in good agreement with the experimental data and evaluated nuclear data libraries. As a side product, also fission fragment mass yield distributions have been deduced at incident neutron energies hitherto unaccessible. Very

  7. Electron spectra from decay of fission products

    Energy Technology Data Exchange (ETDEWEB)

    Dickens, J K

    1982-09-01

    Electron spectra following decay of individual fission products (72 less than or equal to A less than or equal to 162) are obtained from the nuclear data given in the compilation using a listed and documented computer subroutine. Data are given for more than 500 radionuclides created during or after fission. The data include transition energies, absolute intensities, and shape parameters when known. An average beta-ray energy is given for fission products lacking experimental information on transition energies and intensities. For fission products having partial or incomplete decay information, the available data are utilized to provide best estimates of otherwise unknown decay schemes. This compilation is completely referenced and includes data available in the reviewed literature up to January 1982.

  8. SPIDER Progress Towards High Resolution Correlated Fission Product Data

    Science.gov (United States)

    Shields, Dan; Meierbachtol, Krista; Tovesson, Fredrik; Arnold, Charles; Blackeley, Rick; Bredeweg, Todd; Devlin, Matt; Hecht, Adam; Jandel, Marian; Jorgenson, Justin; Nelson, Ron; White, Morgan; Spider Team

    2014-09-01

    The SPIDER detector (SPectrometer for Ion DEtermination in fission Research) is under development with the goal of obtaining high-resolution, high-efficiency, correlated fission product data needed for many applications including the modeling of next generation nuclear reactors, stockpile stewardship, and the fundamental understanding of the fission process. SPIDER simultaneously measures velocity and energy of both fission products to calculate fission product yields (FPYs), neutron multiplicity (ν), and total kinetic energy (TKE). A detailed description of the prototype SPIDER detector components will be presented. Characterization measurements with alpha and spontaneous fission sources will also be discussed. LA-UR-14-24875. The SPIDER detector (SPectrometer for Ion DEtermination in fission Research) is under development with the goal of obtaining high-resolution, high-efficiency, correlated fission product data needed for many applications including the modeling of next generation nuclear reactors, stockpile stewardship, and the fundamental understanding of the fission process. SPIDER simultaneously measures velocity and energy of both fission products to calculate fission product yields (FPYs), neutron multiplicity (ν), and total kinetic energy (TKE). A detailed description of the prototype SPIDER detector components will be presented. Characterization measurements with alpha and spontaneous fission sources will also be discussed. LA-UR-14-24875. This work is in part supported by LANL Laboratory Directed Research and Development Projects 20110037DR and 20120077DR.

  9. Physics of neutron emission in fission

    International Nuclear Information System (INIS)

    The document contains the proceedings of the IAEA Consultants' Meeting on the Physics of Neutron Emission in Fission, Mito City (Japan), 24-27 May 1988. Included are the conclusions and recommendations reached at the meeting and the papers presented by the meeting participants. These papers cover the following topics: Energy dependence of the number of fission neutrons ν-bar (3 papers), multiplicity distribution of fission neutrons (3 papers), competition between neutron and γ-ray emission (4 papers), the fission neutron yield in resonances (2 papers) and the energy spectrum of fission neutrons in experiment (9 papers), theory (4 papers) and evaluation (1 paper). A separate abstract was prepared for each of these papers. Refs, figs and tabs

  10. Systematics in delayed neutron yields

    Energy Technology Data Exchange (ETDEWEB)

    Ohsawa, Takaaki [Kinki Univ., Higashi-Osaka, Osaka (Japan). Atomic Energy Research Inst.

    1998-03-01

    An attempt was made to reproduce the systematic trend observed in the delayed neutron yields for actinides on the basis of the five-Gaussian representation of the fission yield together with available data sets for delayed neutron emission probability. It was found that systematic decrease in DNY for heavier actinides is mainly due to decrease of fission yields of precursors in the lighter side of the light fragment region. (author)

  11. Eosinophil count - absolute

    Science.gov (United States)

    Eosinophils; Absolute eosinophil count ... the white blood cell count to give the absolute eosinophil count. ... than 500 cells per microliter (cells/mcL). Normal value ranges may vary slightly among different laboratories. Talk ...

  12. Excitation-energy dependence of the nuclear fission characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Baba, H.; Saito, T.; Takahashi, N. [Osaka City Univ. (Japan). Faculty of Science] [and others

    1996-03-01

    It is known that the width parameter of the fragment mass yield distribution follows a beautiful systematics with respect to the excitation energy. According to this systematics, the fission characteristics following the systematics should disappear when the excitation energy Ex goes down to 14 MeV. The present purpose is to elucidate if, where, how and why a transition takes place in the fission characteristics of the asymmetric fission of light actinide elements. Two types of experiments are performed, one is the double-energy measurement of the kinetic energies of complementary fragments in the thermal-neutron fission of {sup 235,233}U and proton-induced fission of {sup 238}U at 13.3- and 15.7-MeV excitations, and the other is the radiochemical study of proton-induced fission and photofission of {sup 238}U at various excitation energies. In conclusion, it has demonstrated that there are two distinctive fission mechanisms in the low-energy fission of light actinide elements and the transition between them takes place around 14-MeV excitation. The characteristics of proton fission and photofission in the energy range lower than the above transition point are the essentially the same as those of thermal-neutron fission and also spontaneous fission. The results of GDR fission indicates the fission in the high-energy side starts from the nuclear collective states, whereas the lower-energy fission is of non-collective nature. It is likely that thermal-neutron fission is rather of the barrier-penetrating type like spontaneous fission than the threshold fission. (S.Y.)

  13. Correlation measurements of fission-fragment properties

    Directory of Open Access Journals (Sweden)

    Oberstedt A.

    2010-10-01

    Full Text Available For the development of future nuclear fission applications and for a responsible handling of nuclear waste the a-priori assessment of the fission-fragments’ heat production and toxicity is a fundamental necessity. The success of an indispensable modelling of the fission process strongly depends on a good understanding of the particular mechanism of scission, the mass fragmentation and partition of excitation energy. Experimental observables are fission-fragment properties like mass- and energy-distributions, and the prompt neutron as well as γ-ray multiplicities and emission spectra. The latter quantities should preferably be known as a function of fragment mass and excitation energy. Those data are highly demanded as published by the OECD-NEA in its high priority data request list. With the construction of the double (v, E spectrometer VERDI we aim at measuring pre- and post-neutron masses directly and simultaneously to avoid prompt neutron corrections. From the simultaneous measurement of pre- and post-neutron fission-fragment data the prompt neutron multiplicity may then be inferred fully correlated with fragment mass yield and total kinetic energy. Using an ultra-fast fission event trigger spectral prompt fission γ-ray measurements may be performed. For that purpose recently developed lanthanum-halide detectors, with excellent timing characteristics, were coupled to the VERDI spectrometer allowing for a very good discrimination of fission γ-rays and prompt neutrons due to their different time-of-flight.

  14. Progress in fission product nuclear data

    International Nuclear Information System (INIS)

    This is the ninth issue of a report series on Fission Product Nuclear Data (FPND) which is published by the Nuclear Data Section (NDS) of the International Atomic Energy Agency (IAEA). The purpose of this series is to inform scientists working on FPND, or using such data, about all activities in this field which are planned, ongoing, or have recently been completed. The main part of this report consists of unaltered original contributions which the authors have sent to IAEA/NDS. The present issue contains also a section with some recent references relative to fission product nuclear data, which were not covered by the contributions submitted. The types of activities being included in this report are measurements, compilations and evaluations of: Fission product yields (neutron induced and spontaneous fission); Neutron reaction cross sections of fission products; Data related to the radioactive decay of fission products; Delayed neutron data of fission products; and lumped fission product data (decay heat, absorption etc.). The eighth issue of this series has been published in July 1982 as INDC(NDS)-130. The present issue includes contributions which were received by NDS between 1 August 1982 and 25 June 1983

  15. Development of fission Mo-99 production technology

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Ho; Choung, W. M.; Lee, K. I. and others

    2000-05-01

    Fission Mo-99 is the only parent nuclide of Tc-99m, an extremely useful tool for mdeical diagnosis, with an estimated usage of greater than 80% of nuclear medicine applicatons. HEU and LEU targets to optimize in HANARO irradiation condition suggested and designed for domestic production of fission Mo-99. The optimum process conditions are established in each unit process to meet quality requirements of fission Mo-99 products, and the results of performance test in combined process show Mo separation and purification yield of the above 97%. The concept of Tc generator production process is established, and the result of performance test show Tc production yield of 98.4% in Tc generator procuction process. The drafts is prepared for cooperation of technical cooperation and business investment with foreign country. Evaluation on economic feasibility is accompanied for fission Mo-99 and Tc-99m generator production.

  16. Development of fission Mo-99 production technology

    International Nuclear Information System (INIS)

    Fission Mo-99 is the only parent nuclide of Tc-99m, an extremely useful tool for mdeical diagnosis, with an estimated usage of greater than 80% of nuclear medicine applicatons. HEU and LEU targets to optimize in HANARO irradiation condition suggested and designed for domestic production of fission Mo-99. The optimum process conditions are established in each unit process to meet quality requirements of fission Mo-99 products, and the results of performance test in combined process show Mo separation and purification yield of the above 97%. The concept of Tc generator production process is established, and the result of performance test show Tc production yield of 98.4% in Tc generator procuction process. The drafts is prepared for cooperation of technical cooperation and business investment with foreign country. Evaluation on economic feasibility is accompanied for fission Mo-99 and Tc-99m generator production

  17. The chemistry of the fission products

    International Nuclear Information System (INIS)

    This is a review of chemistry of some chemical elements in fission products. The elements mentioned are krypton, xenon, rubidium, caesium, silver, strontium, barium, cadmium, rare earth elements, zirconium, niobium, antimony, molybdenum, tellurium, technetium, bromine, iodine, ruthenium, rhodium and palladium. The chemistry of elements and their oxides is briefly given together with the chemical species in aqueous solution. The report also contains tables of the physical properties of the elements and their oxides, of fission products nuclides with their half-life and fission yields and of the permissible concentrations. (author)

  18. General Description of Fission Observables - JEFF Report 24. GEF Model

    International Nuclear Information System (INIS)

    The Joint Evaluated Fission and Fusion (JEFF) Project is a collaborative effort among the member countries of the OECD Nuclear Energy Agency (NEA) Data Bank to develop a reference nuclear data library. The JEFF library contains sets of evaluated nuclear data, mainly for fission and fusion applications; it contains a number of different data types, including neutron and proton interaction data, radioactive decay data, fission yield data and thermal scattering law data. The General fission (GEF) model is based on novel theoretical concepts and ideas developed to model low energy nuclear fission. The GEF code calculates fission-fragment yields and associated quantities (e.g. prompt neutron and gamma) for a large range of nuclei and excitation energy. This opens up the possibility of a qualitative step forward to improve further the JEFF fission yields sub-library. This report describes the GEF model which explains the complex appearance of fission observables by universal principles of theoretical models and considerations on the basis of fundamental laws of physics and mathematics. The approach reveals a high degree of regularity and provides a considerable insight into the physics of the fission process. Fission observables can be calculated with a precision that comply with the needs for applications in nuclear technology. The relevance of the approach for examining the consistency of experimental results and for evaluating nuclear data is demonstrated. (authors)

  19. Activation Energy for Fission

    Energy Technology Data Exchange (ETDEWEB)

    Seaborg, Glenn T.

    1952-08-29

    The experimentally determined exponential dependence of spontaneous fission rate on Z{sup 2}/A has been used to derive an expression for the dependence of the fission activation energy on Z{sup 2}/A. This expression has been used to calculate the activation energy for slow neutron induced fission and photofission. The correlation with the experimental data on these types of fission seems to be quite good.

  20. Conservation of Isospin in Neutron-rich Fission Fragments

    Science.gov (United States)

    Jain, A. K.; Choudhury, D.; Maheshwari, B.

    2014-06-01

    On the occasion of the 75th anniversary of the fission phenomenon, we present a surprisingly simple result which highlights the important role of isospin and its conservation in neutron rich fission fragments. We have analysed the fission fragment mass distribution from two recent heavyion reactions 238U(18O,f) and 208Pb(18O,f) as well as a thermal neutron fission reaction 245Cm(nth,f). We find that the conservation of the total isospin explains the overall trend in the observed relative yields of fragment masses in each fission pair partition. The isospin values involved are very large making the effect dramatic. The findings open the way for more precise calculations of fission fragment distributions in heavy nuclei and may have far reaching consequences for the drip line nuclei, HI fusion reactions, and calculation of decay heat in the fission phenomenon.

  1. Conservation of Isospin in Neutron-Rich Fission Fragments

    CERN Document Server

    Jain, Ashok Kumar; Maheshwari, Bhoomika

    2014-01-01

    On the occasion of the $75^{th}$ anniversary of the fission phenomenon, we present a surprisingly simple result which highlights the important role of isospin and its conservation in neutron rich fission fragments. We have analysed the fission fragment mass distribution from two recent heavy-ion reactions $^{238}$U($^{18}$O,f) and $^{208}$Pb($^{18}$O,f) as well as a thermal neutron fission reaction $^{245}$Cm(n$^{th}$,f). We find that the conservation of the total isospin explains the overall trend in the observed relative yields of fragment masses in each fission pair partition. The isospin values involved are very large making the effect dramatic. The findings open the way for more precise calculations of fission fragment distributions in heavy nuclei and may have far reaching consequences for the drip line nuclei, HI fusion reactions, and calculation of decay heat in the fission phenomenon.

  2. Progress in fission product nuclear data. No. 14

    International Nuclear Information System (INIS)

    This is the 14th issue of a report series on Fission Product Nuclear Data published by the Nuclear Data Section of the IAEA. The types of activities included are measurements, compilations and evaluations of fission product yields, neutron reaction cross sections of fission products, data related to the radioactive decay of fission products, delayed neutron data from neutron induced and spontaneous fission, lumped fission product data. The first part of the report consists of unaltered original contributions which the authors have sent to IAEA/NDS. The second part contains some recent references relative to fission product nuclear data, which were not covered by the contributions submitted, and selected papers from conferences. The third part contains requirements for further measurements

  3. Fission neutron statistical emission

    International Nuclear Information System (INIS)

    The statistical model approach FINESSE (FIssion NEutronS' Statistical Emission) for the description of fission neutron multiplicities, energy spectra and angular distributions is described. Based on an extended Weisskopf ansatz and on a realistic temperature distribution it provides a fragment mass number dependent description of fission neutron data. Model parameters (optical potential, n/γ competition) were fixed on the basis of the 252Cf(sf) (nuclear data standard). Combined with a phenomenological fission model for predicting relevant fragment data as function of asymmetry. FINESSE can be applied to any fission reaction of actinides in the Th-Cf region without further parameter adjustment. Results are presented for 252Cf(sf) and neutron induced fission of 235U, 239Pu, 232Th. Effects of multiple-chance fission are discussed for 232Th(n,xnf) reacation. (author). 46 refs, 11 figs

  4. Fission and Properties of Neutron-Rich Nuclei

    Science.gov (United States)

    Hamilton, Joseph H.; Ramayya, A. V.; Carter, H. K.

    2008-08-01

    . Fission-fragment spectroscopy with STEFF / A. G. Smith ... [et al.]. Gamma ray multiplicity of [symbol]Cf spontaneous fission using LiBerACE / D. L. Bleuel ... [et al.]. Excitation energy dependence of fragment mass and total kinetic energy distributions in proton-induced fission of light actinides / I. Nishinaka ... [et al.]. A dynamical calculation of multi-modal nuclear fission / T. Wada and T. Asano. Structure of fission potential energy surfaces in ten-dimensional spaces / V. V. Pashkevich, Y. K Pyatkov and A. V. Unzhakova. A possible enhancement of nuclear fission in scattering with low energy charged particles / V. Gudkov. Dynamical multi-break processes in the [symbol]Sn + [symbol]Ni system at 35 MeV/Nucleon / M. Papa and ISOSPIN-RE VERSE collaboration -- New experimental techniques. MTOF - a high resolution isobar separator for studies of exotic decays / A. Piechaczek ... [et al.]. Development of ORRUBA: a silicon array for the measurement of transfer reactions in inverse kinematics / S. D. Pain ... [et al.]. Indian national gamma array: present & future / R. K. Bhowmik. Absolute intensities of [symbol] rays emitted in the decay of [symbol]U / H. C. Griffin -- Superheavy elements theory and experiments / M. G. Itkis ... [et al.]. Study of superheavy elements at SHIP / S. Hofinann. Heaviest nuclei from [symbol]Ca-induced reactions / Yu. Ts. Oaanessian. Superheavy nuclei and giant nuclear systems / W. Greiner and V. Zagrebaev. Fission approach to alpha-decay of superheavy nuclei / D.N. Poenaru and W. Greiner. Superheavy elements in the Magic Islands / C. Samanta. Relativistic mean field studies of superheavy nuclei / A. V. Afanas jev. Understanding the synthesis of the heaviest nuclei / W. Loveland -- Mass measurements and g-factors. G factor measurements in neutron-rich [symbol]Cf fission fragments, measured using the gammasphere array / R. Orlandi ... [et al.]. Technique for measuring angular correlations and g-factors in neutron rich nuclei produced by the

  5. Validation of the neutron and gamma fields in the JSI TRIGA reactor using in-core fission and ionization chambers.

    Science.gov (United States)

    Žerovnik, Gašper; Kaiba, Tanja; Radulović, Vladimir; Jazbec, Anže; Rupnik, Sebastjan; Barbot, Loïc; Fourmentel, Damien; Snoj, Luka

    2015-02-01

    CEA developed fission chambers and ionization chambers were utilized at the JSI TRIGA reactor to measure neutron and gamma fields. The measured axial fission rate distributions in the reactor core are generally in good agreement with the calculated values using the Monte Carlo model of the reactor thus verifying both the computational model and the fission chambers. In future, multiple absolutely calibrated fission chambers could be used for more accurate online reactor thermal power monitoring. PMID:25479432

  6. ABSOLUTE NEUTRINO MASSES

    DEFF Research Database (Denmark)

    Schechter, J.; Shahid, M. N.

    2012-01-01

    We discuss the possibility of using experiments timing the propagation of neutrino beams over large distances to help determine the absolute masses of the three neutrinos.......We discuss the possibility of using experiments timing the propagation of neutrino beams over large distances to help determine the absolute masses of the three neutrinos....

  7. Study of fission fragment trapping detector used in neutron detection

    International Nuclear Information System (INIS)

    To detect the absolute neutron flux in a weak neutron field and restricted space, the fission fragment trapping detector was fabricated and the properties of the detector were studied. In this paper, the detector and shielding chamber used in neutron detection were described and the experimental measurements of the fission rate in specific condition were performed with the detection system and the result has been compared with that obtained by fission chamber. The influence of the shielding chamber on the measured results was analyzed. (authors)

  8. Determining isotopic distributions of fission products with a penning trap

    Energy Technology Data Exchange (ETDEWEB)

    Penttilae, H.; Karvonen, P.; Eronen, T.; Elomaa, V.V.; Hager, U.; Hakala, J.; Jokinen, A.; Kankainen, A.; Moore, I.D.; Peraejaervi, K.; Rahaman, S.; Rinta-Antila, S.; Saastamoinen, A.; Sonoda, T.; Aeystoe, J. [University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland); Rubchenya, V. [University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland); V.G. Khlopin Radium Institute, St. Petersburg (Russian Federation)

    2010-04-15

    A novel method to determine independent yields in particle-induced fission employing the ion guide technique and ion counting after a Penning trap has been developed. The method takes advantage of the fact that a Penning trap can be used as a precision mass filter, which allows an unambiguous identification of the fission fragments. The method was tested with 25MeV and 50MeV proton-induced fission of {sup 238}U. The data is internally reproducible with an accuracy of a few per cent. A satisfactory agreement was obtained with older ion guide yield measurements in 25MeV proton-induced fission. The results for Rb and Cs yields in 50MeV proton-induced fission agree with previous measurements performed at an isotope separator equipped with a chemically selective ion source. (orig.)

  9. Our 50-year odyssey with fission: Summary

    International Nuclear Information System (INIS)

    On the occasion of this International Conference on Fifty Years Research in Nuclear Fission, we summarize our present understanding of the fission process and the challenges that lie ahead. The basic properties of fission arise from a delicate competition between disruptive Coulomb forces, cohesive nuclear forces, and fluctuating shell and pairing forces. These static forces are primarily responsible for such experimental phenomena as deformed ground-state nuclear shapes, fission into fragments of unequal size, sawtooth neutron yields, spontaneously fissioning isomers, broad resonances and narrow intermediate structure in fission cross sections, and cluster radioactivity. However, inertial and dissipative forces also play decisive roles in the dynamical evolution of a fissioning nucleus. The energy dissipated between the saddle and scission points is small for low initial excitation energy at the saddle point and increases with increasing excitation energy. At moderate excitation energies, the dissipation of collective energy into internal single-particle excitation energy proceeds largely through the interaction of nucleons with the mean field and with each other in the vicinity of the nuclear surface, as well as through the transfer of nucleons between the two portions of the evolving dumbell-like system. These unique dissipation mechanisms arise from the Pauli exclusion principle for fermions and the details of the nucleon-nucleon interaction, which make the mean free path of a nucleon near the Fermi surface at low excitation energy longer than the nuclear radius. With its inverse process of heavy-ion fusion reactions, fission continues to yield surprises in the study of large-amplitude collective nuclear motion. 87 refs., 12 figs

  10. Absolute reaction rate measurement with D-D neutron source in polyethylene spherical shell

    International Nuclear Information System (INIS)

    The absolute reaction rate distribution measurements in a polyethylene spherical shell with 38.6 cm outside diameter and 10 cm thickness were performed with D-D neutron source. By combining fission method and activation method, rich-uranium fission chamber, depleted-uranium fission chamber, 237Np fission chamber and 115In activation foils were placed at several positions on the equatorial line of the inner face of the shell, and the absolute reaction rates were obtained. The uncertainty of fission rates is 2.5%-4.3%, while the uncertainty of activation rates is about 6.3%. The reaction rates were calculated by MCNP and ENDF/B-VII. 0. The calculated results are lower than the measured results and 238U is typical. (authors)

  11. The multi-step prompt particle emission from fission fragments

    International Nuclear Information System (INIS)

    The purpose of this work is the study of non-equilibrium high-energy gamma emission from 252 Cf. In the framework of the formalism of statistical multi-step compound processes in nuclear reactions. A relation was found between the shape of the high-energy part of the gamma spectrum and different mechanisms of excitation of the fission fragments. Agreement with experimental data for different groups of fission fragments was obtained. The analysis of the experimental high-energy part of gamma spectra yields information about the mechanism of excitation of fission fragments. The influence of dissipation of the deformation excess on intrinsic excitation of fission fragments was studied. (authors)

  12. Antiproton Induced Fission and Fragmentation of Nuclei

    CERN Multimedia

    2002-01-01

    The annihilation of slow antiprotons with nuclei results in a large highly localized energy deposition primarily on the nuclear surface. \\\\ \\\\ The study of antiproton induced fission and fragmentation processes is expected to yield new information on special nuclear matter states, unexplored fission modes, multifragmentation of nuclei, and intranuclear cascades.\\\\ \\\\ In order to investigate the antiproton-nucleus interaction and the processes following the antiproton annihilation at the nucleus, we propose the following experiments: \\item A)~Measurement of several fragments from fission and from multifragmentation in coincidence with particle spectra, especially neutrons and kaons. \\item B)~Precise spectra of $\\pi$, K, n, p, d and t with time-of-flight techniques. \\item C)~Installation of the Berlin 4$\\pi$ neutron detector with a 4$\\pi$ Si detector placed inside for fragments and charged particles. This yields neutron multiplicity distributions and consequently distributions of thermal excitation energies and...

  13. Thermal fission rates with temperature dependent fission barriers

    OpenAIRE

    Zhu, Yi; Pei, Junchen

    2016-01-01

    The fission processes of thermal excited nuclei are conventionally studied by statistical models which rely on inputs of phenomenological level densities and potential barriers. Therefore the microscopic descriptions of spontaneous fission and induced fission are very desirable for a unified understanding of various fission processes. We propose to study the fission rates, at both low and high temperatures, with microscopically calculated temperature-dependent fission barriers and collective ...

  14. NGS Absolute Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NGS Absolute Gravity data (78 stations) was received in July 1993. Principal gravity parameters include Gravity Value, Uncertainty, and Vertical Gradient. The...

  15. Absolute Pitch on Music

    OpenAIRE

    Çuhadar, C.Hakan

    2008-01-01

    Musicians are debated people in the academic circles with the claim of they have both various characteristics and different cognitive personalities on the analogy those other people. One of these different characteristics is absolute pitch ability. Absolute pitch (AP) is a cognitive ability which can be characterized as to identify any tones (labeling) at a given pitch without using any external references. According to the different studies which were held in different times, the prevalence ...

  16. Absolute polarimetry at RHIC

    OpenAIRE

    Okada, H.; Alekseev, I.; Bravar, A; Bunce, G.; Dhawan, S.; Eyser, K. O.; Gill, R; Haeberli, W.; Huang, H.; Jinnouchi, O.; Makdisi, Y.; Nakagawa, I.; Nass, A.; Saito, N; Stephenson, E.

    2007-01-01

    Precise and absolute beam polarization measurements are critical for the RHIC spin physics program. Because all experimental spin-dependent results are normalized by beam polarization, the normalization uncertainty contributes directly to final physics uncertainties. We aimed to perform the beam polarization measurement to an accuracy of $\\Delta P_{beam}/P_{beam} < 5%$. The absolute polarimeter consists of Polarized Atomic Hydrogen Gas Jet Target and left-right pairs of silicon strip detector...

  17. Muon-induced fission

    International Nuclear Information System (INIS)

    A review of recent experimental results on negative-muon-induced fission, both of 238U and 232Th, is given. Some conclusions drawn by the author are concerned with muonic atoms of fission fragments and muonic atoms of the shape isomer of 238U. (author)

  18. Thermal fission rates with temperature dependent fission barriers

    CERN Document Server

    Zhu, Yi

    2016-01-01

    \\item[Background] The fission processes of thermal excited nuclei are conventionally studied by statistical models which rely on inputs of phenomenological level densities and potential barriers. Therefore the microscopic descriptions of spontaneous fission and induced fission are very desirable for a unified understanding of various fission processes. \\item[Purpose] We propose to study the fission rates, at both low and high temperatures, with microscopically calculated temperature-dependent fission barriers and mass parameters. \\item[Methods] The fission barriers are calculated by the finite-temperature Skyrme-Hartree-Fock+BCS method. The mass parameters are calculated by the temperature-dependent cranking approximation. The thermal fission rates can be obtained by the imaginary free energy approach at all temperatures, in which fission barriers are naturally temperature dependent. The fission at low temperatures can be described mainly as a barrier-tunneling process. While the fission at high temperatures ...

  19. The VERDI fission fragment spectrometer

    Directory of Open Access Journals (Sweden)

    Frégeau M.O.

    2013-12-01

    Full Text Available The VERDI time-of-flight spectrometer is dedicated to measurements of fission product yields and of prompt neutron emission data. Pre-neutron fission-fragment masses will be determined by the double time-of-flight (TOF technique. For this purpose an excellent time resolution is required. The time of flight of the fragments will be measured by electrostatic mirrors located near the target and the time signal coming from silicon detectors located at 50 cm on both sides of the target. This configuration, where the stop detector will provide us simultaneously with the kinetic energy of the fragment and timing information, significantly limits energy straggling in comparison to legacy experimental setup where a thin foil was usually used as a stop detector. In order to improve timing resolution, neutron transmutation doped silicon will be used. The high resistivity homogeneity of this material should significantly improve resolution in comparison to standard silicon detectors. Post-neutron fission fragment masses are obtained form the time-of-flight and the energy signal in the silicon detector. As an intermediary step a diamond detector will also be used as start detector located very close to the target. Previous tests have shown that poly-crystalline chemical vapour deposition (pCVD diamonds provides a coincidence time resolution of 150 ps not allowing complete separation between very low-energy fission fragments, alpha particles and noise. New results from using artificial single-crystal diamonds (sCVD show similar time resolution as from pCVD diamonds but also sufficiently good energy resolution.

  20. Study on Fission Blanket Fuel Cycling of a Fusion-Fission Hybrid Energy Generation System

    International Nuclear Information System (INIS)

    Full text: Direct application of ITER-scale tokamak as a neutron driver in a subcritical fusion-fission hybrid reactor to generate electric power is of great potential in predictable future. This paper reports a primary study on neutronic and fuel cycle behaviors of a fission blanket for a new type of fusion-driven system (FDS), namely a subcritical fusion-fission hybrid reactor for electric power generation aiming at energy generation fueled with natural or depleted uranium. Using COUPLE2 developed at INET of Tsinghua University by coupling the MCNP code with the ORIGEN code to study the neutronic behavior and the refueling scheme, this paper focuses on refueling scheme of the fissionable fuel while keeping some important parameters such as tritium breeding ratio (TBR) and energy gain. Different fission fuels, coolants and their volumetric ratios arranged in the fission blanket satisfy the requirements for power generation. The results show that soft neutron spectrum with optimized fuel to moderator ratio can yield an energy amplifying factor of M> 20 while maintaining the TBR > 1.1 and the CR > 1 (the conversion ratio of fissile materials) in a reasonably long refueling cycle. Using an in-site fuel recycle plant, it will be an attractive way to realize the goal of burning 238U with such a new type of fusion-fission hybrid reactor system to generate electric power. (author)

  1. Fission Measurements with Dance

    Science.gov (United States)

    Jandel, M.; Bredeweg, T. A.; Fowler, M. M.; Bond, E. M.; Chadwick, M. B.; Clement, R. R.; Couture, A.; O'Donnell, J. M.; Haight, R. C.; Keksis, A. L.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.; Agvaanluvsan, U.; Dashdorj, D.; Macri, R. A.; Parker, W. E.; Wilk, P. A.; Wu, C. Y.; Becker, J. A.; Angell, C. T.; Tonchev, A. P.; Baker, J. D.

    2008-08-01

    Neutron capture cross section measurements on actinides are complicated by the presence of neutron-induced fission. An efficient fission tagging detector used in coincidence with the Detector for Advanced Neutron Capture Experiments (DANCE) provides a powerful tool in undertaking simultaneous measurements of (n,γ) and (n,f) cross sections. Preliminary results on 235U(n,γ) and (n,f) and 242mAm(n,f) cross sections measured with DANCE and a custom fission-tagging parallel plate avalanche counter (PPAC) are presented. Additional measurements of γ-ray cluster multiplicity distributions for neutron-induced fission of 235U and 242mAm and spontaneous fission of 252Cf are shown, as well as γ-ray energy and average γ-ray energy distributions.

  2. Fission 2009 4. International Workshop on Nuclear Fission and Fission Product Spectroscopy - Compilation of slides

    International Nuclear Information System (INIS)

    This conference is dedicated to the last achievements in experimental and theoretical aspects of the nuclear fission process. The topics include: mass, charge and energy distribution, dynamical aspect of the fission process, nuclear data evaluation, quasi-fission and fission lifetime in super heavy elements, fission fragment spectroscopy, cross-section and fission barrier, and neutron and gamma emission. This document gathers the program of the conference and the slides of the presentations

  3. Fission in intermediate energy heavy ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Wilhelmy, J.B.; Begemann-Blaich, M.; Blaich, T.; Boissevain, J.; Fowler, M.M.; Gavron, A.; Jacak, B.V.; Lysaght, P.S. (Los Alamos National Lab., NM (USA)); Britt, H.C.; Fields, D.J.; Hansen, L.F.; Lanier, R.G.; Massoletti, D.J.; Namboodiri, M.M.; Remington, B.A.; Sangster, T.C.; Struble, G.L.; Webb, M.L. (Lawrence Livermore National Lab., CA (USA)); Chan, Y.D.; Dacai, A.; Harmon, A.; Leyba, J.; Pouliot, J.; Stokstad, R.G. (Lawrence Berkeley Lab., CA (USA)); Hansen, O.; Levine, M.J.; Thorn, C.E.; Trautmann, W. (Brookhaven National Lab., Upton, NY (USA)); Dichter, B.; Kaufman, S.; Videbaek, F. (Argonne National Lab. (USA)); Fraenkel, Z.; Mamane, G. (Weizmann Inst. of Science, Rehovoth (Israel)); Cebra, D.; Westfall, G.D. (Michigan State Univ., East Lansing (USA))

    1989-10-09

    A systematic study of reaction mechanisms at intermediate energies (50-100 MeV/A) has been performed at the Lawrence Berkeley Laboratory's BeValac using medium weight projectiles on medium and heavy element targets. A gas and plastic phoswich detector system was employed which gave large geometric coverage and a wide dynamic response. The particles identified with the gas detectors could be characterized into three components - intermediate mass fragments (IMF), fission fragments (FF) and heavy residues (HR). Major observed features are: The reaction yields are similar in the 50 to 100 MeV/A range, central collisions have high multiplicty of IMF's with broad angular correlations consistent with a large participant region, effects of final state Coulomb interactions are observed and give information on the size and temporal behavior of the source, true fission yields are dependent on target fissility and correlated with relatively peripheral collisions. Analysis of fission and evaporation yields implies limiting conditions for which fission decay remains a viable deexcitation channel. (orig.).

  4. Monte Carlo simulation based toy model for fission process

    Science.gov (United States)

    Kurniadi, Rizal; Waris, Abdul; Viridi, Sparisoma

    2016-09-01

    Nuclear fission has been modeled notoriously using two approaches method, macroscopic and microscopic. This work will propose another approach, where the nucleus is treated as a toy model. The aim is to see the usefulness of particle distribution in fission yield calculation. Inasmuch nucleus is a toy, then the Fission Toy Model (FTM) does not represent real process in nature completely. The fission event in FTM is represented by one random number. The number is assumed as width of distribution probability of nucleon position in compound nuclei when fission process is started. By adopting the nucleon density approximation, the Gaussian distribution is chosen as particle distribution. This distribution function generates random number that randomizes distance between particles and a central point. The scission process is started by smashing compound nucleus central point into two parts that are left central and right central points. The yield is determined from portion of nuclei distribution which is proportional with portion of mass numbers. By using modified FTM, characteristic of particle distribution in each fission event could be formed before fission process. These characteristics could be used to make prediction about real nucleons interaction in fission process. The results of FTM calculation give information that the γ value seems as energy.

  5. Calibration with Absolute Shrinkage

    DEFF Research Database (Denmark)

    Øjelund, Henrik; Madsen, Henrik; Thyregod, Poul

    2001-01-01

    In this paper, penalized regression using the L-1 norm on the estimated parameters is proposed for chemometric je calibration. The algorithm is of the lasso type, introduced by Tibshirani in 1996 as a linear regression method with bound on the absolute length of the parameters, but a modification...

  6. Studies on Neutron, Photon (Bremsstrahlung and Proton Induced Fission of Actinides and Pre-Actinides

    Directory of Open Access Journals (Sweden)

    H. Naik

    2015-08-01

    Full Text Available We present the yields of various fission products determined in the reactor neutron, 3.7-18.1 MeV quasi-mono energetic neutron, 8-80 MeV bremsstrahlung and 20-45 MeV proton induced fission of 232Th and 238U using radiochemical and off-line beta or gamma ray counting. The yields of the fission products in the bremsstrahlung induced fission natPb and 209Bi with 50- 70 MeV and 2.5 GeV based on off-line gamma ray spectrometric technique were also presented. From the yields of fission products, the mass chains yields were obtained using charge distribution correction. From the mass yield distribution, the peak-to-valley (P/V ratio was obtained. The role of excitation energy on the peak-to-valley ratio and fine structure such as effect of shell closure proximity and even-odd effect of mass yield distribution were examined. The higher yields of the fission products around A=133-134, 138-140 and 143-144 and their complementary products explained from the nuclear structure effect and role of standard I and II mode of asymmetric fission. In the neutron, photon (bremsstrahlung and proton induced fission, the asymmetric mass distribution for actinides (Th, U and symmetric distribution for pre-actinides (Pb, Bi were explained from different type of potential fission barrier

  7. Neutron induced fission of 234U

    Directory of Open Access Journals (Sweden)

    Pomp S.

    2012-02-01

    Full Text Available The fission fragment properties of 234U(n,f were investigated as a function of incident neutron energy from 0.2 MeV up to 5 MeV. The fission fragment mass, angular distribution and kinetic energy were measured with a double Frisch-grid ionization chamber using both analogue and digital data acquisition techniques. The reaction 234U(n,f is relevant, since it involves the same compound nucleus as formed after neutron evaporation from highly excited 236U*, the so-called second-chance fission of 235U. Experimental data on fission fragment properties like fission fragment mass and total kinetic energy (TKE as a function of incident neutron energy are rather scarce for this reaction. For the theoretical modelling of the reaction cross sections for Uranium isotopes this information is a crucial input parameter. In addition, 234U is also an important isotope in the Thorium-based fuel cycle. The strong anisotropy of the angular distribution around the vibrational resonance at En = 0.77 MeV could be confirmed using the full angular range. Fluctuations in the fragment TKE have been observed in the threshold region around the strong vibrational resonance at En = 0.77 MeV. The present results are in contradiction with corresponding literature values. Changes in the mass yield around the vibrational resonance and at En = 5 MeV relative to En = 2 MeV show a different signature. The drop in mean TKE around 2.5 to 3 MeV points to pair breaking as also observed in 235,238U(n,f. The measured two-dimensional mass yield and TKE distribution have been described in terms of fission modes. The yield of the standard 1 (S1 mode shows fluctuations in the threshold of the fission cross section due to the influence of the resonance and levels off at about 20% yield for higher incident neutron energies. The S2 mode shows the respective opposite behaviour. The mean TKE of both modes decreases with En. The decrease in mean TKE overrules the increase in S1 yield, so the mean

  8. Characterization of the scission point from fission-fragment velocities

    CERN Document Server

    Caamaño, M; Delaune, O; Schmidt, K -H; Schmitt, C; Audouin, L; Bacri, C -O; Benlliure, J; Casarejos, E; Derkx, X; Fernández-Domínguez, B; Gaudefroy, L; Golabek, C; Jurado, B; Lemasson, A; Ramos, D; Rodríguez-Tajes, C; Roger, T; Shrivastava, A

    2015-01-01

    The isotopic-yield distributions and kinematic properties of fragments produced in transfer-induced fission of 240Pu and fusion-induced fission of 250Cf, with 9 MeV and 45 MeV of excitation energy respectively, were measured in inverse kinematics with the spectrometer VAMOS. The kinematic properties of identified fission fragments allow to derive properties of the scission configuration such as the distance between fragments, the total kinetic energy, the neutron multiplicity, the total excitation energy, and, for the first time, the proton- and neutron-number sharing during the emergence of the fragments. These properties of the scission point are studied as functions of the fragment atomic number. The correlation between these observables, gathered in one single experiment and for two different fissioning systems at different excitation energies, give valuable information for the understanding and modeling of the fission process.

  9. Applications of Event-by-Event Fission Modeling with FREYA

    Directory of Open Access Journals (Sweden)

    Vogt R.

    2012-02-01

    Full Text Available The recently developed code FREYA (Fission Reaction Event Yield Algorithm generates large samples of complete fission events, consisting of two receding product nuclei as well as a number of neutrons and photons, all with complete kinematic information. Thus it is possible to calculate arbitrary correlation observables whose behavior may provide unique insight into the fission process. We first discuss the present status of FREYA, which has now been extended to include spontaneous fission. Concentrating on 239Pu(nth,f, 240Pu(sf and 252Cf(sf, we discuss the neutron multiplicity correlations, the dependence of the neutron energy spectrum on the neutron multiplicity, and the relationship between the fragment kinetic energy and the number of neutrons and their energies. We also suggest novel fission observables that could be measured with modern detectors.

  10. Fission fragment mass distributions via prompt -ray spectroscopy

    Indian Academy of Sciences (India)

    L S Danu; D C Biswas; B K Nayak; R K Choudhury

    2015-09-01

    The distribution of fragment masses formed in nuclear fission is one of the most striking features of the process. Such measurements are very important to understand the shape evolution of the nucleus from ground state to scission through intermediate saddle points. The fission fragment mass distributions, generally obtained via conventional methods (i.e., by measuring the energy and/or the velocity of the correlated fission fragments) are limited to a mass resolution of 4–5 units. On the other hand, by employing the -ray spectroscopy, it is possible to estimate the yield of individual fission fragments. In this work, determination of the fission fragment mass distribution by employing prompt -ray spectroscopy is described along with the recent results on 238U(18O, f) and 238U(32S, f) systems.

  11. Precise measurement of the absolute fluorescence yield of nitrogen in air. Consequences on the detection of ultra-high energy cosmic rays; Mesure precise du rendement absolu de la fluorescence de l'azote dans l'air. Consequences sur la detection des rayons cosmiques d'ultra-haute energie

    Energy Technology Data Exchange (ETDEWEB)

    Lefeuvre, G

    2006-07-15

    The study of the energy spectrum of ultra-high energy cosmic rays (E > 10{sup 20} eV) requires to determine the energy with much more precision than what is currently achieved. The shower of particles created in the atmosphere can be detected either by sampling particle on the ground, or by detecting the fluorescence induced by the excitation of nitrogen by shower electrons. At present, the measurement of the fluorescence is the simplest and the most reliable method, since it does not call upon hadronic physics laws at extreme energies, a field still inaccessible to accelerators. The precise knowledge of the conversion factor between deposited energy and the number of fluorescence photons produced (the yield) is thus essential. Up to now, it has been determined with an accuracy of 15 % only. This main goal of this work is to measure this yield to better than 5 per cent. To do this, 1 MeV electrons from a radioactive source excite nitrogen of the air. The accuracy has been reached thanks to the implementation of a new method for the absolute calibration of the photomultipliers detecting the photons, to better than 2 per cent. The fluorescence yield, measured and normalized to 0.85 MeV, 760 mmHg and 15 Celsius degrees, is (4.23 {+-} 0.20) photons per meter, or (20.46 {+-} 0.98) photons per deposited MeV. In addition, and for the first time, the absolute fluorescence spectrum of nitrogen excited by a source has been measured with an optical grating spectrometer. (author)

  12. A generalized method for characterization of 235U and 239Pu content using short-lived fission product gamma spectroscopy

    Science.gov (United States)

    Knowles, Justin; Skutnik, Steven; Glasgow, David; Kapsimalis, Roger

    2016-10-01

    Rapid nondestructive assay methods for trace fissile material analysis are needed in both nuclear forensics and safeguards communities. To address these needs, research at the Oak Ridge National Laboratory High Flux Isotope Reactor Neutron Activation Analysis facility has developed a generalized nondestructive assay method to characterize materials containing fissile isotopes. This method relies on gamma-ray emissions from short-lived fission products and makes use of differences in fission product yields to identify fissile compositions of trace material samples. Although prior work has explored the use of short-lived fission product gamma-ray measurements, the proposed method is the first to provide a complete characterization of isotopic identification, mass ratios, and absolute mass determination. Successful single fissile isotope mass recoveries of less than 6% recovery bias have been conducted on standards of 235U and 239Pu as low as 12 ng in less than 10 minutes. Additionally, mixtures of fissile isotope standards containing 235U and 239Pu have been characterized as low as 198 ng of fissile mass with less than 7% recovery bias. The generalizability of this method is illustrated by evaluating different fissile isotopes, mixtures of fissile isotopes, and two different irradiation positions in the reactor. It is anticipated that this method will be expanded to characterize additional fissile nuclides, utilize various irradiation facilities, and account for increasingly complex sample matrices.

  13. Thermal fission rates with temperature dependent fission barriers

    Science.gov (United States)

    Zhu, Yi; Pei, J. C.

    2016-08-01

    Background: The fission processes of thermal excited nuclei are conventionally studied by statistical models which rely on inputs of phenomenological level densities and potential barriers. Therefore the microscopic descriptions of spontaneous fission and induced fission are very desirable for a unified understanding of various fission processes. Purpose: We propose to study the fission rates, at both low and high temperatures, with microscopically calculated temperature-dependent fission barriers and collective mass parameters. Methods: The fission barriers are calculated by the finite-temperature Skyrme-Hartree-Fock+BCS method. The mass parameters are calculated by the temperature-dependent cranking approximation. The thermal fission rates can be obtained by the imaginary free energy approach at all temperatures, in which fission barriers are naturally temperature dependent. The fission at low temperatures can be described mainly as a barrier-tunneling process. While the fission at high temperatures has to incorporate the reflection above barriers. Results: Our results of spontaneous fission rates reasonably agree with other studies and experiments. The temperature dependencies of fission barrier heights and curvatures have been discussed. The temperature dependent behaviors of mass parameters have also been discussed. The thermal fission rates from low to high temperatures with a smooth connection have been given by different approaches. Conclusions: Since the temperature dependencies of fission barrier heights and curvatures, and the mass parameters can vary rapidly for different nuclei, the microscopic descriptions of thermal fission rates are very valuable. Our studies without free parameters provide a consistent picture to study various fissions such as that in fast-neutron reactors, astrophysical environments, and fusion reactions for superheavy nuclei.

  14. Microscopic modeling of mass and charge distributions in the spontaneous fission of 240Pu

    Science.gov (United States)

    Sadhukhan, Jhilam; Nazarewicz, Witold; Schunck, Nicolas

    2016-01-01

    We propose a methodology to calculate microscopically the mass and charge distributions of spontaneous fission yields. We combine the multidimensional minimization of collective action for fission with stochastic Langevin dynamics to track the relevant fission paths from the ground-state configuration up to scission. The nuclear potential energy and collective inertia governing the tunneling motion are obtained with nuclear density functional theory in the collective space of shape deformations and pairing. We obtain a quantitative agreement with experimental data and find that both the charge and mass distributions in the spontaneous fission of 240Pu are sensitive both to the dissipation in collective motion and to adiabatic fission characteristics.

  15. Fission waves can oscillate

    CERN Document Server

    Osborne, Andrew G

    2016-01-01

    Under the right conditions, self sustaining fission waves can form in fertile nuclear materials. These waves result from the transport and absorption of neutrons and the resulting production of fissile isotopes. When these fission, additional neutrons are produced and the chain reaction propagates until it is poisoned by the buildup of fission products. It is typically assumed that fission waves are soliton-like and self stabilizing. However, we show that in uranium, coupling of the neutron field to the 239U->239Np->239Pu decay chain can lead to a Hopf bifurcation. The fission reaction then ramps up and down, along with the wave velocity. The critical driver for the instability is a delay, caused by the half-life of 239U, between the time evolution of the neutron field and the production of 239Pu. This allows the 239Pu to accumulate and burn out in a self limiting oscillation that is characteristic of a Hopf bifurcation. Time dependent results are obtained using a numerical implementation of a reduced order r...

  16. Locally Broken Crystal Symmetry Facilitates Singlet Exciton Fission.

    Science.gov (United States)

    Petelenz, Piotr; Snamina, Mateusz

    2016-05-19

    Photovoltaic yield is normally limited to at most two charge carriers per photon. In solid pentacene this limit may be potentially bypassed owing to singlet exciton fission into a pair of triplets. The process occurs via a superexchange mechanism mediated by charge-transfer (CT) configurations and is sensitive to their energies. As demonstrated recently, these strongly depend on the local environment of the two molecules on which the charges reside. Using a multiscale model, here we show that in the crystal bulk approximate local symmetry affects CT state energetics in a way unfavorable for fission, so that at the places where this symmetry is broken the fission probability is enhanced by up to an order of magnitude. These fission-favorable locations entail the vicinity of vacancies, specific impurities, and interfaces, such as crystallite boundaries. Hence, photovoltaic yield might be substantially increased by using nanoscopically disordered pentacene rather than highly ordered specimens. PMID:27152577

  17. Radiometric dating of sediments using fission tracks in conodonts

    International Nuclear Information System (INIS)

    The possibility of counting fission tracks in conodonts and of computing reasonable age estimates from these data has been investigated. Fission tracks counted in thermal neutron irradiated, thermally unaltered (as indicated by colour alteration indices) middle Palaeozoic conodonts indicate typical uranium concentrations of approximately 1 part in 109, with some samples higher. A single specimen of Siphonodella from the Lower Mississippian yielded an age estimate of 380 +- 140 Myr consistent with conventional interpolations. (U.K.)

  18. Current position on fission product behavior

    International Nuclear Information System (INIS)

    The following phenomena are treated and modeled: fission product release from fuel, both in-vessel and ex-vessel; fission product deposition in the primary system, fission product deposition in the containment, and fission product revolatization

  19. ABSOLUTE POLARIMETRY AT RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    OKADA; BRAVAR, A.; BUNCE, G.; GILL, R.; HUANG, H.; MAKDISI, Y.; NASS, A.; WOOD, J.; ZELENSKI, Z.; ET AL.

    2007-09-10

    Precise and absolute beam polarization measurements are critical for the RHIC spin physics program. Because all experimental spin-dependent results are normalized by beam polarization, the normalization uncertainty contributes directly to final physics uncertainties. We aimed to perform the beam polarization measurement to an accuracy Of {Delta}P{sub beam}/P{sub beam} < 5%. The absolute polarimeter consists of Polarized Atomic Hydrogen Gas Jet Target and left-right pairs of silicon strip detectors and was installed in the RHIC-ring in 2004. This system features proton-proton elastic scattering in the Coulomb nuclear interference (CNI) region. Precise measurements of the analyzing power A{sub N} of this process has allowed us to achieve {Delta}P{sub beam}/P{sub beam} = 4.2% in 2005 for the first long spin-physics run. In this report, we describe the entire set up and performance of the system. The procedure of beam polarization measurement and analysis results from 2004-2005 are described. Physics topics of AN in the CNI region (four-momentum transfer squared 0.001 < -t < 0.032 (GeV/c){sup 2}) are also discussed. We point out the current issues and expected optimum accuracy in 2006 and the future.

  20. Absolute polarimetry at RHIC

    CERN Document Server

    Okada, H; Bravar, A; Bunce, G; Dhawan, S; Eyser, K O; Gill, R; Haeberli, W; Huang, H; Jinnouchi, O; Makdisi, Y; Nakagawa, I; Nass, A; Saitô, N; Stephenson, E; Sviridia, D; Wise, T; Wood, J; Zelenski, A

    2007-01-01

    Precise and absolute beam polarization measurements are critical for the RHIC spin physics program. Because all experimental spin-dependent results are normalized by beam polarization, the normalization uncertainty contributes directly to final physics uncertainties. We aimed to perform the beam polarization measurement to an accuracy of $\\Delta P_{beam}/P_{beam} < 5%$. The absolute polarimeter consists of Polarized Atomic Hydrogen Gas Jet Target and left-right pairs of silicon strip detectors and was installed in the RHIC-ring in 2004. This system features \\textit{proton-proton} elastic scattering in the Coulomb nuclear interference (CNI) region. Precise measurements of the analyzing power $A_N$ of this process has allowed us to achieve $\\Delta P_{beam}/P_{beam} =4.2%$ in 2005 for the first long spin-physics run. In this report, we describe the entire set up and performance of the system. The procedure of beam polarization measurement and analysis results from 2004-2005 are described. Physics topics of $A...

  1. Fission gas measuring technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyung Kwon; Kim, Eun Ka; Hwang, Yong Hwa; Lee, Eun Pyo; Chun, Yong Bum; Seo, Ki Seog; Park, Dea Gyu; Chu, Yong Sun; Ahn, Sang Bok

    1998-02-01

    Safety and economy of nuclear plant are greatly affected by the integrity of nuclear fuels during irradiation reactor core. A series of post-irradiation examination (PIE) including non-destructive and destructive test is to be conducted to evaluate and characterize the nuclear performance. In this report, a principle of the examination equipment to measure and analyse fission gases existing nuclear fuels were described and features of the component and device consisting the fission gas measuring equipment are investigated. (author). 4 refs., 2 tabs., 6 figs.

  2. Fission modelling with FIFRELIN

    Energy Technology Data Exchange (ETDEWEB)

    Litaize, Olivier; Serot, Olivier; Berge, Leonie [CEA, DEN, DER, SPRC, Saint Paul Lez Durance (France)

    2015-12-15

    The nuclear fission process gives rise to the formation of fission fragments and emission of particles (n,γ, e{sup -}). The particle emission from fragments can be prompt and delayed. We present here the methods used in the FIFRELIN code, which simulates the prompt component of the de-excitation process. The methods are based on phenomenological models associated with macroscopic and/or microscopic ingredients. Input data can be provided by experiment as well as by theory. The fission fragment de-excitation can be performed within Weisskopf (uncoupled neutron and gamma emission) or a Hauser-Feshbach (coupled neutron/gamma emission) statistical theory. We usually consider five free parameters that cannot be provided by theory or experiments in order to describe the initial distributions required by the code. In a first step this set of parameters is chosen to reproduce a very limited set of target observables. In a second step we can increase the statistics to predict all other fission observables such as prompt neutron, gamma and conversion electron spectra but also their distributions as a function of any kind of parameters such as, for instance, the neutron, gamma and electron number distributions, the average prompt neutron multiplicity as a function of fission fragment mass, charge or kinetic energy, and so on. Several results related to different fissioning systems are presented in this work. The goal in the next decade will be i) to replace some macroscopic ingredients or phenomenological models by microscopic calculations when available and reliable, ii) to be a support for experimentalists in the design of detection systems or in the prediction of necessary beam time or count rates with associated statistics when measuring fragments and emitted particle in coincidence iii) extend the model to be able to run a calculation when no experimental input data are available, iv) account for multiple chance fission and gamma emission before fission, v) account for

  3. Fission modelling with FIFRELIN

    Science.gov (United States)

    Litaize, Olivier; Serot, Olivier; Berge, Léonie

    2015-12-01

    The nuclear fission process gives rise to the formation of fission fragments and emission of particles (n,γ , e-) . The particle emission from fragments can be prompt and delayed. We present here the methods used in the FIFRELIN code, which simulates the prompt component of the de-excitation process. The methods are based on phenomenological models associated with macroscopic and/or microscopic ingredients. Input data can be provided by experiment as well as by theory. The fission fragment de-excitation can be performed within Weisskopf (uncoupled neutron and gamma emission) or a Hauser-Feshbach (coupled neutron/gamma emission) statistical theory. We usually consider five free parameters that cannot be provided by theory or experiments in order to describe the initial distributions required by the code. In a first step this set of parameters is chosen to reproduce a very limited set of target observables. In a second step we can increase the statistics to predict all other fission observables such as prompt neutron, gamma and conversion electron spectra but also their distributions as a function of any kind of parameters such as, for instance, the neutron, gamma and electron number distributions, the average prompt neutron multiplicity as a function of fission fragment mass, charge or kinetic energy, and so on. Several results related to different fissioning systems are presented in this work. The goal in the next decade will be i) to replace some macroscopic ingredients or phenomenological models by microscopic calculations when available and reliable, ii) to be a support for experimentalists in the design of detection systems or in the prediction of necessary beam time or count rates with associated statistics when measuring fragments and emitted particle in coincidence iii) extend the model to be able to run a calculation when no experimental input data are available, iv) account for multiple chance fission and gamma emission before fission, v) account for the

  4. Dependence of Fission-Fragment Properties On Excitation Energy For Neutron-Rich Actinides

    Directory of Open Access Journals (Sweden)

    Ramos D.

    2016-01-01

    Isotopic fission yields of 250Cf, 244Cm, 240Pu, 239Np and 238U are presented in this work. With this information, the average number of neutrons as a function of the atomic number of the fragments is calculated, which reflects the impact of nuclear structure around Z=50, N=80 on the production of fission fragments. The characteristics of the Super Long, Standard I, Standard II, and Standard III fission channels were extracted from fits of the fragment yields for different ranges of excitation energy. The position and contribution of the fission channels as function of excitation energy are presented.

  5. Fission dynamics of hot nuclei

    Indian Academy of Sciences (India)

    Santanu Pal; Jhilam Sadhukhan

    2014-04-01

    Experimental evidence accumulated during the last two decades indicates that the fission of excited heavy nuclei involves a dissipative dynamical process. We shall briefly review the relevant dynamical model, namely the Langevin equations for fission. Statistical model predictions using the Kramers’ fission width will also be discussed.

  6. Discoveries of isotopes by fission

    Indian Academy of Sciences (India)

    M Thoennessen

    2015-09-01

    Of the about 3000 isotopes presently known, about 20% have been discovered in fission. The history of fission as it relates to the discovery of isotopes as well as the various reaction mechanisms leading to isotope discoveries involving fission are presented.

  7. Optical tweezers absolute calibration

    CERN Document Server

    Dutra, R S; Neto, P A Maia; Nussenzveig, H M

    2014-01-01

    Optical tweezers are highly versatile laser traps for neutral microparticles, with fundamental applications in physics and in single molecule cell biology. Force measurements are performed by converting the stiffness response to displacement of trapped transparent microspheres, employed as force transducers. Usually, calibration is indirect, by comparison with fluid drag forces. This can lead to discrepancies by sizable factors. Progress achieved in a program aiming at absolute calibration, conducted over the past fifteen years, is briefly reviewed. Here we overcome its last major obstacle, a theoretical overestimation of the peak stiffness, within the most employed range for applications, and we perform experimental validation. The discrepancy is traced to the effect of primary aberrations of the optical system, which are now included in the theory. All required experimental parameters are readily accessible. Astigmatism, the dominant effect, is measured by analyzing reflected images of the focused laser spo...

  8. Development of fission Mo-99 production technology

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Ho; Choung, W. M.; Lee, K. I. and others

    2001-05-01

    This R and D project is planed to supply domestic demands of Mo-99 through fission route, and consequently this project will be expected to rise up utilization of HANARO and KAERI's capability for marketing extension into domestic and oversea radiopharmaceutical market. HEU and LEU target types are decided and designed for fission Mo-99 production in domestic. Experimental study of target fabrication technology was performed and developed processing equipments. And conceptual design of target loading/unloading in/from HANARO device are performed. Tracer test of Mo-99 separation and purification process was performed, test results reach to Mo-99 recovery yield above 80% and decontamination factor above 1600. Combined Mo-99 separation and purification process was decided for hot test scheduled from next year, and performance test was performed. Conceptual design for modification of existing hot cell for fission Mo-99 production facility was performed and will be used for detail design. Assumption for the comparison of LEU and HEU target in fission Mo-99 production process were suggested and compared of merits and demerits in view of fabrication technology and economy feasibility.

  9. Dynamics of fission and heavy ion reactions

    International Nuclear Information System (INIS)

    Recent advances in a unified macroscopic-microscopic description of large-amplitude collective nuclear motion such as occurs in fission and heavy ion reactions are discussed. With the goal of finding observable quantities that depend upon the magnitude and mechanism of nuclear dissipation, one-body dissipation and two-body viscosity within the framework of a generalized Fokker-Planck equation for the time dependence of the distribution function in phase space of collective coordinates and momenta are considered. Proceeding in two separate directions, the generalized Hamilton equations of motion for the first moments of the distribution function with a new shape parametrization and other technical innovations are first solved. This yields the mean translational fission-fragment kinetic energy and mass of a third fragment that sometimes forms between the two end fragments, as well as the energy required for fusion in symmetric heavy-ion reactions and the mass transfer and capture cross section in asymmetric heavy-ion reactions. In a second direction, we specialize to an inverted-oscillator fission barrier and use Kramers' stationary solution to calculate the mean time from the saddle point to scission for a heavy-ion-induced fission reaction for which experimental information is becoming available. 25 references

  10. Neutron Capture and Fission Measurement on ^238Pu at DANCE

    Science.gov (United States)

    Chyzh, Andrii; Wu, Ching-Yen; Kwan, Elaine; Henderson, Roger; Gostic, Jolie; Couture, Aaron; Young, Hye; Ullmann, John; O'Donnell, John; Jandel, Marian; Haight, Robert; Bredeweg, Todd

    2012-10-01

    Neutron capture and fission reactions on actinides are important in nuclear engineering and physics. DANCE (Detector for Advanced Neutron Capture Measurement, LANL) combined with PPAC (avalanche technique based fission tagging detector, LLNL) were used to study the neutron capture reactions in ^238Pu. Because of extreme spontaneous α-radioactivity in ^238Pu and associated safety issues, 3 separate experiments were performed in 2010-2012. The 1st measurement was done without fission tagging on a 396-μg thick target. The 2nd one was with PPAC on the same target. The 3rd final measurement was done on a thin target with a mass of 40 μg in order to reduce α-background load on PPAC. This was the first such measurement in a laboratory environment. The absolute ^238Pu(n,γ) cross section is presented together with the prompt γ-ray multiplicity in the ^238Pu(n,f) reaction.

  11. Dynamical features of nuclear fission

    Indian Academy of Sciences (India)

    Santanu Pal

    2015-08-01

    It is now established that the transition-state theory of nuclear fission due to Bohr and Wheeler underestimates several observables in heavy-ion-induced fusion–fission reactions. Dissipative dynamical models employing either the Langevin equation or equivalently the Fokker–Planck equation have been developed for fission of heavy nuclei at high excitations (T ∼1 MeV or higher). Here, we first present the physical picture underlying the dissipative fission dynamics. We mainly concentrate upon the Kramers’ prescription for including dissipation in fission dynamics. We discuss, in some detail, the results of a statistical model analysis of the pre-scission neutron multiplicity data from the reactions 19F+194,196,198Pt using Kramers’ fission width. We also discuss the multi-dimensional Langevin equation in the context of kinetic energy and mass distribution of the fission fragments.

  12. Nuclear fission: What have we learned in 50 years?

    International Nuclear Information System (INIS)

    Nuclear fission has captured the imagination of chemists and physicists for half a century now. There are several reasons for this. One of course is that it represents the most drastic rearrangement of nuclear matter known, challenged only recently by collisions induced by very heavy ions. Another is that both statistical and dynamical features come into play. Perhaps one of the most compelling reasons is its never-ending capacity to surprise us: asymmetric mass distributions, the sawtooth dependence of neutron yields in fragment mass, spontaneously fissioning isomers and intermediate structure resonances. Finally, and perhaps most importantly, fission is a rich laboratory within which one can explore the delicate interplay between the macroscopic aspects of bulk nuclear matter and the quantal effects of a finite number of Fermions. It will of course be impossible for me to cover all aspects of fission. I have chosen a limited number of topics to cover, with particular topics being chosen either because the have been associated with persistent puzzles in fission or because they have, or hopefully will, tell us something special about how nuclei behave. After a brief historical note, I organize these topics sequentially according to the various stages of the fission process, starting first with the probability for fission to occur and ending with scission phenomena. 56 refs., 11 figs

  13. The fission time scale measured with an atomic clock

    NARCIS (Netherlands)

    Kravchuk, VL; Wilschut, HW; Hunyadi, M; Kopecky, S; Lohner, H; Rogachevskiy, A; Siemssen, RH; Krasznahorkay, A; Hamilton, JH; Ramayya, AV; Carter, HK

    2003-01-01

    We present a new direct method of measuring the fission absolute time scale using an atomic clock based on the lifetime of a vacancy in the atomic K-shell. We studied the reaction Ne-20 + Th-232 -> O-16 + U-236* at 30 MeV/u. The excitation energy of about 115 MeV in such a reaction is in the range w

  14. Dependence of Fission-Fragment Properties On Excitation Energy For Neutron-Rich Actinides

    Science.gov (United States)

    Ramos, D.; Rodríguez-Tajes, C.; Caamaño, M.; Farget, F.; Audouin, L.; Benlliure, J.; Casarejos, E.; Clement, E.; Cortina, D.; Delaune, O.; Derkx, X.; Dijon, A.; Doré, D.; Fernández-Domínguez, B.; de France, G.; Heinz, A.; Jacquot, B.; Navin, A.; Paradela, C.; Rejmund, M.; Roger, T.; Salsac, M. D.; Schmitt, C.

    2016-03-01

    Experimental access to full isotopic fragment distributions is very important to determine the features of the fission process. However, the isotopic identification of fission fragments has been, in the past, partial and scarce. A solution based on the use of inverse kinematics to study transfer-induced fission of exotic actinides was carried out at GANIL, resulting in the first experiment accessing the full identification of a collection of fissioning systems and their corresponding fission fragment distribution. In these experiments, a 238U beam at 6.14 AMeV impinged on a carbon target to produce fissioning systems from U to Am by transfer reactions, and Cf by fusion reactions. Isotopic fission yields of 250Cf, 244Cm, 240Pu, 239Np and 238U are presented in this work. With this information, the average number of neutrons as a function of the atomic number of the fragments is calculated, which reflects the impact of nuclear structure around Z=50, N=80 on the production of fission fragments. The characteristics of the Super Long, Standard I, Standard II, and Standard III fission channels were extracted from fits of the fragment yields for different ranges of excitation energy. The position and contribution of the fission channels as function of excitation energy are presented.

  15. Monte Carlo Based Toy Model for Fission Process

    CERN Document Server

    Kurniadi, R; Viridi, S

    2014-01-01

    Fission yield has been calculated notoriously by two calculations approach, macroscopic approach and microscopic approach. This work will proposes another calculation approach which the nucleus is treated as a toy model. The toy model of fission yield is a preliminary method that use random number as a backbone of the calculation. Because of nucleus as a toy model hence the fission process does not represent real fission process in nature completely. Fission event is modeled by one random number. The number is assumed as width of distribution probability of nucleon position in compound nuclei when fission process is started. The toy model is formed by Gaussian distribution of random number that randomizes distance like between particle and central point. The scission process is started by smashing compound nucleus central point into two parts that are left central and right central points. These three points have different Gaussian distribution parameters such as mean ({\\mu}CN, {\\mu}L, {\\mu}R), and standard d...

  16. Accurate fission data for nuclear safety

    CERN Document Server

    Solders, A; Jokinen, A; Kolhinen, V S; Lantz, M; Mattera, A; Penttila, H; Pomp, S; Rakopoulos, V; Rinta-Antila, S

    2013-01-01

    The Accurate fission data for nuclear safety (AlFONS) project aims at high precision measurements of fission yields, using the renewed IGISOL mass separator facility in combination with a new high current light ion cyclotron at the University of Jyvaskyla. The 30 MeV proton beam will be used to create fast and thermal neutron spectra for the study of neutron induced fission yields. Thanks to a series of mass separating elements, culminating with the JYFLTRAP Penning trap, it is possible to achieve a mass resolving power in the order of a few hundred thousands. In this paper we present the experimental setup and the design of a neutron converter target for IGISOL. The goal is to have a flexible design. For studies of exotic nuclei far from stability a high neutron flux (10^12 neutrons/s) at energies 1 - 30 MeV is desired while for reactor applications neutron spectra that resembles those of thermal and fast nuclear reactors are preferred. It is also desirable to be able to produce (semi-)monoenergetic neutrons...

  17. Energy dissipation in the cold fission of 252Cf

    International Nuclear Information System (INIS)

    The conversion of energy of collective nuclear motion into internal single particle excitation energy is one of the modes of nuclear energy dissipation. Dissipation and its relation to pair breaking is one of the challenges in nuclear field. A characteristic of low energy fission is odd-even effect. Odd-even staggering in the mass or charge yields and in the total kinetic energies will be of useful to analyze dissipation energy. The odd even effects in the charge distribution of cold fission fragments can be analysed to extract information on the energy dissipation during the passage from the first potential well towards the scission point through the fission barrier. The Q value during a fission process is decomposed into the total kinetic and excitation energies (TKE and TXE)

  18. Fission fragment angular distributions

    International Nuclear Information System (INIS)

    Recently a Letter appeared (Phys. Rev. Lett., 522, 414(1984)) claiming that the usual expression for describing the angula distribution of fission fragments from compound nuclear decay is not a necessarily valid limit of a more general expression. In this comment we wish to point out that the two expressions arise from distinctly different models, and that the new expression as used in the cited reference is internally inconsistent

  19. FALSTAFF: A new tool for fission studies

    Directory of Open Access Journals (Sweden)

    Dore D.

    2013-12-01

    Full Text Available The future NFS installation will produce high intensity neutron beams from hundreds of keV up to 40 MeV. Taking advantage of this facility, data of particular interest for the nuclear community in view of the development of the fast reactor technology will be measured. The development of an experimental setup called FALSTAFF for a full characterization of actinide fission fragments has been undertaken. Fission fragment isotopic yields and associated neutron multiplicities will be measured as a function of the neutron energy. Based on time-of-flight and residual energy technique, the setup will allow the simultaneous measurement of the complementary fragments velocity and energy. The performances of TOF detectors of FALSTAFF will be presented and expected resolutions for fragment masses and neutron multiplicities, based on realistic simulations, will be shown.

  20. Estimating Absolute Site Effects

    Energy Technology Data Exchange (ETDEWEB)

    Malagnini, L; Mayeda, K M; Akinci, A; Bragato, P L

    2004-07-15

    The authors use previously determined direct-wave attenuation functions as well as stable, coda-derived source excitation spectra to isolate the absolute S-wave site effect for the horizontal and vertical components of weak ground motion. They used selected stations in the seismic network of the eastern Alps, and find the following: (1) all ''hard rock'' sites exhibited deamplification phenomena due to absorption at frequencies ranging between 0.5 and 12 Hz (the available bandwidth), on both the horizontal and vertical components; (2) ''hard rock'' site transfer functions showed large variability at high-frequency; (3) vertical-motion site transfer functions show strong frequency-dependence, and (4) H/V spectral ratios do not reproduce the characteristics of the true horizontal site transfer functions; (5) traditional, relative site terms obtained by using reference ''rock sites'' can be misleading in inferring the behaviors of true site transfer functions, since most rock sites have non-flat responses due to shallow heterogeneities resulting from varying degrees of weathering. They also use their stable source spectra to estimate total radiated seismic energy and compare against previous results. they find that the earthquakes in this region exhibit non-constant dynamic stress drop scaling which gives further support for a fundamental difference in rupture dynamics between small and large earthquakes. To correct the vertical and horizontal S-wave spectra for attenuation, they used detailed regional attenuation functions derived by Malagnini et al. (2002) who determined frequency-dependent geometrical spreading and Q for the region. These corrections account for the gross path effects (i.e., all distance-dependent effects), although the source and site effects are still present in the distance-corrected spectra. The main goal of this study is to isolate the absolute site effect (as a function of frequency

  1. Fission decay properties of ultra neutron-rich uranium isotopes

    Indian Academy of Sciences (India)

    L Satpathy; S K Patra; R K Choudhury

    2008-01-01

    The fission decay of highly neutron-rich uranium isotopes is investigated which shows interesting new features in the barrier properties and neutron emission characteristics in the fission process. 233U and 235U are the nuclei in the actinide region in the beta stability valley which are thermally fissile and have been mainly used in reactors for power generation. The possibility of occurrence of thermally fissile members in the chain of neutron-rich uranium isotopes is examined here. The neutron number = 162 or 164 has been predicted to be magic in numerous theoretical studies carried out over the years. The series of uranium isotopes around it with = 154-172 are identified to be thermally fissile on the basis of the fission barrier and neutron separation energy systematics; a manifestation of the close shell nature of = 162 (or 164). We consider here the thermal neutron fission of a typical representative 249U nucleus in the highly neutron-rich region. Semiempirical study of fission barrier height and width shows that 250U nucleus is stable against spontaneous fission due to increase in barrier width arising out of excess neutrons. On the basis of the calculation of the probability of fragment mass yields and the microscopic study in relativistic mean field theory, this nucleus is shown to undergo exotic decay mode of thermal neutron fission (multi-fragmentation fission) whereby a number of prompt scission neutrons are expected to be simultaneously released along with the two heavy fission fragments. Such properties will have important implications in stellar evolution involving -process nucleosynthesis.

  2. New fission fragment distributions and r-process origin of the rare-earth elements

    CERN Document Server

    Goriely, S; Lemaitre, J -F; Panebianco, S; Dubray, N; Hilaire, S; Bauswein, A; Janka, H -Thomas

    2013-01-01

    Neutron star (NS) merger ejecta offer a viable site for the production of heavy r-process elements with nuclear mass numbers A > 140. The crucial role of fission recycling is responsible for the robustness of this site against many astrophysical uncertainties, but calculations sensitively depend on nuclear physics. In particular the fission fragment yields determine the creation of 110 140.

  3. Nondestructive analysis of RA reactor fuel burnup, Program for burnup calculation base on relative yield of 106Ru, 134Cs and 137Cs in the irradiated fuel

    International Nuclear Information System (INIS)

    Burnup of low enriched metal uranium fuel of the RA reactor is described by two chain reactions. Energy balance and material changes in the fuel are described by systems of differential equations. Numerical integration of these equations is base on the the reactor operation data. Neutron flux and percent of Uranium-235 or more frequently yield of epithermal neutrons in the neutron flux, is determined by iteration from the measured contents of 106Ru, 134Cs and 137Cs in the irradiated fuel. The computer program was written in FORTRAN-IV. Burnup is calculated by using the measured activities of fission products. Burnup results are absolute values

  4. Low-energy ternary fission

    International Nuclear Information System (INIS)

    With the detector system DIOGENES thermal neutron induced and spontaneous α particle associated fission and spontaneous nuclear tripartition into three fragments of similar masses has been investigated. DIOGENES is a concentric arrangement of toroidal angular position sensitive ionization chambers and proportional counters to measure the kinetic energies and relative angular distributions of the three reaction products of ternary fission. For α-particle accompanied fission some of the many possible α particle fission-fragment parameter correlations will be discussed. For nearly symmetric low-energy nuclear tripartition new upper limits are presented. Former experimental results which pretended evidence for so called true ternary fission could be explained by charged-particle associated fission with a light particle in the mass range of 13 < A < 23

  5. Be Resolute about Absolute Value

    Science.gov (United States)

    Kidd, Margaret L.

    2007-01-01

    This article explores how conceptualization of absolute value can start long before it is introduced. The manner in which absolute value is introduced to students in middle school has far-reaching consequences for their future mathematical understanding. It begins to lay the foundation for students' understanding of algebra, which can change…

  6. Fission in Rapidly Rotating Nuclei

    Directory of Open Access Journals (Sweden)

    A. K. Rhine Kumar

    2014-02-01

    Full Text Available We study the effect of rotation in fission of the atomic nucleus 256Fm using an independent-particle shell model with the mean field represented by a deformed Woods-Saxon potential and the shapes defined through the Cassinian oval parametrization. The variations of barrier height with increasing angular momentum, appearance of double hump in fission path are analysed. Our calculations explain the appearance of double hump in fission path of 256Fm nucleus. The second minimum vanishes with increase in angular momentum which hints that the fission barrier disappears at large spin.

  7. Fission approach to cluster radioactivity

    Indian Academy of Sciences (India)

    D N Poenaru; R A Gherghescu

    2015-09-01

    Fission theory is used to explain decay. Also, the analytical superasymmetric fission (ASAF) model is successfully employed to make a systematic search and to predict, with other models, cluster radioactivity. The macroscopic–microscopic method is illustrated for the superheavy nucleus 286Fl. Then a few results of the theoretical approach of decay (ASAF, UNIV and semFIS models), cluster decay (ASAF and UNIV) and spontaneous fission dynamics are described with Werner–Wheeler and cranking inertia. UNIV denotes universal curve and semFIS the fission-based semiempirical formula.

  8. Microscopic modeling of mass and charge distributions in the spontaneous fission of 240Pu

    CERN Document Server

    Sadhukhan, Jhilam; Schunck, Nicolas

    2016-01-01

    In this letter, we outline a methodology to calculate microscopically mass and charge distributions of spontaneous fission yields. We combine the multi-dimensional minimization of collective action for fission with stochastic Langevin dynamics to track the relevant fission paths from the ground-state configuration up to scission. The nuclear potential energy and collective inertia governing the tunneling motion are obtained with nuclear density functional theory in the collective space of shape deformations and pairing. We obtain a quantitative agreement with experimental data and find that both the charge and mass distributions in the spontaneous fission of 240Pu are sensitive both to the dissipation in collective motion and to adiabatic characteristics.

  9. General Description of Fission Observables: GEF Model Code

    Science.gov (United States)

    Schmidt, K.-H.; Jurado, B.; Amouroux, C.; Schmitt, C.

    2016-01-01

    The GEF ("GEneral description of Fission observables") model code is documented. It describes the observables for spontaneous fission, neutron-induced fission and, more generally, for fission of a compound nucleus from any other entrance channel, with given excitation energy and angular momentum. The GEF model is applicable for a wide range of isotopes from Z = 80 to Z = 112 and beyond, up to excitation energies of about 100 MeV. The results of the GEF model are compared with fission barriers, fission probabilities, fission-fragment mass- and nuclide distributions, isomeric ratios, total kinetic energies, and prompt-neutron and prompt-gamma yields and energy spectra from neutron-induced and spontaneous fission. Derived properties of delayed neutrons and decay heat are also considered. The GEF model is based on a general approach to nuclear fission that explains a great part of the complex appearance of fission observables on the basis of fundamental laws of physics and general properties of microscopic systems and mathematical objects. The topographic theorem is used to estimate the fission-barrier heights from theoretical macroscopic saddle-point and ground-state masses and experimental ground-state masses. Motivated by the theoretically predicted early localisation of nucleonic wave functions in a necked-in shape, the properties of the relevant fragment shells are extracted. These are used to determine the depths and the widths of the fission valleys corresponding to the different fission channels and to describe the fission-fragment distributions and deformations at scission by a statistical approach. A modified composite nuclear-level-density formula is proposed. It respects some features in the superfluid regime that are in accordance with new experimental findings and with theoretical expectations. These are a constant-temperature behaviour that is consistent with a considerably increased heat capacity and an increased pairing condensation energy that is

  10. Fast fission phenomenon

    Science.gov (United States)

    In these lectures we have described two different phenomena occuring in dissipative heavy ion collisions : neutron-proton asymmetry and fast fission. Neutron-proton asymmetry has provided us with an example of a fast collective motion. As a consequence quantum fluctuations can be observed. The observation of quantum or statistical fluctuations is directly connected to the comparison between the phonon energy and the temperature of the intrinsic system. This means that this mode might also provide a good example for the investigation of the transition between quantum and statistical fluctuations which might occur when the bombarding energy is raised above 10 MeV/A. However it is by no means sure that in this energy domain enough excitation energy can be put into the system in order to reach such high temperatures over the all system. The other interest in investigating neutron-proton asymmetry above 10 MeV/A is that the interaction time between the two incident nuclei will decrease. Consequently, if some collective motion should still be observed, it will be one of the last which can be seen. Fast fission corresponds on the contrary to long interaction times. The experimental indications are still rather weak and mainly consist of experimental data which cannot be understood in the framework of standard dissipative models. We have seen that a model which can describe both the entrance and the exit configuration gives this mechanism in a natural way and that the experimental data can, to a good extend, be explained. The nicest thing is probably that our old understanding of dissipative heavy ion collisions is not changed at all except for the problems that can now be understood in terms of fast fission. Nevertheless this area desserve further studies, especially on the experimental side to be sure that the consistent picture which we have on dissipative heavy ion collisions still remain coherent in the future.

  11. Proton-induced fission at 190 MeV of W-nat, Au-197, Pb-nat, Pb-208, and Th-232

    NARCIS (Netherlands)

    Duijvestijn, MC; Koning, AJ; Beijers, JPM; Gastal, M; van Klinken, J; Ostendorf, RW

    1999-01-01

    Proton-induced fission at 190 MeV of W-nat, Au-197, Pb-nat, Pb-208, and Th-232 is studied by means of an innovative method based on activation analysis. The fission-product mass distribution is reconstructed from the fission-product yields, which are obtained from off-line observed gamma-ray spectra

  12. Energy from nuclear fission(*

    Directory of Open Access Journals (Sweden)

    Ripani M.

    2015-01-01

    Full Text Available The main features of nuclear fission as physical phenomenon will be revisited, emphasizing its peculiarities with respect to other nuclear reactions. Some basic concepts underlying the operation of nuclear reactors and the main types of reactors will be illustrated, including fast reactors, showing the most important differences among them. The nuclear cycle and radioactive-nuclear-waste production will be also discussed, along with the perspectives offered by next generation nuclear assemblies being proposed. The current situation of nuclear power in the world, its role in reducing carbon emission and the available resources will be briefly illustrated.

  13. Energy from nuclear fission()

    Science.gov (United States)

    Ripani, M.

    2015-08-01

    The main features of nuclear fission as physical phenomenon will be revisited, emphasizing its peculiarities with respect to other nuclear reactions. Some basic concepts underlying the operation of nuclear reactors and the main types of reactors will be illustrated, including fast reactors, showing the most important differences among them. The nuclear cycle and radioactive-nuclear-waste production will be also discussed, along with the perspectives offered by next generation nuclear assemblies being proposed. The current situation of nuclear power in the world, its role in reducing carbon emission and the available resources will be briefly illustrated.

  14. Group Constants Generation of the Pseudo Fission Products for Fast Reactor Burnup Calculations

    Science.gov (United States)

    Gil, Choong-Sup; Kim, Do Heon; Chang, Jonghwa

    2005-05-01

    The pseudo fission products for the burnup calculations of the liquid metal fast reactor were generated. The cross-section data and fission product yield data of ENDF/B-VI were used for the pseudo fission product data of U-235, U-238, Pu-239, Pu-240, Pu-241, and Pu-242. The pseudo fission product data can be used with the KAFAX-F22 or -E66, which are the MATXS-format libraries for analyses of the liquid metal fast reactor at KAERI and were distributed through the OECD/NEA. The 80-group MATXS-format libraries of the 172 fission products were generated and the burnup chains for generation of the pseudo fission products were prepared.

  15. Electron-capture delayed fission properties of 242Es

    International Nuclear Information System (INIS)

    Electron-capture delayed fission of 242Es produced via the 233U(14N,5n)242Es reaction at 87 MeV (on target) was observed to decay with a half-life of 11±3 s, consistent with the reported α-decay half-life of 242Es of 16-4+6 s. The mass-yield distribution of the fission fragments is highly asymmetric. The average pre-neutron emission total kinetic energy of the fragments was measured to be 183±18 MeV. Based on the ratio of the measured number of fission events to the measured number of α decays from the electron-capture daughter 242Cf (100% α branch), the probability of delayed fission was determined to be 0.006±0.002. This value for the delayed fission probability fits the experimental trend of increasing delayed fission probability with increasing Q value for electron capture. (c) 2000 The American Physical Society

  16. Isospin effect on probing nuclear dissipation with fission cross sections

    Science.gov (United States)

    Tian, J.; Ye, W.

    2016-08-01

    Nuclear dissipation retards fission. Using the stochastic Langevin model, we calculate the drop of fission cross section caused by friction over its standard statistical-model value, σfdrop, as a function of the presaddle friction strength for fissioning nuclei 195Bi, 202Bi, and 209Bi as well as for different angular momenta. We find that friction effects on σfdrop are substantially enhanced with increasing isospin of the Bi system and become greater with decreasing angular momentum. Our findings suggest that in experiments, to better constrain the strength of presaddle dissipation through the measurement of fission excitation functions, it is optimal to yield those compound systems with a high isospin and a low spin. Furthermore, we analyze the data of fission excitation functions of 210Po and 209Bi systems, which are populated in p +209Bi and p +208Pb reactions and which have a high isospin and a low spin, and find that Langevin calculations with a presaddle friction strength of (3-5) ×10-21 s-1 describe these experimental fission data very well.

  17. Apatite fission track dating by LA-ICP-MS and External Detector Method: How do they stack up?

    Science.gov (United States)

    Seiler, C.; Gleadow, A. J.; Kohn, B. P.

    2013-12-01

    Analysis of trace element compositions by laser ablation ICP-MS has become a widely used tool to determine in-situ ages in geochronology. Although used primarily for U-Pb dating, LA-ICP-MS has been successfully adapted to other dating techniques such as apatite fission track (Hasebe et al., 2004) or (U-Th)/He (Boyce et al., 2006), making it an ideal tool for multi-system thermochronological studies. LA-ICP-MS fission track dating has several important advantages over the traditional external detector method (EDM), particularly in terms of sample turn-around time and the fact that neutron irradiations (and the handling of radioactive materials) are no longer necessary, while providing a similar level of in-situ information. Perhaps the most important benefits of LA-ICP-MS fission track dating is that it could potentially be used as an absolute dating technique with no Zeta-calibration necessary. However, beyond the initial study of Hasebe et al. (2004), little work has been done to compare results obtained by LA-ICP-MS with those from EDM analysis, and it remains unclear whether the two methods yield equivalent results. We present an extensive dataset of fission track results that were analysed using both LA-ICP-MS and EDM dating. The samples were selected to represent a variety of compositions, with single grain ages ranging from a few million to over a billion years. Both techniques were applied on identical grains, thereby eliminating uncertainties associated with natural variability. The comparison shows that, with a few exceptions, single grain fission track ages from LA-ICP-MS and EDM are concordant within analytical uncertainties and scatter symmetrically around the 1:1 correlation line. Although the relative difference in single grain ages varies significantly in either direction (up to 70%), there are no systematic variations between the two methods suggesting that this variation is simply due to random sampling effects. However, we did find systematic

  18. Fission track age of Transantarctic Mountain microtektites

    Science.gov (United States)

    Folco, L.; Bigazzi, G.; D'Orazio, M.; Balestrieri, M. L.

    2011-05-01

    We determined the fission track age of Transantarctic Mountain microtektites. The plateau method yielded a formation age of 0.85 ± 0.17 Ma. This age overlaps within error with that of the catastrophic impact that produced the Australasian tektite-microtektite strewn field ca. 0.8 Ma ago. This provides further evidence that Transantarctic Mountain microtektites belong to the Australasian tektite-microtektite strewn field, as previously suggested on the basis of geochemical evidence, Sr-Nd isotope systematics and poorly resolved radiometric data.

  19. Fission throughout the periodic table

    International Nuclear Information System (INIS)

    The dualistic view of fission and evaporation as two distinct compound nucleus processes is substituted with a unified view in which fission, complex fragment emission, and light particle evaporation are seen as different aspects of a single process. 47 refs., 22 figs

  20. Fission throughout the periodic table

    Energy Technology Data Exchange (ETDEWEB)

    Moretto, L.G.; Wozniak, G.J.

    1989-04-01

    The dualistic view of fission and evaporation as two distinct compound nucleus processes is substituted with a unified view in which fission, complex fragment emission, and light particle evaporation are seen as different aspects of a single process. 47 refs., 22 figs.

  1. Improved calculation of the prompt fission neutron spectrum from the spontaneous fission of /sup 252/Cf: Preliminary results

    International Nuclear Information System (INIS)

    An improved calculation is presented for the prompt fission neutron spectrum N(E) from the spontaneous fission of /sup 252/Cf. In this calculation the fission-spectrum model of Madland and Nix is used, but with several improvements leading to a physically more accurate representation of the spectrum. Specifically, the contributions to N(E) from the entire fission-fragment mass and charge distributions will be calculated instead of calculating on the basis of a seven- point approximation to the peaks of these distributions as has been done in the past. Therefore, values of the energy release in fission, fission-fragment kinetic energy, and compound nucleus cross section for the inverse process will be considered on a point-by-point basis over the fragment yield distributions instead of considering averages of these quantities over the peaks of the distributions. Preliminary results will be presented and compared with a measurement, an earlier calculation, and a recent evaluation of the spectrum. 14 refs., 4 figs

  2. 基于最小一乘准则的中国粮食产量与影响因素的相关性分析%Relative analysis of China’s grain yield and influence factors based on criterion of least absolute deviation

    Institute of Scientific and Technical Information of China (English)

    顾乐民

    2013-01-01

    的定量值。该文并对2012年粮食产量进行了预测,其值为59133万t,预测的误差为0.3%;也对2013年粮食产量进行了预测,其值为61148万 t。该文最后对最小一乘法、指数型生产函数等存在的问题进行了必要的讨论。最小一乘准则意义下的指数型生产函数,对中国粮食产量与主要影响因素之间关系的描述具有一定的准确性和指导意义。%The relations between China’s grain yield and some main factors influencing the grain yield, more present the exponential function and few exponent sign function relations. To describe with a new type of exponential production function can obtain a better result because of less error. The paper pointed out that the least absolute deviations (LAD) method, as its excellent properties, may be a best method to find the“implicit function”which is behind the data and control the data. To knead the two together, with the LAD method to fit the exponential production function, trying to find out some rules for China's grain change is a subject that is worth of exploring in theory and application. The paper introduces the LAD method and the exponential production function, establishes correlations between the China’s grain yield and its 5 major influencing factors (consumption of chemical fertilizer, total sown area, total area affected by natural disaster, total agricultural machinery power, and total employed persons of primary industry). The production function model was fit with the LAD method, and the data of 1983-2011 were calculated. The results with Mae (mean absolute error) not over 3.93 million tons and Mape (mean absolute percentage error) not more than 0.87%for China’s grain yield during the 29 years were obtained, and the conclusions were explained and analyzed;The analysis showed that, in the 29 years of 1983-2011, the growth of China’s nation grain yield mainly depended on the consumption of chemical fertilizer and the total agricultural machinery power

  3. ROE Absolute Sea Level Changes

    Data.gov (United States)

    U.S. Environmental Protection Agency — This raster dataset represents changes in absolute sea level along U.S. coasts from 1993 to 2014. Data were provided by the University of Colorado at Boulder (2015)...

  4. Determination of the Primary Nuclear Charge of Fission Fragments from their Characteristic K-X-Ray Emission in Spontaneous Fission of Cf252

    International Nuclear Information System (INIS)

    The distribution of nuclear charge in the spontaneous fission of Cf252 has been determined directly by simultaneous measurement of the masses and characteristic K-X-ray energies associated with the primary fission products. The X-rays were detected by a thin Nal (Tl) crystal (or by an argon-filled proportional counter) in coincidence with a pair of solid-state detectors for the complementary fission fragments. Preliminary to the three-parameter study of the charge-mass distribution the gross characteristics of the K-X-rays were examined in some detail. The average yield of K-X-rays is 0.55 ± 0.1 pet fission (the heavy group accounting fot 70% of the total). From delayed-coincidence and fragment time-of-flight experiments it was.found that about 30% of the X-rays are emitted within 0.1 ns after fission, another 30% between 0.1 and 1 ns, 25% between 1 and 10 ns, the remainder appearing as two delayed components of equal intensity with half-lives of ∼30 ns and ∼100 ns. These characteristics indicate that the X-rays arise from internal conversion during de-excitation of the primary fission fragments, an interpretation supported by the observed yield 1 per fission) of 50 - 300 - keV electrons emitted within 2 ps of fission. In the three-parameter experiments the yield and energy of K-X-rays emitted in the first centimeter (ns) of fragment flight were determined as a function of fragment mass. The yield of K-X-rays per fragment is a pronounced saw-tooth function of mass, rising from p) function in better agreement with the empirical rule of equal charge displacement (ECD) than with other postulates for charge division in nuclear fission. (author)

  5. Fifty years with nuclear fission

    International Nuclear Information System (INIS)

    The news of the discovery of nuclear fission, by Otto Hahn and Fritz Strassmann in Germany, was brought to the United States by Niels Bohr in January 1939. Since its discovery, the United States, and the world for that matter, has never been the same. It therefore seemed appropriate to acknowledge the fifieth anniversary of its discovery by holding a topical meeting entitled, ''Fifty Years with Nuclear Fission,'' in the United States during the year 1989. The objective of the meeting was to bring together pioneers of the nuclear industry and other scientists and engineers to report on reminiscences of the past and on the more recent development in fission science and technology. The conference highlighted the early pioneers of the nuclear industry by dedicated a full day (April 26), consisting of two plenary sessions, at the National Academy of Sciences (NAS) in Washington, DC. More recent developments in fission science and technology in addition to historical reflections were topics for two fully days of sessions (April 27 and 28) at the main site of the NIST in Gaithersburg, Maryland. The wide range of topics covered in this Volume 1 by this topical meeting included plenary invited, and contributed sessions entitled: Preclude to the First Chain Reaction -- 1932 to 1942; Early Fission Research -- Nuclear Structure and Spontaneous Fission; 50 Years of Fission, Science, and Technology; Nuclear Reactors, Secure Energy for the Future; Reactors 1; Fission Science 1; Safeguards and Space Applications; Fission Data; Nuclear Fission -- Its Various Aspects; Theory and Experiments in Support of Theory; Reactors and Safeguards; and General Research, Instrumentation, and By-Product. The individual papers have been cataloged separately

  6. Fission modes in charged-particle induced fission

    Energy Technology Data Exchange (ETDEWEB)

    Matthies, A.; Kotte, R.; Seidel, W.; Stary, F.; Wohlfarth, D. (Zentralinstitut fuer Kernforschung, Rossendorf bei Dresden (German Democratic Republic))

    1990-12-01

    The population of the three fission modes predicted by Brosa's multi-channel fission model for the uranium region was studied in different fissioning systems. They were produced bombarding {sup 232}Th and {sup 238}U targets by light charged particles with energies slightly above the Coulomb barrier. Though the maximum excitation energy of the compound nucleus amounted to about 22 MeV, the influences of various spherical and deformed nuclear shells on the mass and total kinetic energy distributions of fission fragments are still pronounced. The larger variances of the total kinetic energy distributions compared to those of thermal neutron induced fission were explained by temperature dependent fluctuations of the amount and velocity of alteration of the scission point elongation of the fissioning system. From the ratio of these variances the portion of the potential energy dissipated among intrinsic degrees of freedom before scission was deduced for the different fission channels. It was found that the excitation remaining after pre-scission neutron emission is mainly transferred into intrinsic heat and less into pre-scission kinetic energy. (orig.).

  7. Neutron-induced fission: properties of prompt neutron and γ rays as a function of incident energy

    Science.gov (United States)

    Stetcu, I.; Talou, P.; Kawano, T.

    2016-06-01

    We have applied the Hauser-Feshbach statistical theory, in a Monte-Carlo implementation, to the de-excitation of fission fragments, obtaining a reasonable description of the characteristics of neutrons and gamma rays emitted before beta decays toward stability. Originally implemented for the spontaneous fission of 252Cf and the neutroninduced fission of 235U and 239Pu at thermal neutron energy, in this contribution we discuss the extension of the formalism to incident neutron energies up to 20 MeV. For the emission of pre-fission neutrons, at incident energies beyond second-chance fission, we take into account both the pre-equilibrium and statistical pre-fission components. Phenomenological parameterizations of mass, charge and TKE yields are used to obtain the initial conditions for the fission fragments that subsequently decay via neutron and emissions. We illustrate this approach for 239Pu(n,f).

  8. Fifty years with nuclear fission

    International Nuclear Information System (INIS)

    The news of the discovery of nucler fission, by Otto Hahn and Fritz Strassmann in Germany, was brought to the United States by Niels Bohr in January 1939. Since its discovery, the United States, and the world for that matter, has never been the same. It therefore seemed appropriate to acknowledge the fiftieth anniversary of its discovery by holding a topical meeting entitled, ''Fifty years with nuclear fission,'' in the United States during the year 1989. The objective of the meeting was to bring together pioneers of the nuclear industry and other scientists and engineers to report on reminiscences of the past and on the more recent developments in fission science and technology. The conference highlighted the early pioneers of the nuclear industry by dedicating a full day (April 26), consisting of two plenary sessions, at the National Academy of Sciences (NAS) in Washington, DC. More recent developments in fission science and technology in addition to historical reflections were topics for two full days of sessions (April 27 and 28) at the main sites of the NIST in Gaithersburg, Maryland. The wide range of topics covered by Volume 2 of this topical meeting included plenary invited, and contributed sessions entitled, Nuclear fission -- a prospective; reactors II; fission science II; medical and industrial applications by by-products; reactors and safeguards; general research, instrumentation, and by-products; and fission data, astrophysics, and space applications. The individual papers have been cataloged separately

  9. Observation of fission residues in the 16O + 181Ta system at Elab ≈ 6 MeV/A

    Directory of Open Access Journals (Sweden)

    Singh B. P.

    2011-10-01

    Full Text Available Present paper reports on the production cross-section of 24 fission like events (30 ≤ Z ≤ 60 formed via complete fusion-fission and/or incomplete fusion-fission processes in 16O+181Ta system at energies ≈ 6 MeV/A. Experiments have been performed using the recoil-catcher technique followed by off-line γ-spectroscopy. The measured cross-section of fission-like events is satisfactorily described by a statistical model code. Further, an attempt has been made to study the mass and isotopic yield distributions of fission fragments. The variance of the presently measured isotopic yield distributions has been found to be in agreement with the literature values for some other fissioning systems.

  10. Systematics on fission fragment mass distribution of neutron induced 235U fission

    Institute of Scientific and Technical Information of China (English)

    LIU Ting-Jin; SUN Zheng-Jun; SHU Neng-Chuan

    2008-01-01

    Based on the neutron induced fission fragment mass distribution data up to neutron energy 20 MeV measured with the double kinetic energy method (KEM) and the radio active method (RAM), the systematics of fission fragment mass distribution was investigated by using 5 Gaussian model and the systematics parameters were obtained by fitting the experimental data. With the systematics, the yields of any mass A and at any energy in the region from 0 to 20 MeV of neutron energy can be calculated. The calculated results could well reproduce the experimental data measured with KEM, but show some systematical deviation from the data measured by RAM, which reflects some systematical deviations between the two kinds of measured data.The error of systematics yield was calculated in an exact error transformation way, including from the error of the experimental yield data to the error of the discrete parameters, then to the systematics parameters,and at last to the yield calculated with systematics.

  11. Fission track studies of tektites

    International Nuclear Information System (INIS)

    The fission track analysis method was used for the age determination of tektites. The tektite samples were obtained from Hainan Island and Leizhou Peninsula. The method consists in cutting and polishing two sections of a sample, irradiating one of these with a known thermal neutron flux (5.90 x 1015/cm2), etching each section identically with hydrofluoric acid, and then comparing the fission track densities in two cases with a microscope. Their fission track age is found to be around 0.7 Ma

  12. The spectroscopy of fission fragments

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, W.R. [Department of Physics and Astronomy, University of Manchester, Manchester, M13 9PL (United Kingdom); Collaboration: La Direction des Sciences de la Matiere du CEA (FR); Le Fonds National de la Recherche Scientifique de Belgique (BE)

    1998-12-31

    High-resolution measurements on {gamma} rays from fission fragments have provided a rich source of information, unobtainable at the moment in any other way, on the spectroscopy of neutron-rich nuclei. In recent years important data have been obtained on the yrast- and near yrast-structure of neutron-rich fission fragments. We discuss the scope of measurements which can be made on prompt gamma rays from secondary fission fragments, the techniques used in the experiments and some results recently obtained. (author) 24 refs., 8 figs., 1 tab.

  13. Fission Fragment Mass Distributions and Total Kinetic Energy Release of 235-Uranium and 238-Uranium in Neutron-Induced Fission at Intermediate and Fast Neutron Energies

    Energy Technology Data Exchange (ETDEWEB)

    Duke, Dana Lynn [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-12

    This Ph.D. dissertation describes a measurement of the change in mass distributions and average total kinetic energy (TKE) release with increasing incident neutron energy for fission of 235U and 238U. Although fission was discovered over seventy-five years ago, open questions remain about the physics of the fission process. The energy of the incident neutron, En, changes the division of energy release in the resulting fission fragments, however, the details of energy partitioning remain ambiguous because the nucleus is a many-body quantum system. Creating a full theoretical model is difficult and experimental data to validate existing models are lacking. Additional fission measurements will lead to higher-quality models of the fission process, therefore improving applications such as the development of next-generation nuclear reactors and defense. This work also paves the way for precision experiments such as the Time Projection Chamber (TPC) for fission cross section measurements and the Spectrometer for Ion Determination in Fission (SPIDER) for precision mass yields.

  14. Beta-delayed fission probabilities of transfermium nuclei, involved in the r-process

    Science.gov (United States)

    Panov, I.; Lutostansky, Yu; Thielemann, F.-K.

    2016-01-01

    For the nucleosynthesis of heavy and superheavy nuclei fission becomes very important when the r-process runs in a very high neutron density environment. In part, fission is responsible for the formation of heavy nuclei due to the inclusion of fission products as new seed nuclei (fission cycling). More than that, beta-delayed fission, along with spontaneous fission, is responsible in the late stages of the r-process for the suppression of superheavy element yields. For beta-delayed fission probability calculations a model description of the beta-strength- functions is required. Extended theoretical predictions for astro-physical applications were provided long ago, and new predictions also for superheavy nuclei with uptodate nuclear input are needed. For the further extension of data to heavier transactinides the models of strength- functions should be modified, taking into account more complicated level schemes. In our present calculations the strength-function model is based on the quasi-particle approximation of Finite Fermi Systems Theory. The probabilities of beta-delayed fission and beta-delayed neutron emission are calculated for some transfermium neutron-rich nuclei, and the influence of beta-delayed fission upon superheavy element formation is discussed.

  15. Cold fission description with constant and varying mass asymmetries

    International Nuclear Information System (INIS)

    Different description for varying the mass asymmetry in the fragmentation process are used to calculate the cold fission barrier penetrability. The relevance of the appropriate choice for both the description of the pre-scission phase and inertia coefficient to unify alpha decay, cluster radioactivity, and spontaneous cold fission processes in the same theoretical framework is explicitly shown. We calculate the half-life of all possible partition modes of nuclei of A > 200 following the most recent Mass Table by Audi and Wapstra. It is shown that if one uses the description in which the mass asymmetry is maintained constant during the fragmentation process, the experimental half-life-values and mass yield of 234 U cold fission are satisfactorily reproduced. (author)

  16. Chemical Production using Fission Fragments

    International Nuclear Information System (INIS)

    Some reactor design considerations of the use of fission recoil fragment energy for the production of chemicals of industrial importance have been discussed previously in a paper given at the Second United Nations International Conference on the Peaceful Uses of Atomic Energy [A/Conf. 15/P.76]. The present paper summarizes more recent progress made on this topic at AERE, Harwell. The range-energy relationship for fission fragments is discussed in the context of the choice of fuel system for a chemical production reactor, and the experimental observation of a variation of chemical effect along the length of a fission fragment track is described for the irradiation of nitrogen-oxygen mixtures. Recent results are given on the effect of fission fragments on carbon monoxide-hydrogen gas mixtures and on water vapour. No system investigated to date shows any outstanding promise for large-scale chemical production. (author)

  17. Background radiation from fission pulses

    Energy Technology Data Exchange (ETDEWEB)

    England, T.R.; Arthur, E.D.; Brady, M.C.; LaBauve, R.J.

    1988-05-01

    Extensive source terms for beta, gamma, and neutrons following fission pulses are presented in various tabular and graphical forms. Neutron results from a wide range of fissioning nuclides (42) are examined and detailed information is provided for four fuels: /sup 235/U, /sup 238/U, /sup 232/Th, and /sup 239/Pu; these bracket the range of the delayed spectra. Results at several cooling (decay) times are presented. For ..beta../sup -/ and ..gamma.. spectra, only /sup 235/U and /sup 239/Pu results are given; fission-product data are currently inadequate for other fuels. The data base consists of all known measured data for individual fission products extensively supplemented with nuclear model results. The process is evolutionary, and therefore, the current base is summarized in sufficient detail for users to judge its quality. Comparisons with recent delayed neutron experiments and total ..beta../sup -/ and ..gamma.. decay energies are included. 27 refs., 47 figs., 9 tabs.

  18. Fission hindrance and nuclear viscosity

    Indian Academy of Sciences (India)

    Indranil Mazumdar

    2015-08-01

    We discuss the role of nuclear viscosity in hindering the fission of heavy nuclei as observed in the experimental measurements of GDR -ray spectra from the fissioning nuclei. We review a set of experiments carried out and reported by us previously [see Dioszegi et al, Phys. Rev. C 61, 024613 (2000); Shaw et al, Phys. Rev. C 61, 044612 (2000)] and argue that the nuclear viscosity parameter has no apparent dependence on temperature. However, it may depend upon the deformation of the nucleus.

  19. Velocity fluctuations of fission fragment.

    OpenAIRE

    Llanes Estrada, Felipe José; Martínez Carmona, Belén; Muñoz Martínez, José L.

    2016-01-01

    We propose event by event velocity fluctuations of nuclear fission fragments as an additional interesting observable that gives access to the nuclear temperature in an independent way from spectral measurements and relates the diffusion and friction coefficients for the relative fragment coordinate in Kramers-like models (in which some aspects of fission can be understood as the diffusion of a collective variable through a potential barrier). We point out that neutron emission by the heavy fr...

  20. Separation of fission molybdenum for the production of technetium generators

    International Nuclear Information System (INIS)

    There are two basically different methods for Mo-99 production: Activation of Mo-98 contained at about 24% in natural isotopic mixtures. Mo-98 enriched targets are irradiated in high-flux reactors in order to achieve the highest possible specific acitivity of the product. Isolation of fission molybdenum from irradiated nuclear fuel targets which have undergone short-term cooling. Maximum fission yields can be attained by irradiation of uranium-235 with the highest possible enrichment. On account of its approximately 1000 times higher specific activity, fission molybdenum has almost replaced worldwide the product fabricated by activation. However, fission molybdenum-99 production has as its prerequisite a suitably advanced technology by which the production process taking place under high activity conditions can be controlled. An integral part of the process consists in the retention of the fission gases the recycling of non-consumed nuclear fuel, and the treatment of the waste streams arising. Ths publication will deal with the individual steps in the process. (orig.)

  1. Fission fragment angular distributions and fission cross section validation

    International Nuclear Information System (INIS)

    The present knowledge of angular distributions of neutron-induced fission is limited to a maximal energy of 15 MeV, with large discrepancies around 14 MeV. Only 238U and 232Th have been investigated up to 100 MeV in a single experiment. The n-TOF Collaboration performed the fission cross section measurement of several actinides (232Th, 235U, 238U, 234U, 237Np) at the n-TOF facility using an experimental set-up made of Parallel Plate Avalanche Counters (PPAC), extending the energy domain of the incident neutron above hundreds of MeV. The method based on the detection of the 2 fragments in coincidence allowed to clearly disentangle the fission reactions among other types of reactions occurring in the spallation domain. I will show the methods we used to reconstruct the full angular resolution by the tracking of fission fragments. Below 10 MeV our results are consistent with existing data. For example in the case of 232Th, below 10 MeV the results show clearly the variation occurring at the first (1 MeV) and second (7 MeV) chance fission, corresponding to transition states of given J and K (total spin and its projection on the fission axis), and a much more accurate energy dependence at the 3. chance threshold (14 MeV) has been obtained. In the spallation domain, above 30 MeV we confirm the high anisotropy revealed in 232Th by the single existing data set. I'll discuss the implications of this finding, related to the low anisotropy exhibited in proton-induced fission. I also explore the critical experiments which is valuable checks of nuclear data. The 237Np neutron-induced fission cross section has recently been measured in a large energy range (from eV to GeV) at the n-TOF facility at CERN. When compared to previous measurements, the n-TOF fission cross section appears to be higher by 5-7 % beyond the fission threshold. To check the relevance of n-TOF data, we simulate a criticality experiment performed at Los Alamos with a 6 kg sphere of 237Np. This sphere was

  2. Absolute transition probabilities of phosphorus.

    Science.gov (United States)

    Miller, M. H.; Roig, R. A.; Bengtson, R. D.

    1971-01-01

    Use of a gas-driven shock tube to measure the absolute strengths of 21 P I lines and 126 P II lines (from 3300 to 6900 A). Accuracy for prominent, isolated neutral and ionic lines is estimated to be 28 to 40% and 18 to 30%, respectively. The data and the corresponding theoretical predictions are examined for conformity with the sum rules.-

  3. Absolute luminosity measurements at LHCb

    CERN Document Server

    Hopchev, Plamen

    2011-01-01

    Absolute luminosity measurements are of general interest for colliding-beam experiments at storage rings. These measurements are necessary to determine the absolute cross-sections of reaction processes and are valuable to quantify the performance of the accelerator. LHCb has applied two methods to determine the absolute scale of its luminosity measurements for proton-proton collisions at the LHC running at a centre-of-mass energy of 7 TeV. In addition to the classic ``van der Meer'' scan method a novel technique has been developed which makes use of direct imaging of the individual beams using both proton-gas and proton-proton interactions. The beam imaging method is made possible by the high resolution of the LHCb vertex detector and the close proximity of the detector to the beams, and allows beam parameters such as positions, angles and widths to be determined. We describe both methods and compare the two results. In addition, we present the techniques used to transport the absolute luminosity measurement ...

  4. High-Resolution Correlated Fission Product Measurements of 235U (nth , f) with SPIDER

    Science.gov (United States)

    Shields, Dan; Spider Team

    2015-10-01

    The SPIDER detector (SPectrometer for Ion DEtermination in fission Research) has obtained high-resolution, moderate-efficiency, correlated fission product data needed for many applications including the modeling of next generation nuclear reactors, stockpile stewardship, and the fundamental understanding of the fission process. SPIDER simultaneously measures velocity and energy of both fission products to calculate fission product yields (FPYs), neutron multiplicity (ν), and total kinetic energy (TKE). These data will be some of the first of their kind available to nuclear data evaluations. An overview of the SPIDER detector, analytical method, and preliminary results for 235U (nth , f) will be presented. LA-UR-15-20130 This work benefited from the use of the LANSCE accelerator facility and was performed under the auspices of the US Department of Energy by Los Alamos Security, LLC under Contract DE-AC52-06NA25396.

  5. Simulation and measurement of delayed γ-rays after photon-induced fission

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Xianfei; Kavouras, John G. [Nuclear Engineering Program, University of Utah, Salt Lake City, UT 84112 (United States); Nakazawa, Dante R. [Canberra Industries, Meriden, CT 06450 (United States); Yang, Haori, E-mail: haori.yang@utah.edu [Nuclear Engineering Program, University of Utah, Salt Lake City, UT 84112 (United States)

    2013-11-21

    Photon-induced fission has been investigated as a method to detect and identify nuclear materials. Although high-energy delayed-fission γ-rays have been considered as a reliable signature for detection of fissionable materials, interference from γ-rays produced as secondary effects from other photonuclear reactions is inevitable. This effect has been studied in distinguishing fissionable materials from non-fissionable materials based on differential delayed γ-ray yields via both simulation and measurements. The energy spectra of delayed-photofission γ-rays carry isotopic information of the target materials. The feasibility of accurate spectrometry measurements in between intense linear accelerator pulses has been demonstrated using three independent spectroscopy systems. The measured delayed γ-rays spectra were then compared with MCNPX simulation results. Through the comparison, this article intends to show the capabilities of the current version of MCNPX in applications of simulating the photofission process.

  6. 233U mass yield measurements around and within the symmetry region with the ILL Lohengrin spectrometer

    Science.gov (United States)

    Chebboubi, A.; Kessedjian, G.; Sage, C.; Bernard, D.; Blanc, A.; Faust, H.; Köster, U.; Litaize, O.; Mutti, P.; Serot, O.

    2016-03-01

    The study of fission yields has a major impact on the characterization and understanding of the fission process and is mandatory for reactor applications. The LPSC in collaboration with ILL and CEA has developed a measurement program on fission fragment distributions at the Lohengrin spectrometer of the ILL, with a special focus on the masses constituting the heavy peak. We will present in this paper our measurement of the very low fission yields in the symmetry mass region and the heavy mass wing of the distribution for 233U thermal neutron induced fission. The difficulty due to the strong contamination by other masses with much higher yields will be addressed in the form of a new analysis method featuring the required contaminant correction. The apparition of structures in the kinetic energy distributions and possible interpretations will be discussed, such as a possible evidence of fission modes.

  7. Dynamical approach to isotopic-distribution of fission fragments from actinide nuclei

    Directory of Open Access Journals (Sweden)

    Ishizuka Chikako

    2016-01-01

    Full Text Available Measurements of the isotope distribution of fission fragments, often denoted as the primary fission yield (pre-neutron yield or independent fission yield (post-neutron yield are still challenging at low excitation energies, so that it is important to investigate it within a theory. Such quantities are vital for applications as well. In this study, fragment distributions from the fission of U isotopes at low excitation energies are studied using a dynamical model. The potential energy surface is derived from the two center shell model including the shell and pairing corrections. In order to calculate the charge distribution of fission fragments, we introduce a new parameter ηZ as the charge asymmetry, in addition to three parameters describing a nuclear shape, z as the distance between two centers of mass, δ as fragment deformation, and ηA as the mass asymmetry. Using this model, we calculated the isotopic distribution of 236U for the n-induced process 235U + n → 236U at low excitation energies. As a result, we found that the current model can well reproduce isotopic fission-fragment distribution which can be compared favorably with major libraries.

  8. Dynamical approach to isotopic-distribution of fission fragments from actinide nuclei

    Science.gov (United States)

    Ishizuka, Chikako; Chiba, Satoshi; Karpov, Alexander V.; Aritomo, Yoshihiro

    2016-06-01

    Measurements of the isotope distribution of fission fragments, often denoted as the primary fission yield (pre-neutron yield) or independent fission yield (post-neutron yield) are still challenging at low excitation energies, so that it is important to investigate it within a theory. Such quantities are vital for applications as well. In this study, fragment distributions from the fission of U isotopes at low excitation energies are studied using a dynamical model. The potential energy surface is derived from the two center shell model including the shell and pairing corrections. In order to calculate the charge distribution of fission fragments, we introduce a new parameter ηZ as the charge asymmetry, in addition to three parameters describing a nuclear shape, z as the distance between two centers of mass, δ as fragment deformation, and ηA as the mass asymmetry. Using this model, we calculated the isotopic distribution of 236U for the n-induced process 235U + n → 236U at low excitation energies. As a result, we found that the current model can well reproduce isotopic fission-fragment distribution which can be compared favorably with major libraries.

  9. Absolute measurements of fast neutrons using yttrium

    International Nuclear Information System (INIS)

    Yttrium is presented as an absolute neutron detector for pulsed neutron sources. It has high sensitivity for detecting fast neutrons. Yttrium has the property of generating a monoenergetic secondary radiation in the form of a 909 keV gamma-ray caused by inelastic neutron interaction. It was calibrated numerically using MCNPX and does not need periodic recalibration. The total yttrium efficiency for detecting 2.45 MeV neutrons was determined to be fn∼4.1x10-4 with an uncertainty of about 0.27%. The yttrium detector was employed in the NX2 plasma focus experiments and showed the neutron yield of the order of 108 neutrons per discharge.

  10. Measurement of the neutron activity of a 252Cf source relative to the average number of prompt neutrons emitted per fission for the spontaneous fission

    International Nuclear Information System (INIS)

    A method was developed for measuring the absolute neutron activity of a large 252Cf source. The neutron counting assembly is composed of eight BF3 counters mounted in a large tank filled with water which is used as a moderator. The detection efficiency is determined using a low activity 252Cf source. The method is based on the identification of every fission event, followed by the counting of the fission neutrons detected by the BF3 counters during a time interval equal to the maximum neutron lifetime in the moderator. The efficiency is thus obtained relative to the average number of prompt neutrons emitted per 252Cf spontaneous fission which is commonly used as a standard. The measurement accuracy is estimated to be of the order of 1%

  11. Exciton Correlations in Intramolecular Singlet Fission.

    Science.gov (United States)

    Sanders, Samuel N; Kumarasamy, Elango; Pun, Andrew B; Appavoo, Kannatassen; Steigerwald, Michael L; Campos, Luis M; Sfeir, Matthew Y

    2016-06-15

    We have synthesized a series of asymmetric pentacene-tetracene heterodimers with a variable-length conjugated bridge that undergo fast and efficient intramolecular singlet fission (iSF). These compounds have distinct singlet and triplet energies, which allow us to study the spatial dynamics of excitons during the iSF process, including the significant role of exciton correlations in promoting triplet pair generation and recombination. We demonstrate that the primary photoexcitations in conjugated dimers are delocalized singlets that enable fast and efficient iSF. However, in these asymmetric dimers, the singlet becomes more localized on the lower energy unit as the length of the bridge is increased, slowing down iSF relative to analogous symmetric dimers. We resolve the recombination kinetics of the inequivalent triplets produced via iSF, and find that they primarily decay via concerted processes. By identifying different decay channels, including delayed fluorescence via triplet-triplet annihilation, we can separate transient species corresponding to both correlated triplet pairs and uncorrelated triplets. Recombination of the triplet pair proceeds rapidly despite our experimental and theoretical demonstration that individual triplets are highly localized and unable to be transported across the conjugated linker. In this class of compounds, the rate of formation and yield of uncorrelated triplets increases with bridge length. Overall, these constrained, asymmetric systems provide a unique platform to isolate and study transient species essential for singlet fission, which are otherwise difficult to observe in symmetric dimers or condensed phases. PMID:27183040

  12. Compact fission counter for DANCE

    Energy Technology Data Exchange (ETDEWEB)

    Wu, C Y; Chyzh, A; Kwan, E; Henderson, R; Gostic, J; Carter, D; Bredeweg, T; Couture, A; Jandel, M; Ullmann, J

    2010-11-06

    The Detector for Advanced Neutron Capture Experiments (DANCE) consists of 160 BF{sub 2} crystals with equal solid-angle coverage. DANCE is a 4{pi} {gamma}-ray calorimeter and designed to study the neutron-capture reactions on small quantities of radioactive and rare stable nuclei. These reactions are important for the radiochemistry applications and modeling the element production in stars. The recognition of capture event is made by the summed {gamma}-ray energy which is equivalent of the reaction Q-value and unique for a given capture reaction. For a selective group of actinides, where the neutron-induced fission reaction competes favorably with the neutron capture reaction, additional signature is needed to distinguish between fission and capture {gamma} rays for the DANCE measurement. This can be accomplished by introducing a detector system to tag fission fragments and thus establish a unique signature for the fission event. Once this system is implemented, one has the opportunity to study not only the capture but also fission reactions. A parallel-plate avalanche counter (PPAC) has many advantages for the detection of heavy charged particles such as fission fragments. These include fast timing, resistance to radiation damage, and tolerance of high counting rate. A PPAC also can be tuned to be insensitive to {alpha} particles, which is important for experiments with {alpha}-emitting actinides. Therefore, a PPAC is an ideal detector for experiments requiring a fast and clean trigger for fission. A PPAC with an ingenious design was fabricated in 2006 by integrating amplifiers into the target assembly. However, this counter was proved to be unsuitable for this application because of issues related to the stability of amplifiers and the ability to separate fission fragments from {alpha}'s. Therefore, a new design is needed. A LLNL proposal to develop a new PPAC for DANCE was funded by NA22 in FY09. The design goal is to minimize the mass for the proposed

  13. Compact fission counter for DANCE

    International Nuclear Information System (INIS)

    The Detector for Advanced Neutron Capture Experiments (DANCE) consists of 160 BF2 crystals with equal solid-angle coverage. DANCE is a 4π γ-ray calorimeter and designed to study the neutron-capture reactions on small quantities of radioactive and rare stable nuclei. These reactions are important for the radiochemistry applications and modeling the element production in stars. The recognition of capture event is made by the summed γ-ray energy which is equivalent of the reaction Q-value and unique for a given capture reaction. For a selective group of actinides, where the neutron-induced fission reaction competes favorably with the neutron capture reaction, additional signature is needed to distinguish between fission and capture γ rays for the DANCE measurement. This can be accomplished by introducing a detector system to tag fission fragments and thus establish a unique signature for the fission event. Once this system is implemented, one has the opportunity to study not only the capture but also fission reactions. A parallel-plate avalanche counter (PPAC) has many advantages for the detection of heavy charged particles such as fission fragments. These include fast timing, resistance to radiation damage, and tolerance of high counting rate. A PPAC also can be tuned to be insensitive to α particles, which is important for experiments with α-emitting actinides. Therefore, a PPAC is an ideal detector for experiments requiring a fast and clean trigger for fission. A PPAC with an ingenious design was fabricated in 2006 by integrating amplifiers into the target assembly. However, this counter was proved to be unsuitable for this application because of issues related to the stability of amplifiers and the ability to separate fission fragments from α's. Therefore, a new design is needed. A LLNL proposal to develop a new PPAC for DANCE was funded by NA22 in FY09. The design goal is to minimize the mass for the proposed counter and still be able to maintain a stable

  14. The latest progress of fission track analysis

    International Nuclear Information System (INIS)

    Fission track analysis as a new nuclear track technique is based on fission track annealing in mineral and is used for oil and gas exploration successfully. The west part of China is the main exploration for oil and gas. The oil and gas basins there experienced much more complicated thermal history and higher paleotemperature. In order to apply fission track analysis to these basins, following work was be carried out: 1. The decomposition of grain age distribution of zircon fission tracks. 2. Study on thermal history of Ordos basin using zircon fission track analysis. 3. The fission track study on the Qiang Tang basin in tibet

  15. Neutron emission prior to fission

    International Nuclear Information System (INIS)

    In recent years, many groups have measured neutrons and light charged particles in coincidence with fission fragments in heavy ion reactions. In most cases, particles emitted with an energy spectrum and angular distribution characteristic of that of compound nucleus evaporation have been measured in excess of statistical model predictions. They have chosen to investigate this effect in detail by studying neutron emission in the 158Er composite system. The advantage of this system is that it can be produced by a variety of projectile target combinations. They have chosen four combinations which form 158Er with similar critical angular momenta but varying excitation energy. The rationale is to form the same system with different neutron emission times; if the enhanced neutrons are being emitted during the fission process, the different emission time scales might possibly be used to time the fission process. In addition, they impose an additional constraint - that they have a significant fission barrier for most of the partial waves involved in the fission process. The reactions they have selected are 16O + 142Nd (207 MeV beam energy), 24Mg + 134Ba (180 MeV), 32S + 126Te (180 MeV), 50Ti + 108Pd (216 MeV)

  16. Mini-fission fusion explosive devices (mini-nukes) for nuclear pulse propulsion

    Science.gov (United States)

    Winterberg, F.

    2005-11-01

    Nuclear pulse propulsion demands low-yield nuclear explosive devices. Because the critical mass of a fission explosive is rather large, this leads to extravagant fission devices with a very low fuel burn-up. For non-fission ignited pure fusion microexplosions the problem is the large ignition apparatus (laser, particle beam, etc.). Fission ignited large fusion explosive devices are for obvious reasons even less desirable. A third category (mini-nukes) are devices where the critical mass of the fission explosive is substantially reduced by its coupling to a DT fusion reaction, with the DT fusion neutrons increasing the fission rate. Whereas in pure fission devices a reduction of the critical mass is achieved by the implosive compression of the fissile core with a chemical high explosive, in the third category the implosion must at the same time heat the DT surrounding the fissile core to a temperature of ⩾107K, at which enough fusion neutrons are generated to increase the fission rate which in turn further increases the temperature and fusion neutron production rate. As has been shown by the author many years ago, such mini-nukes lead to astonishingly small critical masses. In their application to nuclear pulse propulsion the combustion products from the chemical high explosive are further heated by the neutrons and are becoming part of the propellant.

  17. Transfer-induced fission in inverse kinematics: Impact on experimental and evaluated nuclear data bases

    International Nuclear Information System (INIS)

    Inverse kinematics is a new tool to study nuclear fission. Its main advantage is the possibility to measure with an unmatched resolution the atomic number of fission fragments, leading to new observables in the properties of fission-fragment distributions. In addition to the resolution improvement, the study of fission based on nuclear collisions in inverse kinematics beneficiates from a larger view with respect to the neutron-induced fission, as in a single experiment the number of fissioning systems and the excitation energy range are widden. With the use of spectrometers, mass and kinetic-energy distributions may now be investigated as a function of the proton and neutron number sharing. The production of fissioning nuclei in transfer reactions allows studying the isotopic yields of fission fragments as a function of the excitation energy. The higher excitation energy resulting in the fusion reaction leading to the compound nucleus 250Cf at an excitation energy of 45MeV is also presented. With the use of inverse kinematics, the charge polarisation of fragments at scission is now revealed with high precision, and it is shown that it cannot be neglected, even at higher excitation energies. In addition, the kinematical properties of the fragments inform on the deformation configuration at scission. (orig.)

  18. Transfer-induced fission in inverse kinematics: Impact on experimental and evaluated nuclear data bases

    Science.gov (United States)

    Farget, F.; Caamaño, M.; Ramos, D.; Rodrıguez-Tajes, C.; Schmidt, K.-H.; Audouin, L.; Benlliure, J.; Casarejos, E.; Clément, E.; Cortina, D.; Delaune, O.; Derkx, X.; Dijon, A.; Doré, D.; Fernández-Domınguez, B.; Gaudefroy, L.; Golabek, C.; Heinz, A.; Jurado, B.; Lemasson, A.; Paradela, C.; Roger, T.; Salsac, M. D.; Schmitt, C.

    2015-12-01

    Inverse kinematics is a new tool to study nuclear fission. Its main advantage is the possibility to measure with an unmatched resolution the atomic number of fission fragments, leading to new observables in the properties of fission-fragment distributions. In addition to the resolution improvement, the study of fission based on nuclear collisions in inverse kinematics beneficiates from a larger view with respect to the neutron-induced fission, as in a single experiment the number of fissioning systems and the excitation energy range are widden. With the use of spectrometers, mass and kinetic-energy distributions may now be investigated as a function of the proton and neutron number sharing. The production of fissioning nuclei in transfer reactions allows studying the isotopic yields of fission fragments as a function of the excitation energy. The higher excitation energy resulting in the fusion reaction leading to the compound nucleus 250Cf at an excitation energy of 45MeV is also presented. With the use of inverse kinematics, the charge polarisation of fragments at scission is now revealed with high precision, and it is shown that it cannot be neglected, even at higher excitation energies. In addition, the kinematical properties of the fragments inform on the deformation configuration at scission.

  19. Nuclear fission and neutron-induced fission cross-sections

    CERN Document Server

    James, G D; Michaudon, A; Michaudon, A; Cierjacks, S W; Chrien, R E

    2013-01-01

    Nuclear Fission and Neutron-Induced Fission Cross-Sections is the first volume in a series on Neutron Physics and Nuclear Data in Science and Technology. This volume serves the purpose of providing a thorough description of the many facets of neutron physics in different fields of nuclear applications. This book also attempts to bridge the communication gap between experts involved in the experimental and theoretical studies of nuclear properties and those involved in the technological applications of nuclear data. This publication will be invaluable to those interested in studying nuclear fis

  20. Heavy neutron-deficient radioactive beams: fission studies and fragment distributions

    International Nuclear Information System (INIS)

    The secondary-beam facility of GSI Darmstadt was used to study the fission process of short-lived radioactive nuclei. Relativistic secondary projectiles were produced by fragmentation of a 1 A GeV 238U primary beam and identified in nuclear charge and mass number. Their production cross sections were determined, and the fission competition in the statistical deexcitation was deduced for long isotopical chains. New results on the enhancement of the nuclear level density in spherical and deformed nuclei due to collective rotational and vibrational excitations were obtained. Using these reaction products as secondary beams, the dipole giant resonance was excited by electromagnetic interactions in a secondary lead target, and fission from excitation energies around 11 MeV was induced. The fission fragments were identified in nuclear charge, and their velocity vectors were determined. Elemental yields and total kinetic energies have been determined for a number of neutron-deficient actinides and preactinides which were not accessible with conventional techniques. The characteristics of multimodal fission of nuclei around 226Th were systematically investigated and related to the influence of shell effects on the potential energy and on the level density between fission barrier and scission. A systematic view on the large number of elemental yields measured gave rise to a new interpretation of the enhanced production of even elements in nuclear fission and allowed for a new understanding of pair breaking in large-scale collective motion. (orig.)

  1. Comparison of actinides and fission products recycling scheme with the normal plutonium recycling scheme in fast reactors

    Directory of Open Access Journals (Sweden)

    Salahuddin Asif

    2013-01-01

    Full Text Available Multiple recycling of actinides and non-volatile fission products in fast reactors through the dry re-fabrication/reprocessing atomics international reduction oxidation process has been studied as a possible way to reduce the long-term potential hazard of nuclear waste compared to that resulting from reprocessing in a wet PUREX process. Calculations have been made to compare the actinides and fission products recycling scheme with the normal plutonium recycling scheme in a fast reactor. For this purpose, the Karlsruhe version of isotope generation and depletion code, KORIGEN, has been modified accordingly. An entirely novel fission product yields library for fast reactors has been created which has replaced the old KORIGEN fission products library. For the purposes of this study, the standard 26 groups data set, KFKINR, developed at Forschungszentrum Karlsruhe, Germany, has been extended by the addition of the cross-sections of 13 important actinides and 68 most important fission products. It has been confirmed that these 68 fission products constitute about 95% of the total fission products yield and about 99.5% of the total absorption due to fission products in fast reactors. The amount of fissile material required to guarantee the criticality of the reactor during recycling schemes has also been investigated. Cumulative high active waste per ton of initial heavy metal is also calculated. Results show that the recycling of actinides and fission products in fast reactors through the atomics international reduction oxidation process results in a reduction of the potential hazard of radioactive waste.

  2. Fission fragment charge and mass distributions in 239Pu(n,f) in the adiabatic nuclear energy density functional theory

    CERN Document Server

    Regnier, D; Schunck, N; Verriere, M

    2016-01-01

    Accurate knowledge of fission fragment yields is an essential ingredient of numerous applications ranging from the formation of elements in the r-process to fuel cycle optimization for nuclear energy. The need for a predictive theory applicable where no data is available is an incentive to develop a fully microscopic approach to fission dynamics. In this work, we calculate the pre-neutron emission charge and mass distributions of the fission fragments formed in the neutron-induced fission of 239Pu using a microscopic method based on nuclear energy density functional (EDF) method, where large amplitude collective motion is treated adiabatically using the time dependent generator coordinate method (TDGCM) under the Gaussian overlap approximation (GOA). Fission fragment distributions are extracted from the flux of the collective wave packet through the scission line. We find that the main characteristics of the fission charge and mass distributions can be well reproduced by existing energy functionals even in tw...

  3. Background and Derivation of ANS-5.4 Standard Fission Product Release Model

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, Carl E.; Turnbull, Andrew J.

    2010-01-29

    This background report describes the technical basis for the newly proposed American Nuclear Society (ANS) 5.4 standard, Methods for Calculating the Fractional Release of Volatile Fission Products from Oxide Fuels. The proposed ANS 5.4 standard provides a methodology for determining the radioactive fission product releases from the fuel for use in assessing radiological consequences of postulated accidents that do not involve abrupt power transients. When coupled with isotopic yields, this method establishes the 'gap activity,' which is the inventory of volatile fission products that are released from the fuel rod if the cladding are breached.

  4. RAPID QUANTITATION OF URANIUM FROM MIXED FISSION PRODUCT SAMPLES

    Energy Technology Data Exchange (ETDEWEB)

    Haney, Morgan M.; Seiner, Brienne N.; Finn, Erin C.; Friese, Judah I.

    2016-03-09

    Chemical similarities between U(VI) and Mo(VI) create challenges for separation and quantification of uranium from a mixed fission product sample. The purpose of this work was to demonstrate the feasibility of using Eichrom’s® UTEVA resin in addition to a tellurium spontaneous deposition to improve the quantitation of 235U using gamma spectroscopy. The optimized method demonstrated a consistent chemical yield of 74 ± 3 % for uranium. This procedure was evaluated using 1.41x1012 fissions produced from an irradiated HEU sample. The uranium was isotopically yielded by HPGe, and the minimum detectable activity (MDA) determined from the gamma spectra. The MDA for 235U, 237U, and 238U was reduced by a factor of two. The chemical isolation of uranium was successfully achieved in less than four hours, with a separation factor of 1.41x105 from molybdenum.

  5. Report of fission study meeting

    International Nuclear Information System (INIS)

    This book is the report of fission Study Meeting held from September 19 to 21, 1985 in the Research Center for Nuclear Physics, Osaka University. The objective of this study meeting was to stimulate the research on nuclear physics in Japan, which began to show new development accompanying the advance of the research on heavy ion nuclear reaction, and to make this a new starting point. More than 50 participants from physical, chemical and engineering fields, who have interest in the theory and experiment related to nuclear fission, gathered, and the meeting was a success beyond expectation. The contents covered a wide range including nuclear smashing reaction as well as nuclear fission in a narrow sense. In this book, the gists of 28 papers are collected. (Kako, I.)

  6. New Fission Fragment Distributions and r-Process Origin of the Rare-Earth Elements

    OpenAIRE

    Goriely, Stéphane; Sida, Jean-Luc; Lemaitre, Jean-François; Panebianco, Stefano; Dubray, Noel; Hilaire, Stéphane; Bauswein, Andreas; Janka, Hans-Thomas

    2013-01-01

    International audience Neutron star (NS) merger ejecta offer a viable site for the production of heavy r-process elements with nuclear mass numbers A * 140. The crucial role of fission recycling is responsible for the robustness of this site against many astrophysical uncertainties, but calculations sensitively depend on nuclear physics. In particular, the fission fragment yields determine the creation of 110 & A & 170 nuclei. Here, we apply a new scission-point model, called SPY, to deriv...

  7. Sampling ENDL Watt Fission Spectra

    Energy Technology Data Exchange (ETDEWEB)

    Cullen, D E

    2004-04-01

    All of the fission spectra in the Evaluated Nuclear Data Library, ENDL [1], are defined by a simple analytical function: a Watt spectrum [2], W(a,b,E') = C*Exp[-a*E']*Sinh[(b*E'){sup 1/2}]. Where the normalization, C, is given by, C = [{pi}b/4a]{sup 1/2} Exp[b/4a]/a. The coefficients a and b vary from one isotope to another and also vary weakly with the incident neutron energy. Here E' is the secondary energy, i.e., the energy at which the fission neutrons are emitted. In ENDL energy units of MeV for incident neutron energies between 0 and 20 MeV, in all cases b is very close to 1.0, and a varies over a rather small range near 1.0. Currently there are 38 fissionable isotopes in ENDL. For each of these isotopes I have parameterized a as a simple function of the incident neutron energy, and I treat b as always equal to unity. The values of these parameters are available to TART users as part of the TART CD package [3]. This parameterization coupled with the general Watt sampling method described below results in a very fast and accurate method of sampling all of the fission spectra in ENDL. In all cases I select the fissioning isotope, define a based on isotope and incident neutron energy, and then use the below described method to sample the energy E' of a neutron emitted due to fission.

  8. Advanced Fission Reactor Program objectives

    International Nuclear Information System (INIS)

    The objective of an advanced fission reactor program should be to develop an economically attractive, safe, proliferation-resistant fission reactor. To achieve this objective, an aggressive and broad-based research and development program is needed. Preliminary work at Brookhaven National Laboratory shows that a reasonable goal for a research program would be a reactor combining as many as possible of the following features: (1) initial loading of uranium enriched to less than 15% uranium 235, (2) no handling of fuel for the full 30-year nominal core life, (3) inherent safety ensured by core physics, and (4) utilization of natural uranium at least 5 times as efficiently as light water reactors

  9. Search for Singlet Fission Chromophores

    Energy Technology Data Exchange (ETDEWEB)

    Havlas, Z.; Akdag, A.; Smith, M. B.; Dron, P.; Johnson, J. C.; Nozik, A. J.; Michl, J.

    2012-01-01

    Singlet fission, in which a singlet excited chromophore shares its energy with a ground-state neighbor and both end up in their triplet states, is of potential interest for solar cells. Only a handful of compounds, mostly alternant hydrocarbons, are known to perform efficiently. In view of the large number of conditions that a successful candidate for a practical cell has to meet, it appears desirable to extend the present list of high performers to additional classes of compounds. We have (i) identified design rules for new singlet fission chromophores and for their coupling to covalent dimers, (ii) synthesized them, and (iii) evaluated their performance as neat solids or covalent dimers.

  10. Velocity fluctuations of fission fragments

    CERN Document Server

    Llanes-Estrada, Felipe J; Martinez, Jose L Muñoz

    2015-01-01

    We propose event by event velocity fluctuations of nuclear fission fragments as an additional interesting observable that gives access to the nuclear temperature in an independent way from spectral measurements and relates the diffusion and friction coefficients for the relative fragment coordinate in Kramer-like models (in which some aspects of fission can be understood as the diffusion of a collective variable through a potential barrier). We point out that neutron emission by the heavy fragments can be treated in effective theory if corrections to the velocity distribution are needed.

  11. Android Apps for Absolute Beginners

    CERN Document Server

    Jackson, Wallace

    2011-01-01

    Anybody can start building simple apps for the Android platform, and this book will show you how! Android Apps for Absolute Beginners takes you through the process of getting your first Android applications up and running using plain English and practical examples. It cuts through the fog of jargon and mystery that surrounds Android application development, and gives you simple, step-by-step instructions to get you started.* Teaches Android application development in language anyone can understand, giving you the best possible start in Android development * Provides simple, step-by-step exampl

  12. Development of Fission Chamber Assembly

    Institute of Scientific and Technical Information of China (English)

    YANGJinwei; ZHANGWei; SONGXianying; LIXu

    2003-01-01

    The fission chambers which are gas counters with fissile material inside chamber,provide essential information for plasma opcharacteristics. In conjunction with the neutron flux monitor system these provide time-resolved measurements of the global neutron source strength and fusion power from thermal nuclear fusion reactor as ITER for all plasma conditions for which neutrons are produced.

  13. JNDC nuclear data library of fission products, second version

    International Nuclear Information System (INIS)

    The second version of the JNDC (Japanese Nuclear Data Committee) FP (Fission Product) nuclear data library is described in this report. The library contains nuclear decay and fission yield data for 1078 unstable and 149 stable FP nuclides, and neutron cross section data for 166 nuclides. The decay data include half-life, branching ration, and total beta- and gamma-ray energies released per decay of each unstable nuclide. The theoretical and the experimental values of average beta and gamma decay energies have been thoroughly reexamined for each nuclide, and the best values or most reliable ones have been chosen for inclusion into the new version. The comparison of decay power curves between the calculations with the new version and the measurements performed at the University of Tokyo, Oak Ridge National Laboratory and Los Alamos National Laboratory for variety of fissiles from 232Th to 241Pu shows clear improvement in agreement, in particular, around 1000 s and also after 1000 s. The decay power of fission products has been calculated for twenty fission types and the results have been fitted by an analytical function with 33 exponentials. This permits the easy application of the present results of decay power calculations to a LOCA (Loss-of-Coolant Accident) analysis of a light water reactor and so on. (author)

  14. Advanced modeling of prompt fission neutrons and gamma rays

    International Nuclear Information System (INIS)

    Prompt fission neutrons and gamma rays are computed using a Monte Carlo treatment of the statistical evaporation of the excited primary fission fragments. The assumption of two fragments in thermal equilibrium at the time of neutron emission is addressed by studying the neutron multiplicity as a function of fragment mass. Results for the neutron-induced fission of 235U are discussed, for incident neutron energies from 0.5 to 5.5 MeV. Recent experimental data on the fission fragment yields as a function of mass and total kinetic energy are used as input data. Monte-Carlo calculations allow the exploration of physical observables beyond average quantities. A new parameter RT has been introduced: RT=Tl/Th where Tl and Th are the temperatures in the light and heavy fragments. The average neutron multiplicity computed as a function of the fragment mass agrees best with the experimental data (with En=5.5 MeV) when RT=1 which can be understood as follows: as the incident neutron energy increases, the role of shell effects diminishes and the ratio of collective energies stored in the light and heavy fragment tends toward 1

  15. Measurements of delayed neutrons yields and time spectra from 1 GeV protons interacting with thick {sup nat}Pb, {sup 209}Bi and {sup nat}Fe targets

    Energy Technology Data Exchange (ETDEWEB)

    Ridikas, D.; Blideanu, V.; David, J.C.; Dore, D.; Prevost, A. [CEA Saclay, Dept. d' Astrophysique, de Physique des Particules de Physique Nucleaire et de l' Instrumentation Associee, 91- Gif sur Yvette (France); Ledoux, X. [CEA Bruyeres-le-Chatel (CEA/DIF, DPTA/SPN), 91 (France); Barzakh, A.; Fedorov, D.; Moroz, F.; Panteleev, V.; Shcherbakov, O.; Vorobyev, A. [Petersburg Nuclear Physics Institute, Leningrad district (Russian Federation); Plukiene, R.; Plukis, A. [Institute of Physics, Vilnius (Lithuania)

    2008-07-01

    This paper presents the experimental results on the delayed neutrons (DN) yields and time spectra from 1 GeV protons interacting with natural lead, {sup 209}Bi and natural iron targets of variable thicknesses from 5 cm to 55 cm. Both absolute yields and time constants were obtained. In parallel, the MCNPX and PHITS codes were used to predict the DN precursors and construct the theoretical DN tables. Different model parameters are examined and show significant dependence on the choice of the intra-nuclear cascade and fission-evaporation models used. These data and modelling are of great importance for the new generation spallation neutron sources based on liquid metal technologies. Finally, the above experiment allowed the determination of the production cross sections of a number of delayed neutrons precursors as, {sup 87}Br, {sup 88}Br and {sup 17}N. For the 3 targets the emission of delayed neutrons is dominated by light reaction products such as {sup 9}Li and {sup 17}N during decay times from 0 to 20-30 s. In the case of fissile targets after longer decay times the fission fragments such as {sup 88}Br and {sup 87}Br are the major contributors. These results permit the examination of two different reaction mechanisms, namely fission and fragmentation, implemented in high energy transport codes. (authors)

  16. Measurement of the absolute branching fraction of the Ds+- meson

    CERN Document Server

    Abe, K; Dragic, J; Fujii, H; Gershon, T; Haba, J; Hazumi, M; Higuchi, T; Igarashi, Y; Itoh, R; Iwasaki, Y; Katayama, N; Kichimi, H; Krokovnyi, P P; Limosani, A; Nakamura, I; Nakao, M; Nakazawa, H; Nishida, S; Nozaki, T; Ozaki, H; Ronga, F J; Saitoh, S; Sakai, Y; Stamen, R; Sumisawa, K; Suzuki, S Y; Tajima, O; Takasaki, F; Tamai, K; Tanaka, M; Trabelsi, K; Tsuboyama, T; Tsukamoto, T; Uehara, S; Unno, Y; Uno, S; Ushiroda, Y; Yamauchi, M; Zhang, J; Hoshi, Y; Neichi, K; Aihara, H; Hastings, N C; Ishikawa, A; Itoh, K; Iwasaki, M; Kakuno, H; Kusaka, A; Nakahama, Y; Tanabe, K; Anipko, D; Arinstein, K; Aulchenko, V; Bedny, I; Bondar, A; Eidelman, S; Epifanov, D A; Gabyshev, N; Kuzmin, A; Poluektov, A; Root, N; Shwartz, B; Sidorov, V; Usov, Yu; Zhilich, V; Aoki, K; Enari, Y; Hara, K; Hayasaka, K; Hokuue, T; Iijima, T; Ikado, K; Inami, K; Kishimoto, N; Kozakai, Y; Kubota, T; Miyazaki, Y; Ohshima, T; Okabe, T; Sato, N; Senyo, K; Yoshino, S; Arakawa, T; Kawasaki, T; Miyata, H; Tamura, N; Watanabe, M; Asano, Y; Aso, T; Aushev, T; Bay, A; Hinz, L; Jacoby, C; Schietinger, T; Schneider, O; Villa, S; Wicht, J; Zürcher, D; Aziz, T; Banerjee, S; Gokhroo, G; Majumder, G; Bahinipati, S; Drutskoy, A; Goldenzweig, P; Kinoshita, K; Kulasiri, R; Sayeed, K; Schwartz, A J; Somov, A; Bakich, A M; Cole, S; McOnie, S; Parslow, N; Peak, L S; Stöck, H; Varvell, K E; Yabsley, B D; Balagura, V; Chistov, R; Danilov, M; Liventsev, D; Medvedeva, T; Mizuk, R; Pakhlov, P; Pakhlova, G; Tikhomirov, I; Uglov, T; Tian, Y BanX C; Barberio, E; Dalseno, J; Dowd, R; Moloney, G R; Sevior, M E; Taylor, G N; Tse, Y F; Urquijo, P; Barbero, M; Browder, T E; Guler, H; Jones, M; Li, J; Nishimura, K; Olsen, S L; Peters, M; Rorie, J; Sahoo, H; Uchida, K; Varner, G; Belous, K S; Shapkin, M; Sokolov, A; Bitenc, U; Bizjak, I; Fratina, S; Gorisek, A; Pestotnik, R; Staric, M; Zupanc, A; Blyth, S; Chen, A; Chen, W T; Go, A; Hou, S; Kuo, C C; Bozek, A; Kapusta, P; Lesiak, T; Matyja, A; Natkaniec, Z; Ostrowicz, W; Palka, H; Rózanska, M; Wiechczynski, J; Bracko, M; Korpar S; Brodzicka, J; Chang, M C; Kikuchi, N; Mikami, Y; Nagamine, T; Schonmeier, P; Yamaguchi, A; Yamamoto, H; Chang, P; Chao, Y; Chen, K F; Hou, W S; Hsiung, Y B; Lee, Y J; Lin, C Y; Lin, S W; Shen, Y T; Tsai, Y T; Ueno, K; Wang, C C; Wang, M Z; Wu, C H; Cheon, B G; Choi, J H; Ha, H; Kang, J S; Won, E; Choi, S K; Choi, Y; Choi, Y K; Kim, H O; Kim, J H; Park, C W; Park, K S; Chuvikov, A; Garmash, A; Marlow, D; Ziegler, T; Dash, M; Mohapatra, D; Piilonen, L E; Yusa, Y; Fujikawa, M; Hayashii, H; Imoto, A; Kataoka, S U; Miyabayashi, K; Noguchi, S; Krizan, P; Golob, B; Seidl, R; Grosse-Perdekamp, M; Hara, T; Heffernan, D; Miyake, H; Hasegawa, Y; Satoyama, N; Takada, N; Nitoh, O; Hoshina, K; Ishino, H; Khan, H R; Kibayashi, A; Mori, T; Ono, S; Watanabe, Y; Iwabuchi, M; Kim, Y J; Liu, Y; Sarangi, T R; Uchida, Y; Kang, J H; Kim, T H; Kwon, Y J; Kurihara, E; Kawai, H; Park, H; Kim, H J; Kim, S K; Lee, J; Lee, S E; Yang He Young; Kumar, R; Singh, J B; Soni, N; Lange, J S; Leder, G; MacNaughton, J; Mandl, F; Mitaroff, W A; Pernicka, M; Schwanda, C; Widhalm, L; Matsumoto, T; Nakagawa, T; Seki, T; Sumiyoshi, T; Yamamoto, S; Müller, J; Murakami, A; Sugiyama, A; Suzuki, S; Nagasaka, Y; Nakano, E; Sakaue, H; Teramoto, Y; Ogawa, A; Shibuya, H; Ogawa, S; Okuno, S; Sakamoto, H; Wang, C H; Schümann, J; Stanic, S; Xie, Q L; Yuan, Y; Zang, S L; Zhang, C C; Yamashita, Y; Zhang, L M; Zhang, Z P

    2006-01-01

    The Ds+- -> K+-K-+pi+- absolute branching fraction is measured using e+e- -> Ds*+- Ds1-+(2536) events collected by the Belle detector at the KEKB e+e- asymmetric energy collider. Using the ratio of yields when either the Ds1 or Ds* is fully reconstructed, we find Br(Ds+- -> K+-K-+pi+-)= (4.0+-0.4(stat)+-0.4(sys))%.

  17. Spontaneous fission. A many-body approach

    Energy Technology Data Exchange (ETDEWEB)

    Iwamoto, Akira; Bonasera, A. [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    We propose new model to calculate the fission phenomena in tunnel region. By the Vlasov equation and the imaginary time method, we could calculate actinides nuclear fission. This method makes possible to describe unified the motion of fission inside and outside of potential wall. The potential energy and mass parameters can be calculated by no means of the special model. The freedom of internal motion are calculated automatically both collective and a particle motion. Accordingly, particle released during fission process can be calculated. The kinetic energy of fragment after fission was very agreeable with the calculation results. (S.Y.)

  18. Observation of fission residues in the 16O + 181Ta system at E(lab) ∼ 6 MeV/A

    International Nuclear Information System (INIS)

    Present paper reports on the production cross-section of 24 fission like events (30 ≤ Z ≤ 60) formed via complete fusion-fission and/or incomplete fusion-fission processes in 16O+181Ta system at energies ∼ 6 MeV/A. Experiments have been performed using the recoil-catcher technique followed by off-line γ-spectroscopy. The measured cross-section of fission-like events is satisfactorily described by a statistical model code. Further, an attempt has been made to study the mass and isotopic yield distributions of fission fragments. The variance of the presently measured isotopic yield distributions has been found to be in agreement with the literature values for some other fissioning systems. (authors)

  19. SPIDER: A new instrument for fission fragment research at the Los Alamos Neutron Science Center

    Directory of Open Access Journals (Sweden)

    Tovesson Fredrik

    2013-12-01

    Full Text Available The study of fission fragment yields and how they behave as a function of excitation energy provides insight into the process in which they are formed. Fission yields are also important for nuclear applications, as they can be used as a diagnostic tool. A new instrument, SPIDER (Spectrometer for Ion DEtermination in fission Research, is being developed for measuring fission yields as a function of incident neutron energy at the Los Alamos Neutron Science Center. The instrument employs a time-of-flight mass spectrometry method in which the velocity and kinetic energy of the fragments are measured in order to determine their mass. Additionally, by using Bragg peak spectroscopy, the charge of the fragments can be identified. A prototype instrument has been developed and preliminary results indicate that ∼ 1 mass unit resolution is feasible using this approach. A larger detector array is currently being designed, and will be used at study fission yields from thermal neutron energies up to at least 20 MeV.

  20. Development of a Gas Filled Magnet spectrometer coupled with the Lohengrin spectrometer for fission study

    Directory of Open Access Journals (Sweden)

    Materna T.

    2013-03-01

    Full Text Available The accurate knowledge of the fission of actinides is necessary for studies of innovative nuclear reactor concepts. The fission yields have a direct influence on the evaluation of the fuel inventory or the reactor residual power after shutdown. A collaboration between the ILL, LPSC and CEA has developed a measurement program on fission fragment distributions at ILL in order to measure the isotopic and isomeric yields. The method is illustrated using the 233U(n,f98Y reaction. However, the extracted beam from the Lohengrin spectrometer is not isobaric ions which limits the low yield measurements. Presently, the coupling of the Lohengrin spectrometer with a Gas Filled Magnet (GFM is studied at the ILL in order to define and validate the enhanced purification of the extracted beam. This work will present the results of the spectrometer characterisation, along with a comparison with a dedicated Monte Carlo simulation especially developed for this purpose.

  1. Two neutron correlations in photo-fission

    Science.gov (United States)

    Dale, D. S.; Kosinov, O.; Forest, T.; Burggraf, J.; Stave, S.; Warren, G.; Starovoitova, V.

    2016-09-01

    A large body of experimental work has established the strong kinematical correlation between fission fragments and fission neutrons. Here, we report on the progress of investigations of the potential for strong two neutron correlations arising from the nearly back-to-back nature of the two fission fragments that emit these neutrons in the photo-fission process. In initial measurements, a pulsed electron linear accelerator was used to generate bremsstrahlung photons that impinged upon an actinide target, and the energy and opening angle distributions of coincident neutrons were measured using a large acceptance neutron detector array. A planned comprehensive set of measurements of two neutron correlations in the photo-fission of actinides is expected to shed light on several fundamental aspects of the fission process including the multiplicity distributions associated with the light and heavy fission fragments, the nuclear temperatures of the fission fragments, and the mass distribution of the fission fragments as a function of energy released. In addition to these measurements providing important nuclear data, the unique kinematics of fission and the resulting two neutron correlations have the potential to be the basis for a new tool to detect fissionable materials. A key technical challenge of this program arises from the need to perform coincidence measurements with a low duty factor, pulsed electron accelerator. This has motivated the construction of a large acceptance neutron detector array, and the development of data analysis techniques to directly measure uncorrelated two neutron backgrounds.

  2. Fission product behaviour in severe accidents

    International Nuclear Information System (INIS)

    The understanding of fission product (FP) behaviour in severe accidents is important for source term assessment and accident mitigation measures. For example in accident management the operator needs to know the effect of different actions on the behaviour and release of fission products. At VTT fission product behaviour have been studied in different national and international projects. In this presentation the results of projects in EU funded 4th framework programme Nuclear Fission Safety 1994-1998 are reported. The projects are: fission product vapour/aerosol chemistry in the primary circuit (FI4SCT960020), aerosol physics in containment (FI4SCT950016), revaporisation of test samples from Phebus fission products (FI4SCT960019) and assessment of models for fission product revaporisation (FI4SCT960044). Also results from the national project 'aerosol experiments in the Victoria facility' funded by IVO PE and VTT Energy are reported

  3. Fission dynamics at low excitation energy

    CERN Document Server

    Aritomo, Y

    2013-01-01

    The origin of mass asymmetry in the fission of uranium at a low excitation energy is clarified by a trajectory analysis of the Langevin equation. The positions of the peaks in the mass distribution of fission fragments are mainly determined by fission saddle points originating from the shell correction energy. The widths of the peaks, on the other hand, result from a shape fluctuation around the scission point caused by the random force in the Langevin equation. We found that a random vibration in the oblate direction of fissioning fragments is essential for the fission process. According to this picture, fission does not occur with continuous stretching in the prolate direction, similarly to that observed in starch syrup. This is expected to lead to a new viewpoint of fission dynamics and the splitting mechanism.

  4. Cosmology with Negative Absolute Temperatures

    CERN Document Server

    Vieira, J P P; Lewis, Antony

    2016-01-01

    Negative absolute temperatures (NAT) are an exotic thermodynamical consequence of quantum physics which has been known since the 1950's (having been achieved in the lab on a number of occasions). Recently, the work of Braun et al (2013) has rekindled interest in negative temperatures and hinted at a possibility of using NAT systems in the lab as dark energy analogues. This paper goes one step further, looking into the cosmological consequences of the existence of a NAT component in the Universe. NAT-dominated expanding Universes experience a borderline phantom expansion ($w<-1$) with no Big Rip, and their contracting counterparts are forced to bounce after the energy density becomes sufficiently large. Both scenarios might be used to solve horizon and flatness problems analogously to standard inflation and bouncing cosmologies. We discuss the difficulties in obtaining and ending a NAT-dominated epoch, and possible ways of obtaining density perturbations with an acceptable spectrum.

  5. Cosmology with negative absolute temperatures

    Science.gov (United States)

    Vieira, J. P. P.; Byrnes, Christian T.; Lewis, Antony

    2016-08-01

    Negative absolute temperatures (NAT) are an exotic thermodynamical consequence of quantum physics which has been known since the 1950's (having been achieved in the lab on a number of occasions). Recently, the work of Braun et al. [1] has rekindled interest in negative temperatures and hinted at a possibility of using NAT systems in the lab as dark energy analogues. This paper goes one step further, looking into the cosmological consequences of the existence of a NAT component in the Universe. NAT-dominated expanding Universes experience a borderline phantom expansion (w inflation and bouncing cosmologies. We discuss the difficulties in obtaining and ending a NAT-dominated epoch, and possible ways of obtaining density perturbations with an acceptable spectrum.

  6. Minor actinide fission induced by multi-nucleon transfer reaction in inverse kinematics

    Directory of Open Access Journals (Sweden)

    Taieb J.

    2010-03-01

    Full Text Available In the framework of nuclear waste incineration and design of new generation nuclear reactors, experimental data on fission probabilities and on fission fragment yields of minor actinides are crucial to design prototypes. Transfer-induced fission has proven to be an efficient method to study fission probabilities of actinides which cannot be investigated with standard techniques due to their high radioactivity. We report on the preliminary results of an experiment performed at GANIL that investigates fission probabilities with multi-nucleon transfer reactions in inverse kinematics between a 238U beam on a 12C target. Actinides from U to Cm were produced with an excitation energy range from 0 to 30 MeV. In addition, inverse kinematics allowed to characterize the fission fragments in mass and charge. A key point of the analysis resides in the identification of the actinides produced in the different transfer channels. The new annular telescope SPIDER was used to tag the target-like recoil nucleus of the transfer reaction and to determine the excitation energy of the actinide. The fission probability for each transfer channel is accessible and the preliminary results for 238U are promising.

  7. Cluster fission from the standpoint of nuclear fission

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sangmoo [Tsukuba Univ., Ibaraki (Japan). Inst. of Physics

    1996-03-01

    Atomic nucleus belongs to a quantal finite many body system. Nucleus shows great resemblance to cluster, above all metal cluster, although the strength of interaction is different. The works of Brechignac group, Saunder, Martin and P. Froeblich are explained by the critical size Nc as the central term. The differences between cluster and nucleus are investigated and a future view of cluster fission is explained. (S.Y.)

  8. Investigations of the mass and charge distribution of fission products from the 238U(n14,f) reaction by direct Ge(Li) method

    International Nuclear Information System (INIS)

    The fission yields can be measured by the well-known activation method if it is taken into account that the fission process results in 5-6 nuclides in an isobaric chain. The method which is based only on the gamma-spectrometric measurement of the irradiated fissioning sample is referred to as the direct Ge(Li) method for fission yield measurement. The thesis contains detailed description of the direct Ge(Li) method. The method was tested by the measurement of cumulative yields of 47 fission products and independent yields of 7 products in the reaction of 238U(n14,f). These are the members of 37 mass chains in the A=83-149 mass number region. The half-lives of the studied products are in the range of Tsub(1/2)=102-109 s; the gamma spectrometric method was improved by extending its applicability to the measurement of short-lived products. Applying short irradiation time (5 min) the yields of 16 fission products with half-lives shorter than 1 hour could be measured. The lowest measured partial fission cross sections (yields) are in the order of 1 mb (0.1%). The accuracy of the yield measured by the direct Ge(Li) method is as high as or higher than that obtained radiochemically, especially for the products measured by many intensive gamma lines. (author)

  9. Correlation of yield and yield components for afila and normal leave pea, Pissum sativum L.

    Directory of Open Access Journals (Sweden)

    Đorđević Radiša

    2004-01-01

    Full Text Available In order to research the correlation of yield and yield components of Afila and normal leaf Pea, we conducted a three years research (1993 - 1995. We have researched a correlative junction of yield and yield components (number of pods, number of grains per pod, number of grains per plant and the absolute grain weight of 8 Afila lines and 4 parent varieties. The results showed that the yield and yield components are highly related r - 0.82 - 0.95, while the absolute weight is not related to the yield r - 0, 19 and due to that it does not represent the yield component. The determined correlative values for all researched genotypes and parents were the same as previously researched by other authors, which leads us to the conclusion that the absence of leaves does not directly impact the change of correlative values.

  10. Measurement of Fission Cross-Sections for Neutrons of Energies in the Range 40-500 keV

    International Nuclear Information System (INIS)

    Measurements have been made of the fission cross-section of U233, U234 , U236, Np237, Pu239 and Pu241 at several neutron energies between 40 keV and 500 keV. Measurements in this energy range are of importance in reactor calculations especially in fast dilute systems where the neutron flux is high in the 10- 100-keV energy range. Recent measurements at this laboratory of the U235 fission cross-section gave absolute values slightly lower than previous data. The present series of measurements are made relative to the new values of the U235 fission cross-section using back-to-back ionization chambers. The fissile foils were assayed by α-assay, direct weighing and coulometry. Good agreement was obtained between these assays. The fission measurements have an estimated accuracy of between 1 % and.2% and,combined with the, error on the U235 fission cross-section,give a final error of about 3% in the fission cross-sections. The present results together with those of previous measurements are given, and the corrections for fission- fragment absorption, backgrounds and scattering are discussed. (author)

  11. Comparison of yield and decay data among JNDC2, ENDF/B-VI and JEF2.2

    Energy Technology Data Exchange (ETDEWEB)

    Oyamatsu, Kazuhiro; Sagisaka, Mitsuyuki; Miyazono, Toshimitsu [Nagoya Univ. (Japan)

    1997-03-01

    Fission yields and decay data for fission product summation calculations are compared among JNDC2 and ENDF/B-VI and JEF2.2. Special attention is paid to the summation calculation of the total delayed neutrons per fission because it requires the data of the most unstable nuclides among all fission products. The cumulative fission yields of delayed neutron precursors are found to be appreciably different among the libraries even though values of the independent fission yields and the total number of delayed neutrons are chosen to be in fair agreement with each other. This suggests that there still exist large uncertainties in delayed neutron emission probabilities (or decay chains) for the precursors far from the stability line. (author)

  12. Effect of shell structure on neutron multiplicity of fissioning systems 220,222,224Th nuclei

    Directory of Open Access Journals (Sweden)

    Goyal Savi

    2015-01-01

    Full Text Available The pre- and post-scission neutron multiplicities have been extracted for the 220,222,224Th nuclei for the excitation energy range of 40 MeV to 64 MeV using the National Array of Neutron Detectors (NAND. The Th isotopes are populated from the fusion reaction of 16O+204,206,208Pb systems in order to investigate the dynamics of fusion-fission reactions using the neutron multiplicity as a probe. The theoretical calculations were performed using the Bohr-Wheeler fission width as well as the dissipative dynamical fission width from Kramers prescription. It is observed that the Bohr-Wheeler fission width underestimates the pre-scission yields to a large extent. A large amount of dissipation is required in the Kramers width to fit the observed pre-scission neutron multiplicities.

  13. Sexual differentiation in fission yeast

    DEFF Research Database (Denmark)

    Egel, R; Nielsen, O; Weilguny, D;

    1990-01-01

    The regulation of sexual reproduction in yeast constitutes the highest level of differentiation observed in these unicellular organisms. The various ramifications of this system involve DNA rearrangement, transcriptional control, post-translational modification (such as protein phosphorylation......) and receptor/signal processing. A few basic similarities are common to both fission and budding yeasts. The wiring of the regulatory circuitry, however, varies considerably between these divergent yeast groups....

  14. Fission Data and Nuclear Technology

    International Nuclear Information System (INIS)

    Accurate nuclear data for fissile nuclei are required not only by reactor designers, but also by reactor physicists for the interpretation of integral experiments, e.g. studies of the change of reactivity with irradiation. Some of the requests that have been made for such fission data, and the reasons behind them, are discussed, along with the progress that has been made towards their fulfilment. An attempt is made to outline those areas where better data are required. (author)

  15. Yield stress determination of a physical gel

    DEFF Research Database (Denmark)

    Hvidt, Søren

    2013-01-01

    Pluronic F127 solutions form gels in water with high elastic moduli. Pluronic gels can, however, only withstand small deformations and stresses. Different steady shear and oscillatory methods traditionally used to determine yield stress values are compared. The results show that the yield stresses...... values of these gels depend on test type and measurement time, and no absolute yield stress value can be determined for these physical gels....

  16. Evaluation of fission cross sections and covariances for {sup 233}U, {sup 235}U, {sup 238}U, {sup 239}Pu, {sup 240}Pu, and {sup 241}Pu

    Energy Technology Data Exchange (ETDEWEB)

    Kawano, Toshihiko [Kyushu Univ., Fukuoka (Japan); Matsunobu, Hiroyuki [Data Engineering, Inc. (Japan); Murata, Toru [AITEL Corporation, Tokyo (JP)] [and others

    2000-02-01

    A simultaneous evaluation code SOK (Simultaneous evaluation on KALMAN) has been developed, which is a least-squares fitting program to absolute and relative measurements. The SOK code was employed to evaluate the fission cross sections of {sup 233}U, {sup 235}U, {sup 238}U, {sup 239}Pu, {sup 240}Pu, and {sup 241}Pu for the evaluated nuclear data library JENDL-3.3. Procedures of the simultaneous evaluation and the experimental database of the fission cross sections are described. The fission cross sections obtained were compared with evaluated values given in JENDL-3.2 and ENDF/B-VI. (author)

  17. Fission studies by prompt gamma-ray spectrometry

    Directory of Open Access Journals (Sweden)

    Materna T.

    2015-01-01

    Full Text Available The feasibility of retrieving accurate fission observables with a Ge-detector array around a fissile target placed in a cold neutron beam was tested. In three measurement campaigns performed at ILL with the EXILL setup, 235U and 241Pu targets were placed in the high flux cold neutron beam available at the PF1B neutron guide. Gamma-rays following fission were detected by an array of 16 Ge detectors. In the following study, part of data was analyzed as a proof of principle. A set of yields belonging to the Kr-Ba pair were extracted using a gamma-gamma coincidence technique. Preliminary results were compared to the predictions of two phenomenological models: GEF and FIFRELIN.

  18. Radiometric dating of sediments using fission tracks in conodonts

    Science.gov (United States)

    Sachs, H.M.; Denkinger, M.; Bennett, C.L.; Harris, A.G.

    1980-01-01

    Conodonts are microfossils which are commonly found in marine rocks of Cambrian to Triassic age. Although their biological affinities are difficult to assess, conodonts are valuable stratigraphical indices for much of their geological range1. Recent work has also established that conodont colour alteration indices (CAI) are useful guides to diagenetic temperatures and hence burial depth2. Fission tracks3 in conodonts allow measurement of uranium concentrations and estimates of 'age' to be made using isotopic methods4. We report here that fission tracks counted in irradiated, thermally unaltered (as indicated by CAI) middle Palaeozoic conodonts indicate typical uranium concentrations of ???1 part in 10 9, with some samples higher. A single specimen of Siphonodella from the Lower Mississippian yielded an age estimate of 380??140 Myr consistent with conventional interpolations. This method may also allow the unroofing of deeply buried sediments to be dated. ?? 1980 Nature Publishing Group.

  19. Prompt neutron spectrum of the spontaneous fission of californium-252

    International Nuclear Information System (INIS)

    The californium-252 spontaneous fission neutron spectrum was measured in the energy range of 0.01 to 10 MeV by the time-of-flight technique using various neutron detectors. The measurements of 252Cf neutron spectrum at energies of 0.01 to 5 MeV were performed as a function of fission fragment kinetic energy. The mean neutron spectrum energy in the range of 0.7 to 10 MeV was found from the results of measurements. The irregularity in the 252Cf neutron spectrum in the neutron energy range of less than 0.7 MeV compared to theoretical values is discussed. The mechanism of 252Cf neutron emission is also discussed on the basis of neutron yield angle measurements. 12 references

  20. Quantitative analysis of fission products by γ spectrography

    International Nuclear Information System (INIS)

    The activity of the fission products present in treated solutions of irradiated fuels is given as a function of the time of cooling and of the irradiation time. The variation of the ratio (144Ce + 144Pr activity)/ 137Cs activity) as a function of these same parameters is also given. From these results a method is deduced giving the 'age' of the solution analyzed. By γ-scintillation spectrography it was possible to estimate the following elements individually: 141Ce, 144Ce + 144Pr, 103Ru, 106Ru + 106Rh, 137Cs, 95Zr + 95Nb. Yield curves are given for the case of a single emitter. Of the various existing methods, that of the least squares was used for the quantitative analysis of the afore-mentioned fission products. The accuracy attained varies from 3 to 10%. (author)

  1. Measurement of mass yields from the 241Am(2nth,f reaction at the Lohengrin Spectrometer

    Directory of Open Access Journals (Sweden)

    Köster U.

    2013-03-01

    Full Text Available The study of fission yields has a major impact on the characterization and understanding of the fission process and is mandatory for reactor applications. While the yields are known for the major actinides (235U, 239Pu in the thermal neutron-induced fission, only few measurements have been performed on 242Am. The interest of 242Am concerns the reduction of radiotoxicity of 241Am in nuclear wastes using transmutation reactions. This paper presents the measurement of the fission mass yields from the reaction 241Am(2nth,f performed at the Lohengrin mass spectrometer (ILL, France for both the light and the heavy peaks: a total of 41 mass yields have been measured. The experiment was also meant to determine whether there is a difference in mass yields between the isomeric state and the ground state as it exists in fission and capture cross sections. The method used to address this question is based on a repeated measurement of a set of fission mass yields as a function of the ratio between the 242gAm and the 242mAm fission rates. The presented experiment is also a first step towards the measurement of the isotopic fission yields of 242Am.

  2. Nuclear charge and mass yields for $^{235}U(n_{th}, f)$

    CERN Document Server

    Clerc, H G; Schmidt, K H; Schrader, H; Wohlfarth, H

    1976-01-01

    The fission product mass spectrometer 'Lohengrin' has been used to determine the mass and nuclear charge yields of light fission products as a function of their kinetic energy in the range 88.5 MeVor=60 at high kinetic energy are tentatively explained by an oblate deformation of these nuclei at the scission point. (16 refs).

  3. Fission fusion hybrids- recent progress

    Science.gov (United States)

    Kotschenreuther, M.; Valanju, P.; Mahajan, S.; Covele, B.

    2012-03-01

    Fission-fusion hybrids enjoy unique advantages for addressing long standing societal acceptability issues of nuclear fission power, and can do this at a much lower level of technical development than a competitive fusion power plant- so it could be a nearer term application. For waste incineration, hybrids can burn intransigent transuranic residues (with the long lived biohazard) from light water reactors (LWRs) with far fewer hybrid reactors than a comparable system within the realm of fission alone. For fuel production, hybrids can produce fuel for ˜4 times as many LWRs with NO fuel reprocessing. For both waste incineration or fuel production, the most severe kind of nuclear accident- runaway criticality- can be excluded, unlike either fast reactors or typical accelerator based reactors. The proliferation risks for hybrid fuel production are, we strongly believe, far less than any other fuel production method, including today's gas centrifuges. US Thorium reserves could supply the entire US electricity supply for centuries. The centerpiece of the fuel cycle is a high power density Compact Fusion Neutron Source (major+minor radius ˜ 2.5-3.5 m), which is made feasible by the super-X divertor.

  4. Technical Application of Nuclear Fission

    Science.gov (United States)

    Denschlag, J. O.

    The chapter is devoted to the practical application of the fission process, mainly in nuclear reactors. After a historical discussion covering the natural reactors at Oklo and the first attempts to build artificial reactors, the fundamental principles of chain reactions are discussed. In this context chain reactions with fast and thermal neutrons are covered as well as the process of neutron moderation. Criticality concepts (fission factor η, criticality factor k) are discussed as well as reactor kinetics and the role of delayed neutrons. Examples of specific nuclear reactor types are presented briefly: research reactors (TRIGA and ILL High Flux Reactor), and some reactor types used to drive nuclear power stations (pressurized water reactor [PWR], boiling water reactor [BWR], Reaktor Bolshoi Moshchnosti Kanalny [RBMK], fast breeder reactor [FBR]). The new concept of the accelerator-driven systems (ADS) is presented. The principle of fission weapons is outlined. Finally, the nuclear fuel cycle is briefly covered from mining, chemical isolation of the fuel and preparation of the fuel elements to reprocessing the spent fuel and conditioning for deposit in a final repository.

  5. Fission multipliers for D-D/D-T neutron generators

    International Nuclear Information System (INIS)

    A compact D-D/D-T fusion based neutron generator is being designed at the Lawrence Berkeley National Laboratory to have a potential yield of 1012 D-D n/s and 1014 D-T n/s. Because of its high neutron yield and compact size (∼20 cm in diameter by 4 cm long), this neutron generator design will be suitable for many applications. However, some applications required higher flux available from nuclear reactors and spallation neutron sources operated with GeV proton beams. In this study, a subcritical fission multiplier with keff of 0.98 is coupled with the compact neutron generators in order to increase the neutron flux output. We have chosen two applications to show the gain in flux due to the use of fission multipliers--in-core irradiation and out-of-core irradiation. For the in-core irradiation, we have shown that a gain of ∼25 can be achieved in a positron production system using D-T generator. For the out-of-core irradiation, a gain of ∼17 times is obtained in Boron Neutron Capture Therapy (BNCT) using a D-D neutron generator. The total number of fission neutrons generated by a source neutron in a fission multiplier with keff is ∼50. For the out-of-core irradiation, the theoretical maximum net multiplication is ∼30 due to the absorption of neutrons in the fuel. A discussion of the achievable multiplication and the theoretical multiplication will be presented in this paper

  6. The method of correction of irradiation history in burn-up determination using fission product cesium-137, cerium-144, and neodymium-148 as monitors

    International Nuclear Information System (INIS)

    In this paper, for cesium-137, cerium-144 and neodymium-148 nuclids the average yield, the quantity of correction for (n, γ) reaction, the quantity of correction for radioactive decay in reactor and the average fission energy of fissionable nuclide were calculated. The result improved precision of parameter and gave quite well value of burn-up

  7. Measurement of the absolute speed is possible?

    OpenAIRE

    Sergey V. Shevchenko; Tokarevsky, Vladimir V.

    2016-01-01

    One of popular problems, which  are experimentally studied in physics in a long time, is the testing of the special relativity theory, first of all – measurements of isotropy and constancy of light speed; as well as attempts to determine so called “absolute speed”, i.e. the Earth speed in the absolute spacetime (absolute reference frame), if this spacetime (ARF) exists.  Corresponding experiments aimed at the measuring of proper speed of some reference frame in oth...

  8. Yield-Energy Dependence for 147Nd and 144Ce Under Strong Neutron Field

    Institute of Scientific and Technical Information of China (English)

    QIAN; Jing; LIU; Ting-jin; SUN; Zheng-jun; SHU; Neng-chuan

    2012-01-01

    <正>The data of the fission product yield play an important role in the nuclear science technology and nuclear engineering because they are the key data in the calculation of the decay heat, shield design, nuclear verification, radiochemistry reprocessing and nuclear safety, etc. Especially, it is the essential data in fission power estimation for a fission device. It is well known that there exists a consecutive neutron spectrum with the energy from 1 keV to 15 MeV for a fission-fusion device. So in order to estimate the

  9. Radiochemical studies on nuclear fission at Trombay

    Indian Academy of Sciences (India)

    Asok Goswami

    2015-08-01

    Since the discovery of nuclear fission in the year 1939, both physical and radiochemical techniques have been adopted for the study of various aspects of the phenomenon. Due to the ability to separate individual elements from a complex reaction mixture with a high degree of sensitivity and selectivity, a chemist plays a significant role in the measurements of mass, charge, kinetic energy, angular momentum and angular distribution of fission products in various fissioning systems. At Trombay, a small group of radiochemists initiated the work on radiochemical studies of mass distribution in the early sixties. Since then, radiochemical investigations on various fission observables have been carried out at Trombay in , , and heavy-ion-induced fissions. An attempt has been made to highlight the important findings of such studies in this paper, with an emphasis on medium energy and heavy-ion-induced fission.

  10. Collective spectra along the fission barrier

    Directory of Open Access Journals (Sweden)

    Pigni M. T.

    2012-12-01

    Full Text Available Discrete and continuous spectra of fissioning nuclei at the humps of fission barriers (Bohr transition states and in the intermediate wells (superdeformed and hyperdeformed states play a key role in the calculation of fission cross sections. A theoretical evaluation of the collective parts of the spectra is possible within the framework of the dinuclear system model, which treats the wave function of the fissioning nucleus as a superposition of a mononucleus configuration and two–cluster configurations in a dynamical way, permitting exchange of upper–shell nucleons between clusters. The impact of theoretical spectra on neutron–induced fission cross sections and, in combination with an improved version of the scission–point model, on angular distribution of fission fragments is evaluated for plutonium isotopes of interest to nuclear energy applications.

  11. International conference on fifty years research in nuclear fission

    International Nuclear Information System (INIS)

    These proceedings contain extended abstracts of the papers presented at the named conference. They deal with static properties of fission, instrumentation for fission studies, fission in compound-nucleus reactions, fission dynamics, fission-like heavy ion reactions, and fusion reactions. See hints under the relevant topics. (HSI)

  12. Fission dynamics within time-dependent Hartree-Fock: deformation-induced fission

    CERN Document Server

    Goddard, P M; Rios, A

    2015-01-01

    Background: Nuclear fission is a complex large-amplitude collective decay mode in heavy nuclei. Microscopic density functional studies of fission have previously concentrated on adiabatic approaches based on constrained static calculations ignoring dynamical excitations of the fissioning nucleus, and the daughter products. Purpose: To explore the ability of dynamic mean-field methods to describe fast fission processes beyond the fission barrier, using the nuclide $^{240}$Pu as an example. Methods: Time-dependent Hartree-Fock calculations based on the Skyrme interaction are used to calculate non-adiabatic fission paths, beginning from static constrained Hartree-Fock calculations. The properties of the dynamic states are interpreted in terms of the nature of their collective motion. Fission product properties are compared to data. Results: Parent nuclei constrained to begin dynamic evolution with a deformation less than the fission barrier exhibit giant-resonance-type behaviour. Those beginning just beyond the ...

  13. Comparative evaluation of solar, fission, fusion, and fossil energy resources. Part 2: Power from nuclear fission

    Science.gov (United States)

    Clement, J. D.

    1973-01-01

    Different types of nuclear fission reactors and fissionable materials are compared. Special emphasis is placed upon the environmental impact of such reactors. Graphs and charts comparing reactor facilities in the U. S. are presented.

  14. Absolute photoionization cross-section of the propargyl radical

    Energy Technology Data Exchange (ETDEWEB)

    Savee, John D.; Welz, Oliver; Taatjes, Craig A.; Osborn, David L. [Sandia National Laboratories, Combustion Research Facility, Livermore, California 94551 (United States); Soorkia, Satchin [Institut des Sciences Moleculaires d' Orsay, Universite Paris-Sud 11, Orsay (France); Selby, Talitha M. [Department of Chemistry, University of Wisconsin, Washington County Campus, West Bend, Wisconsin 53095 (United States)

    2012-04-07

    Using synchrotron-generated vacuum-ultraviolet radiation and multiplexed time-resolved photoionization mass spectrometry we have measured the absolute photoionization cross-section for the propargyl (C{sub 3}H{sub 3}) radical, {sigma}{sub propargyl}{sup ion}(E), relative to the known absolute cross-section of the methyl (CH{sub 3}) radical. We generated a stoichiometric 1:1 ratio of C{sub 3}H{sub 3} : CH{sub 3} from 193 nm photolysis of two different C{sub 4}H{sub 6} isomers (1-butyne and 1,3-butadiene). Photolysis of 1-butyne yielded values of {sigma}{sub propargyl}{sup ion}(10.213 eV)=(26.1{+-}4.2) Mb and {sigma}{sub propargyl}{sup ion}(10.413 eV)=(23.4{+-}3.2) Mb, whereas photolysis of 1,3-butadiene yielded values of {sigma}{sub propargyl}{sup ion}(10.213 eV)=(23.6{+-}3.6) Mb and {sigma}{sub propargyl}{sup ion}(10.413 eV)=(25.1{+-}3.5) Mb. These measurements place our relative photoionization cross-section spectrum for propargyl on an absolute scale between 8.6 and 10.5 eV. The cross-section derived from our results is approximately a factor of three larger than previous determinations.

  15. Use of intensity quotients and differences in absolute structure refinement

    International Nuclear Information System (INIS)

    Differences and quotients can be defined using Friedel pairs of reflections and applied in refinement to enable absolute structure to be determined precisely even for light atom crystal structures. Several methods for absolute structure refinement were tested using single-crystal X-ray diffraction data collected using Cu Kα radiation for 23 crystals with no element heavier than oxygen: conventional refinement using an inversion twin model, estimation using intensity quotients in SHELXL2012, estimation using Bayesian methods in PLATON, estimation using restraints consisting of numerical intensity differences in CRYSTALS and estimation using differences and quotients in TOPAS-Academic where both quantities were coded in terms of other structural parameters and implemented as restraints. The conventional refinement approach yielded accurate values of the Flack parameter, but with standard uncertainties ranging from 0.15 to 0.77. The other methods also yielded accurate values of the Flack parameter, but with much higher precision. Absolute structure was established in all cases, even for a hydrocarbon. The procedures in which restraints are coded explicitly in terms of other structural parameters enable the Flack parameter to correlate with these other parameters, so that it is determined along with those parameters during refinement

  16. Fission-product retention in HTGR fuels

    Energy Technology Data Exchange (ETDEWEB)

    Homan, F.J.; Kania, M.J.; Tiegs, T.N.

    1982-01-01

    Retention data for gaseous and metallic fission products are presented for both Triso-coated and Biso-coated HTGR fuel particles. Performance trends are established that relate fission product retention to operating parameters, such as temperature, burnup, and neutron exposure. It is concluded that Biso-coated particles are not adequately retentive of fission gas or metallic cesium, and Triso-coated particles which retain cesium still lose silver. Design implications related to these performance trends are identified and discussed.

  17. Rapid Separation of Fission Product 141La

    Institute of Scientific and Technical Information of China (English)

    XIA; Wen; YE; Hong-sheng; LIN; Min; CHEN; Ke-sheng; XU; Li-jun; ZHANG; Wei-dong; CHEN; Yi-zhen

    2013-01-01

    141La was separated and purified from fission products in this work for physical measurements aimed at improving the accuracy of its decay parameters.As the impact of 142La and other fission products,cesium(141Cs,142Cs included)was rapid separated from the fission products,141Cs and 142Ba separation was prepared after a cooling time about 25 s when 142Cs decays to daughter 142Ba,141La purification then

  18. Measurements of Fission Cross Sections of Actinides

    CERN Multimedia

    Wiescher, M; Cox, J; Dahlfors, M

    2002-01-01

    A measurement of the neutron induced fission cross sections of $^{237}$Np, $^{241},{243}$Am and of $^{245}$Cm is proposed for the n_TOF neutron beam. Two sets of fission detectors will be used: one based on PPAC counters and another based on a fast ionization chamber (FIC). A total of 5x10$^{18}$ protons are requested for the entire fission measurement campaign.

  19. Fission product retention in HTGR fuels

    International Nuclear Information System (INIS)

    Retention data for gaseous and metallic fission products are presented for both Triso-coated and Biso-coated HTGR fuel particles. Performance trends are established that relate fission product retention to operating parameters, such as temperature, burnup, and neutron exposure. It is concluded that Biso-coated particles are not adequately retentive of fission gas or metallic cesium, and Triso-coated particles which retain cesium still lose silver. Design implications related to these performance trends are identified and discussed

  20. Mechanisms of Mitochondrial Fission and Fusion

    OpenAIRE

    van der Bliek, Alexander M.; Shen, Qinfang; Kawajiri, Sumihiro

    2013-01-01

    Mitochondria continually change shape through the combined actions of fission, fusion, and movement along cytoskeletal tracks. The lengths of mitochondria and the degree to which they form closed networks are determined by the balance between fission and fusion rates. These rates are influenced by metabolic and pathogenic conditions inside mitochondria and by their cellular environment. Fission and fusion are important for growth, for mitochondrial redistribution, and for maintenance of a hea...

  1. Fission barriers and half-lives

    International Nuclear Information System (INIS)

    The authors briefly review the development of theoretical models for the calculation of fission barriers and half-lives. They focus on how results of actual calculations in a unified macroscopic-microscopic approach provide an interpretation of the mechanisms behind some of the large number of phenomena observed in fission. As instructive examples they choose studies of the rapidly varying fission properties of elements at the end of the periodic system

  2. Fission Product Decay Heat Calculations for Neutron Fission of 232Th

    Science.gov (United States)

    Son, P. N.; Hai, N. X.

    2016-06-01

    Precise information on the decay heat from fission products following times after a fission reaction is necessary for safety designs and operations of nuclear-power reactors, fuel storage, transport flasks, and for spent fuel management and processing. In this study, the timing distributions of fission products' concentrations and their integrated decay heat as function of time following a fast neutron fission reaction of 232Th were exactly calculated by the numerical method with using the DHP code.

  3. Fission properties for r-process nuclei

    OpenAIRE

    Erler, J.; Langanke, K; Loens, H. P.; Martínez-Pinedo, G.; Reinhard, P.-G.

    2011-01-01

    We present a systematics of fission barriers and fission lifetimes for the whole landscape of super-heavy elements (SHE), i.e. nuclei with Z>100. The fission lifetimes are also compared with the alpha-decay half-lives. The survey is based on a self-consistent description in terms of the Skyrme-Hartree-Fock (SHF) approach. Results for various different SHF parameterizations are compared to explore the robustness of the predictions. The fission path is computed by quadrupole constrained SHF. Th...

  4. Effect of nuclear viscosity on fission process

    Energy Technology Data Exchange (ETDEWEB)

    Li Shidong; Kuang Huishun; Zhang Shufa; Xing Jingru; Zhuo Yizhong; Wu Xizhen; Feng Renfa

    1989-02-01

    According to the fission diffusion model, the deformation motion of fission nucleuses is regarded as a diffusion process of quasi-Brownian particles under fission potential. Through simulating such Brownian motion in two dimensional phase space by Monte-Carlo mehtod, the effect of nuclear visocity on Brownian particle diffusion is studied. Dynamical quanties, such as fission rate, kinetic energy distribution on scission, and soon are numerically calculated for various viscosity coefficients. The results are resonable in physics. This method can be easily extended to deal with multi-dimensional diffusion problems.

  5. Some aspects of fission and quasifission processes

    Indian Academy of Sciences (India)

    B B Back

    2015-08-01

    The discovery of nuclear fission in 1938–1939 had a profound influence on the field of nuclear physics and it brought this branch of physics into the forefront as it was recognized for having the potential for its seminal influence on modern society. Although many of the basic features of actinide fission were described in a ground-breaking paper by Bohr and Wheeler only six months after the discovery, the fission process is very complex and it has been a challenge for both experimentalists and theorists to achieve a complete and satisfactory understanding of this phenomenon. Many aspects of nuclear physics are involved in fission and it continues to be a subject of intense study even three quarters of a century after its discovery. In this talk, I will review an incomplete subset of the major milestones in fission research, and briefly discuss some of the topics that I have been involved in during my career. These include studies of vibrational resonances and fission isomers that are caused by the second minimum in the fission barrier in actinide nuclei, studies of heavy-ion-induced fission in terms of the angular distributions and the mass–angle correlations of fission fragments. Some of these studies provided evidence for the importance of the quasifission process and the attendant suppression of the complete fusion process. Finally, some of the circumstances around the establishment of large-scale nuclear research in India will be discussed.

  6. Theoretical Description of the Fission Process

    Energy Technology Data Exchange (ETDEWEB)

    Witold Nazarewicz

    2003-07-01

    The main goals of the project can be summarized as follows: Development of effective energy functionals that are appropriate for the description of heavy nuclei. Our goal is to improve the existing energy density (Skyrme) functionals to develop a force that will be used in calculations of fission dynamics. Systematic self-consistent calculations of binding energies and fission barriers of actinide and trans-actinide nuclei using modern density functionals. This will be followed by calculations of spontaneous fission lifetimes and mass and charge divisions using dynamic adiabatic approaches based on the WKB approximation. Investigate novel microscopic (non-adiabatic) methods to study the fission process.

  7. Correction due to finite speed of light in absolute gravimeters

    CERN Document Server

    Nagornyi, V D; Zanimonskiy, Y Y

    2010-01-01

    Correction due to finite speed of light is among the most inconsistent ones in absolute gravimetry. Formulas reported by different authors yield corrections scattered up to 8 $\\mu$Gal with no obvious reasons. The problem, though noted before, has never been studied, and nowadays the correction is rather postulated than rigorously proven. In this paper we investigate the problem from several prospectives, find the corrections for different types of absolute gravimeters, and establish relationships between different ways of implement them. The obtained results enabled us to analyze and understand the discrepancies in the results of other authors. We found that the correction derived from the Doppler effect is accountable only for $\\tfrac{2}{3}$ of the total correction due to finite speed of light, if no signal delays are considered. Another major source of inconsistency was found in the tacit use of simplified trajectory models.

  8. From Hubble's Next Generation Spectral Library (NGSL) to Absolute Fluxes

    Science.gov (United States)

    Heap, S. R.; Lindler, D.

    2016-05-01

    Hubble's Next Generation Spectral Library (NGSL) consists of R˜1000 spectra of 374 stars of assorted temperature, gravity, and metallicity. Each spectrum covers the wavelength range, 0.18–1.03 μ. The library can be viewed and/or downloaded from the website, http://archive.stsci.edu/prepds/stisngsl/. Stars in the NGSL are now being used as absolute flux standards at ground-based observatories. However, the uncertainty in the absolute flux is about 2%, which does not meet the requirements of dark-energy surveys. We have therefore developed an observing procedure, data-reduction procedure, and correction algorithms that should yield fluxes with uncertainties less than 1%.

  9. Coulex fission of 234U, 235U, 237Np, and 238Np studied within the SOFIA experimental program

    International Nuclear Information System (INIS)

    SOFIA (Studies On FIssion with Aladin) is an experimental project which aims at systematically measuring the fission fragments' isotopic yields as well as their total kinetic energy, for a wide variety of fissioning nuclei. The PhD work presented in this dissertation takes part in the SOFIA project, and covers the fission of nuclei in the region of the actinides: 234U, 235U, 237Np and 238Np. The experiment is led at the heavy-ion accelerator GSI in Darmstadt, Germany. This facility provides intense relativistic primary beam of 238U. A fragmentation reaction of the primary beam permits to create a secondary beam of radioactive ions, some of which the fission is studied. The ions of the secondary beam are sorted and identified through the FR-S (Fragment Separator), a high resolution recoil spectrometer which is tuned to select the ions of interest.The selected - fissile - ions then fly further to Cave-C, an experimental area where the fission experiment itself takes place. At the entrance of the cave, the secondary beam is excited by Coulomb interaction when flying through an target; the de-excitation process involves low-energy fission. Both fission fragments fly forward in the laboratory frame, due to the relativistic boost inferred from the fissioning nucleus.A complete recoil spectrometer has been designed and built by the SOFIA collaboration in the path of the fission fragments, around the existing ALADIN magnet. The identification of the fragments is performed by means of energy loss, time of flight and deviation in the magnet measurements. Both fission fragments are fully (in mass and charge) and simultaneously identified.This document reports on the analysis performed for (1) the identification of the fissioning system, (2) the identification of both fission fragments, on an event-by-event basis, and (3) the extraction of fission observables: yields, TKE, total prompt neutron multiplicity. These results, concerning the actinides, are discussed, and the

  10. Feasibility study of new microscopic fission chambers dedicated for Ads

    International Nuclear Information System (INIS)

    In the frame of the MEGAPIE project we propose to measure the neutron flux inside the molten 1 MW Pb-Bi target at PSI (Switzerland). For this purpose a new type of microscopic fission chambers, developed for on-line measurements of the actinide incineration rates in the high neutron fluxes, will be placed in the central rod of the Pb-Bi target to determine both thermal and fast components of the neutron spectra. In addition to the neutron flux measurements in absolute value, both - time and space dependent variations - of it will be monitored on-line with a precision better than 10%. In this work we show that these measurements are feasible. (author)

  11. Research on the determination of 235U fission number by delayed γ-rays absorbed dose rates

    International Nuclear Information System (INIS)

    Background: The determination method of 235U fission number by detecting fission products using HPGe detector has been established before. But in some special cases, we need to get the fission number in-time in high intensity radiation environment. HPGe detector has its limitation due to the complex y spectrum accompany with high flux. Purpose: To get rid of the limitation mentioned above, a new method is introduced by detecting the delayed γ-rays absorbed dose rates. Methods: By using independent fission yield together with radioactive decay dates from CENDL 3.0 and ENDF BVII.1, dynamic calculation for total absorbed dose rate in air 1 meter from the source whose compositions were thermal neutron-induced fission products of 235U has been done. Results: A set of absorbed dose rate data of 235U fission products irradiated through fast rabbit irradiation system on Xi'an pulse reactor was recorded. The deviation of the fission neutron number between method by γ-rays absorbed dose rates and method by HPGe detector is 7%. Conclusion: It's feasible to determine the fission neutron number of 235U using delayed γ-rays absorbed dose rates in a high intensity radiated environment. (authors)

  12. Inequalities, Absolute Value, and Logical Connectives.

    Science.gov (United States)

    Parish, Charles R.

    1992-01-01

    Presents an approach to the concept of absolute value that alleviates students' problems with the traditional definition and the use of logical connectives in solving related problems. Uses a model that maps numbers from a horizontal number line to a vertical ray originating from the origin. Provides examples solving absolute value equations and…

  13. Absolute Income, Relative Income, and Happiness

    Science.gov (United States)

    Ball, Richard; Chernova, Kateryna

    2008-01-01

    This paper uses data from the World Values Survey to investigate how an individual's self-reported happiness is related to (i) the level of her income in absolute terms, and (ii) the level of her income relative to other people in her country. The main findings are that (i) both absolute and relative income are positively and significantly…

  14. Investigating Absolute Value: A Real World Application

    Science.gov (United States)

    Kidd, Margaret; Pagni, David

    2009-01-01

    Making connections between various representations is important in mathematics. In this article, the authors discuss the numeric, algebraic, and graphical representations of sums of absolute values of linear functions. The initial explanations are accessible to all students who have experience graphing and who understand that absolute value simply…

  15. Monolithically integrated absolute frequency comb laser system

    Energy Technology Data Exchange (ETDEWEB)

    Wanke, Michael C.

    2016-07-12

    Rather than down-convert optical frequencies, a QCL laser system directly generates a THz frequency comb in a compact monolithically integrated chip that can be locked to an absolute frequency without the need of a frequency-comb synthesizer. The monolithic, absolute frequency comb can provide a THz frequency reference and tool for high-resolution broad band spectroscopy.

  16. Spectroscopy of heavy fissionable nuclei

    Indian Academy of Sciences (India)

    S K Tandel

    2015-09-01

    Structural studies of heavy nuclei are quite challenging due to increased competition from fission, particularly at high spins. Nuclei in the actinide region exhibit a variety of interesting phenomena. Recent advances in instrumentation and analysis techniques have made feasible sensitive measurements of nuclei populated with quite low cross-sections. These include isomers and rotational band structures in isotopes of Pu ( = 94) to Rf ( = 104), and octupole correlations in the Th ( = 90) region. The obtained experimental data have provided insights on various aspects like moments of inertia and nucleon alignments at high spins, quasiparticle energies and evolution of quadrupole and octupole collectivity, among others. An overview of some of these results is presented.

  17. Spectroscopy of neutron rich nuclei using cold neutron induced fission of actinide targets at the ILL: The EXILL campaign

    Directory of Open Access Journals (Sweden)

    Blanc A.

    2013-12-01

    Full Text Available One way to explore exotic nuclei is to study their structure by performing γ-ray spectroscopy. At the ILL, we exploit a high neutron flux reactor to induce the cold fission of actinide targets. In this process, fission products that cannot be accessed using standard spontaneous fission sources are produced with a yield allowing their detailed study using high resolution γ-ray spectroscopy. This is what was pursued at the ILL with the EXILL (for EXOGAM at the ILL campaign. In the present work, the EXILL setup and performance will be presented.

  18. Mass spectrometric study of the release of volatile fission products from irradiated LWR fuel

    International Nuclear Information System (INIS)

    The objective of these studies is to experimentally determine the chemical form and the rate of release of volatile fission product species from defected irradiated LWR reactor fuel pins. After release from the defected fuel pin the gaseous species immediately enters the ionizer of a quadrupole mass spectrometer thus ensuring that their chemical form is not likely to be changed prior to identification and measurement. These studies differ from prior studies in that: (1) the chemical form of the volatile fission products will be determined; and (2) the detection and measurement method does not depend on the radioactivity of the fission product element. Information on the chemical form of the released fission product species will enable a more accurate description of their transport and reaction in the primary system. These studies are also expected to yield information on the reaction of fission products after release from the fuel oxide with the zircaloy cladding. The results of these studies are expected to increase the understanding of the first step in the release of fission products by irradiated fuel and therefore help in the accurate prediction of source terms

  19. Multi-modal fission in collinear ternary cluster decay of 252Cf(sf, fff

    Directory of Open Access Journals (Sweden)

    W. von Oertzen

    2015-06-01

    Full Text Available We discuss the multiple decay modes of collinear fission in 252Cf(sf, fff, with three fragments as suggested by the potential energy surface (PES. Fission as a statistical decay is governed by the phase space of the different decay channels, which are suggested in the PES-landscape. The population of the fission modes is determined by the minima in the PES at the scission points and on the internal potential barriers. The ternary collinear decay proceeds as a sequential process, in two steps. The originally observed ternary decay of 252Cf(sf into three different masses (e.g. 132–140Sn, 52–48Ca, 68–72Ni, observed by the FOBOS group in the FLNR (Flerov Laboratory for Nuclear Reactions of the JINR (Dubna the collinear cluster tripartition (CCT, is one of the ternary fission modes. This kind of “true ternary fission” of heavy nuclei has often been predicted in theoretical works during the last decades. In the present note we discuss different ternary fission modes in the same system. The PES shows pronounced minima, which correspond to several modes of ternary fragmentations. These decays have very similar dynamical features as the previously observed CCT-decays. The data obtained in the experiments on CCT allow us to extract the yields for different decay modes using specific gates on the measured parameters, and to establish multiple modes of the ternary fission decay.

  20. Fission and spallation data evaluation using induced-activity method

    CERN Document Server

    Karapetyan, G S

    2015-01-01

    The induced-activity investigations in off-line analysis performed in different experiments, concerning pre-actinide and actinide nuclei, are here presented and discussed. Generalized expressions for the determination of independent yields/cross sections of radioactive nuclei, formed in the targets, are derived and analysed. The fragment mass distribution from U-238, Th-232 and Ta-181 photofission at the bremsstrahlung end-point energies of 50 and 3500 MeV, and from Am-241, U-238 and Np-237 fission induced by 660-MeV protons, are scrutinized from the point of view of the multimodal fission approach. The results of these studies are hence compared with theoretical model calculations using the CRISP code. We subsequently discuss the complex particle-induced reaction, such as heavy-ions and deuterons, by using the thick-target thick-catcher technique and the two-step vector model framework as well. This is accomplished in order to present the investigation of the main processes (fission, spallation and (multi)fr...

  1. Uncertainties in fission-product decay-heat calculations

    Energy Technology Data Exchange (ETDEWEB)

    Oyamatsu, K.; Ohta, H.; Miyazono, T.; Tasaka, K. [Nagoya Univ. (Japan)

    1997-03-01

    The present precision of the aggregate decay heat calculations is studied quantitatively for 50 fissioning systems. In this evaluation, nuclear data and their uncertainty data are taken from ENDF/B-VI nuclear data library and those which are not available in this library are supplemented by a theoretical consideration. An approximate method is proposed to simplify the evaluation of the uncertainties in the aggregate decay heat calculations so that we can point out easily nuclei which cause large uncertainties in the calculated decay heat values. In this paper, we attempt to clarify the justification of the approximation which was not very clear at the early stage of the study. We find that the aggregate decay heat uncertainties for minor actinides such as Am and Cm isotopes are 3-5 times as large as those for {sup 235}U and {sup 239}Pu. The recommended values by Atomic Energy Society of Japan (AESJ) were given for 3 major fissioning systems, {sup 235}U(t), {sup 239}Pu(t) and {sup 238}U(f). The present results are consistent with the AESJ values for these systems although the two evaluations used different nuclear data libraries and approximations. Therefore, the present results can also be considered to supplement the uncertainty values for the remaining 17 fissioning systems in JNDC2, which were not treated in the AESJ evaluation. Furthermore, we attempt to list nuclear data which cause large uncertainties in decay heat calculations for the future revision of decay and yield data libraries. (author)

  2. Isoscaling of the Fission Fragments with Langevin Equation

    Institute of Scientific and Technical Information of China (English)

    WANG Kun; TIAN Wen-Dong; ZHONG Chen; ZHOU Xing-Fei; MA Yu-Gang; WEI Yi-Bin; CAI Xiang-Zhou; CHEN Jin-Gen; FANG De-Qing; GUO Wei; MA Guo-Liang; SHEN Wen-Qing

    2005-01-01

    @@ The Langevin equation is used to simulate the fission process of 112Sn + 112Sn and 116Sn + 116Sn. The mass distribution of the fission fragments are given by assuming the process of symmetric fission or asymmetric fission with the Gaussian probability sampling. The isoscaling behaviour has been observed from the analysis of fission fragments of both the reactions, and the isoscaling parameter α seems to be sensitive to the width of fission probability and the beam energy.

  3. Isoscaling of the Fission Fragments with Langevin Equation

    OpenAIRE

    Wang, K.; Ma, Y. G.; Wei, Y. B.; Cai, X. Z.; Chen, J. G.; Fang, D Q; Guo, W; Ma, G. L.; Shen, W.Q.(Shanghai Institute of Applied Physics, Shanghai, 201800, China); Tian, W.D.; Zhong, C.; Zhou, X. F.

    2004-01-01

    Langevin equation is used to simulate the fission process of $^{112}$Sn + $^{112}$Sn and $^{116}$Sn + $^{116}$Sn. The mass distribution of the fission fragments are given by assuming the process of symmetric fission or asymmetric fission with the Gaussian probability sampling. Isoscaling behavior has been observed from the analysis of fission fragments of both reactions and the isoscaling parameter $\\alpha$ seems to be sensitive to the width of fission probability and the beam energy.

  4. Fission

    International Nuclear Information System (INIS)

    Progress is reported in the areas of radiation physics; radiation dosimetry and radiation biophysics; microdosimetry of internal sources; dosimetry of internal emitters; real-time measurement of Pu in air at below-MPC levels; analytical techniques for measurement of 99Tc in environmental samples; and radiation instrumentation--radiological chemistry

  5. Nuclear Power from Fission Reactors. An Introduction.

    Science.gov (United States)

    Department of Energy, Washington, DC. Technical Information Center.

    The purpose of this booklet is to provide a basic understanding of nuclear fission energy and different fission reaction concepts. Topics discussed are: energy use and production, current uses of fuels, oil and gas consumption, alternative energy sources, fossil fuel plants, nuclear plants, boiling water and pressurized water reactors, the light…

  6. Prompt fission neutron spectrum of actinides

    Energy Technology Data Exchange (ETDEWEB)

    Capote, R. [International Atomic Energy Agency, Vienna (Austria); Chen, Y. -J. [China Institute of Atomic Energy, Beijing (China); Hambsch, F. J. [European Commission, Joint Research Centre - IRRM, Geel (Belgium); Jurado, B. [CENBG, CNRS/IN2P3, Gradignan (France); Kornilov, N. [Ohio Univ., Athens, OH (United States); Lestone, J. P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Litaize, O. [CEA, DEN, DER, SPRC, Saint-Paul-Lez-Durance (France); Morillon, B. [CEA, DAM, DIF, Arpajon (France); Neudecker, D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Oberstedt, S. [European Commission, Joint Research Centre - IRRM, Geel (Belgium); Ohsawa, T. [Kinki Univ., Osaka-fu (Japan); Otuka, N. [International Atomic Energy Agency, Vienna (Austria); Pronyaev, V. G. [Institute of Physics and Power Engineering, Obninsk (Russian Federation); Saxena, A. [Bhabha Atomic Research Centre, Mumbai (India); Schmidt, K. H. [CENBG, CNRS/IN2P3, Gradignan (France); Serot, O. [CEA, DEN, DER, SPRC, Saint-Paul-Lez-Durance (France); Shcherbakov, O. A. [Petersburg Nuclear Physics Institute of NRC " Kurchatov Institute" , Gatchina (Russian Federation); Shu, N. -C. [China Institute of Atomic Energy, Beijing (China); Smith, D. L. [Argonne National Lab. (ANL), Argonne, IL (United States); Talou, P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Trkov, A. [International Atomic Energy Agency, Vienna (Austria); Tudora, A. C. [Univ. of Bucharest, Magurele (Romania); Vogt, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Univ. of California, Davis, CA (United States); Vorobyev, A. S. [Petersburg Nuclear Physics Institute of NRC " Kurchatov Institute" , Gatchina (Russian Federation)

    2016-01-06

    Here, the energy spectrum of prompt neutron emitted in fission (PFNS) plays a very important role in nuclear science and technology. A Coordinated Research Project (CRP) "Evaluation of Prompt Fission Neutron Spectra of Actinides" was established by the IAEA Nuclear Data Section in 2009, with the major goal to produce new PFNS evaluations with uncertainties for actinide nuclei.

  7. Spontaneous fission properties and lifetime systematics

    International Nuclear Information System (INIS)

    Half-lives for spontaneous fission of nuclides with even and odd numbers of particles are compared with recent theoretical calculations. A summary of odd particle hindrance factors is given. The most recent measurements of kinetic-energy and mass distributions and neutron emission for spontaneous fission of the heaviest nuclides are summarized and discussed. 51 refs., 9 figs

  8. Options for Affordable Fission Surface Power Systems

    International Nuclear Information System (INIS)

    Fission surface power systems could provide abundant power anywhere on the surface of the moon or Mars. Locations could include permanently shaded regions on the moon and high latitudes on Mars. To be fully utilized, however, fission surface power systems must be safe, have adequate performance, and be affordable. This paper discusses options for the design and development of such systems. (authors)

  9. {\\alpha}-accompanied cold ternary fission of $^{238-244}$Pu isotopes in equatorial and collinear configuration

    CERN Document Server

    Santhosh, K P; Priyanka, B

    2015-01-01

    The cold ternary fission of $^{238}$Pu, $^{240}$Pu, $^{242}$Pu and $^{244}$Pu isotopes, with $^{4}$He as light charged particle, in equatorial and collinear configuration has been studied within the Unified ternary fission model (UTFM). The fragment combination $^{100}$Zr+$^{4}$He+$^{134}$Te possessing the near doubly magic nuclei $^{134}$Te (N=82, Z=52) gives the highest yield in the alpha accompanied ternary fission of $^{238}$Pu. For the alpha accompanied ternary fission of $^{240}$Pu, $^{242}$Pu and $^{244}$Pu isotopes, the highest yield was found for the fragment combination with doubly magic nuclei $^{132}$Sn (N=82, Z=50) as the heavier fragment. The deformation and orientation of fragments have also been taken into account for the alpha accompanied ternary fission of $^{238-244}$Pu isotopes, and it has been found that in addition to closed shell effect, ground state deformation also plays an important role in determining the isotopic yield in the ternary fission process. The emission probability and ki...

  10. Fission dynamics with systems of intermediate fissility

    Indian Academy of Sciences (India)

    E Vardaci; A Di Nitto; P N Nadtochy; A Brondi; G La Rana; R Moro; M Cinausero; G Prete; N Gelli; E M Kozulin; G N Knyazheva; I M Itkis

    2015-08-01

    A 4 light charged particle spectrometer, called 8 LP, is in operation at the Laboratori Nazionali di Legnaro, Italy, for studying reaction mechanisms in low-energy heavy-ion reactions. Besides about 300 telescopes to detect light charged particles, the spectrometer is also equipped with an anular PPAC system to detect evaporation residues and a two-arm time-of-flight spectrometer to detect fission fragments. The spectrometer has been used in several fission dynamics studies using as a probe light charged particles in the fission and evaporation residues (ER) channels. This paper proposes a journey within some open questions about the fission dynamics and a review of the main results concerning nuclear dissipation and fission time-scale obtained from several of these studies. In particular, the advantages of using systems of intermediate fissility will be discussed.

  11. Fission Surface Power Technology Development Status

    Science.gov (United States)

    Palac, Donald T.; Mason, Lee S.; Houts, Michael G.; Harlow, Scott

    2010-01-01

    Power is a critical consideration in planning exploration of the surfaces of the Moon, Mars, and beyond. Nuclear power is an important option, especially for locations in the solar system where sunlight is limited in availability or intensity. NASA is maintaining the option for fission surface power for the Moon and Mars by developing and demonstrating technology for an affordable fission surface power system. Because affordability drove the determination of the system concept that this technology will make possible, low development and recurring costs result, while required safety standards are maintained. However, an affordable approach to fission surface power also provides the benefits of simplicity, robustness, and conservatism in design. This paper will illuminate the multiplicity of benefits to an affordable approach to fission surface power, and will describe how the foundation for these benefits is being developed and demonstrated in the Exploration Technology Development Program s Fission Surface Power Project.

  12. Microscopic Theory of Nuclear Fission: A Review

    CERN Document Server

    Schunck, N

    2015-01-01

    This article reviews how nuclear fission is described within nuclear density functional theory. In spontaneous fission, half-lives are the main observables and quantum tunnelling the essential concept, while in induced fission the focus is on fragment properties and explicitly time-dependent approaches are needed. The cornerstone of the current microscopic theory of fission is the energy density functional formalism. Its basic tenets, including tools such as the HFB theory, effective two-body effective nuclear potentials, finite-temperature extensions and beyond mean-field corrections, are presented succinctly. The EDF approach is often combined with the hypothesis that the time-scale of the large amplitude collective motion driving the system to fission is slow compared to typical time-scales of nucleons inside the nucleus. In practice, this hypothesis of adiabaticity is implemented by introducing (a few) collective variables and mapping out the many-body Schr\\"odinger equation into a collective Schr\\"odinge...

  13. Fission dynamics at low excitation energy. 2

    CERN Document Server

    Aritomo, Y; Ivanyuk, F A

    2014-01-01

    The mass asymmetry in the fission of U-236 at low excitation energy is clarified by the analysis of the trajectories obtained by solving the Langevin equations for the shape degrees of freedom. It is demonstrated that the position of the peaks in the mass distribution of fission fragments is determined mainly by the saddle point configuration originating from the shell correction energy. The width of the peaks, on the other hand, results from the shape fluctuations close to the scission point caused by the random force in the Langevin equation. We have found out that the fluctuations between elongated and compact shapes are essential for the fission process. According to our results the fission does not occur with continuous stretching in the prolate direction, similarly to that observed in starch syrup, but is accompanied by the fluctuations between elongated and compact shapes. This picture presents a new viewpoint of fission dynamics and the splitting mechanism.

  14. Calculated medium energy fission cross sections

    International Nuclear Information System (INIS)

    An analysis has been made of medium-energy nucleon induced fission of 238U and 237Np using detailed models of fission, based upon the Bohr-Wheeler formalism. Two principal motivations were associated with these calculations. The first was determination of barrier parameters for proton-rich uranium and neptunium isotopes normally not accessible in lower energy reactions. The second was examination of the consistency between (p,f) experimental data versus new (n,f) data that has recently become available. Additionally, preliminary investigations were also made concerning the effect of fission dynamics on calculated fission cross sections at higher energies where neutron emission times may be significantly less than those associated with fission

  15. Theory of neutron emission in fission

    International Nuclear Information System (INIS)

    Following a summary of the observables in neutron emission in fission, a brief history is given of theoretical representations of the prompt fission neutron spectrum N(E) and average prompt neutron multiplicity bar νp. This is followed by descriptions, together with examples, of modern approaches to the calculation of these quantities including recent advancements. Emphasis will be placed upon the predictability and accuracy of the modern approaches. In particular, the dependence of N(E) and bar νp on the fissioning nucleus and its excitation energy will be discussed, as will the effects of and competition between first-, second- and third-chance fission in circumstances of high excitation energy. Finally, properties of neutron-rich (fission-fragment) nuclei are discussed that must be better known to calculate N(E) and bar νp with higher accuracy than is currently possible

  16. Fission gas behaviour in water reactor fuels

    International Nuclear Information System (INIS)

    During irradiation, nuclear fuel changes volume, primarily through swelling. This swelling is caused by the fission products and in particular by the volatile ones such as krypton and xenon, called fission gas. Fission gas behaviour needs to be reliably predicted in order to make better use of nuclear fuel, a factor which can help to achieve the economic competitiveness required by today's markets. These proceedings communicate the results of an international seminar which reviewed recent progress in the field of fission gas behaviour in light water reactor fuel and sought to improve the models used in computer codes predicting fission gas release. State-of-the-art knowledge is presented for both uranium-oxide and mixed-oxide fuels loaded in water reactors. (author)

  17. Delayed neutrons as a probe of nuclear charge distribution in fission of heavy nuclei by neutrons

    CERN Document Server

    Isaev, S G; Piksaikin, V M; Roshchenko, V A

    2001-01-01

    A method of the determination of cumulative yields of delayed neutron precursors is developed. This method is based on the iterative least-square procedure applied to delayed neutron decay curves measured after irradiation of sup 2 sup 3 sup 5 U sample by thermal neutrons. Obtained cumulative yields in turns were used for deriving the values of the most probable charge in low-energy fission of the above-mentioned nucleus.

  18. Absolute surface reconstruction by slope metrology and photogrammetry

    Science.gov (United States)

    Dong, Yue

    Developing the manufacture of aspheric and freeform optical elements requires an advanced metrology method which is capable of inspecting these elements with arbitrary freeform surfaces. In this dissertation, a new surface measurement scheme is investigated for such a purpose, which is to measure the absolute surface shape of an object under test through its surface slope information obtained by photogrammetric measurement. A laser beam propagating toward the object reflects on its surface while the vectors of the incident and reflected beams are evaluated from the four spots they leave on the two parallel transparent windows in front of the object. The spots' spatial coordinates are determined by photogrammetry. With the knowledge of the incident and reflected beam vectors, the local slope information of the object surface is obtained through vector calculus and finally yields the absolute object surface profile by a reconstruction algorithm. An experimental setup is designed and the proposed measuring principle is experimentally demonstrated by measuring the absolute surface shape of a spherical mirror. The measurement uncertainty is analyzed, and efforts for improvement are made accordingly. In particular, structured windows are designed and fabricated to generate uniform scattering spots left by the transmitted laser beams. Calibration of the fringe reflection instrument, another typical surface slope measurement method, is also reported in the dissertation. Finally, a method for uncertainty analysis of a photogrammetry measurement system by optical simulation is investigated.

  19. The Simplicity Argument and Absolute Morality

    Science.gov (United States)

    Mijuskovic, Ben

    1975-01-01

    In this paper the author has maintained that there is a similarity of thought to be found in the writings of Cudworth, Emerson, and Husserl in his investigation of an absolute system of morality. (Author/RK)

  20. Overview of fission yeast septation.

    Science.gov (United States)

    Pérez, Pilar; Cortés, Juan C G; Martín-García, Rebeca; Ribas, Juan C

    2016-09-01

    Cytokinesis is the final process of the vegetative cycle, which divides a cell into two independent daughter cells once mitosis is completed. In fungi, as in animal cells, cytokinesis requires the formation of a cleavage furrow originated by constriction of an actomyosin ring which is connected to the plasma membrane and causes its invagination. Additionally, because fungal cells have a polysaccharide cell wall outside the plasma membrane, cytokinesis requires the formation of a septum coincident with the membrane ingression. Fission yeast Schizosaccharomyces pombe is a unicellular, rod-shaped fungus that has become a popular model organism for the study of actomyosin ring formation and constriction during cell division. Here we review the current knowledge of the septation and separation processes in this fungus, as well as recent advances in understanding the functional interaction between the transmembrane enzymes that build the septum and the actomyosin ring proteins. PMID:27155541

  1. Aerosols and fission product transport

    International Nuclear Information System (INIS)

    A survey is presented of current knowledge of the possible role of aerosols in the consequences of in- and out-of-core LOCAs and of end fitting failures in CANDU reactors. An extensive literature search has been made of research on the behaviour of aerosols in possible accidents in water moderated and cooled reactors and the results of various studies compared. It is recommended that further work should be undertaken on the formation of aerosols during these possible accidents and to study their subsequent behaviour. It is also recommended that the fission products behaviour computer code FISSCON II should be re-examined to determine whether it reflects the advances incorporated in other codes developed for light water reactors which have been extensively compared. 47 refs

  2. Production of fission 131I

    International Nuclear Information System (INIS)

    A method of iodine separation from other radionuclides generated by 235U fission has been developed in order to explore the possibilities to obtain 131I as by-product of the 99Mo routine production in the Ezeiza Atomic Centre. The experiments were designed to remove this element to gas phase, and the recoveries were investigated both with and without carrier addition. High volatilization percentages were achieved in the presence of iodine carrier. Some other alternatives to increase the iodine displacement to the gaseous phase, namely vacuum distillation, addition of hydrogen peroxide and use of a carrier gas, were also studied. The method developed, which employs a carrier gas stream, without carrier addition, allows the recovery of about 97% of the 131I, with high specific activity, in a simple and clean way. (author)

  3. Simulation of neutron rich nuclei production through 239U fission at intermediates energies

    International Nuclear Information System (INIS)

    The theoretical part and some results obtained from a model realised for fission processes in wide range of mass-asymmetries are presented. The fission barriers are computed in a tridimensional configuration space using the Yukawa - plus - exponential macroscopic energies corrected within the Strutinsky procedure. It is assumed that channel probabilities are proportional with Gamow penetrabilities. The model is applied for the disintegration of the 239U in order to determine the relative yields for the production of neutron rich nuclei at diverse intermediate energies. (author)

  4. Absolute distance metrology for space interferometers

    OpenAIRE

    Swinkels, B L; Wendrich, T.J.; Bhattacharya, N; Wielders, A.A.; Braat, J.J.M.

    2004-01-01

    Space interferometers consisting of several free flying telescopes, such as the planned Darwin mission, require a complex metrology system to make all the components operate as a single instrument. Our research focuses on one of its sub-systems that measures the absolute distance between two satellites with high accuracy. For Darwin the required accuracy would be in the order of 10 μm over 250 meter. To measure this absolute distance, we are currently exploring the frequency sweeping interfer...

  5. Measurement of prompt neutrons from fission fragments for {sup 235}U(n{sub th}, f)

    Energy Technology Data Exchange (ETDEWEB)

    Nishio, Katsuhisa; Yamamoto, Hideki; Jinno, Ikuo; Kimura, Itsuro; Nakagome, Yoshihiro [Kyoto Univ. (Japan)

    1997-03-01

    When the level density parameter is obtained from neutron resonance experiment and so forth, its value depends upon its model. In particular, the value forms 1.5 times difference by if the level increase due to collective motion is considered or not. The measuring method shown in this report has a characteristics capable of obtain an absolute value of the level density parameter. Then, in this paper, a consideration using Iljinov`s empirical equation on shell effect and collective motion of the fission fragment was conducted and a investigation on shell effect and collective motion of the fission fragment was executed. as a result, the level density parameter of the fission fragment obtained by the {sup 235}U(n{sub th},f) showed a distribution of a sawtooth wave shape, which is resemble to that of {sup 252}Cf(sf). And, it was found that this distribution can be explained by an empirical equation considering shell effect of fission fragment dependency and collective motion, and so forth. (G.K.)

  6. Determination of the fission barrier height in fission of heavy radioactive beams induced by the (d,p)-transfer

    CERN Multimedia

    A theoretical framework is described, allowing to determine the fission barrier height using the observed cross sections of fission induced by the (d,p)-transfer with accuracy, which is not achievable in another type of low-energy fission of neutron-deficient nuclei, the $\\beta$-delayed fission. The primary goal is to directly determine the fission barrier height of proton-rich fissile nuclei, preferably using the radio-active beams of isotopes of odd elements, and thus confirm or exclude the low values of fission barrier heights, typically extracted using statistical calculations in the compound nucleus reactions at higher excitation energies. Calculated fission cross sections in transfer reactions of the radioactive beams show sufficient sensitivity to fission barrier height. In the probable case that fission rates will be high enough, mass asymmetry of fission fragments can be determined. Results will be relevant for nuclear astrophysics and for production of super-heavy nuclei. Transfer induced fission of...

  7. Absolute dimensions and masses of eclipsing binaries. V. IQ Persei

    Energy Technology Data Exchange (ETDEWEB)

    Lacy, C.H.; Frueh, M.L.

    1985-08-01

    New photometric and spectroscopic observations of the 1.7 day eclipsing binary IQ Persei (B8 + A6) have been analyzed to yield very accurate fundamental properties of the system. Reticon spectroscopic observations obtained at McDonald Observatory were used to determine accurate radial velocities of both stars in this slightly eccentric large light-ratio binary. A new set of VR light curves obtained at McDonald Observatory were analyzed by synthesis techniques, and previously published UBV light curves were reanalyzed to yield accurate photometric orbits. Orbital parameters derived from both sets of photometric observations are in excellent agreement. The absolute dimensions, masses, luminosities, and apsidal motion period (140 yr) derived from these observations agree well with the predictions of theoretical stellar evolution models. The A6 secondary is still very close to the zero-age main sequence. The B8 primary is about one-third of the way through its main-sequence evolution. 27 references.

  8. Quasifission and fusion-fission in massive nuclei reactions. Comparison of reactions leading to the Z=120 element

    CERN Document Server

    Nasirov, A K; Hanappe, F; Heinz, S; Hofmann, S; Mandaglio, G; Manganaro, M; Muminov, A I; Scheid, W

    2008-01-01

    The yields of evaporation residues, fusion-fission and quasifission fragments in the $^{48}$Ca+$^{144,154}$Sm and $^{16}$O+$^{186}$W reactions are analyzed in the framework of the combined theoretical method based on the dinuclear system concept and advanced statistical model. The measured yields of evaporation residues for the $^{48}$Ca+$^{154}$Sm reaction can be well reproduced. The measured yields of fission fragments are decomposed into contributions coming from fusion-fission, quasifission, and fast-fission. The decrease in the measured yield of quasifission fragments in $^{48}$Ca+$^{154}$Sm at the large collision energies and the lack of quasifission fragments in the $^{48}$Ca+$^{144}$Sm reaction are explained by the overlap in mass-angle distributions of the quasifission and fusion-fission fragments. The investigation of the optimal conditions for the synthesis of the new element $Z$=120 ($A$=302) show that the $^{54}$Cr+$^{248}$Cm reaction is preferable in comparison with the $^{58}$Fe+$^{244}$Pu and ...

  9. Rearrangement of cluster structure during fission processes

    DEFF Research Database (Denmark)

    Lyalin, Andrey G.; Obolensky, Oleg I.; Solov'yov, Andrey V.;

    2004-01-01

    groups of atoms from the parent cluster is largely independent of the isomer form of the parent cluster. The importance of rearrangement of the cluster structure during the fission process is elucidated. This rearrangement may include transition to another isomer state of the parent cluster before actual......Results of molecular dynamics simulations of fission reactions $Na_10^2+ -->Na_7^++ Na_3^+ and Na_18^2+--> 2Na_9^+ are presented. The dependence of the fission barriers on the isomer structure of the parent cluster is analysed. It is demonstrated that the energy necessary for removing homothetic...

  10. Fission cross section measurements for minor actinides

    Energy Technology Data Exchange (ETDEWEB)

    Fursov, B. [IPPE, Obninsk (Russian Federation)

    1997-03-01

    The main task of this work is the measurement of fast neutron induced fission cross section for minor actinides of {sup 238}Pu, {sup 242m}Am, {sup 243,244,245,246,247,248}Cm. The task of the work is to increase the accuracy of data in MeV energy region. Basic experimental method, fissile samples, fission detectors and electronics, track detectors, alpha counting, neutron generation, fission rate measurement, corrections to the data and error analysis are presented in this paper. (author)

  11. Fission Matrix Capability for MCNP Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Carney, Sean E. [Los Alamos National Laboratory; Brown, Forrest B. [Los Alamos National Laboratory; Kiedrowski, Brian C. [Los Alamos National Laboratory; Martin, William R. [Los Alamos National Laboratory

    2012-09-05

    In a Monte Carlo criticality calculation, before the tallying of quantities can begin, a converged fission source (the fundamental eigenvector of the fission kernel) is required. Tallies of interest may include powers, absorption rates, leakage rates, or the multiplication factor (the fundamental eigenvalue of the fission kernel, k{sub eff}). Just as in the power iteration method of linear algebra, if the dominance ratio (the ratio of the first and zeroth eigenvalues) is high, many iterations of neutron history simulations are required to isolate the fundamental mode of the problem. Optically large systems have large dominance ratios, and systems containing poor neutron communication between regions are also slow to converge. The fission matrix method, implemented into MCNP[1], addresses these problems. When Monte Carlo random walk from a source is executed, the fission kernel is stochastically applied to the source. Random numbers are used for: distances to collision, reaction types, scattering physics, fission reactions, etc. This method is used because the fission kernel is a complex, 7-dimensional operator that is not explicitly known. Deterministic methods use approximations/discretization in energy, space, and direction to the kernel. Consequently, they are faster. Monte Carlo directly simulates the physics, which necessitates the use of random sampling. Because of this statistical noise, common convergence acceleration methods used in deterministic methods do not work. In the fission matrix method, we are using the random walk information not only to build the next-iteration fission source, but also a spatially-averaged fission kernel. Just like in deterministic methods, this involves approximation and discretization. The approximation is the tallying of the spatially-discretized fission kernel with an incorrect fission source. We address this by making the spatial mesh fine enough that this error is negligible. As a consequence of discretization we get a

  12. Effects of fissioning nuclei distributions on fragment mass distributions for high energy fission

    Directory of Open Access Journals (Sweden)

    Rossi P C R

    2012-02-01

    Full Text Available We study the effects of fissioning nuclei mass- and energy-distributions on the formation of fragments for fission induced by high energy probes. A Monte Carlo code called CRISP was used for obtaining mass distributions and spectra of the fissioning nuclei for reactions induced by 660 MeV protons on 241Am and on 239Np, by 500 MeV protons on 208Pb, and by Bremsstrahlung photons with end-point energies at 50 MeV and 3500 MeV on 238U. The results show that even at high excitation energies, asymmetric fission may still contribute significantly to the fission cross section of actinide nuclei, while it is the dominante mode in the case of lead. However, more precise data for high energy fission on actinide are necessary in order to allow definite conclusions.

  13. Fission dynamics within time-dependent Hartree-Fock: boost-induced fission

    CERN Document Server

    Goddard, P M; Rios, A

    2015-01-01

    Background: Nuclear fission is a complex large-amplitude collective decay mode in heavy nuclei. Microscopic density functional studies of fission have previously concentrated on adiabatic approaches based on constrained static calculations ignoring dynamical excitations of the fissioning nucleus, and the daughter products. Purpose: To explore the ability of dynamic mean-field methods to describe induced fission processes, using quadrupole boosts in the nuclide $^{240}$Pu as an example. Methods: Quadrupole constrained Hartree-Fock calculations are used to create a potential energy surface. An isomeric state and a state beyond the second barrier peak are excited by means of instantaneous as well as temporally extended gauge boosts with quadrupole shapes. The subsequent deexcitation is studied in a time-dependent Hartree-Fock simulation, with emphasis on fissioned final states. The corresponding fission fragment mass numbers are studied. Results: In general, the energy deposited by the quadrupole boost is quickl...

  14. Use of intensity quotients and differences in absolute structure refinement.

    Science.gov (United States)

    Parsons, Simon; Flack, Howard D; Wagner, Trixie

    2013-06-01

    Several methods for absolute structure refinement were tested using single-crystal X-ray diffraction data collected using Cu Kα radiation for 23 crystals with no element heavier than oxygen: conventional refinement using an inversion twin model, estimation using intensity quotients in SHELXL2012, estimation using Bayesian methods in PLATON, estimation using restraints consisting of numerical intensity differences in CRYSTALS and estimation using differences and quotients in TOPAS-Academic where both quantities were coded in terms of other structural parameters and implemented as restraints. The conventional refinement approach yielded accurate values of the Flack parameter, but with standard uncertainties ranging from 0.15 to 0.77. The other methods also yielded accurate values of the Flack parameter, but with much higher precision. Absolute structure was established in all cases, even for a hydrocarbon. The procedures in which restraints are coded explicitly in terms of other structural parameters enable the Flack parameter to correlate with these other parameters, so that it is determined along with those parameters during refinement. PMID:23719469

  15. Fission cross section measurement of Am-242m using lead slowing-down spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Kai, Tetsuya; Kobayashi, Katsuhei; Yamamoto, Shuji; Fujita, Yoshiaki [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.; Kimura, Itsuro; Ohkawachi, Yasushi; Wakabayashi, Toshio

    1998-03-01

    By making use of double fission chamber and lead slowing-down spectrometer coupled to an electron linear accelerator, fission cross section for the {sup 242m}Am(n,f) reaction has been measured relative to that for the {sup 235}U(n,f) reaction in the energy range from 0.1 eV to 10 keV. The measured result was compared with the evaluated nuclear data appeared in ENDF/B-VI and JENDL-3.2, of which evaluated data were broadened by the energy resolution function of the spectrometer. Although the JENDL-3.2 data seem to be a little smaller than the present measurement, good agreement can be seen in the general shape and the absolute values. The ENDF/B-VI data are larger more than 50 % than the present values above 3 eV. (author)

  16. The 235U Prompt Fission Neutron Spectrum in the BR1 Reactor at SCK•CEN

    Directory of Open Access Journals (Sweden)

    Wagemans Jan

    2016-01-01

    Full Text Available The BR1 research reactor at SCK•CEN has a spherical cavity in the graphite above the reactor core. In this cavity an accurately characterised Maxwellian thermal neutron field is present. Different converters can be loaded in the cavity in order to obtain other types of neutron (and gamma irradiation fields. Inside the so-called MARK III converter a fast 235U(n,f prompt fission neutron field can be obtained. With the support of MCNP calculations, irradiations in MARK III can be directly related to the pure 235U(n,f prompt fission neutron spectrum. For this purpose MARK III spectrum averaged cross sections for the most relevant fluence dosimetry reactions have been determined. A calibration factor for absolute measurements has been determined applying activation dosimetry following ISO/IEC 17025 standards.

  17. The 235U Prompt Fission Neutron Spectrum in the BR1 Reactor at SCK•CEN

    Science.gov (United States)

    Wagemans, Jan; Malambu, Edouard; Borms, Luc; Fiorito, Luca

    2016-02-01

    The BR1 research reactor at SCK•CEN has a spherical cavity in the graphite above the reactor core. In this cavity an accurately characterised Maxwellian thermal neutron field is present. Different converters can be loaded in the cavity in order to obtain other types of neutron (and gamma) irradiation fields. Inside the so-called MARK III converter a fast 235U(n,f) prompt fission neutron field can be obtained. With the support of MCNP calculations, irradiations in MARK III can be directly related to the pure 235U(n,f) prompt fission neutron spectrum. For this purpose MARK III spectrum averaged cross sections for the most relevant fluence dosimetry reactions have been determined. A calibration factor for absolute measurements has been determined applying activation dosimetry following ISO/IEC 17025 standards.

  18. Fission dynamics within time-dependent Hartree-Fock. II. Boost-induced fission

    Science.gov (United States)

    Goddard, Philip; Stevenson, Paul; Rios, Arnau

    2016-01-01

    Background: Nuclear fission is a complex large-amplitude collective decay mode in heavy nuclei. Microscopic density functional studies of fission have previously concentrated on adiabatic approaches based on constrained static calculations ignoring dynamical excitations of the fissioning nucleus and the daughter products. Purpose: We explore the ability of dynamic mean-field methods to describe induced fission processes, using quadrupole boosts in the nuclide 240Pu as an example. Methods: Following upon the work presented in Goddard et al. [Phys. Rev. C 92, 054610 (2015)], 10.1103/PhysRevC.92.054610, quadrupole-constrained Hartree-Fock calculations are used to create a potential energy surface. An isomeric state and a state beyond the second barrier peak are excited by means of instantaneous as well as temporally extended gauge boosts with quadrupole shapes. The subsequent deexcitation is studied in a time-dependent Hartree-Fock simulation, with emphasis on fissioned final states. The corresponding fission fragment mass numbers are studied. Results: In general, the energy deposited by the quadrupole boost is quickly absorbed by the nucleus. In instantaneous boosts, this leads to fast shape rearrangements and violent dynamics that can ultimately lead to fission. This is a qualitatively different process than the deformation-induced fission. Boosts induced within a finite time window excite the system in a relatively gentler way and do induce fission but with a smaller energy deposition. Conclusions: The fission products obtained using boost-induced fission in time-dependent Hartree-Fock are more asymmetric than the fragments obtained in deformation-induced fission or the corresponding adiabatic approaches.

  19. Fission fragment mass and angular distributions: Probes to study non-equilibrium fission

    Indian Academy of Sciences (India)

    R G Thomas

    2015-08-01

    Synthesis of heavy and superheavy elements is severely hindered by fission and fission-like processes. The probability of these fission-like, non-equilibrium processes strongly depends on the entrance channel parameters. This article attempts to summarize the recent experimental findings and classify the signatures of these non-equilibrium processes based on macroscopic variables. The importance of the sticking time of the dinuclear complex with respect to the equilibration times of various degrees of freedom is emphasized.

  20. A global algorithm for estimating Absolute Salinity

    Directory of Open Access Journals (Sweden)

    T. J. McDougall

    2012-12-01

    Full Text Available The International Thermodynamic Equation of Seawater – 2010 has defined the thermodynamic properties of seawater in terms of a new salinity variable, Absolute Salinity, which takes into account the spatial variation of the composition of seawater. Absolute Salinity more accurately reflects the effects of the dissolved material in seawater on the thermodynamic properties (particularly density than does Practical Salinity.

    When a seawater sample has standard composition (i.e. the ratios of the constituents of sea salt are the same as those of surface water of the North Atlantic, Practical Salinity can be used to accurately evaluate the thermodynamic properties of seawater. When seawater is not of standard composition, Practical Salinity alone is not sufficient and the Absolute Salinity Anomaly needs to be estimated; this anomaly is as large as 0.025 g kg−1 in the northernmost North Pacific. Here we provide an algorithm for estimating Absolute Salinity Anomaly for any location (x, y, p in the world ocean.

    To develop this algorithm, we used the Absolute Salinity Anomaly that is found by comparing the density calculated from Practical Salinity to the density measured in the laboratory. These estimates of Absolute Salinity Anomaly however are limited to the number of available observations (namely 811. In order to provide a practical method that can be used at any location in the world ocean, we take advantage of approximate relationships between Absolute Salinity Anomaly and silicate concentrations (which are available globally.

  1. Fifth International Conference on Fission and Properties of Neutron-Rich Nuclei

    CERN Document Server

    Ramayya, A V; ICFN5

    2014-01-01

    These proceedings are the fifth in the series of International Conferences covering fission and properties of neutron-rich nuclei, which are at the forefront of nuclear research. The time interval of 5 years between each conference allows for significant new results to be achieved. Recently, world leaders in theory and experiments in research and the development of new facilities for research presented their latest results in areas such as synthesis of superheavy elements, new facilities for and recent results with radioactive ion beams, structure of neutron-rich nuclei, nuclear fission process, fission yields and nuclear astrophysics. This book is a major source of the latest research in these areas and plans for the future. The conference brought together a unique group of over 100 speakers including leaders from the major nuclear laboratories in Canada, China, France, Finland, Germany, Italy, Japan, Russia, Switerzland and the US along with leading research scientists from around the world.

  2. Determination of Nuclear Charge Distributions of Fission Fragments from ^{235}U (n_th, f) with Calorimetric Low Temperature Detectors

    Science.gov (United States)

    Grabitz, P.; Andrianov, V.; Bishop, S.; Blanc, A.; Dubey, S.; Echler, A.; Egelhof, P.; Faust, H.; Gönnenwein, F.; Gomez-Guzman, J. M.; Köster, U.; Kraft-Bermuth, S.; Mutterer, M.; Scholz, P.; Stolte, S.

    2016-08-01

    Calorimetric low temperature detectors (CLTD's) for heavy-ion detection have been combined with the LOHENGRIN recoil separator at the ILL Grenoble for the determination of nuclear charge distributions of fission fragments produced by thermal neutron-induced fission of ^{235}U. The LOHENGRIN spectrometer separates fission fragments according to their mass-to-ionic-charge ratio and their kinetic energy, but has no selectivity with respect to nuclear charges Z. For the separation of the nuclear charges, one can exploit the nuclear charge-dependent energy loss of the fragments passing through an energy degrader foil (absorber method). This separation requires detector systems with high energy resolution and negligible pulse height defect, as well as degrader foils which are optimized with respect to thickness, homogeneity, and energy loss straggling. In the present, contribution results of test measurements at the Maier Leibnitz tandem accelerator facility in Munich with ^{109}Ag and ^{127}I beams with the aim to determine the most suitable degrader material, as well as measurements at the Institut Laue-Langevin will be presented. These include a systematic study of the quality of Z-separation of fission fragments in the mass range 82le A le 132 and a systematic measurement of ^{92}Rb fission yields, as well as investigations of fission yields toward the symmetry region.

  3. Fission rates measured using high-energy gamma-rays from short half-life fission products in fresh and spent nuclear fuel

    International Nuclear Information System (INIS)

    2 fuel samples with burn-ups of about 36 and 46 GWd/t. Based on experiments carried out with these fuel samples in a reference test lattice of the PROTEUS reactor, fresh-to-burnt-fuel fission rate ratios could be determined. The 1σ uncertainties on the derived fission rate ratios are 1.7 to 3.4% and are mainly due to the statistical uncertainties. Calculated values of the fission rate ratios, as obtained using the Monte Carlo code MCNPX, have been shown to agree with the experimental results within these uncertainties. In deriving fresh-to-burnt-fuel fission rate ratios, 142La and 138Cs have emerged as the preferred fission products. Their fission yields for the main fissile isotopes ( 235U, 239Pu and 241Pu) are similar, which makes them relatively insensitive to the exact composition of the burnt fuel. Finally, a measurement station for the future LIFE(at)PROTEUS experiments has been proposed and evaluated, along with a detailed formulation of recommendations for optimised irradiation and measurement strategies. The estimated accuracy for the foreseen measurements of fission rate ratios between fresh and highly burnt fuel pins is 1 to 2%. The contribution of nuclear-data related uncertainties have been pointed out as possibly representing the main constraint on the achievable accuracy in future experiments. In brief, the present research work has established a novel experimental technique for measuring and comparing fission rates in fresh and highly burnt fuels in a zero-power research reactor such as PROTEUS. Moreover, possibilities have been presented for the further optimisation needed for a future, routine application of the technique. (author)

  4. (d,p)-transfer induced fission of heavy radioactive beams

    CERN Document Server

    Veselsky, Martin

    2012-01-01

    (d,p)-transfer induced fission is proposed as a tool to study low energy fission of exotic heavy nuclei. Primary goal is to directly determine the fission barrier height of proton-rich fissile nuclei, preferably using the radio-active beams of isotopes of odd elements, and thus confirm or exclude the low values of fission barrier heights, typically extracted using statistical calculations in the compound nucleus reactions at higher excitation energies. Calculated fission cross sections in transfer reactions of the radioactive beams show sufficient sensitivity to fission barrier height. In the probable case that fission rates will be high enough, mass asymmetry of fission fragments can be determined. Results will be relevant for nuclear astrophysics and for production of super-heavy nuclei. Transfer induced fission offers a possibility for systematic study the low energy fission of heavy exotic nuclei at the ISOLDE.

  5. Energy from nuclear fission an introduction

    CERN Document Server

    De Sanctis, Enzo; Ripani, Marco

    2016-01-01

    This book provides an overview on nuclear physics and energy production from nuclear fission. It serves as a readable and reliable source of information for anyone who wants to have a well-balanced opinion about exploitation of nuclear fission in power plants. The text is divided into two parts; the first covers the basics of nuclear forces and properties of nuclei, nuclear collisions, nuclear stability, radioactivity, and provides a detailed discussion of nuclear fission and relevant topics in its application to energy production. The second part covers the basic technical aspects of nuclear fission reactors, nuclear fuel cycle and resources, safety, safeguards, and radioactive waste management. The book also contains a discussion of the biological effects of nuclear radiation and of radiation protection, and a summary of the ten most relevant nuclear accidents. The book is suitable for undergraduates in physics, nuclear engineering and other science subjects. However, the mathematics is kept at a level that...

  6. "UCx fission targets oxidation test stand"

    CERN Document Server

    Lacroix, Rachel

    2014-01-01

    "Set up a rig dedicated to the oxidation of UCx and define a procedure for repeatable, reliable and safe method for converting UC2 fission targets into an acceptable uranium carbide oxide waste for subsequent disposal by the Swiss Authorities."

  7. Subroutines to Simulate Fission Neutrons for Monte Carlo Transport Codes

    OpenAIRE

    Lestone, J. P.

    2014-01-01

    Fortran subroutines have been written to simulate the production of fission neutrons from the spontaneous fission of 252Cf and 240Pu, and from the thermal neutron induced fission of 239Pu and 235U. The names of these four subroutines are getnv252, getnv240, getnv239, and getnv235, respectively. These subroutines reproduce measured first, second, and third moments of the neutron multiplicity distributions, measured neutron-fission correlation data for the spontaneous fission of 252Cf, and meas...

  8. General Description of Fission Observables: GEF Model Code

    OpenAIRE

    Schmidt, Karl-Heinz; Jurado, Beatriz; Amouroux, Charlotte; Schmitt, C.

    2015-01-01

    The GEF (" GEneral description of Fission observables ") model code is documented. It describes the observables for spontaneous fission, neutron-induced fission and, more generally, for fission of a compound nucleus from any other entrance channel, with given excitation energy and angular momentum. The GEF model is applicable for a wide range of isotopes from Z = 80 to Z = 112 and beyond, up to excitation energies of about 100 MeV. The results of the GEF model are compared with fission barrie...

  9. General view on the progress in nuclear fission : a review

    OpenAIRE

    Schmidt, Karl-Heinz; Jurado, Beatriz

    2016-01-01

    An overview is given on some of the main advances in experimental methods, experimental results and theoretical models and ideas of the last years in the field of nuclear fission. New approaches extended the availability of fissioning systems for experimental studies of nuclear fission considerably and provided a full identification of all fission products in A and Z for the first time. In particular, the transition from symmetric to asymmetric fission around 226 Th and some unexpected struct...

  10. Phebus FP: fission product behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Lewi, J.; Schwarz, M. [Inst. de Protection et de Surete Nucleaire (IPSN), Dept. de Recherche en Securite, Saint Paul les Durance (France); Hardt, P. von der [European Commission, Joint Research Center, Inst. for Systems, Informatics and Safety (Isis), Saint Paul les Durance (France)

    1998-02-01

    The ongoing Phebus FP programme is the centrepiece of a wide international co-operation investigating, through a series of six integral in-pile experiments, key-phenomena involved in the progression of a postulated severe accident in a Light Wate Reactor (LWR). The Phebus facility offers the capability to study the degradation of real core material, from the early phase of cladding oxidation and hydrogen production up to the late phase of melt progression and molten pool formation. The subsequent release of fission products and structural materials is also experimentally studied, including their transport in the cooling system, and their deposition in the containment, under representative physicochemical conditions. The volatility of iodine in the containment is in particular receiving a special interest in the first experiments, as large uncertainties related to its modelling subsist. FPT-0 and FPT-1, performed respectively in December 1993 and July 1996, have reached very advanced states of degradation, comparable to what was observed in TMI-2, and generated a wealth of results on core degradation and fission product behaviour in particular, pool formation was obtained for a temperature well below the melting point of (U, Zr) O{sub 2} and volatile forms of iodine were detected in the containment much earlier than expected. The resulting database is used to develop and validate the computer codes used to assess the safety of the currently operating plants, to check the efficiency of accident management procedures and also support the design of future plants as EPR. (orig.) [Deutsch] Das laufende Phebus-FP-Programm ist das Herzstueck einer weiten internationalen Zusammenarbeit, durch eine Serie von sechs realitaetsnahen Experimenten die Schluesselphaenomene zu erforschen, die fuer die Ausbreitung eines unterstellten schweren Unfalls in einem Leichtwasserreaktor (LWR) verantwortlich sind. Die Phebus-Anlage in Cadarache ermoeglicht die Untersuchung der Veraenderung

  11. Universal Cosmic Absolute and Modern Science

    Science.gov (United States)

    Kostro, Ludwik

    The official Sciences, especially all natural sciences, respect in their researches the principle of methodic naturalism i.e. they consider all phenomena as entirely natural and therefore in their scientific explanations they do never adduce or cite supernatural entities and forces. The purpose of this paper is to show that Modern Science has its own self-existent, self-acting, and self-sufficient Natural All-in Being or Omni-Being i.e. the entire Nature as a Whole that justifies the scientific methodic naturalism. Since this Natural All-in Being is one and only It should be considered as the own scientifically justified Natural Absolute of Science and should be called, in my opinion, the Universal Cosmic Absolute of Modern Science. It will be also shown that the Universal Cosmic Absolute is ontologically enormously stratified and is in its ultimate i.e. in its most fundamental stratum trans-reistic and trans-personal. It means that in its basic stratum. It is neither a Thing or a Person although It contains in Itself all things and persons with all other sentient and conscious individuals as well, On the turn of the 20th century the Science has begun to look for a theory of everything, for a final theory, for a master theory. In my opinion the natural Universal Cosmic Absolute will constitute in such a theory the radical all penetrating Ultimate Basic Reality and will substitute step by step the traditional supernatural personal Absolute.

  12. Decay characteristics of fission products and summation calculation

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Tadashi [Faculty of Engineering, Musashi Institute of Technology, Tokyo (Japan)

    1999-02-01

    This paper reviews the decay characteristics of fission products on the viewpoint of summation calculation. The fission products (FPs) are accumulated in the operating power reactors. As they are neutron-rich at the time of scission, they undergo successive beta decays toward stable nuclides. To grasp the quantity of an arbitrary nuclide, fission yields, decay constants and blanching ratios of the nuclide in the same decay chain ( a mass chain of the fixed mass is sufficient) must be known. As a neutron capture increases the mass, and release of a delayed neutron decreases the mass, capture cross sections and delayed neutron emitting ratios are also required. If these values of all FP are known, the quantities such as time dependent decay heat and the delayed neutron fraction can be calculated by summation of the contribution of the nuclides. A computer code ORIGEN-2 is a typical example to compute these quantities. The more important than computer code is the data library for summation calculation which includes physical constants such as fission yields, decay constants, blanching ratio, beta and gamma energy emitted at a beta decay, delayed neutron emitting ratios, and neutron capture cross sections for more than 1000 FP nuclides. They are realized in JNDC FP Decay Data Library-Version 2 of Japan, JEF-2 by western European countries, and ENDF/B-VI of USA. The early versions (until early 80's) of these full-scale libraries showed worse agreement with experiment than the old libraries based on approximations and estimates. The application of the gross theory to beta-decay' to short-lived FPs could solve the problem. The above disagreement is explained by having dropped of high excitation levels of short lived daughter nuclides. This is called as Pandemonium Problem. The summation calculation for the gamma ray spectrum succeeded to predict the experimental value by correcting theoretical spectrum. However, there remains still an underestimate for cooling

  13. Detector instrumentation for nuclear fission studies

    Indian Academy of Sciences (India)

    Akhil Jhingan

    2015-09-01

    The study of heavy-ion-induced fusion–fission reactions require nuclear instrumentation that include particle detectors such as proportional counters, ionization chambers, silicon detectors, scintillation detectors, etc., and the front-end electronics for these detectors. Using the detectors mentioned above, experimental facilities have been developed for carrying out fusion–fission experiments. This paper reviews the development of detector instrumentation at IUAC.

  14. Seventy-five years of nuclear fission

    Indian Academy of Sciences (India)

    S S Kapoor

    2015-08-01

    Nuclear fission process is one of the most important discoveries of the twentieth century. In these 75 years since its discovery, the nuclear fission related research has not only provided new insights in the physics of large scale motion, deformation and subsequent division of a heavy nucleus, but has also opened several new frontiers of research in nuclear physics. This article is a narrative giving an overview of the landmarks of the progress in the field.

  15. MCNP6 Fission Multiplicity with FMULT Card

    Energy Technology Data Exchange (ETDEWEB)

    Wilcox, Trevor [Los Alamos National Laboratory; Fensin, Michael Lorne [Los Alamos National Laboratory; Hendricks, John S. [Los Alamos National Laboratory; James, Michael R. [Los Alamos National Laboratory; McKinney, Gregg W. [Los Alamos National Laboratory

    2012-06-18

    With the merger of MCNPX and MCNP5 into MCNP6, MCNP6 now provides all the capabilities of both codes allowing the user to access all the fission multiplicity data sets. Detailed in this paper is: (1) the new FMULT card capabilities for accessing these different data sets; (2) benchmark calculations, as compared to experiment, detailing the results of selecting these separate data sets for thermal neutron induced fission on U-235.

  16. A revised calculational model for fission

    Energy Technology Data Exchange (ETDEWEB)

    Atchison, F.

    1998-09-01

    A semi-empirical parametrization has been developed to calculate the fission contribution to evaporative de-excitation of nuclei with a very wide range of charge, mass and excitation-energy and also the nuclear states of the scission products. The calculational model reproduces measured values (cross-sections, mass distributions, etc.) for a wide range of fissioning systems: Nuclei from Ta to Cf, interactions involving nucleons up to medium energy and light ions. (author)

  17. Spontaneous fission of 256Rf, new data

    Science.gov (United States)

    Svirikhin, A. I.; Yeremin, A. V.; Izosimov, I. N.; Isaev, A. V.; Kuznetsov, A. N.; Malyshev, O. N.; Popeko, A. G.; Popov, Yu. A.; Sokol, E. A.; Chelnokov, M. L.; Chepigin, V. I.; Andel, B.; Asfari, M. Z.; Gall, B.; Yoshihiro, N.; Kalaninova, Z.; Mullins, S.; Piot, J.; Stefanova, E.; Tonev, D.

    2016-07-01

    Spontaneous fission properties of the short-lived neutron-deficient 256Rf nucleus produced in the complete fusion reaction with a beam of multiply charged heavy 50Ti ions from the U-400 cyclotron (FLNR, JINR) are experimentally investigated. Its half-life and decay branching ratio are measured. The average number of neutrons per spontaneous fission of 256Rf (bar v = 4.47 ± 0.09) is determined for the first time.

  18. Fission Barriers of Compound Superheavy Nuclei

    OpenAIRE

    Pei, J C; Nazarewicz, W.; Sheikh, J. A.; Kerman, A. K.

    2009-01-01

    The dependence of fission barriers on the excitation energy of the compound nucleus impacts the survival probability of superheavy nuclei synthesized in heavy-ion fusion reactions. In this work, we investigate the isentropic fission barriers by means of the self-consistent nuclear density functional theory. The relationship between isothermal and isentropic descriptions is demonstrated. Calculations have been carried out for $^{264}$Fm, $^{272}$Ds, $^{278}$112, $^{292}$114, and $^{312}$124. F...

  19. Studies on separation and purification of fission 99Mo from neutron activated uranium aluminum alloy

    International Nuclear Information System (INIS)

    A new method has been developed for separation and purification of fission 99Mo from neutron activated uranium–aluminum alloy. Alkali dissolution of the irradiated target (100 mg) results in aluminum along with 99Mo and a few fission products passing into solution, while most of the fission products, activation products and uranium remain undissolved. Subsequent purification steps involve precipitation of aluminum as Al(OH)3, iodine as AgI/AgIO3 and molybdenum as Mo-α-benzoin oxime. Ruthenium is separated by volatilization as RuO4 and final purification of 99Mo was carried out using anion exchange method. The radiochemical yield of fission 99Mo was found to be >80% and the purity of the product was in conformity with the international pharmacopoeia standards. - Highlights: • 99Mo separation, purification method developed from neutron activation of 100 g U–Al alloy. • Uranium, fission, activation product decontamination by alkali dissolution of activated target. • Purification by Al(OH)3, AgI/AgIO3, Mo-α-benzoin oxime precipitation and anion exchange. • Very high decontamination factors for alpha activity obtained. • Final 99Mo product (recovery >80%) complied with international pharmacopoeia standards

  20. A theoretical study of volatile fission products release from oxide fuels

    Energy Technology Data Exchange (ETDEWEB)

    Paraschiv, M.C.; Paraschiv, A. [Inst. for Nucl. Res., Pitesti (Romania); Grecu, V.V. [University of Bucharest, Faculty of Physics, P.O. Box MG-11, Bucharest (Romania)

    1999-11-01

    Treating the average volume grains as thermodynamically closed subsystems, a method to evaluate the volatile fission products migration at the grain boundary and their release in the void volume of the fuel elements is proposed. The method considers the phenomena of the intergranular bubble growth and interlinkage, grain growth and grain boundary resolution. Analytical solutions of the diffusion problem associated with the volatile fission products behaviour taking into account their direct yield from fission and from precursors simultaneously with the diffusion and decay, irradiation induced resolution and fuel grain growth, during a time-step varying irradiation history have also been derived. The results are very accurate and point out the strong effect of the boundary condition changes on the volatile fission products behaviour when the simultaneous effects of the intergranular bubble coalescence, the precursors, the irradiation induced resolution and grain growth are considered. Comparative analyses versus other similar models of the diffusion of only stable gas species of fission products are also presented. (orig.)

  1. On the feasibility of a fusion-fission hybrid reactor driven by dense magnetized plasmas

    International Nuclear Information System (INIS)

    The feasibility of a fusion-fission hybrid reactor driven by dense magnetized plasmas was analyzed from the point of view of the technical requirements for the fusion and fission components of the reactor. In the conceptual design, a 200 MW hybrid fusion-fission reactor is considered to be used as a heat source for district heating. The fission heat-generating blanket is based on the CANDU reactor technology, while the fusion fast neutrons are provided by a high-density pinch plasma. As far as the fission components of the reactor are concerned, the hybrid reactor turns out to be entirely feasible based on existing technologies. On the other hand extensive development will be needed to meet the requirements for the fusion component of the reactor. The basic conditions for a dense magnetized plasma fusion device to be used for the proposed hybrid concept are not concerned only with the attainment of high neutron yield per pulse (at least 5 x 10 18), but also with a relatively high repetition rate (in the range 1-10 Hz). An important feature of the proposed design is its inherent safety feature: no active component are necessary within the reactor containment area, all the hybrid system control being ensured by the fusion component of the reactor. (authors)

  2. Dynamics in heavy ion fusion and fission

    International Nuclear Information System (INIS)

    Dynamical aspects of heavy ion fussion and fission, mainly the aspect of damping which is meant as the dissipation of kinetic energy and the aspect of the effective mass of the fission motion, are discussed. Two categories of evidence of damping effects are given. One relates to the damping of the fission motion for the ground state shape and for the isomeric more elongated shape. The other relates to the damping of the fission motion from the last barrier to the scission point. The dependence of the effective mass associated with the fission motion on the deormation of nucleus is shown. As the elongation of the nucleus increases the effective mass of the fission motion varies strongly from being about forty times greater than the reduced mass in the beta-vibrational state of the ground state shape to being equal to the reduced mass in the moment of scission. Damping effects are expected to be propartional to the difference between the effective mass and the reduced mass. It is concluded that the damping in fussion reactions is relatively weak for lighter products and quite strong for superheavy products like 236U or 252Cf. (S.B.)

  3. Absolute calibration in vivo measurement systems

    International Nuclear Information System (INIS)

    Lawrence Livermore National Laboratory (LLNL) is currently investigating a new method for obtaining absolute calibration factors for radiation measurement systems used to measure internally deposited radionuclides in vivo. Absolute calibration of in vivo measurement systems will eliminate the need to generate a series of human surrogate structures (i.e., phantoms) for calibrating in vivo measurement systems. The absolute calibration of in vivo measurement systems utilizes magnetic resonance imaging (MRI) to define physiological structure, size, and composition. The MRI image provides a digitized representation of the physiological structure, which allows for any mathematical distribution of radionuclides within the body. Using Monte Carlo transport codes, the emission spectrum from the body is predicted. The in vivo measurement equipment is calibrated using the Monte Carlo code and adjusting for the intrinsic properties of the detection system. The calibration factors are verified using measurements of existing phantoms and previously obtained measurements of human volunteers. 8 refs

  4. Quantum theory allows for absolute maximal contextuality

    Science.gov (United States)

    Amaral, Barbara; Cunha, Marcelo Terra; Cabello, Adán

    2015-12-01

    Contextuality is a fundamental feature of quantum theory and a necessary resource for quantum computation and communication. It is therefore important to investigate how large contextuality can be in quantum theory. Linear contextuality witnesses can be expressed as a sum S of n probabilities, and the independence number α and the Tsirelson-like number ϑ of the corresponding exclusivity graph are, respectively, the maximum of S for noncontextual theories and for the theory under consideration. A theory allows for absolute maximal contextuality if it has scenarios in which ϑ /α approaches n . Here we show that quantum theory allows for absolute maximal contextuality despite what is suggested by the examination of the quantum violations of Bell and noncontextuality inequalities considered in the past. Our proof is not constructive and does not single out explicit scenarios. Nevertheless, we identify scenarios in which quantum theory allows for almost-absolute-maximal contextuality.

  5. Absolute photoacoustic thermometry in deep tissue.

    Science.gov (United States)

    Yao, Junjie; Ke, Haixin; Tai, Stephen; Zhou, Yong; Wang, Lihong V

    2013-12-15

    Photoacoustic thermography is a promising tool for temperature measurement in deep tissue. Here we propose an absolute temperature measurement method based on the dual temperature dependences of the Grüneisen parameter and the speed of sound in tissue. By taking ratiometric measurements at two adjacent temperatures, we can eliminate the factors that are temperature irrelevant but difficult to correct for in deep tissue. To validate our method, absolute temperatures of blood-filled tubes embedded ~9 mm deep in chicken tissue were measured in a biologically relevant range from 28°C to 46°C. The temperature measurement accuracy was ~0.6°C. The results suggest that our method can be potentially used for absolute temperature monitoring in deep tissue during thermotherapy.

  6. Biological effectiveness of fission neutrons

    International Nuclear Information System (INIS)

    Human peripheral blood lymphocytes were exposed to the uranium fission neutrons with different energy spectra, and the effects of changing pattern of energy spectrum on the relative biological effectiveness (RBE) were studied by analyzing dose-response relationship of chromosome aberrations. When the contribution of contaminated gamma-rays was subtracted, the efficiency of chromosomal response to the neutron dose was found to be refractory to the difference in the energy spectrum while the mean energy ranged from 2 MeV to 27 keV. This chromosomal refractoriness to energy spectrum may be explained by the similarity of energy spectrum for kerma contribution; most of the doses being given by neutrons with energy above 50 keV. Small doses given by short tracks may be less efficient. A comparison of these observations with chromosome aberration frequencies in lymphocytes of A-bomb survivors leads to somewhat higher estimate of neutron dose in Hiroshima than the estimate by the recently revised dosimetry system, DS86. (author)

  7. Transport of fission products with a helium gas-jet at TRIGA-SPEC

    Science.gov (United States)

    Eibach, M.; Beyer, T.; Blaum, K.; Block, M.; Eberhardt, K.; Herfurth, F.; Geppert, C.; Ketelaer, J.; Ketter, J.; Krämer, J.; Krieger, A.; Knuth, K.; Nagy, Sz.; Nörtershäuser, W.; Smorra, C.

    2010-02-01

    A helium gas-jet system for the transport of fission products from the research reactor TRIGA Mainz has been developed, characterized and tested within the TRIGA-SPEC experiment. For the first time at TRIGA Mainz carbon aerosol particles have been used for the transport of radionuclides from a target chamber with high efficiency. The radionuclides have been identified by means of γ-spectroscopy. Transport time, efficiency as well as the absolute number of transported radionuclides for several species have been determined. The design and the characterization of the gas-jet system are described and discussed.

  8. Absolute Stability And Hyperstability In Hilbert Space

    Science.gov (United States)

    Wen, John Ting-Yung

    1989-01-01

    Theorems on stabilities of feedback control systems proved. Paper presents recent developments regarding theorems of absolute stability and hyperstability of feedforward-and-feedback control system. Theorems applied in analysis of nonlinear, adaptive, and robust control. Extended to provide sufficient conditions for stability in system including nonlinear feedback subsystem and linear time-invariant (LTI) feedforward subsystem, state space of which is Hilbert space, and input and output spaces having finite numbers of dimensions. (In case of absolute stability, feedback subsystem memoryless and possibly time varying. For hyperstability, feedback system dynamical system.)

  9. Absolute-Magnitude Distributions of Supernovae

    CERN Document Server

    Richardson, Dean; Wright, John; Maddox, Larry

    2014-01-01

    The absolute-magnitude distributions of seven supernova types are presented. The data used here were primarily taken from the Asiago Supernova Catalogue, but were supplemented with additional data. We accounted for both foreground and host-galaxy extinction. A bootstrap method is used to correct the samples for Malmquist bias. Separately, we generate volume-limited samples, restricted to events within 100 Mpc. We find that the superluminous events (M_B -15) make up about 3%. The normal Ia distribution was the brightest with a mean absolute blue magnitude of -19.25. The IIP distribution was the dimmest at -16.75.

  10. Absolute instability from linear conversion of counter-propagating positive and negative energy waves

    Energy Technology Data Exchange (ETDEWEB)

    Kaufman, A.N.; Brizard, A.J.; Morehead, J.J. [Lawrence Berkeley National Lab., CA (United States); Tracy, E.R. [College of William and Mary, Williamsburg, VA (United States)

    1997-12-31

    The resonant interaction of a negative-energy wave with a positive-energy wave gives rise to a linear instability. Whereas a single crossing of rays in a nonuniform medium leads to a convectively saturated instability, we show that a double crossing can yield an absolute instability.

  11. Fission product release and thermal behaviour

    International Nuclear Information System (INIS)

    Release of fission products from the fuel matrix is an important aspect in relation to performance and safety evaluations. Of particular importance amongst fission products are the isotopes of iodine for radiological considerations and the isotopes of xenon and krypton for fuel thermal behaviour. It is believed that the main mechanism for fission gas release is diffusion but the magnitudes of the relevant diffusion coefficients, which exhibit strong temperature dependences, are not well established. The conductivity of the main gaseous fission product, xenon, is much lower than that of the fill gas helium and hence fission gas release may lead to a deterioration of the fill gas conductivity resulting in higher fuel temperatures and consequently higher fission product release. The two effects, thermal response of fuel to fill gas composition and fission gas/product release are thus intimately connected and have been investigated in a number of instrumented fuel assemblies in the Halden reactor. In such an assembly, the instrumentation includes fuel centre thermocouples, pressure sensors and neutron detectors. In addition pins in the assembly may be swept, whilst at power, with various gases, for example Xe, He or Ar or mixtures thereof. A gamma spectrometer is incorporated into the gas circuit to facilitate the performance of on-line fission product release measurements. At various stages in the lifetime of the assembly thermal tests and fission product release measurements have been made. At low operating temperatures and up to moderate burn-ups, no major fuel restructuring phenomena have been observed and consequently the fission product release has remained at low level dictated by the exposed surfaces of the fuel. Axial gas flow measurements indicate that fuel cracking and irreversible relocation occurred as early as the first ramps to power. The processes have continued throughout life and an absence of any change in response pressurization tests indicates that

  12. Singlet Fission in a Covalently Linked Cofacial Alkynyltetracene Dimer.

    Science.gov (United States)

    Korovina, Nadezhda V; Das, Saptaparna; Nett, Zachary; Feng, Xintian; Joy, Jimmy; Haiges, Ralf; Krylov, Anna I; Bradforth, Stephen E; Thompson, Mark E

    2016-01-20

    Singlet fission is a process in which a singlet exciton converts into two triplet excitons. To investigate this phenomenon, we synthesized two covalently linked 5-ethynyl-tetracene (ET) dimers with differing degrees of intertetracene overlap: BET-X, with large, cofacial overlap of tetracene π-orbitals, and BET-B, with twisted arrangement between tetracenes exhibits less overlap between the tetracene π-orbitals. The two compounds were crystallographically characterized and studied by absorption and emission spectroscopy in solution, in PMMA and neat thin films. The results show that singlet fission occurs within 1 ps in an amorphous thin film of BET-B with high efficiency (triplet yield: 154%). In solution and the PMMA matrix the S1 of BET-B relaxes to a correlated triplet pair (1)(T1T1) on a time scale of 2 ps, which decays to the ground state without forming separated triplets, suggesting that triplet energy transfer from (1)(T1T1) to a nearby chromophore is essential for producing free triplets. In support of this hypothesis, selective excitation of BET-B doped into a thin film of diphenyltetracene (DPT) leads to formation of the (1)(T1T1) state of BET-B, followed by generation of both DPT and BET-B triplets. For the structurally cofacial BET-X, an intermediate forms in fission to the (1)(T1T1) state in BET-B relative to that of crystalline tetracene, attributing the rate increase to greater coupling between the S1 and (1)(T1T1) states and favorable energetics for formation of the separated triplets. PMID:26693957

  13. Understanding of fission dynamics from fragment mass distribution studies

    International Nuclear Information System (INIS)

    Nuclear fission is a complex process involving large scale collective rearrangement of nuclear matter. The shape of the fissioning nucleus evolves in the multidimensional space of relative separation, neck opening, mass asymmetry and deformation of the fragments. Various types of nuclear shape deformation have been observed from the fission fragment spectroscopy studies, which provide crucial information in the understanding of the dynamics of the fission process. The fission fragment mass and charge distributions are decided during saddle to scission transition and are directly related to the scission configuration. Several nuclear models have been put forward to describe the fission fragment mass distribution as well as shape deformation of the fragments. The width of the fission fragment mass distribution is related to the fission process and provides information on the type of fission reactions

  14. Det demokratiske argument for absolut ytringsfrihed

    DEFF Research Database (Denmark)

    Lægaard, Sune

    2014-01-01

    Artiklen diskuterer den påstand, at absolut ytringsfrihed er en nødvendig forudsætning for demokratisk legitimitet med udgangspunkt i en rekonstruktion af et argument fremsat af Ronald Dworkin. Spørgsmålet er, hvorfor ytringsfrihed skulle være en forudsætning for demokratisk legitimitet, og hvorf...

  15. Time Function and Absolute Black Hole

    DEFF Research Database (Denmark)

    Javadi, Hossein; Forouzbakhsh, Farshid

    2006-01-01

    Einstein’s theory of gravity is not consistent with quantum mechanics, because general relativity cannot be quantized. [1] But without conversion of force and energy, it is impossible to find a grand unified theory. A very important result of CPH theory is time function that allows we give a new ...... description of absolute black hole and before the big bang....

  16. Teaching Absolute Value Inequalities to Mature Students

    Science.gov (United States)

    Sierpinska, Anna; Bobos, Georgeana; Pruncut, Andreea

    2011-01-01

    This paper gives an account of a teaching experiment on absolute value inequalities, whose aim was to identify characteristics of an approach that would realize the potential of the topic to develop theoretical thinking in students enrolled in prerequisite mathematics courses at a large, urban North American university. The potential is…

  17. ABSOLUTE MEASUREMENT OF THE GANIL BEAM ENERGY

    NARCIS (Netherlands)

    CASANDJIAN, JM; MITTIG, W; BEUNARD, R; GAUDARD, L; LEPINESZILY, A; VILLARI, ACC; AUGER, G; BIANCHI, L; CUNSOLO, A; FOTI, A; LICHTENTHALER, R; PLAGNOL, E; SCHUTZ, Y; SIEMSSEN, RH; WIELECZKO, JP

    1993-01-01

    The energy of the GANIL cyclotron beam was measured on-line during the Pb-208 + Pb-208 elastic scattering experiment ''Search for Color van der Waals Force in the Pb-208 + Pb-208 Mott scattering'' with an absolute precision of 7 x 10(-5) at approximately 1.0 GeV, which represents an improvement of o

  18. Stimulus Probability Effects in Absolute Identification

    Science.gov (United States)

    Kent, Christopher; Lamberts, Koen

    2016-01-01

    This study investigated the effect of stimulus presentation probability on accuracy and response times in an absolute identification task. Three schedules of presentation were used to investigate the interaction between presentation probability and stimulus position within the set. Data from individual participants indicated strong effects of…

  19. Solving Absolute Value Equations Algebraically and Geometrically

    Science.gov (United States)

    Shiyuan, Wei

    2005-01-01

    The way in which students can improve their comprehension by understanding the geometrical meaning of algebraic equations or solving algebraic equation geometrically is described. Students can experiment with the conditions of the absolute value equation presented, for an interesting way to form an overall understanding of the concept.

  20. Absolute-stability results in infinite dimensions

    NARCIS (Netherlands)

    Curtain, RF; Logemann, H; Staffans, O

    2004-01-01

    We derive absolute-stability results of Popov and circle-criterion type for infinite-dimensional systems in an input-output setting. Our results apply to feedback systems in which the linear part is the series interconnection of an input-output stable linear system and an integrator, and the nonline

  1. Magnetoresistive sensor for absolute position detection

    NARCIS (Netherlands)

    Groenland, J.P.J.

    1984-01-01

    A digital measurement principle for absolute position is decscribed. The position data is recorded serially into a single track of a hard-magnetic layer with the help of longitudinal saturation recording. Detection is possible by means of an array of sensor elements which can be made of a substrate.

  2. Thin-film magnetoresistive absolute position detector

    NARCIS (Netherlands)

    Groenland, Johannes Petrus Jacobus

    1990-01-01

    The subject of this thesis is the investigation of a digital absolute posi- tion-detection system, which is based on a position-information carrier (i.e. a magnetic tape) with one single code track on the one hand, and an array of magnetoresistive sensors for the detection of the informatio

  3. Magnetoresistive transducer for absolute position detection

    NARCIS (Netherlands)

    Groenland, J.P.J.

    1984-01-01

    In this paper a new method is presented for the measurement of absolute linear or angular position. The digital position information is recorded serially into one track of a suitable hard-magnetic medium. The stray field of this information layer determines the angular magnetisation distribution in

  4. Brownian shape motion on five-dimensional potential-energy surfaces:nuclear fission-fragment mass distributions.

    Science.gov (United States)

    Randrup, Jørgen; Möller, Peter

    2011-04-01

    Although nuclear fission can be understood qualitatively as an evolution of the nuclear shape, a quantitative description has proven to be very elusive. In particular, until now, there existed no model with demonstrated predictive power for the fission-fragment mass yields. Exploiting the expected strongly damped character of nuclear dynamics, we treat the nuclear shape evolution in analogy with Brownian motion and perform random walks on five-dimensional fission potential-energy surfaces which were calculated previously and are the most comprehensive available. Test applications give good reproduction of highly variable experimental mass yields. This novel general approach requires only a single new global parameter, namely, the critical neck size at which the mass split is frozen in, and the results are remarkably insensitive to its specific value.

  5. Fission xenon in trinities from the first nuclear test

    Science.gov (United States)

    Meshik, Alexander; Pravdivtseva, Olga; Hohenberg, Charles

    2008-04-01

    Trinitites, greenish glassy remnants found in the crater of the first nuclear test, refer to the molten material of the desert where the Trinity test was conducted. Recently the Los Alamos Lab^1 suggested that the sand was first vaporized by the fireball and then precipitated onto a cooler desert surface forming trinitites. We measured the Xe mass-spectra during stepped pyrolysis of two trinitites and found an unusual Xe isotopic structure, dominated by ^132Xe and ^131Xe compared to the nominal fission yield spectra, which cannot be due to n-capture or any other nuclear processes. This structure is caused by the chemical separation of the immediate neutron-rich fission products, a process similar to CFF observed in the Oklo natural reactor^2. When quantitatively applied to our observations it suggests that 17 min after the test one of the samples had a temperature of 1390^oC, while 5 min after the test the other was at 1320^oC. These results contribute to a reconstruction of the cooling history of the trinities and a demonstration of which formation scenario is the more likely. ^1V. Montoya et al, Denver X-ray Conf. (2007), ^2A. Meshik, C. Hohenberg and O. Pravdivtseva, PRL 93, 182302 (2004).

  6. Upgrade and yields of the IGISOL facility

    Energy Technology Data Exchange (ETDEWEB)

    Karvonen, P. [Department of Physics, P.O. Box 35 (YFL), University of Jyvaeskylae, FI-40014 (Finland)], E-mail: Pasi.Karvonen@phys.jyu.fi; Penttilae, H.; Aystoe, J. [Department of Physics, P.O. Box 35 (YFL), University of Jyvaeskylae, FI-40014 (Finland); Billowes, J.; Campbell, P. [Schuster Laboratory, University of Manchester, Manchester M13 9PL (United Kingdom); Elomaa, V-V. [Department of Physics, P.O. Box 35 (YFL), University of Jyvaeskylae, FI-40014 (Finland); Hager, U. [Department of Physics, P.O. Box 35 (YFL), University of Jyvaeskylae, FI-40014 (Finland); TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, V6T 2A3 (Canada); Hakala, J.; Jokinen, A.; Kessler, T.; Kankainen, A.; Moore, I.D. [Department of Physics, P.O. Box 35 (YFL), University of Jyvaeskylae, FI-40014 (Finland); Peraejaervi, K. [Department of Physics, P.O. Box 35 (YFL), University of Jyvaeskylae, FI-40014 (Finland); STUK, Radiation and Nuclear Safety Authority, P.O. Box 14, FI-00881 (Finland); Rahaman, S. [Department of Physics, P.O. Box 35 (YFL), University of Jyvaeskylae, FI-40014 (Finland); Rinta-Antila, S. [Department of Physics, P.O. Box 35 (YFL), University of Jyvaeskylae, FI-40014 (Finland); Department of Physics, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Rissanen, J.; Ronkainen, J.; Saastamoinen, A. [Department of Physics, P.O. Box 35 (YFL), University of Jyvaeskylae, FI-40014 (Finland); Sonoda, T. [Department of Physics, P.O. Box 35 (YFL), University of Jyvaeskylae, FI-40014 (Finland); K. U. Leuven, Instituut voor Kern- en Stralingsfysica, University of Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Tordoff, B. [Department of Physics, P.O. Box 35 (YFL), University of Jyvaeskylae, FI-40014 (Finland); Schuster Laboratory, University of Manchester, Manchester M13 9PL (United Kingdom)] (and others)

    2008-10-15

    The front end of the Jyvaeskylae IGISOL facility was upgraded in 2003 by increasing its pumping capacity and by improving the radiation shielding. In late 2005, the skimmer electrode of the mass separator was replaced by a sextupole ion guide, which improved the mass separator efficiency up to an order of magnitude. The current design of the facility is described. The updated yield data, achieved with and without the additional JYFLTRAP purification, using both fusion evaporation reactions and particle induced fission is presented to give an overview of the capability of the facility. These data have been determined either by radioactivity measurements or by direct ion counting after the Penning trap system.

  7. Derivation of Energy Generated by Nuclear Fission-Fusion Reaction

    OpenAIRE

    Kayano, Hideo; Teshigawara, Makoto; Konashi, Kenji; Yamamoto, Takuya

    1994-01-01

    In the solids which contain fissionable elements and deuterium, it is expected that the energy generated by nuclear fission contributes to the promotion of the D-D nuclear fusion in the solids. When nuclear fission occurs by neutrons in the solid, the fissionable elements divide into two fission product nuclei having the energy of 100MeV, respectively. It is expected that the hige energy fission products promote rapidly nuclear fision reaction by knocking out the D atoms in the solids and by ...

  8. Nuclear fission induced by heavy ions

    International Nuclear Information System (INIS)

    Because the accelerators of the 50's and 60's mostly provided beams of light ions, well suited for studying individual quantum states of low angular momentum or reactions involving the transfer of one or two nucleons, the study of fission, being an example of large-scale collective motion, has until recently been outside of the mainstream of nuclear research. This situation has changed in recent years, due to the new generation of accelerators capable of producing beams of heavy ions with energies high enough to overcome the Coulomb barriers of all stable nuclei. These have made possible the study of new examples of large-scale collective motions, involving major rearrangements of nuclear matter, such as deep-inelastic collisions and heavy-ion fusion. Perhaps the most exciting development in the past few years is the discovery that dissipative effects (nuclear viscosity) play an important role in fission induced by heavy ions, contrary to earlier assumptions that the viscosity involved in fission was very weak and played only a minor role. This review will be mainly concerned with developments in heavy-ion induced fission during the last few years and have an emphasis on the very recent results on dissipative effects. Since heavy-ion bombardment usually results in compound systems with high excitation energies and angular momenta, shell effects might be expected to be small, and the subject of low energy fission, where they are important, will not be addressed. 285 refs., 58 figs

  9. Fission product decay heat for thermal reactors

    Energy Technology Data Exchange (ETDEWEB)

    Dickens, J. K.

    1979-01-01

    In the past five years there have been new experimental programs to measure decay heat (i.e., time dependent beta- plus gamma-ray energy release rates from the decay of fission products) following thermal-neutron fission of /sup 235/U, /sup 239/Pu, and /sup 241/Pu for times after fission between 1 and approx. 10/sup 5/ sec. Experimental results from the ORNL program stress the very short times following fission, particularly in the first few hundred sec. Complementing the experimental effort, computer codes have been developed for the computation of decay heat by summation of calculated individual energies released by each one of the fission products. By suitably combining the results of the summation calculations with the recent experimental results, a new Decay Heat Standard has been developed for application to safety analysis of operations of light water reactors. The new standard indicates somewhat smaller energy release rates than those being used at present, and the overall uncertainties assigned to the new standard are much smaller than those being used at present.

  10. Rupture of the neck in nuclear fission

    International Nuclear Information System (INIS)

    We introduce a degree of freedom to describe the rupture of the neck in nuclear fission and calculate the point at which the neck ruptures as the nucleus descends dynamically from its fission saddle point. This is done by mentally slicing the system into two portions at its minimum neck radius and calculating the force required to separate the two portions while keeping their shapes fixed. This force is obtained by differentiating with respect to separation the sum of the Coulomb and nuclear interaction energies between the two portions. For nuclei throughout the Periodic Table we calculate this force along dynamical paths leading from the fission saddle point. The force is initially attractive but becomes repulsive when the neck reaches a critical size. For actinide nuclei the neck radius at which rupture occurs is about 2 fm. This increases the calculated translational kinetic energy of the fission fragments at infinity relative to that calculated for scission occurring at zero neck radius. With the effect of neck rupture taken into account, we calculate and compare with experimental results fission-fragment kinetic energies for two types of nuclear dissipation: ordinary two-body viscosity and one-body dissipation

  11. An improved technique for fission track dating

    International Nuclear Information System (INIS)

    The necessity of improving the fission track dating (FTD) technique both at home and abroad is illustrated. The ways of making such improvement are also proposed. It is suggested to calibrate the constant b value of the uranium standard glass by using the method of fission products activity. The 3 kinds of uranium standard glass which have been calibrated are NBS SRM962a, UB1 and UB2. An established new method σ·Φ ρd/b, to measure neutron fluence, avoids the influence of the varying neutron spectrum on measuring neutron fluence. The improved etching technique for fission tracks in zircon adopted a two-step method which includes the molten alkali system etching using NaOH + KOH and the mixed acid system etching using HNO3 + HF; this technique results in adequate track etching, increased track clarity and less interference. In this way the intensity of tracks is authentically reflected. Dividing angular zone in accordance with the angular distribution of spontaneous fission track on the crystal surface of minerals to count the tracks and using the improved etching technique to remove the non-uniform angular distribution of spontaneous fission tracks in zircon, ensure the accuracy of tracks count. The improved FTD techniques were used to finish Laboratory Standardized Calibration. The tests using international FTD age standards samples have proved that above mentioned techniques are reliable and practical in obtaining the accurate FTD data. (8 tabs.; 3 figs.)

  12. Heavy-ion-induced fission reactions

    International Nuclear Information System (INIS)

    Fission-cross-section excitation functions were measured from near threshold to approx. 10 MeV/nucleon using heavy-ion beams from the Brookhaven National Laboratory three-stage Tandem Accelerator Facility. The systems studied included 210Po formed in 12C and 18O induced reactions, 186Os formed in 9Be, 12C, 16O, and 26Mg reactions, 158Er formed in 16O, 24Mg, 32S, and 64Ni reactions. In addition the composite systems 204206, 208Po formed with 16O and 18O projectiles were studied. The measured fission excitation functions along with previous data from 4He and 11B bombardments for the 186Os and 210Po systems and recent data on the 200Pb system are compared to predictions from a statistical model using recent fission-barrier calculations from A. Sierk. Comparisons of calculated and measured fission excitation functions show good overall agreement between data and calculations and between calculations with two different level-density functions. It is concluded that the barriers from Sierk give a good description of both the mass and angular momentum dependence of fission barriers in this region

  13. Anatomy of neck configuration in fission decay

    CERN Document Server

    Patra, S K; Satpathy, L

    2010-01-01

    The anatomy of neck configuration in the fission decay of Uranium and Thorium isotopes is investigated in a microscopic study using Relativistic mean field theory. The study includes $^{236}U$ and $^{232}Th$ in the valley of stability and exotic neutron rich isotopes $^{250}U$, $^{256}U$, $^{260}U$, $^{240}Th$, $^{250}Th$, $^{256}Th$ likely to play important role in the r-process nucleosynthesis in stellar evolution. Following the static fission path, the neck configurations are generated and their composition in terms of the number of neutrons and protons are obtained showing the progressive rise in the neutron component with the increase of mass number. Strong correlation between the neutron multiplicity in the fission decay and the number of neutrons in the neck is seen. The maximum neutron-proton ratio is about 5 for $^{260}$U and $^{256}$Th suggestive of the break down of liquid-drop picture and inhibition of the fission decay in still heavier isotopes. Neck as precursor of a new mode of fission decay li...

  14. The thermal column. A new irradiation position for fission-track dating in the University of Pavia Triga Mark II nuclear reactor

    International Nuclear Information System (INIS)

    In the present paper a new irradiation position arranged for fission-track dating in the Triga Mark II reactor of the University of Pavia is described. Fluence values determined using the NIST glass standard SRM 962a for fission-track dating and the traditional metal foils are compared. Relatively high neutron thermalization (cadmium ratio of 85.3 for gold and 643 for cobalt) and lack of significant fluence spatial gradients are very favorable factors for fission-track dating. Finally, international age standards (or putative age standards) irradiated in this new position yielded results consistent with independent reference ages. (author). 9 refs., 2 figs., 4 tabs

  15. Multi-modal fission in collinear ternary cluster decay of {sup 252}Cf(sf, fff)

    Energy Technology Data Exchange (ETDEWEB)

    Oertzen, W. von, E-mail: oertzen@helmholtz-berlin.de [Helmholtz-Zentrum Berlin, 14109 Berlin (Germany); Joint Institute for Nuclear Research, FLNR, 141980 Dubna (Russian Federation); Nasirov, A.K. [Joint Institute for Nuclear Research, FLNR, 141980 Dubna (Russian Federation); Institute of Nuclear Physics, 100214, Tashkent (Uzbekistan); Kyungpook National University, 702-701, Daegu (Korea, Republic of); Tashkhodjaev, R.B. [Institute of Nuclear Physics, 100214, Tashkent (Uzbekistan); Inha University in Tashkent, 100170, Tashkent (Uzbekistan)

    2015-06-30

    We discuss the multiple decay modes of collinear fission in {sup 252}Cf(sf, fff), with three fragments as suggested by the potential energy surface (PES). Fission as a statistical decay is governed by the phase space of the different decay channels, which are suggested in the PES-landscape. The population of the fission modes is determined by the minima in the PES at the scission points and on the internal potential barriers. The ternary collinear decay proceeds as a sequential process, in two steps. The originally observed ternary decay of {sup 252}Cf(sf) into three different masses (e.g. {sup 132–140}Sn, {sup 52–48}Ca, {sup 68–72}Ni), observed by the FOBOS group in the FLNR (Flerov Laboratory for Nuclear Reactions) of the JINR (Dubna) the collinear cluster tripartition (CCT), is one of the ternary fission modes. This kind of “true ternary fission” of heavy nuclei has often been predicted in theoretical works during the last decades. In the present note we discuss different ternary fission modes in the same system. The PES shows pronounced minima, which correspond to several modes of ternary fragmentations. These decays have very similar dynamical features as the previously observed CCT-decays. The data obtained in the experiments on CCT allow us to extract the yields for different decay modes using specific gates on the measured parameters, and to establish multiple modes of the ternary fission decay.

  16. Monte Carlo Models for the Production of beta-delayed Gamma Rays Following Fission of Special Nuclear Materials

    Energy Technology Data Exchange (ETDEWEB)

    Pruet, J; Prussin, S; Descalle, M; Hall, J

    2004-02-03

    A Monte Carlo method for the estimation of {beta}-delayed {gamma}-ray spectra following fission is described that can accommodate an arbitrary time-dependent fission rate and photon collection history. The method invokes direct sampling of the independent fission yield distributions of the fissioning system, the branching ratios for decay of individual fission products and the spectral distributions for photon emission for each decay mode. Though computationally intensive, the method can provide a detailed estimate of the spectrum that would be recorded by an arbitrary spectrometer, and can prove useful in assessing the quality of evaluated data libraries, for identifying gaps in these libraries, etc. The method is illustrated by a first comparison of calculated and experimental spectra from decay of short-lived fission products following the reactions {sup 235}U(n{sub th}, f) and {sup 239}Pu(n{sub th}, f). For general purpose transport calculations, where detailed consideration of the large number of individual {gamma}-ray transitions in a spectrum may be unnecessary, it is shown that an accurate and simple parameterization of a {gamma}-ray source function can be obtained. These parametrizations should provide high-quality average spectral distributions that should prove useful in calculations describing photons escaping from thick attenuating media.

  17. Search for instantaneous radiation near the instant of break momentum of various fissioning nuclear systems at low excitation energies

    International Nuclear Information System (INIS)

    The main results of studying the properties of “instantaneous” neutrons and γ photons during the fission of 233,235U(nth, f) and 239Pu(nth, f) nuclei and spontaneous fission of 252Cf, which were performed on the WWR-M reactor at the St. Petersburg Nuclear Physics Institute, Russian Academy of Sciences, are presented. Along with obtaining the main characteristics of the instantaneous radiation from fission fragments, these studies were also aimed at gaining deeper insight into such exotic processes as the emission of break neutrons and γ photons from a fissioning nucleus near the break point. These investigations were performed on different experimental setups using different analytical methods. This approach allowed us not only to find but also to reduce to minimum possible systematic effects. The yields of break neutrons were found to be about (5–7) × 10−2 of the total number of neutrons per 233,235U(n, f) fission event and approximately twice as much for 239Pu(n, f) and 252Cf. The coefficient of T-odd asymmetry for γ photons is in agreement with the estimate obtained on the assumption that the observed effect is mainly related to the γ photons emitted by excited fragments with highly oriented angular momenta. This fact gave grounds to conclude that the desired break γ photons cannot be reliably selected (within the obtained experimental accuracy) against the much larger background of γ photons from fission fragments.

  18. Solar vs. Fission Surface Power for Mars

    Science.gov (United States)

    Rucker, Michelle A.; Oleson, Steve; George, Pat; Landis, Geoffrey A.; Fincannon, James; Bogner, Amee; Jones, Robert E.; Turnbull, Elizabeth; Martini, Michael C.; Gyekenyesi, John Z.; Colozza, Anthony J.; Schmitz, Paul C.; Packard, Thomas W.

    2016-01-01

    A multi-discipline team of experts from the National Aeronautics and Space Administration (NASA) developed Mars surface power system point design solutions for two conceptual missions. The primary goal of this study was to compare the relative merits of solar- versus fission-powered versions of each surface mission. First, the team compared three different solar power options against a fission power system concept for a sub-scale, uncrewed demonstration mission. The 4.5 meter (m) diameter pathfinder lander's primary mission would be to demonstrate Mars entry, descent, and landing techniques. Once on the Martian surface, the lander's In Situ Resource Utilization (ISRU) payload would demonstrate liquid oxygen propellant production using atmospheric resources. For the purpose of this exercise, location was assumed to be at the Martian equator. The three solar concepts considered included a system that only operated during daylight hours (at roughly half the daily propellant production rate of a round-the-clock fission design), a battery-augmented system that operated through the night (matching the fission concept's propellant production rate), and a system that operated only during daylight, but at a higher rate (again, matching the fission concept's propellant production rate). Including 30% mass growth allowance, total payload masses for the three solar concepts ranged from 1,116 to 2,396 kg, versus the 2,686 kg fission power scheme. However, solar power masses are expected to approach or exceed the fission payload mass at landing sites further from the equator, making landing site selection a key driver in the final power system decision. The team also noted that detailed reliability analysis should be performed on daytime-only solar power schemes to assess potential issues with frequent ISRU system on/off cycling. Next, the team developed a solar-powered point design solution for a conceptual four-crew, 500-day surface mission consisting of up to four landers per

  19. Fission Enhanced diffusion of uranium in zirconia

    CERN Document Server

    Bérerd, N; Moncoffre, N; Sainsot, P; Faust, H; Catalette, H

    2005-01-01

    This paper deals with the comparison between thermal and Fission Enhanced Diffusion (FED) of uranium into zirconia, representative of the inner face of cladding tubes. The experiments under irradiation are performed at the Institut Laue Langevin (ILL) in Grenoble using the Lohengrin spectrometer. A thin $^{235}UO\\_2$ layer in direct contact with an oxidized zirconium foil is irradiated in the ILL high flux reactor. The fission product flux is about 10$^{11}$ ions cm$^{-2}$ s$^{-1}$ and the target temperature is measured by an IR pyrometer. A model is proposed to deduce an apparent uranium diffusion coefficient in zirconia from the energy distribution broadening of two selected fission products. It is found to be equal to 10$^{-15}$ cm$^2$ s$^{-1}$ at 480$\\circ$C and compared to uranium thermal diffusion data in ZrO$\\_2$ in the same pressure and temperature conditions. The FED results are analysed in comparison with literature data.

  20. Lunar surface fission power supplies: Radiation issues

    Energy Technology Data Exchange (ETDEWEB)

    Houts, M.G.; Lee, S.K.

    1994-07-01

    A lunar space fission power supply shield that uses a combination of lunar regolith and materials brought from earth may be optimal for early lunar outposts and bases. This type of shield can be designed such that the fission power supply does not have to be moved from its landing configuration, minimizing handling and required equipment on the lunar surface. Mechanisms for removing heat from the lunar regolith are built into the shield, and can be tested on earth. Regolith activation is greatly reduced compared with a shield that uses only regolith, and it is possible to keep the thermal conditions of the fission power supply close to these seen in free space. For a well designed shield, the additional mass required to be brought fro earth should be less than 1000 kg. Detailed radiation transport calculations confirm the feasibility of such a shield.