WorldWideScience

Sample records for absolute beam current

  1. Absolute beam current monitoring in endstation c

    International Nuclear Information System (INIS)

    Bochna, C.

    1995-01-01

    The first few experiments at CEBAF require approximately 1% absolute measurements of beam currents expected to range from 10-25μA. This represents errors of 100-250 nA. The initial complement of beam current monitors are of the non intercepting type. CEBAF accelerator division has provided a stripline monitor and a cavity monitor, and the authors have installed an Unser monitor (parametric current transformer or PCT). After calibrating the Unser monitor with a precision current reference, the authors plan to transfer this calibration using CW beam to the stripline monitors and cavity monitors. It is important that this be done fairly rapidly because while the gain of the Unser monitor is quite stable, the offset may drift on the order of .5μA per hour. A summary of what the authors have learned about the linearity, zero drift, and gain drift of each type of current monitor will be presented

  2. Absolute beam-charge measurement for single-bunch electron beams

    International Nuclear Information System (INIS)

    Suwada, Tsuyoshi; Ohsawa, Satoshi; Furukawa, Kazuro; Akasaka, Nobumasa

    2000-01-01

    The absolute beam charge of a single-bunch electron beam with a pulse width of 10 ps and that of a short-pulsed electron beam with a pulse width of 1 ns were measured with a Faraday cup in a beam test for the KEK B-Factory (KEKB) injector linac. It is strongly desired to obtain a precise beam-injection rate to the KEKB rings, and to estimate the amount of beam loss. A wall-current monitor was also recalibrated within an error of ±2%. This report describes the new results for an absolute beam-charge measurement for single-bunch and short-pulsed electron beams, and recalibration of the wall-current monitors in detail. (author)

  3. Superharp: A wire scanner with absolute position readout for beam energy measurement at CEBAF

    International Nuclear Information System (INIS)

    Yan, C.

    1994-01-01

    Superharp is an upgrade CEBAF wire scanner with absolute position readout from shaft encoder. As high precision absolute beam position probe (Δx ∼ 10μm), three pairs of superharps are installed at the entrance, the mid-point, and the exit of Hall C arc beamline in beam switch yard, which will be tuned in dispersive mode as energy spectrometer performing 10 -3 beam energy measurement. With dual sensor system: the direct current pickup and the bremsstrahlung detection electronics, beam profile can be obtained by superharp at wide beam current range from 1 μA to 100 μA

  4. Precision intercomparison of beam current monitors at CEBAF

    International Nuclear Information System (INIS)

    Kazimi, R.; Dunham, B.; Krafft, G.A.; Legg, R.; Liang, C.; Sinclair, C.; Mamosser, J.

    1995-01-01

    The CEBAF accelerator delivers a CW electron beam at fundamental 1497 MHz, with average beam current up to 200 μA. Accurate, stable nonintercepting beam current monitors are required for: setup/control, monitoring of beam current and beam losses for machine protection and personnel safety, and providing beam current information to experimental users. Fundamental frequency stainless steel RF cavities have been chosen for these beam current monitors. This paper reports on precision intercomparison between two such RF cavities, an Unser monitor, and two Faraday cups, all located in the injector area. At the low beam energy in the injector, it is straightforward to verify the high efficiency of the Faraday cups, and the Unser monitor included a wire through it to permit an absolute calibration. The cavity intensity monitors have proven capable of stable, high precision monitoring of the beam current

  5. Absolute luminosity measurement at LHCb with beam-gas imaging

    CERN Document Server

    Barschel, C

    2013-01-01

    A novel technique to measure the absolute luminosity at the Large Hadron Collider (LHC) using beam-gas interactions has been successfully used in the LHCb experiment. A gas injection device (SMOG) has been installed in the LHCb experiment to increase the pressure around the interaction point during dedicated fills. The Beam-Gas Imaging method (BGI) has now the potential to surpass the accuracy of the commonly used *van der Meer scan* method (VDM). The technique has been used in 10 LHC fills during 2012 including and also provided a first luminosity measurement for proton-lead collisions. This talk presents the principles of the gas injection and the improvements reached with the increased pressure. Furthermore the gas injection increased the accuracy measurement of the so-called ghost charges and also intensities per bunch. Those uncertainties are becoming the dominating factor because the uncertainty on the total beam current have been reduced.

  6. Absolute calibration and beam background of the Squid Polarimeter

    International Nuclear Information System (INIS)

    Blaskiewicz, M.M.; Cameron, P.R.; Shea, T.J.

    1996-01-01

    The problem of beam background in Squid Polarimetry is not without residual benefits. The authors may deliberately generate beam background by gently kicking the beam at the spin tune frequency. This signal may be used to accomplish a simple and accurate absolute calibration of the polarimeter. The authors present details of beam background calculations and their application to polarimeter calibration, and suggest a simple proof-of-principle accelerator experiment

  7. Faraday cup: absolute dosimetry for ELIMED beam line

    International Nuclear Information System (INIS)

    Leanza, R.; Romano, F.; Scuderi, V.; Amico, A.G.; Cuttone, G.; Larosa, G.; Milluzzo, G.; Petringa, G.; Pipek, J.; Cirrone, G.A.P.; Margarone, D.; Schillaci, F.

    2017-01-01

    The scientific community has shown a growing interest towards multidisciplinary applications of laser-driven beams. In this framework, the ELIMED (ELI-Beamlines MEDical and multidisciplinary applications) beamline will be the first transport beamline dedicated to the medical and multidisciplinary studies with laser-accelerated ion beams. Detectors for dosimetry represent one of key-element of the ELIMED beamline, allowing a dose delivering with good result as required in the clinical applications. In this contribution, a Faraday Cup for absolute dosimetry, designed and realized at INFN-LNS, is described.

  8. Relative and absolute level populations in beam-foil--excited neutral helium

    International Nuclear Information System (INIS)

    Davidson, J.

    1975-01-01

    Relative and absolute populations of 19 levels in beam-foil--excited neutral helium at 0.275 MeV have been measured. The singlet angular-momentum sequences show dependences on principal quantum number consistent with n -3 , but the triplet sequences do not. Singlet and triplet angular-momentum sequences show similar dependences on level excitation energy. Excitation functions for six representative levels were measured in the range 0.160 to 0.500 MeV. The absolute level populations increase with energy, whereas the neutral fraction of the beam decreases with energy. Further, the P angular-momentum levels are found to be overpopulated with respect to the S and D levels. The overpopulation decreases with increasing principal quantum number

  9. Relative and absolute level populations in beam-foil-excited neutral helium

    Science.gov (United States)

    Davidson, J.

    1975-01-01

    Relative and absolute populations of 19 levels in beam-foil-excited neutral helium at 0.275 MeV have been measured. The singlet angular-momentum sequences show dependences on principal quantum number consistent with n to the -3rd power, but the triplet sequences do not. Singlet and triplet angular-momentum sequences show similar dependences on level excitation energy. Excitation functions for six representative levels were measured in the range from 0.160 to 0.500 MeV. The absolute level populations increase with energy, whereas the neutral fraction of the beam decreases with energy. Further, the P angular-momentum levels are found to be overpopulated with respect to the S and D levels. The overpopulation decreases with increasing principal quantum number.

  10. A geometrically exact beam element based on the absolute nodal coordinate formulation

    International Nuclear Information System (INIS)

    Gerstmayr, Johannes; Matikainen, Marko K.; Mikkola, Aki M.

    2008-01-01

    In this study, Reissner's classical nonlinear rod formulation, as implemented by Simo and Vu-Quoc by means of the large rotation vector approach, is implemented into the framework of the absolute nodal coordinate formulation. The implementation is accomplished in the planar case accounting for coupled axial, bending, and shear deformation. By employing the virtual work of elastic forces similarly to Simo and Vu-Quoc in the absolute nodal coordinate formulation, the numerical results of the formulation are identical to those of the large rotation vector formulation. It is noteworthy, however, that the material definition in the absolute nodal coordinate formulation can differ from the material definition used in Reissner's beam formulation. Based on an analytical eigenvalue analysis, it turns out that the high frequencies of cross section deformation modes in the absolute nodal coordinate formulation are only slightly higher than frequencies of common shear modes, which are present in the classical large rotation vector formulation of Simo and Vu-Quoc, as well. Thus, previous claims that the absolute nodal coordinate formulation is inefficient or would lead to ill-conditioned finite element matrices, as compared to classical approaches, could be refuted. In the introduced beam element, locking is prevented by means of reduced integration of certain parts of the elastic forces. Several classical large deformation static and dynamic examples as well as an eigenvalue analysis document the equivalence of classical nonlinear rod theories and the absolute nodal coordinate formulation for the case of appropriate material definitions. The results also agree highly with those computed in commercial finite element codes

  11. LANSCE beam current limiter

    International Nuclear Information System (INIS)

    Gallegos, F.R.

    1996-01-01

    The Radiation Security System (RSS) at the Los Alamos Neutron Science Center (LANSCE) provides personnel protection from prompt radiation due to accelerated beam. Active instrumentation, such as the Beam Current Limiter, is a component of the RSS. The current limiter is designed to limit the average current in a beam line below a specific level, thus minimizing the maximum current available for a beam spill accident. The beam current limiter is a self-contained, electrically isolated toroidal beam transformer which continuously monitors beam current. It is designed as fail-safe instrumentation. The design philosophy, hardware design, operation, and limitations of the device are described

  12. High Accuracy Beam Current Monitor System for CEBAF'S Experimental Hall A

    International Nuclear Information System (INIS)

    J. Denard; A. Saha; G. Lavessiere

    2001-01-01

    CEBAF accelerator delivers continuous wave (CW) electron beams to three experimental Halls. In Hall A, all experiments require continuous, non-invasive current measurements and a few experiments require an absolute accuracy of 0.2 % in the current range from 1 to 180 (micro)A. A Parametric Current Transformer (PCT), manufactured by Bergoz, has an accurate and stable sensitivity of 4 (micro)A/V but its offset drifts at the muA level over time preclude its direct use for continuous measurements. Two cavity monitors are calibrated against the PCT with at least 50 (micro)A of beam current. The calibration procedure suppresses the error due to PCT's offset drifts by turning the beam on and off, which is invasive to the experiment. One of the goals of the system is to minimize the calibration time without compromising the measurement's accuracy. The linearity of the cavity monitors is a critical parameter for transferring the accurate calibration done at high currents over the whole dynamic range. The method for measuring accurately the linearity is described

  13. Low current beam techniques

    Energy Technology Data Exchange (ETDEWEB)

    Saint, A.; Laird, J.S.; Bardos, R.A.; Legge, G.J.F. [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Nishijima, T.; Sekiguchi, H. [Electrotechnical Laboratory, Tsukuba (Japan).

    1993-12-31

    Since the development of Scanning Transmission Microscopy (STIM) imaging in 1983 many low current beam techniques have been developed for the scanning (ion) microprobe. These include STIM tomography, Ion Beam Induced Current, Ion Beam Micromachining and Microlithography and Ionoluminense. Most of these techniques utilise beam currents of 10{sup -15} A down to single ions controlled by beam switching techniques This paper will discuss some of the low beam current techniques mentioned above, and indicate, some of their recent applications at MARC. A new STIM technique will be introduced that can be used to obtain Z-contrast with STIM resolution. 4 refs., 3 figs.

  14. Low current beam techniques

    Energy Technology Data Exchange (ETDEWEB)

    Saint, A; Laird, J S; Bardos, R A; Legge, G J.F. [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Nishijima, T; Sekiguchi, H [Electrotechnical Laboratory, Tsukuba (Japan).

    1994-12-31

    Since the development of Scanning Transmission Microscopy (STIM) imaging in 1983 many low current beam techniques have been developed for the scanning (ion) microprobe. These include STIM tomography, Ion Beam Induced Current, Ion Beam Micromachining and Microlithography and Ionoluminense. Most of these techniques utilise beam currents of 10{sup -15} A down to single ions controlled by beam switching techniques This paper will discuss some of the low beam current techniques mentioned above, and indicate, some of their recent applications at MARC. A new STIM technique will be introduced that can be used to obtain Z-contrast with STIM resolution. 4 refs., 3 figs.

  15. Small-sized monitor of beam current and profile for the proton pulse electrostatic accelerator

    International Nuclear Information System (INIS)

    Getmanov, V.N.

    1985-01-01

    Design and principle of operation of current monitor and beam profile of range-coordinate type are described. Monitor operation peculiarities are discussed using diagnostics of a beam of 330-420 keV electrostatic pulse proton accelerator with a beam current of up to 20 mA, at a current density of up to 23 mA x cm -2 and wth pulse duraton of about 20 μs. The monitor consists of a vacuum-dense foil of 3.0+-0.1 μm in thickness (or 0.81+-0.0x- mg x cm -2 ) two grid electrodes, each containing 12 wires, and as solid copper bottom. Foil serves for chopping off background particles with a path lesser 3.0 μm and stands thermal pulse load up to 0.5 J/cm -2 . Grid electrode wires are oriented perpendicularly to lach other and form a two-coordinate secondary-emisson roughness indicator. The bothhom is used for measuring an absolute value of beam current

  16. ABSOLUTE NEUTRINO MASSES

    DEFF Research Database (Denmark)

    Schechter, J.; Shahid, M. N.

    2012-01-01

    We discuss the possibility of using experiments timing the propagation of neutrino beams over large distances to help determine the absolute masses of the three neutrinos.......We discuss the possibility of using experiments timing the propagation of neutrino beams over large distances to help determine the absolute masses of the three neutrinos....

  17. Calorimetric beam-current integrator

    International Nuclear Information System (INIS)

    Osborne, J.L.

    1984-01-01

    A single-cup calorimeter for beam-current integration and its associated electronics are described. The design allows beam power up to 120 W and is shown to integrate with an accuracy of 1% over a range of beam energy, current, and power. (orig.)

  18. A beam position monitor for low current dc beams

    International Nuclear Information System (INIS)

    Adderley, P.; Barry, W.; Heefner, J.; Kloeppel, P.; Rossmanith, R.; Wise, M.; Jachim, S.

    1989-01-01

    The 4 GeV recirculating linac, CEBAF, if presently under construction and will produce a CW beam with average current between.1 and 200 μA. In order to measure beam position, the beam current will be amplitude modulated at a frequency of 10 MHz. The modulation is detected by an inductive loop type monitor with electronics sensitive only to the modulation frequency. The first test with beam from the CEBAF injector indicate that beam position can be measured with an accuracy of .1 mm at a modulated beam current of 1 μA. 1 ref., 6 figs., 1 tab

  19. LHCb: A novel method for an absolute luminosity measurement at LHCb using beam-gas imaging

    CERN Multimedia

    Barschel, C

    2013-01-01

    A novel technique to measure the absolute luminosity at the Large Hadron Collider (LHC) using beam-gas interactions has been successfully used in the LHCb experiment. A gas injection device (SMOG) has been installed in the LHCb experiment to increase the pressure around the interaction point during dedicated fills. The Beam Gas Imaging method (BGI) has now the potential to surpass the accuracy of the commonly used van der Meer scan method (VDM). This poster presents the principles of the Beam Gas Imaging method used to measure the beam overlap integral. Furthermore the gas injection increased the accuracy measurement of the so-called ghost charges and also intensities per bunch.

  20. Absolute x-ray dosimetry on a synchrotron medical beam line with a graphite calorimeter.

    Science.gov (United States)

    Harty, P D; Lye, J E; Ramanathan, G; Butler, D J; Hall, C J; Stevenson, A W; Johnston, P N

    2014-05-01

    The absolute dose rate of the Imaging and Medical Beamline (IMBL) on the Australian Synchrotron was measured with a graphite calorimeter. The calorimetry results were compared to measurements from the existing free-air chamber, to provide a robust determination of the absolute dose in the synchrotron beam and provide confidence in the first implementation of a graphite calorimeter on a synchrotron medical beam line. The graphite calorimeter has a core which rises in temperature when irradiated by the beam. A collimated x-ray beam from the synchrotron with well-defined edges was used to partially irradiate the core. Two filtration sets were used, one corresponding to an average beam energy of about 80 keV, with dose rate about 50 Gy/s, and the second filtration set corresponding to average beam energy of 90 keV, with dose rate about 20 Gy/s. The temperature rise from this beam was measured by a calibrated thermistor embedded in the core which was then converted to absorbed dose to graphite by multiplying the rise in temperature by the specific heat capacity for graphite and the ratio of cross-sectional areas of the core and beam. Conversion of the measured absorbed dose to graphite to absorbed dose to water was achieved using Monte Carlo calculations with the EGSnrc code. The air kerma measurements from the free-air chamber were converted to absorbed dose to water using the AAPM TG-61 protocol. Absolute measurements of the IMBL dose rate were made using the graphite calorimeter and compared to measurements with the free-air chamber. The measurements were at three different depths in graphite and two different filtrations. The calorimetry measurements at depths in graphite show agreement within 1% with free-air chamber measurements, when converted to absorbed dose to water. The calorimetry at the surface and free-air chamber results show agreement of order 3% when converted to absorbed dose to water. The combined standard uncertainty is 3.9%. The good agreement of

  1. High current beam transport with multiple beam arrays

    International Nuclear Information System (INIS)

    Kim, C.H.

    1985-05-01

    Highlights of recent experimental and theoretical research progress on the high current beam transport of single and multiple beams by the Heavy Ion Fusion Accelerator Research (HIFAR) group at the Lawrence Berkeley Laboratory (LBL) are presented. In the single beam transport experiment (SBTE), stability boundaries and the emittance growth of a space charge dominated beam in a long quadrupole transport channel were measured and compared with theory and computer simulations. Also, a multiple beam ion induction linac (MBE-4) is being constructed at LBL which will permit study of multiple beam transport arrays, and acceleration and bunch length compression of individually focused beamlets. Various design considerations of MBE-4 regarding scaling laws, nonlinear effects, misalignments, and transverse and longitudinal space charge effects are summarized. Some aspects of longitudinal beam dynamics including schemes to generate the accelerating voltage waveforms and to amplify beam current are also discussed

  2. LANSCE Beam Current Limiter (XL)

    International Nuclear Information System (INIS)

    Gallegos, F.R.; Hall, M.J.

    1997-01-01

    The Radiation Security System (RSS) at the Los Alamos Neutron Science Center (LANSCE) is an engineered safety system that provides personnel protection from prompt radiation due to accelerated proton beams. The Beam Current Limiter (XL), as an active component of the RSS, limits the maximum average current in a beamline, thus the current available for a beam spill accident. Exceeding the pre-set limit initiates action by the RSS to mitigate the hazard (insertion of beam stoppers in the low energy beam transport). The beam limiter is an electrically isolated, toroidal transformer and associated electronics. The device was designed to continuously monitor beamline currents independent of any external timing. Fail-safe operation was a prime consideration in its development. Fail-safe operation is defined as functioning as intended (due to redundant circuitry), functioning with a more sensitive fault threshold, or generating a fault condition. This report describes the design philosophy, hardware, implementation, operation, and limitations of the device

  3. Current neutralization of nanosecond risetime, high-current electron beam

    International Nuclear Information System (INIS)

    Lidestri, J.P.; Spence, P.W.; Bailey, V.L.; Putnam, S.D.; Fockler, J.; Eichenberger, C.; Champney, P.D.

    1991-01-01

    This paper reports that the authors have recently investigated methods to achieve current neutralization in fast risetime (<3 ns) electron beams propagating in low-pressure gas. For this investigation, they injected a 3-MV, 30-kA intense beam into a drift cell containing gas pressures from 0.10 to 20 torr. By using a fast net current monitor (100-ps risetime), it was possible to observe beam front gas breakdown phenomena and to optimize the drift cell gas pressure to achieve maximum current neutralization. Experimental observations have shown that by increasing the drift gas pressure (P ∼ 12.5 torr) to decrease the mean time between secondary electron/gas collisions, the beam can propagate with 90% current neutralization for the full beam pulsewidth (16 ns)

  4. A measurement of the absolute neutron beam polarization produced by an optically pumped 3He neutron spin filter

    International Nuclear Information System (INIS)

    Rich, D.R.; Bowman, J.D.; Crawford, B.E.; Delheij, P.P.J.; Espy, M.A.; Haseyama, T.; Jones, G.; Keith, C.D.; Knudson, J.; Leuschner, M.B.; Masaike, A.; Masuda, Y.; Matsuda, Y.; Penttilae, S.I.; Pomeroy, V.R.; Smith, D.A.; Snow, W.M.; Szymanski, J.J.; Stephenson, S.L.; Thompson, A.K.; Yuan, V.

    2002-01-01

    The capability of performing accurate absolute measurements of neutron beam polarization opens a number of exciting opportunities in fundamental neutron physics and in neutron scattering. At the LANSCE pulsed neutron source we have measured the neutron beam polarization with an absolute accuracy of 0.3% in the neutron energy range from 40 meV to 10 eV using an optically pumped polarized 3 He spin filter and a relative transmission measurement technique. 3 He was polarized using the Rb spin-exchange method. We describe the measurement technique, present our results, and discuss some of the systematic effects associated with the method

  5. Squid based beam current meter

    International Nuclear Information System (INIS)

    Kuchnir, M.

    1983-01-01

    A SQUID based beam current meter has the capability of measuring the current of a beam with as little as 30 x 155 antiprotons (with a signal to noise ratio of 2). If low noise dc current is used to cancel most of the beam or an up-down counter is used to count auto-resets this sensitivity will be available at any time in the acumulation process. This current meter will therefore be a unique diagnostic tool for optimizing the performance of several Tev I components. Besides requiring liquid helium it seems that its only drawback is not to follow with the above sensitivity a sudden beam change larger than 16 μA, something that could be done using a second one in a less sensitive configuration

  6. Tutorial on beam current monitoring

    International Nuclear Information System (INIS)

    Webber, Robert C.

    2000-01-01

    This paper is a tutorial level review covering a wide range of aspects related to charged particle beam current measurement. The tutorial begins with a look at the characteristics of the beam as a signal source, the associated electromagnetic fields, the influence of the typical accelerator environment on those fields, and the usual means of modifying and controlling that environment to facilitate beam current measurement. Short descriptions of three quite different types of current monitors are presented and a quantitative review of the classical transformer circuit is given. Recognizing that environmental noise pick-up may present a large source of error in quantitative measurements, signal handling considerations are given considerable attention using real-life examples. An example of a successful transport line beam current monitor implementation is presented and the tutorial concludes with a few comments about signal processing and current monitor calibration issues

  7. A Lagrange-Eulerian formulation of an axially moving beam based on the absolute nodal coordinate formulation

    Energy Technology Data Exchange (ETDEWEB)

    Pechstein, Astrid, E-mail: astrid.pechstein@jku.at [Johannes Kepler University Linz, Institute of Technical Mechanics (Austria); Gerstmayr, Johannes, E-mail: johannes.gerstmayr@accm.co.at [Austrian Center of Competence in Mechatronics (Austria)

    2013-10-15

    In the scope of this paper, a finite-element formulation for an axially moving beam is presented. The beam element is based on the absolute nodal coordinate formulation, where position and slope vectors are used as degrees of freedom instead of rotational parameters. The equations of motion for an axially moving beam are derived from generalized Lagrange equations in a Lagrange-Eulerian sense. This procedure yields equations which can be implemented as a straightforward augmentation to the standard equations of motion for a Bernoulli-Euler beam. Moreover, a contact model for frictional contact between an axially moving strip and rotating rolls is presented. To show the efficiency of the method, simulations of a belt drive are presented.

  8. Sensitive beam current measurement for FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Schwickert, Marcus; Kurian, Febin; Reeg, Hansjoerg [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Seidel, Paul; Neubert, Ralf [Friedrich-Schiller-Universitaet Jena (Germany); Geithner, Rene; Vodel, Wolfgang [Helmholtz-Institut Jena (Germany)

    2012-07-01

    Presently FAIR, the Facility for Antiproton and Ion Research, entered the final planning phase at GSI. The new accelerator facility requires precise devices for beam current measurements due to the large dynamics in beam intensities for the various synchrotrons, transport lines and storage rings. We report on the actual developments of beam diagnostic devices for the measurement of beam intensities ranging from 5 x 10{sup 11} uranium ions down to the detection of less than 10{sup 4} antiprotons. This contribution gives an overview of the planned instruments with a focus on non-intercepting beam current transformers, and summarizes the on-going development of a cryogenic current comparator.

  9. High current density ion beam measurement techniques

    International Nuclear Information System (INIS)

    Ko, W.C.; Sawatzky, E.

    1976-01-01

    High ion beam current measurements are difficult due to the presence of the secondary particles and beam neutralization. For long Faraday cages, true current can be obtained only by negative bias on the target and by summing the cage wall and target currents; otherwise, the beam will be greatly distorted. For short Faraday cages, a combination of small magnetic field and the negative target bias results in correct beam current. Either component alone does not give true current

  10. High bandwidth beam current monitor

    International Nuclear Information System (INIS)

    Baltrusaitis, R.M.; Ekdahl, C.A.; Cooper, R.G.; Peterson, E.; Warn, C.E.

    1993-01-01

    A stripline directional coupler beam current monitor capable of measuring the time structure of a 30-ps electron beam bunch has been developed. The time response performance of the monitor compares very well with Cherenkov light produced in quartz by the electron beam. The four-pickup monitor is now used on a routine basis for measuring the beam duration, tuning for optimized beam bunching, and centering the bunch in the beam pipe

  11. Near threshold absolute TDCS: First results

    International Nuclear Information System (INIS)

    Roesel, T.; Schlemmer, P.; Roeder, J.; Frost, L.; Jung, K.; Ehrhardt, H.

    1992-01-01

    A new method, and first results for an impact energy 2 eV above the threshold of ionisation of helium, are presented for the measurement of absolute triple differential cross sections (TDCS) in a crossed beam experiment. The method is based upon measurement of beam/target overlap densities using known absolute total ionisation cross sections and of detection efficiencies using known absolute double differential cross sections (DDCS). For the present work the necessary absolute DDCS for 1 eV electrons had also to be measured. Results are presented for several different coplanar kinematics and are compared with recent DWBA calculations. (orig.)

  12. Beam intensity monitoring for the external proton beam at LAMPF

    International Nuclear Information System (INIS)

    Barrett, R.J.; Anderson, B.D.; Willard, H.B.; Anderson, A.N.; Jarmie, N.

    1975-07-01

    Three different intensity monitors were tested in the external proton beam at LAMPF, and together cover the entire range of beam currents available. A 800 kg Faraday cup was installed and used to measure the absolute intensity to better than 1 percent for beam currents up to several nanoamperes. A high gain ion chamber was used as part of the calibration procedure for the Faraday cup, and was found to be useful when monitoring very small beam intensities, being reliable down to the few picoampere level. A secondary emission monitor was also tested, calibrated, and found to be trustworthy only for beams of greater than 50 pA intensity. (auth)

  13. Digitally compensated beam current transformer

    International Nuclear Information System (INIS)

    Kesselman, Martin

    2005-01-01

    The Spallation Neutron Source (SNS) is being built by a collaboration of six laboratories. Beam current monitors (BCMs) will be used to record the current of H-minus and H-plus beams ranging from 15 mA (tune-up in the Front End and Linac) to over 60A fully accumulated in the Ring and dumped to the load as a single pulse in the Ring to Beam Target (RTBT). The time structure of these beams ranges from 645 ns 'mini' bunches at the 1.05 MHz ring revolution rate, to an overall 1 ms long macro-pulse. The requirements for the BCMs will depend upon their location within the system. The need to measure individual mini-pulses, examine the characteristics of the chopper edge, as well as the longer average current pulse of the macropulse, or long duration pulses during Linac tuning place wide requirements upon the response of current transformers. To obtain the desired accuracy and resolution, current transformers must have <1 ns rise time and droops of 0.1%/ms. This places a significant design burden on the current transformer; such a design is almost impossible to achieve. Extremely large expensive cores are needed to meet the low droop, while leakage inductance increases with size, thereby reducing the achievable rise time. In this paper, I discuss a digital compensation approach [M. Kesselman, Spallation neutron source beam current monitor electronics, PAC2001 June 18-22, 2001, Chicago, IL.] that extends the lower cut-off frequency of the current transformer, optimized for high frequency response, so that it can be used in this application with improvements in droop of the order of 1000:1. Transformer saturation (current-time product) is a separate issue and the transformer must be designed to handle the current-time product of the signal to assure it does not saturate

  14. Online diagnoses of high current-density beams

    International Nuclear Information System (INIS)

    Gilpatrick, J.D.

    1994-01-01

    Los Alamos National Laboratory has proposed several CW-proton-beam facilities for production of tritium or transmutation of nuclear waste with beam-current densities greater than 5 mA/mm 2 . The primary beam-diagnostics-instrumentation requirement for these facilities is provision of sufficient beam information to understand and minimize beam-loss. To accomplish this task, the beam-diagnostics instrumentation must measure beam parameters such as the centroids and profiles, total integrated current, and particle loss. Noninterceptive techniques must be used for diagnosis of high-intensity CW beam at low energies due to the large quantity of power deposited in an interceptive diagnostic device by the beam. Transverse and longitudinal centroid measurements have been developed for bunched beams by measuring and processing image currents on the accelerator walls. Transverse beam-profile measurement-techniques have also been developed using the interaction of the particle beam with the background gases near the beam region. This paper will discuss these noninterceptive diagnostic Techniques

  15. rf beam-current, -phase, and -position monitors

    International Nuclear Information System (INIS)

    Young, L.

    1984-01-01

    A prototype rf beam monitor has been tested on the Racetrack Microtron's (RTM) 100 kV injector beam line at the National Bureau of Standards (NBS). This beam monitor is capable of measuring the current, the relative phase, and the position of the beam. The beam is bunched at 2380 MHz for acceleration by the linac in the injector beam line. This train of beam bunches passing through the beam monitor cavities excites the cavities at this resonance frequency of 2380 MHz. Probes in the cavities couple some of the beam-excited rf power out of the cavities. This rf power can be amplified if necessary and then analyzed by a double balanced mixer (DBM). The DBM can also be used as a phase detector. The effective shunt impedance of the cavities was measured with the CW beam. For the position monitor cavity, the shunt impedance is proportional to the displacement from the axis. The measured response of the prototype rf beam current monitor setup is a linear function of beam current. Response of the rf beam-position monitor is also shown

  16. Campargue-type supersonic beam sources : absolute intensities, skimmer transmission and scaling laws for mono-atomic gases He, Ne and Ar

    NARCIS (Netherlands)

    Beijerinck, H.C.W.; van Gerwen, R.J.F.; Kerstel, E.R.T.; Martens, J.F.M.; van Vliembergen, E.J.W.; Smits, M.R.T.; Kaashoek, G.H.

    1985-01-01

    The process of beam formation in a supersonic expansion into a high pressure (10-2 -1 Torr) expansion chamber, a so-called Campargue-type beam source, has been investigated, using the theoretical frame work of an ideal undisturbed expansion as a reference. Absolute values of the centre-line

  17. Neutral-beam current drive in tokamaks

    International Nuclear Information System (INIS)

    Devoto, R.S.

    1986-01-01

    The theory of neutral-beam current drive in tokamaks is reviewed. Experiments are discussed where neutral beams have been used to drive current directly and also indirectly through neoclassical effects. Application of the theory to an experimental test reactor is described. It is shown that neutral beams formed from negative ions accelerated to 500 to 700 keV are needed for this device

  18. Neutral-beam current drive in tokamaks

    International Nuclear Information System (INIS)

    Devoto, R.S.

    1987-01-01

    The theory of neutral-beam current drive in tokamaks is reviewed. Experiments are discussed where neutral beams have been used to drive current directly and also indirectly through neoclassical effects. Application of the theory to an experimental test reactor is described. It is shown that neutral beams formed from negative ions accelerated to 500-700 keV are needed for this device

  19. SNS project-wide beam current monitors

    International Nuclear Information System (INIS)

    Kesselman, M.; Witkover, R.; Doolittle, L.; Power, J.

    2000-01-01

    A consortium of national laboratories is constructing the Spallation Neutron Source [1] (SNS) to be installed at Oak Ridge National Laboratory. There are signal similarities that exist in the beam diagnostic instrumentation that could permit common designs. This paper will focus on the beam current monitoring requirements, and the methods under consideration to measure beam current in various locations throughout the SNS facility

  20. An Absolute Valve for the ITER Neutral Beam Injector

    International Nuclear Information System (INIS)

    Jones, Ch.; Chuilon, B.; Michael, W.

    2006-01-01

    In the ITER reference design a fast shutter was included to limit tritium migration into the beamline vacuum enclosures. The need was recently identified to extend the functionality of the fast shutter to that of an absolute valve in order to facilitate injector maintenance procedures and to satisfy safety requirements in case of an in-vessel loss of coolant event. Three concepts have been examined satisfying the ITER requirements for speed of actuation, sealing performance over the required lifetime, and pressure differential in fault scenarios, namely: a rectangular closure section; a circular cross section; and a rotary JET-type valve. The rectangular section represents the most efficient usage of the available space envelope and leads to a minimum-mass system, although it requires greater total force for a given load per unit length of seal. However, a metallic seal of the '' hard/hard '' type, where the seal relies on the elastic properties of the material and does not utilise any type of spring device, can provide the required seal performance with typical loading of 200 kg/cm. The conceptual design of the proposed absolute valve will be presented. The aperture dimensions are 1.45 m high by 0.6 m wide, with minimum achievable leak rate of 1 · 10 -9 mbarl/s and maximum pressure differential of 3 bar across the valve. Sealing force is provided using two seal plates, linked by a 3 mm thick ' omega ' diaphragm, by pressurisation of the interspace to 8 bar; this allows for a relative movement of the plates of 2 mm. Movement of the device perpendicular to the beam direction is carried out using a novel magnetic drive in order to transmit the motive force across the vacuum boundary, similar to that demonstrated on a test-rig in an earlier study. The conceptual design includes provision of all the services such as pneumatics and water cooling to cope with the heat loads from neutral beams in quasi steady-state operation and from the ITER plasma. A future programme

  1. Current neutralization of converging ion beams

    International Nuclear Information System (INIS)

    Mosher, D.

    1978-01-01

    It is desired to consider the problem of current neutralization of heavy ion beams traversing gas backgrounds in which the conductivity changes due to beam heating and beam convergence. The procedure is to determine Green's-function solutions to the magnetic-diffusion equation derived from Maxwell's equations and an assumed scaler-plasma conductivity sigma for the background-electron current density j/sub e/. The present calculation is more general than some previously carried out in that arbitrary time variations for the beam current j/sub b/ and conductivity are allowed and the calculation is valid for both weak and strong neutralization. Results presented here must be combined with an appropriate energy-balance equation for the heated background in order to obtain the neutralization self-consistently

  2. Multigigahertz beam-current and position monitor

    International Nuclear Information System (INIS)

    Carlson, R.L.; Stout, L.E.

    1985-01-01

    A self-integrating magnetic-loop device having a risetime of less than 175 ps has been developed to monitor the temporal behavior of the electron beam current and position within each 3.3-ns micropulse generated by the PHERMEX rf linear accelerator. Beam current is measured with a 2-GHz bandwidth by combining these loops in a four-port hybrid summer. Another application of these loops uses two 180 0 hybrids to give 2-GHz time-resolved beam position to an accuracy of 1 mm. These sensors are nonintrusive to the propagating beam and allow ultrafast beam measurements previously restricted to the technique of recording the Cerenkov-light emission from an intercepting Kapton foil using a streak camera

  3. Regional absolute conductivity reconstruction using projected current density in MREIT

    International Nuclear Information System (INIS)

    Sajib, Saurav Z K; Kim, Hyung Joong; Woo, Eung Je; Kwon, Oh In

    2012-01-01

    Magnetic resonance electrical impedance tomography (MREIT) is a non-invasive technique for imaging the internal conductivity distribution in tissue within an MRI scanner, utilizing the magnetic flux density, which is introduced when a current is injected into the tissue from external electrodes. This magnetic flux alters the MRI signal, so that appropriate reconstruction can provide a map of the additional z-component of the magnetic field (B z ) as well as the internal current density distribution that created it. To extract the internal electrical properties of the subject, including the conductivity and/or the current density distribution, MREIT techniques use the relationship between the external injection current and the z-component of the magnetic flux density B = (B x , B y , B z ). The tissue studied typically contains defective regions, regions with a low MRI signal and/or low MRI signal-to-noise-ratio, due to the low density of nuclear magnetic resonance spins, short T 2 or T* 2 relaxation times, as well as regions with very low electrical conductivity, through which very little current traverses. These defective regions provide noisy B z data, which can severely degrade the overall reconstructed conductivity distribution. Injecting two independent currents through surface electrodes, this paper proposes a new direct method to reconstruct a regional absolute isotropic conductivity distribution in a region of interest (ROI) while avoiding the defective regions. First, the proposed method reconstructs the contrast of conductivity using the transversal J-substitution algorithm, which blocks the propagation of severe accumulated noise from the defective region to the ROI. Second, the proposed method reconstructs the regional projected current density using the relationships between the internal current density, which stems from a current injection on the surface, and the measured B z data. Combining the contrast conductivity distribution in the entire imaging

  4. Absolute experimental cross sections for the electron impact ionization of rubidium. Technical summary report

    International Nuclear Information System (INIS)

    Hughes, D.W.; Feeney, R.K.

    1980-01-01

    The absolute cross sections for the double, triple, and quadruple ionization of Rb + ions by electron impact have been measured from below their respective thresholds to approximately 3000 eV. This determination has been accomplished using a crossed beam facility in which monoenergetic beams of ions and electrons are caused to intersect at right angles in a well-defined collision volume. Multiply charged, product ions born as a result of the electron impact are deflected into their respective detectors by cascaded electrostatic analyzers. The multiply charged beam current component is measured by means of a vibrating reed electrometer operating in the rate-of-charge mode. The required singly charged rubidium ions are produced in a thermionic ion source and pass through a series of focusing, collimating and deflecting structures before entering the interaction region. A thermionically generated, rectangular electron beam intercepts the target ions in a spatially designated collision volume. Just prior to entering this interaction region the two beams can be made to pass through a movable slit scanner which determines their spatial profiles. The various charged particle currents, energies and beam current density distributions represent the experimental data from which the desired absolute cross sections have been determined. The results obtained with this technique are compared with available theoretical predictions of the appropriate cross sections

  5. Absolute luminosity measurements with the LHCb detector at the LHC

    CERN Document Server

    Aaij, R; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amhis, Y; Anderson, J; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Arrabito, L; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Bachmann, S; Back, J J; Bailey, D S; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bates, A; Bauer, C; Bauer, Th; Bay, A; Bediaga, I; Belous, K; Belyaev, I; Ben-Haim, E; Benayoun, M; Bencivenni, G; Benson, S; Benton, J; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blanks, C; Blouw, J; Blusk, S; Bobrov, A; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Brisbane, S; Britsch, M; Britton, T; Brook, N H; Brown, H; Büchler-Germann, A; Burducea, I; Bursche, A; Buytaert, J; Cadeddu, S; Caicedo Carvajal, J M; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casse, G; Cattaneo, M; Charles, M; Charpentier, Ph; Chiapolini, N; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Collins, P; Constantin, F; Conti, G; Contu, A; Cook, A; Coombes, M; Corti, G; Cowan, G A; Currie, R; D'Almagne, B; D'Ambrosio, C; David, P; De Bonis, I; De Capua, S; De Cian, M; De Lorenzi, F; De Miranda, J M; De Paula, L; De Simone, P; Decamp, D; Deckenhoff, M; Degaudenzi, H; Deissenroth, M; Del Buono, L; Deplano, C; Deschamps, O; Dettori, F; Dickens, J; Dijkstra, H; Diniz Batista, P; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Dzhelyadin, R; Eames, C; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisele, F; Eisenhardt, S; Ekelhof, R; Eklund, L; Elsasser, Ch; d'Enterria, D G; Esperante Pereira, D; Estève, L; Falabella, A; Fanchini, E; Färber, C; Fardell, G; Farinelli, C; Farry, S; Fave, V; Fernandez Albor, V; Ferro-Luzzi, M; Filippov, S; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Frank, M; Frei, C; Frosini, M; Furcas, S; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garnier, J-C; Garofoli, J; Garra Tico, J; Garrido, L; Gaspar, C; Gauvin, N; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Gregson, S; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Haefeli, G; Haen, C; Haines, S C; Hampson, T; Hansmann-Menzemer, S; Harji, R; Harnew, N; Harrison, J; Harrison, P F; He, J; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicks, E; Hofmann, W; Holubyev, K; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Huston, R S; Hutchcroft, D; Hynds, D; Iakovenko, V; Ilten, P; Imong, J; Jacobsson, R; Jaeger, A; Jahjah Hussein, M; Jans, E; Jansen, F; Jaton, P; Jean-Marie, B; Jing, F; John, M; Johnson, D; Jones, C R; Jost, B; Kandybei, S; Karacson, M; Karbach, T M; Keaveney, J; Kerzel, U; Ketel, T; Keune, A; Khanji, B; Kim, Y M; Knecht, M; Koblitz, S; Koppenburg, P; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kruzelecki, K; Kucharczyk, M; Kukulak, S; Kumar, R; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leroy, O; Lesiak, T; Li, L; Li Gioi, L; Lieng, M; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; Lopes, J H; Lopez Asamar, E; Lopez-March, N; Luisier, J; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Magnin, J; Malde, S; Mamunur, R M D; Manca, G; Mancinelli, G; Mangiafave, N; Marconi, U; Märki, R; Marks, J; Martellotti, G; Martens, A; Martin, L; Martín Sánchez, A; Martinez Santos, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Matveev, M; Maurice, E; Maynard, B; Mazurov, A; McGregor, G; McNulty, R; Mclean, C; Meissner, M; Merk, M; Merkel, J; Messi, R; Miglioranzi, S; Milanes, D A; Minard, M-N; Monteil, S; Moran, D; Morawski, P; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Musy, M; Mylroie-Smith, J; Naik, P; Nakada, T; Nandakumar, R; Nardulli, J; Nasteva, I; Nedos, M; Needham, M; Neufeld, N; Nguyen-Mau, C; Nicol, M; Nies, S; Niess, V; Nikitin, N; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Pal, B; Palacios, J; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Paterson, S K; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perego, D L; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pessina, G; Petrella, A; Petrolini, A; Pie Valls, B; Pietrzyk, B; Pilar, T; Pinci, D; Plackett, R; Playfer, S; Plo Casasus, M; Polok, G; Poluektov, A; Polycarpo, E; Popov, D; Popovici, B; Potterat, C; Powell, A; du Pree, T; Prisciandaro, J; Pugatch, V; Puig Navarro, A; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Raven, G; Redford, S; Reid, M M; dos Reis, A C; Ricciardi, S; Rinnert, K; Roa Romero, D A; Robbe, P; Rodrigues, E; Rodrigues, F; Rodriguez Perez, P; Rogers, G J; Roiser, S; Romanovsky, V; Rouvinet, J; Ruf, T; Ruiz, H; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salzmann, C; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santinelli, R; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schleich, S; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M -H; Schwemmer, R; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shao, B; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Skottowe, H P; Skwarnicki, T; Smith, A C; Smith, N A; Sobczak, K; Soler, F J P; Solomin, A; Soomro, F; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Styles, N; Subbiah, V K; Swientek, S; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Topp-Joergensen, S; Tran, M T; Tsaregorodtsev, A; Tuning, N; Ubeda Garcia, M; Ukleja, A; Urquijo, P; Uwer, U; Vagnoni, V; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; Velthuis, J J; Veltri, M; Vervink, K; Viaud, B; Videau, I; Vilasis-Cardona, X; Visniakov, J; Vollhardt, A; Voong, D; Vorobyev, A; Voss, H; Wacker, K; Wandernoth, S; Wang, J; Ward, D R; Webber, A D; Websdale, D; Whitehead, M; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wishahi, J; Witek, M; Witzeling, W; Wotton, S A; Wyllie, K; Xie, Y; Xing, F; Yang, Z; Young, R; Yushchenko, O; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhong, L; Zverev, E; Zvyagin, A

    2012-01-01

    Absolute luminosity measurements are of general interest for colliding-beam experiments at storage rings. These measurements are necessary to determine the absolute cross-sections of reaction processes and are valuable to quantify the performance of the accelerator. LHCb has applied two methods to determine the absolute scale of its luminosity measurements for proton-proton collisions at the LHC with a centre-of-mass energy of 7 TeV. In addition to the classic ``van der Meer scan'' method a novel technique has been developed which makes use of direct imaging of the individual beams using beam-gas and beam-beam interactions. This beam imaging method is made possible by the high resolution of the LHCb vertex detector and the close proximity of the detector to the beams, and allows beam parameters such as positions, angles and widths to be determined. The results of the two methods have comparable precision and are in good agreement. Combining the two methods, an overall precision of 3.5\\% in the absolute lumi...

  6. Computer simulation of electron beams. II. Low-cost beam-current reconstruction

    International Nuclear Information System (INIS)

    de Wolf, D.A.

    1985-01-01

    Reconstruction of current density in electron beams is complicated by distortion of phase space which can require very fine discretization of the beam into trajectories. An efficient discretization of phase space is exploited, using conservation of charge and current in hypertriangle patches, to reconstruct the current density by fitting Gaussians through the distorted hypertriangles. Advantages and limitations are discussed

  7. Absolute intensities of supersonic beams

    International Nuclear Information System (INIS)

    Beijerinck, H.C.W.; Habets, A.H.M.; Verster, N.F.

    1977-01-01

    In a molecular beam experiment the center-line intensity I(0) (particles s -1 sterad -1 ) and the flow rate dN/dt (particles s -1 ) of a beam source are important features. To compare the performance of different types of beam sources the peaking factor, kappa, is defined as the ratio kappa=π(I(0)/dN/dt). The factor π is added to normalize to kappa=1 for an effusive source. The ideal peaking factor for the supersonic flow from a nozzle follows from continuum theory. Numerical values of kappa are available. Experimental values of kappa for an argon expansion are presented in this paper, confirming these calculations. The actual center-line intensity of a supersonic beam source with a skimmer is reduced in comparison to this ideal intensity if the skimmer shields part of the virtual source from the detector. Experimental data on the virtual source radius are given enabling one to predict this shielding quantitatively. (Auth.)

  8. Dynamic neutral beam current and voltage control to improve beam efficacy in tokamaks

    Science.gov (United States)

    Pace, D. C.; Austin, M. E.; Bardoczi, L.; Collins, C. S.; Crowley, B.; Davis, E.; Du, X.; Ferron, J.; Grierson, B. A.; Heidbrink, W. W.; Holcomb, C. T.; McKee, G. R.; Pawley, C.; Petty, C. C.; Podestà, M.; Rauch, J.; Scoville, J. T.; Spong, D. A.; Thome, K. E.; Van Zeeland, M. A.; Varela, J.; Victor, B.

    2018-05-01

    An engineering upgrade to the neutral beam system at the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] enables time-dependent programming of the beam voltage and current. Initial application of this capability involves pre-programmed beam voltage and current injected into plasmas that are known to be susceptible to instabilities that are driven by energetic ( E ≥ 40 keV) beam ions. These instabilities, here all Alfvén eigenmodes (AEs), increase the transport of the beam ions beyond a classical expectation based on particle drifts and collisions. Injecting neutral beam power, P beam ≥ 2 MW, at reduced voltage with increased current reduces the drive for Alfvénic instabilities and results in improved ion confinement. In lower-confinement plasmas, this technique is applied to eliminate the presence of AEs across the mid-radius of the plasmas. Simulations of those plasmas indicate that the mode drive is decreased and the radial extent of the remaining modes is reduced compared to a higher beam voltage case. In higher-confinement plasmas, this technique reduces AE activity in the far edge and results in an interesting scenario of beam current drive improving as the beam voltage reduces from 80 kV to 65 kV.

  9. Limiting currents of overcompensated electron beams

    International Nuclear Information System (INIS)

    Malafaev, V.A.

    1990-01-01

    A possibility of producing recompensated electron beam and increasing its limiting currents in the magnetic field is experimentally investigated. It is shown that such a possibility is realized when the beam is surrounded by a cylindrical net placed into the tube located under the positive potential relative to the net. In this case an increase of limiting current at the expense of increasing the ion life time, takes place. Current, exceeding the Pierce threshold 1.5 times, is obtained

  10. Current neutralization in ballistic transport of light ion beams

    International Nuclear Information System (INIS)

    Hubbard, R.F.; Slinker, S.P.; Lampe, M.; Joyce, G.; Ottinger, P.

    1992-01-01

    Intense light ion beams are being considered as drivers to ignite fusion targets in the Laboratory Microfusion Facility (LMF). Ballistic transport of these beams from the diode to the target is possible only if the beam current is almost completely neutralized by plasma currents. This paper summarizes related work on relativistic electron beam and heavy ion beam propagation and describes a simple simulation model (DYNAPROP) which has been modified to treat light ion beam propagation. DYNAPROP uses an envelope equation to treat beam dynamics and uses rate equations to describe plasma and conductivity generation. The model has been applied both to the high current, 30 MeV Li +3 beams for LMF as well as low current, 1.2 MeV proton beams which are currently being studied on GAMBLE B at the Naval Research Laboratory. The predicted ratio of net currents to beam current is ∼0.1--0.2 for the GAMBLE experiment and ∼0.01 for LMF. The implications of these results for LMF and the GAMBLE experiments art discussed in some detail. The simple resistive model in DYNAPROP has well-known limitations in the 1 torr regime which arise primarily from the neglect of plasma electron transport. Alternative methods for treating the plasma response are discussed

  11. Electron Beam Diagnostics in Plasmas Based on Electron Beam Ionization

    Science.gov (United States)

    Leonhardt, Darrin; Leal-Quiros, Edbertho; Blackwell, David; Walton, Scott; Murphy, Donald; Fernsler, Richard; Meger, Robert

    2001-10-01

    Over the last few years, electron beam ionization has been shown to be a viable generator of high density plasmas with numerous applications in materials modification. To better understand these plasmas, we have fielded electron beam diagnostics to more clearly understand the propagation of the beam as it travels through the background gas and creates the plasma. These diagnostics vary greatly in sophistication, ranging from differentially pumped systems with energy selective elements to metal 'hockey pucks' covered with thin layers of insulation to electrically isolate the detector from the plasma but pass high energy beam electrons. Most importantly, absolute measurements of spatially resolved beam current densities are measured in a variety of pulsed and continuous beam sources. The energy distribution of the beam current(s) will be further discussed, through experiments incorporating various energy resolving elements such as simple grids and more sophisticated cylindrical lens geometries. The results are compared with other experiments of high energy electron beams through gases and appropriate disparities and caveats will be discussed. Finally, plasma parameters are correlated to the measured beam parameters for a more global picture of electron beam produced plasmas.

  12. Development of high current electron beam generator

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byeong Cheol; Lee, Jong Min; Kim, Sun Kook [and others

    1997-05-01

    A high-current electron beam generator has been developed. The energy and the average current of the electron beam are 2 MeV and 50 mA, respectively. The electron beam generator is composed of an electron gun, RF acceleration cavities, a 260-kW RF generator, electron beam optics components, and control system, etc. The electron beam generator will be used for the development of a millimeter-wave free-electron laser and a high average power infrared free-electron laser. The machine will also be used as a user facility in nuclear industry, environment industry, semiconductor industry, chemical industry, etc. (author). 15 tabs., 85 figs.

  13. Development of high current electron beam generator

    International Nuclear Information System (INIS)

    Lee, Byeong Cheol; Lee, Jong Min; Kim, Sun Kook

    1997-05-01

    A high-current electron beam generator has been developed. The energy and the average current of the electron beam are 2 MeV and 50 mA, respectively. The electron beam generator is composed of an electron gun, RF acceleration cavities, a 260-kW RF generator, electron beam optics components, and control system, etc. The electron beam generator will be used for the development of a millimeter-wave free-electron laser and a high average power infrared free-electron laser. The machine will also be used as a user facility in nuclear industry, environment industry, semiconductor industry, chemical industry, etc. (author). 15 tabs., 85 figs

  14. In vivo visualization method by absolute blood flow velocity based on speckle and fringe pattern using two-beam multipoint laser Doppler velocimetry

    Energy Technology Data Exchange (ETDEWEB)

    Kyoden, Tomoaki, E-mail: kyouden@nc-toyama.ac.jp; Naruki, Shoji; Akiguchi, Shunsuke; Momose, Noboru; Homae, Tomotaka; Hachiga, Tadashi [National Institute of Technology, Toyama College, 1-2 Ebie-Neriya, Imizu, Toyama 933-0293 (Japan); Ishida, Hiroki [Department of Applied Physics, Faculty of Science, Okayama University of Science, 1-1 Ridai-cho, Okayama 700-0005 (Japan); Andoh, Tsugunobu [Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194 (Japan); Takada, Yogo [Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585 (Japan)

    2016-08-28

    Two-beam multipoint laser Doppler velocimetry (two-beam MLDV) is a non-invasive imaging technique able to provide an image of two-dimensional blood flow and has potential for observing cancer as previously demonstrated in a mouse model. In two-beam MLDV, the blood flow velocity can be estimated from red blood cells passing through a fringe pattern generated in the skin. The fringe pattern is created at the intersection of two beams in conventional LDV and two-beam MLDV. Being able to choose the depth position is an advantage of two-beam MLDV, and the position of a blood vessel can be identified in a three-dimensional space using this technique. Initially, we observed the fringe pattern in the skin, and the undeveloped or developed speckle pattern generated in a deeper position of the skin. The validity of the absolute velocity value detected by two-beam MLDV was verified while changing the number of layers of skin around a transparent flow channel. The absolute velocity value independent of direction was detected using the developed speckle pattern, which is created by the skin construct and two beams in the flow channel. Finally, we showed the relationship between the signal intensity and the fringe pattern, undeveloped speckle, or developed speckle pattern based on the skin depth. The Doppler signals were not detected at deeper positions in the skin, which qualitatively indicates the depth limit for two-beam MLDV.

  15. Absolute and relative dosimetry for ELIMED

    Energy Technology Data Exchange (ETDEWEB)

    Cirrone, G. A. P.; Schillaci, F.; Scuderi, V. [INFN, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania, Italy and Institute of Physics Czech Academy of Science, ELI-Beamlines project, Na Slovance 2, Prague (Czech Republic); Cuttone, G.; Candiano, G.; Musumarra, A.; Pisciotta, P.; Romano, F. [INFN, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Carpinelli, M. [INFN Sezione di Cagliari, c/o Dipartimento di Fisica, Università di Cagliari, Cagliari (Italy); Leonora, E.; Randazzo, N. [INFN-Sezione di Catania, Via Santa Sofia 64, Catania (Italy); Presti, D. Lo [INFN-Sezione di Catania, Via Santa Sofia 64, Catania, Italy and Università di Catania, Dipartimento di Fisica e Astronomia, Via S. Sofia 64, Catania (Italy); Raffaele, L. [INFN, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania, Italy and INFN-Sezione di Catania, Via Santa Sofia 64, Catania (Italy); Tramontana, A. [INFN, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania, Italy and Università di Catania, Dipartimento di Fisica e Astronomia, Via S. Sofia 64, Catania (Italy); Cirio, R.; Sacchi, R.; Monaco, V. [INFN, Sezione di Torino, Via P.Giuria, 1 10125 Torino, Italy and Università di Torino, Dipartimento di Fisica, Via P.Giuria, 1 10125 Torino (Italy); Marchetto, F.; Giordanengo, S. [INFN, Sezione di Torino, Via P.Giuria, 1 10125 Torino (Italy)

    2013-07-26

    The definition of detectors, methods and procedures for the absolute and relative dosimetry of laser-driven proton beams is a crucial step toward the clinical use of this new kind of beams. Hence, one of the ELIMED task, will be the definition of procedures aiming to obtain an absolute dose measure at the end of the transport beamline with an accuracy as close as possible to the one required for clinical applications (i.e. of the order of 5% or less). Relative dosimetry procedures must be established, as well: they are necessary in order to determine and verify the beam dose distributions and to monitor the beam fluence and the energetic spectra during irradiations. Radiochromic films, CR39, Faraday Cup, Secondary Emission Monitor (SEM) and transmission ionization chamber will be considered, designed and studied in order to perform a fully dosimetric characterization of the ELIMED proton beam.

  16. Absolute transition probabilities in the NeI 3p-3s fine structure by beam-gas-dye laser spectroscopy

    International Nuclear Information System (INIS)

    Hartmetz, P.; Schmoranzer, H.

    1983-01-01

    The beam-gas-dye laser two-step excitation technique is further developed and applied to the direct measurement of absolute atomic transition probabilities in the NeI 3p-3s fine-structure transition array with a maximum experimental error of 5%. (orig.)

  17. Digital DC beam current measurement on SSRF storage ring

    International Nuclear Information System (INIS)

    Xiong Liang; Yin Chongxian; Liu Ming; Chen Jianfeng

    2011-01-01

    Both DC current transformer (DCCT) and integrating current transformer (ICT) can be used in DC beam current measurement. The ICT has strong capability of resisting electromagnetic interference, but its measurement accuracy cannot satisfy the DC beam current measurement requirement when using traditional high speed A/D. With high resolution A/D and equivalent sampling system, DC beam current measuring system based on ICT can reach high accuracy compared with DCCT system. In this paper, the ICT-based DC beam current measurement, equivalent sampling method and testing results at Shanghai Synchrotron Radiation Facility(SSRF) is described. (authors)

  18. Beam current monitors in the NLCTA

    International Nuclear Information System (INIS)

    Nantista, C.; Adolphsen, C.

    1997-05-01

    The current profile along the 126 ns, multi-bunch beam pulse in the Next Linear Collider Test Accelerator (NLCTA) is monitored with fast toroids (rise time ∼ 1 ns). Inserted at several positions along the beam line, they allow one to track current transmission as a function of position along the bunch train. Various measurements, such as rise time, current, width, and slope, are made on the digitized signals, which can be corrected in software by means of stored frequency response files. The design and implementation of these devices is described

  19. Characterisation Of The Beam Plasma In High Current, Low Energy Ion Beams For Implanters

    International Nuclear Information System (INIS)

    Fiala, J.; Armour, D. G.; Berg, J. A. van der; Holmes, A. J. T.; Goldberg, R. D.; Collart, E. H. J.

    2006-01-01

    The effective transport of high current, positive ion beams at low energies in ion implanters requires the a high level of space charge compensation. The self-induced or forced introduction of electrons is known to result in the creation of a so-called beam plasma through which the beam propagates. Despite the ability of beams at energies above about 3-5 keV to create their own neutralising plasmas and the development of highly effective, plasma based neutralising systems for low energy beams, very little is known about the nature of beam plasmas and how their characteristics and capabilities depend on beam current, beam energy and beamline pressure. These issues have been addressed in a detailed scanning Langmuir probe study of the plasmas created in beams passing through the post-analysis section of a commercial, high current ion implanter. Combined with Faraday cup measurements of the rate of loss of beam current in the same region due to charge exchange and scattering collisions, the probe data have provided a valuable insight into the nature of the slow ion and electron production and loss processes. Two distinct electron energy distribution functions are observed with electron temperatures ≥ 25 V and around 1 eV. The fast electrons observed must be produced in their energetic state. By studying the properties of the beam plasma as a function of the beam and beamline parameters, information on the ways in which the plasma and the beam interact to reduce beam blow-up and retain a stable plasma has been obtained

  20. Absolute calibration of neutron detectors on the C-2U advanced beam-driven FRC

    Energy Technology Data Exchange (ETDEWEB)

    Magee, R. M., E-mail: rmagee@trialphaenergy.com; Clary, R.; Korepanov, S.; Jauregui, F.; Allfrey, I.; Garate, E.; Valentine, T.; Smirnov, A. [Tri Alpha Energy, Inc., Rancho Santa Margarita, California 92688 (United States)

    2016-11-15

    In the C-2U fusion energy experiment, high power neutral beam injection creates a large fast ion population that sustains a field-reversed configuration (FRC) plasma. The diagnosis of the fast ion pressure in these high-performance plasmas is therefore critical, and the measurement of the flux of neutrons from the deuterium-deuterium (D-D) fusion reaction is well suited to the task. Here we describe the absolute, in situ calibration of scintillation neutron detectors via two independent methods: firing deuterium beams into a high density gas target and calibration with a 2 × 10{sup 7} n/s AmBe source. The practical issues of each method are discussed and the resulting calibration factors are shown to be in good agreement. Finally, the calibration factor is applied to C-2U experimental data where the measured neutron rate is found to exceed the classical expectation.

  1. Electron-Beam Produced Air Plasma: Optical Measurement of Beam Current

    Science.gov (United States)

    Vidmar, Robert; Stalder, Kenneth; Seeley, Megan

    2006-10-01

    Experiments to quantify the electron beam current and distribution of beam current in air plasma are discussed. The air plasma is produced by a 100-keV 10-mA electron beam source that traverses a transmission window into a chamber with air as a target gas. Air pressure is between 1 mTorr and 760 Torr. Strong optical emissions due to electron impact ionization are observed for the N2 2^nd positive line at 337.1 nm and the N2^+ 1^st negative line at 391.4 nm. Calibration of optical emissions using signals from the isolated transmission window and a Faraday plate are discussed. The calibrated optical system is then used to quantify the electron distribution in the air plasma.

  2. Ponderomotive enhancement of charged particle beam limiting current

    International Nuclear Information System (INIS)

    Grebogi, C.; Uhm, H.S.

    1987-01-01

    The space charge limiting current problem is investigated for a magnetized particle beam propagating in a cylindrical drift tube and in presence of a waveguide mode. It is shown that with a proper choice of a waveguide mode, the limiting current can be greatly enhanced due to ponderomotive effects. Physically, this is accomplished by using the ponderomotive energy to reduce the potential depression due to the beam's self space charge field. Formulas for the limiting current as a function of beam energy and waveguide r.f. field for solid and hollow beams are derived. It is found from these formulas that, in appropriate parameter regimes, the space charge limiting current, say, of a 250kV bem can be enhanced by 70%

  3. Neutral beam current drive scaling in DIII-D

    International Nuclear Information System (INIS)

    Porter, G.D.; Bhadra, D.K.; Burrell, K.H.

    1989-03-01

    Neutral beam current drive scaling experiments have been carried out on the DIII-D tokamak at General Atomics. These experiments were performed using up to 10 MW of 80 keV hydrogen beams. Previous current drive experiments on DIII-D have demonstrated beam driven currents up to 340 kA. In the experiments reported here we achieved beam driven currents of at least 500 kA, and have obtained operation with record values of poloidal beta (εβ/sub p/ = 1.4). The beam driven current reported here is obtained from the total plasma current by subtracting an estimate of the residual Ohmic current determined from the measured loop voltage. In this report we discuss the scaling of the current drive efficiency with plasma conditions. Using hydrogen neutral beams, we find the current drive efficiency is similar in Deuterium and Helium target plasmas. Experiments have been performed with plasma electron temperatures up to T/sub e/ = 3 keV, and densities in the range 2 /times/ 10 19 m/sup /minus/3/ 19 m/sup /minus/3/. The current drive efficiency (nIR/P) is observed to scale linearly with the energy confinement time on DIII-D to a maximum of 0.05 /times/ 10 20 m/sup /minus/2/ A/W. The measured efficiency is consistent with a 0-D theoretical model. In addition to comparison with this simple model, detailed analysis of several shots using the time dependent transport code ONETWO is discussed. This analysis indicates that bootstrap current contributes approximately 10--20% of the the total current. Our estimates of this effect are somewhat uncertain due to limited measurements of the radial profile of the density and temperatures. 4 refs., 1 fig., 1 tab

  4. High current beam transport experiments at GSI

    International Nuclear Information System (INIS)

    Klabunde, J.; Schonlein, A.; Spadtke, P.

    1985-01-01

    The status of the high current ion beam transport experiment is reported. 190 keV Ar 1+ ions were injected into six periods of a magnetic quadrupole channel. Since the pulse length is > 0.5 ms partial space charge neutralization occurs. In our experiments, the behavior of unneutralized and partially space charge compensated beams is compared. With an unneutralized beam, emittance growth has been measured for high intensities even in case of the zero-current phase advance sigma 0 0 . This initial emittance growth at high tune depression we attribute to the homogenization effect of the space charge density. An analytical formula based on this assumption describes the emittance growth very well. Furthermore the predicted envelope instabilities for sigma 0 > 90 0 were observed even after 6 periods. In agreement with the theory, unstable beam transport was also experimentally found if a beam with different emittances in the two transverse phase planes was injected into the transport channel. Although the space charge force is reduced for a partially neutralized beam a deterioration of the beam quality was measured in a certain range of beam parameters. Only in the range where an unneutralized beam shows the initial emittance growth, the partial neutralization reduces this effect, otherwise the partially neutralized beam is more unstable

  5. Current density monitor for intense relativistic electron beams

    International Nuclear Information System (INIS)

    Fiorito, R.B.; Raleigh, M.; Seltzer, S.M.

    1986-01-01

    We describe a new type of electric probe which is capable of measuring the time-resolved current density profile of a stable, reproducible, high-energy (>4-MeV) high-current (>1-kA) electron beam. The sensing element of this probe is an open-ended but capped-off 50-Ω coaxial line constructed of graphite. The graphite sensor is 4.3 mm in diameter, 6 cm long, and is range thin to the primary beam electrons. The probe produces a signal proportional to the intercepted beam current. When the sensor is scanned radially through the beam during repeated pulses, a curve of signal versus depth of insertion is produced from which the radial current density profile can be determined. Measurements are presented of the profile of the electron beam from the Experimental Test Accelerator (4.5 MeV, 10 kA) at Lawrence Livermore National Laboratory. Good agreement is shown between measurements made with this probe and the beam radius as predicted by transport codes. The advantage of the electric probe lies in its ruggedness, simplicity, inherent fast rise time, and low cost. In contrast to other systems it requires no radiation shielding, water cooling, or auxiliary support equipment to operate in an intense beam environment

  6. High-current beam transport in electrostatic accelerator tubes

    International Nuclear Information System (INIS)

    Ramian, G.; Elais, L.

    1987-01-01

    The UCSB Free Electron Laser (FEL) has successfully demonstrated the use of a commercial 6 megavolt electrostatic accelerator as a high current beam source in a recirculating configuration. The accelerator, manufactured by National Electrostatics Corp. (NEC), Middleton WI, uses two standard high gradient accelerator tubes. Suppression of ion multiplication was accomplished by NEC with apertures and a shaped electrostatic field. This field shaping has fortuitously provided a periodically reversing radial field component with sufficient focusing strength to transport electron beams of up to 3 Amps current. Present two-stage FEL work requires a 20 Amp beam and proposed very high voltage FEL designs require currents as high as 100 Amps. A plan to permit transport of such high current beams by the addition of solenoidal focussing elements is described

  7. Conceptual design of a compact absolute valve for the ITER neutral beam injectors

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Chris [Euratom/UKAEA Fusion Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom)], E-mail: chris.m.jones@jet.uk; Waldon, Chris; Martin, David; Watson, Mike [Euratom/UKAEA Fusion Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Sonderegger, Kurt; Lenherr, Bruno [VAT Vakuumventile AG, CH-9469 Haag (Switzerland); Andrews, Ian; Mansbridge, Simon [VAT Vacuum Products Ltd., Edmund House, Rugby Road, Leamington Spa, Warwickshire CV32 6EL (United Kingdom)

    2009-06-15

    The reference design for the ITER neutral beam injectors incorporated a fast shutter to limit tritium migration to the injector vacuum enclosures. In 2005, a need for an 'absolute' isolation valve was identified to facilitate injector maintenance procedures and protect the system from an in-vessel ingress of coolant event (ICE). An outline concept for an all-metal seal valve was developed during 2006, in close cooperation with the Swiss valve manufacturer VAT. During the following year, it became apparent that the length of beamline available for the valve was significantly less than originally envisaged, resulting in a radical revision of the design concept. A casing length of 760 mm has been achieved by means of major changes to the casing structure, plate dimensions, pendulum mechanism and seal actuators. A concept for a seal protection system has been developed to prevent beam line contamination reaching the valve components and to protect the valve plate from surface heating by plasma radiation. The new design concept has been extensively validated by analysis, including a whole-system FE model of the valve.

  8. Electron gun for formation of two high-current beams

    International Nuclear Information System (INIS)

    Borisov, A.R.; Zherlitsyn, A.G.; Mel'nikov, G.V.; Shtejn, Yu.G.

    1982-01-01

    The design of the ''Tonus'' accelerator electron gun for formation of two high-current beams aiming at the production of the maximum beam power and density is described. The results of investigation of two modes of beam formation are presented. In the first variant the beams were produced by means of two plane diodes with 40 mm diameter cathodes made of stainless steel and anodes made of 50 μm thick titanium foil. In the second variant the beams were formed by means of two coaxial diodes with magnetic insulation. In one diode the cathode diameter equals to 74 mm, the anode diameter - 92 mm, in the other diode 16 and 44 mm respectively. Current redistribution in the diodes and its effect on accelerating voltage are investigated. It is shown that the gun permits formation of synchronized two high-current beams, iaving equal electron energied. Wide range current control of both beams is possible

  9. FMIT direct-current beam monitor

    International Nuclear Information System (INIS)

    Brousseau, A.T.; Chamberlin, D.D.

    1981-01-01

    The prototype injector section for the Fusion Materials Irradiation Test (FMIT) Facility being developed at the Los Alamos National Laboratory requires that beam parameters be noninterceptively monitored. This report describes the application of a single toroidal core, coupled with very simple circuitry, that results in the production of a simple instrument, and eliminates the problems inherent in the Faraday cup technique for the current measurements of the FMIT injector beam

  10. On the limiting stationary currents of relativistic electron beams

    International Nuclear Information System (INIS)

    Kavchuk, V.N.; Kondratenko, A.N.

    1987-01-01

    The problem on electron beam transport in the system of different configurations both vacuum and filled with gas or plasma is connected with the problem of the limiting current, which can conduct such systems. Two models of a vacuum relativistic electron beam (REB) are considered. It is shown that there is upper limit for the value of the external magnetic field, H 0 , in the model of isovelocity REB with the constant longitudinal beam particle rate, β z =const. Estimation of the limiting current of REB as a series of inverse power H 0 is obtained. Estimations of the limiting current of magnetized hallow REB with thin walls are obtained in another model with β z ≠ const. Determination used in this case of the limiting current is directly connected with ''trapping'' of the beam central part due to formation of a virtual cathode and based on consideration of uniflux electron motion in the beam. Such an approach allows to obtain estimations of the limiting current of the thin-wall hallow beam. In this case an upper limit for the thickness of the beam wall is connected with the bottom limit for the value of the external magnetic field providing radial beam equilibrium

  11. Current-Voltage Characteristic of Nanosecond - Duration Relativistic Electron Beam

    Science.gov (United States)

    Andreev, Andrey

    2005-10-01

    The pulsed electron-beam accelerator SINUS-6 was used to measure current-voltage characteristic of nanosecond-duration thin annular relativistic electron beam accelerated in vacuum along axis of a smooth uniform metal tube immersed into strong axial magnetic field. Results of these measurements as well as results of computer simulations performed using 3D MAGIC code show that the electron-beam current dependence on the accelerating voltage at the front of the nanosecond-duration pulse is different from the analogical dependence at the flat part of the pulse. In the steady-state (flat) part of the pulse), the measured electron-beam current is close to Fedosov current [1], which is governed by the conservation law of an electron moment flow for any constant voltage. In the non steady-state part (front) of the pulse, the electron-beam current is higher that the appropriate, for a giving voltage, steady-state (Fedosov) current. [1] A. I. Fedosov, E. A. Litvinov, S. Ya. Belomytsev, and S. P. Bugaev, ``Characteristics of electron beam formed in diodes with magnetic insulation,'' Soviet Physics Journal (A translation of Izvestiya VUZ. Fizika), vol. 20, no. 10, October 1977 (April 20, 1978), pp.1367-1368.

  12. Noise reduction in the beam current monitor

    International Nuclear Information System (INIS)

    Arai, Shigeaki.

    1982-02-01

    A simple noise reduction system using a pulse transformer and a pair of L C low pass filters has been introduced to the beam current monitor of a current transformer type at the INS electron linac. With this system, the pick-up noise has been reduced to be 1% of the noise without noise reduction. Signal deformation caused by this system is relatively small and the beam current pulse down to 20 mA is successfully monitored in the actual accelerator operation. (author)

  13. Bootstrap current of fast ions in neutral beam injection heating

    International Nuclear Information System (INIS)

    Huang Qianhong; Gong Xueyu; Yang Lei; Li Xinxia; Lu Xingqiang; Yu Jun

    2012-01-01

    The bootstrap current of fast ions produced by the neutral beam injection is investigated in a large aspect ratio tokamak with circular cross-section under specific parameters. The bootstrap current density distribution and the total bootstrap current are figured out. In addition, the beam bootstrap current always accompanies the electron return current due to the parallel momentum transfer from fast ions. With the electron return current considered, the net current density obviously decreases due to electron return current, at the same time the peak of current moves towards the centre plasma. Numerical results show that the value of the net current depends sensitively not only on the angle of the neutral beam injection but also on the ratio of the velocity of fast ions to the critical velocity: the value of net current is small for the neutral beam parallel injection but increases multipliedly for perpendicular injection, and increases with beam energy increasing. (authors)

  14. Controlling hollow relativistic electron beam orbits with an inductive current divider

    Energy Technology Data Exchange (ETDEWEB)

    Swanekamp, S. B.; Richardson, A. S.; Angus, J. R.; Cooperstein, G.; Hinshelwood, D. D.; Ottinger, P. F.; Rittersdorf, I. M.; Schumer, J. W.; Weber, B. V.; Zier, J. C. [Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375 (United States)

    2015-02-15

    A passive method for controlling the trajectory of an intense, hollow electron beam is proposed using a vacuum structure that inductively splits the beam's return current. A central post carries a portion of the return current (I{sub 1}), while the outer conductor carries the remainder (I{sub 2}). An envelope equation appropriate for a hollow electron beam is derived and applied to the current divider. The force on the beam trajectory is shown to be proportional to (I{sub 2}-I{sub 1}), while the average force on the envelope (the beam width) is proportional to the beam current I{sub b} = (I{sub 2} + I{sub 1}). The values of I{sub 1} and I{sub 2} depend on the inductances in the return-current path geometries. Proper choice of the return-current geometries determines these inductances and offers control over the beam trajectory. Solutions using realistic beam parameters show that, for appropriate choices of the return-current-path geometry, the inductive current divider can produce a beam that is both pinched and straightened so that it approaches a target at near-normal incidence with a beam diameter that is on the order of a few mm.

  15. Neutral beam current drive with balanced injection

    International Nuclear Information System (INIS)

    Eckhartt, D.

    1990-01-01

    Current drive with fast ions has proved its capability to sustain a tokamak plasma free of externally induced electric fields in a stationary state. The suprathermal ion population within the toroidal plasma was created by quasi-tangential and uni-directional injection of high-energy neutral atoms, their ionisation and subsequent deceleration by collisions with the background plasma particles. In future large tokamaks of the NET/INTER-type, with reactor-relevant values of plasma density and temperature, this current drive scheme is expected to maintain the toroidal current at the plasma centre, as current drive by lower hybrid waves will be restricted to the outer plasma regions owing to strong wave damping. Adequate penetration of the neutral atoms through the dense plasma requires particle energies of several hundred kilovolts per nucleon since beam absorption scales roughly with the ratio beam energy over density. The realisation of such high-energy high-power neutral beams, based on negative ion technology, is now under study. (author) 7 refs., 2 figs

  16. Measurement of the absolute tunneling current density in field emission from tungsten(110)

    International Nuclear Information System (INIS)

    Ehrlich, C.D.; Plummer, E.W.

    1978-01-01

    The phenomenon of quantum-mechanical tunneling of an electron through a barrier in the potential energy has been well established in a variety of experiments. The quantity which is usually measured in these experiments is the rate of change of tunneling current and not the absolute current density. This paper reports on a direct measurement of the tunneling current density, which is found to be in good agreement with free-electron theory for W

  17. The Bootstrap Current and Neutral Beam Current Drive in DIII-D

    International Nuclear Information System (INIS)

    Politzer, P.A.

    2005-01-01

    Noninductive current drive is an essential part of the implementation of the DIII-D Advanced Tokamak program. For an efficient steady-state tokamak reactor, the plasma must provide close to 100% bootstrap fraction (f bs ). For noninductive operation of DIII-D, current drive by injection of energetic neutral beams [neutral beam current drive (NBCD)] is also important. DIII-D experiments have reached ∼80% bootstrap current in stationary discharges without inductive current drive. The remaining current is ∼20% NBCD. This is achieved at β N [approximately equal to] β p > 3, but at relatively high q 95 (∼10). In lower q 95 Advanced Tokamak plasmas, f bs ∼ 0.6 has been reached in essentially noninductive plasmas. The phenomenology of high β p and β N plasmas without current control is being studied. These plasmas display a relaxation oscillation involving repetitive formation and collapse of an internal transport barrier. The frequency and severity of these events increase with increasing β, limiting the achievable average β and causing modulation of the total current as well as the pressure. Modeling of both bootstrap and NBCD currents is based on neoclassical theory. Measurements of the total bootstrap and NBCD current agree with calculations. A recent experiment based on the evolution of the transient voltage profile after an L-H transition shows that the more recent bootstrap current models accurately describe the plasma behavior. The profiles and the parametric dependences of the local neutral beam-driven current density have not yet been compared with theory

  18. Beam diagnostics for low energy beams

    Directory of Open Access Journals (Sweden)

    J. Harasimowicz

    2012-12-01

    Full Text Available Low-energetic ion and antimatter beams are very attractive for a number of fundamental studies. The diagnostics of such beams, however, is a challenge due to low currents down to only a few thousands of particles per second and significant fraction of energy loss in matter at keV beam energies. A modular set of particle detectors has been developed to suit the particular beam diagnostic needs of the ultralow-energy storage ring (USR at the future facility for low-energy antiproton and ion research, accommodating very low beam intensities at energies down to 20 keV. The detectors include beam-profile monitors based on scintillating screens and secondary electron emission, sensitive Faraday cups for absolute intensity measurements, and capacitive pickups for beam position monitoring. In this paper, the design of all detectors is presented in detail and results from beam measurements are shown. The resolution limits of all detectors are described and options for further improvement summarized. Whilst initially developed for the USR, the instrumentation described in this paper is also well suited for use in other low-intensity, low-energy accelerators, storage rings, and beam lines.

  19. Fast Beam Current Change Monitor for the LHC

    CERN Document Server

    Kral, Jan

    Stringent demands on the LHC safety and protection systems require improved methods of detecting fast beam losses. The Fast Beam Current Transformer (FBCT) is a measurement instrument, providing information about bunch-to-bunch intensity of the accelerated beam. This thesis describes the development of a new protection system based on the FBCT signal measurements. This system, the Fast Beam Current Change Monitor (FBCCM), measures the FBCT signal in a narrow frequency band and computes time derivation of the beam signal magnitude. This derivation is proportional to the beam losses. When the losses exceed a certain level, the FBCCM requests a beam dump in order to protect the LHC. The LHC protection will be ensured by four FBCCMs which will be installed into the LHC in July 2014. Six FBCCMs have been already constructed and their characteristics were measured with satisfactory results. The FBCCMs were tested by a laboratory simulation of the real LHC environment.

  20. High-energy tritium beams as current drivers in tokamak reactors

    International Nuclear Information System (INIS)

    Mikkelsen, D.R.; Grisham, L.R.

    1983-04-01

    The effect on neutral-beam design and reactor performance of using high-energy (approx. 3-10 MeV) tritium neutral beams to drive steady-state tokamak reactors is considered. The lower current of such beams leads to several advantages over lower-energy neutral beams. The major disadvantage is the reduction of the reactor output caused by the lower current-drive efficiency of the high-energy beams

  1. Bootstrap current of fast ions in neutral beam injection heating

    International Nuclear Information System (INIS)

    Huang Qianhong; Gong Xueyu; Li Xinxia; Yu Jun

    2012-01-01

    The bootstrap current of fast ions produced by neutral beam injection (NBI) is investigated in a large-aspect-ratio tokamak with circular cross-section under specific parameters. The bootstrap current density distribution and the total bootstrap current are reported. In addition, the beam bootstrap current always accompanies the electron return current due to the parallel momentum transfer from fast ions. With the electron return current taken into consideration, the net current density obviously decreases; at the same time, the peak of the current moves towards the central plasma. Numerical results show that the value of the net current depends sensitively not only on the angle of the NBI but also on the ratio of the velocity of fast ions to the critical velocity: the value of the net current is small for neutral beam parallel injection, but increases severalfold for perpendicular injection, and increases with increasing beam energy. (paper)

  2. The development of beam current monitors in the APS

    International Nuclear Information System (INIS)

    Wang, X.; Lenkszus, F.; Rotela, E.

    1995-01-01

    The Advanced Photon Source (APS) is a third-generation 7-GeV synchrotron radiation source. The precision measurement of beam current is a challenging task in high energy accelerators, such as the APS, with a wide range of beam parameters and complicated noise, radiation, and thermal environments. The beam pulses in the APS injector and storage ring have charge ranging from 50pC to 25nC with pulse durations varying from 30ps to 30ns. A total of nine non- intercepting beam current monitors have been installed in the APS facility (excluding those in the linac) for general current measurement. In addition, several independent current monitors with specially designed redundant interlock electronics are installed for personnel safety and machine protection. This paper documents the design and development of current monitors in the APS,. discusses the commissioning experience in the past year, and presents the results of recent operations

  3. Definition of the absolute energy of beam particles from tandem EGP-10K by means of gamma-spectrometry

    CERN Document Server

    Goryunov, O Y; Mozhzhukhyin, E M

    2003-01-01

    The attachment of absolute energy of proton beam from tandem EGP-10K to the nuclear magnetic resonance (NMR) frequency of field device put in rotated magnet-analyzer SP-88 has been made. The determination of beam energy was made with the aid of sup 8 sup 9 Y(p, n) sup 8 sup 9 Zr reaction, where the threshold is 3656 keV. 587 keV level from decay of sup 8 sup 9 Zr was used for identification of the reaction. It was determined that NMR frequency f = 16253,5 sup + sup 4 sup , sup 8 sub - sub 8 sub , sub 3 Kc/s corresponds to 4272 KeV proton energy.

  4. Absolute and relative dose measurements with Gafchromic trade mark sign EBT film for high energy electron beams with different doses per pulse

    International Nuclear Information System (INIS)

    Fiandra, Christian; Ragona, Riccardo; Ricardi, Umberto; Anglesio, Silvia; Giglioli, Francesca Romana

    2008-01-01

    The authors have evaluated the accuracy, in absolute and relative dose measurements, of the Gafchromic trade mark sign EBT film in pulsed high-energy electron beams. Typically, the electron beams used in radiotherapy have a dose-per-pulse value of less than 0.1 mGy/pulse. However, very high dose-per-pulse electron beams are employed in certain linear accelerators dedicated to intraoperatory radiation therapy (IORT). In this study, the absorbed dose measurements with Gafchromic trade mark sign EBT in both low (less than 0.3 mGy per pulse) and high (30 and 70 mGy per pulse) dose-per-pulse electron beams were compared with ferrous sulfate chemical Fricke dosimetry (operated by the Italian Primary Standard Dosimetry Laboratory), a method independent of the dose per pulse. A summary of Gafchromic trade mark sign EBT in relative and absolute beam output determination is reported. This study demonstrates the independence of Gafchromic trade mark sign EBT absorption as a function of dose per pulse at different dose levels. A good agreement (within 3%) was found with Fricke dosimeters for plane-base IORT applicators. Comparison with a diode detector is presented for relative dose measurements, showing acceptable agreement both in the steep dose falloff zone and in the homogeneous dose region. This work also provides experimental values for recombination correction factor (K sat ) of a Roos (plane parallel) ionization chamber calculated on the basis of theoretical models for charge recombination.

  5. Microstructure cantilever beam for current measurement

    Directory of Open Access Journals (Sweden)

    M.T.E. Khan

    2010-01-01

    Full Text Available Most microelectromechanical systems (MEMS sensors are based on the microcantilever technology, which uses a broad range of design materials and structures. The benefit ofMEMStechnology is in developing devices with a lower cost, lower power consumption, higher performance and greater integration. A free-end cantilever beam with a magnetic material mass has been designed using MEMS software tools. The magnetic material was used to improve the sensitivity of the cantilever beam to an externally-applied magnetic field. The cantilever was designed to form a capacitance transducer, which consisted of variable capacitance where electrical and mechanical energies were exchanged. The aim of this paper was to analyse the system design of the microcantilever when subjected to a magnetic field produced by a current-carrying conductor. When the signal, a sinusoidal current with a constant frequency, was applied, the cantilever beam exhibited a vibration motion along the vertical axis when placed closer to the line current. This motion created corresponding capacitance changes and generated a voltage output proportional to the capacitive change in the signal-processing circuitry attached to the microcantilever. The equivalent massspring system theory was used to describe and analyse the effect of the natural frequency of the system vibrations and motion due to the applied magnetic field, in a single-degree of freedom. The main application of this microcantilever is in current measurements to develop a non-contact current sensor mote.

  6. Beam position and total current monitor for heavy ion fusion beams

    International Nuclear Information System (INIS)

    Berners, D.; Reginato, L.L.

    1992-10-01

    Heavy Ion Fusion requires moderate currents, 1-10A, for a duration of about 1 μs. For accurate beam transport, the center of charge must be located to within ± 100 μm. Beam position and intensity may be excited at frequencies approaching 10 MHz, and the monitoring system must have adequate bandwidth to respond at these frequencies. We have modified the Rogowski technique by using distributed reactance multiturn magnetic loops so that it is suitable for measuring current position as well as amplitude. Four identical stripline coils are wound one per quadrant around a non magnetic core. The sensitivity is similar to that of a lumped coil system, with the added advantage of increased bandwidth. The voltages induced on the four separate coils are compared and suitable signal conditioning is performed to recover beam position and intensity information

  7. Cryogenic current comparators for precise ion beam current measurements

    International Nuclear Information System (INIS)

    Kurian, Febin

    2015-01-01

    The planned Facility for Antiproton and Ion Research (FAIR) at GSI has to cope with a wide range of beam intensities in its high-energy beam transport systems and in the storage rings. To meet the requirements of a non-intercepting intensity measurement down to nA range, it is planned to install a number of Cryogenic Current Comparator (CCC) units at different locations in the FAIR beamlines. In this work, the first CCC system for intensity measurement of heavy ion beams, which was developed at GSI, was re-commissioned and upgraded to be used as a 'GSI - CCC prototype' for extensive optimization and development of an improved CCC for FAIR. After installation of a new SQUID sensor and related electronics, as well as implementation of improved data acquisition components, successful beam current measurements were performed at a SIS18 extraction line. The measured intensity values were compared with those of a Secondary Electron Monitor (SEM). Furthermore, the spill-structure of a slowly extracted beam was measured and analyzed, investigating its improvement due to bunching during the slow-extraction process. Due to the extreme sensitivity of the superconducting sensor, the determined intensity values as well as the adjustment of the system for optimal performance are strongly influenced by the numerous noise sources of the accelerators environment. For this reason, detailed studies of different effects caused by noise have been carried out, which are presented together with proposals to reduce them. Similarly, studies were performed to increase the dynamic range and overcome slew rate limitations, the results of which are illustrated and discussed as well. By combining the various optimizations and characterizations of the GSI CCC prototype with the experiences made during beam operation, criteria for a more efficient CCC System could be worked out, which are presented in this work. The details of this new design are worked out with respect to the

  8. Development of an external Faraday cup for beam current measurements

    International Nuclear Information System (INIS)

    Kim, Kye-Ryung; Jung, Myung-Hwan; Ra, Se-Jin; Lee, Seok-Ki

    2010-01-01

    In general, beam current measurements are very important for many kinds of experiments using highly energetic particle beams at accelerators, such as cyclotrons, linacs, etc. The Faraday cup is known to be one of the most popular beam current measurement tools. We developed an external Faraday cup to measure the beam current at a dedicated beam line for low-flux experiments installed at the MC-50 cyclotron of Korea Institute of Radiological and Medical Sciences (KIRAMS). It was designed for external beam current measurements and is composed of a vacuum chamber, an entrance window, a collimator, a electrostatic suppressor ring, and a cup. The window is made of 75-um-thick Kapton film, and the diameter of the collimator is 10 mm or 20 mm. The ring and the cup has 5-cm inner diameters, and the thickness of the bottom of the cup is 2 cm, which is enough to absorb the total proton energy up to 45 MeV. Using this external Faraday cup, we measured the beam current from the cyclotron, and we compared measured flux to the results from film dosimetry using GAF films.

  9. Beam brilliance investigation of high current ion beams at GSI heavy ion accelerator facility.

    Science.gov (United States)

    Adonin, A A; Hollinger, R

    2014-02-01

    In this work the emittance measurements of high current Ta-beam provided by VARIS (Vacuum Arc Ion Source) ion source are presented. Beam brilliance as a function of beam aperture at various extraction conditions is investigated. Influence of electrostatic ion beam compression in post acceleration gap on the beam quality is discussed. Use of different extraction systems (single aperture, 7 holes, and 13 holes) in order to achieve more peaked beam core is considered. The possible ways to increase the beam brilliance are discussed.

  10. Range of Possible Beam Current in Linac4

    CERN Document Server

    Lallement, J-B; CERN. Geneva. BE Department

    2009-01-01

    Linac4 is a new accelerator under construction at CERN. It is designed to accelerate H- ions to 160MeV, for injection into the existing Proton Synchrotron Booster (PSB). It is also the front-end of the SPL Linac, a high energy proton driver that will reach the energy of 5GeV. The Linac baseline design has been done for a nominal beam peak current of 70mA but it will certainly have to deal with different currents. 132 out of 155 quadrupoles in the Linac are permanent magnets, this choice of using PMQ having fixed gradient, mainly in the DTL and in the CCDTL may then entail issues concerning the beam transverse matching and quality from current different from the nominal one. In this paper, we present the beam dynamics performances in Linac4 obtained for different currents.

  11. The physics of high current beams

    International Nuclear Information System (INIS)

    Lawson, J.D.

    1988-05-01

    An outline is presented of paraxial charged particle optics in the presence of self-fields arising from the space-charge and current carried by the beam. Solutions of the envelope equations for beams with finite emittance are considered for a number of specific situations, with the approximation that the density profile of the beam is uniform with a sharp edge, so that the focusing remains linear. More realistic beams are then considered, and the problems of matching, emittance growth and stability are discussed. An attempt is made to emphasize physical principles and physical ideas rather than to present the detailed mathematical techniques required for specific problems. The approach is a tutorial one, and several 'exercises' are included in the text. Most of the material is treated in more depth in the author's forthcoming book. (author)

  12. Beam-current monitor for FMIT

    International Nuclear Information System (INIS)

    Chamberlin, D.D.; Brousseau, A.T.

    1981-03-01

    The application of a single toroidal core, coupled with very simple circuitry, that results in the production of a simple instrument, and eliminates the problems inherent in the Faraday cup technique for the current measurements of the FMIT injector beam is described

  13. Absolute calibration of sniffer probes on Wendelstein 7-X

    International Nuclear Information System (INIS)

    Moseev, D.; Laqua, H. P.; Marsen, S.; Stange, T.; Braune, H.; Erckmann, V.; Gellert, F.; Oosterbeek, J. W.

    2016-01-01

    Here we report the first measurements of the power levels of stray radiation in the vacuum vessel of Wendelstein 7-X using absolutely calibrated sniffer probes. The absolute calibration is achieved by using calibrated sources of stray radiation and the implicit measurement of the quality factor of the Wendelstein 7-X empty vacuum vessel. Normalized absolute calibration coefficients agree with the cross-calibration coefficients that are obtained by the direct measurements, indicating that the measured absolute calibration coefficients and stray radiation levels in the vessel are valid. Close to the launcher, the stray radiation in the empty vessel reaches power levels up to 340 kW/m 2 per MW injected beam power. Furthest away from the launcher, i.e., half a toroidal turn, still 90 kW/m 2 per MW injected beam power is measured.

  14. Absolute calibration of sniffer probes on Wendelstein 7-X

    Science.gov (United States)

    Moseev, D.; Laqua, H. P.; Marsen, S.; Stange, T.; Braune, H.; Erckmann, V.; Gellert, F.; Oosterbeek, J. W.

    2016-08-01

    Here we report the first measurements of the power levels of stray radiation in the vacuum vessel of Wendelstein 7-X using absolutely calibrated sniffer probes. The absolute calibration is achieved by using calibrated sources of stray radiation and the implicit measurement of the quality factor of the Wendelstein 7-X empty vacuum vessel. Normalized absolute calibration coefficients agree with the cross-calibration coefficients that are obtained by the direct measurements, indicating that the measured absolute calibration coefficients and stray radiation levels in the vessel are valid. Close to the launcher, the stray radiation in the empty vessel reaches power levels up to 340 kW/m2 per MW injected beam power. Furthest away from the launcher, i.e., half a toroidal turn, still 90 kW/m2 per MW injected beam power is measured.

  15. Absolute calibration of sniffer probes on Wendelstein 7-X

    Energy Technology Data Exchange (ETDEWEB)

    Moseev, D., E-mail: dmitry.moseev@ipp.mpg.de; Laqua, H. P.; Marsen, S.; Stange, T.; Braune, H.; Erckmann, V. [Max-Planck-Institut für Plasmaphysik, Greifswald (Germany); Gellert, F. [Max-Planck-Institut für Plasmaphysik, Greifswald (Germany); Ernst-Moritz-Arndt-Universität Greifswald, Greifswald (Germany); Oosterbeek, J. W. [Eindhoven University of Technology, Eindhoven (Netherlands)

    2016-08-15

    Here we report the first measurements of the power levels of stray radiation in the vacuum vessel of Wendelstein 7-X using absolutely calibrated sniffer probes. The absolute calibration is achieved by using calibrated sources of stray radiation and the implicit measurement of the quality factor of the Wendelstein 7-X empty vacuum vessel. Normalized absolute calibration coefficients agree with the cross-calibration coefficients that are obtained by the direct measurements, indicating that the measured absolute calibration coefficients and stray radiation levels in the vessel are valid. Close to the launcher, the stray radiation in the empty vessel reaches power levels up to 340 kW/m{sup 2} per MW injected beam power. Furthest away from the launcher, i.e., half a toroidal turn, still 90 kW/m{sup 2} per MW injected beam power is measured.

  16. Broad-beam, high current, metal ion implantation facility

    International Nuclear Information System (INIS)

    Brown, I.G.; Dickinson, M.R.; Galvin, J.E.; Godechot, X.; MacGill, R.A.

    1990-07-01

    We have developed a high current metal ion implantation facility with which high current beams of virtually all the solid metals of the Periodic Table can be produced. The facility makes use of a metal vapor vacuum arc ion source which is operated in a pulsed mode, with pulse width 0.25 ms and repetition rate up to 100 pps. Beam extraction voltage is up to 100 kV, corresponding to an ion energy of up to several hundred keV because of the ion charge state multiplicity; beam current is up to several Amperes peak and around 10 mA time averaged delivered onto target. Implantation is done in a broad-beam mode, with a direct line-of-sight from ion source to target. Here we describe the facility and some of the implants that have been carried out using it, including the 'seeding' of silicon wafers prior to CVD with titanium, palladium or tungsten, the formation of buried iridium silicide layers, and actinide (uranium and thorium) doping of III-V compounds. 16 refs., 6 figs

  17. The emittance of high current heavy ion beams

    International Nuclear Information System (INIS)

    White, N.R.; Devaney, A.S.

    1989-01-01

    Ion implantation is the main application for high current heavy ion beams. Transfer ratio is defined as the ratio of the total ion current leaving the ion source to the current delivered to the endstation. This ratio is monitored and logged and its importance is explained. It is also affected by other factors, such as the isotopic and molecular composition of the total ion beam. The transfer ratio reveals the fraction of ions which are intercepted by parts of the beamline system. The effects of these ions are discussed in two categories: processing purity and reliability. In discussing the emittance of ribbon beams, the two orthogonal planes are usually considered separately. Longitudinal emittance is determined by slot length and by plasma ion temperature. It has already been revealed that the longitudinal divergence of the beams from BF3 is perhaps double that of the beam from arsenic vapour or argon, at the same total perveance from the ion source. This poses the question: why is the ion temperature higher for BF3 than for As or Ar? The transverse emittance is in practical terms dominated by the divergence. It is the most fruitful area for improvement in most real-world systems. There is an intrinsic divergence arising from initial ion energies within the plasma, and there is emittance growth that can occur as a result of aberration in the beam extraction optics. (N.K.)

  18. Method for controlling low-energy high current density electron beams

    International Nuclear Information System (INIS)

    Lee, J.N.; Oswald, R.B. Jr.

    1977-01-01

    A method and an apparatus for controlling the angle of incidence of low-energy, high current density electron beams are disclosed. The apparatus includes a current generating diode arrangement with a mesh anode for producing a drifting electron beam. An auxiliary grounded screen electrode is placed between the anode and a target for controlling the average angle of incidence of electrons in the drifting electron beam. According to the method of the present invention, movement of the auxiliary screen electrode relative to the target and the anode permits reliable and reproducible adjustment of the average angle of incidence of the electrons in low energy, high current density relativistic electron beams

  19. Visualisation of the high-current e-beams on solid surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Solomonov, V I; Osipov, V V; Mikhajlov, S G; Lipchak, A I [Russian Academy of Sciences, Ural Division, Ekaterinburg (Russian Federation). Institute of Electrophysics

    1997-12-31

    Natural minerals such as spodumen, calcite, and Mn-doped apatite crystals may serve as suitable low-cost materials for visualization of high-current electron beams. High-intensity luminescence lasting several tens of minutes has been observed when irradiating natural specimen by electron beams with the current density of 10-1000 A/sq.cm, with energy of 100-300 keV, and pulse duration of 2-50 ns. The luminescent images of the beam cross-section provide information on the beam density profiles, while the images taken in the plane parallel to the beam axis make it possible to estimate the beam penetration depth and, therefore, the beam energy. The method is illustrated by examples of luminescent images taken from the experiment. (J.U.).

  20. Cryogenic Current Comparator for Absolute Measurement of the Dark Current of the Superconducting Cavities for Tesla

    CERN Document Server

    Knaack, K; Wittenburg, K

    2003-01-01

    A newly high performance SQUID based measurement system for detecting dark currents, generated by superconducting cavities for TESLA is proposed. It makes use of the Cryogenic Current Comparator principle and senses dark currents in the nA range with a small signal bandwidth of 70 kHz. To reach the maximum possible energy in the TESLA project is a strong motivation to push the gradients of the superconducting cavities closer to the physical limit of 50 MV/m. The field emission of electrons (the so called dark current) of the superconducting cavities at strong fields may limit the maximum gradient. The absolute measurement of the dark current in correlation with the gradient will give a proper value to compare and classify the cavities. This contribution describes a Cryogenic Current Comparator (CCC) as an excellent and useful tool for this purpose. The most important component of the CCC is a high performance DC SQUID system which is able to measure extremely low magnetic fields, e.g. caused by the extracted ...

  1. Nuclear astrophysics at the Holifield Radioactive Ion Beam Facility

    International Nuclear Information System (INIS)

    Smith, M.S.

    1994-01-01

    The potential for understanding spectacular stellar explosions such as novae, supernovae, and X-ray bursts will be greatly enhanced by the availability of the low-energy, high-intensity, accelerated beams of proton-rich radioactive nuclei currently being developed at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory. These beams will be utilized in absolute cross section measurements of crucial (p, γ) capture reactions in efforts to resolve the substantial qualitative uncertainties in current models of explosive stellar hydrogen burning outbursts. Details of the nuclear astrophysics research program with the unique HRIBF radioactive beams and a dedicated experimental endstation--centered on the Daresbury Recoil Separator--will be presented

  2. Ion beams from high-current PF facilities

    Energy Technology Data Exchange (ETDEWEB)

    Sadowski, M [Soltan Inst. for Nuclear Studies, Otwock-Swierk (Poland)

    1997-12-31

    Pulsed beams of fast deuterons and impurity or admixture ions emitted from high-current PF-type facilities operated in different laboratories are dealt with. A short comparative analysis of time-integrated and time-resolved studies is presented. Particular attention is paid to the microstructure of such ion beams, and to the verification of some theoretical models. (author). 5 figs., 19 refs.

  3. Development of capacitive beam position, beam current and Schottky-signal monitors for the Cryogenic Storage Ring (CSR)

    International Nuclear Information System (INIS)

    Laux, Felix

    2011-01-01

    In this thesis novel techniques based on capacitive pickups for the determination of the beam current, the beam position and the Schottky-signal in storage rings have been developed. Beam current measurements at the heavy ion storage ring TSR with a capacitive pickup have been found in very good agreement with the theory. Using this device the accurate measurement of beam currents at the TSR far below 1 μA is now possible. This method will also be used at the Cryogenic Storage Ring (CSR) at which beam currents in the range of 1 nA-1 μA are expected. For the first time, position measurements with a resonant amplifier system for capacitive pickups have been examined at the TSR for later use of this technique in the CSR. With this method an increased signal-to-noise ratio can be achieved using a parallel inductance. A comparison with measurements using the rest gas beam profile monitor has shown very good agreement even at very low intensities. Experiments with the cryo-capable electronics for the CSR beam position monitors have shown an achievable quality factor of Q=500, resulting in the prospect of precise position measurements at the CSR even at very low beam currents. The CSR Schottky-Pickup will also be equipped with a resonant amplifier system with a comparable quality factor. An estimation of the signal-to-noise ratio suggests a detection limit of a few protons. (orig.)

  4. Ion current reduction in pinched electron beam diodes

    International Nuclear Information System (INIS)

    Quintenz, J.P.; Poukey, J.W.

    1977-01-01

    A new version of a particle-in-cell diode code has been written which permits the accurate treatment of higher-current diodes with greater physical dimensions. Using this code, we have studied ways to reduce the ion current in large-aspect-ratio pinched electron beam diodes. In particular, we find that allowing the ions to reflex in such diodes lowers the ion to electron current ratio considerably. In a 3-MV R/d=24 case this ratio was lowered by a factor of 6--8 compared with the corresponding nonreflexing-ion diode, while still producing a superpinched electron beam

  5. Absolute surface reconstruction by slope metrology and photogrammetry

    Science.gov (United States)

    Dong, Yue

    Developing the manufacture of aspheric and freeform optical elements requires an advanced metrology method which is capable of inspecting these elements with arbitrary freeform surfaces. In this dissertation, a new surface measurement scheme is investigated for such a purpose, which is to measure the absolute surface shape of an object under test through its surface slope information obtained by photogrammetric measurement. A laser beam propagating toward the object reflects on its surface while the vectors of the incident and reflected beams are evaluated from the four spots they leave on the two parallel transparent windows in front of the object. The spots' spatial coordinates are determined by photogrammetry. With the knowledge of the incident and reflected beam vectors, the local slope information of the object surface is obtained through vector calculus and finally yields the absolute object surface profile by a reconstruction algorithm. An experimental setup is designed and the proposed measuring principle is experimentally demonstrated by measuring the absolute surface shape of a spherical mirror. The measurement uncertainty is analyzed, and efforts for improvement are made accordingly. In particular, structured windows are designed and fabricated to generate uniform scattering spots left by the transmitted laser beams. Calibration of the fringe reflection instrument, another typical surface slope measurement method, is also reported in the dissertation. Finally, a method for uncertainty analysis of a photogrammetry measurement system by optical simulation is investigated.

  6. Generation and transportation of low-energy, high-current electron beams

    International Nuclear Information System (INIS)

    Ozur, G.E.; Proskurovskij, D.I.; Nazarov, D.S.

    1996-01-01

    Experimental data on the production of low-energy, high-current electron beams in a plasma-filled diode are presented. The highest beam energy density achieved is about 40 J/cm 2 , which makes it possible to treat materials in the mode of intense evaporation of the surface layer. It was shown that the use of a hollow cathode improves the beam homogeneity. The feasibility was demonstrated of the production of low-energy high-current electron beams in a gun with plasma anode based on the use of a reflective discharge. (author). 6 figs., 6 refs

  7. Beam current monitors at the UNILAC

    International Nuclear Information System (INIS)

    Schneider, N.

    1998-01-01

    One of the most basic linac operation tools is a beam current transformer. Using outstanding materials, the latest low-noise amplifiers, and some good ideas, a universal current monitoring system has been developed and installed at the UNILAC at GSI. With a dynamic range of 112 dB, covering the low-current range down to 100 nA peak to peak at S/N=1, as well as 25 mA pulses, provided for high-current injection to the SIS synchrotron, a well-accepted diagnostic instrument could be placed at the disposal of the operaters

  8. Design, performance, and calculated error of a Faraday cup for absolute beam current measurements of 600-MeV protons

    International Nuclear Information System (INIS)

    Beck, S.M.

    1975-04-01

    A mobile self-contained Faraday cup system for beam current measurments of nominal 600-MeV protons was designed, constructed, and used at the NASA Space Radiation Effects Laboratory. The cup is of reentrant design with a length of 106.7 cm and an outside diameter of 20.32 cm. The inner diameter is 15.24 cm and the base thickness is 30.48 cm. The primary absorber is commercially available lead hermetically sealed in a 0.32-cm-thick copper jacket. Several possible systematic errors in using the cup are evaluated. The largest source of error arises from high-energy electrons which are ejected from the entrance window and enter the cup. A total systematic error of -0.83 percent is calculated to be the decrease from the true current value. From data obtained in calibrating helium-filled ion chambers with the Faraday cup, the mean energy required to produce one ion pair in helium is found to be 30.76 +- 0.95 eV for nominal 600-MeV protons. This value agrees well, within experimental error, with reported values of 29.9 eV and 30.2 eV

  9. Design, performance, and calculated error of a Faraday cup for absolute beam current measurements of 600-MeV protons

    International Nuclear Information System (INIS)

    Beck, S.M.

    1975-04-01

    A mobile self-contained Faraday cup system for beam current measurements of nominal 600 MeV protons was designed, constructed, and used at the NASA Space Radiation Effects Laboratory. The cup is of reentrant design with a length of 106.7 cm and an outside diameter of 20.32 cm. The inner diameter is 15.24 cm and the base thickness is 30.48 cm. The primary absorber is commercially available lead hermetically sealed in a 0.32-cm-thick copper jacket. Several possible systematic errors in using the cup are evaluated. The largest source of error arises from high-energy electrons which are ejected from the entrance window and enter the cup. A total systematic error of -0.83 percent is calculated to be the decrease from the true current value. From data obtained in calibrating helium-filled ion chambers with the Faraday cup, the mean energy required to produce one ion pair in helium is found to be 30.76 +- 0.95 eV for nominal 600 MeV protons. This value agrees well, within experimental error, with reported values of 29.9 eV and 30.2 eV. (auth)

  10. Propagation of high-current fast electron beam in a dielectric target

    International Nuclear Information System (INIS)

    Klimo, O.; Debayle, A.; Tikhonchuk, V.T.

    2006-01-01

    Complete test of publication follows. A relativistic electron beam with very high current density may be produced during the interaction of a short high intensity laser pulse with a solid target. In Fast Ignition approach to Inertial Confinement Fusion, such beam is supposed to heat a part of the precompressed DT fuel pellet to the conditions of an efficient ignition. For successful implementation of Fast Ignition understanding the propagation and energy deposition of the beam is crucial. A number of processes, mostly associated with the return current, are dissipating the energy of the beam or inhibiting its collimated transport, namely the filamentation. Weibel, two-stream or the recently proposed ionization instability. Ionization instability may develop in a solid dielectric target due to the dependence of the propagation velocity of the beam on the beam density. To study the propagation of high current electron beam in dielectric target, we use a one-dimensional relativistic electrostatic simulation code based on the Particle in Cell method. The code includes ionization processes in dielectric material and collisions of newly generated cold electrons. The current density of the relativistic electron beam used in this work is in the range 3-300 GA/cm 2 , while its length roughly corresponds to the beam, produced by a 40 fs laser pulse. Propagation of the beam in the polyethylene target is studied. The code is complemented by an analytical model, which is applicable og a wider range of beam parameters that are currently beyond our computational possibilities. When the head of the beam enters the plastic target, electric field grows rapidly in consequence of the charge separation and it starts to ionize atoms. In the maximum of the field, which is less than 10% of the atomic field, the density of new free electrons is two orders of magnitude higher than the beam density, which is enough for the current neutralization. Cold electrons are accelerated by the field

  11. The Impact of Beam Deposition on Bootstrap Current of Fast Ion Produced by Neutral Beam Tangential Injection

    International Nuclear Information System (INIS)

    Huang Qian-Hong; Gong Xue-Yu; Lu Xing-Qiang; Yu Jun; Cao Jin-Jia

    2015-01-01

    The density profile of fast ions arising from a tangentially injected diffuse neutral beam in tokamak plasma is calculated. The effects of mean free paths and beam tangency radius on the density profile are discussed under typical HL-2A plasmas parameters. The results show that the profile of fast ions is strongly peaked at the center of the plasma when the mean free path at the maximum deuteron density is larger than the minor radius, while the peak value decreases when the mean free path at the maximum deuteron density is larger than twice that of the minor radius due to the beam transmission loss. Moreover, the bootstrap current of fast ions for various mean free paths at the maximum deuteron density is calculated and its density is proved to be closely related to the deposition of the neutral beam. With the electron return current considered, the net current density obviously decreases. Meanwhile, the peak central fast ion density increases when the beam tangency radius approaches the major radius, and the net bootstrap current increases rapidly with the increasing beam tangency radius. (paper)

  12. Generation and transportation of low-energy, high-current electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Ozur, G E; Proskurovskij, D I; Nazarov, D S [Russian Academy of Sciences, Tomsk (Russian Federation). Institute of High Current Electronics

    1997-12-31

    Experimental data on the production of low-energy, high-current electron beams in a plasma-filled diode are presented. The highest beam energy density achieved is about 40 J/cm{sup 2}, which makes it possible to treat materials in the mode of intense evaporation of the surface layer. It was shown that the use of a hollow cathode improves the beam homogeneity. The feasibility was demonstrated of the production of low-energy high-current electron beams in a gun with plasma anode based on the use of a reflective discharge. (author). 6 figs., 6 refs.

  13. Resistance and sheet resistance measurements using electron beam induced current

    International Nuclear Information System (INIS)

    Czerwinski, A.; Pluska, M.; Ratajczak, J.; Szerling, A.; KaPtcki, J.

    2006-01-01

    A method for measurement of spatially uniform or nonuniform resistance in layers and strips, based on electron beam induced current (EBIC) technique, is described. High electron beam currents are used so that the overall resistance of the measurement circuit affects the EBIC signal. During the evaluation, the electron beam is scanned along the measured object, whose load resistance varies with the distance. The variation is compensated by an adjustable resistance within an external circuit. The method has been experimentally deployed for sheet resistance determination of buried regions of lateral confinements in semiconductor laser heterostructures manufactured by molecular beam epitaxy

  14. Particle-in-cell simulations of electron beam control using an inductive current divider

    Energy Technology Data Exchange (ETDEWEB)

    Swanekamp, S. B.; Angus, J. R.; Cooperstein, G.; Ottinger, P. F.; Richardson, A. S.; Schumer, J. W.; Weber, B. V. [Plasma Physics Division, Naval Research Laboratory, Washington, District of Columbia 20375 (United States)

    2015-11-15

    Kinetic, time-dependent, electromagnetic, particle-in-cell simulations of the inductive current divider are presented. The inductive current divider is a passive method for controlling the trajectory of an intense, hollow electron beam using a vacuum structure that inductively splits the beam's return current. The current divider concept was proposed and studied theoretically in a previous publication [Swanekamp et al., Phys. Plasmas 22, 023107 (2015)]. A central post carries a portion of the return current (I{sub 1}), while the outer conductor carries the remainder (I{sub 2}) with the injected beam current given by I{sub b} = I{sub 1} + I{sub 2}. The simulations are in agreement with the theory which predicts that the total force on the beam trajectory is proportional to (I{sub 2}−I{sub 1}) and the force on the beam envelope is proportional to I{sub b}. Independent control over both the current density and the beam angle at the target is possible by choosing the appropriate current-divider geometry. The root-mean-square (RMS) beam emittance (ε{sub RMS}) varies as the beam propagates through the current divider to the target. For applications where control of the beam trajectory is desired and the current density at the target is similar to the current density at the entrance foil, there is a modest 20% increase in ε{sub RMS} at the target. For other applications where the beam is pinched to a current density ∼5 times larger at the target, ε{sub RMS} is 2–3 times larger at the target.

  15. An accurate low current measurement circuit for heavy iron beam current monitor

    International Nuclear Information System (INIS)

    Zhou Chaoyang; Su Hong; Mao Ruishi; Dong Chengfu; Qian Yi; Kong Jie

    2012-01-01

    Heavy-ion beams at 10 6 particles per second have been applied to the treatment of deep-seated inoperable tumors in the therapy terminal of the Heavy Ion Research Facility in Lanzhou (HIRFL) which is located at the Institute of Modern Physics, Chinese Academy of Sciences (IMP, CAS). An accurate low current measurement circuit following a Faraday cup was developed to monitor the beam current at pA range. The circuit consisted of a picoammeter with a bandwidth of 1 kHz and a gated integrator (GI). A low input bias current precision amplifier and new guarding and shielding techniques were used in the picoammeter circuit which allowed as to measure current less than 1 pA with a current gain of 0.22 V/pA and noise less than 10 fA. This paper will also describe a novel compensation approach which reduced the charge injection from switches in the GI to 10 −18 C, and a T-switch configuration which was used to eliminate leakage current in the reset switch.

  16. Collisionless effects on beam-return current systems in solar flares

    Science.gov (United States)

    Vlahos, L.; Rowland, H. L.

    1985-01-01

    A theoretical study of the beam-return current system (BRCS) in solar flares shows that the precipitating electrons modify the way in which the return current (RC) is carried by the background plasma. In particular it is found that the RC is not carried by the bulk of the electrons but by a small number of high-velocity electrons. For beam/plasma densities exceeding approximately 0.001, this can reduce the effects of collisions and heating by the RC. For higher-density beams, where the RC could be unstable to current-driven instabilities, the effects of strong turbulence anomalous resistivity prevent the appearance of such instabilities. The main conclusion is that the BRCS is interconnected, and that the beam-generated strong turbulence determines how the RC is carried.

  17. High-current beam dynamics and transport, theory and experiment

    International Nuclear Information System (INIS)

    Reiser, M.

    1986-01-01

    Recent progress in the understanding of beam physics and technology factors determining the current and brightness of ion and electron beams in linear accelerators will be reviewed. Topics to be discussed including phase-space density constraints of particle sources, low-energy beam transport include charge neutralization, emittance growth due to mismatch, energy exchange, instabilities, nonlinear effects, and longitudinal bunching

  18. High current precision long pulse electron beam position monitor

    CERN Document Server

    Nelson, S D; Fessenden, T J; Holmes, C

    2000-01-01

    Precision high current long pulse electron beam position monitoring has typically experienced problems with high Q sensors, sensors damped to the point of lack of precision, or sensors that interact substantially with any beam halo thus obscuring the desired signal. As part of the effort to develop a multi-axis electron beam transport system using transverse electromagnetic stripline kicker technology, it is necessary to precisely determine the position and extent of long high energy beams for accurate beam position control (6 - 40 MeV, 1 - 4 kA, 2 μs beam pulse, sub millimeter beam position accuracy.) The kicker positioning system utilizes shot-to-shot adjustments for reduction of relatively slow (< 20 MHz) motion of the beam centroid. The electron beams passing through the diagnostic systems have the potential for large halo effects that tend to corrupt position measurements.

  19. RADLAC II high current electron beam propagation experiment

    International Nuclear Information System (INIS)

    Frost, C.A.; Shope, S.L.; Mazarakis, M.G.; Poukey, J.W.; Wagner, J.S.; Turman, B.N.; Crist, C.E.; Welch, D.R.; Struve, K.W.

    1993-01-01

    The resistive hose instability of an electron beam was observed to be convective in recent RADLAC II experiments for higher current shots. The effects of air scattering for these shots were minimal. These experiments and theory suggest low-frequency hose motion which does not appear convective may be due to rapid expansion and subsequent drifting of the beam nose

  20. Charged particle beam current monitoring tutorial

    International Nuclear Information System (INIS)

    Webber, R.C.

    1994-10-01

    A tutorial presentation is made on topics related to the measurement of charged particle beam currents. The fundamental physics of electricity and magnetism pertinent to the problem is reviewed. The physics is presented with a stress on its interpretation from an electrical circuit theory point of view. The operation of devices including video pulse current transformers, direct current transformers, and gigahertz bandwidth wall current style transformers is described. Design examples are given for each of these types of devices. Sensitivity, frequency response, and physical environment are typical parameters which influence the design of these instruments in any particular application. Practical engineering considerations, potential pitfalls, and performance limitations are discussed

  1. Achromatic beam transport of High Current Injector

    International Nuclear Information System (INIS)

    Kumar, Sarvesh; Mandal, A.

    2016-01-01

    The high current injector (HCI) provides intense ion beams of high charge state using a high temperature superconducting ECR ion source. The ion beam is accelerated upto a final energy of 1.8 MeV/u due to an electrostatic potential, a radio frequency quadrupole (RFQ) and a drift tube linac (DTL). The ion beam has to be transported to superconducting LINAC which is around 50 m away from DTL. This section is termed as high energy beam transport section (HEBT) and is used to match the beam both in transverse and longitudinal phase space to the entrance of LINAC. The HEBT section is made up of four 90 deg. achromatic bends and interconnecting magnetic quadrupole triplets. Two RF bunchers have been used for longitudinal phase matching to the LINAC. The ion optical design of HEBT section has been simulated using different beam dynamics codes like TRACEWIN, GICOSY and TRACE 3D. The field computation code OPERA 3D has been utilized for hardware design of all the magnets. All the dipole and quadrupole magnets have been field mapped and their test results such as edge angles measurements, homogeneity and harmonic analysis etc. are reported. The whole design of HEBT section has been performed such that the most of the beam optical components share same hardware design and there is ample space for beam diagnostics as per geometry of the building. Many combination of achromatic bends have been simulated to transport the beam in HEBT section but finally the four 90 deg. achromatic bend configuration is found to be the best satisfying all the geometrical constraints with simplified beam tuning process in real time

  2. A squid-based beam current monitor for FAIR/CRYRING

    International Nuclear Information System (INIS)

    Geithner, Rene; Stöhlker, Thomas; Kurian, Febin; Reeg, Hansjörg; Schwickert, Marcus; Neubert, Ralf; Seidel, Paul

    2015-01-01

    A SQUID-based beam current monitor was developed for the upcoming FAIR-Project, providing a non-destructive online monitoring of the beam currents in the nA-range. The cryogenic current comparator (CCC) was optimized for lowest possible noise-limited current resolution together with a high system bandwidth. This CCC is foreseen to be installed in the CRYRING facility (CRYRING@ESR: A study group report www.gsi.de/fileadmin/SPARC/documents/Cryring/ReportCryring-40ESR.PDF), working as a test bench for FAIR. In this contribution we present results of the completed CCC for FAIR/CRYRING and also arrangements that have been done for the installation of the CCC at CRYRING, regarding the cryostat design. (paper)

  3. Design and initial tests of beam current monitoring systems for the APS transport lines

    International Nuclear Information System (INIS)

    Wang, Xucheng.

    1992-01-01

    The non-intercepting beam current monitoring systems suitable for a wide, range of beam parameters have been developed for the Advanced Photon Source (APS) low energy transport lines and high energy transport line. The positron or electron beam pulse in the transport lines wig have peak beam currents ranging from 8 mA to 29 A with pulse widths varying from 120 ps to 30 ns and pulse repetition rates from 2 Hz to 60 Hz. The peak beam current or total beam charge is measured with the fast or integrating current transformer, respectively, manufactured by Bergoz. In-house high speed beam signal processing electronics provide a DC level output proportional to the peak current or total charge for the digitizer input. The prototype systems were tested on the linacs which have beam pulse structures similar to that of the APS transport lines. This paper describes the design of beam signal processing electronics and grounding and shielding methods for current transformers. The results of the initial operations are presented. A short introduction on the preliminary design of current monitoring systems for the APS rings is also included

  4. Transport and acceleration of the high-current ion beam in magneto-isolated gap

    International Nuclear Information System (INIS)

    Karas', V.I.; Kornilov, E.A.; Manuilenko, O.V.; Fedorovskaya, O.V.; Tarakanov, V.P.

    2015-01-01

    The possibility of transportation and acceleration of the high-current ion beam in the magneto-isolated gap has been demonstrated. Found the parameters of the system and beams (the magnetic field produced by the coils with opposing currents, the size of the system, and the parameters of the beams), under which the uniform acceleration of the high-current ion beam all along the gap length is realized. It is shown that the quality of the ion beam, during transport and acceleration, at the exit of the gap is acceptable for many technological applications.

  5. Non-perturbative measurement of low-intensity charged particle beams

    Science.gov (United States)

    Fernandes, M.; Geithner, R.; Golm, J.; Neubert, R.; Schwickert, M.; Stöhlker, T.; Tan, J.; Welsch, C. P.

    2017-01-01

    Non-perturbative measurements of low-intensity charged particle beams are particularly challenging to beam diagnostics due to the low amplitude of the induced electromagnetic fields. In the low-energy antiproton decelerator (AD) and the future extra low energy antiproton rings at CERN, an absolute measurement of the beam intensity is essential to monitor the operation efficiency. Superconducting quantum interference device (SQUID) based cryogenic current comparators (CCC) have been used for measuring slow charged beams in the nA range, showing a very good current resolution. But these were unable to measure fast bunched beams, due to the slew-rate limitation of SQUID devices and presented a strong susceptibility to external perturbations. Here, we present a CCC system developed for the AD machine, which was optimised in terms of its current resolution, system stability, ability to cope with short bunched beams, and immunity to mechanical vibrations. This paper presents the monitor design and the first results from measurements with a low energy antiproton beam obtained in the AD in 2015. These are the first CCC beam current measurements ever performed in a synchrotron machine with both coasting and short bunched beams. It is shown that the system is able to stably measure the AD beam throughout the entire cycle, with a current resolution of 30 {nA}.

  6. Reducing the beam current in Linac4 in pulse to pulse mode.

    CERN Document Server

    Lallement, JB; CERN. Geneva. BE Department

    2009-01-01

    In order to deliver different beam intensities to users, we studied the possibility of varying the Linac4 beam current at PS Booster injection in pulse to pulse mode. This report gives the possible configurations of Linac4 Low and Medium Energy Beam Transport lines (LEBT and MEBT) that lead to a consistent current reduction.

  7. Application of radiofrequency superconductivity to accelerators for high-current ion beams

    International Nuclear Information System (INIS)

    Delayen, J.R.; Bohn, C.L.; Kennedy, W.L.; Roche, C.T.; Sagalovsky, L.

    1992-01-01

    A development program is underway to apply rf superconductivity to the design of continuous-wave (cw) linear accelerators for high-current, high-brightness ion beam. During the last few years, considerable progress has been made both experimentally and theoretically toward this application. Recent tests of niobium resonators for ion acceleration have yielded average accelerating gradients as high as 18 MV/m. In an experiment with a radio-frequency quadrupole geometry, niobium was found to sustain cw peak surface electric fields as high as 128 MV/m over large (10 cm) surface areas. Theoretical studies of beam halo, cumulative beam breakup and alternating-phase focusing have also yielded important results. This paper su-summarizes the recent progress and identifies current and future work in the areas of superconducting accelerator technology for high-current ion beams

  8. Current measurement system utilizing cryogenic techniques for the absolute measurement of the magnetic flux quantum

    International Nuclear Information System (INIS)

    Endo, T.; Murayama, Y.; Sakamoto, Y.; Sakuraba, T.; Shiota, F.

    1989-01-01

    A series of systems composed of cryogenic devices such as a Josephson potentiometer and a cryogenic current comparator has been proposed and developed to precisely measure a current with any value up to 1 A. These systems will be used to measure the injected electrical energy with an uncertainty of the order of 0.01 ppm or less in the absolute measurement of the magnetic flux quantum by superconducting magnetic levitation. Some preliminary experiments are described

  9. Absolute photoionization cross-section measurements of the Kr I isoelectronic sequence

    International Nuclear Information System (INIS)

    Kilbane, D.; Banahan, C.; Kampen, P. van; Costello, J. T.; Folkmann, F.; Kjeldsen, H.; Bizau, J.-M.; Scully, S.; Mansfield, M. W. D.; West, J. B.

    2007-01-01

    Photoionization spectra have been recorded in the 4s, 4p, and 3d resonance regions for the Kr I isoelectronic sequence using both the dual laser produced plasma (DLP) technique (at DCU) to produce photoabsorption spectra, and the merged ion beam and synchrotron radiation technique (at ASTRID) to measure absolute photoionization cross sections. Profile parameters are compared for the 4s-np resonances of Rb + and Sr 2+ . Many 4p→ns, md transitions are identified with the aid of Hartree-Fock calculations, and consistent quantum defects are observed for the various ns and md Rydberg series. Absolute single and double photoionization cross sections recorded in the 3d region for Rb + and Sr 2+ ions show preferential decay via double photoionization. This is only the second report to our knowledge where both the DLP technique and the merged-beam technique have been used simultaneously to record photoionization spectra, and the advantages of both techniques (i.e., better resolution in the case of DLP and values for absolute photoionization cross sections in the case of the merged-beam technique) are highlighted

  10. Methods for calculating energy and current requirements for industrial electron beam processing

    International Nuclear Information System (INIS)

    Cleland, M.R.; Farrell, J.P.

    1976-01-01

    The practical problems of determining electron beam parameters for industrial irradiation processes are discussed. To assist the radiation engineer in this task, the physical aspects of electron beam absorption are briefly described. Formulas are derived for calculating the surface dose in the treated material using the electron energy, beam current and the area thruput rate of the conveyor. For thick absorbers electron transport results are used to obtain the depth-dose distributions. From these the average dose in the material, anti D, and the beam power utilization efficiency, F/sub p/, can be found by integration over the distributions. These concepts can be used to relate the electron beam power to the mass thruput rate. Qualitatively, the thickness of the material determines the beam energy, the area thruput rate and surface dose determine the beam current while the mass thruput rate and average depth-dose determine the beam power requirements. Graphs are presented showing these relationships as a function of electron energy from 0.2 to 4.0 MeV for polystyrene. With this information, the determination of electron energy and current requirements is a relatively simple procedure

  11. Measurement of electron- and ion beam energies and currents in a plasma focus discharge

    International Nuclear Information System (INIS)

    Yamamoto, Toshikazu; Kondoh, Yoshiomi; Shimoda, Katsuji; Hirano, Katsumi

    1982-01-01

    Measurements of energetic particle beams in a plsma focus with a Mather type device are presented. Rogowski coils are used for time-resolved measurement, and solid-state nuclear track detectors for time-integrated measurement of the beams. In the upstream direction with respect to the discharge current, only the electron beam with the maximum current of several kA was detected, which was approximately one percent of the discharge current. The electron energies of the beam were spread from 0.1 to 1 MeV. In the downstream direction, two successive emissions of ions were observed. The first emission had an extremely high energy of the order of some MeV and a low beam current of less than 10 A. The second emission, the main part of the ion beam, with energies of 100 - 800 keV, followed the first one with a time lag of several tens of nanoseconds, and the beam current reached several tens of amperes. (author)

  12. Resistive wall heating due to image current on the beam chamber for a superconducting undulator.

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. H. (Accelerator Systems Division (APS))

    2012-03-27

    The image-current heating on the resistive beam chamber of a superconducting undulator (SCU) was calculated based on the normal and anomalous skin effects. Using the bulk resistivity of copper for the beam chamber, the heat loads were calculated for the residual resistivity ratios (RRRs) of unity at room temperature to 100 K at a cryogenic temperature as the reference. Then, using the resistivity of the specific aluminum alloy 6053-T5, which will be used for the SCU beam chamber, the heat loads were calculated. An electron beam stored in a storage ring induces an image current on the inner conducting wall, mainly within a skin depth, of the beam chamber. The image current, with opposite charge to the electron beam, travels along the chamber wall in the same direction as the electron beam. The average current in the storage ring consists of a number of bunches. When the pattern of the bunched beam is repeated according to the rf frequency, the beam current may be expressed in terms of a Fourier series. The time structure of the image current is assumed to be the same as that of the beam current. For a given resistivity of the chamber inner wall, the application ofthe normal or anomalous skin effect will depend on the harmonic numbers of the Fourier series of the beam current and the temperature of the chamber. For a round beam chamber with a ratius r, much larger than the beam size, one can assume that the image current density as well as the density square, may be uniform around the perimeter 2{pi}r. For the SCU beam chamber, which has a relatively narrow vertical gap compared to the width, the effective perimeter was estimated since the heat load should be proportional to the inverse of the perimeter.

  13. A low-cost non-intercepting beam current and phase monitor for heavy ions

    International Nuclear Information System (INIS)

    Bogaty, J.M.; Clifft, B.E.

    1995-01-01

    A low cost ion beam measurement system has been developed for use at ATLAS. The system provides nondestructive phase and intensity measurement of passing ion beam bunches by sensing their electric fields. Bunches traverse a short tubular electrode thereby inducing displacement currents. These currents are brought outside the vacuum jacket where a lumped inductance resonates electrode capacitance at one of the bunching harmonic frequencies. This configuration yields a basic sensitivity of a few hundred millivolts signal per microampere of beam current. Beam induced radiofrequency signals are summed against an offset frequency generated by the master oscillator. The resulting difference frequency conveys beam intensity and bunch phase information which is sent to separate processing channels. One channel utilizes a phase locked loop to stabilize phase readings during microsecond beam drop outs. The other channel uses a linear full-wave active rectifier circuit which converts sine wave signal amplitude to a DC voltage representing beam current. Plans are in progress to install this new diagnostic at several locations in ATLAS which should help shorten the tuning cycle of new ion species

  14. Beam--plasma instabilities and the beam--plasma discharge

    International Nuclear Information System (INIS)

    Kellogg, P.J.; Boswell, R.W.

    1986-01-01

    Using a new electron gun, a number of measurements bearing on the generation of beam--plasma discharge (BPD) in WOMBAT (waves on magnetized beams and turbulence) [R. W. Boswell and P. J. Kellogg, Geophys. Res. Lett. 10, 565 (1983)] have been made. A beam--plasma discharge is an rf discharge in which the rf fields are provided by instabilities [W. D. Getty and L. D. Smullin, J. Appl. Phys. 34, 3421 (1963)]. The new gun has a narrower divergence angle than the old, and comparison of the BPD thresholds for the two guns verifies that the BPD ignition current is proportional to the cross-sectional area of the plasma. The high-frequency instabilities, precursors to the BPD, are identified with the two Trivelpiece--Gould modes [A. W. Trivelpiece and R. W. Gould, J. Appl. Phys. 30, 1784 (1959)]. Which frequency appears depends on the neutral pressure. The measured frequencies are not consistent with the simple interpretation of the lower frequency as a Cerenkov resonance with the low-Trivelpiece--Gould mode; it must be a cyclotron resonance. As is generally true in such beam--plasma interaction experiments, strong low-frequency waves appear at currents far below those necessary for BPD ignition. These low-frequency waves are shown to control the onset of the high-frequency precursors to the BPD. A mechanism for this control is suggested, which involves the conversion of a convective instability to an absolute one by trapping of the unstable waves in the density perturbations of the low-frequency waves. This process greatly reduces the current necessary for BPD ignition

  15. Design and commissioning of the APS beam charge and current monitor

    International Nuclear Information System (INIS)

    Wang, X.; Lenkszus, F.; Rotela, E.

    1994-01-01

    The non-intercepting charge and current monitors suitable for a wide range of beam parameters have been developed and installed in the Advanced Photon Source (APS) low energy transport lines, positron accumulator ring (PAR), and injector synchrotron. The positron or electron beam pulse in the APS has charge ranging from 100pC to l0nC with pulse width varying from 30ps to 30ns. The beam charge and current are measured with a current transformer and subsequent current monitoring electronics based on an ultrafast, high precision gated integrator. The signal processing electronics, data acquisition, and communication with the control system are managed by a VME-based system. This paper summarizes the hardware and software features of the systems. The results of recent operations are presented

  16. Design and commissioning of the APS beam charge and current monitors

    International Nuclear Information System (INIS)

    Wang, X.; Lenkszus, F.; Rotela, E.

    1995-01-01

    The non-intercepting charge and current monitors suitable for a wide range of beam parameters have been developed and installed in the Advanced Photon Source (APS) low energy transport lines, positron accumulator ring (PAR), and injector synchrotron. The positron or electron beam pulse in the APS has charge ranging from 100 pC to 10 nC with pulse width varying from 30 ps to 30 ns. The beam charge and current are measured with a current transformer and subsequent current monitoring electronics based on an ultrafast, high precision gated integrator. The signal processing electronics, data acquisition, and communication with the control system are managed by a VME-based system. This paper summarizes the hardware and software features of the systems. The results of recent operations are presented. copyright 1995 American Institute of Physics

  17. Electron beam formation in high-current diode

    International Nuclear Information System (INIS)

    Korneev, S.A.

    1981-01-01

    The results of experimental investigation of the electron beam formation in diode with cathode on the base of incomplete discharge over the surface of dielectrics with dielectric penetration epsilon 2 . The measurement of current density distribution over transversal cross section reveals an efficient homogeneity [ru

  18. Temperature calculations of heat loads in rotating target wheels exposed to high beam currents

    International Nuclear Information System (INIS)

    Greene, John P.; Gabor, Rachel; Neubauer, Janelle

    2001-01-01

    In heavy-ion physics, high beam currents can eventually melt or destroy the target. Tightly focused beams on stationary targets of modest melting point will exhibit short lifetimes. Defocused or 'wobbled' beams are employed to enhance target survival. Rotating targets using large diameter wheels can help overcome target melting and allow for higher beam currents to be used in experiments. The purpose of the calculations in this work is to try and predict the safe maximum beam currents which produce heat loads below the melting point of the target material

  19. Temperature calculations of heat loads in rotating target wheels exposed to high beam currents

    International Nuclear Information System (INIS)

    Greene, J. P.; Gabor, R.; Neubauer, J.

    2000-01-01

    In heavy-ion physics, high beam currents can eventually melt or destroy the target. Tightly focused beams on stationary targets of modest melting point will exhibit short lifetimes. Defocused or wobbled beams are employed to enhance target survival. Rotating targets using large diameter wheels can help overcome target melting and allow for higher beam currents to be used in experiments. The purpose of the calculations in this work is to try and predict the safe maximum beam currents which produce heat loads below the melting point of the target material

  20. Measurements of high-current electron beams from X pinches and wire array Z pinches

    International Nuclear Information System (INIS)

    Shelkovenko, T. A.; Pikuz, S. A.; Blesener, I. C.; McBride, R. D.; Bell, K. S.; Hammer, D. A.; Agafonov, A. V.; Romanova, V. M.; Mingaleev, A. R.

    2008-01-01

    Some issues concerning high-current electron beam transport from the X pinch cross point to the diagnostic system and measurements of the beam current by Faraday cups are discussed. Results of computer simulation of electron beam propagation from the pinch to the Faraday cup give limits for the measured current for beams having different energy spreads. The beam is partially neutralized as it propagates from the X pinch to a diagnostic system, but within a Faraday cup diagnostic, space charge effects can be very important. Experimental results show evidence of such effects.

  1. Pulsed high current ion beam processing equipment

    International Nuclear Information System (INIS)

    Korenev, S.A.; Perry, A.

    1995-01-01

    A pulsed high voltage ion source is considered for use in ion beam processing for the surface modification of materials, and deposition of conducting films on different substrates. The source consists of an Arkad'ev-Marx high voltage generator, a vacuum ion diode based on explosive ion emission, and a vacuum chamber as substrate holder. The ion diode allows conducting films to be deposited from metal or allow sources, with ion beam mixing, onto substrates held at a pre-selected temperature. The main variables can be set in the ranges: voltage 100-700 kV, pulse length 0.3 μs, beam current 1-200 A depending on the ion chosen. The applications of this technology are discussed in semiconductor, superconductor and metallizing applications as well as the direction of future development and cost of these devices for commercial application. 14 refs., 6 figs

  2. Production of a high-current microsecond electron beam with a large cross section

    International Nuclear Information System (INIS)

    Abdullin, E.N.; Belomytsev, S.Ya.; Bugaev, S.P.; Gorbachev, S.I.; Zaslavskii, V.M.; Zorin, V.P.; Koval'chuk, B.M.; Loginov, S.V.; Matyukov, Yu.N.; Rasputin, R.M.; Tolkachev, V.S.; Shchanin, P.M.

    1991-01-01

    Obtaining high-current wide-aperture electron beams is an important problem in the development of laser technology for controlled nuclear fusion and for solving ecological and technological problems. The main scheme for producing such beams involves the use of generators with intermediate energy storage devices and burst-emission vacuum diodes. Beam pinching is prevented by using an external magnetic field or sectioning the diode into magnetically insulated diodes with currents lower than the limiting current. The length of the electron-current pulse varies from tens to hundreds of nano-seconds and is limited by the parameters of the intermediate storage device. Here the authors study the formation of a high-current electron beam with a square cross section and a current of the order of the limiting current of the diode in the absence of an external magnetic field as well as a 'fast' storage device in the power supply circuit. These conditions as a whole correspond to a simpler electron-source circuit, but the beam forming becomes more complicated. The reason for this is that there is no external magnetic field and that the role of plasma processes in the diode is enhanced by the greater length of the electron-current pulses

  3. Absolute measurements of chlorine Cl+ cation single photoionization cross section

    NARCIS (Netherlands)

    Hernandez, E. M.; Juarez, A. M.; Kilcoyne, A. L. D.; Aguilar, A.; Hernandez, L.; Antillon, A.; Macaluso, D.; Morales-Mori, A.; Gonzalez-Magana, O.; Hanstorp, D.; Covington, A. M.; Davis, V.; Calabrese, D.; Hinojosa, G.

    The photoionization of Cl+ leading to Cl2+ was measured in the photon energy range of 19.5-28.0 eV. A spectrum with a photon energy resolution of 15 meV normalized to absolute cross-section measurements is presented. The measurements were carried out by merging a Cl+ ion beam with a photon beam of

  4. Beam Current Increase and Cathode Lifetime Improvement of KOTRON-13 Ion Source

    International Nuclear Information System (INIS)

    Lee, W. K.; Chae, S. K.; Song, J. Y.; Im, G. S.; Cho, B. O.

    2010-01-01

    Technology of cyclotron has been actively developed to meet the increasing requirement output of medical radioactive isotopes for PET. KOTRON-13 is produced with low negative hydrogen ion beam current owing to the low efficiency of proton beam current compared with foreign cyclotron. In the defect there from, the lifetime of cathode is around 5,000min, which requires frequent maintenance period, and the target beam current is maximum 50uA at a poor efficiency compared with the inflow quantity of hydrogen gas and that of inflicting arc current. Considering above affairs, we have to improve the PIG ion source extraction efficiency of KOTRON-13 in order to lift beam current. Mostly the ion source of cyclotron less than 30Mev comes from the use of PIG ion source mainly with the method of cold cathode or hot cathode. However, the cyclotron of 30Mev grade of EBCO or IBA uses the external ion source and uses ion source with cusp type of good withdrawal efficiency. This type requires high voltage, and transports ion from ion source to cyclotron, which requires precise transportation equipment. And entering cyclotron requires a high quality of inflictor with a high defect rate, but high current cyclotron has no choice but to use ion source of such a method. But the cyclotron using PET with the beam current less than 100uA uses PIG ion source of KOTRON-13 with a reasonable maintenance cost

  5. Beam physics design strategy for a high-current rf linac

    Energy Technology Data Exchange (ETDEWEB)

    Reiser, M. [Univ. of Maryland, College Park, MD (United States)

    1995-10-01

    The high average beam power of an rf linac system for transmutation of nuclear waste puts very stringent requirements on beam quality and beam control. Fractional beam losses along the accelerator must be kept at extremely low levels to assure {open_quotes}hands-on{close_quotes} maintenance. Hence, halo formation and large-amplitude tails in the particle distribution due to beam mismatch and equipartitioning effects must be avoided. This implies that the beam should ideally be in near-perfect thermal equilibrium from injection to full energy - in contrast to existing rf linacs in which the transverse temperature, T {sub {perpendicular}}, is higher than the longitudinal temperature, T{sub {parallel}}. The physics and parameter scaling for such a system will be reviewed using the results of recent work on high-intensity bunched beams. A design strategy for a high-current rf linac with equilibrated beam will be proposed.

  6. Experimental validation of flexible multibody dynamics beam formulations

    Energy Technology Data Exchange (ETDEWEB)

    Bauchau, Olivier A., E-mail: olivier.bauchau@sjtu.edu.cn; Han, Shilei [University of Michigan-Shanghai Jiao Tong University Joint Institute (China); Mikkola, Aki; Matikainen, Marko K. [Lappeenranta University of Technology, Department of Mechanical Engineering (Finland); Gruber, Peter [Austrian Center of Competence in Mechatronics GmbH (Austria)

    2015-08-15

    In this paper, the accuracies of the geometrically exact beam and absolute nodal coordinate formulations are studied by comparing their predictions against an experimental data set referred to as the “Princeton beam experiment.” The experiment deals with a cantilevered beam experiencing coupled flap, lag, and twist deformations. In the absolute nodal coordinate formulation, two different beam elements are used. The first is based on a shear deformable approach in which the element kinematics is described using two nodes. The second is based on a recently proposed approach featuring three nodes. The numerical results for the geometrically exact beam formulation and the recently proposed three-node absolute nodal coordinate formulation agree well with the experimental data. The two-node beam element predictions are similar to those of linear beam theory. This study suggests that a careful and thorough evaluation of beam elements must be carried out to assess their ability to deal with the three-dimensional deformations typically found in flexible multibody systems.

  7. Silicon radiation detector analysis using back electron beam induced current

    International Nuclear Information System (INIS)

    Guye, R.

    1987-01-01

    A new technique for the observation and analysis of defects in silicon radiation detectors is described. This method uses an electron beam from a scanning electron microscope (SEM) impinging on the rear side of the p + n junction of the silicon detector, which itself is active and detects the electron beam induced current (EBIC). It is shown that this current is a sensitive probe of localized trapping centers, either at the junction surface or somewhere in the volume of the silicon crystal. (orig.)

  8. Absolute measurements methods for proton beam dosimetry

    International Nuclear Information System (INIS)

    Laitano, R.F.

    1998-01-01

    A widespread interest in improving proton beam characteristics and related dosimetry became apparent in the recent years, even if the advantages of protons in radiotherapy were pointed out since 1946. The early treatments by proton beams were made for a long time on a small number of patients in very few accelerators sharing their use with nuclear-physics experiments. The first proton accelerator totally dedicated to radiotherapy was established just in 1990 at the Loma Linda Medical Center in the USA. A further reason of the slowly growing use of protons for therapy in the early years, was the lack of adequate means for accurate localization of the treatment volume. The potentialities of protons in imparting a largest part of their energy to very small volumes became exploitable only after the established clinical use of accurate imaging techniques such as based on CT, NMR, PET, etc

  9. Fast-ion transport and neutral beam current drive in ASDEX upgrade

    DEFF Research Database (Denmark)

    Geiger, B.; Weiland, M.; Jacobsen, Asger Schou

    2015-01-01

    The neutral beam current drive efficiency has been investigated in the ASDEX Upgrade tokamak by replacing on-axis neutral beams with tangential off-axis beams. A clear modification of the radial fast-ion profiles is observed with a fast-ion D-alpha diagnostic that measures centrally peaked profiles...... during on-axis injection and outwards shifted profiles during off-axis injection. Due to this change of the fast-ion population, a clear modification of the plasma current profile is predicted but not observed by a motional Stark effect diagnostic. The fast-ion transport caused by MHD activity has been...

  10. Neutral-beam performance analysis using a CCD camera

    International Nuclear Information System (INIS)

    Hill, D.N.; Allen, S.L.; Pincosy, P.A.

    1986-01-01

    We have developed an optical diagnostic system suitable for characterizing the performance of energetic neutral beams. An absolutely calibrated CCD video camera is used to view the neutral beam as it passes through a relatively high pressure (10 -5 Torr) region outside the neutralizer: collisional excitation of the fast deuterium atoms produces H/sub proportional to/ emission (lambda = 6561A) that is proportional to the local atomic current density, independent of the species mix of accelerated ions over the energy range 5 to 20 keV. Digital processing of the video signal provides profile and aiming information for beam optimization. 6 refs., 3 figs

  11. Generation of Low-Energy High-Current Electron Beams in Plasma-Anode Electron Guns

    Science.gov (United States)

    Ozur, G. E.; Proskurovsky, D. I.

    2018-01-01

    This paper is a review of studies on the generation of low-energy high-current electron beams in electron guns with a plasma anode and an explosive-emission cathode. The problems related to the initiation of explosive electron emission under plasma and the formation and transport of high-current electron beams in plasma-filled systems are discussed consecutively. Considerable attention is given to the nonstationary effects that occur in the space charge layers of plasma. Emphasis is also placed on the problem of providing a uniform energy density distribution over the beam cross section, which is of critical importance in using electron beams of this type for surface treatment of materials. Examples of facilities based on low-energy high-current electron beam sources are presented and their applications in materials science and practice are discussed.

  12. Beam position dependence of a wall-current monitor

    International Nuclear Information System (INIS)

    Tamiya, K.; Asami, A.; Suwada, T.; Urano, T.; Kobayashi, H.

    1995-01-01

    It was pointed out recently that there exists an appreciable beam position dependence in the wall-current monitor widely used in electron accelerators. Detailed study of this dependence is performed on a test bench varying the pulse width and the frequency of the input signal simulating the beam. The results of experiments show that when the pulse width becomes shorter more appreciable becomes the dependence, and it approaches to that of calculated from the method of images. A unified analysis is under way. (author)

  13. Two-section linear direct-current accelerator of 1.2 MeV electrons. Mean beam current of 50 mA

    International Nuclear Information System (INIS)

    Alimov, A.S.; Ermakov, D.I.; Ishkhanov, B.S.; Shvedunov, V.I.; Sakharov, V.P.; Trower, W.P.

    2002-01-01

    The theoretical and experimental results, obtained by simulation, creation and start-up of the two-section linear electron accelerator, are presented. The following beam parameters: beam current of 49 mA, mean energy of 1.2 MeV, of 59 kV, normalized emittance of 11 mm mrad are determined on the basis of the data on the beam dynamics simulation and the accelerating structure optimization. Special attention is paid to the choice of the version of the SHF-supply system of the two-section accelerator. The version of the SHF-supply system, based on the sections phasing, operating in the auto-oscillation model by means of the synchronizing signal from the feedback chain of the first section into the feedback chain of the second section, is considered. The electron beam parameters on the accelerator outlet (beam current - 44 mA, beam energy - 1.15 MeV, beam efficiency - 50.6 kW) proved to be close to the simulation results [ru

  14. The detection of electron-beam-induced current in junctionless semiconductor

    International Nuclear Information System (INIS)

    Tan, Chee Chin; Ong, Vincent K. S.

    2010-01-01

    The scanning electron microscope is a versatile tool and its electron beam techniques have been widely used in semiconductor material and device characterizations. One of these electron beam techniques is the electron-beam-induced current (EBIC) technique. One of the limitations of the conventional EBIC technique is that it requires charge collecting junctions which may not be readily available in junctionless samples such as bare substrates unless some special sample preparation procedure such as the fabrication of a diffused junction is done on the junctionless sample. In this paper, the technique of detecting EBIC current in junctionless samples with the use of a two-point probe is presented. It is found that the EBIC current is independent from its physical parameter when the sample thickness is greater than 4L; the width to the right of probe 2 and the width to the left of probe 1 are greater than 2L and 8L, respectively. The parameters affecting this technique of detecting the EBIC current such as the depth of the generation volume, probe spacing, and the applied bias are also discussed in this paper. A commercially available two-dimensional device simulator was used to verify this technique.

  15. Relative and absolute dosimetry of proton therapy beams

    International Nuclear Information System (INIS)

    Mazal, A.; Delacroix, S.; Bridier, A.; Daures, J.; Dolo, J.M.; Nauraye, C.; Ferrand, R.; Cosgrave, V.; Habrand, J.L.

    1995-01-01

    Different codes of practice are in use or under preparation by several groups and national or international societies, concerning the dosimetry of proton beams. In spite of a large number of experiences and the increasing interest on this field, there are still large incertitudes on some of the basic conversion and correction factors to get dose values from different measuring methods. In practice, dose uniformity between centers is searched and encouraged by intercomparisons using standard procedures. We present the characteristics and the results on proton dosimetry intercomparisons using calorimeters, Faraday cups and ion chambers, as well as on the use of other detectors like diodes, radiographic films and TLD. New detectors like diamond, scintillators, radiochromic films, alanine, gels, ... can give new solutions to particular problems, provided their response is not affected at the end of the proton range (higher LET region), and their resolution, range, linearity, cost, ... are well adapted to practical situations. Some examples of special challenges are non interfering measurements during treatments for quality control, in vivo measurements, small beams for stereotactic irradiations, scanned beams and correlations between dosimetry, microdosimetry and radiobiology

  16. Beam-driven currents in the 1/ν regime in a helical system

    International Nuclear Information System (INIS)

    Nakajima, Noriyoshi; Okamoto, Masao.

    1990-04-01

    Beam currents driven by a neutral particle injection in a helical system (stellarator, heliotron/torsatron) are studied in the 1/ν collisionality regime. The general expression for the beam-driven current is obtained for arbitrary magnetic field configurations by solving the drift kinetic equation for electrons. It is found that F = J(net)/J(b) (J(net) is the net current and J(b) is the fast ion beam current) increases as f(t) and Zeff where f(t) is the fraction of trapped electrons and Zeff is the effective ionic charge number. Especially, for Zeff ≅ 1 the effect of trapped electrons is large and F is roughly proportional to f(t). On the other hand, if Zeff > or approx 3 the effect of trapped electrons becomes small. (author)

  17. Microcontroller based four-channel current readout unit for beam slit monitor

    International Nuclear Information System (INIS)

    Holikatti, A.C.; Puntambekar, T.A.; Pithawa, C.K.

    2009-01-01

    This paper describes the design and development of a microcontroller based four-channel current readout unit for Beam Slit Monitor (BSM) installed in Transport Line-1 of Indus Accelerator Complex. BSM is a diagnostic device consisting of two horizontal and two vertical blades, which can be moved independently in to the beam pipe to cut the beam transversely. The readout unit employs switched integrators with reset, hold and select switches and timing and control unit. It integrates the current output of the four blades of BSM and produces an output corresponding to the beam charge intercepted by the blade. The integrator outputs are then multiplexed and digitized using 12-bit ADC. Acquired digital data from ADC is stored into on-chip RAM of the microcontroller. The readout sequence is synchronized with the Microtron beam-timing signal. The timing of integration, hold and reset cycles is controlled by the microcontroller. The unit is connected on a serial link to the host computer in main control room. This unit has been integrated with the BSM system and is being used to obtain the electron beam profile. (author)

  18. Development of an IH-type linac for the acceleration of high current heavy ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Haehnel, Jan Hendrik

    2017-07-20

    The Facility for Antiproton and Ion Research (FAIR) at GSI Darmstadt will provide unprecedented intensities of protons and heavy ions up to uranium at energies of up to 29 GeV for protons and 2.7 GeV/u for U{sup 28+}. To achieve high intensities in the synchrotron accelerators, high beam currents have to be provided by the injector linear accelerators. High current heavy ion beams are provided by the Universal Linear Accelerator (UNILAC), which in its current state will not be able to provide the required FAIR beam currents. This thesis deals with the development of upgrades for the UNILAC to ensure its high current capability. The first improvement is a matching section (MEBT) for the interface between the RFQ and the IH-DTL of the existing high current injector HSI at the UNILAC. With this new MEBT section, particle losses are eliminated and the overall beam quality is improved. As a second improvement, a complete replacement of the existing Alvarez-DTL is presented. A combination of efficient IH-type cavities and KONUS beam dynamics results in a reduction of the linac length from about 60 m (Alvarez) to just 23 m (new IH-DTL) while providing the same energy and fulfilling FAIR requirements of a high beam current and beam quality. This thesis contains a detailed beam dynamics design of the new linac including some fundamental investigations of the KONUS beam dynamics concept. A cross-check of the beam dynamics design was performed with two independent multi-particle simulation codes. Detailed error studies were conducted to investigate the influence of manufacturing, alignment and operating errors on the beam dynamics performance. Additionally, all five linac cavities were designed, optimized, and their RF parameters including power requirements calculated to provide a comprehensive linac design.

  19. Development of an IH-type linac for the acceleration of high current heavy ion beams

    International Nuclear Information System (INIS)

    Haehnel, Jan Hendrik

    2017-01-01

    The Facility for Antiproton and Ion Research (FAIR) at GSI Darmstadt will provide unprecedented intensities of protons and heavy ions up to uranium at energies of up to 29 GeV for protons and 2.7 GeV/u for U 28+ . To achieve high intensities in the synchrotron accelerators, high beam currents have to be provided by the injector linear accelerators. High current heavy ion beams are provided by the Universal Linear Accelerator (UNILAC), which in its current state will not be able to provide the required FAIR beam currents. This thesis deals with the development of upgrades for the UNILAC to ensure its high current capability. The first improvement is a matching section (MEBT) for the interface between the RFQ and the IH-DTL of the existing high current injector HSI at the UNILAC. With this new MEBT section, particle losses are eliminated and the overall beam quality is improved. As a second improvement, a complete replacement of the existing Alvarez-DTL is presented. A combination of efficient IH-type cavities and KONUS beam dynamics results in a reduction of the linac length from about 60 m (Alvarez) to just 23 m (new IH-DTL) while providing the same energy and fulfilling FAIR requirements of a high beam current and beam quality. This thesis contains a detailed beam dynamics design of the new linac including some fundamental investigations of the KONUS beam dynamics concept. A cross-check of the beam dynamics design was performed with two independent multi-particle simulation codes. Detailed error studies were conducted to investigate the influence of manufacturing, alignment and operating errors on the beam dynamics performance. Additionally, all five linac cavities were designed, optimized, and their RF parameters including power requirements calculated to provide a comprehensive linac design.

  20. A DSP-Based Beam Current Monitoring System for Machine Protection Using Adaptive Filtering

    International Nuclear Information System (INIS)

    J. Musson; H. Dong; R. Flood; C. Hovater; J. Hereford

    2001-01-01

    The CEBAF accelerator at Jefferson Lab is currently using an analog beam current monitoring (BCM) system for its machine protection system (MPS), which has a loss accuracy of 2 micro-amps. Recent burn-through simulations predict catastrophic beam line component failures below 1 micro-amp of loss, resulting in a blind spot for the MPS. Revised MPS requirements target an ultimate beam loss accuracy of 250 nA. A new beam current monitoring system has been developed which utilizes modern digital receiver technology and digital signal processing concepts. The receiver employs a direct-digital down converter integrated circuit, mated with a Jefferson Lab digital signal processor VME card. Adaptive filtering is used to take advantage of current-dependent burn-through rates. Benefits of such a system include elimination of DC offsets, generic algorithm development, extensive filter options, and interfaces to UNIX-based control systems

  1. Wideband Precision Current Transformer for the Magnet Current of the Beam Extraction Kicker Magnet of the Large Hadron Collider

    CERN Document Server

    Gräwer, G

    2004-01-01

    The LHC beam extraction system is composed of 15 fast kicker magnets per beam to extract the particles in one turn of the collider and to safely dispose them on external absorbers. Each magnet is powered by a separate pulse generator. The generator produces a magnet current pulse with 3 us rise time, 20 kA amplitude and 1.8 ms fall time, of which 90 us are needed to dump the beam. The beam extraction system requires a high level of reliability. To detect any change in the magnet current characteristics, which might indicate a slow degradation of the pulse generator, a high precision wideband current transformer will be installed. For redundancy reasons, the results obtained with this device will be cross-checked with a Rogowski coil, installed adjacent to the transformer. A prototype transformer has been successfully tested at nominal current levels and showed satisfactory results compared with the output of a high frequency resistive coaxial shunt. The annular core of the ring type transformer is composed of...

  2. Development of a radio-frequency quadrupole cooler for high beam currents

    Science.gov (United States)

    Boussaid, Ramzi; Ban, G.; Quéméner, G.; Merrer, Y.; Lorry, J.

    2017-12-01

    The SHIRaC prototype is a recently developed radio-frequency quadrupole (RFQ) beam cooler with an improved optics design to deliver the required beam quality to a high resolution separator (HRS). For an isobaric separation of isotopes, the HRS demands beams with emittance not exceeding 3 π mm mrad and longitudinal energy spread ˜1 eV . Simulation studies showed a significant contribution of the buffer gas diffusion, space charge effect and mainly the rf fringe field to degrade the achieved beam quality at the RFQ exit. A miniature rf quadrupole (μ RFQ ) has been implemented at that exit to remove the degrading effects and provide beams with 1 eV of energy spread and around 1.75 π mm mrad of emittance for 4 Pa gas pressure. This solution enables also to transmit more than 60% of the incoming ions for currents up to 1 μ A . Detailed studies of this development are presented and discussed in this paper. Transport of beams from SHIRaC towards the HRS has been done with an electrostatic quadrupole triplet. Simulations and first experimental tests showed that more than 95% of ions can reach the HRS. Because SPIRAL-2 beams are of high current and very radioactive, the buffer gas will be highly contaminated. Safe maintenance of the SHIRaC beam line needs exceptional treatment of radioactive contaminants. For that, special vinyl sleep should be mounted on elements to be maintained. A detailed maintenance process will be presented.

  3. Measurements of current density distribution in shaped e-beam writers

    Czech Academy of Sciences Publication Activity Database

    Bok, Jan; Horáček, Miroslav; Kolařík, Vladimír; Urbánek, Michal; Matějka, Milan; Krzyžánek, Vladislav

    2016-01-01

    Roč. 149, JAN 5 (2016), s. 117-124 ISSN 0167-9317 R&D Projects: GA ČR(CZ) GA14-20012S; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : shaped e-beam writer * electron beam * current density Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 1.806, year: 2016

  4. Nonlinear Charge and Current Neutralization of an Ion Beam Pulse in a Pre-formed Plasma

    International Nuclear Information System (INIS)

    Kaganovich, Igor D.; Shvets, Gennady; Startsev, Edward; Davidson, Ronald C.

    2001-01-01

    The propagation of a high-current finite-length ion beam in a cold pre-formed plasma is investigated. The outcome of the calculation is the quantitative prediction of the degree of charge and current neutralization of the ion beam pulse by the background plasma. The electric magnetic fields generated by the ion beam are studied analytically for the nonlinear case where the plasma density is comparable in size with the beam density. Particle-in-cell simulations and fluid calculations of current and charge neutralization have been performed for parameters relevant to heavy ion fusion assuming long, dense beams with el >> V(subscript b)/omega(subscript b), where V(subscript b) is the beam velocity and omega subscript b is the electron plasma frequency evaluated with the ion beam density. An important conclusion is that for long, nonrelativistic ion beams, charge neutralization is, for all practical purposes, complete even for very tenuous background plasmas. As a result, the self-magnetic force dominates the electric force and the beam ions are always pinched during beam propagation in a background plasma

  5. Nonlinear Charge and Current Neutralization of an Ion Beam Pulse in a Pre-formed Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Igor D. Kaganovich; Gennady Shvets; Edward Startsev; Ronald C. Davidson

    2001-01-30

    The propagation of a high-current finite-length ion beam in a cold pre-formed plasma is investigated. The outcome of the calculation is the quantitative prediction of the degree of charge and current neutralization of the ion beam pulse by the background plasma. The electric magnetic fields generated by the ion beam are studied analytically for the nonlinear case where the plasma density is comparable in size with the beam density. Particle-in-cell simulations and fluid calculations of current and charge neutralization have been performed for parameters relevant to heavy ion fusion assuming long, dense beams with el >> V(subscript b)/omega(subscript b), where V(subscript b) is the beam velocity and omega subscript b is the electron plasma frequency evaluated with the ion beam density. An important conclusion is that for long, nonrelativistic ion beams, charge neutralization is, for all practical purposes, complete even for very tenuous background plasmas. As a result, the self-magnetic force dominates the electric force and the beam ions are always pinched during beam propagation in a background plasma.

  6. A Fast Non Intercepting Linac Electron Beam Position and Current Monitor

    DEFF Research Database (Denmark)

    Hansen, Jørgen-Walther; Wille, Mads

    1982-01-01

    A non-intercepting beam monitor consisting of four detecting loops is used to determine the spatial postion and current of a pulsed beam from an electron linear accelerator. The monitor detects the magnetic field radiated by the substructure of the electron bunches created by the accelerating...

  7. Guiding effect of bent macroscopic quartz tube for high current electron beam

    International Nuclear Information System (INIS)

    Zhang Mingwu; Chen Jing; Wu Yehong; Yang Bian; Wang Wei; Xue Yingli; Yu Deyang; Cai Xiaohong

    2012-01-01

    By using an incident electron beam with the high current and high energy, the guiding effect of the bent macroscopic quartz tube for the electron beam has been investigated. The angular distributions of outgoing electrons depending on the current and energy of incident electrons were measured. The dependences of electron transmitted fraction on energy and current of incident electrons are also shown. As the incident electron energy increasing, the electron transmitted fraction increases, but it decreases while the incident electron current increasing. The results have been compared with the present data. This work presents, the process of guiding electrons is essentially different from that of guiding highly charged ions, the guiding electron beam was caused by both elastic and inelastic collisions between electrons and inner walls of quartz tube, rather than self-organized charging effect on the surface of inner wall of quartz tube. (authors)

  8. Development of a high current 60 keV neutral lithium beam injector for beam emission spectroscopy measurements on fusion experiments

    Science.gov (United States)

    Anda, G.; Dunai, D.; Lampert, M.; Krizsanóczi, T.; Németh, J.; Bató, S.; Nam, Y. U.; Hu, G. H.; Zoletnik, S.

    2018-01-01

    A 60 keV neutral lithium beam system was designed and built up for beam emission spectroscopy measurement of edge plasma on the KSTAR and EAST tokamaks. The electron density profile and its fluctuation can be measured using the accelerated lithium beam-based emission spectroscopy system. A thermionic ion source was developed with a SiC heater to emit around 4-5 mA ion current from a 14 mm diameter surface. The ion optic is following the 2 step design used on other devices with small modifications to reach about 2-3 cm beam diameter in the plasma at about 4 m from the ion source. A newly developed recirculating sodium vapour neutralizer neutralizes the accelerated ion beam at around 260-280 °C even during long (manipulation techniques are applied to allow optimization, aiming, cleaning, and beam modulation. The maximum 60 keV beam energy with 4 mA ion current was successfully reached at KSTAR and at EAST. Combined with an efficient observation system, the Li-beam diagnostic enables the measurement of the density profile and fluctuations on the plasma turbulence time scale.

  9. Soft X-ray beam induced current technique

    Energy Technology Data Exchange (ETDEWEB)

    Watts, B; Ade, H [Department of Physics, North Carolina State University, Raleigh, NC 27695 (United States); Queen, D; Hellman, F [Department of Physics, University of California, Berkeley, CA 94720 (United States); Kilcoyne, A L D; Tyliszczak, T, E-mail: benjamin.watts@gmail.co [Advanced Light Source, Lawrence Berkeley Nat. Lab., Berkeley, CA 94720 (United States)

    2009-09-01

    Direct mapping of the charge transport efficiency of polymer solar cell devices using a soft X-ray beam induced current (SoXBIC) method is described. By fabricating a polymer solar cell on an x-ray transparent substrate, we demonstrate the ability to map polymer composition and nanoscale structure within an operating solar cell device and to simultaneously measure the local charge transport efficiency via the short-circuit current. A simple model is calculated and compared to experimental SoXBIC data of a PFB:F8BT bulk-heterojunction device in order to gain greater insight into the device operation and physics.

  10. A review of high beam current RFQ accelerators and funnels

    International Nuclear Information System (INIS)

    Schneider, J.D.

    1998-01-01

    The authors review the design features of several high-current (> 20-mA) and high-power (> 1-mA average) proton or H - injectors, RFQs, and funnels. They include a summary of observed performance and will mention a sampling of new designs, including the proposed incorporation of beam choppers. Different programs and organizations have chosen to build the RFQ in diverse configurations. Although the majority of RFQs are either low-current or very low duty-factor, several versions have included high-current and/or high-power designs for either protons or H - ions. The challenges of cooling, handling high space-charge forces, and coupling with injectors and subsequent accelerators are significant. In all instances, beam tests were a valuable learning experience, because not always did these as-built structures perform exactly as predicted by the earlier design codes. They summarize the key operational parameters, indicate what was achieved, and highlight what was learned in these tests. Based on this generally good performance and high promise, even more challenging designs are being considered for new applications that include even higher powers, beam funnels and choppers

  11. An algorithm to include the bremsstrahlung component in the determination of the absorbed dose in electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Klevenhagen, S C [The Royal London Hospital, London (United Kingdom). Medical Physics Dept.

    1996-08-01

    Currently used dosimetry protocols for absolute dose determination of electron beams from accelerators in radiation therapy do not account for the effect of the bremsstrahlung contamination of the beam. This results in slightly erroneous doses calculated from ionization chamber measurements. In this report the deviation is calculated and an improved algorithm, which accounts for the effect of the bremsstrahlung component of the beam, is suggested. (author). 14 refs, 2 figs, 1 tab.

  12. SU-F-T-492: The Impact of Water Temperature On Absolute Dose Calibration

    Energy Technology Data Exchange (ETDEWEB)

    Islam, N [State University of New York at Buffalo, Buffalo, NY (United States); Podgorsak, M [State University of New York at Buffalo, Buffalo, NY (United States); Roswell Park Cancer Institute, Buffalo, NY (United States)

    2016-06-15

    Purpose: The Task Group 51 (TG 51) protocol prescribes that dose calibration of photon beams be done by irradiating an ionization chamber in a water tank at pre-defined depths. Methodologies are provided to account for variations in measurement conditions by applying correction factors. However, the protocol does not completely account for the impact of water temperature. It is well established that water temperature will influence the density of air in the ion chamber collecting volume. Water temperature, however, will also influence the size of the collecting volume via thermal expansion of the cavity wall and the density of the water in the tank. In this work the overall effect of water temperature on absolute dosimetry has been investigated. Methods: Dose measurements were made using a Farmer-type ion chamber for 6 and 23 MV photon beams with water temperatures ranging from 10 to 40°C. A reference ion chamber was used to account for fluctuations in beam output between successive measurements. Results: For the same beam output, the dose determined using TG 51 was dependent on the temperature of the water in the tank. A linear regression of the data suggests that the dependence is statistically significant with p-values of the slope equal to 0.003 and 0.01 for 6 and 23 MV beams, respectively. For a 10 degree increase in water phantom temperature, the absolute dose determined with TG 51 increased by 0.27% and 0.31% for 6 and 23 MV beams, respectively. Conclusion: There is a measurable effect of water temperature on absolute dose calibration. To account for this effect, a reference temperature can be defined and a correction factor applied to account for deviations from this reference temperature during beam calibration. Such a factor is expected to be of similar magnitude to most of the existing TG 51 correction factors.

  13. SU-F-T-492: The Impact of Water Temperature On Absolute Dose Calibration

    International Nuclear Information System (INIS)

    Islam, N; Podgorsak, M

    2016-01-01

    Purpose: The Task Group 51 (TG 51) protocol prescribes that dose calibration of photon beams be done by irradiating an ionization chamber in a water tank at pre-defined depths. Methodologies are provided to account for variations in measurement conditions by applying correction factors. However, the protocol does not completely account for the impact of water temperature. It is well established that water temperature will influence the density of air in the ion chamber collecting volume. Water temperature, however, will also influence the size of the collecting volume via thermal expansion of the cavity wall and the density of the water in the tank. In this work the overall effect of water temperature on absolute dosimetry has been investigated. Methods: Dose measurements were made using a Farmer-type ion chamber for 6 and 23 MV photon beams with water temperatures ranging from 10 to 40°C. A reference ion chamber was used to account for fluctuations in beam output between successive measurements. Results: For the same beam output, the dose determined using TG 51 was dependent on the temperature of the water in the tank. A linear regression of the data suggests that the dependence is statistically significant with p-values of the slope equal to 0.003 and 0.01 for 6 and 23 MV beams, respectively. For a 10 degree increase in water phantom temperature, the absolute dose determined with TG 51 increased by 0.27% and 0.31% for 6 and 23 MV beams, respectively. Conclusion: There is a measurable effect of water temperature on absolute dose calibration. To account for this effect, a reference temperature can be defined and a correction factor applied to account for deviations from this reference temperature during beam calibration. Such a factor is expected to be of similar magnitude to most of the existing TG 51 correction factors.

  14. The relative and absolute speed of radiographic screen - film systems

    International Nuclear Information System (INIS)

    Lee, In Ja; Huh, Joon

    1993-01-01

    Recently, a large number of new screen-film systems have become available for use in diagnostic radiology. These new screens are made of materials generally known as rare - earth phosphors which have high x-ray absorption and high x-ray to light conversion efficiency compared to calcium tungstate phosphors. The major advantage of these new systems is reduction of patient exposure due to their high speed or high sensitivity. However, a system with excessively high speed can result in a significant degradation of radiographic image quality. Therefore, the speed is important parameters for users of these system. Our aim of in this was to determine accurately and precisely the absolute speed and relative speeds of both new and conventional screen - film system. We determined the absolute speed in condition of BRH phantom beam quality and the relative speed were measured by a split - screen technique in condition of BRH and ANSI phantom beam quality. The absolute and the relative speed were determined for 8 kinds of screen - 4 kinds of film in regular system and 7 kinds pf screen - 7 kinds of film in ortho system. In this study we could know the New Rx, T - MAT G has the highest film speed, also know Green system's standard deviation of relative speed larger than blue system. It was realized that there were no relationship between the absolute speed and the blue system. It was realized that there were no relationship between the absolute speed and the relative speed in ortho or regular system

  15. High current relativistic beam propagates stably in gas surrounded by nonconducting walls

    International Nuclear Information System (INIS)

    Clark, J.C.

    1977-01-01

    LLL has been studying the propagation of high current electron beams for a number of years to understand their behavior for use in a variety of experimental uses. Our latest experiments have shown that a mildly relativistic electron beam of 10 to 15 kA and a pulse width of 30 to 40 ns can propagate stably and with no net current transfer in insulating tubes filled with neutral gases. These experiments have been performed in the Magnetic Fusion Energy program where Electronics Engineering has been operating an electron beam accelerator, designing some of the diagnostics, such as laser interferometers, and performing the experiments. This article briefly describes our experimental observations

  16. Progress of neutral beam R and D for plasma heating and current drive at JAERI

    International Nuclear Information System (INIS)

    Ohara, Y.

    1995-01-01

    Recent progress and future plans regarding development of a high power negative ion source at the Japan Atomic Energy Research Institute (JAERI) are described. The neutral beam injection system, which is expected to play an important role not only in plasma heating but also in the plasma current drive in the fusion reactor, requires a high power negative ion source which can produce negative deuterium ion beams with current of order 20A at energy above 1MeV. In order to realize such a high power negative ion beam, intensive research and development has been carried out at JAERI since 1984. The negative hydrogen ion beam current of 10A achieved in recent years almost equals the value required for the fusion reactor. With regard to the negative ion acceleration, a high current negative ion beam of 0.2A has been accelerated up to 350keV electrostatically. On the basis of this recent progress, two development plans have been initiated as an intermediate step towards the fusion reactor. One is to develop a 500keV, 10MW negative ion based neutral beam injection system for JT-60U to demonstrate the neutral beam current drive in a high density plasma. The other is to develop a 1MeV, 1A ion source to demonstrate high current negative ion acceleration up to 1MeV. On the basis of this research and development, an efficient and reactor relevant neutral beam injection system will be developed for an experimental fusion reactor such as the International Thermonuclear Experimental Reactor. ((orig.))

  17. High beam current shut-off systems in the APS linac and low energy transfer line

    International Nuclear Information System (INIS)

    Wang, X.; Knott, M.; Lumpkin, A.

    1994-01-01

    Two independent high beam current shut-off current monitoring systems (BESOCM) have been installed in the APS linac and the low energy transport line to provide personnel safety protection in the event of acceleration of excessive beam currents. Beam current is monitored by a fast current transformer (FCT) and fully redundant supervisory circuits connected to the Access Control Interlock System (ACIS) for beam intensity related shutdowns of the linac. One FCT is located at the end of the positron linac and the other in the low energy transport line, which directs beam to the positron accumulator ring (PAR). To ensure a high degree of reliability, both systems employ a continuous self-checking function, which injects a test pulse to a single-turn test winding after each ''real'' beam pulse to verify that the system is fully functional. The system is designed to be fail-safe for all possible system faults, such as loss of power, open or shorted signal or test cables, loss of external trigger, malfunction of gated integrator, etc. The system has been successfully commissioned and is now a reliable part of the total ACIS

  18. WAVEGUIDE COUPLER KICK TO BEAM BUNCH AND CURRENT DEPENDENCY ON SRF CAVITIES

    International Nuclear Information System (INIS)

    Genfa Wu; Haipeng Wang; Charles Reece; Robert Rimmer

    2008-01-01

    JLAB SRF cavities employ waveguide type fundamental power couplers (FPC). The FPC design for the 7-cell upgrade cavities was optimized to minimize the dipole field kick. For continuous wave (CW) operation, the forwarding RF power will be at different magnitude to drive the different beam current and cavity gradient. This introduces some deviation from optimized FPC field for varying beam loading. This article analyzes the beam behavior both in centroid kick and head-tail kick under different beam loading conditions

  19. On beam quality and flatness of radiotherapy megavoltage photon beams

    International Nuclear Information System (INIS)

    Hossain, Murshed; Rhoades, Jeffrey

    2016-01-01

    Ratio of percentage depth dose (PDD) at two depths, PDD at a depth of 10 cm (PDD 10 ), and beam flatness are monitored regularly for radiotherapy beams for quality assurance. The purpose of this study is to understand the effects of changes in one of these parameters on the other. Is it possible to monitor only the beam flatness and not PDD? The investigation has two components. Naturally occurring i.e., unintended changes in PDD ratio and in-plane flatness for 6 and 10 MV photon beams for one particular Siemens Artiste Linac are monitored for a period of about 4 years. Secondly, deliberate changes in the beam parameters are induced by changing the bending magnet current (BMI). Relationships between various beam parameters for unintended changes as well as deliberate changes are characterized. Long term unintentional changes of PDD ratio are found to have no systematic trend. The flatness in the in plane direction for 6 and 10 MV beams show slow increase of 0.43 and 0.75 % respectively in about 4 years while the changes in the PDD ratio show no such trend. Over 10 % changes in BMI are required to induce changes in the beam quality indices at 2 % level. PDD ratio for the 10 MV beam is found to be less sensitive, while the depth of maximum dose, d max , is more sensitive to the changes in BMI compared to the 6 MV beam. Tolerances are more stringent for PDD 10 than PDD ratio for the 10 MV beam. PDD ratio, PDD 10 , and flatness must be monitored independently. Furthermore, off axis ratio alone cannot be used to monitor flatness. The effect of beam quality change in the absolute dose is clinically insignificant.

  20. Limiting currents of an unneutralized magnetized electron beam in a cylindrical drift tube

    International Nuclear Information System (INIS)

    Thompson, J.R.; Sloan, M.L.

    1978-01-01

    Results of an investigation of the steady state injection of a uniform unneutralized, magnetized, relativistic electron beam into a cylindrical drift tube are presented. The space-charge-limited current and the asymptotic kinetic energy of electrons on axis is determined both numerically and analytically as a function of the input kinetic energy (γ 0 -1) mc 2 and of the ratio of beam-to-wall radii. A previously cited ''interpolation formula'' is obtained in the pencil beam limit, but more accurate limiting current expressions are developed for other cases (such as the fat beam limit) where the interpolation formula is as much as 20% in error. The corresponding axial electron energy is also found to be significantly smaller than the previously cited value of (γ/sup 1/3/ 0 -1) mc 2 except in the strong pencil beam limit

  1. Optical fiber Cherenkov detector for beam current monitoring

    International Nuclear Information System (INIS)

    Pishchulin, I.V.; Solov'ev, N.G.; Romashkin, O.B.

    1991-01-01

    The results obtained in calculation of an optical fiber Cherenkov detector for accelerated beam current monitoring are presented. The technique of beam parameters monitoring is based on Cherenkov radiation excitation by accelerated electrons in the optical fiber. The formulas for calculations of optical power and time dependence of Cherenkov radiation pulse are given. The detector sensitivity and time resolution dependence on the fiber material characteristics are investigated. Parameters of a 10μm one-mode quartz optical fiber detector for the free electron laser photoinjector are calculated. The structure of a monitoring system with the optical fiber Cherenkov detector is considered. Possible applications of this technique are discussed and some recommendations are given

  2. Open-loop correction for an eddy current dominated beam-switching magnet.

    Science.gov (United States)

    Koseki, K; Nakayama, H; Tawada, M

    2014-04-01

    A beam-switching magnet and the pulsed power supply it requires have been developed for the Japan Proton Accelerator Research Complex. To switch bunched proton beams, the dipole magnetic field must reach its maximum value within 40 ms. In addition, the field flatness should be less than 5 × 10(-4) to guide each bunched beam to the designed orbit. From a magnetic field measurement by using a long search coil, it was found that an eddy current in the thick endplates and laminated core disturbs the rise of the magnetic field. The eddy current also deteriorates the field flatness over the required flat-top period. The measured field flatness was 5 × 10(-3). By using a double-exponential equation to approximate the measured magnetic field, a compensation pattern for the eddy current was calculated. The integrated magnetic field was measured while using the newly developed open-loop compensation system. A field flatness of less than 5 × 10(-4), which is an acceptable value, was achieved.

  3. Macrofilament simulation of high current beam transport

    International Nuclear Information System (INIS)

    Hayden, R.J.; Jakobson, M.J.

    1985-01-01

    Macrofilament simulation of high current beam transport through a series of solenoids has been used to investigate the sensitivity of such calculations to the initial beam distribution and to the number of filaments used in the simulation. The transport line was tuned to approximately 105 0 phase advance per cell at zero current with a tune depression of 65 0 due to the space charge. Input distributions with the filaments randomly uniform throughout a four dimensional ellipsoid and K-V input distributions have been studied. The behavior of the emittance is similar to that published for quadrupoles with like tune depression. The emittance demonstrated little growth in the first twelve solenoids, a rapid rate of growth for the next twenty, and a subsequent slow rate of growth. A few hundred filaments were sufficient to show the character of the instability. The number of filaments utilized is an order of magnitude fewer than has been utilized previously for similar instabilities. The previously published curves for simulations with less than a thousand particles show a rather constant emittance growth. If the solenoid transport line magnetic field is increased a few percent, emittance growth curves are obtained not unlike those curves. Collision growth effects are less important than indicated in the previously published results for quadrupoles

  4. Novel Faraday cup for the simultaneous observation and measurement of ion-beam currents

    International Nuclear Information System (INIS)

    Wei, C.; Seidman, D.N.

    1977-01-01

    A novel Faraday cup is described which allows the simultaneous observation and measurement of ion-beam currents. The Faraday cup is constructed around a Galileo channel electron multiplier array (CEMA), which serves as the basis of an internal image intensification system (a gain of >10 4 ) for the observation of the ion beam; the CEMA also acts as a collector for the ion current which is measured by a Keithley 602 electrometer. The ion current is integrated by a simple and inexpensive dosimeter; the electronic circuit for the dosimeter is described. The application of the Faraday cup to the observation and measurement of a 30-keV Ar + ion beam is presented as an illustrative example. We have also employed this Faraday cup to observe and measure 30-keV Cr + , Mo + , or W + , and 18-keV Au + ion beams employed for the in situ irradiation of field-ion microscope specimens

  5. Electron beam dynamics in the long-pulse, high-current DARHT-II linear induction accelerator

    International Nuclear Information System (INIS)

    Ekdahl, Carl A.; Abeyta, Epifanio O.; Aragon, Paul; Archuleta, Rita; Cook, Gerald; Dalmas, Dale; Esquibel, Kevin; Gallegos, Robert A.; Garnett, Robert; Harrison, James F.; Johnson, Jeffrey B.; Jacquez, Edward B.; Mccuistian, Brian T.; Montoya, Nicholas A.; Nath, Subrato; Nielsen, Kurt; Oro, David; Prichard, Benjamin; Rowton, Lawrence; Sanchez, Manolito; Scarpetti, Raymond; Schauer, Martin M.; Seitz, Gerald; Schulze, Martin; Bender, Howard A.; Broste, William B.; Carlson, Carl A.; Frayer, Daniel K.; Johnson, Douglas E.; Tom, C.Y.; Williams, John; Hughes, Thomas; Anaya, Richard; Caporaso, George; Chambers, Frank; Chen, Yu-Jiuan; Falabella, Steve; Guethlein, Gary; Raymond, Brett; Richardson, Roger; Trainham, C.; Watson, Jim; Weir, John; Genoni, Thomas; Toma, Carsten

    2009-01-01

    The DARHT-II linear induction accelerator (LIA) now accelerates 2-kA electron beams to more than 17 MeV. This LIA is unique in that the accelerated current pulse width is greater than 2 microseconds. This pulse has a flat-top region where the final electron kinetic energy varies by less than 1% for more than 1.5 microseconds. The long risetime of the 6-cell injector current pulse is 0.5 (micro)s, which can be scraped off in a beam-head cleanup zone before entering the 68-cell main accelerator. We discuss our experience with tuning this novel accelerator; and present data for the resulting beam transport and dynamics. We also present beam stability data, and relate these to previous stability experiments at lower current and energy.

  6. Applicability evaluation of eddy current testing for underwater laser beam welding

    International Nuclear Information System (INIS)

    Kobayashi, Noriyasu; Kasuya, Takashi; Ueno, Souichi; Ochiai, Makoto; Yuguchi, Yasuhiro

    2010-01-01

    We clarified a defect detecting capability of eddy current testing (ECT) as a surface inspection technique for underwater laser beam welding. An underwater laser beam welding procedure includes groove caving as a preparation, laser beam welding in groove and welding surface grinding as a post treatment. Therefore groove and grinded welding surface inspections are required underwater. We curried out defect detection tests using three kinds of specimens simulated a groove, reactor vessel nozzle dissimilar metal welding materials and a laser beam welding material with a cross coil ECT probe. From experimental results, we confirmed that it is possible to detect 0.3 mm or more depth electro-discharge machining slits on machining surfaces in all specimens and an ECT has possibility as a surface inspection technique for underwater laser beam welding. (author)

  7. Nano-electron beam induced current and hole charge dynamics through uncapped Ge nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Marchand, A.; El Hdiy, A.; Troyon, M. [Laboratoire de Recherche en Nanosciences, Bat. 6, case no 15, UFR Sciences, Universite de Reims Champagne Ardenne, 51687 Reims Cedex 2 (France); Amiard, G.; Ronda, A.; Berbezier, I. [IM2NP, Faculte des Sciences et Techniques, Campus de Saint Jerome - Case 142, Avenue Escadrille Normandie Niemen, 13397 Marseille Cedex 20 (France)

    2012-04-16

    Dynamics of hole storage in spherical Ge nanocrystals (NCs) formed by a two step dewetting/nucleation process on an oxide layer grown on an n-doped <001> silicon substrate is studied using a nano-electron beam induced current technique. Carrier generation is produced by an electron beam irradiation. The generated current is collected by an atomic force microscope--tip in contact mode at a fixed position away from the beam spot of about 0.5 {mu}m. This distance represents the effective diffusion length of holes. The time constants of holes charging are determined and the effect of the NC size is underlined.

  8. In situ beam angle measurement in a multi-wafer high current ion implanter

    International Nuclear Information System (INIS)

    Freer, B.S.; Reece, R.N.; Graf, M.A.; Parrill, T.; Polner, D.

    2005-01-01

    Direct, in situ measurement of the average angle and angular content of an ion beam in a multi-wafer ion implanter is reported for the first time. A new type of structure and method are described. The structures are located on the spinning disk, allowing precise angular alignment to the wafers. Current that passes through the structures is known to be within a range of angles and is detected behind the disk. By varying the angle of the disk around two axes, beam current versus angle is mapped and the average angle and angular spread are calculated. The average angle measured in this way is found to be consistent with that obtained by other techniques, including beam centroid offset and wafer channeling methods. Average angle of low energy beams, for which it is difficult to use other direct methods, is explored. A 'pencil beam' system is shown to give average angle repeatability of 0.13 deg. (1σ) or less, for two low energy beams under normal tuning variations, even though no effort was made to control the angle

  9. Influence of total beam current on HRTEM image resolution in differentially pumped ETEM with nitrogen gas

    International Nuclear Information System (INIS)

    Bright, A.N.; Yoshida, K.; Tanaka, N.

    2013-01-01

    Environmental transmission electron microscopy (ETEM) enables the study of catalytic and other reaction processes as they occur with Angstrom-level resolution. The microscope used is a dedicated ETEM (Titan ETEM, FEI Company) with a differential pumping vacuum system and apertures, allowing aberration corrected high-resolution transmission electron microscopy (HRTEM) imaging to be performed with gas pressures up to 20 mbar in the sample area and with significant advantages over membrane-type E-cell holders. The effect on image resolution of varying the nitrogen gas pressure, electron beam current density and total beam current were measured using information limit (Young's fringes) on a standard cross grating sample and from silicon crystal lattice imaging. As expected, increasing gas pressure causes a decrease in HRTEM image resolution. However, the total electron beam current also causes big changes in the image resolution (lower beam current giving better resolution), whereas varying the beam current density has almost no effect on resolution, a result that has not been reported previously. This behavior is seen even with zero-loss filtered imaging, which we believe shows that the drop in resolution is caused by elastic scattering at gas ions created by the incident electron beam. Suitable conditions for acquiring high resolution images in a gas environment are discussed. Lattice images at nitrogen pressures up to 16 mbar are shown, with 0.12 nm information transfer at 4 mbar. -- Highlights: ► ETEM images with point resolution of 0.12 nm in 4 mbar of nitrogen gas. ► Clear Si lattice imaging with 16 mbar of nitrogen gas. ► ETEM image resolution in gas can be much improved by decreasing total beam current. ► Beam current density (beam convergence) has no effect on the image resolution.

  10. Prospects for a new cold neutron beam measurement of the neutron lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Dewey, M., E-mail: mdewey@nist.go [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Coakley, K., E-mail: kevin.coakley@nist.go [National Institute of Standards and Technology, Boulder, CO 80305 (United States); Gilliam, D., E-mail: david.gilliam@nist.go [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Greene, G., E-mail: greenegl@ornl.go [Department of Physics, University of Tennessee, Knoxville, TN 37996 (United States); Physics Division, Oak Ridge National Lab, Building 6010, Oak Ridge, TN 37831 (United States); Laptev, A., E-mail: alaptev@nist.go [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Nico, J., E-mail: jnico@nist.go [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Snow, W., E-mail: wsnow@indiana.ed [Indiana University/IUCF, Bloomington, IN 47408 (United States); Wietfeldt, F., E-mail: few@tulane.ed [Tulane University, New Orleans, LA 70118 (United States); Yue, A., E-mail: ayue@nist.go [Department of Physics, University of Tennessee, Knoxville, TN 37996 (United States)

    2009-12-11

    In the most accurate cold neutron beam determination of the neutron lifetime based on the absolute counting of decay protons, the largest uncertainty was attributed to the absolute determination of the capture flux of the cold neutron beam. Currently an experimental effort is underway at the National Institute of Standards and Technology (NIST) that will significantly reduce this contribution to the uncertainty in the lifetime determination. The next largest source of uncertainty is the determination of the absolute count rate of decay protons, which contributes to the experimental uncertainty approximately at the 1 s level. Experience with the recent neutron radiative decay experiment, which used the neutron lifetime apparatus, has provided valuable insights into ways to reduce other uncertainties. In addition, the cold neutron fluence rate at NIST is presently 1.5 times greater than in the 2003 measurement, and there is the prospect for a significantly higher rate with the new guide hall expansion. This paper discusses an approach for achieving a determination of the neutron lifetime with an accuracy of approximately 1 s.

  11. Analysis of Large Flexible Body Deformation in Multibody Systems Using Absolute Coordinates

    Energy Technology Data Exchange (ETDEWEB)

    Dombrowski, Stefan von [Institute of Robotics and Mechatronics, German Aerospace Center (DLR) (Germany)], E-mail: stefan.von.dombrowski@dlr.de

    2002-11-15

    To consider large deformation problems in multibody system simulations a finite element approach, called absolute nodal coordinate.formulation,has been proposed. In this formulation absolute nodal coordinates and their material derivatives are applied to represent both deformation and rigid body motion. The choice of nodal variables allows a fully nonlinear representation of rigid body motion and can provide the exact rigid body inertia in the case of large rotations. The methodology is especially suited for but not limited to modeling of beams, cables and shells in multibody dynamics.This paper summarizes the absolute nodal coordinate formulation for a 3D Euler-Bernoulli beam model, in particular the definition of nodal variables, corresponding generalized elastic and inertia forces and equations of motion. The element stiffness matrix is a nonlinear function of the nodal variables even in the case of linearized strain/displacement relations. Nonlinear strain/displacement relations can be calculated from the global displacements using quadrature formulae.Computational examples are given which demonstrate the capabilities of the applied methodology. Consequences of the choice of shape.functions on the representation of internal forces are discussed. Linearized strain/displacement modeling is compared to the nonlinear approach and significant advantages of the latter, when using the absolute nodal coordinate formulation, are outlined.

  12. Analysis of Large Flexible Body Deformation in Multibody Systems Using Absolute Coordinates

    International Nuclear Information System (INIS)

    Dombrowski, Stefan von

    2002-01-01

    To consider large deformation problems in multibody system simulations a finite element approach, called absolute nodal coordinate.formulation,has been proposed. In this formulation absolute nodal coordinates and their material derivatives are applied to represent both deformation and rigid body motion. The choice of nodal variables allows a fully nonlinear representation of rigid body motion and can provide the exact rigid body inertia in the case of large rotations. The methodology is especially suited for but not limited to modeling of beams, cables and shells in multibody dynamics.This paper summarizes the absolute nodal coordinate formulation for a 3D Euler-Bernoulli beam model, in particular the definition of nodal variables, corresponding generalized elastic and inertia forces and equations of motion. The element stiffness matrix is a nonlinear function of the nodal variables even in the case of linearized strain/displacement relations. Nonlinear strain/displacement relations can be calculated from the global displacements using quadrature formulae.Computational examples are given which demonstrate the capabilities of the applied methodology. Consequences of the choice of shape.functions on the representation of internal forces are discussed. Linearized strain/displacement modeling is compared to the nonlinear approach and significant advantages of the latter, when using the absolute nodal coordinate formulation, are outlined

  13. Single-beam measurements of LHC instability threshold in terms of octupole current

    CERN Document Server

    Mounet, N; Buffat, X; Burov, A; Hemelsoet, G; Metral, E; Papotti, G; Pieloni, T; Pojer, M; Salvant, B; Trad, G

    2012-01-01

    This note summarizes two machine development (MD) studies aimed at determining the octupole current needed in the LHC in order to stabilize all headtail instabilities at 4TeV/c, before and after the squeeze, with tight collimator settings, and when a single beam (beam 2) at maximum intensity (1380 bunches, 2.1 1014 protons) is present in the machine. The MDs followed the normal physics operation procedure, at the notable exception that a single beam was used, the other beam containing only one non-colliding nominal bunch. Octupole current (with negative polarity in the focusing octupoles and the opposite in the defocusing ones) was decreased by small steps until the instability threshold was reached. This was performed in two distinct MDs, one before the squeeze and the other after it, testing also several chromaticity values and the effect of the transverse damper in the latter case. Octupole thresholds are shown in each case studied, as well as the rise times of the instabilities observed.

  14. Neutronics design of accelerator-driven system for power flattening and beam current reduction

    International Nuclear Information System (INIS)

    Nishihara, Kenji; Iwanaga, Kohei; Tsujimoto, Kazufumi; Kurata, Yuji; Oigawa, Hiroyuki; Iwasaki, Tomohiko

    2008-01-01

    In the present neutronics design of the Accelerator-Driven System (ADS) cooled by lead-bismuth eutectic (LBE), we investigated several methods to reduce the power peak and beam current, and estimated the temperature reductions of the cladding tube and beam window from the conventional design. The methods are adjustment of inert matrix ratio in fuel in each burn-up cycle, multiregion design in terms of pin radius or inert matrix content, and modification of the level of the beam window position and the height of the central fuel assemblies. As a result, we optimized the ADS combined with the adjustment of the inert matrix ratio in each burn-up cycle, multiregion design in terms of inert matrix content and deepened window level. The maximum temperatures of the optimized ADS at the surface of the cladding tube and the beam window were reduced by 91 and 38degC, respectively. The maximum beam current was improved from 20.3 to 15.6 mA. (author)

  15. Electron beam properties and impedance characterization for storage rings used for free electron lasers

    International Nuclear Information System (INIS)

    Dattoli, G.; Mezi, L.; Renieri, A.; Migliorati, M.; Walker, R.

    2000-01-01

    Good electron beam qualities and stability are the crucial features of Storage Rings dedicated to synchrotron radiation sources or to Free Electron Laser. Most of these characteristics depends on the coupling of the e-beam with the machine environment, which can be in turn modelled in terms of a characteristic impedance, whose absolute value and structure can be used to specify both the stability (longitudinal and transverse) of the beam and its qualities (energy spread, bunch length, peak current ...). In this paper are considered two specific examples of Storage Rings used for FEL operation and analyze their performances by means of semi analytical and numerical methods. The analysis is aimed at clarifying the dependence of beam energy spread and bunch length on beam current and at providing a set of parameters useful for the optimization of Free Electron Laser or synchrotron radiation sources [it

  16. Current control of the electron beam formed in the magnetron gun with a secondary-emission cathode

    International Nuclear Information System (INIS)

    Dovbnya, A.N.; Reshetnyak, N.G.; Zakutin, V.V.; Chertishchev, I.A.; Romas'ko, V.P.; Dovbnyan, N.A.

    2013-01-01

    Data are reported on electron beam generation and beam current control in two types of secondary-emission cathode magnetron guns. The influence of the magnetic field value and field distribution on the formation of the beam and its parameters has been investigated in the electron energy range between 20 and 150 keV. The influence of local magnetic field variations on the cathode and the electron beam characteristics has been studied. The possibility to control the electron beam current in various ways has been demonstrated

  17. Proceedings of the 1979 workshop on beam current limitations in storage rings, July 16-27, 1979

    International Nuclear Information System (INIS)

    Pellegrini, C.

    1979-01-01

    The Workshop on Beam Current Limitations in Storage Rings was held at Brookhaven National Laboratory from July 16 to 27, 1979. The purpose of this Workshop was to discuss the physical mechanisms limiting the beam current or current density in accelerators or storage rings. Many of these machines are now being built or planned for a variety of applications, such as colliding beam experiments, synchrotron light production, heavy ion beams. This diversity was reflected in the Workshop and in the papers which have been contributed to these Proceedings. The twenty-one papers from the workshop were incorporated individually in the data base

  18. Development of movable mask system to cope with high beam current

    International Nuclear Information System (INIS)

    Suetsugu, Y.; Shibata, K.; Sanami, T.; Kageyama, T.; Takeuchi, Y.

    2003-01-01

    The KEK B factory (KEKB), a high current electron-positron collider, has a movable mask (or collimator) system to reduce the background noise in the BELLE detector coming from spent particles. The early movable masks, however, had severe problems of heating, arcing, and vacuum leaks over the stored beam current of several hundred mA. The cause is intense trapped higher order modes (HOMs) excited at the mask head, where the cross section of the beam chamber changed drastically. The mask head, made of copper-tungsten alloy or pure copper, was frequently damaged by hitting of the high energy beam at the same time. Since the problems of the mask were revealed, several kinds of improved masks have been designed employing rf technologies in dealing with the HOM and installed to the ring step by step. Much progress has come from adopting a trapped-mode free structure, where the mask was a bent chamber itself. Recently the further improved mask with a reduced HOM design or HOM dampers was developed to suppress the heating of vacuum components near the mask due to the HOM traveling from the mask. To avoid damage to the mask head, on the other hand, a titanium mask head was tried. The latest masks are working as expected now at the stored beam current of 1.5 A. Presented are the problems and experiences on the movable mask system for the KEKB, which are characteristic of and common in a high intensity accelerator

  19. Improvement of bunch-by-bunch beam current detection system in Hefei light source

    International Nuclear Information System (INIS)

    Zheng Kai; Wang Junhua; Liu Zuping; Li Weimin; Zhou Zeran; Yang Yongliang; Huang Longjun; Chen Yuanbo

    2006-01-01

    Bunch-by-bunch beam current detection system is an important facility in the multibunch storage ring. In this paper, the established bunch-by-bunch beam current detection systems for the accelerator such as Cornell, SLAC and KEKB were compared and studied. The design of the bunch-by-bunch beam current detection system for HLS, which was based on the bunch-by-bunch tracing measurement system in HLS was given. Both demodulation by sine wave and square were applied in this paper, the deviation of the detect system was determined by the longitudinal oscillation. Compared the data acquired from ADC with the data from DCCT, the ADC data was scaled by the bunch current. The standard deviations of linear fit were about 1%, and the standard deviations of polynomial fit were less than 0.5% in both sine wave and square wave demodulation. Some analysis of the measurement results also had been shown in this paper. (authors)

  20. Current status and future prospect of electron beam sterilization in Japan

    International Nuclear Information System (INIS)

    Katsura, Ichiro

    1998-01-01

    It seems that electron beam sterilization is being current topic among all applications in Japan and that this tendency will continue until when major companies interested in the technology complete introducing electron beam. Since the Ministry of Health and Welfare(MOHW) officially issued revised regulation on GMP for medical devices in 1995, EtO has become the method regarded as time and money consuming one. On the contrary, electron beam has become as relatively economical and desirable method to achieve same result by its characteristics such as high productivity, rather easy validation and consequent cost reduction, although less penetration limit the kind of products to be treated. Status and prospect of electron beam sterilization in Japan will be presented in the paper along with accelerator related technologies

  1. Sub-nanometer periodic nonlinearity error in absolute distance interferometers

    Science.gov (United States)

    Yang, Hongxing; Huang, Kaiqi; Hu, Pengcheng; Zhu, Pengfei; Tan, Jiubin; Fan, Zhigang

    2015-05-01

    Periodic nonlinearity which can result in error in nanometer scale has become a main problem limiting the absolute distance measurement accuracy. In order to eliminate this error, a new integrated interferometer with non-polarizing beam splitter is developed. This leads to disappearing of the frequency and/or polarization mixing. Furthermore, a strict requirement on the laser source polarization is highly reduced. By combining retro-reflector and angel prism, reference and measuring beams can be spatially separated, and therefore, their optical paths are not overlapped. So, the main cause of the periodic nonlinearity error, i.e., the frequency and/or polarization mixing and leakage of beam, is eliminated. Experimental results indicate that the periodic phase error is kept within 0.0018°.

  2. SU-F-T-554: Dark Current Effect On CyberKnife Beam Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H; Chang, A [Soonchunhyang University Hospital, Seoul (Korea, Republic of)

    2016-06-15

    Purpose: All RF linear accelerators produce dark current to varying degrees when an accelerating voltage and RF input is applied in the absence of electron gun injection. This study is to evaluate how dark current from the linear accelerator of CyberKnife affect the dose in the reference dosimetry. Methods: The G4 CyberKnife system with 6MV photon beam was used in this study. Using the ion chamber and the diode detector, the dose was measured in water with varying time delay between acquiring charges and staring beam-on after applying high-voltage into the linear accelerator. The dose was measured after the time delay with over the range of 0 to 120 seconds in the accelerating high-voltage mode without beam-on, applying 0, 10, 50, 100, and 200 MUs. For the measurements, the collimator of 60 mm was used and the detectors were placed at the depths of 10 cm with the source-to-surface distance of 80 cm. Results: The dark current was constant over time regardless of MU. The dose due to the dark current increased over time linearly with the R-squared value of 0.9983 up to 4.4 cGy for the time 120 seconds. In the dose rate setting of 720 MU/min, the relative dose when applying the accelerating voltage without beam-on was increased over time up to 0.6% but it was less than the leakage radiation resulted from the accelerated head. As the reference dosimetry condition, when 100 MU was delivered after 10 seconds time delay, the relative dose increased by 0.7% but 6.7% for the low MU (10 MU). Conclusion: In the dosimetry using CyberKnife system, the constant dark current affected to the dose. Although the time delay in the accelerating high-voltage mode without beam-on is within 10 seconds, the dose less than 100 cGy can be overestimated more than 1%.

  3. Beam current monitoring in the AGS Booster and its transfer lines

    International Nuclear Information System (INIS)

    Witkover, R.L.; Zitvogel, E.; Castillo, V.

    1991-01-01

    The new AGS Booster is designed to accelerate low intensity polarized protons and heavy ions, and high intensity protons. The wide range of beam parameters and the vacuum, thermal and radiation environment, presented challenges in the instrumentation design. This paper describes the problems and solutions for the beam current monitors in the Booster and its transport lines. Where available, results of the initial operation will be presented. 11 refs., 3 figs

  4. Numerical simulation of the processes of small-diameter high-current electron beam shaping and injection

    CERN Document Server

    Gordeev, V S; Myskov, G A

    2001-01-01

    With the aid of BEAM 25 program there was carried out the numerical simulation of the non-stationary process of shaping a small-diameter (<= 20mm) high-current hollow electron beam in a diode with magnetic insulation,as well as of the process of beam injection into the accelerating LIA track. The diode configuration for the purpose of eliminating the leakage of electron flux to the anode surface was update. Presented are the results of calculation of the injected beam characteristics (amplitude-time parameters of a current pulse, space-angle distributions of electrons etc.) depending on diode geometric parameters.

  5. Two-stream Stability Properties of the Return-Current Layer for Intense Ion Beam Propagation Through Background Plasma

    International Nuclear Information System (INIS)

    Startsev, Edward A.; Davidson, Ronald C.; Dorf, Mikhail

    2009-01-01

    When an ion beam with sharp edge propagates through a background plasma, its current is neutralized by the plasma return current everywhere except at the beam edge over a characteristic transverse distance Δx perpendicular ∼ (delta) pe , where (delta) pe = c/ω pe is the collisionless skin depth, and ω pe is the electron plasma frequency. Because the background plasma electrons neutralizing the ion beam current inside the beam are streaming relative to the background plasma electrons outside the beam, the background plasma can support a two-stream surface-mode excitation. Such surface modes have been studied previously assuming complete charge and current neutralization, and have been shown to be strongly unstable. In this paper we study the detailed stability properties of this two-stream surface mode for an electron flow velocity profile self-consistently driven by the ion beam. In particular, it is shown that the self-magnetic field generated inside the unneutralized current layer, which has not been taken into account previously, completely eliminates the instability

  6. Beam instability during high-current heavy-ion beam transport

    International Nuclear Information System (INIS)

    Kikuchi, T.; Someya, T.; Kawata, S.; Nakajima, M.; Horioka, K.

    2005-01-01

    In driver system for heavy ion inertial fusion, beam dynamics is investigated by particle-in-cell simulations during final beam bunching. The particle simulations predict that the beam is transported with the localized transverse charge distribution induced by the strong space charge effect. The calculation results also show that the emittance growth during the longitudinal bunch compression for various particle distributions at the initial conditions and with two types of transverse focusing model, which are a continuous focusing and an alternating gradient focusing lattice configurations. (author)

  7. A Four Channel Beam Current Monitor Data Acquisition System Using Embedded Processors

    Energy Technology Data Exchange (ETDEWEB)

    Wheat, Jr., Robert Mitchell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dalmas, Dale A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dale, Gregory E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-08-11

    Data acquisition from multiple beam current monitors is required for electron accelerator production of Mo-99. A two channel system capable of recording data from two beam current monitors has been developed, is currently in use, and is discussed below. The development of a cost-effective method of extending this system to more than two channels and integrating of these measurements into an accelerator control system is the main focus of this report. Data from these current monitors is digitized, processed, and stored by a digital data acquisition system. Limitations and drawbacks with the currently deployed digital data acquisition system have been identified as have been potential solutions, or at least improvements, to these problems. This report will discuss and document the efforts we've made in improving the flexibility and lowering the cost of the data acquisition system while maintaining the minimum requirements.

  8. Magnetic fields with photon beams: Use of circular current loops

    International Nuclear Information System (INIS)

    Jette, David

    2001-01-01

    Strong transverse magnetic fields can produce very large dose enhancements and reductions in localized regions of a patient under irradiation by a photon beam. Through EGS4 Monte Carlo simulations, we have examined the effects of applying a magnetic field produced by a pair of circular current loops to a photon beam penetrating a water phantom of finite thickness. We have indeed found very substantial localized dose enhancements, albeit with no corresponding dose reduction just distal to the region of dose enhancement. (However, dose reduction does occur near the distal end of the phantom.) We have also observed two phenomena to be concerned with, for this configuration: significant broadening of the penumbra close to the current loop, and narrowness of the enhanced dose region in a plane parallel to the planes of the loops. We have also examined the use of a single current loop to produce the magnetic field, and have found great asymmetry in the dose distribution; this asymmetry appears to make it impossible to treat with a single circular magnet a tumor of large dimension extending below the application surface

  9. LAMPF experimental-area beam current monitors

    International Nuclear Information System (INIS)

    Tallerico, P.J.

    1975-01-01

    This paper summarizes the design and operational performance of a wide- range current monitor system used to measure charged-particle currents in the experimental areas of the Clinton P. Anderson Meson Physics Facility (LAMPF), a proton accelerator. The major features of the system are high sensitivity, wide dynamic range, and the ability to withstand high levels of radiation. The current pulses detected are from 50 μs to 1 ms in duration at repetition rates of from 1 to 120 Hz. The pulse amplitude varies from 1 μA to 17 mA of protons or H - ions. Both real-time and integrated outputs are available, and the minimum detectable currents are 1 μA at the video output and 50 nA at the integrated output. The basic system is comprised of toroids, preamplifiers, signal conditioners, voltage-to-frequency converters, and digital accumulators. The entire system is spread out over 1 km of beam pipe. Provision is made for calibration and for sending the outputs to remote users. The system is normally controlled by a small digital computer, which allows the system to be quite flexible in operation. The design features of the toroids and the associated electronics are discussed in detail, with emphasis on the steps taken to reduce noise and make the toroids temperature and radiation resistant

  10. Interaction of high-current relativistic electron beams with plasma. Physical nature of the phenomenon and its application in microwave electronics

    International Nuclear Information System (INIS)

    Rukhadze, A.A.

    1981-01-01

    Pulsed high-current electron beams with characteristic parameters: electron energy 10 5 -10 7 eV, electron current 10 3 -10 6 A, pulse duration 10 -8 -10 -6 s, beam energy 10 2 -10 6 J and power 10 8 -10 13 W, are widely used in different branches of science and technology such as controlled thermonuclear fusion, relativistic microwave electronics, powerful semiconductors, chemical and gaseous lasers, new principles of heavy-ion acceleration, and long-distance energy transmission. The paper discusses a new branch of science - pulsed high-current electronics, which has its own experimental technique and methods of theoretical analysis. Parts I and II determine what is meant by ''high current'' in an electron beam and calculate the maximum obtainable current values; these calculations are made for the simplest geometrical configurations realizable in practice. Current methods for theoretical analysis of high-current electron beam physics are described, together with classification of current experimental devices for generating such beams according to high-current parameters. The stability of electron beams is discussed and the concept of critical currents is introduced. Part III gives a detailed account of plasma-beam instability which occurs on the interaction of a high-current electron beam with high-density space-limited plasma. The linear and non-linear stages of beam instability are considered. The given theory is used for calculations for amplifiers and microwave generators of electromagnetic radiation. Finally, the experimental achievements in high-current relativistic microwave electronics are reviewed. (author)

  11. Superconducting quantum interference monitor of charged particle beam current

    International Nuclear Information System (INIS)

    Gertsev, K.F.; Mikheev, M.S.

    1981-01-01

    Description and test results of the monitor of charged particle beam current on the base of the high-frequency superconducting quantum interference detector with lead slotted shield are presented. The toroidal superconducting coil, which covers the measured beam has 16 turns wound by the lead belt of 7 mm width with 0.5 mm gaps between the turns. A superconducting low-coupling monitor having two holes and point oxidated niobium contact has been used in the mode of quanta counting of magnetic flux. The lead point shield was 2 mm thick and it had 30 mm aperture. The coefficient of background shielding within 0-200 Hz frequency range constituted more than 10 8 . The threshold current resolution of the monitor had the value less than 01 μA √Hz. The suggested monitor requires helium cooling. The proposed design of the monitor is applicable for mounting on the vacuum chamber when it is surrounded by helium conductor. In other cases mounting of low-powerful autonomic system or cryostat of helium storage up to several weeks is possible [ru

  12. Non-intercepting beam intensity measurements towards pico-ampere. Cryogenic current comparators for FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Kurian, Febin [GSI Helmholtzzentrum fuer Schwerionenforschung (Germany); Goethe University, Frankfurt am Main (Germany); Helmholtz Institute Jena (Germany); Schwickert, Marcus; Sieber, Thomas; Kowina, Piotr; Reeg, Hansjoerg [GSI Helmholtzzentrum fuer Schwerionenforschung (Germany); Geithner, Rene; Neubert, Ralf; Seidel, Paul; Golm, Jessica [Friedrich-Schiller-Universitaet Jena (Germany); Stoehlker, Thomas [GSI Helmholtzzentrum fuer Schwerionenforschung (Germany); Helmholtz Institute Jena (Germany); Friedrich-Schiller-Universitaet Jena (Germany)

    2016-07-01

    To satisfy the requirement of non-interceptive measurement of beam intensity down to nA range foreseen in the upcoming FAIR accelerator facility, several Cryogenic Current Comparator (CCC) systems are planned to be installed in its beam transfer lines and storage rings. As a test bench for the development of advanced CCC systems for these installations, the existing CCC system at GSI has been recommissioned and upgraded with advanced sensor components. Successful beam intensity measurements using this upgraded CCC system will be reported in this contribution. Apart from the beam measurements, several operational aspects of the CCC system were investigated, such as the baseline drifts and various noise influences. Combining the operational experiences and boundary conditions given at various installation locations in the FAIR facility, an advanced CCC system is currently under development and is planned to be installed at the Cryring facility at GSI for test measurements. Details on the development of this advanced CCC system will also be presented in this contribution.

  13. Research of transportation efficiency of low-energy high- current electron beam in plasma channel in external magnetic field

    International Nuclear Information System (INIS)

    Vagin, E S; Grigoriev, V P

    2015-01-01

    Effective high current (5-20 kA) and low energy (tens of keV) electrons beam transportation is possible only with almost complete charging neutralization. It is also necessary to use quite high current neutralization for elimination beam self-pinching effect. The research is based on the self-consistent mathematical model that takes into account beam and plasma particles dynamic, current and charge neutralization of electron beam and examines the transportation of electron beam into a chamber with low-pressure plasma in magnetic field. A numerical study was conducted using particle in cell (PIC) method. The study was performed with various system parameters: rise time and magnitude of the beam current, gas pressure and plasma density and geometry of the system. Regularities of local virtual cathode field generated by the beam in the plasma channel, as well as ranges of parameters that let transportation beam with minimal losses, depending on the external magnetic field were determined through a series of numerical studies. In addition, the assessment of the impact of the plasma ion mobility during the transition period and during steady beam was performed. (paper)

  14. Development of high-current pulsed heavy-ion-beam technology for applications to materials processing

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Hiroaki; Ochiai, Yasushi; Masugata, Katsumi [University of Toyama, Toyama (Japan)

    2011-12-15

    Development of intense pulsed heavy ion beam technology for applications to materials processing is described. We have developed a magnetically insulated ion diode for the generation of intense pulsed metallic ion beams in which a vacuum arc plasma gun is used as the ion source. When the ion diode was successfully operated at a diode voltage of 220 kV and a diode current of 10 kA, an ion beam with an ion current density of >200 A/cm{sup 2} and a pulse duration of 40 ns was obtained. The ion composition was evaluated by using a Thomson parabola spectrometer, and the ion beam consisted of aluminum ions (Al{sup (1-3)+}) with an energy of 140 - 740 keV and protons with an energy of 160 - 190 keV; the purity was estimated to be 89%, which was much higher than that of the pulsed ion beam produced in a conventional ion diode. The development of a bipolar pulse accelerator (BPA) was reported in order to improve the purity of intense pulsed ion beams. A double coaxial type bipolar pulse generator was developed as the power supply of the BPA. When a bipolar pulse with a voltage of {+-}90 kV and a pulse duration of about 65 ns was applied to the drift tube of the BPA, the ion beam with an ion current density of 2 A/cm{sup 2} and a pulse duration of 30 ns was observed 25 mm downstream from the cathode surface, which suggested bipolar pulse acceleration.

  15. Commissioning of the Absolute Luminosity For ATLAS Detector at the LHC

    DEFF Research Database (Denmark)

    Jakobsen, Sune

    To determine the total cross section and absolute luminosity in the ATLAS detector at the LHC via pp scattering under very small angles, a dedicated sub-detector called ALFA has been made. Several performance evaluation tests including a test beam campaign lead to improvements of the detector...

  16. Multiwavelength Absolute Phase Retrieval from Noisy Diffractive Patterns: Wavelength Multiplexing Algorithm

    Directory of Open Access Journals (Sweden)

    Vladimir Katkovnik

    2018-05-01

    Full Text Available We study the problem of multiwavelength absolute phase retrieval from noisy diffraction patterns. The system is lensless with multiwavelength coherent input light beams and random phase masks applied for wavefront modulation. The light beams are formed by light sources radiating all wavelengths simultaneously. A sensor equipped by a Color Filter Array (CFA is used for spectral measurement registration. The developed algorithm targeted on optimal phase retrieval from noisy observations is based on maximum likelihood technique. The algorithm is specified for Poissonian and Gaussian noise distributions. One of the key elements of the algorithm is an original sparse modeling of the multiwavelength complex-valued wavefronts based on the complex-domain block-matching 3D filtering. Presented numerical experiments are restricted to noisy Poissonian observations. They demonstrate that the developed algorithm leads to effective solutions explicitly using the sparsity for noise suppression and enabling accurate reconstruction of absolute phase of high-dynamic range.

  17. Current drive by neutral beams, rotating magnetic fields and helicity injection in compact toroids

    International Nuclear Information System (INIS)

    Farengo, R.

    2002-01-01

    A Monte-Carlo code is used to study neutral beam current drive in Spheromaks. The exact particle trajectories are followed in the self-consistent equilibria calculated including the beam current. Reducing Z(eff) does not increase the current drive efficiency because the reduction of the stopping cross section is compensated by an increase in the electron canceling current. Significant changes in the safety factor profile can be produced with relatively low beam currents. Minimum dissipation states of a flux core spheromak sustained by helicity injection are presented. Helicity balance is used as a constraint and the resistivity is considered to be non-uniform. Two types of relaxed states are found; one has a central core of open flux surrounded by a toroidal region of closed flux surfaces and the other has the open flux wrapped around the closed flux surfaces. Non-uniform resistivity effects can be very important due to the changes they produce in the safety factor profile. A hybrid, fluid electrons particle ions, code is employed to study ion dynamics in FRCs sustained by rotating magnetic fields. (author)

  18. Intensity measurements of slowly extracted heavy ion beams from the SIS

    International Nuclear Information System (INIS)

    Heeg, P.; Peters, A.; Strehl, P.

    1994-11-01

    The paper reports about performance tests of newly designed Secondary Electron Monitors (SEM), Ionization Chambers (IC) and Multi Diode Counters (MDC). Especially the linearity of the detectors with respect to the specific energy loss will be discussed. Calibration has been performed by means of scintillation particle counters at the lower end of the intensity region. The status of the Cryogenic Current Comparator (CCC), which is provided for absolute measurements and calibration of detectors above some nA of beam current is reported, too. (orig.)

  19. Coherent production of ρ - mesons in charged current antineutrino-neon interactions in BEBC

    Science.gov (United States)

    Marage, P.; Aderholz, M.; Allport, P.; Armenise, N.; Baton, J. P.; Berggren, M.; Bertrand, D.; Brisson, V.; Bullock, F. W.; Burkot, W.; Calicchio, M.; Clayton, E. F.; Coghen, T.; Cooper-Sarkar, A. M.; Erriquez, O.; Fitch, P. J.; Guy, J.; Hamisi, F.; Hulth, P. O.; Jones, G. T.; Kasper, P.; Katz, U. F.; Klein, H.; Matsinos, E.; Middleton, R. P.; Miller, D. B.; Mobayyen, M. M.; Morrison, D. R. O.; Neveu, M.; O'Neale, S. W.; Parker, M. A.; Petiau, P.; Sacton, J.; Sansum, R. A.; Schmitz, N.; Simopoulou, E.; Vallée, C.; Varvell, K.; Vayaki, A.; Venus, W.; Wachsmuth, H.; Wells, J.; Wittek, W.

    1987-09-01

    Coherent production of ρ - mesons in charged current antineutrino interactions on neon nuclei is studied in the BEBC bubble chamber exposed to the CERN SPS wide band beam. The cross section is measured to be (95±25)·10-40 cm2 per neon nucleus, averaged over the beam energy spectrum. The distributions of kinematical variables and the absolute value of the cross section are in agreement with theoretical predictions based on the CVC hypothesis and the vector meson dominance model.

  20. Current status of electron beam treatment of flue gas in China

    International Nuclear Information System (INIS)

    Wang Zhiguang

    2006-01-01

    Fossil resource especially coal will remain the main energy resource in China over the next 3 ∼4 decades. Pollution of flue gas from fossil power station is one problem being desiderated to solve since 1990's. Electron beam treatment of flue gas as an advanced technique has been developed and used by some institutes and industries in China. The current status of flue gas treatment using electron beam and the development of electron accelerator in China are reviewed. (author)

  1. Production of tightly focused E-beam with high-current accelerators

    International Nuclear Information System (INIS)

    Poukey, J.W.; Mazarakis, M.G.; Frost, C.A.; Ramirez, J.J.

    1991-01-01

    Using numerical modeling the authors study several approaches to the problem of designing an injector to produce a 3-30 kA, 2-4 mm diameter electron beam in the energy range 10-20 MeV. The cathode may be small in diameter and immersed in a strong magnetic field, producing an equilibrium beam for transport to a target (the immersed case). This approach appears to be the most promising for applications such as radiography, and the authors shall emphasize it in this paper. The alternative is the conventional non-immersed cathode, in which the beam from a larger-radius, cold-beam cathode is focused with magnetic lenses to a small spot on the target. Because the non-immersed cathode, in which the beam from a larger-radius, cold-beam cathode is focused with a magnetic lenses to a small spot on the target. Because the non-immersed case has been extensively studied, and because it has advantages for these purposes, the authors shall only discuss a few of the non-immersed-cathode injector studies, primarily for purposes of comparison. Either type of diode is to be powered by an inductive voltage adder based on the successful SABRE/Hermes III/RADLAC (SMILE) magnetically-insulated-transmission-line design concepts. A possible variation uses a re-entrant geometry with low electric stresses so that only the cathode face emits. The authors discuss issues such as dumping excess current and voltage dependence of the focus

  2. Influence of total beam current on HRTEM image resolution in differentially pumped ETEM with nitrogen gas.

    Science.gov (United States)

    Bright, A N; Yoshida, K; Tanaka, N

    2013-01-01

    Environmental transmission electron microscopy (ETEM) enables the study of catalytic and other reaction processes as they occur with Angstrom-level resolution. The microscope used is a dedicated ETEM (Titan ETEM, FEI Company) with a differential pumping vacuum system and apertures, allowing aberration corrected high-resolution transmission electron microscopy (HRTEM) imaging to be performed with gas pressures up to 20 mbar in the sample area and with significant advantages over membrane-type E-cell holders. The effect on image resolution of varying the nitrogen gas pressure, electron beam current density and total beam current were measured using information limit (Young's fringes) on a standard cross grating sample and from silicon crystal lattice imaging. As expected, increasing gas pressure causes a decrease in HRTEM image resolution. However, the total electron beam current also causes big changes in the image resolution (lower beam current giving better resolution), whereas varying the beam current density has almost no effect on resolution, a result that has not been reported previously. This behavior is seen even with zero-loss filtered imaging, which we believe shows that the drop in resolution is caused by elastic scattering at gas ions created by the incident electron beam. Suitable conditions for acquiring high resolution images in a gas environment are discussed. Lattice images at nitrogen pressures up to 16 mbar are shown, with 0.12 nm information transfer at 4 mbar. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Electron-impact ionization of SiCl{sub 3} using an improved crossed fast-neutral-beam - electron-beam apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Mahoney, J M; Gutkin, M V; Tarnovsky, V; Becker, K [Department of Physics and Engineering Physics, Stevens Institute of Technology, Hoboken, NJ 07030 (United States)], E-mail: kbecker@poly.edu

    2008-05-15

    The fast-neutral-beam technique is a versatile approach to the determination of absolute cross sections for electron-impact ionization of atoms, stable molecules as well as free radicals and metastable species. A fast neutral beam of the species under study is prepared by charge-transfer neutralization of a mass-selected ion beam and the species are subsequently ionized by an electron beam. Mass- and energy-dispersive selection separates singly from multiply charged ions and parent from fragment ions and allows the determination of partial ionization cross sections. Here we describe some major improvements that were made recently to the fast-beam apparatus that has been used extensively for ionization cross section measurements for the past 15 years in our group. Experiments using well-established ionization cross sections in conjunction with extensive ion trajectory simulations were carried out to test the satisfactory performance of the modified fast-neutral-beam apparatus. We also report absolute partial cross sections for the formation of various singly charged positive ions produced by electron impact on SiCl{sub 3} for impact energies from threshold to 200 eV in the modified fast-beam apparatus.

  4. Two transparent optical sensors for the positioning of detectors using a reference laser beam

    Energy Technology Data Exchange (ETDEWEB)

    Barriere, J.Ch.; Blumenfeld, H.; Bourdinaud, M.; Cloue, O.; Guyot, C.; Molinie, F.; Ponsot, P.; Saudemont, J.C.; Schuller, J.P.; Schune, Ph.; Sube, S. [CEA Saclay, 91 - Gif sur Yvette (France). Dept. d' Astrophysique, de la Physique des Particules, de la Physique Nucleaire et de l' Instrumentation Associee

    1999-07-01

    We have developed two different optical systems in order to position detectors with respect to a reference laser beam. The first system, a telescope, permits the absolute positioning of an element with respect to a reference laser beam. The resolution is of the order of 10 {mu}m in translation and 50 {mu}rad in rotation. It is highly transparent (-90%) permitting several elements to be aligned. A calibration procedure has also been studied and is currently being tested in order to obtain an absolute alignment information. The second system is a highly transparent (95%) two dimensional position sensor which allows the accurate positioning (below 20 {mu}m) of several (up to ten) elements to which each sensor is attached, transversally to a laser beam used as a reference straight line. The present useful area of the first sensor is 20 x 20 mm{sup 2} and is 15 x 15 mm{sup 2} for the second. In both case it can be further increased to meet the experiment's requirement. (authors)

  5. Two transparent optical sensors for the positioning of detectors using a reference laser beam

    International Nuclear Information System (INIS)

    Barriere, J.Ch.; Blumenfeld, H.; Bourdinaud, M.; Cloue, O.; Guyot, C.; Molinie, F.; Ponsot, P.; Saudemont, J.C.; Schuller, J.P.; Schune, Ph.; Sube, S.

    1999-01-01

    We have developed two different optical systems in order to position detectors with respect to a reference laser beam. The first system, a telescope, permits the absolute positioning of an element with respect to a reference laser beam. The resolution is of the order of 10 μm in translation and 50 μrad in rotation. It is highly transparent (-90%) permitting several elements to be aligned. A calibration procedure has also been studied and is currently being tested in order to obtain an absolute alignment information. The second system is a highly transparent (95%) two dimensional position sensor which allows the accurate positioning (below 20 μm) of several (up to ten) elements to which each sensor is attached, transversally to a laser beam used as a reference straight line. The present useful area of the first sensor is 20 x 20 mm 2 and is 15 x 15 mm 2 for the second. In both case it can be further increased to meet the experiment's requirement. (authors)

  6. A fast non-intercepting linac beam position and current monitor

    International Nuclear Information System (INIS)

    Hansen, J.W.; Wille, M.

    1982-01-01

    A non-intercepting beam monitor consisting of four detecting loops is used to determine the spatial postion and current of a pulsed beam from an electron linear accelerator. The monitor detects the magnetic field radiated by the substructure of the electron bunches created by the accelerating microwave. The detecting loops are interconnected two by two, by means of two coaxial hybrid junctions, the two sets positioned perpendicular to each other. By means of the two signals from the diametrically positioned detecting loops, a good spatial displacement and current monitoring sensitivity are achieved by subtracting one signal from the other and adding the two signals, respectively. For displacements below 2 mm from the center axis an average sensitivity of 0.5 mV/mm x mA is measured, whereas displacements more than 2 mm yields 1.3 mV/mm x mA. A sensitivity of 0.2 mV/mA in current monitoring is measured, and the rise time of the monitored pulse signal is better than 5 ns measured from 10 to 90% of the pulse height. Design strategy and performance of the monitor are described. (orig.)

  7. Dynamic frequency-domain interferometer for absolute distance measurements with high resolution

    International Nuclear Information System (INIS)

    Weng, Jidong; Liu, Shenggang; Ma, Heli; Tao, Tianjiong; Wang, Xiang; Liu, Cangli; Tan, Hua

    2014-01-01

    A unique dynamic frequency-domain interferometer for absolute distance measurement has been developed recently. This paper presents the working principle of the new interferometric system, which uses a photonic crystal fiber to transmit the wide-spectrum light beams and a high-speed streak camera or frame camera to record the interference stripes. Preliminary measurements of harmonic vibrations of a speaker, driven by a radio, and the changes in the tip clearance of a rotating gear wheel show that this new type of interferometer has the ability to perform absolute distance measurements both with high time- and distance-resolution

  8. Dynamic frequency-domain interferometer for absolute distance measurements with high resolution

    Science.gov (United States)

    Weng, Jidong; Liu, Shenggang; Ma, Heli; Tao, Tianjiong; Wang, Xiang; Liu, Cangli; Tan, Hua

    2014-11-01

    A unique dynamic frequency-domain interferometer for absolute distance measurement has been developed recently. This paper presents the working principle of the new interferometric system, which uses a photonic crystal fiber to transmit the wide-spectrum light beams and a high-speed streak camera or frame camera to record the interference stripes. Preliminary measurements of harmonic vibrations of a speaker, driven by a radio, and the changes in the tip clearance of a rotating gear wheel show that this new type of interferometer has the ability to perform absolute distance measurements both with high time- and distance-resolution.

  9. Catastrophic processes in dielectrics in irradiation by high-current electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Oleshko, V. [Tomsk Polytechnic University, 634050 Tomsk (Russian Federation); Lisitsyna, L., E-mail: lisitsyn@tpu.r [Tomsk State University of Architecture and Building, 634003 Tomsk (Russian Federation); Malys, D.; Damamme, G. [Commissariat a l' energie atomique, Paris 75015 (France); Lisitsyn, V. [Tomsk Polytechnic University, 634050 Tomsk (Russian Federation)

    2010-10-01

    The results of the research in explosive decomposition of heavy metal azides initiated by electric ('streamer') charges induced by high-current electron beam have been considered. A physical model for initiation of heavy metal azides explosive decomposition by electron beam has been suggested. The model suggests formation of strong electric field in the sample and its neutralization by ultrasound anode charges. The streamer front generates 'hot spots' which start the formation of explosive decomposition sites in a condensed reactive material.

  10. High-stable secondary-emission monitor for accelerated electron beam current

    International Nuclear Information System (INIS)

    Prudnikov, I.A.; Saksaganskij, G.L.; Bazhanov, E.B.; Zabrodin, B.V.

    1977-01-01

    A secondary-emission monitor for a 10 to 30 MeV electron beam (beam current is 10 -4 to 10 -2 A) is described. The monitor comprises a measuring electrode unit, titanium discharge-type pump, getter made of porous titanium, all enclosed in a metal casing. The measuring unit comprises three electrodes made of 20 μm aluminium foil. The secondary emission coefficient (5.19%+-0.06% for the electron energy of 20 MeV) is maintained stable for a long time. The monitor detects pulses of up to some nanoseconds duration. It is reliable in operation, and is recommended for a wide practical application

  11. Development of the High Current Ion Source for Neutral Beam Injection

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hun Ju; Kim, S. H.; Jang, D. H. [Jae Ju University, Jaeju (Korea, Republic of)

    1997-08-01

    The scope of the 1st year research is to design an 140keV deuterium ion source which has a beam current of 30-40A. According to the collected data, the model of an ion source for NBI of KSTAR was established. The negative ion source, which has good neutralization effecting in high energy, was selected. To generate a plasma, the thoriated tungsten filament was adopted. To increase the efficiency of plasma, the multi cusp type magnetic field was attached. The magnetic field was calculated by POISSON code. The extraction structure was designed with EGUN code, to extract the high quality ion beam. The design of a high current ion source for NBI was carried out. To develop the high current ion source with the high operational stability and the long lifetime, the parameters including an arc current, gas pressure and extraction voltage should be optimized. If designed ion source would be fabricated, its parameters could be optimized experimentally. Through the optimization of the ion source parameter, the core technology for NBI is established and the experiment of current drive in the fusion device can be performed. This technology also can be applied to the synthesis of new material and semiconductor industry. 18 refs., 11 tabs., 19 figs. (author)

  12. STAR barrel electromagnetic calorimeter absolute calibration using 'minimum ionizing particles' from collisions at RHIC

    International Nuclear Information System (INIS)

    Cormier, T.M.; Pavlinov, A.I.; Rykov, M.V.; Rykov, V.L.; Shestermanov, K.E.

    2002-01-01

    The procedure for the STAR Barrel Electromagnetic Calorimeter (BEMC) absolute calibrations, using penetrating charged particle hits (MIP-hits) from physics events at RHIC, is presented. Its systematic and statistical errors are evaluated. It is shown that, using this technique, the equalization and transfer of the absolute scale from the test beam can be done to a percent level accuracy in a reasonable amount of time for the entire STAR BEMC. MIP-hits would also be an effective tool for continuously monitoring the variations of the BEMC tower's gains, virtually without interference to STAR's main physics program. The method does not rely on simulations for anything other than geometric and some other small corrections, and also for estimations of the systematic errors. It directly transfers measured test beam responses to operations at RHIC

  13. Electron and ion heat transport with lower hybrid current drive and neutral beam injection heating in ASDEX

    International Nuclear Information System (INIS)

    Soeldner, F.X.; Pereverzev, G.V.; Bartiromo, R.; Fahrbach, H.U.; Leuterer, F.; Murmann, H.D.; Staebler, A.; Steuer, K.H.

    1993-01-01

    Transport code calculations were made for experiments with the combined operation of lower hybrid current drive and heating and of neutral beam injection heating on ASDEX. Peaking or flattening of the electron temperature profile are mainly explained by modifications of the MHD induced electron heat transport. They originate from current profile changes due to lower hybrid and neutral beam current drive and to contributions from the bootstrap current. Ion heat transport cannot be described by one single model for all heating scenarios. The ion heat conductivity is reduced during lower hybrid heated phases with respect to Ohmic and neutral beam heating. (author). 13 refs, 5 figs

  14. Fast wave current drive in neutral beam heated plasmas on DIII-D

    International Nuclear Information System (INIS)

    Petty, C.C.; Forest, C.B.; Pinsker, R.I.

    1997-04-01

    The physics of non-inductive current drive and current profile control using the fast magnetosonic wave has been demonstrated on the DIII-D tokamak. In non-sawtoothing discharges formed by neutral beam injection (NBI), the radial profile of the fast wave current drive (FWCD) was determined by the response of the loop voltage profile to co, counter, and symmetric antenna phasings, and was found to be in good agreement with theoretical models. The application of counter FWCD increased the magnetic shear reversal of the plasma and delayed the onset of sawteeth, compared to co FWCD. The partial absorption of fast waves by energetic beam ions at high harmonics of the ion cyclotron frequency was also evident from a build up of fast particle pressure near the magnetic axis and a correlated increase in the neutron rate. The anomalous fast particle pressure and neutron rate increased with increasing NBI power and peaked when a harmonic of the deuterium cyclotron frequency passed through the center of the plasma. The experimental FWCD efficiency was highest at 2 T where the interaction between the fast waves and the beam ions was weakest; as the magnetic field strength was lowered, the FWCD efficiency decreased to approximately half of the maximum theoretical value

  15. Coupling between eddy current and deflection in cantilevered beams in magnetic fields

    International Nuclear Information System (INIS)

    Hua, T.Q.

    1986-01-01

    Experiments were performed to investigate the coupling between eddy currents and deflection in cantilevered beams in longitudinal and transverse magnetic fields. This coupling effect reduces the current, deflection, and material stress to levels far less severe than would be predicted if coupling is disregarded. The experiments were conducted using the FELIX (Fusion ELectromagnetic Induction experiment) facility at the Argonne National Laboratory. The beams, which provide a simple model for the limiter blades in a tokamak fusion reactor, are subjected to crossed time-varying and constant magnetic fields. The time-varying field simulates the decaying field during a plasma disruption and the constant field models the toroidal field. Several test pieces are employed to allow variations in thicknesses and mechanical and electrical properties. Various magnetic field levels and decay time constants of time-varying are used to study the extent of the coupling from weak to strong coupling. The ratios of constant field to time-varying field are kept in the range from 10:1 to 20:1 as would be appropriate to tokamak limiters. Major parameters measured as functions of time are beam deflection, measured with an electro-optical device; total circulating current, measured with a Rogowski coil; strain recorded by strain gauges; and magnetic fields measured with Hall probes

  16. Precision beam splitters for CO2 lasers

    International Nuclear Information System (INIS)

    Franzen, D.L.

    1975-01-01

    Beam splitters for 10-μm lasers are discussed and then applied to the precision measurement of high average powers. In particular, beam splitter stability has been investigated in various materials over the 20--600-W power range with power densities up to 1 kW/cm 2 . The absolute beam splitter ratios are given along with the achieved measurement precisions. The semiconductors investigated were GaAs, CdTe, and ZnSe in addition to one alkali-halide KC1. Standard deviations for the beam splitter ratios of 1% over the power range were typical. Absolute ratios agree with the predictions from Fresnel's equations to 1% or better. The best measurement was made on ZnSe when a standard deviation of 0.4% was obtained for the measurement of a ratio that agreed with a calculation from Fresnel's equations to better than 0.5%

  17. Application of MO-type gapless flange to beam duct for high-current accelerators

    International Nuclear Information System (INIS)

    Suetsugu, Y.; Shirai, M.; Ohtsuka, M.

    2004-01-01

    The MO-type flange, which can provide a gapless connection between flanges, was studied experimentally aiming to apply it to the beam duct for high-current accelerators. The test flange showed a good vacuum sealing property, although the aperture had a complicated shape, that is, the combination of a circular beam duct and a rectangular antechamber. The structural analysis well reproduced the observed deformation of flange, and utilized to optimize the structure. The MO-type flange is a promising one for the connection flange of the beam duct for future accelerators. (author)

  18. VME computer monitoring system of KEK-PS fast pulsed magnet currents and beam intensities

    International Nuclear Information System (INIS)

    Kawakubo, T.; Akiyama, A.; Kadokura, E.; Ishida, T.

    1992-01-01

    For beam transfer from the KEK-PS Linac to the Booster synchrotron ring and from the Booster to the Main ring, many pulse magnets have been installed. It is very important for the machine operation to monitor the firing time, rising time and peak value of the pulsed magnet currents. It is also very important for magnet tuning to obtain good injection efficiency of the Booster and the Main ring, and to observe the last circulating bunched beam in the Booster as well as the first circulating in the Main. These magnet currents and beam intensity signals are digitized by a digital oscilloscope with signal multiplexers, and then shown on a graphic display screen of the console via a VME computer. (author)

  19. Development of high current density neutral beam injector with a low energy for interaction of plasma facing materials

    International Nuclear Information System (INIS)

    Nishikawa, Masahiro; Ueda, Yoshio; Goto, Seiichi

    1991-01-01

    A high current density neutral beam injector with a low energy has been developed to investigate interactions with plasma facing materials and propagation processes of damages. The high current density neutral beam has been produced by geometrical focusing method employing a spherical electrode system. The hydrogen beam with the current density of 140 mA/cm 2 has been obtained on the focal point in the case of the acceleration energy of 8 keV. (orig.)

  20. Design of a high-current low-energy beam transport line for an intense D-T/D-D neutron generator

    International Nuclear Information System (INIS)

    Lu, Xiaolong; Wang, Junrun; Zhang, Yu; Li, Jianyi; Xia, Li; Zhang, Jie; Ding, Yanyan; Jiang, Bing; Huang, Zhiwu; Ma, Zhanwen; Wei, Zheng; Qian, Xiangping; Xu, Dapeng; Lan, Changlin; Yao, Zeen

    2016-01-01

    An intense D-T/D-D neutron generator is currently being developed at the Lanzhou University. The Cockcroft–Walton accelerator, as a part of the neutron generator, will be used to accelerate and transport the high-current low-energy beam from the duoplasmatron ion source to the rotating target. The design of a high-current low-energy beam transport (LEBT) line and the dynamics simulations of the mixed beam were carried out using the TRACK code. The results illustrate that the designed beam line facilitates smooth transportation of a deuteron beam of 40 mA, and the number of undesired ions can be reduced effectively using two apertures.

  1. Comparison of absolute speed of screen-film systems measured in seven institutions

    International Nuclear Information System (INIS)

    Yoshida, Ken-ichi; Murakami, Yasunori; Asahara, Masaki; Nakamura, Satoru; Honda, Mitsugi; Morishita, Junji; Higashida, Yoshiharu; Otsuka, Akiyoshi; Yoshida, Akira.

    1998-01-01

    We compared the differences in absolute speed of four screen-film systems in seven institutions. Four different screens (HR-4, Fuji; Lanex Medium, Kodak; Lanex 250, Kodak; and HR-12, Fuji) combined with super HRS-30 (Fuji) film and a beam quality of 80 kV tube voltage with a 20 mm aluminum filter were employed. Absolute speeds of the HR-4, Lanex Medium, Lanex 250, and HR-12 in combination with super HRS-30 were 1.83 mR -1 , 2.72 mR -1 , 2.79 mR -1 , and 5.35 mR -1 (average of seven institutions), respectively. The variation in speed was about ±10% for the seven institutions. Two factors (film processor and densitometer) affecting absolute speed were analyzed. The absolute speed measured in seven institutions varied ±14% depending on the film processor (development conditions) and ±3% depending on the densitometer employed in each institution. (author)

  2. Absolute total cross sections for noble gas systems

    International Nuclear Information System (INIS)

    Kam, P. van der.

    1981-01-01

    This thesis deals with experiments on the elastic scattering of Ar, Kr and Xe, using the molecular beam technique. The aim of this work was the measurement of the absolute value of the total cross section and the behaviour of the total cross section, Q, as function of the relative velocity g of the scattering partners. The author gives an extensive analysis of the glory structure in the total cross section and parametrizes the experimental results using a semiclassical model function. This allows a detailed comparison of the phase and amplitude of the predicted and measured glory undulations. He indicates how the depth and position of the potential well should be changed in order to come to an optimum description of the glory structure. With this model function he has also been able to separate the glory and attractive contribution to Q, and using the results from the extrapolation measurements he has obtained absolute values for Qsub(a). From these absolute values he has calculated the parameter C 6 that determines the strength of the attractive region of the potential. In two of the four investigated gas combinations the obtained values lie outside the theoretical bounds. (Auth.)

  3. Beam current transformer (BCT) for experiment WA1/2

    CERN Multimedia

    CERN PhotoLab

    1978-01-01

    In experiment WA1/2, a 400 GeV proton beam from the SPS was directed at a target, downstream of which a hadron line selected, in several narrow momentum bands, a beam of either pi+ and K+ or pi- and K-. These neutrino-parent particles, before entering a 292 m long decay tunnel, passed through a set of 2 BCTs of a design seen here. They measured the hadron intensity (10^10 to 10^11 particles/pulse) with a precision of the order of 1%. There were 2 of them, for enhanced precision and confidence. After the discovery of neutral currents in the Gargamelle-experiment, WA1/2 was the first follow-up, high-precision experiment (Z.Phys.C35, 443-452, 1987 and Z.Phys.C45, 361-379, 1990). See also 7706516X.

  4. Dynamics of a relativistic electron beam in a high-current diode with a knife-edge cathode

    International Nuclear Information System (INIS)

    Babykin, V.M.; Gordeev, A.V.; Golovin, G.T.; Korolev, V.D.; Kopchikov, A.V.; Tulupov, M.V.; Chernenko, A.S.; Shuvaev, V.Yu.

    1991-01-01

    For a number of practical applications, e.g., producing discharges in large volumes in order to pump gas lasers and for short x-ray pulses, it is necessary to generate electron beams in megamp range with electron energies from hundreds of kilovolts to several megavolts. It has been possible to obtain high currents (I ± 1 MA) by using diodes with knife-edge cathodes. Knife-edge diodes have an important advantage over the parapotential type because the ion current in them comprises a relatively small fraction of the total current. This is because the electron path in the accelerating gap of knife-edge diodes is quite short in comparison with that in high-current parapotential diodes. From the point of view of applying ribbon-shaped or narrow electron beams, the important problems are in measuring the current-voltage characteristics of the diodes and determining the dynamics of the energy spectrum and the angular spread of the electrons. The generation of an electron beam with a current ∼130 kA and pulse length ∼60 ns is studied. The current-voltage characteristics of knife-edge diodes with various geometries, the dynamics of the angular spread, and the beam structure are studied. As a result of the study of the REB dynamics it is found that the operation of the diode with these experiments can be approximated by a proposed formula which includes the finite thickness of the knife-edge cathode and the motion of the plasma and ions in the discharge gap. Breaking up of the beam into individual current-carrying channels is observed with the characteristic scale ∼1-2 mm. It is noted that for the diode geometry with a knife-edge cathode, when the magnetic field changes sign and passes through zero, an instability can exist which is analogous to the dissipative tearing instability

  5. Vehicle charging and return current measurements during electron-beam emission experiments from the Shuttle Orbiter

    International Nuclear Information System (INIS)

    Hawkins, J.G.

    1988-01-01

    The prime objective of this research was to investigate the electro-dynamic response of the Shuttle Orbiter during electron beam emission from the payload bay. This investigation has been conducted by examining data collected by the Vehicle Charging And Potential (VCAP) Experiment. The VCAP experiment has flown on two Shuttle missions with a Fast Pulse Electron Generator (FPEG) capable of emitting a 100 mA beam of 1 keV electrons. Diagnostics of the charging and return current during beam emission were provided by a combined Charge and Current Probe (CCP) located in the payload bay of the Orbiter. The CCP measurements were used to conduct a parametric study of the vehicle charging and return current as a function of vehicle attitude, ambient plasma parameters, and emitted beam current. In particular, the CCP measurements were found to depend strongly on the ambient plasma density. The vehicle charging during a 100 mA beam emission was small when the predicted ambient plasma density was greater than 3 x 10 5 cm -3 , but appreciable charging occurred when the density was less than this value. These observations indicated that the effective current-collecting area of the Orbiter is approximately 42 m 2 , consistent with estimates for the effective area of the Orbiter's engine nozzles. The operation of the Orbiter's Reaction Control System thrusters can create perturbations in the Orbiter's neutral and plasma environment that affect the CCP measurements. The CCP signatures of thruster firings are quite complex, but in general they are consistent with the depletion of plasma density in the ram direction and the enhancement of plasma density in the Orbiter's wake

  6. Pertinence analysis of intensity-modulated radiation therapy dosimetry error and parameters of beams

    International Nuclear Information System (INIS)

    Chi Zifeng; Liu Dan; Cao Yankun; Li Runxiao; Han Chun

    2012-01-01

    Objective: To study the relationship between parameter settings in the intensity-modulated radiation therapy (IMRT) planning in order to explore the effect of parameters on absolute dose verification. Methods: Forty-three esophageal carcinoma cases were optimized with Pinnacle 7.6c by experienced physicist using appropriate optimization parameters and dose constraints with a number of iterations to meet the clinical acceptance criteria. The plans were copied to water-phantom, 0.13 cc ion Farmer chamber and DOSE1 dosimeter was used to measure the absolute dose. The statistical data of the parameters of beams for the 43 cases were collected, and the relationships among them were analyzed. The statistical data of the dosimetry error were collected, and comparative analysis was made for the relation between the parameters of beams and ion chamber absolute dose verification results. Results: The parameters of beams were correlated among each other. Obvious affiliation existed between the dose accuracy and parameter settings. When the beam segment number of IMRT plan was more than 80, the dose deviation would be greater than 3%; however, if the beam segment number was less than 80, the dose deviation was smaller than 3%. When the beam segment number was more than 100, part of the dose deviation of this plan was greater than 4%. On the contrary, if the beam segment number was less than 100, the dose deviation was smaller than 4% definitely. Conclusions: In order to decrease the absolute dose verification error, less beam angles and less beam segments are needed and the beam segment number should be controlled within the range of 80. (authors)

  7. Depletion region surface effects in electron beam induced current measurements

    Energy Technology Data Exchange (ETDEWEB)

    Haney, Paul M.; Zhitenev, Nikolai B. [Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Yoon, Heayoung P. [Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah 84112 (United States); Gaury, Benoit [Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Maryland NanoCenter, University of Maryland, College Park, Maryland 20742 (United States)

    2016-09-07

    Electron beam induced current (EBIC) is a powerful characterization technique which offers the high spatial resolution needed to study polycrystalline solar cells. Current models of EBIC assume that excitations in the p-n junction depletion region result in perfect charge collection efficiency. However, we find that in CdTe and Si samples prepared by focused ion beam (FIB) milling, there is a reduced and nonuniform EBIC lineshape for excitations in the depletion region. Motivated by this, we present a model of the EBIC response for excitations in the depletion region which includes the effects of surface recombination from both charge-neutral and charged surfaces. For neutral surfaces, we present a simple analytical formula which describes the numerical data well, while the charged surface response depends qualitatively on the location of the surface Fermi level relative to the bulk Fermi level. We find that the experimental data on FIB-prepared Si solar cells are most consistent with a charged surface and discuss the implications for EBIC experiments on polycrystalline materials.

  8. Proton-beam radiation therapy dosimetry standardization

    International Nuclear Information System (INIS)

    Gall, K.P.

    1995-01-01

    Beams of protons have been used for radiation therapy applications for over 40 years. In the last decade the number of facilities treating patients and the total number of patients being treated has begun go grow rapidly. Due to the limited and experimental nature of the early programs, dosimetry protocols tended to be locally defined. With the publication of the AAPM Task Group 20 report open-quotes Protocol for Dosimetry of Heavy Charged Particlesclose quotes and the open-quotes European Code of Practice for Proton-Beam Dosimetryclose quotes the practice of determining dose in proton-beam therapy was somewhat unified. The ICRU has also recently commissioned a report on recommendations for proton-beam dosimetry. There have been three main methods of determining proton dose; the Faraday cup technique, the ionization chamber technique, and the calorimeter technique. For practical reasons the ionization chamber technique has become the most widely used. However, due to large errors in basic parameters (e.g., W-value) is also has a large uncertainty for absolute dose. It has been proposed that the development of water calorimeter absorbed dose standards would reduce the uncertainty in absolute proton dose as well as the relative dose between megavoltage X-ray beams and proton beams. The advantages and disadvantages are discussed

  9. Development of a high-current ion source with slit beam extraction for neutral beam injector of VEST

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Bong-ki; Chung, Kyoung-Jae, E-mail: jkjlsh1@snu.ac.kr; An, Young-Hwa; Park, Jong-Yoon; Hwang, Y.S.

    2015-10-15

    Highlights: • A high-current ion source is developed for NBI system of VEST. • A cold-cathode electron gun is employed to produce primary electrons. • A hemi-cylindrical discharge chamber with cusp magnetic field is used. • Plasma density is measured to be 2 × 10{sup 18} m{sup −3} near the extraction aperture. • NBI power of 90 kW with beam energy of 20 keV is expected to be achieved. - Abstract: A high-current pulsed ion source has been developed for the neutral beam injector of the VEST (Versatile Experiment Spherical Torus) to accommodate high-beta fusion plasma experiments. The ion source consists of two parts: an electron gun for supplying sufficient primary electrons by cold-cathode arc discharge and a hemi-cylindrical discharge chamber where uniform, high-density plasma generated by the primary electrons is confined by multi-cusp magnetic field. A pulse forming network is also developed to drive high current of ∼1 kA to sustain the cold-cathode discharge in the electron gun up to 10 ms. Diagnostics with a triple probe in the discharge chamber shows that a hydrogen plasma whose density is as high as 1 × 10{sup 18} m{sup −3} can be obtained near extraction slits at the gas pressure lower than 0.5 Pa. This value is estimated to be sufficient to deposit a heating power of 90 kW to the VEST plasma when the appropriate extraction through slits with 20 cm{sup 2} in area and acceleration of ion beams up to 20 kV are fulfilled.

  10. Spectral and spatial shaping of a laser-produced ion beam for radiation-biology experiments

    Directory of Open Access Journals (Sweden)

    L. Pommarel

    2017-03-01

    Full Text Available The study of radiation biology on laser-based accelerators is most interesting due to the unique irradiation conditions they can produce, in terms of peak current and duration of the irradiation. In this paper we present the implementation of a beam transport system to transport and shape the proton beam generated by laser-target interaction for in vitro irradiation of biological samples. A set of four permanent magnet quadrupoles is used to transport and focus the beam, efficiently shaping the spectrum and providing a large and relatively uniform irradiation surface. Real time, absolutely calibrated, dosimetry is installed on the beam line, to enable shot-to-shot control of dose deposition in the irradiated volume. Preliminary results of cell sample irradiation are presented to validate the robustness of the full system.

  11. The cathode-fall of low-pressure hydrogen discharges: Absolute spectral emission and model

    Energy Technology Data Exchange (ETDEWEB)

    Jelenkovic, B. M. [JILA, National Institute of Standards and Technology and University of Colorado Boulder, Boulder, Colorado 80309-0440 (United States); Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Zenum Belgrade (Serbia); Phelps, A. V. [JILA, National Institute of Standards and Technology and University of Colorado Boulder, Boulder, Colorado 80309-0440 (United States)

    2011-10-15

    Absolute excitation probabilities from very low to moderate-current hydrogen discharges in parallel-plane geometry are measured and used to test models. Relative emission data are obtained for the H{sub {alpha}} line, the H{sub 2} (a{sup 3}{Sigma}{yields}b{sup 3}{Pi}) near-UV continuum, and the H{sub 2} (G{sup 1}{Sigma}{yields}B{sup 1}{Pi}{sub u}{sup +}) band at pressures of 0.5 and 2 Torr, a 1.05 cm gap, and voltages from 300 to 900 V. Electron behavior is traced using the first negative (A{sup 2}{Sigma}{sub g}{yields} X{sup 2}{Pi}{sub u}, {nu}'' = 0 {yields}{nu}' = 0) band of N{sub 2}{sup +} by adding 2% N{sub 2}. Relative measurements of H{sub {alpha}}, H{sub 2} near-UV, and N{sub 2} 1st negative emission are placed on a absolute scale by normalization to published measurements and Boltzmann calculations of electron excitation. Emission probabilities calculated using a multi-beam kinetics model for the electrons, H{sup +}, H{sub 2}{sup +}, H{sub 3}{sup +}, H{sup -}, H, and H{sub 2} are compared with the calibrated experiments. Fast H atoms are calculated to produce H{sub {alpha}} excitation that is comparable with that of electrons. The calculated emission intensities for H{sub {alpha}} and H{sub 2} near-UV continuum are within a factor of three of the absolute measurements for a range of 5000:1 in current and 4:1 in hydrogen pressure. Calculations at 2 Torr show that most of the space charge electric field responsible for the cathode fall is produced by H{sub 3}{sup +} ions.

  12. Parameters affecting profile shape of a high energy low current thin ion beam. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Abdel Salam, F W; Moustafa, O A; El-Khabeary, H [Accelerators Department, Nuclear Research Center, Atomic Energy Authority, Cairo, (Egypt)

    1996-03-01

    The shape of the profile of a high energy, low current beam of finite length has beam investigated. The beam profile shape depends on the initial beam radius, beam perveance, atomic mass number, charge state of ions, and beam length. These parameters can affect the relation between the initial beam radius and the corresponding final one. An optimum initial beam radius corresponding to minimum final beam at the target has been formulated and the relation between them is deduced taking account of the space charge effect. The minimum beam radius at the target was found to be equal to 2.3 of the optimum initial radius. It is concluded that in order to obtain a small beam radius at a target placed at a finite distance from an ion source, a beam of a low perveance, low atomic mass number and high number of electronic charge is required. This is an important detection for micro machining applications using the oscillating electron ion source which produces nearly paraxial thin beam of low perveance. 12 figs.

  13. Aberrations due to solenoid focusing of a multiply charged high-current ion beam

    CERN Document Server

    Grégoire, G; Lisi, N; Schnuriger, J C; Scrivens, R; Tambini, J

    2000-01-01

    At the output of a laser ion source, a high current of highly charged ions with a large range of charge states is available. The focusing of such a beam by magnetic elements causes a nonlinear space-charge field to develop which can induce large aberrations and emittance growth in the beam. Simulation of the beam from the CERN laser ion source will be presented for an ideal magnetic and electrostatic system using a radially symmetric model. In addition, the three dimensional software KOBRA3 is used for the simulation of the solenoid line. The results of these simulations will be compared with experiments performed on the CERN laser ion source with solenoids (resulting in a hollow beam) and a series of gridded electrostatic lenses. (5 refs).

  14. Beam size blow-up and current loss in the Fermilab Main Ring during storage

    International Nuclear Information System (INIS)

    Guignard, C.; Month, M.

    1977-01-01

    Observations at Fermilab during storage mode operation show characteristic forms of transverse beam size growth and current loss with time. There are three obvious mechanisms which can produce such blowup. The gas pressure is a source for immediate beam loss by direct nuclear scattering. Protons can also multiple scatter off the orbiting electrons of the gas atoms causing the trasnverse beam size to increase with time. A third mechanism not related to gas pressure is beam growth due to multiple crossing of betatron resonances arising from the synchrotron oscillations of the stored bunches. This simulates a random walk and causes the transverse beam size to grow. This is an attempt to describe the observations with direct nuclear scattering, multiple coulomb scattering, and multiple resonance crossing

  15. Sparking limits, cavity loading, and beam breakup instability associated with high-current rf linacs

    International Nuclear Information System (INIS)

    Faehl, R.J.; Lemons, D.S.; Thode, L.E.

    1982-01-01

    The limitations on high-current rf linacs due to gap sparking, cavity loading, and the beam breakup instability are studied. It appears possible to achieve cavity accelerating gradients as high as 35 MV/m without sparking. Furthermore, a linear analysis, as well as self-consistent particle simulations of a multipulsed 10 kA beam, indicated that only a negligible small fraction of energy is radiated into nonfundamental cavity modes. Finally, the beam breakup instability is analyzed and found to be able to magnify initial radial perturbations by a factor of no more than about 20 during the beam transit time through a 1 GeV accelerator

  16. Current profile redistribution driven by neutral beam injection in a reversed-field pinch

    Energy Technology Data Exchange (ETDEWEB)

    Parke, E. [Department of Physics and Astronomy, University of California Los Angeles 475 Portola Plaza, Los Angeles, California 90095 (United States); Department of Physics, University of Wisconsin-Madison 1150 University Ave., Madison, Wisconsin 53706 (United States); Anderson, J. K.; Den Hartog, D. J. [Department of Physics, University of Wisconsin-Madison 1150 University Ave., Madison, Wisconsin 53706 (United States); Brower, D. L.; Ding, W. X.; Lin, L. [Department of Physics and Astronomy, University of California Los Angeles 475 Portola Plaza, Los Angeles, California 90095 (United States); Johnson, C. A. [Department of Physics, University of Wisconsin-Madison 1150 University Ave., Madison, Wisconsin 53706 (United States); Department of Physics, Auburn University 206 Allison Laboratory, Auburn, Alabama 36849 (United States)

    2016-05-15

    Neutral beam injection in reversed-field pinch (RFP) plasmas on the Madison Symmetric Torus [Dexter et al., Fusion Sci. Technol. 19, 131 (1991)] drives current redistribution with increased on-axis current density but negligible net current drive. Internal fluctuations correlated with tearing modes are observed on multiple diagnostics; the behavior of tearing mode correlated structures is consistent with flattening of the safety factor profile. The first application of a parametrized model for island flattening to temperature fluctuations in an RFP allows inferrence of rational surface locations for multiple tearing modes. The m = 1, n = 6 mode is observed to shift inward by 1.1 ± 0.6 cm with neutral beam injection. Tearing mode rational surface measurements provide a strong constraint for equilibrium reconstruction, with an estimated reduction of q{sub 0} by 5% and an increase in on-axis current density of 8% ± 5%. The inferred on-axis current drive is consistent with estimates of fast ion density using TRANSP [Goldston et al., J. Comput. Phys. 43, 61 (1981)].

  17. Simulation of 10 A electron-beam formation and collection for a high current electron-beam ion source

    Science.gov (United States)

    Kponou, A.; Beebe, E.; Pikin, A.; Kuznetsov, G.; Batazova, M.; Tiunov, M.

    1998-02-01

    Presented is a report on the development of an electron-beam ion source (EBIS) for the relativistic heavy ion collider at Brookhaven National Laboratory (BNL) which requires operating with a 10 A electron beam. This is approximately an order of magnitude higher current than in any existing EBIS device. A test stand is presently being designed and constructed where EBIS components will be tested. It will be reported in a separate paper at this conference. The design of the 10 A electron gun, drift tubes, and electron collector requires extensive computer simulations. Calculations have been performed at Novosibirsk and BNL using two different programs, SAM and EGUN. Results of these simulations will be presented.

  18. Study of critical beta non-circular tokamak equilibria sustained in steady state by beam driven currents

    International Nuclear Information System (INIS)

    Okano, K.; Ogawa, Y.; Naitou, H.

    1988-07-01

    A new MHD-equilibrium/current-drive analysis code was developed to analyse the high beta tokamak equilibria consistent with the beam driven current profiles. In this new code, the critical beta equilibrium, which is stable against the ballooning mode, the kink mode and the Mercier mode, is determined first using MHD equilibrium and stability analysis codes (EQLAUS/ERATO). Then, the current drive parameters and the plasma parameters, required to sustain this critical beta equilibrium, are determined by iterative calculations. The beam driven current profiles are evaluated by the Fokker-Planck calculations on individual flux surfaces, where the toroidal effects on the beam ion and plasma electron trajectories are considered. The pressure calculation takes into account the beam ion and fast alpha components. A peculiarity of our new method is that the obtained solution is not only consistent with the MHD equilibrium but also consistent with the critical beta limit conditions, in the current profile and the pressure profile. Using this new method, β ∼ 21 % bean and β ∼ 6 % D-type critical beta equilibria were scanned for various parameters; the major radius, magnetic field, temperature, injection energy, etc. It was found that the achievable Q value for the bean type was always about 30 % larger than for the D-type cases, where Q = fusion power/beam power. With strong beanness, Q ∼ 6 for DEMO type tokamaks (∼500 MWth) and Q ∼ 20 for power reactor size (4.5 GWth) are achievable. On the other hand, the Q value would not exceed sixteen for the D-type machines. (author)

  19. Calculation of radiative corrections to virtual compton scattering - absolute measurement of the energy of Jefferson Lab. electron beam (hall A) by a magnetic method: arc project

    International Nuclear Information System (INIS)

    Marchand, D.

    1998-11-01

    This thesis presents the radiative corrections to the virtual compton scattering and the magnetic method adopted in the Hall A at Jefferson Laboratory, to measure the electrons beam energy with an accuracy of 10 4 . The virtual compton scattering experiments allow the access to the generalised polarizabilities of the protons. The extraction of these polarizabilities is obtained by the experimental and theoretical cross sections comparison. That's why the systematic errors and the radiative effects of the experiments have to be controlled very seriously. In this scope, a whole calculation of the internal radiative corrections has been realised in the framework of the quantum electrodynamic. The method of the dimensional regularisation has been used to the treatment of the ultraviolet and infra-red divergences. The absolute measure method of the energy, takes into account the magnetic deviation, made up of eight identical dipoles. The energy is determined from the deviation angle calculation of the beam and the measure of the magnetic field integral along the deviation

  20. Mechanical and Thermal Design of the CEBAF Hall A Beam Calorimeter

    CERN Document Server

    Bevins, Michael E; Degtiarenko, Pavel; Dillon-Townes, Lawrence A; Freyberger, Arne; Gilman, Ronald; Saha, Arun; Slachtouski, Stephanie

    2005-01-01

    A calorimeter has been proposed to provide 0.5% - 1.0% absolute measurements of beam current in the Hall A end station of the Thomas Jefferson National Accelerator Facility (JLab) CEBAF machine. Silver and copper calorimeters built in the 1960's achieved precisions of about 1%. Modern powder metallurgy processes have produced high density, high thermal conductivity tungsten-copper composite materials that will minimize beam loss while maintaining a rapid thermal response time. Heat leaks will be minimized by mounting the mass in vacuum on glass ceramic mounts. A conduction cooling scheme utilizes an advanced carbon fiber compliant thermal interface material. Transient finite difference and finite element models were developed to estimate heat leaks and thermal response times.

  1. High peak current operation of x-ray free-electron laser multiple beam lines by suppressing coherent synchrotron radiation effects

    Science.gov (United States)

    Hara, Toru; Kondo, Chikara; Inagaki, Takahiro; Togawa, Kazuaki; Fukami, Kenji; Nakazawa, Shingo; Hasegawa, Taichi; Morimoto, Osamu; Yoshioka, Masamichi; Maesaka, Hirokazu; Otake, Yuji; Tanaka, Hitoshi

    2018-04-01

    The parallel operation of multiple beam lines is an important means to expand the opportunity of user experiments at x-ray free-electron laser (XFEL) facilities. At SPring-8 Angstrom free-electron laser (SACLA), the multi-beam-line operation had been tested using two beam lines, but transverse coherent synchrotron radiation (CSR) effects at a dogleg beam transport severely limited the laser performance. To suppress the CSR effects, a new beam optics based on two double bend achromat (DBA) structures was introduced for the dogleg. After the replacement of the beam optics, high peak current bunches of more than 10 kA are now stably transported through the dogleg and the laser pulse output is increased by a factor of 2-3. In the multi-beam-line operation of SACLA, the electron beam parameters, such as the beam energy and peak current, can be adjusted independently for each beam line. Thus the laser output can be optimized and wide spectral tunability is ensured for all beam lines.

  2. A novel current mode operating beam counter based on not preamplified HPDs

    CERN Document Server

    Fujiwara, M.C.

    2002-01-01

    A novel system to monitor the intensity and the stability of a bunched beam of $\\simeq 1.2\\times 10^{7}$ antiprotons ($\\bar{p}$s) with a length of $\\simeq$ 250 ns (FWHM) and to measure its trapping efficiency in a Penning trap is described. This system operates parasitically detecting the pions from the annihilation of part of the beam in a degrader. Six plastic scintillators have been coupled from one side to six proximity focused HPDs without preamplifiers and operating in current mode. This device works in the stray field of the ATHENA magnet with no loss of efficiency; the gain can be varied from zero to a few thousands with a precision better than 0.1% and the dynamic range is larger than 8 orders of magnitude. Linearity and stability have been measured up to charge responses of 100 nC, corresponding to the beam completely dumped. The beam counter has been calibrated in two different and independent ways giving consistent results.

  3. Study of non-inductive current drive using high energy neutral beam injection on JT-60U

    International Nuclear Information System (INIS)

    Oikawa, Toshihiro

    2004-01-01

    The negative ion based neutral beam (N-NB) current drive was experimentally studied. The N-NB driven current density was determined over a wide range of electron temperatures by using the motional Stark effect spectroscopy. Theoretical prediction of the NB current drive increasing with beam energy and electron temperature was validated. A record value of NB current drive efficiency 1.55 x 10 19 Am -2 W -1 was achieved simultaneously with high confinement and high beta at at a plasma current of 1.5 MA under a fully non-inductively current driven condition. The experimental validation of NB current drive theory for MHD quiescent plasmas gives greater confidence in predicting the NB current drive in future reactors. However, it was also found that MHD instabilities caused a degradation of NB current drive. A beam-driven instability expelled N-NB fast ions carrying non-inductive current from the central region. The lost N-NB driven current was estimated to be 7% of the total N-NB driven current. For the neoclassical tearing mode (NTM), comparisons of the measured neutron yield and fast ion pressure profile with transport code calculations revealed that the loss of fast ions increases with the NTM activity and that fast ions at higher energies suffer larger transport than at lower energies. (author)

  4. Design, test, and calibration of an electrostatic beam position monitor

    Directory of Open Access Journals (Sweden)

    Maurice Cohen-Solal

    2010-03-01

    Full Text Available The low beta of proton or ion beams favors an electrostatic pickup to measure the transverse beam centroid position. Often papers on beam position monitors (BPM are focused on a particular aspect of the problem; however, it is important to consider all various issues of a position measurement system. Based on our experience at the IPHI (high intensity injector proton facility at CEA-Saclay, this paper will address all aspects to design, test, and calibrate a BPM for proton linear accelerators, while emphasizing the determination of the absolute beam position. We present details of the readout electronics, and describe the calibration of the BPM using a test station. For calculation and simulation of the electrical signals we developed a Mathematica script. The error analysis presented, on the basis of six BPMs installed in the high energy section of IPHI, demonstrates the expected accuracy of the position measurement. These studies also identify the parameters that could improve the performance of the beam position control. The experience from these developments is currently being used for the BPM design and test stand dedicated to the Spiral2 accelerator at Ganil-Caen which will deliver heavy ion beams.

  5. Design, test, and calibration of an electrostatic beam position monitor

    Science.gov (United States)

    Cohen-Solal, Maurice

    2010-03-01

    The low beta of proton or ion beams favors an electrostatic pickup to measure the transverse beam centroid position. Often papers on beam position monitors (BPM) are focused on a particular aspect of the problem; however, it is important to consider all various issues of a position measurement system. Based on our experience at the IPHI (high intensity injector proton) facility at CEA-Saclay, this paper will address all aspects to design, test, and calibrate a BPM for proton linear accelerators, while emphasizing the determination of the absolute beam position. We present details of the readout electronics, and describe the calibration of the BPM using a test station. For calculation and simulation of the electrical signals we developed a Mathematica script. The error analysis presented, on the basis of six BPMs installed in the high energy section of IPHI, demonstrates the expected accuracy of the position measurement. These studies also identify the parameters that could improve the performance of the beam position control. The experience from these developments is currently being used for the BPM design and test stand dedicated to the Spiral2 accelerator at Ganil-Caen which will deliver heavy ion beams.

  6. Search for lepton number violating charged current processes with neutrino beams

    International Nuclear Information System (INIS)

    Kanemura, Shinya; Kuno, Yoshitaka; Ota, Toshihiko

    2013-01-01

    We propose a novel idea on measurements to understand which physics mechanism is responsible for the origin of a small neutrino mass, by searching for the processes of lepton number violating charged current interaction with incident of a neutrino beam. It turns out that only the proposed measurements could provide a potential to discriminate the mechanisms, in particular the ones called loop-induced mechanisms of neutrino mass generation, from the others. The expected rates of these processes based on some theoretical assumptions are estimated. They are found to be sizable so that detection of such processes could be achievable at near detectors in future highly intense neutrino-beam facilities

  7. Absolute Determination of High DC Voltages by Means of Frequency Measurement

    Science.gov (United States)

    Peier, Dirk; Schulz, Bernd

    1983-01-01

    A novel absolute measuring procedure is presented for the definition of fixed points of the voltage in the 100 kV range. The method is based on transit time measurements with accelerated electrons. By utilizing the selective interaction of a monoenergetic electron beam with the electromagnetic field of a special cavity resonator, the voltage is referred to fundamental constants and the base unit second. Possible balance voltages are indicated by a current detector. Experimental investigations are carried out with resonators in the normal conducting range. With a copper resonator operating at the temperature of boiling nitrogen (77 K), the relative uncertainty of the voltage points is estimated to be +/- 4 × 10-4. The technically realizable uncertainty can be reduced to +/- 1 × 10-5 by the proposed application of a superconducting niobium resonator. Thus this measuring device becomes suitable as a primary standard for the high-voltage range.

  8. Relativistic Absolutism in Moral Education.

    Science.gov (United States)

    Vogt, W. Paul

    1982-01-01

    Discusses Emile Durkheim's "Moral Education: A Study in the Theory and Application of the Sociology of Education," which holds that morally healthy societies may vary in culture and organization but must possess absolute rules of moral behavior. Compares this moral theory with current theory and practice of American educators. (MJL)

  9. High precision electron beam diagnostic system for high current long pulse beams

    International Nuclear Information System (INIS)

    Chen, Y J; Fessenden, T; Holmes, C; Nelson, S D; Selchow, N.

    1999-01-01

    As part of the effort to develop a multi-axis electron beam transport system using stripline kicker technology for DARHT II applications, it is necessary to precisely determine the position and extent of long high energy beams (6-40 MeV, 1-4 kA, 2 microseconds) for accurate position control. The kicker positioning system utilizes shot-to-shot adjustments for reduction of relatively slow (<20 MHz) motion of the beam centroid. The electron beams passing through the diagnostic systems have the potential for large halo effects that tend to corrupt measurements performed using capacitive pick-off probes. Likewise, transmission line traveling wave probes have problems with multi-bounce effects due to these longer pulse widths. Finally, the high energy densities experienced in these applications distort typical foil beam position measurements

  10. Commissioning of the Absolute Luminosity For ATLAS detector at the LHC

    CERN Document Server

    Jakobsen, Sune; Hansen, Peter; Hansen, Jørgen Beck

    The startup of the LHC (Large Hadron Collider) has initialized a new era in particle physics. The standard model of particle physics has for the last 40 years with tremendous success described all measurements with phenomenal precision. The experiments at the LHC are testing the standard model in a new energy regime. To normalize the measurements and understand the potential discoveries of the LHC experiments it is often crucial to know the interaction rate - the absolute luminosity. The ATLAS (A Toroidal LHC ApparatuS) detector will measure luminosity by numerous methods. But for most of the methods only the relative luminosity is measured with good precision. The absolute scale has to be provided from elsewhere. ATLAS is like the other LHC experiments mainly relying of absolute luminosity calibration from van der Meer scans (beam separation scans). To cross check and maybe even improve the precision; ATLAS has built a sub-detector to measure the flux of protons scattered under very small angles as this flux...

  11. Simulation of 10 A electron-beam formation and collection for a high current electron-beam ion source

    International Nuclear Information System (INIS)

    Kponou, A.; Beebe, E.; Pikin, A.; Kuznetsov, G.; Batazova, M.; Tiunov, M.

    1998-01-01

    Presented is a report on the development of an electron-beam ion source (EBIS) for the relativistic heavy ion collider at Brookhaven National Laboratory (BNL) which requires operating with a 10 A electron beam. This is approximately an order of magnitude higher current than in any existing EBIS device. A test stand is presently being designed and constructed where EBIS components will be tested. It will be reported in a separate paper at this conference. The design of the 10 A electron gun, drift tubes, and electron collector requires extensive computer simulations. Calculations have been performed at Novosibirsk and BNL using two different programs, SAM and EGUN. Results of these simulations will be presented. copyright 1998 American Institute of Physics

  12. Absolute risk, absolute risk reduction and relative risk

    Directory of Open Access Journals (Sweden)

    Jose Andres Calvache

    2012-12-01

    Full Text Available This article illustrates the epidemiological concepts of absolute risk, absolute risk reduction and relative risk through a clinical example. In addition, it emphasizes the usefulness of these concepts in clinical practice, clinical research and health decision-making process.

  13. Current drive by neutral beams, rotating magnetic fields and helicity injection in compact toroids

    International Nuclear Information System (INIS)

    Farengo, R.; Arista, N.R.; Lifschitz, A.F.; Clemente, R.A.

    2003-01-01

    The use of neutral beams (NB) for current drive and heating in spheromaks, the relaxed states of flux core spheromaks (FCS) sustained by helicity injection and the effect of ion dynamics on rotating magnetic field (RMF) current drive in spherical tokamaks (ST) are studied. (author)

  14. Absolute Bunch Length Measurements by Incoherent Radiation Fluctuation Analysis

    International Nuclear Information System (INIS)

    Sannibale, F.; Stupakov, G.V.; Zolotorev, M.S.; Filippetto, D.; Jagerhofer, L.

    2009-01-01

    By analyzing the pulse to pulse intensity fluctuations of the radiation emitted by a charge particle in the incoherent part of the spectrum, it is possible to extract information about the spatial distribution of the beam. At the Advanced Light Source (ALS) of the Lawrence Berkeley National Laboratory, we have developed and successfully tested a simple scheme based on this principle that allows for the absolute measurement of the rms bunch length. A description of the method and the experimental results are presented.

  15. Design of a New Acceleration System for High-Current Pulsed Proton Beams from an ECR Source

    Science.gov (United States)

    Cooper, Andrew L.; Pogrebnyak, Ivan; Surbrook, Jason T.; Kelly, Keegan J.; Carlin, Bret P.; Champagne, Arthur E.; Clegg, Thomas B.

    2014-03-01

    A primary objective for accelerators at TUNL's Laboratory for Experimental Nuclear Astrophysics (LENA) is to maximize target beam intensity to ensure a high rate of nuclear events during each experiment. Average proton target currents of several mA are needed from LENA's electron cyclotron resonance (ECR) ion source because nuclear cross sections decrease substantially at energies of interest tube structures; and provide better heat dissipation by using deionized water to provide the current drain needed to establish the accelerating tube's voltage gradient. Details of beam optical modeling calculations, proposed accelerating tube design, and initial beam pulsing tests will be described. Work supported in part by USDOE Office of HE and Nuclear Physics.

  16. Suitability of high-current standing-wave linac technology for ultra-relativistic electron beam propagation experiments

    International Nuclear Information System (INIS)

    Moir, D.C.; Faehl, R.J.; Newberger, B.S.; Thode, L.E.

    1981-01-01

    Near-term development of the existing PHERMEX standing-wave linac would provide a 40 to 60 MeV electron beam with a current of 3 kA capable of answering a number of fundamental issues concerning endoatmospheric, ultra-relativistic electron beam propagation. Inherent high-repetition rate and multiple-pulse capability would allow alternative propagation scenarios to be investigated. Much of the theoretical expertise required to support the technology development and time-resolved beam propagation experiments presently resides within the Theoretical Applications Division

  17. Transfer and focusing of high current relativistic electron beams on a target

    International Nuclear Information System (INIS)

    Baranchikov, E.I.; Gordeev, A.V.; Koba, Yu.V.; Korolev, V.D.; Penkina, V.S.; Rudakov, L.I.; Smirnov, V.P.; Sukhov, A.D.; Tarumov, E.Z.; Bakshaeev, Yu.L.

    Research is being conducted at the I. V. Kurchatov Atomic Energy Institute to investigate possibilities of creating a pulsed thermonuclear reactor based on REBs; this work involves the creation of a multimodel system using vacuum lines for transferring energy and an acute angled external magnetic field for transferring electron beams to the target. A field of this configuration can be used at the same time for accumulating a ''cloud'' of relativistic protons around the target for purposes of irradiating them. This alternative solution of the problem of target irradiation, instead of focusing beams directly on it, may prove to be highly promising. Experiments are described which were conducted recently on high current electron accelerators ''URAL'', ''MS'' and others and which were directed at investigating possibilities of transferring and focusing high current REBs, as well as effective transmission of electromagnetic energy using vacuum lines at considerable distances

  18. Recent Improvements to the Control of the CTF3 High-Current Drive Beam

    CERN Document Server

    Constance, B; Gamba, D; Skowronski, P K

    2013-01-01

    In order to demonstrate the feasibility of the CLIC multiTeV linear collider option, the drive beam complex at the CLIC Test Facility (CTF3) at CERN is providing highcurrent electron pulses for a number of related experiments. By means of a system of electron pulse compression and bunch frequency multiplication, a fully loaded, 120 MeV linac is used to generate 140 ns electron pulses of around 28 Amperes. Subsequent deceleration of this high-current drive beam demonstrates principles behind the CLIC acceleration scheme, and produces 12 GHz RF power for experimental purposes. As the facility has progressed toward routine operation, a number of studies aimed at improving the drive beam performance have been carried out. Additional feedbacks, automated steering programs, and improved control of optics and dispersion have contributed to a more stable, reproducible drive beam with consequent benefits for the experiments.

  19. Superconducting coil manufacturing method for low current dc beam line magnets

    International Nuclear Information System (INIS)

    Satti, J.A.

    1977-01-01

    A method of manufacturing superconducting multipole coils for 40 to 50 kG dc beam line magnets with low current is described. Small coils were built and tested successfully to short sample characteristics. The coils did not train after the first cooldown. The coils are porous and well cooled to cope with mechanical instability and energy deposited in the coil from the beam particles. The coils are wound with insulated strand cable. The cable is shaped rectangularly for winding simplicity and good tolerances. After the coil is wound, the insulated strands are electrically connected in series. This reduces the operating current and, most important, improves the coil quench propagation due to heat conduction of one strand adjacent to the other. A well distributed quench allows the magnet energy to distribute more uniformly to the copper in the superconductor wire, giving self-protected coils. A one-meter long, 43 kG, 6-inch bore tube superconducting dipole is now being fabricated. The porous coil design and coil winding methods are discussed

  20. High current density ion beam obtained by a transition to a highly focused state in extremely low-energy region

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Y., E-mail: y.hirano@aist.go.jp, E-mail: hirano.yoichi@phys.cst.nihon-u.ac.jp [Innovative Plasma Processing Group, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); College of Science and Technologies, Nihon University, Chiyodaku, Tokyo 101-0897 (Japan); Kiyama, S.; Koguchi, H. [Innovative Plasma Processing Group, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Fujiwara, Y.; Sakakita, H. [Innovative Plasma Processing Group, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Department of Engineering Mechanics and Energy, University of Tsukuba, Ibaraki 305-8577 (Japan)

    2015-11-15

    A high current density (≈3 mA/cm{sup 2}) hydrogen ion beam source operating in an extremely low-energy region (E{sub ib} ≈ 150–200 eV) has been realized by using a transition to a highly focused state, where the beam is extracted from the ion source chamber through three concave electrodes with nominal focal lengths of ≈350 mm. The transition occurs when the beam energy exceeds a threshold value between 145 and 170 eV. Low-level hysteresis is observed in the transition when E{sub ib} is being reduced. The radial profiles of the ion beam current density and the low temperature ion current density can be obtained separately using a Faraday cup with a grid in front. The measured profiles confirm that more than a half of the extracted beam ions reaches the target plate with a good focusing profile with a full width at half maximum of ≈3 cm. Estimation of the particle balances in beam ions, the slow ions, and the electrons indicates the possibility that the secondary electron emission from the target plate and electron impact ionization of hydrogen may play roles as particle sources in this extremely low-energy beam after the compensation of beam ion space charge.

  1. Analysis of a Novel Diffractive Scanning-Wire Beam Position Monitor (BPM) for Discriminative Profiling of Electron Vs. X Ray Beams

    International Nuclear Information System (INIS)

    Tatchyn, R.

    2011-01-01

    Recent numerical studies of Free Electron Lasers (FELs) operating in the Self Amplified Spontaneous Emission (SASE) regime indicate a large sensitivity of the gain to the degree of transverse overlap (and associated phase coherence) between the electron and photon beams traveling down the insertion device. Simulations of actual systems imply that accurate detection and correction for this relative loss of overlap, rather than correction for the absolute departure of the electron beam from a fixed axis, is the preferred function of an FEL amplifier's Beam Position Monitor (BPM) and corrector systems. In this note we propose a novel diffractive BPM with the capability of simultaneously detecting and resolving the absolute (and relative) transverse positions and profiles of electron and x-ray beams co-propagating through an undulator. We derive the equations governing the performance of the BPM and examine its predicted performance for the SLAC Linac Coherent Light Source (LCLS), viz., for profiling multi-GeV electron bunches co-propagating with one-to-several-hundred keV x-ray beams. Selected research and development (r and d) tasks for fabricating and testing the proposed BPM are discussed.

  2. Absolute calibration in vivo measurement systems

    International Nuclear Information System (INIS)

    Kruchten, D.A.; Hickman, D.P.

    1991-02-01

    Lawrence Livermore National Laboratory (LLNL) is currently investigating a new method for obtaining absolute calibration factors for radiation measurement systems used to measure internally deposited radionuclides in vivo. Absolute calibration of in vivo measurement systems will eliminate the need to generate a series of human surrogate structures (i.e., phantoms) for calibrating in vivo measurement systems. The absolute calibration of in vivo measurement systems utilizes magnetic resonance imaging (MRI) to define physiological structure, size, and composition. The MRI image provides a digitized representation of the physiological structure, which allows for any mathematical distribution of radionuclides within the body. Using Monte Carlo transport codes, the emission spectrum from the body is predicted. The in vivo measurement equipment is calibrated using the Monte Carlo code and adjusting for the intrinsic properties of the detection system. The calibration factors are verified using measurements of existing phantoms and previously obtained measurements of human volunteers. 8 refs

  3. The fading American dream: Trends in absolute income mobility since 1940.

    Science.gov (United States)

    Chetty, Raj; Grusky, David; Hell, Maximilian; Hendren, Nathaniel; Manduca, Robert; Narang, Jimmy

    2017-04-28

    We estimated rates of "absolute income mobility"-the fraction of children who earn more than their parents-by combining data from U.S. Census and Current Population Survey cross sections with panel data from de-identified tax records. We found that rates of absolute mobility have fallen from approximately 90% for children born in 1940 to 50% for children born in the 1980s. Increasing Gross Domestic Product (GDP) growth rates alone cannot restore absolute mobility to the rates experienced by children born in the 1940s. However, distributing current GDP growth more equally across income groups as in the 1940 birth cohort would reverse more than 70% of the decline in mobility. These results imply that reviving the "American dream" of high rates of absolute mobility would require economic growth that is shared more broadly across the income distribution. Copyright © 2017, American Association for the Advancement of Science.

  4. Studies of the beam-beam interaction for the LHC

    International Nuclear Information System (INIS)

    Krishnagopal, S.; Furman, M.A.; Turner, W.C.

    1999-01-01

    The authors have used the beam-beam simulation code CBI to study the beam-beam interaction for the LHC. We find that for nominal LHC parameters, and assuming only one bunch per beam, there are no collective (coherent) beam-beam instabilities. We have investigated the effect of sweeping one of the beams around the other (a procedure that could be used as a diagnostic for head-on beam-beam collisions). We find that this does not cause any problems at the nominal current, though at higher currents there can be beam blow-up and collective beam motion. consequence of quadrupole collective effects

  5. The dispersion relation of charge and current compensated relativistic electron beam-plasma system

    International Nuclear Information System (INIS)

    Vrba, P.; Schroetter, J.; Jarosova, P.; Koerbel, S.

    1978-01-01

    The unstable regions of relativistic electron beam-plasma system were determined by analysing the general dispersion relation numerically. The external parameters were varied to ensure more effective instability excitations. The full charge- and current compensation presumptions lead to the new synchronism predictions. The slow space charge wave and slow cyclotron wave of the return current are synchronous with the plasma ion wave. (author)

  6. Effect of high current electron beam in a 30 MeV radio frequency linac for neutron-time-of-flight applications

    Energy Technology Data Exchange (ETDEWEB)

    Nayak, B., E-mail: biswaranjan.nayak1@gmail.com; Acharya, S.; Rajawat, R. K. [Accelerator and Pulsed Power Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); DasGupta, K. [Accelerator and Pulsed Power Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Beam Technology Development Group, BARC, Mumbai 400085 (India)

    2016-01-15

    A high power pulsed radio frequency electron linac is designed by BARC, India to accelerate 30 MeV, 10 A, 10 ns beam for neutron-time-of-flight applications. It will be used as a neutron generator and will produce ∼10{sup 12}–10{sup 13} n/s. It is essential to reduce the beam instability caused by space charge effect and the beam cavity interaction. In this paper, the wakefield losses in the accelerating section due to bunch of RMS (Root mean square) length 2 mm (at the gun exit) is analysed. Loss and kick factors are numerically calculated using CST wakefield solver. Both the longitudinal and transverse wake potentials are incorporated in beam dynamics code ELEGANT to find the transverse emittance growth of the beam propagating through the linac. Beam loading effect is examined by means of numerical computation carried out in ASTRA code. Beam break up start current has been estimated at the end of the linac which arises due to deflecting modes excited by the high current beam. At the end, transverse beam dynamics of such high current beam has been analysed.

  7. Proton beam monitor chamber calibration

    International Nuclear Information System (INIS)

    Gomà, C; Meer, D; Safai, S; Lorentini, S

    2014-01-01

    The first goal of this paper is to clarify the reference conditions for the reference dosimetry of clinical proton beams. A clear distinction is made between proton beam delivery systems which should be calibrated with a spread-out Bragg peak field and those that should be calibrated with a (pseudo-)monoenergetic proton beam. For the latter, this paper also compares two independent dosimetry techniques to calibrate the beam monitor chambers: absolute dosimetry (of the number of protons exiting the nozzle) with a Faraday cup and reference dosimetry (i.e. determination of the absorbed dose to water under IAEA TRS-398 reference conditions) with an ionization chamber. To compare the two techniques, Monte Carlo simulations were performed to convert dose-to-water to proton fluence. A good agreement was found between the Faraday cup technique and the reference dosimetry with a plane-parallel ionization chamber. The differences—of the order of 3%—were found to be within the uncertainty of the comparison. For cylindrical ionization chambers, however, the agreement was only possible when positioning the effective point of measurement of the chamber at the reference measurement depth—i.e. not complying with IAEA TRS-398 recommendations. In conclusion, for cylindrical ionization chambers, IAEA TRS-398 reference conditions for monoenergetic proton beams led to a systematic error in the determination of the absorbed dose to water, especially relevant for low-energy proton beams. To overcome this problem, the effective point of measurement of cylindrical ionization chambers should be taken into account when positioning the reference point of the chamber. Within the current IAEA TRS-398 recommendations, it seems advisable to use plane-parallel ionization chambers—rather than cylindrical chambers—for the reference dosimetry of pseudo-monoenergetic proton beams. (paper)

  8. A ns-pulsed high-current electron beam source

    International Nuclear Information System (INIS)

    Guan, Gexin; Li, Youzhi; Pan, Yuli

    1988-01-01

    The behaviour of a pulse electron beam source which is composed of a gun and pulse system depends on not only the time characteristics of the gun and the pulser, but also their combination. This point become apparent if effects of the electron tansit-time between electrodes are studied. A ferrite transmission line (FTL) pulser is used as a grid driver in this source. It has advantages of providing fast risetime, large peak power output and good loading characteristics. It is these advantages of the pulser that compensates the absence of some technological conditions of manufacturing gun and makes the source better. Our testing showed that the cooperation of both the gun and the pulser produced peak currents in the range of 1 to 9 amps with widths of 2 to 2.5 ns (FWHM) at cathode-to-anode potential of 60 to 82 kv, while the grid drives are about in the range of 1 to 3 kv. In addition, the results of the testing instructed that effects of electron transit-time cannot be ignored when the pulses with widths of several nanoseconds are used as a grid drive. Based on the results, electron transit-time effects on the design of the gun and the beam performances are briefly descussed in this paper. (author)

  9. Isotopic germanium targets for high beam current applications at GAMMASPHERE

    International Nuclear Information System (INIS)

    Greene, J. P.; Lauritsen, T.

    2000-01-01

    The creation of a specific heavy ion residue via heavy ion fusion can usually be achieved through a number of beam and target combinations. Sometimes it is necessary to choose combinations with rare beams and/or difficult targets in order to achieve the physics goals of an experiment. A case in point was a recent experiment to produce 152 Dy at very high spins and low excitation energy with detection of the residue in a recoil mass analyzer. Both to create the nucleus cold and with a small recoil-cone so that the efficiency of the mass analyzer would be high, it was necessary to use the 80 Se on 76 Ge reaction rather than the standard 48 Ca on 108 Pd reaction. Because the recoil velocity of the 152 Dy residues was very high using this symmetric reaction (5% v/c), it was furthermore necessary to use a stack of two thin targets to reduce the Doppler broadening. Germanium targets are fragile and do not withstand high beam currents, therefore the 76 Ge target stacks were mounted on a rotating target wheel. A description of the 76 Ge target stack preparation will be presented and the target performance described

  10. Quasistationary model of high-current relativistic electron beam. 1. Exact solution of Poisson equations

    International Nuclear Information System (INIS)

    Brenner, S.E.; Gandyl', E.M.; Podkopaev, A.P.

    1995-01-01

    The dynamics of high-current relativistic electron beam moving trough the cylindrical drift space has been modelled by the large particles, the shape of which allows to solve the Poisson equations exactly, and in such a way to avoid the linearization being usually used in those problems. The expressions for the components of own electric field of electron beam passing through the cylindrical drift space have been obtained. (author). 11 refs., 1 fig

  11. Intense ion beam diagnostics for light ion inertial fusion experiments on PBFA 2

    International Nuclear Information System (INIS)

    Leeper, R.J.; Stygar, W.A.; Bailey, J.E.; Baldwin, G.T.; Bloomquist, D.D.; Carlson, A.L.; Chandler, G.; Crist, C.E.; Cooper, G.; Derszon, M.S.; Dukart, R.J.; Fehl, D.L.; Hebron, D.E.; Johnson, D.J.; Kensek, R.P.; Landron, C.O.; Lee, J.R.; Lockner, T.R.; Mattson, C.R.; Matzen, M.K.; Maenchen, J.; Mehlhorn, T.A.; Mix, L.P.; Muron, D.J.; Nash, T.; Nelson, W.E.; Reyes, P.; Rockett, P.; Ruiz, C.L.; Schmidlapp, A.; Stinnett, R.W.; Sujka, B.; Wenger, D.F.

    1991-01-01

    A review of recent developments in intense ion beam diagnostics used in the light ion inertial confinement fusion (ICF) program on the PBFA-2 accelerator at Sandia National Laboratories will be presented. These developments have occurred in each of several generic classes of diagnostics, namely, imaging diagnostics, particle spectrograph diagnostics, nuclear activation, and visible spectroscopy. Critical beam parameters measured by the diagnostic include spatial profile, absolute number, species, anode plasma temperature and density, beam divergence, and beam voltage current density, and power density. A unique feature of these diagnostics is that they are capable of operating in hard (multi-Mev) X-ray (bremsstrahlung) backgrounds of some 10 10 - 10 12 rad/s. The operating principles of each diagnostic will be summarized in the paper, with examples of how the diagnostics may be integrated together to form a complete diagnostic system. The paper will close with a discussion of several near diagnostic systems that are presently being developed. 13 refs., 6 figs

  12. Beam Aborts in PEP-II Rings and Lingering Drift Chamber Currents

    International Nuclear Information System (INIS)

    Meshkat, N.

    2004-01-01

    The BABAR detector at SLAC was designed to study CP-violation in B-meson decays from electron-positron collisions in the PEP-II electron-positron storage rings. Background radiation in the High Energy Ring (HER) and Low Energy Ring (LER) of PEP-II has the potential to damage the sensitive equipment in the BABAR detector. As a result, the beams in the HER and LER can be aborted to prevent such damage. In the span of a few microseconds, the HER and LER currents drop from, for example, 1450 micro Amps and 2300 micro Amps, respectively, to zero. At this time the voltage in the Drift Chamber is rapidly ramped down from a potential of 1930 V to a safe potential of 800 V, thus we would expect the currents in the Drift Chamber to quickly go to zero once the beams are aborted. However, we observe an average 15 second delay in the measured time it takes for all current in the Drift Chamber to fall below 1 micro Amp. This delay has been hypothesized as an instrumentation issue and not as a physical phenomenon. The specific sources of this error are still not completely known, but analysis suggests that it results from the interplay of the CAEN High Voltage supplies and the EPICS system and/or limitations within those systems

  13. Electron beam collimation with a photon MLC for standard electron treatments

    Science.gov (United States)

    Mueller, S.; Fix, M. K.; Henzen, D.; Frei, D.; Frauchiger, D.; Loessl, K.; Stampanoni, M. F. M.; Manser, P.

    2018-01-01

    Standard electron treatments are currently still performed using standard or molded patient-specific cut-outs placed in the electron applicator. Replacing cut-outs and electron applicators with a photon multileaf collimator (pMLC) for electron beam collimation would make standard electron treatments more efficient and would facilitate advanced treatment techniques like modulated electron radiotherapy (MERT) and mixed beam radiotherapy (MBRT). In this work, a multiple source Monte Carlo beam model for pMLC shaped electron beams commissioned at a source-to-surface distance (SSD) of 70 cm is extended for SSDs of up to 100 cm and validated for several Varian treatment units with field sizes typically used for standard electron treatments. Measurements and dose calculations agree generally within 3% of the maximal dose or 2 mm distance to agreement. To evaluate the dosimetric consequences of using pMLC collimated electron beams for standard electron treatments, pMLC-based and cut-out-based treatment plans are created for a left and a right breast boost, a sternum, a testis and a parotid gland case. The treatment plans consist of a single electron field, either alone (1E) or in combination with two 3D conformal tangential photon fields (1E2X). For each case, a pMLC plan with similar treatment plan quality in terms of dose homogeneity to the target and absolute mean dose values to the organs at risk (OARs) compared to a cut-out plan is found. The absolute mean dose to an OAR is slightly increased for pMLC-based compared to cut-out-based 1E plans if the OAR is located laterally close to the target with respect to beam direction, or if a 6 MeV electron beam is used at an extended SSD. In conclusion, treatment plans using cut-out collimation can be replaced by plans of similar treatment plan quality using pMLC collimation with accurately calculated dose distributions.

  14. Defect detectability of eddy current testing for underwater laser beam welding

    International Nuclear Information System (INIS)

    Ueno, Souichi; Kobayashi, Noriyasu; Ochiai, Makoto; Kasuya, Takashi; Yuguchi, Yasuhiro

    2011-01-01

    We clarified defect detectability of eddy current testing (ECT) as a surface inspection technique for underwater laser beam welding works of dissimilar metal welding (DMW) of reactor vessel nozzle. The underwater laser beam welding procedure includes groove caving as a preparation, laser beam welding in the grooves and welded surface grinding as a post treatment. Therefore groove and welded surface inspections are required in the underwater condition. The ECT is a major candidate as this inspection technique because a penetrant testing is difficult to perform in the underwater condition. Several kinds of experiments were curried out using a cross coil an ECT probe and ECT data acquisition system in order to demonstrate the ECT defect detectability. We used specimens, simulating groove and DMW materials at an RV nozzle, with electro-discharge machining (EDM) slits over it. Additionally, we performed a detection test for artificial stress corrosion cracking (SCC) defects. From these experimental results, we confirmed that an ECT was possible to detect EDM slits 0.3 mm or more in depth and artificial SCC defects 0.02 mm to 0.48 mm in depth on machined surface. Furthermore, the underwater ECT defect detectability is equivalent to that in air. We clarified an ECT is sufficiently usable as a surface inspection technique for underwater laser beam welding works. (author)

  15. Novel Faraday cup for the simultaneous observation and measurement of ion-beam currents

    International Nuclear Information System (INIS)

    Wei, C.Y.; Seidman, D.N.

    1977-07-01

    The Faraday cup is constructed around a Galileo channel electron multiplier array (CEMA) which serves as the basis of an internal image intensification system (a gain of greater than 10 4 ) for the observation of the ion beam; the CEMA also acts as a collector for the ion cured by a Keithley 602 electrometer. The ion current is integrated by a simple and inexpensive dosimeter; the electronic circuit for the dosimeter is described. The application of the Faraday cup to the observation and measurement of a 30 keV Ar + ion beam is presented as an illustrative example. This Faraday cup was also employed to observe and measure 30 keV Cr + , Mo + or W + and 18 keV Au + ion beams employed for the in-situ irradiation of field-ion microscope specimens

  16. Encasing the Absolutes

    Directory of Open Access Journals (Sweden)

    Uroš Martinčič

    2014-05-01

    Full Text Available The paper explores the issue of structure and case in English absolute constructions, whose subjects are deduced by several descriptive grammars as being in the nominative case due to its supposed neutrality in terms of register. This deduction is countered by systematic accounts presented within the framework of the Minimalist Program which relate the case of absolute constructions to specific grammatical factors. Each proposal is shown as an attempt of analysing absolute constructions as basic predication structures, either full clauses or small clauses. I argue in favour of the small clause approach due to its minimal reliance on transformations and unique stipulations. Furthermore, I propose that small clauses project a singular category, and show that the use of two cases in English absolute constructions can be accounted for if they are analysed as depictive phrases, possibly selected by prepositions. The case of the subject in absolutes is shown to be a result of syntactic and non-syntactic factors. I thus argue in accordance with Minimalist goals that syntactic case does not exist, attributing its role in absolutes to other mechanisms.

  17. Transformation instability of oscillations in inhomogeneous beam-plasma system

    International Nuclear Information System (INIS)

    Kitsenko, A.B.

    1985-01-01

    Wave transformation is studied in a plasma system which was weak-inhomogeneous along beam velocity, in absence of external magnetic field. For the case of small density beam formulae are obtained which have set a coupling between the charge density beam wave amplitudes and the Langmuir wave on both sides of transformation point. It is shown that in collisionless plasma the wave production is a cause of the absorption of the charge density beam waves. Transformation mechanism of the absolute instability in the weak-inhomogeneous beam-plasma system is revealed

  18. Beam wandering statistics of twin thin laser beam propagation under generalized atmospheric conditions.

    Science.gov (United States)

    Pérez, Darío G; Funes, Gustavo

    2012-12-03

    Under the Geometrics Optics approximation is possible to estimate the covariance between the displacements of two thin beams after they have propagated through a turbulent medium. Previous works have concentrated in long propagation distances to provide models for the wandering statistics. These models are useful when the separation between beams is smaller than the propagation path-regardless of the characteristics scales of the turbulence. In this work we give a complete model for these covariances, behavior introducing absolute limits to the validity of former approximations. Moreover, these generalizations are established for non-Kolmogorov atmospheric models.

  19. CONTROL SYSTEM FOR THE LITHIUM BEAM EDGE PLASMA CURRENT DENSITY DIAGNOSTIC ON THE DIII-D TOKAMAK

    International Nuclear Information System (INIS)

    PEAVY, J.J.; CARY, W.P; THOMAS, D.M; KELLMAN, D.H.; HOYT, D.M; DELAWARE, S.W.; PRONKO, S.G.E.; HARRIS, T.E.

    2004-03-01

    OAK-B135 An edge plasma current density diagnostic employing a neutralized lithium ion beam system has been installed on the DIII-D tokamak. The lithium beam control system is designed around a GE Fanuc 90-30 series PLC and Cimplicity(reg s ign) HMI (Human Machine Interface) software. The control system operates and supervises a collection of commercial and in-house designed high voltage power supplies for beam acceleration and focusing, filament and bias power supplies for ion creation, neutralization, vacuum, triggering, and safety interlocks. This paper provides an overview of the control system, while highlighting innovative aspects including its remote operation, pulsed source heating and pulsed neutralizer heating, optimizing beam regulation, and beam ramping, ending with a discussion of its performance

  20. Image analysis from surface scanning with an absolute eddy current coil

    International Nuclear Information System (INIS)

    Attaoui, P.

    1994-01-01

    The aim of this work is to implement processing and analysis tools applied to eddy current imaging. These cartographies are issued from steam generator tubes testing using an absolute coil. The first is to eliminate the perturbations due to probe lift-off changes which generate low frequency oscillations on the image. The principle of the processing is to rebuild a complete surface of the noise using only the points around the defect area. The geometric origin of these perturbations led to a model based on sinusoidal functions. The method consists of gradually decomposing the image into a sum of basic sinusoidal surfaces. In order to take into account all kind of cartographies (especially rolling zone) some preprocessing must be applied. The results obtained with this 'cartography flattening'are satisfactory and the phase of analysis could begin with good condition of signal ratio. The second part of this work dealt with the choice and the perfection of image processing tools which would fit the most with the defect characterization. The aim of this characterization is to give the orientation and main size of the detected defect. A morphological skeleton representation has been chosen to illustrate the defect architecture and to allow sizing. A set of tools has been elaborated to obtain an (automatic) processing according to threshold. The results for single defect are satisfactory since the sizing error is around ± 25% and orientation is nearly always correctly given. The processing for area with several defects is more complex and new complementary research directions are proposed. (author)

  1. Applying the computer code ''beam scanning' for obtaining the electron beam energy spectrum and monitoring the beam scanning system with a faraday cup and edge current sensors

    International Nuclear Information System (INIS)

    Bystrov, P.A.

    2014-01-01

    The results of experiments simulation, obtained in the development of technique for controlling the parameters of the electron beam in a compact radiation sterilization installation are presented. Calculations were performed with a help of a computer code ''BEAM SCANNING'', developed in MRTI. Proposed a method to obtain the spectrum of the electron beam by simulation the experiments in which a Faraday cup waveforms were measured. Preliminary results are presented. Also the results of the experiments and calculations obtained in the development of the amplitude angle sensors are presented. The experiments for the beam irradiation of lead plates proposed as current sensors were modeled. Results are presented in comparison with experimental data. Also are presented the simulation results for the device designed to control scanning system.

  2. Plasma Heating and Current Drive by Neutral Beam and Alpha Particles

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, M; Okumura, Y [Fusion Research and Development Directorate, Japan Atomic Energy Agency (Japan)

    2012-09-15

    The purpose of plasma heating is to raise the plasma temperature enough to produce a deuterium and tritium reaction (D + T {yields} {sup 4}He + n). The required plasma temperature T is in the range of 10-30 keV. Since the high temperature plasma is confined by a strong magnetic field, injection of energetic ions from outside to heat the plasma is difficult due to the Lorenz force. The most efficient way to heat the plasma by energetic particles is to inject high energy 'neutrals' which get ionized in the plasma. Neutral beam injection (NBI) with a beam energy much above the average kinetic energy of the plasma electrons or ions is used (beam energy typically {approx}40 keV - 1 MeV). This heating scheme is similar to warming up cold water by pouring in hot water. There are two types of neutral beam, called P-NBI and N-NBI (P- and N- means 'positive' and 'negative', respectively). P-NBI uses the acceleration of positively charged ions and their neutralization, while N-NBI uses the acceleration of negative ions (electrons attached to neutral atoms) and their neutralization. Details are given in NBI technology Section. The first demonstration of plasma heating by P-NBI was made in ORMAK and ATC in 1974, while that by N-NBI was made in JT-60U for the first time in 1996. ITER has also adopted the N-NBI system as the heating and current drive system with a beam energy of 1 MeV. Figure A typical bird's eye view of a tokamak with N-NBI and N-NBI (JT-60U) is shown. (author)

  3. Characterization of beam-driven instabilities and current redistribution in MST plasmas

    Science.gov (United States)

    Parke, E.

    2015-11-01

    A unique, high-rep-rate (>10 kHz) Thomson scattering diagnostic and a high-bandwidth FIR interferometer-polarimeter on MST have enabled characterization of beam-driven instabilities and magnetic equilibrium changes observed during high power (1 MW) neutral beam injection (NBI). While NBI leads to negligible net current drive, an increase in on-axis current density observed through Faraday rotation is offset by a reduction in mid-radius current. Identification of the phase flip in temperature fluctuations associated with tearing modes provides a sensitive measure of rational surface locations. This technique strongly constrains the safety factor for equilibrium reconstruction and provides a powerful new tool for measuring the equilibrium magnetic field. For example, the n = 6 temperature structure is observed to shift inward 1.1 +/- 0.6 cm, with an estimated reduction of q0 by 5%. This is consistent with a mid-radius reduction in current, and together the Faraday rotation and Thomson scattering measurements corroborate an inductive redistribution of current that compares well with TRANSP/MSTFit predictions. Interpreting tearing mode temperature structures in the RFP remains challenging; the effects of multiple, closely-spaced tearing modes on the mode phase measurement require further verification. In addition to equilibrium changes, previous work has shown that the large fast ion population drives instabilities at higher frequencies near the Alfvén continuum. Recent observations reveal a new instability at much lower frequency (~7 kHz) with strongly chirping behavior. It participates in extensive avalanches of the higher frequency energetic particle and Alfvénic modes to drive enhanced fast ion transport. Internal structures measured from Te and ne fluctuations, their dependence on the safety factor, as well as frequency scaling motivate speculation about mode identity. Work supported by U.S. DOE.

  4. Quasistationary model of high current relativistic electron beam. 2. The own magnetic field of relativistic electron beam in cylindrical Drift space

    International Nuclear Information System (INIS)

    Brenner, S.E.; Gandul', E.M.; Podkopaev, A.P.

    1995-01-01

    This paper is devoted to obtaining the components of own magnetic field of high current relativistic electron beam passing through the cylindrical drift space superconducting walls: the peculiarities of applied numerical scheme have been also described briefly. (author). 6 refs

  5. Absolute advantage

    NARCIS (Netherlands)

    J.G.M. van Marrewijk (Charles)

    2008-01-01

    textabstractA country is said to have an absolute advantage over another country in the production of a good or service if it can produce that good or service using fewer real resources. Equivalently, using the same inputs, the country can produce more output. The concept of absolute advantage can

  6. Effect of external magnetic field on critical current for the onset of virtual cathode oscillations in relativistic electron beams

    International Nuclear Information System (INIS)

    Hramov, Alexander; Koronovskii, Alexey; Morozov, Mikhail; Mushtakov, Alexander

    2008-01-01

    In this Letter we research the space charge limiting current value at which the oscillating virtual cathode is formed in the relativistic electron beam as a function of the external magnetic field guiding the beam electrons. It is shown that the space charge limiting (critical) current decreases with growth of the external magnetic field, and that there is an optimal induction value of the magnetic field at which the critical current for the onset of virtual cathode oscillations in the electron beam is minimum. For the strong external magnetic field the space charge limiting current corresponds to the analytical relation derived under the assumption that the motion of the electron beam is one-dimensional [D.J. Sullivan, J.E. Walsh, E. Coutsias, in: V.L. Granatstein, I. Alexeff (Eds.), Virtual Cathode Oscillator (Vircator) Theory, in: High Power Microwave Sources, vol. 13, Artech House Microwave Library, 1987, Chapter 13]. Such behavior is explained by the characteristic features of the dynamics of electron space charge in the longitudinal and radial directions in the drift space at the different external magnetic fields

  7. Excitation of Ion Cyclotron Waves by Ion and Electron Beams in Compensated-current System

    Science.gov (United States)

    Xiang, L.; Wu, D. J.; Chen, L.

    2018-04-01

    Ion cyclotron waves (ICWs) can play important roles in the energization of plasma particles. Charged particle beams are ubiquitous in space, and astrophysical plasmas and can effectively lead to the generation of ICWs. Based on linear kinetic theory, we consider the excitation of ICWs by ion and electron beams in a compensated-current system. We also investigate the competition between reactive and kinetic instabilities. The results show that ion and electron beams both are capable of generating ICWs. For ICWs driven by ion beams, there is a critical beam velocity, v bi c , and critical wavenumber, k z c , for a fixed beam density; the reactive instability dominates the growth of ICWs when the ion-beam velocity {v}{bi}> {v}{bi}c and the wavenumber {k}zz≃ 2{k}zc/3 for a given {v}{bi}> {v}{bi}c. For the slow ion beams with {v}{bi}< {v}{bi}c, the kinetic instability can provide important growth rates of ICWs. On the other hand, ICWs driven by electron beams are excited only by the reactive instability, but require a critical velocity, {v}{be}c\\gg {v}{{A}} (the Alfvén velocity). In addition, the comparison between the approximate analytical results based on the kinetic theory and the exact numerical calculation based on the fluid model demonstrates that the reactive instabilities can well agree quantitatively with the numerical results by the fluid model. Finally, some possible applications of the present results to ICWs observed in the solar wind are briefly discussed.

  8. The charge deposition in the numerical simulation of high-current beam

    International Nuclear Information System (INIS)

    Wang Shijun

    1987-01-01

    A new method of charge deposition of high-current beam, conservation-map method, is given. THe advantages of Neil's and other various methods are adopted. The mistake of Neil's method and the limitation of other various methods is discarded. So the method is accurate without additional assumption. The method not only applies to the case of steady laminar flow but also applies to the case of steady non-laminar flow

  9. Absolute photoionization cross-section of the methyl radical.

    Science.gov (United States)

    Taatjes, Craig A; Osborn, David L; Selby, Talitha M; Meloni, Giovanni; Fan, Haiyan; Pratt, Stephen T

    2008-10-02

    The absolute photoionization cross-section of the methyl radical has been measured using two completely independent methods. The CH3 photoionization cross-section was determined relative to that of acetone and methyl vinyl ketone at photon energies of 10.2 and 11.0 eV by using a pulsed laser-photolysis/time-resolved synchrotron photoionization mass spectrometry method. The time-resolved depletion of the acetone or methyl vinyl ketone precursor and the production of methyl radicals following 193 nm photolysis are monitored simultaneously by using time-resolved synchrotron photoionization mass spectrometry. Comparison of the initial methyl signal with the decrease in precursor signal, in combination with previously measured absolute photoionization cross-sections of the precursors, yields the absolute photoionization cross-section of the methyl radical; sigma(CH3)(10.2 eV) = (5.7 +/- 0.9) x 10(-18) cm(2) and sigma(CH3)(11.0 eV) = (6.0 +/- 2.0) x 10(-18) cm(2). The photoionization cross-section for vinyl radical determined by photolysis of methyl vinyl ketone is in good agreement with previous measurements. The methyl radical photoionization cross-section was also independently measured relative to that of the iodine atom by comparison of ionization signals from CH3 and I fragments following 266 nm photolysis of methyl iodide in a molecular-beam ion-imaging apparatus. These measurements gave a cross-section of (5.4 +/- 2.0) x 10(-18) cm(2) at 10.460 eV, (5.5 +/- 2.0) x 10(-18) cm(2) at 10.466 eV, and (4.9 +/- 2.0) x 10(-18) cm(2) at 10.471 eV. The measurements allow relative photoionization efficiency spectra of methyl radical to be placed on an absolute scale and will facilitate quantitative measurements of methyl concentrations by photoionization mass spectrometry.

  10. Current experiments using polarized beams of the JINR LHE accelerator complex

    International Nuclear Information System (INIS)

    Lehar, F.

    2001-01-01

    The present review is devoted to the spin-dependent experiments carried out or prepared at the JINR LHE Synchrocyclotron. The acceleration of polarized deuterons, and experiments using the internal targets, the beam extraction and the polarimetry are briefly described. Then, representative experiments using either the extracted deuteron beam or secondary beams of polarized nucleons produced by polarized deuterons are treated. Three current experiments: 'DELTA-SIGMA', 'DELTA' and 'pp-SINGLET', require the polarized nucleon beams in conjunction with the Dubna polarized proton target. Already available Δσ L (np) results from the first experiment show unexpected energy dependence. Experiment 'DELTA' should investigate the nucleon strangeness. The aim of the third experiment is to study a possible resonant behavior of the spin-singlet pp scattering amplitude. For all other Dubna experiments unpolarized nucleon or nuclei targets are used. The polarized deuteron beam allows determining spin-dependent observable necessary for understanding the deuteron structure, as well as the nucleon substructure. One part of investigations concerns deuteron break-up reactions and deuteron proton backward elastic scattering. A considerable amount of data was obtained in this domain. Another part is dedicated to the measurements of the same spin-dependent observable in a 'cumulative' region. Interesting results were obtained for proton or pion productions in inclusive and semi-inclusive measurements. In the field of inelastic deuteron reactions, the analyzing power measurements were performed in the region covering Roper resonances. Many existing models are in disagreement with observed momentum dependences of different results. Finally, the proton-carbon analyzing power measurements extended the momentum region of rescattering observables. Some inclusive Dubna results are compared to exclusive Saclay data, and to lepton-deuteron measurements. Most of the JINR LHE experiments are

  11. Development of a low-energy and high-current pulsed neutral beam injector with a washer-gun plasma source for high-beta plasma experiments.

    Science.gov (United States)

    Ii, Toru; Gi, Keii; Umezawa, Toshiyuki; Asai, Tomohiko; Inomoto, Michiaki; Ono, Yasushi

    2012-08-01

    We have developed a novel and economical neutral-beam injection system by employing a washer-gun plasma source. It provides a low-cost and maintenance-free ion beam, thus eliminating the need for the filaments and water-cooling systems employed conventionally. In our primary experiments, the washer gun produced a source plasma with an electron temperature of approximately 5 eV and an electron density of 5 × 10(17) m(-3), i.e., conditions suitable for ion-beam extraction. The dependence of the extracted beam current on the acceleration voltage is consistent with space-charge current limitation, because the observed current density is almost proportional to the 3/2 power of the acceleration voltage below approximately 8 kV. By optimizing plasma formation, we successfully achieved beam extraction of up to 40 A at 15 kV and a pulse length in excess of 0.25 ms. Its low-voltage and high-current pulsed-beam properties enable us to apply this high-power neutral beam injection into a high-beta compact torus plasma characterized by a low magnetic field.

  12. Neoclassical current effects in neutral-beam-heated tokamak discharges

    International Nuclear Information System (INIS)

    Hogan, J.T.

    1981-01-01

    There is a long-standing prediction from neoclassical theory that strong contributions to the toroidal current should be driven by friction between trapped and passing particles when βsub(pol) exceeds root (R/a) in a tokamak. A number of neutral-beam heating experiments can now produce such parameters, and it is of interest to calculate the behaviour which should occur in this regime to determine the feasibility of using such a 'bootstrap' current as a steady-state tokamak current source. It is found that the neoclassical current should be large enough to reverse the external loop voltage for typical experimental parameters (ISX-B, in particular) in cases where the total current is fixed and to produce a detectable excess of total current above the pre-programmed (demand) value in cases where the loop voltage is regulated. Other manifestations of such a current should be either: a sharp rise in the central q-value (producing a cessation of internal m=1 and m=2 MHD activity), with an enhancement by two orders of magnitude of ion thermal conductivity (due to the formation of a hollow current density profile and a consequent drop in local values of the poloidal magnetic field in the central plasma region), or an enhanced tendency for disruption (arising from magnetic reconnection in hollow-profile equilibria). Since these gross manifestations are absent in a wide range of experiments on the Impurity Study Experiment (ISX-B), as reported earlier, the conclusion is that the neoclassical current, if present, can have a value no larger than 25% of its theoretically calculated value. Since the neoclassical particle (Ware) pinch is strongly related to the neoclassical current in the theory (Onsager reciprocity), the existence of the particle pinch is thus called into question. (author)

  13. Design of a compact Faraday cup for low energy, low intensity ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Cantero, E.D., E-mail: esteban.cantero@cern.ch [CERN, 1211 Geneva 23 (Switzerland); Sosa, A. [CERN, 1211 Geneva 23 (Switzerland); The University of Liverpool, Liverpool (United Kingdom); Andreazza, W.; Bravin, E.; Lanaia, D.; Voulot, D. [CERN, 1211 Geneva 23 (Switzerland); Welsch, C.P. [The University of Liverpool, Liverpool (United Kingdom); The Cockcroft Institute, Sci-Tech Daresbury, Daresbury, Warrington (United Kingdom)

    2016-01-21

    Beam intensity is one of the key parameters in particle accelerators, in particular during machine commissioning, but also during operation for experiments. At low beam energies and low intensities a number of challenges arise in its measurement as commonly used non-invasive devices are no longer sensitive enough. It then becomes necessary to stop the beam in order to measure its absolute intensity. A very compact Faraday cup for determining ion beam currents from a few nanoamperes down to picoamperes for the HIE-ISOLDE post-accelerator at CERN has been designed, built and tested with beam. It has a large aperture diameter of 30 mm and a total length of only 16 mm, making it one of the most compact designs ever used. In this paper we present the different steps that were involved in the design and optimization of this device, including beam tests with two early prototypes and the final monitor. We also present an analysis of the losses caused by secondary particle emission for different repelling electrode voltages and beam energies. Finally, we show that results obtained from an analytical model for electron loss probability combined with Monte Carlo simulations of particles trajectories provide a very good agreement with experimental data.

  14. Characterization of a wide dynamic-range, radiation-tolerant charge-digitizer asic for monitoring of Beam losses

    CERN Document Server

    Guido Venturini, G G; Dehning, B; Kayal, M

    2012-01-01

    An Application Specific Integrated Circuit (ASIC) has been designed and fabricated to provide a compact solution to digitize current signals from ionization chambers and diamond detectors, employed as beam loss monitors at CERN and several other high energy physics facilities. The circuit topology has been devised to accept positive and negative currents, to have a wide dynamic range (above 120 dB), withstand radiation levels over 10 Mrad and offer different modes of operation, covering a broad range of applications. Furthermore, an internal conversion reference is employed in the digitization, to provide an accurate absolute measurement. This paper discusses the detailed characterization of the first prototype: linearity, radiation tolerance and temperature dependence of the conversion, as well as implications and system-level considerations regarding its use for beam instrumentation applications in a high energy physics facility.

  15. Beam diagnostics

    International Nuclear Information System (INIS)

    Bogaty, J.; Clifft, B.E.; Zinkann, G.P.; Pardo, R.C.

    1995-01-01

    The ECR-PII injector beam line is operated at a fixed ion velocity. The platform high voltage is chosen so that all ions have a velocity of 0.0085c at the PII entrance. If a previous tune configuration for the linac is to be used, the beam arrival time must be matched to the previous tune as well. A nondestructive beam-phase pickup detector was developed and installed at the entrance to the PII linac. This device provides continuous phase and beam current information and allows quick optimization of the beam injected into PII. Bunches traverse a short tubular electrode thereby inducing displacement currents. These currents are brought outside the vacuum interface where a lumped inductance resonates electrode capacitance at one of the bunching harmonic frequencies. This configuration yields a basic sensitivity of a few hundred millivolts signal per microampere of beam current. Beam-induced radiofrequency signals are summed against an offset frequency generated by our master oscillator. The resulting kilohertz difference frequency conveys beam intensity and bunch phase information which is sent to separate processing channels. One channel utilizes a phase locked loop which stabilizes phase readings if beam is unstable. The other channel uses a linear full wave active rectifier circuit which converts kilohertz sine wave signal amplitude to a D.C. voltage representing beam current. A prototype set of electronics is now in use with the detector and we began to use the system in operation to set the arrival beam phase. A permanent version of the electronics system for the phase detector is now under construction. Additional nondestructive beam intensity and phase monitors at the open-quotes Boosterclose quotes and open-quotes ATLASclose quotes linac sections are planned as well as on some of the high-energy beam lines. Such a monitor will be particularly useful for FMA experiments where the primary beam hits one of the electric deflector plates

  16. Absolutely relative or relatively absolute: violations of value invariance in human decision making.

    Science.gov (United States)

    Teodorescu, Andrei R; Moran, Rani; Usher, Marius

    2016-02-01

    Making decisions based on relative rather than absolute information processing is tied to choice optimality via the accumulation of evidence differences and to canonical neural processing via accumulation of evidence ratios. These theoretical frameworks predict invariance of decision latencies to absolute intensities that maintain differences and ratios, respectively. While information about the absolute values of the choice alternatives is not necessary for choosing the best alternative, it may nevertheless hold valuable information about the context of the decision. To test the sensitivity of human decision making to absolute values, we manipulated the intensities of brightness stimuli pairs while preserving either their differences or their ratios. Although asked to choose the brighter alternative relative to the other, participants responded faster to higher absolute values. Thus, our results provide empirical evidence for human sensitivity to task irrelevant absolute values indicating a hard-wired mechanism that precedes executive control. Computational investigations of several modelling architectures reveal two alternative accounts for this phenomenon, which combine absolute and relative processing. One account involves accumulation of differences with activation dependent processing noise and the other emerges from accumulation of absolute values subject to the temporal dynamics of lateral inhibition. The potential adaptive role of such choice mechanisms is discussed.

  17. Initial Beam Dynamics Simulations of a High-Average-Current Field-Emission Electron Source in a Superconducting RadioFrequency Gun

    Energy Technology Data Exchange (ETDEWEB)

    Mohsen, O. [Northern Illinois U.; Gonin, I. [Fermilab; Kephart, R. [Fermilab; Khabiboulline, T. [Fermilab; Piot, P. [Northern Illinois U.; Solyak, N. [Fermilab; Thangaraj, J. C. [Fermilab; Yakovlev, V. [Fermilab

    2018-01-05

    High-power electron beams are sought-after tools in support to a wide array of societal applications. This paper investigates the production of high-power electron beams by combining a high-current field-emission electron source to a superconducting radio-frequency (SRF) cavity. We especially carry out beam-dynamics simulations that demonstrate the viability of the scheme to form $\\sim$ 300 kW average-power electron beam using a 1+1/2-cell SRF gun.

  18. Application of the inverse estimation method of current distribution from magnetic fields using genetic algorithm to beam profile measurement

    International Nuclear Information System (INIS)

    Kishimoto, M.; Sakasai, K.; Ara, K.

    1994-01-01

    In this paper, the new type of non-invasive beam profile monitor for intense ion accelerator using high-temperature superconductor. We regard the inverse estimation problem of beam profile as the optimum allocation problem of the currents into the cross-section of the beam vacuum pipe and applied genetic algorithm to solve this optimization problem. And we carried out the computer simulation to verify the effectiveness of this inverse estimation method of beam profile. (author)

  19. Source brightness and useful beam current of carbon nanotubes and other very small emitters

    International Nuclear Information System (INIS)

    Kruit, P.; Bezuijen, M.; Barth, J.E.

    2006-01-01

    The potential application of carbon nanotubes as electron sources in electron microscopes is analyzed. The resolution and probe current that can be obtained from a carbon nanotube emitter in a low-voltage scanning electron microscope are calculated and compared to the state of the art using Schottky electron sources. Many analytical equations for probe-size versus probe-current relations in different parameter regimes are obtained. It is shown that for most carbon nanotube emitters, the gun lens aberrations are larger than the emitters' virtual source size and thus restrict the microscope's performance. The result is that the advantages of the higher brightness of nanotube emitters are limited unless the angular emission current is increased over present day values or the gun lens aberrations are decreased. For some nanotubes with a closed cap, it is known that the emitted electron beam is coherent over the full emission cone. We argue that for such emitters the parameter ''brightness'' becomes meaningless. The influence of phase variations in the electron wave front emitted from such a nanotube emitter on the focusing of the electron beam is analyzed

  20. Experimental characterization and physical modelling of the dose distribution of scanned proton pencil beams

    International Nuclear Information System (INIS)

    Pedroni, E; Scheib, S; Boehringer, T; Coray, A; Grossmann, M; Lin, S; Lomax, A

    2005-01-01

    In this paper we present the pencil beam dose model used for treatment planning at the PSI proton gantry, the only system presently applying proton therapy with a beam scanning technique. The scope of the paper is to give a general overview on the various components of the dose model, on the related measurements and on the practical parametrization of the results. The physical model estimates from first physical principles absolute dose normalized to the number of incident protons. The proton beam flux is measured in practice by plane-parallel ionization chambers (ICs) normalized to protons via Faraday-cup measurements. It is therefore possible to predict and deliver absolute dose directly from this model without other means. The dose predicted in this way agrees very well with the results obtained with ICs calibrated in a cobalt beam. Emphasis is given in this paper to the characterization of nuclear interaction effects, which play a significant role in the model and are the major source of uncertainty in the direct estimation of the absolute dose. Nuclear interactions attenuate the primary proton flux, they modify the shape of the depth-dose curve and produce a faint beam halo of secondary dose around the primary proton pencil beam in water. A very simple beam halo model has been developed and used at PSI to eliminate the systematic dependences of the dose observed as a function of the size of the target volume. We show typical results for the relative (using a CCD system) and absolute (using calibrated ICs) dosimetry, routinely applied for the verification of patient plans. With the dose model including the nuclear beam halo we can predict quite precisely the dose directly from treatment planning without renormalization measurements, independently of the dose, shape and size of the dose fields. This applies also to the complex non-homogeneous dose distributions required for the delivery of range-intensity-modulated proton therapy, a novel therapy technique

  1. Electron beam instabilities in gyrotron beam tunnels

    International Nuclear Information System (INIS)

    Pedrozzi, M.; Alberti, S.; Hogge, J.P.; Tran, M.Q.; Tran, T.M.

    1997-10-01

    Electron beam instabilities occurring in a gyrotron electron beam can induce an energy spread which might significantly deteriorate the gyrotron efficiency. Three types of instabilities are considered to explain the important discrepancy found between the theoretical and experimental efficiency in the case of quasi-optical gyrotrons (QOG): the electron cyclotron maser instability, the Bernstein instability and the Langmuir instability. The low magnetic field gradient in drift tubes of QOG makes that the electron cyclotron maser instability can develop in the drift tube at very low electron beam currents. Experimental measurements show that with a proper choice of absorbing structures in the beam tunnel, this instability can be suppressed. At high beam currents, the electrostatic Bernstein instability can induce a significant energy spread at the entrance of the interaction region. The induced energy spread scales approximately linearly with the electron beam density and for QOG one observes that the beam density is significantly higher than the beam density of an equivalent cylindrical cavity gyrotron. (author) figs., tabs., refs

  2. Studies for Online Selection of Beam-Gas Events with the LHCb Vertex Locator

    CERN Document Server

    Hopchev, Plamen; Ferro-Luzzi, M

    2008-01-01

    The start of the Large Hadron Collider (LHC) is scheduled for the Summer 2008. The accelerator is going to provide unprecedented amount of proton-proton colli- sions with a record center-of-mass energy. The total number of collisions produced in an interaction point is directly connected to a collider characteristic called `absolute luminosity'. The luminosity depends on a number of quantities like the number of particles in a bunch, the bunch size and the number of bunches in a beam. For precise measurements of Standard Model parameters and for the search of New Physics the LHC experiments count on precise knowledge on its luminosity. The absolute luminosity of LHC is going to be measured using various meth- ods, including the recently proposed beam-gas luminosity method. This method counts on the reconstruction of beam-gas vertices for measuring the beam shapes and overlap integral. The beam-gas luminosity method is going to be first tried in the LHCb experiment, making use of its excellent vertex resolutio...

  3. An electron beam induced current study of gallium nitride and diamond materials

    International Nuclear Information System (INIS)

    Cropper, A.D.; Moore, D.J.; Scott, C.S.; Green, R.

    1995-01-01

    The continual need for microelectronic devices that operate under severe electronic and environmental conditions (high temperature, high frequency, high power, and radiation tolerance) has sustained research in wide bandgap semiconductor materials. The properties suggest these wide-bandgap semiconductor materials have tremendous potential for military and commercial applications. High frequency bipolar transistors and field effect transistors, diodes, and short wavelength optical devices have been proposed using these materials. Although research efforts involving the study of transport properties in Gallium Nitride (GaN) and Diamond have made significant advances, much work is still needed to improve the material quality so that the electrophysical behavior of device structures can be further understood and exploited. Electron beam induced current (EBIC) measurements can provide a method of understanding the transport properties in Gallium Nitride (GaN) and Diamond. This technique basically consists of measuring the current or voltage transient response to the drift and diffusion of carriers created by a short-duration pulse of radiation. This method differs from other experimental techniques because it is based on a fast transient electron beam probe created from a high speed, laser pulsed photoemission system

  4. Beam position monitor sensitivity for low-β beams

    International Nuclear Information System (INIS)

    Shafer, R.E.

    1993-01-01

    At low velocities, the EM field of a particle in a conducting beam tube is no longer a TEM wave, but has a finite longitudinal extent. The net effect of this is to reduce the coupling of the high-frequency Fourier components of the beam current to BPM (beam position monitor) electrodes, which modifies the BPM sensitivity to beam displacement. This effect is especially pronounced for high-frequency, large-aperture pickups used for low-β beams. Non-interceptive beam position monitors used in conjunction with high frequency RFQ (radio-frequency-quadrupole) and DTL (drift-tube-linac) accelerators fall into this category. When testing a BPM with a thin wire excited with either pulses or high-frequency sinusoidal currents, the EM wave represents the principal (TEM) mode in a coaxial transmission line, which is equivalent to a highly relativistic (β = 1) beam. Thus wire measurements are not suitable for simulating slow particle beams in high bandwidth diagnostic devices that couple to the image currents in the beam tube wall. Attempts to load the tin wire either capacitively or inductively to slow the EM wave down have met with limited success. In general, the equations used to represent the 2-D response of cylindrical-geometry BPMs to charged-particle beams make several assumptions: (1) the BPM electrodes are flush with and grounded to the surface of the conducting beam tube; (2) the beam is a line source (pencil beam); (3) the longitudinal extent of the EM field of a beam particle at the beam tube wall is zero, corresponding to a highly relativistic beam. The purpose of this paper is to make some quantitative estimates of the corrections to the conventional approximations when a BPM is used to measure the position of low velocity (low-β) beams

  5. Highly Sensitive Measurements of the Dark Current of Superconducting Cavities for TESLA Using a SQUID Based Cryogenic Current Comparator

    CERN Document Server

    Vodel, W; Nietzsche, S

    2004-01-01

    This contribution presents a Cryogenic Current Comparator (CCC) as an excellent tool for detecting dark currents generated, e.g. by superconducting cavities for the upcoming TESLA project (X-FEL) at DESY. To achieve the maximum possible energy the gradient of the superconducting RF cavities should be pushed close to the physical limit of 50 MV/m. The undesired field emission of electrons (so-called dark current) of the superconducting RF cavities at strong fields may limit the maximum gradient. The absolute measurement of the dark current in correlation with the gradient will give a proper value to compare and classify the cavities. The main component of the CCC is a highly sensitive LTS-DC SQUID system which is able to measure extremely low magnetic fields, e.g. caused by the dark current. For this reason the input coil of the SQUID is connected across a special designed toroidal niobium pick-up coil for the passing electron beam. A noise limited current resolution of nearly 2 pA/√(Hz) with a measu...

  6. Ion beam diagnosis

    International Nuclear Information System (INIS)

    Strehl, P.

    1994-04-01

    This report is an introduction to ion beam diagnosis. After a short description of the most important ion beam parameters measurements of the beam current by means of Faraday cups, calorimetry, and beam current transformers and measurements of the beam profile by means of viewing screens, profile grids and scanning devices, and residual gas ionization monitors are described. Finally measurements in the transverse and longitudinal phase space are considered. (HSI)

  7. Beam-beam studies for FCC-hh

    CERN Document Server

    AUTHOR|(CDS)2068329; Pieloni, Tatiana; Buffat, Xavier; Furuseth, Sondre Vik

    2017-01-01

    The Future Circular Collider hadron-hadron (FCC-hh) design study is currently exploring different IR design possibilities including round and flat optics or different crossing schemes. The present study intends to evaluate each scenario from the beam-beam effects point of view. In particular the single particle long term stability to maximize beam lifetimes and luminosity reach is used to quantify the differences. The impact of strong head on interactions on the beam quality and lifetime is addressed by means of GPU accelerated simulations code featuring a weak-strong 6-dimensional beam-beam interaction.

  8. Studies and optimization of Pohang Light Source-II superconducting radio frequency system at stable top-up operation with beam current of 400 mA

    International Nuclear Information System (INIS)

    Joo, Youngdo; Yu, Inha; Park, Insoo; Chun, Myunghwan; Lee, Byung-Joon; Hwang, Ilmoon; Ha, Taekyun; Shin, Seunghwan; Sohn, Younguk

    2014-01-01

    After three years of upgrading work, the Pohang Light Source-II (PLS-II) is now successfully operating. The final quantitative goal of PLS-II is a top-up user-service operation with beam current of 400 mA to be completed by the end of 2014. During the beam store test up to 400 mA in the storage ring (SR), it was observed that the vacuum pressure around the radio frequency (RF) window of the superconducting cavity rapidly increases over the interlock level limiting the availability of the maximum beam current storing. Although available beam current is enhanced by setting a higher RF accelerating voltage, it is better to keep the RF accelerating voltage as low as possible in the long time top-up operation. We investigated the cause of the window vacuum pressure increment by studying the changes in the electric field distribution at the superconducting cavity and waveguide according to the beam current. In our simulation, an equivalent physical modeling was developed using a finite-difference time-domain code. The simulation revealed that the electric field amplitude at the RF window is exponentially increased as the beam current increases, thus this high electric field amplitude causes a RF breakdown at the RF window, which comes with the rapid increase of window vacuum pressure. The RF accelerating voltage of PLS-II RF system was set to 4.95 MV, which was estimated using the maximum available beam current that works as a function of RF voltage, and the top-up operation test with the beam current of 400 mA was successfully carried out

  9. T2K off-axis near detector νμ flux measurement and absolute momentum scale calibration of the off-axis near detector tracker

    International Nuclear Information System (INIS)

    Blaszczyk, F.

    2011-09-01

    In this thesis we present the results from the ν μ energy spectrum measurement at T2K's near detector and T2K's near detector tracker absolute momentum scale calibration. First we review the main historical steps and the current state of the art of neutrino physics as well as the theoretical framework required to understand the thesis physics analyses presented later on. In particular we focus on the neutrino oscillation parametrization and the neutrino-matter interaction models. We then describe T2K, an off-axis long baseline neutrino oscillation experiment in Japan which consists of a muon neutrino beam sent from J-PARC to Super- Kamiokande, with a magnetized near detector located at 280 m from the neutrino production site. T2K's main goals are measuring the last unknown angle of the PMNS matrix θ 13 through the search of ν e appearance in the ν μ beam and measuring precisely the atmospheric parameters through muon neutrino disappearance. We briefly describe the detectors, in particular the near detector tracker and its performance. We then present the analyses tools, such as the reconstruction techniques used and how the neutrino charged current interaction events needed for the energy spectrum measurement are selected. The main goal of the thesis, the muon neutrino energy spectrum measurement done with the first T2K data is explained next. We give the motivations for such measurement, the results obtained with the first T2K data sample, and the different systematic errors studied. Finally, the absolute momentum scale calibration of T2K's near detector tractor, done through the reconstruction of the neutral kaon invariant mass, is explained. (author)

  10. SU-E-T-66: Characterization of Radiation Dose Associated with Dark Currents During Beam Hold for Respiratory-Gated Electron Therapy

    International Nuclear Information System (INIS)

    Hessler, J; Gupta, N; Rong, Y; Weldon, M

    2014-01-01

    Purpose: The main objective of this study was to estimate the radiation dose contributed by dark currents associated with the respiratory-gated electron therapy during beam hold. The secondary aim was to determine clinical benefits of using respiratory-gated electron therapy for left-sided breast cancer patients with positive internal mammary nodes (IMN). Methods: Measurements of the dark current-induced dose in all electron modes were performed on multiple Siemens and Varian linear accelerators by manually simulating beam-hold during respiratory gating. Dose was quantified at the machine isocenter by comparing the collected charge to the known output for all energies ranging from 6 to 18 MeV for a 10cm × 10cm field at 100 SSD with appropriate solid-water buildup. Using the Eclipse treatment planning system, we compared the additional dose associated with dark current using gated electron fields to the dose uncertainties associated with matching gated photon fields and ungated electron fields. Dose uncertainties were seen as hot and cold spots along the match line of the fields. Results: The magnitude of the dose associated with dark current is highly correlated to the energy of the beam and the amount of time the beam is on hold. For lower energies (6–12 MeV), there was minimal dark current dose (0.1–1.3 cGy/min). Higher energies (15–18 MeV) showed measurable amount of doses. The dark current associated with the electron beam-hold varied between linear accelerator vendors and depended on dark current suppression and the age of the linear accelerator. Conclusion: For energies up to 12 MeV, the dose associated with the dark current for respiratorygated electron therapy was shown to be negligible, and therefore should be considered an option for treating IMN positive left-sided breast cancer patients. However, at higher energies the benefit of respiratory gating may be outweighed by dose due to the dark current

  11. Experimental Verification of Current Shear Design Equations for HSRC Beams

    Directory of Open Access Journals (Sweden)

    Attaullah Shah

    2012-07-01

    Full Text Available Experimental research on the shear capacity of HSRC (High Strength Reinforced Concrete beams is relatively very limited as compared to the NSRC (Normal Strength Reinforced Concrete beams. Most of the Building Codes determine the shear strength of HSRC with the help of empirical equations based on experimental work of NSRC beams and hence these equations are generally regarded as un-conservative for HSRC beams particularly at low level of longitudinal reinforcement. In this paper, 42 beams have been tested in two sets, such that in 21 beams no transverse reinforcement has been used, whereas in the remaining 21 beams, minimum transverse reinforcement has been used as per ACI-318 (American Concrete Institute provisions. Two values of compressive strength 52 and 61 MPa, three values of longitudinal steel ratio and seven values of shear span to depth ratio have been have been used. The beams were tested under concentrated load at the mid span. The results are compared with the equations proposed by different international building codes like ACI, AASHTO LRFD, EC (Euro Code, Canadian Code and Japanese Code for shear strength of HSRC beams.From comparison, it has been observed that some codes are less conservative for shear design of HSRC beams and further research is required to rationalize these equations.

  12. Dark currents and their effect on the primary beam in an X-band linac

    Directory of Open Access Journals (Sweden)

    Karl L. F. Bane

    2005-06-01

    Full Text Available We numerically study properties of primary dark currents in an X-band accelerating structure. For the H60VG3 structure considered for the Next Linear Collider (NLC we first perform a fairly complete (with some approximations calculation of dark-current trajectories. These results are used to study properties of the dark current leaving the structure. For example, at accelerating gradient of 65  MV/m, considering two very different assumptions about dark-current emission around the irises, we find that the fraction of emitted current leaving the structure to be a consistent ∼1%. Considering that ∼1  mA outgoing dark current is seen in measurement, this implies that ∼100  mA (or 10 pC per period is emitted within the structure itself. Using the formalism of the Liénard-Wiechert potentials, we then perform a systematic calculation of the transverse kick of dark currents on a primary linac bunch. The result is ∼1   V kick per mA (or per 0.1  pC per period dark current emitted from an iris. For an entire structure we estimate the total kick on a primary bunch to be ∼15   V. For the NLC linac this translates to a ratio of (final vertical beam offset to beam size of about 0.2. However, with the assumptions that needed to be made—particularly the number of emitters and their distribution within a structure—the accuracy of this result may be limited to the order of magnitude.

  13. Wire Scanner Beam Profile Measurements: LANSCE Facility Beam Development

    International Nuclear Information System (INIS)

    Gilpatrick, John D.; Batygin, Yuri K.; Gonzales, Fermin; Gruchalla, Michael E.; Kutac, Vincent G.; Martinez, Derwin; Sedillo, James Daniel; Pillai, Chandra; Rodriguez Esparza, Sergio; Smith, Brian G.

    2012-01-01

    The Los Alamos Neutron Science Center (LANSCE) is replacing Wire Scanner (WS) beam profile measurement systems. Three beam development tests have taken place to test the new wire scanners under beam conditions. These beam development tests have integrated the WS actuator, cable plant, electronics processors and associated software and have used H - beams of different beam energy and current conditions. In addition, the WS measurement-system beam tests verified actuator control systems for minimum profile bin repeatability and speed, checked for actuator backlash and positional stability, tested the replacement of simple broadband potentiometers with narrow band resolvers, and tested resolver use with National Instruments Compact Reconfigurable Input and Output (cRIO) Virtual Instrumentation. These beam tests also have verified how trans-impedance amplifiers react with various types of beam line background noise and how noise currents were not generated. This paper will describe these beam development tests and show some resulting data.

  14. Wire Scanner Beam Profile Measurements: LANSCE Facility Beam Development

    Energy Technology Data Exchange (ETDEWEB)

    Gilpatrick, John D. [Los Alamos National Laboratory; Batygin, Yuri K. [Los Alamos National Laboratory; Gonzales, Fermin [Los Alamos National Laboratory; Gruchalla, Michael E. [Los Alamos National Laboratory; Kutac, Vincent G. [Los Alamos National Laboratory; Martinez, Derwin [Los Alamos National Laboratory; Sedillo, James Daniel [Los Alamos National Laboratory; Pillai, Chandra [Los Alamos National Laboratory; Rodriguez Esparza, Sergio [Los Alamos National Laboratory; Smith, Brian G. [Los Alamos National Laboratory

    2012-05-15

    The Los Alamos Neutron Science Center (LANSCE) is replacing Wire Scanner (WS) beam profile measurement systems. Three beam development tests have taken place to test the new wire scanners under beam conditions. These beam development tests have integrated the WS actuator, cable plant, electronics processors and associated software and have used H{sup -} beams of different beam energy and current conditions. In addition, the WS measurement-system beam tests verified actuator control systems for minimum profile bin repeatability and speed, checked for actuator backlash and positional stability, tested the replacement of simple broadband potentiometers with narrow band resolvers, and tested resolver use with National Instruments Compact Reconfigurable Input and Output (cRIO) Virtual Instrumentation. These beam tests also have verified how trans-impedance amplifiers react with various types of beam line background noise and how noise currents were not generated. This paper will describe these beam development tests and show some resulting data.

  15. High current electron beam acceleration in dielectric-filled RF cavities

    International Nuclear Information System (INIS)

    Faehl, R.J.; Keinigs, R.K.

    1996-01-01

    The acceleration of charged particles in radio frequency (RF) cavities is a widely used mode in high energy accelerators. Advantages include very high accelerating gradients and very stable phase control. A traditional limitation for such acceleration has been their use for intense, high current beam generation. This constraint arises from the inability to store a large amount of electromagnetic energy in the cavity and from loading effects of the beam on the cavity. The authors have studied a simple modification to transcend these limitations. Following Humphries and Huang, they have conducted analytic and numerical investigations of RF accelerator cavities in which a high dielectric constant material, such as water, replaces most of the cavity volume. This raises the stored energy in a cavity of given dimensions by a factor var-epsilon/var-epsilon 0 . For a water fill, var-epsilon/var-epsilon 0 ∼ 80, depending on the frequency. This introduction of high dielectric constant material into the cavity reduces the resonant frequencies by a factor of (var-epsilon/var-epsilon 0 ) 1/2 . This reduced operating frequency mans that existing high efficiency power supplies, at lower frequencies, can be used for an accelerator

  16. Current algorithms for computed electron beam dose planning

    International Nuclear Information System (INIS)

    Brahme, A.

    1985-01-01

    Two- and sometimes three-dimensional computer algorithms for electron beam irradiation are capable of taking all irregularities of the body cross-section and the properties of the various tissues into account. This is achieved by dividing the incoming broad beams into a number of narrow pencil beams, the penetration of which can be described by essentially one-dimensional formalisms. The constituent pencil beams are most often described by Gaussian, experimentally or theoretically derived distributions. The accuracy of different dose planning algorithms is discussed in some detail based on their ability to take the different physical interaction processes of high energy electrons into account. It is shown that those programs that take the deviations from the simple Gaussian model into account give the best agreement with experimental results. With such programs a dosimetric relative accuracy of about 5% is generally achieved except in the most complex inhomogeneity configurations. Finally, the present limitations and possible future developments of electron dose planning are discussed. (orig.)

  17. Beam size blow-up and current loss in the Fermilab main ring during storage

    International Nuclear Information System (INIS)

    Guignard, G.; Month, M.

    1977-01-01

    Observations at Fermilab during the storage mode of operation show characteristic forms of transverse beam size growth and current loss with time. There are three obvious mechanisms which can produce such blowup. The gas pressure is a source for immediate beam loss by direct nuclear scattering. Protons can also multiple Coulomb scatter off the orbiting electrons of the gas atoms causing the transverse beam size to increase with time, t. This effect is therefore also proportional to the gas pressure. A third mechanism not related to the gas pressure is beam growth due to multiple crossing of betatron resonances arising from the synchrotron oscillations of the stored bunches. This simulates a random walk and causes the transverse beam size to grow with √t. An attempt is made to describe the observations with direct nuclear scattering, multiple coulomb scattering and multiple resonance crossing. In addition to the loss rate from direct nuclear scattering, the presence of betatron resonances also contribute to particle loss. In fact this latter effect becomes dominant after the beam size reaches a critical value. This critical size is referred to as the resonance aperture. It is the size at which ''fast'' resonance crossing is no longer valid. The stopband width becomes so large (due both to emittance growth as well as the increase in magnetic field distortions) that particles are locked into the resonance and are extracted to the physical aperture. The model is described in a phenomenological way, and the coefficients involved are estimated. Theoretical curves for transverse beam growth and loss rate are plotted and compared with some measured values. Finally, some general comments are given

  18. Filtered neutron beams at the FMRB - review and current status

    International Nuclear Information System (INIS)

    Alberts, W.G.; Dietz, E.

    1987-12-01

    A review is presented of our experience with filtered neutron beams installed in beam tubes of the Research and Measurement Reactor Braunschweig since 1976: Desing of the filters and measurement of the beam parameters are reported and an outline of the research work done with the beams is given. The present status of the irradiation facility, which consists of 5 beams (144 keV, 24.5 keV, 2 keV, 0.2 keV and thermal neutrons), is described in some detail to allow understanding of the physical as well as the technical prerequisites for performing calibrations of neutron measuring instruments. An appendix contains the actual beam parameters. (orig.) [de

  19. Simulation of 10 A electron beam formation and collection for a high current EBIS

    International Nuclear Information System (INIS)

    Kponou, A.; Beebe, E.; Pikin, A.; Kuznetsov, G.; Batazova, M.; Tiunov, M.

    1997-01-01

    Development of an Electron Beam Ion Source (EBIS) for the Relativistic Heavy Ion Collider (RHIC) at BNL requires operating with a 10 A electron beam, which is approximately an order of magnitude higher current than in any existing EBIS device. A test stand is presently being designed and constructed where EBIS components will be twisted. It will be reported in a separate paper at this Conference. The design of the 10 A electron gun, drift tubes and electron collector requires extensive computer simulations. Calculations have been performed at Novosibirsk and BNL using two different programs, SAM and EGUN. Results of these simulations will be presented

  20. Generation of highly collimated high-current ion beams by skin-layer laser-plasma interaction at relativistic laser intensities

    International Nuclear Information System (INIS)

    Badziak, J.; Jablonski, S.; Glowacz, S.

    2006-01-01

    Generation of fast ion beams by laser-induced skin-layer ponderomotive acceleration has been studied using a two-dimensional (2D) two-fluid relativistic computer code. It is shown that the key parameter determining the spatial structure and angular divergence of the ion beam is the ratio d L /L n , where d L is the laser beam diameter and L n is the plasma density gradient scale length. When d L >>L n , a dense highly collimated megaampere ion (proton) beam of the ion current density approaching TA/cm 2 can be generated by skin-layer ponderomotive acceleration, even with a tabletop subpicosecond laser

  1. Dosimetry of laser-accelerated electron beams used for in vitro cell irradiation experiments

    International Nuclear Information System (INIS)

    Richter, C.; Kaluza, M.; Karsch, L.; Schlenvoigt, H.-P.; Schürer, M.; Sobiella, M.; Woithe, J.; Pawelke, J.

    2011-01-01

    The dosimetric characterization of laser-accelerated electrons applied for the worldwide first systematic radiobiological in vitro cell irradiation will be presented. The laser-accelerated electron beam at the JeTi laser system has been optimized, monitored and controlled in terms of dose homogeneity, stability and absolute dose delivery. A combination of different dosimetric components were used to provide both an online beam as well as dose monitoring and a precise absolute dosimetry. In detail, the electron beam was controlled and monitored by means of an ionization chamber and an in-house produced Faraday cup for a defined delivery of the prescribed dose. Moreover, the precise absolute dose delivered to each cell sample was determined by an radiochromic EBT film positioned in front of the cell sample. Furthermore, the energy spectrum of the laser-accelerated electron beam was determined. As presented in a previous work of the authors, also for laser-accelerated protons a precise dosimetric characterization was performed that enabled initial radiobiological cell irradiation experiments with laser-accelerated protons. Therefore, a precise dosimetric characterization, optimization and control of laser-accelerated and therefore ultra-short pulsed, intense particle beams for both electrons and protons is possible, allowing radiobiological experiments and meeting all necessary requirements like homogeneity, stability and precise dose delivery. In order to fulfill the much higher dosimetric requirements for clinical application, several improvements concerning, i.e., particle energy and spectral shaping as well as patient safety are necessary.

  2. Analysis of beam transverse instability in electron linac

    International Nuclear Information System (INIS)

    Mondrus, I.N.; Shenderovich, A.M.

    1990-01-01

    Dispersion equations describing transverse beam instability in a single resonator section and in an accelerator comprising a sequence of resonator sections are derived. It is shown that close to parametric resonance of any multiplicity a reduction of cumulative instability incoherent takes place between nonsymmetric defocusing wave frequency and the frequency of accelerator cluster transport. Under exact resonance the increment equals to zero and under misalignment due to resonance depending on its sign and disturbance frequency an instability of either fast or slow wave takes place. It is shown that this effect leads to beam instability suppression of sections with the opposite sign of misalignment due to resonance are located in turn. The results obtained show that application of a parametric resonance through reducing slight the single section absolute instability threshold current, allows one to effectively suppress cumulative instability. The requirement to the accuracy of tuning to a resonance of identical sections is substantially reduced under the alternation of sections with different sign misalignment due to resonance and can be easily realized in practice

  3. Beam coupling impedance of fast stripline beam kickers

    International Nuclear Information System (INIS)

    Caporaso, G; Chen, Y J; Nelson, A D; Poole, B R

    1999-01-01

    A fast stripline beam kicker is used to dynamically switch a high current electron beam between two beamlines. The transverse dipole impedance of a stripline beam kicker has been previously determined from a simple transmission line model of the structure. This model did not include effects due to the long axial slots along the structure as well as the cavities and coaxial feed transition sections at the ends of the structure. 3-D time domain simulations show that the simple transmission line model underestimates the low frequency dipole beam coupling impedance by about 20% for our structure. In addition, the end cavities and transition sections can exhibit dipole impedances not included in the transmission line model. For high current beams, these additional dipole coupling terms can provide additional beam-induced steering effects not included in the transmission line model of the structure

  4. Beam-beam interaction in e+-e- storage rings

    International Nuclear Information System (INIS)

    Le Duff, J.

    1977-01-01

    Colliding beams in electron-positron storage rings are discussed with particular reference to the space charge forces occuring during beam-beam interactions and their effect on beam current and consequently machine performance (maximum luminosity). The first section deals with linear beam-beam effects and discussses linear tune shift; the second section considers non-linear beam-beam effects and the creation on non-linear resonances. The last section poses questions of the possibility of extrapolating present results to future machines and discusses optimization of storage ring performance. (B.D.)

  5. Development and application of a water calorimeter for the absolute dosimetry of short-range particle beams

    Science.gov (United States)

    Renaud, J.; Rossomme, S.; Sarfehnia, A.; Vynckier, S.; Palmans, H.; Kacperek, A.; Seuntjens, J.

    2016-09-01

    In this work, we describe a new design of water calorimeter built to measure absorbed dose in non-standard radiation fields with reference depths in the range of 6-20 mm, and its initial testing in clinical electron and proton beams. A functioning calorimeter prototype with a total water equivalent thickness of less than 30 mm was constructed in-house and used to obtain measurements in clinical accelerator-based 6 MeV and 8 MeV electron beams and cyclotron-based 60 MeV monoenergetic and modulated proton beams. Corrections for the conductive heat transfer due to dose gradients and non-water materials was also accounted for using a commercial finite element method software package. Absorbed dose to water was measured with an associated type A standard uncertainty of approximately 0.4% and 0.2% for the electron and proton beam experiments, respectively. In terms of thermal stability, drifts were on the order of a couple of hundred µK min-1, with a short-term variation of 5-10 µK. Heat transfer correction factors ranged between 1.021 and 1.049. The overall combined standard uncertainty on the absorbed dose to water was estimated to be 0.6% for the 6 MeV and 8 MeV electron beams, as well as for the 60 MeV monoenergetic protons, and 0.7% for the modulated 60 MeV proton beam. This study establishes the feasibility of developing an absorbed dose transfer standard for short-range clinical electrons and protons and forms the basis for a transportable dose standard for direct calibration of ionization chambers in the user’s beam. The largest contributions to the combined standard uncertainty were the positioning (⩽0.5%) and the correction due to conductive heat transfer (⩽0.4%). This is the first time that water calorimetry has been used in such a low energy proton beam.

  6. Design Studies for a High Current Bunching System for CLIC Test Facility (CTF3) Drive Beam

    CERN Document Server

    Thiery, Y.; Le Duff, J.

    2000-01-01

    A bunching system is proposed for the initial stage of CTF3 which consists of one (two) 3 GHz prebunchers and one 3 GHz travelling wave (TW) buncher with variable phase velocities. The electron beam is emitted from a 140 KV DC gun. Since the macropulse beam current (3.5 A) at the exit of the TW buncher is rather high, inside the TW buncher one has to take the beam loading effect into consideration. By using PARMELA, it is shown numerically that the bunching system can provide the bunches whose properties satisfy the design requirement of CTF3. The 0.8 m long TW buncher working at 2pi/3 mode has two phase velocities, 0.75 and 1. The dimensions of the caities in the two phase velocity regions are proposed considering the beam loading effect. The transient beam loading effect and the multibunch transverse instabilities are studied numerically, and it is concluded that higher order mode couplers should be installed in the TW buncher with the loaded quality factor of the dipole mode lower than 80.

  7. Study of runaway current generation following disruptions in KSTAR

    International Nuclear Information System (INIS)

    Chen, Z Y; Kim, W C; Yu, Y W; England, A C; Yoo, J W; Hahn, S H; Yoon, S W; Lee, K D; Oh, Y K; Kwak, J G; Kwon, M

    2013-01-01

    The high fraction of runaway current conversion following disruptions has an important effect on the first wall for next-generation tokamaks. Because of the potentially severe consequences of a large full current runaway beam on the first wall in an unmitigated disruption, runaway suppression is given a high priority. The behavior of runaway currents both in spontaneous disruptions and in D 2 massive gas injection (MGI) shutdown experiments is investigated in the KSTAR tokamak. The experiments in KSTAR show that the toroidal magnetic field threshold, B T >2 T, for runaway generation is not absolute. A high fraction of runaway current conversion following spontaneous disruptions is observed at a much lower toroidal magnetic field of B T = 1.3 T. A dedicated fast valve for high-pressure gas injection with 39.7 bar is developed for the study of disruptions. A study of runaway current parameters shows that the conversion efficiency of pre-disruptive plasma currents into runaway current can reach over 80% both in spontaneous disruptions and in D 2 MGI shutdown experiments in KSTAR. (paper)

  8. Polarimeters for the AGS polarized-proton beam

    Energy Technology Data Exchange (ETDEWEB)

    Crabb, D.G.; Bonner, B.; Buchanan, J.

    1983-01-01

    This report describes the three polarimeters which will be used to measure the beam polarization at the AGS polarized beam facility. The beam polarization will be measured before injection into the AGS, during acceleration, and after extraction from the AGS. The 200-MeV polarimeter uses scintillation-counter telescopes to measure the asymmetry in p-carbon inclusive scattering. The internal polarimeter can measure the beam polarization at up to five selected times during acceleration. A continuously spooled nylon filament is swung into the beam at the appropriate time and the asymmetry in pp elastic scattering measured by two scintillation-counter telescopes. This is a relative polarimeter which can be calibrated by the absolute external polarimeter located in the D extracted-beam line. This polarimeter uses scintillation counters in two double-arm magnetic spectrometers to measure clearly the asymmetry in pp elastic scattering from a liquid hydrogen target. The specific features and operation of each polarimeter will be discussed.

  9. Polarimeters for the AGS polarized-proton beam

    International Nuclear Information System (INIS)

    Crabb, D.G.; Bonner, B.; Buchanan, J.

    1983-01-01

    This report describes the three polarimeters which will be used to measure the beam polarization at the AGS polarized beam facility. The beam polarization will be measured before injection into the AGS, during acceleration, and after extraction from the AGS. The 200-MeV polarimeter uses scintillation-counter telescopes to measure the asymmetry in p-carbon inclusive scattering. The internal polarimeter can measure the beam polarization at up to five selected times during acceleration. A continuously spooled nylon filament is swung into the beam at the appropriate time and the asymmetry in pp elastic scattering measured by two scintillation-counter telescopes. This is a relative polarimeter which can be calibrated by the absolute external polarimeter located in the D extracted-beam line. This polarimeter uses scintillation counters in two double-arm magnetic spectrometers to measure clearly the asymmetry in pp elastic scattering from a liquid hydrogen target. The specific features and operation of each polarimeter will be discussed

  10. Experimental Observation of a Current-Driven Instability in a Neutral Electron-Positron Beam

    Science.gov (United States)

    Warwick, J.; Dzelzainis, T.; Dieckmann, M. E.; Schumaker, W.; Doria, D.; Romagnani, L.; Poder, K.; Cole, J. M.; Alejo, A.; Yeung, M.; Krushelnick, K.; Mangles, S. P. D.; Najmudin, Z.; Reville, B.; Samarin, G. M.; Symes, D. D.; Thomas, A. G. R.; Borghesi, M.; Sarri, G.

    2017-11-01

    We report on the first experimental observation of a current-driven instability developing in a quasineutral matter-antimatter beam. Strong magnetic fields (≥1 T ) are measured, via means of a proton radiography technique, after the propagation of a neutral electron-positron beam through a background electron-ion plasma. The experimentally determined equipartition parameter of ɛB≈10-3 is typical of values inferred from models of astrophysical gamma-ray bursts, in which the relativistic flows are also expected to be pair dominated. The data, supported by particle-in-cell simulations and simple analytical estimates, indicate that these magnetic fields persist in the background plasma for thousands of inverse plasma frequencies. The existence of such long-lived magnetic fields can be related to analog astrophysical systems, such as those prevalent in lepton-dominated jets.

  11. Absolute nuclear material assay

    Science.gov (United States)

    Prasad, Manoj K [Pleasanton, CA; Snyderman, Neal J [Berkeley, CA; Rowland, Mark S [Alamo, CA

    2010-07-13

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  12. Development of high current beam ns pulsed system

    CERN Document Server

    Shen Guan Ren; Gao Fu; Guan Xia Ling; LiuNaiYi

    2001-01-01

    The development of high current beam ns pulsed system of CPNG and its characteristic, main technological performance and application are introduced. Firstly, important parameters of the system are calculated using theoretical model, the design requirements of some important parts are understood. Some mistakes in physics conception are corrected. Second, the chopper is designed for parallel plate deflector, chopping aperture and sine wave voltage sweeping device. It is emphasized that the conception of parallel plate load impedance is the capacitance load, but not the 50 ohm load impedance. The dynamic capacitance value has been measured. The output emphasizes the output voltage amplitude, but not the output power for sweeping device. The display system of output sweeping voltage was set up and it is sure that the maximum output voltage(V-V) is >=4000 V. The klystron buncher are re-designed. It is emphasized to overcome difficulty of support high voltage electrode in the klystron and insulator of input sine wa...

  13. Absolute measurement of the viscosity of classical and quantum fluids by rotating-cylinder viscometers

    International Nuclear Information System (INIS)

    Donnelly, R.J.; LaMar, M.M.

    1987-01-01

    We discuss the use of rotating-cylinder viscometers to determine absolute shear viscosities of classical fluids and of helium II in the context of past and current knowledge of the stability and flow of these fluids between concentric cylinders. We identify a problem in measuring the absolute viscosity when the inner cylinder is rotating and the outer cylinder is at rest. We conclude by discussing the design of viscometers for absolute viscosity measurements in helium I and helium II

  14. Thermodynamics of negative absolute pressures

    International Nuclear Information System (INIS)

    Lukacs, B.; Martinas, K.

    1984-03-01

    The authors show that the possibility of negative absolute pressure can be incorporated into the axiomatic thermodynamics, analogously to the negative absolute temperature. There are examples for such systems (GUT, QCD) processing negative absolute pressure in such domains where it can be expected from thermodynamical considerations. (author)

  15. Long-range beam-beam experiments in the relativistic heavy ion collider

    International Nuclear Information System (INIS)

    Calaga, R; Fischer, W; Milas, N; Robert-Demolaize, G

    2014-01-01

    Long-range beam-beam effects are a potential limit to the LHC performance with the nominal design parameters, and certain upgrade scenarios under discussion. To mitigate long-range effects, current carrying wires parallel to the beam were proposed and space is reserved in the LHC for such wires. Two current carrying wires were installed in RHIC to study the effect of strong long-range beam-beam effects in a collider, as well as test the compensation of a single long-range interaction. The experimental data were used to benchmark simulations. We summarize this work

  16. Beam divergence scaling in neutral beam injectors

    International Nuclear Information System (INIS)

    Holmes, A.J.T.

    1976-01-01

    One of the main considerations in the design of neutral beam injectors is to monimize the divergence of the primary ion beam and hence maximize the beam transport and minimize the input of thermal gas. Experimental measurements of the divergence of a cylindrical ion beam are presented and these measurements are used to analyze the major components of ion beam divergence, namely: space charge expansion, gas-ion scattering, emittance and optical aberrations. The implication of these divergence components in the design of a neutral beam injector system is discussed and a method of maximizing the beam current is described for a given area of source plasma

  17. Transdusers for measuring currents and coordinates of subnanosecond accelerated electron beams

    International Nuclear Information System (INIS)

    Mocheshnikov, N.I.; Reprintsev, L.V.; Syumak, V.N.; Fedotov, I.F.

    1979-01-01

    Two types of monitors using eddy currents induced in the walls of an electronic channel by electron clusters have been developed. Monitors of the first type use, instead of the resistor belt, the input resistance of a wide-band transformer whose low-resistance input is connected to the break in the electron channel and the high-resistance output - to the output cable. The monitor is used in an electron storage ring. To increase the fast response of second-type monitors the brake in the electron channel is loaded with a low-resistance strip line. The signal from this line is taken near the place of its connection to the brake. The monitors are supposed to be used for resolution of the fine structure of a high-current electron linear accelerator beam. The achieved rise time constituted 0.15 - 0.2 ns

  18. Note: An absolute X-Y-Θ position sensor using a two-dimensional phase-encoded binary scale

    Science.gov (United States)

    Kim, Jong-Ahn; Kim, Jae Wan; Kang, Chu-Shik; Jin, Jonghan

    2018-04-01

    This Note presents a new absolute X-Y-Θ position sensor for measuring planar motion of a precision multi-axis stage system. By analyzing the rotated image of a two-dimensional phase-encoded binary scale (2D), the absolute 2D position values at two separated points were obtained and the absolute X-Y-Θ position could be calculated combining these values. The sensor head was constructed using a board-level camera, a light-emitting diode light source, an imaging lens, and a cube beam-splitter. To obtain the uniform intensity profiles from the vignette scale image, we selected the averaging directions deliberately, and higher resolution in the angle measurement could be achieved by increasing the allowable offset size. The performance of a prototype sensor was evaluated in respect of resolution, nonlinearity, and repeatability. The sensor could resolve 25 nm linear and 0.001° angular displacements clearly, and the standard deviations were less than 18 nm when 2D grid positions were measured repeatedly.

  19. Dosimetry auditing procedure with alanine dosimeters for light ion beam therapy

    DEFF Research Database (Denmark)

    Ableitinger, Alexander; Vatnitsky, Stanislav; Herrmann, Rochus

    2013-01-01

    Background and purpose In the next few years the number of facilities providing ion beam therapy with scanning beams will increase. An auditing process based on an end-to-end test (including CT imaging, planning and dose delivery) could help new ion therapy centres to validate their entire logistic...... of the biological dose is out of scope of the current work. Materials and methods The audit procedure was based on a homogeneous phantom that mimics the dimension of a head (20 × 20 × 21 cm3). The phantom can be loaded either with an ionisation chamber or 20 alanine dosimeters plus 2 radiochromic EBT films. Dose...... fluence in the alanine detector. A pilot run was performed with protons and carbon ions at the Heidelberg Ion Therapy facility (HIT). Results The mean difference of the absolute physical dose measured with the alanine dosimeters compared with the expected dose from the treatment planning system was −2...

  20. Current state and prospects of industrial application of electron beam irradiation

    International Nuclear Information System (INIS)

    Washio, Masakazu

    2000-01-01

    This paper reviewed the low energy, medium energy, and high energy accelerators used for the industrial application of electron beams. Next, it described the absorption of electron beam energy, distribution of the absorbed dose of electron beams in a substance, and the basis of electron beam reaction. Furthermore, as the industrial application examples of electron beams, it briefly described about the reforming and curing of polymers, irradiation effect of inorganic material (characteristic control of semiconductors), and sterilization. Regarding curing, as examples using mainly low energy electron beams (300 keV or below), this paper briefly explained the manufacture of thermosensitive recording materials, electron beam cured silicone for release papers, tunnel metal interior finishing board, high gloss - high smooth paper. Finally, it looked at latest trends and prospects of electron beam generators. (A.O.)

  1. The effect of plasma parameter on the bootstrap current of fast ions in neutral beam injection

    International Nuclear Information System (INIS)

    Huang Qianhong; Gong Xueyu; Cao Jinjia; Yang Lei

    2014-01-01

    The effect of plasma parameters on the distribution of net current density of fast ions produced by neutral beam injection is investigated in a large-aspect-ratio Tokamak with circular cross-section under specific parameters. Numerical results show that the value of net current density increases with the temperature of plasma increasing and decreases with the density of plasma increasing. The value of net current density is weakly affected by the effective charge number, but the peak of net current density moves towards edge plasma with effective charge number increasing. (authors)

  2. High current, high energy proton beams accelerated by a sub-nanosecond laser

    Czech Academy of Sciences Publication Activity Database

    Margarone, Daniele; Krása, Josef; Picciotto, A.; Torrisi, L.; Láska, Leoš; Velyhan, Andriy; Prokůpek, Jan; Ryc, L.; Parys, P.; Ullschmied, Jiří; Rus, Bedřich

    2011-01-01

    Roč. 653, č. 1 (2011), s. 159-163 ISSN 0168-9002 R&D Projects: GA ČR(CZ) GAP205/11/1165; GA AV ČR IAA100100715; GA MŠk(CZ) 7E09092 EU Projects: European Commission(XE) 212105 - ELI-PP Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z20430508 Keywords : laser-acceleration * proton beam * high ion current * time -of-flight * proton energy distribution Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.207, year: 2011

  3. Fast ion confinement during high power tangential neutral beam injection into low plasma current discharges on the ISX-B tokamak

    International Nuclear Information System (INIS)

    Carnevali, A.; Scott, S.D.; Neilson, H.; Galloway, M.; Stevens, P.; Thomas, C.E.

    1988-01-01

    The beam ion thermalization process during tangential neutral beam injection in the ISX-B tokamak is investigated. The classical model is tested in co- and counter-injected discharges at low plasma current, a regime where large orbit width excursions enhance the importance of the loss regions. To test the model, experimental charge exchange spectra are compared with the predictions of an orbit following Monte Carlo code. Measurements of beam-plasma neutron emission and measured decay rates of the emission following beam turnoff provide additional information. Good agreement is found between theory and experiment. Furthermore, beam additivity experiments show that, globally, the confinement of beam ions remains classical, independently of the injected beam power. However, some experimental evidence suggests that the fast ion density in the plasma core did not increase with beam power in a way consistent with classical processes. (author). 35 refs, 17 figs, 3 tabs

  4. Positron annihilation and thermally stimulated current of electron beam irradiated polyetheretherketone

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Shigetaka; Shinyama, Katsuyoshi; Baba, Makoto [Hachinohe Inst. of Tech., Hachinohe, Aomori (Japan); Suzuki, Takenori

    1997-03-01

    Positron lifetime measurements were applied to electron beam irradiated poly(ether-ether-ketone). The lifetime, {tau}{sub 3}, of the ortho-positronium of unirradiated and 5 MGy irradiated specimen became rapidly longer above about 150degC. {tau}{sub 3} of 50 MGy and 100 MGy irradiated specimen was shorter than that of unirradiated one. Thermally stimulated current (TSC) decreased with increasing the dose before voltage application. In the case of voltage application, a TSC peak appeared and the peak value decreased with increased the dose. The correlation between the results of positron annihilation and TSC was investigated. (author)

  5. Glow-discharge-created electron beams and beam-excited lasers

    International Nuclear Information System (INIS)

    Meyer, J.D.

    1989-01-01

    Efficiently created glow discharge electron beams have been developed and studied in detail. The beam mode of operation occurs in the abnormal glow adjacent to the glow-to-arc transition regime. In contrast to electron beams generated in high vacuum from thermionic electron emitting sources, this type of discharge creates electrons directly in soft vacuum by secondary electron emission from cold cathode surfaces following the bombardment of the cathode surface by fast ions and neutral atoms. Factors influencing the efficient electron emission from cold cathodes are presented with emphasis on cathode materials. Sintered ceramic-metal cathodes and oxide-coated cathodes are presented, both of which can produce high power, efficiently generated, d.c. electron beams with discharge currents up to 1 amp (∼130 mA/cm 2 ) at volt ages of up to 6 kV. Novel cathode designs and discharge geometries are presented with specific emphasis on both self-focussed beams emitted from circular cathodes and line-source electron beams emitted from rectangular cathodes forming a thin sheet of electrons. Electrostatically focussed line-source electron beams are spatially characterized by experimentally measuring the effect of discharge parameters and cathode design upon the focussed beam width, focal point, and uniformity. This is achieved by scanning a current collecting detector in three dimensions in order to profile the distribution of electron beam current. Discharge electron beams are further characterized by their electron energy distribution. Measured electron flux energy distributions of transmitted beam electrons in the negative glow are compared to theoretical models. The relative effects of elastic and inelastic collisions mechanisms upon both the overall form and detailed structure of the energy distribution are discussed

  6. Experimental Observation of a Current-Driven Instability in a Neutral Electron-Positron Beam.

    Science.gov (United States)

    Warwick, J; Dzelzainis, T; Dieckmann, M E; Schumaker, W; Doria, D; Romagnani, L; Poder, K; Cole, J M; Alejo, A; Yeung, M; Krushelnick, K; Mangles, S P D; Najmudin, Z; Reville, B; Samarin, G M; Symes, D D; Thomas, A G R; Borghesi, M; Sarri, G

    2017-11-03

    We report on the first experimental observation of a current-driven instability developing in a quasineutral matter-antimatter beam. Strong magnetic fields (≥1  T) are measured, via means of a proton radiography technique, after the propagation of a neutral electron-positron beam through a background electron-ion plasma. The experimentally determined equipartition parameter of ε_{B}≈10^{-3} is typical of values inferred from models of astrophysical gamma-ray bursts, in which the relativistic flows are also expected to be pair dominated. The data, supported by particle-in-cell simulations and simple analytical estimates, indicate that these magnetic fields persist in the background plasma for thousands of inverse plasma frequencies. The existence of such long-lived magnetic fields can be related to analog astrophysical systems, such as those prevalent in lepton-dominated jets.

  7. Synchronous phase and energy measurement system for a 6.7-MeV H- beam

    International Nuclear Information System (INIS)

    Gilpatrick, J.D.; Meyer, R.E.; Wells, F.D.; Power, J.F.; Shafer, R.E.

    1988-01-01

    A noninterceptive measurement system has been built to measure the energy and synchronous phase of a 6.7-MeV proton beam drifting from the ramped-gradient, drift-tube linac (RGDTL) in the accelerator test stand (ATS) facility. Axially-symmetric, capacitive probes used in these measurements produce signals that are proportional to the beam image current on their inner rings. Signals from two of these probes separated by 92.6 cm are down-converted from 425 to 20 MHz. The phase difference between these 20-MHz signals is then detected with an electronic, phase-comparator circuit. The phase-comparator signal output is a voltage that is related to momentum of the beam. A phase comparison is also provided between the 425-MHz fundamental rf field inside the RGDTL and the capacitive probe located nearest the RGDTL output. The total estimated error for the absolute and relative energy measurement is less than +- 12.2 and +- 3.1 keV, respectively. The total estimated error for the relative synchronous phase measurement is less than +-1/degree/. Beam energy versus synchronous phase experimental data agree with computer simulations. 3 refs., 3 figs., 1 tab

  8. Electron-beam induced current characterization of back-surface field solar cells using a chopped scanning electron microscope beam

    Science.gov (United States)

    Luke, K. L.; Cheng, L.-J.

    1984-01-01

    A chopped electron beam induced current (EBIC) technique for the chacterization of back-surface field (BSF) solar cells is presented. It is shown that the effective recombination velocity of the low-high junction forming the back-surface field of BSF cells, in addition to the diffusion length and the surface recombination velocity of the surface perpendicular to both the p-n and low-high junctions, can be determined from the data provided by a single EBIC scan. The method for doing so is described and illustrated. Certain experimental considerations taken to enhance the quality of the EBIC data are also discussed.

  9. Intense relativistic electron beam injector system for tokamak current drive

    International Nuclear Information System (INIS)

    Bailey, V.L.; Creedon, J.M.; Ecker, B.M.; Helava, H.I.

    1983-01-01

    We report experimental and theoretical studies of an intense relativistic electron beam (REB) injection system designed for tokamak current drive experiments. The injection system uses a standard high-voltage pulsed REB generator and a magnetically insulated transmission line (MITL) to drive an REB-accelerating diode in plasma. A series of preliminary experiments has been carried out to test the system by injecting REBs into a test chamber with preformed plasma and applied magnetic field. REBs were accelerated from two types of diodes: a conventional vacuum diode with foil anode, and a plasma diode, i.e., an REB cathode immersed in the plasma. REB current was in the range of 50 to 100 kA and REB particle energy ranged from 0.1 to 1.0 MeV. MITL power density exceeded 10 GW/cm 2 . Performance of the injection system and REB transport properties is documented for plasma densities from 5 x 10 12 to 2 x 10 14 cm -3 . Injection system data are compared with numerical calculations of the performance of the coupled system consisting of the generator, MITL, and diode

  10. Beam diagnostics and control for SLC

    International Nuclear Information System (INIS)

    Ross, M.C.

    1987-01-01

    Construction of the SLAC Linear Collider has posed some new problems in beam diagnostic device design. Typical beam sizes are small when compared with conventional storage rings, orbit tolerances are tighter and the pulsed nature of the machine means that signal to noise enhancement by averaging is not always possible. Thus the diagnostics must have high resolution, high absolute accuracy and must deliver data from a single puls. In practice the required performance level depends on the function and dynamics of a given region in the collider. In this paper, the authors review the major beam diagnostic system and then discuss the global data acquisition schemes. Because space is limited each system is described only in a very cursory fashion. More details may be found in the cited papers

  11. Direct-current proton-beam measurements at Los Alamos

    International Nuclear Information System (INIS)

    Sherman, J.; Stevens, R.R.; Schneider, J.D.; Zaugg, T.

    1994-01-01

    Recently, a CW proton accelerator complex was moved from Chalk River Laboratories (CRL) to Los Alamos National Laboratory. This includes a 50-keV dc proton injector with a single-solenoid low-energy beam transport system (LEBT) and a CW 1.25-MeV, 267-MHz radiofrequency quadrupole (RFQ). The move was completed after CRL had achieved 55-mA CW operation at 1.25 MeV using 250-kW klystrode tubes to power the RFQ. These accelerator components are prototypes for the front end of a CW linac required for an accelerator-driven transmutation linac, and they provide early confirmation of some CW accelerator components. The injector (ion source and LEBT) and emittance measuring unit are installed and operational at Los Alamos. The dc microwave ion source has been operated routinely at 50-keV, 75-mA hydrogen-ion current. This ion source has demonstrated very good discharge and H 2 gas efficiencies, and sufficient reliability to complete CW RFQ measurements at CRL. Proton fraction of 75% has been measured with 550-W discharge power. This high proton fraction removes the need for an analyzing magnet. Proton LEBT emittance measurements completed at Los Alamos suggest that improved transmission through the RFQ may be achieved by increasing the solenoid focusing current. Status of the final CW RFQ operation at CRL and the installation of the RFQ at Los Alamos is given

  12. Present status on the ion collective acceleration and high-current beam transport in the Lebedev's Physical Institute USSR

    International Nuclear Information System (INIS)

    Kolomenskij, A.A.

    1982-01-01

    The results of investigations into the ion collective acceleration and transport of high-current electron beams (HCEB) in vacuum channels with dielectric walls (VCDW) are presented. The physical principle of transport is in the partial neutralization of spatial charge of electrons with ions escaped from the prewall plasma and the compression of the beam with its own magnetic field. A problem of obtaining the intensive beams of negative ions in diode with magnetic isolation is considered. The mechanism of ion acceleration in VCDW is considered. It is shown that there are two regions with different mechanisms of acceleration. In the first region (''plasma'') ion acceleration in the quasipotential HCEB field up to energy of the order of the electron energy takes place. In the second region (''beam'') the acceleration takes place in the wave fields that can be excited due to the mechanism of the two-beam type instability. The mechanism of ion acceleration in direct electron beams is considered. This mechanism is based on the concept of relaxation oscillations of the virtual cathode and corresponding the reconstruction of the spatial charge distribution

  13. Developments in non-destructive beam diagnostics

    International Nuclear Information System (INIS)

    Fraser, J.S.

    1981-01-01

    With the large average beam currents being achieved in accelerators and storage rings, there is an increasing need for non-destructive beam diagnostic devices. For continuous beams, position monitors of the capacitive pick-up type are replaced by resonant devices that respond to the transverse displacement of the beam centroid. Bunch length monitors of the SLAC type using resonant cavities operating in the TM 010 mode can be used for continuous beams. The more detailed information derivable from beam profile scanners requires development of improved non-destructive devices. Profile monitors which scan the visible light produced by high current beams may be more reliable than ones using the residual ionization if the light intensity from gas molecules following nonionizing collisions with beam particles gives a measure of the beam current density independent of the local electron density. The intense Balmer series lines from neutral hydrogen beams have been used successfully to measure beam profiles. At CRNL and at LASL, beam light profile monitors are being developed for high average current accelerators. Three or more projections will be recorded to allow tomographic reconstruction of the two-dimensional beam current density. Light detection is either by intensified Reticons or ISIT vidicons. The use of three or more beam light monitors on a beam transport line will also permit estimates of the transverse emittance to be made through the reconstruction technique

  14. A beam optics study of the biomedical beam line at a proton therapy facility

    International Nuclear Information System (INIS)

    Yun, Chong Cheoul; Kim, Jong-Won

    2007-01-01

    A biomedical beam line has been designed for the experimental area of a proton therapy facility to deliver mm to sub-mm size beams in the energy range of 20-50 MeV using the TRANSPORT/TURTLE beam optics codes and a newly-written program. The proton therapy facility is equipped with a 230 MeV fixed-energy cyclotron and an energy selection system based on a degrader and slits, so that beam currents available for therapy decrease at lower energies in the therapeutic beam energy range of 70-230 MeV. The new beam line system is composed of an energy-degrader, two slits, and three quadrupole magnets. The minimum beam sizes achievable at the focal point are estimated for the two energies of 50 and 20 MeV. The focused FWHM beam size is approximately 0.3 mm with an expected beam current of 20 pA when the beam energy is reduced to 50 MeV from 100 MeV, and roughly 0.8 mm with a current of 10 pA for a 20 MeV beam

  15. Epithermal neutron beam design for neutron capture therapy at the Power Burst Facility and the Brookhaven Medical Research Reactor

    International Nuclear Information System (INIS)

    Wheeler, F.J.; Parsons, D.K.; Rushton, B.L.; Nigg, D.W.

    1990-01-01

    Nuclear design studies have been performed for two reactor-based epithermal neutron beams for cancer treatment by neutron capture therapy (NCT). An intermediate-intensity epithermal beam has been designed and implemented at the Brookhaven Medical Research Reactor (BMRR). Measurements show that the BMRR design predictions for the principal characteristics of this beam are accurate. A canine program for research into the biological effects of NCT is now under way at BMRR. The design for a high-intensity epithermal beam with minimal contamination from undesirable radiation components has been finalized for the Power Burst Facility (PBF) at the Idaho National Engineering Laboratory. This design will be implemented when it is determined that human NCT trials are advisable. The PBF beam will exhibit approximately an order of magnitude improvement in absolute epithermal flux intensity over that available in the BMRR, and its angular distribution and spectral characteristics will be more advantageous for NCT. The combined effects of beam intensity, angular distribution, spectrum, and contaminant level allow the desired tumor radiation dose to be delivered in much shorter times than are possible with the currently available BMRR beam, with a significant reduction (factor of 3 to 5) in collateral dose due to beam contaminants

  16. Finite-element 3D simulation tools for high-current relativistic electron beams

    Science.gov (United States)

    Humphries, Stanley; Ekdahl, Carl

    2002-08-01

    The DARHT second-axis injector is a challenge for computer simulations. Electrons are subject to strong beam-generated forces. The fields are fully three-dimensional and accurate calculations at surfaces are critical. We describe methods applied in OmniTrak, a 3D finite-element code suite that can address DARHT and the full range of charged-particle devices. The system handles mesh generation, electrostatics, magnetostatics and self-consistent particle orbits. The MetaMesh program generates meshes of conformal hexahedrons to fit any user geometry. The code has the unique ability to create structured conformal meshes with cubic logic. Organized meshes offer advantages in speed and memory utilization in the orbit and field solutions. OmniTrak is a versatile charged-particle code that handles 3D electric and magnetic field solutions on independent meshes. The program can update both 3D field solutions from the calculated beam space-charge and current-density. We shall describe numerical methods for orbit tracking on a hexahedron mesh. Topics include: 1) identification of elements along the particle trajectory, 2) fast searches and adaptive field calculations, 3) interpolation methods to terminate orbits on material surfaces, 4) automatic particle generation on multiple emission surfaces to model space-charge-limited emission and field emission, 5) flexible Child law algorithms, 6) implementation of the dual potential model for 3D magnetostatics, and 7) assignment of charge and current from model particle orbits for self-consistent fields.

  17. Danish Towns during Absolutism

    DEFF Research Database (Denmark)

    This anthology, No. 4 in the Danish Urban Studies Series, presents in English recent significant research on Denmark's urban development during the Age of Absolutism, 1660-1848, and features 13 articles written by leading Danish urban historians. The years of Absolutism were marked by a general...

  18. Study of Beam-Beam Effects at PEP-II

    International Nuclear Information System (INIS)

    Narsky, I

    2004-01-01

    Using a self-consistent three-dimensional simulation running on parallel supercomputers, we have modeled the beam-beam interaction at the PEP-II asymmetric e + e - collider. To provide guidance for luminosity improvement, we scanned the tunes and currents in both rings and computed their impact on the luminosity and transverse beam sizes. We also studied the effects of colliding the beams with a small crossing angle. Where possible, the code was benchmarked against experimental measurements of luminosity and beam sizes, yielding an acceptable agreement

  19. Optimization of a cryogenic current comparator for the application as beam monitor

    International Nuclear Information System (INIS)

    Geithner, Rene

    2013-01-01

    Aim of the present thesis was to improve by the application of new materials and concepts the noise-limited resolution as well as the band width of a cryogenic current comparator for the measurement of the time behavior of smallest beam currents, consisting of a superconducting meander-shaped screening, a superconducting pick-up coil, a superconducting matching transformer, and a SQID sensor, and to reduce its sensitivity against mechanical oscillations. because of this the present thesis deals with the systematic study of the magnetic properties of ferromagnetic materials and their noise contributions for the application in pick-up coils respectively transformers. The main topic of this thesis layed thereby on the characterization of novel amorphous as well as nanocrystalline materials at low temperatures, for which hitherto no reliable values were present in the literature.

  20. Precision luminosity measurement at LHCb with beam-gas imaging

    CERN Document Server

    Barschel, Colin

    The luminosity is the physical quantity which relates the cross-section to the production rate in collider experiments. The cross-section being the particle physics observable of interest, a precise determination of the luminosity is required. This work presents the absolute luminosity calibration results performed at the Large Hadron Collider beauty (LHCb) experiment at CERN using a novel method based on beam-gas interactions with data acquired at a center of mass energy $\\sqrt{s}=8$ TeV and $\\sqrt{s}=2.76$ TeV. Reconstructed beam-gas interaction vertices in LHCb are used to measure the beam profiles, thus making it possible to determine the beams overlap integral. An important element of this work was to install and use a neon gas injection system to increase the beam-gas interaction rate. The precision reached with the beam-gas imaging method relies on the two-dimensional beam shape determination developed in this work. For such precision, the interaction vertex resolution is an important ingredient. There...

  1. Temperature-dependent ion beam mixing

    International Nuclear Information System (INIS)

    Rehn, L.E.; Alexander, D.E.

    1993-08-01

    Recent work on enhanced interdiffusion rates during ion-beam mixing at elevated temperatures is reviewed. As discussed previously, expected increase in ion-beam mixing rates due to 'radiation-enhanced diffusion' (RED), i.e. the free migration of isolated vacancy and interstitial defects, is well documented in single-crystal specimens in the range of 0.4 to 0.6 of absolute melting temperature. In contrast, the increase often observed at somewhat lower temperatures during ion-beam mixing of polycrystalline specimens is not well understood. However, sufficient evidence is available to show that this increase reflects intracascade enhancement of a thermally-activated process that also occurs without irradiation. Recent evidence is presented which suggests that this process is Diffusion-induced Grain-Boundary Migration (DIGM). An important complementary conclusion is that because ion-beam mixing in single-crystal specimens exhibits no significant temperature dependence below that of RED, models that invoke only irradiation-specific phenomena, e.g., cascade-overlap, thermal-spikes, or liquid-diffusion, and hence which predict no difference in mixing behavior between single- or poly-crystalline specimens, cannot account for the existing results

  2. Beam stability in the ISR

    International Nuclear Information System (INIS)

    Hofmann, A.

    1979-01-01

    There are 3 effects which limit the current in the ISR: the gas desorption by the beam produced ions leads to a pressure rise at a certain beam current. To increase this current limit the vacuum system has been improved continuously which resulted in a maximum beam current of 50 A. The microwave instability leads to a dilution of the longitudinal phase space density during acceleration of the bunches across the chamber and during debunching. This limits the longitudinal density of the final stack and therefore the total current which can be accumulated in the given aperture. The transverse instability of the coasting beam represents another potential limitation of the beam current. This effect is controlled by Landau damping provided by the betatron frequency spread and by feedback systems. The ion induced gas desorption represents the lowest current limit at the top energies. However the other two limitations are not far away and they depend on the proper adjustment of many machine parameters

  3. Computer code determination of tolerable accel current and voltage limits during startup of an 80 kV MFTF sustaining neutral beam source

    International Nuclear Information System (INIS)

    Mayhall, D.J.; Eckard, R.D.

    1979-01-01

    We have used a Lawrence Livermore Laboratory (LLL) version of the WOLF ion source extractor design computer code to determine tolerable accel current and voltage limits during startup of a prototype 80 kV Mirror Fusion Test Facility (MFTF) sustaining neutral beam source. Arc current limits are also estimated. The source extractor has gaps of 0.236, 0.721, and 0.155 cm. The effective ion mass is 2.77 AMU. The measured optimum accel current density is 0.266 A/cm 2 . The gradient grid electrode runs at 5/6 V/sub a/ (accel voltage). The suppressor electrode voltage is zero for V/sub a/ < 3 kV and -3 kV for V/sub a/ greater than or equal to 3 kV. The accel current density for optimum beam divergence is obtained for 1 less than or equal to V/sub a/ less than or equal to 80 kV, as are the beam divergence and emittance

  4. Improving beam set-up using an online beam optics tool

    International Nuclear Information System (INIS)

    Richter, S.; Barth, W.; Franczak, B.; Scheeler, U.; Wilms, D.

    2004-01-01

    The GSI accelerator facility [1] consists of the Universal Linear Accelerator (Unilac), the heavy ion synchrotron SIS, and the Experimental Storage Ring (ESR). Two Unilac injectors with three ion source terminals provide ion species from the lightest such as hydrogen up to uranium. The High Current Injector (HSI) for low charge state ion beams provides mostly high intense but short pulses, whereas the High Charge State Injector (HLI) supplies long pulses with a high duty factor of up to 27%. Before entering the Alvarez section of the Unilac the ion beam from the HSI is stripped in a supersonic gas jet. Up to three different ion species can be accelerated for up to five experiments in a time-sharing mode. Frequent changes of beam energy and intensity during a single beam time period may result in time consuming set-up and tuning especially of the beam transport lines. To shorten these changeover times an online optics tool (MIRKO EXPERT) had been developed. Based on online emittance measurements at well-defined locations the beam envelopes are calculated using the actual magnet settings. With this input improved calculated magnet settings can be directly sent to the magnet power supplies. The program reads profile grid measurements, such that an atomized beam alignment is established and that steering times are minimized. Experiences on this tool will be reported. At the Unilac a special focus is put on high current operation with short but intense beam pulses. Limitations like missing non-destructive beam diagnostics, insufficient longitudinal beam diagnostics, insufficient longitudinal beam matching, and influence of the hard edged model for magnetic fields will be discussed. Special attention will be put on the limits due to high current effects with bunched beams. (author)

  5. A superconducting quadrupole array for transport of multiple high current beams

    International Nuclear Information System (INIS)

    Faltens, A.; Shuman, D.

    1999-01-01

    We present a conceptual design of a superconducting quadrupole magnet array for the side-by-side transport of multiple high current particle beams in induction linear accelerators. The magnetic design uses a modified cosine 20 current distribution inside a square cell boundary. Each interior magnet's neighbors serve as the return flux paths and the poles are placed as close as possible to each other to facilitate this. No iron is present in the basic 2-D magnetic design; it will work at any current level without correction windings. Special 1/8th quadrupoles are used along the transverse periphery of the array to contain and channel flux back into the array, making every channel look as part of an infinite array. This design provides a fixed dimension array boundary equal to the quadrupole radius that can be used for arrays of any number of quadrupole channels, at any field level. More importantly, the design provides magnetic field separation between the array and the induction cores which may be surrounding it. Flux linkage between these two components can seriously affect the operation of both of them

  6. Gated current integrator for the beam in the RR barrier buckets

    Energy Technology Data Exchange (ETDEWEB)

    A. Cadorn; C. Bhat; J. Crisp

    2003-06-10

    At the Fermilab Recycler Ring (RR), the antiproton (pbar) beam will be stored azimuthally in different segments created by barrier buckets. The beam in each segment may have widely varying intensities. They have developed a gated integrator system to measure the beam intensity in each of the barrier bucket. Here they discuss the design of the system and the results of beam measurements using the integrator.

  7. Compensation of the Long-Range Beam-Beam Interaction in the LHC

    CERN Document Server

    AUTHOR|(CDS)2256057; De Conto, Jean-Marie

    In the LHC, protons collide in four interaction points in order to deliver luminosity to detectors located there. In the next machine upgrade, the High Luminosity LHC, the objective is to increase this luminosity by a factor five. By sharing the same vacuum pipes, the two counter rotating beams are interacting with a longitudinal offset with respect to the IP: this effect is called Long-Range Beam-Beam interaction. In order to compensate this effect, a device is currently studying in the LHC: the Beam-Beam Compensator Wire. It consists in a DC wire carrying a current and imitating the strong beam, in the weak-strong approximation. This thesis reports a study of this device. First, we show under which hypothesis the strong beam can be equivalent to a wire. Then, we characterise the magnetic field of this wire and its effect on the weak beam before presenting results of experiments we led in order to demonstrate the beneficial effect of this device.

  8. Production of ion beam by conical pinched electron beam diode

    International Nuclear Information System (INIS)

    Matsukawa, Y.; Nakagawa, Y.

    1982-01-01

    Some properties of the ion beam produced by pinched electron beam diode having conical shape electrodes and organic insulator anode was studied. Ion energy is about 200keV and the peak diode current is about 30 kA. At 11cm from the diode apex, not the geometrical focus point, concentrated ion beam was obtained. Its density is more than 500A/cm 2 . The mean ion current density within the radius of 1.6cm around the axis from conical diode is two or three times that from an usual pinched electron beam diode with flat parallel electrodes of same dimension and impedance under the same conditions. (author)

  9. Investigation of the extraction of short diffusion lengths from simulated electron-beam induced current

    Energy Technology Data Exchange (ETDEWEB)

    Wee, D.; Parish, G.; Nener, B. [Microelectronics Research Group, The University of Western Australia, 35 Stirling Highway, 6009 Crawley (Perth) (Australia)

    2010-10-15

    This paper reports on the investigations via 2-D simulation into the accuracy of diffusion length extraction from scanning electron-beam induced current measurements when the diffusion length, L is very short. L is extracted by using the direct method proposed by Chan et al.[1] and later refined by Kurniawan and Ong[2] to take finite junction depth into account. The 2-D simulations were undertaken using Synopsys {sup registered} Sentaurus TCAD and a realistic electron-hole pair generation volume was created using CASINO v2.42[3], a Monte Carlo Scanning Electron Microscope interaction simulation software, and imported into Sentaurus. The voltage and diameter of the electron beam and diffusion length and surface recombination velocity of the semiconductor materials were varied in the simulations to determine the errors in the diffusion length extracted from the EBIC signals as a function of these parameters. The results of the simulation show that the accuracy of the method proposed in[1] is reasonably accurate and that the beam voltage and spot size do not have significant effects on the accuracy (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Investigation of the extraction of short diffusion lengths from simulated electron-beam induced current

    International Nuclear Information System (INIS)

    Wee, D.; Parish, G.; Nener, B.

    2010-01-01

    This paper reports on the investigations via 2-D simulation into the accuracy of diffusion length extraction from scanning electron-beam induced current measurements when the diffusion length, L is very short. L is extracted by using the direct method proposed by Chan et al.[1] and later refined by Kurniawan and Ong[2] to take finite junction depth into account. The 2-D simulations were undertaken using Synopsys registered Sentaurus TCAD and a realistic electron-hole pair generation volume was created using CASINO v2.42[3], a Monte Carlo Scanning Electron Microscope interaction simulation software, and imported into Sentaurus. The voltage and diameter of the electron beam and diffusion length and surface recombination velocity of the semiconductor materials were varied in the simulations to determine the errors in the diffusion length extracted from the EBIC signals as a function of these parameters. The results of the simulation show that the accuracy of the method proposed in[1] is reasonably accurate and that the beam voltage and spot size do not have significant effects on the accuracy (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Beam position and phase measurements of microampere beams at the Michigan State University REA3 facility

    CERN Document Server

    Crisp, J; Durickovic, B; Kiupel, G; Krause, S; Leitner, D; Nash, S; Rodriguez, J A; Russo, T; Webber, R; Wittmer, W; Eddy, N; Briegel, C; Fellenz, B; Slimmer, D; Wendt, M

    2013-01-01

    A high power CW, heavy ion linac will be the driver accelerator for the Facility for Rare Isotope Beams (FRIB) being designed at Michigan State University (MSU). The linac requires a Beam Position Monitoring (BPM) system with better than 100 micron resolution at 100 microamperes beam current. A low beam current test of the candidate technology, button pick-ups and direct digital down-conversion signal processing, was conducted in the ReA3 re-accelerated beam facility at Michigan State University. The test is described. Beam position and phase measurement results, demonstrating ~250 micron and ~1.5 degree resolution in a 45 kHz bandwidth for a 1.0 microampere beam current, are reported.

  12. Shave-off depth profiling: Depth profiling with an absolute depth scale

    International Nuclear Information System (INIS)

    Nojima, M.; Maekawa, A.; Yamamoto, T.; Tomiyasu, B.; Sakamoto, T.; Owari, M.; Nihei, Y.

    2006-01-01

    Shave-off depth profiling provides profiling with an absolute depth scale. This method uses a focused ion beam (FIB) micro-machining process to provide the depth profile. We show that the shave-off depth profile of a particle reflected the spherical shape of the sample and signal intensities had no relationship to the depth. Through the introduction of FIB micro-sampling, the shave-off depth profiling of a dynamic random access memory (DRAM) tip was carried out. The shave-off profile agreed with a blue print from the manufacturing process. Finally, shave-off depth profiling is discussed with respect to resolutions and future directions

  13. Fusion reactivity, confinement, and stability of neutral-beam heated plasmas in TFTR and other tokamaks

    International Nuclear Information System (INIS)

    Park, Hyeon, K.

    1996-05-01

    The hypothesis that the heating beam fueling profile shape connects the edge condition and improved core confinement and fusion reactivity is extensively studied on TFTR and applied to other tokamaks. The derived absolute scalings based on beam fueling profile shape for the stored energy and neutron yield can be applied to the deuterium discharges at different major radii in TFTR. These include Supershot, High poloidal beta, L-mode, and discharges with a reversed shear (RS) magnetic configuration. These scalings are also applied to deuterium-tritium discharges. The role of plasma parameters, such as plasma current, Isdo2(p), edge safety factor, qsdo5(a), and toroidal field, Bsdo2(T), in the performance and stability of the discharges is explicitly studied. Based on practical and externally controllable plasma parameters, the limitation and optimization of fusion power production of the present TFTR is investigated and a path for a discharge condition with fusion power gain, Q > 1 is suggested based on this study. Similar physics interpretation is provided for beam heated discharges on other major tokamaks

  14. Detailed characterisation of the incident neutron beam on the TOSCA spectrometer

    Science.gov (United States)

    Pinna, Roberto S.; Rudić, Svemir; Capstick, Matthew J.; McPhail, David J.; Pooley, Daniel E.; Howells, Gareth D.; Gorini, Giuseppe; Fernandez-Alonso, Felix

    2017-10-01

    We report a detailed characterisation of the incident neutron beam on the TOSCA spectrometer. A bespoke time-of-flight neutron monitor has been designed, constructed and used to perform extensive spatially resolved measurements of the absolute neutron flux and its underlying time structure at the instrument sample position. The obtained data give a quantitative understanding of the current instrument beyond neutronic simulations and provide a baseline in order to assess the performance of the upgraded instrument. At an average proton current-on-target of 153 μA (ISIS Target Station 1; at the time of measurements) we have found that the wavelength-integrated neutron flux (from 0.28 Å to 4.65 Å) at the position of the TOSCA instrument sample (spatially averaged across the 3 × 3cm2 surface centred around (0,0) position) is approximately 1 . 2 × 106 neutrons cm-2s-1, while the whole beam has a homogeneous distribution across the 3 . 0 × 3 . 5cm2 sample surface. The spectra reproduced the well-known shape of the neutrons moderated by the room temperature water moderator and exhibit a neutron flux of 7 . 3 × 105 neutrons cm-2s-1Å-1 at 1 Å.

  15. Progress with Long-Range Beam-Beam Compensation Studies for High Luminosity LHC

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Adriana; et al.

    2017-05-01

    Long-range beam-beam (LRBB) interactions can be a source of emittance growth and beam losses in the LHC during physics and will become even more relevant with the smaller '* and higher bunch intensities foreseen for the High Luminosity LHC upgrade (HL-LHC), in particular if operated without crab cavities. Both beam losses and emittance growth could be mitigated by compensat-ing the non-linear LRBB kick with a correctly placed current carrying wire. Such a compensation scheme is currently being studied in the LHC through a demonstration test using current-bearing wires embedded into col-limator jaws, installed either side of the high luminosity interaction regions. For HL-LHC two options are considered, a current-bearing wire as for the demonstrator, or electron lenses, as the ideal distance between the particle beam and compensating current may be too small to allow the use of solid materials. This paper reports on the ongoing activities for both options, covering the progress of the wire-in-jaw collimators, the foreseen LRBB experiments at the LHC, and first considerations for the design of the electron lenses to ultimately replace material wires for HL-LHC.

  16. Beam-plasma discharge in a Kyoto beam-plasma-ion source

    International Nuclear Information System (INIS)

    Ishikawa, J.; Takagi, T.

    1983-01-01

    A beam-plasma type ion source employing an original operating principle has been developed by the present authors. The ion source consists of an ion extraction region with an electron gun, a thin long drift tube as the plasma production chamber, and a primary electron beam collector. An electron beam is effectively utilized for the dual purpose of high density plasma production as a result of beam-plasma discharge, and high current ion beam extraction with ion space-charge compensation. A high density plasma of the order of 10 11 --10 13 cm -3 was produced by virtue of the beam-plasma discharge which was caused by the interaction between a space-charge wave on the electron beam and a high frequency plasma wave. The plasma density then produced was 10 2 --10 3 times the density produced only by collisional ionization by the electron beam. In order to obtain a stable beam-plasma discharge, a secondary electron beam emitted from the electron collector should be utilized. The mechanism of the beam-plasma discharge was analyzed by use of a linear theory in the case of the small thermal energy of the electron beam, and by use of a quasilinear theory in the case of the large thermal energy. High current ion beams of more than 0.1 A were extracted even at a low extraction voltage of 1--5 kV

  17. Spatially-Resolved Ion Trajectory Measurements During Cl2 Reactive Ion Beam Etching and Ar Ion Beam Etching

    International Nuclear Information System (INIS)

    Vawter, G. Allen; Woodworth, Joseph R.; Zubrzycki, Walter J.

    1999-01-01

    The angle of ion incidence at the etched wafer location during RIBE and IBE using Cl 2 , Ar and O 2 ion beams has been characterized using an ion energy and angle analyzer. Effects of beam current and accelerator grid bias on beam divergence and the spatial uniformity of the spread of incident angles are measured. It is observed that increased total beam current can lead to reduced current density at the sample stage due to enhanced beam divergence at high currents. Results are related to preferred etch system design for uniform high-aspect-ratio etching across semiconductor wafers

  18. Surface modification of steels and magnesium alloy by high current pulsed electron beam

    Science.gov (United States)

    Hao, Shengzhi; Gao, Bo; Wu, Aimin; Zou, Jianxin; Qin, Ying; Dong, Chuang; An, Jian; Guan, Qingfeng

    2005-11-01

    High current pulsed electron beam (HCPEB) is now developing as a useful tool for surface modification of materials. When concentrated electron flux transferring its energy into a very thin surface layer within a short pulse time, superfast processes such as heating, melting, evaporation and consequent solidification, as well as dynamic stress induced may impart the surface layer with improved physico-chemical and mechanical properties. This paper presents our research work on surface modification of steels and magnesium alloy with HCPEB of working parameters as electron energy 27 keV, pulse duration ∼1 μs and energy density ∼2.2 J/cm2 per pulse. Investigations performed on carbon steel T8, mold steel D2 and magnesium alloy AZ91HP have shown that the most pronounced changes of phase-structure state and properties occurring in the near-surface layers, while the thickness of the modified layer with improved microhardness (several hundreds of micrometers) is significantly greater than that of the heat-affected zone. The formation mechanisms of surface cratering and non-stationary hardening effect in depth are discussed based on the elucidation of non-equilibrium temperature filed and different kinds of stresses formed during pulsed electron beam melting treatment. After the pulsed electron beam treatments, samples show significant improvements in measurements of wear and corrosion resistance.

  19. Surface modification of steels and magnesium alloy by high current pulsed electron beam

    International Nuclear Information System (INIS)

    Hao, Shengzhi; Gao, Bo; Wu, Aimin; Zou, Jianxin; Qin, Ying; Dong, Chuang; An, Jian; Guan, Qingfeng

    2005-01-01

    High current pulsed electron beam (HCPEB) is now developing as a useful tool for surface modification of materials. When concentrated electron flux transferring its energy into a very thin surface layer within a short pulse time, superfast processes such as heating, melting, evaporation and consequent solidification, as well as dynamic stress induced may impart the surface layer with improved physico-chemical and mechanical properties. This paper presents our research work on surface modification of steels and magnesium alloy with HCPEB of working parameters as electron energy 27 keV, pulse duration ∼1 μs and energy density ∼2.2 J/cm 2 per pulse. Investigations performed on carbon steel T8, mold steel D2 and magnesium alloy AZ91HP have shown that the most pronounced changes of phase-structure state and properties occurring in the near-surface layers, while the thickness of the modified layer with improved microhardness (several hundreds of micrometers) is significantly greater than that of the heat-affected zone. The formation mechanisms of surface cratering and non-stationary hardening effect in depth are discussed based on the elucidation of non-equilibrium temperature filed and different kinds of stresses formed during pulsed electron beam melting treatment. After the pulsed electron beam treatments, samples show significant improvements in measurements of wear and corrosion resistance

  20. DAQ Software Contributions, Absolute Scale Energy Calibration and Background Evaluation for the NOvA Experiment at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Flumerfelt, Eric Lewis [Univ. of Tennessee, Knoxville, TN (United States)

    2015-08-01

    The NOvA (NuMI Off-axis ve [nu_e] Appearance) Experiment is a long-baseline accelerator neutrino experiment currently in its second year of operations. NOvA uses the Neutrinos from the Main Injector (NuMI) beam at Fermilab, and there are two main off-axis detectors: a Near Detector at Fermilab and a Far Detector 810 km away at Ash River, MN. The work reported herein is in support of the NOvA Experiment, through contributions to the development of data acquisition software, providing an accurate, absolute-scale energy calibration for electromagnetic showers in NOvA detector elements, crucial to the primary electron neutrino search, and through an initial evaluation of the cosmic background rate in the NOvA Far Detector, which is situated on the surface without significant overburden. Additional support work for the NOvA Experiment is also detailed, including DAQ Server Administration duties and a study of NOvA’s sensitivity to neutrino oscillations into a “sterile” state.

  1. Neutron beam-line shield design for the protein crystallography instrument at the Lujan Center

    International Nuclear Information System (INIS)

    Russell, G.J.; Pitcher, E.J.; Muhrer, G.; Ferguson, P.D.

    2001-01-01

    We have developed a very useful methodology for calculating absolute total (neutron plus gamma-ray) dose equivalent rates for use in the design of neutron beam line shields at a spallation neutron source. We have applied this technique to the design of beam line shields for several new materials science instruments being built at the Manuel Lujan Jr. Neutron Scattering Center. These instruments have a variety of collimation systems and different beam line shielding issues. We show here some specific beam line shield designs for the Protein Crystallography Instrument. (author)

  2. Modified electron beam induced current technique for in(Ga)As/InAsSb superlattice infrared detectors

    Science.gov (United States)

    Yoon, N.; Reyner, C. J.; Ariyawansa, G.; Duran, J. M.; Scheihing, J. E.; Mabon, J.; Wasserman, D.

    2017-08-01

    Electron beam induced current (EBIC) measurements provide a powerful tool for characterizing semiconductor based materials and devices. By measuring the current generated by the electron beam of a scanning electron microscope (SEM), EBIC allows us to extract the minority carrier diffusion length (L) and the surface recombination velocity to diffusivity ratio (S/D) of a material. When combined with information on minority carrier lifetime (τ), for instance from time-resolved photoluminescence measurements, the minority carrier mobility of the material can be extracted. However, the EBIC technique relies heavily on the accurate modeling of the carrier generation and collection process. Traditionally, this was achieved using a combination of empirical analytical expressions (and later Monte Carlo simulations) for carrier generation and analytical diffusion/recombination expressions for carrier collection. This approach introduces significant uncertainties into the extracted material parameters. Here, we present a numerical approach to EBIC modeling which improves the spatial resolution of our model, while also retaining information regarding the relative EBIC signal as a function of incident beam energies and currents. We apply this technique to investigate the temperature dependent minority carrier mobility of InAs/InAsSb and InGaAs/InAsSb strained layer superlattice infrared detectors and compare our results to the values obtained using external quantum efficiency measurements of the same samples. Our approach not only allows for an improvement in the uncertainty of the extracted material parameters, but also offers insight into the material and device behavior as a function of nonequilibrium carrier concentration. The technique presented here offers potentially improved characterization of not only infrared detectors, but a range of semiconductor-based devices.

  3. Experimental observations and theoretical models for beam-beam phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Kheifets, S.

    1981-03-01

    The beam-beam interaction in storage rings exhibits all the characteristics of nonintegrable dynamical systems. Here one finds all kinds of resonances, closed orbits, stable and unstable fixed points, stochastic layers, chaotic behavior, diffusion, etc. The storage ring itself being an expensive device nevertheless while constructed and put into operation presents a good opportunity of experimentally studying the long-time behavior of both conservative (proton machines) and nonconservative (electron machines) dynamical systems - the number of bunch-bunch interactions routinely reaches values of 10/sup 10/-10/sup 11/ and could be increased by decreasing the beam current. At the same time the beam-beam interaction puts practical limits for the yield of the storage ring. This phenomenon not only determines the design value of main storage ring parameters (luminosity, space charge parameters, beam current), but also in fact prevents many of the existing storage rings from achieving design parameters. Hence, the problem has great practical importance along with its enormous theoretical interest. A brief overview of the problem is presented.

  4. Experimental observations and theoretical models for beam-beam phenomena

    International Nuclear Information System (INIS)

    Kheifets, S.

    1981-03-01

    The beam-beam interaction in storage rings exhibits all the characteristics of nonintegrable dynamical systems. Here one finds all kinds of resonances, closed orbits, stable and unstable fixed points, stochastic layers, chaotic behavior, diffusion, etc. The storage ring itself being an expensive device nevertheless while constructed and put into operation presents a good opportunity of experimentally studying the long-time behavior of both conservative (proton machines) and nonconservative (electron machines) dynamical systems - the number of bunch-bunch interactions routinely reaches values of 10 10 -10 11 and could be increased by decreasing the beam current. At the same time the beam-beam interaction puts practical limits for the yield of the storage ring. This phenomenon not only determines the design value of main storage ring parameters (luminosity, space charge parameters, beam current), but also in fact prevents many of the existing storage rings from achieving design parameters. Hence, the problem has great practical importance along with its enormous theoretical interest. A brief overview of the problem is presented

  5. OBSERVATION OF STRONG - STRONG AND OTHER BEAM - BEAM EFFECTS IN RHIC

    International Nuclear Information System (INIS)

    FISCHER, W.; BLASKIEWICZ, M.; BRENNAN, J.M.; CAMERON, P.; CONNOLLY, R.; MONTAG, C.; PEGGS, S.; PILAT, F.; PTITSYN, V.; TEPIKIAN, S.; TRBOJEVIC, D.; VAN ZEIJTS, J.

    2003-01-01

    RHIC is currently the only hadron collider in which strong-strong beam-beam effects can be seen. For the first time, coherent beam-beam modes were observed in a bunched beam hadron collider. Other beam-beam effects in RHIC were observed in operation and in dedicated experiments with gold ions, deuterons and protons. Observations include measurements of beam-beam induced tune shifts, lifetime and emittance growth measurements with and without beam-beam interaction, and background rates as a function of tunes. During ramps unequal radio frequencies in the two rings cause the crossing points to move longitudinally. Thus bunches experience beam-beam interactions only in intervals and the tunes are modulated. In this article we summarize the most important beam-beam observations made so far

  6. Development of a beam current monitor by using an amorphous magnetic core

    International Nuclear Information System (INIS)

    Kobayashi, T.; Ueda, T.; Yoshida, Y.; Miya, K.; Tagawa, S.; Kobayashi, H.

    1993-01-01

    The high performance amorphous magnetic core monitor (ACM) for the measurement of electron beam currents has been developed. This monitor is composed of an amorphous magnetic core, radiation shields, a winding, magnetic absorbers, a ceramic vacuum duct and a SMA connecter. The ACM showed the very fast rise and fall times (< 1 ns), the high sensitivity (5 V/A at 50 Ω load), the good linearity, and good S/N ratio due to the high permeability of the amorphous magnetic core. The monitor works as a primary transformer. The time-response was simulated by an electric circuit analysis code. (orig.)

  7. Ultra-High Density Electron Beams for Beam Radiation and Beam Plasma Interaction

    CERN Document Server

    Anderson, Scott; Frigola, Pedro; Gibson, David J; Hartemann, Fred V; Jacob, Jeremy S; Lim, Jae; Musumeci, Pietro; Rosenzweig, James E; Travish, Gil; Tremaine, Aaron M

    2005-01-01

    Current and future applications of high brightness electron beams, which include advanced accelerators such as the plasma wake-field accelerator (PWFA) and beam-radiation interactions such as inverse-Compton scattering (ICS), require both transverse and longitudinal beam sizes on the order of tens of microns. Ultra-high density beams may be produced at moderate energy (50 MeV) by compression and subsequent strong focusing of low emittance, photoinjector sources. We describe the implementation of this method used at LLNL's PLEIADES ICS x-ray source in which the photoinjector-generated beam has been compressed to 300 fsec duration using the velocity bunching technique and focused to 20 μm rms size using an extremely high gradient, permanent magnet quadrupole (PMQ) focusing system.

  8. Use of cone beam computed tomography in implant dentistry: current concepts, indications and limitations for clinical practice and research.

    Science.gov (United States)

    Bornstein, Michael M; Horner, Keith; Jacobs, Reinhilde

    2017-02-01

    Diagnostic radiology is an essential component of treatment planning in the field of implant dentistry. This narrative review will present current concepts for the use of cone beam computed tomography imaging, before and after implant placement, in daily clinical practice and research. Guidelines for the selection of three-dimensional imaging will be discussed, and limitations will be highlighted. Current concepts of radiation dose optimization, including novel imaging modalities using low-dose protocols, will be presented. For preoperative cross-sectional imaging, data are still not available which demonstrate that cone beam computed tomography results in fewer intraoperative complications such as nerve damage or bleeding incidents, or that implants inserted using preoperative cone beam computed tomography data sets for planning purposes will exhibit higher survival or success rates. The use of cone beam computed tomography following the insertion of dental implants should be restricted to specific postoperative complications, such as damage of neurovascular structures or postoperative infections in relation to the maxillary sinus. Regarding peri-implantitis, the diagnosis and severity of the disease should be evaluated primarily based on clinical parameters and on radiological findings based on periapical radiographs (two dimensional). The use of cone beam computed tomography scans in clinical research might not yield any evident beneficial effect for the patient included. As many of the cone beam computed tomography scans performed for research have no direct therapeutic consequence, dose optimization measures should be implemented by using appropriate exposure parameters and by reducing the field of view to the actual region of interest. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Acceleration, current amplification and emittance in MBE-4, an experimental beam induction linear accelerator for heavy ions

    International Nuclear Information System (INIS)

    Warwick, A.I.; Gough, D.E.; Keefe, D.; Meuth, H.

    1988-10-01

    We report on the implementation of a second schedule of acceleration and current amplification in MBE-4. Control of the beam current within the bunch is improved over that in the first schedule by the addition of several small amplitude induction pulsers to compensate for acceleration errors and to control the ends of the bunch. Measurements of the longitudinal and transverse emittance are presented. 5 refs., 3 figs., 1 tab

  10. Generation and acceleration of high-current annular electron beam in linear induction accelerator and generation of the power microwave radiation from Cherenkov TWT

    International Nuclear Information System (INIS)

    Abubakirov, E.V.; Arkhipov, O.V.; Bobyleva, L.V.

    1990-01-01

    The section of linear induction accelerator (LIA) with a strong guiding magnetic field (up to 1.5 T), with output beam power up to 2 GW and beam pulse duration 60 ns is created and investigated by experiment. The beam energy gain is equal to 10 keV/sm with explosive emission is used; the large length of the beam propagation (1.5 m) without spolling of the beam with high beam energy gain has been established. The microwave radiation power about 30-100 MW has achieved from relativistic Cherenkov travelling wave tube with high exponential gain on the basis of LIA and high-current diode

  11. High current induction linacs

    International Nuclear Information System (INIS)

    Barletta, W.; Faltens, A.; Henestroza, E.; Lee, E.

    1994-07-01

    Induction linacs are among the most powerful accelerators in existence. They have accelerated electron bunches of several kiloamperes, and are being investigated as drivers for heavy ion driven inertial confinement fusion (HIF), which requires peak beam currents of kiloamperes and average beam powers of some tens of megawatts. The requirement for waste transmutation with an 800 MeV proton or deuteron beam with an average current of 50 mA and an average power of 40 MW lies midway between the electron machines and the heavy ion machines in overall difficulty. Much of the technology and understanding of beam physics carries over from the previous machines to the new requirements. The induction linac allows use of a very large beam aperture, which may turn out to be crucial to reducing beam loss and machine activation from the beam halo. The major issues addressed here are transport of high intensity beams, availability of sources, efficiency of acceleration, and the state of the needed technology for the waste treatment application. Because of the transformer-like action of an induction core and the accompanying magnetizing current, induction linacs make the most economic sense and have the highest efficiencies with large beam currents. Based on present understanding of beam transport limits, induction core magnetizing current requirements, and pulse modulators, the efficiencies could be very high. The study of beam transport at high intensities has been the major activity of the HIF community. Beam transport and sources are limiting at low energies but are not significant constraints at the higher energies. As will be shown, the proton beams will be space-charge-dominated, for which the emittance has only a minor effect on the overall beam diameter but does determine the density falloff at the beam edge

  12. Simulation and interpretation of ion beam diagnostics on PBFA-II

    International Nuclear Information System (INIS)

    Mehlhorn, T.A.; Nelson, W.E.; Maenchen, J.E.; Stygar, W.A.; Ruiz, C.L.; Lockner, T.R.; Johnson, D.J.

    1988-03-01

    Ion diode and beam focusing experiments are in progress on PBFA-II working towards an ultimate goal of significant burn of an ICF pellet. Beam diagnostics on these experiments include a Thomson parabola, K/sub alpha/ x-ray pinhole cameras, filtered ion pinhole cameras, and a magnetic spectrometer. We are developing two new computer programs to simulate and interpret the data obtained from these diagnostics. VIDA is a VAX-based program that manipulates and unfolds data from digitized particle and x-ray diagnostic images. VIDA operations include: image display, background substraction, relative-to-absolute coordinate transformations, and image projection into the beam reference frame. PICDIAG allows us to study the effects of time-dependent ion focusing on the performance of ion beam diagnostics. 10 refs., 5 figs

  13. WE-A-207-02: Electron Beam Therapy - Current Status and Future Directions

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Q. [Duke University Medical Center (United States)

    2015-06-15

    In memory of the significant contribution of Dr. Jacques Ovadia to electron beam techniques, this session will review recent, advanced techniques which are reinvigorating the science of electron beam radiation therapy. Recent research efforts in improving both the applicability and quality of the electron beam therapy will be discussed, including modulated electron beam radiotherapy (MERT) and dynamic electron arc radiotherapy (DEAR). Learning Objectives: To learn about recent advances in electron beam therapy, including modulated electron beam therapy and dynamic electron arc therapy (DEAR). Put recent advances in the context of work that Dr. Ovadia pursued during his career in medical physics.

  14. WE-A-207-02: Electron Beam Therapy - Current Status and Future Directions

    International Nuclear Information System (INIS)

    Wu, Q.

    2015-01-01

    In memory of the significant contribution of Dr. Jacques Ovadia to electron beam techniques, this session will review recent, advanced techniques which are reinvigorating the science of electron beam radiation therapy. Recent research efforts in improving both the applicability and quality of the electron beam therapy will be discussed, including modulated electron beam radiotherapy (MERT) and dynamic electron arc radiotherapy (DEAR). Learning Objectives: To learn about recent advances in electron beam therapy, including modulated electron beam therapy and dynamic electron arc therapy (DEAR). Put recent advances in the context of work that Dr. Ovadia pursued during his career in medical physics

  15. Clinical utility of dental cone-beam computed tomography: current perspectives

    Directory of Open Access Journals (Sweden)

    Jaju PP

    2014-04-01

    Full Text Available Prashant P Jaju,1 Sushma P Jaju21Oral Medicine and Radiology, 2Conservative Dentistry and Endodontics, Rishiraj College of Dental Sciences and Research Center, Bhopal, IndiaAbstract: Panoramic radiography and computed tomography were the pillars of maxillofacial diagnosis. With the advent of cone-beam computed tomography, dental practice has seen a paradigm shift. This review article highlights the potential applications of cone-beam computed tomography in the fields of dental implantology and forensic dentistry, and its limitations in maxillofacial diagnosis.Keywords: dental implants, cone-beam computed tomography, panoramic radiography, computed tomography

  16. Implications of an absolute simultaneity theory for cosmology and universe acceleration.

    Science.gov (United States)

    Kipreos, Edward T

    2014-01-01

    An alternate Lorentz transformation, Absolute Lorentz Transformation (ALT), has similar kinematics to special relativity yet maintains absolute simultaneity in the context of a preferred reference frame. In this study, it is shown that ALT is compatible with current experiments to test Lorentz invariance only if the proposed preferred reference frame is locally equivalent to the Earth-centered non-rotating inertial reference frame, with the inference that in an ALT framework, preferred reference frames are associated with centers of gravitational mass. Applying this theoretical framework to cosmological data produces a scenario of universal time contraction in the past. In this scenario, past time contraction would be associated with increased levels of blueshifted light emissions from cosmological objects when viewed from our current perspective. The observation that distant Type Ia supernovae are dimmer than predicted by linear Hubble expansion currently provides the most direct evidence for an accelerating universe. Adjusting for the effects of time contraction on a redshift-distance modulus diagram produces a linear distribution of supernovae over the full redshift spectrum that is consistent with a non-accelerating universe.

  17. Implications of an absolute simultaneity theory for cosmology and universe acceleration.

    Directory of Open Access Journals (Sweden)

    Edward T Kipreos

    Full Text Available An alternate Lorentz transformation, Absolute Lorentz Transformation (ALT, has similar kinematics to special relativity yet maintains absolute simultaneity in the context of a preferred reference frame. In this study, it is shown that ALT is compatible with current experiments to test Lorentz invariance only if the proposed preferred reference frame is locally equivalent to the Earth-centered non-rotating inertial reference frame, with the inference that in an ALT framework, preferred reference frames are associated with centers of gravitational mass. Applying this theoretical framework to cosmological data produces a scenario of universal time contraction in the past. In this scenario, past time contraction would be associated with increased levels of blueshifted light emissions from cosmological objects when viewed from our current perspective. The observation that distant Type Ia supernovae are dimmer than predicted by linear Hubble expansion currently provides the most direct evidence for an accelerating universe. Adjusting for the effects of time contraction on a redshift-distance modulus diagram produces a linear distribution of supernovae over the full redshift spectrum that is consistent with a non-accelerating universe.

  18. Simple beam profile monitor

    Energy Technology Data Exchange (ETDEWEB)

    Gelbart, W.; Johnson, R. R.; Abeysekera, B. [ASD Inc. Garden Bay, BC (Canada); Best Theratronics Ltd Ottawa Ontario (Canada); PharmaSpect Ltd., Burnaby BC (Canada)

    2012-12-19

    An inexpensive beam profile monitor is based on the well proven rotating wire method. The monitor can display beam position and shape in real time for particle beams of most energies and beam currents up to 200{mu}A. Beam shape, position cross-section and other parameters are displayed on a computer screen.

  19. Ion beam neutralization with ferroelectrically generated electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Herleb, U; Riege, H [European Organization for Nuclear Research, Geneva (Switzerland). LHC Division

    1997-12-31

    A technique for ion beam space-charge neutralization with pulsed electron beams is described. The intensity of multiply-charged ions produced with a laser ion source can be enhanced or decreased separately with electron beam trains of MHz repetition rate. These are generated with ferroelectric cathodes, which are pulsed in synchronization with the laser ion source. The pulsed electron beams guide the ion beam in a similar way to the alternating gradient focusing of charged particle beams in circular accelerators such as synchrotrons. This new neutralization technology overcomes the Langmuir-Child space-charge limit and may in future allow ion beam currents to be transported with intensities by orders of magnitude higher than those which can be accelerated today in a single vacuum tube. (author). 6 figs., 10 refs.

  20. Low-energy beam transport studies supporting the spallation neutron source 1-MW beam operation.

    Science.gov (United States)

    Han, B X; Kalvas, T; Tarvainen, O; Welton, R F; Murray, S N; Pennisi, T R; Santana, M; Stockli, M P

    2012-02-01

    The H(-) injector consisting of a cesium enhanced RF-driven ion source and a 2-lens electrostatic low-energy beam transport (LEBT) system supports the spallation neutron source 1 MW beam operation with ∼38 mA beam current in the linac at 60 Hz with a pulse length of up to ∼1.0 ms. In this work, two important issues associated with the low-energy beam transport are discussed: (1) inconsistent dependence of the post-radio frequency quadrupole accelerator beam current on the ion source tilt angle and (2) high power beam losses on the LEBT electrodes under some off-nominal conditions compromising their reliability.

  1. Improvements in absolute seismometer sensitivity calibration using local earth gravity measurements

    Science.gov (United States)

    Anthony, Robert E.; Ringler, Adam; Wilson, David

    2018-01-01

    The ability to determine both absolute and relative seismic amplitudes is fundamentally limited by the accuracy and precision with which scientists are able to calibrate seismometer sensitivities and characterize their response. Currently, across the Global Seismic Network (GSN), errors in midband sensitivity exceed 3% at the 95% confidence interval and are the least‐constrained response parameter in seismic recording systems. We explore a new methodology utilizing precise absolute Earth gravity measurements to determine the midband sensitivity of seismic instruments. We first determine the absolute sensitivity of Kinemetrics EpiSensor accelerometers to 0.06% at the 99% confidence interval by inverting them in a known gravity field at the Albuquerque Seismological Laboratory (ASL). After the accelerometer is calibrated, we install it in its normal configuration next to broadband seismometers and subject the sensors to identical ground motions to perform relative calibrations of the broadband sensors. Using this technique, we are able to determine the absolute midband sensitivity of the vertical components of Nanometrics Trillium Compact seismometers to within 0.11% and Streckeisen STS‐2 seismometers to within 0.14% at the 99% confidence interval. The technique enables absolute calibrations from first principles that are traceable to National Institute of Standards and Technology (NIST) measurements while providing nearly an order of magnitude more precision than step‐table calibrations.

  2. Stability of the coherent quadrupole oscillations excited by the beam-beam interaction

    International Nuclear Information System (INIS)

    Kamiya, Y.; Chao, A.W.

    1983-10-01

    We study the coherent quadrupole motion in the presence of beam-beam interaction, using a linear approximation to the beam-beam force. The corresponding beam-beam limit is determined by evaluating the eigenvalues of a system of linear equations describing the coherent quadrupole motion. We find that the stability of the quadrupole motions imposes severe limits on the beam current, as is the case for the dipole instability. Preliminary results of this study have appeared elsewhere

  3. Application of Beam Diagnostics for Intense Heavy Ion Beams at the GSI UNILAC

    CERN Document Server

    Barth, W; Glatz, J; Groening, L; Richter, S; Yaramishev, S

    2003-01-01

    With the new High Current Injector (HSI) of the GSI UNILAC the beam pulse intensity had been increased by approximately two orders of magnitudes. The HSI was mounted and commissioned in 1999; since this time the UNILAC serves as an injector for the synchrotron SIS, especially for high uranium intensities. Considering the high beam power of up to 1250 kW and the short stopping range for the UNILAC beam energies (≤12 MeV/u), accelerator components could be destroyed, even during a single beam pulse. All diagnostic elements had to be replaced preferably by non-destructive devices. The beam current is mainly measured by beam transformers instead of Faraday cups, beam positions are measured with segmented capacitive pick-ups and secondary beam monitors instead of profile harps. The 24 installed pick-ups are also used to measure intensities, widths and phase of the bunches, as well beam energies by evaluating pick-ups at different positions. The residual gas ionization monitors allow on-line measurements ...

  4. Noninductive current drive in tokamaks

    International Nuclear Information System (INIS)

    Uckan, N.A.

    1985-01-01

    Various current drive mechanisms may be grouped into four classes: (1) injection of energetic particle beams; (2) launching of rf waves; (3) hybrid schemes, which are combinations of various rf schemes (rf plus beams, rf and/or beam plus ohmic heating, etc.); and (4) other schemes, some of which are specific to reactor plasma conditions requiring the presence of alpha particle or intense synchrotron radiation. Particle injection schemes include current drive by neutral beams and relativistic electron beams. The rf schemes include current drive by the lower hybrid (LH) waves, the electron waves, the waves in the ion cyclotron range of frequencies, etc. Only a few of these approaches, however, have been tested experimentally, with the broadest data base available for LH waves. Included in this report are (1) efficiency criteria for current drive, (2) current drive by neutral beam injection, (3) LH current drive, (4) electron cyclotron current drive, (5) current drive by ion cyclotron waves - minority species heating, and (6) current drive by other schemes (such as hybrids and low frequency waves)

  5. How to measure energy of LEReC electron beam with magnetic spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Seletskiy, S. [Brookhaven National Laboratory (BNL), Upton, NY (United States)

    2016-04-11

    For successful cooling the energies of RHIC ion beam and LEReC electron beam must be matched with 10-4 accuracy. While the energy of ions will be known with required accuracy, e-beam energy can have as large initial offset as 5%. The final setting of e-beam energy will be performed by observing either Schottky spectrum or recombination signal from debunched ions co-traveling with the e-beam. Yet, to start observing such signals one has to set absolute energy of electron beam with accuracy better than 10-2, preferably better than 5∙10-3. The aim of this exercise is to determine whether and how such accuracy can be reached by utilizing LEReC 180° bend as a spectrometer.

  6. Auditory working memory predicts individual differences in absolute pitch learning.

    Science.gov (United States)

    Van Hedger, Stephen C; Heald, Shannon L M; Koch, Rachelle; Nusbaum, Howard C

    2015-07-01

    Absolute pitch (AP) is typically defined as the ability to label an isolated tone as a musical note in the absence of a reference tone. At first glance the acquisition of AP note categories seems like a perceptual learning task, since individuals must assign a category label to a stimulus based on a single perceptual dimension (pitch) while ignoring other perceptual dimensions (e.g., loudness, octave, instrument). AP, however, is rarely discussed in terms of domain-general perceptual learning mechanisms. This is because AP is typically assumed to depend on a critical period of development, in which early exposure to pitches and musical labels is thought to be necessary for the development of AP precluding the possibility of adult acquisition of AP. Despite this view of AP, several previous studies have found evidence that absolute pitch category learning is, to an extent, trainable in a post-critical period adult population, even if the performance typically achieved by this population is below the performance of a "true" AP possessor. The current studies attempt to understand the individual differences in learning to categorize notes using absolute pitch cues by testing a specific prediction regarding cognitive capacity related to categorization - to what extent does an individual's general auditory working memory capacity (WMC) predict the success of absolute pitch category acquisition. Since WMC has been shown to predict performance on a wide variety of other perceptual and category learning tasks, we predict that individuals with higher WMC should be better at learning absolute pitch note categories than individuals with lower WMC. Across two studies, we demonstrate that auditory WMC predicts the efficacy of learning absolute pitch note categories. These results suggest that a higher general auditory WMC might underlie the formation of absolute pitch categories for post-critical period adults. Implications for understanding the mechanisms that underlie the

  7. Absolute entropy of ions in methanol

    International Nuclear Information System (INIS)

    Abakshin, V.A.; Kobenin, V.A.; Krestov, G.A.

    1978-01-01

    By measuring the initial thermoelectromotive forces of chains with bromo-silver electrodes in tetraalkylammonium bromide solutions the absolute entropy of bromide-ion in methanol is determined in the 298.15-318.15 K range. The anti Ssub(Brsup(-))sup(0) = 9.8 entropy units value is used for calculation of the absolute partial molar entropy of alkali metal ions and halogenide ions. It has been found that, absolute entropy of Cs + =12.0 entropy units, I - =14.0 entropy units. The obtained ion absolute entropies in methanol at 298.15 K within 1-2 entropy units is in an agreement with published data

  8. Measurements of beam current density and proton fraction of a permanent-magnet microwave ion source

    Energy Technology Data Exchange (ETDEWEB)

    Waldmann, Ole; Ludewigt, Bernhard [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720 (United States)

    2011-11-15

    A permanent-magnet microwave ion source has been built for use in a high-yield, compact neutron generator. The source has been designed to produce up to 100 mA of deuterium and tritium ions. The electron-cyclotron resonance condition is met at a microwave frequency of 2.45 GHz and a magnetic field strength of 87.5 mT. The source operates at a low hydrogen gas pressure of about 0.15 Pa. Hydrogen beams with a current density of 40 mA/cm{sup 2} have been extracted at a microwave power of 450 W. The dependence of the extracted proton beam fraction on wall materials and operating parameters was measured and found to vary from 45% for steel to 95% for boron nitride as a wall liner material.

  9. First Experiences of Beam Presence Detection Based on Dedicated Beam Position Monitors

    CERN Document Server

    Jalal, A; Gasior, M; Todd, B

    2011-01-01

    High intensity particle beam injection into the LHC is only permitted when a low intensity pilot beam is already circulating in the LHC. This requirement addresses some of the risks associated with high intensity injection, and is enforced by a so-called Beam Presence Flag (BPF) system which is part of the interlock chain between the LHC and its injector complex. For the 2010 LHC run, the detection of the presence of this pilot beam was implemented using the LHC Fast Beam Current Transformer (FBCT) system. However, the primary function of the FBCTs, that is reliable measurement of beam currents, did not allow the BPF system to satisfy all quality requirements of the LHC Machine Protection System (MPS). Safety requirements associated with high intensity injections triggered the development of a dedicated system, based on Beam Position Monitors (BPM). This system was meant to work first in parallel with the FBCT BPF system and eventually replace it. At the end of 2010 and in 2011, this new BP...

  10. An absolute dose determination of helical tomotherapy accelerator, TomoTherapy High-Art II

    International Nuclear Information System (INIS)

    Bailat, Claude J.; Buchillier, Thierry; Pachoud, Marc; Moeckli, Raphaeel; Bochud, Francois O.

    2009-01-01

    Purpose: A helical tomotherapy accelerator presents a dosimetric challenge because, to this day, there is no internationally accepted protocol for the determination of the absolute dose. Because of this reality, we investigated the different alternatives for characterizing and measuring the absolute dose of such an accelerator. We tested several dosimetric techniques with various metrological traceabilities as well as using a number of phantoms in static and helical modes. Methods: Firstly, the relationship between the reading of ionization chambers and the absorbed dose is dependent on the beam quality value of the photon beam. For high energy photons, the beam quality is specified by the tissue phantom ratio (TPR 20,10 ) and it is therefore necessary to know the TPR 20,10 to calculate the dose delivered by a given accelerator. This parameter is obtained through the ratio of the absorbed dose at 20 and 10 cm depths in water and was measured in the particular conditions of the tomotherapy accelerator. Afterward, measurements were performed using the ionization chamber (model A1SL) delivered as a reference instrument by the vendor. This chamber is traceable in absorbed dose to water in a Co-60 beam to a water calorimeter of the American metrology institute (NIST). Similarly, in Switzerland, each radiotherapy department is directly traceable to the Swiss metrology institute (METAS) in absorbed dose to water based on a water calorimeter. For our research, this traceability was obtained by using an ionization chamber traceable to METAS (model NE 2611A), which is the secondary standard of our institute. Furthermore, in order to have another fully independent measurement method, we determined the dose using alanine dosimeters provided by and traceable to the British metrology institute (NPL); they are calibrated in absorbed dose to water using a graphite calorimeter. And finally, we wanted to take into account the type of chamber routinely used in clinical practice and

  11. Absolute calibration of photon-number-resolving detectors with an analog output using twin beams

    Czech Academy of Sciences Publication Activity Database

    Peřina Jr., J.; Haderka, Ondřej; Allevi, A.; Bondani, M.

    2014-01-01

    Roč. 104, č. 4 (2014), "041113-1"-"041113-4" ISSN 0003-6951 R&D Projects: GA ČR GAP205/12/0382 Institutional support: RVO:68378271 Keywords : photon- number resolving detector * twin beams * photon fields Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.302, year: 2014

  12. Calculation of beam quality correction factor using Monte Carlo simulation

    International Nuclear Information System (INIS)

    Kawachi, T.; Saitoh, H.; Myojoyama, A.; Katayose, T.; Kojima, T.; Fukuda, K.; Inoue, M.

    2005-01-01

    In recent years, a number of the CyberKnife systems (Accuray C., U.S.) have been increasing significantly. However, the CyberKnife has unique treatment head structure and beam collimating system. Therefore, the global standard protocols can not be adopted for absolute absorbed dose dosimetry in CyberKnife beam. In this work, the energy spectrum of photon and electron from CyberKnife treatment head at 80 cm SSD and several depths in water are simulated with conscientious geometry using by the EGS Monte Carlo method. Furthermore, for calculation of the beam quality correction factor k Q , the mean restricted mass stopping power and the mass energy absorption coefficient of air, water and several chamber wall and waterproofing sleeve materials are calculated. As a result, the factors k Q CyberKnife beam for several ionization chambers are determined. And the relationship between the beam quality index PDD(10) x in CyberKnife beam and k Q is described in this report. (author)

  13. Intense relativistic electron beam: generation and propagation

    International Nuclear Information System (INIS)

    Mittal, K.C.; Mondal, J.

    2010-01-01

    A general review of relativistic electron beam extracted from explosive field emission diode has been presented here. The beam current in the diode gap taking into account cathode and anode plasma expansion velocity and excluding the self magnetic field effect is directly proportional to gap voltage V 3/2 and inversely proportional to the square of the effective diode gap (d-vt). In the limit of high current, self magnetic field focusing effect comes into play and results in a critical current at which pinching will take place. When the diode current exceeds the critical current, the electron flow is in the para-potential regime. Different diode geometries such as planner, coaxial, rod-pinched, reflex triode are discussed qualitatively. When the beam is injected into a vacuum drift tube the propagation of the beam is only possible in presence of a strong axial magnetic field which prevents the beam expansion in the radial direction. If the beam is injected in the drift tube filled with dense plasma, then the redistribution of the plasma electrons effectively neutralizes the beam space charge, resulting subsequent propagation of the beam along the drift tube. The beam propagation through neutral gas is similar to the plasma filled drift tube. In this case both the neutral gas pressure and the beam current regulate the transmission of the REB. (author)

  14. Stable operating regimes in NET with respect to Alfven wave instabilities during neutral beam current drive

    International Nuclear Information System (INIS)

    Eckhartt, D.

    1989-01-01

    Supra-thermal ions can contribute to the steady-state current in future large tokamak machines like NET or ITER. The fast-ion population is generated by collisional slowing-down of high-energy ions which were injected as neutral atoms in quasi-tangential direction and ionized by plasma interactions. Depending on the initial beam shape these fast ions can excite microinstabilities of the Alfven-wave type which are driven by the gradients in velocity-space. The ensuring plasma turbulence is expected to slow down the fast ions very quickly. This effect reduces the current drive efficiency which otherwise is comparable to that of other current drive schemes like lower hybrid waves where the toroidal current is carried by high-energy resonant electrons. (author) 3 refs., 1 fig

  15. Harp, a short pulse, high current electron beam accelerator

    International Nuclear Information System (INIS)

    Prestwich, K.R.

    1974-01-01

    A 3 MV, 800 kA, 24 ns electron beam accelerator is described and the results of initial switching experiments are discussed. The generator will provide a source for studying the physics of processes leading to electron beam driven, inertially confined fusion. The major components of the accelerator are two diodes with a common anode, twelve oil-dielectric Blumleins with low jitter (less than 2 ns) multichannel switches, three intermediate storage capacitors, a trigger pulse generator and two Marx generators. (U.S.)

  16. Absolutely calibrated vacuum ultraviolet spectra in the 150-250-nm range from plasmas generated by the NIKE KrF laser

    International Nuclear Information System (INIS)

    Seely, J.F.; Feldman, Uri; Holland, G.E.; Weaver, J.L.; Mostovych, A.N.; Obenschain, S.P.; Schmitt, A.J.; Lehmberg, R.; Kjornarattanawanich, Benjawan; Back, C.A.

    2005-01-01

    High-resolution vacuum ultraviolet (VUV) spectra were recorded from plasmas generated by the NIKE KrF laser for the purpose of observing emission from the two-plasmon decay instability (TPDI) at 2/3 the NIKE wavelength (165 nm). The targets were irradiated by up to 43 overlapping beams with intensity up to ≅10 14 W/cm 2 and with beam smoothing by induced spatial incoherence (ISI). The targets consisted of planar foils of CH, BN, Al, Si, S, Ti, Pd, and Au. Titanium-doped silica aerogels in Pyrex cylinders were also irradiated. The spectra of the target elements were observed from charge states ranging from the neutral atoms to five times ionized. The spectrometer was absolutely calibrated using synchrotron radiation, and absolute VUV plasma emission intensities were determined. Emission from the TPDI at 165-nm wavelength was not observed from any of the irradiated targets. An upper bound on the possible TPDI emission was less than 4x10 -8 the incident NIKE laser energy. The NIKE laser radiation backscattered from the silica aerogel targets at 248 nm was typically 6x10 -6 the incident NIKE laser energy, and the spectral broadening corresponded to the 1-THz bandwidth of the ISI smoothing. The spectra from the moderately charged plasma ions (up to five times ionized), spectral linewidths, absolute continuum emission level, and slope of the continuum were consistent with plasma temperatures in the 100-300-eV range

  17. Dissociative Recombination and Excitation of CH+5 : Absolute Cross Sections and Branching Fractions

    International Nuclear Information System (INIS)

    Semaniak, J.; Larson, A.; Le Padellec, A.; Stroemholm, C.; Larsson, M.; Rosen, S.; Peverall, R.; Danared, H.; Djuric, N.; Dunn, G.H.; Datz, S.

    1998-01-01

    The heavy-ion storage ring CRYRING was used to measure the absolute dissociative recombination and dissociative excitation cross sections for collision energies below 50 eV. Deduced thermal rates coefficients are consistent with previous beams data but are lower by a factor of 3 than the rates measured by means of the flowing afterglow Langmuir probe technique. A resonant structure in dissociative recombination cross section was found at 9 eV. We have determined the branching fractions in DR of CH + 5 below 0.2 eV. The branching is dominated by three-body CH 3 + H + H and CH 2 + H 2 + H dissociation channels, which occur with branching ratios of ∼0.7 and ∼0.2, respectively; thus methane is a minor species among dissociation products. Both the measured absolute cross sections and branching in dissociative recombination of CH + 5 can have important implications for the models of dense interstellar clouds and abundance of CH 2 , CH 3 and CH 4 in these media. copyright copyright 1998. The American Astronomical Society

  18. Fast ion beam-laser interactions

    International Nuclear Information System (INIS)

    Berry, H.G.; Young, L.; Engstroem, L.; Hardis, J.E.; Somerville, L.P.; Ray, W.J.; Kurtz, C.

    1985-01-01

    The authors are using collinear laser excitation of fast ion beams to study a number of atomic structure problems. The problems include the determination of fine and hyperfine structure in light positive and negative ions, plus measurements of absolute wavelengths of light from two-electron ions. In addition the authors intend to use a similar experimental arrangement to study excitation and decay of high Rydberg states first in the absence of fields and then in crossed electric and magnetic fields

  19. Comparison of three different concepts of high dynamic range and dependability optimised current measurement digitisers for beam loss systems

    CERN Document Server

    Viganò, W; Effinger, E; Venturini, G G; Zamantzas, C

    2012-01-01

    Three Different Concepts of High Dynamic Range and Dependability Optimised Current Measurement Digitisers for Beam Loss Systems will be compared on this paper. The first concept is based on Current to Frequency Conversion, enhanced with an ADC for extending the dynamic range and decreasing the response time. A summary of 3 years’ worth of operational experience with such a system for LHC beam loss monitoring will be given. The second principle is based on an Adaptive Current to Frequency Converter implemented in an ASIC. The basic parameters of the circuit are discussed and compared with measurements. Several measures are taken to harden both circuits against single event effects and to make them tolerant for operation in radioactive environments. The third circuit is based on a Fully Differential Integrator for enhanced dynamic range, where laboratory and test installation measurements will be presented. All circuits are designed to avoid any dead time in the acquisition and have reliability and fail safe...

  20. Energy and integrated dose dependence of MOSFET dosimeter for clinical electron beams

    International Nuclear Information System (INIS)

    Manigandan, D.; Bharanidharan, G.; Aruna, P.; Ganesan, S.; Tamil Kumar, T.; Rai

    2008-01-01

    In this study, the sensitivity (mV/cGy) and integral dose dependence of a MOSFET detector for different clinical electron beams was studied. Calibrated clinical electron beams (Varian 2100) were used for the exposure. A Markus type parallel plate chamber was used for the absolute dose measurements. In order to study the sensitivity of a MOSFET, the response of the ion chamber and MOSFET for the absorbed dose of 100 cGy was measured. The sensitivity of the MOSFET was then expressed as mV/cGy. Sensitivity was measured for 4-18 MeV electron beams. (author)

  1. Verification of the absorbed dose values determined with plane parallel ionization chambers in therapeutic electron beams using ferrous sulfate dosimetry

    International Nuclear Information System (INIS)

    Plaetsen, A. van der; Thierens, H.; Palmans, H.

    2000-01-01

    Absolute and relative dosimetry measurements in clinical electron beams using different detectors were performed at a Philips SL18 accelerator. For absolute dosimetry, ionization chamber measurements with the PTW Markus and PTW Roos plane parallel chambers were performed in water following the recommendations of the TRS-381 Code of Practice, using different options for chamber calibration. The dose results obtained with these ionization chambers using the electron beam calibration method were compared with the dose response of the ferrous sulphate (Fricke) chemical dosimeter. The influence of the choice of detector type on the determination of physical quantities necessary for absolute dose determination was investigated and discussed. Results for d max , R 50 and R p were in agreement within statistical uncertainties when using a diode, diamond or plane parallel chamber. The effective point of measurement for the Markus chamber is found to be shifted 0.5 mm from the front surface of the cavity. Fluence correction factors, h m , for dose determination in electron beams using a PMMA phantom were determined experimentally for both plane parallel chamber types. (author)

  2. Measurements of beam current density and proton fraction of a permanent-magnet microwave ion source.

    Science.gov (United States)

    Waldmann, Ole; Ludewigt, Bernhard

    2011-11-01

    A permanent-magnet microwave ion source has been built for use in a high-yield, compact neutron generator. The source has been designed to produce up to 100 mA of deuterium and tritium ions. The electron-cyclotron resonance condition is met at a microwave frequency of 2.45 GHz and a magnetic field strength of 87.5 mT. The source operates at a low hydrogen gas pressure of about 0.15 Pa. Hydrogen beams with a current density of 40 mA/cm(2) have been extracted at a microwave power of 450 W. The dependence of the extracted proton beam fraction on wall materials and operating parameters was measured and found to vary from 45% for steel to 95% for boron nitride as a wall liner material. © 2011 American Institute of Physics

  3. Multipacting in a coaxial coupler with bias voltage for SRF operation with a large beam current

    Science.gov (United States)

    Liu, Z.-K.; Wang, Ch.; Chang, F.-Y.; Chang, L.-H.; Chang, M.-H.; Chen, L.-J.; Chung, F.-T.; Lin, M.-C.; Lo, C.-H.; Tsai, C.-L.; Tsai, M.-H.; Yeh, M.-S.; Yu, T.-C.

    2016-09-01

    A superconducting radio-frequency (SRF) module is commonly used for a high-energy accelerator; its purpose is to provide energy to the particle beam. Because of the low power dissipation and smaller impedance of a higher-order mode for this module, it can provide more power to the particle beam with better stability through decreasing the couple bunch instability. A RF coupler is necessary to transfer the high power from a RF generator to the cavity. A coupler of coaxial type is a common choice. With high-power operation, it might suffer from multipacting, which is a resonance phenomenon due to re-emission of secondary electrons. Applying a bias voltage between inner and outer conductors of the coaxial coupler might increase or decrease the strength of the multipacting effect. We studied the effect of a bias voltage on multipacting using numerical simulation to track the motion of the electrons. The simulation results and an application for SRF operation with a large beam current are presented in this paper.

  4. Surface modification of TA2 pure titanium by low energy high current pulsed electron beam treatments

    International Nuclear Information System (INIS)

    Gao Yukui

    2011-01-01

    Surface integrity changes of TA2 pure titanium including surface topography, microstructure and nanohardness distribution along surface layer were investigated by different techniques of low energy high current pulsed electron beam treatments (LEHCPEBTs). The surface topography was characterized by SEM. Moreover, the TEM observation and X-ray diffraction analysis were performed to reveal the surface modification mechanism of TA2 pure titanium by LEHCPEBTs. The surface roughness was modified by electron beam treatment and the polishing mechanism was analyzed by studying the cross section microstructure of electron beam treated specimens by SEM and TEM. The results show that the surface finish obtains good polishing quality and there is no phase transformation but the dislocations by LEHCPEBT. Furthermore, the nanohardness in the surface modified layer is improved. The remelt and fine-grain microstructure of surface layer caused by LEHCPEBTs are the main polishing mechanism and the reason of modification of surface topography and the increment in nanohardness is mainly due to the dislocations and fine grains in the modified layer induced by LEHCPEBT.

  5. High-resolution velocimetry in energetic tidal currents using a convergent-beam acoustic Doppler profiler

    Science.gov (United States)

    Sellar, Brian; Harding, Samuel; Richmond, Marshall

    2015-08-01

    An array of single-beam acoustic Doppler profilers has been developed for the high resolution measurement of three-dimensional tidal flow velocities and subsequently tested in an energetic tidal site. This configuration has been developed to increase spatial resolution of velocity measurements in comparison to conventional acoustic Doppler profilers (ADPs) which characteristically use divergent acoustic beams emanating from a single instrument. This is achieved using geometrically convergent acoustic beams creating a sample volume at the focal point of 0.03 m3. Away from the focal point, the array is also able to simultaneously reconstruct three-dimensional velocity components in a profile throughout the water column, and is referred to herein as a convergent-beam acoustic Doppler profiler (C-ADP). Mid-depth profiling is achieved through integration of the sensor platform with the operational commercial-scale Alstom 1 MW DeepGen-IV Tidal Turbine deployed at the European Marine Energy Center, Orkney Isles, UK. This proof-of-concept paper outlines the C-ADP system configuration and comparison to measurements provided by co-installed reference instrumentation. Comparison of C-ADP to standard divergent ADP (D-ADP) velocity measurements reveals a mean difference of 8 mm s-1, standard deviation of 18 mm s-1, and an order of magnitude reduction in realisable length scale. C-ADP focal point measurements compared to a proximal single-beam reference show peak cross-correlation coefficient of 0.96 over 4.0 s averaging period and a 47% reduction in Doppler noise. The dual functionality of the C-ADP as a profiling instrument with a high resolution focal point make this configuration a unique and valuable advancement in underwater velocimetry enabling improved quantification of flow turbulence. Since waves are simultaneously measured via profiled velocities, pressure measurements and surface detection, it is expected that derivatives of this system will be a powerful tool in

  6. Acceleration, current amplification and emittance in MBE-4, an experimental multiple beam induction linear accelerator for heavy ions

    International Nuclear Information System (INIS)

    Warwick, A.I.; Gough, D.E.; Keefe, D.; Meuth, H.

    1989-01-01

    The authors report on the implementation of a second schedule of acceleration and current amplification in MBE-4. Control of the beam current within the bunch is improved over that in the first schedule by the addition of several small amplitude induction pulsers to compensate for acceleration errors and to control the ends of the bunch. Measurements of the longitudinal and transverse emittance are presented. 5 refs., 3 figs., 1 tab

  7. Projective absoluteness for Sacks forcing

    NARCIS (Netherlands)

    Ikegami, D.

    2009-01-01

    We show that Sigma(1)(3)-absoluteness for Sacks forcing is equivalent to the nonexistence of a Delta(1)(2) Bernstein set. We also show that Sacks forcing is the weakest forcing notion among all of the preorders that add a new real with respect to Sigma(1)(3) forcing absoluteness.

  8. Forecasting Error Calculation with Mean Absolute Deviation and Mean Absolute Percentage Error

    Science.gov (United States)

    Khair, Ummul; Fahmi, Hasanul; Hakim, Sarudin Al; Rahim, Robbi

    2017-12-01

    Prediction using a forecasting method is one of the most important things for an organization, the selection of appropriate forecasting methods is also important but the percentage error of a method is more important in order for decision makers to adopt the right culture, the use of the Mean Absolute Deviation and Mean Absolute Percentage Error to calculate the percentage of mistakes in the least square method resulted in a percentage of 9.77% and it was decided that the least square method be worked for time series and trend data.

  9. Performance predictions of a focused ion beam from a laser cooled and compressed atomic beam

    Energy Technology Data Exchange (ETDEWEB)

    Haaf, G. ten; Wouters, S. H. W.; Vredenbregt, E. J. D.; Mutsaers, P. H. A. [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Geer, S. B. van der [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Pulsar Physics, Burghstraat 47, 5614 BC Eindhoven (Netherlands)

    2014-12-28

    Focused ion beams are indispensable tools in the semiconductor industry because of their ability to image and modify structures at the nanometer length scale. Here, we report on performance predictions of a new type of focused ion beam based on photo-ionization of a laser cooled and compressed atomic beam. Particle tracing simulations are performed to investigate the effects of disorder-induced heating after ionization in a large electric field. They lead to a constraint on this electric field strength which is used as input for an analytical model which predicts the minimum attainable spot size as a function of, amongst others, the flux density of the atomic beam, the temperature of this beam, and the total current. At low currents (I < 10 pA), the spot size will be limited by a combination of spherical aberration and brightness, while at higher currents, this is a combination of chromatic aberration and brightness. It is expected that a nanometer size spot is possible at a current of 1 pA. The analytical model was verified with particle tracing simulations of a complete focused ion beam setup. A genetic algorithm was used to find the optimum acceleration electric field as a function of the current. At low currents, the result agrees well with the analytical model, while at higher currents, the spot sizes found are even lower due to effects that are not taken into account in the analytical model.

  10. Current Status of the Beam Position Monitoring System at TLS

    Science.gov (United States)

    Kuo, C. H.; Hu, K. H.; Chen, Jenny; Lee, Demi; Wang, C. J.; Hsu, S. Y.; Hsu, K. T.

    2006-11-01

    The beam position monitoring system is an important part of a synchrotron light source that supports its routine operation and studies of beam physics. The Taiwan light source is equipped with 59 BPMs. Highly precise closed orbits are measured by multiplexing BPMs. Data are acquired using multi-channel 16-bit ADC modules. Orbit data are sampled every millisecond. Fast orbit data are shared in a reflective memory network to support fast orbit feedback. Averaged data were updated to control database at a rate of 10 Hz. A few new generation digital BPMs were tested to evaluate their performance and functionality. This report summarizes the system structure, the software environment and the preliminary beam test of the BPM system.

  11. ATLAS ALFA—measuring absolute luminosity with scintillating fibres

    CERN Document Server

    Franz, S

    2009-01-01

    ALFA is a high-precision scintillating fibre tracking detector under construction for the absolute determination of the LHC luminosity at the ATLAS interaction point. This detector, mounted in so-called Roman Pots, will track protons elastically scattered under μrad angles at IP1.In total there are four pairs of vertically arranged detector modules which approach the LHC beam axis to mm distance. Each detector module consists of ten layers of two times 64 scintillating fibres each (U and V planes). The fibres are coupled to 64 channels Multi-Anodes PhotoMultipliers Tubes read out by compact front-end electronics. Each detector module is complemented by so-called overlap detectors: Three layers of two times 30 scintillating fibres which will be used to measure the relative positioning of two vertically arranged main detectors. The total number of channels is about 15000. Conventional plastic scintillator tiles are mounted in front of the fibre detectors and will serve as trigger counter. The extremely restric...

  12. Current-driven ion-acoustic and potential-relaxation instabilities excited in plasma plume during electron beam welding

    Energy Technology Data Exchange (ETDEWEB)

    Trushnikov, D. N., E-mail: trdimitr@yandex.ru [The department for Applied Physics, Perm National Research Polytechnic University, Perm, 614990 (Russian Federation); Mladenov, G. M., E-mail: gmmladenov@abv.bg; Koleva, E. G., E-mail: eligeorg@abv.bg [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko Shose, 1784, Sofia (Bulgaria); Technology Centre of Electron Beam and Plasma Technologies and Techniques, 68-70 Vrania, ap.10, Banishora,1309, Sofia (Bulgaria); Belenkiy, V. Ya., E-mail: mtf@pstu.ru; Varushkin, S. V., E-mail: stepan.varushkin@mail.ru [The department for Welding Production and Technology of Constructional Materials, Perm National Research Polytechnic University, Perm, 614990 (Russian Federation)

    2014-04-15

    Many papers have sought correlations between the parameters of secondary particles generated above the beam/work piece interaction zone, dynamics of processes in the keyhole, and technological processes. Low- and high-frequency oscillations of the current, collected by plasma have been observed above the welding zone during electron beam welding. Low-frequency oscillations of secondary signals are related to capillary instabilities of the keyhole, however; the physical mechanisms responsible for the high-frequency oscillations (>10 kHz) of the collected current are not fully understood. This paper shows that peak frequencies in the spectra of the collected high-frequency signal are dependent on the reciprocal distance between the welding zone and collector electrode. From the relationship between current harmonics frequency and distance of the collector/welding zone, it can be estimated that the draft velocity of electrons or phase velocity of excited waves is about 1600 m/s. The dispersion relation with the properties of ion-acoustic waves is related to electron temperature 10 000 K, ion temperature 2 400 K and plasma density 10{sup 16} m{sup −3}, which is analogues to the parameters of potential-relaxation instabilities, observed in similar conditions. The estimated critical density of the transported current for creating the anomalous resistance state of plasma is of the order of 3 A·m{sup −2}, i.e. 8 mA for a 3–10 cm{sup 2} collector electrode. Thus, it is assumed that the observed high-frequency oscillations of the current collected by the positive collector electrode are caused by relaxation processes in the plasma plume above the welding zone, and not a direct demonstration of oscillations in the keyhole.

  13. Beam dynamics

    International Nuclear Information System (INIS)

    Abell, D; Adelmann, A; Amundson, J; Dragt, A; Mottershead, C; Neri, F; Pogorelov, I; Qiang, J; Ryne, R; Shalf, J; Siegerist, C; Spentzouris, P; Stern, E; Venturini, M; Walstrom, P

    2006-01-01

    We describe some of the accomplishments of the Beam Dynamics portion of the SciDAC Accelerator Science and Technology project. During the course of the project, our beam dynamics software has evolved from the era of different codes for each physical effect to the era of hybrid codes combining start-of-the-art implementations for multiple physical effects to the beginning of the era of true multi-physics frameworks. We describe some of the infrastructure that has been developed over the course of the project and advanced features of the most recent developments, the interplay betwen beam studies and simulations and applications to current machines at Fermilab. Finally we discuss current and future plans for simulations of the International Linear Collider

  14. Characterisation of the incident beam and current diffraction capabilities on the VESUVIO spectrometer

    Science.gov (United States)

    Romanelli, G.; Krzystyniak, M.; Senesi, R.; Raspino, D.; Boxall, J.; Pooley, D.; Moorby, S.; Schooneveld, E.; Rhodes, N. J.; Andreani, C.; Fernandez-Alonso, F.

    2017-09-01

    The VESUVIO spectrometer at the ISIS pulsed neutron and muon source is a unique instrument amongst those available at neutron facilities. This is the only inverted-geometry neutron spectrometer accessing values of energy and wavevector transfer above tens of eV and {\\mathringA}-1 , respectively, and where deep inelastic neutron scattering experiments are routinely performed. As such, the procedure at the base of the technique has been previously described in an article published by this journal (Mayers and Reiter 2012 Meas. Sci. Technol. 23 045902). The instrument has recently witnessed an upsurge of interest due to a new trend to accommodate, within a single experiment, neutron diffraction and transmission measurements in addition to deep inelastic neutron scattering. This work presents a broader description of the instrument following these recent developments. In particular, we assess the absolute intensity and two-dimensional profile of the incident neutron beam and the capabilities of the backscattering diffraction banks. All results are discussed in the light of recent changes to the moderator viewed by the instrument. We find that VESUVIO has to be considered a high-resolution diffractometer as much as other diffractometers at ISIS, with a resolution as high as 2× 10-3 in backscattering. Also, we describe the extension of the wavelength range of the instrument to include lower neutron energies for diffraction measurements, an upgrade that could be readily applied to other neutron instruments as well.

  15. SU-F-T-345: Quasi-Dead Beams: Clinical Relevance and Implications for Automatic Planning

    Energy Technology Data Exchange (ETDEWEB)

    Price, R; Veltchev, I; Lin, T; Gleason, R; Ma, C [Fox Chase Cancer Center, Philadelphia, PA (United States)

    2016-06-15

    Purpose: Beam direction selection for fixed-beam IMRT planning is typically a manual process. Severe dose-volume limits on critical structures in the thorax often result in atypical selection of beam directions as compared to other body sites. This work demonstrates the potential consequences as well as clinical relevance. Methods: 21 thoracic cases treated with 5–7 beam directions, 6 cases including non-coplanar arrangements, with fractional doses of 150–411cGy were analyzed. Endpoints included per-beam modulation scaling factor (MSF), variation from equal weighting, and delivery QA passing rate. Results: During analysis of patient-specific delivery QA a sub-standard passing rate was found for a single 5-field plan (90.48% of pixels evaluated passing 3% dose, 3mm DTA). During investigation it was found that a single beam demonstrated a MSF of 34.7 and contributed only 2.7% to the mean dose of the target. In addition, the variation from equal weighting for this beam was 17.3% absolute resulting in another beam with a MSF of 4.6 contributing 41.9% to the mean dose to the target; a variation of 21.9% from equal weighting. The average MSF for the remaining 20 cases was 4.0 (SD 1.8) with an average absolute deviation of 2.8% from equal weighting (SD 3.1%). Conclusion: Optimization in commercial treatment planning systems typically results in relatively equally weighted beams. Extreme variation from this can result in excessively high MSFs (very small segments) and potential decreases in agreement between planned and delivered dose distributions. In addition, the resultant beam may contribute minimal dose to the target (quasi-dead beam); a byproduct being increased treatment time and associated localization uncertainties. Potential ramifications exist for automatic planning algorithms should they allow for user-defined beam directions. Additionally, these quasi-dead beams may be embedded in the libraries for model-based systems potentially resulting in inefficient

  16. Electron-Cloud Simulation and Theory for High-Current Heavy-Ion Beams

    International Nuclear Information System (INIS)

    Cohen, R; Friedman, A; Lund, S; Molvik, A; Lee, E; Azevedo, T; Vay, J; Stoltz, P; Veitzer, S

    2004-01-01

    Stray electrons can arise in positive-ion accelerators for heavy ion fusion or other applications as a result of ionization of ambient gas or gas released from walls due to halo-ion impact, or as a result of secondary- electron emission. We summarize the distinguishing features of electron cloud issues in heavy-ion-fusion accelerators and a plan for developing a self-consistent simulation capability for heavy-ion beams and electron clouds. We also present results from several ingredients in this capability: (1) We calculate the electron cloud produced by electron desorption from computed beam-ion loss, which illustrates the importance of retaining ion reflection at the walls. (2) We simulate of the effect of specified electron cloud distributions on ion beam dynamics. We consider here electron distributions with axially varying density, centroid location, or radial shape, and examine both random and sinusoidally varying perturbations. We find that amplitude variations are most effective in spoiling ion beam quality, though for sinusoidal variations which match the natural ion beam centroid oscillation or breathing mode frequencies, the centroid and shape perturbations can also have significant impact. We identify an instability associated with a resonance between the beam-envelope ''breathing'' mode and the electron perturbation. We estimate its growth rate, which is moderate (compared to the reciprocal of a typical pulse duration). One conclusion from this study is that heavy-ion beams are surprisingly robust to electron clouds, compared to a priori expectations. (3) We report first results from a long-timestep algorithm for electron dynamics, which holds promise for efficient simultaneous solution of electron and ion dynamics

  17. Electron-cloud simulation and theory for high-current heavy-ion beams

    Directory of Open Access Journals (Sweden)

    R. H. Cohen

    2004-12-01

    Full Text Available Stray electrons can arise in positive-ion accelerators for heavy-ion fusion or other applications as a result of ionization of ambient gas or gas released from walls due to halo-ion impact, or as a result of secondary-electron emission. We summarize the distinguishing features of electron-cloud issues in heavy-ion-fusion accelerators and a plan for developing a self-consistent simulation capability for heavy-ion beams and electron clouds (also applicable to other accelerators. We also present results from several ingredients in this capability. (1 We calculate the electron cloud produced by electron desorption from computed beam-ion loss, which illustrates the importance of retaining ion reflection at the walls. (2 We simulate the effect of specified electron-cloud distributions on ion beam dynamics. We consider here electron distributions with axially varying density, centroid location, or radial shape, and examine both random and sinusoidally varying perturbations. We find that amplitude variations are most effective in spoiling ion beam quality, though for sinusoidal variations which match the natural ion beam centroid oscillation or breathing-mode frequencies, the centroid and shape perturbations can also have significant impact. We identify an instability associated with a resonance between the beam-envelope “breathing” mode and the electron perturbation. We estimate its growth rate, which is moderate (compared to the reciprocal of a typical pulse duration. One conclusion from this study is that heavy-ion beams are surprisingly robust to electron clouds, compared to a priori expectations. (3 We report first results from a long-time-step algorithm for electron dynamics, which holds promise for efficient simultaneous solution of electron and ion dynamics.

  18. 1-MeV electron beam propagation experiments in neutral gas

    International Nuclear Information System (INIS)

    Greenspan, M.A.; Rose, E.A.

    1984-01-01

    Experiments were performed studying the propagation of a 1-MeV, 10-ns electron beam at currents of 2-8 kA. Propagation was studied in a 7.6-cm-diam glass guide tube, the same tube with a conducting screen inside, and in a 3.4-m-diam chamber. In the guide tube with the screen, ion-focused propagation is observed at low pressures (≤ 40 Pa) with net current equal to beam current. At higher pressures (55-130 Pa), a notch in beam current is observed for pressure time products of ≅ 100 Pa-ns. Between 270 Pa and 1070 Pa, good propagation is again observed with net currents of 50-70% of the beam current. The net current fraction of beam current increases with increasing pressure and with decreasing beam current. At pressure above 1070 Pa, hose instability occurs, and net current nearly equal to beam current is observed. The hose frequency is in reasonable accord with theory. Nose erosion is minimized at pressures for 1000-2000 Pa depending on beam current, and increases at lower and higher pressures

  19. Harmonics generation of a terahertz wakefield free-electron laser from a dielectric loaded waveguide excited by a direct current electron beam.

    Science.gov (United States)

    Li, Weiwei; Lu, Yalin; He, Zhigang; Jia, Qika; Wang, Lin

    2016-06-01

    We propose to generate high-power terahertz (THz) radiation from a cylindrical dielectric loaded waveguide (DLW) excited by a direct-current electron beam with the harmonics generation method. The DLW supports a discrete set of modes that can be excited by an electron beam passing through the structure. The interaction of these modes with the co-propagating electron beam results in micro-bunching and the coherent enhancement of the wakefield radiation, which is dominated by the fundamental mode. By properly choosing the parameters of DLW and beam energy, the high order modes can be the harmonics of the fundamental one; thus, high frequency radiation corresponding to the high order modes will benefit from the dominating bunching process at the fundamental eigenfrequency and can also be coherently excited. With the proposed method, high power THz radiation can be obtained with an easily achievable electron beam and a large DLW structure.

  20. Ion-beam Plasma Neutralization Interaction Images

    Energy Technology Data Exchange (ETDEWEB)

    Igor D. Kaganovich; Edward Startsev; S. Klasky; Ronald C. Davidson

    2002-04-09

    Neutralization of the ion beam charge and current is an important scientific issue for many practical applications. The process of ion beam charge and current neutralization is complex because the excitation of nonlinear plasma waves may occur. Computer simulation images of plasma neutralization of the ion beam pulse are presented.

  1. Ion-beam Plasma Neutralization Interaction Images

    International Nuclear Information System (INIS)

    Igor D. Kaganovich; Edward Startsev; S. Klasky; Ronald C. Davidson

    2002-04-01

    Neutralization of the ion beam charge and current is an important scientific issue for many practical applications. The process of ion beam charge and current neutralization is complex because the excitation of nonlinear plasma waves may occur. Computer simulation images of plasma neutralization of the ion beam pulse are presented

  2. SQUID based cryogenic current comparator for measurements of the dark current of superconducting cavities

    Energy Technology Data Exchange (ETDEWEB)

    Vodel, W.; Nietzsche, S.; Neubert, R.; Nawrodt, R. [Friedrich Schiller Univ. Jena (Germany); Peters, A. [GSI Darmstadt (Germany); Knaack, K.; Wendt, M.; Wittenburg, K. [DESY Hamburg (Germany)

    2005-07-01

    The linear accelerator technology, based on super-conducting L-band (1.3 GHz) is currently under study at DESY (Hamburg, Germany). The two 10 km long main Linacs will be equipped with a total of nearly 20.000 cavities. The dark current due to the emission of electrons in these high gradient field super-conducting cavities is an unwanted particle source. A newly high performance SQUID based measurement system for detecting dark currents is proposed. It makes use of the Cryogenic Current Comparator principle and senses dark currents in the pA range with a measurement bandwidth of up to 70 kHz. The use of a cryogenic current comparator as dark current sensor has some important advantages: -) the measurement of the absolute value of the dark current, -) the non-dependence on the electron trajectories, -) the accurate absolute calibration with an additional wire loop, and -) extremely high resolution.

  3. Sheet Beam Klystron Instability Analysis

    International Nuclear Information System (INIS)

    Bane, K.

    2009-01-01

    Using the principle of energy balance we develop a 2D theory for calculating growth rates of instability in a two-cavity model of a sheet beam klystron. An important ingredient is a TE-like mode in the gap that also gives a longitudinal kick to the beam. When compared with a self-consistent particle-in-cell calculation, with sheet beam klystron-type parameters, agreement is quite good up to half the design current, 65 A; at full current, however, other, current-dependent effects come in and the results deviate significantly

  4. Dose properties of x-ray beams produced by laser-wakefield-accelerated electrons

    International Nuclear Information System (INIS)

    Kainz, K K; Hogstrom, K R; Antolak, J A; Almond, P R; Bloch, C D

    2005-01-01

    Given that laser wakefield acceleration (LWFA) has been demonstrated experimentally to accelerate electron beams to energies beyond 25 MeV, it is reasonable to assess the ability of existing LWFA technology to compete with conventional radiofrequency linear accelerators in producing electron and x-ray beams for external-beam radiotherapy. We present calculations of the dose distributions (off-axis dose profiles and central-axis depth dose) and dose rates of x-ray beams that can be produced from electron beams that are generated using state-of-the-art LWFA. Subsets of an LWFA electron energy distribution were propagated through the treatment head elements (presuming an existing design for an x-ray production target and flattening filter) implemented within the EGSnrc Monte Carlo code. Three x-ray energy configurations (6 MV, 10 MV and 18 MV) were studied, and the energy width ΔE of the electron-beam subsets varied from 0.5 MeV to 12.5 MeV. As ΔE increased from 0.5 MeV to 4.5 MeV, we found that the off-axis and central-axis dose profiles for x-rays were minimally affected (to within about 3%), a result slightly different from prior calculations of electron beams broadened by scattering foils. For ΔE of the order of 12 MeV, the effect on the off-axis profile was of the order of 10%, but the central-axis depth dose was affected by less than 2% for depths in excess of about 5 cm beyond d max . Although increasing ΔE beyond 6.5 MeV increased the dose rate at d max by more than 10 times, the absolute dose rates were about 3 orders of magnitude below those observed for LWFA-based electron beams at comparable energies. For a practical LWFA-based x-ray device, the beam current must be increased by about 4-5 orders of magnitude. (note)

  5. Applications of electron lenses: scraping of high-power beams, beam-beam compensation, and nonlinear optics

    Energy Technology Data Exchange (ETDEWEB)

    Stancari, Giulio

    2014-09-11

    Electron lenses are pulsed, magnetically confined electron beams whose current-density profile is shaped to obtain the desired effect on the circulating beam. Electron lenses were used in the Fermilab Tevatron collider for bunch-by-bunch compensation of long-range beam-beam tune shifts, for removal of uncaptured particles in the abort gap, for preliminary experiments on head-on beam-beam compensation, and for the demonstration of halo scraping with hollow electron beams. Electron lenses for beam-beam compensation are being commissioned in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL). Hollow electron beam collimation and halo control were studied as an option to complement the collimation system for the upgrades of the Large Hadron Collider (LHC) at CERN; a conceptual design was recently completed. Because of their electric charge and the absence of materials close to the proton beam, electron lenses may also provide an alternative to wires for long-range beam-beam compensation in LHC luminosity upgrade scenarios with small crossing angles. At Fermilab, we are planning to install an electron lens in the Integrable Optics Test Accelerator (IOTA, a 40-m ring for 150-MeV electrons) as one of the proof-of-principle implementations of nonlinear integrable optics to achieve large tune spreads and more stable beams without loss of dynamic aperture.

  6. A machine protection beam position monitor system

    International Nuclear Information System (INIS)

    Medvedko, E.; Smith, S.; Fisher, A.

    1998-01-01

    Loss of the stored beam in an uncontrolled manner can cause damage to the PEP-II B Factory. We describe here a device which detects large beam position excursions or unexpected beam loss and triggers the beam abort system to extract the stored beam safely. The bad-orbit abort trigger beam position monitor (BOAT BPM) generates a trigger when the beam orbit is far off the center (>20 mm), or rapid beam current loss (dI/dT) is detected. The BOAT BPM averages the input signal over one turn (136 kHz). AM demodulation is used to convert input signals at 476 MHz to baseband voltages. The detected signal goes to a filter section for suppression of the revolution frequency, then on to amplifiers, dividers, and comparators for position and current measurements and triggering. The derived current signal goes to a special filter, designed to perform dI/dT monitoring at fast, medium, and slow current loss rates. The BOAT BPM prototype test results confirm the design concepts. copyright 1998 American Institute of Physics

  7. Simulative research on the expansion of cathode plasma in high-current electron beam diode

    International Nuclear Information System (INIS)

    Xu Qifu; Liu Lie

    2012-01-01

    The expansion of cathode plasma has long been recognized as a limiting factor in the impedance lifetime of high-current electron beam diode. Realistic modeling of such plasma is of great necessity in order to discuss the dynamics of cathode plasma. Using the method of particle-in-cell, the expansion of cathode plasma is simulated in this paper by a scaled-down diode model. It is found that the formation of cathode plasma increases the current density in the diode. This consequently leads to the decrease of the potential at plasma front. Once the current density has been increased to a certain value, the potential at plasma front would then be equal to or lower than the plasma potential. Then the ions would move towards the anode, and the expansion of cathode plasma is thereby formed. Different factors affecting the plasma expansion velocity are discussed in this paper. It is shown that the decrease of proton genatation rate has the benefit of reducing the plasma expansion velocity.

  8. Consideration of beam plasma ion-source

    International Nuclear Information System (INIS)

    Sano, Fumimichi; Kusano, Norimasa; Ishida, Yoshihiro; Ishikawa, Junzo; Takagi, Toshinori

    1976-01-01

    Theoretical and experimental analyses and their comparison were made on the plasma generation and on the beam extraction for the beam plasma ion-source. The operational principle and the structure of the ion-source are explained in the first part. Considerations are given on the electron beam-plasma interaction and the resulting generation of high frequency or microwaves which in turn increases the plasma density. The flow of energy in this system is also explained in the second part. The relation between plasma density and the imaginary part of frequency is given by taking the magnetic flux density, the electron beam energy, and the electron beam current as parameters. The relations between the potential difference between collector and drift tube and the plasma density or the ion-current are also given. Considerations are also given to the change of the plasma density due to the change of the magnetic flux density at drift tube, the change of the electron beam energy, and the change of the electron beam current. The third part deals with the extraction characteristics of the ion beam. The structure of the multiple-aperture electrode and the relation between plasma density and the extracted ion current are explained. (Aoki, K.)

  9. Beam energy reduction in an acceleration gap

    International Nuclear Information System (INIS)

    Rhee, M.J.

    1990-01-01

    The subject of high-current accelerators has recently attracted considerable attention. The high-current beam accompanies a substantial amount of field energy in the space between the beam and the drift tube wall, as it propagates through a conducting drift tube of accelerator system. While such a beam is being accelerated in a gap, this field energy is subject to leak through the opening of the gap. The amount of energy lost in the gap is replenished by the beam at the expense of its kinetic energy. In this paper, the authors present a simple analysis of field energy loss in an acceleration gap for a relativistic beam for which beam particle velocity equals to c. It is found that the energy loss, which in turn reduces the beam kinetic energy, is ΔV = IZ 0 : the beam current times the characteristic impedance of the acceleration gap. As a result, the apparent acceleration voltage of the gap is reduced from the applied voltage by ΔV. This effect, especially for generation of high-current beam accelerated by a multigap accelerator, appears to be an important design consideration. The energy reduction mechanism and a few examples are presented

  10. Low energy beam transport system developments

    Energy Technology Data Exchange (ETDEWEB)

    Dudnikov, V., E-mail: vadim@muonsinc.com [Muons, Inc., Batavia, IL 60510 (United States); Han, B.; Stockli, M.; Welton, R. [ORNL, Oak Ridge, TN 37831 (United States); Dudnikova, G. [University of Maryland, College Park, MD 3261 (United States); Institute of Computational Technologies SBRAS, Novosibirsk (Russian Federation)

    2015-04-08

    For high brightness beam production it is important to preserve the brightness in the low energy beam transport system (LEBT) used to transport and match the ion beams to the next stage of acceleration, usually an RFQ. While electrostatic focusing can be problematic for high current beam transport, reliable electrostatic LEBT operation has been demonstrated with H{sup −} beams up to 60 mA. Now, however, it is commonly accepted that an optimal LEBT for high current accelerator applications consists of focusing solenoids with space charge compensation. Two-solenoid LEBTs are successfully used for high current (>100 mA) proton beam transport. Preservation of low emittances (~0.15 π mm-mrad) requires the addition of a heavy gas (Xe, Kr), which causes ~5% of proton loss in a 1 m long LEBT. Similar Xe densities would be required to preserve low emittances of H{sup −} beams, but such gas densities cause unacceptably high H{sup −} beam losses. A short LEBT with only one short solenoid, movable for RFQ matching, can be used for reduced negative ion stripping. A strong electrostatic-focusing LEBT has been successfully adopted for transport of high current H{sup −} beams in the SNS Front End. Some modifications of such electrostatic LEBTs are expected to improve the reliable transport of intense positive and negative ion beams without greatly degrading their low emittances. We concentrate on processes that determine the beam brightness degradation and on their prevention. Proposed improvements to the SNS electrostatic LEBT are discussed.

  11. Experimental investigation of focusing and transport of heavy-current electron beams

    International Nuclear Information System (INIS)

    Baranchikov, E.I.; Gordeev, A.V.; Koba, Yu.V.; Korolev, V.D.; Pen'kina, V.S.; Rudakov, L.I.; Smirnov, V.P.; Sukhov, A.D.; Tarumov, E.Z.

    The results of an experimental and theoretical study of beam transfer through transverse magnetic fields are outlined. The injection and transport of an annular relativistic electron beam due to a magnetic trap of acute-angle geometry are experimentally studied

  12. Variance computations for functional of absolute risk estimates.

    Science.gov (United States)

    Pfeiffer, R M; Petracci, E

    2011-07-01

    We present a simple influence function based approach to compute the variances of estimates of absolute risk and functions of absolute risk. We apply this approach to criteria that assess the impact of changes in the risk factor distribution on absolute risk for an individual and at the population level. As an illustration we use an absolute risk prediction model for breast cancer that includes modifiable risk factors in addition to standard breast cancer risk factors. Influence function based variance estimates for absolute risk and the criteria are compared to bootstrap variance estimates.

  13. Optimal conditions for high current proton irradiations at the university of Wisconsin's ion beam laboratory

    International Nuclear Information System (INIS)

    Wetteland, C. J.; Field, K. G.; Gerczak, T. J.; Eiden, T. J.; Maier, B. R.; Albakri, O.; Sridharan, K.; Allen, T. R.

    2013-01-01

    The National Electrostatics Corporation's (NEC) Toroidal Volume Ion Source (TORVIS) source is known for exceptionally high proton currents with minimal service downtime as compared to traditional sputter sources. It has been possible to obtain over 150μA of proton current from the source, with over 70μA on the target stage. However, beam fluxes above ∼1×10 17 /m2-s may have many undesirable effects, especially for insulators. This may include high temperature gradients at the surface, sputtering, surface discharge, cracking or even disintegration of the sample. A series of experiments were conducted to examine the role of high current fluxes in a suite of ceramics and insulating materials. Results will show the optimal proton irradiation conditions and target mounting strategies needed to minimize unwanted macro-scale damage, while developing a procedure for conducting preliminary radiation experiments.

  14. Absolute determination of the deuterium content of heavy water, measurement of absolute density

    International Nuclear Information System (INIS)

    Ceccaldi, M.; Riedinger, M.; Menache, M.

    1975-01-01

    The absolute density of two heavy water samples rich in deuterium (with a grade higher than 99.9%) was determined with the hydrostatic method. The exact isotopic composition of this water (hydrogen and oxygen isotopes) was very carefully studied. A theoretical estimate enabled us to get the absolute density value of isotopically pure D 2 16 O. This value was found to be 1104.750 kg.m -3 at t 68 =22.3 0 C and under the pressure of one atmosphere. (orig.) [de

  15. Beam-dynamic effects at the CMS BRIL van der Meer scans

    CERN Document Server

    Babaev, Anton

    2017-01-01

    The CMS Beam Radiation Instrumentation and Luminosity Project (BRIL) is responsible for the simulation and measurement of luminosity, beam conditions and radiation fields in the CMS experiment. The project is engaged in operating and developing new detectors (luminometers), adequate for the experimental conditions associated with high values of instantaneous luminosity delivered by the CERN LHC. BRIL operates several detectors based on different physical principles and technologies. Precise and accurate measurements of the delivered luminosity is of paramount importance for the CMS physics program. The absolute calibration of luminosity is achieved by the van der Meer method, which is carried out under specially tailored conditions. This paper presents models used to simulate of beam-dynamic effects arising due to the electromagnetic interaction of colliding bunches. These effects include beam-beam deflection and dynamic-beta effect. Both effects are important to luminosity measurements and influence calibrat...

  16. The current status of cone beam computed tomography imaging in orthodontics

    Science.gov (United States)

    Kapila, S; Conley, R S; Harrell, W E

    2011-01-01

    Cone beam CT (CBCT) has become an increasingly important source of three dimensional (3D) volumetric data in clinical orthodontics since its introduction into dentistry in 1998. The purpose of this manuscript is to highlight the current understanding of, and evidence for, the clinical use of CBCT in orthodontics, and to review the findings to answer clinically relevant questions. Currently available information from studies using CBCT can be organized into five broad categories: 1, the assessment of CBCT technology; 2, its use in craniofacial morphometric analyses; 3, incidental and missed findings; 4, analysis of treatment outcomes; and 5, efficacy of CBCT in diagnosis and treatment planning. The findings in these topical areas are summarized, followed by current indications and protocols for the use of CBCT in specific cases. Despite the increasing popularity of CBCT in orthodontics, and its advantages over routine radiography in specific cases, the effects of information derived from these images in altering diagnosis and treatment decisions has not been demonstrated in several types of cases. It has therefore been recommended that CBCT be used in select cases in which conventional radiography cannot supply satisfactory diagnostic information; these include cleft palate patients, assessment of unerupted tooth position, supernumerary teeth, identification of root resorption and for planning orthognathic surgery. The need to image other types of cases should be made on a case-by-case basis following an assessment of benefits vs risks of scanning in these situations. PMID:21159912

  17. Instability of compensated beam-beam collisions

    International Nuclear Information System (INIS)

    Rosenzweig, J.B.; Autin, B.; Chen, Pisin.

    1989-01-01

    The beam-beam disruption phenomena in linear colliders are increasingly seen as a source of serious problems for these machines. A plasma compensation scheme, in which the motion of the plasma electrons in the presence of the colliding beams provides neutralizing charge and current densities, has been proposed and studied. But natural alternative to this scheme is to consider the overlapping of nearly identical high energy e + and e/sup /minus// bunches, and the collision of two such pairs - in other words, collision of two opposing relativistic positronium plasmas. It should be noticed that while the luminosity for all collisions is increased by a factor of four in this scheme, the event rate for e + e/sup /minus// collisions is only increased by a factor of two. The other factor of two corresponds to the addition of e + e + and e/sup /minus//e/sup /minus// collisions to the interaction point. This beam compensation scheme, which has been examined through computer simulation by Balakin and Solyak in the Soviet Union, promises full neutralization of beam charges and currents. These numerical investigations have shown that plasma instabilities exist in this nominally neutral system. Although the implementation of this idea seems technically daunting, the potential benefits (beamstrahlung and disruption suppression, relaxation of final focus system constraints) are such that we should consider the physics of these collisions further. In the remainder of this paper, we theoretically analyze the issues of stability and bunch parameter tolerances in this scheme. 11 refs

  18. The absolute environmental performance of buildings

    DEFF Research Database (Denmark)

    Brejnrod, Kathrine Nykjær; Kalbar, Pradip; Petersen, Steffen

    2017-01-01

    Our paper presents a novel approach for absolute sustainability assessment of a building's environmental performance. It is demonstrated how the absolute sustainable share of the earth carrying capacity of a specific building type can be estimated using carrying capacity based normalization factors....... A building is considered absolute sustainable if its annual environmental burden is less than its share of the earth environmental carrying capacity. Two case buildings – a standard house and an upcycled single-family house located in Denmark – were assessed according to this approach and both were found...... to exceed the target values of three (almost four) of the eleven impact categories included in the study. The worst-case excess was for the case building, representing prevalent Danish building practices, which utilized 1563% of the Climate Change carrying capacity. Four paths to reach absolute...

  19. PRR1 rehabilitation and the current and future neutron beam utilization program

    International Nuclear Information System (INIS)

    Calix, Virginia S.

    2003-01-01

    The PRR1 research reactor is the center for nuclear science R and D in the Philippines. It is located in Metro Manila inside the campus of the University of the Philippines. It is a General Electric designed reactor and was commissioned in 1963 with a rated thermal power of 1 MW. It was operated for 20 years enabling the Institute to pursue activities in radioisotope production, neutron scattering, activation analyses and other R and D activities requiring neutron beams. In 1984 it was converted to a 3 MW TRIGA Type reactor. Conversion was completed and test run was successfully accomplished in 1988. In the same year the reactor was shut down due to a leak in the aluminum linear of the reactor pool. During the repair deterioration of the other parts of the reactor was discovered that could affect the safety of its operation. A rehabilitation program is made that include the reactor core box and all the other peripherals that could affect its safety operation and to address present regulatory concerns. Modification of the core box and its position in the pool opens opportunities and possibilities to suit specific neutron beam application for the users. Plans for this will be presented as well as the strategy of the Institute to satisfy the current need for reactor based facilities to enhanced implementation of the Country's S and T Program. (author)

  20. Preliminary analysis of beam trip and beam jump events in an ADS prototype

    International Nuclear Information System (INIS)

    D'Angelo, A.; Bianchini, G.; Carta, M.

    2001-01-01

    A core dynamics analysis relevant to some typical current transient events has been carried out on an 80 MW energy amplifier prototype (EAP) fuelled by mixed oxides and cooled by lead-bismuth. Fuel and coolant temperature trends relevant to recovered beam trip and beam jump events have been preliminary investigated. Beam trip results show that the drop in temperature of the core outlet coolant would be reduced a fair amount if the beam intensity could be recovered within few seconds. Due to the low power density in the EAP fuel, the beam jump from 50% of the nominal power transient evolves benignly. The worst thinkable current transient, beam jump with cold reactor, mainly depends on the coolant flow conditions. In the EAP design, the primary loop coolant flow is assured by natural convection and is enhanced by a particular system of cover gas injection into the bottom part of the riser. If this system of coolant flow enhancement is assumed in function, even the beam jump with cold reactor event evolves without severe consequences. (authors)

  1. Chaos control in an electron beam with the supercritical current in the hydrodynamic model of the Pierce diode

    International Nuclear Information System (INIS)

    Koronovskij, A.A.; Rempen, I.S.; Khramov, A.E.

    2003-01-01

    The possibility of controlling the chaos in the electron beam with the supercritical current in the hydrodynamic model of the Pierce diode through the continuous feedback; the methodology of controlling the chaotic dynamics through stabilization of the unstable equilibrium state in the distributed active medium is proposed [ru

  2. Observations of the beam-beam interaction

    International Nuclear Information System (INIS)

    Seeman, J.T.

    1985-11-01

    The observed complexity of the beam-beam interaction is the subject of this paper. The varied observations obtained from many storage rings happen to be sufficiently similar that a prescription can be formulated to describe the behavior of the luminosity as a function of beam current including the peak value. This prescription can be used to interpret various methods for improving the luminosity. Discussion of these improvement methods is accompanied with examples from actual practice. The consequences of reducing the vertical betatron function (one of the most used techniques) to near the value of the bunch length are reviewed. Finally, areas needing further experimental and calculational studies are pointed out as they are uncovered

  3. Absolute Summ

    Science.gov (United States)

    Phillips, Alfred, Jr.

    Summ means the entirety of the multiverse. It seems clear, from the inflation theories of A. Guth and others, that the creation of many universes is plausible. We argue that Absolute cosmological ideas, not unlike those of I. Newton, may be consistent with dynamic multiverse creations. As suggested in W. Heisenberg's uncertainty principle, and with the Anthropic Principle defended by S. Hawking, et al., human consciousness, buttressed by findings of neuroscience, may have to be considered in our models. Predictability, as A. Einstein realized with Invariants and General Relativity, may be required for new ideas to be part of physics. We present here a two postulate model geared to an Absolute Summ. The seedbed of this work is part of Akhnaton's philosophy (see S. Freud, Moses and Monotheism). Most important, however, is that the structure of human consciousness, manifest in Kenya's Rift Valley 200,000 years ago as Homo sapiens, who were the culmination of the six million year co-creation process of Hominins and Nature in Africa, allows us to do the physics that we do. .

  4. Electron Beam Generation in Tevatron Electron Lenses

    International Nuclear Information System (INIS)

    Kamerdzhiev, V.; Kuznetsov, G.; Shiltsev, V.; Solyak, N.; Tiunov, M.

    2006-01-01

    New type of high perveance electron guns with convex cathode has been developed. Three guns described in this article are built to provide transverse electron current density distributions needed for Electron Lenses for beam-beam compensation in the Tevatron collider. The current distribution can be controlled either by the gun geometry or by voltage on a special control electrode located near cathode. We present the designs of the guns and report results of beam measurements on the test bench. Because of their high current density and low transverse temperature of electrons, electron guns of this type can be used in electron cooling and beam-beam compensation devices

  5. Electron beam generation in Tevatron electron lenses

    International Nuclear Information System (INIS)

    Kamerdzhiev, V.; Kuznetsov, G.; Shiltsev, V.; Solyak, N.; Tiunov, M.

    2006-01-01

    New type of high perveance electron guns with convex cathode has been developed. Three guns described in this article are built to provide transverse electron current density distributions needed for Electron Lenses for beam-beam compensation in the Tevatron collider. The current distribution can be controlled either by the gun geometry or by voltage on a special control electrode located near cathode. We present the designs of the guns and report results of beam measurements on the test bench. Because of their high current density and low transverse temperature of electrons, electron guns of this type can be used in electron cooling and beam-beam compensation devices

  6. Clinical utility of dental cone-beam computed tomography: current perspectives

    OpenAIRE

    Jaju, Prashant P; Jaju, Sushma P

    2014-01-01

    Prashant P Jaju,1 Sushma P Jaju21Oral Medicine and Radiology, 2Conservative Dentistry and Endodontics, Rishiraj College of Dental Sciences and Research Center, Bhopal, IndiaAbstract: Panoramic radiography and computed tomography were the pillars of maxillofacial diagnosis. With the advent of cone-beam computed tomography, dental practice has seen a paradigm shift. This review article highlights the potential applications of cone-beam computed tomography in the fields of dental implantology an...

  7. Static and transient beam loading of a synchrotron

    International Nuclear Information System (INIS)

    Zhang, S.Y.; Weng, W.T.

    1992-01-01

    In a synchrotron, when the beam induced current is comparable to the driver current, the RF cavity is subjected to beam loading perturbation and corrective steps have to be implemented to regain beam stability. In this paper, the static and transient beam loading will be studied. We first discuss the static beam loading, which includes the cavity detuning condition, the stability condition, and the generator power dissipation. The beam current induced beam phase deviation is used as criterion to study the transient beam loading. The upgraded and the old AGS RF system parameters are used as an example to demonstrate how to choose cavity and generator parameters to satisfy the stability requirements under the beam loading. The dynamic models for the beam loading with beam control, and the beam loading with fast power amplifier feedback are presented and analyzed. It is shown that the beam phase and radial feedbacks alone are insufficient for the transient beam loading compensation, but the fast power amplifier feedback can provide effective correction on the beam loading. The limitation of the fast feedback and the beam loading with tuning and AVC loops are also discussed

  8. Electron-beam-induced current study of small-angle grain boundaries in multicrystalline silicon

    International Nuclear Information System (INIS)

    Chen, J.; Sekiguchi, T.; Xie, R.; Ahmet, P.; Chikyo, T.; Yang, D.; Ito, S.; Yin, F.

    2005-01-01

    Recombination activity of small-angle grain boundaries (SA GBs) in multicrystalline silicon (mc-Si) was studied by means of electron-beam-induced current (EBIC) technique. In the as-grown mc-Si, the EBIC contrasts of special Σ and random GBs were weak at both 300 and 100 K, whereas those of SA GBs were weak (<3%) at 300 K and strong (30-40%) at 100 K. In the contaminated mc-Si, SA GBs showed stronger EBIC contrast than Σ and R GBs at 300 K. It is indicated that SA GBs possess high density of shallow levels and are easily contaminated with Fe compared to other GBs

  9. Impurity mapping in sulphide minerals using Time-resolved Ion Beam Induced Current imaging

    International Nuclear Information System (INIS)

    Laird, Jamie S.; Johnson, Brett C.; Ganesan, Kumaravelu; Kandasamy, Sasikaran; Davidson, Garry; Borg, Stacey; Ryan, Chris G.

    2010-01-01

    The semiconducting properties and charge transport within natural minerals like pyrite are postulated to drive certain geochemical processes which can lead to precious metal ore genesis. In this paper we outline electrical measurements on mineral samples and present spatio-temporally resolved Ion Beam Induced Charge or Current studies on a Schottky pyrite junction. Au-Schottky contacts were fabricated in regions selected by thermoelectric and 4-point probe resistivity measurements. The complexity in charge transport due to impurity variations results in imaging contrast which is deemed important for fluid electrochemistry. The relevance of understanding charge collection in pyrite in the context of complex geochemical processes is briefly discussed.

  10. Basis for low beam loss in the high-current APT linac

    International Nuclear Information System (INIS)

    Wangler, T.P.; Gray, E.R.; Krawczyk, F.L.; Kurennoy, S.S.; Lawrence, G.P.; Ryne, R.D.; Crandall, K.R.

    1998-01-01

    The present evidence that the APT proton linac design will meet its goal of low beam loss operation. The conclusion has three main bases: (1) extrapolation from the understanding of the performance of the 800-MeV LANSCE proton linac at Los Alamos, (2) the theoretical understanding of the dominant halo-forming mechanism in the APT accelerator from physics models and multiparticle simulations, and (3) the conservative approach and key principles underlying the design of the APT linac, which are aimed at minimizing beam halo and providing large apertures to reduce beam loss to a very low value

  11. Schottky spectra and crystalline beams

    International Nuclear Information System (INIS)

    Pestrikov, D.V.

    1996-01-01

    In this paper we revise the current dependence of the Schottky noise power of a cooled proton beam previously measured at NAP-M. More careful study of experimental data indicates a linear decrease in the inverse Schottky noise power with an increase in the beam intensity (N). The root of this function determines a threshold current which occurs at N = N th ≅1.2 x 10 8 particles. The inspection of measured Schottky spectra shows that this threshold does not correspond to some collective instability of the measured harmonic of the linear beam density. The found value of N th does not depend on the longitudinal beam temperature. For the case of NAP-M lattice, the study of the spectral properties of the Schottky noise in the crystalline string predicts the current dependence of the equilibrium momentum spread of the beam, which qualitatively agrees with that, recalculated from the NAP-M data. (orig.)

  12. Various categories of defects after surface alloying induced by high current pulsed electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Dian [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Tang, Guangze, E-mail: oaktang@hit.edu.cn [School of Material Science & Engineering, Harbin Institute of Technology, Harbin 150001 (China); Ma, Xinxin [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Gu, Le [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); Sun, Mingren [School of Material Science & Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wang, Liqin [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2015-10-01

    Highlights: • Four kinds of defects are found during surface alloying by high current electron beam. • Exploring the mechanism how these defects appear after irradiation. • Increasing pulsing cycles will help to get good surface quality. • Choosing proper energy density will increase surface quality. - Abstract: High current pulsed electron beam (HCPEB) is an attractive advanced materials processing method which could highly increase the mechanical properties and corrosion resistance. However, how to eliminate different kinds of defects during irradiation by HCPEB especially in condition of adding new elements is a challenging task. In the present research, the titanium and TaNb-TiW composite films was deposited on the carburizing steel (SAE9310 steel) by DC magnetron sputtering before irradiation. The process of surface alloying was induced by HCPEB with pulse duration of 2.5 μs and energy density ranging from 3 to 9 J/cm{sup 2}. Investigation of the microstructure indicated that there were several forms of defects after irradiation, such as surface unwetting, surface eruption, micro-cracks and layering. How the defects formed was explained by the results of electron microscopy and energy dispersive spectroscopy. The results also revealed that proper energy density (∼6 J/cm{sup 2}) and multi-number of irradiation (≥50 times) contributed to high quality of alloyed layers after irradiation.

  13. Method of active charge and current neutralization of intense ion beams for ICF

    International Nuclear Information System (INIS)

    Guiragossian, Z.G.T.; Orthel, J.L.; Lemons, D.S.; Thode, L.E.

    1981-01-01

    Methods of generating the beam neutralization electrons with required properties are given in the context of a Light Ion Fusion Experiment (LIFE) designed accelerator. Recently derived envelope equations for neutralized and ballistically focused intense ion beams are applied to the LIFE geometry in which 10 MeV He + multiple beamlets coalesce and undergo 45:1 radial compression while beam pulses experience a 20:1 axial compression in the propagation range of 10 m. Both active and auto-neutralization methods are examined and found to produce initial electron temperatures consistent with the requirement of the envelope equation for both radial and axial adiabatic beam pulse compressions. The stability of neutralized beam propagation is also examined concerning the Pierce type electrostatic instability and for the case of LIFE beams it is found to have insignificant effect. A scaled experimental setup is presented which can serve to perform near term tests on the ballistically focused propagation of neutralized light ion beams

  14. Absolute flux scale for radioastronomy

    International Nuclear Information System (INIS)

    Ivanov, V.P.; Stankevich, K.S.

    1986-01-01

    The authors propose and provide support for a new absolute flux scale for radio astronomy, which is not encumbered with the inadequacies of the previous scales. In constructing it the method of relative spectra was used (a powerful tool for choosing reference spectra). A review is given of previous flux scales. The authors compare the AIS scale with the scale they propose. Both scales are based on absolute measurements by the ''artificial moon'' method, and they are practically coincident in the range from 0.96 to 6 GHz. At frequencies above 6 GHz, 0.96 GHz, the AIS scale is overestimated because of incorrect extrapolation of the spectra of the primary and secondary standards. The major results which have emerged from this review of absolute scales in radio astronomy are summarized

  15. Beam control and matching for the transport of intense beams

    International Nuclear Information System (INIS)

    Li, H.; Bernal, S.; Godlove, T.; Huo, Y.; Kishek, R.A.; Haber, I.; Quinn, B.; Walter, M.; Zou, Y.; Reiser, M.; O'Shea, P.G.

    2005-01-01

    The transport of intense beams for heavy-ion inertial fusion demands tight control of beam characteristics from the source to the target. The University of Maryland Electron Ring (UMER), which uses a low-energy (10 keV), high-current electron beam to model the transport physics of a future recirculator driver, employs real-time beam characterization and control in order to optimize beam quality throughout the strong focusing lattice. We describe the main components and operation of the diagnostics/control system in UMER. It employs phosphor screens, real-time image analysis, quadrupole scans and electronic skew correctors. The procedure is not only indispensable for optimum transport over a long distance, but also provides important insights into the beam physics involved. We discuss control/optimization issues related to beam steering, quadrupole rotation errors and rms envelope matching

  16. Operating experience with high beam currents and transient beam loading in the SLC damping rings

    International Nuclear Information System (INIS)

    Minty, M.G.; Akre, R.; Krejcik, P.; Siemann, R.H.

    1995-01-01

    During the 1994 SLC run the nominal operating intensity in the damping rings was raised from 3.5 x 10 10 to greater than 4 x 10 10 particles per bunch (ppb). Stricter regulation of rf system parameters was required to maintain stability of the rf system and particle beam. Improvements were made in the feedback loops which control the cavity amplitude and loading angles. Compensation for beam loading was also required to prevent klystron saturation during repetition rate changes. To minimize the effects of transient loading on the rf system, the gain of the direct rf feedback loop and the loading angles were optimized

  17. Proton current measurements using the prompt gamma ray diagnostic technique

    International Nuclear Information System (INIS)

    Leeper, R.J.; Burns, E.J.T.; Johnson, D.J.; McMurtry, W.M.

    1981-01-01

    Prompt gamma ray signals from the nuclear reaction 7 Li(p,γ) 8 Be have been used to make time resolved proton current measurements. In these measurements, the proton beam was allowed to strike cylindrical thick lithium metal targets. The time integrated proton current was measured using gamma activation of copper via the reaction 63 Cu(γ,n) 62 Cu(β+). The positron activity of the copper sample was easily measured using coincidence counting techniques. The number of 62 Cu atoms produced per proton incident on a thick Li metal target was determined with separate calibration runs performed on the Sandia 2.5 MeV Van de Graaff accelerator. The time history of the prompt gamma production was measured using six EGG NPM-54 scintillator photomultiplier combinations shielded by 96.5 cm of concrete and 5.1 cm of Pb. The use of six scintillator photomultiplier combinations was necessary to increase the statistical precision of the data. The normalization of the prompt gamma time history data with the total time integrated proton-current measurement yielded the absolute time resolved proton current on target. Data from runs performed on the Sandia Proto I accelerator will be presented

  18. Precision luminosity measurement at LHCb with beam-gas imaging

    International Nuclear Information System (INIS)

    Barschel, Colin

    2014-01-01

    The luminosity is the physical quantity which relates the cross-section to the production rate in collider experiments. The cross-section being the particle physics observable of interest, a precise determination of the luminosity is required. This work presents the absolute luminosity calibration results performed at the Large Hadron Collider beauty (LHCb) experiment at CERN using a novel method based on beam-gas interactions with data acquired at a center of mass energy √(s)=8 TeV and √(s)=2.76 TeV. Reconstructed beam-gas interaction vertices in LHCb are used to measure the beam profiles, thus making it possible to determine the beams overlap integral. An important element of this work was to install and use a neon gas injection system to increase the beam-gas interaction rate. The precision reached with the beam-gas imaging method relies on the two-dimensional beam shape determination developed in this work. For such precision, the interaction vertex resolution is an important ingredient. Therefore, a new method has been developed using all reconstructed vertices in order to improve the understanding of the vertex resolution. In addition to the overlap integral, the knowledge of the colliding bunch populations is required to measure the luminosity. The determination of the bunch populations relies on LHC instruments to measure the bunch population fractions and the total beam intensity. Studies performed as part of this work resulted in a reduction of the bunch current normalization uncertainty from ±2.7% to ±0.2% and making it possible to achieve precision luminosity measurements at all LHC experiments. Furthermore, information on beam-gas interactions not originating from nominally filled bunches was analyzed to determine the charge fraction not participating in bunch collisions. The knowledge of this fraction is required to correct the total beam intensity. The reference cross-section of pp interactions with at least two tracks in the vertex detector

  19. Geometry and Topology Optimization of Statically Determinate Beams under Fixed and Most Unfavorably Distributed Load

    Directory of Open Access Journals (Sweden)

    Agata Kozikowska

    Full Text Available Abstract The paper concerns topology and geometry optimization of statically determinate beams with an arbitrary number of pin supports. The beams are simultaneously exposed to uniform dead load and arbitrarily distributed live load and optimized for the absolute maximum bending moment. First, all the beams with fixed topology are subjected to geometrical optimization by genetic algorithm. Strict mathematical formulas for calculation of optimal geometrical parameters are found for all topologies and any ratio of dead to live load. Then beams with the same minimal values of the objective function and different topologies are classified into groups called topological classes. The detailed characteristics of these classes are described.

  20. High current ion sources

    International Nuclear Information System (INIS)

    Brown, I.G.

    1989-06-01

    The concept of high current ion source is both relative and evolutionary. Within the domain of one particular kind of ion source technology a current of microamperers might be 'high', while in another area a current of 10 Amperes could 'low'. Even within the domain of a single ion source type, what is considered high current performance today is routinely eclipsed by better performance and higher current output within a short period of time. Within their fields of application, there is a large number of kinds of ion sources that can justifiably be called high current. Thus, as a very limited example only, PIGs, Freemen sources, ECR sources, duoplasmatrons, field emission sources, and a great many more all have their high current variants. High current ion beams of gaseous and metallic species can be generated in a number of different ways. Ion sources of the kind developed at various laboratories around the world for the production of intense neutral beams for controlled fusion experiments are used to form large area proton deuteron beams of may tens of Amperes, and this technology can be used for other applications also. There has been significant progress in recent years in the use of microwave ion sources for high current ion beam generation, and this method is likely to find wide application in various different field application. Finally, high current beams of metal ions can be produced using metal vapor vacuum arc ion source technology. After a brief consideration of high current ion source design concepts, these three particular methods are reviewed in this paper