WorldWideScience

Sample records for absolute activity measurement

  1. Absolute activity measurement of radon gas at IRA-METAS

    Science.gov (United States)

    Spring, Philippe; Nedjadi, Youcef; Bailat, Claude; Triscone, Gilles; Bochud, François

    2006-12-01

    This paper describes the system of the Swiss national metrological institute (IRA-METAS) for the absolute standardisation of radon gas. This method relies on condensing radon under vacuum conditions within a specified cold area using a cryogenerator, and detecting its alpha particles with an ion-implanted silicon detector, through a very accurately defined solid angle. The accuracy of this defined solid angle standardisation technique was corroborated by another primary measurement method involving 4 πγ NaI(Tl) integral counting and Monte Carlo efficiency calculations. The 222Rn standard submitted by IRA-METAS to the Système International de Référence (SIR) at the Bureau International des Poids et Mesures (BIPM) has also been found to be consistent with an analogous standard submitted by the German national metrological institute (PTB). IRA-METAS is able to deliver radon standards, with activities ranging from a few kBq to 350 kBq, in NIST-Type ampoules, and glass or steel containers usable for calibrating radon-measuring instruments.

  2. Static Absolute Force Measurement for Preloaded Piezoelements Used for Active Lorentz Force Detuning System

    CERN Document Server

    Sekalski, S P; Sekalski, S P

    2004-01-01

    To reach high gradients in pulsed operation of superconducting (SC) cavities an active Lorentz force detuning compensation system is needed. For this system a piezoelement can be used as an actuator (other option is a magnetostrictive device). To guarantee the demanded lifetime of the active element, the proper preload force adjustment is necessary. To determine this parameter an absolute force sensor is needed which will be able to operate at cryogenic temperatures. Currently, there is no calibrated commercial available sensor, which will be able to measure the static force in such an environment. The authors propose to use a discovered phenomenon to estimate the preload force applied to the piezoelement. The principle of the proposed solution based on a shape of impedance curve, which changes with the value of applied force. Especially, the position of resonances are monitored. No need of specialized force sensor and measurement in-situ are additional advantages of proposed method.

  3. Absolute measurement of the activity of sup 2 sup 2 sup 2 Rn using a proportional counter

    CERN Document Server

    Busch, I; Keyser, U

    2002-01-01

    A measuring set-up comprising a proportional counter of calculable sup 2 sup 2 sup 2 Rn efficiency and quantifiable active volume (delta sub V <0.1%) is described. On account of the special design of the end caps, the counter is suitable for absolute activity measurements on gaseous radiation sources. The sup 2 sup 2 sup 2 Rn efficiency is determined by computer simulation of the measured alpha-spectra. The procedures necessary for absolute measurements by means of the counter are described, and the suitability of the counter for absolute measurements of the sup 2 sup 2 sup 2 Rn activity is proved by experiments. Thus, a new method for the realization of the unit of activity of sup 2 sup 2 sup 2 Rn is obtained, which is independent of the unit of activity of sup 2 sup 2 sup 6 Ra.

  4. Absolute height measurement of specular surfaces with modified active fringe reflection photogrammetry

    Science.gov (United States)

    Ren, Hongyu; Jiang, Xiangqian; Gao, Feng; Zhang, Zonghua

    2014-07-01

    Deflectometric methods have been studied for more than a decade for slope measurement of specular freeform surfaces through utilization of the deformation of a sample pattern after reflection from a tested sample surface. Usually, these approaches require two-directional fringe patterns to be projected on a LCD screen or ground glass and require slope integration, which leads to some complexity for the whole measuring process. This paper proposes a new mathematical measurement model for measuring topography information of freeform specular surfaces, which integrates a virtual reference specular surface into the method of active fringe reflection photogrammetry and presents a straight-forward relation between height of the tested surface and phase signals. This method only requires one direction of horizontal or vertical sinusoidal fringe patterns to be projected from a LCD screen, resulting in a significant reduction in capture time over established methods. Assuming the whole system has been precalibrated during the measurement process, the fringe patterns are captured separately via the virtual reference and detected freeform surfaces by a CCD camera. The reference phase can be solved according to the spatial geometric relation between the LCD screen and the CCD camera. The captured phases can be unwrapped with a heterodyne technique and optimum frequency selection method. Based on this calculated unwrapped-phase and that proposed mathematical model, absolute height of the inspected surface can be computed. Simulated and experimental results show that this methodology can conveniently calculate topography information for freeform and structured specular surfaces without integration and reconstruction processes.

  5. On the absolute measure of Beta activities; Sobre la medida absoluta de actividades Beta

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez del Rio, C.; Jimenez Reynaldo, O.; Rodriguez Mayquez, E.

    1956-07-01

    A new method for absolute beta counting of solid samples is given. The measurements is made with an inside Geiger-Muller tube of new construction. The backscattering correction when using an infinite thick mounting is discussed and results for different materials given. (Author)

  6. Absolute luminosity measurements at LHCb

    CERN Document Server

    Hopchev, Plamen

    2011-01-01

    Absolute luminosity measurements are of general interest for colliding-beam experiments at storage rings. These measurements are necessary to determine the absolute cross-sections of reaction processes and are valuable to quantify the performance of the accelerator. LHCb has applied two methods to determine the absolute scale of its luminosity measurements for proton-proton collisions at the LHC running at a centre-of-mass energy of 7 TeV. In addition to the classic ``van der Meer'' scan method a novel technique has been developed which makes use of direct imaging of the individual beams using both proton-gas and proton-proton interactions. The beam imaging method is made possible by the high resolution of the LHCb vertex detector and the close proximity of the detector to the beams, and allows beam parameters such as positions, angles and widths to be determined. We describe both methods and compare the two results. In addition, we present the techniques used to transport the absolute luminosity measurement ...

  7. Absolute Standards for Climate Measurements

    Science.gov (United States)

    Leckey, J.

    2016-10-01

    In a world of changing climate, political uncertainty, and ever-changing budgets, the benefit of measurements traceable to SI standards increases by the day. To truly resolve climate change trends on a decadal time scale, on-orbit measurements need to be referenced to something that is both absolute and unchanging. One such mission is the Climate Absolute Radiance and Refractivity Observatory (CLARREO) that will measure a variety of climate variables with an unprecedented accuracy to definitively quantify climate change. In the CLARREO mission, we will utilize phase change cells in which a material is melted to calibrate the temperature of a blackbody that can then be observed by a spectrometer. A material's melting point is an unchanging physical constant that, through a series of transfers, can ultimately calibrate a spectrometer on an absolute scale. CLARREO consists of two primary instruments: an infrared (IR) spectrometer and a reflected solar (RS) spectrometer. The mission will contain orbiting radiometers with sufficient accuracy to calibrate other space-based instrumentation and thus transferring the absolute traceability. The status of various mission options will be presented.

  8. An absolute radon 222 activity measurement system at LNE-LNHB.

    Science.gov (United States)

    Sabot, B; Pierre, S; Cassette, P

    2016-12-01

    A good metrological traceability of radon and progenies is necessary to accurately measure the radon concentration. In 1995, at the LNE-LNHB, J.L. Picolo developed a reference method using a defined-solid-angle (DSA) alpha spectrometer to measure a frozen radon source. With this method it was possible to measure radon standards with a relative standard uncertainty of 0.5%. This paper presents the design and the characterization of a new upgraded measurement system; all parameters and their uncertainties are discussed. This new system allows the measurement of radon sources from 100Bq to 4MBq with a relative standard uncertainty of 0.3%.

  9. Absolute activity measurement and gamma-ray emission probability for decay of I-126

    CERN Document Server

    Fonseca, K A

    1997-01-01

    The accurate knowledge of the gamma-ray emission probability per decay of radionuclides is important in several applications. In the case of sup 1 sup 2 sup 6 I, its importance lies mainly in fast neutron dosimetry as well as in the production of sup 1 sup 2 sup 5 I where sup 1 sup 2 sup 6 I appears as an impurity. In the present work the gamma-ray emission probabilities per decay for the 388 and 666-KeV transitions of sup 1 sup 2 sup 6 I have been measured. This radionuclide was obtained by means of the sup 1 sup 2 sup 7 I(n, 2n) sup 1 sup 2 sup 6 I reaction in a fast neutron flux at the IPEN 2 MW research reactor. The methodology for the primary standardization of sup 1 sup 2 sup 6 I is described. For this purpose, two different coincidence systems were used due to the complex decay scheme of this radionuclide. The beta branch measurement was carried out in a 4 pi(PC)beta-gamma coincidence system consisting of a proportional counter, coupled to a pair of 3'x3' Na I (Tl) crystal. The electron capture branch ...

  10. Measurement of the absolute speed is possible?

    OpenAIRE

    Shevchenko, Sergey V.; Vladimir V. Tokarevsky

    2016-01-01

    One of popular problems, which  are experimentally studied in physics in a long time, is the testing of the special relativity theory, first of all – measurements of isotropy and constancy of light speed; as well as attempts to determine so called “absolute speed”, i.e. the Earth speed in the absolute spacetime (absolute reference frame), if this spacetime (ARF) exists.  Corresponding experiments aimed at the measuring of proper speed of some reference frame in oth...

  11. To measure the absolute speed is possible?

    OpenAIRE

    Shevchenko, Sergey; Tokarevsky, Vladimir

    2013-01-01

    One of popular problems, which are experimentally studied in physics in a long time, is the testing of the special relativity theory, first of all – measurements of isotropy and constancy of light speed; as well as attempts to determine so called “absolute speed”, i.e. the Earth speed in the absolute spacetime (absolute reference frame), if this spacetime (ARF) exists. Corresponding experiments aimed at the measuring of proper speed of some reference frame in other one, incl...

  12. An absolute measure for a key currency

    Science.gov (United States)

    Oya, Shunsuke; Aihara, Kazuyuki; Hirata, Yoshito

    It is generally considered that the US dollar and the euro are the key currencies in the world and in Europe, respectively. However, there is no absolute general measure for a key currency. Here, we investigate the 24-hour periodicity of foreign exchange markets using a recurrence plot, and define an absolute measure for a key currency based on the strength of the periodicity. Moreover, we analyze the time evolution of this measure. The results show that the credibility of the US dollar has not decreased significantly since the Lehman shock, when the Lehman Brothers bankrupted and influenced the economic markets, and has increased even relatively better than that of the euro and that of the Japanese yen.

  13. Measurement of absolute gravity acceleration in Firenze

    Science.gov (United States)

    de Angelis, M.; Greco, F.; Pistorio, A.; Poli, N.; Prevedelli, M.; Saccorotti, G.; Sorrentino, F.; Tino, G. M.

    2011-01-01

    This paper reports the results from the accurate measurement of the acceleration of gravity g taken at two separate premises in the Polo Scientifico of the University of Firenze (Italy). In these laboratories, two separate experiments aiming at measuring the Newtonian constant and testing the Newtonian law at short distances are in progress. Both experiments require an independent knowledge on the local value of g. The only available datum, pertaining to the italian zero-order gravity network, was taken more than 20 years ago at a distance of more than 60 km from the study site. Gravity measurements were conducted using an FG5 absolute gravimeter, and accompanied by seismic recordings for evaluating the noise condition at the site. The absolute accelerations of gravity at the two laboratories are (980 492 160.6 ± 4.0) μGal and (980 492 048.3 ± 3.0) μGal for the European Laboratory for Non-Linear Spectroscopy (LENS) and Dipartimento di Fisica e Astronomia, respectively. Other than for the two referenced experiments, the data here presented will serve as a benchmark for any future study requiring an accurate knowledge of the absolute value of the acceleration of gravity in the study region.

  14. Measurement of absolute gravity acceleration in Firenze

    Directory of Open Access Journals (Sweden)

    M. de Angelis

    2011-01-01

    Full Text Available This paper reports the results from the accurate measurement of the acceleration of gravity g taken at two separate premises in the Polo Scientifico of the University of Firenze (Italy. In these laboratories, two separate experiments aiming at measuring the Newtonian constant and testing the Newtonian law at short distances are in progress. Both experiments require an independent knowledge on the local value of g. The only available datum, pertaining to the italian zero-order gravity network, was taken more than 20 years ago at a distance of more than 60 km from the study site. Gravity measurements were conducted using an FG5 absolute gravimeter, and accompanied by seismic recordings for evaluating the noise condition at the site. The absolute accelerations of gravity at the two laboratories are (980 492 160.6 ± 4.0 μGal and (980 492 048.3 ± 3.0 μGal for the European Laboratory for Non-Linear Spectroscopy (LENS and Dipartimento di Fisica e Astronomia, respectively. Other than for the two referenced experiments, the data here presented will serve as a benchmark for any future study requiring an accurate knowledge of the absolute value of the acceleration of gravity in the study region.

  15. Absolute cross-sections from X-{gamma} coincidence measurements

    Energy Technology Data Exchange (ETDEWEB)

    Lemasson, A. [GANIL, CEA/DSM - CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5 (France); Shrivastava, A. [Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Navin, A. [GANIL, CEA/DSM - CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5 (France)], E-mail: navin@ganil.fr; Rejmund, M. [GANIL, CEA/DSM - CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5 (France); Nanal, V. [Department of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Mumbai 400005 (India); Bhattacharyya, S. [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata 700064 (India); Chatterjee, A.; Kailas, S.; Mahata, K.; Parkar, V.V. [Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Pillay, R.G. [Department of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Mumbai 400005 (India); Ramachandran, K.; Rout, P.C. [Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2009-01-11

    An activation technique using coincidences between characteristic X-rays and {gamma}-rays to obtain absolute cross-sections is described. This method is particularly useful in the case of nuclei that decay by electron capture. In addition to the reduction of possible contamination, an improved detection sensitivity is achieved as compared to inclusive measurements, thereby allowing the extraction of absolute fusion cross-sections in the nano-barn range. Results of this technique for {sup 6}Li+{sup 198}Pt system, at energies around the Coulomb barrier are described. Future applications with low intensity radioactive ion beams are also discussed.

  16. Musical Activity Tunes Up Absolute Pitch Ability

    DEFF Research Database (Denmark)

    Dohn, Anders; Garza-Villarreal, Eduardo A.; Ribe, Lars Riisgaard

    2014-01-01

    Absolute pitch (AP) is the ability to identify or produce pitches of musical tones without an external reference. Active AP (i.e., pitch production or pitch adjustment) and passive AP (i.e., pitch identification) are considered to not necessarily coincide, although no study has properly compared...... that APs generally undershoot when adjusting musical pitch, a tendency that decreases when musical activity increases. Finally, APs are less accurate when adjusting the pitch to black key targets than to white key targets. Hence, AP ability may be partly practice-dependent and we speculate that APs may...

  17. Musical Activity Tunes Up Absolute Pitch Ability

    DEFF Research Database (Denmark)

    Dohn, Anders; Garza-Villarreal, Eduardo A.; Ribe, Lars Riisgaard

    2014-01-01

    Absolute pitch (AP) is the ability to identify or produce pitches of musical tones without an external reference. Active AP (i.e., pitch production or pitch adjustment) and passive AP (i.e., pitch identification) are considered to not necessarily coincide, although no study has properly compared...... that APs generally undershoot when adjusting musical pitch, a tendency that decreases when musical activity increases. Finally, APs are less accurate when adjusting the pitch to black key targets than to white key targets. Hence, AP ability may be partly practice-dependent and we speculate that APs may...

  18. Determination of critical assembly absolute power using post-irradiation activation measurement of week-lived fission products.

    Science.gov (United States)

    Košťál, Michal; Švadlenková, Marie; Milčák, Ján; Rypar, Vojtěch; Koleška, Michal

    2014-07-01

    The work presents a detailed comparison of calculated and experimentally determined net peak areas of longer-living fission products after 100 h irradiation on a reactor with power of ~630 W and several days cooling. Specifically the nuclides studied are (140)Ba, (103)Ru, (131)I, (141)Ce, (95)Zr. The good agreement between the calculated and measured net peak areas, which is better than in determination using short lived (92)Sr, is reported. The experiment was conducted on the VVER-1000 mock-up installed on the LR-0 reactor. The Monte Carlo approach has been used for calculations. The influence of different data libraries on results of calculation is discussed as well.

  19. New Techniques for Absolute Gravity Measurements.

    Science.gov (United States)

    1983-01-07

    Hammond, J.A. (1978) Bollettino Di Geofisica Teorica ed Applicata Vol. XX. 8. Hammond, J. A., and Iliff, R. L. (1979) The AFGL absolute gravity system...International Gravimetric Bureau, No. L:I-43. 7. Hammond. J.A. (1978) Bollettino Di Geofisica Teorica ed Applicata Vol. XX. 8. Hammond, J.A., and

  20. High-precision Absolute Coordinate Measurement using Frequency Scanned Interferometry

    CERN Document Server

    Chen, Tianxiang; Riles, Keith; Li, Cheng

    2013-01-01

    In this paper, we report high-precision absolute position measurement performed with frequency scanned interferometry (FSI). We reported previously on measurement of absolute distance with FSI [1]. Absolute position is determined by several related absolute distances measured simultaneously. The achieved precision of 2-dimensional measurements is better than 1 micron, and in 3-dimensional measurements, the precision on X and Y is confirmed to be below 1 micron, while the confirmed precision on Z is about 2 microns, where the confirmation is limited by the lower precision of the moving stage in Z direction.

  1. Strategy for the absolute neutron emission measurement on ITER.

    Science.gov (United States)

    Sasao, M; Bertalot, L; Ishikawa, M; Popovichev, S

    2010-10-01

    Accuracy of 10% is demanded to the absolute fusion measurement on ITER. To achieve this accuracy, a functional combination of several types of neutron measurement subsystem, cross calibration among them, and in situ calibration are needed. Neutron transport calculation shows the suitable calibration source is a DT/DD neutron generator of source strength higher than 10(10) n/s (neutron/second) for DT and 10(8) n/s for DD. It will take eight weeks at the minimum with this source to calibrate flux monitors, profile monitors, and the activation system.

  2. An All Fiber White Light Interferometric Absolute Temperature Measurement System

    Directory of Open Access Journals (Sweden)

    Jeonggon Harrison Kim

    2008-11-01

    Full Text Available Recently the author of this article proposed a new signal processing algorithm for an all fiber white light interferometer. In this article, an all fiber white light interferometric absolute temperature measurement system is presented using the previously proposed signal processing algorithm. Stability and absolute temperature measurement were demonstrated. These two tests demonstrated the feasibility of absolute temperature measurement with an accuracy of 0.015 fringe and 0.0005 fringe, respectively. A hysteresis test from 373K to 873K was also presented. Finally, robustness of the sensor system towards laser diode temperature drift, AFMZI temperature drift and PZT non-linearity was demonstrated.

  3. Absolute density measurements in the middle atmosphere

    Directory of Open Access Journals (Sweden)

    M. Rapp

    Full Text Available In the last ten years a total of 25 sounding rockets employing ionization gauges have been launched at high latitudes ( ~ 70° N to measure total atmospheric density and its small scale fluctuations in an altitude range between 70 and 110 km. While the determination of small scale fluctuations is unambiguous, the total density analysis has been complicated in the past by aerodynamical disturbances leading to densities inside the sensor which are enhanced compared to atmospheric values. Here, we present the results of both Monte Carlo simulations and wind tunnel measurements to quantify this aerodynamical effect. The comparison of the resulting ‘ram-factor’ profiles with empirically determined density ratios of ionization gauge measurements and falling sphere measurements provides excellent agreement. This demonstrates both the need, but also the possibility, to correct aerodynamical influences on measurements from sounding rockets. We have determined a total of 20 density profiles of the mesosphere-lower-thermosphere (MLT region. Grouping these profiles according to season, a listing of mean density profiles is included in the paper. A comparison with density profiles taken from the reference atmospheres CIRA86 and MSIS90 results in differences of up to 40%. This reflects that current reference atmospheres are a significant potential error source for the determination of mixing ratios of, for example, trace gas constituents in the MLT region.

    Key words. Middle atmosphere (composition and chemistry; pressure, density, and temperature; instruments and techniques

  4. Measurements of Absolute Abundances in Solar Flares

    CERN Document Server

    Warren, Harry P

    2013-01-01

    We present measurements of elemental abundances in solar flares with the EUV Variability Experiment (EVE) on the Solar Dynamics Observatory (SDO). EVE observes both high temperature Fe emission lines (Fe XV-Fe XXIV) and continuum emission from thermal bremsstrahlung that is proportional to the abundance of H. By comparing the relative intensities of line and continuum emission it is possible to determine the enrichment of the flare plasma relative to the composition of the photosphere. This is the first ionization potential or FIP bias ($f$). Since thermal bremsstrahlung at EUV wavelengths is relatively insensitive to the electron temperature, it is important to account for the distribution of electron temperatures in the emitting plasma. We accomplish this by using the observed spectra to infer the differential emission measure distribution and FIP bias simultaneously. In each of the 21 flares that we analyze we find that the observed composition is close to photospheric. The mean FIP bias in our sample is $...

  5. Absolute Abundance Measurements in Solar Flares

    Science.gov (United States)

    Warren, Harry

    2014-06-01

    We present measurements of elemental abundances in solar flares with EVE/SDO and EIS/Hinode. EVE observes both high temperature Fe emission lines Fe XV-XXIV and continuum emission from thermal bremsstrahlung that is proportional to the abundance of H. By comparing the relative intensities of line and continuum emission it is possible to determine the enrichment of the flare plasma relative to the composition of the photosphere. This is the first ionization potential or FIP bias (F). Since thermal bremsstrahlung at EUV wavelengths is relatively insensitive to the electron temperature it is important to account for the distribution of electron temperatures in the emitting plasma. We accomplish this by using the observed spectra to infer the differential emission measure distribution and FIP bias simultaneously. In each of the 21 flares that we analyze we find that the observed composition is close to photospheric. The mean FIP bias in our sample is F=1.17+-0.22. Furthermore, we have compared the EVE measurements with corresponding flare observations of intermediate temperature S, Ar, Ca, and Fe emission lines taken with EIS. Our initial calculations also indicate a photospheric composition for these observations. This analysis suggests that the bulk of the plasma evaporated during a flare comes from deep in the chromosphere, below the region where elemental fractionation in the non-flaring corona occurs.

  6. Measurements of Absolute Abundances in Solar Flares

    Science.gov (United States)

    Warren, Harry P.

    2014-05-01

    We present measurements of elemental abundances in solar flares with the EUV Variability Experiment (EVE) on the Solar Dynamics Observatory. EVE observes both high temperature Fe emission lines (Fe XV-Fe XXIV) and continuum emission from thermal bremsstrahlung that is proportional to the abundance of H. By comparing the relative intensities of line and continuum emission it is possible to determine the enrichment of the flare plasma relative to the composition of the photosphere. This is the first ionization potential or FIP bias (f). Since thermal bremsstrahlung at EUV wavelengths is relatively insensitive to the electron temperature, it is important to account for the distribution of electron temperatures in the emitting plasma. We accomplish this by using the observed spectra to infer the differential emission measure distribution and FIP bias simultaneously. In each of the 21 flares that we analyze we find that the observed composition is close to photospheric. The mean FIP bias in our sample is f = 1.17 ± 0.22. This analysis suggests that the bulk of the plasma evaporated during a flare comes from deep in the chromosphere, below the region where elemental fractionation occurs.

  7. Absolute small-angle measurement based on optical feedback interferometry

    Institute of Scientific and Technical Information of China (English)

    Jingang Zhong; Xianhua Zhang; Zhixiang Ju

    2008-01-01

    We present a simple but effective method for small-angle measurement based on optical feedback inter-ferometry (or laser self-mixing interferometry). The absolute zero angle can be defined at the biggest fringe amplitude point, so this method can also achieve absolute angle measurement. In order to verify the method, we construct an angle measurement system. The Fourier-transform method is used to analysis the interference signal. Rotation angles are experimentally measured with a resolution of 10-6 rad and a measurement range of approximately from -0.0007 to +0.0007 rad.

  8. Absolute measurements of chlorine Cl+ cation single photoionization cross section

    NARCIS (Netherlands)

    Hernandez, E. M.; Juarez, A. M.; Kilcoyne, A. L. D.; Aguilar, A.; Hernandez, L.; Antillon, A.; Macaluso, D.; Morales-Mori, A.; Gonzalez-Magana, O.; Hanstorp, D.; Covington, A. M.; Davis, V.; Calabrese, D.; Hinojosa, G.

    2015-01-01

    The photoionization of Cl+ leading to Cl2+ was measured in the photon energy range of 19.5-28.0 eV. A spectrum with a photon energy resolution of 15 meV normalized to absolute cross-section measurements is presented. The measurements were carried out by merging a Cl+ ion beam with a photon beam of h

  9. Absolute measurements of chlorine Cl+ cation single photoionization cross section

    NARCIS (Netherlands)

    Hernandez, E. M.; Juarez, A. M.; Kilcoyne, A. L. D.; Aguilar, A.; Hernandez, L.; Antillon, A.; Macaluso, D.; Morales-Mori, A.; Gonzalez-Magana, O.; Hanstorp, D.; Covington, A. M.; Davis, V.; Calabrese, D.; Hinojosa, G.

    The photoionization of Cl+ leading to Cl2+ was measured in the photon energy range of 19.5-28.0 eV. A spectrum with a photon energy resolution of 15 meV normalized to absolute cross-section measurements is presented. The measurements were carried out by merging a Cl+ ion beam with a photon beam of

  10. Absolute frequency measurement of unstable lasers with optical frequency combs

    Science.gov (United States)

    Beverini, N.; Poli, N.; Sutyrin, D.; Wang, F.-Y.; Schioppo, M.; Tarallo, M. G.; Tino, G. M.

    2010-09-01

    Here we report on absolute frequency measurements of a commercial high power CW diode-pumped solid-state laser (Coherent Verdi-V5). This kind of lasers usually presents large frequency jitter (up to 50 MHz) both in the short term (1 ms time scale) and in the long term (>10 s time scale). A precise measurement of absolute frequency deviations in both temporal scales should require a set of different devices (optical cavities, optical wave-meters), each suited for measurements only at a specific integration time. Here we demonstrate how a frequency comb can be used to overcome this difficulty, allowing in a single step a full characterization of both short ( 103 s) absolute frequency jitter with a resolution better than 1 MHz. We demonstrate in this way the flexibility of optical frequency combs for absolute frequency measurements not only of ultra-stable lasers but also of relatively unstable lasers. The absolute frequency calibration of the Verdi laser that we have obtained have been used in order to improve the accuracy of the measurements of the local gravitational acceleration value with 88Sr atoms trapped in 1D vertical lattices.

  11. Absolute measurement of detector quantum efficiency using parametric downconversion.

    Science.gov (United States)

    Rarity, J G; Ridley, K D; Tapster, P R

    1987-11-01

    We show that a parametric downconversion crystal emitting angle resolved coincident photon pairs can be used to measure the absolute quantum efficiency of a photon counting detection system. We have measured the quantum efficiency of a silicon avalanche photodiode, operated in Geiger mode, as a function of operating voltage and compare this to results obtained using a conventional method.

  12. Towards absolute laser spectroscopic CO2 isotope ratio measurements

    Science.gov (United States)

    Anyangwe Nwaboh, Javis; Werhahn, Olav; Ebert, Volker

    2017-04-01

    Knowledge of isotope composition of carbon dioxide (CO2) in the atmosphere is necessary to identify sources and sinks of this key greenhouse gas. In the last years, laser spectroscopic techniques such as cavity ring-down spectroscopy (CRDS) and tunable diode laser absorption spectroscopy (TDLAS) have been shown to perform accurate isotope ratio measurements for CO2 and other gases like water vapour (H2O) [1,2]. Typically, isotope ratios are reported in literature referring to reference materials provided by e.g. the International Atomic Energy Agency (IAEA). However, there could be some benefit if field deployable absolute isotope ratio measurement methods were developed to address issues such as exhausted reference material like the Pee Dee Belemnite (PDB) standard. Absolute isotope ratio measurements would be particularly important for situations where reference materials do not even exist. Here, we present CRDS and TDLAS-based absolute isotope ratios (13C/12C ) in atmospheric CO2. We demonstrate the capabilities of the used methods by measuring CO2 isotope ratios in gas standards. We compare our results to values reported for the isotope certified gas standards. Guide to the expression of uncertainty in measurement (GUM) compliant uncertainty budgets on the CRDS and TDLAS absolute isotope ratio measurements are presented, and traceability is addressed. We outline the current impediments in realizing high accuracy absolute isotope ratio measurements using laser spectroscopic methods, propose solutions and the way forward. Acknowledgement Parts of this work have been carried out within the European Metrology Research Programme (EMRP) ENV52 project-HIGHGAS. The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union. References [1] B. Kühnreich, S. Wagner, J. C. Habig,·O. Möhler, H. Saathoff, V. Ebert, Appl. Phys. B 119:177-187 (2015). [2] E. Kerstel, L. Gianfrani, Appl. Phys. B 92, 439-449 (2008).

  13. Urey: to measure the absolute age of Mars

    Science.gov (United States)

    Randolph, J. E.; Plescia, J.; Bar-Cohen, Y.; Bartlett, P.; Bickler, D.; Carlson, R.; Carr, G.; Fong, M.; Gronroos, H.; Guske, P. J.; hide

    2003-01-01

    UREY, a proposed NASA Mars Scout mission will, for the first time, measure the absolute age of an identified igneous rock formation on Mars. By extension to relatively older and younger rock formations dated by remote sensing, these results will enable a new and better understanding of Martian geologic history.

  14. Europe's Other Poverty Measures: Absolute Thresholds Underlying Social Assistance

    Science.gov (United States)

    Bavier, Richard

    2009-01-01

    The first thing many learn about international poverty measurement is that European nations apply a "relative" poverty threshold and that they also do a better job of reducing poverty. Unlike the European model, the "absolute" U.S. poverty threshold does not increase in real value when the nation's standard of living rises,…

  15. Absolute luminosity measurements with the LHCb detector at the LHC

    CERN Document Server

    Aaij, R; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amhis, Y; Anderson, J; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Arrabito, L; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Bachmann, S; Back, J J; Bailey, D S; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bates, A; Bauer, C; Bauer, Th; Bay, A; Bediaga, I; Belous, K; Belyaev, I; Ben-Haim, E; Benayoun, M; Bencivenni, G; Benson, S; Benton, J; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blanks, C; Blouw, J; Blusk, S; Bobrov, A; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Brisbane, S; Britsch, M; Britton, T; Brook, N H; Brown, H; Büchler-Germann, A; Burducea, I; Bursche, A; Buytaert, J; Cadeddu, S; Caicedo Carvajal, J M; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casse, G; Cattaneo, M; Charles, M; Charpentier, Ph; Chiapolini, N; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Collins, P; Constantin, F; Conti, G; Contu, A; Cook, A; Coombes, M; Corti, G; Cowan, G A; Currie, R; D'Almagne, B; D'Ambrosio, C; David, P; De Bonis, I; De Capua, S; De Cian, M; De Lorenzi, F; De Miranda, J M; De Paula, L; De Simone, P; Decamp, D; Deckenhoff, M; Degaudenzi, H; Deissenroth, M; Del Buono, L; Deplano, C; Deschamps, O; Dettori, F; Dickens, J; Dijkstra, H; Diniz Batista, P; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Dzhelyadin, R; Eames, C; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisele, F; Eisenhardt, S; Ekelhof, R; Eklund, L; Elsasser, Ch; d'Enterria, D G; Esperante Pereira, D; Estève, L; Falabella, A; Fanchini, E; Färber, C; Fardell, G; Farinelli, C; Farry, S; Fave, V; Fernandez Albor, V; Ferro-Luzzi, M; Filippov, S; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Frank, M; Frei, C; Frosini, M; Furcas, S; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garnier, J-C; Garofoli, J; Garra Tico, J; Garrido, L; Gaspar, C; Gauvin, N; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Gregson, S; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Haefeli, G; Haen, C; Haines, S C; Hampson, T; Hansmann-Menzemer, S; Harji, R; Harnew, N; Harrison, J; Harrison, P F; He, J; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicks, E; Hofmann, W; Holubyev, K; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Huston, R S; Hutchcroft, D; Hynds, D; Iakovenko, V; Ilten, P; Imong, J; Jacobsson, R; Jaeger, A; Jahjah Hussein, M; Jans, E; Jansen, F; Jaton, P; Jean-Marie, B; Jing, F; John, M; Johnson, D; Jones, C R; Jost, B; Kandybei, S; Karacson, M; Karbach, T M; Keaveney, J; Kerzel, U; Ketel, T; Keune, A; Khanji, B; Kim, Y M; Knecht, M; Koblitz, S; Koppenburg, P; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kruzelecki, K; Kucharczyk, M; Kukulak, S; Kumar, R; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leroy, O; Lesiak, T; Li, L; Li Gioi, L; Lieng, M; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; Lopes, J H; Lopez Asamar, E; Lopez-March, N; Luisier, J; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Magnin, J; Malde, S; Mamunur, R M D; Manca, G; Mancinelli, G; Mangiafave, N; Marconi, U; Märki, R; Marks, J; Martellotti, G; Martens, A; Martin, L; Martín Sánchez, A; Martinez Santos, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Matveev, M; Maurice, E; Maynard, B; Mazurov, A; McGregor, G; McNulty, R; Mclean, C; Meissner, M; Merk, M; Merkel, J; Messi, R; Miglioranzi, S; Milanes, D A; Minard, M-N; Monteil, S; Moran, D; Morawski, P; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Musy, M; Mylroie-Smith, J; Naik, P; Nakada, T; Nandakumar, R; Nardulli, J; Nasteva, I; Nedos, M; Needham, M; Neufeld, N; Nguyen-Mau, C; Nicol, M; Nies, S; Niess, V; Nikitin, N; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Pal, B; Palacios, J; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Paterson, S K; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perego, D L; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pessina, G; Petrella, A; Petrolini, A; Pie Valls, B; Pietrzyk, B; Pilar, T; Pinci, D; Plackett, R; Playfer, S; Plo Casasus, M; Polok, G; Poluektov, A; Polycarpo, E; Popov, D; Popovici, B; Potterat, C; Powell, A; du Pree, T; Prisciandaro, J; Pugatch, V; Puig Navarro, A; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Raven, G; Redford, S; Reid, M M; dos Reis, A C; Ricciardi, S; Rinnert, K; Roa Romero, D A; Robbe, P; Rodrigues, E; Rodrigues, F; Rodriguez Perez, P; Rogers, G J; Roiser, S; Romanovsky, V; Rouvinet, J; Ruf, T; Ruiz, H; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salzmann, C; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santinelli, R; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schleich, S; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M -H; Schwemmer, R; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shao, B; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Skottowe, H P; Skwarnicki, T; Smith, A C; Smith, N A; Sobczak, K; Soler, F J P; Solomin, A; Soomro, F; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Styles, N; Subbiah, V K; Swientek, S; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Topp-Joergensen, S; Tran, M T; Tsaregorodtsev, A; Tuning, N; Ubeda Garcia, M; Ukleja, A; Urquijo, P; Uwer, U; Vagnoni, V; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; Velthuis, J J; Veltri, M; Vervink, K; Viaud, B; Videau, I; Vilasis-Cardona, X; Visniakov, J; Vollhardt, A; Voong, D; Vorobyev, A; Voss, H; Wacker, K; Wandernoth, S; Wang, J; Ward, D R; Webber, A D; Websdale, D; Whitehead, M; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wishahi, J; Witek, M; Witzeling, W; Wotton, S A; Wyllie, K; Xie, Y; Xing, F; Yang, Z; Young, R; Yushchenko, O; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhong, L; Zverev, E; Zvyagin, A

    2012-01-01

    Absolute luminosity measurements are of general interest for colliding-beam experiments at storage rings. These measurements are necessary to determine the absolute cross-sections of reaction processes and are valuable to quantify the performance of the accelerator. LHCb has applied two methods to determine the absolute scale of its luminosity measurements for proton-proton collisions at the LHC with a centre-of-mass energy of 7 TeV. In addition to the classic ``van der Meer scan'' method a novel technique has been developed which makes use of direct imaging of the individual beams using beam-gas and beam-beam interactions. This beam imaging method is made possible by the high resolution of the LHCb vertex detector and the close proximity of the detector to the beams, and allows beam parameters such as positions, angles and widths to be determined. The results of the two methods have comparable precision and are in good agreement. Combining the two methods, an overall precision of 3.5\\% in the absolute lumi...

  16. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... Compartir For more help with what counts as aerobic activity, watch this video: Windows Media Player, 4: ... ways to understand and measure the intensity of aerobic activity: relative intensity and absolute intensity. Relative Intensity ...

  17. An International Comparison of Absolute Radiant Power Measurement Capabilities

    OpenAIRE

    Thomas, Douglas B.

    1990-01-01

    We report the results of an intercomparison of monochromatic radiant power measurement capabilities recently completed by 11 national laboratories. The intercomparison radiometers, distributed in pairs, included an amplifier with six decades of precision gain and one of two types of silicon photodiode (pn or np-type construction). Eleven of the laboratories measured the absolute responsivity of the radiometers at 633 nm and nine at 488 nm. The standard deviation of the overall difference was ...

  18. Demonstrating an absolute quantum advantage in direct absorption measurement

    CERN Document Server

    Moreau, Paul-Antoine; Whittaker, Rebecca; Joshi, Siddarth K; Birchall, Patrick; McMillan, Alex; Rarity, John G; Matthews, Jonathan C F

    2016-01-01

    Engineering apparatus that harness quantum theory offers practical advantages over current technology. A fundamentally more powerful prospect is the long-standing prediction that such quantum technologies could out-perform any future iteration of their classical counterparts, no matter how well the attributes of those classical strategies can be improved. Here, we experimentally demonstrate such an instance of \\textit{absolute} advantage per photon probe in the precision of optical direct absorption measurement. We use correlated intensity measurements of spontaneous parametric downconversion using a commercially available air-cooled CCD, a new estimator for data analysis and a high heralding efficiency photon-pair source. We show this enables improvement in the precision of measurement, per photon probe, beyond what is achievable with an ideal coherent state (a perfect laser) detected with $100\\%$ efficient and noiseless detection. We see this absolute improvement for up to $50\\%$ absorption, with a maximum ...

  19. Measurement of the absolute branching fraction of the Ds+- meson

    CERN Document Server

    Abe, K; Dragic, J; Fujii, H; Gershon, T; Haba, J; Hazumi, M; Higuchi, T; Igarashi, Y; Itoh, R; Iwasaki, Y; Katayama, N; Kichimi, H; Krokovnyi, P P; Limosani, A; Nakamura, I; Nakao, M; Nakazawa, H; Nishida, S; Nozaki, T; Ozaki, H; Ronga, F J; Saitoh, S; Sakai, Y; Stamen, R; Sumisawa, K; Suzuki, S Y; Tajima, O; Takasaki, F; Tamai, K; Tanaka, M; Trabelsi, K; Tsuboyama, T; Tsukamoto, T; Uehara, S; Unno, Y; Uno, S; Ushiroda, Y; Yamauchi, M; Zhang, J; Hoshi, Y; Neichi, K; Aihara, H; Hastings, N C; Ishikawa, A; Itoh, K; Iwasaki, M; Kakuno, H; Kusaka, A; Nakahama, Y; Tanabe, K; Anipko, D; Arinstein, K; Aulchenko, V; Bedny, I; Bondar, A; Eidelman, S; Epifanov, D A; Gabyshev, N; Kuzmin, A; Poluektov, A; Root, N; Shwartz, B; Sidorov, V; Usov, Yu; Zhilich, V; Aoki, K; Enari, Y; Hara, K; Hayasaka, K; Hokuue, T; Iijima, T; Ikado, K; Inami, K; Kishimoto, N; Kozakai, Y; Kubota, T; Miyazaki, Y; Ohshima, T; Okabe, T; Sato, N; Senyo, K; Yoshino, S; Arakawa, T; Kawasaki, T; Miyata, H; Tamura, N; Watanabe, M; Asano, Y; Aso, T; Aushev, T; Bay, A; Hinz, L; Jacoby, C; Schietinger, T; Schneider, O; Villa, S; Wicht, J; Zürcher, D; Aziz, T; Banerjee, S; Gokhroo, G; Majumder, G; Bahinipati, S; Drutskoy, A; Goldenzweig, P; Kinoshita, K; Kulasiri, R; Sayeed, K; Schwartz, A J; Somov, A; Bakich, A M; Cole, S; McOnie, S; Parslow, N; Peak, L S; Stöck, H; Varvell, K E; Yabsley, B D; Balagura, V; Chistov, R; Danilov, M; Liventsev, D; Medvedeva, T; Mizuk, R; Pakhlov, P; Pakhlova, G; Tikhomirov, I; Uglov, T; Tian, Y BanX C; Barberio, E; Dalseno, J; Dowd, R; Moloney, G R; Sevior, M E; Taylor, G N; Tse, Y F; Urquijo, P; Barbero, M; Browder, T E; Guler, H; Jones, M; Li, J; Nishimura, K; Olsen, S L; Peters, M; Rorie, J; Sahoo, H; Uchida, K; Varner, G; Belous, K S; Shapkin, M; Sokolov, A; Bitenc, U; Bizjak, I; Fratina, S; Gorisek, A; Pestotnik, R; Staric, M; Zupanc, A; Blyth, S; Chen, A; Chen, W T; Go, A; Hou, S; Kuo, C C; Bozek, A; Kapusta, P; Lesiak, T; Matyja, A; Natkaniec, Z; Ostrowicz, W; Palka, H; Rózanska, M; Wiechczynski, J; Bracko, M; Korpar S; Brodzicka, J; Chang, M C; Kikuchi, N; Mikami, Y; Nagamine, T; Schonmeier, P; Yamaguchi, A; Yamamoto, H; Chang, P; Chao, Y; Chen, K F; Hou, W S; Hsiung, Y B; Lee, Y J; Lin, C Y; Lin, S W; Shen, Y T; Tsai, Y T; Ueno, K; Wang, C C; Wang, M Z; Wu, C H; Cheon, B G; Choi, J H; Ha, H; Kang, J S; Won, E; Choi, S K; Choi, Y; Choi, Y K; Kim, H O; Kim, J H; Park, C W; Park, K S; Chuvikov, A; Garmash, A; Marlow, D; Ziegler, T; Dash, M; Mohapatra, D; Piilonen, L E; Yusa, Y; Fujikawa, M; Hayashii, H; Imoto, A; Kataoka, S U; Miyabayashi, K; Noguchi, S; Krizan, P; Golob, B; Seidl, R; Grosse-Perdekamp, M; Hara, T; Heffernan, D; Miyake, H; Hasegawa, Y; Satoyama, N; Takada, N; Nitoh, O; Hoshina, K; Ishino, H; Khan, H R; Kibayashi, A; Mori, T; Ono, S; Watanabe, Y; Iwabuchi, M; Kim, Y J; Liu, Y; Sarangi, T R; Uchida, Y; Kang, J H; Kim, T H; Kwon, Y J; Kurihara, E; Kawai, H; Park, H; Kim, H J; Kim, S K; Lee, J; Lee, S E; Yang He Young; Kumar, R; Singh, J B; Soni, N; Lange, J S; Leder, G; MacNaughton, J; Mandl, F; Mitaroff, W A; Pernicka, M; Schwanda, C; Widhalm, L; Matsumoto, T; Nakagawa, T; Seki, T; Sumiyoshi, T; Yamamoto, S; Müller, J; Murakami, A; Sugiyama, A; Suzuki, S; Nagasaka, Y; Nakano, E; Sakaue, H; Teramoto, Y; Ogawa, A; Shibuya, H; Ogawa, S; Okuno, S; Sakamoto, H; Wang, C H; Schümann, J; Stanic, S; Xie, Q L; Yuan, Y; Zang, S L; Zhang, C C; Yamashita, Y; Zhang, L M; Zhang, Z P

    2006-01-01

    The Ds+- -> K+-K-+pi+- absolute branching fraction is measured using e+e- -> Ds*+- Ds1-+(2536) events collected by the Belle detector at the KEKB e+e- asymmetric energy collider. Using the ratio of yields when either the Ds1 or Ds* is fully reconstructed, we find Br(Ds+- -> K+-K-+pi+-)= (4.0+-0.4(stat)+-0.4(sys))%.

  20. Measuring absolute spectral radiance using an Erbium Doped Fibre Amplifier

    CERN Document Server

    Sanguinetti, Bruno; Monteiro, Fernando; Gisin, Nicolas; Zbinden, Hugo

    2012-01-01

    We describe a method to measure the spectral radiance of a source in an absolute way without the need of a reference. Here we give the necessary detail to allow for the device to be reproduced from standard fiber-optic components. The device is suited for fiber-optic applications at telecom wavelengths and calibration of powermeters and spectrometers at light levels from 1nW to 1uW.

  1. DI3 - A New Procedure for Absolute Directional Measurements

    Directory of Open Access Journals (Sweden)

    A Geese

    2011-06-01

    Full Text Available The standard observatory procedure for determining a geomagnetic field's declination and inclination absolutely is the DI-flux measurement. The instrument consists of a non-magnetic theodolite equipped with a single-axis fluxgate magnetometer. Additionally, a scalar magnetometer is needed to provide all three components of the field. Using only 12 measurement steps, all systematic errors can be accounted for, but if only one of the readings is wrong, the whole measurement has to be rejected. We use a three-component sensor on top of the theodolites telescope. By performing more measurement steps, we gain much better control of the whole procedure: As the magnetometer can be fully calibrated by rotating about two independent directions, every combined reading of magnetometer output and theodolite angles provides the absolute field vector. We predefined a set of angle positions that the observer has to try to achieve. To further simplify the measurement procedure, the observer is guided by a pocket pc, in which he has only to confirm the theodolite position. The magnetic field is then stored automatically, together with the horizontal and vertical angles. The DI3 measurement is periodically performed at the Niemegk Observatory, allowing for a direct comparison with the traditional measurements.

  2. Absolute Measurement of Quantum-Limited Interferometric Displacements

    CERN Document Server

    Thiel, Valérian; Treps, Nicolas; Roslund, Jonathan

    2016-01-01

    A methodology is introduced that enables an absolute, quantum-limited measurement of sub-wavelength interferometric displacements. The technique utilizes a high-frequency optical path modulation within an interferometer operated in a homodyne configuration. All of the information necessary to fully characterize the resultant path displacement is contained within the relative strengths of the various harmonics of the phase modulation. The method, which is straightforward and readily implementable, allows a direct measurement of the theoretical Cram\\'er-Rao limit of detection without any assumptions on the nature of the light source.

  3. Development of NANA: A Fast-Scintillator, Coincidence Gamma-ray Array for Radioactive Source Characterisation and Absolute Activity Measurements at the UK National Physical Laboratory

    Science.gov (United States)

    Regan, P. H.; Shearman, R.; Judge, S. M.; Lorusso, G.; Main, P.; Bell, S.; Collins, S. M.; Ivanov, P.; Jerome, S. M.; Keightley, J. D.; Larijani, C.; Lotay, G.; Pearce, A. K.

    2015-06-01

    A multi-detector modular coincidence gamma-ray spectrometer is being designed and constructed for use at the UK's National Physical Laboratory (NPL) for use in direct measurement and metrological standardisation of nuclear decay activities. In its first generation, the NPL National Nuclear Array (NANA) will consist of twelve individual halide scintillation detectors placed in a high-efficiency geometry around a well-defined central point source position. This brief conference paper provides details of the measured detector module and coincidence energy and timing responses for the LaBr3(Ce) detectors which will be used in the NANA array. Preliminary GEANT4 simulations of the array's full energy peak efficiency and expected gamma-ray coincidence response are also presented.

  4. Absolute and specific measures of research group excellence

    CERN Document Server

    Mryglod, O; Holovatch, Yu; Berche, B

    2012-01-01

    A desirable goal of scientific management is to introduce, if it exists, a simple and reliable way to measure the scientific excellence of publicly-funded research institutions and universities to serve as a basis for their ranking and financing. While citation-based indicators and metrics are easily accessible, they are far from being universally accepted as way to automate or inform evaluation processes or to replace evaluations based on peer review. Here we consider absolute measurements of research excellence at an amalgamated, institutional level and specific measures of research excellence as performance per head. Using biology research institutions in the UK as a test case, we examine the correlations between peer-review-based and citation-based measures of research excellence on these two scales. We find that citation-based indicators are very highly correlated with peer-evaluated measures of group strength but are poorly correlated with group quality. Thus, and almost paradoxically, our analysis indi...

  5. Absolute activity determination of CaWO{sub 4} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Muenster, Andrea; Ertl, Andreas; Guetlein, Achim; Lanfranchi, Jean-Come; Potzel, Walter; Roth, Sabine; Simon, Daniel; Scholl, Stephan; Sivers, Moritz von; Strauss, Raimund; Wawoczny, Stephan; Willers, Michael; Wuestrich, Marc; Zoeller, Andreas [TU Muenchen, Fakultaet fuer Physik, E15, Garching (Germany)

    2013-07-01

    The direct Dark Matter search experiment CRESST uses CaWO{sub 4} single crystals as targets for possible WIMP recoils. A particle interaction in the crystal produces phonons as well as scintillation light. As the light signal is dependent on the kind of interacting particle, a particle discrimination on an event-by-event basis is feasible. The observed background is mainly due to intrinsic radioactive impurities of the CaWO{sub 4} target. An activity of this intrinsic contamination can be determined with the investigation of α-decays in the crystal. Up to now, CaWO{sub 4} crystals were produced by suppliers in Russia and Ukraine. Since 2011 we are able to grow CaWO{sub 4} crystals in a Czochralski furnace installed in the crystal laboratory of TU Munich, which has the advantage to better meet the requirements of CRESST and to ensure the availability of CaWO{sub 4} crystals for the successive future multi-material experiment EURECA. To check the radiopurity, first self-grown crystals were investigated in test measurements. In this talk we will present the results for absolute α-activities of self-grown crystals and compare them to α-activities of the crystals installed in the last CRESST run (Run32).

  6. Absolute Measurement Fiber-optic Sensors in Large Structural Monitoring

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The security of civil engineering is an important task due to the economic, social and environmental significance. Compared with conventional sensors, the optical fiber sensors have their unique characteristics.Being durable, stable and insensitive to external perturbations,they are particular interesting for the long-term monitoring of civil structures.Focus is on absolute measurement optical fiber sensors, which are emerging from the monitoring large structural, including SOFO system, F-P optical fiber sensors, and fiber Bragg grating sensors. The principle, characteristic and application of these three kinds of optical fiber sensors are described together with their future prospects.

  7. Absolute distance measurement based on multiple self-mixing interferometry

    Science.gov (United States)

    Duan, Zhiwei; Yu, Yangyang; Gao, Bingkun; Jiang, Chunlei

    2017-04-01

    To improve the precision of distance measurement using laser Self-Mixing Interferometry (SMI) and compute short distance, we propose a method of Multiple Self-Mixing Interferometry (MSMI) that is modulated with a triangular wave. The principle of this method has been described in this paper. Experiments at different distances and amplitudes of modulation current are based on the proposed method. Low-priced and easily operated experimental devices are built. Experimental results show that a resolution of 2.7 mm can be achieved for absolute distance ranging from 2.2 to 23 cm.

  8. 3D measurement of absolute radiation dose in grid therapy

    Energy Technology Data Exchange (ETDEWEB)

    Trapp, J V [Joint Department of Physics, Institute of Cancer Research and Royal Marsden Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT (United Kingdom); Department of Applied Physics, RMIT University, GPO Box 2476V, Melbourne 3001 (Australia); Warrington, A P [Joint Department of Physics, Institute of Cancer Research and Royal Marsden Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT (United Kingdom); Partridge, M [Joint Department of Physics, Institute of Cancer Research and Royal Marsden Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT (United Kingdom); Philps, A [Joint Department of Physics, Institute of Cancer Research and Royal Marsden Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT (United Kingdom); Leach, M O [Cancer Research UK Clinical MR Research Group, Institute of Cancer Research and Royal Marsden Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT (United Kingdom); Webb, S [Joint Department of Physics, Institute of Cancer Research and Royal Marsden Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT (United Kingdom)

    2004-01-01

    Spatially fractionated radiotherapy through a grid is a concept which has a long history and was routinely used in orthovoltage radiation therapy in the middle of last century to minimize damage to the skin and subcutaneous tissue. With the advent of megavoltage radiotherapy and its skin sparing effects the use of grids in radiotherapy declined in the 1970s. However there has recently been a revival of the technique for use in palliative treatments with a single fraction of 10 to 20 Gy. In this work the absolute 3D dose distribution in a grid irradiation is measured for photons using a combination of film and gel dosimetry.

  9. Absolute efficiency measurements with the 10B based Jalousie detector

    Science.gov (United States)

    Modzel, G.; Henske, M.; Houben, A.; Klein, M.; Köhli, M.; Lennert, P.; Meven, M.; Schmidt, C. J.; Schmidt, U.; Schweika, W.

    2014-04-01

    The 10B based Jalousie detector is a replacement for 3He counter tubes, which are nowadays less affordable for large area detectors due to the 3He crisis. In this paper we investigate and verify the performance of the new 10B based detector concept and its adoption for the POWTEX diffractometer, which is designed for the detection of thermal neutrons with predicted detection efficiencies of 75-50% for neutron energies of 10-100 meV, respectively. The predicted detection efficiency has been verified by absolute measurements using neutrons with a wavelength of 1.17 Å (59 meV).

  10. Improvement of a cryogenic radiometer for XFEL absolute intensity measurement

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, T., E-mail: takahiro-tanaka@aist.go.jp [National Institute of Advanced Industrial Science and Technology (AIST), NMIJ, Tsukuba 305-8568 (Japan); Kato, M.; Kurosawa, T.; Morishita, Y.; Saito, N. [National Institute of Advanced Industrial Science and Technology (AIST), NMIJ, Tsukuba 305-8568 (Japan); Yabashi, M.; Tono, K.; Kudo, T.; Ishikawa, T. [SPring-8/RIKEN, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Shiraiwa, S. [Rockgate Co., 1-11-12 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2011-12-11

    A cryogenic radiometer was improved for measurements of the absolute radiant power of x-ray Free Electron Laser, which provides intense radiation with an ultra-short pulse duration. Based on simulation results obtained by the Monte Carlo program EGS 5 code, a new cavity absorber of the cryogenic radiometer was developed. The simulation results show that the new cavity absorber achieves absorptance close to unity for hard x-rays up to photon energies of 40 keV. The excellent performance of the new cavity absorber, as well as the consistency between the new and the former cavity, was confirmed by calibrating two different types of silicon photodiodes. The calibration results agreed well within their relative expanded uncertainties. To confirm the performance of the new cavity absorber in the high radiant power region, the radiant powers obtained with the cryogenic radiometer and an x-ray beam monitor were also compared. A strong correlation between the two detectors was obtained. With the new cavity absorber, the absolute radiant power of XFEL for photon energies of up to 40 keV with low uncertainties is expected to be measured.

  11. Absolute measurement of gene transcripts with Selfie-digital PCR.

    Science.gov (United States)

    Podlesniy, Petar; Trullas, Ramon

    2017-08-21

    Absolute measurement of the number of RNA transcripts per gene is necessary to compare gene transcription among different tissues or experimental conditions and to assess transcription of genes that have a variable copy number per cell such as mitochondrial DNA. Here, we present a method called Selfie-digital PCR that measures the absolute amount of an RNA transcript produced by its own coding DNA at a particular moment. Overcoming the limitations of previous approaches, Selfie-digital PCR allows for the quantification of nuclear and mitochondrial gene transcription in a strand-specific manner that is comparable among tissues and cell types that differ in gene copy number or metabolic state. Using Selfie-digital PCR, we found that, with the exception of the liver, different organs exhibit marked variations in mitochondrial DNA copy number but similar transcription of mitochondrial DNA heavy and light chains, thus suggesting a preferential role of mitochondrial DNA abundance over its transcription in organ function. Moreover, the strand-specific analysis of mitochondrial transcription afforded by Selfie-digital PCR showed that transcription of the heavy strand was significantly higher than that of the light strand in all the tissues studied.

  12. Absolute rotation detection by Coriolis force measurement using optomechanics

    Science.gov (United States)

    Davuluri, Sankar; Li, Yong

    2016-10-01

    In this article, we present an application of the optomechanical cavities for absolute rotation detection. Two optomechanical cavities, one in each arm, are placed in a Michelson interferometer. The interferometer is placed on a rotating table and is moved with a uniform velocity of \\dot{\\bar{y}} with respect to the rotating table. The Coriolis force acting on the interferometer changes the length of the optomechanical cavity in one arm, while the length of the optomechanical cavity in the other arm is not changed. The phase shift corresponding to the change in the optomechanical cavity length is measured at the interferometer output to estimate the angular velocity of the absolute rotation. An analytic expression for the minimum detectable rotation rate corresponding to the standard quantum limit of measurable Coriolis force in the interferometer is derived. Squeezing technique is discussed to improve the rotation detection sensitivity by a factor of \\sqrt{{γ }m/{ω }m} at 0 K temperature, where {γ }m and {ω }m are the damping rate and angular frequency of the mechanical oscillator. The temperature dependence of the rotation detection sensitivity is studied.

  13. Deconstructing European Poverty Measures: What Relative and Absolute Scales Measure

    Science.gov (United States)

    Burkhauser, Richard V.

    2009-01-01

    Forster and d'Ercole (2009) outline the dominant method of conceptualization and operationalization of European poverty measures that informed the EU in its development of the questionnaire for the European Union--Survey of Income and Living Conditions (EU-SILC). They do so in the context of their explanation of how the Organization for Economic…

  14. Deconstructing European Poverty Measures: What Relative and Absolute Scales Measure

    Science.gov (United States)

    Burkhauser, Richard V.

    2009-01-01

    Forster and d'Ercole (2009) outline the dominant method of conceptualization and operationalization of European poverty measures that informed the EU in its development of the questionnaire for the European Union--Survey of Income and Living Conditions (EU-SILC). They do so in the context of their explanation of how the Organization for Economic…

  15. Superfast 3D absolute shape measurement using five binary patterns

    Science.gov (United States)

    Hyun, Jae-Sang; Zhang, Song

    2017-03-01

    This paper presents a method that recovers high-quality 3D absolute coordinates point by point with only five binary patterns. Specifically, three dense binary dithered patterns are used to compute the wrapped phase; and the average intensity is combined with two additional binary patterns to determine fringe order pixel by pixel in phase domain. The wrapped phase is temporarily unwrapped point by point by referring to the fringe order. We further developed a computational framework to reduce random noise impact due to dithering, defocusing and random noise. Since only five binary fringe patterns are required to recover one 3D frame, extremely high speed 3D shape measurement can be achieved. For example, we developed a system that captures 2D images at 3333 Hz, and thus performs 3D shape measurement at 667 Hz.

  16. Absolute poverty measures for the developing world, 1981-2004.

    Science.gov (United States)

    Chen, Shaohua; Ravallion, Martin

    2007-10-23

    We report new estimates of measures of absolute poverty for the developing world for the period 1981-2004. A clear trend decline in the percentage of people who are absolutely poor is evident, although with uneven progress across regions. We find more mixed success in reducing the total number of poor. Indeed, the developing world outside China has seen little or no sustained progress in reducing the number of poor, with rising poverty counts in some regions, notably sub-Saharan Africa. There are encouraging signs of progress in all regions after 2000, although it is too early to say whether this is a new trend. We also summarize results from estimating a new series incorporating an allowance for the higher cost of living facing poor people in urban areas. This reveals a marked urbanization of poverty in the developing world, which is stronger in some regions than others, although it remains that three-quarters of the poor live in rural areas.

  17. Diagnostic Application of Absolute Neutron Activation Analysis in Hematology

    Energy Technology Data Exchange (ETDEWEB)

    Zamboni, C.B.; Oliveira, L.C.; Dalaqua, L. Jr.

    2004-10-03

    The Absolute Neutron Activation Analysis (ANAA) technique was used to determine element concentrations of Cl and Na in blood of healthy group (male and female blood donators), select from Blood Banks at Sao Paulo city, to provide information which can help in diagnosis of patients. This study permitted to perform a discussion about the advantages and limitations of using this nuclear methodology in hematological examinations.

  18. Lunar eclipse photometry: absolute luminance measurements and modeling.

    Science.gov (United States)

    Hernitschek, Nina; Schmidt, Elmar; Vollmer, Michael

    2008-12-01

    The Moon's time-dependent luminance was determined during the 9 February 1990 and 3 March 2007 total lunar eclipses by using calibrated, industry standard photometers. After the results were corrected to unit air mass and to standard distances for both Moon and Sun, an absolute calibration was accomplished by using the Sun's known luminance and a pre-eclipse lunar albedo of approximately 13.5%. The measured minimum level of brightness in the total phase of both eclipses was relatively high, namely -3.32 m(vis) and -1.7 m(vis), which hints at the absence of pronounced stratospheric aerosol. The light curves were modeled in such a way as to let the Moon move through an artificial Earth shadow composed of a multitude of disk and ring zones, containing a relative luminance data set from an atmospheric radiative transfer calculation.

  19. Measured and modelled absolute gravity changes in Greenland

    Science.gov (United States)

    Nielsen, J. Emil; Forsberg, Rene; Strykowski, Gabriel

    2014-01-01

    In glaciated areas, the Earth is responding to the ongoing changes of the ice sheets, a response known as glacial isostatic adjustment (GIA). GIA can be investigated through observations of gravity change. For the ongoing assessment of the ice sheets mass balance, where satellite data are used, the study of GIA is important since it acts as an error source. GIA consists of three signals as seen by a gravimeter on the surface of the Earth. These signals are investigated in this study. The ICE-5G ice history and recently developed ice models of present day changes are used to model the gravity change in Greenland. The result is compared with the initial measurements of absolute gravity (AG) change at selected Greenland Network (GNET) sites.

  20. Absolute measures of the completeness of the fossil record.

    Science.gov (United States)

    Foote, M; Sepkoski, J J

    1999-04-01

    Measuring the completeness of the fossil record is essential to understanding evolution over long timescales, particularly when comparing evolutionary patterns among biological groups with different preservational properties. Completeness measures have been presented for various groups based on gaps in the stratigraphic ranges of fossil taxa and on hypothetical lineages implied by estimated evolutionary trees. Here we present and compare quantitative, widely applicable absolute measures of completeness at two taxonomic levels for a broader sample of higher taxa of marine animals than has previously been available. We provide an estimate of the probability of genus preservation per stratigraphic interval, and determine the proportion of living families with some fossil record. The two completeness measures use very different data and calculations. The probability of genus preservation depends almost entirely on the Palaeozoic and Mesozoic records, whereas the proportion of living families with a fossil record is influenced largely by Cenozoic data. These measurements are nonetheless highly correlated, with outliers quite explicable, and we find that completeness is rather high for many animal groups.

  1. Direct Solar Irradiance measurements with a Cryogenic Solar Absolute Radiometer

    Science.gov (United States)

    Walter, Benjamin; Winkler, Rainer; Graber, Florian; Finsterle, Wolfgang; Fox, Nigel; Li, Vivian; Schmutz, Werner

    2017-02-01

    The World Radiometric Reference (WRR) is an artefact based reference for Direct Solar Irradiance (DSI) measurements. The WRR is realized by a group of electrical substitution radiometers, the World Standard Group (WSG). In recent years, a relative difference of about -0.3% between the International System of Units (SI) scale and the WRR scale was observed with the SI scale being lower. The Cryogenic Solar Absolute Radiometer (CSAR) aims for i) providing direct traceability of DSI measurements to the SI system, ii) reducing the overall uncertainty of DSI measurements towards 0.01% and for iii) replacing the WSG in future. The latest SI-WRR intercomparisons performed with CSAR revealed a relative difference of -0.29% ± 0.064% (k = 1) between the SI and the WRR scale, a result that agrees well with previous findings. The uncertainty of corrections for the window transmittance results currently in the largest contribution to the total uncertainty for the CSAR measurements. The formal transition from the WRR to the SI-scale for DSI measurements is currently being discussed in the WMO/CIMO Task Team on Radiation References.

  2. Absolute activity measurement of the electron-capture-based radionuclides Ce-139, I-125, Ir-192 and Zn-65 by liquid scintillation coincidence counting

    CSIR Research Space (South Africa)

    Van Wyngaardt, WM

    2006-10-01

    Full Text Available measurements formed part of a regional comparison organized by the Asia Pacific Metrology Programme (APMP). Since Ce-139 decays simply by electron-capture to the 166 keV excited state of 139La. This state de-excites through the emission of conversion electrons...

  3. Measuring the absolute quantum efficiency of luminescent materials

    Energy Technology Data Exchange (ETDEWEB)

    Rohwer, Lauren Shea [Sandia National Laboratories, P.O. Box 5800, MS-0892, Albuquerque, NM 87185-0892 (United States)]. E-mail: leshea@sandia.gov; Martin, James E. [Sandia National Laboratories, P.O. Box 5800, MS-0892, Albuquerque, NM 87185-0892 (United States)

    2005-11-15

    A measurement system and mathematical procedure are developed for determining the absolute quantum efficiency (QE), of luminescent materials. This technique, based on absorption of diffuse light within an integrating sphere, is applied to fluorescent laser dyes and conventional phosphor powders. The system described is tested for excitation in the near-UV and blue regions, but can be applied to higher energy excitation (UV), as well as lower energy excitation in the visible to near-IR, with the appropriate photodetectors and optical filters. The system was tested on both liquid and solid samples such as Coumarin 500 (CM500) dye in methanol and ethyl acetate; Rhodamine 6G in ethanol; and a variety of powder phosphors. The QE of quinine sulfate dihydrate solution (5x10{sup -3} M in 0.1 N H{sub 2}SO{sub 4}), a NIST fluorescence standard, was found to be in good agreement with the NIST value under 390 nm excitation. The accuracy of this measurement technique is acceptable for samples with absorption cross sections greater than {approx}6 mm{sup 2}.

  4. Absolute velocity measurements in the solar transition region and corona

    Science.gov (United States)

    Hassler, D. M.; Rottman, G. J.; Orrall, F. Q.

    An experimental technique is presented to measure absolute velocities of minor ions formed in the solar transition region and corona. A sounding rocket experiment July 27 1987 obtained high resolution EUV spectra along a solar diameter with spatial resolution of 20 x 20 arcsec. The wavelengths of the 1533 Si II, 1548 C IV, and 770 Ne VIII emission lines were directly compared with wavelengths of known platinum lines generated by an inflight calibration lamp. On the assumption that horisontal motions cancel statistically so that the line-of-sight velocity approaches zero at the limb, a net radial downflow of approximately 7.5 + or - 1.0 km/s was found for C IV and upper limits were found on the radial flow for Si II and Ne VIII. This assumption was tested by direct comparison to the on-board wavelength reference using recently published laboratory rest wavelengths of the solar emission lines. Agreement was found within the published uncertainties of the laboratory wavelengths + or - 2 km/s in the case of C IV. It is suggested that improved laboratory wavelength measurements (+ or - 1 km/s) in conjunction with inflight wavelength calibration would improve constraints on models of transition region and coronal dynamics.

  5. Embedded north-seeker for automatic absolute magnetic DI measurements

    Science.gov (United States)

    Gonsette, Alexandre; Rasson, Jean

    2014-05-01

    In magnetic observatory Earth magnetic field is recorded with a resolution of 0.1nT for 1min sampling (new standards impose 1pT for 1s sampling). The method universally adopted for measuring it is a combination of three instruments. Vectorial magnetometer (variometer) records variations of the three components around a reference value or a baseline. A proton or an overhauser magnetometer is an absolute instrument able to measure the modulus of the field and used to determine the F component baseline of the variometer. The declination and inclination baselines require a manual procedure to be computed. An operator manipulates a non-magnetic theodolite (also called a DIFlux) to measure the D and I angles in different configurations with a resolution of a few arcsec. The AutoDIF is a non-magnetic automatic DIFlux using the same protocol as the manual procedure. The declination defined according to the true north is determined by means of a target pointing system. Even if the technique is fast and accurate, it becomes problematic in case of unmanned deployment. In particular the area between the target and the DIFlux is out of control. Snow storm, fog, vegetation or condensation on windows are examples of perturbation preventing for finding the target. It is obvious in case of (future) seafloor observatories. A FOG based north-seeker has been implemented and mounted on the AutoDIF. The first results using a low cost gyro don't meet the Intermagnet specifications yet but are however hopeful. A 0.1° standard deviation has been reached and statistically reduced to 0.01° after less than two days in laboratory. The magnetic disturbance of the sensor is taken into account and compensated by the measurement protocol.

  6. Automated absolute activation analysis with californium-252 sources

    Energy Technology Data Exchange (ETDEWEB)

    MacMurdo, K.W.; Bowman, W.W.

    1978-09-01

    A 100-mg /sup 252/Cf neutron activation analysis facility is used routinely at the Savannah River Laboratory for multielement analysis of many solid and liquid samples. An absolute analysis technique converts counting data directly to elemental concentration without the use of classical comparative standards and flux monitors. With the totally automated pneumatic sample transfer system, cyclic irradiation-decay-count regimes can be pre-selected for up to 40 samples, and samples can be analyzed with the facility unattended. An automatic data control system starts and stops a high-resolution gamma-ray spectrometer and/or a delayed-neutron detector; the system also stores data and controls output modes. Gamma ray data are reduced by three main programs in the IBM 360/195 computer: the 4096-channel spectrum and pertinent experimental timing, counting, and sample data are stored on magnetic tape; the spectrum is then reduced to a list of significant photopeak energies, integrated areas, and their associated statistical errors; and the third program assigns gamma ray photopeaks to the appropriate neutron activation product(s) by comparing photopeak energies to tabulated gamma ray energies. Photopeak areas are then converted to elemental concentration by using experimental timing and sample data, calculated elemental neutron capture rates, absolute detector efficiencies, and absolute spectroscopic decay data. Calculational procedures have been developed so that fissile material can be analyzed by cyclic neutron activation and delayed-neutron counting procedures. These calculations are based on a 6 half-life group model of delayed neutron emission; calculations include corrections for delayed neutron interference from /sup 17/O. Detection sensitivities of < or = 400 ppB for natural uranium and 8 ppB (< or = 0.5 (nCi/g)) for /sup 239/Pu were demonstrated with 15-g samples at a throughput of up to 140 per day. Over 40 elements can be detected at the sub-ppM level.

  7. ATLAS ALFA—measuring absolute luminosity with scintillating fibres

    CERN Document Server

    Franz, S

    2009-01-01

    ALFA is a high-precision scintillating fibre tracking detector under construction for the absolute determination of the LHC luminosity at the ATLAS interaction point. This detector, mounted in so-called Roman Pots, will track protons elastically scattered under μrad angles at IP1.In total there are four pairs of vertically arranged detector modules which approach the LHC beam axis to mm distance. Each detector module consists of ten layers of two times 64 scintillating fibres each (U and V planes). The fibres are coupled to 64 channels Multi-Anodes PhotoMultipliers Tubes read out by compact front-end electronics. Each detector module is complemented by so-called overlap detectors: Three layers of two times 30 scintillating fibres which will be used to measure the relative positioning of two vertically arranged main detectors. The total number of channels is about 15000. Conventional plastic scintillator tiles are mounted in front of the fibre detectors and will serve as trigger counter. The extremely restric...

  8. Comparison of available measurements of the absolute fluorescence yield

    CERN Document Server

    Rosado, J; Arqueros, F

    2010-01-01

    The uncertainty in the absolute value of the fluorescence yield is still one of the main contributions to the total error in the reconstruction of the primary energy of ultra-energetic air showers using the fluorescence technique. A significant number of experimental values of the fluorescence yield have been published in the last years, however reported results are given very often in different units (photons/MeV or photons/m) and for different wavelength intervals. In this work we present a comparison of available results normalized to its value in photons/MeV for the 337 nm band at 800 hPa and 293 K. Possible sources of systematic errors on these measurements are discussed. In particular, the conversion of photons/m to photons/MeV requires an accurate determination of the energy deposited by the electrons in the field of view of the experimental setup. We have calculated the energy deposition for each experiment by means of a detailed Monte Carlo simulation including when possible the geometrical details o...

  9. Accurate absolute measurement of trapped Cs atoms in a MOT

    Energy Technology Data Exchange (ETDEWEB)

    Talavera O, M.; Lopez R, M.; Carlos L, E. de [Division de Tiempo y Frecuencia, Centro Nacional de Metrologia, CENAM, km 4.5 Carretera a los Cues, El Marques, 76241 Queretaro (Mexico); Jimenez S, S. [Centro de Investigacion y Estudios Avanzados del lPN, Unidad Queretaro, Libramiento Norponiente No. 2000, Fracc. Real de Juriquilla, 76230 Queretaro (Mexico)

    2007-07-01

    A Cs-133 Magneto-Optical Trap (MOT) has been developed at the Time and Frequency Division of the Centro Nacional de Metrologia, CENAM, in Mexico. This MOT is part of a primary frequency standard based on ultra-cold Cs atoms, called CsF-1 clock, under development at CENAM. In this Cs MOT, we use the standard configuration ({sigma}{sup +} - {sigma}{sup -}) 4-horizontal 2-vertical laser beams 1.9 cm in diameter, with 5 mW each. We use a 852 nm, 5 mW, DBR laser as a master laser which is stabilized by saturation spectroscopy. Emission linewidth of the master laser is l MHz. In order to amplify the light of the master laser, a 50 mW, 852 nm AlGaAs laser is used as slave laser. This slave laser is stabilized by light injection technique. A 12 MHz red shift of the light is performed by two double passes through two Acusto-Optic Modulators (AOMs). The optical part of the CENAMs MOT is very robust against mechanical vibration, acoustic noise and temperature changes in our laboratory, because none of our diode lasers use an extended cavity to reduce the linewidth. In this paper, we report results of our MOT characterization as a function of several operation parameters such as the intensity of laser beams, the laser beam diameter, the red shift of light, and the gradient of the magnetic field. We also report accurate absolute measurement of the number of Cs atoms trapped in our Cs MOT. We found up to 6 x 10{sup 7} Cs atoms trapped in our MOT measured with an uncertainty no greater than 6.4%. (Author)

  10. The correction of vibration in frequency scanning interferometry based absolute distance measurement system for dynamic measurements

    Science.gov (United States)

    Lu, Cheng; Liu, Guodong; Liu, Bingguo; Chen, Fengdong; Zhuang, Zhitao; Xu, Xinke; Gan, Yu

    2015-10-01

    Absolute distance measurement systems are of significant interest in the field of metrology, which could improve the manufacturing efficiency and accuracy of large assemblies in fields such as aircraft construction, automotive engineering, and the production of modern windmill blades. Frequency scanning interferometry demonstrates noticeable advantages as an absolute distance measurement system which has a high precision and doesn't depend on a cooperative target. In this paper , the influence of inevitable vibration in the frequency scanning interferometry based absolute distance measurement system is analyzed. The distance spectrum is broadened as the existence of Doppler effect caused by vibration, which will bring in a measurement error more than 103 times bigger than the changes of optical path difference. In order to decrease the influence of vibration, the changes of the optical path difference are monitored by a frequency stabilized laser, which runs parallel to the frequency scanning interferometry. The experiment has verified the effectiveness of this method.

  11. Measuring the absolute DT neutron yield using the Magnetic Recoil Spectrometer at OMEGA and the NIF

    Energy Technology Data Exchange (ETDEWEB)

    Mackinnon, A; Casey, D; Frenje, J A; Johnson, M G; Seguin, F H; Li, C K; Petrasso, R D; Glebov, V Y; Katz, J; Knauer, J; Meyerhofer, D; Sangster, T; Bionta, R; Bleuel, D; Hachett, S P; Hartouni, E; Lepape, S; Mckernan, M; Moran, M; Yeamans, C

    2012-05-03

    A Magnetic Recoil Spectrometer (MRS) has been installed and extensively used on OMEGA and the National Ignition Facility (NIF) for measurements of the absolute neutron spectrum from inertial confinement fusion (ICF) implosions. From the neutron spectrum measured with the MRS, many critical implosion parameters are determined including the primary DT neutron yield, the ion temperature, and the down-scattered neutron yield. As the MRS detection efficiency is determined from first principles, the absolute DT neutron yield is obtained without cross-calibration to other techniques. The MRS primary DT neutron measurements at OMEGA and the NIF are shown to be in excellent agreement with previously established yield diagnostics on OMEGA, and with the newly commissioned nuclear activation diagnostics on the NIF.

  12. Study of a 4{pi}{beta}-{gamma} coincidence system for absolute radionuclide activity measurement using plastic scintillators; Estudo de um sistema de coincidencias 4{pi}{beta}-{gamma} para a medida absoluta de atividade de radionuclideos empregando cintiladores plasticos

    Energy Technology Data Exchange (ETDEWEB)

    Piuvezam Filho, Helio

    2007-07-01

    The present work was intended to study a coincidence system 4{pi}(PS){beta}-{gamma} for absolute activity measurement using plastic scintillators in 4{pi} geometry. Along with experiments on the coincidence system, simulations were also performed applying the Monte Carlo Method, by means of codes PENELOPE and ESQUEMA. These simulations were performed in order to calculate the extrapolation curve of the coincidence system 4{pi}(PS){beta}-{gamma} and compare it to experimental data. A new geometry was proposed to the coincidence system adding up a second photomultiplier tube to the previous system for improving light collection from the plastic scintillator, as this system presented limitations in the minimum detected energy due to the presence of electronic noise and low gain. The results show that an improvement in the signal-to-noise ratio was obtained, as well as in the minimum detected energy. Moreover, there was an increase in the detection efficiency. With these modifications, it is now possible to calibrate radionuclides which emit low energy electrons or X-rays, increasing the number of radionuclides that can be standardized with this type of system.(author)

  13. First absolutely calibrated on-axis ion flow measurements in MST

    Science.gov (United States)

    Schott, B.; Baltzer, M.; Craig, D.; den Hartog, D. J.; Nishizawa, T.; Nornberg, M. D.

    2016-10-01

    Improvements in absolute calibration techniques allow for the first direct measurements of the flow profile in the core of MST. We use both active charge exchange recombination spectroscopy and passive emission near 343 nm to measure ion temperature and flow. It is generally assumed that O VI is the brightest passive emission source. However, we show that there are cases, such as high temperature, pulsed poloidal current drive (PPCD) plasmas where the passive emission is dominated by C VI. Differences in the fine structure for O VI and C VI result in a systematic velocity error of about 12 km/s if the wrong model is assumed. Active measurements, however, are relatively insensitive to background model choice. The dominant source of error in active velocity measurements remains the systematic errors in calibration. The first absolutely calibrated, localized toroidal velocity measurements were obtained using an updated calibration technique. During PPCD, the on-axis ion flow is up to 40 km/s larger than both the n = 6 mode velocity and the line-averaged ion velocity. These measurements provide the first direct look at the flow profile in the core of MST. This work has been supported by the US DOE and the Wheaton College summer research program.

  14. Absolute Cavity Pyrgeometer to Measure the Absolute Outdoor Longwave Irradiance with Traceability to International System of Units, SI

    Energy Technology Data Exchange (ETDEWEB)

    Reda, I.; Zeng, J.; Scheuch, J.; Hanssen, L.; Wilthan, B.; Myers, D.; Stoffel, T.

    2012-03-01

    This article describes a method of measuring the absolute outdoor longwave irradiance using an absolute cavity pyrgeometer (ACP), U.S. Patent application no. 13/049, 275. The ACP consists of domeless thermopile pyrgeometer, gold-plated concentrator, temperature controller, and data acquisition. The dome was removed from the pyrgeometer to remove errors associated with dome transmittance and the dome correction factor. To avoid thermal convection and wind effect errors resulting from using a domeless thermopile, the gold-plated concentrator was placed above the thermopile. The concentrator is a dual compound parabolic concentrator (CPC) with 180{sup o} view angle to measure the outdoor incoming longwave irradiance from the atmosphere. The incoming irradiance is reflected from the specular gold surface of the CPC and concentrated on the 11 mm diameter of the pyrgeometer's blackened thermopile. The CPC's interior surface design and the resulting cavitation result in a throughput value that was characterized by the National Institute of Standards and Technology. The ACP was installed horizontally outdoor on an aluminum plate connected to the temperature controller to control the pyrgeometer's case temperature. The responsivity of the pyrgeometer's thermopile detector was determined by lowering the case temperature and calculating the rate of change of the thermopile output voltage versus the changing net irradiance. The responsivity is then used to calculate the absolute atmospheric longwave irradiance with an uncertainty estimate (U{sub 95}) of {+-}3.96 W m{sup 02} with traceability to the International System of Units, SI. The measured irradiance was compared with the irradiance measured by two pyrgeometers calibrated by the World Radiation Center with traceability to the Interim World Infrared Standard Group, WISG. A total of 408 readings were collected over three different nights. The calculated irradiance measured by the ACP was 1.5 W/m{sup 2

  15. The absolute gravity measurement by FG5 gravimeter at Great Wall Station, Antarctica

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Gravity measurement is of great importance to the height datum in Antarctica.The absolute gravity measurement was carried out at Great Wall Station, Antarctica, using FG5 absolute gravity instrument.The gravity data was processed with corrections of earth tide, ocean tide, polar motion and the atmospher, and the RMS is within +3 x 10 -s ms-2.The vertical and horizontal gravity gradients were measured using 2 LaCoaste & Romberg (LCR) gravimeters.The absolute gravity measurement provides the fundamental data for the validation and calibration of the satellite gravity projects such as CHAMP, GRACE and GOCE, and for the high accuracy geoid model.

  16. Absolute beam emittance measurements at RHIC using ionization profile monitors

    Energy Technology Data Exchange (ETDEWEB)

    Minty, M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Connolly, R [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Liu, C. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Summers, T. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Tepikian, S. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2014-08-15

    In the past, comparisons between emittance measurements obtained using ionization profile monitors, Vernier scans (using as input the measured rates from the zero degree counters, or ZDCs), the polarimeters and the Schottky detectors evidenced significant variations of up to 100%. In this report we present studies of the RHIC ionization profile monitors (IPMs). After identifying and correcting for two systematic instrumental errors in the beam size measurements, we present experimental results showing that the remaining dominant error in beam emittance measurements at RHIC using the IPMs was imprecise knowledge of the local beta functions. After removal of the systematic errors and implementation of measured beta functions, precise emittance measurements result. Also, consistency between the emittances measured by the IPMs and those derived from the ZDCs was demonstrated.

  17. Technological Basis and Scientific Returns for Absolutely Accurate Measurements

    Science.gov (United States)

    Dykema, J. A.; Anderson, J.

    2011-12-01

    The 2006 NRC Decadal Survey fostered a new appreciation for societal objectives as a driving motivation for Earth science. Many high-priority societal objectives are dependent on predictions of weather and climate. These predictions are based on numerical models, which derive from approximate representations of well-founded physics and chemistry on space and timescales appropriate to global and regional prediction. These laws of chemistry and physics in turn have a well-defined quantitative relationship with physical measurement units, provided these measurement units are linked to international measurement standards that are the foundation of contemporary measurement science and standards for engineering and commerce. Without this linkage, measurements have an ambiguous relationship to scientific principles that introduces avoidable uncertainty in analyses, predictions, and improved understanding of the Earth system. Since the improvement of climate and weather prediction is fundamentally dependent on the improvement of the representation of physical processes, measurement systems that reduce the ambiguity between physical truth and observations represent an essential component of a national strategy for understanding and living with the Earth system. This paper examines the technological basis and potential science returns of sensors that make measurements that are quantitatively tied on-orbit to international measurement standards, and thus testable to systematic errors. This measurement strategy provides several distinct benefits. First, because of the quantitative relationship between these international measurement standards and fundamental physical constants, measurements of this type accurately capture the true physical and chemical behavior of the climate system and are not subject to adjustment due to excluded measurement physics or instrumental artifacts. In addition, such measurements can be reproduced by scientists anywhere in the world, at any time

  18. Absolute configuration and antiprotozoal activity of minquartynoic acid

    DEFF Research Database (Denmark)

    Rasmussen, H B; Christensen, Søren Brøgger; Kvist, L P;

    2000-01-01

    Minquartynoic acid (1) was isolated as an antimalarial and antileishmanial constituent of the Peruvian tree Minquartia guianensis and its absolute configuration at C-17 established to be (+)-S through conversion to the known (+)-(S)-17-hydroxystearic acid (2) and confirmed using Mosher's method....

  19. Measurement of absolute reaction rates in Be,Pb and Fe spherical systems

    Institute of Scientific and Technical Information of China (English)

    LiuRong; ChenYuan; 等

    1998-01-01

    The absolute reaction rates in Be,Pb and Fe have been measured by using the activation foil technique with different reaction energy thresholds.Thicknesses of Be,Pb and Fe spheres were 5.3,19.1 and 31.9cm.respectively,Eight kinds of activation folis were used for Fe,and four kinds each for Be and Pb,The total experimental er5ror was about 5-7%.The measured results were compared to the values calculated with the 1-D ANISN code and the ENDF/B-VI library data.The average ratio of the experimental to the calculational is less than 7% for Be and Pb,about 5-30% for Fe.

  20. The new IMGC-02 transportable absolute gravimeter: measurement apparatus and applications in geophysics and volcanology

    Directory of Open Access Journals (Sweden)

    V. D’errico

    2008-06-01

    Full Text Available The research carried out at the Istituto Nazionale di Ricerca Metrologica (formerly Istituto di Metrologia «G. Colonnetti» aiming to develop a transportable ballistic absolute gravimeter ended with a new version of the instrument, called the IMGC-02. It uses laser interferometry to measure the symmetrical free rising and falling motion of a test mass in the gravity field. Providing the same accuracy achieved with previous versions, the instrumental improvements mainly concern size, weight, data processing algorithms and operational simplicity. An uncertainty of 9 ?Gal (1 ?Gal=1×10–8 m·s?2 can be achieved within a single observation session, lasting about 12 h, while the time series of several observation sessions show a reproducibility of 4 ?Gal. At this level, gravity measurements provide useful information in Geophysics and Volcanology. A wide set of dynamic phenomena, i.e. seismicity and volcanic activity, can produce temporal gravity changes, often quite small, with an amplitude ranging from a few to hundreds of microgals. Therefore the IMGC absolute gravimeter has been employed since 1986 in surveying the Italian active volcanoes. A brief history of the gravimeter and the description of the new apparatus, together with the main results of ongoing applications in Geophysics and Volcanology are presented.

  1. Absolute viscosity measured using instrumented parallel plate system

    Science.gov (United States)

    Broyles, H. H.

    1967-01-01

    An automatic system measures the true average shear viscosity of liquids and viscoelastic materials, using the parallel plate method and automatically displays the results on a graphic record. This eliminates apparatus setup and extensive calculations.

  2. Measured and modelled absolute gravity changes in Greenland

    DEFF Research Database (Denmark)

    Nielsen, Jens Emil; Forsberg, René; Strykowski, Gabriel

    2014-01-01

    station near the Helheim Glacier.The effect of the direct attraction diminishes at sites that are more than one degree from the source.Here, the dominant signal is the effect of the elastic signal from present day ice mass changes. We findagreement between the measured and modelled gravity changes at all...

  3. A method to estimate the absolute ultrasonic nonlinearity parameter from relative measurements.

    Science.gov (United States)

    Kim, Jongbeom; Song, Dong-Gi; Jhang, Kyung-Young

    2017-02-17

    The ultrasonic nonlinearity parameter, β, is determined from the displacement amplitude of the second-order harmonic frequency component generated during the propagation of ultrasonic waves through a material. This parameter is generally referred to as the absolute parameter. Meanwhile, it is difficult to measure the small displacement amplitude of the second-order harmonic component; therefore, most studies measure the relative parameter determined from the detected signal amplitude. However, for quantitative assessment of material degradation, the absolute parameter is still required. This study proposes a method to estimate the absolute parameter for damaged material by measuring the relative parameter. This method is based on the fact that the fractional ratio of the relative parameters between different materials is identical to that of the absolute parameters after compensation for material dependent differences such as the wavenumber and detection-sensitivity. In order to experimentally verify the method, the relative parameters of heat-treated Al6061-T6 alloy specimens with different aging times were measured to compare with absolute parameters directly measured by piezo-electric detection. The results show that the fluctuations of both parameters with respect to aging time were very similar to each other, and that the absolute parameters estimated by the proposed method were in good agreement with those measured directly.

  4. Measurement of the absolute reflectance of polytetrafluoroethylene (PTFE) immersed in liquid xenon

    Science.gov (United States)

    Neves, F.; Lindote, A.; Morozov, A.; Solovov, V.; Silva, C.; Bras, P.; Rodrigues, J. P.; Lopes, M. I.

    2017-01-01

    The performance of a detector using liquid xenon (LXe) as a scintillator is strongly dependent on the collection efficiency for xenon scintillation light, which in turn is critically dependent on the reflectance of the surfaces that surround the active volume. To improve the light collection in such detectors the active volume is usually surrounded by polytetrafluoroethylene (PTFE) reflector panels, used due to its very high reflectance—even at the short wavelength of scintillation light of LXe (peaked at 178 nm). In this work, which contributed to the overall R&D effort towards the LUX-ZEPLIN (LZ) experiment, we present experimental results for the absolute reflectance measurements of three different PTFE samples (including the material used in the LUX detector) immersed in LXe for its scintillation light. The obtained results show that very high bi-hemispherical reflectance values (>= 97%) can be achieved, enabling very low energy thresholds in liquid xenon scintillator-based detectors.

  5. Absolutely stable solitons in two-component active systems

    CERN Document Server

    Malomed, B A; Malomed, Boris; Winful, Herbert

    1995-01-01

    As is known, a solitary pulse in the complex cubic Ginzburg-Landau (GL) equation is unstable. We demonstrate that a system of two linearly coupled GL equations with gain and dissipation in one subsystem and pure dissipation in another produces absolutely stable solitons and their bound states. The problem is solved in a fully analytical form by means of the perturbation theory. The soliton coexists with a stable trivial state; there is also an unstable soliton with a smaller amplitude, which is a separatrix between the two stable states. This model has a direct application in nonlinear fiber optics, describing an Erbium-doped laser based on a dual-core fiber.

  6. Observer variability of absolute and relative thrombus density measurements in patients with acute ischemic stroke

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Emilie M.M. [Erasmus MC - University Medical Center Rotterdam, Department of Radiology, P.O. Box 2040, Rotterdam (Netherlands); Department of Radiology, AMC, Amsterdam (Netherlands); Yoo, Albert J. [Texas Stroke Institute, Plano, TX (United States); Beenen, Ludo F.; Majoie, Charles B. [Department of Radiology, AMC, Amsterdam (Netherlands); Berkhemer, Olvert A. [Department of Radiology, AMC, Amsterdam (Netherlands); Department of Neurology, Erasmus MC, Rotterdam (Netherlands); Blanken, Mark D. den; Wismans, Carrie [AMC, Department of Biomedical Engineering and Physics, Amsterdam (Netherlands); Niessen, Wiro J. [Erasmus MC - University Medical Center Rotterdam, Department of Radiology, P.O. Box 2040, Rotterdam (Netherlands); Delft University of Technology, Faculty of Applied Sciences, Delft (Netherlands); Marquering, Henk A. [Department of Radiology, AMC, Amsterdam (Netherlands); AMC, Department of Biomedical Engineering and Physics, Amsterdam (Netherlands); Collaboration: on behalf of the MR CLEAN investigators

    2016-02-15

    Thrombus density may be a predictor for acute ischemic stroke treatment success. However, only limited data on observer variability for thrombus density measurements exist. This study assesses the variability and bias of four common thrombus density measurement methods by expert and non-expert observers. For 132 consecutive patients with acute ischemic stroke, three experts and two trained observers determined thrombus density by placing three standardized regions of interest (ROIs) in the thrombus and corresponding contralateral arterial segment. Subsequently, absolute and relative thrombus densities were determined using either one or three ROIs. Intraclass correlation coefficient (ICC) was determined, and Bland-Altman analysis was performed to evaluate interobserver and intermethod agreement. Accuracy of the trained observer was evaluated with a reference expert observer using the same statistical analysis. The highest interobserver agreement was obtained for absolute thrombus measurements using three ROIs (ICCs ranging from 0.54 to 0.91). In general, interobserver agreement was lower for relative measurements, and for using one instead of three ROIs. Interobserver agreement of trained non-experts and experts was similar. Accuracy of the trained observer measurements was comparable to the expert interobserver agreement and was better for absolute measurements and with three ROIs. The agreement between the one ROI and three ROI methods was good. Absolute thrombus density measurement has superior interobserver agreement compared to relative density measurement. Interobserver variation is smaller when multiple ROIs are used. Trained non-expert observers can accurately and reproducibly assess absolute thrombus densities using three ROIs. (orig.)

  7. Absolute Calibration of Si iRMs used for Measurements of Si Paleo-nutrient proxies

    Science.gov (United States)

    Vocke, R. D., Jr.; Rabb, S. A.

    2016-12-01

    Silicon isotope variations (reported as δ30Si and δ29Si, relative to NBS28) in silicic acid dissolved in ocean waters, in biogenic silica and in diatoms are extremely informative paleo-nutrient proxies. The resolution and comparability of such measurements depend on the quality of the isotopic Reference Materials (iRMs) defining the delta scale. We report new absolute Si isotopic measurements on the iRMs NBS28 (RM 8546 - Silica Sand), Diatomite, and Big Batch using the Avogadro measurement approach and comparing them with prior assessments of these iRMs. The Avogadro Si measurement technique was developed by the German Physikalish-Technische Bundesanstalt (PTB) to provide a precise and highly accurate method to measure absolute isotopic ratios in highly enriched 28Si (99.996%) material. These measurements are part of an international effort to redefine the kg and mole based on the Planck constant h and the Avogadro constant NA, respectively (Vocke et al., 2014 Metrologia 51, 361, Azuma et al., 2015 Metrologia 52 360). This approach produces absolute Si isotope ratio data with lower levels of uncertainty when compared to the traditional "Atomic Weights" method of absolute isotope ratio measurement calibration. This is illustrated in Fig. 1 where absolute Si isotopic measurements on SRM 990, separated by 40+ years of advances in instrumentation, are compared. The availability of this new technique does not say that absolute Si isotopic ratios are or ever will be better for normal Si isotopic measurements when seeking isotopic variations in nature, because they are not. However, by determining the absolute isotopic ratios of all the Si iRM scale artifacts, such iRMs become traceable to the metric system (SI); thereby automatically conferring on all the artifact-based δ30Si and δ29Si measurements traceability to the base SI unit, the mole. Such traceability should help reduce the potential of bias between different iRMs and facilitate the replacement of delta

  8. [Absolute measurement of laminar flow with the aid of an orthogonal excitation technic in NMR tomography].

    Science.gov (United States)

    Bielke, G; Meindl, S; von Seelen, W

    1986-11-01

    A method for absolute measurement of flow quantities by excitation of a slice orthogonal to the measuring plane is presented. The developing flow profile can be imaged directly and its dynamic behaviour can be sampled and measured using the multiecho technique. Simple formulas can be derived by means of Hagen-Poiseuille's law for quantification.

  9. Measuring Physical Activity Intensity

    Science.gov (United States)

    ... aerobic activity: relative intensity and absolute intensity. Relative Intensity The level of effort required by a person to do an activity. When using relative intensity, people pay attention to how physical activity affects ...

  10. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... aerobic activity: relative intensity and absolute intensity. Relative Intensity The level of effort required by a person to do an activity. When using relative intensity, people pay attention to how physical activity affects ...

  11. Determination of absolute configuration of chiral molecules using vibrational optical activity: a review.

    Science.gov (United States)

    He, Yanan; Wang, Bo; Dukor, Rina K; Nafie, Laurence A

    2011-07-01

    Determination of the absolute handedness, known as absolute configuration (AC), of chiral molecules is an important step in any field related to chirality, especially in the pharmaceutical industry. Vibrational optical activity (VOA) has become a powerful tool for the determination of the AC of chiral molecules in the solution state after nearly forty years of evolution. VOA offers a novel alternative, or supplement, to X-ray crystallography, permitting AC determinations on neat liquid, oil, and solution samples without the need to grow single crystals of the pure chiral sample molecules as required for X-ray analysis. By comparing the sign and intensity of the measured VOA spectrum with the corresponding ab initio density functional theory (DFT) calculated VOA spectrum of a chosen configuration, one can unambiguously assign the AC of a chiral molecule. Comparing measured VOA spectra with calculated VOA spectra of all the conformers can also provide solution-state conformational populations. VOA consists of infrared vibrational circular dichroism (VCD) and vibrational Raman optical activity (ROA). Currently, VCD is used routinely by researchers in a variety of backgrounds, including molecular chirality, asymmetric synthesis, chiral catalysis, drug screening, pharmacology, and natural products. Although the application of ROA in AC determination lags behind that of VCD, with the recent implementation of ROA subroutines in commercial quantum chemistry software, ROA will in the future complement VCD for AC determination. In this review, the basic principles of the application of VCD to the determination of absolute configuration in chiral molecules are described. The steps required for VCD spectral measurement and calculation are outlined, followed by brief descriptions of recently published papers reporting the determination of AC in small organic, pharmaceutical, and natural product molecules.

  12. Regularity and other properties of absolutely continuous invariant measures for the quadratic family

    Science.gov (United States)

    Rychlik, Marek; Sorets, Eugene

    1992-11-01

    In the current paper we study in more detail some properties of the absolutely continuous invariant measures constructed in the course of the proof of Jakobson's Theorem. In particular, we show that the density of the invariant measure is continuous at Misiurewicz points. From this we deduce that the Lyapunov exponent is also continuous at these points (our considerations apply just to the parameters constructed in the proof of Jakobson's Theorem). Other properties, like the positivity of the Lyapunov exponent, uniqueness of the absolutely continuous invariant measure and exactness of the corresponding dynamical system, are also proved.

  13. Absolute spectral measurements of direct solar ultraviolet irradiance with a Brewer spectrophotometer.

    Science.gov (United States)

    Bais, A F

    1997-07-20

    A methodology for the absolute calibration of spectral measurements of direct solar ultraviolet radiation, performed with a Brewer spectrophotometer is presented. The method uses absolute measurements of global and diffuse solar irradiance obtained practically simultaneously at each wavelength with the direct-Sun component. On the basis of this calibration, direct-Sun spectra, measured over a wide range of solar zenith angles at a high altitude site, were used to determine the extraterrestrial solar spectrum by applying the Langley extrapolation method. Finally this spectrum is compared with a solar spectrum derived from the airborne tunable laser absorption spectrometer 3 Space Shuttle mission, showing an agreement of better than +/-3%.

  14. Calibrating the absolute amplitude scale for air showers measured at LOFAR

    CERN Document Server

    Nelles, A; Karskens, T; Krause, M; Buitink, S; Corstanje, A; Enriquez, J E; Erdmann, M; Falcke, H; Haungs, A; Hiller, R; Huege, T; Krause, R; Link, K; Norden, M J; Rachen, J P; Rossetto, L; Schellart, P; Scholten, O; Schröder, F G; ter Veen, S; Thoudam, S; Trinh, T N G; Weidenhaupt, K; Wijnholds, S J; Anderson, J; Bähren, L; Bell, M E; Bentum, M J; Best, P; Bonafede, A; Bregman, J; Brouw, W N; Bruüggen, M; Butcher, H R; Carbone, D; Ciardi, B; de Gasperin, F; Duscha, S; Eislöffel, J; Fallows, R A; Frieswijk, W; Garrett, M A; van Haarlem, M P; Heald, G; Hoeft, M; Horneffer, A; Iacobelli, M; Juette, E; Karastergiou, A; Kohler, J; Kondratiev, V I; Kuniyoshi, M; Kuper, G; van Leeuwen, J; Maat, P; McFadden, R; McKay-Bukowski, D; Orru, E; Paas, H; Pandey-Pommier, M; Pandey, V N; Pizzo, R; Polatidis, A G; Reich, W; Röttgering, H; Schwarz, D; Serylak, M; Sluman, J; Smirnov, O; Tasse, C; Toribio, M C; Vermeulen, R; van Weeren, R J; Wijers, R A M J; Wucknitz, O; Zarka, P

    2015-01-01

    Air showers induced by cosmic rays create nanosecond pulses detectable at radio frequencies. These pulses have been measured successfully in the past few years at the LOw- Frequency ARray (LOFAR) and are used to study the properties of cosmic rays. For a complete understanding of this phenomenon and the underlying physical processes, an absolute calibration of the detecting antenna system is needed. We present three approaches that were used to check and improve the antenna model of LOFAR and to provide an absolute calibration for air shower measurements. Two methods are based on calibrated reference sources and one on a calibration approach using the diffuse radio emission of the Galaxy, optimized for short data-sets. An accuracy of 35% in amplitude is reached. The absolute calibration is also compared to predictions from air shower simulations. These results are used to set an absolute energy scale for air shower measurements and can be used as a basis for an absolute scale for the measurement of astronomic...

  15. Measurement of absolute optical thickness of mask glass by wavelength-tuning Fourier analysis.

    Science.gov (United States)

    Kim, Yangjin; Hbino, Kenichi; Sugita, Naohiko; Mitsuishi, Mamoru

    2015-07-01

    Optical thickness is a fundamental characteristic of an optical component. A measurement method combining discrete Fourier-transform (DFT) analysis and a phase-shifting technique gives an appropriate value for the absolute optical thickness of a transparent plate. However, there is a systematic error caused by the nonlinearity of the phase-shifting technique. In this research the absolute optical-thickness distribution of mask blank glass was measured using DFT and wavelength-tuning Fizeau interferometry without using sensitive phase-shifting techniques. The error occurring during the DFT analysis was compensated for by using the unwrapping correlation. The experimental results indicated that the absolute optical thickness of mask glass was measured with an accuracy of 5 nm.

  16. Electrical Noise and the Measurement of Absolute Temperature, Boltzmann's Constant and Avogadro's Number.

    Science.gov (United States)

    Ericson, T. J.

    1988-01-01

    Describes an apparatus capable of measuring absolute temperatures of a tungsten filament bulb up to normal running temperature and measuring Botzmann's constant to an accuracy of a few percent. Shows that electrical noise techniques are convenient to demonstrate how the concept of temperature is related to the micro- and macroscopic world. (CW)

  17. Absolute measurement of the DT primary neutron yield on the National Ignition Facility

    Directory of Open Access Journals (Sweden)

    Leeper R.J.

    2013-11-01

    Full Text Available The measurement of the absolute neutron yield produced in inertial confinement fusion target experiments conducted on the National Ignition Facility (NIF is essential in benchmarking progress towards the goal of achieving ignition on this facility. This paper describes three independent diagnostic techniques that have been developed to make accurate and precise DT neutron yield measurements on the NIF.

  18. Absolute frequency measurement of the 1S0 - 3P0 transition of 171Yb

    CERN Document Server

    Pizzocaro, Marco; Rauf, Benjamin; Bregolin, Filippo; Milani, Gianmaria; Clivati, Cecilia; Costanzo, Giovanni A; Levi, Filippo; Calonico, Davide

    2016-01-01

    We report the absolute frequency measurement of the unperturbed transition 1S0 - 3P0 at 578 nm in 171Yb realized in an optical lattice frequency standard. The absolute frequency is measured 518 295 836 590 863.55(28) Hz relative to a cryogenic caesium fountain with a fractional uncertainty of 5.4x10-16 . This value is in agreement with the ytterbium frequency recommended as a secondary representation of the second in the International System of Units.

  19. Absolute Wavelength Control of Lasers for Active Sensing in Space Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop compact absolute wavelength references to weak molecular transitions, which is a challenge characteristic to space-based active sensing. The...

  20. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... for a breath. Absolute Intensity The amount of energy used by the body per minute of activity. ... or vigorous-intensity based upon the amount of energy used by the body while doing the activity. ...

  1. Measuring the absolute deuterium-tritium neutron yield using the magnetic recoil spectrometer at OMEGA and the NIF.

    Science.gov (United States)

    Casey, D T; Frenje, J A; Gatu Johnson, M; Séguin, F H; Li, C K; Petrasso, R D; Glebov, V Yu; Katz, J; Knauer, J P; Meyerhofer, D D; Sangster, T C; Bionta, R M; Bleuel, D L; Döppner, T; Glenzer, S; Hartouni, E; Hatchett, S P; Le Pape, S; Ma, T; MacKinnon, A; McKernan, M A; Moran, M; Moses, E; Park, H-S; Ralph, J; Remington, B A; Smalyuk, V; Yeamans, C B; Kline, J; Kyrala, G; Chandler, G A; Leeper, R J; Ruiz, C L; Cooper, G W; Nelson, A J; Fletcher, K; Kilkenny, J; Farrell, M; Jasion, D; Paguio, R

    2012-10-01

    A magnetic recoil spectrometer (MRS) has been installed and extensively used on OMEGA and the National Ignition Facility (NIF) for measurements of the absolute neutron spectrum from inertial confinement fusion implosions. From the neutron spectrum measured with the MRS, many critical implosion parameters are determined including the primary DT neutron yield, the ion temperature, and the down-scattered neutron yield. As the MRS detection efficiency is determined from first principles, the absolute DT neutron yield is obtained without cross-calibration to other techniques. The MRS primary DT neutron measurements at OMEGA and the NIF are shown to be in excellent agreement with previously established yield diagnostics on OMEGA, and with the newly commissioned nuclear activation diagnostics on the NIF.

  2. Absolute calibration of a wideband antenna and spectrometer for sky noise spectral index measurements

    CERN Document Server

    Rogers, Alan E E

    2012-01-01

    A new method of absolute calibration of sky noise temperature using a three-position switched spectrometer, measurements of antenna and low noise amplifier impedance with a vector network analyzer, and ancillary measurements of the amplifier noise waves is described. The details of the method and its application to accurate wideband measurements of the spectral index of the sky noise are described and compared with other methods.

  3. Measurements of the absolute branching fractions for $D_{s}^{+}\\rightarrow\\eta e^{+}\

    CERN Document Server

    Ablikim, M; Ai, X C; Albayrak, O; Albrecht, M; Ambrose, D J; Amoroso, A; An, F F; An, Q; Bai, J Z; Ferroli, R Baldini; Ban, Y; Bennett, D W; Bennett, J V; Bertani, M; Bettoni, D; Bian, J M; Bianchi, F; Boger, E; Boyko, I; Briere, R A; Cai, H; Cai, X; Cakir, O; Calcaterra, A; Cao, G F; Cetin, S A; Chang, J F; Chelkov, G; Chen, G; Chen, H S; Chen, H Y; Chen, J C; Chen, M L; Chen, S; Chen, S J; Chen, X; Chen, X R; Chen, Y B; Cheng, H P; Chu, X K; Cibinetto, G; Dai, H L; Dai, J P; Dbeyssi, A; Dedovich, D; Deng, Z Y; Denig, A; Denysenko, I; Destefanis, M; De Mori, F; Ding, Y; Dong, C; Dong, J; Dong, L Y; Dong, M Y; Dou, Z L; Du, S X; Duan, P F; Fan, J Z; Fang, J; Fang, S S; Fang, X; Fang, Y; Farinelli, R; Fava, L; Fedorov, O; Feldbauer, F; Felici, G; Feng, C Q; Fioravanti, E; Fritsch, M; Fu, C D; Gao, Q; Gao, X L; Gao, X Y; Gao, Y; Gao, Z; Garzia, I; Goetzen, K; Gong, L; Gong, W X; Gradl, W; Greco, M; Gu, M H; Gu, Y T; Guan, Y H; Guo, A Q; Guo, L B; Guo, R P; Guo, Y; Guo, Y P; Haddadi, Z; Hafner, A; Han, S; Hao, X Q; Harris, F A; He, K L; Held, T; Heng, Y K; Hou, Z L; Hu, C; Hu, H M; Hu, J F; Hu, T; Hu, Y; Huang, G S; Huang, J S; Huang, X T; Huang, X Z; Huang, Y; Huang, Z L; Hussain, T; Ji, Q; Ji, Q P; Ji, X B; Ji, X L; Jiang, L W; Jiang, X S; Jiang, X Y; Jiao, J B; Jiao, Z; Jin, D P; Jin, S; Johansson, T; Julin, A; Kalantar-Nayestanaki, N; Kang, X L; Kang, X S; Kavatsyuk, M; Ke, B C; Kiese, P; Kliemt, R; Kloss, B; Kolcu, O B; Kopf, B; Kornicer, M; Kupsc, A; Kühn, W; Lange, J S; Lara, M; Larin, P; Leng, C; Li, C; Li, Cheng; Li, D M; Li, F; Li, F Y; Li, G; Li, H B; Li, H J; Li, J C; Li, Jin; Li, K; Li, K; Li, Lei; Li, P R; Li, Q Y; Li, T; Li, W D; Li, W G; Li, X L; Li, X N; Li, X Q; Li, Y B; Li, Z B; Liang, H; Liang, Y F; Liang, Y T; Liao, G R; Lin, D X; Liu, B; Liu, B J; Liu, C X; Liu, D; Liu, F H; Liu, Fang; Liu, Feng; Liu, H B; Liu, H H; Liu, H H; Liu, H M; Liu, J; Liu, J B; Liu, J P; Liu, J Y; Liu, K; Liu, K Y; Liu, L D; Liu, P L; Liu, Q; Liu, S B; Liu, X; Liu, Y B; Liu, Z A; Liu, Zhiqing; Loehner, H; Lou, X C; Lu, H J; Lu, J G; Lu, Y; Lu, Y P; Luo, C L; Luo, M X; Luo, T; Luo, X L; Lyu, X R; Ma, F C; Ma, H L; Ma, L L; Ma, M M; Ma, Q M; Ma, T; Ma, X N; Ma, X Y; Ma, Y M; Maas, F E; Maggiora, M; Mao, Y J; Mao, Z P; Marcello, S; Messchendorp, J G; Min, J; Min, T J; Mitchell, R E; Mo, X H; Mo, Y J; Morales, C Morales; Muchnoi, N Yu; Muramatsu, H; Nefedov, Y; Nerling, F; Nikolaev, I B; Ning, Z; Nisar, S; Niu, S L; Niu, X Y; Olsen, S L; Ouyang, Q; Pacetti, S; Pan, Y; Patteri, P; Pelizaeus, M; Peng, H P; Peters, K; Pettersson, J; Ping, J L; Ping, R G; Poling, R; Prasad, V; Qi, H R; Qi, M; Qian, S; Qiao, C F; Qin, L Q; Qin, N; Qin, X S; Qin, Z H; Qiu, J F; Rashid, K H; Redmer, C F; Ripka, M; Rong, G; Rosner, Ch; Ruan, X D; Sarantsev, A; Savrié, M; Schoenning, K; Schumann, S; Shan, W; Shao, M; Shen, C P; Shen, P X; Shen, X Y; Sheng, H Y; Shi, M; Song, W M; Song, X Y; Sosio, S; Spataro, S; Sun, G X; Sun, J F; Sun, S S; Sun, X H; Sun, Y J; Sun, Y Z; Sun, Z J; Sun, Z T; Tang, C J; Tang, X; Tapan, I; Thorndike, E H; Tiemens, M; Ullrich, M; Uman, I; Varner, G S; Wang, B; Wang, B L; Wang, D; Wang, D Y; Wang, K; Wang, L L; Wang, L S; Wang, M; Wang, P; Wang, P L; Wang, W; Wang, W P; Wang, X F; Wang, Y; Wang, Y D; Wang, Y F; Wang, Y Q; Wang, Z; Wang, Z G; Wang, Z H; Wang, Z Y; Wang, Z Y; Weber, T; Wei, D H; Weidenkaff, P; Wen, S P; Wiedner, U; Wolke, M; Wu, L H; Wu, L J; Wu, Z; Xia, L; Xia, L G; Xia, Y; Xiao, D; Xiao, H; Xiao, Z J; Xie, Y G; Xiu, Q L; Xu, G F; Xu, J J; Xu, L; Xu, Q J; Xu, Q N; Xu, X P; Yan, L; Yan, W B; Yan, W C; Yan, Y H; Yang, H J; Yang, H X; Yang, L; Yang, Y X; Ye, M; Ye, M H; Yin, J H; Yu, B X; Yu, C X; Yu, J S; Yuan, C Z; Yuan, W L; Yuan, Y; Yuncu, A; Zafar, A A; Zallo, A; Zeng, Y; Zeng, Z; Zhang, B X; Zhang, B Y; Zhang, C; Zhang, C C; Zhang, D H; Zhang, H H; Zhang, H Y; Zhang, J; Zhang, J J; Zhang, J L; Zhang, J Q; Zhang, J W; Zhang, J Y; Zhang, J Z; Zhang, K; Zhang, L; Zhang, S Q; Zhang, X Y; Zhang, Y; Zhang, Y H; Zhang, Y N; Zhang, Y T; Zhang, Yu; Zhang, Z H; Zhan, Z P; Zhang, Z Y; Zhao, G; Zhao, J W; Zhao, J Y; Zhao, J Z; Zhao, Lei; Zhao, Ling; Zhao, M G; Zhao, Q; Zhao, Q W; Zhao, S J; Zhao, T C; Zhao, Y B; Zhao, Z G; Zhemchugov, A; Zheng, B; Zheng, J P; Zheng, W J; Zheng, Y H; Zhong, B; Zhou, L; Zhou, X; Zhou, X K; Zhou, X R; Zhou, X Y; Zhu, K; Zhu, K J; Zhu, S; Zhu, S H; Zhu, X L; Zhu, Y C; Zhu, Y S; Zhu, Z A; Zhuang, J; Zotti, L; Zou, B S; Zou, J H

    2016-01-01

    By analyzing 482 pb$^{-1}$ of $e^+e^-$ collision data collected at $\\sqrt s=4.009$ GeV with the BESIII detector at the BEPCII storage ring, we measure the absolute branching fractions for the semileptonic decays $D_{s}^{+}\\to\\eta e^{+}\

  4. Measurement of the absolute branching fraction of $D^{+}\\rightarrow\\bar K^0 e^{+}\

    CERN Document Server

    Ablikim, M; Ai, X C; Albayrak, O; Albrecht, M; Ambrose, D J; Amoroso, A; An, F F; An, Q; Bai, J Z; Ferroli, R Baldini; Ban, Y; Bennett, D W; Bennett, J V; Bertani, M; Bettoni, D; Bian, J M; Bianchi, F; Boger, E; Boyko, I; Briere, R A; Cai, H; Cai, X; Cakir, O; Calcaterra, A; Cao, G F; Cetin, S A; Chang, J F; Chelkov, G; Chen, G; Chen, H S; Chen, H Y; Chen, J C; Chen, M L; Chen, S; Chen, S J; Chen, X; Chen, X R; Chen, Y B; Cheng, H P; Chu, X K; Cibinetto, G; Dai, H L; Dai, J P; Dbeyssi, A; Dedovich, D; Deng, Z Y; Denig, A; Denysenko, I; Destefanis, M; De Mori, F; Ding, Y; Dong, C; Dong, J; Dong, L Y; Dong, M Y; Dou, Z L; Du, S X; Duan, P F; Fan, J Z; Fang, J; Fang, S S; Fang, X; Fang, Y; Farinelli, R; Fava, L; Fedorov, O; Feldbauer, F; Felici, G; Feng, C Q; Fioravanti, E; Fritsch, M; Fu, C D; Gao, Q; Gao, X L; Gao, X Y; Gao, Y; Gao, Z; Garzia, I; Goetzen, K; Gong, L; Gong, W X; Gradl, W; Greco, M; Gu, M H; Gu, Y T; Guan, Y H; Guo, A Q; Guo, L B; Guo, R P; Guo, Y; Guo, Y P; Haddadi, Z; Hafner, A; Han, S; Hao, X Q; Harris, F A; He, K L; Held, T; Heng, Y K; Hou, Z L; Hu, C; Hu, H M; Hu, J F; Hu, T; Hu, Y; Huang, G S; Huang, J S; Huang, X T; Huang, X Z; Huang, Y; Huang, Z L; Hussain, T; Ji, Q; Ji, Q P; Ji, X B; Ji, X L; Jiang, L W; Jiang, X S; Jiang, X Y; Jiao, J B; Jiao, Z; Jin, D P; Jin, S; Johansson, T; Julin, A; Kalantar-Nayestanaki, N; Kang, X L; Kang, X S; Kavatsyuk, M; Ke, B C; Kiese, P; Kliemt, R; Kloss, B; Kolcu, O B; Kopf, B; Kornicer, M; Kupsc, A; Kühn, W; Lange, J S; Lara, M; Larin, P; Leng, C; Li, C; Li, Cheng; Li, D M; Li, F; Li, F Y; Li, G; Li, H B; Li, H J; Li, J C; Li, Jin; Li, K; Li, K; Li, Lei; Li, P R; Li, Q Y; Li, T; Li, W D; Li, W G; Li, X L; Li, X N; Li, X Q; Li, Y B; Li, Z B; Liang, H; Liang, Y F; Liang, Y T; Liao, G R; Lin, D X; Liu, B; Liu, B J; Liu, C X; Liu, D; Liu, F H; Liu, Fang; Liu, Feng; Liu, H B; Liu, H H; Liu, H H; Liu, H M; Liu, J; Liu, J B; Liu, J P; Liu, J Y; Liu, K; Liu, K Y; Liu, L D; Liu, P L; Liu, Q; Liu, S B; Liu, X; Liu, Y B; Liu, Z A; Liu, Zhiqing; Loehner, H; Lou, X C; Lu, H J; Lu, J G; Lu, Y; Lu, Y P; Luo, C L; Luo, M X; Luo, T; Luo, X L; Lyu, X R; Ma, F C; Ma, H L; Ma, L L; Ma, M M; Ma, Q M; Ma, T; Ma, X N; Ma, X Y; Ma, Y M; Maas, F E; Maggiora, M; Mao, Y J; Mao, Z P; Marcello, S; Messchendorp, J G; Min, J; Min, T J; Mitchell, R E; Mo, X H; Mo, Y J; Morales, C Morales; Muchnoi, N Yu; Muramatsu, H; Nefedov, Y; Nerling, F; Nikolaev, I B; Ning, Z; Nisar, S; Niu, S L; Niu, X Y; Olsen, S L; Ouyang, Q; Pacetti, S; Pan, Y; Patteri, P; Pelizaeus, M; Peng, H P; Peters, K; Pettersson, J; Ping, J L; Ping, R G; Poling, R; Prasad, V; Qi, H R; Qi, M; Qian, S; Qiao, C F; Qin, L Q; Qin, N; Qin, X S; Qin, Z H; Qiu, J F; Rashid, K H; Redmer, C F; Ripka, M; Rong, G; Rosner, Ch; Ruan, X D; Sarantsev, A; Savrié, M; Schoenning, K; Schumann, S; Shan, W; Shao, M; Shen, C P; Shen, P X; Shen, X Y; Sheng, H Y; Shi, M; Song, W M; Song, X Y; Sosio, S; Spataro, S; Sun, G X; Sun, J F; Sun, S S; Sun, X H; Sun, Y J; Sun, Y Z; Sun, Z J; Sun, Z T; Tang, C J; Tang, X; Tapan, I; Thorndike, E H; Tiemens, M; Ullrich, M; Uman, I; Varner, G S; Wang, B; Wang, B L; Wang, D; Wang, D Y; Wang, K; Wang, L L; Wang, L S; Wang, M; Wang, P; Wang, P L; Wang, W; Wang, W P; Wang, X F; Wang, Y; Wang, Y D; Wang, Y F; Wang, Y Q; Wang, Z; Wang, Z G; Wang, Z H; Wang, Z Y; Wang, Z Y; Weber, T; Wei, D H; Weidenkaff, P; Wen, S P; Wiedner, U; Wolke, M; Wu, L H; Wu, L J; Wu, Z; Xia, L; Xia, L G; Xia, Y; Xiao, D; Xiao, H; Xiao, Z J; Xie, Y G; Xiu, Q L; Xu, G F; Xu, J J; Xu, L; Xu, Q J; Xu, Q N; Xu, X P; Yan, L; Yan, W B; Yan, W C; Yan, Y H; Yang, H J; Yang, H X; Yang, L; Yang, Y X; Ye, M; Ye, M H; Yin, J H; Yu, B X; Yu, C X; Yu, J S; Yuan, C Z; Yuan, W L; Yuan, Y; Yuncu, A; Zafar, A A; Zallo, A; Zeng, Y; Zeng, Z; Zhang, B X; Zhang, B Y; Zhang, C; Zhang, C C; Zhang, D H; Zhang, H H; Zhang, H Y; Zhang, J; Zhang, J J; Zhang, J L; Zhang, J Q; Zhang, J W; Zhang, J Y; Zhang, J Z; Zhang, K; Zhang, L; Zhang, S Q; Zhang, X Y; Zhang, Y; Zhang, Y H; Zhang, Y N; Zhang, Y T; Zhang, Yu; Zhang, Z H; Zhan, Z P; Zhang, Z Y; Zhao, G; Zhao, J W; Zhao, J Y; Zhao, J Z; Zhao, Lei; Zhao, Ling; Zhao, M G; Zhao, Q; Zhao, Q W; Zhao, S J; Zhao, T C; Zhao, Y B; Zhao, Z G; Zhemchugov, A; Zheng, B; Zheng, J P; Zheng, W J; Zheng, Y H; Zhong, B; Zhou, L; Zhou, X; Zhou, X K; Zhou, X R; Zhou, X Y; Zhu, K; Zhu, K J; Zhu, S; Zhu, S H; Zhu, X L; Zhu, Y C; Zhu, Y S; Zhu, Z A; Zhuang, J; Zotti, L; Zou, B S; Zou, J H

    2016-01-01

    By analyzing 2.93 fb$^{-1}$ data collected at the center-of-mass energy $\\sqrt s=3.773$ GeV with the BESIII detector, we measure the absolute branching fraction of the semileptonic decay $D^+\\rightarrow\\bar K^0 e^{+}\

  5. Electron cyclotron emission measurements on JET: Michelson interferometer, new absolute calibration, and determination of electron temperature

    NARCIS (Netherlands)

    Schmuck, S.; Fessey, J.; Gerbaud, T.; Alper, B.; Beurskens, M. N. A.; de la Luna, E.; Sirinelli, A.; Zerbini, M.

    2012-01-01

    At the fusion experiment JET, a Michelson interferometer is used to measure the spectrum of the electron cyclotron emission in the spectral range 70-500 GHz. The interferometer is absolutely calibrated using the hot/cold technique and, in consequence, the spatial profile of the plasma electron tempe

  6. Measurement of the absolute power of subcritical reactors by the Feinman-. cap alpha. method

    Energy Technology Data Exchange (ETDEWEB)

    Sapozhnikov, V.V.; Tyrkich, E.A.; Lukhanin, A.P.; Okhapkin, V.P.

    1974-01-01

    The effect is examined of delay between time intervals on the value of the power measured, using the Feynman-..cap alpha.. method. The absolute power is shown to be practically independent of the delay value at time intervals less than 10/sup -2/ sec.

  7. In situ measurement of leaf chlorophyll concentration: analysis of the optical/absolute relationship.

    Science.gov (United States)

    Parry, Christopher; Blonquist, J Mark; Bugbee, Bruce

    2014-11-01

    In situ optical meters are widely used to estimate leaf chlorophyll concentration, but non-uniform chlorophyll distribution causes optical measurements to vary widely among species for the same chlorophyll concentration. Over 30 studies have sought to quantify the in situ/in vitro (optical/absolute) relationship, but neither chlorophyll extraction nor measurement techniques for in vitro analysis have been consistent among studies. Here we: (1) review standard procedures for measurement of chlorophyll; (2) estimate the error associated with non-standard procedures; and (3) implement the most accurate methods to provide equations for conversion of optical to absolute chlorophyll for 22 species grown in multiple environments. Tests of five Minolta (model SPAD-502) and 25 Opti-Sciences (model CCM-200) meters, manufactured from 1992 to 2013, indicate that differences among replicate models are less than 5%. We thus developed equations for converting between units from these meter types. There was no significant effect of environment on the optical/absolute chlorophyll relationship. We derive the theoretical relationship between optical transmission ratios and absolute chlorophyll concentration and show how non-uniform distribution among species causes a variable, non-linear response. These results link in situ optical measurements with in vitro chlorophyll concentration and provide insight to strategies for radiation capture among diverse species.

  8. Re-creating Gauss's method for non-electrical absolute measurements of magnetic fields and moments

    Science.gov (United States)

    Van Baak, D. A.

    2013-10-01

    In 1832, Gauss made the first absolute measurements of magnetic fields and of magnetic moments in experiments that are straightforward and instructive to replicate. We show, using rare-earth permanent magnets and a variation of Gauss's technique, that the horizontal component of the ambient geomagnetic field, as well as the size of the magnetic moments of such magnets, can be found. The method shows the connection between the SI and cgs emu unit systems for these quantities and permits an absolute realization of the Ampere with considerable precision.

  9. Evaluation of absolute phase for 3D profile measurement using fringe projection

    Institute of Scientific and Technical Information of China (English)

    Mengtao Huang; Zhuangde Jiang; Bing Li; Suping Fang

    2006-01-01

    A new method of absolute phase evaluation for three-dimensional (3D) profile measurement using fringe projection is presented, which combines the gray code and the phase shift technique. Two kinds of fringe patterns are projected onto the object surface respectively, one is sinusoidal intensity distribution used for phase demodulation and the other is gray code fringe pattern for unwrapping. These images are acquired by camera and stored into computer. The absolute phase is obtained by analyzing these images. The validity of this method is verified experimentally. The method is superior to other phase unwrapping methods.

  10. Volumetric vessel reconstruction method for absolute blood flow velocity measurement in Doppler OCT images

    Science.gov (United States)

    Qi, Li; Zhu, Jiang; Hancock, Aneeka M.; Dai, Cuixia; Zhang, Xuping; Frostig, Ron D.; Chen, Zhongping

    2017-02-01

    Doppler optical coherence tomography (DOCT) is considered one of the most promising functional imaging modalities for neuro biology research and has demonstrated the ability to quantify cerebral blood flow velocity at a high accuracy. However, the measurement of total absolute blood flow velocity (BFV) of major cerebral arteries is still a difficult problem since it not only relates to the properties of the laser and the scattering particles, but also relates to the geometry of both directions of the laser beam and the flow. In this paper, focusing on the analysis of cerebral hemodynamics, we presents a method to quantify the total absolute blood flow velocity in middle cerebral artery (MCA) based on volumetric vessel reconstruction from pure DOCT images. A modified region growing segmentation method is first used to localize the MCA on successive DOCT B-scan images. Vessel skeletonization, followed by an averaging gradient angle calculation method, is then carried out to obtain Doppler angles along the entire MCA. Once the Doppler angles are determined, the absolute blood flow velocity of each position on the MCA is easily found. Given a seed point position on the MCA, our approach could achieve automatic quantification of the fully distributed absolute BFV. Based on experiments conducted using a swept-source optical coherence tomography system, our approach could achieve automatic quantification of the fully distributed absolute BFV across different vessel branches in the rodent brain.

  11. Measurement of Absolute Hadronic Branching Fractions of D_s Mesons

    CERN Document Server

    Adam, N; Berkelman, K; Cassel, D G; Duboscq, J E; Ecklund, K M; Ehrlich, R; Fields, L; Gibbons, L; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Mahlke-Krüger, H; Onyisi, P U E; Patterson, J R; Peterson, D; Pivarski, J; Riley, D; Ryd, A; Sadoff, A J; Schwarthoff, H; Shi, X; Stroiney, S; Sun, W M; Wilksen, T; Weinberger, M; Athar, S B; Patel, R; Potlia, V; Yelton, J; Rubin, P; Cawlfield, C; Eisenstein, B I; Karliner, I; Kim, D; Lowrey, N; Naik, P; Sedlack, C; Selen, M; White, E J; Wiss, J; Shepherd, M R; Besson, D; Pedlar, T K; Cronin-Hennessy, D; Gao, K Y; Gong, D T; Hietala, J; Kubota, Y; Klein, T; Lang, B W; Poling, R; Scott, A W; Smith, A; Zweber, P; Dobbs, S; Metreveli, Z V; Seth, K K; Tomaradze, A G; Ernst, J; Severini, H; Dytman, S A; Love, W; Savinov, V; Aquines, O; Li, Z; López, A; Mehrabyan, S S; Méndez, H; Ramírez, J; Huang, G S; Miller, D H; Pavlunin, V; Sanghi, B; Shipsey, I P J; Xin, B; Adams, G S; Anderson, M; Cummings, J P; Danko, I; Napolitano, J; He, Q; Insler, J; Muramatsu, H; Park, C S; Thorndike, E H; Yang, F; Coan, T E; Gao, Y S; Liu, F; Artuso, M; Blusk, S; Butt, J; Li, J; Menaa, N; Mountain, R; Nisar, S; Randrianarivony, K; Redjimi, R; Sia, R; Skwarnicki, T; Stone, S; Wang, J C; Zhang, K; Csorna, S E; Bonvicini, G; Cinabro, D; Dubrovin, M; Lincoln, A; Asner, D M; Edwards, K W; Briere, R A; Brock, I; Chen, J; Ferguson, T; Tatishvili, G T; Vogel, H; Watkins, M E; Rosner, J L

    2006-01-01

    We report preliminary measurements of absolute hadronic branching fractions of Ds mesons determined using a double tag technique. These measurements are from 195 pb^{-1} of e+e- collisions recorded at center of mass energies near 4.17 GeV with the CLEO-c detector at CESR. We obtain absolute branching fractions for Ds+ decays to KS0 K+, K- K+ pi+, K- K+ pi+ pi-, pi+ pi+ pi-, pi+ eta, and pi+ etaprime. We discuss the problems inherent in measuring accurately the branching fraction for Ds+ to phi pi+, which is often used as a reference mode for measurement of other Ds+ branching fractions, and provide a measurement of a branching fraction that may be useful for this purpose.

  12. Active Vibration Isolation Using a Voice Coil Actuator with Absolute Velocity Feedback Control

    OpenAIRE

    Yun-Hui Liu; Wei-Hao Wu

    2013-01-01

    This paper describes the active vibration isolation using a voice coil actuator with absolute velocity feedback control for highly sensitive instruments (e.g., atomic force microscopes) which suffer from building vibration. Compared with traditional isolators, the main advantage of the proposed isolation system is that it produces no isolator resonance. The absolute vibration velocity signal is acquired from an accelerator and processed through an integrator, and is then input to the controll...

  13. Introducing an Absolute Cavity Pyrgeometer for Improving the Atmospheric Longwave Irradiance Measurement (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Reda, I.; Hansen, L.; Zeng, J.

    2012-08-01

    Advancing climate change research requires accurate and traceable measurement of the atmospheric longwave irradiance. Current measurement capabilities are limited to an estimated uncertainty of larger than +/- 4 W/m2 using the interim World Infrared Standard Group (WISG). WISG is traceable to the Systeme international d'unites (SI) through blackbody calibrations. An Absolute Cavity Pyrgeometer (ACP) is being developed to measure absolute outdoor longwave irradiance with traceability to SI using the temperature scale (ITS-90) and the sky as the reference source, instead of a blackbody. The ACP was designed by NREL and optically characterized by the National Institute of Standards and Technology (NIST). Under clear-sky and stable conditions, the responsivity of the ACP is determined by lowering the temperature of the cavity and calculating the rate of change of the thermopile output voltage versus the changing net irradiance. The absolute atmospheric longwave irradiance is then calculated with an uncertainty of +/- 3.96 W/m2 with traceability to SI. The measured irradiance by the ACP was compared with the irradiance measured by two pyrgeometers calibrated by the World Radiation Center with traceability to the WISG. A total of 408 readings was collected over three different clear nights. The calculated irradiance measured by the ACP was 1.5 W/m2 lower than that measured by the two pyrgeometers that are traceable to WISG. Further development and characterization of the ACP might contribute to the effort of improving the uncertainty and traceability of WISG to SI.

  14. Absolute distance measurement using frequency-sweeping heterodyne interferometer calibrated by an optical frequency comb.

    Science.gov (United States)

    Wu, Xuejian; Wei, Haoyun; Zhang, Hongyuan; Ren, Libing; Li, Yan; Zhang, Jitao

    2013-04-01

    We present a frequency-sweeping heterodyne interferometer to measure an absolute distance based on a frequency-tunable diode laser calibrated by an optical frequency comb (OFC) and an interferometric phase measurement system. The laser frequency-sweeping process is calibrated by the OFC within a range of 200 GHz and an accuracy of 1.3 kHz, which brings about a precise temporal synthetic wavelength of 1.499 mm. The interferometric phase measurement system consisting of the analog signal processing circuit and the digital phase meter achieves a phase difference resolution better than 0.1 deg. As the laser frequency is sweeping, the absolute distance can be determined by measuring the phase difference variation of the interference signals. In the laboratory condition, our experimental scheme realizes micrometer accuracy over meter distance.

  15. A novel method for the absolute fluorescence yield measurement by AIRFLY

    CERN Document Server

    Ave, M

    2008-01-01

    One of the goals of the AIRFLY (AIR FLuorescence Yield) experiment is to measure the absolute fluorescence yield induced by electrons in air to better than 10% precision. We introduce a new technique for measurement of the absolute fluorescence yield of the 337 nm line that has the advantage of reducing the systematic uncertainty due to the detector calibration. The principle is to compare the measured fluorescence yield to a well known process - the Cerenkov emission. Preliminary measurements taken in the BFT (Beam Test Facility) in Frascati, Italy with 350 MeV electrons are presented. Beam tests in the Argonne Wakefield Accelerator at the Argonne National Laboratory, USA with 14 MeV electrons have also shown that this technique can be applied at lower energies.

  16. Frequency-scanning interferometry for dynamic absolute distance measurement using Kalman filter.

    Science.gov (United States)

    Tao, Long; Liu, Zhigang; Zhang, Weibo; Zhou, Yangli

    2014-12-15

    We propose a frequency-scanning interferometry using the Kalman filtering technique for dynamic absolute distance measurement. Frequency-scanning interferometry only uses a single tunable laser driven by a triangle waveform signal for forward and backward optical frequency scanning. The absolute distance and moving speed of a target can be estimated by the present input measurement of frequency-scanning interferometry and the previously calculated state based on the Kalman filter algorithm. This method not only compensates for movement errors in conventional frequency-scanning interferometry, but also achieves high-precision and low-complexity dynamic measurements. Experimental results of dynamic measurements under static state, vibration and one-dimensional movement are presented.

  17. Metrological activity determination of 133Ba by sum-peak absolute method

    Science.gov (United States)

    da Silva, R. L.; de Almeida, M. C. M.; Delgado, J. U.; Poledna, R.; Santos, A.; de Veras, E. V.; Rangel, J.; Trindade, O. L.

    2016-07-01

    The National Laboratory for Metrology of Ionizing Radiation provides gamma sources of radionuclide and standardized in activity with reduced uncertainties. Relative methods require standards to determine the sample activity while the absolute methods, as sum-peak, not. The activity is obtained directly with good accuracy and low uncertainties. 133Ba is used in research laboratories and on calibration of detectors for analysis in different work areas. Classical absolute methods don't calibrate 133Ba due to its complex decay scheme. The sum-peak method using gamma spectrometry with germanium detector standardizes 133Ba samples. Uncertainties lower than 1% to activity results were obtained.

  18. Metrological activity determination of {sup 133}Ba by sum-peak absolute method

    Energy Technology Data Exchange (ETDEWEB)

    Silva, R.L. da; Delgado, J.U.; Poledna, R.; Santos, A.; Veras, E.V. de; Rangel, J.; Trindade, O.L. [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Almeida, M.C.M. de, E-mail: marcandida@yahoo.com.br, E-mail: candida@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    The National Laboratory for Metrology of Ionizing Radiation provides gamma sources of radionuclide and standardized in activity with reduced uncertainties. Relative methods require standards to determine the sample activity while the absolute methods, as sum-peak, not. The activity is obtained directly with good accuracy and low uncertainties. {sup 133}Ba is used in research laboratories and on calibration of detectors for analysis in different work areas. Classical absolute methods do not calibrate {sup 133}Ba due to its complex decay scheme. The sum-peak method using gamma spectrometry with germanium detector standardizes {sup 133}Ba samples. Uncertainties lower than 1% to activity results were obtained.

  19. New design and facilities for the International Database for Absolute Gravity Measurements (AGrav): A support for the Establishment of a new Global Absolute Gravity Reference System

    Science.gov (United States)

    Wziontek, Hartmut; Falk, Reinhard; Bonvalot, Sylvain; Rülke, Axel

    2017-04-01

    After about 10 years of successful joint operation by BGI and BKG, the International Database for Absolute Gravity Measurements "AGrav" (see references hereafter) was under a major revision. The outdated web interface was replaced by a responsive, high level web application framework based on Python and built on top of Pyramid. Functionality was added, like interactive time series plots or a report generator and the interactive map-based station overview was updated completely, comprising now clustering and the classification of stations. Furthermore, the database backend was migrated to PostgreSQL for better support of the application framework and long-term availability. As comparisons of absolute gravimeters (AG) become essential to realize a precise and uniform gravity standard, the database was extended to document the results on international and regional level, including those performed at monitoring stations equipped with SGs. By this it will be possible to link different AGs and to trace their equivalence back to the key comparisons under the auspices of International Committee for Weights and Measures (CIPM) as the best metrological realization of the absolute gravity standard. In this way the new AGrav database accommodates the demands of the new Global Absolute Gravity Reference System as recommended by the IAG Resolution No. 2 adopted in Prague 2015. The new database will be presented with focus on the new user interface and new functionality, calling all institutions involved in absolute gravimetry to participate and contribute with their information to built up a most complete picture of high precision absolute gravimetry and improve its visibility. A Digital Object Identifier (DOI) will be provided by BGI to contributors to give a better traceability and facilitate the referencing of their gravity surveys. Links and references: BGI mirror site : http://bgi.obs-mip.fr/data-products/Gravity-Databases/Absolute-Gravity-data/ BKG mirror site: http

  20. Hilbertian sine as an absolute measure of Bayesian inference in ISR, homeland security, medicine, and defense

    Science.gov (United States)

    Jannson, Tomasz; Wang, Wenjian; Hodelin, Juan; Forrester, Thomas; Romanov, Volodymyr; Kostrzewski, Andrew

    2016-05-01

    In this paper, Bayesian Binary Sensing (BBS) is discussed as an effective tool for Bayesian Inference (BI) evaluation in interdisciplinary areas such as ISR (and, C3I), Homeland Security, QC, medicine, defense, and many others. In particular, Hilbertian Sine (HS) as an absolute measure of BI, is introduced, while avoiding relativity of decision threshold identification, as in the case of traditional measures of BI, related to false positives and false negatives.

  1. Electron cyclotron emission measurements on JET: Michelson interferometer, new absolute calibration, and determination of electron temperature.

    Science.gov (United States)

    Schmuck, S; Fessey, J; Gerbaud, T; Alper, B; Beurskens, M N A; de la Luna, E; Sirinelli, A; Zerbini, M

    2012-12-01

    At the fusion experiment JET, a Michelson interferometer is used to measure the spectrum of the electron cyclotron emission in the spectral range 70-500 GHz. The interferometer is absolutely calibrated using the hot/cold technique and, in consequence, the spatial profile of the plasma electron temperature is determined from the measurements. The current state of the interferometer hardware, the calibration setup, and the analysis technique for calibration and plasma operation are described. A new, full-system, absolute calibration employing continuous data acquisition has been performed recently and the calibration method and results are presented. The noise level in the measurement is very low and as a result the electron cyclotron emission spectrum and thus the spatial profile of the electron temperature are determined to within ±5% and in the most relevant region to within ±2%. The new calibration shows that the absolute response of the system has decreased by about 15% compared to that measured previously and possible reasons for this change are presented. Temperature profiles measured with the Michelson interferometer are compared with profiles measured independently using Thomson scattering diagnostics, which have also been recently refurbished and recalibrated, and agreement within experimental uncertainties is obtained.

  2. Absolute frequency measurements and hyperfine structures of the molecular iodine transitions at 578 nm

    CERN Document Server

    Kobayashi, Takumi; Hosaka, Kazumoto; Inaba, Hajime; Okubo, Sho; Tanabe, Takehiko; Yasuda, Masami; Onae, Atsushi; Hong, Feng-Lei

    2016-01-01

    We report absolute frequency measurements of 81 hyperfine components of the rovibrational transitions of molecular iodine at 578 nm using the second harmonic generation of an 1156-nm external-cavity diode laser and a fiber-based optical frequency comb. The relative uncertainties of the measured absolute frequencies are typically $1.4\\times10^{-11}$. Accurate hyperfine constants of four rovibrational transitions are obtained by fitting the measured hyperfine splittings to a four-term effective Hamiltonian including the electric quadrupole, spin-rotation, tensor spin-spin, and scalar spin-spin interactions. The observed transitions can be good frequency references at 578 nm, and are especially useful for research using atomic ytterbium since the transitions are close to the $^{1}S_{0}-^{3}P_{0}$ clock transition of ytterbium.

  3. Absolute measurement of the nitrogen fluorescence yield in air between 300 and 430 nm

    CERN Document Server

    Lefeuvre, G; Gorodetzky, P; Patzak, T; Salin, P

    2007-01-01

    The nitrogen fluorescence induced in air is used to detect ultra-high energy cosmic rays and to measure their energy. The precise knowledge of the absolute fluorescence yield is the key quantity to improve the accuracy on the cosmic ray energy. The total yield has been measured in dry air using a 90Sr source and a [300-430 nm] filter. The fluorescence yield in air is 4.23 $\\pm$ 0.20 photons per meter when normalized to 760 mmHg, 15 degrees C and with an electron energy of 0.85 MeV. This result is consistent with previous experiments made at various energies, but with an accuracy improved by a factor of about 3. For the first time, the absolute continuous spectrum of nitrogen excited by 90Sr electrons has also been measured with a spectrometer. Details of this experiment are given in one of the author's PhD thesis [32].

  4. Determination of collagen fibril size via absolute measurements of second-harmonic generation signals

    Science.gov (United States)

    Bancelin, Stéphane; Aimé, Carole; Gusachenko, Ivan; Kowalczuk, Laura; Latour, Gaël; Coradin, Thibaud; Schanne-Klein, Marie-Claire

    2014-09-01

    The quantification of collagen fibril size is a major issue for the investigation of pathological disorders associated with structural defects of the extracellular matrix. Second-harmonic generation microscopy is a powerful technique to characterize the macromolecular organization of collagen in unstained biological tissues. Nevertheless, due to the complex coherent building of this nonlinear optical signal, it has never been used to measure fibril diameter so far. Here we report absolute measurements of second-harmonic signals from isolated fibrils down to 30 nm diameter, via implementation of correlative second-harmonic-electron microscopy. Moreover, using analytical and numerical calculations, we demonstrate that the high sensitivity of this technique originates from the parallel alignment of collagen triple helices within fibrils and the subsequent constructive interferences of second-harmonic radiations. Finally, we use these absolute measurements as a calibration for ex vivo quantification of fibril diameter in the Descemet’s membrane of a diabetic rat cornea.

  5. Development of a detector (ALFA) to measure the absolute LHC luminosity at ATLAS

    CERN Document Server

    Mapelli, A; Ask, S; Barrillon, P; Blanchot, G; Blin, S; Braem, André; Cheiklali, C; de La Taille, C; Di Girolamo, B; Efthymiopoulos, I; Faustino, J; Fournier, D; Franz, S; Grafström, P; Gurriana, L; Haguenauer, M; Hedberg, V; Heller, M; Hoffmann, S; Iwanski, W; Joram, C; Kocnar, A; Lavigne, B; Lundberg, B; Maio, A; Maneira, M J P; Marques, C; Mjörnmark, U; Conde-Muíño, P; Puzo, P; Rijssenbeeck, M; Santos, J P; Saraiva, J G; Seguin-Moreau, N; Soares, S; Stenzel, H; Thioye, M; Valladolid-Gallego, E; Vorobel, V; 10th ICATPP Conference on Astroparticle, Particle, Space Physics, Detectors and Medical Physics Applications

    2008-01-01

    The ATLAS collaboration plans to determine the absolute luminosity of the CERN LHC at Interaction Point 1 by measuring the trajectory of protons elastically scattered at very small angles ($\\mu rad$). A scintillating fibre tracker system called ALFA (Absolute Luminosity For ATLAS) is proposed for this measurement. Detector modules will be placed above and below the LHC beam axis in roman pot units at a distance of 240 m on each side of the ATLAS interaction point. They allow the detectors to approach the beam axis to millimeter distance. Overlap detectors also based on the scintillating fibre technology, will measure the precise relative position of the two detector modules. Results obtained during beam tests at DESY and at CERN validate the detectors design and demonstrate the achievable resolution. We also report about radiation hardness studies of the scintillating fibres to estimate the lifetime of the ALFA system at different operating conditions of the LHC.

  6. High-precision gravity measurements using absolute and relative gravimeters at Mount Etna (Sicily, Italy

    Directory of Open Access Journals (Sweden)

    Ciro Del Negro

    2011-12-01

    Full Text Available Accurate detection of time gravity changes attributable to the dynamics of volcanoes requires high-precision gravity measurements. With the aim of improving the quality of data from the Mount Etna gravity network, we used both absolute and relative gravimeters in a hybrid method. In this report, some of the techniques for gravity surveys are reviewed, and the results related to each method are compared. We show how the total uncertainty estimated for the gravity measurements performed with this combined use of absolute and relative gravimeters is roughly comparable to that calculated when the measurements are acquired using only relative gravimeters (the traditional method. However, the data highlight how the hybrid approach improves the measurement capabilities for surveying the Mount Etna volcanic area. This approach enhances the accuracy of the data, and then of the four-dimensional surveying, which minimizes ambiguities inherent in the gravity measurements. As a case study, we refer to two gravity datasets acquired in 2005 and 2010 from the western part of the Etna volcano, which included five absolute and 13 relative stations of the Etna gravity network.

  7. Introducing an Absolute Cavity Pyrgeometer (ACP) for Improving the Atmospheric Longwave Irradiance Measurement (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Reda, I.; Stoffel, T.

    2012-03-01

    Advancing climate change research requires accurate and traceable measurement of the atmospheric longwave irradiance. Current measurement capabilities are limited to an estimated uncertainty of larger than +/- 4 W/m2 using the interim World Infrared Standard Group (WISG). WISG is traceable to the Systeme international d'unites (SI) through blackbody calibrations. An Absolute Cavity Pyrgeometer (ACP) is being developed to measure absolute outdoor longwave irradiance with traceability to SI using the temperature scale (ITS-90) and the sky as the reference source, instead of a blackbody. The ACP was designed by NREL and optically characterized by the National Institute of Standards and Technology (NIST). Under clear-sky and stable conditions, the responsivity of the ACP is determined by lowering the temperature of the cavity and calculating the rate of change of the thermopile output voltage versus the changing net irradiance. The absolute atmospheric longwave irradiance is then calculated with an uncertainty of +/- 3.96 W/m2 with traceability to SI. The measured irradiance by the ACP was compared with the irradiance measured by two pyrgeometers calibrated by the World Radiation Center with traceability to the WISG.

  8. Comparison of absolute speed of screen-film systems measured in seven institutions

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Ken-ichi [Yamaguchi Univ., Ube (Japan). Hospital; Murakami, Yasunori; Asahara, Masaki; Nakamura, Satoru; Honda, Mitsugi; Morishita, Junji; Higashida, Yoshiharu; Otsuka, Akiyoshi; Yoshida, Akira

    1998-03-01

    We compared the differences in absolute speed of four screen-film systems in seven institutions. Four different screens (HR-4, Fuji; Lanex Medium, Kodak; Lanex 250, Kodak; and HR-12, Fuji) combined with super HRS-30 (Fuji) film and a beam quality of 80 kV tube voltage with a 20 mm aluminum filter were employed. Absolute speeds of the HR-4, Lanex Medium, Lanex 250, and HR-12 in combination with super HRS-30 were 1.83 mR{sup -1}, 2.72 mR{sup -1}, 2.79 mR{sup -1}, and 5.35 mR{sup -1} (average of seven institutions), respectively. The variation in speed was about {+-}10% for the seven institutions. Two factors (film processor and densitometer) affecting absolute speed were analyzed. The absolute speed measured in seven institutions varied {+-}14% depending on the film processor (development conditions) and {+-}3% depending on the densitometer employed in each institution. (author)

  9. Antiausterity activity of arctigenin enantiomers: importance of (2R,3R)-absolute configuration.

    Science.gov (United States)

    Awale, Suresh; Kato, Mamoru; Dibwe, Dya Fita; Li, Feng; Miyoshi, Chika; Esumi, Hiroyasu; Kadota, Shigetoshi; Tezuka, Yasuhiro

    2014-01-01

    From a MeOH extract of powdered roots of Wikstroemia indica, six dibenzyl-gamma-butyrolactone-type lignans with (2S,3S)-absolute configuration [(+)-arctigenin (1), (+)-matairesinol (2), (+)-trachelogenin (3), (+)-nortrachelogenin (4), (+)-hinokinin (5), and (+)-kusunokinin (6)] were isolated, whereas three dibenzyl-gamma-butyrolactone-type lignans with (2R,3R)-absolute configuration [(-)-arctigenin (1*), (-)-matairesinol (2*), (-)-trachelogenin (3*)] were isolated from Trachelospermum asiaticum. The in vitro preferential cytotoxic activity of the nine compounds was evaluated against human pancreatic PANC-1 cancer cells in nutrient-deprived medium (NDM), but none of the six lignans (1-6) with (2S,3S)-absolute configuration showed preferential cytotoxicity. On the other hand, three lignans (1*-3*) with (2R,3R)-absolute configuration exhibited preferential cytotoxicity in a concentration-dependent manner with PC50 values of 0.54, 6.82, and 5.85 microM, respectively. Furthermore, the effect of (-)- and (+)-arctigenin was evaluated against the activation of Akt, which is a key process in the tolerance to nutrition starvation. Interestingly, only (-)-arctigenin (1*) strongly suppressed the activation of Akt. These results indicate that the (2R,3R)-absolute configuration of (-)-enantiomers should be required for the preferential cytotoxicity through the inhibition of Akt activation.

  10. A novel absolute displacement measurement technology based on wavenumber resolved low coherence interferometry

    Science.gov (United States)

    Zhao, Keqiang; Xie, Fang; Ma, Sen; Wang, Yunzhi; Chen, Liang

    2015-12-01

    This paper proposed a novel absolute displacement measurement technology which is based on the wavenumber spectrum of low coherence interferometry. The signal from a Michelson interferometer, which is derived from a broadband light source, is dispersed by a bulk dispersing grating. The interferometric signal of each wavelength is detected by a linear array charge coupled device (CCD). By transforming the wavelength spectrum of the signal into wavenumber spectrum, absolute displacement can be measured precisely by measuring the wavenumber difference between two neighboring peaks of the wavenumber spectrum. Unlike the normal low coherence interferometric measurement systems (LCIMS) which have to scan the optical path difference (OPD) of the interferometer in order to demodulate the measurand, there is no need of scanning action during the measurement procedure, which not only simplifies the measurement system but also improves the measurement speed greatly. A fiber Bragg grating (FBG) is employed to produce a feedback signal which is used to stabilize the Michelson interferometer so as to obtain high measurement precision. A step height with the calibrated value of 50 μm that is configurated with two gauge blocks is measured by the system. The measurement resolution is 6.03 nm and the standard deviation of 10 times measurement results is 6.8 nm.

  11. Hyperspectral interferometry for single-shot absolute measurement of 3-D shape and displacement fields

    Directory of Open Access Journals (Sweden)

    Ruiz P. D.

    2010-06-01

    Full Text Available We propose a method that we call Hyperspectral Interferometry (HSI to resolve the 2π phase unwrapping problem in the analysis of interferograms recorded with a narrow-band light source. By using a broad-band light source and hyperspectral imaging system, a set of interferograms at different wavenumbers are recorded simultaneously on a high resolution image sensor. These are then assembled to form a three-dimensional intensity distribution. By Fourier transformation along the wavenumber axis, an absolute optical path difference is obtained for each pixel independently of the other pixels in the field of view. As a result, interferograms with spatially distinct regions are analysed as easily as continuous ones. The approach is illustrated with a HSI system to measure 3-D profiles of optically smooth or rough surfaces. Compared to existing profilometers able to measure absolute path differences, the single shot nature of the approach provides greater immunity from environmental disturbance.

  12. Absolute measurements of electron capture cross sections of C3+ from atomic and molecular hydrogen

    Science.gov (United States)

    Sant'Anna, M. M.; Melo, W. S.; Santos, A. C. F.; Shah, M. B.; Sigaud, G. M.; Montenegro, E. C.

    2000-02-01

    Absolute measurements of single- and double-electron-capture cross sections by C3+ projectiles on atomic and molecular hydrogen targets were performed for projectile energies between 1.0 and 3.5 MeV for the single- and 1.0 and 2.0 MeV for the double-capture processes. The icons/Journals/Common/sigma" ALT="sigma" ALIGN="TOP"/> H /icons/Journals/Common/sigma" ALT="sigma" ALIGN="TOP"/> H2 cross section ratios were measured using an absolutely calibrated tungsten-tube furnace for the production of atomic hydrogen. The single-capture data are compared with calculations based on the boundary-corrected first Born approximation, the eikonal approximation and a semiclassical model, presenting a good overall agreement. Calculations for the double capture using an analytical expression, obtained within the independent electron approximation and based on the same semiclassical model, give a reasonable qualitative description of the data.

  13. Absolute Frequency Measurement of Rubidium 5S-7S Two-Photon Transitions

    CERN Document Server

    Morzynski, Piotr; Ablewski, Piotr; Gartman, Rafal; Gawlik, Wojciech; Maslowski, Piotr; Nagorny, Bartlomiej; Ozimek, Filip; Radzewicz, Czeslaw; Witkowski, Marcin; Ciurylo, Roman; Zawada, Michal

    2013-01-01

    We report the absolute frequency measurements of rubidium 5S-7S two-photon transitions with a cw laser digitally locked to an atomic transition and referenced to an optical frequency comb. The narrow, two-photon transition, 5S-7S (760 nm) insensitive to first order in a magnetic field, is a promising candidate for frequency reference. The performed tests yield the transition frequency with accuracy better than reported previously.

  14. Absolute measurement of the $\\beta\\alpha$ decay of $^{16}$N

    CERN Multimedia

    We propose to study the $\\beta$-decay of $^{16}$N at ISOLDE with the aim of determining the branching ratio for $\\beta\\alpha$ decay on an absolute scale. There are indications that the previously measured branching ratio is in error by an amount significantly larger than the quoted uncertainty. This limits the precision with which the S-factor of the astrophysically important $^{12}$C($\\alpha, \\gamma)^{16}$O reaction can be determined.

  15. Precise Measurement of the Absolute Yield of Fluorescence Photons in Atmospheric Gases

    CERN Document Server

    Ave, M; Daumiller, K; Di Carlo, P; Di Giulio, C; Luis, P Facal San; Gonzales, D; Hojvat, C; Hörandel, J R; Hrabovský, M; Iarlori, M; Keilhauer, B; Klages, H; Kleifges, M; Kuehn, F; Monasor, M; Nožka, L; Palatka, M; Petrera, S; Privitera, P; Ridky, J; Rizi, V; d'Orfeuil, B Rouillé; Salamida, F; Schovánek, P; Šmida, R; Spinka, H; Ulrich, A; Verzi, V; Williams, C

    2011-01-01

    We have performed a measurement of the absolute yield of fluorescence photons at the Fermilab Test Beam. A systematic uncertainty at 5% level was achieved by the use of Cherenkov radiation as a reference calibration light source. A cross-check was performed by an independent calibration using a laser light source. A significant improvement on the energy scale uncertainty of Ultra-High Energy Cosmic Rays is expected.

  16. Measurement of absolute displacement by a double-modulation technique based on a Michelson interferometer.

    Science.gov (United States)

    Chang, L W; Chien, P Y; Lee, C T

    1999-05-01

    A novel method is presented for of measuring absolute displacement with a synthesized wavelength interferometer. The optical phase of the interferometer is simultaneously modulated with a frequency-modulated laser diode and optical path-length difference. The error signal originating from the intensity modulation of the source is eliminated by a signal processing circuit. In addition, a lock-in technique is used to demodulate the envelope of the interferometric signal. The displacement signal is derived by the self-mixing technique.

  17. Comment on 'Simultaneous gravity and gradient measurements from a recoil-compensated absolute gravimeter'

    CERN Document Server

    Nagornyi, V D

    2011-01-01

    The article (Niebauer et al. 2011 Metrologia 48 154-163) reports on the important innovations enhancing the ability of absolute gravimeter to measure vertical gravity gradient along with the gravity acceleration. This comment suggests experiments to further assess the improvements and the results obtained with the modified instrument, considers some limitations of non-linear models in metrology and ways to overcome them, and discusses possible applications of the described instrument.

  18. Comment on "Measurement of the speed-of-light perturbation of free-fall absolute gravimeters"

    CERN Document Server

    Nagornyi, V D

    2014-01-01

    The paper (Rothleitner et al. 2014 Metrologia 51, L9) reports on the measurement of the speed-of-light perturbation in absolute gravimeters. The conclusion that the perturbation reaches only 2/3 of the commonly accepted value violates the fundamental limitation on the maximum speed of information transfer. The conclusion was deluded by unaccounted parasitic perturbations, some of which are obvious from the report.

  19. Precise measurement of the absolute yield of fluorescence photons in atmospheric gases

    Energy Technology Data Exchange (ETDEWEB)

    Ave, M. [Karlsruhe Institute of Technology, IK, Postfach 6980, D - 76021 Karlsruhe (Germany); Bohacova, M. [University of Chicago, Enrico Fermi Institute and Kavli Institute for Cosmological Physics, 5640 S. Ellis Ave., Chicago, IL 60637 (United States); Institute of Physics of the Academy of Sciences of the Czech Republic, Na Slovance 2, CZ-182 21 Praha 8 (Czech Republic); Daumiller, K. [Karlsruhe Institute of Technology, IK, Postfach 6980, D - 76021 Karlsruhe (Germany); Di Carlo, P. [Dipartimento di Fisica dell' Universita de l' Aquila and INFN, Via Vetoio, I-67010 Coppito, Aquila (Italy); Di Giulio, C. [Dipartimento di Fisica dell' Universita di Roma Tor Vergata and Sezione INFN, Via della Ricerca Scientifica, I-00133 Roma (Italy); Facal San Luis, Pedro, E-mail: facal@kicp.uchicago.edu [University of Chicago, Enrico Fermi Institute and Kavli Institute for Cosmological Physics, 5640 S. Ellis Ave., Chicago, IL 60637 (United States); Gonzales, D. [Karlsruhe Institute of Technology, IEKP, Postfach 3640, D - 76021 Karlsruhe (Germany); Hojvat, C. [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Hoerandel, J.R. [IMAPP, Radboud University Nijmegen, 6500 GL Nijmegen (Netherlands); Hrabovsky, M. [Palacky University, RCATM, Olomuc (Czech Republic); Iarlori, M. [Dipartimento di Fisica dell' Universita de l' Aquila and INFN, Via Vetoio, I-67010 Coppito, Aquila (Italy); Keilhauer, B.; Klages, H. [Karlsruhe Institute of Technology, IK, Postfach 6980, D - 76021 Karlsruhe (Germany); Kleifges, M. [Karlsruhe Institute of Technology, IPE, Postfach 3640, D - 76021 Karlsruhe (Germany); Kuehn, F. [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Monasor, M. [University of Chicago, Enrico Fermi Institute and Kavli Institute for Cosmological Physics, 5640 S. Ellis Ave., Chicago, IL 60637 (United States); Nozka, L.; Palatka, M. [Institute of Physics of the Academy of Sciences of the Czech Republic, Na Slovance 2, CZ-182 21 Praha 8 (Czech Republic)

    2011-03-15

    We have performed a measurement of the absolute yield of fluorescence photons at the Fermilab Test Beam. A systematic uncertainty at 5% level was achieved by the use of Cherenkov radiation as a reference calibration light source. A cross-check was performed by an independent calibration using a laser light source. A significant improvement on the energy scale uncertainty of Ultra-High Energy Cosmic Rays is expected.

  20. Measurement of definite integral of sinusoidal signal absolute value third power using digital stochastic method

    Directory of Open Access Journals (Sweden)

    Beljić Željko

    2017-01-01

    Full Text Available In this paper a special case of digital stochastic measurement of the third power of definite integral of sinusoidal signal’s absolute value, using 2-bit AD converters is presented. This case of digital stochastic method had emerged from the need to measure power and energy of the wind. Power and energy are proportional to the third power of wind speed. Anemometer output signal is sinusoidal. Therefore an integral of the third power of sinusoidal signal is zero. Two approaches are proposed for the third power calculation of the wind speed signal. One approach is to use absolute value of sinusoidal signal (before AD conversion for which there is no need of multiplier hardware change. The second approach requires small multiplier hardware change, but input signal remains unchanged. For the second approach proposed minimal hardware change was made to calculate absolute value of the result after AD conversion. Simulations have confirmed theoretical analysis. Expected precision of wind energy measurement of proposed device is better than 0,00051% of full scale. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. TR32019

  1. Position error correction in absolute surface measurement based on a multi-angle averaging method

    Science.gov (United States)

    Wang, Weibo; Wu, Biwei; Liu, Pengfei; Liu, Jian; Tan, Jiubin

    2017-04-01

    We present a method for position error correction in absolute surface measurement based on a multi-angle averaging method. Differences in shear rotation measurements at overlapping areas can be used to estimate the unknown relative position errors of the measurements. The model and the solving of the estimation algorithm have been discussed in detail. The estimation algorithm adopts a least-squares technique to eliminate azimuthal errors caused by rotation inaccuracy. The cost functions can be minimized to determine the true values of the unknowns of Zernike polynomial coefficients and rotation angle. Experimental results show the validity of the method proposed.

  2. Absolute single photoionization cross-section measurements of Rb 2+ ions: experiment and theory

    Energy Technology Data Exchange (ETDEWEB)

    Macaluso, D. A. [Univ. of Montana, Missoula, MT (United States). Dept. of Physics and Astronomy; Bogolub, K. [Univ. of Montana, Missoula, MT (United States). Dept. of Physics and Astronomy; Johnson, A. [Univ. of Montana, Missoula, MT (United States). Dept. of Physics and Astronomy; Aguilar, A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS); Kilcoyne, A. L. D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS); Bilodeau, R. C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS); Univ. of Connecticut, Storrs, CT (United States). Dept. of Physics; Bautista, M. [Western Michigan Univ., Kalamazoo MI (United States). Dept. of Physics; Kerlin, A. B. [Univ. of West Georgia, Carrolton, GA (United States). Dept. of Physics; Sterling, N. C. [Univ. of West Georgia, Carrolton, GA (United States). Dept. of Physics

    2017-05-05

    Absolute single photoionization cross-section measurements of Rb 2+ ions were performed at the Advanced Light Source at Lawrence Berkeley National Laboratory using synchrotron radiation and the photo-ion, merged-beams technique. Measurements were made at a photon energy resolution of 13.5 2.5 meV from 37.31 to 44.08 eV spanning the 2 P ground state and 2 P metastable state ionization thresholds. Multiple autoionizing resonance series arising from each initial state are identified using quantum defect theory. The measurements are compared to Breit-Pauli R-matrix calculations with excellent agreement between theory and experiment.

  3. LHCb: A novel method for an absolute luminosity measurement at LHCb using beam-gas imaging

    CERN Multimedia

    Barschel, C

    2013-01-01

    A novel technique to measure the absolute luminosity at the Large Hadron Collider (LHC) using beam-gas interactions has been successfully used in the LHCb experiment. A gas injection device (SMOG) has been installed in the LHCb experiment to increase the pressure around the interaction point during dedicated fills. The Beam Gas Imaging method (BGI) has now the potential to surpass the accuracy of the commonly used van der Meer scan method (VDM). This poster presents the principles of the Beam Gas Imaging method used to measure the beam overlap integral. Furthermore the gas injection increased the accuracy measurement of the so-called ghost charges and also intensities per bunch.

  4. A Method for Measurement of Absolute Angular Position and Application in a Novel Electromagnetic Encoder System

    Directory of Open Access Journals (Sweden)

    Zijian Zhang

    2015-01-01

    Full Text Available For the encoders, especially the sine-cosine magnetic ones, a new method to measure absolute angular position is proposed in the paper. In the method, the code disc of the encoder has only two circle tracks and each one was divided into N and (N-1 equal code cells. The cell angles, changing from 0° to 360° between any two neighboring code cells, are defined to represent any position on the code disc. The position value of the same point can be represented by different cell angle values of different tracks and the absolute angular position of the point can be obtained by the difference value between the cell angle value of the outer track and the inner one. To validate the correctness of the method theoretically, the derivation process of the method was provided. An electromagnetic encoder system was designed and the experimental platform was established to test the method. The experimental results indicate that the electromagnetic encoder can measure the absolute angular position. Besides, it shows that the method is easy to be realized in algorithm and can reduce computational complexity and decrease dimension of the encoder.

  5. Silicon microcantilevers with different actuation-readout schemes for absolute pressure measurement

    Energy Technology Data Exchange (ETDEWEB)

    Bianco, S; Cocuzza, M; Ferrante, I; Giuri, E; Pirri, C F; Ricci, A; Scaltrito, L [Xlab - Materials and Microsystems Laboratory - Polytechnic of Turin, Latemar Unit Lungo Piazza D' Armi 6, 10034 Chivasso (Turin) (Italy); Bich, D; Merialdo, A; Schina, P [Olivetti I-Jet, Loc. Le Vieux, 11020 Arnad (Aosta) (Italy); Correale, R [Varian S.p.A., Via Fratelli Varian 54, 10040 Leini (Turin) Italy (Italy)], E-mail: matteo.cocuzza@infm.polito.it

    2008-03-01

    Silicon resonant microcantilevers for the measurement of the absolute pressure have been fabricated through micromachining processes. The first release is based on vertical resonant actuation and detection, both externally implemented, respectively through a piezoelectric actuator and an optical lever. The variation in resonance response was investigated as a function of pressure (10{sup -1} to 10{sup 5} Pa), both in terms of resonance frequency and quality factor. We demonstrated the feasibility of a miniaturized absolute pressure sensor working over a six decades range. The second release is based on lateral resonating microcantilevers in which a significative upgrade is represented by the miniaturization and integration of the actuator and the sensing directly on chip providing a more compact and potentially interesting solution for industrial vacuum applications. Actuation is performed with an electrostatic modulated force, while detection relies on a capacitive readout. Preliminary experiments are encouraging for the replication of the results obtained with the first version.

  6. Developing absolute shock wave equation of state measurements on the NIF

    Science.gov (United States)

    Celliers, Peter; Fratanduono, D. E.; Lazicki, A.; London, R. A.; Brygoo, S.; Swift, D. C.; Coppari, F.; Millot, M.; Peterson, J. L.; Meezan, N. B.; Fernandez-Panella, A.; Erskine, D. J.; Ali, S.; Collins, G. W.

    2016-10-01

    The National Ignition Facility provides an unprecedented capability to generate ultra-high pressure planar shock waves (around 10 TPa) in solid samples. We are currently fielding impedance match equation of state (EOS) experiments to determine the shock Hugoniot of various samples relative to EOS standards, such as aluminum and quartz. However, the equations of state of the standards at multi-TPa shock pressures are not yet well-established. Absolute techniques are needed to provide the data needed to establish the Hugoniots of the standards, and also to measure the state of a sample directly. We are pursuing several approaches using absolute techniques. These approaches will be discussed. This work was performed under the auspices of the U.S. Department of Energy by LLNL under contract DE-AC52-07NA27344.

  7. Measurement of the Absolute Hohlraum Wall Albedo Under Ignition Foot Drive Condition

    Energy Technology Data Exchange (ETDEWEB)

    Jones, O S; Glenzer, S H; Suter, L J; Turner, R E; Campbell, K M; Dewald, E L; Hammel, B A; Kauffman, R L; Landen, O L; Rosen, M D; Wallace, R J; Weber, F A

    2003-08-26

    We present the first measurements of the absolute albedos of hohlraums made from gold or from high-Z mixtures. The measurements are performed over the range of radiation temperatures (70-100 eV) expected during the foot of an indirect-drive temporally-shaped ignition laser pulse, where accurate knowledge of the wall albedo (i.e. soft x-ray wall re-emission) is most critical for determining capsule radiation symmetry. We find that the gold albedo agrees well with calculations using the super transition array opacity model, potentially providing additional margin for ICF ignition.

  8. Measurement of the absolute hohlraum wall albedo under ignition foot drive conditions

    Energy Technology Data Exchange (ETDEWEB)

    Suter, L J; Wallace, R J; Hammel, B A; Weber, F A; Landen, O L; Campbell, K M; DeWald, E L; Glenzer, S H; Rosen, M D; Jones, O S; Turner, R E; Kauffmann, R L; Hammer, J H

    2003-11-25

    We present the first measurements of the absolute albedos of hohlraums made from gold or from high-Z mixtures. The measurements are performed over the range of radiation temperatures (70-100 eV) expected during the foot of an indirect-drive temporally-shaped ignition laser pulse, where accurate knowledge of the wall albedo (i.e. soft x-ray wall re-emission) is most critical for determining capsule radiation symmetry. We find that the gold albedo agrees well with calculations using the super transition array opacity model, potentially providing additional margin for ICF ignition.

  9. Non-piece-wise error compensation for grating displacement measurement system with absolute zero mark

    Institute of Scientific and Technical Information of China (English)

    Xiaojun Jiang; Huijie Huang; Xiangzhao Wang; Lihua Huang

    2009-01-01

    A method for compensating the measuring error of the grating displacement measurement system with absolute zero mark is presented.It divides the full scale range into piece-wise subsections and compares the maximum variation of the measuring errors of two adjacent subsections with the threshold.Whether the specified subsection is divided into smaller subsections is determined by the comparison result.After different compensation parameters and weighted average values of the random errors are obtained,the error compensation algorithm is implemented in the left and right subsections,and the whole measuring error of the grating displacement measurement system is reduced by about 73%.Experimental results show that the method may not only effectively compensate the spike error but also greatly improve the precision of the measuring system.

  10. Mosher Amides: Determining the Absolute Stereochemistry of Optically-Active Amines

    Science.gov (United States)

    Allen, Damian A.; Tomaso, Anthony E., Jr.; Priest, Owen P.; Hindson, David F.; Hurlburt, Jamie L.

    2008-01-01

    The use of chiral reagents for the derivatization of optically-active amines and alcohols for the purpose of determining their enantiomeric purity or absolute configuration is a tool used by many chemists. Among the techniques used, Mosher's amide and Mosher's ester analyses are among the most reliable and one of the most often used. Despite this,…

  11. Mosher Amides: Determining the Absolute Stereochemistry of Optically-Active Amines

    Science.gov (United States)

    Allen, Damian A.; Tomaso, Anthony E., Jr.; Priest, Owen P.; Hindson, David F.; Hurlburt, Jamie L.

    2008-01-01

    The use of chiral reagents for the derivatization of optically-active amines and alcohols for the purpose of determining their enantiomeric purity or absolute configuration is a tool used by many chemists. Among the techniques used, Mosher's amide and Mosher's ester analyses are among the most reliable and one of the most often used. Despite this,…

  12. Absolute Position of Targets Measured Through a Chamber Window Using Lidar Metrology Systems

    Science.gov (United States)

    Kubalak, David; Hadjimichael, Theodore; Ohl, Raymond; Slotwinski, Anthony; Telfer, Randal; Hayden, Joseph

    2012-01-01

    Lidar is a useful tool for taking metrology measurements without the need for physical contact with the parts under test. Lidar instruments are aimed at a target using azimuth and elevation stages, then focus a beam of coherent, frequency modulated laser energy onto the target, such as the surface of a mechanical structure. Energy from the reflected beam is mixed with an optical reference signal that travels in a fiber path internal to the instrument, and the range to the target is calculated based on the difference in the frequency of the returned and reference signals. In cases when the parts are in extreme environments, additional steps need to be taken to separate the operator and lidar from that environment. A model has been developed that accurately reduces the lidar data to an absolute position and accounts for the three media in the testbed air, fused silica, and vacuum but the approach can be adapted for any environment or material. The accuracy of laser metrology measurements depends upon knowing the parameters of the media through which the measurement beam travels. Under normal conditions, this means knowledge of the temperature, pressure, and humidity of the air in the measurement volume. In the past, chamber windows have been used to separate the measuring device from the extreme environment within the chamber and still permit optical measurement, but, so far, only relative changes have been diagnosed. The ability to make accurate measurements through a window presents a challenge as there are a number of factors to consider. In the case of the lidar, the window will increase the time-of-flight of the laser beam causing a ranging error, and refract the direction of the beam causing angular positioning errors. In addition, differences in pressure, temperature, and humidity on each side of the window will cause slight atmospheric index changes and induce deformation and a refractive index gradient within the window. Also, since the window is a

  13. Mutational Analysis of the Absolutely Conserved B8Gly: Consequence on Foldability and Activity of Insulin

    Institute of Scientific and Technical Information of China (English)

    Zhan-Yun GUO; Zhou ZHANG; Xiao-Yuan JIA; Yue-Hua TANG; You-Min FENG

    2005-01-01

    B8Gly is absolutely conserved in insulins during evolution. Moreover, its corresponding position is always occupied by a Gly residue in other members of insulin superfamily. Previous work showed that Ala replacement of B8Gly significantly decreased both the activity and the foldability of insulin. However,the effects of substitution are complicated, and different replacements sometimes cause significantly different results. To analyze the effects of B8 replacement by different amino acids, three new insulin/single-chain insulin mutants with B8Gly replaced by Ser, Thr or Leu were prepared by protein engineering, and both their foldability and activity were analyzed. In general, replacement of B8Gly by other amino acids causes significant detriment to the foldability of single-chain insulin: the conformations of the three B8 mutants are essentially different from that of wild-type molecules as revealed by circular dichroism; their disulfide stabilities in redox buffer are significantly decreased; their in vitro refolding efficiencies are decreased approximately two folds; the structural stabilities of the mutants with Ser or Thr substitution are decreased significantly,while Leu substitution has little effect as measured by equilibrium guanidine denaturation. As far as biological activity is concerned, Ser replacement of B8Gly has only a moderate effect: its insulin receptor-binding activity is 23% of native insulin. But Thr or Leu replacement produces significant detriment: the receptorbinding potencies of the two mutants are less than 0.2% of native insulin. The present results suggest that Gly is likely the only applicable natural amino acid for the B8 position of insulin where both foldability and activity are concerned.

  14. Absolute Measurement of Hadronic Branching Fractions of the D_s^+ Meson

    CERN Document Server

    Alexander, J; Cassel, D G; Duboscq, J E; Ehrlich, R; Fields, L; Gibbons, L; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Mahlke-Krüger, H; Mohapatra, D; Onyisi, P U E; Patterson, J R; Peterson, D; Riley, D; Ryd, A; Sadoff, A J; Shi, X; Stroiney, S; Sun, W M; Wilksen, T; Athar, S B; Patel, R; Yelton, J; Rubin, P; Eisenstein, B I; Karliner, I; Mehrabyan, S; Lowrey, N; Selen, M; White, E J; Wiss, J; Mitchell, R E; Shepherd, M R; Besson, D; Pedlar, T K; Cronin-Hennessy, D; Gao, K Y; Hietala, J; Kubota, Y; Klein, T; Lang, B W; Poling, R; Scott, A W; Zweber, P; Dobbs, S; Metreveli, Z; Seth, K K; Tomaradze, A G; Libby, J; Powell, A; Wilkinson, G; Ecklund, K M; Love, W; Savinov, V; López, A; Méndez, H; Ramírez, J; Ge, J Y; Miller, D H; Sanghi, B; Shipsey, I P J; Xin, B; Adams, G S; Anderson, M; Cummings, J P; Danko, I; Hu, D; Moziak, B; Napolitano, J; He, Q; Insler, J; Muramatsu, H; Park, C S; Thorndike, E H; Yang, F; Artuso, M; Blusk, S; Khalil, S; Li, J; Mountain, R; Nisar, S; Randrianarivony, K; Sultana, N; Skwarnicki, T; Stone, S; Wang, J C; Zhang, L M; Bonvicini, G; Cinabro, D; Dubrovin, M; Lincoln, A; Rademacker, J; Asner, D M; Edwards, K W; Naik, P; Briere, R A; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Rosner, J L

    2008-01-01

    The branching fractions of D_s meson decays serve to normalize many measurements of processes involving charm quarks. Using 298 /pb of e+ e- collisions recorded at a center of mass energy of 4.17 GeV, we determine absolute branching fractions for eight D_s decays with a double tag technique. In particular we determine the branching fraction B(D_s -> K- K+ pi+) = (5.50 +- 0.23 +- 0.16)%, where the uncertainties are statistical and systematic respectively. We also provide partial branching fractions for kinematic subsets of the K- K+ pi+ decay mode.

  15. Measurements of the absolute branching fractions of B+/- --> K+/-X(cc).

    Science.gov (United States)

    Aubert, B; Barate, R; Boutigny, D; Couderc, F; Karyotakis, Y; Lees, J P; Poireau, V; Tisserand, V; Zghiche, A; Grauges, E; Palano, A; Pappagallo, M; Pompili, A; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Battaglia, M; Breon, A B; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Day, C T; Gill, M S; Gritsan, A V; Groysman, Y; Jacobsen, R G; Kadel, R W; Kadyk, J; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Lynch, G; Mir, L M; Oddone, P J; Orimoto, T J; Pripstein, M; Roe, N A; Ronan, M T; Wenzel, W A; Barrett, M; Ford, K E; Harrison, T J; Hart, A J; Hawkes, C M; Morgan, S E; Watson, A T; Fritsch, M; Goetzen, K; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Peters, K; Schroeder, T; Steinke, M; Boyd, J T; Burke, J P; Chevalier, N; Cottingham, W N; Cuhadar-Donszelmann, T; Fulsom, B G; Hearty, C; Knecht, N S; Mattison, T S; McKenna, J A; Khan, A; Kyberd, P; Saleem, M; Teodorescu, L; Blinov, A E; Blinov, V E; Bukin, A D; Druzhinin, V P; Golubev, V B; Kravchenko, E A; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Yushkov, A N; Best, D; Bondioli, M; Bruinsma, M; Chao, M; Curry, S; Eschrich, I; Kirkby, D; Lankford, A J; Lund, P; Mandelkern, M; Mommsen, R K; Roethel, W; Stoker, D P; Buchanan, C; Hartfiel, B L; Weinstein, A J R; Foulkes, S D; Gary, J W; Long, O; Shen, B C; Wang, K; Zhang, L; del Re, D; Hadavand, H K; Hill, E J; MacFarlane, D B; Paar, H P; Rahatlou, S; Sharma, V; Berryhill, J W; Campagnari, C; Cunha, A; Dahmes, B; Hong, T M; Mazur, M A; Richman, J D; Verkerke, W; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Nesom, G; Schalk, T; Schumm, B A; Seiden, A; Spradlin, P; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dubois-Felsmann, G P; Dvoretskii, A; Hitlin, D G; Minamora, J S; Narsky, I; Piatenko, T; Porter, F C; Ryd, A; Samuel, A; Andreassen, R; Mancinelli, G; Meadows, B T; Sokoloff, M D; Blanc, F; Bloom, P; Chen, S; Ford, W T; Hirschauer, J F; Kreisel, A; Nauenberg, U; Olivas, A; Ruddick, W O; Smith, J G; Ulmer, K A; Wagner, S R; Zhang, J; Chen, A; Eckhart, E A; Soffer, A; Toki, W H; Wilson, R J; Zeng, Q; Altenburg, D; Feltresi, E; Hauke, A; Spaan, B; Brandt, T; Brose, J; Dickopp, M; Klose, V; Lacker, H M; Nogowski, R; Otto, S; Petzold, A; Schubert, J; Schubert, K R; Schwierz, R; Sundermann, J E; Bernard, D; Bonneaud, G R; Grenier, P; Schrenk, S; Thiebaux, Ch; Vasileiadis, G; Verderi, M; Bard, D J; Clark, P J; Gradl, W; Muheim, F; Playfer, S; Xie, Y; Andreotti, M; Azzolini, V; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Piemontese, L; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Patteri, P; Peruzzi, I M; Piccolo, M; Zallo, A; Buzzo, A; Capra, R; Contri, R; Lo Vetere, M; Macri, M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Brandenburg, G; Chaisanguanthum, K S; Morii, M; Won, E; Wu, J; Dubitzky, R S; Langenegger, U; Marks, J; Schenk, S; Uwer, U; Schott, G; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Flack, R L; Gaillard, J R; Nash, J A; Nikolich, M B; Vazquez, W Panduro; Chai, X; Charles, M J; Mader, W F; Mallik, U; Mohapatra, A K; Ziegler, V; Cochran, J; Crawley, H B; Eyges, V; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Yi, J; Arnaud, N; Davier, M; Giroux, X; Grosdidier, G; Höcker, A; Le Diberder, F; Lepeltier, V; Lutz, A M; Oyanguren, A; Petersen, T C; Plaszczynski, S; Rodier, S; Roudeau, P; Schune, M H; Stocchi, A; Wormser, G; Cheng, C H; Lange, D J; Simani, M C; Wright, D M; Bevan, A J; Chavez, C A; Forster, I J; Fry, J R; Gabathuler, E; Gamet, R; George, K A; Hutchcroft, D E; Parry, R J; Payne, D J; Schofield, K C; Touramanis, C; Cormack, C M; Di Lodovico, F; Menges, W; Sacco, R; Brown, C L; Cowan, G; Flaecher, H U; Green, M G; Hopkins, D A; Jackson, P S; McMahon, T R; Ricciardi, S; Salvatore, F; Brown, D; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Edgar, C L; Hodgkinson, M C; Kelly, M P; Lafferty, G D; Naisbit, M T; Williams, J C; Chen, C; Hulsbergen, W D; Jawahery, A; Kovalskyi, D; Lae, C K; Roberts, D A; Simi, G; Blaylock, G; Dallapiccola, C; Hertzbach, S S; Kofler, R; Koptchev, V B; Li, X; Moore, T B; Saremi, S; Staengle, H; Willocq, S; Cowan, R; Koeneke, K; Sciolla, G; Sekula, S J; Spitznagel, M; Taylor, F; Yamamoto, R K; Kim, H; Patel, P M; Robertson, S H; Lazzaro, A; Lombardo, V; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Taras, P; Viaud, B; Nicholson, H; Cavallo, N; De Nardo, G; Fabozzi, F; Gatto, C; Lista, L; Monorchio, D; Paolucci, P; Piccolo, D; Sciacca, C; Baak, M; Bulten, H; Raven, G; Snoek, H L; Wilden, L; Jessop, C P; Losecco, J M; Allmendinger, T; Benelli, G; Gan, K K; Honscheid, K; Hufnagel, D; Jackson, P D; Kagan, H; Kass, R; Pulliam, T; Rahimi, A M; Ter-Antonyan, R; Wong, Q K; Brau, J; Frey, R; Igonkina, O; Lu, M; Potter, C T; Sinev, N B; Strom, D; Strube, J; Torrence, E; Galeazzi, F; Margoni, M; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; Benayoun, M; Briand, H; Chauveau, J; David, P; Del Buono, L; de la Vaissière, Ch; Hamon, O; John, M J J; Leruste, Ph; Malclès, J; Ocariz, J; Roos, L; Therin, G; Behera, P K; Gladney, L; Guo, Q H; Panetta, J; Biasini, M; Covarelli, R; Pacetti, S; Pioppi, M; Angelini, C; Batignani, G; Bettarini, S; Bucci, F; Calderini, G; Carpinelli, M; Cenci, R; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Morganti, M; Neri, N; Paoloni, E; Rama, M; Rizzo, G; Walsh, J; Haire, M; Judd, D; Wagoner, D E; Biesiada, J; Danielson, N; Elmer, P; Lau, Y P; Lu, C; Olsen, J; Smith, A J S; Telnov, A V; Bellini, F; Cavoto, G; D'Orazio, A; Marco, E Di; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Gioi, L Li; Mazzoni, M A; Morganti, S; Piredda, G; Polci, F; Tehrani, F Safai; Voena, C; Schröder, H; Wagner, G; Waldi, R; Adye, T; De Groot, N; Franek, B; Gopal, G P; Olaiya, E O; Wilson, F F; Aleksan, R; Emery, S; Gaidot, A; Ganzhur, S F; Graziani, G; de Monchenault, G Hamel; Kozanecki, W; Legendre, M; London, G W; Mayer, B; Vasseur, G; Yèche, Ch; Zito, M; Purohit, M V; Weidemann, A W; Wilson, J R; Yumiceva, F X; Abe, T; Allen, M T; Aston, D; Bartoldus, R; Berger, N; Boyarski, A M; Buchmueller, O L; Claus, R; Coleman, J P; Convery, M R; Cristinziani, M; Dingfelder, J C; Dong, D; Dorfan, J; Dujmic, D; Dunwoodie, W; Fan, S; Field, R C; Glanzman, T; Gowdy, S J; Hadig, T; Halyo, V; Hast, C; Hryn'ova, T; Innes, W R; Kelsey, M H; Kim, P; Kocian, M L; Leith, D W G S; Libby, J; Luitz, S; Luth, V; Lynch, H L; Marsiske, H; Messner, R; Muller, D R; O'Grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Stelzer, J; Su, D; Sullivan, M K; Suzuki, K; Swain, S K; Thompson, J M; Va'vra, J; van Bakel, N; Weaver, M; Wisniewski, W J; Wittgen, M; Wright, D H; Yarritu, A K; Yi, K; Young, C C; Burchat, P R; Edwards, A J; Majewski, S A; Petersen, B A; Roat, C; Ahmed, M; Ahmed, S; Alam, M S; Bula, R; Ernst, J A; Saeed, M A; Wappler, F R; Zain, S B; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Ritchie, J L; Satpathy, A; Schwitters, R F; Izen, J M; Kitayama, I; Lou, X C; Ye, S; Bianchi, F; Bona, M; Gallo, F; Gamba, D; Bomben, M; Bosisio, L; Cartaro, C; Cossutti, F; Della Ricca, G; Dittongo, S; Grancagnolo, S; Lanceri, L; Vitale, L; Martinez-Vidal, F; Panvini, R S; Banerjee, Sw; Bhuyan, B; Brown, C M; Fortin, D; Hamano, K; Kowalewski, R; Roney, J M; Sobie, R J; Back, J J; Harrison, P F; Latham, T E; Mohanty, G B; Band, H R; Chen, X; Cheng, B; Dasu, S; Datta, M; Eichenbaum, A M; Flood, K T; Graham, M; Hollar, J J; Johnson, J R; Kutter, P E; Li, H; Liu, R; Mellado, B; Mihalyi, A; Pan, Y; Pierini, M; Prepost, R; Tan, P; Wu, S L; Yu, Z; Neal, H

    2006-02-10

    We study the two-body decays of B+/- mesons to K+/- and a charmonium state X(cc) in a sample of 210.5 fb(-1) of data from the BABAR experiment. We perform measurements of absolute branching fractions beta(B+/- --> K+/-X(cc)) using a missing mass technique, and report several new or improved results. In particular, the upper limit beta(B+/- --> K+/- X(3872)) 4.2% will help in understanding the nature of the recently discovered X(3872).

  16. Measurement of the absolute branching fraction of D0-->K-pi+.

    Science.gov (United States)

    Aubert, B; Bona, M; Boutigny, D; Karyotakis, Y; Lees, J P; Poireau, V; Prudent, X; Tisserand, V; Zghiche, A; Garra Tico, J; Grauges, E; Lopez, L; Palano, A; Eigen, G; Ofte, I; Stugu, B; Sun, L; Abrams, G S; Battaglia, M; Brown, D N; Button-Shafer, J; Cahn, R N; Groysman, Y; Jacobsen, R G; Kadyk, J A; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Lopes Pegna, D; Lynch, G; Mir, L M; Orimoto, T J; Pripstein, M; Roe, N A; Ronan, M T; Tackmann, K; Wenzel, W A; Del Amo Sanchez, P; Hawkes, C M; Watson, A T; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Schroeder, T; Steinke, M; Cottingham, W N; Walker, D; Asgeirsson, D J; Cuhadar-Donszelmann, T; Fulsom, B G; Hearty, C; Knecht, N S; Mattison, T S; McKenna, J A; Khan, A; Saleem, M; Teodorescu, L; Blinov, V E; Bukin, A D; Druzhinin, V P; Golubev, V B; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Todyshev, K Yu; Bondioli, M; Curry, S; Eschrich, I; Kirkby, D; Lankford, A J; Lund, P; Mandelkern, M; Martin, E C; Stoker, D P; Abachi, S; Buchanan, C; Foulkes, S D; Gary, J W; Liu, F; Long, O; Shen, B C; Zhang, L; Paar, H P; Rahatlou, S; Sharma, V; Berryhill, J W; Campagnari, C; Cunha, A; Dahmes, B; Hong, T M; Kovalskyi, D; Richman, J D; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Schalk, T; Schumm, B A; Seiden, A; Williams, D C; Wilson, M G; Winstrom, L O; Chen, E; Cheng, C H; Dvoretskii, A; Fang, F; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Mancinelli, G; Meadows, B T; Mishra, K; Sokoloff, M D; Blanc, F; Bloom, P C; Chen, S; Ford, W T; Hirschauer, J F; Kreisel, A; Nagel, M; Nauenberg, U; Olivas, A; Smith, J G; Ulmer, K A; Wagner, S R; Zhang, J; Gabareen, A M; Soffer, A; Toki, W H; Wilson, R J; Winklmeier, F; Zeng, Q; Altenburg, D D; Feltresi, E; Hauke, A; Jasper, H; Merkel, J; Petzold, A; Spaan, B; Wacker, K; Brandt, T; Klose, V; Lacker, H M; Mader, W F; Nogowski, R; Schubert, J; Schubert, K R; Schwierz, R; Sundermann, J E; Volk, A; Bernard, D; Bonneaud, G R; Latour, E; Lombardo, V; Thiebaux, Ch; Verderi, M; Clark, P J; Gradl, W; Muheim, F; Playfer, S; Robertson, A I; Xie, Y; Andreotti, M; Bettoni, D; Bozzi, C; Calabrese, R; Cecchi, A; Cibinetto, G; Franchini, P; Luppi, E; Negrini, M; Petrella, A; Piemontese, L; Prencipe, E; Santoro, V; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Pacetti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Buzzo, A; Contri, R; Lo Vetere, M; Macri, M M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Chaisanguanthum, K S; Morii, M; Wu, J; Dubitzky, R S; Marks, J; Schenk, S; Uwer, U; Bard, D J; Dauncey, P D; Flack, R L; Nash, J A; Nikolich, M B; Panduro Vazquez, W; Behera, P K; Chai, X; Charles, M J; Mallik, U; Meyer, N T; Ziegler, V; Cochran, J; Crawley, H B; Dong, L; Eyges, V; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Gritsan, A V; Guo, Z J; Lae, C K; Denig, A G; Fritsch, M; Schott, G; Arnaud, N; Béquilleux, J; Davier, M; Grosdidier, G; Höcker, A; Lepeltier, V; Le Diberder, F; Lutz, A M; Pruvot, S; Rodier, S; Roudeau, P; Schune, M H; Serrano, J; Sordini, V; Stocchi, A; Wang, W F; Wormser, G; Lange, D J; Wright, D M; Chavez, C A; Forster, I J; Fry, J R; Gabathuler, E; Gamet, R; Hutchcroft, D E; Payne, D J; Schofield, K C; Touramanis, C; Bevan, A J; George, K A; Di Lodovico, F; Menges, W; Sacco, R; Cowan, G; Flaecher, H U; Hopkins, D A; Jackson, P S; McMahon, T R; Salvatore, F; Wren, A C; Brown, D N; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Chia, Y M; Edgar, C L; Lafferty, G D; West, T J; Yi, J I; Anderson, J; Chen, C; Jawahery, A; Roberts, D A; Simi, G; Tuggle, J M; Blaylock, G; Dallapiccola, C; Hertzbach, S S; Li, X; Moore, T B; Salvati, E; Saremi, S; Cowan, R; Fisher, P H; Sciolla, G; Sekula, S J; Spitznagel, M; Taylor, F; Yamamoto, R K; McLachlin, S E; Patel, P M; Robertson, S H; Lazzaro, A; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Simard, M; Taras, P; Viaud, F B; Nicholson, H; De Nardo, G; Fabozzi, F; Lista, L; Monorchio, D; Sciacca, C; Baak, M A; Raven, G; Snoek, H L; Jessop, C P; Losecco, J M; Benelli, G; Corwin, L A; Gan, K K; Honscheid, K; Hufnagel, D; Kagan, H; Kass, R; Morris, J P; Rahimi, A M; Regensburger, J J; Ter-Antonyan, R; Wong, Q K; Blount, N L; Brau, J; Frey, R; Igonkina, O; Kolb, J A; Lu, M; Rahmat, R; Sinev, N B; Strom, D; Strube, J; Torrence, E; Gagliardi, N; Gaz, A; Margoni, M; Morandin, M; Pompili, A; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; Ben-Haim, E; Briand, H; Chauveau, J; David, P; Del Buono, L; de la Vaissière, Ch; Hamon, O; Hartfiel, B L; Leruste, Ph; Malclès, J; Ocariz, J; Perez, A; Gladney, L; Biasini, M; Covarelli, R; Manoni, E; Angelini, C; Batignani, G; Bettarini, S; Calderini, G; Carpinelli, M; Cenci, R; Cervelli, A; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Mazur, M A; Morganti, M; Neri, N; Paoloni, E; Rizzo, G; Walsh, J J; Haire, M; Biesiada, J; Elmer, P; Lau, Y P; Lu, C; Olsen, J; Smith, A J S; Telnov, A V; Baracchini, E; Bellini, F; Cavoto, G; D'Orazio, A; Del Re, D; Di Marco, E; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Jackson, P D; Li Gioi, L; Mazzoni, M A; Morganti, S; Piredda, G; Polci, F; Renga, F; Voena, C; Ebert, M; Schröder, H; Waldi, R; Adye, T; Castelli, G; Franek, B; Olaiya, E O; Ricciardi, S; Roethel, W; Wilson, F F; Aleksan, R; Emery, S; Escalier, M; Gaidot, A; Ganzhur, S F; de Monchenault, G Hamel; Kozanecki, W; Legendre, M; Vasseur, G; Yèche, Ch; Zito, M; Chen, X R; Liu, H; Park, W; Purohit, M V; Wilson, J R; Allen, M T; Aston, D; Bartoldus, R; Bechtle, P; Berger, N; Claus, R; Coleman, J P; Convery, M R; Dingfelder, J C; Dorfan, J; Dubois-Felsmann, G P; Dujmic, D; Dunwoodie, W; Field, R C; Glanzman, T; Gowdy, S J; Graham, M T; Grenier, P; Hast, C; Hryn'ova, T; Innes, W R; Kelsey, M H; Kim, H; Kim, P; Leith, D W G S; Li, S; Luitz, S; Luth, V; Lynch, H L; Macfarlane, D B; Marsiske, H; Messner, R; Muller, D R; O'Grady, C P; Perazzo, A; Perl, M; Pulliam, T; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Stelzer, J; Su, D; Sullivan, M K; Suzuki, K; Swain, S K; Thompson, J M; Va'vra, J; van Bakel, N; Wagner, A P; Weaver, M; Wisniewski, W J; Wittgen, M; Wright, D H; Yarritu, A K; Yi, K; Young, C C; Burchat, P R; Edwards, A J; Majewski, S A; Petersen, B A; Wilden, L; Ahmed, S; Alam, M S; Bula, R; Ernst, J A; Jain, V; Pan, B; Saeed, M A; Wappler, F R; Zain, S B; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Ritchie, J L; Ruland, A M; Schilling, C J; Schwitters, R F; Izen, J M; Lou, X C; Ye, S; Bianchi, F; Gallo, F; Gamba, D; Pelliccioni, M; Bomben, M; Bosisio, L; Cartaro, C; Cossutti, F; Della Ricca, G; Lanceri, L; Vitale, L; Azzolini, V; Lopez-March, N; Martinez-Vidal, F; Milanes, D A; Oyanguren, A; Albert, J; Banerjee, Sw; Bhuyan, B; Hamano, K; Kowalewski, R; Nugent, I M; Roney, J M; Sobie, R J; Back, J J; Harrison, P F; Latham, T E; Mohanty, G B; Pappagallo, M; Band, H R; Chen, X; Dasu, S; Flood, K T; Hollar, J J; Kutter, P E; Pan, Y; Pierini, M; Prepost, R; Wu, S L; Yu, Z; Neal, H

    2008-02-08

    We measure the absolute branching fraction for D(0)-->K(-)pi(+) using partial reconstruction of B(0)-->D(*+)Xl(-)nu(l) decays, in which only the charged lepton and the pion from the decay D(*+)-->D(0)pi(+) are used. Based on a data sample of 230 x 10(6) BB pairs collected at the Upsilon(4S) resonance with the BABAR detector at the PEP-II asymmetric-energy B factory at SLAC, we obtain B(D(0)-->K(-)pi(+)) = (4.007+/-0.037+/-0.072)%, where the first uncertainty is statistical and the second is systematic.

  17. Absolute efficiency measurements with the {sup 10}B based Jalousie detector

    Energy Technology Data Exchange (ETDEWEB)

    Modzel, G., E-mail: modzel@physi.uni-heidelberg [Physikalisches Institut, Universität Heidelberg, Neuenheimer Feld 226, 69120 Heidelberg (Germany); Henske, M. [CDT CASCADE Detector Technologies GmbH, Hans-Bunte-Str. 8–10, 69123 Heidelberg (Germany); Houben, A. [Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen (Germany); Klein, M. [Physikalisches Institut, Universität Heidelberg, Neuenheimer Feld 226, 69120 Heidelberg (Germany); CDT CASCADE Detector Technologies GmbH, Hans-Bunte-Str. 8–10, 69123 Heidelberg (Germany); Köhli, M.; Lennert, P. [Physikalisches Institut, Universität Heidelberg, Neuenheimer Feld 226, 69120 Heidelberg (Germany); Meven, M. [Heinz Maier-Leibnitz Zentrum (MLZ), 85747 Garching (Germany); Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science (JCNS), Outstation at MLZ, 85747 Garching (Germany); Schmidt, C.J. [CDT CASCADE Detector Technologies GmbH, Hans-Bunte-Str. 8–10, 69123 Heidelberg (Germany); GSI Detector Laboratory, Planckstr. 1, 64291 Darmstadt (Germany); Schmidt, U. [Physikalisches Institut, Universität Heidelberg, Neuenheimer Feld 226, 69120 Heidelberg (Germany); Schweika, W. [Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science (JCNS), 52425 Jülich (Germany); European Spallation Source ESS AB, SE-22100 Lund (Sweden)

    2014-04-11

    The {sup 10}B based Jalousie detector is a replacement for {sup 3}He counter tubes, which are nowadays less affordable for large area detectors due to the {sup 3}He crisis. In this paper we investigate and verify the performance of the new {sup 10}B based detector concept and its adoption for the POWTEX diffractometer, which is designed for the detection of thermal neutrons with predicted detection efficiencies of 75–50% for neutron energies of 10–100 meV, respectively. The predicted detection efficiency has been verified by absolute measurements using neutrons with a wavelength of 1.17 Å (59 meV)

  18. Long storage times for hyperpolarized 129Xe and precise measurement of its absolute polarization

    Energy Technology Data Exchange (ETDEWEB)

    Repetto, Maricel; Zimmer, Stefan; Karpuk, Sergei; Bluemler, Peter; Heil, Werner [Johannes Gutenberg Universitaet, Institut fuer Physik. Staudingerweg 7 55099, Mainz (Germany)

    2014-07-01

    Applications of hyperpolarized (HP) 129Xe in medical research and fundamental physics experiments increased significantly in recent years. All uses profit from high degrees of polarization (PXe) which not only needs to be generated but also preserved during transport and storage. PXe is usually determined via comparison of the NMR signals from HP Xe with the NMR signal of thermally polarized H2O or Xe. All these procedures have experimental errors which are hard to eliminate. We present a simple method for the measurement of absolute PXe which best resolution is 0.6 % together with wall storage times > 12 hs using a homebuilt, mobile Xe polarizer.

  19. Improved Measurement of Absolute Hadronic Branching Fractions of the Ds+ Meson

    CERN Document Server

    Onyisi, P U E; Cinabro, D; Smith, M J; Zhou, P; Naik, P; Rademacker, J; Edwards, K W; Briere, R A; Vogel, H; Rosner, J L; Alexander, J P; Cassel, D G; Das, S; Ehrlich, R; Gibbons, L; Gray, S W; Hartill, D L; Heltsley, B K; Kreinick, D L; Kuznetsov, V E; Patterson, J R; Peterson, D; Riley, D; Ryd, A; Sadoff, A J; Shi, X; Sun, W M; Yelton, J; Rubin, P; Lowrey, N; Mehrabyan, S; Selen, M; Wiss, J; Libby, J; Kornicer, M; Mitchell, R E; Besson, D; Pedlar, T K; Cronin-Hennessy, D; Hietala, J; Dobbs, S; Metreveli, Z; Seth, K K; Tomaradze, A; Xiao, T; Powell, A; Thomas, C; Wilkinson, G; Asner, D M; Tatishvili, G; Ge, J Y; Miller, D H; Shipsey, I P J; Xin, B; Adams, G S; Napolitano, J; Ecklund, K M; Insler, J; Muramatsu, H; Pearson, L J; Thorndike, E H; Artuso, M; Blusk, S; Mountain, R; Skwarnicki, T; Stone, S; Wang, J C; Zhang, L M

    2013-01-01

    The branching fractions of Ds meson decays serve to normalize many measurements of processes involving charm quarks. Using 586 pb^-1 of e+ e- collisions recorded at a center of mass energy of 4.17 GeV, we determine absolute branching fractions for 13 Ds decays in 16 reconstructed final states with a double tag technique. In particular we make a precise measurement of the branching fraction B(Ds -> K- K+ pi+) = (5.55 +- 0.14 +- 0.13)%, where the uncertainties are statistical and systematic respectively. We find a significantly reduced value of B(Ds -> pi+ pi0 eta') compared to the world average, and our results bring the inclusively and exclusively measured values of B(Ds -> eta' X)$ into agreement. We also search for CP-violating asymmetries in Ds decays and measure the cross-section of e+ e- -> Ds* Ds at Ecm = 4.17 GeV.

  20. Measurements of absolute hadronic branching fractions of $\\Lambda_{c}^{+}$ baryon

    CERN Document Server

    Ablikim, M; Ai, X C; Albayrak, O; Albrecht, M; Ambrose, D J; Amoroso, A; An, F F; An, Q; Bai, J Z; Ferroli, R Baldini; Ban, Y; Bennett, D W; Bennett, J V; Bertani, M; Bettoni, D; Bian, J M; Bianchi, F; Boger, E; Boyko, I; Briere, R A; Cai, H; Cai, X; Cakir, O; Calcaterra, A; Cao, G F; Cetin, S A; Chang, J F; Chelkov, G; Chen, G; Chen, H S; Chen, H Y; Chen, J C; Chen, M L; Chen, S J; Chen, X; Chen, X R; Chen, Y B; Cheng, H P; Chu, X K; Cibinetto, G; Dai, H L; Dai, J P; Dbeyssi, A; Dedovich, D; Deng, Z Y; Denig, A; Denysenko, I; Destefanis, M; De Mori, F; Ding, Y; Dong, C; Dong, J; Dong, L Y; Dong, M Y; Dou, Z L; Du, S X; Duan, P F; Eren, E E; Fan, J Z; Fang, J; Fang, S S; Fang, X; Fang, Y; Farinelli, R; Fava, L; Fedorov, O; Feldbauer, F; Felici, G; Feng, C Q; Fioravanti, E; Fritsch, M; Fu, C D; Gao, Q; Gao, X L; Gao, X Y; Gao, Y; Gao, Z; Garzia, I; Goetzen, K; Gong, L; Gong, W X; Gradl, W; Greco, M; Gu, M H; Gu, Y T; Guan, Y H; Guo, A Q; Guo, L B; Guo, Y; Guo, Y P; Haddadi, Z; Hafner, A; Han, S; Hao, X Q; Harris, F A; He, K L; Held, T; Heng, Y K; Hou, Z L; Hu, C; Hu, H M; Hu, J F; Hu, T; Hu, Y; Huang, G S; Huang, J S; Huang, X T; Huang, Y; Hussain, T; Ji, Q; Ji, Q P; Ji, X B; Ji, X L; Jiang, L W; Jiang, X S; Jiang, X Y; Jiao, J B; Jiao, Z; Jin, D P; Jin, S; Johansson, T; Julin, A; Kalantar-Nayestanaki, N; Kang, X L; Kang, X S; Kavatsyuk, M; Ke, B C; Kiese, P; Kliemt, R; Kloss, B; Kolcu, O B; Kopf, B; Kornicer, M; Kuehn, W; Kupsc, A; Lange, J S; Lara, M; Larin, P; Leng, C; Li, C; Li, Cheng; Li, D M; Li, F; Li, F Y; Li, G; Li, H B; Li, J C; Li, Jin; Li, K; Li, Lei; Li, P R; Li, Q Y; Li, T; Li, W D; Li, W G; Li, X L; Li, X M; Li, X N; Li, X Q; Li, Z B; Liang, H; Liang, Y F; Liang, Y T; Liao, G R; Lin, D X; Liu, B J; Liu, C X; Liu, D; Liu, F H; Liu, Fang; Liu, Feng; Liu, H B; Liu, H H; Liu, H M; Liu, J; Liu, J B; Liu, J P; Liu, J Y; Liu, K; Liu, K Y; Liu, L D; Liu, P L; Liu, Q; Liu, S B; Liu, X; Liu, Y B; Liu, Z A; Liu, Zhiqing; Loehner, H; Lou, X C; Lu, H J; Lu, J G; Lu, Y; Lu, Y P; Luo, C L; Luo, M X; Luo, T; Luo, X L; Lyu, X R; Ma, F C; Ma, H L; Ma, L L; Ma, Q M; Ma, T; Ma, X N; Ma, X Y; Ma, Y M; Maas, F E; Maggiora, M; Mao, Y J; Mao, Z P; Marcello, S; Messchendorp, J G; Min, J; Mitchell, R E; Mo, X H; Mo, Y J; Morales, C Morales; Muchnoi, N Yu; Muramatsu, H; Nefedov, Y; Nerling, F; Nikolaev, I B; Ning, Z; Nisar, S; Niu, S L; Niu, X Y; Olsen, S L; Ouyang, Q; Pacetti, S; Pan, Y; Patteri, P; Pelizaeus, M; Peng, H P; Peters, K; Pettersson, J; Ping, J L; Ping, R G; Poling, R; Prasad, V; Qi, H R; Qi, M; Qian, S; Qiao, C F; Qin, L Q; Qin, N; Qin, X S; Qin, Z H; Qiu, J F; Rashid, K H; Redmer, C F; Ripka, M; Rong, G; Rosner, Ch; Ruan, X D; Santoro, V; Sarantsev, A; Savrié, M; Schoenning, K; Schumann, S; Shan, W; Shao, M; Shen, C P; Shen, P X; Shen, X Y; Sheng, H Y; Song, W M; Song, X Y; Sosio, S; Spataro, S; Sun, G X; Sun, J F; Sun, S S; Sun, Y J; Sun, Y Z; Sun, Z J; Sun, Z T; Tang, C J; Tang, X; Tapan, I; Thorndike, E H; Tiemens, M; Ullrich, M; Uman, I; Varner, G S; Wang, B; Wang, B L; Wang, D; Wang, D Y; Wang, K; Wang, L L; Wang, L S; Wang, M; Wang, P; Wang, P L; Wang, S G; Wang, W; Wang, W P; Wang, X F; Wang, Y D; Wang, Y F; Wang, Y Q; Wang, Z; Wang, Z G; Wang, Z H; Wang, Z Y; Weber, T; Wei, D H; Wei, J B; Weidenkaff, P; Wen, S P; Wiedner, U; Wolke, M; Wu, L H; Wu, Z; Xia, L; Xia, L G; Xia, Y; Xiao, D; Xiao, H; Xiao, Z J; Xie, Y G; Xiu, Q L; Xu, G F; Xu, L; Xu, Q J; Xu, Q N; Xu, X P; Yan, L; Yan, W B; Yan, W C; Yan, Y H; Yang, H J; Yang, H X; Yang, L; Yang, Y X; Ye, M; Ye, M H; Yin, J H; Yu, B X; Yu, C X; Yu, J S; Yuan, C Z; Yuan, W L; Yuan, Y; Yuncu, A; Zafar, A A; Zallo, A; Zeng, Y; Zeng, Z; Zhang, B X; Zhang, B Y; Zhang, C; Zhang, C C; Zhang, D H; Zhang, H H; Zhang, H Y; Zhang, J J; Zhang, J L; Zhang, J Q; Zhang, J W; Zhang, J Y; Zhang, J Z; Zhang, K; Zhang, L; Zhang, X Y; Zhang, Y; Zhang, Y H; Zhang, Y N; Zhang, Y T; Zhang, Yu; Zhang, Z H; Zhang, Z P; Zhang, Z Y; Zhao, G; Zhao, J W; Zhao, J Y; Zhao, J Z; Zhao, Lei; Zhao, Ling; Zhao, M G; Zhao, Q; Zhao, Q W; Zhao, S J; Zhao, T C; Zhao, Y B; Zhao, Z G; Zhemchugov, A; Zheng, B; Zheng, J P; Zheng, W J; Zheng, Y H; Zhong, B; Zhou, L; Zhou, X; Zhou, X K; Zhou, X R; Zhou, X Y; Zhu, K; Zhu, K J; Zhu, S; Zhu, S H; Zhu, X L; Zhu, Y C; Zhu, Y S; Zhu, Z A; Zhuang, J; Zotti, L; Zou, B S; Zou, J H

    2015-01-01

    Using $567\\rm{pb}^{-1}$ of $e^+e^-$ collisions recorded at $\\sqrt{s}=4.599\\rm{GeV}$ with the BESIII detector, we report first measurements of absolute hadronic branching fractions of Cabibbo-favored decays of the $\\Lambda_{c}^{+}$ baryon with a double-tag technique. A global least-square fitter is utilized to improve the measured precision. Among the measurements for twelve $\\Lambda_{c}^{+}$ decay modes, the branching fraction for $\\Lambda_{c}^{+} \\rightarrow pK^-\\pi^+$ is determined to be $(5.84\\pm0.27\\pm0.23)\\%$, where the first uncertainty is statistical and the second is systematic. In addition, the measurements of the branching fractions of the other eleven Cabbibo-favored hadronic decay modes are significantly improved.

  1. Absolute Position Measurement in a Gas Time Projection Chamber via Transverse Diffusion of Drift Charge

    CERN Document Server

    Lewis, P M; Hedges, M T; Jaegle, I; Seong, I S; Thorpe, T N

    2014-01-01

    Time Projection Chambers (TPCs) with charge readout via micro pattern gaseous detectors can provide detailed measurements of charge density distributions. We here report on measurements of alpha particle tracks, using a TPC where the drift charge is amplified with Gas Electron Multipliers and detected with a pixel ASIC. We find that by measuring the 3-D topology of drift charge and fitting for its transverse diffusion, we obtain the absolute position of tracks in the drift direction. For example, we obtain a precision of 1~cm for 1~cm-long alpha track segments. To our knowledge this is the first demonstration of such a measurement in a gas TPC. This technique has several attractive features: it does not require knowledge of the initial specific ionization, is robust against bias from diffuse charge below detection threshold, and is also robust against high charge densities that saturate the detector response.

  2. Length measurement in absolute scale via low-dispersion optical cavity

    Science.gov (United States)

    Pravdova, Lenka; Lesundak, Adam; Smid, Radek; Hrabina, Jan; Rerucha, Simon; Cip, Ondrej

    2016-12-01

    We report on the length measuring instrument with the absolute scale that was based on the combination of an optical frequency comb and a passive optical cavity. The time spacing of short femtosecond pulses, generated by the optical frequency comb, is optically phase locked onto the cavity free spectral range with a derivative spectroscopy technique so that the value of the repetition frequency of the femtosecond laser is tied to and determines the measured displacement. The instantaneous value of the femtosecond pulse train frequency is counted by a frequency counter. This counted value corresponds to the length given by the spacing between the two mirrors of the passive cavity. The phase lock between the femtosecond pulsed beam and the passive cavity is possible due to the low-dispersion of the cavity mirrors, where the silver coating on the mirrors was used to provide the low dispersion for the broadband radiation of the comb. Every reflection on the output mirror feeds a portion of the beam back to the cavity so that the output beam is a result of multiple interfering components. The parameters of the output beam are given not only by the parameters of the mirrors but mainly by the absolute distance between the mirror surfaces. Thus, one cavity mirror can be considered as the reference starting point of the distance to be measured and the other mirror is the measuring probe surveying the unknown distance. The measuring mirror of the experimental setup of the low-dispersion cavity is mounted on a piezoelectric actuator which provides small changes in the cavity length we used to test the length measurement method. For the verification of the measurement accuracy a reference incremental interferometer was integrated into our system so that the displacement of the piezoelectric actuator could be obtained with both measuring methods simultaneously.

  3. Utilization of coincidence criteria in absolute length measurements by optical interferometry in vacuum and air

    Science.gov (United States)

    Schödel, R.

    2015-08-01

    Traceability of length measurements to the international system of units (SI) can be realized by using optical interferometry making use of well-known frequencies of monochromatic light sources mentioned in the Mise en Pratique for the realization of the metre. At some national metrology institutes, such as Physikalisch-Technische Bundesanstalt (PTB) in Germany, the absolute length of prismatic bodies (e.g. gauge blocks) is realized by so-called gauge-block interference comparators. At PTB, a number of such imaging phase-stepping interference comparators exist, including specialized vacuum interference comparators, each equipped with three highly stabilized laser light sources. The length of a material measure is expressed as a multiple of each wavelength. The large number of integer interference orders can be extracted by the method of exact fractions in which the coincidence of the lengths resulting from the different wavelengths is utilized as a criterion. The unambiguous extraction of the integer interference orders is an essential prerequisite for correct length measurements. This paper critically discusses coincidence criteria and their validity for three modes of absolute length measurements: 1) measurements under vacuum in which the wavelengths can be identified with the vacuum wavelengths, 2) measurements under air in which the air refractive index is obtained from environmental parameters using an empirical equation, and 3) measurements under air in which the air refractive index is obtained interferometrically by utilizing a vacuum cell placed along the measurement pathway. For case 3), which corresponds to PTB’s Kösters-Comparator for long gauge blocks, the unambiguous determination of integer interference orders related to the air refractive index could be improved by about a factor of ten when an ‘overall dispersion value,’ suggested in this paper, is used as coincidence criterion.

  4. A Model for Converting Solid State Fermentation Growth Profiles Between Absolute and Relative Measurement Bases

    Directory of Open Access Journals (Sweden)

    Graciele Viccini

    2003-01-01

    Full Text Available A mathematical model is developed for converting between the two measurement bases commonly used in the construction of growth profiles in solid-state fermentation, namely absolute mass ratio m(dry biomass/m(initial dry matter and relative mass ratio m(dry biomass/m(dry matter. These are not equivalent, due to the loss of dry matter as CO2 during the fermentation. The model is equally applicable to any biomass component used in indirect measurements of growth, such as protein. Use of the model to convert absolute mass ratio of the biomass profiles for the growth of Rhizopus oligosporus to a relative basis gave profiles that agreed well with the experimentally determined relative biomass profiles. This agreement was obtained for three different fermentations using the same set of parameter values in the model, namely a yield coefficient of m(protein/m(dry substrate = 0.2 g/g and a maintenance coefficient of zero, giving confidence in the reliability of the model. The model was then used to show that the measurement basis used can affect the form of the curve and therefore can also affect the conclusion drawn about the type of kinetics shown by the organism, with the extent of this effect depending on the length of time that growth occurs and the values of the yield and maintenance coefficients. This work shows that great care must be taken in drawing conclusions about growth kinetics in solid-state fermentation.

  5. Absolute Hugoniot measurements for CH foams in the 1.5-8 Mbar range

    Science.gov (United States)

    Aglitskiy, Y.; Velikovich, A. L.; Schmitt, A. J.; Karasik, M.; Serlin, V.; Weaver, J. L.; Oh, J.; Obenschain, S. P.

    2016-10-01

    We report the absolute Hugoniot measurements for dry CH foams at 10% of solid polystyrene density. The 400 μm thick, 500 μm wide planar foam slabs covered with a 10 μm solid plastic ablator were driven with 4 ns long Nike KrF laser pulses whose intensity was varied between 10 and 50 TW/cm2. The trajectories of the shock front and the ablative piston, as well as the rarefaction fan emerging after the shock breakout from the rear surface of the target were clearly observed using the side-on monochromatic x-ray imaging radiography. From these measurements the shock density compression ratio and the shock pressure are evaluated directly. The observed compression ratios varied between 4 and 8, and the corresponding shock pressures - between 1.5 and 8 Mbar. The data was simulated with the FASTRAD3D hydrocode, using standard models of inverse bremsstrahlung absorption, flux-limited thermal conduction, and multi-group radiation diffusion. The demonstrated diagnostics technique applied in a cryo experiment would make it possible to make the first absolute Hugoniot measurements for liquid deuterium or DT-wetted CH foams, which is relevant for designing the wetted-foam indirect-drive ignition targets for NIF. This work was supported by the US DOE/NNSA.

  6. Calibration of Fourier domain short coherence interferometer for absolute distance measurements.

    Science.gov (United States)

    Montonen, R; Kassamakov, I; Hæggström, E; Österberg, K

    2015-05-20

    We calibrated and determined the measurement uncertainty of a custom-made Fourier domain short coherence interferometer operated in laboratory conditions. We compared the optical thickness of two thickness standards and three coverslips determined with our interferometer to the geometric thickness determined by SEM. Using this calibration data, we derived a calibration function with a 95% confidence level system uncertainty of (5.9×10(-3)r+2.3)  μm, where r is the optical distance in μm, across the 240 μm optical measurement range. The confidence limit includes contributions from uncertainties in the optical thickness, geometric thickness, and refractive index measurements as well as uncertainties arising from cosine errors and thermal expansion. The results show feasibility for noncontacting absolute distance characterization with micrometer-level accuracy. This instrument is intended for verifying the alignment of the discs of an accelerating structure in the possible future compact linear collider.

  7. Absolute activity measurement and gamma-ray emission probability for decay of I-126; Medida absoluta da atividade e determinacao da taxa de emissao gama por decaimento do {sup 126} I

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca, Katia Aparecida

    1997-07-01

    The accurate knowledge of the gamma-ray emission probability per decay of radionuclides is important in several applications. In the case of {sup 126} I, its importance lies mainly in fast neutron dosimetry as well as in the production of {sup 125} I where {sup 126} I appears as an impurity. In the present work the gamma-ray emission probabilities per decay for the 388 and 666-KeV transitions of {sup 126} I have been measured. This radionuclide was obtained by means of the {sup 127} I(n, 2n){sup 126} I reaction in a fast neutron flux at the IPEN 2 MW research reactor. The methodology for the primary standardization of {sup 126} I is described. For this purpose, two different coincidence systems were used due to the complex decay scheme of this radionuclide. The {beta}branch measurement was carried out in a 4 {pi}(PC){beta}-{gamma} coincidence system consisting of a proportional counter, coupled to a pair of 3'x3' Na I (Tl) crystal. The electron capture branch was measured in a X-{gamma} coincidence system using two NaI(Tl) crystals. The gamma-ray measurements were performed in a HPGe system, previously calibrated by means of standard sources supplied by the International Atomic Energy Agency. All the uncertainties evolved were treated rigorously, by means of covariance analysis. (author)

  8. Relative and absolute reliability of measures of linoleic acid-derived oxylipins in human plasma.

    Science.gov (United States)

    Gouveia-Figueira, Sandra; Bosson, Jenny A; Unosson, Jon; Behndig, Annelie F; Nording, Malin L; Fowler, Christopher J

    2015-09-01

    Modern analytical techniques allow for the measurement of oxylipins derived from linoleic acid in biological samples. Most validatory work has concerned extraction techniques, repeated analysis of aliquots from the same biological sample, and the influence of external factors such as diet and heparin treatment upon their levels, whereas less is known about the relative and absolute reliability of measurements undertaken on different days. A cohort of nineteen healthy males were used, where samples were taken at the same time of day on two occasions, at least 7 days apart. Relative reliability was assessed using Lin's concordance correlation coefficients (CCC) and intraclass correlation coefficients (ICC). Absolute reliability was assessed by Bland-Altman analyses. Nine linoleic acid oxylipins were investigated. ICC and CCC values ranged from acceptable (0.56 [13-HODE]) to poor (near zero [9(10)- and 12(13)-EpOME]). Bland-Altman limits of agreement were in general quite wide, ranging from ±0.5 (12,13-DiHOME) to ±2 (9(10)-EpOME; log10 scale). It is concluded that relative reliability of linoleic acid-derived oxylipins varies between lipids with compounds such as the HODEs showing better relative reliability than compounds such as the EpOMEs. These differences should be kept in mind when designing and interpreting experiments correlating plasma levels of these lipids with factors such as age, body mass index, rating scales etc.

  9. Absolute measurements of the uranium concentration in thick samples using fission-track detectors

    Science.gov (United States)

    Enkelmann, Eva; Jonckheere, Raymond; Ratschbacher, Lothar

    2005-04-01

    We propose an improved equation for calculating the uranium concentration in thick samples based on induced fission-track counts in an external detector that takes into consideration (1) the fission-fragment ranges in the sample and external detector, (2) the etchable track length and (3) the track counting efficiency in the external detector. The values of these parameters have been determined by calculation and experiment and are shown to have a significant effect on the calculated uranium concentrations. The new equation was tested by calculating the uranium concentrations in standard uranium glasses (CN-5; IRMM-540R) and apatite samples (Durango; horse tooth) in which the uranium content was also determined with independent methods (INAA; ENAA; TIMS). The results show that: (1) accurate measurements with the fission-track method are feasible within a broad range of uranium concentrations and (2) uranium determinations based on standards are only accurate if the standard and sample are made of the same material. Because the absolute fission-tack dating method is also based on accurate thermal neutron fluence measurements and similar correction factors for the track registration and counting efficiencies, this study provides a strong endorsement for the fact that absolute fission-track ages are accurate.

  10. Computer programs for absolute neutron activation analysis on the nuclear data 6620 data acquisition system

    Energy Technology Data Exchange (ETDEWEB)

    Wade, J.W.; Emery, J.F.

    1982-03-01

    Five computer programs that provide multielement neutron activation analysis are discussed. The software package was designed for use on the Nuclear Data 6620 Data Acquisition System and interacts with existing Nuclear Data Corporation software. The programs were developed to make use of the capabilities of the 6620 system to analyze large numbers of samples and assist in a large sample workload that had begun in the neutron activation analysis facility of the Oak Ridge Research Reactor. Nuclear Data neutron activation software is unable to perform absolute activation analysis and therefore was inefficient and inadequate for our applications.

  11. Absolute choline concentration measured by quantitative proton MR spectroscopy correlates with cell density in meningioma

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Qiang [University of Tsukuba, Department of Neurosurgery, Institute of Clinical Medicine, Tsukuba Science City, Ibaraki (Japan)]|[West China Hospital of Sichuan University, Huaxi MR Research Center, Department of Radiology, Chengdu (China); Shibata, Yasushi; Kawamura, Hiraku; Matsumura, Akira [University of Tsukuba, Department of Neurosurgery, Institute of Clinical Medicine, Tsukuba Science City, Ibaraki (Japan); Isobe, Tomonori [Kitasato University, Department of Medical Technology, School of Allied Health Sciences, Minato, Tokyo (Japan); Anno, Izumi [University of Tsukuba, Department of Radiology, Institute of Clinical Medicine, Tsukuba, Ibaraki (Japan); Gong, Qi-Yong [West China Hospital of Sichuan University, Huaxi MR Research Center, Department of Radiology, Chengdu (China)]|[University of Liverpool, Division of Medical Imaging, Faculty of Medicine, Liverpool (United Kingdom)

    2009-01-15

    This study was aimed to investigate the relationship between quantitative proton magnetic resonance spectroscopy (1H-MRS) and pathological changes in meningioma. Twenty-two meningioma cases underwent single voxel 1H-MRS (point-resolved spectroscopy sequence, repetition time/echo time = 2,000 ms/68, 136, 272 ms). Absolute choline (Cho) concentration was calculated using tissue water as the internal reference and corrected according to intra-voxel cystic/necrotic parts. Pathological specimens were stained with MIB-1 antibody to measure cell density and proliferation index. Correlation analysis was performed between absolute Cho concentration and cell density and MIB-1 labeled proliferation index. Average Cho concentration of all meningiomas before correction was 2.95 {+-} 0.86 mmol/kg wet weight. It was increased to 3.23 {+-} 1.15 mmol/kg wet weight after correction. Average cell density of all meningiomas was 333 {+-} 119 cells/HPF, and average proliferation index was 2.93 {+-} 5.72%. A linear, positive correlation between cell density and Cho concentration was observed (r = 0.650, P = 0.001). After correction of Cho concentration, the correlation became more significant (r = 0.737, P < 0.001). However, no significant correlation between Cho concentration and proliferation index was found. There seemed to be a positive correlation trend after correction of Cho concentration but did not reach significant level. Absolute Cho concentration, especially Cho concentration corrected according to intra-voxel cystic/necrotic parts, reflects cell density of meningioma. (orig.)

  12. Measurement of the absolute branching fraction for Λc+ → Λμ+νμ

    Science.gov (United States)

    Ablikim, M.; Achasov, M. N.; Ahmed, S.; Ai, X. C.; Albayrak, O.; Albrecht, M.; Ambrose, D. J.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Bakina, O.; Baldini Ferroli, R.; Ban, Y.; Bennett, D. W.; Bennett, J. V.; Berger, N.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, J. C.; Chen, M. L.; Chen, S.; Chen, S. J.; Chen, X.; Chen, X. R.; Chen, Y. B.; Chu, X. K.; Cibinetto, G.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; De Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Dou, Z. L.; Du, S. X.; Duan, P. F.; Fan, J. Z.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Farinelli, R.; Fava, L.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, X. L.; Gao, Y.; Gao, Z.; Garzia, I.; Goetzen, K.; Gong, L.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, R. P.; Guo, Y.; Guo, Y. P.; Haddadi, Z.; Hafner, A.; Han, S.; Hao, X. Q.; Harris, F. A.; He, K. L.; Heinsius, F. H.; Held, T.; Heng, Y. K.; Holtmann, T.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, J. F.; Hu, T.; Hu, Y.; Huang, G. S.; Huang, J. S.; Huang, X. T.; Huang, X. Z.; Huang, Z. L.; Hussain, T.; Ikegami Andersson, W.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, L. W.; Jiang, X. S.; Jiang, X. Y.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Kiese, P.; Kliemt, R.; Kloss, B.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kupsc, A.; Kühn, W.; Lange, J. S.; Lara, M.; Larin, P.; Lavezzi, L.; Leithoff, H.; Leng, C.; Li, C.; Cheng, Li; Li, D. M.; Li, F.; Li, F. Y.; Li, G.; Li, H. B.; Li, H. J.; Li, J. C.; Li, Jin; Li, K.; Li, K.; Li, Lei.; Li, P. R.; Li, Q. Y.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. N.; Li, X. Q.; Li, Y. B.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin, D. X.; Liu, B.; Liu, B. J.; Liu, C. X.; Liu, D.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. H.; Liu, H. H.; Liu, H. M.; Liu, J.; Liu, J. B.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, Q. J.; Liu, S. B.; Liu, X.; Liu, Y. B.; Liu, Y. Y.; Liu, Z. A.; Liu, Z. Q.; Loehner, H.; Lou, X. C.; Lu, H. J.; Lu, J. G.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, M. M.; Ma, Q. M.; Ma, T.; Ma, X. N.; Ma, X. Y.; Ma, Y. M.; Maas, F. E.; Maggiora, M.; Malik, Q. A.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; Messchendorp, J. G.; Mezzadri, G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales Morales, C.; Muchnoi, N. Yu.; Muramatsu, H.; Musiol, P.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Pan, Y.; Patteri, P.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Pettersson, J.; Ping, J. L.; Ping, R. G.; Poling, R.; Prasad, V.; Qi, H. R.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, L. Q.; Qin, N.; Qin, X. S.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Ripka, M.; Rong, G.; Rosner, Ch.; Ruan, X. D.; Sarantsev, A.; Savrié, M.; Schnier, C.; Schoenning, K.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Song, W. M.; Song, X. Y.; Sosio, S.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, X. H.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tapan, I.; Thorndike, E. H.; Tiemens, M.; Uman, I.; Varner, G. S.; Wang, B.; Wang, B. L.; Wang, D.; Wang, D. Y.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, W.; Wang, W. P.; Wang, X. F.; Wang, Y.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Weber, T.; Wei, D. H.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, L. J.; Wu, Z.; Xia, L.; Xia, L. G.; Xia, Y.; Xiao, D.; Xiao, H.; Xiao, Z. J.; Xie, Y. G.; Yuehong, Xie; Xiu, Q. L.; Xu, G. F.; Xu, J. J.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. J.; Yang, H. X.; Yang, L.; Yang, Y. X.; Ye, M.; Ye, M. H.; Yin, J. H.; You, Z. Y.; Yu, B. X.; Yu, C. X.; Yu, J. S.; Yuan, C. Z.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zeng, Y.; Zeng, Z.; Zhang, B. X.; Zhang, B. Y.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J.; Zhang, J. J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, S. Q.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Y. N.; Zhang, Y. T.; Zhang, Yu; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, Q. W.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, S. H.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zotti, L.; Zou, B. S.; Zou, J. H.

    2017-04-01

    We report the first measurement of the absolute branching fraction for Λc+ → Λμ+νμ. This measurement is based on a sample of e+e- annihilation data produced at a center-of-mass energy √{ s} = 4.6 GeV, collected with the BESIII detector at the BEPCII storage rings. The sample corresponds to an integrated luminosity of 567 pb-1. The branching fraction is determined to be B (Λc+ → Λμ+νμ) = (3.49 ± 0.46 (stat) ± 0.27 (syst))%. In addition, we calculate the ratio B (Λc+ → Λμ+νμ) / B (Λc+ → Λe+νe) to be 0.96 ± 0.16 (stat) ± 0.04 (syst).

  13. Measurement of the absolute branching fraction for Λc+→Λμ+νμ

    Directory of Open Access Journals (Sweden)

    M. Ablikim

    2017-04-01

    Full Text Available We report the first measurement of the absolute branching fraction for Λc+→Λμ+νμ. This measurement is based on a sample of e+e− annihilation data produced at a center-of-mass energy s=4.6 GeV, collected with the BESIII detector at the BEPCII storage rings. The sample corresponds to an integrated luminosity of 567 pb−1. The branching fraction is determined to be B(Λc+→Λμ+νμ=(3.49±0.46(stat±0.27(syst%. In addition, we calculate the ratio B(Λc+→Λμ+νμ/B(Λc+→Λe+νe to be 0.96±0.16(stat±0.04(syst.

  14. The magnetic recoil spectrometer for measurements of the absolute neutron spectrum at OMEGA and the NIF.

    Science.gov (United States)

    Casey, D T; Frenje, J A; Johnson, M Gatu; Séguin, F H; Li, C K; Petrasso, R D; Glebov, V Yu; Katz, J; Magoon, J; Meyerhofer, D D; Sangster, T C; Shoup, M; Ulreich, J; Ashabranner, R C; Bionta, R M; Carpenter, A C; Felker, B; Khater, H Y; LePape, S; MacKinnon, A; McKernan, M A; Moran, M; Rygg, J R; Yeoman, M F; Zacharias, R; Leeper, R J; Fletcher, K; Farrell, M; Jasion, D; Kilkenny, J; Paguio, R

    2013-04-01

    The neutron spectrum produced by deuterium-tritium (DT) inertial confinement fusion implosions contains a wealth of information about implosion performance including the DT yield, ion-temperature, and areal-density. The Magnetic Recoil Spectrometer (MRS) has been used at both the OMEGA laser facility and the National Ignition Facility (NIF) to measure the absolute neutron spectrum from 3 to 30 MeV at OMEGA and 3 to 36 MeV at the NIF. These measurements have been used to diagnose the performance of cryogenic target implosions to unprecedented accuracy. Interpretation of MRS data requires a detailed understanding of the MRS response and background. This paper describes ab initio characterization of the system involving Monte Carlo simulations of the MRS response in addition to the commission experiments for in situ calibration of the systems on OMEGA and the NIF.

  15. A diode laser spectrometer at 634 nm and absolute frequency measurements using optical frequency comb

    Institute of Scientific and Technical Information of China (English)

    Yi Lin; Yuan Jie; Qi Xiang-Hui; Chen Wen-Lan; Zhou Da-Wei; Zhou Tong; Zhou Xiao-Ji; Chen Xu-Zong

    2009-01-01

    This paper reports that two identical external-cavity-diode-laser(ECDL)based spectrometers are constructed at 634 nm referencing on the hyperfine B-X transition a(80)8-4 of 127I2.The lasers are stabilized on the Doppler-free absorption signals using the third-harmonic detection technique.The instability of the stabilized laser is measured to be 2.8×10-12(after 1000 s)by counting the beat note between the two lasers.The absolute optical frequency of the transition is,for the first time,determined to be 472851936189.5 kHz by using an optical frequency comb referenced on the microwave caesium atomic clock.The uncertainty of the measurement is less than 4.9 kHz.

  16. The magnetic recoil spectrometer for measurements of the absolute neutron spectrum at OMEGA and the NIF

    Energy Technology Data Exchange (ETDEWEB)

    Casey, D. T.; Frenje, J. A.; Gatu Johnson, M.; Seguin, F. H.; Li, C. K.; Petrasso, R. D. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Glebov, V. Yu.; Katz, J.; Magoon, J.; Meyerhofer, D. D.; Sangster, T. C.; Shoup, M.; Ulreich, J. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Ashabranner, R. C.; Bionta, R. M.; Carpenter, A. C.; Felker, B.; Khater, H. Y.; LePape, S.; MacKinnon, A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2013-04-15

    The neutron spectrum produced by deuterium-tritium (DT) inertial confinement fusion implosions contains a wealth of information about implosion performance including the DT yield, ion-temperature, and areal-density. The Magnetic Recoil Spectrometer (MRS) has been used at both the OMEGA laser facility and the National Ignition Facility (NIF) to measure the absolute neutron spectrum from 3 to 30 MeV at OMEGA and 3 to 36 MeV at the NIF. These measurements have been used to diagnose the performance of cryogenic target implosions to unprecedented accuracy. Interpretation of MRS data requires a detailed understanding of the MRS response and background. This paper describes ab initio characterization of the system involving Monte Carlo simulations of the MRS response in addition to the commission experiments for in situ calibration of the systems on OMEGA and the NIF.

  17. Absolute frequency measurement with uncertainty below $1\\times 10^{-15}$ using International Atomic Time

    CERN Document Server

    Hachisu, Hidekazu; Ido, Tetsuya

    2016-01-01

    The absolute frequency of the $^{87}{\\rm Sr}$ clock transition measured in 2015 was reevaluated using an improved frequency link to the SI second. The scale interval of International Atomic Time (TAI) that we used as the reference was calibrated for an evaluation interval of five days instead of the conventional interval of one month which is regularly employed in Circular T. The calibration on a five-day basis removed the uncertainty in assimilating the TAI scale of the five-day mean to that of the one-month mean. The reevaluation resulted in the total uncertainty of $10^{-16}$ level for the first time without local cesium fountains. Since there are presumably no correlations among systematic shifts of cesium fountains worldwide, the measurement is not limited by the systematic uncertainty of a specific primary frequency standard.

  18. Absolute frequency measurement with uncertainty below 1× 10^{-15} using International Atomic Time

    Science.gov (United States)

    Hachisu, Hidekazu; Petit, Gérard; Ido, Tetsuya

    2017-01-01

    The absolute frequency of the ^{87}Sr clock transition measured in 2015 (Jpn J Appl Phys 54:112401, 2015) was reevaluated using an improved frequency link to the SI second. The scale interval of International Atomic Time (TAI) that we used as the reference was calibrated for an evaluation interval of 5 days instead of the conventional interval of 1 month which is regularly employed in Circular T. The calibration on a 5-day basis removed the uncertainty in assimilating the TAI scale of the 5-day mean to that of the 1-month mean. The reevaluation resulted in the total uncertainty of 10^{-16} level for the first time without local cesium fountains. Since there are presumably no correlations among systematic shifts of cesium fountains worldwide, the measurement is not limited by the systematic uncertainty of a specific primary frequency standard.

  19. Precise measurement of the absolute fluorescence yield of the 337 nm band in atmospheric gases

    CERN Document Server

    Ave, M; Curry, E; Di Carlo, P; Di Giulio, C; Luis, P Facal San; Gonzales, D; Hojvat, C; Hörandel, J; Hrabovsky, M; Iarlori, M; Keilhauer, B; Klages, H; Kleifges, M; Kuehn, F; Li, S; Monasor, M; Nozka, L; Palatka, M; Petrera, S; Privitera, P; Ridky, J; Rizi, V; D'Orfeuil, B Rouille; Salamida, F; Schovanek, P; Smida, R; Spinka, H; Ulrich, A; Verzi, V; Williams, C

    2012-01-01

    A measurement of the absolute fluorescence yield of the 337 nm nitrogen band, relevant to ultra-high energy cosmic ray (UHECR) detectors, is reported. Two independent calibrations of the fluorescence emission induced by a 120 GeV proton beam were employed: Cherenkov light from the beam particle and calibrated light from a nitrogen laser. The fluorescence yield in air at a pressure of 1013 hPa and temperature of 293 K was found to be $Y_{337} = 5.61\\pm 0.06_{stat} \\pm 0.21_{syst}$ photons/MeV. When compared to the fluorescence yield currently used by UHECR experiments, this measurement improves the uncertainty by a factor of three, and has a significant impact on the determination of the energy scale of the cosmic ray spectrum.

  20. Optical parameters Determination for absolute luminosity and total cross section measurements in ATLAS

    CERN Document Server

    Cavalier, Sophie

    ALFA (Absolute Luminosity For ATLAS) aims at measuring the absolute luminosity for the ATLAS experiment with an incertitude down to 2-3 \\% and the total elastic cross section. The luminosity is related to the number of events, the highest the luminosity, the highest the number of events. This is, then, an important quantity for colliders like LHC (Large Hadron Collider). LHC is made of two beams circulating in two different beam pipes and colliding at four interaction points where the four physics experiments are located (ATLAS, CMS, ALICE, LHCb). ALFA detectors inserted into Roman Pots (RPs), have been placed around ATLAS at 240 m distance from the collision point (IP1) after six quadrupoles magnets and two dipoles defining the ALFA beam line which is part of the LHC ring.The detectors are made of scintillating optics fibers to catch elastic protons generated at IP1. These protons are tracked through the LHC magnets beam line which needs to be optimized in terms of optics parameters. We call high β optics, ...

  1. Measurement of absolute phase Shift on reflection of thin films using white-light spectral interferometry

    Institute of Scientific and Technical Information of China (English)

    Hui Xue; Weidong Shen; Peifu Gu; Zhenyue Luo; Yueguang Zhang; Xu Liu

    2009-01-01

    A novel method to measure the absolute phase shift on reflection of thin film is presented utilizing a white-light interferometer in spectral domain.By applying Fourier transformation to the recorded spectral interference signal,we retrieve the spectral phase function ф,which is induced by three parts:the path length difference in air L,the effective thickness of slightly dispersive cube beam splitter Teff and the nonlinear phase function due to multi-reflection of the thin film structure.We utilize the fact that the overall optical path difference(OPD)is linearly dependent on the refractive index of the beam splitter to determine both L and Teff.The spectral phase shift on reflection of thin film structure can be obtained by subtracting these two parts from ф.We show theoretically and experimentally that our now method can provide a sinlple and fast solution in calculating the absolute spectral phase function of optical thin films,while still maintaining high accuracy.

  2. Easy Absolute Values? Absolutely

    Science.gov (United States)

    Taylor, Sharon E.; Mittag, Kathleen Cage

    2015-01-01

    The authors teach a problem-solving course for preservice middle-grades education majors that includes concepts dealing with absolute-value computations, equations, and inequalities. Many of these students like mathematics and plan to teach it, so they are adept at symbolic manipulations. Getting them to think differently about a concept that they…

  3. Calibration of absolute radial dimension of measurement for cylindrical coordinate measuring machine

    Science.gov (United States)

    Zhao, Zexiang; Wang, Guixia; Zhao, Huiying; Li, Bin

    2010-08-01

    According to the definitions of the diameters in the new generation Geometrical Product Specifications(GPS), the evaluation models of least square diameter, minimum circumscribed diameter, maximum inscribed diameter, area diameter, circumference diameter and volume diameter are built on the cylindrical coordinate system for the section measuring path, the element measuring path and the bird-cage measuring path in this paper. A cylindrical coordinate measuring machine for the measurement of the diameters above is introduced. Based on the external standard cylinder with super high precision, a relative calibration method for the measurement of the radial size is promoted. The influence of several special cases of the installation of the cylinder on the calibrating results is analyzed, and the calibrating equation related to the special cases is given.

  4. Absolute measurements of the cosmic microwave background from Amundsen-Scott South Pole Station

    Energy Technology Data Exchange (ETDEWEB)

    Bersanelli, S.; Bonelli, G.; Sironi, G. (Universita degli Studi, Milan (Italy)); Levin, S. (California Institute of Technology, Pasadena, CA (United States)); Smoot, G.F.; Bensadoun, M.; De Amici, G.; Limon, M.; Vinje, W. (Lawrence Berkeley Lab., CA (United States))

    1993-01-01

    Observations of the cosmic microwave background play a central role in modern cosmology. The existence of the CMB as a remanent of the early Universe has constituted a pillar for the Big Bang scenario. The recent cosmic background explorer differential microwave radiometer results have provided further support to the generally accepted standard model by detecting for the first time primordial fluctuations in the CMB field at the limits expected by structure formation theories. An international program of ground-based absoluted measurements of the CMB at the centimeter and multicentimeter wavelengths was initiated in 1982. This paper reports results at the South Pole, one of a few areas of low-background environments. 12 refs., 2 tabs.

  5. Absolute Polarization Measurements at RHIC in the Coulomb Nuclear Interference Region

    CERN Document Server

    Eyser, K O; Bravar, A; Bunce, G; Dhawan, S; Gill, R; Haeberli, W; Huang, H; Jinnouchi, O; Makdisi, Y; Nakagawa, I; Nass, A; Okada, H; Stephenson, E; Svirida, D; Wise, T; Wood, J; Zelenski, A

    2007-01-01

    The Relativistic Heavy Ion Collider at Brookhaven National Laboratory provides polarized proton beams for the investigation of the nucleon spin structure. For polarimetry, carbon-proton and proton-proton scattering is used in the Coulomb nuclear interference region at small momentum transfer ($-t$). Fast polarization measurements of each beam are carried out with carbon fiber targets at several times during an accelerator store. A polarized hydrogen gas jet target is needed for absolute normalization over multiple stores, while the target polarization is constantly monitored in a Breit-Rabi polarimeter. In 2005, the jet polarimeter has been used with both RHIC beams. We present results from the jet polarimeter including a detailed analysis of background contributions to asymmetries and to the beam polarization.

  6. Measurement of the absolute differential cross section of proton-proton elastic scattering at small angles

    CERN Document Server

    Mchedlishvili, D; Dymov, S; Bagdasarian, Z; Barsov, S; Gebel, R; Gou, B; Hartmann, M; Kacharava, A; Keshelashvili, I; Khoukaz, A; Kulessa, P; Kulikov, A; Lehrach, A; Lomidze, N; Lorentz, B; Maier, R; Macharashvili, G; Merzliakov, S; Mikirtychyants, S; Nioradze, M; Ohm, H; Prasuhn, D; Rathmann, F; Serdyuk, V; Schroer, D; Shmakova, V; Stassen, R; Stein, H J; Stockhorst, H; Strakovsky, I I; Ströher, H; Tabidze, M; Täschner, A; Trusov, S; Tsirkov, D; Uzikov, Yu; Valdau, Yu; Wilkin, C; Workman, R L; Wüstner, P

    2015-01-01

    The differential cross section for proton-proton elastic scattering has been measured at a beam energy of 1.0 GeV and in 200 MeV steps from 1.6 to 2.8 GeV for centre-of-mass angles in the range from 12-16 degrees to 25-30 degrees, depending on the energy. Absolute normalisations of typically 3% were achieved by studying the energy losses of the circulating beam of the COSY storage ring as it passed repeatedly through the windowless hydrogen target of the ANKE magnetic spectrometer. It is shown that the data have a significant impact upon a partial wave analysis. After extrapolating the differential cross sections to the forward direction, the results are broadly compatible with the predictions of forward dispersion relations.

  7. Measurement of the Absolute Branching Fraction of D0 to K- pi+

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, B.; Bona, M.; Boutigny, D.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Prudent, X.; Tisserand, V.; Zghiche, A.; /Annecy, LAPP; Garra Tico, J.; Grauges, E.; /Barcelona U., ECM; Lopez, L.; Palano, A.; /Bari U.; Eigen, G.; Ofte, I.; Stugu, B.; Sun, L.; /Bergen U.; Abrams, G.S.; Battaglia, M.; Brown, D.N.; Button-Shafer, J.; /LBL, Berkeley

    2007-04-25

    The authors measure the absolute branching fraction for D{sup 0} {yields} K{sup -} {pi}{sup +} using partial reconstruction of {bar B}{sup 0} {yields} D*{sup +}X{ell}{sup -}{bar {nu}}{sub {ell}} decays, in which only the charged lepton and the pion from the decay D*{sup +} {yields} D{sup 0}{pi}{sup +} are used. Based on a data sample of 230 million B{bar B} pairs collected at the {Upsilon}(4S) resonance with the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC, they obtain {Beta}(D{sup 0} {yields} K{sup -}{pi}{sup +}) = (4.007 {+-} 0.037 {+-} 0.070)%, where the first error is statistical and the second error is systematic.

  8. Is absolute noninvasive temperature measurement by the Pr[MOE-DO3A] complex feasible.

    Science.gov (United States)

    Hentschel, M; Findeisen, M; Schmidt, W; Frenzel, T; Wlodarczyk, W; Wust, P; Felix, R

    2000-02-01

    Recently, the feasibility of the praseodymium complex of 10-(2-methoxyethyl)-1,4,7,10-tetraaza-cyclododecane-1,4,7-tr iacetate (Pr[MOE-DO3A]) for non-invasive temperature measurement via 1H spectroscopy has been demonstrated. Particularly the suitability of the complex for non-invasive temperature measurements including in vivo spectroscopy without spatial resolution as well as first spectroscopic imaging measurements at low temporal resolution (> or = 4 min) and high temporal resolution (breath hold, approximately 20 s) has been shown. As of today, calibration curves according to the particular experimental conditions are necessary. This work aims to clarify whether the Pr[MOE-DO3A] probe in conjunction with 1H-NMR spectroscopy allows non-invasive absolute temperature measurements with high accuracy. The measurement results from two different representative media, distilled water and human plasma, show a slight but significant dependence of the calibration curves on the surrounding medium. Calibration curves in water and plasma were derived for the temperature dependence of the chemical shift difference (F) between Pr[MOE-DO3A]'s OCH3 and water with F = -(27.53 +/- 0.04) + (0.125 +/- 0.001) x T and F = -(27.61 +/- 0.02) + (0.129 +/- 0.001) x T, respectively, with F in ppm and T in degrees C. However, the differences are minuscule even for the highest spectral resolution of 0.001 ppm/pt, so that they are indistinguishable under practical conditions. The estimated temperature errors are +/- 0.18 degrees C for water and +/- 0.14 degrees C for plasma and with that only slightly worse than the measurement accuracy of the fiber-optical temperature probe (+/- 0.1 degrees C). It can be concluded that the results obtained indicate the feasibility of the 1H spectroscopy method in conjunction with the Pr[MOE-DO3A] probe for absolute temperature measurements, with a maximum accuracy of +/- 0.2 degrees C.

  9. Demonstrating the error budget for the climate absolute radiance and refractivity observatory through solar irradiance measurements (Conference Presentation)

    Science.gov (United States)

    Thome, Kurtis J.; McCorkel, Joel; Angal, Amit

    2016-09-01

    The goal of the Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission is to provide high-accuracy data for evaluation of long-term climate change trends. Essential to the CLARREO project is demonstration of SI-traceable, reflected measurements that are a factor of 10 more accurate than current state-of-the-art sensors. The CLARREO approach relies on accurate, monochromatic absolute radiance calibration in the laboratory transferred to orbit via solar irradiance knowledge. The current work describes the results of field measurements with the Solar, Lunar for Absolute Reflectance Imaging Spectroradiometer (SOLARIS) that is the calibration demonstration system (CDS) for the reflected solar portion of CLARREO. Recent measurements of absolute spectral solar irradiance using SOLARIS are presented. The ground-based SOLARIS data are corrected to top-of-atmosphere values using AERONET data collected within 5 km of the SOLARIS operation. The SOLARIS data are converted to absolute irradiance using laboratory calibrations based on the Goddard Laser for Absolute Measurement of Radiance (GLAMR). Results are compared to accepted solar irradiance models to demonstrate accuracy values giving confidence in the error budget for the CLARREO reflectance retrieval.

  10. Absolute production rate measurements of nitric oxide by an atmospheric pressure plasma jet (APPJ)

    Energy Technology Data Exchange (ETDEWEB)

    Pipa, A V; Bindemann, T; Foest, R; Kindel, E; Roepcke, J; Weltmann, K-D [Leibniz-Institut fuer Plasmaforschung and Technologie e.V. (INP), Felix-Hausdorff Strasse 2, D-17489 Greifswald (Germany)], E-mail: foest@inp-greifswald.de

    2008-10-07

    Tunable diode laser absorption spectroscopy (TDLAS) has been applied to measure the absolute production rate of NO molecules in the gas phase of an atmospheric pressure plasma jet (APPJ) operating at rf (13.56 MHz) in argon with small (up to 1%) admixtures of air. The resulting NO production rates were found to be in the range (0.1-80) x 10{sup -3} sccm or (0.05-35) x 10{sup 18} molecules s{sup -1} depending on the experimental conditions. Maximum rates were obtained at 0.2% air. For TDLAS measurements the APPJ was arranged inside an astigmatic multi-pass cell of Herriott type with 100 m absorption length. The insertion into a closed volume differs slightly from the normal, open operation with the jet propagating freely into air. Therefore, the measuring results are compared with optical emission of the open jet to verify equivalent experimental conditions. The dependence of the optical emission of NO (237 nm) on power and gas mixture has been measured. The similar shape of the dependence of absorption and emission signals gives evidence that the comparability of experimental conditions is sufficiently satisfied. It is concluded that the NO production rate of the APPJ in ambient air can be characterized using TDLAS and provides reliable results in spite of differing experimental conditions due to the set-up.

  11. Physical Activity: Absolute Intensity versus Relative-to-Fitness-Level Volumes.

    Science.gov (United States)

    Kujala, Urho M; Pietilä, Julia; Myllymäki, Tero; Mutikainen, Sara; Föhr, Tiina; Korhonen, Ilkka; Helander, Elina

    2017-03-01

    This study aimed to investigate in a real-life setting how moderate- and vigorous-intensity physical activity (PA) volumes differ according to absolute intensity recommendation and relative to individual fitness level by sex, age, and body mass index. A total of 23,224 Finnish employees (10,201 men and 13,023 women; ages 18-65 yr; body mass index = 18.5-40.0 kg·m) participated in heart rate recording for 2+ d. We used heart rate and its variability, respiration rate, and on/off response information from R-R interval data calibrated by participant characteristics to objectively determine daily PA volume, as follows: daily minutes of absolute moderate (3-intensity categorization, the volume of both moderate- and vigorous-intensity PA was higher in men compared with women (P intensity was estimated relative to individual fitness level, the differences were much smaller. Mean daily minutes of absolute vigorous-intensity PA were higher than those of relative intensity minutes in normal weight men ages 18-40 yr (17.7, 95% confidence interval [CI] = 16.9-18.6, vs 8.6, 95% CI = 8.0-9.1; P intensity, but reaching the target is more similar for relative intensity.

  12. A measurement of the absolute neutron beam polarization produced by an optically pumped sup 3 He neutron spin filter

    CERN Document Server

    Rich, D R; Crawford, B E; Delheij, P P J; Espy, M A; Haseyama, T; Jones, G; Keith, C D; Knudson, J; Leuschner, M B; Masaike, A; Masuda, Y; Matsuda, Y; Penttilae, S I; Pomeroy, V R; Smith, D A; Snow, W M; Szymanski, J J; Stephenson, S L; Thompson, A K; Yuan, V

    2002-01-01

    The capability of performing accurate absolute measurements of neutron beam polarization opens a number of exciting opportunities in fundamental neutron physics and in neutron scattering. At the LANSCE pulsed neutron source we have measured the neutron beam polarization with an absolute accuracy of 0.3% in the neutron energy range from 40 meV to 10 eV using an optically pumped polarized sup 3 He spin filter and a relative transmission measurement technique. sup 3 He was polarized using the Rb spin-exchange method. We describe the measurement technique, present our results, and discuss some of the systematic effects associated with the method.

  13. Study on improving the turbidity measurement of the absolute coagulation rate constant.

    Science.gov (United States)

    Sun, Zhiwei; Liu, Jie; Xu, Shenghua

    2006-05-23

    The existing theories dealing with the evaluation of the absolute coagulation rate constant by turbidity measurement were experimentally tested for different particle-sized (radius = a) suspensions at incident wavelengths (lambda) ranging from near-infrared to ultraviolet light. When the size parameter alpha = 2pi a/lambda > 3, the rate constant data from previous theories for fixed-sized particles show significant inconsistencies at different light wavelengths. We attribute this problem to the imperfection of these theories in describing the light scattering from doublets through their evaluation of the extinction cross section. The evaluations of the rate constants by all previous theories become untenable as the size parameter increases and therefore hampers the applicable range of the turbidity measurement. By using the T-matrix method, we present a robust solution for evaluating the extinction cross section of doublets formed in the aggregation. Our experiments show that this new approach is effective in extending the applicability range of the turbidity methodology and increasing measurement accuracy.

  14. Absolute measurement of the effective nonlinearities of KTP and BBO crystals by optical parametric amplification.

    Science.gov (United States)

    Armstrong, D J; Alford, W J; Raymond, T D; Smith, A V

    1996-04-20

    Absolute magnitudes of the effective nonlinearity, deff, were measured for seven KTP and six BBO crystals. The d(eff), were derived from the parametric gain of an 800-nm signal wave in the sample crystals when they were pumped by the frequency-doubled, spatially filtered light from an injectionseeded, Q-switched Nd:YAG laser. The KTP crystals, all type II phase matched with propagation in the X-Z plane, had d(eff) values ranging from 1.97 to 3.50 pm/V. Measurements of gain as a function of phase velocity mismatch indicate that two of the KTP crystals clearly contain multiple ferroelectric domains. For five type I phase-matched BBO crystals, d(eff) ranged from 1.76 to 1.83 pm/V, and a single type II phase-matched BBO crystal had a d(eff) of 1.56 pm/V. The uncertainty in our measurements of d(eff) values is ±5% for KTP and ±10% for BBO.

  15. ^241Am(n,γ) absolute cross sections measured with DANCE

    Science.gov (United States)

    Jandel, M.; Bredeweg, T. A.; Fowler, M. M.; Bond, E. M.; Chadwick, M. B.; Clement, R. R.; Couture, A.; O'Donnell, J. M.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.; Agvaanluvsan, U.; Macri, R. A.; Sheets, S. A.; Wu, C. Y.; Becker, J. A.

    2007-10-01

    ^241Am is present in plutonium due to the beta decay of ^241Pu (t1/2=14.38 years). As such ^241Am can be used as a detector for nuclear forensics. A precise measurement of ^241Am(n,γ) cross section is thus needed for this application. The measurement is also of interest for advanced reactor design as part of the Global Nuclear Energy Partnership (GNEP). The Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory (LANL) was used for neutron capture cross section measurement on ^241Am. The high granularity of DANCE (160 BaF2 detectors in a 4π geometry) enables the efficient detection of prompt gamma-rays following a neutron capture. DANCE is located on the 20.26 m neutron flight path 14(FP14) at the Manuel Lujan Jr. Neutron Scattering Center at the Los Alamos Neutron Science Center (LANSCE). The absolute ^241Am(n,γ) cross sections were obtained in the range of neutron energies from 0.02 eV to 320 keV. The results will be compared to existing evaluations in detail.

  16. Luminosity measurement method for the LHC: Event selection and absolute luminosity determination

    Energy Technology Data Exchange (ETDEWEB)

    Krasny, M.W., E-mail: krasny@lpnhep.in2p3.fr [LPNHE, Pierre and Marie Curie University, CNRS-IN2P3, Tour 33, RdC, 4, pl. Jussieu, 75005 Paris (France); Chwastowski, J. [Institute of Teleinformatics, Faculty of Physics, Mathematics and Computer Science, Cracow University of Technology, ul. Warszawska 24, 31-115 Kraków (Poland); Institute of Nuclear Physics PAN, ul. Radzikowskiego 152, 31-342 Kraków (Poland); Cyz, A.; Słowikowski, K. [Institute of Nuclear Physics PAN, ul. Radzikowskiego 152, 31-342 Kraków (Poland)

    2013-11-21

    In our earlier papers Krasny et al. [1,2] have proposed a new luminosity measurement method which uses lepton pairs produced in peripheral collisions of the LHC beam particles, and identified the requirements for a new, specialized luminosity detector which is indispensable for their efficient on-line selection. In this paper we use the base-line detector model, with no precise timing capabilities, to evaluate the statistical and systematic accuracy of the method. We propose the complete event selection procedure and demonstrate that it allows to collect a sufficiently large sample of e{sup +}e{sup −} pairs to achieve a better than 1% statistical accuracy of the luminosity measurement over less than one-month-long running time intervals. We argue that the absolute luminosity measurement systematic errors can be kept below 1%. The proposed method can be directly applied to the LHC running periods for which the machine instantaneous luminosity does not exceed the L=10{sup 33}s{sup −1}cm{sup −2} value. Two ways extending the method to the large pile-up periods corresponding to higher instantaneous luminosities are proposed.

  17. ArtDeco: a beam-deconvolution code for absolute cosmic microwave background measurements

    Science.gov (United States)

    Keihänen, E.; Reinecke, M.

    2012-12-01

    We present a method for beam-deconvolving cosmic microwave background (CMB) anisotropy measurements. The code takes as input the time-ordered data along with the corresponding detector pointings and known beam shapes, and produces as output the harmonic aTlm, aElm, and aBlm coefficients of the observed sky. From these one can derive temperature and Q and U polarisation maps. The method is applicable to absolute CMB measurements with wide sky coverage, and is independent of the scanning strategy. We tested the code with extensive simulations, mimicking the resolution and data volume of Planck 30 GHz and 70 GHz channels, but with exaggerated beam asymmetry. We applied it to multipoles up to l = 1700 and examined the results in both pixel space and harmonic space. We also tested the method in presence of white noise. The code is released under the terms of the GNU General Public License and can be obtained from http://sourceforge.net/projects/art-deco/

  18. From direct to absolute mass measurements a study of the accuracy of ISOLTRAP

    CERN Document Server

    Kellerbauer, A G; Bollen, G; Herfurth, F; Kluge, H J; Kuckein, M; Sauvan, E; Scheidenberger, C; Schweikhard, L

    2003-01-01

    For a detailed study of the accuracy of the Penning trap mass spectrometer ISOLTRAP all expected sources of uncertainty were investigated with respect to their contributions to the uncertainty of the final result. In the course of these investigations, cross-reference measurements with singly charged carbon clusters $^{12}$C$^{+}_{n}$ were carried out. The carbon cluster ions were produced by use of laser-induced desorption, fragmentation, and ionization of C$_{60}$ fullerenes and injected into and stored in the Penning trap system. The comparison of the cyclotron frequencies of different carbon clusters has provided detailed insight into the residual systematic uncertainty of \\acro{ISOLTRAP} and yielded a value of $8 \\cdot 10^{-9}$. This also represents the current limit of mass accuracy of the apparatus. Since the unified atomic mass unit is defined as 1/12 of the mass of the $^{12}$C atom, it will be possible to carry out absolute mass measurements with \\acro{ISOLTRAP} in the future.\\\\[1\\baselineskip] PACS...

  19. Investigating 2010 Northern Cascadia ETS Processes With Absolute Gravity & Deformation Measurements Near Port Renfrew, British Columbia

    Science.gov (United States)

    Henton, J. A.; Dragert, H.; Wang, K.; Kao, H.; Lambert, A.

    2010-12-01

    The monitoring of subduction zone Episodic Tremor and Slip (ETS) has been carried out primarily using seismic data for tremor and continuous Global Positioning System (GPS) and strain- or tilt-meter observations for transient slip. The regularity of ETS episodes in the forearc of the northern Cascadia Subduction Zone has recently allowed us to schedule a series of absolute gravity (AG) measurements to augment these other data and thereby help in understanding the physical processes involved in the generation of ETS. High-precision AG observations are sensitive to vertical motion of the observation site as well as mass redistribution during transient deformation. For the 2010 ETS event in the northern Cascadia, AG observations were carried out at Port Renfrew, British Columbia. The Port Renfrew region was targeted since it has typically had large (~7mm) vertical displacements measured at a nearby GPS site. Additionally this region has experienced large strains during past ETS episodes. The closest PBO borehole strainmeter to Port Renfrew, B004 (Sekiu, WA), typically experiences ETS shear strain transients exceeding 100 nanostrain. In this contribution, we focus on the analysis of the multiple epoch series of AG observations at Port Renfrew during the 2010 ETS event. The ratio of the change of surface gravity (Δg) to vertical displacement (Δh) during the ETS event will also be examined. This ratio provides unique constraints on processes involved in generating observed gravity signals and will help us explore the mechanism of ETS.

  20. In-Flight Measurement of the Absolute Energy Scale of the Fermi Large Area Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, M.; /Stanford U., HEPL /SLAC /KIPAC, Menlo Park; Ajello, M.; /Stanford U., HEPL /SLAC /KIPAC, Menlo Park; Allafort, A.; /Stanford U., HEPL /SLAC /KIPAC, Menlo Park; Atwood, W.B.; /UC, Santa Cruz; Axelsson, M.; /Stockholm U. /Stockholm U., OKC /Royal Inst. Tech., Stockholm; Baldini, L.; /INFN, Pisa; Barbiellini, G.; /INFN, Trieste /Trieste U.; Bastieri, D.; /INFN, Padua /Padua U.; Bechtol, K.; /Stanford U., HEPL /SLAC /KIPAC, Menlo Park; Bellazzini, R.; /INFN, Pisa; Berenji, B.; /Stanford U., HEPL /SLAC /KIPAC, Menlo Park; Bloom, E.D.; /Stanford U., HEPL /SLAC /KIPAC, Menlo Park; Bonamente, E.; /INFN, Perugia /Perugia U.; Borgland, A.W.; /Stanford U., HEPL /SLAC /KIPAC, Menlo Park; Bouvier, A.; /UC, Santa Cruz; Bregeon, J.; /INFN, Pisa; Brez, A.; /INFN, Pisa; Brigida, M.; /Bari Polytechnic /INFN, Bari; Bruel, P.; /Ecole Polytechnique; Buehler, R.; /Stanford U., HEPL /SLAC /KIPAC, Menlo Park; Buson, S.; /INFN, Padua /Padua U. /CSIC, Catalunya /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /IASF, Milan /DAPNIA, Saclay /INFN, Perugia /Perugia U. /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /Unlisted, US /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /ASDC, Frascati /Perugia U. /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /Montpellier U. /ASDC, Frascati /Bari Polytechnic /INFN, Bari /Naval Research Lab, Wash., D.C. /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /Montpellier U. /Bari Polytechnic /INFN, Bari /Ecole Polytechnique /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /Ecole Polytechnique /Hiroshima U. /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /Bari Polytechnic /INFN, Bari /INFN, Bari /NASA, Goddard /INFN, Perugia /Perugia U.; /more authors..

    2012-09-20

    The Large Area Telescope (LAT) on-board the Fermi Gamma-ray Space Telescope is a pair-conversion telescope designed to survey the gamma-ray sky from 20 MeV to several hundreds of GeV. In this energy band there are no astronomical sources with sufficiently well known and sharp spectral features to allow an absolute calibration of the LAT energy scale. However, the geomagnetic cutoff in the cosmic ray electron-plus-positron (CRE) spectrum in low Earth orbit does provide such a spectral feature. The energy and spectral shape of this cutoff can be calculated with the aid of a numerical code tracing charged particles in the Earth's magnetic field. By comparing the cutoff value with that measured by the LAT in different geomagnetic positions, we have obtained several calibration points between {approx}6 and {approx}13 GeV with an estimated uncertainty of {approx}2%. An energy calibration with such high accuracy reduces the systematic uncertainty in LAT measurements of, for example, the spectral cutoff in the emission from gamma ray pulsars.

  1. Electrical measurement of absolute temperature and temperature transients in a buried nanostructure under ultrafast optical heating

    Science.gov (United States)

    Yang, H. F.; Hu, X. K.; Liebing, N.; Böhnert, T.; Costa, J. D.; Tarequzzaman, M.; Ferreira, R.; Sievers, S.; Bieler, M.; Schumacher, H. W.

    2017-06-01

    We report absolute temperature measurements in a buried nanostructure with a sub-nanosecond temporal resolution. For this purpose, we take advantage of the temperature dependence of the resistance of a magnetic tunnel junction (MTJ) as detected by a fast sampling oscilloscope. After calibrating the measurement setup using steady-state electric heating, we are able to quantify temperature changes in the MTJ induced by femtosecond optical heating of the metal contact lying several 100 nm above the MTJ. We find that a femtosecond pulse train with an average power of 400 mW and a repetition rate of 76 MHz leads to a constant temperature increase of 80 K and a temporally varying temperature change of 2 K in the MTJ. The maximum temperature change in the MTJ occurs 4 ns after the femtosecond laser pulses hit the metal contact, which is supported by simulations. Our work provides a scheme to quantitatively study local temperatures in nanoscale structures and might be important for the testing of nanoscale thermal transport simulations.

  2. Absolute coronary blood flow measurement and microvascular resistance in ST-elevation myocardial infarction in the acute and subacute phase.

    Science.gov (United States)

    Wijnbergen, Inge; van 't Veer, Marcel; Lammers, Jeroen; Ubachs, Joey; Pijls, Nico H J

    2016-03-01

    In a number of patients with acute myocardial infarction (AMI), myocardial hypoperfusion, known as the no-reflow phenomenon, persists after primary percutaneous intervention (PPCI). The aim of this study was to evaluate the feasibility and safety of a new quantitative method of measuring absolute blood flow and resistance within the perfusion bed of an infarct-related artery. Furthermore, we sought to study no-reflow by correlating these measurements to the index of microvascular resistance (IMR) and the area at risk (AR) as determined by cardiac magnetic resonance imaging (CMR). Measurements of absolute flow and myocardial resistance were performed in 20 patients with ST-segment elevation myocardial infarction (STEMI), first immediately following PPCI and then again after 3-5days. These measurements used the technique of thermodilution during a continuous infusion of saline. Flow was expressed in ml/min per gram of tissue within the area at risk. The average time needed for measurement of absolute flow, resistance and IMR was 20min, and all measurements could be performed without complication. A higher flow supplying the AR correlated with a lower IMR in the acute phase. Absolute flow increased from 3.14 to 3.68ml/min/g (p=0.25) and absolute resistance decreased from 1317 to 1099 dyne.sec.cm-5/g (p=0.40) between the first day and fifth day after STEMI. Measurement of absolute flow and microvascular resistance is safe and feasible in STEMI patients and may allow for a better understanding of microvascular (dys)function in the early phase of AMI. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Responses of absolute and specific soil enzyme activities to long term additions of organic and mineral fertilizer.

    Science.gov (United States)

    Zhang, Xinyu; Dong, Wenyi; Dai, Xiaoqin; Schaeffer, Sean; Yang, Fengting; Radosevich, Mark; Xu, Lili; Liu, Xiyu; Sun, Xiaomin

    2015-12-01

    Long-term phosphorus (P) and nitrogen (N) applications may seriously affect soil microbial activity. A long-term field fertilizer application trial was established on reddish paddy soils in the subtropical region of southern China in 1998. We assessed the effects of swine manure and seven different rates or ratios of NPK fertilizer treatments on (1) the absolute and specific enzyme activities per unit of soil organic carbon (SOC) or microbial biomass carbon (MBC) involved in C, N, and P transformations and (2) their relationships with soil environmental factors and soil microbial community structures. The results showed that manure applications led to increases in the absolute and specific activities of soil β-1,4-glucosidase(βG), β-1,4-N-acetylglucosaminidase (NAG), and leucine aminopeptidase (LAP). The absolute and specific acid phosphatase (AP) activities decreased as mineral P fertilizer application rates and ratios increased. Redundancy analysis (RDA) showed that there were negative correlations between absolute and specific AP activities, pH, and total P contents, while there were positive correlations between soil absolute and specific βG, NAG, and LAP enzyme activities, and SOC and total N contents. RDA showed that the contents of actinomycete and Gram-positive bacterium PLFA biomarkers are more closely related to the absolute and specific enzyme activities than the other PLFA biomarkers (Pfertilizer application rates to subtropical paddy soils should not exceed 44 kg P ha(-1) year(-1).

  4. Absolute coronary blood flow measurement and microvascular resistance in ST-elevation myocardial infarction in the acute and subacute phase

    Energy Technology Data Exchange (ETDEWEB)

    Wijnbergen, Inge; Veer, Marcel van ' t [Department of Cardiology, Catharina Hospital, Eindhoven (Netherlands); Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven (Netherlands); Lammers, Jeroen; Ubachs, Joey [Department of Cardiology, Catharina Hospital, Eindhoven (Netherlands); Pijls, Nico H.J., E-mail: nico.pijls@cze.nl [Department of Cardiology, Catharina Hospital, Eindhoven (Netherlands); Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven (Netherlands)

    2016-03-15

    Background/Purpose: In a number of patients with acute myocardial infarction (AMI), myocardial hypoperfusion, known as the no-reflow phenomenon, persists after primary percutaneous intervention (PPCI). The aim of this study was to evaluate the feasibility and safety of a new quantitative method of measuring absolute blood flow and resistance within the perfusion bed of an infarct-related artery. Furthermore, we sought to study no-reflow by correlating these measurements to the index of microvascular resistance (IMR) and the area at risk (AR) as determined by cardiac magnetic resonance imaging (CMR). Methods: Measurements of absolute flow and myocardial resistance were performed in 20 patients with ST-segment elevation myocardial infarction (STEMI), first immediately following PPCI and then again after 3–5 days. These measurements used the technique of thermodilution during a continuous infusion of saline. Flow was expressed in ml/min per gram of tissue within the area at risk. Results: The average time needed for measurement of absolute flow, resistance and IMR was 20 min, and all measurements could be performed without complication. A higher flow supplying the AR correlated with a lower IMR in the acute phase. Absolute flow increased from 3.14 to 3.68 ml/min/g (p = 0.25) and absolute resistance decreased from 1317 to 1099 dyne.sec.cm-5/g (p = 0.40) between the first day and fifth day after STEMI. Conclusions: Measurement of absolute flow and microvascular resistance is safe and feasible in STEMI patients and may allow for a better understanding of microvascular (dys)function in the early phase of AMI. - Highlights: • We measured absolute coronary blood flow and microvascular resistance in STEMI patients in the acute phase and in the subacute phase, using the technique of thermodilution with low grade intracoronary continuous infusion of saline. • These measurements are safe and feasible during PPCI in STEMI patients. • In STEMI patients, absolute flow

  5. Absolute distance measurement with micrometer accuracy using a Michelson interferometer and the iterative synthetic wavelength principle.

    Science.gov (United States)

    Alzahrani, Khaled; Burton, David; Lilley, Francis; Gdeisat, Munther; Bezombes, Frederic; Qudeisat, Mohammad

    2012-02-27

    We present a novel system that can measure absolute distances of up to 300 mm with an uncertainty of the order of one micrometer, within a timeframe of 40 seconds. The proposed system uses a Michelson interferometer, a tunable laser, a wavelength meter and a computer for analysis. The principle of synthetic wave creation is used in a novel way in that the system employs an initial low precision estimate of the distance, obtained using a triangulation, or time-of-flight, laser system, or similar, and then iterates through a sequence of progressively smaller synthetic wavelengths until it reaches micrometer uncertainties in the determination of the distance. A further novel feature of the system is its use of Fourier transform phase analysis techniques to achieve sub-wavelength accuracy. This method has the major advantages of being relatively simple to realize, offering demonstrated high relative precisions better than 5 × 10(-5). Finally, the fact that this device does not require a continuous line-of-sight to the target as is the case with other configurations offers significant advantages.

  6. Average value of available measurements of the absolute air-fluorescence yield

    CERN Document Server

    Rosado, J; Arqueros, F

    2011-01-01

    The air-fluorescence yield is a key parameter for determining the energy scale of ultra-high-energy cosmic rays detected by fluorescence telescopes. A compilation of the available measurements of the absolute air-fluorescence yield normalized to its value in photons per MeV for the 337 nm band at given pressure and temperature has been recently presented in Ref. [1]. Also, in that paper, some corrections in the evaluation of the energy deposited in the corresponding experimental collision chambers have been proposed. In this note this comparison is updated. In addition, a simple statistical analysis is carried out showing that our corrections favor the compatibility among the various experiments. As a result, an average value of 5.45 ph/MeV for the fluorescence yield of the 337 nm band (20.1 ph/MeV for the spectral interval 300-420 nm) at 1013 hPa and 293 K with an uncertainty of 5% is found. This result is fully compatible with that recently presented by the AIRFLY collaboration (still preliminary) in such a...

  7. Calibration of the Odyssey Photosynthetic Irradiance Recorder for Absolute Irradiance Measures

    Science.gov (United States)

    Researchers are increasingly interested in measuring hotosynthetically active radiation (PAR) because of its importance in determining the structure and function of lotic ecosystems. The Odyssey Photosynthetic Irradiance Recorder is an affordable PAR meter gaining popularity am...

  8. ELENA MCP detector: absolute efficiency measurement for low energy neutral atoms

    Science.gov (United States)

    Rispoli, R.; De Angelis, E.; Colasanti, L.; Vertolli, N.; Orsini, S.; Scheer, J.; Mura, A.; Milillo, A.; Wurz, P.; Selci, S.; Di Lellis, A. M.; Leoni, R.; D'Alessandro, M.; Mattioli, F.; Cibella, S.

    2012-04-01

    MicroChannel plates (MCP) detectors are frequently used in space instrumentation for detecting a wide range of radiation and particles. In particular, the capability to detect non-thermal low energy neutral species is crucial for the sensor ELENA (Emitted Low-Energy Neutral Atoms), part of the package SERENA (Search for Exospheric Refilling and Emitted Natural Abundances) on board the BepiColombo mission to Mercury to be launched in 2014. ELENA is a TOF sensor, based on a novel concept ultra-sonic oscillating shutter (Start section)which is operated at frequencies up to 50 kHz; a MCP detector is used as a Stop section. It is aimed to detect neutral atoms in the range 10 eV - 5 keV, within 70° FOV, perpendicular to the S/C orbital plane. ELENA will monitor the emission of neutral atoms from the whole surface of Mercury thanks to the spacecraft motion. The major scientific objectives are the interaction between the environment and the planet, the global particle loss-rate and the remote sensing of the surface properties. In particular, surface release processes are investigated by identifying particles release from the surface, via solar wind-induced ion sputtering (100 eV) as well as Hydrogen back-scattered at hundreds eV. MCP absolute detection efficiency for very low energy neutral atoms (EMEFISTO facility of the Physical Institute of University of Bern (CH), measurements on three different type of MCPs coating have been performed providing the behaviors of MCP detection efficiency in the range 10eV-1keV. Outcomes from such measurements are here discussed.

  9. Absolute frequency synthesis of pulsed coherent light waves through phase-modulation active optical feedback.

    Science.gov (United States)

    Shimizu, K; Horiguchi, T; Koyamada, Y

    1996-11-15

    A novel method for the broadband absolute frequency synthesis of pulsed coherent lightwaves is demonstrated. It is based on pulse recirculation around an active optical feedback ring containing a delay-line fiber, an external phase modulator, an acousto-optic frequency shifter (AOFS), and a high-finesse Fabry-Perot étalon. The modulation frequency F(M) and the frequency shift F(AO) that are due to AOFS are designed so that their sum or difference equals the free-spectral range of the étalon and F(AO) is set at larger than the half-width at full maximum of its resonant peaks. If one of the peak frequencies is tuned to the frequency of the initial pulse, the frequency of the recirculating pulse jumps to the next peak for each round trip. In the experiment the absolute frequency is synthesized over a frequency span of 700 GHz around the initial stabilized frequency of the master laser.

  10. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... Physical Activity Basics Needs for Adults Needs for Children What Counts Needs for Older Adults Needs for ... Adding Physical Activity to Your Life Activities for Children Activities for Older Adults Overcoming Barriers Measuring Physical ...

  11. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... Adults Needs for Children What Counts Needs for Older Adults Needs for Pregnant or Postpartum Women Physical Activity & ... to Your Life Activities for Children Activities for Older Adults Overcoming Barriers Measuring Physical Activity Intensity Target Heart ...

  12. The orbit of Phi Cygni measured with long-baseline optical interferometry - Component masses and absolute magnitudes

    Science.gov (United States)

    Armstrong, J. T.; Hummel, C. A.; Quirrenbach, A.; Buscher, D. F.; Mozurkewich, D.; Vivekanand, M.; Simon, R. S.; Denison, C. S.; Johnston, K. J.; Pan, X.-P.

    1992-01-01

    The orbit of the double-lined spectroscopic binary Phi Cygni, the distance to the system, and the masses and absolute magnitudes of its components are presented via measurements with the Mar III Optical Interferometer. On the basis of a reexamination of the spectroscopic data of Rach & Herbig (1961), the values and uncertainties are adopted for the period and the projected semimajor axes from the present fit to the spectroscopic data and the values of the remaining elements from the present fit to the Mark III data. The elements of the true orbit are derived, and the masses and absolute magnitudes of the components, and the distance to the system are calculated.

  13. Absolute Isotopic Abundance Ratios and the Accuracy of Δ47 Measurements

    Science.gov (United States)

    Daeron, M.; Blamart, D.; Peral, M.; Affek, H. P.

    2016-12-01

    Conversion from raw IRMS data to clumped isotope anomalies in CO2 (Δ47) relies on four external parameters: the (13C/12C) ratio of VPDB, the (17O/16O) and (18O/16O) ratios of VSMOW (or VPDB-CO2), and the slope of the triple oxygen isotope line (λ). Here we investigate the influence that these isotopic parameters exert on measured Δ47 values, using real-world data corresponding to 7 months of measurements; simulations based on randomly generated data; precise comparisons between water-equilibrated CO2 samples and between carbonate standards believed to share quasi-identical Δ47 values; reprocessing of two carbonate calibration data sets with different slopes of Δ47 versus T. Using different sets of isotopic parameters generally produces systematic offsets as large as 0.04 ‰ in final Δ47 values. What's more, even using a single set of isotopic parameters can produce intra- and inter-laboratory discrepancies in final Δ47 values, if some of these parameters are inaccurate. Depending on the isotopic compositions of the standards used for conversion to "absolute" values, these errors should correlate strongly with either δ13C or δ18O, or more weakly with both. Based on measurements of samples expected to display identical Δ47 values, such as 25°C water-equilibrated CO2 with different carbon and oxygen isotope compositions, or high-temperature standards ETH-1 and ETH-2, we conclude that the isotopic parameters used so far in most clumped isotope studies produces large, systematic errors controlled by the relative bulk isotopic compositions of samples and standards, which should be one of the key factors responsible for current inter-laboratory discrepancies. By contrast, the isotopic parameters of Brand et al. [2010] appear to yield accurate Δ47 values regardless of bulk isotopic composition. References:Brand, Assonov and Coplen [2010] http://dx.doi.org/10.1351/PAC-REP-09-01-05

  14. Online absolute pose compensation and steering control of industrial robot based on six degrees of freedom laser measurement

    Science.gov (United States)

    Yang, Juqing; Wang, Dayong; Fan, Baixing; Dong, Dengfeng; Zhou, Weihu

    2017-03-01

    In-situ intelligent manufacturing for large-volume equipment requires industrial robots with absolute high-accuracy positioning and orientation steering control. Conventional robots mainly employ an offline calibration technology to identify and compensate key robotic parameters. However, the dynamic and static parameters of a robot change nonlinearly. It is not possible to acquire a robot's actual parameters and control the absolute pose of the robot with a high accuracy within a large workspace by offline calibration in real-time. This study proposes a real-time online absolute pose steering control method for an industrial robot based on six degrees of freedom laser tracking measurement, which adopts comprehensive compensation and correction of differential movement variables. First, the pose steering control system and robot kinematics error model are constructed, and then the pose error compensation mechanism and algorithm are introduced in detail. By accurately achieving the position and orientation of the robot end-tool, mapping the computed Jacobian matrix of the joint variable and correcting the joint variable, the real-time online absolute pose compensation for an industrial robot is accurately implemented in simulations and experimental tests. The average positioning error is 0.048 mm and orientation accuracy is better than 0.01 deg. The results demonstrate that the proposed method is feasible, and the online absolute accuracy of a robot is sufficiently enhanced.

  15. New ursane triterpenoids from Salvia urmiensis Bunge: Absolute configuration and anti-proliferative activity.

    Science.gov (United States)

    Farimani, Mahdi Moridi; Bahadori, Mir Babak; Koulaei, Sheyda Ahmadi; Salehi, Peyman; Ebrahimi, Samad Nejad; Khavasi, Hamid Reza; Hamburger, Matthias

    2015-10-01

    Two new triterpenoids, urmiensolide B (1) and urmiensic acid (2), with rare carbon skeletons together with three known compounds were isolated from the aerial parts of Salvia urmiensis Bunge, an endemic species of Iran. The structures were established by a combination of 1D and 2D NMR, and HRESIMS, and in the case of 2 and 3, their structures were confirmed by single-crystal X-ray analysis. The absolute configuration of 2 was established by electronic circular dichroism (ECD) spectra. The new compounds were evaluated for their anti-proliferative activities against A549 and MCF-7 human cancer cell lines. Compounds 1 and 2 showed IC50 values of 2.8 and 1.6 μM against MCF-7 cells, respectively.

  16. Using relative and absolute measures for monitoring health inequalities: experiences from cross-national analyses on maternal and child health

    Directory of Open Access Journals (Sweden)

    Huisman Martijn

    2007-10-01

    Full Text Available Abstract Background As reducing socio-economic inequalities in health is an important public health objective, monitoring of these inequalities is an important public health task. The specific inequality measure used can influence the conclusions drawn, and there is no consensus on which measure is most meaningful. The key issue raising most debate is whether to use relative or absolute inequality measures. Our paper aims to inform this debate and develop recommendations for monitoring health inequalities on the basis of empirical analyses for a broad range of developing countries. Methods Wealth-group specific data on under-5 mortality, immunisation coverage, antenatal and delivery care for 43 countries were obtained from the Demographic and Health Surveys. These data were used to describe the association between the overall level of these outcomes on the one hand, and relative and absolute poor-rich inequalities in these outcomes on the other. Results We demonstrate that the values that the absolute and relative inequality measures can take are bound by mathematical ceilings. Yet, even where these ceilings do not play a role, the magnitude of inequality is correlated with the overall level of the outcome. The observed tendencies are, however, not necessities. There are countries with low mortality levels and low relative inequalities. Also absolute inequalities showed variation at most overall levels. Conclusion Our study shows that both absolute and relative inequality measures can be meaningful for monitoring inequalities, provided that the overall level of the outcome is taken into account. Suggestions are given on how to do this. In addition, our paper presents data that can be used for benchmarking of inequalities in the field of maternal and child health in low and middle-income countries.

  17. Multi-Segment Radius Measurement Using an Absolute Distance Meter Through a Null Assembly

    Science.gov (United States)

    Merle, Cormic; Wick, Eric; Hayden, Joseph

    2011-01-01

    This system was one of the test methods considered for measuring the radius of curvature of one or more of the 18 segmented mirrors that form the 6.5 m diameter primary mirror (PM) of the James Webb Space Telescope (JWST). The assembled telescope will be tested at cryogenic temperatures in a 17-m diameter by 27-m high vacuum chamber at the Johnson Space Center. This system uses a Leica Absolute Distance Meter (ADM), at a wavelength of 780 nm, combined with beam-steering and beam-shaping optics to make a differential distance measurement between a ring mirror on the reflective null assembly and individual PM segments. The ADM is located inside the same Pressure-Tight Enclosure (PTE) that houses the test interferometer. The PTE maintains the ADM and interferometer at ambient temperature and pressure so that they are not directly exposed to the telescope s harsh cryogenic and vacuum environment. This system takes advantage of the existing achromatic objective and reflective null assembly used by the test interferometer to direct four ADM beamlets to four PM segments through an optical path that is coincident with the interferometer beam. A mask, positioned on a linear slide, contains an array of 1.25 mm diameter circular subapertures that map to each of the 18 PM segments as well as six positions around the ring mirror. A down-collimated 4 mm ADM beam simultaneously covers 4 adjacent PM segment beamlets and one ring mirror beamlet. The radius, or spacing, of all 18 segments can be measured with the addition of two orthogonally-oriented scanning pentaprisms used to steer the ADM beam to any one of six different sub-aperture configurations at the plane of the ring mirror. The interferometer beam, at a wavelength of 687 nm, and the ADM beamlets, at a wavelength of 780 nm, pass through the objective and null so that the rays are normally incident on the parabolic PM surface. After reflecting off the PM, both the ADM and interferometer beams return to their respective

  18. Measurement of the Absolute Proton and Helium Flux at the Top of the Atmosphere using IMAX

    DEFF Research Database (Denmark)

    Menn, W.; Hof, M.; Reimer, O.;

    1996-01-01

    with ancillary scintillators, time-of-flight, and aerogel cherenkov detectors. High resolution drift chambers and MWPCs were used as the tracking devices. Using redundant detectors, an extensive examination of the instrument efficiency was carried out. We present the absolute spectra of protons and helium...

  19. Design of a quasi-zero-stiffness based sensor system for the measurement of absolute vibration displacement of moving platforms

    Science.gov (United States)

    Jing, Xingjian; Wang, Yu; Li, Quankun; Sun, Xiuting

    2016-09-01

    This study presents the analysis and design of a novel sensor system for measuring the absolute vibration displacement of moving platforms based on the concept of quasi-zero-stiffness (QZS). The sensor system is constructed using positive- and negative-stiffness springs, which make it possible to achieve an equivalent QZS and consequently to create a broadband vibration-free point for absolute vibration displacement measurement in moving platforms. Theoretical analysis is conducted for the analysis and design of the influence of structure parameters on system measurement performance. A prototype is designed which can avoid the drawback of instability in existing QZS systems with negative stiffness, and corresponding data-processing software is developed to fulfill time domain measurements. Both the simulation and experimental results verify the effectiveness of this novel sensor system.

  20. Analysis, Design and Testing of a Novel Quasi-Zero-Stiffness based Sensor System for Measurement of Absolute Vibration Motion

    CERN Document Server

    Wang, Yu

    2015-01-01

    This study presents the analysis and design of a novel quasi-zero-stiffness (QZS) based vibration sensor system for measuring absolute displacement of vibrating platforms/objects. The sensor system is constructed by using positive and negative-stiffness springs, which makes it possible to achieve an equivalent QZS and consequently to create a broadband vibration-free point for absolute displacement measurement in vibrating platforms. Theoretic analysis is conducted for the analysis and design of the influence of structure parameters on system measurement performance. A prototype is designed which can avoid the drawback of instability in existing QZS systems with negative stiffness, and the corresponding data-processing software is developed to fulfill time domain and frequency domain measurements simultaneously. Both simulation and experiment results verify the effectiveness of this novel sensor system.

  1. Absolute OH Number Density Measurements in Lean Fuel-Air Mixtures Excited by a Repetitively Pulsed Nanosecond Discharge

    Science.gov (United States)

    2013-01-01

    discharge filaments and near the electrode edges [9]. Instead of using absorption measurement, an atmospheric pressure flame generated by a Hencken...DuPont) is placed between each electrode and the channel wall, to reduce air gaps and prevent corona discharge outside the cell. In the present work...1 Absolute OH Number Density Measurements in Lean Fuel-Air Mixtures Excited by a Repetitively Pulsed Nanosecond Discharge Zhiyao Yin, Campbell D

  2. Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development

    Directory of Open Access Journals (Sweden)

    Nick D.L. Owens

    2016-01-01

    Full Text Available Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack a comprehensive understanding of transcript kinetics, which limits quantitative biology. This is an acute challenge in embryonic development, where rapid changes in gene expression dictate cell fate decisions. By ultra-high-frequency sampling of Xenopus embryos and absolute normalization of sequence reads, we present smooth gene expression trajectories in absolute transcript numbers. During a developmental period approximating the first 8 weeks of human gestation, transcript kinetics vary by eight orders of magnitude. Ordering genes by expression dynamics, we find that “temporal synexpression” predicts common gene function. Remarkably, a single parameter, the characteristic timescale, can classify transcript kinetics globally and distinguish genes regulating development from those involved in cellular metabolism. Overall, our analysis provides unprecedented insight into the reorganization of maternal and embryonic transcripts and redefines our ability to perform quantitative biology.

  3. Absolute Configurations and NO Inhibitory Activities of Terpenoids from Curcuma longa.

    Science.gov (United States)

    Xu, Jing; Ji, Feifei; Kang, Jing; Wang, Hao; Li, Shen; Jin, Da-Qing; Zhang, Qiang; Sun, Hongwei; Guo, Yuanqiang

    2015-06-24

    Curcuma longa L., belonging to the Zingiberaceae family, is a perennial herb and has been used as a spice and a pigment in the food industry. In the ongoing search for inhibitory reagents of NO production and survey of the chemical composition of natural vegetable foods, the chemical constituents of C. longa used as spice were investigated. This investigation resulted in the isolation of 2 new terpenoids and 14 known analogues. Their structures were established on the basis of the extensive analyses of 1D and 2D NMR spectroscopic data, and the absolute configurations of 1-4 were elucidated by comparison of the calculated and experimental ECD spectra. Among them, compound 1 is a rare norditerpene with an ent-labdane skeleton, and 2 is a skeletally novel sesquiterpene having an eight-membered ring. All of the compounds were found to possess NO inhibitory activities in murine microglial BV-2 cells. The discovery of two new compounds in this chemical investigation further disclosed the chemical composition of C. longa used a food spice, and the bioassay implied that the natural food spice C. longa, containing terpenoids with NO inhibitory activities, may be potentially promotive to human health.

  4. Measuring physical activity during pregnancy

    Directory of Open Access Journals (Sweden)

    Teede Helena J

    2011-03-01

    Full Text Available Abstract Background Currently, little is known about physical activity patterns in pregnancy with prior estimates predominantly based on subjective assessment measures that are prone to error. Given the increasing obesity rates and the importance of physical activity in pregnancy, we evaluated the relationship and agreement between subjective and objective physical activity assessment tools to inform researchers and clinicians on optimal assessment of physical activity in pregnancy. Methods 48 pregnant women between 26-28 weeks gestation were recruited. The Yamax pedometer and Actigraph accelerometer were worn for 5-7 days under free living conditions and thereafter the International Physical Activity Questionnaire (IPAQ was completed. IPAQ and pedometer estimates of activity were compared to the more robust and accurate accelerometer data. Results Of 48 women recruited, 30 women completed the study (mean age: 33.6 ± 4.7 years; mean BMI: 31.2 ± 5.1 kg/m2 and 18 were excluded (failure to wear [n = 8] and incomplete data [n = 10]. The accelerometer and pedometer correlated significantly on estimation of daily steps (ρ = 0.69, p -1 day-1 were not significantly correlated and there was poor absolute agreement. Relative to the accelerometer, the IPAQ under predicted daily total METs (105.76 ± 259.13 min-1 day-1 and light METs (255.55 ± 128.41 min-1 day-1 and over predicted moderate METs (-112.25 ± 166.41 min-1 day-1. Conclusion Compared with the accelerometer, the pedometer appears to provide a reliable estimate of physical activity in pregnancy, whereas the subjective IPAQ measure performed less accurately in this setting. Future research measuring activity in pregnancy should optimally encompass objective measures of physical activity. Trial Registration Australian New Zealand Clinical Trial Registry Number: ACTRN12608000233325. Registered 7/5/2008.

  5. A Proposed Method for Measurement of Absolute Air Fluorescence Yield based on High Resolution Optical Emission Spectroscopy

    CERN Document Server

    Gika, V; Maltezos, S

    2016-01-01

    In this work, we present a method for absolute measurement of air fluorescence yield based on high resolution optical emission spectroscopy. The absolute measurement of the air fluorescence yield is feasible using the Cherenkov light, emitted by an electron beam simultaneously with the fluorescence light, as a "standard candle". The separation of these two radiations can be accomplished exploiting the "dark" spectral regions of the emission band systems of the molecular spectrum of nitrogen. In these "dark" regions the net Cherenkov light can be recorded experimentally and be compared with the calculated one. The instrumentation for obtaining the nitrogen molecular spectra in high resolution and the noninvasive method for monitoring the rotational temperature of the emission process are also described. For the experimental evaluation of the molecular spectra analysis we used DC normal glow discharges in air performed in an appropriate spectral lamp considered as an air-fluorescence light emulator. The propose...

  6. Separating climate-induced mass transfers and instrumental effects from tectonic signal in repeated absolute gravity measurements

    Science.gov (United States)

    Van Camp, M.; Viron, O.; Avouac, J. P.

    2016-05-01

    We estimate the signature of the climate-induced mass transfers in repeated absolute gravity measurements based on satellite gravimetric measurements from the Gravity Recovery and Climate Experiment (GRACE) mission. We show results at the globe scale and compare them with repeated absolute gravity (AG) time behavior in three zones where AG surveys have been published: Northwestern Europe, Canada, and Tibet. For 10 yearly campaigns, the uncertainties affecting the determination of a linear gravity rate of change range 3-4 nm/s2/a in most cases, in the absence of instrumental artifacts. The results are consistent with what is observed for long-term repeated campaigns. We also discuss the possible artifact that can result from using short AG survey to determine the tectonic effects in a zone of high hydrological variability. We call into question the tectonic interpretation of several gravity changes reported from stations in Tibet, in particular the variation observed prior to the 2015 Gorkha earthquake.

  7. Measurement of the absolute branching ratio of the K+ -> pi+ pi0 (gamma) decay with the KLOE detector

    CERN Document Server

    Ambrosino, F; Antonelli, M; Archilli, F; Bacci, C; Beltrame, P; Bencivenni, G; Bertolucci, S; Bini, C; Bloise, C; Bocchetta, S; Bossi, F; Branchini, P; Campana, P; Capon, G; Capussela, T; Ceradini, F; Cesario, F; Chi, S; Chiefari, G; Ciambrone, P; Crucianelli, F; De Lucia, E; De Santis, A; De Simone, P; De Zorzi, G; Denig, A; Di Domenico, A; Di Donato, C; Di Micco, B; Doria, A; Dreucci, M; Felici, G; Ferrari, A; Ferrer, M L; Fiore, S; Forti, C; Franzini, P; Gatti, C; Gauzzi, P; Giovannella, S; Gorini, E; Graziani, E; Kluge, W; Kulikov, V; Lacava, F; Lanfranchi, G; Lee-Franzini, J; Leone, D; Martemyanov, M; Martini, M; Massarotti, P; Mei, W; Meola, S; Miscetti, S; Moulson, M; Müller, S; Murtas, F; Napolitano, M; Nguyen, F; Palutan, M; Pasqualucci, E; Passeri, A; Patera, V; Perfetto, F; Primavera, M; Santangelo, P; Saracino, G; Sciascia, B; Sciubba, A; Sibidanov, A; Spadaro, T; Testa, M; Tortora, L; Valente, P; Venanzoni, G; Versaci, R; Xu, G

    2008-01-01

    We have measured the absolute branching ratio of the K+ -> pi+ pi0 (gamma) decay, using about 20 million tagged K+ mesons collected with the KLOE detector at DAFNE, the Frascati phi-factory. Signal counts are obtained from the fit of the distribution of the momentum of the charged decay particle in the kaon rest frame. The result, inclusive of final-state radiation, is BR(K+ -> pi+ pi0 (gamma))=0.2065+/-0.0005_{stat}+/- 0.0008_{syst}.

  8. Absolute photo-destruction and photo-fragmentation cross section measurements using an electrostatic ion beam trap.

    Science.gov (United States)

    Aviv, O; Kafle, B; Chandrasekaran, V; Heber, O; Rappaport, M L; Rubinstein, H; Schwalm, D; Strasser, D; Toker, Y; Zajfman, D

    2013-05-01

    We describe a technique to measure absolute photo-induced cross sections for cluster anions stored in an electrostatic ion beam trap (EIBT) with a central deflector. The setup allows determination of total photo-destruction cross sections as well as partial cross sections for fragmentation and electron detachment. The unique properties of this special EIBT setup are investigated and illustrated using small Al(n)(-) clusters.

  9. Integration of Quantitative Positron Emission Tomography Absolute Myocardial Blood Flow Measurements in the Clinical Management of Coronary Artery Disease.

    Science.gov (United States)

    Gewirtz, Henry; Dilsizian, Vasken

    2016-05-31

    In the >40 years since planar myocardial imaging with(43)K-potassium was introduced into clinical research and management of patients with coronary artery disease (CAD), diagnosis and treatment have undergone profound scientific and technological changes. One such innovation is the current state-of-the-art hardware and software for positron emission tomography myocardial perfusion imaging, which has advanced it from a strictly research-oriented modality to a clinically valuable tool. This review traces the evolving role of quantitative positron emission tomography measurements of myocardial blood flow in the evaluation and management of patients with CAD. It presents methodology, currently or soon to be available, that offers a paradigm shift in CAD management. Heretofore, radionuclide myocardial perfusion imaging has been primarily qualitative or at best semiquantitative in nature, assessing regional perfusion in relative terms. Thus, unlike so many facets of modern cardiovascular practice and CAD management, which depend, for example, on absolute values of key parameters such as arterial and left ventricular pressures, serum lipoprotein, and other biomarker levels, the absolute levels of rest and maximal myocardial blood flow have yet to be incorporated into routine clinical practice even in most positron emission tomography centers where the potential to do so exists. Accordingly, this review focuses on potential value added for improving clinical CAD practice by measuring the absolute level of rest and maximal myocardial blood flow. Physiological principles and imaging fundamentals necessary to understand how positron emission tomography makes robust, quantitative measurements of myocardial blood flow possible are highlighted.

  10. Making sense of absolute measurement: James Clerk Maxwell, William Thomson, Fleeming Jenkin, and the invention of the dimensional formula

    Science.gov (United States)

    Mitchell, Daniel Jon

    2017-05-01

    During the 1860s, the Committee on Electrical Standards convened by the British Association for the Advancement of Science (BAAS) attempted to articulate, refine, and realize a system of absolute electrical measurement. I describe how this context led to the invention of the dimensional formula by James Clerk Maxwell and subsequently shaped its interpretation, in particular through the attempts of William Thomson and Fleeming Jenkin to make absolute electrical measurement intelligible to telegraph engineers. I identify unit conversion as the canonical purpose for dimensional formulae during the remainder of the nineteenth century and go on to explain how an operational interpretation was developed by the French physicist Gabriel Lippmann. The focus on the dimensional formula reveals how various conceptual, theoretical, and material aspects of absolute electrical measurement were taken up or resisted in experimental physics, telegraphic engineering, and electrical practice more broadly, which leads to the conclusion that the integration of electrical theory and telegraphic practice was far harder to achieve and maintain than historians have previously thought. This ultimately left a confusing legacy of dimensional concepts and practices in physics.

  11. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... Button Our Division About Us Nutrition Physical Activity Overweight & Obesity Healthy Weight Breastfeeding Micronutrient Malnutrition State and Local Programs Measuring Physical Activity Intensity Recommend on Facebook Tweet Share Compartir For ...

  12. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... Older Adults Overcoming Barriers Measuring Physical Activity Intensity Target Heart Rate & Estimated Maximum Heart Rate Perceived Exertion ( ... a heavy backpack Other Methods of Measuring Intensity Target Heart Rate and Estimated Maximum Heart Rate Perceived ...

  13. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... Adults Overcoming Barriers Measuring Physical Activity Intensity Target Heart Rate & Estimated Maximum Heart Rate Perceived Exertion (Borg Rating of Perceived Exertion Scale) ...

  14. Absolute cerebral blood flow and blood volume measured by magnetic resonance imaging bolus tracking: comparison with positron emission tomography values

    DEFF Research Database (Denmark)

    Østergaard, Leif; Smith, D F; Vestergaard-Poulsen, Peter;

    1998-01-01

    The authors determined cerebral blood flow (CBF) with magnetic resonance imaging (MRI) of contrast agent bolus passage and compared the results with those obtained by O-15 labeled water (H215O) and positron emission tomography (PET). Six pigs were examined by MRI and PET under normo......- and hypercapnic conditions. After dose normalization and introduction of an empirical constant phi Gd, absolute regional CBF was calculated from MRI. The spatial resolution and the signal-to-noise ratio of CBF measurements by MRI were better than by the H215O-PET protocol. Magnetic resonance imaging cerebral...... blood volume (CBV) estimates obtained using this normalization constant correlated well with values obtained by O-15 labeled carbonmonooxide (C15O) PET. However, PET CBV values were approximately 2.5 times larger than absolute MRI CBV values, supporting the hypothesized sensitivity of MRI to small...

  15. Absolute advantage

    NARCIS (Netherlands)

    J.G.M. van Marrewijk (Charles)

    2008-01-01

    textabstractA country is said to have an absolute advantage over another country in the production of a good or service if it can produce that good or service using fewer real resources. Equivalently, using the same inputs, the country can produce more output. The concept of absolute advantage can a

  16. Absolute frequency measurement of the {{}^{1}}{{\\text{S}}_{0}} – {{}^{3}}{{\\text{P}}_{0}} transition of 171Yb

    Science.gov (United States)

    Pizzocaro, Marco; Thoumany, Pierre; Rauf, Benjamin; Bregolin, Filippo; Milani, Gianmaria; Clivati, Cecilia; Costanzo, Giovanni A.; Levi, Filippo; Calonico, Davide

    2017-02-01

    We report the absolute frequency measurement of the unperturbed transition {{}1}{{\\text{S}}0} – {{}3}{{\\text{P}}0} at 578 nm in 171Yb realized in an optical lattice frequency standard relative to a cryogenic caesium fountain. The measurement result is 518 295 836 590 863.59(31) Hz with a relative standard uncertainty of 5.9× {{10}-16} . This value is in agreement with the ytterbium frequency recommended as a secondary representation of the second in the International System of Units.

  17. Absolute nuclear material assay

    Science.gov (United States)

    Prasad, Manoj K [Pleasanton, CA; Snyderman, Neal J [Berkeley, CA; Rowland, Mark S [Alamo, CA

    2012-05-15

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  18. Measurement of the Absolute Magnitude and Time Courses of Mitochondrial Membrane Potential in Primary and Clonal Pancreatic Beta-Cells.

    Science.gov (United States)

    Gerencser, Akos A; Mookerjee, Shona A; Jastroch, Martin; Brand, Martin D

    2016-01-01

    The aim of this study was to simplify, improve and validate quantitative measurement of the mitochondrial membrane potential (ΔψM) in pancreatic β-cells. This built on our previously introduced calculation of the absolute magnitude of ΔψM in intact cells, using time-lapse imaging of the non-quench mode fluorescence of tetramethylrhodamine methyl ester and a bis-oxonol plasma membrane potential (ΔψP) indicator. ΔψM is a central mediator of glucose-stimulated insulin secretion in pancreatic β-cells. ΔψM is at the crossroads of cellular energy production and demand, therefore precise assay of its magnitude is a valuable tool to study how these processes interplay in insulin secretion. Dispersed islet cell cultures allowed cell type-specific, single-cell observations of cell-to-cell heterogeneity of ΔψM and ΔψP. Glucose addition caused hyperpolarization of ΔψM and depolarization of ΔψP. The hyperpolarization was a monophasic step increase, even in cells where the ΔψP depolarization was biphasic. The biphasic response of ΔψP was associated with a larger hyperpolarization of ΔψM than the monophasic response. Analysis of the relationships between ΔψP and ΔψM revealed that primary dispersed β-cells responded to glucose heterogeneously, driven by variable activation of energy metabolism. Sensitivity analysis of the calibration was consistent with β-cells having substantial cell-to-cell variations in amounts of mitochondria, and this was predicted not to impair the accuracy of determinations of relative changes in ΔψM and ΔψP. Finally, we demonstrate a significant problem with using an alternative ΔψM probe, rhodamine 123. In glucose-stimulated and oligomycin-inhibited β-cells the principles of the rhodamine 123 assay were breached, resulting in misleading conclusions.

  19. Effects of musical training and absolute pitch ability on event-related activity in response to sine tones.

    Science.gov (United States)

    Wayman, J W; Frisina, R D; Walton, J P; Hantz, E C; Crummer, G C

    1992-06-01

    The neural correlates of music perception have received relatively little scientific attention. The neural activity of listeners without musical training (N = 11), highly trained musicians (N = 14), and musicians possessing "absolute pitch" (AP) ability (N = 10) have been measured. Major differences were observed in the P3, an endogenous event-related potential (ERP), which is thought to be a neurophysiological manifestation of working memory processing. The P3 was elicited using the classical "oddball" paradigm with a sine-tone series. Subjects' musical backgrounds were evaluated with a survey questionnaire. AP ability was verified with an objective pitch identification test. The P3 amplitude, latency and wave shape were evaluated along with each subjects' performance score and musical background. The AP subjects showed a significantly smaller P3 amplitude than either the musicians or nonmusicians, which were nearly identical. The P3 latency was shortest for the AP subjects, and was longer for the nonmusicians. Performance scores were uniformly high in all three groups. It is concluded that AP subjects do indeed exhibit P3 ERPs, albeit with smaller amplitudes and shorter latencies. The differences in neural activity between the musicians and AP subjects were not due to musical training, as the AP subjects had similar musical backgrounds to the musician group. It is also concluded that persons with the AP ability may have superior auditory sensitivity at cortical levels and/or use unique neuropsychological strategies when processing tones.

  20. High-accuracy absolute distance measurement by two-wavelength double heterodyne interferometry with variable synthetic wavelengths

    CERN Document Server

    Kuramoto, Yoshiyuki

    2014-01-01

    We present an absolute distance measurement interferometer based on a two wavelength interferometer and a variable synthetic wavelength technique. The wavelength scanning range was 12 GHz, realized with a phase accuracy of 1.0 m{\\lambda} by heterodyne detection at each measurement wavelength. This small wavelength scanning range enabled the use of distributed feedback laser diodes as an interferometer light source and a fast 20 ms wavelength scanning time by injection current control. We demonstrated a measurement range of up to 1.5 m and an accuracy better than 1.2 nm in comparison with a displacement measurement interferometer, corresponding to a relative accuracy of 10-9. In addition, we also proposed expanding the range of maximum measurement and compensation of refractive index of air for linear colliders.

  1. Measurement of absolute auditory thresholds in the common marmoset (Callithrix jacchus).

    Science.gov (United States)

    Osmanski, Michael S; Wang, Xiaoqin

    2011-07-01

    The common marmoset is a small, arboreal, New World primate that has emerged as a promising non-human model system in auditory neuroscience. A complete understanding of the neuroethology of auditory processing in marmosets will include behavioral work examining how sounds are perceived by these animals. However, there have been few studies of the marmoset's hearing and perceptual abilities and the audiogram of this species has not been measured using modern psychophysical methods. The present experiment pairs psychophysics with an operant conditioning technique to examine perception of pure tone stimuli by marmosets using an active behavioral paradigm. Subjects were trained to lick at a feeding tube when they detected a sound. Correct responses provided access to a food reward. Pure tones of varying intensities were presented to subjects using the method of constant stimuli. Behavioral thresholds were calculated for each animal based on hit rate--threshold was defined by the tone intensity that the animal correctly identified 50% of the time. Results show that marmoset hearing is comparable to that of other New World monkeys, with a hearing range extending from about 125 Hz up to 36 kHz and a sensitivity peak around 7 kHz.

  2. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... be able to say more than a few words without pausing for a breath. Absolute Intensity The ... per hour or faster, but not race-walking) Water aerobics Bicycling slower than 10 miles per hour ...

  3. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... be able to say more than a few words without pausing for a breath. Absolute Intensity The ... site? Adobe PDF file Microsoft PowerPoint file Microsoft Word file Microsoft Excel file Audio/Video file Apple ...

  4. Gravity Change in Finland 1962-2010 from the Comparison of Legacy Relative Measurements with New Absolute Measurements Using the A10-020 Gravimeter

    Science.gov (United States)

    Raja-Halli, A.; Makinen, J.; Sekowski, M.; Krynski, J. S.; Kuokkanen, J.; Naranen, J.; Ruotsalainen, H. E. O.; Virtanen, H.; Bilker-Koivula, M.

    2014-12-01

    The gravity change associated with the Fennoscandian Postglacial Rebound (PGR) has been studied for 50 years now, with both relative and absolute gravity measurements. High-precision relative gravity measurements on the specially designed Fennoscandian Land Uplift Gravity Lines began in 1966. First absolute-gravity measurements with laboratory-type instruments were made in 1976. Here we report on a new regionally dense dataset: the comparison of legacy relative measurements in the Finnish First Order Gravity Net (FOGN) with absolute-gravity measurements with the A10-020 gravimeter. The FOGN was first measured in 1962 using a Worden Master gravimeter, and re-surveyed in 1988 using two LaCoste&Romberg model G gravimeters. It was re-measured in 2009-2010 using the A10-020 free-fall gravimeter of the Institute of Geodesy and Cartography. The FOGN covers the whole country and consists of 50 outdoor stations in public buildings, typically on church steps. About 30 stations from 1962 were still intact in 2009/10, and at some additional stations there is a history of local relative ties to replacement sites now occupied with the A10-020. The vertical PGR rates at the sites are up to 1 cm/yr, and thus the total gravity change in the 47 years can amount to 80 microgals. Since the legacy measurements are relative, only the differences of gravity change are estimable, and consequently the expected maximum signal is less, about 60 microgals. We compare the observed gravity change in the FOGN with estimates of vertical motion from continuous GNSS, from repeated precise leveling and from tide gauges, and with gravity change predicted from PGR models. At seven locations the gravity change estimated from the FOGN can also be compared with time series of absolute-gravity measurements with laboratory-type instruments.

  5. Measurements of the Absolute Branching Fractions of B^\\pm --> K^\\pm X_{c\\bar c}

    CERN Document Server

    Aubert, B; Abrams, G S; Adye, T; Ahmed, M; Ahmed, S; Alam, M S; Albert, J; Aleksan, Roy; Allen, M T; Allison, J; Allmendinger, T; Altenburg, D; Andreassen, R; Andreotti, M; Angelini, C; Anulli, F; Arnaud, N; Aston, D; Azzolini, V; Baak, M; Back, J J; Baldini-Ferroli, R; Band, H R; Banerjee, S; Barate, R; Bard, D J; Barlow, N R; Barlow, R J; Barrett, M; Bartoldus, R; Batignani, G; Battaglia, M; Bauer, J M; Beck, T W; Behera, P K; Bellini, F; Benayoun, M; Benelli, G; Berger, N; Bernard, D; Berryhill, J W; Best, D; Bettarini, S; Bettoni, D; Bevan, A J; Bhimji, W; Bhuyan, B; Bianchi, F; Biasini, M; Biesiada, J; Blanc, F; Blaylock, G; Blinov, A E; Blinov, V E; Bloom, P; Bomben, M; Bondioli, M; Bonneaud, G R; Bosisio, L; Boutigny, D; Bowerman, D A; Boyarski, A M; Boyd, J T; Bozzi, C; Brandenburg, G; Brandt, T; Brau, J E; Breon, A B; Briand, H; Brose, J; Brown, C L; Brown, C M; Brown, D; Brown, D N; Bruinsma, M; Brunet, S; Bucci, F; Buchanan, C; Buchmüller, O L; Bugg, W; Bukin, A D; Bula, R; Bulten, H; Burchat, P R; Burke, J P; Button-Shafer, J; Buzzo, A; Bóna, M; Cahn, R N; Calabrese, R; Calcaterra, A; Calderini, G; Campagnari, C; Capra, R; Carpinelli, M; Cartaro, C; Cavallo, N; Cavoto, G; Cenci, R; Chai, X; Chaisanguanthum, K S; Chao, M; Charles, E; Charles, M J; Chauveau, J; Chavez, C A; Chen, A; Chen, C; Chen, E; Chen, J C; Chen, S; Chen, X; Cheng, B; Cheng, C H; Chevalier, N; Cibinetto, G; Clark, P J; Claus, R; Cochran, J; Coleman, J P; Contri, R; Convery, M R; Cormack, C M; Cossutti, F; Cottingham, W N; Couderc, F; Covarelli, R; Cowan, G; Cowan, R; Crawley, H B; Cremaldi, L; Cristinziani, M; Cunha, A; Curry, S; Côte, D; D'Orazio, A; Dahmes, B; Dallapiccola, C; Danielson, N; Dasu, S; Datta, M; Dauncey, P D; David, P; Davier, M; Davis, C L; Day, C T; De Groot, N; De Nardo, Gallieno; De Sangro, R; Del Buono, L; Del Re, D; Della Ricca, G; Di Lodovico, F; Di Marco, E; Dickopp, M; Dingfelder, J C; Dittongo, S; Dong, D; Dorfan, J; Druzhinin, V P; Dubitzky, R S; Dubois-Felsmann, G P; Dujmic, D; Dunwoodie, W M; Dvoretskii, A; Eckhart, E A; Eckmann, R; Edgar, C L; Edwards, A J; Egede, U; Eichenbaum, A M; Eigen, G; Eisner, A M; Elmer, P; Emery, S; Ernst, J A; Eschenburg, V; Eschrich, I; Eyges, V; Fabozzi, F; Faccini, R; Fan, S; Feltresi, E; Ferrarotto, F; Ferroni, F; Field, R C; Finocchiaro, G; Flacco, C J; Flack, R L; Flächer, H U; Flood, K T; Ford, K E; Ford, W T; Forster, I J; Forti, F; Fortin, D; Foulkes, S D; Franek, B; Frey, R; Fritsch, M; Fry, J R; Fulsom, B G; Gabathuler, E; Gaidot, A; Gaillard, J R; Galeazzi, F; Gallo, F; Gamba, D; Gamet, R; Gan, K K; Ganzhur, S F; Gary, J W; Gaspero, M; Gatto, C; George, K A; Gill, M S; Giorgi, M A; Giroux, X; Gladney, L; Glanzman, T; Godang, R; Goetzen, K; Golubev, V B; Gopal, G P; Gowdy, S J; Gradl, W; Graham, M; Grancagnolo, S; Graugès-Pous, E; Graziani, G; Green, M G; Grenier, P; Gritsan, A V; Grosdidier, G; Groysman, Y; Guo, Q H; Hadavand, H K; Hadig, T; Haire, M; Halyo, V; Hamano, K; Hamel de Monchenault, G; Hamon, O; Harrison, P F; Harrison, T J; Hart, A J; Hartfiel, B L; Hast, C; Hauke, A; Hawkes, C M; Hearty, C; Held, T; Hertzbach, S S; Heusch, C A; Hill, E J; Hirschauer, J F; Hitlin, D G; Hodgkinson, M C; Hollar, J J; Hong, T M; Honscheid, K; Hopkins, D A; Hrynóva, T; Hufnagel, D; Hulsbergen, W D; Hutchcroft, D E; Höcker, A; Igonkina, O; Innes, W R; Izen, J M; Jackson, P D; Jackson, P S; Jacobsen, R G; Jawahery, A; Jessop, C P; John, M J J; Johnson, J R; Judd, D; Kadel, R W; Kadyk, J; Kagan, H; Karyotakis, Yu; Kass, R; Kelly, M P; Kelsey, M H; Kerth, L T; Khan, A; Kim, H; Kim, P; Kirkby, D; Kitayama, I; Klose, V; Knecht, N S; Koch, H; Kocian, M L; Koeneke, K; Kofler, R; Kolomensky, Yu G; Koptchev, V B; Kovalskyi, D; Kowalewski, R V; Kozanecki, Witold; Kravchenko, E A; Kreisel, A; Krishnamurthy, M; Kroeger, R; Kroseberg, J; Kukartsev, G; Kutter, P E; Kyberd, P; La Vaissière, C de; Lacker, H M; Lae, C K; Lafferty, G D; Lanceri, L; Lange, D J; Langenegger, U; Lankford, A J; Latham, T E; Lau, Y P; Lazzaro, A; Le Diberder, F R; Lees, J P; Legendre, M; Leith, D W G S; Lepeltier, V; Leruste, P; Lewandowski, B; Li Gioi, L; Li, H; Li, X; Libby, J; Lista, L; Liu, R; Lo Vetere, M; LoSecco, J M; Lockman, W S; Lombardo, V; London, G W; Long, O; Lou, X C; Lu, M; Luitz, S; Lund, P; Luppi, E; Lusiani, A; Lutz, A M; Lynch, G; Lynch, H L; Lü, C; Lüth, V; MacFarlane, D B; Macri, M; Mader, W F; Majewski, S A; Malcles, J; Mallik, U; Mancinelli, G; Mandelkern, M A; Marchiori, G; Margoni, M; Marks, J; Marsiske, H; Martínez-Vidal, F; Mattison, T S; Mayer, B; Mazur, M A; Mazzoni, M A; McKenna, J A; McMahon, T R; Meadows, B T; Mellado, B; Menges, W; Messner, R; Meyer, W T; Mihályi, A; Minamora, J S; Mir, L M; Mohanty, G B; Mohapatra, A K; Mommsen, R K; Monge, M R; Monorchio, D; Moore, T B; Morandin, M; Morgan, S E; Morganti, M; Morganti, S; Morii, M; Muheim, F; Müller, D R; Naisbit, M T; Narsky, I; Nash, J A; Nauenberg, U; Neal, H; Negrini, M; Neri, N; Nesom, G; Nicholson, H; Nikolich, M B; Nogowski, R; O'Grady, C P; Ocariz, J; Oddone, P J; Ofte, I; Olaiya, E O; Olivas, A; Olsen, J; Onuchin, A P; Orimoto, T J; Otto, S; Oyanguren, A; Ozcan, V E; Paar, H P; Pacetti, S; Palano, A; Palombo, F; Pan, Y; Panduro-Vazquez, W; Panetta, J; Panvini, R S; Paoloni, E; Paolucci, P; Pappagallo, M; Parry, R J; Passaggio, S; Patel, P M; Patrignani, C; Patteri, P; Payne, D J; Pelizaeus, M; Perazzo, A; Perl, M; Peruzzi, I M; Peters, K; Petersen, B A; Petersen, T C; Petzold, A; Piatenko, T; Piccolo, D; Piccolo, M; Piemontese, L; Pierini, M; Pioppi, M; Piredda, G; Plaszczynski, S; Playfer, S; Poireau, V; Polci, F; Pompili, A; Porter, F C; Posocco, M; Potter, C T; Prell, S; Prepost, R; Pripstein, M; Pulliam, T; Purohit, M V; Qi, N D; Rahatlou, S; Rahimi, A M; Rama, M; Ratcliff, B N; Raven, G; Reidy, J; Ricciardi, S; Richman, J D; Ritchie, J L; Rizzo, G; Roat, C; Roberts, D A; Robertson, S H; Robutti, E; Rodier, S; Roe, N A; Ronan, M T; Roney, J M; Rong, G; Roodman, A; Roos, L; Rosenberg, E I; Rotondo, M; Roudeau, P; Rubin, A E; Ruddick, W O; Ryd, A; Röthel, W; Sacco, R; Saeed, M A; Safai-Tehrani, F; Saleem, M; Salnikov, A A; Salvatore, F; Samuel, A; Sanders, D A; Santroni, A; Saremi, S; Satpathy, A; Schalk, T; Schenk, S; Schindler, R H; Schofield, K C; Schott, G; Schrenk, S; Schröder, T; Schröder, H; Schubert, J; Schubert, K R; Schumm, B A; Schune, M H; Schwiening, J; Schwierz, R; Schwitters, R F; Sciacca, C; Sciolla, G; Seiden, A; Sekula, S J; Serednyakov, S I; Sharma, V; Shen, B C; Simani, M C; Simi, G; Simonetto, F; Sinev, N B; Skovpen, Yu I; Smith, A J S; Smith, J G; Snoek, H L; Snyder, A; Sobie, R J; Soffer, A; Sokoloff, M D; Solodov, E P; Spaan, B; Spanier, S M; Spitznagel, M; Spradlin, P; Steinke, M; Stelzer, J; Stocchi, A; Stoker, D P; Stroili, R; Strom, D; Strube, J; Stugu, B; Stängle, H; Su, D; Sullivan, M K; Summers, D J; Sundermann, J E; Suzuki, K; Swain, S K; Tan, P; Taras, P; Taylor, F; Telnov, A V; Teodorescu, L; Ter-Antonian, R; Therin, G; Thiebaux, C; Thompson, J M; Tisserand, V; Toki, W H; Torrence, E; Tosi, S; Touramanis, C; Ulmer, K A; Uwer, U; Van Bakel, N; Vasileiadis, G; Vasseur, G; Vavra, J; Verderi, M; Verkerke, W; Viaud, B; Vitale, L; Voci, C; Voena, C; Wagner, G; Wagner, S R; Wagoner, D E; Waldi, R; Walsh, J; Wang, K; Wang, P; Wappler, F R; Watson, A T; Weaver, M; Weidemann, A W; Weinstein, A J R; Wenzel, W A; Wilden, L; Williams, D C; Williams, J C; Willocq, S; Wilson, F F; Wilson, J R; Wilson, M G; Wilson, R J; Wisniewski, W J; Wittgen, M; Won, E; Wong, Q K; Wormser, G; Wright, D H; Wright, D M; Wu, J; Wu, S L; Xie, Y; Yamamoto, R K; Yarritu, A K; Ye, S; Yi, J; Yi, K; Young, C C; Yu, Z; Yumiceva, F X; Yushkov, A N; Yéche, C; Zain, S B; Zallo, A; Zeng, Q; Zghiche, A; Zhang, J; Zhang, L; Zhao, H W; Zhu, Y S; Ziegler, V; Zito, M; Çuhadar-Dönszelmann, T

    2006-01-01

    We study the two-body decays of B^\\pm mesons to K^\\pm and a charmonium state, X_{c\\bar c}, in a sample of 210.5 fb^{-1} of data from the BaBar experiment. We perform measurements of absolute branching fractions BR(B^\\pm --> K^\\pm X_{c\\bar c}) using a missing mass technique, and report several new or improved results. In particular, the upper limit BR(B^\\pm --> K^\\pm X(3872)) J/\\psi\\pi^+\\pi^-)>4.2% will help in understanding the nature of the recently discovered X(3872).

  6. Absolute prompt-gamma yield measurements for ion beam therapy monitoring

    Science.gov (United States)

    Pinto, M.; Bajard, M.; Brons, S.; Chevallier, M.; Dauvergne, D.; Dedes, G.; De Rydt, M.; Freud, N.; Krimmer, J.; La Tessa, C.; Létang, J. M.; Parodi, K.; Pleskač, R.; Prieels, D.; Ray, C.; Rinaldi, I.; Roellinghoff, F.; Schardt, D.; Testa, E.; Testa, M.

    2015-01-01

    Prompt-gamma emission detection is a promising technique for hadrontherapy monitoring purposes. In this regard, obtaining prompt-gamma yields that can be used to develop monitoring systems based on this principle is of utmost importance since any camera design must cope with the available signal. Herein, a comprehensive study of the data from ten single-slit experiments is presented, five consisting in the irradiation of either PMMA or water targets with lower and higher energy carbon ions, and another five experiments using PMMA targets and proton beams. Analysis techniques such as background subtraction methods, geometrical normalization, and systematic uncertainty estimation were applied to the data in order to obtain absolute prompt-gamma yields in units of prompt-gamma counts per incident ion, unit of field of view, and unit of solid angle. At the entrance of a PMMA target, where the contribution of secondary nuclear reactions is negligible, prompt-gamma counts per incident ion, per millimetre and per steradian equal to (124 ± 0.7stat ± 30sys) × 10-6 for 95 MeV u-1 carbon ions, (79 ± 2stat ± 23sys) × 10-6 for 310 MeV u-1 carbon ions, and (16 ± 0.07stat ± 1sys) × 10-6 for 160 MeV protons were found for prompt gammas with energies higher than 1 MeV. This shows a factor 5 between the yields of two different ions species with the same range in water (160 MeV protons and 310 MeV u-1 carbon ions). The target composition was also found to influence the prompt-gamma yield since, for 300/310 MeV u-1 carbon ions, a 42% greater yield ((112 ± 1stat ± 22sys) × 10-6 counts ion-1 mm-1 sr-1) was obtained with a water target compared to a PMMA one.

  7. Measurement of the absolute vμ-CCQE cross section at the SciBooNE experiment

    Energy Technology Data Exchange (ETDEWEB)

    Aunion, Jose Luis Alcaraz [Autonomous Univ. of Barcelona (Spain)

    2010-07-01

    This thesis presents the measurement of the charged current quasi-elastic (CCQE) neutrino-nucleon cross section at neutrino energies around 1 GeV. This measurement has two main physical motivations. On one hand, the neutrino-nucleon interactions at few GeV is a region where existing old data are sparse and with low statistics. The current measurement populates low energy regions with higher statistics and precision than previous experiments. On the other hand, the CCQE interaction is the most useful interaction in neutrino oscillation experiments. The CCQE channel is used to measure the initial and final neutrino fluxes in order to determine the neutrino fraction that disappeared. The neutrino oscillation experiments work at low neutrino energies, so precise measurement of CCQE interactions are essential for flux measurements. The main goal of this thesis is to measure the CCQE absolute neutrino cross section from the SciBooNE data. The SciBar Booster Neutrino Experiment (SciBooNE) is a neutrino and anti-neutrino scattering off experiment. The neutrino energy spectrum works at energies around 1 GeV. SciBooNE was running from June 8th 2007 to August 18th 2008. In that period, the experiment collected a total of 2.65 x 1020 protons on target (POT). This thesis has used full data collection in neutrino mode 0.99 x 1020 POT. A CCQE selection cut has been performed, achieving around 70% pure CCQE sample. A fit method has been exclusively developed to determine the absolute CCQE cross section, presenting results in a neutrino energy range from 0.2 to 2 GeV. The results are compatible with the NEUT predictions. The SciBooNE measurement has been compared with both Carbon (MiniBoonE) and deuterium (ANL and BNL) target experiments, showing a good agreement in both cases.

  8. A technique for the absolute measurement of the W-value for X-rays in counting gases

    Energy Technology Data Exchange (ETDEWEB)

    Vinagre, F.L.R. E-mail: fleonor@saturno.fis.uc.pt; Conde, C.A.N

    2000-08-11

    A technique was developed for the absolute measurement of the W-value (the mean energy for the production of an electron-ion pair) for low-energy X-rays in a wide range of gases at atmospheric pressures, with a standard uncertainty better than 1%. This technique is based on the absolute measurement of the primary ionization charge produced by X-ray photons from a constant intensity monoenergetic X-ray source, e.g. a long lifetime radioactive source. The ionization charge is calibrated by the number of X-ray photons absorbed in the gas, counted with a photon detector. For this purpose, a hybrid detector system was tested and its use in W-value measurements was investigated. The technique was applied to pure xenon at 825 Torr with 5.9 keV X-rays and a W-value of 21.61{sub -0.10}{sup +0.14} eV was obtained for a 68% confidence level. The required corrections and the different factors contributing to the accuracy of the results are discussed. The advantages and limitations of this technique are explored and future developments are discussed.

  9. A Novel Portable Absolute Transient Hot-Wire Instrument for the Measurement of the Thermal Conductivity of Solids

    Science.gov (United States)

    Assael, Marc J.; Antoniadis, Konstantinos D.; Metaxa, Ifigeneia N.; Mylona, Sofia K.; Assael, John-Alexander M.; Wu, Jiangtao; Hu, Miaomiao

    2015-11-01

    A new portable absolute Transient Hot-Wire instrument for measuring the thermal conductivity of solids over a range of 0.2 { W}{\\cdot }m^{-1}{\\cdot }{K}^{-1} to 4 { W}{\\cdot }m^{-1}{\\cdot }{K}^{-1} is presented. The new instrument is characterized by three novelties: (a) an innovative two-wires sensor which provides robustness and portability, while at the same time employs a soft silicone layer to eliminate the effect of the contact resistance between the wires and the sample, (b) a newly designed compact portable printed electronic board employing an FPGA architecture CPU to the control output voltage and data processing—the new board replaces the traditional, large in size Wheatstone-type bridge system required to perform the experimental measurements, and (c) a cutting-edge software suite, developed for the mesh describing the structure of the sensor, and utilizing the Finite Elements Method to model the heat flow. The estimation of thermal conductivity is modeled as a minimization problem and is solved using Bayesian Optimization. Our revolutionizing proposed methodology exhibits radical speedups of up to × 120, compared to previous approaches, and considerably reduces the number of simulations performed, achieving convergence only in a few minutes. The new instrument was successfully employed to measure, at room temperature, the thermal conductivity of two thermal conductivity reference materials, Pyroceram 9606 and Pyrex 7740, and two possible candidate glassy solids, PMMA and BK7, with an absolute low uncertainty of 2 %.

  10. Absolute Steady-State Thermal Conductivity Measurements by Use of a Transient Hot-Wire System.

    Science.gov (United States)

    Roder, H M; Perkins, R A; Laesecke, A; Nieto de Castro, C A

    2000-01-01

    A transient hot-wire apparatus was used to measure the thermal conductivity of argon with both steady-state and transient methods. The effects of wire diameter, eccentricity of the wire in the cavity, axial conduction, and natural convection were accounted for in the analysis of the steady-state measurements. Based on measurements on argon, the relative uncertainty at the 95 % level of confidence of the new steady-state measurements is 2 % at low densities. Using the same hot wires, the relative uncertainty of the transient measurements is 1 % at the 95 % level of confidence. This is the first report of thermal conductivity measurements made by two different methods in the same apparatus. The steady-state method is shown to complement normal transient measurements at low densities, particularly for fluids where the thermophysical properties at low densities are not known with high accuracy.

  11. White-light scanning fiber Michelson interferometer for absolute position-distance measurement.

    Science.gov (United States)

    Li, T; Wang, A; Murphy, K; Claus, R

    1995-04-01

    A white-light fiber interferometer working in the spatial domain, using two fiber ends in a hollow tube as the sensing head and an electric magnetic actuator-mirror reflector as the path-compensation-measurement element, is presented. Analysis and preliminary experiments have demonstrated a repeatability of 0.5 microm (2sigma) for position-distance measurement, and the measurement uncertainty was estimated to be 1.5 microm (2sigma) over a distance range of 150 microm. Suggestions for further improving the measurement accuracy and response speed are also given.

  12. White-light scanning fiber Michelson interferometer for absolute position-distance measurement

    Science.gov (United States)

    Li, Tianchu; Wang, Anbo; Murphy, Kent; Claus, Richard

    1995-04-01

    A white-light fiber interferometer working in the spatial domain, using two fiber ends in a hollow tube as the sensing head and an electric magnetic actuator-mirror reflector as the path-compensation-measurement element, is presented. Analysis and preliminary experiments have demonstrated a repeatability of 0.5 mu m (2 sigma ) for position-distance measurement, and the measurement uncertainty was estimated to be 1.5 mu m (2 sigma ) over a distance range of 150 mu m. Suggestions for further improving the measurement accuracy and response speed are also given.

  13. Absolute Steady-State Thermal Conductivity Measurements by Use of a Transient Hot-Wire System

    OpenAIRE

    Roder, Hans M.; Perkins, Richard A.; Laesecke, Arno; Nieto de Castro, Carlos A.

    2000-01-01

    A transient hot-wire apparatus was used to measure the thermal conductivity of argon with both steady-state and transient methods. The effects of wire diameter, eccentricity of the wire in the cavity, axial conduction, and natural convection were accounted for in the analysis of the steady-state measurements. Based on measurements on argon, the relative uncertainty at the 95 % level of confidence of the new steady-state measurements is 2 % at low densities. Using the same hot wires, the relat...

  14. Laser measurement of absolute charge collection efficiency of a silicon detector

    Energy Technology Data Exchange (ETDEWEB)

    Bazant, Pavel; Broz, Jan; Dolezal, Zdenek; Drasal, Zbynek [Faculty of Mathematics and Physics, Charles University, Prague (Czech Republic); Kodys, Peter [Faculty of Mathematics and Physics, Charles University, Prague (Czech Republic)], E-mail: peter.kodys@mff.curi.cz; Kvasnicka, Peter; Reznicek, Pavel [Faculty of Mathematics and Physics, Charles University, Prague (Czech Republic)

    2007-10-21

    A setup for testing silicon position sensitive detectors using a focused pulsed laser beam has been developed. An optical head monitoring the intensity of both incident laser light and reflected light improves long-term stability and reproducibility of measurements. We show that measurements using red (682 nm) laser light are reliable and robust, providing 4% precision for collected charge determination in our studies. Measurements using infrared light (1055 nm) are highly sensitive to fine details of detector material properties, which cannot be easily measured and/or compensated for.

  15. Observer variability of absolute and relative thrombus density measurements in patients with acute ischemic stroke

    NARCIS (Netherlands)

    Santos, E.M.; Yoo, A.J.; Beenen, L.F.; Berkhemer, O.A.; Blanken, M.D. den; Wismans, C.; Niessen, W.J.; Majoie, C.B.; Marquering, H.A.; Dijk, E.J. van

    2016-01-01

    INTRODUCTION: Thrombus density may be a predictor for acute ischemic stroke treatment success. However, only limited data on observer variability for thrombus density measurements exist. This study assesses the variability and bias of four common thrombus density measurement methods by expert and

  16. Observer variability of absolute and relative thrombus density measurements in patients with acute ischemic stroke

    NARCIS (Netherlands)

    E.M.M. Santos (Emilie M.); A.J. Yoo (Albert J.); L.F.M. Beenen (Ludo); O.A. Berkhemer (Olvert); M.D. Den Blanken (Mark D.); C. Wismans (Carrie); W.J. Niessen (Wiro); C.B. Majoie (Charles); H. Marquering (Henk)

    2016-01-01

    textabstractIntroduction: Thrombus density may be a predictor for acute ischemic stroke treatment success. However, only limited data on observer variability for thrombus density measurements exist. This study assesses the variability and bias of four common thrombus density measurement methods by

  17. Qualitative analysis of the magnetic data collected by the Embrace MagNet in comparison to absolute measurements made by Intermagnet in Vassouras-RJ

    Science.gov (United States)

    Chen, Sony Su; Moro, Juliano; Araujo Resende, Laysa Cristina; Denardini, Clezio Marcos

    2016-07-01

    The Embrace Magnetometer Network (Embrace MagNet) is a network of three-axis fluxgate magnetometers using single bars with high level of magnetic saturation, covered with two copper coils, one for the excitation and the second for sensing the external field. It is planned to cover most of the Easter Southern American longitudinal sector in order to fulfill the gap for magnetic measurement available on-line. The availability of fast internet, reliable energy supply and easy access were the key point for deciding the location of the magnetometer stations of the network. Up to now, the main characteristic of this network is the severe sensibility matching process among all the magnetometers composing it. Now, in order to validate the magnetic data collected by the elements of the Embrace MagNet in comparison to absolute measurements, we performed a study about the correlation between the data collected by the fluxgate magnetometer provided by Embrace MagNet and an absolute magnetometer installed by Intermagnet in the same observatory. For this study, we have used data collected in Vassouras-RJ, in Brazil, covering the period from June to December 2015. The analysis consist of: (a) selecting the 5 quietest days and the 5 most disturbed days of each month based on the Kp index; (b) deducing the local midnight value from the data collected by both instruments; (c) correlating the data collected by the variometer with the absolute measurement day-by-day; (d) grouping the results as Winter (June, July, and August), Equinox (September and October) and Summer (November and December); (e) obtaining the linear correlations factor for each group. The averaged correlation factors and the daily variations of the magnetic data are presented and discussed in terms of the magnetic activity and the season variation.

  18. Using absolute x-ray spectral measurements to infer stagnation conditions in ICF implosions

    Science.gov (United States)

    Patel, Pravesh; Benedetti, L. R.; Cerjan, C.; Clark, D. S.; Hurricane, O. A.; Izumi, N.; Jarrott, L. C.; Khan, S.; Kritcher, A. L.; Ma, T.; Macphee, A. G.; Landen, O.; Spears, B. K.; Springer, P. T.

    2016-10-01

    Measurements of the continuum x-ray spectrum emitted from the hot-spot of an ICF implosion can be used to infer a number thermodynamic properties at stagnation including temperature, pressure, and hot-spot mix. In deuterium-tritium (DT) layered implosion experiments on the National Ignition Facility (NIF) we field a number of x-ray diagnostics that provide spatial, temporal, and spectrally-resolved measurements of the radiated x-ray emission. We report on analysis of these measurements using a 1-D hot-spot model to infer thermodynamic properties at stagnation. We compare these to similar properties that can be derived from DT fusion neutron measurements. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  19. Absolute measurements of total target strength from reverberation in a cavity.

    Science.gov (United States)

    Demer, David A; Conti, Stephane G; De Rosny, Julien; Roux, Philippe

    2003-03-01

    A new method was developed to acoustically measure the density and total scattering cross-section (sigma(t)) or total target strength [TTS = 10log10(sigma(t)/4pi)] of objects in motion in a highly reflective cavity [J. De Rosny and P. Roux, J. Acoust. Soc. Am. 109, 2587-2597 (2001)]. From an ensemble of pulse-echo recordings, the average contribution of the scatterer(s) to the reverberation within the cavity provides a measurement of the scattering mean free path. The latter was shown through theory and experiment to be proportional to the volume of the cavity and inversely proportional the product of the mean sigma(t) and number of scatterers. Here, the TTS measurement uncertainty is characterized using standard metal spheres as references. Theoretical TTS was calculated for multiple copper and tungsten carbide standard spheres (Cu: 60.0 30.05 and 23 mm and WC: 38.1 and 33.4 mm diameters, respectively), using well-described theory for scattering from elastic spheres and the optical theorem. Measurements of TTS were made over a wide bandwidth (30-120 kHz) and compared to their theoretical values. Measurements were made in a corrugated, cylindrical, galvanized-steel tank with 25 or 50 l of fresh water at a temperature of 21 +/- 1 degrees C. The results indicate the method can provide TTS measurements that are accurate to at least 0.4 dB with an average precision of +/-0.7 dB (95% confidence interval). Discussed are the requisite cavity volumes and signal-to-noise ratios for quality measurements of TTS, tank volume, and/or numerical abundance of mobile targets. Also discussed are multiple potential applications of this technique in bioacoustical oceanography.

  20. Absolute frequency measurement of the 88Sr+ clock transition using a GPS link to the SI second

    Science.gov (United States)

    Dubé, Pierre; E Bernard, John; Gertsvolf, Marina

    2017-06-01

    We report the results of a recent measurement of the absolute frequency of the 5s{{ }2}{{S}1/2} - 4d{{ }2}{{D}5/2} transition of the {{}88}\\text{Sr}{{}+} ion. The optical frequency was measured against the international atomic time realization of the SI second on the geoid as obtained by frequency transfer using a global positioning system link and the precise point positioning technique. The measurement campaign yielded more than 100 h of frequency data. It was performed with improvements to the stability and accuracy of the single-ion clock compared to the last measurement made in 2012. The single ion clock uncertainty is evaluated at 1.5× {{10}-17} when contributions from acousto-optic modulator frequency chirps and servo errors are taken into account. The stability of the ion clock is 3× {{10}-15} at 1 s averaging, a factor of three better than in the previous measurement. The results from the two measurement campaigns are in good agreement. The uncertainty of the measurement, primarily from the link to the SI second, is 0.75 Hz (1.7× {{10}-15} ). The frequency measured for the S-D clock transition of {{}88}\\text{S}{{\\text{r}}+} is {ν0}= 444 779 044 095 485.27(75) Hz.

  1. Radio frequency cavity analysis, measurement, and calibration of absolute Dee voltage for K-500 superconducting cyclotron at VECC, Kolkata

    Science.gov (United States)

    Som, Sumit; Seth, Sudeshna; Mandal, Aditya; Paul, Saikat; Duttagupta, Anjan

    2013-02-01

    Variable Energy Cyclotron Centre has commissioned a K-500 superconducting cyclotron for various types of nuclear physics experiments. The 3-phase radio-frequency system of superconducting cyclotron has been developed in the frequency range 9-27 MHz with amplitude and phase stability of 100 ppm and ±0.20, respectively. The analysis of the RF cavity has been carried out using 3D Computer Simulation Technology (CST) Microwave Studio code and various RF parameters and accelerating voltages ("Dee" voltage) are calculated from simulation. During the RF system commissioning, measurement of different RF parameters has been done and absolute Dee voltage has been calibrated using a CdTe X-ray detector along with its accessories and known X-ray source. The present paper discusses about the measured data and the simulation result.

  2. Measurement of absolute displacement-amplitude of ultrasonic wave using piezo-electric detection method

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seong Hyun; Kim, Jong Beom; Jhang, Kyung Young [Hanyang University, Seoul (Korea, Republic of)

    2017-02-15

    A nonlinear ultrasonic parameter is defined by the ratio of displacement amplitude of the fundamental frequency component to that of the second-order harmonic frequency component. In this study, the ultrasonic displacement amplitude of an SUS316 specimen was measured via a piezo-electric-based method to identify the validity of piezo-electric detection method. For comparison, the ultrasonic displacement was also determined via a laser-based Fabry-Pérot interferometer. The experimental results for both measurements were in good agreement. Additionally, the stability of the repeated test results from the piezo-electric method exceeded that of the laser-interferometric method. This result indicated that the piezo-electric detection method can be utilized to measure a nonlinear ultrasonic parameter due to its excellent stability although it involves a complicated process.

  3. TU-A-12A-09: Absolute Blood Flow Measurement in a Cardiac Phantom Using Low Dose CT

    Energy Technology Data Exchange (ETDEWEB)

    Ziemer, B; Hubbard, L; Lipinski, J; Molloi, S [University of California, Irvine, CA (United States)

    2014-06-15

    Purpose: To investigate a first pass analysis technique to measure absolute flow from low dose CT images in a cardiac phantom. This technique can be combined with a myocardial mass assignment to yield absolute perfusion using only two volume scans and reduce the radiation dose to the patient. Methods: A four-chamber cardiac phantom and perfusion chamber were constructed from poly-acrylic and connected with tubing to approximate anatomical features. The system was connected to a pulsatile pump, input/output reservoirs and power contrast injector. Flow was varied in the range of 1-2.67 mL/s with the pump operating at 60 beats/min. The system was imaged once a second for 14 seconds with a 320-row scanner (Toshiba Medical Systems) using a contrast-enhanced, prospective-gated cardiac perfusion protocol. Flow was calculated by the following steps: subsequent images of the perfusion volume were subtracted to find the contrast entering the volume; this was normalized by an upstream, known volume region to convert Hounsfield (HU) values to concentration; this was divided by the subtracted images time difference. The technique requires a relatively stable input contrast concentration and no contrast can leave the perfusion volume before the flow measurement is completed. Results: The flow calculated from the images showed an excellent correlation with the known rates. The data was fit to a linear function with slope 1.03, intercept 0.02 and an R{sup 2} value of 0.99. The average root mean square (RMS) error was 0.15 mL/s and the average standard deviation was 0.14 mL/s. The flow rate was stable within 7.7% across the full scan and served to validate model assumptions. Conclusion: Accurate, absolute flow rates were measured from CT images using a conservation of mass model. Measurements can be made using two volume scans which can substantially reduce the radiation dose compared with current dynamic perfusion techniques.

  4. The Reproducibility and Absolute Values of Echocardiographic Measurements of Left Ventricular Size and Function in Children are Algorithm Dependent

    Science.gov (United States)

    Margossian, Renee; Chen, Shan; Sleeper, Lynn A.; Tani, Lloyd Y.; Shirali, Girish; Golding, Fraser; Tierney, Elif Seda Selamet; Altmann, Karen; Campbell, Michael J.; Szwast, Anita; Sharkey, Angela; Radojewski, Elizabeth; Colan, Steven D.

    2015-01-01

    Background Several quantification algorithms for measuring left ventricular (LV) size and function are used in clinical and research settings. We investigated the effect of the measurement algorithm and beat averaging on the reproducibility of measurements of the LV and assessed the magnitude of agreement among the algorithms in children with dilated cardiomyopathy (DCM). Methods Echocardiograms were obtained on 169 children from 8 clinical centers. Inter- and intra-reader reproducibility were assessed on measurements of LV volumes using biplane Simpson, modified Simpson (MS), and 5/6 x area x length (5/6AL) algorithms. Percent error (%error) was calculated as the inter- or intra-reader difference / mean x 100. Single beat measurements and the 3-beat average (3BA) were compared. Intra-class correlation coefficients (ICC) were calculated to assess agreement. Results Single beat inter-reader reproducibility was lowest (%error was highest) using biplane Simpson; 5/6AL and MS were similar but significantly better than biplane Simpson (p 0.95 across measures, although absolute volume and mass values were systematically lower for biplane Simpson compared to MS and to 5/6AL. Conclusions The reproducibility of LV size and function measurements in children with DCM is highest using the 5/6AL algorithm, and can be further improved by using 3BA. However, values derived from different algorithms are not interchangeable. PMID:25728351

  5. Auto-elimination of fiber optical path-length drift in a frequency scanning interferometer for absolute distance measurements

    Science.gov (United States)

    Tao, Long; Liu, Zhigang; Zhang, Weibo

    2015-09-01

    Because of its compact size and portability, optical fiber has been wildly used as optical paths in frequency-scanning interferometers for high-precision absolute distance measurements. However, since the fiber is sensitive to ambient temperature, its length and refractive index change with temperature, resulting in an optical path length drift that influences the repeatability of measurements. To improve the thermal stability of the measurement system, a novel frequency-scanning interferometer composed of two Michelson-type interferometers sharing a common fiber optical path is proposed. One interferometer defined as origin interferometer is used to monitor the drift of the measurement origin due to the optical path length drift of the optical fiber under on-site environment. The other interferometer defined as measurement interferometer is used to measure the distance to the target. Because the optical path length drift of the fiber appears in both interferometers, its influence can be eliminated by subtracting the optical path difference of the origin interferometer from the optical path difference of the measurement interferometer. A prototype interferometer was developed in our research, and experimental results demonstrate its robustness and stability. Under on-site environment, an accuracy about 4 μm was achieved for a distance of about 1 m.

  6. A new method for the absolute radiance calibration for UV/vis measurements of scattered sun light

    Directory of Open Access Journals (Sweden)

    T. Wagner

    2015-05-01

    Full Text Available Absolute radiometric calibrations are important for measurements of the atmospheric spectral radiance. Such measurements can be used to determine actinic fluxes, the properties of aerosols and clouds and the short wave energy budget. Conventional calibration methods in the laboratory are based on calibrated light sources and reflectors and are expensive, time consuming and subject to relatively large uncertainties. Also, the calibrated instruments might change during transport from the laboratory to the measurement sites. Here we present a new calibration method for UV/vis instruments that measure the spectrally resolved sky radiance, like for example zenith sky Differential Optical Absorption Spectroscopy (DOAS- instruments or Multi-AXis (MAX- DOAS instruments. Our method is based on the comparison of the solar zenith angle dependence of the measured zenith sky radiance with radiative transfer simulations. For the application of our method clear sky measurements during periods with almost constant aerosol optical depth are needed. The radiative transfer simulations have to take polarisation into account. We show that the calibration results are almost independent from the knowledge of the aerosol optical properties and surface albedo, which causes a rather small uncertainty of about <7%. For wavelengths below about 330 nm it is essential that the ozone column density during the measurements is constant and known.

  7. Measurement of the Absolute Branching Fraction of D_s^+ --> tau^+ nu_tau Decay

    CERN Document Server

    Ecklund, K M; Savinov, V; López, A; Méndez, H; Ramírez, J; Ge, J Y; Miller, D H; Shipsey, I P J; Xin, B; Adams, G S; Anderson, M; Cummings, J P; Danko, I; Hu, D; Moziak, B; Napolitano, J; He, Q; Insler, J; Muramatsu, H; Park, C S; Thorndike, E H; Yang, F; Artuso, M; Blusk, S; Khalil, S; Li, J; Mountain, R; Nisar, S; Randrianarivony, K; Sultana, N; Skwarnicki, T; Stone, S; Wang, J C; Zhang, L M; Bonvicini, G; Cinabro, D; Dubrovin, M; Lincoln, A; Rademacker, J; Asner, D M; Edwards, K W; Naik, P; Reed, J; Briere, R A; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Rosner, J L; Alexander, J P; Cassel, D G; Duboscq, J E; Ehrlich, R; Fields, L; Gibbons, L; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Mahlke-Krüger, H; Mohapatra, D; Onyisi, P U E; Patterson, J R; Peterson, D; Riley, D; Ryd, A; Sadoff, A J; Shi, X; Stroiney, S; Sun, W M; Wilksen, T; Athar, S B; Patel, R; Yelton, J; Rubin, P; Eisenstein, B I; Karliner, I; Mehrabyan, S; Lowrey, N; Selen, M; White, E J; Wiss, J; Mitchell, R E; Shepherd, M R; Besson, D; Pedlar, T K; Cronin-Hennessy, D; Gao, K Y; Hietala, J; Kubota, Y; Klein, T; Lang, B W; Poling, R; Scott, A W; Zweber, P; Dobbs, S; Metreveli, Z; Seth, K K; Tomaradze, A G; Libby, J; Powell, A; Wilkinson, G

    2007-01-01

    Using a sample of tagged D_s decays collected near the D^*_s D_s peak production energy with the CLEO-c detector, we study the leptonic decay D^+_s to tau^+ nu_tau via the decay channel tau^+ to e^+ nu_e bar{nu}_tau. We measure B(D^+_s to tau^+ nu_tau) = (6.17 +- 0.71 +- 0.34) %. Combining with our measurements of D^+_s to mu^+ nu_mu and D^+_s to tau^+ nu_tau (via tau^+ to pi^+ bar{nu}_tau), we determine f_{D_s} = 274 +- 10 +- 5 MeV.

  8. Absolute and Relative Motion Measurements on a Model of a High-Speed Containership

    Science.gov (United States)

    1983-10-01

    motivated a series of forced oscillation experiments on the SL-7 2 hull, designed to measure the various components of the rigid body equations of motion and...probes were originally designed to measure relative motion over a large range, from bottom emersion to deck immersion. However, their electronic... EXPERIEMTN : Zo/T = 0.037 0S•) 0.0746 0.1• 0.1100- 0.1470 OO 0 o o S I I I I I I I Fn -- 0.21’r- A8 ~ U’•’ 0ý Q.VL l 0 0 0 0 0 0 I I i i I i I Fn= 0.3 0.2 0

  9. Regularity of absolutely continuous invariant measures for piecewise expanding unimodal maps

    Science.gov (United States)

    Contreras, Fabián; Dolgopyat, Dmitry

    2016-09-01

    Let f:[0,1]\\to [0,1] be a piecewise expanding unimodal map of class C  k+1, with k≥slant 1 , and μ =ρ \\text{d}x the (unique) SRB measure associated to it. We study the regularity of ρ. In particular, points N where ρ is not differentiable has zero Hausdorff dimension, but is uncountable if the critical orbit of f is dense. This improves on a work of Szewc (1984). We also obtain results about higher orders of differentiability of ρ in the sense of Whitney.

  10. New design of a microcalorimeter for measuring absolute heat capacity from 300 to 550 K

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Woong-Jhae; Kim, Hyung Joon; Kim, Jae Wook; Nam, Dong Hak; Choi, Ki-Young [Center for Novel States of Complex Materials Research, Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of); Kim, Kee Hoon, E-mail: khkim@phya.snu.ac.kr [Center for Novel States of Complex Materials Research, Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of); Institute of Applied Physics, Seoul National University, Seoul 151-747 (Korea, Republic of)

    2015-03-10

    Highlights: • A microcalorimeter (C{sub add} ∼ 6 μJ K{sup −1}) having a Si:N/SiO{sub 2} membrane was designed. • Concentric heater and sensor leads are useful for achieving better heat confinement. • Fabrication in one side of the membrane makes the process easy and cost-effective. • The lumped-τ{sub 2} model incorporating radiation effects was used to measure accurate C{sub p}. • Measurement errors were confirmed to be less than 3% from 300 to 550 K. - Abstract: We report development of a new type of a microcalorimeter based on an amorphous membrane composed of Si:N and SiO{sub 2} layers, which holds an isothermal Au film of a disc shape and concentric Pt leads as a heater and a thermal sensor. Two-dimensional thermal simulation was used to confirm that the layout of the isothermal platform and metallic leads result in nearly perfect isothermal conditions at temperatures from 20 to 600 K. Moreover, by placing the insulating SiO{sub 2} layer between the isothermal film and metallic leads, we could locate all electrical and thermal components in the top side of the membrane, allowing the micro-fabrication easy and cost-effective. The micro-fabrication method produces a total of 49 devices in a four inch Si wafer and can be also applied in a larger wafer size. Heat capacity value of the isothermal platform was found to be as small as ∼6 μJ K{sup −1} at room temperature. Upon applying the lumped-τ{sub 2} model in the measurement scheme, we found that specific heat of an Al{sub 2}O{sub 3} single crystal (NIST standard, ∼0.2 mg) was consistent with the literature value within ∼3% at temperatures between 300 and 550 K. Our results show that the circular layout of the isothermal platform with better heat confinement is useful for increasing the accuracy of measured heat capacity if the other parameters such as thickness and thermal conductivity of each layer in the membrane are fixed.

  11. Absolute Equation of State Measurements on Shocked Liquid Deuterium up to 200GPa (2Mbar)

    Energy Technology Data Exchange (ETDEWEB)

    Da Silva, L.; Celliers, P.; Collins, G.; Budil, K.; Holmes, N.; Barbee, T. Jr.; Hammel, B.; Kilkenny, J.; Wallace, R.; Ross, M.; Cauble, R. [Lawrence Livermore Laboratory, Livermore, California 94550 (United States); Ng, A.; Chiu, G. [University of British Columbia, Vancouver, British Columbia (Canada)

    1997-01-01

    We present results of the first measurements of density, shock speed, and particle speed in liquid deuterium compressed by laser-generated shock waves to pressures from 25 to 210Gpa (0.25 to 2.1Mbar). The data show a significant increase in D{sub 2} compressibility above 50Gpa compared to a widely used equation of state model. The data strongly suggest a thermal molecular dissociation transition of the diatomic fluid into a monatomic phase. {copyright} {ital 1997} {ital The American Physical Society}

  12. New class of onboard absolute orientation measurement sensor for robotic mobile platforms

    Science.gov (United States)

    Rastegar, Jahangir S.; Ge, Q. Jeffrey; Pereira, Carlos M.

    2003-10-01

    This paper presents new class sensors for onboard direct measurement of the angular orientation of robotic mobile platforms relative to a fixed or moving coordinate system. The currently available sensors are either based on inertia, vision or optical means to measure the angular orientation of an object. The inertial based devices, however, generally suffer from drift and noise. The vision systems and optical sensors generally have relatively short range and require line-of-sight access. The novel class of sensors presented in this paper are wireless, are in the form of waveguides that are illuminated by polarized Radio Frequency sources. A mobile robotic platform equipped with three or more of such waveguide sensors can determine its 3D orientation relative to the ground or other mobile robotic platforms. The 3D orientation sensors require very low power for operation, may be located at relatively far distances from the ground source or the illuminating mobile platform, and can operate while out of line-of-sight of the illuminating source. In this paper, the design, operation, algorithms for calculating 3D angular orientation from the sensor output, and a number of experimental results of sensor performance are presented. In addition, a discussion of the methods to increase the performance of the sensor system and other related issues are provided.

  13. Measuring the Absolute Height and Profile of the Mesospheric Sodium Layer using a Continuous Wave Laser

    CERN Document Server

    Butler, D J; Redfern, R M; Ageorges, N; Fews, H

    2003-01-01

    We have developed and tested a novel method, based on LIDAR, of measuring the height and profile of the mesospheric sodium layer using a continuous wave laser. It is more efficient than classical LIDAR as the laser is on for 50% of the time, and so can in principle be used during laser guide star adaptive optics observations. It also has significant advantages over direct imaging techniques because it does not require a second telescope, is almost independent of the atmospheric conditions, and avoids triangulation problems in determining the height. In the long term, regular monitoring using this method would allow a valuable database of sodium layer profiles, heights, and return flux measurements to be built up which would enable observatory staff astronomers to schedule observations optimally. In this paper we describe the original experiment carried out using the ALFA laser guide star system at Calar Alto Observatory in Spain. We validate the method by comparing the LIDAR results with those obtained from s...

  14. [Bilateral blood pressure measurement before and after coronary bypass surgery: an absolute necessity].

    Science.gov (United States)

    Ernst, J M; van Bergen, P F; Schepens, M A; Brutel de la Rivière, A; Plokker, H W

    1999-09-11

    Anginous symptoms and a difference in blood pressure between the two arms prompted angiography in two patients, men aged 66 and 50 years. The examination revealed coronary sclerosis and a stenosis in the left subclavian artery. The symptoms disappeared after percutaneous dilatation of the subclavian artery, followed by a coronary bypass operation (CABG) using an internal thoracic artery (a branch of the subclavian artery). In two other patients, men aged 61 and 71 years, who had undergone an arterial CABG 12 years previously, anginous symptoms were the manifestation of a narrowed subclavian artery. The symptoms disappeared after balloon dilatation of the subclavian artery and revascularization of the anterior interventricular branch (left artery descendens) and embolization of the internal thoracic artery graft (internal mammarian artery graft), respectively. Stenosis or occlusion of the proximal subclavian artery may attenuate the blood flow in the ipsilateral A. thoracica interna graft. The diagnosis can simply be made by bilateral blood pressure measurement.

  15. Measurement of the absolute differential cross section of proton–proton elastic scattering at small angles

    Directory of Open Access Journals (Sweden)

    D. Mchedlishvili

    2016-04-01

    Full Text Available The differential cross section for proton–proton elastic scattering has been measured at a beam kinetic energy of 1.0 GeV and in 200 MeV steps from 1.6 to 2.8 GeV for centre-of-mass angles in the range from 12°–16° to 25°–30°, depending on the energy. A precision in the overall normalisation of typically 3% was achieved by studying the energy losses of the circulating beam of the COSY storage ring as it passed repeatedly through the windowless hydrogen target of the ANKE magnetic spectrometer. It is shown that the data have a significant impact upon the results of a partial wave analysis. After extrapolating the differential cross sections to the forward direction, the results are broadly compatible with the predictions of forward dispersion relations.

  16. Comparison of available measurements of the absolute air-fluorescence yield and determination of its global average value

    CERN Document Server

    Rosado, J; Arqueros, F

    2011-01-01

    Experimental results of the absolute air-fluorescence yield are given very often in different units (photons/MeV or photons/m) and for different wavelength intervals. In this work we present a comparison of available results normalized to its value in photons/MeV for the 337 nm band at 1013 hPa and 293 K. The conversion of photons/m to photons/MeV requires an accurate determination of the energy deposited by the electrons in the field of view of the experimental set-up. We have calculated the energy deposition for each experiment by means of a detailed Monte Carlo simulation and the results have been compared with those assumed or calculated by the authors. As a result, corrections to the reported fluorescence yields are proposed. These corrections improve the compatibility between measurements in such a way that a reliable average value with uncertainty at the level of 5% is obtained.

  17. Direct measurement of the absolute absorption spectrum of individual semiconducting single-wall carbon nanotubes

    Science.gov (United States)

    Blancon, Jean-Christophe; Paillet, Matthieu; Tran, Huy Nam; Than, Xuan Tinh; Guebrou, Samuel Aberra; Ayari, Anthony; Miguel, Alfonso San; Phan, Ngoc-Minh; Zahab, Ahmed-Azmi; Sauvajol, Jean-Louis; Fatti, Natalia Del; Vallée, Fabrice

    2013-09-01

    The optical properties of single-wall carbon nanotubes are very promising for developing novel opto-electronic components and sensors with applications in many fields. Despite numerous studies performed using photoluminescence or Raman and Rayleigh scattering, knowledge of their optical response is still partial. Here we determine using spatial modulation spectroscopy, over a broad optical spectral range, the spectrum and amplitude of the absorption cross-section of individual semiconducting single-wall carbon nanotubes. These quantitative measurements permit determination of the oscillator strength of the different excitonic resonances and their dependencies on the excitonic transition and type of semiconducting nanotube. A non-resonant background is also identified and its cross-section comparable to the ideal graphene optical absorbance. Furthermore, investigation of the same single-wall nanotube either free standing or lying on a substrate shows large broadening of the excitonic resonances with increase of oscillator strength, as well as stark weakening of polarization-dependent antenna effects, due to nanotube-substrate interaction.

  18. Measuring absolute frequencies beyond the GPS limit via long-haul optical frequency dissemination

    CERN Document Server

    Clivati, C; Livi, L; Poggiali, F; de Cumis, M Siciliani; Mancini, M; Pagano, G; Frittelli, M; Mura, A; Costanzo, G A; Levi, F; Calonico, D; Fallani, L; Catani, J; Inguscio, M

    2015-01-01

    Global Positioning System (GPS) dissemination of frequency standards is ubiquitous at present, providing the most widespread time and frequency reference for the majority of industrial and research applications worldwide. On the other hand, the ultimate limits of the GPS presently curb further advances in high-precision, scientific and industrial applications relying on this dissemination scheme. Here, we demonstrate that these limits can be reliably overcome even in laboratories without a local atomic clock by replacing the GPS with a 642-km-long optical fiber link to a remote primary caesium frequency standard. Through this configuration we stably address the $^1$S$_0$---$^3$P$_0$ clock transition in an ultracold gas of $^{173}$Yb, with a precision that exceeds the possibilities of a GPS-based measurement, dismissing the need for a local clock infrastructure to perform high-precision tasks beyond GPS limit. We also report an improvement of two orders of magnitude in the accuracy on the transition frequency ...

  19. Digital encoding of cellular mRNAs enabling precise and absolute gene expression measurement by single-molecule counting.

    Science.gov (United States)

    Fu, Glenn K; Wilhelmy, Julie; Stern, David; Fan, H Christina; Fodor, Stephen P A

    2014-03-18

    We present a new approach for the sensitive detection and accurate quantitation of messenger ribonucleic acid (mRNA) gene transcripts in single cells. First, the entire population of mRNAs is encoded with molecular barcodes during reverse transcription. After amplification of the gene targets of interest, molecular barcodes are counted by sequencing or scored on a simple hybridization detector to reveal the number of molecules in the starting sample. Since absolute quantities are measured, calibration to standards is unnecessary, and many of the relative quantitation challenges such as polymerase chain reaction (PCR) bias are avoided. We apply the method to gene expression analysis of minute sample quantities and demonstrate precise measurements with sensitivity down to sub single-cell levels. The method is an easy, single-tube, end point assay utilizing standard thermal cyclers and PCR reagents. Accurate and precise measurements are obtained without any need for cycle-to-cycle intensity-based real-time monitoring or physical partitioning into multiple reactions (e.g., digital PCR). Further, since all mRNA molecules are encoded with molecular barcodes, amplification can be used to generate more material for multiple measurements and technical replicates can be carried out on limited samples. The method is particularly useful for small sample quantities, such as single-cell experiments. Digital encoding of cellular content preserves true abundance levels and overcomes distortions introduced by amplification.

  20. Measurement of zone plate efficiencies in the extreme ultraviolet and applications to radiation monitors for absolute spectral emission

    Science.gov (United States)

    Seely, John; Holland, Glenn; Bremer, James C.; Zukowski, Tim; Feser, Michael; Feng, Yan; Kjornrattanawanich, Benjawan; Goray, Leonid

    2006-08-01

    The diffraction efficiencies of a Fresnel zone plate (ZP), fabricated by Xradia Inc. using the electron-beam writing technique, were measured using polarized, monochromatic synchrotron radiation in the extreme ultraviolet wavelength range 3.4-22 nm. The ZP had 2 mm diameter, 3330 zones, 150 nm outer zone width, and a 1 mm central occulter. The ZP was supported by a 100 nm thick Si 3N 4 membrane. The diffraction patterns were recorded by CMOS imagers with phosphor coatings and with 5.2 μm or 48 μm pixels. The focused +n orders (n=1-4), the diverging -1 order, and the undiffracted 0 order were observed as functions of wavelength and off-axis tilt angle. Sub-pixel focusing of the +n orders was achieved. The measured efficiency in the +1 order was in the 5% to 30% range with the phase-shift enhanced efficiency occurring at 8.3 nm where the gold bars are partially transmitting. The +2 and higher order efficiencies were much lower than the +1 order efficiency. The efficiencies were constant when the zone plate was tilted by angles up to +/-1° from the incident radiation beam. This work indicates the feasibility and benefits of using zone plates to measure the absolute EUV spectral emissions from solar and laboratory sources: relatively high EUV efficiency in the focused +1 order, good out-of-band rejection resulting from the low higher-order efficiencies and the ZP focusing properties, insensitivity to (unfocused) visible light scattered by the ZP, flat response with off-axis angle, and insensitivity to the polarization of the radiation based on the ZP circular symmetry. EUV sensors with Fresnel zone plates potentially have many advantages over existing sensors intended to accurately measure absolute EUV emission levels, such as those implemented on the GOES N-P satellites that use transmission gratings which have off-axis sensitivity variations and poor out-of-band EUV and visible light rejection, and other solar and laboratory sensors using reflection gratings which

  1. A Technique to Measure Energy Partitioning and Absolute Gas Pressures of Strombolian Explosions Using Doppler Radar at Erebus Volcano

    Science.gov (United States)

    Gerst, A.; Hort, M.; Kyle, P. R.; Voege, M.

    2008-12-01

    In 2005/06 we deployed three 24GHz (K-Band) continuous wave Doppler radar instruments at the crater rim of Erebus volcano in Antarctica. At the time there was a ~40 m wide, ~1000°C hot convecting phonolite lava lake, which was the source of ~0-6 Strombolian gas bubble explosions per day. We measured the velocities of ~50 explosions using a sample rate of 1-15 Hz. Data were downloaded in real-time through a wireless network. The measurements provide new insights into the still largely unknown mechanism of Strombolian eruptions, and help improve existing eruption models. We present a technique for a quasi in-situ measurement of the absolute pressure inside an eruption gas bubble. Pressures were derived using a simple eruption model and measured high resolution bubble surface velocities during explosions. Additionally, this technique allows us to present a comprehensive energy budget of a volcanic explosion as a time series of all important energy terms (i.e. potential, kinetic, dissipative, infrasonic, surface, seismic and thermal energy output). The absolute gas pressure inside rising expanding gas bubbles rapidly drops from ~3-10 atm (at the time when the lake starts to bulge) to ~1 atm before the bubble bursts, which usually occurs at radii of ~15-20m. These pressures are significantly lower than previously assumed for such explosions. The according internal energy of the gas agrees well with the observed total energy output. The results show that large explosions released about 109 to 1010 J each (equivalent to about 200-2000 kg of TNT), at a peak discharge rate frequently exceeding 109 W (the power output of a typical nuclear power plant). This dynamic output is mainly controlled by the kinetic and potential energy of the exploding magma shell, while other energy types were found to be much smaller (with the exception of thermal energy). Remarkably, most explosions at Erebus show two distinct surface acceleration peaks separated by ~0.3 seconds. This suggests

  2. Optical factors determined by the T-matrix method in turbidity measurement of absolute coagulation rate constants.

    Science.gov (United States)

    Xu, Shenghua; Liu, Jie; Sun, Zhiwei

    2006-12-01

    Turbidity measurement for the absolute coagulation rate constants of suspensions has been extensively adopted because of its simplicity and easy implementation. A key factor in deriving the rate constant from experimental data is how to theoretically evaluate the so-called optical factor involved in calculating the extinction cross section of doublets formed during aggregation. In a previous paper, we have shown that compared with other theoretical approaches, the T-matrix method provides a robust solution to this problem and is effective in extending the applicability range of the turbidity methodology, as well as increasing measurement accuracy. This paper will provide a more comprehensive discussion of the physical insight for using the T-matrix method in turbidity measurement and associated technical details. In particular, the importance of ensuring the correct value for the refractive indices for colloidal particles and the surrounding medium used in the calculation is addressed, because the indices generally vary with the wavelength of the incident light. The comparison of calculated results with experiments shows that the T-matrix method can correctly calculate optical factors even for large particles, whereas other existing theories cannot. In addition, the data of the optical factor calculated by the T-matrix method for a range of particle radii and incident light wavelengths are listed.

  3. Simultaneous Absolute Measurements of Principal Angle and Phase Retardation with a New Common-Path Heterodyne Interferometer

    Science.gov (United States)

    Lo, Yu-Lung; Lai, Chun-Hau; Lin, Jing-Fung; Hsu, Ping-Feng

    2004-04-01

    This study demonstrates a new method for simultaneously measuring both the angle of the principal axis and the phase retardation of the linear birefringence in optical materials. We used a circular common-path interferometer (polariscope) as the basic structure modulated by an electro-optic (EO) modulator. An algorithm was developed to simultaneously measure the principal axis and the phase retardation of a lambda/4 or lambda/8 plate as a sample. In the case of a lambda/4 plate, the average absolute error of the principal axis is approximately 3.77°, and that of the phase retardation is approximately 1.03° (1.09%). The retardation error is within the 5% uncertainty range of a commercial wave plate. Fortunately, the nonlinear error caused by the reflection phase retardation of the beam splitter dose not appear in the new system. Therefore the error could be attributed to misalignment and defects in the EO modulator or the other optical components. As for the repeatability of this new common-path heterodyne interferometer, the average deviation for the principal axis is 0.186° and the phase retardation is 0.356°. For the stability, the average deviation for the principal axis is 0.405° and the phase retardation is 0.635°. The resolution of this new system is estimated to be ~0.5°, and the principal axis and phase retardation could be measured up to pi and 2pi, respectively, without ambiguity.

  4. Absolute Summ

    Science.gov (United States)

    Phillips, Alfred, Jr.

    Summ means the entirety of the multiverse. It seems clear, from the inflation theories of A. Guth and others, that the creation of many universes is plausible. We argue that Absolute cosmological ideas, not unlike those of I. Newton, may be consistent with dynamic multiverse creations. As suggested in W. Heisenberg's uncertainty principle, and with the Anthropic Principle defended by S. Hawking, et al., human consciousness, buttressed by findings of neuroscience, may have to be considered in our models. Predictability, as A. Einstein realized with Invariants and General Relativity, may be required for new ideas to be part of physics. We present here a two postulate model geared to an Absolute Summ. The seedbed of this work is part of Akhnaton's philosophy (see S. Freud, Moses and Monotheism). Most important, however, is that the structure of human consciousness, manifest in Kenya's Rift Valley 200,000 years ago as Homo sapiens, who were the culmination of the six million year co-creation process of Hominins and Nature in Africa, allows us to do the physics that we do. .

  5. Absolute measurement of cerebral optical coefficients, hemoglobin concentration and oxygen saturation in old and young adults with near-infrared spectroscopy

    Science.gov (United States)

    We present near-infrared spectroscopy measurement of absolute cerebral hemoglobin concentration and saturation in a large sample of 36 healthy elderly (mean age, 85 ± 6 years) and 19 young adults (mean age, 28 ± 4 years). Non-invasive measurements were obtained on the forehead using a commercially a...

  6. Minimizing the Levelized Cost of Energy in Single-Phase Photovoltaic Systems with an Absolute Active Power Control

    DEFF Research Database (Denmark)

    Yang, Yongheng; Koutroulis, Eftichios; Sangwongwanich, Ariya

    2015-01-01

    Several countries with considerable PhotoVoltaic (PV) installations are facing a challenge of overloading the power infrastructure during peak-power production hours. Regulations have been imposed on the PV systems, where more active power control should be flexibly performed. As an advanced...... control strategy, the Absolute Active Power Control (AAPC) can effectively solve the overloading issues by limiting the maximum possible PV power to a certain level (i.e., the power limitation), and also benefit the inverter reliability. However, its feasibility is challenged by the energy loss....... An increase of the inverter lifetime and a reduction of the energy yield can alter the cost of energy, demanding an optimization of the power limitation. Therefore, aiming at minimizing the Levelized Cost of Energy (LCOE), the power limit is optimized for the AAPC strategy in this paper. The optimization...

  7. Absolute and Relative Activity of Microencapsulated Natural Essential Oils against the Larvae of Carpet Beetle Anthrenus flavipies (LeConte

    Directory of Open Access Journals (Sweden)

    Jayant Udakhe

    2014-01-01

    Full Text Available This study focuses on finding natural ecofriendly alternatives to the existing commercial Anthrenus flavipies resist chemicals. Eucalyptus, lavender, and citronella microcapsules were explored as natural alternatives. Chemical contents of microcapsules and fragrance releasing property were tested using gas chromatography. Absolute (proofing and relative (repellent activities of microcapsule treated fabrics were tested against the larvae of carpet beetle Anthrenus flavipies (LeConte. Proofing activity test results revealed that natural essential oils act as a deterrent for Anthrenus flavipies, but give lesser protection compared to commercial chemical permethrin. Repellency test results also affirmed these findings and it was observed that Anthrenus flavipies prefers to eat untreated fabric compared to its treated counterpart.

  8. Comparison of a citation-based indicator and peer review for absolute and specific measures of research-group excellence

    CERN Document Server

    Mryglod, O; Holovatch, Yu; Berche, B

    2013-01-01

    Many different measures are used to assess academic research excellence and these are subject to ongoing discussion and debate within the scientometric, university-management and policy-making communities internationally. One topic of continued importance is the extent to which citation-based indicators compare with peer-review-based evaluation. Here we analyse the correlations between values of a particular citation-based impact indicator and peer-review scores in several academic disciplines, from natural to social sciences and humanities. We perform the comparison for research groups rather than for individuals. We make comparisons on two levels. At an absolute level, we compare total impact and overall strength of the group as a whole. At a specific level, we compare academic impact and quality, normalised by the size of the group. We find very high correlations at the former level for some disciplines and poor correlations at the latter level for all disciplines. This means that, although the citation-ba...

  9. Measurement of Absolute Excitation Cross Sections in Highly-Charged Ions Using Electron Energy Loss and Merged Beams

    Science.gov (United States)

    Chutjian, A.; Smith, Steven J.; Lozano, J.

    2002-01-01

    There is increasing emphasis during this decade on understanding energy balance and phenomena observed in high electron temperature plasmas. The UV spectral return from FUSE, the X-ray spectral return from the HETG on Chandra and the LETGS 011 XMM-Newton are just beginning. Line emissions are almost entirely from highly-charged ions (HCIs) of C, N, 0, Ne, Mg, S, Si, Ca, and Fe. The Constellation-X mission will provide X-ray spectroscopy up to photon energies of 0.12 nm (10 keV) where primary line emitters will be HCIs. A variety of atomic parameters are required to model the stellar and solar plasma. These include cross sections for excitation, ionization, charge-exchange, X-ray emission, direct and indirect recombination, lifetimes and branching ratios, and dependences on l, m mixing by external E and B fields. In almost all cases the atomic quantities are calculated, and few comparisons to experiment have been carried out. Collision strengths and Einstein A-values are required to convert the observed spectral intensities to electron temperatures and densities in the stellar plasma. The JPL electron energy-loss and merged beam approach has been used to measure absolute collision strengths in a number of ions, with critical comparison made to the best available theories.

  10. North-south asymmetry of solar activity as a superposition of two realizations - the sign and absolute value

    Science.gov (United States)

    Badalyan, O. G.; Obridko, V. N.

    2017-07-01

    Context. Since the occurrence of north-south asymmetry (NSA) of alternating sign may be determined by different mechanisms, the frequency and amplitude characteristics of this phenomenon should be considered separately. Aims: We propose a new approach to the description of the NSA of solar activity. Methods: The asymmetry defined as A = (N-S)/(N + S) (where N and S are, respectively, the indices of activity of the northern and southern hemispheres) is treated as a superposition of two functions: the sign of asymmetry (signature) and its absolute value (modulus). This approach is applied to the analysis of the NSA of sunspot group areas for the period 1874-2013. Results: We show that the sign of asymmetry provides information on the behavior of the asymmetry. In particular, it displays quasi-periodic variation with a period of 12 yr and quasi-biennial oscillations as the asymmetry itself. The statistics of the so-called monochrome intervals (long periods of positive or negative asymmetry) are considered and it is shown that the distribution of these intervals is described by the random distribution law. This means that the dynamo mechanisms governing the cyclic variation of solar activity must involve random processes. At the same time, the asymmetry modulus has completely different statistical properties and is probably associated with processes that determine the amplitude of the cycle. One can reliably isolate an 11-yr cycle in the behavior of the asymmetry absolute value shifted by half a period with respect to the Wolf numbers. It is shown that the asymmetry modulus has a significant prognostic value: the higher the maximum of the asymmetry modulus, the lower the following Wolf number maximum. Conclusions: A fundamental nature of this concept of NSA is discussed in the context of the general methodology of cognizing the world. It is supposed that the proposed description of the NSA will help clarify the nature of this phenomenon.

  11. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... Needs for Pregnant or Postpartum Women Physical Activity & Health Adding Physical Activity to Your Life Activities for ... Obesity , National Center for Chronic Disease Prevention and Health Promotion Email Recommend Tweet YouTube Instagram Listen Watch ...

  12. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... Facts About Physical Activity Data, Trends and Maps Surveillance Systems Resources & Publications Reports Adults Need More Physical Activity MMWR Data Highlights State Indicator Report on Physical Activity, 2014 Recommendations & Guidelines ...

  13. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... gov . Physical Activity Physical Activity Basics Needs for Adults Needs for Children What Counts Needs for Older Adults Needs for Pregnant or Postpartum Women Physical Activity & ...

  14. Absolute and relative temporal order memory for performed activities following stroke

    NARCIS (Netherlands)

    Schoo, Linda A.; Van Zandvoort, Martine J E; Reijmer, Yael D.; Biessels, Geert Jan; Kappelle, L. Jaap; Postma, Albert

    2014-01-01

    Reconstructing the temporal order of events is a crucial part of episodic memory. The temporal dimension, however, is often discarded in clinical settings, and measurements of true temporal aspects of episodic memory are scarce. The present study assessed temporal memory in stroke patients and in

  15. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... Indicator Report on Physical Activity, 2014 Recommendations & Guidelines Fact Sheets & Infographics Social Media Tools Community Strategies Worksite Physical Activity Steps ...

  16. Absolute quantitation of protein posttranslational modification isoform.

    Science.gov (United States)

    Yang, Zhu; Li, Ning

    2015-01-01

    Mass spectrometry has been widely applied in characterization and quantification of proteins from complex biological samples. Because the numbers of absolute amounts of proteins are needed in construction of mathematical models for molecular systems of various biological phenotypes and phenomena, a number of quantitative proteomic methods have been adopted to measure absolute quantities of proteins using mass spectrometry. The liquid chromatography-tandem mass spectrometry (LC-MS/MS) coupled with internal peptide standards, i.e., the stable isotope-coded peptide dilution series, which was originated from the field of analytical chemistry, becomes a widely applied method in absolute quantitative proteomics research. This approach provides more and more absolute protein quantitation results of high confidence. As quantitative study of posttranslational modification (PTM) that modulates the biological activity of proteins is crucial for biological science and each isoform may contribute a unique biological function, degradation, and/or subcellular location, the absolute quantitation of protein PTM isoforms has become more relevant to its biological significance. In order to obtain the absolute cellular amount of a PTM isoform of a protein accurately, impacts of protein fractionation, protein enrichment, and proteolytic digestion yield should be taken into consideration and those effects before differentially stable isotope-coded PTM peptide standards are spiked into sample peptides have to be corrected. Assisted with stable isotope-labeled peptide standards, the absolute quantitation of isoforms of posttranslationally modified protein (AQUIP) method takes all these factors into account and determines the absolute amount of a protein PTM isoform from the absolute amount of the protein of interest and the PTM occupancy at the site of the protein. The absolute amount of the protein of interest is inferred by quantifying both the absolute amounts of a few PTM

  17. Present-day Surface Deformation and Vertical Motion In The Central Alborz (iran) From GPS and Absolute Gravity Measurements.

    Science.gov (United States)

    Masson, F.; Sedighi, M.; Hinderer, J.; Bayer, R.; Nilforoushan, F.; Luck, J.-M.; Vernant, P.; Chéry, J.

    The present tectonic of Iran results from the north-south convergence between Eura- sia and Arabia, with a rate of about 3 cm/year. The deformation of Iran is concen- trated in major belts along the south-western border (Zagros), the southern shore of the Caspian Sea (Alborz) and along the north-east border (Kopet-Dag). The Alborz range is an east-west mountain range which accommodates about 1 cm/year of short- ening between the Central Iranian Desert and the south Caspian Sea. The main tec- tonic structures are generally overthrusting range-parallel faults northward dipping in the south (North Tehran fault, Mosha fault) and southward dipping in the north (Amir fault, North Border fault). The compressive tectonic in the Alborz range is certainly accommodated by large vertical motions along the major faults. To study the defor- mation (horizontal and vertical movement) we have installed and measured a GPS network of 14 sites crossing the Alborz range east of Tehran. The GPS network is measured during campaigns performed each year. In order to well constrained the ver- tical deformation of the southern border of the Alborz, we have performed colocated GPS and absolute gravity measurements in 3 sites, one near the Mosha fault (Abali), one in the frontal thrust area of Tehran and one in the stable central Iranian block (Chesmeh-Sour). After two measures (2000 and 2001), some interesting preliminary results will be shown. The observed gravity variation for one year (Sept. 2000 - Sept. 2001) is -3.0 mgal +-2.6 mgal (Abali), -24.2 mgal +-4.8 mgal (Tehran) and +4.7 mgal +-2.3 mgal (Chesmeh-Sour). These results could be explained respectively by a tec- tonic uplift of about 10 mm/year in the Alborz, water pumping in the Tehran area and (unexplained) subsidence at Chesmeh-Sour. These results will be compared to the first estimation of the deformation obtained by GPS (horizontal repeatability < 3 mm and vertical repeatability < 5 mm).

  18. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... Button Our Division About Us Nutrition Physical Activity Overweight & Obesity Healthy Weight Breastfeeding Micronutrient Malnutrition State and Local ... Button Our Division About Us Nutrition Physical Activity Overweight & Obesity Healthy Weight Breastfeeding Micronutrient Malnutrition State and Local ...

  19. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... What's this? Submit Button Our Division About Us Nutrition Physical Activity Overweight & Obesity Healthy Weight Breastfeeding Micronutrient ... What's this? Submit Button Our Division About Us Nutrition Physical Activity Overweight & Obesity Healthy Weight Breastfeeding Micronutrient ...

  20. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... David, Age 65 Harold, Age 67 Data & Statistics Facts About Physical Activity Data, Trends and Maps Surveillance ... Indicator Report on Physical Activity, 2014 Recommendations & Guidelines Fact Sheets & Infographics Social Media Tools Community Strategies Worksite ...

  1. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... Our Division About Us Nutrition Physical Activity Overweight & Obesity Healthy Weight Breastfeeding Micronutrient Malnutrition State and Local ... Our Division About Us Nutrition Physical Activity Overweight & Obesity Healthy Weight Breastfeeding Micronutrient Malnutrition State and Local ...

  2. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... Email Address What's this? Submit What's this? Submit Button Our Division About Us Nutrition Physical Activity Overweight & ... Email Address What's this? Submit What's this? Submit Button Our Division About Us Nutrition Physical Activity Overweight & ...

  3. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... Physical Activity, 2014 Recommendations & Guidelines Fact Sheets & Infographics Social Media Tools Community Strategies Worksite Physical Activity Steps ... file formats (PDF, DOC, PPT, MPEG) on this site? Adobe PDF file Microsoft PowerPoint file Microsoft Word ...

  4. Measurement of Physical Activity.

    Science.gov (United States)

    Dishman, Rod K.; Washburn, Richard A.; Schoeller, Dale A.

    2001-01-01

    Valid assessment of physical activity must be unobtrusive, practical to administer, and specific about physical activity type, frequency, duration, and intensity. Assessment methods can be categorized according to whether they provide direct or indirect (e.g., self-report) observation of physical activity, body motion, physiological response…

  5. Climate Prediction of Tropical Cyclone Activity in the Vicinity of Taiwan Using the Multivariate Least Absolute Deviation Regression Method

    Directory of Open Access Journals (Sweden)

    Pao-Shin Chu

    2007-01-01

    Full Text Available In this study, a multivariate linear regression model is applied to predict the seasonal tropical cyclone (TC count in the vicinity of Taiwan using large-scale climate variables available from the preceding May. Here the season encompasses the five-month period from June through October, when typhoons are most active in the study domain. The model is based on the least absolute deviation so that regression estimates are more resistant (i.e., not unduly influenced by outliers than those derived from the ordinary least square method. Through lagged correlation analysis, five parameters (sea surface temperature, sea level pressure, precipitable water, low-level relative vorticity, and vertical wind shear in key locations of the tropical western North Pacific are identified as predictor datasets. Results from crossvalidation suggest that the statistical model is skillful in predicting TC activity, with a correlation coefficient of 0.63 for 1970 - 2003. If more recent data are included, the correlation coefficient reaches 0.69 for 1970 - 2006. Relative importance of each predictor variable is evaluated. For predicting higher than normal seasonal TC activity, warmer sea surface temperatures, a moist troposphere, and the presence of a low-level cyclonic circulation coupled with low-latitude westerlies in the Philippine Sea in the antecedent May appear to be important.

  6. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... updated: June 4, 2015 Content source: Division of Nutrition, Physical Activity, and Obesity , National Center for Chronic Disease Prevention and Health Promotion ... Services HHS/Open USA.gov Top

  7. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... on this page will be unavailable. For more information about this message, please visit this page: About CDC.gov . ... Resources & Publications Reports Adults Need More Physical Activity ...

  8. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... updated: June 4, 2015 Content source: Division of Nutrition, Physical Activity, and Obesity , National Center for Chronic Disease Prevention and Health Promotion Email Recommend Tweet YouTube Instagram Listen Watch ...

  9. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... energy used by the body while doing the activity. Top of Page Moderate Intensity Walking briskly (3 miles per hour or faster, but not race-walking) Water aerobics Bicycling slower than 10 miles per hour ...

  10. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... 2015 Page last updated: June 4, 2015 Content source: Division of Nutrition, Physical Activity, and Obesity , National ... INFO U.S. Department of Health & Human Services HHS/Open USA.gov Top

  11. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... Sheets & Infographics Social Media Tools Community Strategies Worksite Physical Activity Steps to Wellness Walkability Audit Tool Sample Audit Glossary Selected References Discount Fitness Club Network Assessing Need and Interest Selecting a ...

  12. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... rate and breathing. The talk test is a simple way to measure relative intensity. In general, if ... Healthy Weight Breastfeeding Micronutrient Malnutrition State and Local Programs File Formats Help: How do I view different ...

  13. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... Measuring Intensity Target Heart Rate and Estimated Maximum Heart Rate Perceived Exertion (Borg Rating of Perceived Exertion Scale) Get Email Updates To receive email updates about this page, enter your ... ...

  14. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... Measuring Intensity Target Heart Rate and Estimated Maximum Heart Rate Perceived Exertion (Borg Rating of Perceived Exertion Scale) Get Email Updates To receive email updates about this page, enter your email ... ...

  15. Fine structure of the age-chromospheric activity relation in solar-type stars I: The Ca II infrared triplet: Absolute flux calibration

    CERN Document Server

    Lorenzo-Oliveira, Diego; Dutra-Ferreira, Letícia; Ribas, Ignasi

    2016-01-01

    Strong spectral lines are useful indicators of stellar chromospheric activity. They are physically linked to the convection efficiency, differential rotation, and angular momentum evolution and are a potential indicator of age. However, for ages > 2 Gyr, the age-activity relationship remains poorly constrained thus hampering its full application. The Ca II infrared triplet (IRT lines) has been poorly studied compared to classical chromospheric indicators. We report in this paper absolute chromospheric fluxes in the three Ca II IRT lines, based on a new calibration tied to up-to-date model atmospheres. We obtain the Ca II IRT absolute fluxes for 113 FGK stars from high signal-to-noise ratio and high-resolution spectra covering an extensive domain of chromospheric activity levels. We perform an absolute continuum flux calibration for the Ca II IRT lines anchored in atmospheric models calculated as an explicit function of effective temperatures, metallicity, and gravities avoiding the degeneracy present in photo...

  16. Measuring children's physical activity

    DEFF Research Database (Denmark)

    Schneller, Mikkel Bo; Bentsen, Peter; Nielsen, Glen

    2017-01-01

    INTRODUCTION: Accelerometer-based physical activity monitoring has become the method of choice in many large-scale physical activity (PA) studies. However, there is an ongoing debate regarding the placement of the device, the determination of device wear time, and how to solve a lack of participant...... on the thigh (n=903) and one on the lower back (n= 856), for up to ten consecutive days. Participants were instructed not to reattach an accelerometer should it fall off. Simple and multiple linear regression were used to determine associations between accelerometer wear time and age, sex, BMI percentiles...

  17. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... Index MENU CDC A-Z SEARCH A B C D E F G H I J K ... aerobic activity, watch this video: Windows Media Player, 4:48 More videos Here are some ways to ... ePub file RIS file Page last reviewed: June 4, 2015 Page last updated: June 4, 2015 Content ...

  18. A linear energy relationship between activation energy and absolute hardness: a case study with the O(3P) atom-addition reactions to polyaromatic hydrocarbons.

    Science.gov (United States)

    Orrego, Juan F; Truong, Thanh N; Mondragón, Fanor

    2008-09-11

    A new linear relationship between absolute hardness and global activation energy of O-addition reaction to a series of aromatic hydrocarbons (benzene, naphthalene, phenanthrene, and pyrene) is presented. A total of seventeen O((3)P)-addition reactions were evaluated. Thermal rate constants were calculated for each elementary reaction and used to estimate the total rate constants. This information was employed to obtain the global activation energy. A new linear relationship is shown and is estimated that it can be used within the RC-TST framework to predict relative rate constants for any reaction within an O-addition to PAH class from just absolute hardness values.

  19. 绝对加速度反馈主动控制%Active control with absolute acceleration feedback

    Institute of Scientific and Technical Information of China (English)

    刘晖; 唐家祥

    2001-01-01

    利用绝对加速度测量简单、可靠的特点,提出了一种新的反馈控制方法,即基于绝对加速度的反馈控制算法。同时,考虑到驱动器的时滞,发展了考虑察动器时滞的结构状态方程。实例研究表明,该方法改善了时滞的影响,具有良好的控制效果。%Absolute acceleration response can easily be measured by installing accelerationsensors. So the paper develops a control algorithm utilizing acceleration sensors. The time-delay of the actuator is considered in the control strategy. the state equation considering time-delay of actuator is developed and by the example, it is illustrated that the method improves influence of time-delay and brings a good control effectiveness.

  20. Measuring children's physical activity

    DEFF Research Database (Denmark)

    Schneller, Mikkel Bo; Bentsen, Peter; Nielsen, Glen

    2017-01-01

    INTRODUCTION: Accelerometer-based physical activity monitoring has become the method of choice in many large-scale physical activity (PA) studies. However, there is an ongoing debate regarding the placement of the device, the determination of device wear time, and how to solve a lack of participant...... compliance. The aim of this study was to assess the compliance of Axivity AX3 accelerometers taped directly to the skin of 9-13-year-old children. METHODS: Children in 46 school classes (53.4% girls, age 11.0±1.0 years, BMI 17.7±2.8 kg*m) across Denmark wore two Axivity AX3 accelerometers, one taped...... on the thigh (n=903) and one on the lower back (n= 856), for up to ten consecutive days. Participants were instructed not to reattach an accelerometer should it fall off. Simple and multiple linear regression were used to determine associations between accelerometer wear time and age, sex, BMI percentiles...

  1. The final power calibration of the IPEN/MB-01 nuclear reactor for various configurations obtained from the measurements of the absolute average neutron flux

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Alexandre Fonseca Povoa da, E-mail: alexandre.povoa@mar.mil.br [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), Sao Paulo, SP (Brazil); Bitelli, Ulysses d' Utra; Mura, Luiz Ernesto Credidio; Lima, Ana Cecilia de Souza; Betti, Flavio; Santos, Diogo Feliciano dos, E-mail: ubitelli@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    The use of neutron activation foils is a widely spread technique applied to obtain nuclear parameters then comparing the results with those calculated using specific methodologies and available nuclear data. By irradiation of activation foils and subsequent measurement of its induced activity, it is possible to determine the neutron flux at the position of irradiation. The power level during operation of the reactor is a parameter which is directly proportional to the average neutron flux throughout the core. The objective of this work is to gather data from irradiation of gold foils symmetrically placed along a cylindrically configured core which presents only a small excess reactivity in order to derive the power generated throughout the spatial thermal and epithermal neutron flux distribution over the core of the IPEN/MB-01 Nuclear Reactor, eventually lending to a proper calibration of its nuclear channels. The foils are fixed in a Lucite plate then irradiated with and without cadmium sheaths so as to obtain the absolute thermal and epithermal neutron flux. The correlation between the average power neutron flux resulting from the gold foils irradiation, and the average power digitally indicated by the nuclear channel number 6, allows for the calibration of the nuclear channels of the reactor. The reactor power level obtained by thermal neutron flux mapping was (74.65 ± 2.45) watts to a mean counting per seconds of 37881 cps to nuclear channel number 10 a pulse detector, and 0.719.10{sup -5} ampere to nuclear linear channel number 6 (a non-compensated ionization chamber). (author)

  2. Measurement of the B-->pi l nu branching fraction and determination of absolute value of V(ub) with tagged B mesons.

    Science.gov (United States)

    Aubert, B; Barate, R; Bona, M; Boutigny, D; Couderc, F; Karyotakis, Y; Lees, J P; Poireau, V; Tisserand, V; Zghiche, A; Grauges, E; Palano, A; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Battaglia, M; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Gill, M S; Groysman, Y; Jacobsen, R G; Kadyk, J A; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Lynch, G; Mir, L M; Orimoto, T J; Pripstein, M; Roe, N A; Ronan, M T; Wenzel, W A; del Amo Sanchez, P; Barrett, M; Ford, K E; Harrison, T J; Hart, A J; Hawkes, C M; Morgan, S E; Watson, A T; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Peters, K; Schroeder, T; Steinke, M; Boyd, J T; Burke, J P; Cottingham, W N; Walker, D; Cuhadar-Donszelmann, T; Fulsom, B G; Hearty, C; Knecht, N S; Mattison, T S; McKenna, J A; Khan, A; Kyberd, P; Saleem, M; Sherwood, D J; Teodorescu, L; Blinov, V E; Bukin, A D; Druzhinin, V P; Golubev, V B; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Todyshev, K Yu; Best, D S; Bondioli, M; Bruinsma, M; Chao, M; Curry, S; Eschrich, I; Kirkby, D; Lankford, A J; Lund, P; Mandelkern, M; Mommsen, R K; Roethel, W; Stoker, D P; Abachi, S; Buchanan, C; Foulkes, S D; Gary, J W; Long, O; Shen, B C; Wang, K; Zhang, L; Hadavand, H K; Hill, E J; Paar, H P; Rahatlou, S; Sharma, V; Berryhill, J W; Campagnari, C; Cunha, A; Dahmes, B; Hong, T M; Kovalskyi, D; Richman, J D; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Nesom, G; Schalk, T; Schumm, B A; Seiden, A; Spradlin, P; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dvoretskii, A; Fang, F; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Ryd, A; Samuel, A; Mancinelli, G; Meadows, B T; Mishra, K; Sokoloff, M D; Blanc, F; Bloom, P C; Chen, S; Ford, W T; Hirschauer, J F; Kreisel, A; Nagel, M; Nauenberg, U; Olivas, A; Ruddick, W O; Smith, J G; Ulmer, K A; Wagner, S R; Zhang, J; Chen, A; Eckhart, E A; Soffer, A; Toki, W H; Wilson, R J; Winklmeier, F; Zeng, Q; Altenburg, D D; Feltresi, E; Hauke, A; Jasper, H; Petzold, A; Spaan, B; Brandt, T; Klose, V; Lacker, H M; Mader, W F; Nogowski, R; Schubert, J; Schubert, K R; Schwierz, R; Sundermann, J E; Volk, A; Bernard, D; Bonneaud, G R; Grenier, P; Latour, E; Thiebaux, Ch; Verderi, M; Clark, P J; Gradl, W; Muheim, F; Playfer, S; Robertson, A I; Xie, Y; Andreotti, M; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Petrella, A; Piemontese, L; Prencipe, E; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Pacetti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Buzzo, A; Capra, R; Contri, R; Lo Vetere, M; Macri, M M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Brandenburg, G; Chaisanguanthum, K S; Morii, M; Wu, J; Dubitzky, R S; Marks, J; Schenk, S; Uwer, U; Bard, D J; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Flack, R L; Nash, J A; Nikolich, M B; Panduro Vazquez, W; Behera, P K; Chai, X; Charles, M J; Mallik, U; Meyer, N T; Ziegler, V; Cochran, J; Crawley, H B; Dong, L; Eyges, V; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Gritsan, A V; Denig, A G; Fritsch, M; Schott, G; Arnaud, N; Davier, M; Grosdidier, G; Höcker, A; Le Diberder, F; Lepeltier, V; Lutz, A M; Oyanguren, A; Pruvot, S; Rodier, S; Roudeau, P; Schune, M H; Stocchi, A; Wang, W F; Wormser, G; Cheng, C H; Lange, D J; Wright, D M; Chavez, C A; Forster, I J; Fry, J R; Gabathuler, E; Gamet, R; George, K A; Hutchcroft, D E; Payne, D J; Schofield, K C; Touramanis, C; Bevan, A J; Di Lodovico, F; Menges, W; Sacco, R; Cowan, G; Flaecher, H U; Hopkins, D A; Jackson, P S; McMahon, T R; Ricciardi, S; Salvatore, F; Wren, A C; Brown, D N; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Chia, Y M; Edgar, C L; Lafferty, G D; Naisbit, M T; Williams, J C; Yi, J I; Chen, C; Hulsbergen, W D; Jawahery, A; Lae, C K; Roberts, D A; Simi, G; Blaylock, G; Dallapiccola, C; Hertzbach, S S; Li, X; Moore, T B; Saremi, S; Staengle, H; Cowan, R; Sciolla, G; Sekula, S J; Spitznagel, M; Taylor, F; Yamamoto, R K; Kim, H; McLachlin, S E; Patel, P M; Robertson, S H; Lazzaro, A; Lombardo, V; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Simard, M; Taras, P; Viaud, F B; Nicholson, H; Cavallo, N; De Nardo, G; Fabozzi, F; Gatto, C; Lista, L; Monorchio, D; Paolucci, P; Piccolo, D; Sciacca, C; Baak, M; Raven, G; Snoek, H L; Jessop, C P; Losecco, J M; Allmendinger, T; Benelli, G; Gan, K K; Honscheid, K; Hufnagel, D; Jackson, P D; Kagan, H; Kass, R; Rahimi, A M; Ter-Antonyan, R; Wong, Q K; Blount, N L; Brau, J; Frey, R; Igonkina, O; Lu, M; Rahmat, R; Sinev, N B; Strom, D; Strube, J; Torrence, E; Gaz, A; Margoni, M; Morandin, M; Pompili, A; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; Benayoun, M; Chauveau, J; Briand, H; David, P; Del Buono, L; de la Vaissière, Ch; Hamon, O; Hartfiel, B L; John, M J J; Leruste, Ph; Malclès, J; Ocariz, J; Roos, L; Therin, G; Gladney, L; Panetta, J; Biasini, M; Covarelli, R; Angelini, C; Batignani, G; Bettarini, S; Bucci, F; Calderini, G; Carpinelli, M; Cenci, R; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Mazur, M A; Morganti, M; Neri, N; Paoloni, E; Rizzo, G; Walsh, J J; Haire, M; Judd, D; Wagoner, D E; Biesiada, J; Danielson, N; Elmer, P; Lau, Y P; Lu, C; Olsen, J; Smith, A J S; Telnov, A V; Bellini, F; Cavoto, G; D'Orazio, A; del Re, D; Di Marco, E; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Li Gioi, L; Mazzoni, M A; Morganti, S; Piredda, G; Polci, F; Safai Tehrani, F; Voena, C; Ebert, M; Schröder, H; Waldi, R; Adye, T; De Groot, N; Franek, B; Olaiya, E O; Wilson, F F; Aleksan, R; Emery, S; Gaidot, A; Ganzhur, S F; Hamel de Monchenault, G; Kozanecki, W; Legendre, M; Vasseur, G; Yèche, Ch; Zito, M; Chen, X R; Liu, H; Park, W; Purohit, M V; Wilson, J R; Allen, M T; Aston, D; Bartoldus, R; Bechtle, P; Berger, N; Claus, R; Coleman, J P; Convery, M R; Cristinziani, M; Dingfelder, J C; Dorfan, J; Dubois-Felsmann, G P; Dujmic, D; Dunwoodie, W; Field, R C; Glanzman, T; Gowdy, S J; Graham, M T; Halyo, V; Hast, C; Hryn'ova, T; Innes, W R; Kelsey, M H; Kim, P; Leith, D W G S; Li, S; Luitz, S; Luth, V; Lynch, H L; MacFarlane, D B; Marsiske, H; Messner, R; Muller, D R; O'Grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Pulliam, T; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Stelzer, J; Su, D; Sullivan, M K; Suzuki, K; Swain, S K; Thompson, J M; Va'vra, J; van Bakel, N; Weaver, M; Weinstein, A J R; Wisniewski, W J; Wittgen, M; Wright, D H; Yarritu, A K; Yi, K; Young, C C; Burchat, P R; Edwards, A J; Majewski, S A; Petersen, B A; Roat, C; Wilden, L; Ahmed, S; Alam, M S; Bula, R; Ernst, J A; Jain, V; Pan, B; Saeed, M A; Wappler, F R; Zain, S B; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Ritchie, J L; Satpathy, A; Schilling, C J; Schwitters, R F; Izen, J M; Lou, X C; Ye, S; Bianchi, F; Gallo, F; Gamba, D; Bomben, M; Bosisio, L; Cartaro, C; Cossutti, F; Della Ricca, G; Dittongo, S; Lanceri, L; Vitale, L; Azzolini, V; Martinez-Vidal, F; Banerjee, Sw; Bhuyan, B; Brown, C M; Fortin, D; Hamano, K; Kowalewski, R; Nugent, I M; Roney, J M; Sobie, R J; Back, J J; Harrison, P F; Latham, T E; Mohanty, G B; Pappagallo, M; Band, H R; Chen, X; Cheng, B; Dasu, S; Datta, M; Flood, K T; Hollar, J J; Kutter, P E; Mellado, B; Mihalyi, A; Pan, Y; Pierini, M; Prepost, R; Wu, S L; Yu, Z; Neal, H

    2006-11-24

    We report a measurement of the B-->pi l nu branching fraction based on 211 fb(-1) of data collected with the BABAR detector. We use samples of B0 and B+ mesons tagged by a second B meson reconstructed in a semileptonic or hadronic decay and combine the results assuming isospin symmetry to obtain B(B(0)-->pi- l+ nu) = (1.33+/-0.17stat+/-0.11syst) x 10(-4). We determine the magnitude of the Cabibbo-Kobayashi-Maskawa matrix element absolute value V(ub) by combining the partial branching fractions measured in ranges of the momentum transfer squared and theoretical calculations of the form factor. Using a recent lattice QCD calculation, we find absolute value V(ub) = (4.5+/-0.5stat+/-0.3syst(+0.7) -0.5FF x 10(-3), where the last error is due to the normalization of the form factor.

  3. Absolute measurement of subnanometer scale vibration of cochlear partition of an excised guinea pig cochlea using spectral-domain phase-sensitive optical coherence tomography

    Science.gov (United States)

    Subhash, Hrebesh M.; Choudhury, Niloy; Jacques, Steven L.; Wang, Ruikang K.; Chen, Fangyi; Zha, Dingjun; Nuttall, Alfred L.

    2012-01-01

    Direct measurement of absolute vibration parameters from different locations within the mammalian organ of Corti is crucial for understanding the hearing mechanics such as how sound propagates through the cochlea and how sound stimulates the vibration of various structures of the cochlea, namely, basilar membrane (BM), recticular lamina, outer hair cells and tectorial membrane (TM). In this study we demonstrate the feasibility a modified phase-sensitive spectral domain optical coherence tomography system to provide subnanometer scale vibration information from multiple angles within the imaging beam. The system has the potential to provide depth resolved absolute vibration measurement of tissue microstructures from each of the delay-encoded vibration images with a noise floor of ~0.3nm at 200Hz.

  4. Absolute measurement of {beta} emitters with a 4 {pi} counter; Mesure absolue des emetteurs {beta} au compteur 4 {pi}

    Energy Technology Data Exchange (ETDEWEB)

    Le Gallic, Y. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1959-06-15

    The object of this work is to investigate the conditions under which the activity of {beta}-emitting radionuclides may be measured with a maximum of precision, and as a result to study the relevant corrections. The various problems relating to activity measurements with a 4 {pi} counter have been examined successively: - comparison of 4 {pi}, GM and proportional counters; - study of the preparation of sources; - corrections on the counting of sources; - self-absorption; - correction for absorption. The precision obtained on these measurements varies from 1.2 to 3 per cent, with the result that the 4 {pi} counter can be considered a very satisfactory calibration instrument. (author) [French] Le but de ce travail est de rechercher les conditions permettant d'obtenir avec le maximum de precision, la mesure de l'activite des radionuclides se desintegrant par emission et par consequent d'etudier les corrections qui s'y rapportent. Nous avons examine successivement les differents problemes se rapportant aux mesures d'activite au compteur 4 {pi}: - Comparaison des compteurs 4 {pi}, GM et proportionnel; - etude de la preparation des sources; - corrections sur la numeration des sources; - auto-absorption; - correction d'absorption. La precision obtenue dans ces mesures, variant de 1,2 a 3 pour cent, on peut donc considerer le compteur 4 {pi} comme un instrument d'etalonnage tres satisfaisant. (auteur)

  5. Measurements of the absolute branching fractions for D-s(+) -> eta e(+)nu(e) and D-s(+) -> eta ' e(+)nu(e)

    NARCIS (Netherlands)

    Ablikim, M.; Achasov, M. N.; Ahmed, S.; Ai, X. C.; Albayrak, O.; Albrecht, M.; Ambrose, D. J.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Bakina, O.; Ferroli, R. Baldini; Ban, Y.; Bennett, D. W.; Bennett, J. V.; Berger, N.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chai, J.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, J. C.; Chen, M. L.; Chen, P. L.; Chen, S. J.; Chen, X.; Chen, X. R.; Chen, Y. B.; Cheng, H. P.; Chu, X. K.; Cibinetto, G.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; De Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Dorjkhaidav, O.; Dou, Z. L.; Du, S. X.; Duan, P. F.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Farinelli, R.; Fava, L.; Fegan, S.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, X. L.; Gao, Y.; Gao, Z.; Garzia, I.; Goetzen, K.; Gong, L.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, R. P.; Guo, Y.; Guo, Y. P.; Haddadi, Z.; Hafner, A.; Han, S.; Hao, X. Q.; Harris, F. A.; He, K. L.; He, X. Q.; Heinsius, F. H.; Held, T.; Heng, Y. K.; Holtmann, T.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, J. F.; Hu, T.; Hu, Y.; Huang, G. S.; Huang, J. S.; Huang, X. T.; Huang, X. Z.; Huang, Y.; Huang, Z. L.; Hussain, T.; Andersson, W. Ikegami; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, L. W.; Jiang, X. S.; Jiang, X. Y.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Kiese, P.; Kliemt, R.; Kloss, B.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kupsc, A.; Kuhn, W.; Lange, J. S.; Lara, M.; Larin, P.; Leithoff, H.; Leng, C.; Li, C.; Li, Cheng; Li, D. M.; Li, F.; Li, F. Y.; Li, G.; Li, H. B.; Li, H. J.; Li, J. C.; Li, Jin; Li, K.; Li, K.; Li, Lei; Li, P. L.; Li, Q. Y.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. N.; Li, X. Q.; Li, Y. B.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin, D. X.; Liu, B.; Liu, B. J.; Liu, C. X.; Liu, D.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. H.; Liu, H. H.; Liu, H. M.; Liu, J.; Liu, J. B.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, Y. B.; Liu, Y. Y.; Liu, Z. A.; Liu, Zhiqing; Loehner, H.; Long, Y. F.; Lou, X. C.; Lu, H. J.; Lu, J. G.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, M. M.; Ma, Q. M.; Ma, T.; Ma, X. N.; Ma, X. Y.; Ma, Y. M.; Maas, F. E.; Maggiora, M.; Malik, Q. A.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; Messchendorp, J. G.; Mezzadri, G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales, C. Morales; Muchnoi, N. Yu.; Muramatsu, H.; Musiol, P.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Pan, Y.; Patteri, P.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Pettersson, J.; Ping, J. L.; Ping, R. G.; Poling, R.; Prasad, V.; Qi, H. R.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, J. J.; Qin, N.; Qin, X. S.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Ripka, M.; Rong, G.; Rosner, Ch.; Ruan, X. D.; Sarantsev, A.; Savrie, M.; Schnier, C.; Schoenning, K.; Schumann, S.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Shi, M.; Song, W. M.; Song, X. Y.; Sosio, S.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, X. H.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tapan, I.; Thorndike, E. H.; Tiemens, M.; Uman, I.; Varner, G. S.; Wang, B.; Wang, B. L.; Wang, D.; Wang, D. Y.; Wang, Dan; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, W.; Wang, W. P.; Wang, X. F.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Wang, Z. Y.; Weber, T.; Wei, D. H.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, L. J.; Wu, Z.; Xia, L.; Xia, Y.; Xiao, D.; Xiao, H.; Xiao, Z. J.; Xie, Y. G.; Xiong, X. A.; Xiu, Q. L.; Xu, G. F.; Xu, J. J.; Xu, L.; Xu, Q. J.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. J.; Yang, H. X.; Yang, L.; Yang, Y. X.; Ye, M.; Ye, M. H.; Yin, J. H.; You, Z. Y.; Yu, B. X.; Yu, C. X.; Yu, J. S.; Yuan, C. Z.; Yuan, W. L.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zallo, A.; Zeng, Y.; Zeng, Z.; Zhang, B. X.; Zhang, B. Y.; Zhang, C.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J.; Zhang, J. J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, S. Q.; Zhang, X. Y.; Zhang, Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Y. T.; Zhang, Yu; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, Q. W.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, S. H.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zotti, L.; Zou, B. S.; Zou, J. H.

    2016-01-01

    By analyzing 482 pb(-1) of e(+)e(-) collision data collected at root s = 4.009 GeV with the BESIII detector at the BEPCII collider, we measure the absolute branching fractions for the semileptonic decays D-s(+) -> eta e(+)nu(e) and D-s(+) -> eta ' e(+)nu(e) to be B(D-s(+) -> eta e(+)nu(e)) = (2.30 +

  6. Stability Transfer between Two Clock Lasers Operating at Different Wavelengths for Absolute Frequency Measurement of Clock Transition in 87Sr

    CERN Document Server

    Yamaguchi, A; Nagano, S; Li, Y; Ishijima, H; Hachisu, H; Kumagai, M; Ido, T; 10.1143/APEX.5.022701

    2012-01-01

    We demonstrated transferring the stability of one highly stable clock laser operating at 729 nm to another less stable laser operating at 698 nm. The two different wavelengths were bridged using an optical frequency comb. The improved stability of the clock laser at 698 nm enabled us to evaluate the systematic frequency shifts of the Sr optical lattice clock with shorter averaging time. We determined the absolute frequency of the clock transition 1S0 - 3P0 in 87Sr to be 429 228 004 229 873.9 (1.4) Hz referenced to the SI second on the geoid via International Atomic Time (TAI).

  7. Absolute Neutrino Mass Determination

    CERN Document Server

    Päs, H

    2001-01-01

    We discuss four approaches to the determination of absolute neutrino mass. These are the measurement of the zero-neutrino double beta decay rate, of the tritium decay end-point spectrum, of the cosmic ray spectrum above the GZK cutoff, and the cosmological measurement of the power spectrum governing the CMB and large scale structure. The first two approaches are sensitive to the mass eigenstates coupling to the electron neutrino, whereas the latter two are sensitive to the heavy component of the cosmic neutrino background. All mass eigenstates are related by the $\\Delta m^2$'s inferred from neutrino oscillation data. Consequently, the potential for absolute mass determination of each of the four approaches is correlated with the other three, in ways that we point out.

  8. Electrical measurement of sweat activity.

    Science.gov (United States)

    Tronstad, Christian; Gjein, Gaute E; Grimnes, Sverre; Martinsen, Ørjan G; Krogstad, Anne-Lene; Fosse, Erik

    2008-06-01

    A multichannel logger for long-term measurements of sweat activity is presented. The logger uses skin surface electrodes for unipolar admittance measurements in the stratum corneum. The logger is developed with emphasis on clinical use. The portability of the logger enables recording of sweat activity under circumstances such as daily errands, exercise and sleep. Measurements have been done on 24 healthy volunteers during relaxation and exercise with heart rate monitoring. Recordings of sweat activity during sleep have been done on two healthy subjects. Early results show good agreement with the literature on sweating physiology and electrodermal activity. Results are presented showing measurements related to physical exercise, dermatomes, distribution of sweat glands and sympathetic activity. This study examines the normal sweating patterns for the healthy population, and we present results with the first 24 healthy volunteers. Comparing these results with similar measurements on hyperhidrosis patients will make it possible to find the most useful parameters for diagnosis and treatment evaluation.

  9. Systematic Uncertainties in the Spectroscopic Measurements of Neutron-Star Masses and Radii from Thermonuclear X-ray Bursts. III. Absolute Flux Calibration

    CERN Document Server

    Guver, Tolga; Marshall, Herman; Psaltis, Dimitrios; Guainazzi, Matteo; Diaz-Trigo, Maria

    2015-01-01

    Many techniques for measuring neutron star radii rely on absolute flux measurements in the X-rays. As a result, one of the fundamental uncertainties in these spectroscopic measurements arises from the absolute flux calibrations of the detectors being used. Using the stable X-ray burster, GS 1826-238, and its simultaneous observations by Chandra HETG/ACIS-S and RXTE/PCA as well as by XMM-Newton EPIC-pn and RXTE/PCA, we quantify the degree of uncertainty in the flux calibration by assessing the differences between the measured fluxes during bursts. We find that the RXTE/PCA and the Chandra gratings measurements agree with each other within their formal uncertainties, increasing our confidence in these flux measurements. In contrast, XMM-Newton EPIC-pn measures 14.0$\\pm$0.3% less flux than the RXTE/PCA. This is consistent with the previously reported discrepancy with the flux measurements of EPIC-pn, compared to EPIC-MOS1, MOS2 and ACIS-S detectors. We also address the calibration uncertainty in the RXTE/PCA int...

  10. Can the analyte-triggered asymmetric autocatalytic Soai reaction serve as a universal analytical tool for measuring enantiopurity and assigning absolute configuration?

    Science.gov (United States)

    Welch, Christopher J; Zawatzky, Kerstin; Makarov, Alexey A; Fujiwara, Satoshi; Matsumoto, Arimasa; Soai, Kenso

    2016-12-20

    An investigation is reported on the use of the autocatalytic enantioselective Soai reaction, known to be influenced by the presence of a wide variety of chiral materials, as a generic tool for measuring the enantiopurity and absolute configuration of any substance. Good generality for the reaction across a small group of test analytes was observed, consistent with literature reports suggesting a diversity of compound types that can influence the stereochemical outcome of this reaction. Some trends in the absolute sense of stereochemical enrichment were noted, suggesting the possible utility of the approach for assigning absolute configuration to unknown compounds, by analogy to closely related species with known outcomes. Considerable variation was observed in the triggering strength of different enantiopure materials, an undesirable characteristic when dealing with mixtures containing minor impurities with strong triggering strength in the presence of major components with weak triggering strength. A strong tendency of the reaction toward an 'all or none' type of behavior makes the reaction most sensitive for detecting enantioenrichment close to zero. Consequently, the ability to discern modest from excellent enantioselectivity was relatively poor. While these properties limit the ability to obtain precise enantiopurity measurements in a simple single addition experiment, prospects may exist for more complex experimental setups that may potentially offer improved performance.

  11. Determination of the absolute configuration of perylene quinone-derived mycotoxins by measurement and calculation of electronic circular dichroism spectra and specific rotations.

    Science.gov (United States)

    Podlech, Joachim; Fleck, Stefanie C; Metzler, Manfred; Bürck, Jochen; Ulrich, Anne S

    2014-09-01

    Altertoxins I-III, alterlosins I and II, alteichin (alterperylenol), stemphyltoxins I-IV, stemphyperylenol, stemphytriol, 7-epi-8-hydroxyaltertoxin I, and 6-epi-stemphytriol are mycotoxins derived from perylene quinone, for which the absolute configuration was not known. Electronic circular dichroism (ECD) spectra were calculated for these compounds and compared with measured spectra of altertoxins I-III, alteichin, and stemphyltoxin III and with reported Cotton effects. Specific rotations were calculated and compared with reported specific rotations. The absolute configuration of all the toxins, except for stemphyltoxin IV, could thus be determined. The validity of the assignment was high whenever reported ECD data were available for comparison, and the validity was lower when the assignment was based only on the comparison of calculated and reported specific rotations. ECD spectra are intrinsically different for toxins with a biphenyl substructure and for toxins derived from dihydroanthracene.

  12. C-reactive protein, established risk factors and social inequalities in cardiovascular disease – the significance of absolute versus relative measures of disease

    Directory of Open Access Journals (Sweden)

    Hedblad Bo

    2008-06-01

    Full Text Available Abstract Background The widespread use of relative scales in socioepidemiological studies has recently been criticized. The criticism is based mainly on the fact that the importance of different risk factors in explaining social inequalities in cardiovascular disease (CVD varies, depending on which scale is used to measure social inequalities. The present study examines the importance of established risk factors, as opposed to low-grade inflammation, in explaining socioeconomic differences in the incidence of CVD, using both relative and absolute scales. Methods We obtained information on socioeconomic position (SEP, established risk factors (smoking, hypertension, and hyperlipidemia, and low-grade inflammation as measured by high-sensitive (hs C-reactive protein (CRP levels, in 4,268 Swedish men and women who participated in the Malmö Diet and Cancer Study (MDCS. Data on first cardiovascular events, i.e., stroke or coronary event (CE, was collected from regional and national registers. Social inequalities were measured in relative terms, i.e., as ratios between incidence rates in groups with lower and higher SEP, and also in absolute terms, i.e., as the absolute difference in incidence rates in groups with lower and higher SEP. Results Those with low SEP had a higher risk of future CVD. Adjustment for risk factors resulted in a rather small reduction in the relative socioeconomic gradient, namely 8% for CRP (≥ 3 mg/L and 21% for established risk factors taken together. However, there was a reduction of 18% in the absolute socioeconomic gradient when looking at subjects with CRP-levels Conclusion C-reactive protein and established risk factors all contribute to socioeconomic differences in CVD. However, conclusions on the importance of "modern" risk factors (here, CRP, as opposed to established risk factors, in the association between SEP and CVD depend on the scale on which social inequalities are measured. The one-sided use of the relative

  13. Delineating the major KREEP-bearing terranes on the moon with global measurements of absolute thorium abundances

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, D.J.; Feldman, W.C.; Barraclough, B.L.; Elphic, R.C.; Prettyman, T.H. [Los Alamos National Lab., NM (United States); Binder, A.B. [Lunar Research Inst., Gilroy, CA (United States); Maurice, S. [Observatoire Midi-Pyrenees, Toulouse (France); Miller, M.C. [Lawrence Livermore National Lab., CA (United States)

    1999-03-01

    The Lunar Prospector (LP) Gamma-Ray Spectrometer (GRS) has been used to map the global composition of thorium on the lunar surface. Previous LP results of relative thorium abundances demonstrated that thorium is highly concentrated in and around the nearside western maria and less so in the South Pole Aitken (SPA) basin. Using new detector modeling results and a larger data set, the authors present here a global map of absolute thorium abundances on a 2{degree} by 2{degree} equal-area pixel scale. Because thorium is a tracer of KREEP-rich material, these data provide fundamental information regarding the locations and importance of terranes that are rich in KREEP bearing materials.

  14. Measurement of the absolute branching ratio of the K+→π+π−π+(γ decay with the KLOE detector

    Directory of Open Access Journals (Sweden)

    D. Babusci

    2014-11-01

    Full Text Available The absolute branching ratio of the K+→π+π−π+(γ decay, inclusive of final-state radiation, has been measured using ∼17 million tagged K+ mesons collected with the KLOE detector at DAΦNE, the Frascati ϕ-factory. The result is:BR(K+→π+π−π+(γ=0.05565±0.00031stat±0.00025syst a factor ≃ 5 more precise with respect to the previous result. This work completes the program of precision measurements of the dominant kaon branching ratios at KLOE.

  15. Absolute measurement of the ${}^{1}S_{0}$ - ${}^{3}P_{0}$ clock transition in neutral ${}^{88}$Sr over the 330 km-long stabilized fibre optic link

    CERN Document Server

    Morzynski, Piotr; Bartoszek-Bober, Dobroslawa; Nawrocki, Jerzy; Krehlik, Przemyslaw; Sliwczynski, Lukasz; Lipinski, Marcin; Maslowski, Piotr; Cygan, Agata; Dunst, Piotr; Garus, Michal; Lisak, Daniel; Zachorowski, Jerzy; Gawlik, Wojciech; Radzewicz, Czeslaw; Ciurylo, Roman; Zawada, Michal

    2015-01-01

    We report a stability below $7\\times 10{}^{-17}$ of two independent optical lattice clocks operating with bosonic ${}^{88}$Sr isotope. The value (429228066418008.3(1.9)${}_{syst}$(0.9)${}_{stat}$~Hz) of the absolute frequency of the ${}^{1}S_{0}$ - ${}^{3}P_{0}$ transition was measured with an optical frequency comb referenced to the local representation of the UTC by the 330 km-long stabilized fibre optical link. The result was verified by series of measurements on two independent optical lattice clocks and agrees with recommendation of Bureau International des Poids et Mesures.

  16. Improved absolute calibration of LOPES measurements and its impact on the comparison with REAS 3.11 and CoREAS simulations

    CERN Document Server

    ,

    2016-01-01

    LOPES was a digital antenna array detecting the radio emission of cosmic-ray air showers. The calibration of the absolute amplitude scale of the measurements was done using an external, commercial reference source, which emits a frequency comb with defined amplitudes. Recently, we obtained improved reference values by the manufacturer of the reference source, which significantly changed the absolute calibration of LOPES. We reanalyzed previously published LOPES measurements, studying the impact of the changed calibration. The main effect is an overall decrease of the LOPES amplitude scale by a factor of $2.6 \\pm 0.2$, affecting all previously published values for measurements of the electric-field strength. This results in a major change in the conclusion of the paper 'Comparing LOPES measurements of air-shower radio emission with REAS 3.11 and CoREAS simulations' published in Astroparticle Physics 50-52 (2013) 76-91: With the revised calibration, LOPES measurements now are compatible with CoREAS simulations,...

  17. Fine structure of the age-chromospheric activity relation in solar-type stars. I. The Ca II infrared triplet: Absolute flux calibration

    Science.gov (United States)

    Lorenzo-Oliveira, D.; Porto de Mello, G. F.; Dutra-Ferreira, L.; Ribas, I.

    2016-10-01

    Context. Strong spectral lines are useful indicators of stellar chromospheric activity. They are physically linked to the convection efficiency, differential rotation, and angular momentum evolution and are a potential indicator of age. However, for ages > 2 Gyr, the age-activity relationship remains poorly constrained thus hampering its full application. Aims: The Ca II infrared triplet (IRT lines, λλ 8498, 8542, and 8662) has been poorly studied compared to classical chromospheric indicators. We report in this paper absolute chromospheric fluxes in the three Ca II IRT lines, based on a new calibration tied to up-to-date model atmospheres. Methods: We obtain the Ca II IRT absolute fluxes for 113 FGK stars from high signal-to-noise ratio (S/N) and high-resolution spectra covering an extensive domain of chromospheric activity levels. We perform an absolute continuum flux calibration for the Ca II IRT lines anchored in atmospheric models calculated as an explicit function of effective temperatures (Teff), metallicity ([Fe/H]), and gravities (log g) avoiding the degeneracy usually present in photometric continuum calibrations based solely on color indices. Results: The internal uncertainties achieved for continuum absolute flux calculations are ≈2% of the solar chromospheric flux, one order of magnitude lower than for photometric calibrations. Using Monte Carlo simulations, we gauge the impact of observational errors on the final chromospheric fluxes due to the absolute continuum flux calibration and find that Teffuncertainties are properly mitigated by the photospheric correction leaving [Fe/H] as the dominating factor in the chromospheric flux uncertainty. Conclusions: Across the FGK spectral types, the Ca II IRT lines are sensitive to chromospheric activity. The reduced internal uncertainties reported here enable us to build a new chromospheric absolute flux scale and explore the age-activity relation from the active regime down to very low activity levels and

  18. Teaching Absolute Value Meaningfully

    Science.gov (United States)

    Wade, Angela

    2012-01-01

    What is the meaning of absolute value? And why do teachers teach students how to solve absolute value equations? Absolute value is a concept introduced in first-year algebra and then reinforced in later courses. Various authors have suggested instructional methods for teaching absolute value to high school students (Wei 2005; Stallings-Roberts…

  19. Comparison of Estimated and Measured Muscle Activity During Inclined Walking.

    Science.gov (United States)

    Alexander, Nathalie; Schwameder, Hermann

    2016-04-01

    While inclined walking is a frequent daily activity, muscle forces during this activity have rarely been examined. Musculoskeletal models are commonly used to estimate internal forces in healthy populations, but these require a priori validation. The aim of this study was to compare estimated muscle activity using a musculoskeletal model with measured EMG data during inclined walking. Ten healthy male participants walked at different inclinations of 0°, ± 6°, ± 12°, and ± 18° on a ramp equipped with 2 force plates. Kinematics, kinetics, and muscle activity of the musculus (m.) biceps femoris, m. rectus femoris, m. vastus lateralis, m. tibialis anterior, and m. gastrocnemius lateralis were recorded. Agreement between estimated and measured muscle activity was determined via correlation coefficients, mean absolute errors, and trend analysis. Correlation coefficients between estimated and measured muscle activity for approximately 69% of the conditions were above 0.7. Mean absolute errors were rather high with only approximately 38% being ≤ 30%. Trend analysis revealed similar estimated and measured muscle activities for all muscles and tasks (uphill and downhill walking), except m. tibialis anterior during uphill walking. This model can be used for further analysis in similar groups of participants.

  20. Oil and gas potential assessment for coal measure source rocks on absolute concentration of n-alkanes and aromatic hydrocarbons

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Absolute concentration of normal alkanes(n-alkanes) and aromatic hydrocarbons in bitumen extracted from source rocks in the period of thermodegradation from Turpan-Hami Basin suggests that aromatic hydrocarbons are dominant in coal and carbargilite while n-alkanes are dominant in mudstones. Bulkrock analysis and gas chromatograph/mass spectrum(GC-MS) of source rocks shows aromatic hydrocarbons are dominant in total ion chromatograms(TIC) of samples with poor perhydrous macerals while n-alkanes are dominant in TICs of samples with abundant perhydrous macerals. The identification of oil-prone and gas prone property based on GC-MS of bitumen "A" together with bulkrock analysis indicates that source rocks from Shengbei area are more oil-prone while source rocks from Qiudong and Xiaocaohu areas are more gas-prone,coinciding with the distribution of oil and gas reservoirs in Taibei Sag. Ratios used to identify oil-prone and gas-prone property for source rocks from Turpan Basin are proposed:n-alkanes >110 μg·mg-1,aromatics <15 μg·mg-1,and n-alkanes/aromatics >8 for oil-prone source rock bitumen while n-alkanes<82 μg·mg-1,aromatics >40 μg·mg-1,and n-alkanes/aromatics <1.5 for gas-prone source rock bitumen.

  1. International developments of Absolute gravitation measurement%绝对重力测量国际动态

    Institute of Scientific and Technical Information of China (English)

    刘达伦; 吴书清; 徐进义; 郭有光

    2004-01-01

    @@ 国际上对绝对重力测量日益重视,在原先国际大地测量协会(ICAG)下设立绝对重力仪比对工作研究小组(SGCAG:Study Group on Comparisons of Absolute Gravimeters)的基础上,国际计量委员会(CIPM)也于2002年在其质量及其相关量咨询委员会(CCM)下设立了重力测定工作组(WGG:Working Group on Gravimetry).其中SGCAG主要负责组织每四年一次的国际重力仪比对,CCM-WGG主要负责组织区域性国际重力仪比对以及制定重力测定相关技术协议和标准规范.这两个小组的主席均是Dr.Leonid Vitushkin.SGCAG和CCM-WGG这两个工作组于2002年10月28日在卢森堡召开了第一次联席会议这次.会议做出了以下几个决定:

  2. Hydroxyl-radical-induced degradative oxidation of beta-lactam antibiotics in water: absolute rate constant measurements.

    Science.gov (United States)

    Dail, Michelle K; Mezyk, Stephen P

    2010-08-19

    The beta-lactam antibiotics are some of the most prevalent pharmaceutical contaminants currently being detected in aquatic environments. Because the presence of any trace level of antibiotic in water may adversely affect aquatic ecosystems and contribute to the production of antibiotic-resistant bacteria, active removal by additional water treatments, such as using advanced oxidation and reduction processes (AO/RPs), may be required. However, to ensure that any AOP treatment process occurs efficiently and quantitatively, a full understanding of the kinetics and mechanisms of all of the chemical reactions involved under the conditions of use is necessary. In this study, we report on our kinetic measurements for the hydroxyl-radical-induced oxidation of 11 beta-lactam antibiotics obtained using electron pulse radiolysis techniques. For the 5-member ring species, an average reaction rate constant of (7.9 +/- 0.8) x 10(9) M(-1) s(-1) was obtained, slightly faster than for the analogous 6-member ring containing antibiotics, (6.6 +/- 1.2) x 10(9) M(-1) s(-1). The consistency of these rate constants for each group infers a common reaction mechanism, consisting of the partitioning of the hydroxyl radical between addition to peripheral aromatic rings and reaction with the central double-ring core of these antibiotics.

  3. Absolute frequency measurement of the 7s$^2$ $^1$S$_0$ $-$ 7s7p $^{1}$P$_1$ transition in $^{225}$Ra

    CERN Document Server

    Santra, B; Groot, A; Jungmann, K; Willmann, L

    2014-01-01

    Transition frequencies were determined for transitions in Ra in an atomic beam and for reference lines in Te$_2$ molecules in a vapor cell. The absolute frequencies were calibrated against a GPS stabilized Rb-clock by means of an optical frequency comb. The 7s$^2\\,^1$S$_0$(F = 1/2)-7s7p$\\,^1$P$_1$(F = 3/2) transition in $^{225}$Ra was determined to be $621\\,042\\,124(2)\\,$MHz. The measurements provide input for designing efficient and robust laser cooling of Ra atoms in preparation of a search for a permanent electric dipole moment in Ra isotopes.

  4. Structural effects on the beta-scission reaction of alkoxyl radicals. Direct measurement of the absolute rate constants for ring opening of benzocycloalken-1-oxyl radicals.

    Science.gov (United States)

    Bietti, Massimo; Lanzalunga, Osvaldo; Salamone, Michela

    2005-02-18

    [reaction: see text] The absolute rate constants for beta-scission of a series of benzocycloalken-1-oxyl radicals and of the 2-(4-methylphenyl)-2-butoxyl radical have been measured directly by laser flash photolysis. The benzocycloalken-1-oxyl radicals undergo ring opening with rates which parallel the ring strain of the corresponding cycloalkanes. In the 1-X-indan-1-oxyl radical series, ring opening is observed when X = H, Me, whereas exclusive C-X bond cleavage occurs when X = Et. The factors governing the fragmentation regioselectivity are discussed.

  5. In-situ absolute calibration of electric-field amplitude measurements with the LPDA radio detector stations of the Pierre Auger Observatory

    CERN Document Server

    Briechle, Florian

    2016-01-01

    With the Auger Engineering Radio Array (AERA) located at the Pierre Auger Observatory, radio emission of extensive air showers is observed. To exploit the physics potential of AERA, electric-field amplitude measurements with the radio detector stations need to be well-calibrated on an absolute level. A convenient tool for far-field calibration campaigns is a flying drone. Here we make use of an octocopter to place a calibrated source at freely chosen positions above the radio detector array. Special emphasis is put on the reconstruction of the octocopter position and its accuracy during the flights. The antenna response pattern of the radio detector stations was measured in a recent calibration campaign. Results of these measurements are presented and compared to simulations. It is found that measurements and simulations are in good agreement.

  6. Absolute absorption and fluorescence measurements over a dynamic range of 10$^6$ with cavity-enhanced laser-induced fluorescence

    CERN Document Server

    Sanders, Scott E; Nahler, N Hendrik; Wrede, Eckart

    2013-01-01

    We describe a novel experimental setup that combines the advantages of both laser-induced fluorescence and cavity ring-down techniques. The simultaneous measurement of the ring-down and fluorescence signals from the same sample in a single laser beam delivers the calibration of the fluorescence measurement to gain absolute quantities: absorption cross section, sample density and fluorescence quantum yield. At the same time, the fluorescence measurement extends the dynamic range of a stand-alone cavity ring-down setup from typically three to at least six orders of magnitude. The methodology of this combined cavity-enhanced laser-induced fluorescence (CELIF) technique is developed and rigorously tested against the spectroscopy of 1,4-bis(phenylethynyl)benzene in a molecular beam and density measurements in a cell.

  7. Absolute polarimetry at RHIC

    CERN Document Server

    Okada, H; Bravar, A; Bunce, G; Dhawan, S; Eyser, K O; Gill, R; Haeberli, W; Huang, H; Jinnouchi, O; Makdisi, Y; Nakagawa, I; Nass, A; Saitô, N; Stephenson, E; Sviridia, D; Wise, T; Wood, J; Zelenski, A

    2007-01-01

    Precise and absolute beam polarization measurements are critical for the RHIC spin physics program. Because all experimental spin-dependent results are normalized by beam polarization, the normalization uncertainty contributes directly to final physics uncertainties. We aimed to perform the beam polarization measurement to an accuracy of $\\Delta P_{beam}/P_{beam} < 5%$. The absolute polarimeter consists of Polarized Atomic Hydrogen Gas Jet Target and left-right pairs of silicon strip detectors and was installed in the RHIC-ring in 2004. This system features \\textit{proton-proton} elastic scattering in the Coulomb nuclear interference (CNI) region. Precise measurements of the analyzing power $A_N$ of this process has allowed us to achieve $\\Delta P_{beam}/P_{beam} =4.2%$ in 2005 for the first long spin-physics run. In this report, we describe the entire set up and performance of the system. The procedure of beam polarization measurement and analysis results from 2004-2005 are described. Physics topics of $A...

  8. An ensemble average method to estimate absolute TEC using radio beacon-based differential phase measurements: Applicability to regions of large latitudinal gradients in plasma density

    Science.gov (United States)

    Thampi, Smitha V.; Bagiya, Mala S.; Chakrabarty, D.; Acharya, Y. B.; Yamamoto, M.

    2014-12-01

    A GNU Radio Beacon Receiver (GRBR) system for total electron content (TEC) measurements using 150 and 400 MHz transmissions from Low-Earth Orbiting Satellites (LEOS) is fabricated in house and made operational at Ahmedabad (23.04°N, 72.54°E geographic, dip latitude 17°N) since May 2013. This system receives the 150 and 400 MHz transmissions from high-inclination LEOS. The first few days of observations are presented in this work to bring out the efficacy of an ensemble average method to convert the relative TECs to absolute TECs. This method is a modified version of the differential Doppler-based method proposed by de Mendonca (1962) and suitable even for ionospheric regions with large spatial gradients. Comparison of TECs derived from a collocated GPS receiver shows that the absolute TECs estimated by this method are reliable estimates over regions with large spatial gradient. This method is useful even when only one receiving station is available. The differences between these observations are discussed to bring out the importance of the spatial differences between the ionospheric pierce points of these satellites. A few examples of the latitudinal variation of TEC during different local times using GRBR measurements are also presented, which demonstrates the potential of radio beacon measurements in capturing the large-scale plasma transport processes in the low-latitude ionosphere.

  9. Absolute and relative surrogate measurements of the uranium-236(n,f) cross section as a probe of angular momentum effects

    Science.gov (United States)

    Lyles, Bethany Faye

    The absolute surrogate technique and the Surrogate Ratio Method (SRM) were used to deduce the 236U(n,f) cross section over an equivalent neutron energy range of 0.1 to 20 MeV for the absolute measurement and 0.8 to 20 MeV for the relative measurement. A 42 MeV 3He2+ beam from the 88--Inch Cyclotron at Lawrence Berkeley National Laboratory was used to perform a (3He,alpha) pickup reaction on targets of 235U (Jpi=7/2 --) and 238U (Jpi=0+) and the fission decay probabilities were determined. The 235U( 3He,alphaf) and 238U(3He,alphaf) reactions were surrogates for 233U(n,f) and 236U(n,f), respectively. Using the absolute surrogate technique, the experimentally determined 238U(3He,alpha) fission probability was multiplied by a calculated neutron absorption cross section to obtain the 236 U(n,f) cross section. Using the SRM, a ratio of the experimentally determined fission probabilities, 238U(3He,alphaf) to 235U(3He,alphaf), was extracted and multiplied by the evaluated 233U(n,f) cross section to obtain the 236U(n,f) cross section. Neither the absolute surrogate nor the SRM used in this case explicitly accounted for Jpi-dependence of the fission probabilities. The cross sections extracted using the Surrogate Method were compared to directly measured cross sections and theoretical predictions. The absolute surrogate 236U(n,f) cross section trended well with the evaluated nuclear data below 3.3 MeV, but was beset with target contamination above this energy, whereas the SRM result agreed with the evaluated nuclear data to within 10% at neutron energies from 3.5 to 20 MeV and exhibited significant deviations in the low energy regime. The deduced surrogate 236U(n,f) cross section was determined as a function of the angle of the alpha particle ejectile in the direct reaction to explore different angular momentum population distributions in the compound nucleus and their effects on the extracted fission probabilities. The 236U(n,f) cross sections extracted using both the

  10. Absolute multilateration between spheres

    Science.gov (United States)

    Muelaner, Jody; Wadsworth, William; Azini, Maria; Mullineux, Glen; Hughes, Ben; Reichold, Armin

    2017-04-01

    Environmental effects typically limit the accuracy of large scale coordinate measurements in applications such as aircraft production and particle accelerator alignment. This paper presents an initial design for a novel measurement technique with analysis and simulation showing that that it could overcome the environmental limitations to provide a step change in large scale coordinate measurement accuracy. Referred to as absolute multilateration between spheres (AMS), it involves using absolute distance interferometry to directly measure the distances between pairs of plain steel spheres. A large portion of each sphere remains accessible as a reference datum, while the laser path can be shielded from environmental disturbances. As a single scale bar this can provide accurate scale information to be used for instrument verification or network measurement scaling. Since spheres can be simultaneously measured from multiple directions, it also allows highly accurate multilateration-based coordinate measurements to act as a large scale datum structure for localized measurements, or to be integrated within assembly tooling, coordinate measurement machines or robotic machinery. Analysis and simulation show that AMS can be self-aligned to achieve a theoretical combined standard uncertainty for the independent uncertainties of an individual 1 m scale bar of approximately 0.49 µm. It is also shown that combined with a 1 µm m‑1 standard uncertainty in the central reference system this could result in coordinate standard uncertainty magnitudes of 42 µm over a slender 1 m by 20 m network. This would be a sufficient step change in accuracy to enable next generation aerospace structures with natural laminar flow and part-to-part interchangeability.

  11. Absolute airborne gravimetry

    Science.gov (United States)

    Baumann, Henri

    This work consists of a feasibility study of a first stage prototype airborne absolute gravimeter system. In contrast to relative systems, which are using spring gravimeters, the measurements acquired by absolute systems are uncorrelated and the instrument is not suffering from problems like instrumental drift, frequency response of the spring and possible variation of the calibration factor. The major problem we had to resolve were to reduce the influence of the non-gravitational accelerations included in the measurements. We studied two different approaches to resolve it: direct mechanical filtering, and post-processing digital compensation. The first part of the work describes in detail the different mechanical passive filters of vibrations, which were studied and tested in the laboratory and later in a small truck in movement. For these tests as well as for the airborne measurements an absolute gravimeter FG5-L from Micro-G Ltd was used together with an Inertial navigation system Litton-200, a vertical accelerometer EpiSensor, and GPS receivers for positioning. These tests showed that only the use of an optical table gives acceptable results. However, it is unable to compensate for the effects of the accelerations of the drag free chamber. The second part describes the strategy of the data processing. It is based on modeling the perturbing accelerations by means of GPS, EpiSensor and INS data. In the third part the airborne experiment is described in detail, from the mounting in the aircraft and data processing to the different problems encountered during the evaluation of the quality and accuracy of the results. In the part of data processing the different steps conducted from the raw apparent gravity data and the trajectories to the estimation of the true gravity are explained. A comparison between the estimated airborne data and those obtained by ground upward continuation at flight altitude allows to state that airborne absolute gravimetry is feasible and

  12. Measurement of Absolute Atomic Collision Cross Section with Helium Using 87Rb Atoms Confined in Magneto-Optic and Magnetic Traps

    Institute of Scientific and Technical Information of China (English)

    WANG Ji-Cheng; ZHOU Ke-Ya; WANG Yue-Yuan; LIAO Qing-Hong; LIU Shu-Tian

    2011-01-01

    We present the measurements and calculations of the absolute total collision cross sections for a room-temperature gas of helium using 87 Rb atoms confined in either a magneto-optic or a magnetic quadrupole trap. The loss rates from the magneto-optic trap and the pure magnetic trap are compared and show significant differences. The collision cross sections as a function of trap depth for helium gas are obtained. These findings are significant for extracting the information about the different cross sections when the trap depth is changed.%@@ We present the measurements and calculations of the absolute total collision cross sections for a room-temperature gas of helium using 87Rb atoms confined in either a magneto-optic or a magnetic quadrupole trap.The loss rates from the magneto-optic trap and the pure magnetic trap are compared and show significant differences.The collision cross sections as a function of trap depth for helium gas are obtained.These findings are significant for extracting the information about the different cross sections when the trap depth is changed.

  13. Measurements of periods, relative abundances and absolute yields of delayed neutrons from fast neutron induced fission of {sup 237}Np

    Energy Technology Data Exchange (ETDEWEB)

    Piksaikine, V. [Institute of Physics and Power Engineering, Obninsk (Russian Federation)

    1997-03-01

    The experimental method for measurements of the delayed neutron yields and period is presented. The preliminary results of the total yield, relative abundances and periods are shown comparing with the previously reported values. (J.P.N.)

  14. Measurements of periods, relative abundances and absolute yields of delayed neutrons from fast neutron induced fission of {sup 237}Np

    Energy Technology Data Exchange (ETDEWEB)

    Piksaikine, V. [Institute of Physics and Power Engineering, Obninsk (Russian Federation)

    1997-03-01

    The experimental method for measurements of the delayed neutron yields and period is presented. The preliminary results of the total yield, relative abundances and periods are shown comparing with the previously reported values. (J.P.N.)

  15. Absolute measurements of the /sup 233/U (n,f) cross section between 0. 13 and 8. 0 MeV. [Cross sections, 0. 13 to 8. 0 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Poenitz, W.P.

    1978-04-01

    The fast neutron fission cross section of /sup 233/U was measured absolutely between 0.13 and 8.0 MeV. The absolute cross section values were obtained by low geometry alpha counting and isotopic dilution analysis of various /sup 233/U samples, 2..pi..-detection of the fission fragments with an ionization chamber, and the measurement of the neutron flux with several black neutron detectors. Absolute cross sections were obtained with a 2 to 3% uncertainty over the most important energy range.

  16. Absolute frequency measurement of an SF6 two-photon line using a femtosecond optical comb and sum-frequency generation

    CERN Document Server

    Amy-Klein, A; Guinet, M; Daussy, C; López, O; Shelkovnikov, A; Chardonnet, C; Amy-Klein, Anne; Goncharov, Andrei; Guinet, Mickael; Daussy, Christophe; Lopez, Olivier; Shelkovnikov, Alexander; Chardonnet, Christian

    2005-01-01

    We demonstrate a new simple technique to measure IR frequencies near 30 THz using a femtosecond (fs) laser optical comb and sum-frequency generation. The optical frequency is directly compared to the distance between two modes of the fs laser, and the resulting beat note is used to control this distance which depends only on the repetition rate fr of the fs laser. The absolute frequency of a CO2 laser stabilized onto an SF6 two-photon line has been measured for the first time. This line is an attractive alternative to the usual saturated absorption OsO4 resonances used for the stabilization of CO2 lasers. First results demonstrate a fractional Allan deviation of 3.10-14 at 1 s.

  17. On the opportunity of spectroscopic determination of absolute atomic densities in non-equilibrium plasmas from measured relative intensities within resonance multiplets distorted by self-absorption

    CERN Document Server

    Lavrov, B P

    2007-01-01

    The opportunities of the application of the recently proposed approach in optical emission spectroscopy of non-equilibrium plasmas have been studied. The approach consists of several methods of the determination of {\\em absolute} particle densities of atoms from measured {\\em relative} intensities within resonance multiplets distorted by self-absorption. All available spectroscopic data concerning resonance spectral lines of atoms having multiplet ground states from boron up to gallium were analyzed. It is found that in the case of C, O, F, S and Cl atoms an application of the methods needs VUV technique, while densities of B, Al, Si, Sc, Ti, V, Co, Ni, Ga atoms may be obtained by means of the intensity measurements in UV and visible parts of emission spectra suitable for ordinary spectrometers used for optical diagnostics and monitoring of non-equilibrium plasmas including industrial plasma technologies.

  18. Absolute dose measurement Gafchromic R EBT2 movies. Case Study of Kaposis sarcoma; Medida de dosis absoluta con peliculas Gafchromic EBT2. Caso practico de un sarcoma de Kaposi

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, L.; Moral, F. del; Meilan, E.; Azevedo Gomes, J. C. de; Tejeiro Garcia, A. G.; Andrade Alvarez, B.; Vazquez, J.; Nieto, I.; Medal, D.; Lopez Medina, A.; Francisco, S.; Salgado, M.; Munoz, V.

    2011-07-01

    Because of its high spatial resolution, low energy dependence and good response over a wide energy range, EBT2 Gafchromic films are widely used in many applications in radiotherapy for measuring relative dose. Despite being the most common use can be used to measure absolute dose. This text is an example of using films as EBT2 for in vivo absolute dose in a Kaposis sarcoma.

  19. Absolute distance measurement method without a non-measurable range and directional ambiguity based on the spectral-domain interferometer using the optical comb of the femtosecond pulse laser

    Science.gov (United States)

    Park, J.; Jin, J.; Kim, J.-A.; Kim, J. W.

    2016-12-01

    With the help of the optical comb of a femtosecond pulse laser, a spectral-domain interferometer has been utilized for measuring absolute distances. Even if the technique can measure distances at a high speed and with good precision, it has two fundamental problems: non-measurable range and directional ambiguity. First, the non-measurable range arises due to the sampling limit of the interference spectra at very short distances or the integer multiple of a double non-ambiguity range. Second, the peak corresponding to the desired distance in the Fourier domain has a directional ambiguity owing to the repeated property of the optical comb. Therefore, due to these two fundamental problems, most previous works never measure the absolute distances by itself in a single operation. In this letter, an interferometric method for measuring arbitrary absolute distances based on a spectral-domain interferometer operating with two reference mirrors is proposed and demonstrated. The two reference mirrors generate two distinguishable signals, primary and secondary, with a predetermined offset, thus solving these fundamental problems clearly. More importantly, as a practical advantage, the simple layout of the proposed method makes it readily applicable to most previous studies.

  20. Determination of Sr{sup 90}, Sb{sup 125}, Cs{sup 137} and absolute beta activities in First Cycle Supernatent

    Energy Technology Data Exchange (ETDEWEB)

    Helmholz, H.R.

    1954-03-15

    This report discusses procedures have been established for determining the absolute activities of Sr{sup 90}, Sb{sup 125}, Cs{sup 137}, and gross beta in First Cycle Supernatant. These procedures are also valid for other samples such as scavenged Radioactive Waste (RAW), the primary restriction being that the age of the material be at least 250 days so that any Sr{sup 89} activity (53 day half-life) is negligible. With the exception of the gross beta analysis the results are believed to be accurate to within 10%.

  1. Using Mean Absolute Relative Phase, Deviation Phase and Point-Estimation Relative Phase to Measure Postural Coordination in a Serial Reaching Task

    Directory of Open Access Journals (Sweden)

    Anne K. Galgon, Patricia A. Shewokis

    2016-03-01

    Full Text Available The objectives of this communication are to present the methods used to calculate mean absolute relative phase (MARP, deviation phase (DP and point estimate relative phase (PRP and compare their utility in measuring postural coordination during the performance of a serial reaching task. MARP and DP are derived from continuous relative phase time series representing the relationship between two body segments or joints during movements. MARP is a single measure used to quantify the coordination pattern and DP measures the stability of the coordination pattern. PRP also quantifies coordination patterns by measuring the relationship between the timing of maximal or minimal angular displacements of two segments within cycles of movement. Seven young adults practiced a bilateral serial reaching task 300 times over 3 days. Relative phase measures were used to evaluate inter-joint relationships for shoulder-hip (proximal and hip-ankle (distal postural coordination at early and late learning. MARP, PRP and DP distinguished between proximal and distal postural coordination. There was no effect of practice on any of the relative phase measures for the group, but individual differences were seen over practice. Combined, MARP and DP estimated stability of in-phase and anti-phase postural coordination patterns, however additional qualitative movement analyses may be needed to interpret findings in a serial task. We discuss the strengths and limitations of using MARP and DP and compare MARP and DP to PRP measures in assessing coordination patterns in the context of various types of skillful tasks.

  2. Measuring absolute spin polarization in dissolution-DNP by Spin PolarimetrY Magnetic Resonance (SPY-MR)

    Science.gov (United States)

    Vuichoud, Basile; Milani, Jonas; Chappuis, Quentin; Bornet, Aurélien; Bodenhausen, Geoffrey; Jannin, Sami

    2015-11-01

    Dynamic nuclear polarization at 1.2 K and 6.7 T allows one to achieve spin temperatures on the order of a few millikelvin, so that the high-temperature approximation (Δ E spy'), provided perturbations due to second-order (strong coupling) effects are properly taken into account. If spin S is suitably discreet and does not affect the relaxation of spin I, this provides an elegant way of measuring spin polarizations 'on the fly' in a broad range of molecules, thus obviating the need for laborious measurements of signal intensities at thermal equilibrium. The method, dubbed Spin PolarimetrY Magnetic Resonance (SPY-MR), is illustrated for various pairs of 13 C spins (I, S) in acetate and pyruvate.

  3. Optical tweezers absolute calibration

    CERN Document Server

    Dutra, R S; Neto, P A Maia; Nussenzveig, H M

    2014-01-01

    Optical tweezers are highly versatile laser traps for neutral microparticles, with fundamental applications in physics and in single molecule cell biology. Force measurements are performed by converting the stiffness response to displacement of trapped transparent microspheres, employed as force transducers. Usually, calibration is indirect, by comparison with fluid drag forces. This can lead to discrepancies by sizable factors. Progress achieved in a program aiming at absolute calibration, conducted over the past fifteen years, is briefly reviewed. Here we overcome its last major obstacle, a theoretical overestimation of the peak stiffness, within the most employed range for applications, and we perform experimental validation. The discrepancy is traced to the effect of primary aberrations of the optical system, which are now included in the theory. All required experimental parameters are readily accessible. Astigmatism, the dominant effect, is measured by analyzing reflected images of the focused laser spo...

  4. Measurement of the Absolute Branching Fractions B to Dpi, D*pi, D**pi with a Missing Mass Method

    CERN Document Server

    Aubert, B; Boutigny, D; Couderc, F; Karyotakis, Yu; Lees, J P; Poireau, V; Tisserand, V; Zghiche, A; Graugès-Pous, E; Palano, A; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Battaglia, M; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Gill, M S; Groysman, Y; Jacobsen, R G; Kadyk, J A; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Lynch, G; Mir, L M; Orimoto, T J; Pripstein, M; Roe, N A; Ronan, M T; Wenzel, W A; Del, P; Amo Sanchez; Barrett, M; Ford, K E; Harrison, T J; Hart, A J; Hawkes, C M; Watson, A T; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Peters, K; Schröder, T; Steinke, M; Boyd, J T; Burke, J P; Cottingham, W N; Walker, D; Asgeirsson, D J; Çuhadar-Dönszelmann, T; Fulsom, B G; Hearty, C; Knecht, N S; Mattison, T S; McKenna, J A; Khan, A; Kyberd, P; Saleem, M; Sherwood, D J; Teodorescu, L; Blinov, V E; Bukin, A D; Druzhinin, V P; Golubev, V B; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Todyshev, K Yu; Bondioli, M; Bruinsma, M; Chao, M; Curry, S; Eschrich, I; Kirkby, D; Lankford, A J; Lund, P; Mandelkern, M A; Mommsen, R K; Röthel, W; Stoker, D P; Abachi, S; Buchanan, C; Foulkes, S D; Gary, J W; Long, O; Shen, B C; Wang, K; Zhang, L; Hadavand, H K; Hill, E J; Paar, H P; Rahatlou, S; Sharma, V; Berryhill, J W; Campagnari, C; Cunha, A; Dahmes, B; Hong, T M; Kovalskyi, D; Richman, J D; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Nesom, G; Schalk, T; Schumm, B A; Seiden, A; Spradlin, P; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dvoretskii, A; Fang, F; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Ryd, A; Mancinelli, G; Meadows, B T; Mishra, K; Sokoloff, M D; Blanc, F; Bloom, P C; Chen, S; Ford, W T; Hirschauer, J F; Kreisel, A; Nagel, M; Nauenberg, U; Olivas, A; Ruddick, W O; Smith, J G; Ulmer, K A; Wagner, S R; Zhang, J; Chen, A; Eckhart, E A; Soffer, A; Toki, W H; Wilson, R J; Winklmeier, F; Zeng, Q; Altenburg, D D; Feltresi, E; Hauke, A; Jasper, H; Merkel, J; Petzold, A; Spaan, B; Brandt, T; Klose, V; Lacker, H M; Mader, W F; Nogowski, R; Schubert, J; Schubert, K R; Schwierz, R; Sundermann, J E; Volk, A; Bernard, D; Bonneaud, G R; Latour, E; Thiebaux, C; Verderi, M; Clark, P J; Gradl, W; Muheim, F; Playfer, S; Robertson, A I; Xie, Y; Andreotti, M; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Petrella, A; Piemontese, L; Prencipe, E; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; De Sangro, R; Finocchiaro, G; Pacetti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Buzzo, A; Contri, R; Lo, M; Lo Vetere, M; Macri, M M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Brandenburg, G; Chaisanguanthum, K S; Morii, M; Wu, J; Dubitzky, R S; Marks, J; Schenk, S; Uwer, U; Bard, D J; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Flack, R L; Nash, J A; Nikolich, M B; Panduro-Vazquez, W; Behera, P K; Chai, X; Charles, M J; Mallik, U; Meyer, N T; Ziegler, V; Cochran, J; Crawley, H B; Dong, L; Eyges, V; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Gritsan, A V; Denig, A G; Fritsch, M; Schott, G; Arnaud, N; Davier, M; Grosdidier, G; Höcker, A; Le Diberder, F R; Lepeltier, V; Lutz, A M; Oyanguren, A; Pruvot, S; Rodier, S; Roudeau, P; Schune, M H; Stocchi, A; Wang, W F; Wormser, G; Cheng, C H; Lange, D J; Wright, D M; Chavez, C A; Forster, I J; Fry, J R; Gabathuler, E; Gamet, R; George, K A; Hutchcroft, D E; Payne, D J; Schofield, K C; Touramanis, C; Bevan, A J; Di Lodovico, F; Menges, W; Sacco, R; Cowan, G; Flächer, H U; Hopkins, D A; Jackson, P S; McMahon, T R; Ricciardi, S; Salvatore, F; Wren, A C; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Chia, Y M; Edgar, C L; Lafferty, G D; Naisbit, M T; Williams, J C; Yi, J I; Chen, C; Hulsbergen, W D; Jawahery, A; Lae, C K; Roberts, D A; Simi, G; Blaylock, G; Dallapiccola, C; Hertzbach, S S; Li, X; Moore, T B; Saremi, S; Stängle, H; Cowan, R; Sciolla, G; Sekula, S J; Spitznagel, M; Taylor, F; Yamamoto, R K; Kim, H; Mclachlin, S E; Patel, P M; Robertson, S H; Lazzaro, A; Lombardo, V; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; al, et

    2006-01-01

    We present branching fraction measurements of charged and neutral B decays to Dpi-, D*pi- and D**pi- with a missing mass method, based on a sample of 231 million Y(4S)-->BBar pairs collected by the BaBar detector at the PEP-II e+e- collider. One of the B mesons is fully reconstructed and the other one decays to a reconstructed charged pion and a companion charmed meson identified by its recoil mass, inferred by kinematics. Here D** refers to the sum of all the non-strange charm meson states with masses in the range 2.2-2.8 Gev/c2.

  5. Diagnosis and prediction of the occurrence of acute mountain sickness measuring oxygen saturation--independent of absolute altitude?

    Science.gov (United States)

    Leichtfried, Veronika; Basic, Daniel; Burtscher, Martin; Gothe, Raffaella Matteucci; Siebert, Uwe; Schobersberger, Wolfgang

    2016-03-01

    Commercialization of trekking tourism enables untrained persons to participate in trekking tours. Because hypoxia is one of the main purported triggers for acute mountain sickness (AMS), pulse oximetry, which measures arterial oxygen saturation (SPO2), is discussed to be a possible and useful tool for the diagnosis of AMS. The purpose of this study was to evaluate possible associations between SPO2 values and the occurrence of AMS. In 204 trekkers, SPO2 values (pulse oximetry) were measured and the Lake Louise Self-assessment Score (LLS) was administered over the first 7 days of their trekking tours. During treks at altitudes of 2500-5500 m in Nepal, India, Africa, and South America, 100 participants suffered from mild AMS, 3 participants suffered from severe AMS, and 9 participants reported both mild and severe AMS. The lowest mean SPO2 was 85.5 (95 % confidence interval (CI), 83.9-86.1 %) on day 5. SPO2 and LLS exhibited a weak to moderate negative correlation for all days of the study (ρ ranging from -0.142 to -0.370). Calculation of time-shifted associations of 24 and 48 h resulted in the disappearance of most associations. Susceptibility to headaches (odds ratio (OR) 2.9-7.2) and a history of AMS (OR 2.2-3.1) were determined to be potential risk factors for the development of AMS. Since there is no strong altitude-independent association between AMS and SPO2 during the first week of high-altitude adaptation, the implementation of pulse oximetry during trekking in order to detect and predict AMS remains questionable.

  6. Development of a vector-tensor system to measure the absolute magnetic flux density and its gradient in magnetically shielded rooms.

    Science.gov (United States)

    Voigt, J; Knappe-Grüneberg, S; Gutkelch, D; Haueisen, J; Neuber, S; Schnabel, A; Burghoff, M

    2015-05-01

    Several experiments in fundamental physics demand an environment of very low, homogeneous, and stable magnetic fields. For the magnetic characterization of such environments, we present a portable SQUID system that measures the absolute magnetic flux density vector and the gradient tensor. This vector-tensor system contains 13 integrated low-critical temperature (LTc) superconducting quantum interference devices (SQUIDs) inside a small cylindrical liquid helium Dewar with a height of 31 cm and 37 cm in diameter. The achievable resolution depends on the flux density of the field under investigation and its temporal drift. Inside a seven-layer mu-metal shield, an accuracy better than ±23 pT for the components of the static magnetic field vector and ±2 pT/cm for each of the nine components of the gradient tensor is reached by using the shifting method.

  7. Absolute technique for measuring internal electric fields in InGaN/GaN light-emitting diodes by electroreflectance applicable to all crystal orientations

    Science.gov (United States)

    Tanikawa, Tomoyuki; Shojiki, Kanako; Katayama, Ryuji; Kuboya, Shigeyuki; Matsuoka, Takashi; Honda, Yoshio; Amano, Hiroshi

    2017-08-01

    The internal electric fields in III-polar (0001), N-polar (000\\bar{1}), and semipolar (10\\bar{1}1) InGaN/GaN light-emitting diodes were investigated by electroreflectance (ER) spectroscopy. The ER spectra reflected the difference in the direction and strength of internal electric fields. Phase analyses of the ER signal revealed that only III-polar InGaN wells have the opposite direction of the internal electric field at zero bias voltage; this finding is in good agreement with the results of numerical analyses. Quantitative analyses of internal electric fields were conducted by the linewidth analyses of ER spectra. Our experimental results indicate that the absolute value of internal electric fields can be measured from ER spectra.

  8. Retraction notice to "Measurements of total absolute collision cross section of ultracold Rb atom using magneto-optic and pure magnetic traps" [Chinese Optics Letters 9, 060201 (2011)

    Institute of Scientific and Technical Information of China (English)

    Jicheng Wang; Yueyuan Wang; Yueke Wang; Guangyu Fang; Shutian Liu

    2011-01-01

    This article "Measurements of total absolute collision cross section of ultracold Rb atom using magneto-optic and pure magnetic traps",which was published on Chinese Optics Letters (9,060201 (2011)) has been retracted at the request of the authors.Reason:The first author,Jicheng Wang,participated in a related research in Professor Kirk Madison's group in the Department of Physics & Astronomy at the University of British Columbia,Canada from September 2008 to February 2010.Some of the experimental data have not been authorized for publication,even though they have been consented to be used by Jicheng Wang in his own research.The authors apologize to Professor K.Madison for misunderstanding,and to Chinese Optics Letters and the readers of Chinese Optics Letters for any inconvenience this mistake may have caused.

  9. Absolute-magnetic-field measurement using nanogranular in-gap magnetic sensor with second-harmonic and liquid-nitrogen-temperature operation

    Science.gov (United States)

    Tsukada, Keiji; Yasugi, Takuya; Majima, Yatsuse; Sakai, Kenji; Kiwa, Toshihiko

    2017-05-01

    To detect the absolute magnetic field, such as the earth's magnetic field, a linear magnetic response, a zero point, and thermal stability are required. We thus propose an operating method and sensor probe consisting of a nanogranular in-gap magnetic sensor (GIGS), an operational amplifier integrated circuit, and a modulation coil. The sensor probe was operated in second-harmonic mode at a liquid-nitrogen (Liq. N2) temperature. When an AC magnetic field was applied to GIGS, the second-harmonic signal was generated and modulated by the outer magnetic field to be measured. After lock-in detection, the modulated output signal showed good linearity and a zero point. Moreover, higher sensitivity and low noise with low thermal fluctuation was obtained by the cooling at Liq. N2 temperature.

  10. Absolute-magnetic-field measurement using nanogranular in-gap magnetic sensor with second-harmonic and liquid-nitrogen-temperature operation

    Directory of Open Access Journals (Sweden)

    Keiji Tsukada

    2017-05-01

    Full Text Available To detect the absolute magnetic field, such as the earth’s magnetic field, a linear magnetic response, a zero point, and thermal stability are required. We thus propose an operating method and sensor probe consisting of a nanogranular in-gap magnetic sensor (GIGS, an operational amplifier integrated circuit, and a modulation coil. The sensor probe was operated in second-harmonic mode at a liquid-nitrogen (Liq. N2 temperature. When an AC magnetic field was applied to GIGS, the second-harmonic signal was generated and modulated by the outer magnetic field to be measured. After lock-in detection, the modulated output signal showed good linearity and a zero point. Moreover, higher sensitivity and low noise with low thermal fluctuation was obtained by the cooling at Liq. N2 temperature.

  11. Development of a Time Domain Radio Frequency Plasma Impedance Probe For Measurement of Absolute Electron Density and Electron Neutral Collision Frequency

    Science.gov (United States)

    Spencer, E. A.

    2014-12-01

    We describe the development of a Time Domain Plasma Impedance Probe for the measurement of plasma properties in the ionosphere. It is being designed and developed to fly on cubesat platforms. The new instrument will be capable of making measurements of absolute electron density and electron neutral collision frequency at temporal and spatial resolutions not previously attained. A single measurement can be made in a time as short as 50 microseconds, which yields a spatial resolution of 0.35 meters for a satellite orbital velocity of 7 km/s. By averaging over 100 samples we expect an average spatial resolution of 35 meters. The method essentially consists of applying a small amplitude time limited voltage signal into a probe and measuring the resulting current response. The electron resonant frequencies of interest in the ionosphere are between are typically between 100 kHz and 20 MHz, which sets the required bandwidth. The new time domain method will present a significant improvement over the frequency domain method currently in use. The RF impedance probe has a distinct advantage over other methods used to measure plasma properties, in that it's measurements are not strongly affected by spacecraft charging effects that contaminate measurements made in the plasma environment. We will demonstrate the effectiveness of the instrument using data from sounding rocket missions, give details of the new instrument methodology, and suggest some possible areas of application of the method to measuring space plasmas. The difficulties associated with performing the measurements in a cubesat platform, and subsequently interpreting the measurements, will also be presented.

  12. Time-resolved absolute measurements by electro-optic effect of giant electromagnetic pulses due to laser-plasma interaction in nanosecond regime

    Science.gov (United States)

    Consoli, F.; de Angelis, R.; Duvillaret, L.; Andreoli, P. L.; Cipriani, M.; Cristofari, G.; di Giorgio, G.; Ingenito, F.; Verona, C.

    2016-06-01

    We describe the first electro-optical absolute measurements of electromagnetic pulses (EMPs) generated by laser-plasma interaction in nanosecond regime. Laser intensities are inertial-confinement-fusion (ICF) relevant and wavelength is 1054 nm. These are the first direct EMP amplitude measurements with the detector rather close and in direct view of the plasma. A maximum field of 261 kV/m was measured, two orders of magnitude higher than previous measurements by conductive probes on nanosecond regime lasers with much higher energy. The analysis of measurements and of particle-in-cell simulations indicates that signals match the emission of charged particles detected in the same experiment, and suggests that anisotropic particle emission from target, X-ray photoionization and charge implantation on surfaces directly exposed to plasma, could be important EMP contributions. Significant information achieved on EMP features and sources is crucial for future plants of laser-plasma acceleration and inertial-confinement-fusion and for the use as effective plasma diagnostics. It also opens to remarkable applications of laser-plasma interaction as intense source of RF-microwaves for studies on materials and devices, EMP-radiation-hardening and electromagnetic compatibility. The demonstrated extreme effectivity of electric-fields detection in laser-plasma context by electro-optic effect, leads to great potential for characterization of laser-plasma interaction and generated Terahertz radiation.

  13. Measurement of the Absolute Photoionization Cross Section for the 5P3/2 State of 87Rb in a Vapor Cell Magneto-optic Trap

    Institute of Scientific and Technical Information of China (English)

    HUANG Wei; RUAN Ya-Ping; JIA Feng-Dong; ZHONG Yin-Peng; LIU Long-Wei; DAI Xing-Can; XUE Ping; XU Xiang-Yuan; ZHONG Zhi-Ping

    2012-01-01

    We report the measurement of the absolute photoionization cross section for the 5P3/2 state of 87 Rb at wavelength of 473 nm,which results in the photoelectron energies of 33 meV above the ionization threshold,using cold atoms confined in a vapor-loaded magneto-optical trap.The 87Rb 5P3/2 photoionization cross section at 473nm is determined to be σPI =10.5 ± 2.2 Mb.Considering the spatial distribution of the trapped atoms,the average intensity IPI of the ionization laser seen by an atom in the MOT instead of ionizing laser intensity IPI is used in our calculations for the photoionization cross sections.The excited state fraction is also accurately estimated using the latest experimental result.%We report the measurement of the absolute photoionization cross section for the 5P3/2 state of87 Rb at wavelength of 473 nm, which results in the photoelectron energies of 33 meV above the ionization threshold, using cold atoms confined in a vapor-loaded magneto-optical trap. The 87Rb 5P3/2 photoionization cross section at 473 nm is determined to be <σPI = 10.5 ± 2.2 Mb. Considering the spatial distribution of the trapped atoms, the average intensity -IPII of the ionization laser seen by an atom in the MOT instead of ionizing laser intensity IPI is used in our calculations for the photoionization cross sections. The excited state fraction is also accurately estimated using the latest experimental result.

  14. New experimental methodology, setup and LabView program for accurate absolute thermoelectric power and electrical resistivity measurements between 25 and 1600 K: application to pure copper, platinum, tungsten, and nickel at very high temperatures.

    Science.gov (United States)

    Abadlia, L; Gasser, F; Khalouk, K; Mayoufi, M; Gasser, J G

    2014-09-01

    In this paper we describe an experimental setup designed to measure simultaneously and very accurately the resistivity and the absolute thermoelectric power, also called absolute thermopower or absolute Seebeck coefficient, of solid and liquid conductors/semiconductors over a wide range of temperatures (room temperature to 1600 K in present work). A careful analysis of the existing experimental data allowed us to extend the absolute thermoelectric power scale of platinum to the range 0-1800 K with two new polynomial expressions. The experimental device is controlled by a LabView program. A detailed description of the accurate dynamic measurement methodology is given in this paper. We measure the absolute thermoelectric power and the electrical resistivity and deduce with a good accuracy the thermal conductivity using the relations between the three electronic transport coefficients, going beyond the classical Wiedemann-Franz law. We use this experimental setup and methodology to give new very accurate results for pure copper, platinum, and nickel especially at very high temperatures. But resistivity and absolute thermopower measurement can be more than an objective in itself. Resistivity characterizes the bulk of a material while absolute thermoelectric power characterizes the material at the point where the electrical contact is established with a couple of metallic elements (forming a thermocouple). In a forthcoming paper we will show that the measurement of resistivity and absolute thermoelectric power characterizes advantageously the (change of) phase, probably as well as DSC (if not better), since the change of phases can be easily followed during several hours/days at constant temperature.

  15. Using Mean Absolute Relative Phase, Deviation Phase and Point-Estimation Relative Phase to Measure Postural Coordination in a Serial Reaching Task.

    Science.gov (United States)

    Galgon, Anne K; Shewokis, Patricia A

    2016-03-01

    The objectives of this communication are to present the methods used to calculate mean absolute relative phase (MARP), deviation phase (DP) and point estimate relative phase (PRP) and compare their utility in measuring postural coordination during the performance of a serial reaching task. MARP and DP are derived from continuous relative phase time series representing the relationship between two body segments or joints during movements. MARP is a single measure used to quantify the coordination pattern and DP measures the stability of the coordination pattern. PRP also quantifies coordination patterns by measuring the relationship between the timing of maximal or minimal angular displacements of two segments within cycles of movement. Seven young adults practiced a bilateral serial reaching task 300 times over 3 days. Relative phase measures were used to evaluate inter-joint relationships for shoulder-hip (proximal) and hip-ankle (distal) postural coordination at early and late learning. MARP, PRP and DP distinguished between proximal and distal postural coordination. There was no effect of practice on any of the relative phase measures for the group, but individual differences were seen over practice. Combined, MARP and DP estimated stability of in-phase and anti-phase postural coordination patterns, however additional qualitative movement analyses may be needed to interpret findings in a serial task. We discuss the strengths and limitations of using MARP and DP and compare MARP and DP to PRP measures in assessing coordination patterns in the context of various types of skillful tasks. Key pointsMARP, DP and PRP measures coordination between segments or joint anglesAdvantages and disadvantages of each measure should be considered in relationship to the performance taskMARP and DP may capture coordination patterns and stability of the patterns during discrete tasks or phases of movements within a taskPRP and SD or PRP may capture coordination patterns and

  16. Development of Several New Reactions and Their Application to the Total Synthesis of Biologically Active Natural Products :Synthesis of Linderol A and Determination of Its Absolute Configuration

    Institute of Scientific and Technical Information of China (English)

    Shunsaku Ohta

    2005-01-01

    @@ 1Introduction Linderol A (1), a monoterpene-polyketide, was isolated in 1995 from the fresh bark of Lindera umbellata (Lauraceae), and its absolute structure was not determined[1]. It was also reported potent inhibitory activity of 1 on the melanin biosynthesis of the cultured B-16 melanoma cells[1]. See Fig. 1. On the other hand,we reported in 1995 an interesting multi-tandem reaction of coumarin derivatives (2; W = electron withdrawing group) by treatment with CH2 = S(O)Me2 to yield stereoselectively a tricyclic 2-substituted cyclopenta [ b ] benzofuran-3-ol derivative (4) via a cyclopropane intermediate (3) (Scheme 1)[2].

  17. Absolute vibration measurement method using magnetic levitation ball as oscillator%磁悬浮振子绝对式振动测量方法

    Institute of Scientific and Technical Information of China (English)

    江东

    2013-01-01

    Abstract:The non-contact type absolute vibration measurement method using magnetic levitation ball as oscillator is proposed.The dynamic equation of magnetic levitation ball is deduced.The equation shows that the magnetic levitation ball dynamic equation is the same as that of a mass-spring system,they are both constant coefficient second order differential equation.The feasibility of using magnetic levitation ball as oscillator is proved theoretically.The sensitivity and maximum acceleration technical specifications are given.The frequency characteristics and error analysis of the magnetic levitation oscillator vibration sensor are studied.Experiment results indicate that the displacement waveforms of the magnetic levitation oscillator vibration sensor are the same as the vibration waveforms of the external exciter.Using magnetic levitation oscillator vibration sensor to test vibration belongs to non-contact absolute vibration measurement method.This method overcomes the mechanical friction and mechanical gap errors,and the displacement signal can be outputted directly.The damping is achieved with an electronic circuit,and the damping parameters can be adjusted easily.The method features high sensitivity,wide frequency response range;and multi-dimensional vibration measurement can be implemented easily.The proposed method provides a new measurement method for absolute vibration measurement.%提出了用磁悬浮球作为振子实现非接触绝对式振动测量方法,推导了磁悬浮球的动力学方程,方程表明磁悬浮球的运动方程与质量-弹簧系统一致,均为常系数二阶微分方程,从理论上证实将磁悬浮球作为振子是可行的.给出了灵敏度和最大加速度指标,研究了磁悬浮振子振动传感器的频率特性并进行了误差分析.实验结果表明,磁悬浮振子振动传感器的输出波形与外加激振器的波形一致.磁悬浮振子振动传感器属于非接触绝对式振动测量方法,克服了

  18. Absolute quantum yield measurements for the formation of oxygen atoms after UV laser excitation of SO2 at 222.4 nm

    Indian Academy of Sciences (India)

    Mohammed Abu-Bajeh; Melanie Cameron; Kyung-Hoon Jung; Christoph Kappel; Almuth Läuter; Kyoung-Seok Lee; Hari P Upadhyaya; Rajesh K Vatsa; Hans-Robert Volpp

    2002-12-01

    The dynamics of formation of oxygen atoms after UV photoexcitation of SO2 in the gas-phase was studied by pulsed laser photolysis-laser-induced fluorescence `pump-and-probe' technique in a flow reactor. SO2 at room-temperature was excited at the KrCl excimer laser wavelength (222.4 nm) and O(3P) photofragments were detected under collision-free conditions by vacuum ultraviolet laser-induced fluorescence. The use of narrow-band probe laser radiation, generated via resonant third-order sum-difference frequency conversion of dye laser radiation in Krypton, allowed the measurement of the nascent O(3P=2,1,0) fine-structure state distribution: =2/=1/=0 = (0.88 ± 0.02)/(0.10 ± 0.01)/(0.02 ± 0.01). Employing NO2 photolysis as a reference, a value of O(3P) = 0.13 ± 0.05 for the absolute O(3P) atom quantum yield was determined. The measured O(3P) quantum yield is compared with the results of earlier fluorescence quantum yield measurements. A suitable mechanism is suggested in which the dissociation proceeds via internal conversion from high rotational states of the initially excited SO2(∼ 1 B2) (1, 2, 2) vibronic level to nearby continuum states of the electronic ground state.

  19. Toward absolute chemical composition distribution measurement of polyolefins by high-temperature liquid chromatography hyphenated with infrared absorbance and light scattering detectors.

    Science.gov (United States)

    Lee, Dean; Shan, Colin Li Pi; Meunier, David M; Lyons, John W; Cong, Rongjuan; deGroot, A Willem

    2014-09-02

    Chemical composition distribution (CCD) is a fundamental metric for representing molecular structures of copolymers in addition to molecular weight distribution (MWD). Solvent gradient interaction chromatography (SGIC) is commonly used to separate copolymers by chemical composition in order to obtain CCD. The separation of polymer in SGIC is, however, not only affected by chemical composition but also by molecular weight and architecture. The ability to measure composition and MW simultaneously after separation would be beneficial for understanding the impact of different factors and deriving true CCD. In this study, comprehensive two-dimensional chromatography (2D) was coupled with infrared absorbance (IR5) and light scattering (LS) detectors for characterization of ethylene-propylene copolymers. Polymers were first separated by SGIC as the first dimension chromatography (D1). The separated fractions were then characterized by the second dimension (D2) size exclusion chromatography (SEC) with IR5 and LS detectors. The concentrations and compositions of the separated fractions were measured online using the IR5 detector. The MWs of the fractions were measured by the ratio of LS to IR5 signals. A metric was derived from online concentration and composition data to represent CCD breadth. The metric was shown to be independent of separation gradients for an "absolute" measurement of CCD breadth. By combining online composition and MW data, the relationship of MW as a function of chemical composition was obtained. This relationship was qualitatively consistent with the results by SEC coupled to IR5, which measures chemical composition as a function of logMW. The simultaneous measurements of composition and MW give the opportunity to study the SGIC separation mechanism and derive chain architectural characteristics of polymer chains.

  20. Error Compensation Method for Mirror Symmetry Absolute Measurement%镜面对称法绝对测量中的误差补偿方法

    Institute of Scientific and Technical Information of China (English)

    何宇航; 柴立群; 陈波; 李强; 魏小红; 高波

    2013-01-01

    提出了一种对镜面对称法绝对测量中的原理性误差进行补偿的方法.镜面对称法绝对测量中,需要旋转其中一块平板,由于旋转次数的有限性,重构的三板波前均存在缺失cNθ项的原理性误差.通过增加一次不同角度的旋转,根据Zernike多项式在极坐标系中形式的旋转不变性,对旋转前后的波前差值求解多项式系数方程,获得了cNθ项的多项式系数,进而对原理性误差进行了补偿.由于cNθ项包含无穷多项,根据精度的需要和计算开销决定补偿的项数.模拟实验证明了该补偿方法的有效性.%A method is proposed to compensate intrinsic error in mirror symmetry absolute measurement. Because of the limitation of rotation times in mirror symmetry absolute measurement, intrinsic error of cNd terms occurs in reconstructed wavefronts of three flats. By adding a rotation with a different angle, the wavefront difference between two measurements before and after rotation is calculated, and the Zernike coefficients of cNd terms can be obtained by coefficient equations due to rotation invariability of the form of Zernike polynomials in polar coordinates. Therefore the intrinsic error of cNd terms may be compensated. Because the amount of cNθ terms is infinite, the compensated terms are decided in terms of the balance between accuracy and computing capacity. Computer simulation proves the validity of the proposed method.

  1. Absolute neutrino mass update

    CERN Document Server

    Päs, H; P\\"as, Heinrich; Weiler, Thomas J.

    2002-01-01

    The determination of absolute neutrino masses is crucial for the understanding of theories underlying the standard model, such as SUSY. We review the experimental prospects to determine absolute neutrino masses and the correlations among approaches, using the Delta m^2's inferred from neutrino oscillation experiments and assuming a three neutrino Universe.

  2. ABSOLUTE NEUTRINO MASSES

    DEFF Research Database (Denmark)

    Schechter, J.; Shahid, M. N.

    2012-01-01

    We discuss the possibility of using experiments timing the propagation of neutrino beams over large distances to help determine the absolute masses of the three neutrinos.......We discuss the possibility of using experiments timing the propagation of neutrino beams over large distances to help determine the absolute masses of the three neutrinos....

  3. Absolute atomic oxygen density measurements for nanosecond-pulsed atmospheric-pressure plasma jets using two-photon absorption laser-induced fluorescence spectroscopy

    Science.gov (United States)

    Jiang, C.; Carter, C.

    2014-12-01

    Nanosecond-pulsed plasma jets that are generated under ambient air conditions and free from confinement of electrodes have become of great interest in recent years due to their promising applications in medicine and dentistry. Reactive oxygen species that are generated by nanosecond-pulsed, room-temperature non-equilibrium He-O2 plasma jets among others are believed to play an important role during the bactericidal or sterilization processes. We report here absolute measurements of atomic oxygen density in a 1 mm-diameter He/(1%)O2 plasma jet at atmospheric pressure using two-photon absorption laser-induced fluorescence spectroscopy. Oxygen number density on the order of 1013 cm-3 was obtained in a 150 ns, 6 kV single-pulsed plasma jet for an axial distance up to 5 mm above the device nozzle. Temporally resolved O density measurements showed that there are two maxima, separated in time by 60-70 µs, and a total pulse duration of 260-300 µs. Electrostatic modeling indicated that there are high-electric-field regions near the nozzle exit that may be responsible for the observed temporal behavior of the O production. Both the field-distribution-based estimation of the time interval for the O number density profile and a pulse-energy-dependence study confirmed that electric-field-dependent, direct and indirect electron-induced processes play important roles for O production.

  4. Measurement of Absolute Hadronic Branching Fractions of D Mesons and e^+ e^- --> D D-bar Cross Sections at the psi(3770)

    CERN Document Server

    Dobbs, S; Seth, K K; Tomaradze, A G; Ecklund, K M; Love, W; Savinov, V; López, A; Mehrabyan, S; Méndez, H; Ramírez, J; Huang, G S; Miller, D H; Pavlunin, V; Sanghi, B; Shipsey, I P J; Xin, B; Adams, G S; Anderson, M; Cummings, J P; Danko, I; Hu, D; Moziak, B; Napolitano, J; He, Q; Insler, J; Muramatsu, H; Park, C S; Thorndike, E H; Yang, F; Artuso, M; Blusk, S; Khalil, S; Li, J; Menaa, N; Mountain, R; Nisar, S; Randrianarivony, K; Sia, R; Skwarnicki, T; Stone, S; Wang, J C; Bonvicini, G; Cinabro, D; Dubrovin, M; Lincoln, A; Asner, D M; Edwards, K W; Naik, P; Briere, R A; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Rosner, J L; Adam, N E; Alexander, J P; Berkelman, K; Cassel, D G; Duboscq, J E; Ehrlich, R; Fields, L; Gibbons, L; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Mahlke-Krüger, H; Mohapatra, D; Onyisi, P U E; Patterson, J R; Peterson, D; Pivarski, J; Riley, D; Ryd, A; Sadoff, A J; Schwarthoff, H; Shi, X; Stroiney, S; Sun, W M; Wilksen, T; Athar, S B; Patel, R; Yelton, J; Rubin, P; Cawlfield, C; Eisenstein, B I; Karliner, I; Kim, D; Lowrey, N; Selen, M; White, E J; Wiss, J; Mitchell, R E; Shepherd, M R; Besson, D; Pedlar, T K; Cronin-Hennessy, D; Gao, K Y; Hietala, J; Kubota, Y; Klein, T; Lang, B W; Poling, R; Scott, A W; Smith, A; Zweber, P

    2007-01-01

    Using 281 /pb of e^+ e^- collisions recorded at the psi(3770)resonance with the CLEO-c detector at CESR, we determine absolute hadronic branching fractions of charged and neutral D mesons using a double tag technique. Among measurements for three D0 and six D^+ modes, we obtain reference branching fractions B(D0 --> K^-pi^+) = (3.891 +- 0.035 +- 0.059 +- 0.035)% and B(D^+ --> K^-pi^+pi^+) = (9.15 +- 0.10 +- 0.16 +- 0.07)%, where the first uncertainty is statistical, the second is all systematic errors other than final state radiation (FSR), and the third is the systematic uncertainty due to FSR. We include FSR in these branching fractions by allowing for additional unobserved photons in the final state. Using an independent determination of the integrated luminosity, we also extract the cross sections sigma(e+e- --> D0 D0-bar) = (3.66+- 0.03 +- 0.06) nb and sigma(e+e- --> D^+ D^-) = (2.91+- 0.03 +- 0.05) nb at a center of mass energy, E_cm = 3774 +- 1 MeV.

  5. Ambient air quality measurements from a continuously moving mobile platform: Estimation of area-wide, fuel-based, mobile source emission factors using absolute principal component scores

    Science.gov (United States)

    Larson, Timothy; Gould, Timothy; Riley, Erin A.; Austin, Elena; Fintzi, Jonathan; Sheppard, Lianne; Yost, Michael; Simpson, Christopher

    2017-03-01

    We have applied the absolute principal component scores (APCS) receptor model to on-road, background-adjusted measurements of NOx, CO, CO2, black carbon (BC), and particle number (PN) obtained from a continuously moving platform deployed over nine afternoon sampling periods in Seattle, WA. Two Varimax-rotated principal component features described 75% of the overall variance of the observations. A heavy-duty vehicle feature was correlated with black carbon and particle number, whereas a light-duty feature was correlated with CO and CO2. NOx had moderate correlation with both features. The bootstrapped APCS model predictions were used to estimate area-wide, average fuel-based emission factors and their respective 95% confidence limits. The average emission factors for NOx, CO, BC and PN (14.8, 18.9, 0.40 g/kg, and 4.3 × 1015 particles/kg for heavy duty vehicles, and 3.2, 22.4, 0.016 g/kg, and 0.19 × 1015 particles/kg for light-duty vehicles, respectively) are consistent with previous estimates based on remote sensing, vehicle chase studies, and recent dynamometer tests. Information on the spatial distribution of the concentrations contributed by these two vehicle categories relative to background during the sampling period was also obtained.

  6. Absolute and Relative Surrogate Measurements of the 236U(n,f) Cross Section as a Probe for Angular Momentum Effects

    Energy Technology Data Exchange (ETDEWEB)

    Lyles, B; Bernstein, L; Burke, J; Escher, J; Thompson, I; Dietrich, F; Phair, L; Bleuel, D; Gibelin, J; Wiedeking, M; McMahan, M; Rodroguez-Vieitez, E; Clark, R; Macchiavelli, A; Lesher, S; Darakchieva, B; Evtimova, M; Beausang, C; Fallon, P

    2007-04-03

    Using both the absolute and relative surrogate techniques, the {sup 236}U(n,f) cross section was deduced over an equivalent neutron energy range of 0 to 20 MeV. A 42 MeV {sup 3}He beam from the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory was used to perform a ({sup 3}He,{alpha}) pickup reaction on targets of {sup 235}U (J{sup {pi}}=7/2{sup -}) and {sup 238}U (J{sup {pi}}=0{sup +}) and the fission decay probabilities were determined. The {sup 235}U({sup 3}He,{alpha}f) and {sup 238}U({sup 3}He,{alpha}f) were surrogates for {sup 233}U(n,f) and {sup 236}U(n,f), respectively. The cross sections extracted using the Surrogate Method were compared to directly measured cross sections. The sensitivity of these cross sections to the J{sup {pi}}-population distributions was explored.

  7. Measurement of Absolute Hadronic Branching Fractions of D Mesons and e^+e^- --> D barD Cross Sections at E_cm = 3773 MeV

    CERN Document Server

    Huang, G S; Miller, D H; Pavlunin, V; Rangarajan, R; Sanghi, B; Shibata, E I; Shipsey, I P J; Cronin-Hennessy, D; Park, C S; Park, W; Thayer, J B; Thorndike, E H; Coan, T E; Gao, Y S; Liu, F; Stroynowski, R; Artuso, M; Boulahouache, C; Blusk, S; Dambasuren, E; Dorjkhaidav, O; Mountain, R; Muramatsu, H; Nandakumar, R; Skwarnicki, T; Stone, S; Wang, J C; Csorna, S E; Danko, I; Bonvicini, G; Cinabro, D; Dubrovin, M; McGee, S; Bornheim, A; Lipeles, E; Pappas, S P; Shapiro, A; Sun, W M; Weinstein, A J; Briere, R A; Chen, G P; Ferguson, T; Tatishvili, G T; Vogel, H; Watkins, M E; Adam, N E; Alexander, J P; Berkelman, K; Boisvert, V; Cassel, D G; Duboscq, J E; Ecklund, K M; Ehrlich, R; Galik, R S; Gibbons, L; Gittelman, B; Gray, S W; Hartill, D L; Heltsley, B K; Hsu, L; Jones, C D; Kandaswamy, J; Kreinick, D L; Magerkurth, A; Mahlke-Krüger, H; Meyer, T O; Mistry, N B; Patterson, J R; Peterson, D; Pivarski, J; Richichi, S J; Riley, D; Sadoff, A J; Schwarthoff, H; Shepherd, M R; Thayer, J G; Urner, D; Wilksen, T; Warburton, A; Weinberger, M; Athar, S B; Avery, P; Breva-Newell, L; Potlia, V; Stöck, H; Yelton, J; Benslama, K; Cawlfield, C; Eisenstein, B I; Gollin, G D; Karliner, I; Lowrey, N; Plager, C; Sedlack, C; Selen, M; Thaler, J J; Williams, J; Edwards, K W; Besson, D; Anderson, S; Frolov, V V; Gong, D T; Kubota, Y; Li, S Z; Poling, R A; Smith, A; Stepaniak, C J; Urheim, J; Metreveli, Z V; Seth, K K; Tomaradze, A G; Zweber, P; Ahmed, S; Alam, M S; Ernst, J; Jian, L; Saleem, M; Wappler, F; Arms, K; Eckhart, E; Gan, K K; Gwon, C; Honscheid, K; Kagan, H; Kass, R; Pedlar, T K; Von Törne, E; Severini, H; Skubic, P L; Dytman, S A; Müller, J A; Nam, S; Savinov, V

    2005-01-01

    Using 55.8 pb^-1 of e^+e^- collisions recorded at the psi(3770) resonance with the CLEO-c detector at CESR, we determine absolute hadronic branching fractions of charged and neutral D mesons using a double tag technique. Among measurements for three D^0 and six D^+ modes, we obtain reference branching fractions B(D^0 -> K^- pi^+)=(3.91 +- 0.08 +- 0.09)% and B(D^+ -> K^- pi^+ pi^+)=(9.5 +- 0.2 +- 0.3)%, where the uncertainties are statistical and systematic, respectively. Final state radiation is included in these branching fractions by allowing for additional, unobserved, photons in the final state. Using a determination of the integrated luminosity, we also extract the cross sections sigma(e^+e^- -> D^0 \\bar D^0)=(3.60 +- 0.07 +0.07-0.05) nb and sigma(e^+e^- -> D^+D^-)=(2.79 +- 0.07 +0.10-0.04) nb.

  8. Measurement of the absolute values of cross-sections in neutron photoproduction (1962); Mesure de sections efficaces de photoproduction de neutrons en valeur absolue (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Schuhl, C. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1962-07-01

    The absolute values of photoneutrons production cross-sections for the case of intermediate and heavy nuclei (lanthanium, cerium, tantalum, gold, lead and bismuth) are determined with an error of 15 per cent. The results obtained agree with theories in which the giant resonance is explained by the collective motion of the protons against the neutrons. The effect of the nuclear deformation on the shape of the giant resonance is seen in the case of Ta{sup 181}, it will be possible to determine the quadrupole momenta of deformed nuclei with a good accuracy when we shall increase the statistics of measurements. (author) [French] Les sections efficaces de production de photoneutrons par divers noyaux moyens et lourds (lanthane, cerium, tantale, or, plomb et bismuth) sont determinees en valeur absolue avec une erreur relative de 15 pour cent. Les resultats obtenus s'accordent avec les theories qui interpretent la resonance geante par un mouvement collectif des protons par rapport aux neutrons. L'influence de la deformation du noyau sur la forme de la resonance geante est soulignee dans le cas de {sup 181}Ta pour lequel elle se decompose en deux pics. Une amelioration de la statistique des mesures permettra de determiner les moments quadrupolaires des noyaux deformes avec une meilleure precision. (auteur)

  9. Absolute Intensities Measurements in the nu(4) + nu(5) Band of (12)C(2)H(2): Analysis of Herman-Wallis Effects and Forbidden Transitions.

    Science.gov (United States)

    Vander Auwera J

    2000-05-01

    We measured absolute line intensities in two bands of (12)C(2)H(2) near 7.5 µm, namely the nu(4) + nu(5)(Sigma(+)(u))-0(Sigma(+)(g)) and nu(4) + nu(5)(Delta(u))-0(Sigma(+)(g)) bands, using Fourier transform spectroscopy with an accuracy estimated to be better than 2%. Using theoretical predictions from Watson [J. K. G. Watson, J. Mol. Spectrosc. 188, 78 (1998)], the observation of the forbidden nu(4) + nu(5)(Delta(u))-0(Sigma(+)(g)) band and the Herman-Wallis behavior exhibited by its rotational lines were studied quantitatively in terms of two types of interactions affecting the levels involved by the band: l-type resonance and Coriolis interaction. In the case of the nu(4) + nu(5)(Sigma(+)(u))-0(Sigma(+)(g)) band, the influence of l-type resonance is also confirmed. We also attributed the intensity asymmetry observed between the R and P branches of that latter band to a Coriolis interaction with l = 1 levels. We did not observe the nu(4) + nu(5)(Sigma(-)(u))-0(Sigma(+)(g)) band, consisting only of a Q branch, in agreement with Watson's prediction. Copyright 2000 Academic Press.

  10. NGS Absolute Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NGS Absolute Gravity data (78 stations) was received in July 1993. Principal gravity parameters include Gravity Value, Uncertainty, and Vertical Gradient. The...

  11. Decoherence at absolute zero

    OpenAIRE

    Sinha, Supurna

    2005-01-01

    We present an analytical study of the loss of quantum coherence at absolute zero. Our model consists of a harmonic oscillator coupled to an environment of harmonic oscillators at absolute zero. We find that for an Ohmic bath, the offdiagonal elements of the density matrix in the position representation decay as a power law in time at late times. This slow loss of coherence in the quantum domain is qualitatively different from the exponential decay observed in studies of high temperature envir...

  12. Absolute nutrient concentration measurements in cell culture media: 1H q-NMR spectra and data to compare the efficiency of pH-controlled protein precipitation versus CPMG or post-processing filtering approaches

    Directory of Open Access Journals (Sweden)

    Luca Goldoni

    2016-09-01

    Full Text Available The NMR spectra and data reported in this article refer to the research article titled “A simple and accurate protocol for absolute polar metabolite quantification in cell cultures using q-NMR” [1]. We provide the 1H q-NMR spectra of cell culture media (DMEM after removal of serum proteins, which show the different efficiency of various precipitating solvents, the solvent/DMEM ratios, and pH of the solution. We compare the data of the absolute nutrient concentrations, measured by PULCON external standard method, before and after precipitation of serum proteins and those obtained using CPMG (Carr-Purcell-Meiboom-Gill sequence or applying post-processing filtering algorithms to remove, from the 1H q-NMR spectra, the proteins signal contribution. For each of these approaches, the percent error in the absolute value of every measurement for all the nutrients is also plotted as accuracy assessment.

  13. Measurement of the absolute branching fraction of D+ → K̅0 e+νe via K̅0 → π 0 π 0

    Science.gov (United States)

    Ablikim, M.; Achasov, M. N.; Ai, X. C.; Albayrak, O.; Albrecht, M.; Ambrose, D. J.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Baldini Ferroli, R.; Ban, Y.; Bennett, D. W.; Bennett, J. V.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, H. Y.; Chen, J. C.; Chen, M. L.; Chen, S.; Chen, S. J.; Chen, X.; Chen, X. R.; Chen, Y. B.; Cheng, H. P.; Chu, X. K.; Cibinetto, G.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; De Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Dou, Z. L.; Du, S. X.; Duan, P. F.; Fan, J. Z.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Farinelli, R.; Fava, L.; Fedorov, O.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, X. L.; Gao, X. Y.; Gao, Y.; Gao, Z.; Garzia, I.; Goetzen, K.; Gong, L.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, R. P.; Guo, Y.; Guo, Y. P.; Haddadi, Z.; Hafner, A.; Han, S.; Hao, X. Q.; Harris, F. A.; He, K. L.; Held, T.; Heng, Y. K.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, J. F.; Hu, T.; Hu, Y.; Huang, G. S.; Huang, J. S.; Huang, X. T.; Huang, X. Z.; Huang, Y.; Huang, Z. L.; Hussain, T.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, L. W.; Jiang, X. S.; Jiang, X. Y.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Kiese, P.; Kliemt, R.; Kloss, B.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kupsc, A.; Kühn, W.; Lange, J. S.; Lara, M.; Larin, P.; Leng, C.; Li, C.; Li, Cheng; Li, D. M.; Li, F.; Li, F. Y.; Li, G.; Li, H. B.; Li, H. J.; Li, J. C.; Li, Jin; Li, K.; Li, K.; Li, Lei; Li, P. R.; Li, Q. Y.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. N.; Li, X. Q.; Li, Y. B.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin, D. X.; Liu, B.; Liu, B. J.; Liu, C. X.; Liu, D.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. H.; Liu, H. H.; Liu, H. M.; Liu, J.; Liu, J. B.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqing; Loehner, H.; Lou, X. C.; Lü, H. J.; Lü, J. G.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lü, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, M. M.; Ma, Q. M.; Ma, T.; Ma, X. N.; Ma, X. Y.; Ma, Y. M.; Maas, F. E.; Maggiora, M.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; Messchendorp, J. G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales Morales, C.; Muchnoi, N. Yu.; Muramatsu, H.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Pan, Y.; Patteri, P.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Pettersson, J.; Ping, J. L.; Ping, R. G.; Poling, R.; Prasad, V.; Qi, H. R.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, L. Q.; Qin, N.; Qin, X. S.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Ripka, M.; Rong, G.; Rosner, Ch.; Ruan, X. D.; Sarantsev, A.; Savrié, M.; Schoenning, K.; Schumann, S.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Shi, M.; Song, W. M.; Song, X. Y.; Sosio, S.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, X. H.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tapan, I.; Thorndike, E. H.; Tiemens, M.; Ullrich, M.; Uman, I.; Varner, G. S.; Wang, B.; Wang, B. L.; Wang, D.; Wang, D. Y.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, W.; Wang, W. P.; Wang, X. F.; Wang, Y.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Wang, Z. Y.; Weber, T.; Wei, D. H.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, L. J.; Wu, Z.; Xia, L.; Xia, L. G.; Xia, Y.; Xiao, D.; Xiao, H.; Xiao, Z. J.; Xie, Y. G.; Xiu, Q. L.; Xu, G. F.; Xu, J. J.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. J.; Yang, H. X.; Yang, L.; Yang, Y. X.; Ye, M.; Ye, M. H.; Yin, J. H.; Yu, B. X.; Yu, C. X.; Yu, J. S.; Yuan, C. Z.; Yuan, W. L.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zallo, A.; Zeng, Y.; Zeng, Z.; Zhang, B. X.; Zhang, B. Y.; Zhang, C.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J.; Zhang, J. J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, S. Q.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Y. N.; Zhang, Y. T.; Zhang, Yu; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, Q. W.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.

    2016-11-01

    By analyzing 2.93 fb-1 data collected at the center-of-mass energy with the BESIII detector, we measure the absolute branching fraction of the semileptonic decay D+ → K̅0 e+νe to be ℬ(D + → K̅0 e+νe) = (8.59 ± 0.14 ± 0.21)% using , where the first uncertainty is statistical and the second systematic. Our result is consistent with previous measurements within uncertainties.. Supported by National Key Basic Research Program of China (2009CB825204, 2015CB856700), National Natural Science Foundation of China (NSFC) (10935007, 11125525, 11235011, 11305180, 11322544, 11335008, 11425524, 11475123), Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program, CAS Center for Excellence in Particle Physics (CCEPP), Collaborative Innovation Center for Particles and Interactions (CICPI), Joint Large-Scale Scientific Facility Funds of NSFC and CAS (11179007, U1232201, U1332201, U1532101), CAS (KJCX2-YW-N29, KJCX2-YW-N45), 100 Talents Program of CAS, National 1000 Talents Program of China, INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology, German Research Foundation DFG (Collaborative Research Center CRC-1044), Istituto Nazionale di Fisica Nucleare, Italy, Koninklijke Nederlandse Akademie van Wetenschappen (KNAW) (530-4CDP03), Ministry of Development of Turkey (DPT2006K-120470), National Natural Science Foundation of China (NSFC) (11405046, U1332103), Russian Foundation for Basic Research (14-07-91152), Swedish Resarch Council, U. S. Department of Energy (DE-FG02-04ER41291, DE-FG02-05ER41374, DE-SC0012069, DESC0010118), U.S. National Science Foundation, University of Groningen (RuG) and Helmholtzzentrum fuer Schwerionenforschung GmbH (GSI), Darmstadt, WCU Program of National Research Foundation of Korea (R32-2008-000-10155-0).

  14. Absolute biological needs.

    Science.gov (United States)

    McLeod, Stephen

    2014-07-01

    Absolute needs (as against instrumental needs) are independent of the ends, goals and purposes of personal agents. Against the view that the only needs are instrumental needs, David Wiggins and Garrett Thomson have defended absolute needs on the grounds that the verb 'need' has instrumental and absolute senses. While remaining neutral about it, this article does not adopt that approach. Instead, it suggests that there are absolute biological needs. The absolute nature of these needs is defended by appeal to: their objectivity (as against mind-dependence); the universality of the phenomenon of needing across the plant and animal kingdoms; the impossibility that biological needs depend wholly upon the exercise of the abilities characteristic of personal agency; the contention that the possession of biological needs is prior to the possession of the abilities characteristic of personal agency. Finally, three philosophical usages of 'normative' are distinguished. On two of these, to describe a phenomenon or claim as 'normative' is to describe it as value-dependent. A description of a phenomenon or claim as 'normative' in the third sense does not entail such value-dependency, though it leaves open the possibility that value depends upon the phenomenon or upon the truth of the claim. It is argued that while survival needs (or claims about them) may well be normative in this third sense, they are normative in neither of the first two. Thus, the idea of absolute need is not inherently normative in either of the first two senses.

  15. Measurement of the absolute optical properties and cerebral blood volume of the adult human head with hybrid differential and spatially resolved spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Leung, Terence S [Department of Medical Physics and Bioengineering, University College London, Gower Street, London WC1E 6BT (United Kingdom); Tachtsidis, Ilias [Department of Medical Physics and Bioengineering, University College London, Gower Street, London WC1E 6BT (United Kingdom); Smith, Martin [Department of Neuroanaesthesia and Neurocritical Care, The National Hospital for Neurology and Neurosurgery, London (United Kingdom); Delpy, David T [Department of Medical Physics and Bioengineering, University College London, Gower Street, London WC1E 6BT (United Kingdom); Elwell, Clare E [Department of Medical Physics and Bioengineering, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2006-02-07

    A hybrid differential and spatially resolved spectroscopy (SRS) technique has been developed to measure absolute absorption coefficient ({mu}{sub a}), reduced scattering coefficient ({mu}'{sub s}) and cerebral blood volume (CBV) in the adult human head. A spectrometer with both differential and SRS capabilities has been used to carry out measurements in 12 subjects. Two versions of the calculation have been considered using the hybrid technique, with one considering water as a chromophore as well as oxy- and deoxy-haemoglobin, and one ignoring water. The CBV has also been measured using a previously described technique based on changing the arterial saturation (SaO{sub 2}) measured separately by a pulse oximeter, resulting in mean {+-} SD CBV{sup a} (intra-individual coefficient of variation) = 2.22 {+-} 1.06 ml/100 g (29.9%). (The superscript on CBV indicates the different calculation basis.) Using the hybrid technique with water ignored, CBV{sup 0} = 3.18 {+-} 0.73 ml/100 g (10.0%), {mu}{sup 0}{sub a}(813 nm) = 0.010 {+-} 0.003 mm{sup -1} and {mu}'{sup 0}{sub s}(813 nm) = 1.19 {+-} 0.55 mm{sup -1} (data quoted at 813 nm). With water considered, CBV{sup w} = 3.05 {+-} 0.77 ml/100 g (10.5%), {mu}{sup w}{sub a}(813 nm) = 0.010 {+-} 0.003 mm{sup -1} and {mu}'{sup w}{sub s}(813 nm) = 1.28 {+-} 0.56 mm{sup -1}. The mean biases between CBV{sup 0}/CBV{sup w}, CBV{sup 0}/CBV{sup a} and CBV{sup w}/CBV{sup a} are 0.14 {+-} 0.09, 0.79 {+-} 1.22 and 0.65 {+-} 1.24 ml/100 g. The mean biases between {mu}{sup 0}{sub a}(813 nm)/{mu}{sup w}{sub a}(813 nm) and {mu}'{sup 0}{sub s}(813 nm)/{mu}'{sup w}{sub s}(813 nm) are (5.9 {+-} 10.0) x 10{sup -4} mm{sup -1} and -0.084 {+-} 0.266 mm{sup -1}, respectively. The method we describe extends the functionality of the current SRS instrumentation.

  16. Improvements on Low Level Activity Gamma Measurements and X-ray Spectrometry at the CEA-MADERE Measurement Platform

    Science.gov (United States)

    Sergeyeva, Victoria; Domergue, Christophe; Destouches, Christophe; Girard, Jean Michel; Philibert, Hervé; Bonora, Jonathan; Thiollay, Nicolas; Lyoussi, Abdallah

    2016-02-01

    The CEA MADERE platform (Measurement Applied to DosimEtry in REactors) is a part of the Instrumentation Sensors and Dosimetry Laboratory (LDCI). This facility is dedicated to the specific activity measurements of solid and radioactive samples using Gamma and X-ray spectrometry. MADERE is a high-performance facility devoted to neutron dosimetry for experimental programs performed in CEA and for the irradiation surveillance programmes of PWR vessels. The MADERE platform is engaged in a continuous improvement process. Recently, two High Efficiency diodes have been integrated to the MADERE platform in order to manage the accurate low level activity measurements (few Bq per sample). This new equipment provides a good level of efficiency over the energy range from 60 keV to 2 MeV. The background continuum is reduced due to the use of a Ultra Low Background (ULB) lead shielding. Relative and absolute X-ray measurement techniques have been improved in order to facilitate absolute rhodium activity measurement (Rh103m) on solid samples. Additional efforts have been made to increase the accuracy of the relative niobium (Nb93m) activity measurement technique. The way of setting up an absolute measurement method for niobium is under investigation. After a presentation of the MADERE's measurement devices, this paper focuses on the technological options taken into account for the design of high efficiency measurement devices. Then, studies performed on X-ray measurement techniques are presented. Some details about the calculation of uncertainties and correction factors are also mentioned. Finally, future research and development axes are exposed.

  17. Non-invasive methods for absolute cerebral blood flow measurement using {sup 99m}Tc-ECD: a study in healthy volunteers

    Energy Technology Data Exchange (ETDEWEB)

    Van Laere, K.; Dierckx, R. [Div. of Nuclear Medicine, Ghent University Hospital (Belgium); Dumont, F. [Radiopharmacy Department, Faculty of Pharmaceutical Sciences, Ghent University, Ghent (Belgium); Koole, M. [Medical Image and Signal Processing Department (MEDISIP), Faculty of Applied Sciences, Ghent University, Ghent (Belgium)

    2001-07-01

    Radionuclide angiography with technetium-99m ethyl cysteinate dimer (ECD) allows non-invasive estimation of absolute cerebral blood flow (CBF), either by graphical Patlak-Gjedde analysis (PGA) or by spectral analysis (SA). Other methods estimate CBF by means of single-point arterial or venous sampling. The aim of this study was to evaluate radionuclide scanning and single-point venous sampling as potential clinical non- to minimally invasive methods for CBF determination in a large set of carefully screened healthy volunteers over the adult age range. Eighty-three carefully screened healthy volunteers (20-81 years, 43 males, 40 females) underwent planar radionuclide angiography with 925 MBq {sup 99m}Tc-ECD. After correction for camera dead-time loss, hemispheric CBF was calculated from brain perfusion indices (BPI): BPI{sup G} for PGA and BPI{sup S} for SA. Of the volunteers, 49 also underwent venous sampling 6 min post injection, from which the lipophilic octanol extraction fraction and hemispheric brain fractionation index (BFI) were determined. All datasets were correlated and evaluated as a function of age and gender. Intrasubject variability for the BPI measurements was assessed in 11 volunteers by repeat study within 2 weeks of the first acquisition. Graphical and spectral analysis BPIs were strongly correlated (R=0.846, P<0.00001). This correlation coefficient increased to R=0.903 for the 74 cases in which graphical analysis was not hampered by temporal tracer retention in cervicobrachial venous valves. The BFI was weakly correlated to both BPI indices (BPI{sup G}: R=0.34, P=0.02; BPI{sup S}: R=0.31, P=0.04). The right hemisphere showed significant asymmetry for BPI{sup S} (AI=2.7%{+-}4.3%, P<0.001), in correspondence with previous {sup 99m}Tc-ECD data. BPI{sup G}, BPI{sup S} and BFI were all inversely related to age, with an increased gradient after the age of 55 years, while there was no significant gender difference. The ratio of BPI{sup G} to BIP{sup S

  18. Instrument development for atmospheric radiation measurement (ARM): Status of the Atmospheric Emitted Radiance Interferometer - extended Resolution (AERI-X), the Solar Radiance Transmission Interferometer (SORTI), and the Absolute Solar Transmission Inferometer (ASTI)

    Energy Technology Data Exchange (ETDEWEB)

    Murcray, F.; Stephen, T.; Kosters, J. [Univ. of Denver, CO (United States)

    1996-04-01

    This paper describes three instruments currently under developemnt for the Atmospheric Radiation Measurement (ARM) Program at the University of Denver: the AERI-X (Atmospheric Emitted Radiance Interferometer-Extended Resolution) and the SORTI (Solar R adiance Transmission Interferometer), and ASTI (Absolute Solar transmission Interferometer).

  19. The UV-A and visible solar irradiance spectrum: inter-comparison of absolutely calibrated, spectrally medium resolution solar irradiance spectra from balloon- and satellite-borne measurements

    Directory of Open Access Journals (Sweden)

    W. Gurlit

    2005-01-01

    Full Text Available Within the framework of the ENVISAT/-SCIAMACHY satellite validation, solar irradiance spectra are absolutely measured at moderate resolution in the UV/visible spectral range (in the UV from 316.7-418 nm and the visible from 400-652 nm at a full width half maximum resolution of 0.55 nm and 1.48 nm, respectively from aboard the azimuth-controlled LPMA/DOAS balloon gondola at around 32 km balloon float altitude. After accounting for the atmospheric extinction due to Rayleigh scattering and gaseous absorption (O3 and NO2, the measured solar spectra are compared with previous observations. Our solar irradiance spectrum perfectly agrees within +0.03% with the re-calibrated Kurucz et al. (1984 solar spectrum (Fontenla et al., 1999, called MODTRAN 3.7 in the visible spectral range (415-650 nm, but it is +2.1% larger in the (370-415 nm wavelength interval, and -4% smaller in the UV-A spectral range (316.7-370 nm, when the Kurucz spectrum is convolved to the spectral resolution of our instrument. Similar comparisons of the SOLSPEC (Thuillier et al., 1997, 1998a, b and SORCE/SIM (Harder et al., 2000 solar spectra with MODTRAN 3.7 confirms our findings with the values being -0.5%, +2%, and -1.4% for SOLSPEC -0.33%, -0.47%, and -6.2% for SORCE/SIM, respectively. Comparison of the SCIAMACHY solar spectrum from channels 1 to 4 (- re-calibrated by the University of Bremen - with MODTRAN 3.7 indicates an agreement within -0.4% in the visible spectral range (415-585 nm, -1.6% within the 370-415 nm, and -5.7% within 325-370 nm wavelength interval, in agreement with the results of the other sensors. In agreement with findings of Skupin et al. (2002 our study emphasizes that the present ESA SCIAMACHY level 1 calibration is systematically +15% larger in the considered wavelength intervals when compared to all available other solar irradiance measurements.

  20. [Obsessive-compulsive symptoms, tics, stereotypic movements or need for absolute consistency? The occurrence of repetitive activities in patients with pervasive developmental disorders--case studies].

    Science.gov (United States)

    Bryńska, Anita; Lipińska, Elzbieta; Matelska, Monika

    2011-01-01

    Repetitive and stereotyped behaviours in the form of stereotyped interests or specific routine activities are one ofthe diagnostic criteria in pervasive developmental disorders. The occurrence of repetitive behaviours in patients with pervasive developmental disorders is a starting point for questions about the type and classification criteria of such behaviours. The aim of the article is to present case studies of patients with pervasive developmental disorders and co-morbid symptoms in the form of routine activities, tics, obsessive-compulsive symptoms or stereotyped behaviours. The first case study describes a patient with Asperger's syndrome and obsessive compulsive symptoms. The diagnostic problems regarding complex motor tics are discussed in the second case study which describes a patient with Asperger's syndrome and Gilles de la Tourette syndrome. The third and fourth case study describes mono-zygotic twins with so called High Functioning Autism whose repetitive activities point to either obsessive compulsive symptoms, stereotypic movements, need for absolute consistency or echopraxia. The possible comorbidity of pervasive developmental disorders and symptoms in the form of repetitive behaviours, possible interactions as well as diagnostic challenges is discussed in the article.

  1. Synthesis, Crystal Structure, Absolute Configuration and Antitumor Activity of the Enantiomers of 5-Bromo-2-chloro-N-(1-phenylethylpyridine-3-sulfonamide

    Directory of Open Access Journals (Sweden)

    Zhixu Zhou

    2015-11-01

    Full Text Available Pyridinesulfonamide is an important fragment which has a wide range of applications in novel drugs. R- and S-isomers of 5-bromo-2-chloro-N-(1-phenylethylpyridine-3-sulfonamide have been synthesized, and the stereostructures have been researched. Single crystals of both compounds were obtained for X-ray analysis, and the absolute configurations (ACs have been further confirmed by electronic circular dichroism (ECD, optical rotation (OR and quantum chemical calculations. The crystal structures and calculated geometries were extremely similar, which permitted a comparison of the relative reliabilities of ACs obtained by ECD analyses and theoretical simulation. In addition, the effect of stereochemistry on the PI3Kα kinase and anticancer activity were investigated. Compounds 10a and 10b inhibit the activity of PI3Kα kinase with IC50 values of 1.08 and 2.69 μM, respectively. Furthermore, molecular docking was performed to analyze the binding modes of R- and S-isomers.

  2. Optomechanics for absolute rotation detection

    Science.gov (United States)

    Davuluri, Sankar

    2016-07-01

    In this article, we present an application of optomechanical cavity for the absolute rotation detection. The optomechanical cavity is arranged in a Michelson interferometer in such a way that the classical centrifugal force due to rotation changes the length of the optomechanical cavity. The change in the cavity length induces a shift in the frequency of the cavity mode. The phase shift corresponding to the frequency shift in the cavity mode is measured at the interferometer output to estimate the angular velocity of absolute rotation. We derived an analytic expression to estimate the minimum detectable rotation rate in our scheme for a given optomechanical cavity. Temperature dependence of the rotation detection sensitivity is studied.

  3. Determination of absolute adsorption in highly ordered porous media

    Science.gov (United States)

    Mertens, Florian O.

    2009-06-01

    Recently developed Metal Organic Frameworks (MOFs) are the materials with the highest intrinsic surface areas to date and their discovery increased the research activity in the field of microporous adsorption materials significantly. In this contribution, a generic method of analysis for volumetrically measured adsorption isotherms is presented that separates absolute adsorption from excess adsorption to the best possible degree by representing the absolute adsorption isotherm by a superposition of in respect to pressure strictly monotonously increasing fitting function. The procedure allows to determine the heat of adsorption at constant gas uptake via implicitly defined quantities. The method was applied to adsorption data of hydrogen on MOF-5 ranging from 40 K to 200 K. Methane adsorption on MOF-5 was used to demonstrate that the common practice of neglecting the difference between excess and absolute adsorption leads to erroneously increased heat of adsorption values at high coverages and temperatures.

  4. Absolute Gravimetry in Fennoscandia

    DEFF Research Database (Denmark)

    Pettersen, B. R; TImmen, L.; Gitlein, O.

    motions) has its major axis in the direction of southwest to northeast and covers a distance of about 2000 km. Absolute gravimetry was made in Finland and Norway in 1976 with a rise-and fall instrument. A decade later the number of gravity stations was expanded by JILAg-5, in Finland from 1988, in Norway...

  5. Integrated Clinical Decision Support Systems Promote Absolute Cardiovascular Risk Assessment: An Important Primary Prevention Measure in Aboriginal and Torres Strait Islander Primary Health Care.

    Science.gov (United States)

    Matthews, Veronica; Burgess, Christopher P; Connors, Christine; Moore, Elizabeth; Peiris, David; Scrimgeour, David; Thompson, Sandra C; Larkins, Sarah; Bailie, Ross

    2017-01-01

    Aboriginal and Torres Strait Islander Australians experience a greater burden of disease compared to non-Indigenous Australians. Around one-fifth of the health disparity is caused by cardiovascular disease (CVD). Despite the importance of absolute cardiovascular risk assessment (CVRA) as a screening and early intervention tool, few studies have reported its use within the Australian Indigenous primary health care (PHC) sector. This study utilizes data from a large-scale quality improvement program to examine variation in documented CVRA as a primary prevention strategy for individuals without prior CVD across four Australian jurisdictions. We also examine the proportion with elevated risk and follow-up actions recorded. We undertook cross-sectional analysis of 2,052 client records from 97 PHC centers to assess CVRA in Indigenous adults aged ≥20 years with no recorded chronic disease diagnosis (2012-2014). Multilevel regression was used to quantify the variation in CVRA attributable to health center and client level factors. The main outcome measure was the proportion of eligible adults who had CVRA recorded. Secondary outcomes were the proportion of clients with elevated risk that had follow-up actions recorded. Approximately 23% (n = 478) of eligible clients had documented CVRA. Almost all assessments (99%) were conducted in the Northern Territory. Within this jurisdiction, there was wide variation between centers in the proportion of clients with documented CVRA (median 38%; range 0-86%). Regression analysis showed health center factors accounted for 48% of the variation. Centers with integrated clinical decision support systems were more likely to document CVRA (OR 21.1; 95% CI 5.4-82.4; p risk, of whom almost one-third were under 35 years (n = 16). Documentation of follow-up varied with respect to the targeted risk factor. Fewer than 30% with abnormal blood lipid or glucose levels had follow-up management plans recorded. There was wide variation

  6. Integrated Clinical Decision Support Systems Promote Absolute Cardiovascular Risk Assessment: An Important Primary Prevention Measure in Aboriginal and Torres Strait Islander Primary Health Care

    Directory of Open Access Journals (Sweden)

    Veronica Matthews

    2017-09-01

    Full Text Available BackgroundAboriginal and Torres Strait Islander Australians experience a greater burden of disease compared to non-Indigenous Australians. Around one-fifth of the health disparity is caused by cardiovascular disease (CVD. Despite the importance of absolute cardiovascular risk assessment (CVRA as a screening and early intervention tool, few studies have reported its use within the Australian Indigenous primary health care (PHC sector. This study utilizes data from a large-scale quality improvement program to examine variation in documented CVRA as a primary prevention strategy for individuals without prior CVD across four Australian jurisdictions. We also examine the proportion with elevated risk and follow-up actions recorded.MethodsWe undertook cross-sectional analysis of 2,052 client records from 97 PHC centers to assess CVRA in Indigenous adults aged ≥20 years with no recorded chronic disease diagnosis (2012–2014. Multilevel regression was used to quantify the variation in CVRA attributable to health center and client level factors. The main outcome measure was the proportion of eligible adults who had CVRA recorded. Secondary outcomes were the proportion of clients with elevated risk that had follow-up actions recorded.ResultsApproximately 23% (n = 478 of eligible clients had documented CVRA. Almost all assessments (99% were conducted in the Northern Territory. Within this jurisdiction, there was wide variation between centers in the proportion of clients with documented CVRA (median 38%; range 0–86%. Regression analysis showed health center factors accounted for 48% of the variation. Centers with integrated clinical decision support systems were more likely to document CVRA (OR 21.1; 95% CI 5.4–82.4; p < 0.001. Eleven percent (n = 53 of clients were found with moderate/high CVD risk, of whom almost one-third were under 35 years (n = 16. Documentation of follow-up varied with respect to the targeted risk factor

  7. Active spectroscopic measurements using the ITER diagnostic system.

    Science.gov (United States)

    Thomas, D M; Counsell, G; Johnson, D; Vasu, P; Zvonkov, A

    2010-10-01

    Active (beam-based) spectroscopic measurements are intended to provide a number of crucial parameters for the ITER device being built in Cadarache, France. These measurements include the determination of impurity ion temperatures, absolute densities, and velocity profiles, as well as the determination of the plasma current density profile. Because ITER will be the first experiment to study long timescale (∼1 h) fusion burn plasmas, of particular interest is the ability to study the profile of the thermalized helium ash resulting from the slowing down and confinement of the fusion alphas. These measurements will utilize both the 1 MeV heating neutral beams and a dedicated 100 keV hydrogen diagnostic neutral beam. A number of separate instruments are being designed and built by several of the ITER partners to meet the different spectroscopic measurement needs and to provide the maximum physics information. In this paper, we describe the planned measurements, the intended diagnostic ensemble, and we will discuss specific physics and engineering challenges for these measurements in ITER.

  8. Youth physical activity resource use and activity measured by accelerometry.

    Science.gov (United States)

    Maslow, Andréa L; Colabianchi, Natalie

    2011-01-01

    To examine whether use of physical activity resources (eg, parks) was associated with daily physical activity measured by accelerometry. One hundred eleven adolescents completed a travel diary with concurrent accelerometry. The main exposure was self-reported use of a physical activity resource (none /1+ resources). The main outcomes were total minutes spent in daily (1) moderate-vigorous physical activity and (2) vigorous physical activity. Using a physical activity resource was significantly associated with total minutes in moderate-vigorous physical activity. African Americans and males had significantly greater moderate-vigorous physical activity. Results from this study support the development and use of physical activity resources.

  9. Youth Physical Activity Resources Use and Activity Measured by Accelerometry

    Science.gov (United States)

    Maslow, Andréa L.; Colabianchi, Natalie

    2014-01-01

    Objectives To examine whether utilization of physical activity resources (eg, parks) was associated with daily physical activity measured by accelerometry. Methods 111 adolescents completed a travel diary with concurrent accelerometry. The main exposure was self-reported utilization of a physical activity resource (none/1+ resources). The main outcomes were total minutes spent in daily 1) moderate-vigorous physical activity and 2) vigorous physical activity. Results Utilizing a physical activity resource was significantly associated with total minutes in moderate-vigorous physical activity. African-Americans and males had significantly greater moderate-vigorous physical activity. Conclusions Results from this study support the development and use of physical activity resources. PMID:21204684

  10. Four Years of Absolute Gravity in the Taiwan Orogen (AGTO)

    Science.gov (United States)

    Mouyen, Maxime; Masson, Frédéric; Hwang, Cheinway; Cheng, Ching-Chung; Le Moigne, Nicolas; Lee, Chiung-Wu; Kao, Ricky; Hsieh, Nicky

    2010-05-01

    AGTO is a scientific project between Taiwanese and French institutes, which aim is to improve tectonic knowledge of Taiwan primarily using absolute gravity measurements and permanent GPS stations. Both tools are indeed useful to study vertical movements and mass transfers involved in mountain building, a major process in Taiwan located at the convergent margin between Philippine Sea plate and Eurasian plate. This convergence results in two subductions north and south of Taiwan (Ryukyu and Manilla trenches, respectively), while the center is experiencing collision. These processes make Taiwan very active tectonically, as illustrated by numerous large earthquakes and rapid uplift of the Central Range. High slopes of Taiwan mountains and heavy rains brought by typhoons together lead to high landslides and mudflows risks. Practically, absolute gravity measurements have been yearly repeated since 2006 along a transect across south Taiwan, from Penghu to Lutao islands, using FG5 absolute gravimeters. This transect contains ten sites for absolute measurements and has been densified in 2008 by incorporating 45 sites for relative gravity measurements with CG5 gravimeters. The last relative and absolute measurements have been performed in November 2009. Most of the absolute sites have been measured with a good accuracy, about 1 or 2 ?Gal. Only the site located in Tainan University has higher standard deviation, due to the city noise. We note that absolute gravity changes seem to follow a trend in every site. However, straightforward tectonic interpretation of these trends is not valuable as many non-tectonic effects are supposed to change g with time, like groundwater or erosion. Estimating and removing these effects leads to a tectonic gravity signal, which has theoretically two origins : deep mass transfers around the site and vertical movements of the station. The latter can be well constrained by permanent GPS stations located close to the measurement pillar. Deep mass

  11. Oxygen activity measurements in simulated converter matte

    CSIR Research Space (South Africa)

    Tshilombo, KG

    2007-01-01

    Full Text Available to the composition of the gas atmosphere over the melt. The measured oxygen activity was generally close to that predicted by FactSage calculations. This indicates that such oxygen activity measurements could be useful to monitor iron removal during converting...

  12. How valid are wearable physical activity trackers for measuring steps?

    Science.gov (United States)

    An, Hyun-Sung; Jones, Gregory C; Kang, Seoung-Ki; Welk, Gregory J; Lee, Jung-Min

    2017-04-01

    Wearable activity trackers have become popular for tracking individual's daily physical activity, but little information is available to substantiate the validity of these devices in step counts. Thirty-five healthy individuals completed three conditions of activity tracker measurement: walking/jogging on a treadmill, walking over-ground on an indoor track, and a 24-hour free-living condition. Participants wore 10 activity trackers at the same time for both treadmill and over-ground protocol. Of these 10 activity trackers three were randomly given for 24-hour free-living condition. Correlations of steps measured to steps observed were r = 0.84 and r = 0.67 on a treadmill and over-ground protocol, respectively. The mean MAPE (mean absolute percentage error) score for all devices and speeds on a treadmill was 8.2% against manually counted steps. The MAPE value was higher for over-ground walking (9.9%) and even higher for the 24-hour free-living period (18.48%) on step counts. Equivalence testing for step count measurement resulted in a significant level within ±5% for the Fitbit Zip, Withings Pulse, and Jawbone UP24 and within ±10% for the Basis B1 band, Garmin VivoFit, and SenseWear Armband Mini. The results show that the Fitbit Zip and Withings Pulse provided the most accurate measures of step count under all three different conditions (i.e. treadmill, over-ground, and 24-hour condition), and considerable variability in accuracy across monitors and also by speeds and conditions.

  13. Measurement of the absolute branching fraction of D-vertical bar -> (K)over-bar(0)e(vertical bar) nu(e) via (K)over-bar(0) -> pi(0)pi(0)

    NARCIS (Netherlands)

    Ablikim, M.; Achasov, N.; Ai, X. C.; Albayrak, O.; Albrecht, M.; Ambrose, D. J.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Ferroli, R. Baldini; Ban, Y.; Bennett, D. W.; Bennett, J. V.; Bertani, M.; Bettonin, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Caleaterra, A.; Cao, G. F.; Cetin, S. A.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, H. Y.; Chen, J. C.; Chen, M. L.; Chen, S.; Chen, S. J.; Chen, X.; Chen, X. R.; Chen, Y. B.; Cheng, H. P.; Chu, X. K.; Cibinetto, G.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; De Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Dou, Z. L.; Du, S. X.; Duan, P. F.; Fan, J. Z.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Farinelli, R.; Fava, L.; Fedorov, O.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, X. L.; Gao, X. Y.; Gao, Y.; Gao, Z.; Garzia, I.; Goetzen, K.; Gong, L.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, R. P.; Guo, Y.; Guo, Y. P.; Haddadi, Z.; Hafner, A.; Han, S.; Hao, X. Q.; Harris, F. A.; He, K. L.; Held, T.; Heng, Y. K.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, J. F.; Hu, T.; Hu, Y.; Huang, G. S.; Huang, J. S.; Huang, X. T.; Huang, X. Z.; Huang, Y.; Huang, Z. L.; Hussain, T.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, L. W.; Jiang, X. S.; Jiang, X. Y.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Kiese, P.; Kliemt, R.; Kloss, B.; Kolc, O. B.; Kopf, B.; Kornicer, M.; Kupse, A.; Kuehn, W.; Lange, J. S.; Lara, M.; Larin, P.; Leng, C.; Li, C.; Li, Cheng; Li, D. M.; Li, F.; Li, F. Y.; Li, G.; Li, H. B.; Li, H. J.; Li, J. C.; Li, Jin; Li, K.; Li, K.; Li, Lei; Li, P. R.; Li, Q. Y.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. N.; Li, X. Q.; Li, Y. B.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin, D. X.; Liu, B.; Liu, B. J.; Liu, C. X.; Liu, D.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. H.; Liu, H. H.; Liu, H. M.; Liu, J.; Liu, J. B.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqing; Loehner, H.; Lou, X. C.; Lu, H. J.; Lu, J. G.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, M. M.; Ma, Q. M.; Ma, T.; Ma, X. N.; Ma, X. Y.; Ma, Y. M.; Maas, F. E.; Maggiora, M.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; Messchendorp, J. G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales, C. Morales; Muchnoi, N. Yu.; Muramatsu, H.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Pan, Y.; Patteri, P.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Pettersson, J.; Ping, J. L.; Ping, R. G.; Poling, R.; Prasad, V.; Qi, H. R.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, L. Q.; Qin, N.; Qin, X. S.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Ripka, M.; Rong, G.; Rosner, Ch.; Ruan, X. D.; Sarantsev, A.; Savrie, M.; Schoenning, K.; Schumann, S.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Shi, M.; Song, W. M.; Song, X. Y.; Sosio, S.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, X. H.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tapan, I.; Thorndike, E. H.; Tiemens, M.; Ullrich, M.; Uman, I.; Varner, G. S.; Wang, B.; Wang, B. L.; Wang, D.; Wang, D. Y.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, W.; Wang, W. P.; Wang, X. F.; Wang, Y.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Wang, Z. Y.; Weber, T.; Wei, D. H.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, L. J.; Wu, Z.; Xia, L.; Xia, Y.; Xiao, D.; Xiao, H.; Xiao, Z. J.; Xie, Y. G.; Xiu, Q. L.; Xu, G. F.; Xu, J. J.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. J.; Yang, H. X.; Yang, L.; Yang, Y. X.; Ye, M.; Ye, M. H.; Yin, J. H.; Yu, B. X.; Yu, C. X.; Yu, J. S.; Yuan, C. Z.; Yuan, W. L.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zallo, A.; Zeng, Y.; Zeng, Z.; Zhang, B. X.; Zhang, B. Y.; Zhang, C.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J.; Zhang, J. J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, S. Q.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Y. N.; Zhang, Y. T.; Zhang, Yu; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, Q. W.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, S. H.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuangig, J.; Zotti, L.; Zou, B. S.; Zou, J. H.

    2016-01-01

    By analyzing 2.93 fb(-1) data collected at the center-of-mass energy root s = 3.773 GeV with the BESIII detector, we measure the absolute branching fraction of the semileptonic decay D+ -> (K) over bar (0)e(+)nu(e) to be B(D (+) -> (K) over bar (0)e(+)nu(e)) = (8.59 +/- 0.14 +/- 0.21)% using (K) ove

  14. Absolute photoacoustic thermometry in deep tissue.

    Science.gov (United States)

    Yao, Junjie; Ke, Haixin; Tai, Stephen; Zhou, Yong; Wang, Lihong V

    2013-12-15

    Photoacoustic thermography is a promising tool for temperature measurement in deep tissue. Here we propose an absolute temperature measurement method based on the dual temperature dependences of the Grüneisen parameter and the speed of sound in tissue. By taking ratiometric measurements at two adjacent temperatures, we can eliminate the factors that are temperature irrelevant but difficult to correct for in deep tissue. To validate our method, absolute temperatures of blood-filled tubes embedded ~9 mm deep in chicken tissue were measured in a biologically relevant range from 28°C to 46°C. The temperature measurement accuracy was ~0.6°C. The results suggest that our method can be potentially used for absolute temperature monitoring in deep tissue during thermotherapy.

  15. Youth Physical Activity Resource Use and Activity Measured by Accelerometry

    Science.gov (United States)

    Maslow, Andra L.; Colabianchi, Natalie

    2011-01-01

    Objectives: To examine whether use of physical activity resources (e.g., parks) was associated with daily physical activity measured by accelerometry. Methods: One hundred eleven adolescents completed a travel diary with concurrent accelerometry. The main exposure was self-reported use of a physical activity resource (none /1 resources). The main…

  16. Absolutely Indecomposable Modules

    CERN Document Server

    Göbel, Rüdiger

    2007-01-01

    A module is called absolutely indecomposable if it is directly indecomposable in every generic extension of the universe. We want to show the existence of large abelian groups that are absolutely indecomposable. This will follow from a more general result about R-modules over a large class of commutative rings R with endomorphism ring R which remains the same when passing to a generic extension of the universe. It turns out that `large' in this context has the precise meaning, namely being smaller then the first omega-Erdos cardinal defined below. We will first apply result on large rigid trees with a similar property established by Shelah in 1982, and will prove the existence of related ` R_omega-modules' (R-modules with countably many distinguished submodules) and finally pass to R-modules. The passage through R_omega-modules has the great advantage that the proofs become very transparent essentially using a few `linear algebra' arguments accessible also for graduate students. The result gives a new constru...

  17. Absolute stereostructures of olibanumols A, B, C, H, I, and J from olibanum, gum-resin of Boswellia carterii, and inhibitors of nitric oxide production in lipopolysaccharide-activated mouse peritoneal macrophages.

    Science.gov (United States)

    Yoshikawa, Masayuki; Morikawa, Toshio; Oominami, Hideo; Matsuda, Hisashi

    2009-09-01

    Three new monoterpenes, olibanumols A (1), B (2), and C (3), and three new triterpenes, olibanumols H (4), I (5), and J (6), were isolated from olibanum, the exuded gum-resin from Boswellia carterii BIRDW. Their structures including the absolute configuration were determined by chemical and physicochemical evidence. Among the constituents, olibanumols A (1), H (4), and I (5), and isofouquierol (12) exhibited nitric oxide production inhibitory activity in lipopolysaccharide-activated mouse peritoneal macrophages.

  18. (E)-4-methyl-1-tributylstannyl-oct-1-en-6-yn-3-ol: circular dichroism measurement and determination of the absolute configuration by quantum-chemical CD calculations

    Energy Technology Data Exchange (ETDEWEB)

    Voloshina, E.N.; Raabe, G.; Fleischhauer, J.; Kramp, G.J.; Gais, H.J. [Rheinisch-Westfaelische Technische Hochschule Aachen (Germany). Inst. fuer Organische Chemie

    2004-07-01

    The chiroptical properties of the diastereomeric alcohols (E)-(3S,4S)-4-methyl-1-tributylstannyl-oct-1-en-6-yn-3-ol ((S,S)-3) and (E)-(3R,4S)-4-methyl-1-tributylstannyl-oct-1-en-6-yn-3-ols ((R,S)-3) have been studied experimentally as well as by quantum-chemical calculations. The structures of 20 conformers of each isomer, which were found to represent local minima at the MNDO level, have been optimized with density functional theory (DFT). Based on these geometries the excitation energies and oscillator as well as rotational strengths have been calculated using a time-dependent DFT (TDDFT) method. The CD spectra of the compounds were then obtained as superposition of Boltzmann-weighted spectra for each of the structures. By comparison of the calculated and the experimental CD spectra the absolute configurations have been assigned to the investigated compounds. (orig.)

  19. (E)-4-Methyl-1-tributylstannyl-oct-1-en-6-yn-3-ol: Circular Dichroism Measurement and Determination of the Absolute Configuration by Quantum-chemical CD Calculations

    Science.gov (United States)

    Voloshina, E. N.; Raabe, G.; Fleischhauer, J.; Kramp, G. J.; Gais, H.-J.

    2004-03-01

    The chiroptical properties of the diastereomeric alcohols (E)-(3S,4S)-4-methyl-1-tributylstannyloct- 1-en-6-yn-3-ol ((S,S)-) and (E)-(3R,4S)-4-methyl-1-tributylstannyl-oct-1-en-6-yn-3-ols ((R,S)- 3) have been studied experimentally as well as by quantum-chemical calculations. The structures of 20 conformers of each isomer, which were found to represent local minima at the MNDO level, have been optimized with density functional theory (DFT). Based on these geometries the excitation energies and oscillator as well as rotational strengths have been calculated using a time-dependent DFT (TDDFT) method. The CD spectra of the compounds were then obtained as superposition of Boltzmann-weighted spectra for each of the structures. By comparison of the calculated and the experimental CD spectra the absolute configurations have been assigned to the investigated compounds.

  20. Thermodynamic Activity Measurements with Knudsen Cell Mass Spectrometry

    Science.gov (United States)

    Copland, Evan H.; Jacobson, Nathan S.

    2001-01-01

    Coupling the Knudsen effusion method with mass spectrometry has proven to be one of the most useful experimental techniques for studying the equilibrium between condensed phases and complex vapors. The Knudsen effusion method involves placing a condensed sample in a Knudsen cell, a small "enclosure", that is uniformly heated and held until equilibrium is attained between the condensed and vapor phases. The vapor is continuously sampled by effusion through a small orifice in the cell. A molecular beam is formed from the effusing vapor and directed into a mass spectrometer for identification and pressure measurement of the species in the vapor phase. Knudsen cell mass spectrometry (KCMS) has been used for nearly fifty years now and continues to be a leading technique for obtaining thermodynamic data. Indeed, much of the well-established vapor specie data in the JANAF tables has been obtained from this technique. This is due to the extreme versatility of the technique. All classes of materials can be studied and all constituents of the vapor phase can be measured over a wide range of pressures (approximately 10(exp -4) to 10(exp -11) bar) and temperatures (500-2800 K). The ability to selectively measure different vapor species makes KCMS a very powerful tool for the measurement of component activities in metallic and ceramic solutions. Today several groups are applying KCMS to measure thermodynamic functions in multicomponent metallic and ceramic systems. Thermodynamic functions, especially component activities, are extremely important in the development of CALPHAD (Calculation of Phase Diagrams) type thermodynamic descriptions. These descriptions, in turn, are useful for modeling materials processing and predicting reactions such as oxide formation and fiber/matrix interactions. The leading experimental methods for measuring activities are the Galvanic cell or electro-motive force (EMF) technique and the KCMS technique. Each has specific advantages, depending on

  1. Measuring Cognitive Translation Effort with Activity Units

    DEFF Research Database (Denmark)

    Schaeffer, Moritz; Carl, Michael; Lacruz, Isabel

    2016-01-01

    Despite the increased quality of Machine Translation output, human interaction will remain a crucial activity to guarantee the quality of the final translation products. Human-computer interaction in translation will likely be the more successful the more we understand the properties and compleme...... methods in empirical translation process research and suggests ngrams of Activity Units for measuring the translation process....

  2. Measuring Homework Completion in Behavioral Activation

    Science.gov (United States)

    Busch, Andrew M.; Uebelacker, Lisa A.; Kalibatseva, Zornitsa; Miller, Ivan W.

    2010-01-01

    The aim of this study was to develop and validate an observer-based coding system for the characterization and completion of homework assignments during Behavioral Activation (BA). Existing measures of homework completion are generally unsophisticated, and there is no current measure of homework completion designed to capture the particularities…

  3. Absolute measurement of the 1S0 - 3P0 clock transition in neutral 88Sr over the 330 km-long stabilized fibre optic link.

    Science.gov (United States)

    Morzyński, Piotr; Bober, Marcin; Bartoszek-Bober, Dobrosława; Nawrocki, Jerzy; Krehlik, Przemysław; Śliwczyński, Łukasz; Lipiński, Marcin; Masłowski, Piotr; Cygan, Agata; Dunst, Piotr; Garus, Michał; Lisak, Daniel; Zachorowski, Jerzy; Gawlik, Wojciech; Radzewicz, Czesław; Ciuryło, Roman; Zawada, Michał

    2015-12-07

    We report a stability below 7 × 10(-17) of two independent optical lattice clocks operating with bosonic (88)Sr isotope. The value (429 228 066 418 008.3(1.9)(syst) (0.9)(stat) Hz) of the absolute frequency of the (1)S(0) - (3)P(0) transition was measured with an optical frequency comb referenced to the local representation of the UTC by the 330 km-long stabilized fibre optical link. The result was verified by series of measurements on two independent optical lattice clocks and agrees with recommendation of Bureau International des Poids et Mesures.

  4. Active cell mechanics: Measurement and theory.

    Science.gov (United States)

    Ahmed, Wylie W; Fodor, Étienne; Betz, Timo

    2015-11-01

    Living cells are active mechanical systems that are able to generate forces. Their structure and shape are primarily determined by biopolymer filaments and molecular motors that form the cytoskeleton. Active force generation requires constant consumption of energy to maintain the nonequilibrium activity to drive organization and transport processes necessary for their function. To understand this activity it is necessary to develop new approaches to probe the underlying physical processes. Active cell mechanics incorporates active molecular-scale force generation into the traditional framework of mechanics of materials. This review highlights recent experimental and theoretical developments towards understanding active cell mechanics. We focus primarily on intracellular mechanical measurements and theoretical advances utilizing the Langevin framework. These developing approaches allow a quantitative understanding of nonequilibrium mechanical activity in living cells. This article is part of a Special Issue entitled: Mechanobiology.

  5. Absolute Gravimetry in Fennoscandia

    DEFF Research Database (Denmark)

    Pettersen, B. R; TImmen, L.; Gitlein, O.

    The Fennoscandian postglacial uplift has been mapped geometrically using precise levelling, tide gauges, and networks of permanent GPS stations. The results identify major uplift rates at sites located around the northern part of the Gulf of Bothnia. The vertical motions decay in all directions...... motions) has its major axis in the direction of southwest to northeast and covers a distance of about 2000 km. Absolute gravimetry was made in Finland and Norway in 1976 with a rise-and fall instrument. A decade later the number of gravity stations was expanded by JILAg-5, in Finland from 1988, in Norway...... from 1991, and in Sweden from 1992. FG5 was introduced in these three countries in 1993 (7 stations) and continued with an extended campaign in 1995 (12 stations). In 2003 a project was initiated by IfE, Hannover to collect observations simultaneously with GRACE on an annual cycle. New instruments were...

  6. pedometer-measured physical activity, self-reported physical activity ...

    African Journals Online (AJOL)

    as a direct/objective measure of ambulatory physical activity.[8-10]. Furthermore, such ..... that 100 steps/minute is a reasonable heuristic value indicative of ... funding this project: Durban University of Technology (DUT) and the. National ...

  7. Use of an intravenous microdose of 14C-labeled drug and accelerator mass spectrometry to measure absolute oral bioavailability in dogs; cross-comparison of assay methods by accelerator mass spectrometry and liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Miyaji, Yoshihiro; Ishizuka, Tomoko; Kawai, Kenji; Hamabe, Yoshimi; Miyaoka, Teiji; Oh-hara, Toshinari; Ikeda, Toshihiko; Kurihara, Atsushi

    2009-01-01

    A technique utilizing simultaneous intravenous microdosing of (14)C-labeled drug with oral dosing of non-labeled drug for measurement of absolute bioavailability was evaluated using R-142086 in male dogs. Plasma concentrations of R-142086 were measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and those of (14)C-R-142086 were measured by accelerator mass spectrometry (AMS). The absence of metabolites in the plasma and urine was confirmed by a single radioactive peak of the parent compound in the chromatogram after intravenous microdosing of (14)C-R-142086 (1.5 microg/kg). Although plasma concentrations of R-142086 determined by LC-MS/MS were approximately 20% higher than those of (14)C-R-142086 as determined by AMS, there was excellent correlation (r=0.994) between both concentrations after intravenous dosing of (14)C-R-142086 (0.3 mg/kg). The oral bioavailability of R-142086 at 1 mg/kg obtained by simultaneous intravenous microdosing of (14)C-R-142086 was 16.1%, this being slightly higher than the value (12.5%) obtained by separate intravenous dosing of R-142086 (0.3 mg/kg). In conclusion, on utilizing simultaneous intravenous microdosing of (14)C-labeled drug in conjunction with AMS analysis, absolute bioavailability could be approximately measured in dogs, but without total accuracy. Bioavailability in humans may possibly be approximately measured at an earlier stage and at a lower cost.

  8. Mathematical model of radon activity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Paschuk, Sergei A.; Correa, Janine N.; Kappke, Jaqueline; Zambianchi, Pedro, E-mail: sergei@utfpr.edu.br, E-mail: janine_nicolosi@hotmail.com [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil); Denyak, Valeriy, E-mail: denyak@gmail.com [Instituto de Pesquisa Pele Pequeno Principe, Curitiba, PR (Brazil)

    2015-07-01

    Present work describes a mathematical model that quantifies the time dependent amount of {sup 222}Rn and {sup 220}Rn altogether and their activities within an ionization chamber as, for example, AlphaGUARD, which is used to measure activity concentration of Rn in soil gas. The differential equations take into account tree main processes, namely: the injection of Rn into the cavity of detector by the air pump including the effect of the traveling time Rn takes to reach the chamber; Rn release by the air exiting the chamber; and radioactive decay of Rn within the chamber. Developed code quantifies the activity of {sup 222}Rn and {sup 220}Rn isotopes separately. Following the standard methodology to measure Rn activity in soil gas, the air pump usually is turned off over a period of time in order to avoid the influx of Rn into the chamber. Since {sup 220}Rn has a short half-life time, approximately 56s, the model shows that after 7 minutes the activity concentration of this isotope is null. Consequently, the measured activity refers to {sup 222}Rn, only. Furthermore, the model also addresses the activity of {sup 220}Rn and {sup 222}Rn progeny, which being metals represent potential risk of ionization chamber contamination that could increase the background of further measurements. Some preliminary comparison of experimental data and theoretical calculations is presented. Obtained transient and steady-state solutions could be used for planning of Rn in soil gas measurements as well as for accuracy assessment of obtained results together with efficiency evaluation of chosen measurements procedure. (author)

  9. Bilateral key comparison CCM.P-K3.1 for absolute pressure measurements from 3 × 10-6 Pa to 9 × 10-4 Pa

    Science.gov (United States)

    Fedchak, J. A.; Bock, Th; Jousten, K.

    2014-01-01

    This report describes the bilateral key comparison CCM.P-K3.1 between the National Institute of Standards and Technology (NIST) and Physikalisch-Technische Bundesanstalt (PTB) for absolute pressure in the range from 3 × 10-6 Pa to 9 × 10-4 Pa. This comparison was a follow-up to the comparison CCM.P-K3. Two ionization gauges and two spinning rotor gauges (SRGs) were used as the transfer standards for the comparison. The SRGs were used to compare the standards at a pressure of 9 × 10-4 Pa and to normalize the ionization gauge readings. The two ionization gauges were used to compare the standards in the pressure range of from 3 × 10-6 Pa to 3 × 10-4 Pa. Both laboratories used dynamic expansion chambers as standards in the comparison. The two labs showed excellent agreement with each other and with the CCM.P-K3 key comparison reference value (KCRV) over the entire range. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  10. FG5/240绝对重力仪成套设备的检定测量分析%Analysis of the Calibration Measurements of the Whole-Set Absolute Gravimeter FG5/240

    Institute of Scientific and Technical Information of China (English)

    纪立东; 张宏伟; 王应建; 肖凡; 李建国

    2012-01-01

    详细介绍了FG5/240绝对重力仪的技术特点、测量原理和白家疃的试验观测,并就相配套的用于测量梯度的2台CG5相对重力仪(442、444)的检定项目和结果进行说明和分析,结果表明:2台CG5相对重力仪完全满足规范要求,FG5/240绝对重力仪的试验测量结果的标准偏差优于士2.0×10^-8ms^-2,能够用于陆态网络工程任务中部分基准站的绝对重力测量。%In the paper the technological features, measuring principle and the test observations at Baijiatong were introduced in detail. At the same time, the calibration items along with the calibrations of two more relative gravimeters for gradient measurement, CG5/442 and CG5/444, which are applied to form a complete set of the absolute gravimeter, were also described and analyzed. Results show that, 2 sets of CG5 can fully satisfy the demands of specifications, and the standard deviation of FG5 test measurements is better than 2.0 ×10^-8ms^-2, which means that the whole set of the FG5 absolute gra vimeter can be applied in the absolute gravimetry of a part of bench stations in the Land Gravity Network Project.

  11. Kampanje mjerenja apsolutnog i relativnog ubrzanja sile teže u „Osnovnoj gravimetrijskoj mreži Bosne i Hercegovine“ : Measurement campaign of absolute and relative gravity in "Basic gravimetric network of Bosnia and Herzegovina"

    Directory of Open Access Journals (Sweden)

    Hasumana Abaza

    2014-12-01

    Full Text Available Mjerenje apsolutnog ubrzanja sile Zemljine teže u Bosni i Hercegovini izvršeno je na četiri stanice, a u okviru projekta “Izgradnja kapaciteta za unapređenje zemljišne administracije i procedura u Bosni i Hercegovini“. Mjerenje relativnog ubrzanja sile Zemljine teže također je završeno u Osnovnoj gravimetrijskoj mreži BiH na 60 tačaka, te je izvršeno povezivanje sa stanicama na kojim je mjereno apsolutno ubrzanje sile teže. Do sada urađen posao je odlična osnova za nastavak radova na regionalnom gravimetrijskom premjeru na putu ka konačnom cilju određivanja geoida za teritoriju BiH. : Absolute gravity measurements in Bosnia and Herzegovina were carried out at four stations within the project "Capacity building for improving land administration and procedures in Bosnia and Herzegovina“ - CILAP. Relative gravity measurements were also completed in the primary gravimetric network of Bosnia and Herzegovina at 60 points, followed by connecting points with absolute gravity data. So far, completed work is an excellent basis for continuing on regional gravity measurements and determining the geoid for the territory of Bosnia and Herzegovina.

  12. Radium activity measurements in bottled mineral water

    Energy Technology Data Exchange (ETDEWEB)

    Kappke, Jaqueline; Paschuk, Sergei A.; Correa, Janine N.; Denyak, Valeriy; Reque, Marilson, E-mail: sergei@utfpr.edu.br [Universidade Tecnologica Federal do Parana, Curitiba, PR (Brazil); Rocha, Paschuk; Rocha, Zildete; Santos, Talita O., E-mail: rochaz@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    This work presents the preliminary results of {sup 226}Ra activity measurements of fifteen samples of bottled mineral water acquired at markets of Curitiba-PR, Brazil. The measurements were performed at the Laboratory of Applied Nuclear Physics of the Federal University of Technology - Parana (UTFPR) in collaboration with the Center of Nuclear Technology Development of Brazilian Nuclear Energy Committee (CNEN). The experimental setup was based on the electronic radon detector RAD7 (Durridge Company, Inc.). The measurements were carried out with a special kit of accessory vessels (vials) RAD7 H{sub 2}O, which allows one to identify the {sup 222}Rn activity concentration in small water samples of 40 mL and 250 mL in the range going from less than 30 pCi/L to greater than 10{sup 5} pCi/L. During each measurement a vial from RAD H{sub 2}O was poured with a sample of water. The air pump, included in the close loop aeration circuit and connected to the vial and RAD7 detector, operated for five minutes to snatch the sample of air maintained above the level of water sample and transporting it from the vial through the system. Evaluation of the concentration of soluble radium ({sup 226}Ra) salts in water and their activity was performed after 30 days when {sup 222}Rn in the water samples reached secular equilibrium. The background measurements were performed using the samples of the distilled water. Considering the importance of background measurements, it was found that the value suggested by user Manual protocol (RAD7) for the case of low activity radon measurements, has to be slightly modified. (author)

  13. ATPase Activity Measurements Using Radiolabeled ATP

    NARCIS (Netherlands)

    Swarts, H.G.; Koenderink, J.B.

    2016-01-01

    ATP provides the energy that is essential for all P-type ATPases to actively transport their substrates against an existing gradient. This ATP hydrolysis can be measured using different methods. Here, we describe a method that uses radiolabeled [gamma-(32)P]ATP, which is hydrolyzed by P-type ATPases

  14. Measuring Active Learning to Predict Course Quality

    Science.gov (United States)

    Taylor, John E.; Ku, Heng-Yu

    2011-01-01

    This study investigated whether active learning within computer-based training courses can be measured and whether it serves as a predictor of learner-perceived course quality. A major corporation participated in this research, providing access to internal employee training courses, training representatives, and historical course evaluation data.…

  15. Estimating Absolute Site Effects

    Energy Technology Data Exchange (ETDEWEB)

    Malagnini, L; Mayeda, K M; Akinci, A; Bragato, P L

    2004-07-15

    The authors use previously determined direct-wave attenuation functions as well as stable, coda-derived source excitation spectra to isolate the absolute S-wave site effect for the horizontal and vertical components of weak ground motion. They used selected stations in the seismic network of the eastern Alps, and find the following: (1) all ''hard rock'' sites exhibited deamplification phenomena due to absorption at frequencies ranging between 0.5 and 12 Hz (the available bandwidth), on both the horizontal and vertical components; (2) ''hard rock'' site transfer functions showed large variability at high-frequency; (3) vertical-motion site transfer functions show strong frequency-dependence, and (4) H/V spectral ratios do not reproduce the characteristics of the true horizontal site transfer functions; (5) traditional, relative site terms obtained by using reference ''rock sites'' can be misleading in inferring the behaviors of true site transfer functions, since most rock sites have non-flat responses due to shallow heterogeneities resulting from varying degrees of weathering. They also use their stable source spectra to estimate total radiated seismic energy and compare against previous results. they find that the earthquakes in this region exhibit non-constant dynamic stress drop scaling which gives further support for a fundamental difference in rupture dynamics between small and large earthquakes. To correct the vertical and horizontal S-wave spectra for attenuation, they used detailed regional attenuation functions derived by Malagnini et al. (2002) who determined frequency-dependent geometrical spreading and Q for the region. These corrections account for the gross path effects (i.e., all distance-dependent effects), although the source and site effects are still present in the distance-corrected spectra. The main goal of this study is to isolate the absolute site effect (as a function of frequency

  16. A global algorithm for estimating Absolute Salinity

    Directory of Open Access Journals (Sweden)

    T. J. McDougall

    2012-12-01

    Full Text Available The International Thermodynamic Equation of Seawater – 2010 has defined the thermodynamic properties of seawater in terms of a new salinity variable, Absolute Salinity, which takes into account the spatial variation of the composition of seawater. Absolute Salinity more accurately reflects the effects of the dissolved material in seawater on the thermodynamic properties (particularly density than does Practical Salinity.

    When a seawater sample has standard composition (i.e. the ratios of the constituents of sea salt are the same as those of surface water of the North Atlantic, Practical Salinity can be used to accurately evaluate the thermodynamic properties of seawater. When seawater is not of standard composition, Practical Salinity alone is not sufficient and the Absolute Salinity Anomaly needs to be estimated; this anomaly is as large as 0.025 g kg−1 in the northernmost North Pacific. Here we provide an algorithm for estimating Absolute Salinity Anomaly for any location (x, y, p in the world ocean.

    To develop this algorithm, we used the Absolute Salinity Anomaly that is found by comparing the density calculated from Practical Salinity to the density measured in the laboratory. These estimates of Absolute Salinity Anomaly however are limited to the number of available observations (namely 811. In order to provide a practical method that can be used at any location in the world ocean, we take advantage of approximate relationships between Absolute Salinity Anomaly and silicate concentrations (which are available globally.

  17. Absolute configuration assignment of (+)-fluralaner using vibrational circular dichroism.

    Science.gov (United States)

    Kong, John; Joyce, Leo A; Liu, Jinchu; Jarrell, Tiffany M; Culberson, J Chris; Sherer, Edward C

    2017-10-05

    The absolute configurations of the separated enantiomers of fluralaner, a racemic animal health product used to prevent fleas and ticks, have been assigned using vibrational circular dichroism (VCD). The crystallographic structure of the active enantiomer (+)-fluralaner has previously been shown to have the (S) configuration using small molecule crystallography. We sought a faster analytical method to determine the absolute configuration of the separated enantiomers. When comparing the measured IR (infrared) and VCD spectra, it is apparent that the amide carbonyl groups appear in the IR but are nearly absent in the VCD. Computational work to calculate the VCD and IR using in vacuo models, implicit solvation, and explicitly solvated complexes has implicated conformational averaging of the carbonyl VCD intensities. © 2017 Wiley Periodicals, Inc.

  18. Significance of absolute energy scale for physics at BESⅢ

    Institute of Scientific and Technical Information of China (English)

    FU Cheng-Dong; MO Xiao-Hu

    2008-01-01

    The effects of absolute energy calibration on BESⅢ physics are discussed in detail,which mainly involve the effects on τ mass measurement,cross section scan measurement,and generic error determination in other measurements.

  19. Magnetoresistive sensor for absolute position detection

    NARCIS (Netherlands)

    Groenland, J.P.J.

    1984-01-01

    A digital measurement principle for absolute position is decscribed. The position data is recorded serially into a single track of a hard-magnetic layer with the help of longitudinal saturation recording. Detection is possible by means of an array of sensor elements which can be made of a substrate.

  20. Self consistently calibrated photopyroelectric calorimeter for the high resolution simultaneous absolute measurement of the specific heat and of the thermal conductivity

    Directory of Open Access Journals (Sweden)

    U. Zammit

    2012-03-01

    Full Text Available High temperature resolution study of the specific heat and of the thermal conductivity over the smecticA-nematic and nematic-isotropic phase transitions in octylcynobephenyl liquid crystal using a new photopyroelectric calorimetry configuration are reported, where, unlike previously adopted ones, no calibration is required other than the procedure used during the actual measurement. This makes photopyroelectric calorimetry suitable for “absolute” measurements of the thermal parameters like most other existing conventional calorimetric techniques where, however, the thermal conductivity cannot be measured.

  1. Measuring segregation: an activity space approach.

    Science.gov (United States)

    Wong, David W S; Shaw, Shih-Lung

    2011-06-01

    While the literature clearly acknowledges that individuals may experience different levels of segregation across their various socio-geographical spaces, most measures of segregation are intended to be used in the residential space. Using spatially aggregated data to evaluate segregation in the residential space has been the norm and thus individual's segregation experiences in other socio-geographical spaces are often de-emphasized or ignored. This paper attempts to provide a more comprehensive approach in evaluating segregation beyond the residential space. The entire activity spaces of individuals are taken into account with individuals serving as the building blocks of the analysis. The measurement principle is based upon the exposure dimension of segregation. The proposed measure reflects the exposure of individuals of a referenced group in a neighborhood to the populations of other groups that are found within the activity spaces of individuals in the referenced group. Using the travel diary data collected from the tri-county area in southeast Florida and the imputed racial-ethnic data, this paper demonstrates how the proposed segregation measurement approach goes beyond just measuring population distribution patterns in the residential space and can provide a more comprehensive evaluation of segregation by considering various socio-geographical spaces.

  2. Measurement of absolute concentrations of individual compounds in metabolite mixtures by gradient-selective time-zero 1H-13C HSQC with two concentration references and fast maximum likelihood reconstruction analysis.

    Science.gov (United States)

    Hu, Kaifeng; Ellinger, James J; Chylla, Roger A; Markley, John L

    2011-12-15

    Time-zero 2D (13)C HSQC (HSQC(0)) spectroscopy offers advantages over traditional 2D NMR for quantitative analysis of solutions containing a mixture of compounds because the signal intensities are directly proportional to the concentrations of the constituents. The HSQC(0) spectrum is derived from a series of spectra collected with increasing repetition times within the basic HSQC block by extrapolating the repetition time to zero. Here we present an alternative approach to data collection, gradient-selective time-zero (1)H-(13)C HSQC(0) in combination with fast maximum likelihood reconstruction (FMLR) data analysis and the use of two concentration references for absolute concentration determination. Gradient-selective data acquisition results in cleaner spectra, and NMR data can be acquired in both constant-time and non-constant-time mode. Semiautomatic data analysis is supported by the FMLR approach, which is used to deconvolute the spectra and extract peak volumes. The peak volumes obtained from this analysis are converted to absolute concentrations by reference to the peak volumes of two internal reference compounds of known concentration: DSS (4,4-dimethyl-4-silapentane-1-sulfonic acid) at the low concentration limit (which also serves as chemical shift reference) and MES (2-(N-morpholino)ethanesulfonic acid) at the high concentration limit. The linear relationship between peak volumes and concentration is better defined with two references than with one, and the measured absolute concentrations of individual compounds in the mixture are more accurate. We compare results from semiautomated gsHSQC(0) with those obtained by the original manual phase-cycled HSQC(0) approach. The new approach is suitable for automatic metabolite profiling by simultaneous quantification of multiple metabolites in a complex mixture.

  3. Notes on absolute Hodge classes

    CERN Document Server

    Charles, François

    2011-01-01

    We survey the theory of absolute Hodge classes. The notes include a full proof of Deligne's theorem on absolute Hodge classes on abelian varieties as well as a discussion of other topics, such as the field of definition of Hodge loci and the Kuga-Satake construction.

  4. Absolute poverty lines

    DEFF Research Database (Denmark)

    Arndt, Channing; Mahrt, Kristi; Tarp, Finn

    Private consumption capabilities form only one facet of comprehensive living standards assessments, but they are an important facet whose measurement should be done well. Measurement is complex due to a multitude of methodological choices, which often interact with imperfect data and a desire for...

  5. Vectorised Spreading Activation algorithm for centrality measurement

    Directory of Open Access Journals (Sweden)

    Alexander Troussov

    2011-01-01

    Full Text Available Spreading Activation is a family of graph-based algorithms widely used in areas such as information retrieval, epidemic models, and recommender systems. In this paper we introduce a novel Spreading Activation (SA method that we call Vectorised Spreading Activation (VSA. VSA algorithms, like “traditional” SA algorithms, iteratively propagate the activation from the initially activated set of nodes to the other nodes in a network through outward links. The level of the node’s activation could be used as a centrality measurement in accordance with dynamic model-based view of centrality that focuses on the outcomes for nodes in a network where something is flowing from node to node across the edges. Representing the activation by vectors allows the use of the information about various dimensionalities of the flow and the dynamic of the flow. In this capacity, VSA algorithms can model multitude of complex multidimensional network flows. We present the results of numerical simulations on small synthetic social networks and multi­dimensional network models of folksonomies which show that the results of VSA propagation are more sensitive to the positions of the initial seed and to the community structure of the network than the results produced by traditional SA algorithms. We tentatively conclude that the VSA methods could be instrumental to develop scalable and computationally efficient algorithms which could achieve synergy between computation of centrality indexes with detection of community structures in networks. Based on our preliminary results and on improvements made over previous studies, we foresee advances and applications in the current state of the art of this family of algorithms and their applications to centrality measurement.

  6. Absolute Radiation Thermometry in the NIR

    Science.gov (United States)

    Bünger, L.; Taubert, R. D.; Gutschwager, B.; Anhalt, K.; Briaudeau, S.; Sadli, M.

    2017-04-01

    A near infrared (NIR) radiation thermometer (RT) for temperature measurements in the range from 773 K up to 1235 K was characterized and calibrated in terms of the "Mise en Pratique for the definition of the Kelvin" (MeP-K) by measuring its absolute spectral radiance responsivity. Using Planck's law of thermal radiation allows the direct measurement of the thermodynamic temperature independently of any ITS-90 fixed-point. To determine the absolute spectral radiance responsivity of the radiation thermometer in the NIR spectral region, an existing PTB monochromator-based calibration setup was upgraded with a supercontinuum laser system (0.45 μm to 2.4 μm) resulting in a significantly improved signal-to-noise ratio. The RT was characterized with respect to its nonlinearity, size-of-source effect, distance effect, and the consistency of its individual temperature measuring ranges. To further improve the calibration setup, a new tool for the aperture alignment and distance measurement was developed. Furthermore, the diffraction correction as well as the impedance correction of the current-to-voltage converter is considered. The calibration scheme and the corresponding uncertainty budget of the absolute spectral responsivity are presented. A relative standard uncertainty of 0.1 % (k=1) for the absolute spectral radiance responsivity was achieved. The absolute radiometric calibration was validated at four temperature values with respect to the ITS-90 via a variable temperature heatpipe blackbody (773 K ...1235 K) and at a gold fixed-point blackbody radiator (1337.33 K).

  7. Measuring psychological engagement in youth activity involvement.

    Science.gov (United States)

    Ramey, Heather L; Rose-Krasnor, Linda; Busseri, Michael A; Gadbois, Shannon; Bowker, Anne; Findlay, Leanne

    2015-12-01

    Although psychological engagement (e.g., enjoyment, concentration) may be critical in fostering positive outcomes of youth activity participation, too few studies have been conducted to establish its role in development. Furthermore, an established measurement tool is lacking. In the current study, we evaluated a brief engagement measure with two Canadian samples of youth (Sample 1, N = 290, mean age = 16.9 years, 62% female; Sample 2, N = 1827, mean age = 13.1 years, 54% female). We conducted a confirmatory factor analysis with structural equation modeling to examine the hypothesized structure of the model. We also assessed the measure's validity by testing relations between engagement and both perceived outcomes and positive features of activity settings. Psychological engagement was best captured by three latent cognitive, affective, and relational/spiritual factors and a second-order latent factor. Also, as anticipated, psychological engagement was associated with features of the activity setting and perceived impact.

  8. A compact proton spectrometer for measurement of the absolute DD proton spectrum from which yield and ρR are determined in thin-shell inertial-confinement-fusion implosions.

    Science.gov (United States)

    Rosenberg, M J; Zylstra, A B; Frenje, J A; Rinderknecht, H G; Johnson, M Gatu; Waugh, C J; Séguin, F H; Sio, H; Sinenian, N; Li, C K; Petrasso, R D; Glebov, V Yu; Hohenberger, M; Stoeckl, C; Sangster, T C; Yeamans, C B; LePape, S; Mackinnon, A J; Bionta, R M; Talison, B; Casey, D T; Landen, O L; Moran, M J; Zacharias, R A; Kilkenny, J D; Nikroo, A

    2014-10-01

    A compact, step range filter proton spectrometer has been developed for the measurement of the absolute DD proton spectrum, from which yield and areal density (ρR) are inferred for deuterium-filled thin-shell inertial confinement fusion implosions. This spectrometer, which is based on tantalum step-range filters, is sensitive to protons in the energy range 1-9 MeV and can be used to measure proton spectra at mean energies of ∼1-3 MeV. It has been developed and implemented using a linear accelerator and applied to experiments at the OMEGA laser facility and the National Ignition Facility (NIF). Modeling of the proton slowing in the filters is necessary to construct the spectrum, and the yield and energy uncertainties are ±DD-neutron yield diagnostics at the NIF.

  9. Absolute and relative nonlinear optical coefficients of KDP, KD(asterisk)P, BaB2O4, LiIO3, MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation

    Science.gov (United States)

    Eckardt, Robert C.; Byer, Robert L.; Masuda, Hisashi; Fan, Yuan Xuan

    1990-01-01

    Both absolute and relative nonlinear optical coefficients of six nonlinear materials measured by second-harmonic generation are discussed. A single-mode, injection-seeded, Q-switched Nd:YAG laser with spatially filtered output was used to generate the 1.064-micron fundamental radiation. The following results were obtained: d36(KDP) = 0.38 pm/V, d36(KD/asterisk/P) = 0.37 pm/V, (parallel)d22(BaB2O4)(parallel) = 2.2 pm/V, d31(LiIO3) = -4.1 pm/V, d31(5 percentMgO:MgO LiNbO3) = -4.7 pm/V, and d(eff)(KTP) = 3.2 pm/V. The accuracy of these measurements is estimated to be better than 10 percent.

  10. Cross-validation of theoretically quantified fiber continuum generation and absolute pulse measurement by MIIPS for a broadband coherently controlled optical source

    DEFF Research Database (Denmark)

    Tu, H.; Liu, Y.; Lægsgaard, Jesper

    2012-01-01

    The predicted spectral phase of a fiber continuum pulsed source rigorously quantified by the scalar generalized nonlinear Schrödinger equation is found to be in excellent agreement with that measured by multiphoton intrapulse interference phase scan (MIIPS) with background subtraction. This cross...

  11. Measurement and calculation of absolute single- and double-charge-exchange cross sections for O6 + ions at 1.17 and 2.33 keV/u impacting He and H2

    Science.gov (United States)

    Machacek, J. R.; Mahapatra, D. P.; Schultz, D. R.; Ralchenko, Yu.; Chutjian, A.; Simcic, J.; Mawhorter, R. J.

    2014-11-01

    Absolute single- and double-charge-exchange cross sections for the astrophysically prominent O6 + ion with the atomic and molecular targets He and H2 are reported. These collisions give rise to x-ray emissions in the interplanetary medium, planetary atmospheres, and comets as they approach the sun. Measurements have been carried out using the Caltech Jet Propulsion Laboratory electron cyclotron resonance ion source with O6 + at energies of 1.17 and 2.33 keV/u characteristic of the slow and fast components of the solar wind. Absolute charge-exchange (CE) data are derived from knowledge of the target gas pressure, target path length, incident ion current, and charge-exchanged ion currents. These data are compared with results obtained using the n -electron classical trajectory Monte Carlo method. The radiative and Auger evolution of ion populations following one- and two-electron transfers is calculated with the time-dependent collisional-radiative code nomad using atomic data from the flexible atomic code. Calculated CE emission spectra for 100 Å <λ <1400 Å are reported as well and compared with experimental sublevel spectra and cross sections.

  12. Absolute calibration of the colour index and O4 absorption derived from Multi AXis (MAX-)DOAS measurements and their application to a standardised cloud classification algorithm

    Science.gov (United States)

    Wagner, Thomas; Beirle, Steffen; Remmers, Julia; Shaiganfar, Reza; Wang, Yang

    2016-09-01

    A method is developed for the calibration of the colour index (CI) and the O4 absorption derived from differential optical absorption spectroscopy (DOAS) measurements of scattered sunlight. The method is based on the comparison of measurements and radiative transfer simulations for well-defined atmospheric conditions and viewing geometries. Calibrated measurements of the CI and the O4 absorption are important for the detection and classification of clouds from MAX-DOAS observations. Such information is needed for the identification and correction of the cloud influence on Multi AXis (MAX-)DOAS profile inversion results, but might be also be of interest on their own, e.g. for meteorological applications. The calibration algorithm was successfully applied to measurements at two locations: Cabauw in the Netherlands and Wuxi in China. We used CI and O4 observations calibrated by the new method as input for our recently developed cloud classification scheme and also adapted the corresponding threshold values accordingly. For the observations at Cabauw, good agreement is found with the results of the original algorithm. Together with the calibration procedure of the CI and O4 absorption, the cloud classification scheme, which has been tuned to specific locations/conditions so far, can now be applied consistently to MAX-DOAS measurements at different locations. In addition to the new threshold values, further improvements were introduced to the cloud classification algorithm, namely a better description of the SZA (solar zenith angle) dependence of the threshold values and a new set of wavelengths for the determination of the CI. We also indicate specific areas for future research to further improve the cloud classification scheme.

  13. High Precision, Absolute Total Column Ozone Measurements from the Pandora Spectrometer System: Comparisons with Data from a Brewer Double Monochromator and Aura OMI

    Science.gov (United States)

    Tzortziou, Maria A.; Herman, Jay R.; Cede, Alexander; Abuhassan, Nader

    2012-01-01

    We present new, high precision, high temporal resolution measurements of total column ozone (TCO) amounts derived from ground-based direct-sun irradiance measurements using our recently deployed Pandora single-grating spectrometers. Pandora's small size and portability allow deployment at multiple sites within an urban air-shed and development of a ground-based monitoring network for studying small-scale atmospheric dynamics, spatial heterogeneities in trace gas distribution, local pollution conditions, photochemical processes and interdependencies of ozone and its major precursors. Results are shown for four mid- to high-latitude sites where different Pandora instruments were used. Comparisons with a well calibrated double-grating Brewer spectrometer over a period of more than a year in Greenbelt MD showed excellent agreement and a small bias of approximately 2 DU (or, 0.6%). This was constant with slant column ozone amount over the full range of observed solar zenith angles (15-80), indicating adequate Pandora stray light correction. A small (1-2%) seasonal difference was found, consistent with sensitivity studies showing that the Pandora spectral fitting TCO retrieval has a temperature dependence of 1% per 3K, with an underestimation in temperature (e.g., during summer) resulting in an underestimation of TCO. Pandora agreed well with Aura-OMI (Ozone Measuring Instrument) satellite data, with average residuals of <1% at the different sites when the OMI view was within 50 km from the Pandora location and OMI-measured cloud fraction was <0.2. The frequent and continuous measurements by Pandora revealed significant short-term (hourly) temporal changes in TCO, not possible to capture by sun-synchronous satellites, such as OMI, alone.

  14. Fundamentals of absolute pyroheliometry and objective characterization. [using a narrow field of view radiometer

    Science.gov (United States)

    Crommelynck, D. A.

    1982-01-01

    The radiometric methodology in use with a narrow field of view radiometer for observation of the solar constant is described. The radiation output of the Sun is assumed to be constant, enabling the monitoring of the solar source by an accurately pointed radiometer, and the Sun's output is measured as a function of time. The instrument is described, its angular response considered, and principles for absolute radiometric measurement presented. Active modes of operation are analyzed, taking into consideration instrumental perturbations and sensor efficiency, heating wire effect, cavity sensor efficiency, thermal effects on the surface of the sensitive area, the effect of the field of view limiting system, and the frequency response of the heat flux detector and absolute radiometric system. Performance of absolute measurements with relatively high accuracy is demonstrated.

  15. The validity and reliability of a novel activity monitor as a measure of walking.

    Science.gov (United States)

    Ryan, C G; Grant, P M; Tigbe, W W; Granat, M H

    2006-09-01

    The accurate measurement of physical activity is crucial to understanding the relationship between physical activity and disease prevention and treatment. The primary purpose of this study was to investigate the validity and reliability of the activPAL physical activity monitor in measuring step number and cadence. The ability of the activPAL monitor to measure step number and cadence in 20 healthy adults (age 34.5+/-6.9 years; BMI 26.8+/-4.8 (mean+/-SD)) was evaluated against video observation. Concurrently, the accuracy of two commonly used pedometers, the Yamax Digi-Walker SW-200 and the Omron HJ-109-E, was compared to observation for measuring step number. Participants walked on a treadmill at five different speeds (0.90, 1.12, 1.33, 1.56, and 1.78 m/s) and outdoors at three self selected speeds (slow, normal, and fast). At all speeds, inter device reliability was excellent for the activPAL (ICC (2,1)> or =0.99) for both step number and cadence. The absolute percentage error for the activPAL was <1.11% for step number and cadence regardless of walking speed. The accuracy of the pedometers was adversely affected by slow walking speeds. The activPAL monitor is a valid and reliable measure of walking in healthy adults. Its accuracy is not influenced by walking speed. The activPAL may be a useful device in sports medicine.

  16. Saturation Dip Measurements of High-J Transitions in the v_1+v_3 Band of C_2H_2: Absolute Frequencies and Self-Broadening

    Science.gov (United States)

    Sears, Trevor; Twagirayezu, Sylvestre; Hall, Gregory

    2017-06-01

    Saturation dip spectra of acetylene in the v_1 + v_3 band have been obtained for rotational lines with J = 31-37 inclusive, using a diode laser referenced to a frequency comb. The estimated accuracy and precision of the measurements is better than 10 kHz in 194 THz. Data were obtained as a function of sample pressure to investigate the broadening of the saturation features. The observed line shapes are well modeled by convolution of a fixed Gaussian transit-time and varying Lorentzian lifetime broadening, i.e. a Voigt-type profile. The lines exhibit a significantly larger collisional (lifetime) broadening than has been measured in conventional Doppler and pressure-broadened samples at ambient temperatures. The figure shows the fitted Lorentzian width versus sample pressure for P(31). The slope of this plot gives the pressure broadening coefficient, γ_{self} = 9.35(13) MHz/mbar. For comparison, the coefficient derived from conventional Doppler and pressure broadened spectra for this transition is 2.7 MHz/mbar. The sub-Doppler broadening coefficients are all significantly larger than the conventionally measured ones, due to the increased importance of velocity-changing collisions. The measurements therefore give information on the balance between hard phase- or state-changing and large cross-section velocity-changing collisions. Acknowledgments: Work at Brookhaven National Laboratory was carried out under Contract No. DE-SC0012704 with the U.S. Department of Energy, Office of Science, and supported by its Division of Chemical Sciences, Geosciences and Biosciences within the Office of Basic Energy Sciences. J. Molec. Spectrosc. 209, 216-227 (2001) and J. Quant. Spectrosc. Rad. Transf. 76, 237-267 (2003)

  17. A graphite calorimeter for absolute measurements of absorbed dose to water: application in medium-energy x-ray filtered beams

    Science.gov (United States)

    Pinto, M.; Pimpinella, M.; Quini, M.; D'Arienzo, M.; Astefanoaei, I.; Loreti, S.; Guerra, A. S.

    2016-02-01

    The Italian National Institute of Ionizing Radiation Metrology (ENEA-INMRI) has designed and built a graphite calorimeter that, in a water phantom, has allowed the determination of the absorbed dose to water in medium-energy x-rays with generating voltages from 180 to 250 kV. The new standard is a miniaturized three-bodies calorimeter, with a disc-shaped core of 21 mm diameter and 2 mm thickness weighing 1.134 g, sealed in a PMMA waterproof envelope with air-evacuated gaps. The measured absorbed dose to graphite is converted into absorbed dose to water by means of an energy-dependent conversion factor obtained from Monte Carlo simulations. Heat-transfer correction factors were determined by FEM calculations. At a source-to-detector distance of 100 cm, a depth in water of 2 g cm-2, and at a dose rate of about 0.15 Gy min-1, results of calorimetric measurements of absorbed dose to water, D w, were compared to experimental determinations, D wK, obtained via an ionization chamber calibrated in terms of air kerma, according to established dosimetry protocols. The combined standard uncertainty of D w and D wK were estimated as 1.9% and 1.7%, respectively. The two absorbed dose to water determinations were in agreement within 1%, well below the stated measurement uncertainties. Advancements are in progress to extend the measurement capability of the new in-water-phantom graphite calorimeter to other filtered medium-energy x-ray qualities and to reduce the D w uncertainty to around 1%. The new calorimeter represents the first implementation of in-water-phantom graphite calorimetry in the kilovoltage range and, allowing independent determinations of D w, it will contribute to establish a robust system of absorbed dose to water primary standards for medium-energy x-ray beams.

  18. How should we measure online learning activity?

    Directory of Open Access Journals (Sweden)

    Tim O'Riordan

    2016-07-01

    Full Text Available The proliferation of Web-based learning objects makes finding and evaluating resources a considerable hurdle for learners to overcome. While established learning analytics methods provide feedback that can aid learner evaluation of learning resources, the adequacy and reliability of these methods is questioned. Because engagement with online learning is different from other Web activity, it is important to establish pedagogically relevant measures that can aid the development of distinct, automated analysis systems. Content analysis is often used to examine online discussion in educational settings, but these instruments are rarely compared with each other which leads to uncertainty regarding their validity and reliability. In this study, participation in Massive Open Online Course (MOOC comment forums was evaluated using four different analytical approaches: the Digital Artefacts for Learning Engagement (DiAL-e framework, Bloom's Taxonomy, Structure of Observed Learning Outcomes (SOLO and Community of Inquiry (CoI. Results from this study indicate that different approaches to measuring cognitive activity are closely correlated and are distinct from typical interaction measures. This suggests that computational approaches to pedagogical analysis may provide useful insights into learning processes.

  19. A graphite calorimeter for absolute measurements of absorbed dose to water: application in medium-energy x-ray filtered beams.

    Science.gov (United States)

    Pinto, M; Pimpinella, M; Quini, M; D'Arienzo, M; Astefanoaei, I; Loreti, S; Guerra, A S

    2016-02-21

    The Italian National Institute of Ionizing Radiation Metrology (ENEA-INMRI) has designed and built a graphite calorimeter that, in a water phantom, has allowed the determination of the absorbed dose to water in medium-energy x-rays with generating voltages from 180 to 250 kV. The new standard is a miniaturized three-bodies calorimeter, with a disc-shaped core of 21 mm diameter and 2 mm thickness weighing 1.134 g, sealed in a PMMA waterproof envelope with air-evacuated gaps. The measured absorbed dose to graphite is converted into absorbed dose to water by means of an energy-dependent conversion factor obtained from Monte Carlo simulations. Heat-transfer correction factors were determined by FEM calculations. At a source-to-detector distance of 100 cm, a depth in water of 2 g cm(-2), and at a dose rate of about 0.15 Gy min(-1), results of calorimetric measurements of absorbed dose to water, D(w), were compared to experimental determinations, D wK, obtained via an ionization chamber calibrated in terms of air kerma, according to established dosimetry protocols. The combined standard uncertainty of D(w) and D(wK) were estimated as 1.9% and 1.7%, respectively. The two absorbed dose to water determinations were in agreement within 1%, well below the stated measurement uncertainties. Advancements are in progress to extend the measurement capability of the new in-water-phantom graphite calorimeter to other filtered medium-energy x-ray qualities and to reduce the D(w) uncertainty to around 1%. The new calorimeter represents the first implementation of in-water-phantom graphite calorimetry in the kilovoltage range and, allowing independent determinations of D(w), it will contribute to establish a robust system of absorbed dose to water primary standards for medium-energy x-ray beams.

  20. Research on optical fiber dual-interferometry for on-line and absolute measurement%光纤双干涉在线绝对测量技术研究

    Institute of Scientific and Technical Information of China (English)

    马森; 谢芳; 刘义秦; 李恒鹤

    2013-01-01

    研究了一种新的兼融低相干干涉和高相干干涉的光纤在线绝对测量技术,可对能转换成位移变化的静态及准静态任意物理量进行测量.利用宽带光谱光源作为光源,以及光纤光栅只反射布拉格波长的特性,使光纤迈克尔逊干涉仪同时工作于低相干干涉和高相干干涉状态.用低相干干涉信号决定被测量的幅值,使测量的最大跨距不受光波波长限制,并且实现绝对测量;同时,用高相干干涉信号测量被测量的量值,使测量结果保持高相干干涉测量的高精度.利用高相干干涉信号对环境干扰进行修正,使该测量技术适合在线测量.分别研究并实验了单光源光纤测量系统以及由双光源组成的复合光源光纤测量系统,利用这两种系统对位移进行测量,测量结果的线性相关性分别为0.996和0.999 9,测量量程均为6 mm,均可对0~6 mm范围内任意跨距的位移进行测量.%A novel on-line and absolute measurement technology with optical fiber, which has both low coherence inter-ferometry and high coherence interferometry, is presented. The technology is suitable for the measurement of any mea-surand that can be converted into the variation of displacement. Using broadband light sources and based on the characteristic of a fiber Bragg grating that reflects Bragg wavelength, the optical fiber Michelson interferometer is working in both modes of low coherence interferometry and high coherence interferometry. The signal of low coherence interferometry is used to determine the amplitude of the measurand and absolute measurement can be realized, while the signal of high coherence interferometry is used to measure the value of the measurand precisely. The maximum step of the measurand is no longer limited by the optical wavelength. The signal of high coherence interferometry is also used to correct the errors resulting from the environmental disturbances, therefore the technology is suitable

  1. PROMOTION OF ACTIVE MEASURES AND EMPLOYMENT STIMULATION

    Directory of Open Access Journals (Sweden)

    LAVINIA ELISABETA POPP

    2012-01-01

    Full Text Available Researches in the field of the labour market has allowed the identification of certain specific mechanisms for employment promotion; at present, on the Romanian labour market we find passive policies, concretised in financial aids paid to the unemployed, along with active policies, constituting the most efficient social protection activity addressed to the unemployed (they aim at counterbalancing the inefficiencies determined by the granting of financial allowances, help population to find a job by actions of information, professional training and contributing to the encouragement of the labour force mobility. The paper refers to some theoretical considerations related to the influence factors of employment stimulation, as well as to the unemployment – correlated adequate measures synapse. The applied research comprises the analysis of statistic documents; the method used is the case study, i.e. the activity of employment stimulation carried on by the County Agency for Employment Caraş-Severin, in the period 2004-2012. The conclusions highlight the impact of the activity of the institutions involved in the system of social protection and security within the labour market.

  2. Wear measurement by surface layer activation

    Energy Technology Data Exchange (ETDEWEB)

    Blatchley, C.

    1987-05-01

    The purpose of these projects was to demonstrate the capability for precisely but remotely measuring small increments of wear, erosion or corrosion in utility components using detectors mounted outside the system to monitor the presence of radionuclide surface markers. These gamma ray emitting markers are produced by surface layer activation (SLA) using a high energy particle beam from a Van de Graaff or cyclotron particle accelerator. The work was divided into three major projects: (1) determination of the feasibility of applying SLA based surface monitoring techniques to key power plant systems; (2) a field demonstration of SLA monitoring in steam turbine components subject to severe solid particle erosion; and (3) a field demonstration of SLA wear or corrosion monitoring of components in boiler auxiliaries. In the field tests, surface material removal was successfully measured from both selected systems, demonstrating the feasibility of the technique for long term diagnostic condition monitoring. Three bearing components in a boiler circulation pump were monitored almost continuously for a period of over 5 months until the pump was stopped due to electrical problems unrelated to the wear measurements. Solid particle erosion from two stop valve bypass valves was measured during a series of nine startup cycles. Both test demonstrations confirmed the earlier feasibility estimates and showed how SLA markers can be used to provide valuable diagnostic information to plant operators. 22 refs., 63 figs., 29 tabs.

  3. Photocatalytic Active Radiation Measurements and Use

    Science.gov (United States)

    Davis, Bruce A.; Underwood, Lauren W.

    2011-01-01

    Photocatalytic materials are being used to purify air, to kill microbes, and to keep surfaces clean. A wide variety of materials are being developed, many of which have different abilities to absorb various wavelengths of light. Material variability, combined with both spectral illumination intensity and spectral distribution variability, will produce a wide range of performance results. The proposed technology estimates photocatalytic active radiation (PcAR), a unit of radiation that normalizes the amount of light based on its spectral distribution and on the ability of the material to absorb that radiation. Photocatalytic reactions depend upon the number of electron-hole pairs generated at the photocatalytic surface. The number of electron-hole pairs produced depends on the number of photons per unit area per second striking the surface that can be absorbed and whose energy exceeds the bandgap of the photocatalytic material. A convenient parameter to describe the number of useful photons is the number of moles of photons striking the surface per unit area per second. The unit of micro-einsteins (or micromoles) of photons per m2 per sec is commonly used for photochemical and photoelectric-like phenomena. This type of parameter is used in photochemistry, such as in the conversion of light energy for photosynthesis. Photosynthetic response correlates with the number of photons rather than by energy because, in this photochemical process, each molecule is activated by the absorption of one photon. In photosynthesis, the number of photons absorbed in the 400 700 nm spectral range is estimated and is referred to as photosynthetic active radiation (PAR). PAR is defined in terms of the photosynthetic photon flux density measured in micro-einsteins of photons per m2 per sec. PcAR is an equivalent, similarly modeled parameter that has been defined for the photocatalytic processes. Two methods to measure the PcAR level are being proposed. In the first method, a calibrated

  4. Chemoenzymatic approach to optically active 4-hydroxy-5-alkylcyclopent-2-en-1-one derivatives: an application of a combined circular dichroism spectroscopy and DFT calculations to assignment of absolute configuration.

    Science.gov (United States)

    Frelek, Jadwiga; Karchier, Michał; Madej, Daria; Michalak, Karol; Różański, Paweł; Wicha, Jerzy

    2014-06-01

    A series of representative optically active derivatives of 4-hydroxy-5-alkylcyclopent-2-en-1-one were prepared from the respective 2-furyl methyl carbinols via the Piancatelli rearrangement followed by the enzymatic kinetic resolution of racemates. Applicability of chiroptical methods (experimental and calculated electronic circular dichroism [ECD] and vibrational circular dichroism [VCD] spectra) to determine the absolute configuration of both stereogenic centers in 4-hydroxy-5-methylcyclopent-2-en-1-one was demonstrated. It was also demonstrated that the concurrent application of ECD and VCD spectroscopy can be used for the determination of the configuration of two stereogenic centers. © 2014 Wiley Periodicals, Inc.

  5. The absolute disparity anomaly and the mechanism of relative disparities.

    Science.gov (United States)

    Chopin, Adrien; Levi, Dennis; Knill, David; Bavelier, Daphne

    2016-06-01

    There has been a long-standing debate about the mechanisms underlying the perception of stereoscopic depth and the computation of the relative disparities that it relies on. Relative disparities between visual objects could be computed in two ways: (a) using the difference in the object's absolute disparities (Hypothesis 1) or (b) using relative disparities based on the differences in the monocular separations between objects (Hypothesis 2). To differentiate between these hypotheses, we measured stereoscopic discrimination thresholds for lines with different absolute and relative disparities. Participants were asked to judge the depth of two lines presented at the same distance from the fixation plane (absolute disparity) or the depth between two lines presented at different distances (relative disparity). We used a single stimulus method involving a unique memory component for both conditions, and no extraneous references were available. We also measured vergence noise using Nonius lines. Stereo thresholds were substantially worse for absolute disparities than for relative disparities, and the difference could not be explained by vergence noise. We attribute this difference to an absence of conscious readout of absolute disparities, termed the absolute disparity anomaly. We further show that the pattern of correlations between vergence noise and absolute and relative disparity acuities can be explained jointly by the existence of the absolute disparity anomaly and by the assumption that relative disparity information is computed from absolute disparities (Hypothesis 1).

  6. Withdrawal of Chinese Physics Letters 28 (2011) 043401 “Measurement of Absolute Atomic Collision Cross Section with Helium Using 87Rb Atoms Confined in Magneto-Optic and Magnetic Traps” by WANG Ji-Cheng et al.

    Institute of Scientific and Technical Information of China (English)

    WANG Ji-Cheng; ZHOU Ke-Ya; WANG Yue-Yuan; LIAO Qing-Hong; LIU Shu-Tian

    2011-01-01

    We announce the withdrawal of the article entitled “Measurement of Absolute Atomic Collision Cross Section with Helium Using 87Rb Atoms Confined in Magneto-Optic and Magnetic Traps”,which was published in Chinese Physics Letters [28(4)(2011)043401].The first author,Jicheng Wang,had participated in related research with Professor Kirk Madison's group at the Department of Physics & Astronomy at the University of British Columbia,Canada from September 2008 to February 2010.Even though consent had been granted for some of the experimental data to be used by Jicheng Wang in his own thesis,its publication had not been authorized.We apologize to Professor K.Madison for the misunderstanding,and to Chinese Physics Letters and the readers of Chinese Physics Letters for any inconvenience this mistake may have caused.%We announce the withdrawal of the article entitled "Measurement of Absolute Atomic Collision Cross Section with Helium Using 87Rb Atoms Confined in Magneto-Optic and Magnetic Traps", which was published in Chinese Physics Letters [28(4) (2011)043401]. The first author, Jicheng Wang, had participated in related research with Professor Kirk Madison's group at the Department of Physics & Astronomy at the University of British Columbia, Canada from September 2008 to February 2010. Even though consent had been granted for some of the experimental data to be used by Jicheng Wang in his own thesis, its publication had not been authorized. We apologize to Professor K. Madison for the misunderstanding, and to Chinese Physics Letters ad the readers of Chinese Physics Letters for any inconvenience this mistake may have caused.

  7. Multimode Surface Functional Group Determination: Combining Steady-State and Time-Resolved Fluorescence with X-ray Photoelectron Spectroscopy and Absorption Measurements for Absolute Quantification.

    Science.gov (United States)

    Fischer, Tobias; Dietrich, Paul M; Unger, Wolfgang E S; Rurack, Knut

    2016-01-19

    The quantitative determination of surface functional groups is approached in a straightforward laboratory-based method with high reliability. The application of a multimode BODIPY-type fluorescence, photometry, and X-ray photoelectron spectroscopy (XPS) label allows estimation of the labeling ratio, i.e., the ratio of functional groups carrying a label after reaction, from the elemental ratios of nitrogen and fluorine. The amount of label on the surface is quantified with UV/vis spectrophotometry based on the molar absorption coefficient as molecular property. The investigated surfaces with varying density are prepared by codeposition of 3-(aminopropyl)triethoxysilane (APTES) and cyanoethyltriethoxysilane (CETES) from vapor. These surfaces show high functional group densities that result in significant fluorescence quenching of surface-bound labels. Since alternative quantification of the label on the surface is available through XPS and photometry, a novel method to quantitatively account for fluorescence quenching based on fluorescence lifetime (τ) measurements is shown. Due to the complex distribution of τ on high-density surfaces, the stretched exponential (or Kohlrausch) function is required to determine representative mean lifetimes. The approach is extended to a commercial Rhodamine B isothiocyanate (RITC) label, clearly revealing the problems that arise from such charged labels used in conjunction with silane surfaces.

  8. Absolute Energy Calibration with the Neutron-Activated Liquid-Source System at BaBar's CsI(Tl) Calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, J

    2004-01-05

    The electro-magnetic calorimeter at the BABAR detector, part of the asymmetric B Factory at SLAC, measures photons in the energy range from 20 MeV to 8 GeV with good resolution. The calorimeter is calibrated at the low energy end with 6.13 MeV photons obtained from a liquid source system. During the calibration, a fluorine-rich liquid is activated via a neutron generator and pumped past the front of the calorimeter's crystals. Decays that occur in front of the crystals emit photons of well-defined energy, which are detected in the crystals with the regular data acquisition system. The liquid source system adds only very little material in front of the calorimeter, needs nearly no maintenance, and allows operation at the switch of a key with minimal safety hazards. The report describes the system, presents calibration results obtained from its operation since 1999, shows the crystals' loss of light yield due to radiation damage, and shares experiences gained over the years.

  9. Absolute calibration of TFTR helium proportional counters

    Energy Technology Data Exchange (ETDEWEB)

    Strachan, J.D.; Diesso, M.; Jassby, D.; Johnson, L.; McCauley, S.; Munsat, T.; Roquemore, A.L. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Barnes, C.W. [Princeton Univ., NJ (United States). Plasma Physics Lab.]|[Los Alamos National Lab., NM (United States); Loughlin, M. [Princeton Univ., NJ (United States). Plasma Physics Lab.]|[JET Joint Undertaking, Abingdon (United Kingdom)

    1995-06-01

    The TFTR helium proportional counters are located in the central five (5) channels of the TFTR multichannel neutron collimator. These detectors were absolutely calibrated using a 14 MeV neutron generator positioned at the horizontal midplane of the TFTR vacuum vessel. The neutron generator position was scanned in centimeter steps to determine the collimator aperture width to 14 MeV neutrons and the absolute sensitivity of each channel. Neutron profiles were measured for TFTR plasmas with time resolution between 5 msec and 50 msec depending upon count rates. The He detectors were used to measure the burnup of 1 MeV tritons in deuterium plasmas, the transport of tritium in trace tritium experiments, and the residual tritium levels in plasmas following 50:50 DT experiments.

  10. A highly accurate absolute gravimetric network for Albania, Kosovo and Montenegro

    Science.gov (United States)

    Ullrich, Christian; Ruess, Diethard; Butta, Hubert; Qirko, Kristaq; Pavicevic, Bozidar; Murat, Meha

    2016-04-01

    The objective of this project is to establish a basic gravity network in Albania, Kosovo and Montenegro to enable further investigations in geodetic and geophysical issues. Therefore the first time in history absolute gravity measurements were performed in these countries. The Norwegian mapping authority Kartverket is assisting the national mapping authorities in Kosovo (KCA) (Kosovo Cadastral Agency - Agjencia Kadastrale e Kosovës), Albania (ASIG) (Autoriteti Shtetëror i Informacionit Gjeohapësinor) and in Montenegro (REA) (Real Estate Administration of Montenegro - Uprava za nekretnine Crne Gore) in improving the geodetic frameworks. The gravity measurements are funded by Kartverket. The absolute gravimetric measurements were performed from BEV (Federal Office of Metrology and Surveying) with the absolute gravimeter FG5-242. As a national metrology institute (NMI) the Metrology Service of the BEV maintains the national standards for the realisation of the legal units of measurement and ensures their international equivalence and recognition. Laser and clock of the absolute gravimeter were calibrated before and after the measurements. The absolute gravimetric survey was carried out from September to October 2015. Finally all 8 scheduled stations were successfully measured: there are three stations located in Montenegro, two stations in Kosovo and three stations in Albania. The stations are distributed over the countries to establish a gravity network for each country. The vertical gradients were measured at all 8 stations with the relative gravimeter Scintrex CG5. The high class quality of some absolute gravity stations can be used for gravity monitoring activities in future. The measurement uncertainties of the absolute gravity measurements range around 2.5 micro Gal at all stations (1 microgal = 10-8 m/s2). In Montenegro the large gravity difference of 200 MilliGal between station Zabljak and Podgorica can be even used for calibration of relative gravimeters

  11. Active low-frequency vertical vibration isolation system for precision measurements

    Science.gov (United States)

    Wu, Kang; Li, Gang; Hu, Hua; Wang, Lijun

    2017-01-01

    Low-frequency vertical vibration isolation systems play important roles in precision measurements to reduce seismic and environmental vibration noise. Several types of active vibration isolation systems have been developed. However, few researches focus on how to optimize the test mass install position in order to improve the vibration transmissibility. An active low-frequency vertical vibration isolation system based on an earlier instrument, the Super Spring, is designed and implemented. The system, which is simple and compact, consists of two stages: a parallelogram-shaped linkage to ensure vertical motion, and a simple spring-mass system. The theoretical analysis of the vibration isolation system is presented, including terms erroneously ignored before. By carefully choosing the mechanical parameters according to the above analysis and using feedback control, the resonance frequency of the system is reduced from 2.3 to 0.03 Hz, a reduction by a factor of more than 75. The vibration isolation system is installed as an inertial reference in an absolute gravimeter, where it improved the scatter of the absolute gravity values by a factor of 5. The experimental results verifies the improved performance of the isolation system, making it particularly suitable for precision experiments. The improved vertical vibration isolation system can be used as a prototype for designing high-performance active vertical isolation systems. An improved theoretical model of this active vibration isolation system with beam-pivot configuration is proposed, providing fundamental guidelines for vibration isolator design and assembling.

  12. Absoluteness or relativity of morality

    Directory of Open Access Journals (Sweden)

    I. A. Kadievskaya

    2014-02-01

    Full Text Available Article is dedicated to the case study of absoluteness or relativity of morals. The questions are in a new way comprehended: Can exist absolute morals? Is how its content? Is necessary it for humanity? Is moral personality absolute value? Does justify the purpose of means? It is substantiated, that reflecting about the problem of absoluteness or relativity of morals, one ought not to be abstracted from the religion ­ billions of people find in it the basis of their morals. Accumulated ethical experience is infinitely rich and diverse in humanity: it includes and the proclaimed prophets godly revelations, and the brilliant enlightenment of secular philosophers. Are analyzed such concepts, as morals, absolute morals, relativity, moral rigorizm, moral personality, formal ethics. The specific character of the moral relativity, which proclaims historicity and changeability of standards and standards of human behavior, is established. Moral rigorizm is understood as the principle, according to which the man must act only from the considerations of moral debt, whereas all other external motivations (interest, happiness, friendship, etc have no moral value. Is shown the priority significance of the nerigoristskoy formal ethics, in which strong idealizations and abstractions of the ethics of moral rigorizma are substituted by the weaker ­ more realistic and more humane. In the nerigoristskoy formal ethics, as in the life, moral estimations completely can be and in the overwhelming majority of the cases are relative.

  13. Updated Measurements of Absolute $D^+$ and $D^0$ Hadronic Branching Fractions and $\\sigma(e^+e^-\\to D\\overline{D})$ at $E_\\mathrm{cm} = 3774$ MeV

    CERN Document Server

    Bonvicini, G; Zhou, P; Naik, P; Rademacker, J; Edwards, K W; Briere, R A; Vogel, H; Rosner, J L; Alexander, J P; Cassel, D G; Ehrlich, R; Gibbons, L; Gray, S W; Hartill, D L; Heltsley, B K; Kreinick, D L; Kuznetsov, V E; Patterson, J R; Peterson, D; Riley, D; Ryd, A; Sadoff, A J; Shi, X; Sun, W M; Das, S; Yelton, J; Rubin, P; Lowrey, N; Mehrabyan, S; Selen, M; Wiss, J; Libby, J; Kornicer, M; Mitchell, R E; Besson, D; Pedlar, T K; Cronin-Hennessy, D; Hietala, J; Dobbs, S; Metreveli, Z; Seth, K K; Tomaradze, A; Xiao, T; Powell, A; Thomas, C; Wilkinson, G; Asner, D M; Tatishvili, G; Ge, J Y; Miller, D H; Shipsey, I P J; Xin, B; Adams, G S; Napolitano, J; Ecklund, K M; Insler, J; Muramatsu, H; Pearson, L J; Thorndike, E H; Artuso, M; Blusk, S; Mountain, R; Skwarnicki, T; Stone, S; Wang, J C; Zhang, L M; Onyisi, P U E

    2013-01-01

    Utilizing the full CLEO-c data sample of 818 pb$^{-1}$ of $e^+e^-$ data taken at the $\\psi(3770)$ resonance, we update our measurements of absolute hadronic branching fractions of charged and neutral $D$ mesons. We previously reportedresults from subsets of these data. Using a double tag technique we obtain branching fractions for three $D^0$ and six $D^+$ modes, including the reference branching fractions $\\mathcal{B} (D^0\\to K^-\\pi^+)=(3.934 \\pm 0.021 \\pm 0.061)\\%$ and $\\mathcal{B} (D^+ \\to K^- \\pi^+\\pi^+)=(9.224 \\pm 0.059 \\pm 0.157)\\%$. The uncertainties are statistical and systematic, respectively. In these measurements we include the effects of final-state radiation by allowing for additional unobserved photons in the final state, and the systematic errors include our estimates of the uncertainties of these effects. Furthermore, using an independent measurement of the luminosity, we obtain the cross sections $\\sigma(e^+e^-\\to D^0\\overline{D}{}^0)=(3.607\\pm 0.017 \\pm 0.056) \\ \\mathrm{nb}$ and $\\sigma(e^+e...

  14. Database applicaton for absolute spectrophotometry

    Science.gov (United States)

    Bochkov, Valery V.; Shumko, Sergiy

    2002-12-01

    32-bit database application with multidocument interface for Windows has been developed to calculate absolute energy distributions of observed spectra. The original database contains wavelength calibrated observed spectra which had been already passed through apparatus reductions such as flatfielding, background and apparatus noise subtracting. Absolute energy distributions of observed spectra are defined in unique scale by means of registering them simultaneously with artificial intensity standard. Observations of sequence of spectrophotometric standards are used to define absolute energy of the artificial standard. Observations of spectrophotometric standards are used to define optical extinction in selected moments. FFT algorithm implemented in the application allows performing convolution (deconvolution) spectra with user-defined PSF. The object-oriented interface has been created using facilities of C++ libraries. Client/server model with Windows Socket functionality based on TCP/IP protocol is used to develop the application. It supports Dynamic Data Exchange conversation in server mode and uses Microsoft Exchange communication facilities.

  15. Activity-monitor accuracy in measuring step number and cadence in community-dwelling older adults.

    Science.gov (United States)

    Grant, P Margaret; Dall, Philippa M; Mitchell, Sarah L; Granat, Malcolm H

    2008-04-01

    The primary purpose of this study was to investigate the accuracy of the activPAL physical activity monitor in measuring step number and cadence in older adults. Two pedometers (New-Lifestyles Digi-Walker SW-200 and New-Lifestyles NL2000) used in clinical practice to count steps were simultaneously evaluated. Observation was the criterion measure. Twenty-one participants (65-87 yr old) recruited from community-based exercise classes walked on a treadmill at 5 speeds (0.67, 0.90, 1.12, 1.33, and 1.56 m/s) and outdoors at 3 self-selected speeds (slow, normal, and fast). The absolute percentage error of the activPAL was <1% for all treadmill and outdoor conditions for measuring steps and cadence. With the exception of the slowest treadmill speed, the NL-2000 error was <2%. The SW-200 was the least accurate device, particularly at slower walking speeds. The activPAL monitor accurately recorded step number and cadence. Combined with its ability to identify primary postures, the activPAL might be a useful and versatile device for measuring activity in older adults.

  16. PROFIT AND LOSS ACCOUNT – SYNTHETIC EXPRESSION OF ABSOLUTE RETURN

    Directory of Open Access Journals (Sweden)

    MIRON VASILE CRISTIAN IOACHIM

    2017-08-01

    Full Text Available This study has as main objective the presentation of the current state of knowledge regarding the profit and loss account as part of the financial statements which express in absolute value the profitability of companies and the empirical analysis of these concepts based on the information submitted by OMV Petrom between 2011 and 2015. Thus, in the first part we present several approaches from the specialized literature regarding the aspects mentioned above. The second part follows a vertical and horizontal analysis of key indicators used for measuring the absolute return. For the horizontal analysis we pursued the evolution in time of the following indicators: Gross Margin, Earnings Before Interest and Taxes (EBIT, Financial Result, Gross and Net Result. The vertical analysis aimed to explain the formation of the Gross Result via EBIT (which was also analyzed through the Gross Margin and other specific elements and of the Financial Result (which was also analyzed through the different types of financial income and expenses. The results of the study revealed problems of profitability in the years 2014 and 2015 which, in our opinion, can be attributed to poor management of the commercial activity, exploration activity (research and development, distribution and financial activity.

  17. Absolute and relative dosimetry for ELIMED

    Science.gov (United States)

    Cirrone, G. A. P.; Cuttone, G.; Candiano, G.; Carpinelli, M.; Leonora, E.; Lo Presti, D.; Musumarra, A.; Pisciotta, P.; Raffaele, L.; Randazzo, N.; Romano, F.; Schillaci, F.; Scuderi, V.; Tramontana, A.; Cirio, R.; Marchetto, F.; Sacchi, R.; Giordanengo, S.; Monaco, V.

    2013-07-01

    The definition of detectors, methods and procedures for the absolute and relative dosimetry of laser-driven proton beams is a crucial step toward the clinical use of this new kind of beams. Hence, one of the ELIMED task, will be the definition of procedures aiming to obtain an absolute dose measure at the end of the transport beamline with an accuracy as close as possible to the one required for clinical applications (i.e. of the order of 5% or less). Relative dosimetry procedures must be established, as well: they are necessary in order to determine and verify the beam dose distributions and to monitor the beam fluence and the energetic spectra during irradiations. Radiochromic films, CR39, Faraday Cup, Secondary Emission Monitor (SEM) and transmission ionization chamber will be considered, designed and studied in order to perform a fully dosimetric characterization of the ELIMED proton beam.

  18. Absolute and relative dosimetry for ELIMED

    Energy Technology Data Exchange (ETDEWEB)

    Cirrone, G. A. P.; Schillaci, F.; Scuderi, V. [INFN, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania, Italy and Institute of Physics Czech Academy of Science, ELI-Beamlines project, Na Slovance 2, Prague (Czech Republic); Cuttone, G.; Candiano, G.; Musumarra, A.; Pisciotta, P.; Romano, F. [INFN, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Carpinelli, M. [INFN Sezione di Cagliari, c/o Dipartimento di Fisica, Università di Cagliari, Cagliari (Italy); Leonora, E.; Randazzo, N. [INFN-Sezione di Catania, Via Santa Sofia 64, Catania (Italy); Presti, D. Lo [INFN-Sezione di Catania, Via Santa Sofia 64, Catania, Italy and Università di Catania, Dipartimento di Fisica e Astronomia, Via S. Sofia 64, Catania (Italy); Raffaele, L. [INFN, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania, Italy and INFN-Sezione di Catania, Via Santa Sofia 64, Catania (Italy); Tramontana, A. [INFN, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania, Italy and Università di Catania, Dipartimento di Fisica e Astronomia, Via S. Sofia 64, Catania (Italy); Cirio, R.; Sacchi, R.; Monaco, V. [INFN, Sezione di Torino, Via P.Giuria, 1 10125 Torino, Italy and Università di Torino, Dipartimento di Fisica, Via P.Giuria, 1 10125 Torino (Italy); Marchetto, F.; Giordanengo, S. [INFN, Sezione di Torino, Via P.Giuria, 1 10125 Torino (Italy)

    2013-07-26

    The definition of detectors, methods and procedures for the absolute and relative dosimetry of laser-driven proton beams is a crucial step toward the clinical use of this new kind of beams. Hence, one of the ELIMED task, will be the definition of procedures aiming to obtain an absolute dose measure at the end of the transport beamline with an accuracy as close as possible to the one required for clinical applications (i.e. of the order of 5% or less). Relative dosimetry procedures must be established, as well: they are necessary in order to determine and verify the beam dose distributions and to monitor the beam fluence and the energetic spectra during irradiations. Radiochromic films, CR39, Faraday Cup, Secondary Emission Monitor (SEM) and transmission ionization chamber will be considered, designed and studied in order to perform a fully dosimetric characterization of the ELIMED proton beam.

  19. Small business activity does not measure entrepreneurship.

    Science.gov (United States)

    Henrekson, Magnus; Sanandaji, Tino

    2014-02-04

    Entrepreneurship policy mainly aims to promote innovative Schumpeterian entrepreneurship. However, the rate of entrepreneurship is commonly proxied using quantity-based metrics, such as small business activity, the self-employment rate, or the number of startups. We argue that those metrics give rise to misleading inferences regarding high-impact Schumpeterian entrepreneurship. To unambiguously identify high-impact entrepreneurs we focus on self-made billionaires (in US dollars) who appear on Forbes Magazine's list and who became wealthy by founding new firms. We identify 996 such billionaire entrepreneurs in 50 countries in 1996-2010, a systematic cross-country study of billionaire entrepreneurs. The rate of billionaire entrepreneurs correlates negatively with self-employment, small business ownership, and firm startup rates. Countries with higher income, higher trust, lower taxes, more venture capital investment, and lower regulatory burdens have higher billionaire entrepreneurship rates but less self-employment. Despite its limitations, the number of billionaire entrepreneurs appears to be a plausible cross-country measure of Schumpeterian entrepreneurship.

  20. Small business activity does not measure entrepreneurship

    Science.gov (United States)

    Henrekson, Magnus; Sanandaji, Tino

    2014-01-01

    Entrepreneurship policy mainly aims to promote innovative Schumpeterian entrepreneurship. However, the rate of entrepreneurship is commonly proxied using quantity-based metrics, such as small business activity, the self-employment rate, or the number of startups. We argue that those metrics give rise to misleading inferences regarding high-impact Schumpeterian entrepreneurship. To unambiguously identify high-impact entrepreneurs we focus on self-made billionaires (in US dollars) who appear on Forbes Magazine’s list and who became wealthy by founding new firms. We identify 996 such billionaire entrepreneurs in 50 countries in 1996–2010, a systematic cross-country study of billionaire entrepreneurs. The rate of billionaire entrepreneurs correlates negatively with self-employment, small business ownership, and firm startup rates. Countries with higher income, higher trust, lower taxes, more venture capital investment, and lower regulatory burdens have higher billionaire entrepreneurship rates but less self-employment. Despite its limitations, the number of billionaire entrepreneurs appears to be a plausible cross-country measure of Schumpeterian entrepreneurship. PMID:24449873

  1. Changes in Absolute Sea Level Along U.S. Coasts

    Data.gov (United States)

    U.S. Environmental Protection Agency — This map shows changes in absolute sea level from 1960 to 2016 based on satellite measurements. Data were adjusted by applying an inverted barometer (air pressure)...

  2. Relativistic Absolutism in Moral Education.

    Science.gov (United States)

    Vogt, W. Paul

    1982-01-01

    Discusses Emile Durkheim's "Moral Education: A Study in the Theory and Application of the Sociology of Education," which holds that morally healthy societies may vary in culture and organization but must possess absolute rules of moral behavior. Compares this moral theory with current theory and practice of American educators. (MJL)

  3. Absolute calibration of the Auger fluorescence detectors

    Energy Technology Data Exchange (ETDEWEB)

    Bauleo, P.; Brack, J.; Garrard, L.; Harton, J.; Knapik, R.; Meyhandan, R.; Rovero, A.C.; /Buenos Aires, IAFE; Tamashiro, A.; Warner, D.

    2005-07-01

    Absolute calibration of the Pierre Auger Observatory fluorescence detectors uses a light source at the telescope aperture. The technique accounts for the combined effects of all detector components in a single measurement. The calibrated 2.5 m diameter light source fills the aperture, providing uniform illumination to each pixel. The known flux from the light source and the response of the acquisition system give the required calibration for each pixel. In the lab, light source uniformity is studied using CCD images and the intensity is measured relative to NIST-calibrated photodiodes. Overall uncertainties are presently 12%, and are dominated by systematics.

  4. Report of pilot study CCM.P-P1 for international comparison of absolute pressure measurements in gas from 3 × 10-9 Pa to 9 × 10-4 Pa

    Science.gov (United States)

    Yoshida, Hajime; Arai, Kenta; Komatsu, Eiichi; Fujii, Kenichi; Bock, Thomas; Jousten, Karl

    2015-01-01

    A bilateral comparison of absolute gas pressure measurements from 3 × 10-9 Pa to 9 × 10-4 Pa was performed between the National Metrology Institute of Japan (NMIJ) and Physikalisch-Technische Bundesanstalt (PTB). It is a pilot study CCM.P-P1 for the next international comparison in this pressure range to test the stability of ultrahigh vacuum gauges (UHV gauges) as transfer standards. Two spinning rotor gauges (SRGs), an axial-symmetric transmission gauge (ATG), and an extractor gauge (EXG) were used as transfer standards. The calibration ratio of one SRG was sufficiently stable, but the other was not. This result indicates that improvements in the transport mechanism for SRG are needed. The two ionization gauges ATG and EXG, on the other hand, were sufficiently stable. Provisional equivalence of the pressures realized by the primary standards at NMIJ and PTB was found. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by CCM-WGS.

  5. Visible Light-Driven Photocatalytic Activity of Oleic Acid-Coated TiO2 Nanoparticles Synthesized from Absolute Ethanol Solution

    OpenAIRE

    Li,Huihui; Liu, Bin; Yin, Shu; Sato, Tsugio; Wang, Yuhua

    2015-01-01

    The one-step synthesis of oleic acid-coated TiO2 nanoparticles with visible light-driven photocatalytic activity was reported by this manuscript, using oleic acid-ethanol as crucial starting materials. The photocatalytic degradation of nitrogen monoxide (deNOx) in the gas phase was investigated in a continuous reactor using a series of TiO2 semiconductors, prepared from oleic acid- or acetic acid-ethanol solution. The surface modification on TiO2 by organic fatty acid, oleic acid, could reinv...

  6. Visible Light-Driven Photocatalytic Activity of Oleic Acid-Coated TiO2 Nanoparticles Synthesized from Absolute Ethanol Solution.

    Science.gov (United States)

    Li, Huihui; Liu, Bin; Yin, Shu; Sato, Tsugio; Wang, Yuhua

    2015-12-01

    The one-step synthesis of oleic acid-coated TiO2 nanoparticles with visible light-driven photocatalytic activity was reported by this manuscript, using oleic acid-ethanol as crucial starting materials. The photocatalytic degradation of nitrogen monoxide (deNOx) in the gas phase was investigated in a continuous reactor using a series of TiO2 semiconductors, prepared from oleic acid- or acetic acid-ethanol solution. The surface modification on TiO2 by organic fatty acid, oleic acid, could reinvest TiO2 photocatalyst with the excellent visible light response. The deNOx ability is almost as high as 30 % destruction in the visible light region (λ > 510 nm) which is similar to the nitrogen-doped TiO2. Meanwhile, acetic acid, a monobasic acid, has a weaker ability on visible light modification of TiO2.

  7. Methods to Measure Physical Activity Behaviors in Health Education Research

    Science.gov (United States)

    Fitzhugh, Eugene C.

    2015-01-01

    Regular physical activity (PA) is an important concept to measure in health education research. The health education researcher might need to measure physical activity because it is the primary measure of interest, or PA might be a confounding measure that needs to be controlled for in statistical analysis. The purpose of this commentary is to…

  8. Physics of negative absolute temperatures

    Science.gov (United States)

    Abraham, Eitan; Penrose, Oliver

    2017-01-01

    Negative absolute temperatures were introduced into experimental physics by Purcell and Pound, who successfully applied this concept to nuclear spins; nevertheless, the concept has proved controversial: a recent article aroused considerable interest by its claim, based on a classical entropy formula (the "volume entropy") due to Gibbs, that negative temperatures violated basic principles of statistical thermodynamics. Here we give a thermodynamic analysis that confirms the negative-temperature interpretation of the Purcell-Pound experiments. We also examine the principal arguments that have been advanced against the negative temperature concept; we find that these arguments are not logically compelling, and moreover that the underlying "volume" entropy formula leads to predictions inconsistent with existing experimental results on nuclear spins. We conclude that, despite the counterarguments, negative absolute temperatures make good theoretical sense and did occur in the experiments designed to produce them.

  9. Enabling linear model for the IMGC-02 absolute gravimeter

    CERN Document Server

    Nagornyi, V D; Svitlov, S

    2013-01-01

    Measurement procedures of most rise-and-fall absolute gravimeters has to resolve singularity at the apex of the trajectory caused by the discrete fringe counting in the Michelson-type interferometers. Traditionally the singularity is addressed by implementing non-linear models of the trajectory, but they introduce problems of their own, such as biasness, non-uniqueness, and instability of the gravity estimates. Using IMGC-02 gravimeter as example, we show that the measurement procedure of the rise-and-fall gravimeters can be based on the linear models which successfully resolve the singularity and provide rigorous estimates of the gravity value. The linear models also facilitate further enhancements of the instrument, such as accounting for new types of disturbances and active compensation for the vibrations.

  10. Absolute gravimetry - for monitoring climate change and geodynamics in Greenland

    DEFF Research Database (Denmark)

    Nielsen, Jens Emil

    with the GPS data, it is possible to separate the different signals. The method used in this study is absolute gravimetry. An absolute gravimeter of the A10 type has been purchased by DTU Space for this purpose. This instrument can measure gravity changes as small as 6µGal (= 60nm=s2), which provides....... The time allocated for a PhD project is not sufficient to gather enough data for an elaborated analysis of the different signals which can be detected in Greenland. However, as will be presented in this thesis, the preliminary results indicate interesting possibilities for the use of absolute gravimetry...

  11. The Measurement and Interpretation of Children's Physical Activity.

    Science.gov (United States)

    Rowlands, Ann V; Eston, Roger G

    2007-09-01

    The accurate and reliable assessment of physical activity is necessary for any research study where physical activity is either an outcome measure or an intervention. The aim of this review is to examine the use of objective measurement techniques for the assessment and interpretation of children's physical activity. Accurate measurement of children's activity is challenging, as the activity is characteristically sporadic and intermittent, consisting of frequent, short bouts. Objective measures of physical activity include heart rate telemetry, pedometry and accelerometry, and each of these methods has strengths and limitations. Heart rate is suited to the measurement of sustained periods of moderate and vigorous activity, pedometry provides a valid measure of total activity, and accelerometry provides a valid measure of total activity as well as the pattern and intensity of activity. As the weaknesses of heart rate and accelerometry for the assessment of activity are not inter-correlated, a combination of the two methods may be more accurate than either method alone. Recent evidence suggests that the Actiheart, an integrated accelerometer and heart rate unit, provides a more accurate prediction of children's energy expenditure than either heart rate or accelerometry alone. However, the cost of the Actiheart is prohibitive for large-scale studies. The pedometer is recommended when only the total amount of physical activity is of interest. When the intensity or the pattern of activity is of interest, accelerometry is the recommended measurement tool. Key pointsThe use of objective measures to assess physical activity in children is recommended.Pedometers provide an inexpensive objective measure of total activity that is highly correlated with more sophisticated techniques, e.g. accelerometry, and has been used to identify relationships between health and activity in children.Accelerometry allows examination of the temporal pattern and intensity of children

  12. Achieving Climate Change Absolute Accuracy in Orbit

    Science.gov (United States)

    Wielicki, Bruce A.; Young, D. F.; Mlynczak, M. G.; Thome, K. J; Leroy, S.; Corliss, J.; Anderson, J. G.; Ao, C. O.; Bantges, R.; Best, F.; Bowman, K.; Brindley, H.; Butler, J. J.; Collins, W.; Dykema, J. A.; Doelling, D. R.; Feldman, D. R.; Fox, N.; Huang, X.; Holz, R.; Huang, Y.; Jennings, D.; Jin, Z.; Johnson, D. G.; Jucks, K.; Kato, S.; Kratz, D. P.; Liu, X.; Lukashin, C.; Mannucci, A. J.; Phojanamongkolkij, N.; Roithmayr, C. M.; Sandford, S.; Taylor, P. C.; Xiong, X.

    2013-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission will provide a calibration laboratory in orbit for the purpose of accurately measuring and attributing climate change. CLARREO measurements establish new climate change benchmarks with high absolute radiometric accuracy and high statistical confidence across a wide range of essential climate variables. CLARREO's inherently high absolute accuracy will be verified and traceable on orbit to Système Internationale (SI) units. The benchmarks established by CLARREO will be critical for assessing changes in the Earth system and climate model predictive capabilities for decades into the future as society works to meet the challenge of optimizing strategies for mitigating and adapting to climate change. The CLARREO benchmarks are derived from measurements of the Earth's thermal infrared spectrum (5-50 micron), the spectrum of solar radiation reflected by the Earth and its atmosphere (320-2300 nm), and radio occultation refractivity from which accurate temperature profiles are derived. The mission has the ability to provide new spectral fingerprints of climate change, as well as to provide the first orbiting radiometer with accuracy sufficient to serve as the reference transfer standard for other space sensors, in essence serving as a "NIST [National Institute of Standards and Technology] in orbit." CLARREO will greatly improve the accuracy and relevance of a wide range of space-borne instruments for decadal climate change. Finally, CLARREO has developed new metrics and methods for determining the accuracy requirements of climate observations for a wide range of climate variables and uncertainty sources. These methods should be useful for improving our understanding of observing requirements for most climate change observations.

  13. Measurement of myeloid cell immune suppressive activity.

    Science.gov (United States)

    Dolcetti, Luigi; Peranzoni, Elisa; Bronte, Vincenzo

    2010-11-01

    This unit presents simple methods to assess the immunosuppressive properties of immunoregulatory cells of myeloid origin, such as myeloid-derived suppressor cells (MDSCs), both in vitro and in vivo. These methods are general and could be adapted to test the impact of different suppressive populations on T cell activation, proliferation, and cytotoxic activity; moreover they could be useful to assess the influence exerted on immune suppressive pathways by genetic modifications, chemical inhibitors, and drugs.