WorldWideScience

Sample records for abscopal radiation effects

  1. Oncogenic Radiation Abscopal Effects In Vivo: Interrogating Mouse Skin

    International Nuclear Information System (INIS)

    Mancuso, Mariateresa; Leonardi, Simona; Giardullo, Paola; Pasquali, Emanuela; Tanori, Mirella; De Stefano, Ilaria; Casciati, Arianna; Naus, Christian C.; Pazzaglia, Simonetta; Saran, Anna

    2013-01-01

    Purpose: To investigate the tissue dependence in transmission of abscopal radiation signals and their oncogenic consequences in a radiosensitive mouse model and to explore the involvement of gap junction intercellular communication (GJIC) in mediating radiation tumorigenesis in off-target mouse skin. Methods and Materials: Patched1 heterozygous (Ptch1 +/− ) mice were irradiated at postnatal day 2 (P2) with 10 Gy of x-rays. Individual lead cylinders were used to protect the anterior two-thirds of the body, whereas the hindmost part was directly exposed to radiation. To test the role of GJICs and their major constituent connexin43 (Cx43), crosses between Ptch1 +/− and Cx43 +/− mice were similarly irradiated. These mouse groups were monitored for their lifetime, and skin basal cell carcinomas (BCCs) were counted and recorded. Early responses to DNA damage - Double Strand Breaks (DSBs) and apoptosis - were also evaluated in shielded and directly irradiated skin areas. Results: We report abscopal tumor induction in the shielded skin of Ptch1 +/− mice after partial-body irradiation. Endpoints were induction of early nodular BCC-like tumors and macroscopic infiltrative BCCs. Abscopal tumorigenesis was significantly modulated by Cx43 status, namely, Cx43 reduction was associated with decreased levels of DNA damage and oncogenesis in out-of-field skin, suggesting a key role of GJIC in transmission of oncogenic radiation signals to unhit skin. Conclusions: Our results further characterize the nature of abscopal responses and the implications they have on pathologic processes in different tissues, including their possible underlying mechanistic bases

  2. Oncogenic Radiation Abscopal Effects In Vivo: Interrogating Mouse Skin

    Energy Technology Data Exchange (ETDEWEB)

    Mancuso, Mariateresa, E-mail: mariateresa.mancuso@enea.it [Laboratory of Radiation Biology and Biomedicine, Agenzia Nazionale per le Nuove Tecnologie, l' Energia e lo Sviluppo Economico Sostenibile (ENEA), Casaccia Research Centre, Rome (Italy); Leonardi, Simona [Laboratory of Radiation Biology and Biomedicine, Agenzia Nazionale per le Nuove Tecnologie, l' Energia e lo Sviluppo Economico Sostenibile (ENEA), Casaccia Research Centre, Rome (Italy); Giardullo, Paola; Pasquali, Emanuela [Department of Radiation Physics, Guglielmo Marconi University, Rome (Italy); Tanori, Mirella [Laboratory of Radiation Biology and Biomedicine, Agenzia Nazionale per le Nuove Tecnologie, l' Energia e lo Sviluppo Economico Sostenibile (ENEA), Casaccia Research Centre, Rome (Italy); De Stefano, Ilaria [Department of Radiation Physics, Guglielmo Marconi University, Rome (Italy); Casciati, Arianna [Laboratory of Radiation Biology and Biomedicine, Agenzia Nazionale per le Nuove Tecnologie, l' Energia e lo Sviluppo Economico Sostenibile (ENEA), Casaccia Research Centre, Rome (Italy); Naus, Christian C. [Department of Cellular and Physiological Sciences, The Life Sciences Institute, University of British Columbia, Vancouver, British Columbia (Canada); Pazzaglia, Simonetta; Saran, Anna [Laboratory of Radiation Biology and Biomedicine, Agenzia Nazionale per le Nuove Tecnologie, l' Energia e lo Sviluppo Economico Sostenibile (ENEA), Casaccia Research Centre, Rome (Italy)

    2013-08-01

    Purpose: To investigate the tissue dependence in transmission of abscopal radiation signals and their oncogenic consequences in a radiosensitive mouse model and to explore the involvement of gap junction intercellular communication (GJIC) in mediating radiation tumorigenesis in off-target mouse skin. Methods and Materials: Patched1 heterozygous (Ptch1{sup +/−}) mice were irradiated at postnatal day 2 (P2) with 10 Gy of x-rays. Individual lead cylinders were used to protect the anterior two-thirds of the body, whereas the hindmost part was directly exposed to radiation. To test the role of GJICs and their major constituent connexin43 (Cx43), crosses between Ptch1{sup +/−} and Cx43{sup +/−} mice were similarly irradiated. These mouse groups were monitored for their lifetime, and skin basal cell carcinomas (BCCs) were counted and recorded. Early responses to DNA damage - Double Strand Breaks (DSBs) and apoptosis - were also evaluated in shielded and directly irradiated skin areas. Results: We report abscopal tumor induction in the shielded skin of Ptch1{sup +/−} mice after partial-body irradiation. Endpoints were induction of early nodular BCC-like tumors and macroscopic infiltrative BCCs. Abscopal tumorigenesis was significantly modulated by Cx43 status, namely, Cx43 reduction was associated with decreased levels of DNA damage and oncogenesis in out-of-field skin, suggesting a key role of GJIC in transmission of oncogenic radiation signals to unhit skin. Conclusions: Our results further characterize the nature of abscopal responses and the implications they have on pathologic processes in different tissues, including their possible underlying mechanistic bases.

  3. Study of abscopal radiation effects on multicellular organisms

    International Nuclear Information System (INIS)

    Ludwig, F.

    1958-01-01

    Amongst the lesions brought about by total body irradiation, two basically different types can be distinguished: those appearing in the area which has absorbed radiant energy and those emerging in areas remote from the irradiated tissues (abscopal effects). The abscopal effects are produced by toxic tissue breakdown products, which are removed by the bloodstream and interfere with particularly sensitive structures (radiotoxins). The radiotoxins mobilize other biologically active substances, interfering with the same tissues which may display abscopal effects. This is well established for the hormones of the adrenal cortex. Furthermore, important fractions of the radiotoxins are neutralized by the reticuloendothelial system. Temporary blockade of this system enhances the efficiency of radiotoxins and greatly increases mortality of the irradiated animals. One can therefore conclude that the reticuloendothelial system affords a natural defense against an essential reaction of total body irradiation: the effect of the radiotoxins. (author) [fr

  4. The Abscopal Effect Associated With a Systemic Anti-melanoma Immune Response

    International Nuclear Information System (INIS)

    Stamell, Emily F.; Wolchok, Jedd D.; Gnjatic, Sacha; Lee, Nancy Y.; Brownell, Isaac

    2013-01-01

    The clearance of nonirradiated tumors after localized radiation therapy is known as the abscopal effect. Activation of an antitumor immune response has been proposed as a mechanism for the abscopal effect. Here we report a patient with metastatic melanoma who received palliative radiation to his primary tumor with subsequent clearance of all his nonirradiated in-transit metastases. Anti-MAGEA3 antibodies were found upon serological testing, demonstrating an association between the abscopal effect and a systemic antitumor immune response. A brain recurrence was then treated with a combination of stereotactic radiosurgery and immunotherapy with ipilimumab. The patient experienced a complete remission that included resolution of nodal metastases, with a concomitant increase in MAGEA3 titers and a new response to the cancer antigen PASD1. This case supports the immune hypothesis for the abscopal effect, and illustrates the potential of combining radiotherapy and immunotherapy in the treatment of melanoma.

  5. The Abscopal Effect Associated With a Systemic Anti-melanoma Immune Response

    Energy Technology Data Exchange (ETDEWEB)

    Stamell, Emily F. [Division of Dermatology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (United States); Wolchok, Jedd D. [Melanoma and Sarcoma Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Ludwig Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Ludwig Center for Cancer Immunotherapy, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Weill-Cornell Medical College, New York, New York (United States); Gnjatic, Sacha [Ludwig Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Ludwig Center for Cancer Immunotherapy, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Lee, Nancy Y. [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Brownell, Isaac, E-mail: Isaac.brownell@nih.gov [Dermatology Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Dermatology Branch, National Cancer Institute, Bethesda, Maryland (United States)

    2013-02-01

    The clearance of nonirradiated tumors after localized radiation therapy is known as the abscopal effect. Activation of an antitumor immune response has been proposed as a mechanism for the abscopal effect. Here we report a patient with metastatic melanoma who received palliative radiation to his primary tumor with subsequent clearance of all his nonirradiated in-transit metastases. Anti-MAGEA3 antibodies were found upon serological testing, demonstrating an association between the abscopal effect and a systemic antitumor immune response. A brain recurrence was then treated with a combination of stereotactic radiosurgery and immunotherapy with ipilimumab. The patient experienced a complete remission that included resolution of nodal metastases, with a concomitant increase in MAGEA3 titers and a new response to the cancer antigen PASD1. This case supports the immune hypothesis for the abscopal effect, and illustrates the potential of combining radiotherapy and immunotherapy in the treatment of melanoma.

  6. Use of synchrotron medical microbeam irradiation to investigate radiation-induced bystander and abscopal effects in vivo.

    Science.gov (United States)

    Fernandez-Palomo, Cristian; Bräuer-Krisch, Elke; Laissue, Jean; Vukmirovic, Dusan; Blattmann, Hans; Seymour, Colin; Schültke, Elisabeth; Mothersill, Carmel

    2015-09-01

    The question of whether bystander and abscopal effects are the same is unclear. Our experimental system enables us to address this question by allowing irradiated organisms to partner with unexposed individuals. Organs from both animals and appropriate sham and scatter dose controls are tested for expression of several endpoints such as calcium flux, role of 5HT, reporter assay cell death and proteomic profile. The results show that membrane related functions of calcium and 5HT are critical for true bystander effect expression. Our original inter-animal experiments used fish species whole body irradiated with low doses of X-rays, which prevented us from addressing the abscopal effect question. Data which are much more relevant in radiotherapy are now available for rats which received high dose local irradiation to the implanted right brain glioma. The data were generated using quasi-parallel microbeams at the biomedical beamline at the European Synchrotron Radiation Facility in Grenoble France. This means we can directly compare abscopal and "true" bystander effects in a rodent tumour model. Analysis of right brain hemisphere, left brain and urinary bladder in the directly irradiated animals and their unirradiated partners strongly suggests that bystander effects (in partner animals) are not the same as abscopal effects (in the irradiated animal). Furthermore, the presence of a tumour in the right brain alters the magnitude of both abscopal and bystander effects in the tissues from the directly irradiated animal and in the unirradiated partners which did not contain tumours, meaning the type of signal was different. Copyright © 2015. Published by Elsevier Ltd.

  7. Abscopal Effects and Yttrium-90 Radioembolization

    Energy Technology Data Exchange (ETDEWEB)

    Ghodadra, Anish; Bhatt, Sumantha [University Pittsburgh School of Medicine, Department of Radiology (United States); Camacho, Juan C. [Emory University School of Medicine, Department of Radiology and Imaging Sciences (United States); Kim, Hyun S., E-mail: kevin.kim@yale.edu [University Pittsburgh School of Medicine, Department of Radiology (United States)

    2016-07-15

    We present the case of an 80-year-old male with squamous cell carcinoma with bilobar hepatic metastases who underwent targeted Yttrium-90 radioembolization of the right hepatic lobe lesion. Subsequently, there was complete regression of the nontargeted, left hepatic lobe lesion. This may represent the first ever reported abscopal effect in radioembolization. The abscopal effect refers to the phenomenon of tumor response in nontargeted sites after targeted radiotherapy. In this article, we briefly review the immune-mediated mechanisms responsible for the abscopal effect.

  8. Dose and Spatial Effects in Long-Distance Radiation Signaling In Vivo: Implications for Abscopal Tumorigenesis

    International Nuclear Information System (INIS)

    Mancuso, Mariateresa; Giardullo, Paola; Leonardi, Simona; Pasquali, Emanuela; Casciati, Arianna; De Stefano, Ilaria; Tanori, Mirella; Pazzaglia, Simonetta; Saran, Anna

    2013-01-01

    Purpose: To investigate the dose and spatial dependence of abscopal radiation effects occurring in vivo in the mouse, along with their tumorigenic potential in the central nervous system (CNS) of a radiosensitive mouse model. Methods and Materials: Patched1 (Ptch1) +/− mice, carrying a germ-line heterozygous inactivating mutation in the Ptch1 gene and uniquely susceptible to radiation damage in neonatal cerebellum, were exposed directly to ionizing radiation (1, 2, or 3 Gy of x-rays) or treated in a variety of partial-body irradiation protocols, in which the animals' head was fully protected by suitable lead cylinders while the rest of the body was exposed to x-rays in full or in part. Apoptotic cell death was measured in directly irradiated and shielded cerebellum shortly after irradiation, and tumor development was monitored in lifetime groups. The same endpoints were measured using different shielding geometries in mice irradiated with 3 or 10 Gy of x-rays. Results: Although dose-dependent cell death was observed in off-target cerebellum for all doses and shielding conditions tested, a conspicuous lack of abscopal response for CNS tumorigenesis was evident at the lowest dose of 1 Gy. By changing the amount of exposed body volume, the shielding geometry could also significantly modulate tumorigenesis depending on dose. Conclusions: We conclude that interplay between radiation dose and exposed tissue volume plays a critical role in nontargeted effects occurring in mouse CNS under conditions relevant to humans. These findings may help understanding the mechanisms of long-range radiation signaling in harmful effects, including carcinogenesis, occurring in off-target tissues

  9. Molecular mechanism of bystander effects and related abscopal/cohort effects in cancer therapy

    Science.gov (United States)

    Liu, Wei; Zuo, Li

    2018-01-01

    Cancer cells subjected to ionizing radiation may release signals which can influence nearby non-irradiated cells, termed bystander effects. The transmission of bystander effects among cancer cells involves the activation of inflammatory cytokines, death ligands, and reactive oxygen/nitrogen species. In addition to bystander effects, two other forms of non-target effects (NTEs) have been identified in radiotherapy, as one is called cohort effects and the other is called abscopal effects. Cohort effects represent the phenomenon where irradiated cells can produce signals that reduce the survival of neighboring cells within an irradiated volume. The effects suggest the importance of cellular communication under irradiation with non-uniform dose distribution. In contrast, abscopal effects describe the NTEs that typically occur in non-irradiated cells distant from an irradiated target. These effects can be mediated primarily by immune cells such as T cells. Clinical trials have shown that application of radiation along with immunotherapy may enhance abscopal effects and improve therapeutic efficacy on non-target lesions outside an irradiated field. According to NTEs, cell viability is reduced not only by direct irradiation effects, but also due to signals emitted from nearby irradiated cells. A clinical consideration of NTEs could have a revolutionary impact on current radiotherapy via the establishment of more efficient and less toxic radiobiological models for treatment planning compared to conventional models. Thus, we will review the most updated findings about these effects and outline their mechanisms and potential applications in cancer treatment with a special focus on the brain, lung, and breast cancers. PMID:29719632

  10. Molecular mechanism of bystander effects and related abscopal/cohort effects in cancer therapy.

    Science.gov (United States)

    Wang, Rong; Zhou, Tingyang; Liu, Wei; Zuo, Li

    2018-04-06

    Cancer cells subjected to ionizing radiation may release signals which can influence nearby non-irradiated cells, termed bystander effects. The transmission of bystander effects among cancer cells involves the activation of inflammatory cytokines, death ligands, and reactive oxygen/nitrogen species. In addition to bystander effects, two other forms of non-target effects (NTEs) have been identified in radiotherapy, as one is called cohort effects and the other is called abscopal effects. Cohort effects represent the phenomenon where irradiated cells can produce signals that reduce the survival of neighboring cells within an irradiated volume. The effects suggest the importance of cellular communication under irradiation with non-uniform dose distribution. In contrast, abscopal effects describe the NTEs that typically occur in non-irradiated cells distant from an irradiated target. These effects can be mediated primarily by immune cells such as T cells. Clinical trials have shown that application of radiation along with immunotherapy may enhance abscopal effects and improve therapeutic efficacy on non-target lesions outside an irradiated field. According to NTEs, cell viability is reduced not only by direct irradiation effects, but also due to signals emitted from nearby irradiated cells. A clinical consideration of NTEs could have a revolutionary impact on current radiotherapy via the establishment of more efficient and less toxic radiobiological models for treatment planning compared to conventional models. Thus, we will review the most updated findings about these effects and outline their mechanisms and potential applications in cancer treatment with a special focus on the brain, lung, and breast cancers.

  11. A meta-analysis of the abscopal effect in preclinical models: Is the biologically effective dose a relevant physical trigger?

    Directory of Open Access Journals (Sweden)

    Raffaella Marconi

    Full Text Available Preclinical in vivo studies using small animals are considered crucial in translational cancer research and clinical implementation of novel treatments. This is of paramount relevance in radiobiology, especially for any technological developments permitted to deliver high doses in single or oligo-fractionated regimens, such as stereotactic ablative radiotherapy (SABR. In this context, clinical success in cancer treatment needs to be guaranteed, sparing normal tissue and preventing the potential spread of disease or local recurrence. In this work we introduce a new dose-response relationship based on relevant publications concerning preclinical models with regard to delivered dose, fractionation schedule and occurrence of biological effects on non-irradiated tissue, abscopal effects.We reviewed relevant publications on murine models and the abscopal effect in radiation cancer research following PRISMA methodology. In particular, through a log-likelihood method, we evaluated whether the occurrence of abscopal effects may be related to the biologically effective dose (BED. To this aim, studies accomplished with different tumor histotypes were considered in our analysis including breast, colon, lung, fibrosarcoma, pancreas, melanoma and head and neck cancer. For all the tumors, the α / β ratio was assumed to be 10 Gy, as generally adopted for neoplastic cells.Our results support the hypothesis that the occurrence rate of abscopal effects in preclinical models increases with BED. In particular, the probability of revealing abscopal effects is 50% when a BED of 60 Gy is generated.Our study provides evidence that SABR treatments associated with high BEDs could be considered an effective strategy in triggering the abscopal effect, thus shedding light on the promising outcomes revealed in clinical practice.

  12. Abscopal suppression of bone marrow erythropoiesis

    International Nuclear Information System (INIS)

    Werts, E.D.; Johnson, M.J.; DeGowin, R.L.

    1978-01-01

    Abscopal responses of hemopoietic tissue, which we noted in preliminary studies of mice receiving partial-body irradiation, led us to clarify these effects. In studies reported here, one hind leg of CF-1 female mice received 1000, 5000, or 10,000 rad of x radiation. We found a persistent shift from medullary to splenic erythropoiesis preventing anemia in mice receiving 5000 or 10,000 rad. Splenectomy prior to 5000-rad irradiation resulted in anemia, which was not ameliorated by exposure to intermittent hypoxia. Despite evidence for increased levels of erythropoietin in the animals, namely, a reticulocytosis and increased erythrocyte radioiron incorporation, both 59 Fe uptake and erythroblast counts in shielded marrow remained below normal. We found 50 to 90% suppression of the growth of marrow stromal colonies (MSC) from bone marrow aspirates of the shielded and irradiated femoral marrow at 1 month and at least 20% depression of MSC at 1 year, with each dose. We conclude that: (i) high doses of x radiation to one leg of mice caused prolonged suppression of medullary erythropoiesis with splenic compensation to prevent anemia; (ii) splenectomy, anemia, and hypoxia prevented the severe abscopal depression of medullary erythropoiesis; and (iii) suppressed medullary erythropoiesis with decreased growth of MSC suggested a change in the hemopoietic microenvironment of the bone marrow

  13. Combining radiotherapy and ipilimumab induces clinically relevant radiation-induced abscopal effects in metastatic melanoma patients: A systematic review

    Directory of Open Access Journals (Sweden)

    Rodolfo Chicas-Sett

    2018-02-01

    Conclusion: Early clinical outcomes reports suggest that the combination of ipilimumab and RT may improve survival in metastatic melanoma patients. The abscopal responses become a clinically relevant effect of such combination and should be studied in controlled randomized trials.

  14. Duodenal ulcers as an abscopal effect of thoracic irradiation in mice

    International Nuclear Information System (INIS)

    Michalowski, A.; Burgin, J.

    1982-01-01

    Female CFLP mice irradiated to their thorax with either x-rays or fast neutrons developed peptic ulcers within 8 days of exposure. The steep x-ray dose/response curve for induction of duodenal ulcer gave an ED 50 of approximately 14.5 Gu. As little as 6 Gy of fast neutrons was effective in some cases, but the neutron ED 50 exceeded that for x-rays. The ulcers represented an abscopal effect of thoracic irradiation. Scattered radiation as simulated by whole-body x-ray treatment (1 to 5 Gy) caused a dose-dependent decrease in the frequency of duodenal lesions, possibly by decreasing gastric secretion. The greater amount of scattered radiation accompanying fast neutron exposure of the thorax was presumably responsible for the shallower dose/response curve of ulcer induction than that seen with x-rays

  15. Investigating the Abscopal Effects of Radioablation on Shielded Bone Marrow in Rodent Models Using Multimodality Imaging.

    Science.gov (United States)

    Afshar, Solmaz F; Zawaski, Janice A; Inoue, Taeko; Rendon, David A; Zieske, Arthur W; Punia, Jyotinder N; Sabek, Omaima M; Gaber, M Waleed

    2017-07-01

    The abscopal effect is the response to radiation at sites that are distant from the irradiated site of an organism, and it is thought to play a role in bone marrow (BM) recovery by initiating responses in the unirradiated bone marrow. Understanding the mechanism of this effect has applications in treating BM failure (BMF) and BM transplantation (BMT), and improving survival of nuclear disaster victims. Here, we investigated the use of multimodality imaging as a translational tool to longitudinally assess bone marrow recovery. We used positron emission tomography/computed tomography (PET/CT), magnetic resonance imaging (MRI) and optical imaging to quantify bone marrow activity, vascular response and marrow repopulation in fully and partially irradiated rodent models. We further measured the effects of radiation on serum cytokine levels, hematopoietic cell counts and histology. PET/CT imaging revealed a radiation-induced increase in proliferation in the shielded bone marrow (SBM) compared to exposed bone marrow (EBM) and sham controls. T 2 -weighted MRI showed radiation-induced hemorrhaging in the EBM and unirradiated SBM. In the EBM and SBM groups, we found alterations in serum cytokine and hormone levels and in hematopoietic cell population proportions, and histological evidence of osteoblast activation at the bone marrow interface. Importantly, we generated a BMT mouse model using fluorescent-labeled bone marrow donor cells and performed fluorescent imaging to reveal the migration of bone marrow cells from shielded to radioablated sites. Our study validates the use of multimodality imaging to monitor bone marrow recovery and provides evidence for the abscopal response in promoting bone marrow recovery after irradiation.

  16. Study of abscopal radiation effects on multicellular organisms; Etudes sur les effets a distance dans les organismes multicellulaires irradies

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, F [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    Amongst the lesions brought about by total body irradiation, two basically different types can be distinguished: those appearing in the area which has absorbed radiant energy and those emerging in areas remote from the irradiated tissues (abscopal effects). The abscopal effects are produced by toxic tissue breakdown products, which are removed by the bloodstream and interfere with particularly sensitive structures (radiotoxins). The radiotoxins mobilize other biologically active substances, interfering with the same tissues which may display abscopal effects. This is well established for the hormones of the adrenal cortex. Furthermore, important fractions of the radiotoxins are neutralized by the reticuloendothelial system. Temporary blockade of this system enhances the efficiency of radiotoxins and greatly increases mortality of the irradiated animals. One can therefore conclude that the reticuloendothelial system affords a natural defense against an essential reaction of total body irradiation: the effect of the radiotoxins. (author) [French] Les lesions consecutives a une irradiation peuvent etre classees en deux categories: celles qui se produisent au niveau du tissu irradie et celles qui apparaissent en dehors de celui-ci. Ces dernieres - appelees -'effets a distance'- sont dues a l'action de produits d'histolyse apparaissant au niveau du volume tissulaire ayant absorbe l'energie radiante, emportes par le courant sanguin et agissant sur des structures specialement receptives (Radiotoxines). Ces corps provoquait, dans des structures eloignees du siege de l'action locale du rayonnement, la secretion d'autres corps biologiquement actifs, capables d'agir sur les memes tissus pouvant presenter des effets a distance, compliquant ainsi leur mecanisme. Ceci est etabli pour les corticosteroides. De plus, des fractions importantes des radiotoxines sont neutralisees par le systeme reticuloendothelial. Puisque le blocage de ce systeme prolonge non seulement l'action des

  17. Study of abscopal radiation effects on multicellular organisms; Etudes sur les effets a distance dans les organismes multicellulaires irradies

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, F. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    Amongst the lesions brought about by total body irradiation, two basically different types can be distinguished: those appearing in the area which has absorbed radiant energy and those emerging in areas remote from the irradiated tissues (abscopal effects). The abscopal effects are produced by toxic tissue breakdown products, which are removed by the bloodstream and interfere with particularly sensitive structures (radiotoxins). The radiotoxins mobilize other biologically active substances, interfering with the same tissues which may display abscopal effects. This is well established for the hormones of the adrenal cortex. Furthermore, important fractions of the radiotoxins are neutralized by the reticuloendothelial system. Temporary blockade of this system enhances the efficiency of radiotoxins and greatly increases mortality of the irradiated animals. One can therefore conclude that the reticuloendothelial system affords a natural defense against an essential reaction of total body irradiation: the effect of the radiotoxins. (author) [French] Les lesions consecutives a une irradiation peuvent etre classees en deux categories: celles qui se produisent au niveau du tissu irradie et celles qui apparaissent en dehors de celui-ci. Ces dernieres - appelees -'effets a distance'- sont dues a l'action de produits d'histolyse apparaissant au niveau du volume tissulaire ayant absorbe l'energie radiante, emportes par le courant sanguin et agissant sur des structures specialement receptives (Radiotoxines). Ces corps provoquait, dans des structures eloignees du siege de l'action locale du rayonnement, la secretion d'autres corps biologiquement actifs, capables d'agir sur les memes tissus pouvant presenter des effets a distance, compliquant ainsi leur mecanisme. Ceci est etabli pour les corticosteroides. De plus, des fractions importantes des radiotoxines sont neutralisees par le systeme reticuloendothelial. Puisque le blocage de ce

  18. MO-FG-BRA-04: Leveraging the Abscopal Effect Via New Design Radiotherapy Biomaterials Loaded with Immune Checkpoint Inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Y; Cifter, G; Altundal, Y; Moreau, M; Sajo, E [Univ Massachusetts Lowell, Lowell, MA (United States); Sinha, N [Wentworth Institute of Technology, Boston, MA (United States); Makrigiorgos, G [Dana Farber Cancer Institute, Boston, MA (United States); Harvard Medical School, Boston, MA (United States); Ngwa, W [Univ Massachusetts Lowell, Lowell, MA (United States); Dana Farber Cancer Institute, Boston, MA (United States); Harvard Medical School, Boston, MA (United States)

    2015-06-15

    Purpose: Studies show that stereotactic body radiation therapy (SBRT) of a primary tumor in combination with immune checkpoint inhibitors (ICI) could Result in an immune-mediated regression of metastasis outside the radiation field, a phenomenon known as abscopal effect. However toxicities due to repeated systematic administration of ICI have been shown to be a major obstacle in clinical trials. Towards overcoming these toxicity limitations, we investigate a potential new approach whereby the ICI are administered via sustained in-situ release from radiotherapy (RT) biomaterials (e.g. fiducials) coated with a polymer containing the ICI. Methods: New design RT biomaterials were prepared by coating commercially available spacers/fiducials with a biocompatible polymer (PLGA) film containing fluorescent nanoparticles of size needed to load the ICI. The release of the nanoparticles was investigated in-vitro. Meanwhile, an experimentally determined in- vivo nanoparticle diffusion coefficient was employed in analytic calculations based on Fick’s second law to estimate the time for achieving the concentrations of ICI in the tumor draining lymph node (TDLN) that are needed to engender the abscopal effect during SBRT. The ICI investigated here was anti-CTLA-4 antibody (ipilimumab) at approved FDA concentrations. Results: Our in -vitro study results showed that RT biomaterials could be designed to achieve burst release of nanoparticles within one day. Meanwhile, our calculations indicate that for a 2 to 4 cm tumor it would take 4–22 days, respectively, following burst release, for the required concentration of ICI nanoparticles to accumulate in the TDLN during SBRT. Conclusion: Current investigations combining RT and immunotherapy involve repeated intravenous administration of ICI leading to significant systemic toxicities. Our preliminary results highlight a potential new approach for sustained in-situ release of the ICI from new design RT biomaterials. These results

  19. MO-FG-BRA-04: Leveraging the Abscopal Effect Via New Design Radiotherapy Biomaterials Loaded with Immune Checkpoint Inhibitors

    International Nuclear Information System (INIS)

    Hao, Y; Cifter, G; Altundal, Y; Moreau, M; Sajo, E; Sinha, N; Makrigiorgos, G; Ngwa, W

    2015-01-01

    Purpose: Studies show that stereotactic body radiation therapy (SBRT) of a primary tumor in combination with immune checkpoint inhibitors (ICI) could Result in an immune-mediated regression of metastasis outside the radiation field, a phenomenon known as abscopal effect. However toxicities due to repeated systematic administration of ICI have been shown to be a major obstacle in clinical trials. Towards overcoming these toxicity limitations, we investigate a potential new approach whereby the ICI are administered via sustained in-situ release from radiotherapy (RT) biomaterials (e.g. fiducials) coated with a polymer containing the ICI. Methods: New design RT biomaterials were prepared by coating commercially available spacers/fiducials with a biocompatible polymer (PLGA) film containing fluorescent nanoparticles of size needed to load the ICI. The release of the nanoparticles was investigated in-vitro. Meanwhile, an experimentally determined in- vivo nanoparticle diffusion coefficient was employed in analytic calculations based on Fick’s second law to estimate the time for achieving the concentrations of ICI in the tumor draining lymph node (TDLN) that are needed to engender the abscopal effect during SBRT. The ICI investigated here was anti-CTLA-4 antibody (ipilimumab) at approved FDA concentrations. Results: Our in -vitro study results showed that RT biomaterials could be designed to achieve burst release of nanoparticles within one day. Meanwhile, our calculations indicate that for a 2 to 4 cm tumor it would take 4–22 days, respectively, following burst release, for the required concentration of ICI nanoparticles to accumulate in the TDLN during SBRT. Conclusion: Current investigations combining RT and immunotherapy involve repeated intravenous administration of ICI leading to significant systemic toxicities. Our preliminary results highlight a potential new approach for sustained in-situ release of the ICI from new design RT biomaterials. These results

  20. Inflammatory response and abscopal effects in the lungs after abdominal irradiation

    International Nuclear Information System (INIS)

    Van Der Meeren, A.; Monti, P.; Squiban, C.; Wysocki, J.; Vandamme, M.; Griffiths, N.

    2003-01-01

    Abscopal effects can be defined as biological effects observed in a tissue outside of the field of irradiation. Elucidating such mechanisms might help in the understanding of the radiation-induced multi organ failure. However, the mechanisms involved are still poorly understood. In the present study, C57BL6/J mice were irradiated in the abdominal region using an ORION accelerator, at the dose of 15 Gy. Inflammatory response was evaluated by measuring with ELISA, TNF-α, IL-6 and KC in the plasma of irradiated mice as well as in the jejunum and in the lungs. In addition, immunohistochemistry was used to determine PECAM-1 expression in the lungs. Results show the radiation-induced increase in the concentrations of IL-6 and KC measured in the plasma 3 and 6 days after exposure, although TNF-α remained undetectable. In the jejunum, KC content was greatly enhanced in irradiated animals, but IL-6 and TNF-α enhancements were only moderate. KC was also increased in the lungs of irradiated animals as compared to sham irradiated mice. In addition, PECAM-1 expression on lung endothelial cells was enhanced 3 and 6 days post-exposure. Our results show that the lungs, outside of the field of irradiation, show an inflammatory response with enhanced chemokine production and adhesion molecule expression on endothelial cells. This effect could be mediated through the release and circulation of inflammatory mediators in the blood and possibly in the lymphatic system

  1. Inflammatory response and abscopal effects in the lungs after abdominal irradiation

    International Nuclear Information System (INIS)

    Van Der Meeren, A.; Monti, P.; Squiban, C.; Wysocki, J.; Vandamme, M.; Griffiths, N.

    2003-01-01

    Abscopal effects can be defined as biological effects observed in a tissue outside of the field of irradiation. Elucidating such mechanisms might help in the understanding of the radiation-induced multi organ failure. However, the mechanisms involved are still poorly understood. In the present study, C57BL6/J mice were irradiated in the abdominal region using an ORION accelerator, at the dose of 15 Gy. Inflammatory response was evaluated by measuring with ELISA TNF-α , IL-6 and KC in the plasma of irradiated mice as well as in the jejunum and in the lungs. In addition, immunohistochemistry was used to determine PECAM-1 expression in the lungs. Results show the radiation-induced increase Three and 6 days after exposure in the concentrations of IL-6 and KC measured in the plasma, although TNF-α remained undetectable. In the jejunum, KC content was greatly enhanced in irradiated animals, but IL-6 and TNF-α enhancements were only moderate. KC was also increased in the lungs of irradiated animals as compared to sham irradiated mice. In addition, PECAM-1 expression on lung endothelial cells was enhanced 3 and 6 days post-exposure. Our results show that the lungs, outside of the field of irradiation, show an inflammatory response with enhanced chemokine production and adhesion molecule expression on endothelial cells. This effect could be mediated through the release and circulation of inflammatory mediators in the blood and possibly in the lymphatic fluid

  2. Immunotherapy Plus Cryotherapy: Potential Augmented Abscopal Effect for Advanced Cancers

    Directory of Open Access Journals (Sweden)

    Joe Abdo

    2018-03-01

    Full Text Available Since the 1920s the gold standard for treating cancer has been surgery, which is typically preceded or followed with chemotherapy and/or radiation, a process that perhaps contributes to the destruction of a patient’s immune defense system. Cryosurgery ablation of a solid tumor is mechanistically similar to a vaccination where hundreds of unique antigens from a heterogeneous population of tumor cells derived from the invading cancer are released. However, releasing tumor-derived self-antigens into circulation may not be sufficient enough to overcome the checkpoint escape mechanisms some cancers have evolved to avoid immune responses. The potentiated immune response caused by blocking tumor checkpoints designed to prevent programmed cell death may be the optimal treatment method for the immune system to recognize these new circulating cryoablated self-antigens. Preclinical and clinical evidence exists for the complementary roles for Cytotoxic T-lymphocyte-associated protein (CTLA-4 and PD-1 antagonists in regulating adaptive immunity, demonstrating that combination immunotherapy followed by cryosurgery provides a more targeted immune response to distant lesions, a phenomenon known as the abscopal effect. We propose that when the host’s immune system has been “primed” with combined anti-CTLA-4 and anti-PD-1 adjuvants prior to cryosurgery, the preserved cryoablated tumor antigens will be presented and processed by the host’s immune system resulting in a robust cytotoxic CD8+ T-cell response. Based on recent investigations and well-described biochemical mechanisms presented herein, a polyvalent autoinoculation of many tumor-specific antigens, derived from a heterogeneous population of tumor cancer cells, would present to an unhindered yet pre-sensitized immune system yielding a superior advantage in locating, recognizing, and destroying tumor cells throughout the body.

  3. Epigenetic effects of ionizing radiation

    International Nuclear Information System (INIS)

    EI-Naggar, A.M.

    2007-01-01

    Data generated during the last three decades provide evidence of Epigenetic Effects that ave-induced by ionizing radiation, particularly those of high LET values, and low level dose exposures. Epigenesist is defined as the stepwise process by which genetic information, as modified by environmental influences, is translated into the substance and behavior of cells, tissues, organism.The epigenetic effects cited in the literature are essentially classified into fine types depending on the type and nature of the effect induced.The most accepted postulation, for the occurrence of these epigenetic effects, is a radiation induced bio electric disturbances in the environment of the non-irradiated cellular volume. This will trigger signals that will induce effects in the unirradiated cells.The epigenetic effects referenced in the literature up to date are five types; namely, Genomic Instability, Bystander. Effects, Clastogenic Plasma Factors,, Abscopal Effects, and Tran generational Effects.The demonstration of Epigenetic Effects associated with exposure to ionizing radiation indicates the need to re- examine the concept of radiation dose and target size. Also an improved understanding of qualifiring and quantifying radiation risk estimates may be attained. Also, a more logical means to understand the underlying mechanisms of radiation induced carcinogenic transformation of cells

  4. Antigen-capturing nanoparticles improve the abscopal effect and cancer immunotherapy

    Science.gov (United States)

    Min, Yuanzeng; Roche, Kyle C.; Tian, Shaomin; Eblan, Michael J.; McKinnon, Karen P.; Caster, Joseph M.; Chai, Shengjie; Herring, Laura E.; Zhang, Longzhen; Zhang, Tian; Desimone, Joseph M.; Tepper, Joel E.; Vincent, Benjamin G.; Serody, Jonathan S.; Wang, Andrew Z.

    2017-09-01

    Immunotherapy holds tremendous promise for improving cancer treatment. To administer radiotherapy with immunotherapy has been shown to improve immune responses and can elicit the 'abscopal effect'. Unfortunately, response rates for this strategy remain low. Herein we report an improved cancer immunotherapy approach that utilizes antigen-capturing nanoparticles (AC-NPs). We engineered several AC-NP formulations and demonstrated that the set of protein antigens captured by each AC-NP formulation is dependent on the NP surface properties. We showed that AC-NPs deliver tumour-specific proteins to antigen-presenting cells (APCs) and significantly improve the efficacy of αPD-1 (anti-programmed cell death 1) treatment using the B16F10 melanoma model, generating up to a 20% cure rate compared with 0% without AC-NPs. Mechanistic studies revealed that AC-NPs induced an expansion of CD8+ cytotoxic T cells and increased both CD4+T/Treg and CD8+T/Treg ratios (Treg, regulatory T cells). Our work presents a novel strategy to improve cancer immunotherapy with nanotechnology.

  5. Epistemology of radiation protection

    International Nuclear Information System (INIS)

    Malcolm, C.

    2010-01-01

    The scientific committee had assess Status of levels, effects and risks of ionizing radiation for General assembly, scientific community and public. The review of levels, sources and exposures. The natural sources of radiation include cosmic rays, terrestrial and artificial sources include medical issues, military activities, civil nuclear power occupational exposure and accidents. The global average exposure is 80% natural source, 20% medical examination 0.2% weapon fallout < 0.1% cherbonyl accidents and < 0.1 nuclear power. The effects of radiation incudes health effects, hereditable effects, bystander effects, and abscopal effects. The randon risks include lancer risk, plant and animal

  6. Priming the Abscopal Effect Using Multifunctional Smart Radiotherapy Biomaterials Loaded with Immunoadjuvants

    Directory of Open Access Journals (Sweden)

    Michele Moreau

    2018-03-01

    Full Text Available In this study, we investigate the use of multifunctional smart radiotherapy biomaterials (SRBs loaded with immunoadjuvants for boosting the abscopal effect of local radiotherapy (RT. SRBs were designed similar to currently used inert RT biomaterials, incorporating a biodegradable polymer with reservoir for loading payloads of the immunoadjuvant anti-CD40 monoclonal antibody. Lung (LLC1 tumors were generated both on the right and left flank of each mouse, with the left tumor representing metastasis. The mice were randomized and divided into eight cohorts with four cohorts receiving image-guided RT (IGRT at 5 Gy and another similar four cohorts at 0 Gy. IGRT and Computed Tomography (CT imaging were performed using a small animal radiation research platform (SARRP. Tumor volume measurements for both flank tumors and animal survival was assessed over 25 weeks. Tumor volume measurements showed significantly enhanced inhibition in growth for the right flank tumors of mice in the cohort treated with SRBs loaded with CD40 mAbs and IGRT. Results also suggest that the use of polymeric SRBs with CD40 mAbs without RT could generate an immune response, consistent with previous studies showing such response when using anti-CD40. Overall, 60% of mice treated with SRBs showed complete tumor regression during the observation period, compared to 10% for cohorts administered with anti-CD40 mAbs, but no SRB. Complete tumor regression was not observed in any other cohorts. The findings justify more studies varying RT doses and quantifying the immune-cell populations involved when using SRBs. Such SRBs could be developed to replace currently used RT biomaterials, allowing not only for geometric accuracy during RT, but also for extending RT to the treatment of metastatic lesions.

  7. Communicating the non-targeted effects of radiation from irradiated to non-irradiated cells

    International Nuclear Information System (INIS)

    Laiakis, E.C.; Morgan, W.F.

    2005-01-01

    For many years, the central dogma in radiobiology has been that energy deposited in the cell nucleus is responsible for the biological effects associated with radiation exposure. However, non-targeted and delayed effects of radiation have shifted this belief. The studies of radiation-induced genomic instability, the bystander and abscopal effects, clastogenic factors, and the Death Inducing Effect have dominated the interest of the radiobiology field of late. The passing of signals from irradiated to non-irradiated cells can be accomplished through cell-to-cell gap junction communication or secretion of molecules, which in turn can elicit a response through activation of signal transduction pathways. Proposed mediators of this phenotype include proteins involved with inflammation. Given their size and connection with oxidative stress, cytokines are an attractive candidate as mediators of the induction of the non-targeted effects of radiation. Here we review the evidence for a possible connection between these delayed non-targeted effects of radiation and the cytokine cascades associated with inflammation. (author)

  8. Abscopal Effects With Hypofractionated Schedules Extending Into the Effector Phase of the Tumor-Specific T-Cell Response.

    Science.gov (United States)

    Zhang, Xuanwei; Niedermann, Gabriele

    2018-05-01

    Hypofractionated radiation therapy (hRT) combined with immune checkpoint blockade can induce T-cell-mediated local and abscopal antitumor effects. We had previously observed peak levels of tumor-infiltrating lymphocytes (TILs) between days 5 and 8 after hRT. Because TILs are regarded as radiosensitive, hRT schedules extending into this period might be less immunogenic, prompting us to compare clinically relevant, short and extended schedules with equivalent biologically effective doses combined with anti-programmed cell death 1 (PD1) antibody treatment. In mice bearing 2 B16-CD133 melanoma tumors, the primary tumor was irradiated with 3 × 9.18 Gy in 3 or 5 days or with 5 × 6.43 Gy in 10 days; an anti-PD1 antibody was given weekly. The mice were monitored for tumor growth and survival. T-cell responses were determined on days 8 and 15 of treatment. The role of regional lymph nodes was studied by administering FTY720, which blocks lymph node egress of activated T cells. Tumor growth measurements after combination treatment using short or extended hRT and control treatment were also performed in the wild-type B16 melanoma and 4T1 breast carcinoma models. In the B16-CD133 model, growth inhibition of irradiated primary and nonirradiated secondary tumors and overall survival were similar with all 3 hRT/anti-PD1 combinations, superior to hRT and anti-PD1 monotherapy, and was strongly dependent on CD8 + T cells. TIL infiltration and local and systemic tumor-specific CD8 + T-cell responses were also similar, regardless of whether short or extended hRT was used. Administration of FTY720 accelerated growth of both primary and secondary tumors, strongly reduced their TIL infiltration, and increased tumor-specific CD8 + T cells in the lymph nodes draining the irradiated tumor. In the 4T1 model, local and abscopal tumor control was also similar, regardless of whether short or extended hRT was used, although the synergy between hRT and anti-PD1 was weaker. No

  9. Abscopal effect of boron neutron capture therapy (BNCT). Proof of principle in an experimental model of colon cancer

    Energy Technology Data Exchange (ETDEWEB)

    Trivillin, Veronica A.; Monti Hughes, Andrea; Schwint, Amanda E. [Comision Nacional de Energia Atomica (CNEA), Department of Radiobiology, B1650KNA San Martin, Provincia Buenos Aires (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Ciudad Autonoma de Buenos Aires (Argentina); Pozzi, Emiliano C.C.; Curotto, Paula [Centro Atomico Ezeiza, Comision Nacional de Energia Atomica (CNEA), Department of Research and Production Reactors, Provincia Buenos Aires (Argentina); Colombo, Lucas L. [Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Ciudad Autonoma de Buenos Aires (Argentina); Instituto de Oncologia Angel H. Roffo, Ciudad Autonoma de Buenos Aires (Argentina); Thorp, Silvia I.; Farias, Ruben O. [Comision Nacional de Energia Atomica (CNEA), Department of Instrumentation and Control, Provincia Buenos Aires (Argentina); Garabalino, Marcela A. [Comision Nacional de Energia Atomica (CNEA), Department of Radiobiology, B1650KNA San Martin, Provincia Buenos Aires (Argentina); Gonzalez, Sara J. [Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Ciudad Autonoma de Buenos Aires (Argentina); Comision Nacional de Energia Atomica (CNEA), Department of Instrumentation and Control, Provincia Buenos Aires (Argentina); Santa Cruz, Gustavo A. [Comision Nacional de Energia Atomica (CNEA), Department of Boron Neutron Capture Therapy, Provincia Buenos Aires (Argentina); Carando, Daniel G. [Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Ciudad Autonoma de Buenos Aires (Argentina); Universidad de Buenos Aires, Faculty of Exact and Natural Sciences, Ciudad Autonoma de Buenos Aires (Argentina)

    2017-11-15

    The aim of the present study was to evaluate, for the first time, the abscopal effect of boron neutron capture therapy (BNCT). Twenty-six BDIX rats were inoculated subcutaneously with 1 x 10{sup 6} DHD/K12/TRb syngeneic colon cancer cells in the right hind flank. Three weeks post-inoculation, the right leg of 12 rats bearing the tumor nodule was treated with BPA-BNCT (BPA-Boronophenylalanine) at the RA-3 nuclear reactor located in Buenos Aires, Argentina, at an absorbed dose of 7.5 Gy to skin as the dose-limiting tissue. The remaining group of 14 tumor-bearing rats were left untreated and used as control. Two weeks post-BNCT, 1 x 10{sup 6} DHD/K12/TRb cells were injected subcutaneously in the contralateral left hind flank of each of the 26 BDIX rats. Tumor volume in both legs was measured weekly for 7 weeks to determine response to BNCT in the right leg and to assess a potential influence of BNCT in the right leg on tumor development in the left leg. Within the BNCT group, a statistically significant reduction was observed in contralateral left tumor volume in animals whose right leg tumor responded to BNCT (post-treatment/pre-treatment tumor volume <1) versus animals who failed to respond (post/pre ≥1), i.e., 13 ± 15 vs 271 ± 128 mm{sup 3}. In addition, a statistically significant reduction in contralateral left leg tumor volume was observed in BNCT-responsive animals (post/pre <1) vs untreated animals, i.e., 13 ± 15 vs 254 ± 251 mm{sup 3}. The present study performed in a simple animal model provides proof of principle that the positive response of a tumor to BNCT is capable of inducing an abscopal effect. (orig.)

  10. Abscopal effect of boron neutron capture therapy (BNCT). Proof of principle in an experimental model of colon cancer

    International Nuclear Information System (INIS)

    Trivillin, Veronica A.; Monti Hughes, Andrea; Schwint, Amanda E.; Pozzi, Emiliano C.C.; Curotto, Paula; Colombo, Lucas L.; Thorp, Silvia I.; Farias, Ruben O.; Garabalino, Marcela A.; Gonzalez, Sara J.; Santa Cruz, Gustavo A.; Carando, Daniel G.

    2017-01-01

    The aim of the present study was to evaluate, for the first time, the abscopal effect of boron neutron capture therapy (BNCT). Twenty-six BDIX rats were inoculated subcutaneously with 1 x 10 6 DHD/K12/TRb syngeneic colon cancer cells in the right hind flank. Three weeks post-inoculation, the right leg of 12 rats bearing the tumor nodule was treated with BPA-BNCT (BPA-Boronophenylalanine) at the RA-3 nuclear reactor located in Buenos Aires, Argentina, at an absorbed dose of 7.5 Gy to skin as the dose-limiting tissue. The remaining group of 14 tumor-bearing rats were left untreated and used as control. Two weeks post-BNCT, 1 x 10 6 DHD/K12/TRb cells were injected subcutaneously in the contralateral left hind flank of each of the 26 BDIX rats. Tumor volume in both legs was measured weekly for 7 weeks to determine response to BNCT in the right leg and to assess a potential influence of BNCT in the right leg on tumor development in the left leg. Within the BNCT group, a statistically significant reduction was observed in contralateral left tumor volume in animals whose right leg tumor responded to BNCT (post-treatment/pre-treatment tumor volume <1) versus animals who failed to respond (post/pre ≥1), i.e., 13 ± 15 vs 271 ± 128 mm 3 . In addition, a statistically significant reduction in contralateral left leg tumor volume was observed in BNCT-responsive animals (post/pre <1) vs untreated animals, i.e., 13 ± 15 vs 254 ± 251 mm 3 . The present study performed in a simple animal model provides proof of principle that the positive response of a tumor to BNCT is capable of inducing an abscopal effect. (orig.)

  11. Biological Complexities in Radiation Carcinogenesis and Cancer Radiotherapy: Impact of New Biological Paradigms

    Directory of Open Access Journals (Sweden)

    Hossein Mozdarani

    2012-01-01

    Full Text Available Although radiation carcinogenesis has been shown both experimentally and epidemiologically, the use of ionizing radiation is also one of the major modalities in cancer treatment. Various known cellular and molecular events are involved in carcinogenesis. Apart from the known phenomena, there could be implications for carcinogenesis and cancer prevention due to other biological processes such as the bystander effect, the abscopal effect, intrinsic radiosensitivity and radioadaptation. Bystander effects have consequences for mutation initiated cancer paradigms of radiation carcinogenesis, which provide the mechanistic justification for low-dose risk estimates. The abscopal effect is potentially important for tumor control and is mediated through cytokines and/or the immune system (mainly cell-mediated immunity. It results from loss of growth and stimulatory and/or immunosuppressive factors from the tumor. Intrinsic radiosensitivity is a feature of some cancer prone chromosomal breakage syndromes such as ataxia telangectiasia. Radiosensitivity is manifested as higher chromosomal aberrations and DNA repair impairment is now known as a good biomarker for breast cancer screening and prediction of prognosis. However, it is not yet known whether this effect is good or bad for those receiving radiation or radiomimetic agents for treatment. Radiation hormesis is another major concern for carcinogenesis. This process which protects cells from higher doses of radiation or radio mimic chemicals, may lead to the escape of cells from mitotic death or apoptosis and put cells with a lower amount of damage into the process of cancer induction. Therefore, any of these biological phenomena could have impact on another process giving rise to genome instability of cells which are not in the field of radiation but still receiving a lower amount of radiation. For prevention of radiation induced carcinogenesis or risk assessment as well as for successful radiation

  12. Indirect application of near infrared light induces neuro-protection in a mouse model of parkinsonism - an abscopal neuro-protective effective evaluation

    International Nuclear Information System (INIS)

    Johnstone, D.M.; Spana, S.; Purushothuman, S.; Stone, J.; Mitrofanis, J.; Johnstone, D.M.; Spana, S.; Purushothuman, S.; Stone, J.; El Massri, N.; Mitrofanis, J.; Moro, C.; Torres, N.; Chabrol, C.; De Jaeger, X.; Reinhart, F.; Benabid, A.L.; Wang, X.S.

    2014-01-01

    We have previously shown near infrared light (NIr), directed transcranially, mitigates the loss of dopaminergic cells in MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-treated mice, a model of parkinsonism. These findings complement others suggesting NIr treatment protects against damage from various insults. However one puzzling feature of NIr treatment is that unilateral exposure can lead to a bilateral healing response, suggesting NIr may have 'indirect' protective effects. We investigated whether remote NIr treatment is neuro-protective by administering different MPTP doses (50-, 75-, 100-mg/kg) to mice and treating with 670-nm light directed specifically at either the head or body. Our results show that, despite no direct irradiation of the damaged tissue, remote NIr treatment produces a significant rescue of tyrosine hydroxylase-positive cells in the substantia nigra pars compacta at the milder MPTP dose of 50-mg/kg (30% increase vs sham-treated MPTP mice, p≤ 0.05). However this protection did not appear as robust as that achieved by direct irradiation of the head (50% increase vs sham-treated MPTP mice, p ≤0.001). There was no quantifiable protective effect of NIr at higher MPTP doses, irrespective of the delivery mode. Astrocyte and microglia cell numbers in substantia nigra pars compacta were not influenced by either mode of NIr treatment. In summary, the findings suggest that treatment of a remote tissue with NIr is sufficient to induce protection of the brain, reminiscent of the 'abscopal effect' sometimes observed in radiation treatment of metastatic cancer. This discovery has implications for the clinical translation of light-based therapies, providing an improved mode of delivery over trans-cranial irradiation. (authors)

  13. TU-CD-303-02: Beyond Radiation Induced Double Strand Breaks - a New Horizon for Radiation Therapy Research

    Energy Technology Data Exchange (ETDEWEB)

    Chang, S. [UNC School of Medicine (United States)

    2015-06-15

    Recent advances in cancer research have shed new light on the complex processes of how therapeutic radiation initiates changes at cellular, tissue, and system levels that may lead to clinical effects. These new advances may transform the way we use radiation to combat certain types of cancers. For the past two decades many technological advancements in radiation therapy have been largely based on the hypothesis that direct radiation-induced DNA double strand breaks cause cell death and thus tumor control and normal tissue damage. However, new insights have elucidated that in addition to causing cellular DNA damage, localized therapeutic radiation also initiates cascades of complex downstream biological responses in tissue that extend far beyond where therapeutic radiation dose is directly deposited. For instance, studies show that irradiated dying tumor cells release tumor antigens that can lead the immune system to a systemic anti-cancer attack throughout the body of cancer patient; targeted irradiation to solid tumor also increases the migration of tumor cells already in bloodstream, the seeds of potential metastasis. Some of the new insights may explain the long ago discovered but still unexplained non-localized radiation effects (bystander effect and abscopal effect) and the efficacy of spatially fractionated radiation therapy (microbeam radiation therapy and GRID therapy) where many “hot” and “cold” spots are intentionally created throughout the treatment volume. Better understanding of the mechanisms behind the non-localized radiation effects creates tremendous opportunities to develop new and integrated cancer treatment strategies that are based on radiotherapy, immunology, and chemotherapy. However, in the multidisciplinary effort to advance new radiobiology, there are also tremendous challenges including a lack of multidisciplinary researchers and imaging technologies for the microscopic radiation-induced responses. A better grasp of the essence of

  14. TU-CD-303-02: Beyond Radiation Induced Double Strand Breaks - a New Horizon for Radiation Therapy Research

    International Nuclear Information System (INIS)

    Chang, S.

    2015-01-01

    Recent advances in cancer research have shed new light on the complex processes of how therapeutic radiation initiates changes at cellular, tissue, and system levels that may lead to clinical effects. These new advances may transform the way we use radiation to combat certain types of cancers. For the past two decades many technological advancements in radiation therapy have been largely based on the hypothesis that direct radiation-induced DNA double strand breaks cause cell death and thus tumor control and normal tissue damage. However, new insights have elucidated that in addition to causing cellular DNA damage, localized therapeutic radiation also initiates cascades of complex downstream biological responses in tissue that extend far beyond where therapeutic radiation dose is directly deposited. For instance, studies show that irradiated dying tumor cells release tumor antigens that can lead the immune system to a systemic anti-cancer attack throughout the body of cancer patient; targeted irradiation to solid tumor also increases the migration of tumor cells already in bloodstream, the seeds of potential metastasis. Some of the new insights may explain the long ago discovered but still unexplained non-localized radiation effects (bystander effect and abscopal effect) and the efficacy of spatially fractionated radiation therapy (microbeam radiation therapy and GRID therapy) where many “hot” and “cold” spots are intentionally created throughout the treatment volume. Better understanding of the mechanisms behind the non-localized radiation effects creates tremendous opportunities to develop new and integrated cancer treatment strategies that are based on radiotherapy, immunology, and chemotherapy. However, in the multidisciplinary effort to advance new radiobiology, there are also tremendous challenges including a lack of multidisciplinary researchers and imaging technologies for the microscopic radiation-induced responses. A better grasp of the essence of

  15. Radionuclides in radiation-induced bystander effect; may it share in radionuclide therapy?

    Science.gov (United States)

    Widel, M

    2017-01-01

    For many years in radiobiology and radiotherapy predominated the conviction that cellular DNA is the main target for ionizing radiation, however, the view has changed in the past 20 years. Nowadays, it is assumed that not only directed (targeted) radiation effect, but also an indirect (non-targeted) effect may contribute to the result of radiation treatment. Non-targeted effect is relatively well recognized after external beam irradiation in vitro and in vivo, and comprises such phenomena like radiation-induced bystander effect (RIBE), genomic instability, adaptive response and abscopal (out of field) effect. These stress-induced and molecular signaling mediated phenomena appear in non-targeted cells as variety responses resembling that observed in directly hit cells. Bystander effects can be both detrimental and beneficial in dependence on dose, dose-rate, cell type, genetic status and experimental condition. Less is known about radionuclide-induced non-targeted effects in radionuclide therapy, although, based on characteristics of the radionuclide radiation, on experiments in vitro utilizing classical and 3-D cell cultures, and preclinical study on animals it seems obvious that exposure to radionuclide is accompanied by various bystander effects, mostly damaging, less often protective. This review summarizes existing data on radionuclide induced bystander effects comprising radionuclides emitting beta- and alpha-particles and Auger electrons used in tumor radiotherapy and diagnostics. So far, separation of the direct effect of radionuclide decay from crossfire and bystander effects in clinical targeted radionuclide therapy is impossible because of the lack of methods to assess whether, and to what extent bystander effect is involved in human organism. Considerations on this topic are also included.

  16. TU-CD-303-04: Radiation-Induced Long Distance Tumor Cell Migration Into and Out of the Radiation Field and Its Clinical Implication

    International Nuclear Information System (INIS)

    Graves, E.

    2015-01-01

    Recent advances in cancer research have shed new light on the complex processes of how therapeutic radiation initiates changes at cellular, tissue, and system levels that may lead to clinical effects. These new advances may transform the way we use radiation to combat certain types of cancers. For the past two decades many technological advancements in radiation therapy have been largely based on the hypothesis that direct radiation-induced DNA double strand breaks cause cell death and thus tumor control and normal tissue damage. However, new insights have elucidated that in addition to causing cellular DNA damage, localized therapeutic radiation also initiates cascades of complex downstream biological responses in tissue that extend far beyond where therapeutic radiation dose is directly deposited. For instance, studies show that irradiated dying tumor cells release tumor antigens that can lead the immune system to a systemic anti-cancer attack throughout the body of cancer patient; targeted irradiation to solid tumor also increases the migration of tumor cells already in bloodstream, the seeds of potential metastasis. Some of the new insights may explain the long ago discovered but still unexplained non-localized radiation effects (bystander effect and abscopal effect) and the efficacy of spatially fractionated radiation therapy (microbeam radiation therapy and GRID therapy) where many “hot” and “cold” spots are intentionally created throughout the treatment volume. Better understanding of the mechanisms behind the non-localized radiation effects creates tremendous opportunities to develop new and integrated cancer treatment strategies that are based on radiotherapy, immunology, and chemotherapy. However, in the multidisciplinary effort to advance new radiobiology, there are also tremendous challenges including a lack of multidisciplinary researchers and imaging technologies for the microscopic radiation-induced responses. A better grasp of the essence of

  17. TU-CD-303-04: Radiation-Induced Long Distance Tumor Cell Migration Into and Out of the Radiation Field and Its Clinical Implication

    Energy Technology Data Exchange (ETDEWEB)

    Graves, E. [Stanford University (United States)

    2015-06-15

    Recent advances in cancer research have shed new light on the complex processes of how therapeutic radiation initiates changes at cellular, tissue, and system levels that may lead to clinical effects. These new advances may transform the way we use radiation to combat certain types of cancers. For the past two decades many technological advancements in radiation therapy have been largely based on the hypothesis that direct radiation-induced DNA double strand breaks cause cell death and thus tumor control and normal tissue damage. However, new insights have elucidated that in addition to causing cellular DNA damage, localized therapeutic radiation also initiates cascades of complex downstream biological responses in tissue that extend far beyond where therapeutic radiation dose is directly deposited. For instance, studies show that irradiated dying tumor cells release tumor antigens that can lead the immune system to a systemic anti-cancer attack throughout the body of cancer patient; targeted irradiation to solid tumor also increases the migration of tumor cells already in bloodstream, the seeds of potential metastasis. Some of the new insights may explain the long ago discovered but still unexplained non-localized radiation effects (bystander effect and abscopal effect) and the efficacy of spatially fractionated radiation therapy (microbeam radiation therapy and GRID therapy) where many “hot” and “cold” spots are intentionally created throughout the treatment volume. Better understanding of the mechanisms behind the non-localized radiation effects creates tremendous opportunities to develop new and integrated cancer treatment strategies that are based on radiotherapy, immunology, and chemotherapy. However, in the multidisciplinary effort to advance new radiobiology, there are also tremendous challenges including a lack of multidisciplinary researchers and imaging technologies for the microscopic radiation-induced responses. A better grasp of the essence of

  18. Pathophysiological effects of radiation on atherosclerosis development and progression, and the incidence of cardiovascular complications

    International Nuclear Information System (INIS)

    Basavaraju, Sekhara Rao; Easterly, Clay E.

    2002-01-01

    Radiation therapy while important in the management of several diseases, is implicated in the causation of atherosclerosis and other cardiovascular complications. Cancer and atherosclerosis go through the same stages of initiation, promotion, and complication, beginning with a mutation in a single cell. Clinical observations before the 1960s lead to the belief that the heart is relatively resistant to the doses of radiation used in radiotherapy. Subsequently, it was discovered that the heart is sensitive to radiation and many cardiac structures may be damaged by radiation exposure. A significantly higher risk of death due to ischemic heart disease has been reported for patients treated with radiation for Hodgkin's disease and breast cancer. Certain cytokines and growth factors, such as TGF-β1 and IL-1 β, may stimulate radiation-induced endothelial proliferation, fibroblast proliferation, collagen deposition, and fibrosis leading to advanced lesions of atherosclerosis. The treatment for radiation-induced ischemic heart disease includes conventional pharmacological therapy, balloon angioplasty, and bypass surgery. Endovascular irradiation has been shown to be effective in reducing restenosis-like response to balloon-catheter injury in animal models. Caution must be exercised when radiation therapy is combined with doxorubicin because there appears to be a synergistic toxic effect on the myocardium. Damage to endothelial cells is a central event in the pathogenesis of damage to the coronary arteries. Certain growth factors that interfere with the apoptotic pathway may provide new therapeutic strategies for reducing the risk of radiation-induced damage to the heart. Exposure to low level occupational or environmental radiation appears to pose no undue risk of atherosclerosis development or cardiovascular mortality. But, other radiation-induced processes such as the bystander effects, abscopal effects, hormesis, and individual variations in radiosensitivity may be

  19. Factors influencing radiation-induced impairment of rat liver mitochondrial oxidative phosphorylation

    International Nuclear Information System (INIS)

    Alexander, K.C.; Aiyar, A.S.; Sreenivasan, A.

    1975-01-01

    The influence of some experimental conditions on the radiation-induced impairment of oxidative phosphorylation in rat liver mitochondria has been studied. Shielding of the liver during whole body irradiation of the animal does not significantly alter the decreased efficiency of phosphorylation. There exists a great disparity in the in vivo and in vitro radiation doses required for the manifestation of damage to liver mitochondria. While these observations point to the abscopal nature of the radiation effects, direct involvement of the adrenals has been ruled out by studies with adrenalectomised rats. Prior administration of the well known radio-protective agents, serotonin or 2-aminoethyl isothiouronium bromide hydrobromide, is effective in preventing the derangement of mitochondrial function following radioexposure. The hypocholesterolemic drug ethyl-α-p-chlorophenoxy isobutyrate, which is known to influence hepatic mitochondrial turnover, does not afford any significant protection against either mitochondrial damage or the mortality of the animals due to whole body irradiation. (author)

  20. Bystander effects and their implications for clinical radiotherapy

    International Nuclear Information System (INIS)

    Munro, Alastair J

    2009-01-01

    Radiation-induced bystander effects are defined as those biological effects expressed, after irradiation, by cells whose nuclei have not been directly irradiated. Radiation oncologists are only gradually beginning to appreciate the clinical relevance of radiation-induced bystander effects and associated phenomena: adaptive responses, genomic instability and abscopal effects. Incorporating bystander effects into the science underpinning clinical radiotherapy will involve moving beyond simple mechanistic models and towards a more systems-based approach. It is, given the protean nature of bystander effects, difficult to devise a coherent research strategy to investigate the clinical impact and relevance of bystander phenomena. Epidemiological approaches will be required, the traditional research models based on randomised controlled trials are unlikely to be adequate for the task. Any consideration of bystander effects challenges not only clinicians' preconceptions concerning the effects of radiation on tumours and normal tissues but also their ingenuity. This review covers, from a clinical perspective, the issues and problems associated with radiation-induced bystander effects.

  1. Non-targeted effects of ionising radiation—Implications for low dose risk

    DEFF Research Database (Denmark)

    Kadhim, Munira; Salomaa, Sisko; Wright, Eric

    2013-01-01

    and adaptive responses are powered by fundamental, but not clearly understood systems that maintain tissue homeostasis. Despite excellent research in this field by various groups, there are still gaps in our understanding of the likely mechanisms associated with non-DNA targeted effects, particularly......Non-DNA targeted effects of ionising radiation, which include genomic instability, and a variety of bystander effects including abscopal effects and bystander mediated adaptive response, have raised concerns about the magnitude of low-dose radiation risk. Genomic instability, bystander effects....... Furthermore, it is still not known what the initial target and early interactions in cells are that give rise to non-targeted responses in neighbouring or descendant cells. This paper provides a commentary on the current state of the field as a result of the non-targeted effects of ionising radiation (NOTE...

  2. Current clinical trials testing combinations of immunotherapy and radiation.

    Science.gov (United States)

    Crittenden, Marka; Kohrt, Holbrook; Levy, Ronald; Jones, Jennifer; Camphausen, Kevin; Dicker, Adam; Demaria, Sandra; Formenti, Silvia

    2015-01-01

    Preclinical evidence of successful combinations of ionizing radiation with immunotherapy has inspired testing the translation of these results to the clinic. Interestingly, the preclinical work has consistently predicted the responses encountered in clinical trials. The first example came from a proof-of-principle trial started in 2001 that tested the concept that growth factors acting on antigen-presenting cells improve presentation of tumor antigens released by radiation and induce an abscopal effect. Granulocyte-macrophage colony-stimulating factor was administered during radiotherapy to a metastatic site in patients with metastatic solid tumors to translate evidence obtained in a murine model of syngeneic mammary carcinoma treated with cytokine FLT-3L and radiation. Subsequent clinical availability of vaccines and immune checkpoint inhibitors has triggered a wave of enthusiasm for testing them in combination with radiotherapy. Examples of ongoing clinical trials are described in this report. Importantly, most of these trials include careful immune monitoring of the patients enrolled and will generate important data about the proimmunogenic effects of radiation in combination with a variety of immune modulators, in different disease settings. Results of these studies are building a platform of evidence for radiotherapy as an adjuvant to immunotherapy and encourage the growth of this novel field of radiation oncology. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. TU-CD-303-03: Localized Radiation Can Induce Systemic Anti-Cancer Immune and Non-Immune Responses and How We Might Utilize It

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, M. [National Institutes of Health (United States)

    2015-06-15

    Recent advances in cancer research have shed new light on the complex processes of how therapeutic radiation initiates changes at cellular, tissue, and system levels that may lead to clinical effects. These new advances may transform the way we use radiation to combat certain types of cancers. For the past two decades many technological advancements in radiation therapy have been largely based on the hypothesis that direct radiation-induced DNA double strand breaks cause cell death and thus tumor control and normal tissue damage. However, new insights have elucidated that in addition to causing cellular DNA damage, localized therapeutic radiation also initiates cascades of complex downstream biological responses in tissue that extend far beyond where therapeutic radiation dose is directly deposited. For instance, studies show that irradiated dying tumor cells release tumor antigens that can lead the immune system to a systemic anti-cancer attack throughout the body of cancer patient; targeted irradiation to solid tumor also increases the migration of tumor cells already in bloodstream, the seeds of potential metastasis. Some of the new insights may explain the long ago discovered but still unexplained non-localized radiation effects (bystander effect and abscopal effect) and the efficacy of spatially fractionated radiation therapy (microbeam radiation therapy and GRID therapy) where many “hot” and “cold” spots are intentionally created throughout the treatment volume. Better understanding of the mechanisms behind the non-localized radiation effects creates tremendous opportunities to develop new and integrated cancer treatment strategies that are based on radiotherapy, immunology, and chemotherapy. However, in the multidisciplinary effort to advance new radiobiology, there are also tremendous challenges including a lack of multidisciplinary researchers and imaging technologies for the microscopic radiation-induced responses. A better grasp of the essence of

  4. TU-CD-303-03: Localized Radiation Can Induce Systemic Anti-Cancer Immune and Non-Immune Responses and How We Might Utilize It

    International Nuclear Information System (INIS)

    Ahmed, M.

    2015-01-01

    Recent advances in cancer research have shed new light on the complex processes of how therapeutic radiation initiates changes at cellular, tissue, and system levels that may lead to clinical effects. These new advances may transform the way we use radiation to combat certain types of cancers. For the past two decades many technological advancements in radiation therapy have been largely based on the hypothesis that direct radiation-induced DNA double strand breaks cause cell death and thus tumor control and normal tissue damage. However, new insights have elucidated that in addition to causing cellular DNA damage, localized therapeutic radiation also initiates cascades of complex downstream biological responses in tissue that extend far beyond where therapeutic radiation dose is directly deposited. For instance, studies show that irradiated dying tumor cells release tumor antigens that can lead the immune system to a systemic anti-cancer attack throughout the body of cancer patient; targeted irradiation to solid tumor also increases the migration of tumor cells already in bloodstream, the seeds of potential metastasis. Some of the new insights may explain the long ago discovered but still unexplained non-localized radiation effects (bystander effect and abscopal effect) and the efficacy of spatially fractionated radiation therapy (microbeam radiation therapy and GRID therapy) where many “hot” and “cold” spots are intentionally created throughout the treatment volume. Better understanding of the mechanisms behind the non-localized radiation effects creates tremendous opportunities to develop new and integrated cancer treatment strategies that are based on radiotherapy, immunology, and chemotherapy. However, in the multidisciplinary effort to advance new radiobiology, there are also tremendous challenges including a lack of multidisciplinary researchers and imaging technologies for the microscopic radiation-induced responses. A better grasp of the essence of

  5. Radiation carcinogenesis. Progress report IV, 15 March 1976--15 May 1977

    International Nuclear Information System (INIS)

    Warren, S.; Gates, O.

    1977-01-01

    The series of parabiont and irradiated rats has been completed, the lesions diagnosed and the data pertinent to tumors computerized and partly analyzed. The same series yielded 74 percent incidence of cataract in the irradiated partner following a whole-body dose of 1000 R with 0.2 percent in the shielded partner and also in controls. There was no abscopal effect. Other structures of the eye beside the lens, particularly the retina, showed extensive radiation damage. Parabiosis increased the incidence rate of leukemia from one percent in control single rats to five percent. Irradiation of one partner decreased the rate to 2.5 percent. Similar effects were noted for solid lymphoid tumors. A pilot study of prostatic cancer in irradiated parabiont rats demonstrated a tenfold increase in incidence. Experimental protocols bearing on cocarcinogenesis have been initiated in mice and rats, using radiation, asbestos and chemical carcinogens, but no results have been as yet obtained. We have obtained additional evidence suggesting the importance of prolactin as a cocarcinogen with radiation for induction of mammary tumors in the rat and are continuing our collaborative study of hormonal aasays in the blood of parabiont rats

  6. The future impacts of non-targeted effects.

    Science.gov (United States)

    Bright, Scott; Kadhim, Munira

    2018-04-11

    Ionizing radiation was traditionally thought to exert its detrimental effects through interaction with sensitive cellular targets, nuclear DNA being of most importance. This theory has since merged with a more recently described radiation response called non-targeted effects (NTE). This review will briefly look at the various types of NTE and the potential implications they may have for radiobiology research and its applications. The most well-known NTE are genomic instability (GI) and bystander effects (BE). Other NTE include abscopal effects, which are similar to bystander effects but are generally based in a clinical environment with immune involvement as the defining feature. Currently, our understanding of NTE is limited to certain signaling pathways/molecules, and as yet there is no theory that describes or can accurately predict the occurrence or outcome of these NTE. There are numerous groups investigating these processes in vitro and in vivo, and thus steady progress is being made. Developing a deeper understanding of NTE has potential impacts for therapy and diagnosis, safer occupational exposures, space flight and our general understanding of radiation biology.

  7. History of bystander effects research 1905-present; what is in a name?

    Science.gov (United States)

    Mothersill, Carmel; Rusin, Andrej; Fernandez-Palomo, Cristian; Seymour, Colin

    2017-11-29

    This review, which arose from a Radiation Research Society History symposium, traces the history of 'bystander effects' or 'indirect effects'(also known as 'abscopal effects', 'clastogenic effects' and more recently 'the secretosome'). In 1905, Murphy first drew attention to effects caused by the injection of irradiated cells into animals. In the present day, bystander effects are seen as part of the secretosome, where they coordinate responses to stressors at the tissue, organism, and population level. The review considers the history and also the reasons why this process of information exchange/communication appears to have been discovered and forgotten several times. The review then considers the evolution of our understanding of the mechanisms and what relevance these effects may have in radiation protection and radiotherapy. The authors conclude that the phenomenon currently described as a 'bystander effect' has been described under a variety of different names since 1905. However recent advances in biology have made it possible to investigate mechanisms and potential impacts more fully. This has led to the current upsurge in research into this effect of radiation.

  8. Bystander effects and radiotherapy.

    Science.gov (United States)

    Marín, Alicia; Martín, Margarita; Liñán, Olga; Alvarenga, Felipe; López, Mario; Fernández, Laura; Büchser, David; Cerezo, Laura

    2015-01-01

    Radiation-induced bystander effects are defined as biological effects expressed after irradiation by cells whose nuclei have not been directly irradiated. These effects include DNA damage, chromosomal instability, mutation, and apoptosis. There is considerable evidence that ionizing radiation affects cells located near the site of irradiation, which respond individually and collectively as part of a large interconnected web. These bystander signals can alter the dynamic equilibrium between proliferation, apoptosis, quiescence or differentiation. The aim of this review is to examine the most important biological effects of this phenomenon with regard to areas of major interest in radiotherapy. Such aspects include radiation-induced bystander effects during the cell cycle under hypoxic conditions when administering fractionated modalities or combined radio-chemotherapy. Other relevant aspects include individual variation and genetics in toxicity of bystander factors and normal tissue collateral damage. In advanced radiotherapy techniques, such as intensity-modulated radiation therapy (IMRT), the high degree of dose conformity to the target volume reduces the dose and, therefore, the risk of complications, to normal tissues. However, significant doses can accumulate out-of-field due to photon scattering and this may impact cellular response in these regions. Protons may offer a solution to reduce out-of-field doses. The bystander effect has numerous associated phenomena, including adaptive response, genomic instability, and abscopal effects. Also, the bystander effect can influence radiation protection and oxidative stress. It is essential that we understand the mechanisms underlying the bystander effect in order to more accurately assess radiation risk and to evaluate protocols for cancer radiotherapy.

  9. Toxicity risk of non-target organs at risk receiving low-dose radiation: case report

    International Nuclear Information System (INIS)

    Shueng, Pei-Wei; Lin, Shih-Chiang; Chang, Hou-Tai; Chong, Ngot-Swan; Chen, Yu-Jen; Wang, Li-Ying; Hsieh, Yen-Ping; Hsieh, Chen-Hsi

    2009-01-01

    The spine is the most common site for bone metastases. Radiation therapy is a common treatment for palliation of pain and for prevention or treatment of spinal cord compression. Helical tomotherapy (HT), a new image-guided intensity modulated radiotherapy (IMRT), delivers highly conformal dose distributions and provides an impressive ability to spare adjacent organs at risk, thus increasing the local control of spinal column metastases and decreasing the potential risk of critical organs under treatment. However, there are a lot of non-target organs at risk (OARs) occupied by low dose with underestimate in this modern rotational IMRT treatment. Herein, we report a case of a pathologic compression fracture of the T9 vertebra in a 55-year-old patient with cholangiocarcinoma. The patient underwent HT at a dose of 30 Gy/10 fractions delivered to T8-T10 for symptom relief. Two weeks after the radiotherapy had been completed, the first course of chemotherapy comprising gemcitabine, fluorouracil, and leucovorin was administered. After two weeks of chemotherapy, however, the patient developed progressive dyspnea. A computed tomography scan of the chest revealed an interstitial pattern with traction bronchiectasis, diffuse ground-glass opacities, and cystic change with fibrosis. Acute radiation pneumonitis was diagnosed. Oncologists should be alert to the potential risk of radiation toxicities caused by low dose off-targets and abscopal effects even with highly conformal radiotherapy

  10. Microwave Ablation and Immune Activation in the Treatment of Recurrent Colorectal Lung Metastases: A Case Report

    Directory of Open Access Journals (Sweden)

    Magnus Bäcklund

    2017-04-01

    Full Text Available We present a patient with colorectal metastases confined to the lungs and treated with multiple resections until this was not an option anymore, followed by stereotactic body radiation therapy until this option was drained. Then, the patient was successfully treated with multiple microwave ablations combined with immunological activation targeting the programmed cell death 1 receptor (PD-1, possibly instigating a powerful abscopal effect. Techniques, doses, and radiological findings are presented.

  11. Role of Smac in Lung Carcinogenesis and Therapy

    Science.gov (United States)

    2017-07-01

    radiotherapy and a smac mimetic. Since anti-PD1 immunotherapy is shown to be superior to platin-based cytotoxic chemotherapy and change the landscape of lung...which combining a SMAC mimetic and radiotherapy yields therapeutic synergy and whether this combination yields abscopal effects from radiotherapy. 2...lung cancer since there was a delay in obtaining the smac knockout mice. Aim 2: Determine the abscopal effect and optimize the therapeutic ratio of

  12. Biological radiation effects

    International Nuclear Information System (INIS)

    Gomes, R.A.

    1976-01-01

    The stages of processes leading to radiation damage are studied, as well as, the direct and indirect mechanics of its production. The radiation effects on nucleic acid and protein macro moleculas are treated. The physical and chemical factors that modify radiosensibility are analysed, in particular the oxygen effects, the sensibilization by analogues of nitrogen bases, post-effects, chemical protection and inherent cell factors. Consideration is given to restoration processes by excision of injured fragments, the bloching of the excision restoration processes, the restoration of lesions caused by ionizing radiations and to the restoration by genetic recombination. Referring to somatic effects of radiation, the early ones and the acute syndrome of radiation are discussed. The difference of radiosensibility observed in mammalian cells and main observable alterations in tissues and organs are commented. Referring to delayed radiation effects, carcinogeneses, alterations of life span, effects on growth and development, as well as localized effects, are also discussed [pt

  13. Biophysical radiation effects

    International Nuclear Information System (INIS)

    Fidorra, J.

    1982-07-01

    The biological effectiveness of ionizing radiation is based upon the absorption of energy in molecular structures of a cell. Because of the quantum nature of radiation large fluctuations of energy concentration in subcellulare regions has to be considered. In addition both the spatial distribution of a sensitive molecular target and cellulare repair processes has to be taken into consideration for an assessment of radiation action. In radiation protection the difference between the quality factor and the Relative Biological Effectiveness has a fundamental meaning and will be discussed in more detail. The present report includes a short review on some relevant models on radiation action and a short discussion on effects of low dose irradiation. (orig.) [de

  14. Biological effects of ionizing radiation

    International Nuclear Information System (INIS)

    Heribanova, A.

    1995-01-01

    The basic principles and pathways of effects of ionizing radiation on living organisms and cells are outlined. The following topics are covered: effects of radiation on living matter (direct effects, radical or indirect effects, dual radiation action, and molecular biological theories); effects of radiation on cells and tissues (cell depletion, changes in the cytogenetic information, reparation mechanisms), dose-response relationship (deterministic effects, stochastic effects), and the effects of radiation on man (acute radiation sickness, acute local changes, fetus injuries, non-tumorous late injuries, malignant tumors, genetic changes). (P.A.). 3 tabs., 2 figs., 5 refs

  15. Radiation effects and radioprotectors

    Energy Technology Data Exchange (ETDEWEB)

    Purohit, R.K., E-mail: dr_rajendra_purohit@yahoo.co.in [Radiation Biology Laboratory, Department of Zoology, Govt. Dungar College, Bikaner (India); Bugalia, Saroj [Department of Zoology, S.K. Kalyan College, Sikar (India); Dakshene, Monika [Department of Chemistry, Govt. College, Kota (India)

    2012-07-01

    Radiation exposure causes damage to biological systems and these damages are mediated by the generation of free radicals and reactive oxygen species targeting vital cellular components such as DNA and membranes. DNA repair systems and the endogenous cellular biochemical defense mechanisms against reactive oxygen species and antioxidants enzymes like reduced Glutathione (GSH), Superoxide dismutase, Glutathione peroxidase catalase etc. fail upon exposures to higher as well as chronic radiation doses leading to alterations in cell functions, cell death or mutations. Radioprotectors prevent these alterations and protect cells and tissues from the deleterious effects of radiations. Radioprotectors are of great importance due to their possible and potential application during planned radiation exposures such as radiotherapy, diagnostic scanning, clean up operations in nuclear accidents, space expeditions etc. and Unplanned radiations exposures such as accidents in nuclear industry, nuclear terrorism, natural background radiation etc. Many of the available synthetic radioprotectors are toxic to mammalian system at doses required to be effective as radioprotector. Increasing uses of ionizing radiation have drawn the attention of many radiobiologists towards their undesired side effects produced in various tissues and for modifying them to facilitate the beneficial uses of radiation. Modification of radiation response is obtained by means of chemical substances that can significantly decrease the magnitude of response when present in a biological system during irradiation. Radioprotectors are chemicals that modify a cell's response to radiation. Radioprotectors are drugs that protect normal (non cancerous) cells from the damage caused by radiation therapy. These agents promote the repair of normal cells that are exposed to radiation. Various chemicals, like Cysteamine, MPG , WR-2721 have been tested for the protection against harmful effects of radiation. These radio

  16. Radiation effects and radioprotectors

    International Nuclear Information System (INIS)

    Purohit, R.K.; Bugalia, Saroj; Dakshene, Monika

    2012-01-01

    Radiation exposure causes damage to biological systems and these damages are mediated by the generation of free radicals and reactive oxygen species targeting vital cellular components such as DNA and membranes. DNA repair systems and the endogenous cellular biochemical defense mechanisms against reactive oxygen species and antioxidants enzymes like reduced Glutathione (GSH), Superoxide dismutase, Glutathione peroxidase catalase etc. fail upon exposures to higher as well as chronic radiation doses leading to alterations in cell functions, cell death or mutations. Radioprotectors prevent these alterations and protect cells and tissues from the deleterious effects of radiations. Radioprotectors are of great importance due to their possible and potential application during planned radiation exposures such as radiotherapy, diagnostic scanning, clean up operations in nuclear accidents, space expeditions etc. and Unplanned radiations exposures such as accidents in nuclear industry, nuclear terrorism, natural background radiation etc. Many of the available synthetic radioprotectors are toxic to mammalian system at doses required to be effective as radioprotector. Increasing uses of ionizing radiation have drawn the attention of many radiobiologists towards their undesired side effects produced in various tissues and for modifying them to facilitate the beneficial uses of radiation. Modification of radiation response is obtained by means of chemical substances that can significantly decrease the magnitude of response when present in a biological system during irradiation. Radioprotectors are chemicals that modify a cell's response to radiation. Radioprotectors are drugs that protect normal (non cancerous) cells from the damage caused by radiation therapy. These agents promote the repair of normal cells that are exposed to radiation. Various chemicals, like Cysteamine, MPG , WR-2721 have been tested for the protection against harmful effects of radiation. These radio

  17. TU-CD-303-05: Unveiling Tumor Heterogeneity by Molecular Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Jeraj, R. [University of Wisconsin (United States)

    2015-06-15

    Recent advances in cancer research have shed new light on the complex processes of how therapeutic radiation initiates changes at cellular, tissue, and system levels that may lead to clinical effects. These new advances may transform the way we use radiation to combat certain types of cancers. For the past two decades many technological advancements in radiation therapy have been largely based on the hypothesis that direct radiation-induced DNA double strand breaks cause cell death and thus tumor control and normal tissue damage. However, new insights have elucidated that in addition to causing cellular DNA damage, localized therapeutic radiation also initiates cascades of complex downstream biological responses in tissue that extend far beyond where therapeutic radiation dose is directly deposited. For instance, studies show that irradiated dying tumor cells release tumor antigens that can lead the immune system to a systemic anti-cancer attack throughout the body of cancer patient; targeted irradiation to solid tumor also increases the migration of tumor cells already in bloodstream, the seeds of potential metastasis. Some of the new insights may explain the long ago discovered but still unexplained non-localized radiation effects (bystander effect and abscopal effect) and the efficacy of spatially fractionated radiation therapy (microbeam radiation therapy and GRID therapy) where many “hot” and “cold” spots are intentionally created throughout the treatment volume. Better understanding of the mechanisms behind the non-localized radiation effects creates tremendous opportunities to develop new and integrated cancer treatment strategies that are based on radiotherapy, immunology, and chemotherapy. However, in the multidisciplinary effort to advance new radiobiology, there are also tremendous challenges including a lack of multidisciplinary researchers and imaging technologies for the microscopic radiation-induced responses. A better grasp of the essence of

  18. TU-CD-303-05: Unveiling Tumor Heterogeneity by Molecular Imaging

    International Nuclear Information System (INIS)

    Jeraj, R.

    2015-01-01

    Recent advances in cancer research have shed new light on the complex processes of how therapeutic radiation initiates changes at cellular, tissue, and system levels that may lead to clinical effects. These new advances may transform the way we use radiation to combat certain types of cancers. For the past two decades many technological advancements in radiation therapy have been largely based on the hypothesis that direct radiation-induced DNA double strand breaks cause cell death and thus tumor control and normal tissue damage. However, new insights have elucidated that in addition to causing cellular DNA damage, localized therapeutic radiation also initiates cascades of complex downstream biological responses in tissue that extend far beyond where therapeutic radiation dose is directly deposited. For instance, studies show that irradiated dying tumor cells release tumor antigens that can lead the immune system to a systemic anti-cancer attack throughout the body of cancer patient; targeted irradiation to solid tumor also increases the migration of tumor cells already in bloodstream, the seeds of potential metastasis. Some of the new insights may explain the long ago discovered but still unexplained non-localized radiation effects (bystander effect and abscopal effect) and the efficacy of spatially fractionated radiation therapy (microbeam radiation therapy and GRID therapy) where many “hot” and “cold” spots are intentionally created throughout the treatment volume. Better understanding of the mechanisms behind the non-localized radiation effects creates tremendous opportunities to develop new and integrated cancer treatment strategies that are based on radiotherapy, immunology, and chemotherapy. However, in the multidisciplinary effort to advance new radiobiology, there are also tremendous challenges including a lack of multidisciplinary researchers and imaging technologies for the microscopic radiation-induced responses. A better grasp of the essence of

  19. Biological effects of ionizing radiation

    International Nuclear Information System (INIS)

    Marko, A.M.

    1981-05-01

    In this review radiation produced by the nuclear industry is placed into context with other sources of radiation in our world. Human health effects of radiation, derivation of standards and risk estimates are reviewed in this document. The implications of exposing the worker and the general population to radiation generated by nuclear power are assessed. Effects of radiation are also reviewed. Finally, gaps in our knowledge concerning radiation are identified and current research on biological effects, on environmental aspects, and on dosimetry of radiation within AECL and Canada is documented in this report. (author)

  20. Biological Effects of Ionizing Radiation

    Science.gov (United States)

    Ingram, M.; Mason, W. B.; Whipple, G. H.; Howland, J. W.

    1952-04-07

    This report presents a review of present knowledge and concepts of the biological effects of ionizing radiations. Among the topics discussed are the physical and chemical effects of ionizing radiation on biological systems, morphological and physiological changes observed in biological systems subjected to ionizing radiations, physiological changes in the intact animal, latent changes following exposure of biological systems to ionizing radiations, factors influencing the biological response to ionizing radiation, relative effects of various ionizing radiations, and biological dosimetry.

  1. Effects of radiation-counselling convergence education on radiation awareness

    International Nuclear Information System (INIS)

    Seoung, Youl Hun

    2017-01-01

    The purpose of study was to analysis on the effects of radiation-counselling convergence education on radiation awareness. The survey objects were students of radiation-counselling convergence education from 12th May to 22th June in 2016. The questionnaires were education satisfactions and radiation awareness (risk, benefit, control) by Likert-type 5 scales. The analysis results revealed that education satisfactions of men students showed a significant higher female students and correlation coefficient of education satisfactions were the best high in the benefit and control of radiation. Finally radiation-counselling convergence education had a significant effect on radiation benefit. This convergence education influenced positive recognition on radiation benefit and it was indicated that radiation-counselors could treat clients on the basis of radiation benefit

  2. Effects of radiation-counselling convergence education on radiation awareness

    Energy Technology Data Exchange (ETDEWEB)

    Seoung, Youl Hun [Dept. of Radiological Science, College of Health Science, Cheongju University, Cheongju (Korea, Republic of)

    2017-06-15

    The purpose of study was to analysis on the effects of radiation-counselling convergence education on radiation awareness. The survey objects were students of radiation-counselling convergence education from 12th May to 22th June in 2016. The questionnaires were education satisfactions and radiation awareness (risk, benefit, control) by Likert-type 5 scales. The analysis results revealed that education satisfactions of men students showed a significant higher female students and correlation coefficient of education satisfactions were the best high in the benefit and control of radiation. Finally radiation-counselling convergence education had a significant effect on radiation benefit. This convergence education influenced positive recognition on radiation benefit and it was indicated that radiation-counselors could treat clients on the basis of radiation benefit.

  3. Biological radiation effects

    International Nuclear Information System (INIS)

    Kiefer, J.

    1989-01-01

    The book covers all aspects of biological radiation effects. The physical basis is dealt with in some detail, and the effects at the subcellular and the cellular level are discussed, taking into account modern developments and techniques. The effects on the human organism are reviewed, both from the point of view of applications in medicine as well as with regard to radiation hazards (teratogenic, gonadal and carcinogenic effects)

  4. Biological effects of particle radiation

    International Nuclear Information System (INIS)

    Sakamoto, Kiyohiko

    1988-01-01

    Conventional radiations such as photons, gamma rays or electrons show several physical or biological disadvantages to bring tumors to cure, therefore, more and more attentions is being paid to new modalitie such as fast neutrons, protons, negative pions and heavy ions, which are expected to overcome some of the defects of the conventional radiations. Except for fast neutrons, these particle radiations show excellet physical dose localization in tissue, moreover, in terms of biological effects, they demonstrate several features compared to conventional radiations, namely low oxygen enhancement ratio, high value of relative biological effectiveness, smaller cellular recovery, larger therapeutic gain factor and less cell cycle dependency in radiation sensitivity. In present paper the biological effects of particle radiations are shown comparing to the effects of conventional radiations. (author)

  5. Biological effects of ionising radiation

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    The paper reports the proceedings of a conference organised jointly by Friends of the Earth (U.K.) and Greenpeace (International). The aim of the conference was to discuss the effects of low level radiation, particularly on man, within the terms of dose/risk relationships. The topics discussed included: sources of radiation, radiation discharges from nuclear establishments, predictive modelling of radiation hazards, radiation effects at Hiroshima, low dose effects and ICRP dose limits, variation in sensitivity to radiation, and the link between childhood cancer and nuclear power. (U.K.)

  6. Health effects of radiation and the implications for radiation safety

    International Nuclear Information System (INIS)

    Gonzalez, A.J.; Anderer, J.

    1991-01-01

    In this Paper two elements of a multiphase analysis of radiation exposures in the living environment - the human health effects of ionizing radiation and the implications for radiation safety policy and practices - are presented. Part 1 draws together the current state of scientific knowledge and insight about the human health effects of radiation, describing these in terms of known cause-related deterministic effects and of the estimated incidence of stochastic effects as defined by biostatistics and biological models. The 1988 UNSCEAR report provides an authoritative basis for such an examination. Part 2 explores some of the major implications that the state-of-the-art of radiation biology has - or should have - for radiation safety policy and practices. (author)

  7. Radiation effects and radiation risks

    International Nuclear Information System (INIS)

    Lengfelder, E.; Forst, D.; Feist, H.; Pratzel, H.

    1988-01-01

    The book presents the facts and the principles of assessment and evaluation of biological radiation effects in general and also with particular reference to the reactor accident of Chernobyl, reviewing the consequences and the environmental situation on the basis of current national and international literature, including research work by the authors. The material compiled in this book is intended especially for physicians, but will also prove useful for persons working in the public health services, in administration, or other services taking care of people. The authors tried to find an easily comprehensible way of presenting and explaining the very complex processes and mechanisms of biological radiation effects and carcinogenesis, displaying the physical primary processes and the mechanisms of the molecular radiation effects up to the effects of low-level radiation, and present results of comparative epidemiologic studies. This section has been given considerable space, in proportion to its significance. It also contains literature references for further reading, offering more insight and knowledge of aspects of special subject fields. The authors also present less known results and data and discuss them against the background of well-known research results and approaches. Apart from the purpose of presenting comprehensive information, the authors intend to give an impact for further thinking about the problems, and helpful tools for independent decisions and action on the basis of improved insight and assessment, and in this context particularly point to the problems induced by the Chernobyl reactor accident. (orig./MG) With 8 maps in appendix [de

  8. Biological effects of radiation

    International Nuclear Information System (INIS)

    2013-01-01

    This fourth chapter presents: cell structure and metabolism; radiation interaction with biological tissues; steps of the production of biological effect of radiation; radiosensitivity of tissues; classification of biological effects; reversibility, transmissivity and influence factors; pre-natal biological effects; biological effects in therapy and syndrome of acute irradiation

  9. Notes on radiation effects on materials

    International Nuclear Information System (INIS)

    Anno, J.N.

    1984-01-01

    The effects of radiation from nuclear reactions on various classes of materials are examined in an introductory textbook for students of nuclear engineering. Topics discussed include the units and general scale of radiation damage, fundamental interactions of neutrons and gamma rays with materials, transient radiation effects on electrical components, radiation effects on organic materials and on steels, nuclear fission effects, surface effects of nuclear radiations, radiation effects on biological material, and neutron and gamma-ray dosimetry. Graphs, diagrams, tables of numerical data, and problems for each chapter are provided. 122 references

  10. Space radiation effects

    International Nuclear Information System (INIS)

    Li Shiqing; Yan Heping

    1995-01-01

    The authors briefly discusses the radiation environment in near-earth space and it's influences on material, and electronic devices using in space airship, also, the research developments in space radiation effects are introduced

  11. Research on radiation effect and radiation protection at JAEA

    International Nuclear Information System (INIS)

    Saito, Kimiaki

    2007-01-01

    Researches on radiation effect and radiation protection at JAEA have been carried out in different sections. In recent years, the organizations were rearranged to attain better research circumstances, and new research programs started. At present, radiation effect studies focus on radiation effect mechanisms at atomic, molecular and cellular levels including simulation studies, and protection studies focus on dosimetry for conditions difficult to cover with currently used methods and data as well as the related basic studies. The outlines of the whole studies and also some descriptions on selected subjects will be given in this paper. (author)

  12. A-bomb radiation effects digest

    International Nuclear Information System (INIS)

    Shigematsu, Itsuzo; Akiyama, Mitoshi; Sasaki, Hideo; Ito, Chikako; Kamada, Nanao.

    1993-01-01

    This publication is the digest of the book 'Genbaku Hoshasen no Jintai Eikyo (Effects of A-bomb Radiation on the Human Body)' (365p.), published in Japanese by Hiroshima International Council for Medical Care of the Radiation-Exposed. Following a brief description on the damage of the atomic bomb, the subjects of malignant tumors, endocrine and metabolic deseases, ocular lesions, dermatologic effects, prenatal exposure, chromosoal aberrations, mutations, sensitivity to radiation, immune function, genetic effects and other effects of radiation are summarized. (J.P.N.)

  13. Biological effects of ionizing radiation

    International Nuclear Information System (INIS)

    Gisone, Pablo; Perez, Maria R.

    2001-01-01

    It has been emphasised the importance of DNA as the main target for ionizing radiation, that can induce damage by its direct action on this molecule or by an indirect effect mediated by free-radicals generated by water radiolysis. Biological effects of ionizing radiation are influenced not only by the dose but also by the dose-rate and the radiation quality. Radiation induced damage, mainly DNA single and double strand breaks, is detected by molecular sensors which in turn trigger signalling cascades leading to cell cycle arrest to allow DNA repair or programmed cell death (apoptosis). Those effects related with cell death, named deterministic, exhibits a dose-threshold below which they are not observed. Acute radiation syndrome and radiological burns are examples of this kind of effects. Other radiation induced effects, called stochastic, are the consequence of cell transformation and do not exhibit a dose-threshold. This is the case of cancer induction and hereditary effects. The aim of this presentation is briefly describe the main aspects of deterministic and stochastic effects from the point of view of radiobiology and radio pathology. (author)

  14. Radiation effects at ISABELLE

    International Nuclear Information System (INIS)

    Sanger, P.A.; Danby, G.T.

    1975-01-01

    Shielding, radiation damage, and radiation heating at the planned ISABELLE storage rings were considered. Radiation shielding studies were reviewed and were found to be adequate for present day dosage limits. Radiation damage could be encountered in some extreme cases, but is not expected to limit the performance of the superconducting magnets. Experiments to study the effect of radiation heating on actual magnets are recommended

  15. Radiation-induced polymerization and radiation effect on polymers

    International Nuclear Information System (INIS)

    Seguchi, Tadao

    1977-12-01

    The processes of radiation-induced polymerization of monomers and also radiation effects on polymers have been studied by instrumental analyses of electron spin resonance (ESR), nuclear magnetic resonance (NMR) and electron microscopy. In radiation-induced polymerization, graft-copolymerization and absorbed state polymerization were taken up. For graft-copolymerization, monomers such as methylmethacrylate and butadiene were made to react with irradiated polyethylene, and behaviors of the initiating radicals and propagating radicals were followed under the reaction by ESR. For absorbed state polymerization, acrylonitrile/zeolite and methylmethacrylate/zeolite were chosen. Absorbed monomers were irradiated at 77 0 K and polymerized at room temperature. Active species and the concentrations were measured by ESR and the yields of polymer were observed by NMR. In radiation effect on polymers, polyvinylfluoride, polyvinylidenfluoride and polytetrafluoroethylene were taken up. Active species trapped in the polymer matrixes were identified and decay and reactivity of the species were also studied. On the basis of information from the electron microscopy and x-ray analysis, radiation effects on these polymers are described. In polytetrafluoroethylene produced by radiation polymerization, the relation between morphology and polymerization conditions and also the process of crystallization during polymerization were studied. (auth.)

  16. Radiation effect on implanted pacemakers

    International Nuclear Information System (INIS)

    Pourhamidi, A.H.

    1983-01-01

    It was previously thought that diagnostic or therapeutic ionizing radiation did not have an adverse effect on the function of cardiac pacemakers. Recently, however, some authors have reported damaging effect of therapeutic radiation on cardiac pulse generators. An analysis of a recently-extracted pacemaker documented the effect of radiation on the pacemaker pulse generator

  17. The effects and control of radiation

    International Nuclear Information System (INIS)

    Saunders, P.A.H.

    1982-12-01

    The subject is discussed under the headings: introduction; ionising radiation (alpha and beta particles, gamma- and X-radiation, neutrons, half-life, sources of radiation); biological effects; risk estimates (somatic) (early effects, delayed effects); risk estimates (hereditary); control of radiation; risk estimates (accidents). (U.K.)

  18. Radiation Therapy Side Effects

    Science.gov (United States)

    Radiation therapy has side effects because it not only kills or slows the growth of cancer cells, it can also affect nearby healthy cells. Many people who get radiation therapy experience fatigue. Other side effects depend on the part of the body that is being treated. Learn more about possible side effects.

  19. Effects of radiation on man

    International Nuclear Information System (INIS)

    Saunders, P.A.H.

    1981-01-01

    The available evidence on the effects of radiation on man and the predictions that have been made of possible low level effects are reviewed. Data from United Nations Scientific Committee of the Effects of Atomic Radiation (UNSCEAR) and the committee on the Biological Effects of Ionising Radiation (BEIR) is used to illustrate the acute, delayed and hereditary effects of high dose levels. The effects of low dose levels are discussed on the assumption that both somatic and hereditary effects can be predicted on the basis of linear extrapolation from high dose effects. (U.K.)

  20. The biological effects of radiation

    International Nuclear Information System (INIS)

    Sykes, D.A.

    1979-01-01

    The hazards of radiations to man are briefly covered in this paper. The natural background sources of radiations are stated and their resulting doses are compared to those received voluntarily by man. The basis of how radiations cause biological damage is given and the resulting somatic effects are shown for varying magnitude of dose. Risk estimates are given for cancer induction and genetic effects are briefly discussed. Finally four case studies of radiation damage to humans are examined exemplifying the symptoms of large doses of radiations [af

  1. Radiation effects on polyaniline

    International Nuclear Information System (INIS)

    Oki, Yuichi; Kondo, Kenjiro; Suzuki, Takenori; Numajiri, Masaharu; Miura, Taichi; Doi, Shuji; Ohnishi, Toshihiro.

    1992-01-01

    Effects of γ-irradiation on electrical conductivity of polyaniline were investigated. A drastic increase of the conductivity due to radiation-induced doping was observed in combined systems of polyaniline films and halogen-containing polymers. This effect can be applied to measure an integrated radiation dose. (author)

  2. Untargeted effects of ionizing radiation: Implications for radiation pathology

    International Nuclear Information System (INIS)

    Wright, Eric G; Coates, Philip J

    2006-01-01

    The dogma that genetic alterations are restricted to directly irradiated cells has been challenged by observations in which effects of ionizing radiation, characteristically associated with the consequences of energy deposition in the cell nucleus, arise in non-irradiated cells. These, so called, untargeted effects are demonstrated in cells that have received damaging signals produced by irradiated cells (radiation-induced bystander effects) or that are the descendants of irradiated cells (radiation-induced genomic instability). Radiation-induced genomic instability is characterized by a number of delayed adverse responses including chromosomal abnormalities, gene mutations and cell death. Similar effects, as well as responses that may be regarded as protective, have been attributed to bystander mechanisms. Whilst the majority of studies to date have used in vitro systems, some adverse non-targeted effects have been demonstrated in vivo. However, at least for haemopoietic tissues, radiation-induced genomic instability in vivo may not necessarily be a reflection of genomically unstable cells. Rather the damage may reflect responses to ongoing production of damaging signals; i.e. bystander responses, but not in the sense used to describe the rapidly induced effects resulting from direct interaction of irradiated and non-irradiated cells. The findings are consistent with a delayed and long-lived tissue reaction to radiation injury characteristic of an inflammatory response with the potential for persisting bystander-mediated damage. An important implication of the findings is that contrary to conventional radiobiological dogma and interpretation of epidemiologically-based risk estimates, ionizing radiation may contribute to malignancy and particularly childhood leukaemia by promoting initiated cells rather than being the initiating agent. Untargeted mechanisms may also contribute to other pathological consequences

  3. Topical Day on Biological Effects of Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Baatout, S.; Jacquet, P.

    1997-05-15

    The topical day has been focussed on the potential effects of ionizing radiation on human health. A general overview on molecular and biophysical aspects of radiation, its effects on cells and organisms, and the contribution of radiobiology to radiation protection and risk assessment is given. The genetic effects of radiation and its effects on the developing organism, the effects of radiation on the cell cycle and the mechanisms of radiation induced apoptosis were also discussed.

  4. Topical Day on Biological Effects of Radiation

    International Nuclear Information System (INIS)

    Baatout, S.; Jacquet, P.

    1997-01-01

    The topical day has been focussed on the potential effects of ionizing radiation on human health. A general overview on molecular and biophysical aspects of radiation, its effects on cells and organisms, and the contribution of radiobiology to radiation protection and risk assessment is given. The genetic effects of radiation and its effects on the developing organism, the effects of radiation on the cell cycle and the mechanisms of radiation induced apoptosis were also discussed

  5. Biological effects of ionizing radiation

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Experiments with small animals, tissue cultures, and inanimate materials help with understanding the effects of ionizing radiation that occur at the molecular level and cause the gross effects observed in man. Topics covered in this chapter include the following: Radiolysis of Water; Radiolysis of Organic Compounds; Radiolysis in Cells; Radiation Exposure and Dose Units; Dose Response Curves; Radiation Effects in Animals; Factors Affecting Health Risks. 8 refs., 3 figs., 5 tabs

  6. Radiation hazards and biological effects of ionising radiation on man

    International Nuclear Information System (INIS)

    Siti Najila Mohd Janib

    2004-01-01

    The contents of this chapter are follows - Mechanism of damage: direct action of radiation, indirect action of radiation. Classification of effects: somatic effect, induction of cancer, factors, affecting somatic effects, genetic effect, inherited abnormalities, induced effects, early effects, late effects, deterministic effect, stochastic effect. Effect of specific group: development abnormality, childhood Cancer, fertile women, risk and uncertainty, comparison of risk

  7. Radiation effects on materials in high-radiation environments

    International Nuclear Information System (INIS)

    Weber, W.J.; Mansur, L.K.; Clinard, F.W. Jr.; Parkin, D.M.

    1991-01-01

    A workshop on Radiation Effects on Materials in High-Radiation Environments was held in Salt Lake City, Utah (USA) from August 13 to 15, 1990 under the auspices of the Division of Materials Sciences, Office of Basic Energy Sciences, US Department of Energy. The workshop focused on ceramics, alloys, and intermetallics and covered research needs and capabilities, recent experimental data, theory, and computer simulations. It was concluded that there is clearly a continuing scientific and technological need for fundamental knowledge on the underlying causes of radiation-induced property changes in materials. Furthermore, the success of many current and emerging nuclear-related technologies critically depend on renewed support for basic radiation-effects research, irradiation facilities, and training of scientists. The highlights of the workshop are reviewed and specific recommendations are made regarding research needs. (orig.)

  8. Alternative types of duodenal ulcer induced in mice by partial X irradiation of the thorax

    International Nuclear Information System (INIS)

    Michalowski, A.; Uehara, S.; Yin, W.B.; Burgin, J.; Silvester, J.A.

    1983-01-01

    The present study extends our earlier observations on gastrointestinal pathology in thorax-irradiated female CFLP mice. It shows that exposure of the lower mediastinum to single doses of 14-30 Gy X rays results in the formation of the proximal duodenal ulcer accompanied frequently by erosion of the antral gastric mucosa. X irradiation of the lateral thoracic fields is responsible for single ulcers in the proximity of duodenal papilla, often associated with a circumscribed area of degeneration of the fundic mucosa of the stomach. In view of the small amount of radiation received by the subdiaphragmatic parts of the alimentary tract, these gastro-duodenal lesions represent abscopal effects of thoracic irradiation

  9. Non-targeted effects of ionising radiation - Implications for radiation protection

    International Nuclear Information System (INIS)

    Sisko Salomaa

    2006-01-01

    The universality of the target theory of radiation-induced effects is challenged by observations on non-targeted effects such as bystander effects, genomic instability and adaptive response. Essential features of non-targeted effects are that they do not require direct nuclear exposure by radiation and they are particularly significant at low doses. This new evidence suggests a need for a new paradigm in radiation biology. The new paradigm should cover both the classical (targeted) and the non-targeted effects. New aspects include the role of cellular communication and tissue-level responses. A better understanding of non-targeted effects may have important consequences for health risk assessment and, consequently, on radiation protection. Non-targeted effects may contribute to the estimation of cancer risk from occupational, medical and environmental exposures. In particular, they may have implications for the applicability of the Linear-No-Threshold (LNT) model in extrapolating radiation risk data into the low-dose region. This also means that the adequacy of the concept of dose to estimate risk is challenged by these findings. Moreover, these effects may provide new mechanistic explanations for the development of non-cancer diseases. Further research is required to determine if these effects, typically measured in cell cultures, are applicable in tissue level, whole animals, and ultimately in humans. (author)

  10. Non-targeted effects of ionising radiation - Implications for radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Sisko Salomaa [STUK - Radiation and Nuclear Safety Authority, Helsinki (Finland)

    2006-07-01

    The universality of the target theory of radiation-induced effects is challenged by observations on non-targeted effects such as bystander effects, genomic instability and adaptive response. Essential features of non-targeted effects are that they do not require direct nuclear exposure by radiation and they are particularly significant at low doses. This new evidence suggests a need for a new paradigm in radiation biology. The new paradigm should cover both the classical (targeted) and the non-targeted effects. New aspects include the role of cellular communication and tissue-level responses. A better understanding of non-targeted effects may have important consequences for health risk assessment and, consequently, on radiation protection. Non-targeted effects may contribute to the estimation of cancer risk from occupational, medical and environmental exposures. In particular, they may have implications for the applicability of the Linear-No-Threshold (LNT) model in extrapolating radiation risk data into the low-dose region. This also means that the adequacy of the concept of dose to estimate risk is challenged by these findings. Moreover, these effects may provide new mechanistic explanations for the development of non-cancer diseases. Further research is required to determine if these effects, typically measured in cell cultures, are applicable in tissue level, whole animals, and ultimately in humans. (author)

  11. Effects after prenatal radiation exposures

    International Nuclear Information System (INIS)

    Streffer, C.

    2001-01-01

    The mammalian organism is highly radiosensitive during all prenatal developmental periods. For most effects a dose relationship with a threshold is observed. These threshold doses are generally above the exposures from medical diagnostic procedures. The quality and extent of radiation effects are very much dependent on the developmental stage during which an exposure takes place and on the radiation dose. An exposure during the preimplantation period will cause lethality. Malformations are usually induced after exposures during the major organogenesis. Growth retardation is also possible during the late organogenesis and foetal periods. The lower limits of threshold doses for these effects are in the range of 100 mGy. A radiation exposure during the early foetal period can lead to severe mental retardation and impairment of intelligence. There are very serious effects with radiation doses above 0.3 Gy. Carcinogenesis can apparently occur after radiation exposures during the total prenatal development period. The radiation risk factor up to now has not been clear, but it seems that it is in the range of risk factors for cancer that are observed after exposures during childhood. For radiation doses that are used in radiological diagnostics the risk is zero or very low. A termination of pregnancy after doses below 100 mGy should not be considered. (author)

  12. Ionising radiation - physical and biological effects

    International Nuclear Information System (INIS)

    Holter, Oe.; Ingebretsen, F.; Parr, H.

    1979-01-01

    The physics of ionising radiation is briefly presented. The effects of ionising radiation on biological cells, cell repair and radiosensitivity are briefly treated, where after the effects on man and mammals are discussed and related to radiation doses. Dose limits are briefly discussed. The genetic effects are discussed separately. Radioecology is also briefly treated and a table of radionuclides deriving from reactors, and their radiation is given. (JIW)

  13. Radiation effects in space

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    1986-01-01

    The paper discusses the radiation environment in space that astronauts are likely to be exposed to. Emphasis is on proton and HZE particle effects. Recommendations for radiation protection guidelines are presented

  14. Radiation effects on living systems

    International Nuclear Information System (INIS)

    Hawley, N.J.

    1980-10-01

    This bibliography includes papers and reports by Atomic Energy of Canada Limited scientists concerning radiation effects on living systems. It is divided into three sections: Radiobiology, Radiation Biochemistry and Radiation Chemistry. (auth)

  15. Health effects of ionizing radiation

    International Nuclear Information System (INIS)

    Pathak, B.

    1989-12-01

    Ionizing radiation is energy that travels through space as electromagnetic waves or a stream of fast moving particles. In the workplace, the sources of ionizing radiation are radioactive substances, nuclear power plants, x-ray machines and nuclear devices used in medicine, research and industry. Commonly encountered types of radiation are alpha particles, beta particles and gamma rays. Alpha particles have very little penetrating power and pose a risk only when the radioactive substance is deposited inside the body. Beta particles are more penetrating than alpha particles and can penetrate the outer body tissues causing damage to the skin and the eyes. Gamma rays are highly penetrating and can cause radiation damage to the whole body. The probability of radiation-induced disease depends on the accumulated amount of radiation dose. The main health effects of ionizing radiation are cancers in exposed persons and genetic disorders in the children, grandchildren and subsequent generations of the exposed parents. The fetus is highly sensitive to radiation-induced abnormalities. At high doses, radiation can cause cataracts in the eyes. There is no firm evidence that ionizing radiation causes premature aging. Radiation-induced sterility is highly unlikely for occupational doses. The data on the combined effect of ionizing radiation and other cancer-causing physical and chemical agents are inconclusive

  16. Aerosol effects in radiation transfer

    International Nuclear Information System (INIS)

    Binenko, V.I.; Harshvardhan, H.

    1993-01-01

    The radiative properties and effects of aerosols are assessed for the following aerosol sources: relatively clean background aerosol, dust storms and dust outbreaks, anthropogenic pollution, and polluted cloud layers. Studies show it is the submicron aerosol fraction that plays a dominant radiative role in the atmosphere. The radiative effect of the aerosol depends not only on its loading but also on the underlying surface albedo and on solar zenith angle. It is only with highly reflecting surfaces such as Arctic ice that aerosols have a warming effect. Radiometric, microphysical, mineral composition, and refractive index measurements are presented for dust and in particular for the Saharan aerosol layer (SAL). Short-wave radiative heating of the atmosphere is caused by the SAL and is due mainly to absorption. However, the SAL does not contribute significantly to the long-wave thermal radiation budget. Field program studies of the radiative effects of aerosols are described. Anthropogenic aerosols deplete the incoming solar radiation. A case field study for a regional Ukrainian center is discussed. The urban aerosol causes a cooling of metropolitan centers, compared with outlying areas, during the day, which is followed by a warming trend at night. In another study, an increase in turbidity by a factor of 3 due to increased industrialization for Mexico City is noted, together with a drop in atmospheric transmission by 10% over a 50-year period. Numerous studies are cited that demonstrate that anthropogenic aerosols affect both the microphysical and radiative properties of clouds, which in turn affect regional climate. Particles acting as cloud nuclei are considered to have the greatest indirect effect on cloud absorptivity of short-wave radiation. Satellite observations show that low-level stratus clouds contaminated by ship exhaust at sea lead to an increase in cloud albedo

  17. Radiation effects on microelectronics in space

    International Nuclear Information System (INIS)

    Srour, J.R.; McGarrity, J.M.

    1988-01-01

    The basic mechanisms of space radiation effects on microelectronics are reviewed in this paper. Topics discussed include the effects of displacement damage and ionizing radiation on devices and circuits, single event phenomena, dose enhancement, radiation effects on optoelectronic devices and passive components, hardening approaches, and simulation of the space radiation environment. A summary is presented of damage mechanisms that can cause temporary or permanent failure of devices and circuits operating in space

  18. Radiation effects in semiconductors

    CERN Document Server

    2011-01-01

    There is a need to understand and combat potential radiation damage problems in semiconductor devices and circuits. Written by international experts, this book explains the effects of radiation on semiconductor devices, radiation detectors, and electronic devices and components. These contributors explore emerging applications, detector technologies, circuit design techniques, new materials, and innovative system approaches. The text focuses on how the technology is being used rather than the mathematical foundations behind it. It covers CMOS radiation-tolerant circuit implementations, CMOS pr

  19. Diffusion effects in undulator radiation

    Directory of Open Access Journals (Sweden)

    Ilya Agapov

    2014-11-01

    Full Text Available Quantum diffusion effects in undulator radiation in semiclassical approximation are considered. Short-term effects on the electron beam motion are discussed and it is shown that approaches based on diffusion approximation with drift-diffusion coefficients derived from undulator or bending magnet radiation spectrum, and on Poisson statistics with radiation spectrum defined by the local beding field, all lead to similar results in terms of electron energy spread for cases of practical interest. An analytical estimate of the influence of quantum diffusion on the undulator radiation spectrum is derived.

  20. Radiation effects in space

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    1987-07-01

    As more people spend more time in space, and the return to the moon and exploratory missions are considered, the risks require continuing examination. The effects of microgravity and radiation are two potential risks in space. These risks increase with increasing mission duration. This document considers the risk of radiation effects in space workers and explorers. 17 refs., 1 fig., 4 tabs

  1. Biological effects of radiation and estimation of risk to radiation workers

    International Nuclear Information System (INIS)

    Murthy, M.S.S.

    1987-01-01

    The biological effects of radiation have three stages: physical, chemical and biological. A precise mathematical description of biological effects and of one-to-one correspondence between the initial energy absorption and final effect has not been possible, because several factors are involved in biological effects and their manifestation period varies from less than one second to several years. The mechanism of biological radiation effects is outlined. The two groups of these effects are (1) immediate and (2) delayed. The main aim of radiation protection programme is to eliminate the risk of non-stochastic effects to an acceptable level. The mean annual dose for 30,000 radiation workers in India is 2.7 m Sv. Estimated risk of fatal cancer from this dose is about 50 cases of cancer per year per million workers which is well below the ICRP standard for safe occupation stipulated at fatality rate less than or equal to 100 per year per milion workers. When compared with risk in other occupations, the risk to radiation workers is much less. (M.G.B.)

  2. Radiation effects on living systems

    International Nuclear Information System (INIS)

    Hawley, N.J.

    1984-04-01

    This bibliography includes papers and reports by Atomic Energy of Canada Limited scientists concerning radiation effects on living systems. It is divided into three sections: Radiobiology, Radiation Biochemistry and Radiation Chemistry. It is intended that the bibliography will be updated regularly

  3. Effects of radiation upon gastrointestinal motility

    Institute of Scientific and Technical Information of China (English)

    Mary F Otterson

    2007-01-01

    Whether due to therapeutic or belligerent exposure, the gastrointestinal effects of irradiation produce symptoms dreaded by a majority of the population. Nausea, vomiting, diarrhea and abdominal cramping are hallmarks of the prodromal phase of radiation sickness, occurring hours to days following radiation exposure. The prodromal phase is distinct from acute radiation sickness in that the absorptive, secretory and anatomic changes associated with radiation damage are not easily identifiable. It is during this phase of radiation sickness that gastrointestinal motility significantly changes. In addition, there is evidence that motor activity of the gut contributes to some of the acute and chronic effects of radiation.

  4. Non controlled effect of ionizing radiations : involvement for radiation protection

    International Nuclear Information System (INIS)

    Little, J. B.

    2005-01-01

    It is widely accepted that damage to DNA is the critical event on irradiated cells, and that double strand breaks are the primary DNA lesions responsible for the biological effects of ionizing radiation. This has lead to the long standing paradigm that these effects, be they cytotoxicity, mutagenesis or malignant transformation, occur in irradiated cells as a consequences of the DNA damage they incur. Evidence has been accumulating over the past decade, however, to indicate that radiation may induce effects that ar not targeted to the irradiated cells itself. Two non-targeted effects will be described in this review. The first, radiation-induced genomic instability, is a phenomenon whereby signals are transmitted to the progeny of the irradiated cell over many generations, leading to the occurrence of genetic effects such as mutations and chromosomal aberrations arising in the distant descendants of the irradiated cell. Second, the bystander effect, is a phenomenon whereby irradiated cells transmit damage signals to non-irradiated cells in a mixed population, leading to genetic effects arising in these bystander cells that received no radiation exposure. the model system described in this review involves dense monolayer cultures exposed to very low fluences of alpha particles. The potential implications of these two phenomena for the analysis of the risk to the human population of exposure to low levels of ionising radiation is discussed. (Author) 111 refs

  5. Biological Effects of Radiation

    International Nuclear Information System (INIS)

    Jatau, B.D.; Garba, N.N.; Yusuf, A.M.; Yamusa, Y. A.; Musa, Y.

    2013-01-01

    In earlier studies, researchers aimed a single particle at the nucleus of the cell where DNA is located. Eighty percent of the cells shot through the nucleus survived. This contradicts the belief that if radiation slams through the nucleus, the cell will die. But the bad news is that the surviving cells contained mutations. Cells have a great capacity to repair DNA, but they cannot do it perfectly. The damage left behind in these studies from a single particle of alpha radiation doubled the damage that is already there. This proved, beyond a shadow of doubt, those there biological effects occur as a result of exposure to radiation, Radiation is harmful to living tissue because of its ionizing power in matter. This ionization can damage living cells directly, by breaking the chemical bonds of important biological molecules (particularly DNA), or indirectly, by creating chemical radicals from water molecules in the cells, which can then attack the biological molecules chemically. At some extent these molecules are repaired by natural biological processes, however, the effectiveness of this repair depends on the extent of the damage. The interaction of ionizing with the human body, arising either from external sources outside the body or from internal contamination of the body by radioactive materials, leads to the biological effects which may later show up as a clinical symptoms. Basically, this formed the baseline of this research to serve as a yardstick for creating awareness about radiation and its resulting effects.

  6. Radiation effects and radiation risks. 2. ed.

    International Nuclear Information System (INIS)

    Lengfelder, E.; Forst, D.; Feist, H.; Pratzel, H.G.

    1990-01-01

    The book presents the facts and the principles of assessment and evaluation of biological radiation effects in general and also with particular reference to the reactor accident of Chernobyl, reviewing the consequences and the environmental situation on the basis of current national and international literature, including research work by the authors. The material compiled in this book is intended especially for physicians, but will also prove useful for persons working in the public health services, in administration, or other services taking care of people. The authors tried to find an easily comprehensible way of presenting and explaining the very complex processes and mechanisms of biological radiation effects and carcinogenesis, displaying the physical primary processes and the mechanisms of the molecular radiation effects up to the effects of low-level radiation, and present results of comparative epidemiologic studies. This section has been given considerable space, in proportion to its significance. It also contains literature references for further reading, offering more insight and knowledge of aspects of special subject fields. The authors also present less known results and data and discuss them against the background of well-known research results and approaches. Apart from the purpose of presenting comprehensive information, the authors intend to give an impact for further thinking about the problems, and helpful tools for independent decisions and action on the basis of improved insight and assessment, and in this context particularly point to the problems induced by the Chernobyl reactor accident. (orig.) With 10 maps in appendix [de

  7. Effects of radiation on erythropoiesis

    Energy Technology Data Exchange (ETDEWEB)

    Harriss, E B

    1971-04-01

    Since the pioneer work of Heineke (1903; 1905) many workers have studied the effect of radiation on haemopoiesis. Their work has been reviewed by Bloom (1948), by Jacobson (1954) and more recently by Bond et al. (1965). The subject continues to stimulate much interest but is now more concerned with the effects of radiation on the multipotential stem cell pool than on radiation damage to the erythropoietic cells themselves. Death from haemopoietic failure following an LD{sub 50/30} dose of radiation is probably not attributable to failure of erythropoiesis; while damage to the erythropoietic system certainly plays a part in the syndrome, it is not a major factor contributing to the death of the animal. Although the severity and time course of the response vary with the species studied, the general effects of radiation on erythropoiesis are similar in all mammalian bone marrow studied to date. Likewise, though the severity of the reaction varies somewhat with the energy of the radiation and has been used to compare the relative biological effectiveness of different types of radiation (Sinclair et al., 1962; Sztanyik, 1967), the response is different only in degree and not in its fundamental pattern. The initial syndrome of depression and recovery will therefore be described largely by reference to work performed on the response of the rat to single acute exposures of either whole-body or partial-body irradiation with conventional X-rays.

  8. Man and radiation effects

    International Nuclear Information System (INIS)

    Rausch, L.

    1982-01-01

    The book describes the effects of ionizing radiation on man in a simple, popular, detailed and generally valid manner and gives a comprehensive picture of the concepts, elements, principles of function, and perspectives of medical radiobiology. Radiobiology in general is explained, and its application in research on the causes of radiolesions and radiation diseases as well as a radiotherapy and radiation protection is discussed in popular form. (orig./MG) [de

  9. Radiation research contracts: Biological effects of small radiation doses

    Energy Technology Data Exchange (ETDEWEB)

    Hug, O [International Atomic Energy Agency, Division of Health, Safety and Waste Disposal, Vienna (Austria)

    1959-04-15

    To establish the maximum permissible radiation doses for occupational and other kinds of radiation exposure, it is necessary to know those biological effects which can be produced by very small radiation doses. This particular field of radiation biology has not yet been sufficiently explored. This holds true for possible delayed damage after occupational radiation exposure over a period of many years as well as for acute reactions of the organism to single low level exposures. We know that irradiation of less than 25 Roentgen units (r) is unlikely to produce symptoms of radiation sickness. We have, however, found indications that even smaller doses may produce certain instantaneous reactions which must not be neglected

  10. Genetic and somatic effects of ionizing radiation

    International Nuclear Information System (INIS)

    1986-01-01

    This is the ninth substantive report of the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) to the General Assembly. This report contains reviews on three special topics in the field of biological effects of ionizing radiation that are among those presently under consideration by the Committee: genetic effects of radiation, dose-response relationships for radiation-induced cancer and biological effects of pre-natal irradiation

  11. Bystander effects of radiation

    International Nuclear Information System (INIS)

    Umar, Neethu Fathima; Daniel, Nittu

    2013-01-01

    The Radiation-Induced Bystander Effect is the phenomenon in which unirradiated cells show irradiated effects due to the signals received from nearby irradiated cells. Evidence suggests that targeted cytoplasmic irradiation results in mutation in the nucleus of the hit cells. Cells that are not directly hit by an alpha particle, but are in the vicinity of one that is hit, also contribute to the genotoxic response of the cell population. When cells are irradiated, and the medium is transferred to unirradiated cells, these unirradiated cells show bystander responses when assayed for clonogenic survival and oncogenic transformation. The demonstration of a bystander effect in human tissues and, more recently, in whole organisms have clear implication of the potential relevance of the non-targeted response to human health. This effect may also contribute to the final biological consequences of exposure to low doses of radiation. The radiation-induced bystander effect represents a paradigm shift in our understanding of the radiobiological effects of ionizing radiation, in that extranuclear and extracellular events may also contribute to the final biological consequences of exposure to low doses of radiation. Multiple pathways are involved in the bystander phenomenon, and different cell types respond differently to bystander signalling. Using cDNA microarrays, a number of cellular signalling genes, including cyclooxygenase-2 (CQX-2), have been shown to be casually linked to the bystander phenomenon. The observation that inhibition of the phosphorylation of extracellular signal-related kinase (ERK) suppressed the bystander response further confirmed the important role of the mitogen-activated protein kinase (MAPK) signalling cascade in the bystander process. The cells deficient in mitochondrial DNA showed a significantly reduced response to bystander signalling, suggesting a functional role of mitochondria in the signalling process. (author)

  12. Biological effects of low-dose ionizing radiation exposure

    International Nuclear Information System (INIS)

    Reinoehl-Kompa, Sabine; Baldauf, Daniela; Heller, Horst

    2009-01-01

    The report on the meeting of the Strahlenschutzkommission 2007 concerning biological effects of low-dose ionizing radiation exposure includes the following contributions: Adaptive response. The importance of DNA damage mechanisms for the biological efficiency of low-energy photons. Radiation effects in mammography: the relative biological radiation effects of low-energy photons. Radiation-induced cataracts. Carcinomas following prenatal radiation exposure. Intercellular apoptosis induction and low-dose irradiation: possible consequences for the oncogenesis control. Mechanistic models for the carcinogenesis with radiation-induced cell inactivation: application to all solid tumors in the Japanese atomic bomb survivors. Microarrays at low radiation doses. Mouse models for the analysis of biological effects of low-dose ionizing radiation. The bystander effect: observations, mechanisms and implications. Lung carcinoma risk of Majak workers - modeling of carcinogenesis and the bystander effect. Microbeam studies in radiation biology - an overview. Carcinogenesis models with radiation-induced genomic instability. Application to two epidemiological cohorts.

  13. Non-targeted and delayed effects of exposure to ionizing radiation: I. Radiation-induced genomic instability and bystander effects in vitro

    Science.gov (United States)

    Morgan, William F.

    2003-01-01

    A long-standing dogma in the radiation sciences is that energy from radiation must be deposited in the cell nucleus to elicit a biological effect. A number of non-targeted, delayed effects of ionizing radiation have been described that challenge this dogma and pose new challenges to evaluating potential hazards associated with radiation exposure. These effects include induced genomic instability and non-targeted bystander effects. The in vitro evidence for non-targeted effects in radiation biology will be reviewed, but the question as to how one extrapolates from these in vitro observations to the risk of radiation-induced adverse health effects such as cancer remains open.

  14. Biological effects of low doses of ionizing radiation

    International Nuclear Information System (INIS)

    Gonzalez, A.J.

    1994-01-01

    Few weeks ago, when the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) submitted to the U.N. General Assembly the UNSCEAR 1994 report, the international community had at its disposal a broad view of the biological effects of low doses of ionizing radiation. The 1994 report (272 pages) specifically addressed the epidemiological studies of radiation carcinogenesis and the adaptive responses to radiation in cells and organisms. The report was aimed to supplement the UNSCEAR 1993 report to the U.N. General Assembly- an extensive document of 928 pages-which addressed the global levels of radiation exposing the world population, as well as some issues on the effects of ionizing radiation, including: mechanisms of radiation oncogenesis due to radiation exposure, influence of the level of dose and dose rate on stochastic effects of radiation, hereditary effects of radiation effects on the developing human brain, and the late deterministic effects in children. Those two UNSCEAR reports taken together provide an impressive overview of current knowledge on the biological effects of ionizing radiation. This article summarizes the essential issues of both reports, although it cannot cover all available information. (Author)

  15. Effects of ionizing radiation on vitamins

    International Nuclear Information System (INIS)

    Thayer, D.W.; Fox, J.B. Jr.; Lakritz, L.

    1991-01-01

    Vitamins are known to be sensitive to the effects of ionizing radiation. Since most foods contain a large proportion of water, the most probable reaction of the ionizing radiation would be with water; and as vitamins are present in very small amounts compared with other substances in the food they will be affected indirectly by the radiation. This chapter discusses the effect of ionizing radiation on water soluble vitamins and fat soluble vitamins. (author)

  16. Emerging Therapies for Stage III Non-Small Cell Lung Cancer: Stereotactic Body Radiation Therapy and Immunotherapy

    Directory of Open Access Journals (Sweden)

    Sameera S. Kumar

    2017-09-01

    Full Text Available The current standard of care for locally advanced non-small cell lung cancer (NSCLC includes radiation, chemotherapy, and surgery in certain individualized cases. In unresectable NSCLC, chemoradiation has been the standard of care for the past three decades. Local and distant failure remains high in this group of patients, so dose escalation has been studied in both single institution and national clinical trials. Though initial studies showed a benefit to dose escalation, phase III studies examining dose escalation using standard fractionation or hyperfractionation have failed to show a benefit. Over the last 17 years, stereotactic body radiation therapy (SBRT has shown a high degree of safety and local control for stage I lung cancers and other localized malignancies. More recently, phase I/II studies using SBRT for dose escalation after conventional chemoradiation in locally advanced NSCLC have been promising with good apparent safety. Immunotherapy also offers opportunities to address distant disease and preclinical data suggest immunotherapy in tandem with SBRT may be a rational way to induce an “abscopal effect” although there are little clinical data as yet. By building on the proven concept of conventional chemoradiation for patients with locally advanced NSCLC with a subsequent radiation dose intensification to residual disease with SBRT concurrent with immunotherapy, we hope address the issues of metastatic and local failures. This “quadmodality” approach is still in its infancy but appears to be a safe and rational approach to the improving the outcome of NSCLC therapy.

  17. Radiobiology: Biologic effects of ionizing radiations

    International Nuclear Information System (INIS)

    Held, K.D.

    1987-01-01

    The biologic effects after exposure to ionizing radiation, such as cell death or tissue injury, result from a chain of complex physical, chemical, metabolic, and histologic events. The time scale of these radiation actions spans many orders of magnitude. The physical absorption of ionizing radiation occurs in about 10 -18 s, while late carcinogenic and genetic effects are expressed years or even generations later. Collectively, these effects form the science of radiobiology. Many of the concepts discussed in this chapter have been developed through the study of effects generated in tissues by external radiation sources, but they apply generally and often specifically to internally distributed radiopharmaceuticals which form the central topic of this book

  18. Principles and techniques of radiation hardening. Volume 2. Transient radiation effects in electronics (TREE)

    International Nuclear Information System (INIS)

    Rudie, N.J.

    1976-01-01

    The three-volume book is intended to serve as a review of the effects of thermonuclear explosion induced radiation (x-rays, gamma rays, and beta particles) and the resulting electromagnetic pulse (EMP). Volume 2 deals with the following topics: radiation effects on quartz crystals, tantalum capacitors, bipolar semiconductor devices and integrated circuits, field effect transistors, and miscellaneous electronic devices; hardening electronic systems to photon and neutron radiation; nuclear radiation source and/or effects simulation techniques; and radiation dosimetry

  19. Radiation effects in charge coupled devices

    International Nuclear Information System (INIS)

    Williams, R.A.; Nelson, R.D.

    1975-01-01

    Charge coupled devices (CCD s) exhibit a number of advantages (low cost, low power, high bit density) in their several applications (serial memories, imagers, digital filters); however, fairly elementary theoretical considerations indicate that they will be very vulnerable to permanent radiation damage, by both neutrons and ionizing radiation, and to transient upset by pulsed ionizing radiation. Although studies of permanent ionizing-radiation damage in CCD's have been reported, little information has been published concerning their overall nuclear radiation vulnerability. This paper presents a fairly comprehensive experimental study of radiation effects in a 256-cell surface-channel, CCD shift-register. A limited amount of similar work is also presented for a 128-cell surface-channel device and a 130 cell peristaltic CCD shift register. The radiation effects phenomena discussed herein, include transient-ionizing-radiation responses, permanent ionizing- radiation damage to transfer efficiency, charge-carrying capacity and input transfer gate bias, and neutron damage to storage time--determined from dark current and charge-up time measurements

  20. Stimulatory effects of low ionizing radiation on plant

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, S.; Kurisu, Y.; Murata, I.; Takahashi, A. [Department of Nuclear Engineering, Osaka Univ., Suita, Osaka (Japan); Masui, H.; Iida, T. [Department of Electronic, Information Systems and Energy Engineering, Osaka Univ., Suita, Osaka (Japan); Yamamoto, T. [Radioisotope Research Center, Osaka Univ., Suita, Osaka (Japan)

    2000-05-01

    Recently, the study for radiation hormesis was strongly carried out for animals and plants; subharmful dose of radiation may stimulate any organism. The concept of radiation hormesis effect consists of 1) biopositive effects of low dose radiation; influence caused by low dose radiation is totally different from one caused by high dose radiation, low dose radiation produces physiological useful effects against high dose radiation, and 2) radio-adaptive response; radiation also acts the organism as stress. Irradiated with small dose radiation previously, it raises its own defense response against the stress (radiation), resulting in the phenomenon that radiation influence decreases in appearance. In this paper we have investigated the phenomenon of radiation hormesis effects for plants through irradiation experiments with neutrons and gamma-rays to find out the mechanism. In the present experiment, dry seeds of Raphanus sativus were irradiated with D-T neutrons (10 {mu}Gy {approx} 100 kGy), D-D neutrons (1 mGy {approx} 100 mGy), thermal and fast neutrons (irradiation in a nuclear reactor: 100 {mu}Gy {approx} 10 Gy), 60Co gamma-rays (10 {mu}Gy {approx} 10 Gy). To confirm existence of the radiation hormesis effects, germination percentage, length of hypocotyl, length of root and total weight of seed leaf were measured at 7th day after starting cultivation. We estimated relative effectiveness as the hormesis effect, that is the ratio of mean values of measured subjects for the irradiated and control groups. For Raphanus sativus, the hormesis effect on seed leaf growth has been observed in the seed group irradiated by D-T neutrons and D-D neutrons. The observed hormesis effect is from 5 to 25 percents. (author)

  1. Non-targeted effects of ionising radiation

    International Nuclear Information System (INIS)

    Belyakov, O.V.

    2008-01-01

    The universality of the target theory of radiation-induced effects is challenged by observations on non-targeted effects such as bystander effects and genomic instability. Essential features of non-targeted effects are that they do not require direct nuclear exposure by radiation and they are particularly significant at low doses. This new evidence suggests a need for a new paradigm in radiation biology. The new paradigm would cover both the classical (targeted) and the non-targeted effects. New aspects include the role of cellular communication and tissue-level responses. A better understanding of non-targeted effects may have important consequences for health risk assessment and, consequently, on radiation protection. Non-targeted effects may contribute to the estimation of cancer risk from occupational, medical and environmental exposures. In particular, they may have implications for the applicability of the Linear-No-Threshold (LNT) model in extrapolating radiation risk data into the low-dose region. This also means that the adequacy of the concept of dose to estimate risk is challenged by these findings. Moreover, these effects may provide new mechanistic explanations for the development of non-cancer diseases. Further research is required to determine if these effects, typically measured in cell cultures, are applicable in tissue level, whole animals, and ultimately in humans. (orig.)

  2. Non-targeted and delayed effects of exposure to ionizing radiation: II. Radiation-induced genomic instability and bystander effects in vivo, clastogenic factors and transgenerational effects

    Science.gov (United States)

    Morgan, William F.

    2003-01-01

    The goal of this review is to summarize the evidence for non-targeted and delayed effects of exposure to ionizing radiation in vivo. Currently, human health risks associated with radiation exposures are based primarily on the assumption that the detrimental effects of radiation occur in irradiated cells. Over the years a number of non-targeted effects of radiation exposure in vivo have been described that challenge this concept. These include radiation-induced genomic instability, bystander effects, clastogenic factors produced in plasma from irradiated individuals that can cause chromosomal damage when cultured with nonirradiated cells, and transgenerational effects of parental irradiation that can manifest in the progeny. These effects pose new challenges to evaluating the risk(s) associated with radiation exposure and understanding radiation-induced carcinogenesis.

  3. Biology of ionizing radiation effects

    International Nuclear Information System (INIS)

    Ferradini, C.; Pucheault, J.

    1983-01-01

    The present trends in biology of ionizing radiation are reviewed. The following topics are investigated: interaction of ionizing radiations with matter; the radiolysis of water and aqueous solutions; properties of the free radicals intervening in the couples O 2 /H 2 O and H 2 O/H 2 ; radiation chemistry of biological compounds; biological effects of ionizing radiations; biochemical mechanisms involving free radicals as intermediates; applications (biotechnological applications, origins of life) [fr

  4. Effects of ionizing radiations

    International Nuclear Information System (INIS)

    Gaussens, G.

    1984-08-01

    After recalling radiation-matter interaction, influence on radiation effects of chemical composition, structure, irradiation atmosphere, dose rate, temperature of organic materials and evolution of electrical, mechanical and physical properties are reviewed. Then behaviour under irradiation of main organic materials: elastomers, thermoplastics, thermosetting plastics, oils and paints are examined. 68 refs [fr

  5. Effect of radiation environment on radiation use efficiency and growth of sunflower

    International Nuclear Information System (INIS)

    Bange, M.P.; Hammer, G.L.; Rickert, K.G.

    1997-01-01

    The level of incident radiation and the proportion of radiation that is diffuse affects radiation use efficiency (RUE) in crops. However, the degree of this effect, and its importance to growth and yield of sunflower (Helianthus annuus L.) have not been established. A field experiment was conducted to investigate the effects of radiation environment on RUE, growth, and yield of sunflower. A fully irrigated crop was sown on an alluvial-prairie soil (Fluventic Haplustoll) and was exposed to three distinct radiation environments. In two treatments, the level of incident radiation was reduced by 14 and 20% by suspending two different types of polyethylene plastic films well above the crop. In addition to the reductions in incident radiation, the proportion of radiation that was diffuse was increased by about 14% in these treatments. Lower incident radiation and increased proportion of diffuse radiation had no effect on total biomass, phenology, leaf area, and the canopy light extinction coefficient (k = 0.89). However, yield was reduced in shaded treatments due to smaller grain size and lower harvest index. Although crop RUE measured over the entire crop cycle (1.25 g/MJ) did not differ significantly among treatments, there was a trend where RUE compensated for less intercepted incident radiation. Theoretical derivations of the response of RUE to different levels of incident radiation supported this finding. Shaded sunflower crops have the ability to produce biomass similar to unshaded crops by increasing RUE, but have lower harvest indices

  6. Low level radiation: biological effects

    International Nuclear Information System (INIS)

    Loken, M.K.

    1983-01-01

    It is imperative that physicians and scientists using radiations in health care delivery continue to assess the benefits derived, vs. potential risk, to patients and radiation workers being exposed to radiation in its various forms as part of our health delivery system. Insofar as possible we should assure our patients and ourselves that the benefits outweigh the potential hazards involved. Inferences as to the possible biological effects of low level radiation are generally based on extrapolations from those effects observed and measured following acute exposures to considerably higher doses of radiation. Thus, in order to shed light on the question of the possible biological effects of low level radiation, a wide variety of studies have been carried out using cells in culture and various species of plant and animal life. This manuscript makes reference to some of those studies with indications as to how and why the studies were done and the conclusions that might be drawn there from. In addition reference is made to the handling of this information by scientists, by environmentalists, and by the news media. Unfortunately, in many instances the public has been misled by what has been said and/or written. It is hoped that this presentation will provide an understandable and reasonable perspective on the various appropriate uses of radiation in our lives and how such uses do provide significant improvement in our health and in our quality of life

  7. Radiobiologic effects at low radiation levels

    International Nuclear Information System (INIS)

    Casarett, G.W.

    1975-01-01

    Data are reviewed on the effects of low radiation doses on mammals. Data from the 1972 report on the Biological Effects of Ionizing Radiation issued by the Advisory Committee of the National Academy of Sciences and National Research Council are discussed. It was concluded that there are certain radiosensitive systems in which low doses of radiation may cause degenerative effects, including gametogenic epithelium, lens of the eye, and developing embryos. Despite extensive investigation of genetic effects, including chromosomal effects, neither the amount of change that will be caused by very low levels of irradiation nor the degree of associated detriment is known

  8. Physics of intense, high energy radiation effects

    International Nuclear Information System (INIS)

    Hjalmarson, Harold Paul; Hartman, E. Frederick; Magyar, Rudolph J.; Crozier, Paul Stewart

    2011-01-01

    This document summarizes the work done in our three-year LDRD project titled 'Physics of Intense, High Energy Radiation Effects.' This LDRD is focused on electrical effects of ionizing radiation at high dose-rates. One major thrust throughout the project has been the radiation-induced conductivity (RIC) produced by the ionizing radiation. Another important consideration has been the electrical effect of dose-enhanced radiation. This transient effect can produce an electromagnetic pulse (EMP). The unifying theme of the project has been the dielectric function. This quantity contains much of the physics covered in this project. For example, the work on transient electrical effects in radiation-induced conductivity (RIC) has been a key focus for the work on the EMP effects. This physics in contained in the dielectric function, which can also be expressed as a conductivity. The transient defects created during a radiation event are also contained, in principle. The energy loss lead the hot electrons and holes is given by the stopping power of ionizing radiation. This information is given by the inverse dielectric function. Finally, the short time atomistic phenomena caused by ionizing radiation can also be considered to be contained within the dielectric function. During the LDRD, meetings about the work were held every week. These discussions involved theorists, experimentalists and engineers. These discussions branched out into the work done in other projects. For example, the work on EMP effects had influence on another project focused on such phenomena in gases. Furthermore, the physics of radiation detectors and radiation dosimeters was often discussed, and these discussions had impact on related projects. Some LDRD-related documents are now stored on a sharepoint site (https://sharepoint.sandia.gov/sites/LDRD-REMS/default.aspx). In the remainder of this document the work is described in catergories but there is much overlap between the atomistic calculations, the

  9. Radiation hormesis. Stimulatory effects of low level ionizing radiation on plant

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, Shigenobu; Masui, Hisashi; Yoshida, Shigeo; Murata, Isao [Osaka Univ., Suita (Japan). Faculty of Engineering

    1999-04-01

    Recently, the study for radiation hormesis has been executed against animals and plants; subharmful doses of radiation may evoke a stimulatory response in any organism. We executed irradiating experiments of dry seeds with fusion (D-T) neutron, fission neutron, cobalt-60 gamma-ray and investigated existence of the radiation hormesis effects by measuring germination, the length of a stalk and the total weight of a seed leaf on the 7th day after starting cultivation. And we estimated radiation hormesis effects by relative effectiveness, the ratio of the mean value of measurement subjects for the irradiated group to that of non-irradiated group. In relation to Raphanus sativus, the hormesis effects on seed leaf growth from irradiated seeds have only turned up in seed groups irradiated by the fusion (D-T) neutron. We have confirmed that absorbed dose range which revealed the effects is from 1 cGy to 10 Gy and the increasing rate is from 5 percent to 25 percent against a control group. (author)

  10. Radiation. Doses, effect, risk

    International Nuclear Information System (INIS)

    Vapirev, E.; Todorov, P.

    1994-12-01

    This book outlines in a popular form the topic of ionizing radiation impacts on living organisms. It contains data gathered by ICRP for a period of 35 years. The essential dosimetry terms and units are presented. Natural and artificial sources of ionizing radiation are described. Possible biological radiation effects and diseases as a consequence of external and internal irradiation at normal and accidental conditions are considered. An assessment of genetic risk for human populations is presented and the concept of 'acceptable risk' is discussed

  11. Radiation effects in optoelectronic devices

    International Nuclear Information System (INIS)

    Barnes, C.E.

    1977-03-01

    A summary is given of studies on radiation effects in light-emitting diodes, laser diodes, detectors, optical isolators and optical fibers. It is shown that the study of radiation damage in these devices can provide valuable information concerning the nature of the devices themselves, as well as methods of hardening these devices for applications in radiation environments

  12. Genetic effects of ionising radiation

    International Nuclear Information System (INIS)

    Saunders, P.A.H.

    1991-12-01

    Ionizing radiation effects on the gem cells, which can result in genetic abnormalities, are described. The basic mechanisms of radiation interactions with chromosomes, or specifically DNA, which can result in radiation induced mutation are discussed. Methods of estimating genetic risks, and some values for quantitative risk estimates are given. (U.K.). 13 refs., 2 figs., 1 tab

  13. Radiation effects on ion exchange materials

    Energy Technology Data Exchange (ETDEWEB)

    Gangwer, T.E.; Goldstein, M.; Pillay, K.K.S.

    1977-11-01

    An extensive literature review and data compilation has been completed on the radiation-damage of ion exchange resins. The primary goal of the study has been to review the available literature on ion exchange materials used in, as well as those with potential for use in, the nuclear fuel and waste reprocessing areas. The physical and chemical properties of ion exchangers are reviewed. Experimental parameters useful in characterizing the effects of radiation on synthetic ion exchange resins are identified or defined. In compiling the diverse types of data, an effort was made to present the experimental data or experimentally based parameters in a format that would be useful for inter-comparing radiation effects on resins. When subject to radiation there are various general trends or qualitative effects displayed by the different types of resins. These radiation-trends and effects have been formulated into qualitative statements. The present day level of understanding of the behavior of resins under ionizing radiation is too limited to justify quantitative predictive modeling. The limitations and deficiencies of the literature are discussed and the experimentation needed to achieve quantitative modeling are outlined. 14 figs., 108 references.

  14. Radiation effects on ion exchange materials

    International Nuclear Information System (INIS)

    Gangwer, T.E.; Goldstein, M.; Pillay, K.K.S.

    1977-11-01

    An extensive literature review and data compilation has been completed on the radiation-damage of ion exchange resins. The primary goal of the study has been to review the available literature on ion exchange materials used in, as well as those with potential for use in, the nuclear fuel and waste reprocessing areas. The physical and chemical properties of ion exchangers are reviewed. Experimental parameters useful in characterizing the effects of radiation on synthetic ion exchange resins are identified or defined. In compiling the diverse types of data, an effort was made to present the experimental data or experimentally based parameters in a format that would be useful for inter-comparing radiation effects on resins. When subject to radiation there are various general trends or qualitative effects displayed by the different types of resins. These radiation-trends and effects have been formulated into qualitative statements. The present day level of understanding of the behavior of resins under ionizing radiation is too limited to justify quantitative predictive modeling. The limitations and deficiencies of the literature are discussed and the experimentation needed to achieve quantitative modeling are outlined. 14 figs., 108 references

  15. Radiation effects in gases

    International Nuclear Information System (INIS)

    Leonhardt, J.W.

    1985-01-01

    Problems in the studies of radiation effects in gases are discussed. By means of ionization- excitation- and electron-capture yields various applications are characterized: ionization detectors, X-ray detectors, radionuclide battery, and radiation-induced chemical gas-phase reactions. Some new results of basic research in respect to the SO 2 oxidation are discussed. (author)

  16. Radiation effects at the SSC

    Energy Technology Data Exchange (ETDEWEB)

    Gilchriese, M.G.D. [ed.] [Superconducting Super Collider Lab., Dallas, TX (United States)

    1988-06-01

    This report contains a preliminary study of the effects of the radiation levels expected at the SSC on potential detector components and a subset of materials to be used in the SSC accelerators. The report does not contain a discussion of radiation damage to electronics components that may be used at the SSC. We have investigated many of the effects of radiation on silicon detectors, on wire chambers, on scintillating materials and the associated readout, on optical fibers for data transmission and on structural or other materials to be used in detector or accelerator components. In the SSC accelerator complex, in particular the storage rings, radiation damage will not present significant problems different than those now faced by existing high energy accelerators. We find that the effects of radiation damage on SSC detector components will be significant at the design luminosity of the ssc and will limit, or determine, many of the options for different detector components. In this regard the reader should keep in mind that, in the absence of a specific detector design, it is not possible to form definitive conclusions regarding the viability of the detector components. Since the radiation levels in experiments at the SSC will depend on the geometry and composition of the apparatus, simple yes /no generalizations about the feasibility of a detector component are not possible.

  17. The effects of ionizing radiation on man

    International Nuclear Information System (INIS)

    Watson, G.M.

    1975-08-01

    This paper describes the major effects of ionizing radiation on man and the relationship between such effects and radiation dose, with the conclusion that standards of radiological safety must be based on the carcinogenetic and mutagenic properties of ionizing radiation. Man is exposed to radiation from natural sources and from man-made sources. Exposure from the latter should be regulated but, since there is little observational or experimental evidence for predicting the effects of the very small doses likely to be required for adequate standards of safety, it is necessary to infer them from what is seen at high doses. Because the formal relationship between dose and effect is not fully understood, simplifying assumptions are necessary to estimate the effects of low doses. Two such assumptions are conventionally used; that there is a linear relationship between dose and effect at all levels of dose, and that the rate at which a dose of radiation is given does not alter the magnitude of the effect. These assumptions are thought to be conservative, that is they will not lead to an underestimation of the effects of small radiation doses although they may give an over-estimate. (author)

  18. Handbook of radiation effects

    International Nuclear Information System (INIS)

    Holmes-Siedle, A.; Adams, L.

    1993-01-01

    This handbook is intended to serve as a tool for designers of equipment and scientific instruments in cases where they are required to ensure the survival of the equipment in radiation environments. High-technology materials, especially semiconductors and optics, tend to degrade on exposure to radiation in many different ways. Intense high-energy radiation environments are found in nuclear reactors and accelerators, machines for radiation therapy, industrial sterilization, and space. Some engineers have to build equipment which will survive a nuclear explosion from a hostile source. Proper handling of a disaster with radioactive materials requires equipment which depends utterly on semiconductor microelectronics and imaging devices. Thus the technology of radiation-tolerant electronics is an instrument for good social spheres as diverse as disaster planning and the exploration of Mars. In order to design equipment for intense environments like those described above, then degradation from high-energy irradiation must be seen as a basic design parameter. The aim of this handbook is to assist the engineer or student in that thought; to make it possible to write intelligent specifications; to offer some understanding of the complex variety of effects which occur when high-technology components encounter high-energy radiation; and to go thoroughly into the balance of choices of how to alleviate the effects and hence achieve the design aims of the project. Separate abstracts were prepared for 15 chapters of this book

  19. The Effects of Ionizing Radiation on Mammalian Cells.

    Science.gov (United States)

    Biaglow, John E.

    1981-01-01

    Discusses the effects of radiation on dividing cells and factors influencing these effects; also briefly reviews the radical mechanism for radiation damage. Emphasizes the importance of oxygen in radiation effects. (CS)

  20. Modifiers of radiation effects in the eye

    Science.gov (United States)

    Kleiman, Norman J.; Stewart, Fiona A.; Hall, Eric J.

    2017-11-01

    World events, including the threat of radiological terrorism and the fear of nuclear accidents, have highlighted an urgent need to develop medical countermeasures to prevent or reduce radiation injury. Similarly, plans for manned spaceflight to a near-Earth asteroid or journey to Mars raise serious concerns about long-term effects of space radiation on human health and the availability of suitable therapeutic interventions. At the same time, the need to protect normal tissue from the deleterious effects of radiotherapy has driven considerable research into the design of effective radioprotectors. For more than 70 years, animal models of radiation cataract have been utilized to test the short and long-term efficacy of various radiation countermeasures. While some compounds, most notably the Walter Reed (WR) class of radioprotectors, have reported limited effectiveness when given before exposure to low-LET radiation, the human toxicity of these molecules at effective doses limits their usefulness. Furthermore, while there has been considerable testing of eye responses to X- and gamma irradiation, there is limited information about using such models to limit the injurious effects of heavy ions and neutrons on eye tissue. A new class of radioprotector molecules, including the sulfhydryl compound PrC-210, are reported to be effective at much lower doses and with far less side effects. Their ability to modify ocular radiation damage has not yet been examined. The ability to non-invasively measure sensitive, radiation-induced ocular changes over long periods of time makes eye models an attractive option to test the radioprotective and radiation mitigating abilities of new novel compounds.

  1. Some characteristics and effects of natural radiation

    International Nuclear Information System (INIS)

    Mc Laughlin, J.P.

    2015-01-01

    Since life first appeared on the Earth, it has, in all its subsequent evolved forms including human, been exposed to natural radiation in the environment both from terrestrial and extra-terrestrial sources. Being an environmental mutagen, ionising natural radiation may have played a role of some significance in the evolution of early life forms on Earth. It has been estimated by United Nations Scientific Committee on the Effects of Atomic Radiation that at the present time, exposure to natural radiation globally results in an annual average individual effective dose of about 2.4 mSv. This represents about 80 % of the total dose from all sources. The three most important components of natural radiation exposure are cosmic radiation, terrestrial radioactivity and indoor radon. Each of these components exhibits both geographical and temporal variabilities with indoor radon exposure being the most variable and also the largest contributor to dose for most people. In this account, an overview is given of the characteristics of the main components of the natural radiation environment and some of their effects on humans. In the case of cosmic radiation, these range from radiation doses to aircrew and astronauts to the controversial topic of its possible effect on climate change. In the case of terrestrial natural radiation, accounts are given of a number of human exposure scenarios. (author)

  2. Radiative budget and cloud radiative effect over the Atlantic from ship-based observations

    Directory of Open Access Journals (Sweden)

    J. Kalisch

    2012-10-01

    Full Text Available The aim of this study is to determine cloud-type resolved cloud radiative budgets and cloud radiative effects from surface measurements of broadband radiative fluxes over the Atlantic Ocean. Furthermore, based on simultaneous observations of the state of the cloudy atmosphere, a radiative closure study has been performed by means of the ECHAM5 single column model in order to identify the model's ability to realistically reproduce the effects of clouds on the climate system.

    An extensive database of radiative and atmospheric measurements has been established along five meridional cruises of the German research icebreaker Polarstern. Besides pyranometer and pyrgeometer for downward broadband solar and thermal radiative fluxes, a sky imager and a microwave radiometer have been utilized to determine cloud fraction and cloud type on the one hand and temperature and humidity profiles as well as liquid water path for warm non-precipitating clouds on the other hand.

    Averaged over all cruise tracks, we obtain a total net (solar + thermal radiative flux of 144 W m−2 that is dominated by the solar component. In general, the solar contribution is large for cirrus clouds and small for stratus clouds. No significant meridional dependencies were found for the surface radiation budgets and cloud effects. The strongest surface longwave cloud effects were shown in the presence of low level clouds. Clouds with a high optical density induce strong negative solar radiative effects under high solar altitudes. The mean surface net cloud radiative effect is −33 W m−2.

    For the purpose of quickly estimating the mean surface longwave, shortwave and net cloud effects in moderate, subtropical and tropical climate regimes, a new parameterisation was created, considering the total cloud amount and the solar zenith angle.

    The ECHAM5 single column model provides a surface net cloud effect that is more

  3. Harmful effects of ultraviolet radiation

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    Tanning for cosmetic purposes by sunbathing or by using artificial tanning devices is widespread. The hazards associated with exposure to ultraviolet radiation are of concern to the medical profession. Depending on the amount and form of the radiation, as well as on the skin type of the individual exposed, ultraviolet radiation causes erythema, sunburn, photodamage (photoaging), photocarcinogenesis, damage to the eyes, alteration of the immune system of the skin, and chemical hypersensitivity. Skin cancers most commonly produced by ultraviolet radiation are basal and squamous cell carcinomas. There also is much circumstantial evidence that the increase in the incidence of cutaneous malignant melanoma during the past half century is related to increased sun exposure, but this has not been proved. Effective and cosmetically acceptable sunscreen preparations have been developed that can do much to prevent or reduce most harmful effects to ultraviolet radiation if they are applied properly and consistently. Other safety measures include (1) minimizing exposure to ultraviolet radiation, (2) being aware of reflective surfaces while in the sun, (3) wearing protective clothing, (4) avoiding use of artificial tanning devices, and (5) protecting infants and children

  4. Physics of intense, high energy radiation effects.

    Energy Technology Data Exchange (ETDEWEB)

    Hjalmarson, Harold Paul; Hartman, E. Frederick; Magyar, Rudolph J.; Crozier, Paul Stewart

    2011-02-01

    This document summarizes the work done in our three-year LDRD project titled 'Physics of Intense, High Energy Radiation Effects.' This LDRD is focused on electrical effects of ionizing radiation at high dose-rates. One major thrust throughout the project has been the radiation-induced conductivity (RIC) produced by the ionizing radiation. Another important consideration has been the electrical effect of dose-enhanced radiation. This transient effect can produce an electromagnetic pulse (EMP). The unifying theme of the project has been the dielectric function. This quantity contains much of the physics covered in this project. For example, the work on transient electrical effects in radiation-induced conductivity (RIC) has been a key focus for the work on the EMP effects. This physics in contained in the dielectric function, which can also be expressed as a conductivity. The transient defects created during a radiation event are also contained, in principle. The energy loss lead the hot electrons and holes is given by the stopping power of ionizing radiation. This information is given by the inverse dielectric function. Finally, the short time atomistic phenomena caused by ionizing radiation can also be considered to be contained within the dielectric function. During the LDRD, meetings about the work were held every week. These discussions involved theorists, experimentalists and engineers. These discussions branched out into the work done in other projects. For example, the work on EMP effects had influence on another project focused on such phenomena in gases. Furthermore, the physics of radiation detectors and radiation dosimeters was often discussed, and these discussions had impact on related projects. Some LDRD-related documents are now stored on a sharepoint site (https://sharepoint.sandia.gov/sites/LDRD-REMS/default.aspx). In the remainder of this document the work is described in catergories but there is much overlap between the atomistic

  5. Physics of radiation effects in crystals

    CERN Document Server

    Johnson, RA

    1986-01-01

    ``Physics of Radiation Effects in Crystals'' is presented in two parts. The first part covers the general background and theory of radiation effects in crystals, including the theory describing the generation of crystal lattice defects by radiation, the kinetic approach to the study of the disposition of these defects and the effects of the diffusion of these defects on alloy compositions and phases. Specific problems of current interest are treated in the second part and include anisotropic dimensional changes in x-uranium, zirconium and graphite, acceleration of thermal creep in reactor ma

  6. Long-term effects of ionizing radiation

    International Nuclear Information System (INIS)

    Kaul, Alexander; Burkart, Werner; Grosche, Bernd; Jung, Thomas; Martignoni, Klaus; Stephan, Guenther

    1997-01-01

    This paper approaches the long-term effects of ionizing radiation considering the common thought that killing of cells is the basis for deterministic effects and that the subtle changes in genetic information are important in the development of radiation-induced cancer, or genetic effects if these changes are induced in germ cells

  7. The effects of radiation on man

    International Nuclear Information System (INIS)

    Saunders, P.

    1981-01-01

    Available evidence on the effects of high levels of radiation on man and the predictions which have been made on possible low level effects, by extrapolation of the high level data, are summarised. The factors which influence the biological effects of radiation are examined and acute, delayed, somatic and hereditary effects as reported in the literature, are discussed. (U.K.)

  8. Radiation effect on rocket engine performance

    Science.gov (United States)

    Chiu, Huei-Huang; Kross, K. W.; Krebsbach, A. N.

    1990-01-01

    Critical problem areas involving the effect of radiation on the combustion of bipropellants are addressed by formulating a universal scaling law in combination with a radiation-enhanced vaporization combustion model. Numerical algorithms are developed and data pertaining to the Variable Thrust Engine (VTE) and the Space Shuttle Main Engine (SSME) are used to conduct parametric sensitivity studies to predict the principal intercoupling effects of radiation. The analysis reveals that low-enthalpy engines, such as the VTE, are vulnerable to a substantial performance setback due to radiative loss, whereas the performance of high-enthalpy engines such as the SSME are hardly affected over a broad range of engine operation. Combustion enhancement by radiative heating of the propellant has a significant impact on propellants with high absorptivity.

  9. Biological effects and hazards of radiation exposure

    International Nuclear Information System (INIS)

    Boas, J.F.; Solomon, S.B.

    1990-01-01

    Radiation induced carcinogenesis and mutagenesis form the main risk to health from exposure to low levels of radiation. This risk effects can be at least qualitatively understood by considering the effects of radiation on cell DNA. Whilst exposure to high levels of radiation results in a number of identifiable effects, exposure to low levels of radiation may result in effects which only manifest themselves after many years. Risk estimates for low levels of radiation have been derived on the basis of a number of assumptions. In the case of uranium mine workers a major hazard arises from the inhalation of radon daughters. Whilst the correlation between radon daughter exposure and lung cancer incidence is well established, the numerical value of the risk factor is the subject of controversy. ICRP 50 gives a value of 10 cases per 10 6 person-years at risk per WLM (range 5-15 x 10 -6 PYR -1 WLM -1 ). The effect of smoking on lung cancer incidence rates amongst miners is also controversial. Nevertheless, smoking by miners should be discouraged

  10. Overview of radiation effects research in photonics

    Science.gov (United States)

    Webb, Robert C.; Cohn, Lewis M.; Taylor, Edward W.; Greenwell, Roger A.

    1995-05-01

    A brief overview of ongoing radiation effects research in photonics is presented focusing on integrated optic and acousto-optic components. A short summary of radiation-induced effects in electro-optic modulators, detector arrays, and other photonic technologies is presented along with extensive references. The coordinated radiation effects studies among researchers within the Tri-Service Organizations and international experimental teams are beginning to demonstrate consistent measurements of radiation-induced effects in photonic components and confirming earlier reported data. This paper will present an overview of these coordinated investigations and focus on key research being conducted with the AFMC Phillips Laboratory, Naval Research Laboratory, Defence Nuclear Agency, NATO Nuclear Effects Task Group, and the Tri-Service Photonics Coordinating Committee.

  11. Computer modelling of radiation-induced bystander effect

    International Nuclear Information System (INIS)

    Khvostunov, Igor K.; Nikjoo, Hooshang

    2002-01-01

    Radiation-induced genomic instability and bystander effects are now well established consequences of exposure of living cells to ionising radiation. It has been observed that cells not directly hit by radiation tracks may still exhibit radiation effects. We present a quantitative modelling of the radiation-induced bystander effect based on a diffusion model of spreading the bystander signal. The model assumes the bystander factor to be a protein of low molecular weight, given out by the hit cell, diffusing in the medium and reacting with non-hit cells. The model calculations successfully predict the results of cell survival in an irradiated conditioned medium. The model predicts the shape of dose-effect relationship for cell survival and oncogenic transformation induced by broad-beam and micro-beam irradiation by alpha-particles. (author)

  12. Irradiation of: MOS field effect structures effect of the radiation dose

    International Nuclear Information System (INIS)

    Leray, J.L.

    1989-01-01

    The radiation effects on the structure and the operation of a metal-oxide semiconductor (MOS) are studied. The phenomenology of the radiation damage is analyzed as a function of the accumulated radiation dose and the time. The chronology of the phenomena which takes place in the oxide and the radiation transient phases in MOS structures are discussed. The equivalence of different radiations on SiO2 and other semiconductors is analyzed. The models applied to the study of the radiation permanent effects are reviewed [fr

  13. Medical response to effects of ionising radiation

    International Nuclear Information System (INIS)

    Crosbie, W.A.; Gittus, J.H.

    1989-01-01

    The proceedings of a conference on 'Medical Response to Effects of Ionising Radiation' in 1989 in the form of nineteen papers published as a book. Topics discussed include radiation accidents at nuclear facilities, the medical management of radiation casualties, the responsibilities, plans and resources for coping with a nuclear accident and finally the long term effects of radiation, including leukaemia epidemiology studies. All papers were selected and indexed separately. (UK)

  14. Measuring space radiation shielding effectiveness

    Directory of Open Access Journals (Sweden)

    Bahadori Amir

    2017-01-01

    Full Text Available Passive radiation shielding is one strategy to mitigate the problem of space radiation exposure. While space vehicles are constructed largely of aluminum, polyethylene has been demonstrated to have superior shielding characteristics for both galactic cosmic rays and solar particle events due to the high hydrogen content. A method to calculate the shielding effectiveness of a material relative to reference material from Bragg peak measurements performed using energetic heavy charged particles is described. Using accelerated alpha particles at the National Aeronautics and Space Administration Space Radiation Laboratory at Brookhaven National Laboratory, the method is applied to sample tiles from the Heat Melt Compactor, which were created by melting material from a simulated astronaut waste stream, consisting of materials such as trash and unconsumed food. The shielding effectiveness calculated from measurements of the Heat Melt Compactor sample tiles is about 10% less than the shielding effectiveness of polyethylene. Shielding material produced from the astronaut waste stream in the form of Heat Melt Compactor tiles is therefore found to be an attractive solution for protection against space radiation.

  15. Measuring space radiation shielding effectiveness

    Science.gov (United States)

    Bahadori, Amir; Semones, Edward; Ewert, Michael; Broyan, James; Walker, Steven

    2017-09-01

    Passive radiation shielding is one strategy to mitigate the problem of space radiation exposure. While space vehicles are constructed largely of aluminum, polyethylene has been demonstrated to have superior shielding characteristics for both galactic cosmic rays and solar particle events due to the high hydrogen content. A method to calculate the shielding effectiveness of a material relative to reference material from Bragg peak measurements performed using energetic heavy charged particles is described. Using accelerated alpha particles at the National Aeronautics and Space Administration Space Radiation Laboratory at Brookhaven National Laboratory, the method is applied to sample tiles from the Heat Melt Compactor, which were created by melting material from a simulated astronaut waste stream, consisting of materials such as trash and unconsumed food. The shielding effectiveness calculated from measurements of the Heat Melt Compactor sample tiles is about 10% less than the shielding effectiveness of polyethylene. Shielding material produced from the astronaut waste stream in the form of Heat Melt Compactor tiles is therefore found to be an attractive solution for protection against space radiation.

  16. [Effects of radiation exposure on human body].

    Science.gov (United States)

    Kamiya, Kenji; Sasatani, Megumi

    2012-03-01

    There are two types of radiation health effect; acute disorder and late on-set disorder. Acute disorder is a deterministic effect that the symptoms appear by exposure above a threshold. Tissues and cells that compose the human body have different radiation sensitivity respectively, and the symptoms appear in order, from highly radiosensitive tissues. The clinical symptoms of acute disorder begin with a decrease in lymphocytes, and then the symptoms appear such as alopecia, skin erythema, hematopoietic damage, gastrointestinal damage, central nervous system damage with increasing radiation dose. Regarding the late on-set disorder, a predominant health effect is the cancer among the symptoms of such as cancer, non-cancer disease and genetic effect. Cancer and genetic effect are recognized as stochastic effects without the threshold. When radiation dose is equal to or more than 100 mSv, it is observed that the cancer risk by radiation exposure increases linearly with an increase in dose. On the other hand, the risk of developing cancer through low-dose radiation exposure, less 100 mSv, has not yet been clarified scientifically. Although uncertainty still remains regarding low level risk estimation, ICRP propound LNT model and conduct radiation protection in accordance with LNT model in the low-dose and low-dose rate radiation from a position of radiation protection. Meanwhile, the mechanism of radiation damage has been gradually clarified. The initial event of radiation-induced diseases is thought to be the damage to genome such as radiation-induced DNA double-strand breaks. Recently, it is clarified that our cells could recognize genome damage and induce the diverse cell response to maintain genome integrity. This phenomenon is called DNA damage response which induces the cell cycle arrest, DNA repair, apoptosis, cell senescence and so on. These responses act in the direction to maintain genome integrity against genome damage, however, the death of large number of

  17. Long-term effects of radiation

    International Nuclear Information System (INIS)

    Smith, J.; Smith, T.

    1981-01-01

    It is pointed out that sources of long-term damage from radiation are two-fold. People who have been exposed to doses of radiation from initial early fallout but have recovered from the acute effects may still suffer long-term damage from their exposure. Those who have not been exposed to early fallout may be exposed to delayed fallout, the hazards from which are almost exclusively from ingesting strontium, caesium and carbon isotopes present in food; the damage caused is relatively unimportant compared with that caused by the brief doses from initial radiation and early fallout. A brief discussion is presented of the distribution of delayed long-lived isotope fallout, and an outline is sketched of late biological effects, such as malignant disease, cataracts, retarded development, infertility and genetic effects. (U.K.)

  18. The health effects of low-dose ionizing radiation

    International Nuclear Information System (INIS)

    Dixit, A.N.; Dixit, Nishant

    2012-01-01

    It has been established by various researches, that high doses of ionizing radiation are harmful to health. There is substantial controversy regarding the effects of low doses of ionizing radiation despite the large amount of work carried out (both laboratory and epidemiological). Exposure to high levels of radiation can cause radiation injury, and these injuries can be relatively severe with sufficiently high radiation doses. Prolonged exposure to low levels of radiation may lead to cancer, although the nature of our response to very low radiation levels is not well known at this time. Many of our radiation safety regulations and procedures are designed to protect the health of those exposed to radiation occupationally or as members of the public. According to the linear no-threshold (LNT) hypothesis, any amount, however small, of radiation is potentially harmful, even down to zero levels. The threshold hypothesis, on the other hand, emphasizes that below a certain threshold level of radiation exposure, any deleterious effects are absent. At the same time, there are strong arguments, both experimental and epidemiological, which support the radiation hormesis (beneficial effects of low-level ionizing radiation). These effects cannot be anticipated by extrapolating from harmful effects noted at high doses. Evidence indicates an inverse relationship between chronic low-dose radiation levels and cancer incidence and/or mortality rates. Examples are drawn from: 1) state surveys for more than 200 million people in the United States; 2) state cancer hospitals for 200 million people in India; 3) 10,000 residents of Taipei who lived in cobalt-60 contaminated homes; 4) high-radiation areas of Ramsar, Iran; 5) 12 million person-years of exposed and carefully selected control nuclear workers; 6) almost 300,000 radon measurements of homes in the United States; and 7) non-smokers in high-radon areas of early Saxony, Germany. This evidence conforms to the hypothesis that

  19. Non-targeted effects of radiation: applications for radiation protection and contribution to LNT discussion

    International Nuclear Information System (INIS)

    Belyakov, O.V.; Folkard, M.; Prise, K.M.; Michael, B.D.; Mothersill, C.

    2002-01-01

    According to the target theory of radiation induced effects (Lea, 1946), which forms a central core of radiation biology, DNA damage occurs during or very shortly after irradiation of the nuclei in targeted cells and the potential for biological consequences can be expressed within one or two cell generations. A range of evidence has now emerged that challenges the classical effects resulting from targeted damage to DNA. These effects have also been termed non-(DNA)-targeted (Ward, 1999) and include radiation-induced bystander effects (Iyer and Lehnert, 2000a), genomic instability (Wright, 2000), adaptive response (Wolff, 1998), low dose hyper-radiosensitivity (HRS) (Joiner, et al., 2001), delayed reproductive death (Seymour, et al., 1986) and induction of genes by radiation (Hickman, et al., 1994). An essential feature of non-targeted effects is that they do not require a direct nuclear exposure by irradiation to be expressed and they are particularly significant at low doses. This new evidence suggests a new paradigm for radiation biology that challenges the universality of target theory. In this paper we will concentrate on the radiation-induced bystander effects because of its particular importance for radiation protection

  20. Chronic radiation effects on dental hard tissue (''radiation carries''). Classification and therapeutic strategies

    International Nuclear Information System (INIS)

    Groetz, K.A.; Brahm, R.; Al-Nawas, B.; Wagner, W.; Riesenbeck, D.; Willich, N.; Seegenschmiedt, M.H.

    2001-01-01

    Objectives: Since the first description of rapid destruction of dental hard tissues following head and neck radiotherapy 80 years ago, 'radiation caries' is an established clinical finding. The internationally accepted clinical evaluation score RTOG/EORTC however is lacking a classification of this frequent radiogenic alteration. Material and Methods: Medical records, data and images of radiation effects on the teeth of more than 1,500 patients, who underwent periradiotherapeutic care, were analyzed. Macroscopic alterations regarding the grade of late lesions of tooth crowns were used for a classification into 4 grades according to the RTOG/EORTC guidelines. Results: No early radiation effects were found by macroscopic inspection. In the first 90 days following radiotherapy 1/3 of the patients complained of reversible hypersensitivity, which may be related to a temporary hyperemia of the pulp. It was possible to classify radiation caries as a late radiation effect on a graded scale as known from RTOG/EORTC for other organ systems. This is a prerequisite for the integration of radiation caries into the international nomenclature of the RTOG/EORTC classification. Conclusions: The documentation of early radiation effects on dental hard tissues seems to be neglectable. On the other hand the documentation of late radiation effects has a high clinical impact. The identification of an initial lesion at the high-risk areas of the neck and incisal part of the tooth can lead to a successful therapy as a major prerequisite for orofacial rehabilitation. An internationally standardized documentation is a basis for the evaluation of the side effects of radiooncotic therapy as well as the effectiveness of protective and supportive procedures. (orig.) [de

  1. Evidence for radiation-induced Bystander effects and relevance to radiotherapy and to radiation protection

    International Nuclear Information System (INIS)

    Georgieva, R.

    2006-01-01

    Full text: There are two major arms of radiation science in which Bystander effects (ByEff) could be of practical importance: radiotherapy and risk assessment. Basic biological principles, including dose-response relationships that have become dogma in the context of targeted effects of IR must now be reconsidered. The direct effects of radiation and the bystander components had to be reinvestigated to show the difference between them. It may be necessary to introduce a factor for ByEff's when calculating dose to both normal tissues and tumor. Presumably the relative effects on normal or tumor tissues could be different and that difference may not be always predictable. In relation to radiation protection, the existence of RIByEff's raises important questions for the way radiation dose is measured and modeled. The biological effect of exposure to low-doses radiation is likely to vary between individuals and between organs in one the same individual. Further studies on non-targeted effects should contribute to the establishment of adequate environmental and occupational radiation protection standards. This lecture looks at the history, the current data and controversies that are now beginning to resolve the questions concerning the mechanisms underlying the induction and transmission of ByEff. Especially, effects on radiotherapy and radiation protection are discussed

  2. Ionizing radiation, radiation sources, radiation exposure, radiation effects. Pt. 2

    International Nuclear Information System (INIS)

    Schultz, E.

    1985-01-01

    Part 2 deals with radiation exposure due to artificial radiation sources. The article describes X-ray diagnosis complete with an analysis of major methods, nuclear-medical diagnosis, percutaneous radiation therapy, isotope therapy, radiation from industrial generation of nucler energy and other sources of ionizing radiation. In conclusion, the authors attempt to asses total dose, genetically significant dose and various hazards of total radiation exposure by means of a summation of all radiation impacts. (orig./WU) [de

  3. Effects of radiation on aquatic organisms

    International Nuclear Information System (INIS)

    Kaur, Harbhajan; Lata, Poonam; Sharma, Ankush

    2012-01-01

    With the onset of nuclear age, nuclear fuel cycle products, nuclear medicine techniques, disposal of radio active wastes on land or in water, fall out of testing nuclear weapons has contributed large amount of radio nuclides to the water bodies. Radio nuclides can imbalance aquatic ecosystem resulting in danger to natural life. The biological effects of radiation on aquatic life are mortality, pathophysiological, reproductive, developmental and genetic changes. A broad review of the results obtained about the aquatic organisms related to different phyla indicates that the lower or less developed or more primitive organisms are more resistant than the higher or more advanced, developed and complex organisms to ionizing radiation. The algae, protozoa are more resistant than the insects, crustaceans, molluscs and fishes. The changes in sensitivity between different stages of development have also been noted. A review of the results of exposing salmonoid gametes, eggs, fingerlings and adults to X-rays supports the concepts that radio sensitivity decreases with age. This paper presents a selective review on effects of radiation and radio nuclides on the aquatic life. It include uses and sources of radiation, effective quantity of radiation, lethal and sub lethal effect, effects on survival, growth, reproduction, behaviour, metabolism, carcinogenicity and mutagenicity. (author)

  4. Low-level radiation effects: a fact book

    International Nuclear Information System (INIS)

    Brill, A.B.; Adelstein, S.J.; Saenger, E.L.; Webster, E.W.

    1982-01-01

    Low Level Raidation Effects: A Fact Book, prepared by the Society of Nuclear Medicine Subcommittee on the Risks of Low-Level Ionizing Radiation, attempts to examine the health effects of small doses of radiation. For immediate questions, this work provides a well-organized brief summary of recent radiologic data from refereed scientific literature and from the publications of advisory groups such as the National Council of Radiation Protection and Measurement (NCRP), the International Commission on Radiological Protection (ICRP), the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), and the National Academy of Sciences (NAS). Since it consists almost entirely of tables and graphs from the above-mentioned sources along with summary paragraphs, the Fact Book is very useful in the preparation of lectures. The book is divided into seven sections. Chapter One, Glossary, Units and Conversion Factors, is useful because nearly all data given in the rest of the book is in conventional units and should be converted to SI units for future technical audiences. Chapter 2, Radiobiology, covers the fundamental principles of the field. Chapter 3, Radiation Doses, can be used to help an audience appreciate the relative magnitudes of radiation exposures they may read about or encounter. Chapter 4, Late Somatic Effects of Low Doses of Ionizing Radiation, gives data concerning cancer induction and embryonic effects, and Chapter 5 provides data on genetic effects Chapter 6, Risks, Statistical Facts and Public Perception can be used to compare the risks of radiation exposure with more commonly encountered risks

  5. Ionizing radiation effect on human reproduction

    International Nuclear Information System (INIS)

    Jirous, J.

    1987-01-01

    A review is presented of the existing knowledge on the adverse effects of ionizing radiation on human reproduction. Some interesting findings have been obtained by interapolating the results of studies in mouse embryos to humans, important knowledge has been obtained in studies involving the population of Hiroshima and Nagasaki. The review summarizes the knowledge in the following conclusions: (1) prior to the blastocyst stage, the mammalian embryo is insensitive to teratogenic and growth retarding radiation effects but is highly sensitive to the lethal radiation effect; (2) in the early organogenesis, the embryo is very sensitive to growth retarding, teratogenic and lethal radiation effects. It can, however, partly offset growth retardation in the post-natal period; (3) in the early fetal development stage, the fetus shows reduced sensitivity to teratogenic damage of many organs; sensitivity of the central nervous system and growth retardation remain which can only be compensated post-natally with difficulties; (4) in the late stage of pregnancy the fetus is not significantly deformed as a result of irradiation but permanent cellular depletion can result in various organs and tissues post-natally if radiation doses are high. (L.O.). 22 refs

  6. Comparison of the dose-effect relationship for UV radiation and ionizing radiation

    International Nuclear Information System (INIS)

    Leenhouts, H.P.; Sijsma, M.J.; Chadwick, K.H.

    1990-06-01

    Ionizing radiation and ultraviolet radiation (UV) are both physical agents with mutagenic and carcinogenic properties. However, there are some basic differences in the fundamental mechanism of their interaction with biological material that may have consequences for risk assessment. In this paper the dose-effect relationships for gamma radiation and UV at cellular level will be used to demonstrate the different radio-biological effectiveness of both agents. The results will be discussed in the framework of a biophysical model, based on the assumption that DNA doublestranded lesions are crucial for the cytotoxic action. After exposure to ionizing radiation, the lesions are fixed immediately following irradiation, but after UV exposure the lethal lesions are recognized only in the next DNA synthesis phase. The combination of this concept with the mechanism of lesion induction and the possibility of repair, leads to different dose and time relationships for the radiation effects of both agents. The possible consequences for risk assessment at low levels will be discussed. (author). 9 refs.; 5 figs

  7. Radiation effects in optoelectronic devices

    International Nuclear Information System (INIS)

    Barnes, C.E.; Wiczer, J.J.

    1984-05-01

    Purpose of this report is to provide not only a summary of radiation damage studies at Sandia National Laboratories, but also of those in the literature on the components of optoelectronic systems: light emitting diodes (LEDs), laser diodes, photodetectors, optical fibers, and optical isolators. This review of radiation damage in optoelectronic components is structured according to device type. In each section, a brief discussion of those device properties relevant to radiation effects is given

  8. Radiation effects on cell membranes

    International Nuclear Information System (INIS)

    Koeteles, G.J.

    1982-01-01

    Experimental data are presented concerning the effects of relatively low doses of x radiation and low concentration of tritiated water (HTO) on various receptor functions - concanavalin A, cationized ferritin, poliovirus of plasma membranes of animal and human cells which point to early and temporary disturbances of the composite structures and functions of membranes. References are given to the manifold influence of radiation-induced membrane phenomenon on the development and regeneration of radiation injuries. (author)

  9. The protective effect of lycopene against radiation injury to the small intestine of abdominally radiated mice

    International Nuclear Information System (INIS)

    Itoh, Youko; Kurabe, Teruhisa; Ishiguchi, Tsuneo

    2004-01-01

    To reduce the side effects of radiotherapy, radioprotective effects of lycopene on villi and crypts in the small intestine of abdominally radiated mice (15 Gy) were examined with administration pre-, continuous and post-radiation. In the lycopene group, the ratio of the villus length to the crypt was significantly increased in comparison with the radiation only group at 2 days after radiation. At 7 days after radiation, the ratio of necrotic cells in crypt/total was significantly decreased and the ratio of necrotic cells in villus/total was significantly increased by lycopene administration, which indicated an acceleration of the recovery from the radiation injury with lycopene. Each lycopene administered group showed a significant radioprotective effect, with the pre-radiation administration inducing a smaller effect than that of continuous and post-radiation administration. Radiation induced apoptosis was also decreased by lycopene administration. It is concluded that pre-, continuous and post-radiation administration of lycopene protects against radiation injury of the small intestine and accelerate the recovery. (author)

  10. Effective dose: a radiation protection quantity

    CERN Document Server

    Menzel, H G

    2012-01-01

    Modern radiation protection is based on the principles of justification, limitation, and optimisation. Assessment of radiation risks for individuals or groups of individuals is, however, not a primary objective of radiological protection. The implementation of the principles of limitation and optimisation requires an appropriate quantification of radiation exposure. The International Commission on Radiological Protection (ICRP) has introduced effective dose as the principal radiological protection quantity to be used for setting and controlling dose limits for stochastic effects in the regulatory context, and for the practical implementation of the optimisation principle. Effective dose is the tissue weighted sum of radiation weighted organ and tissue doses of a reference person from exposure to external irradiations and internal emitters. The specific normalised values of tissue weighting factors are defined by ICRP for individual tissues, and used as an approximate age- and sex-averaged representation of th...

  11. Effects of ionizing radiation on life

    International Nuclear Information System (INIS)

    Rausch, L.

    1982-01-01

    Radiobiology in the last years was able to find detailed explanations for the effects of ionizing radiation on living organisms. But it is still impossible to make exact statements concerning the damages by radiation. Even now, science has to content itself with probability data. Moreover no typical damages of ionizing radiation can be identified. Therefore, the risks of ionizing radiation can only be determined by comparison with the spontaneous rate of cancerous or genetic defects. The article describes the interaction of high-energy radiation with the molecules of the organism and their consequences for radiation protection. (orig.)

  12. Trial Watch: Radioimmunotherapy for oncological indications.

    Science.gov (United States)

    Bloy, Norma; Pol, Jonathan; Manic, Gwenola; Vitale, Ilio; Eggermont, Alexander; Galon, Jérôme; Tartour, Eric; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2014-10-01

    During the past two decades, it has become increasingly clear that the antineoplastic effects of radiation therapy do not simply reflect the ability of X-, β- and γ-rays to damage transformed cells and directly cause their permanent proliferative arrest or demise, but also involve cancer cell-extrinsic mechanisms. Indeed, among other activities, radiotherapy has been shown to favor the establishment of tumor-specific immune responses that operate systemically, underpinning the so-called 'out-of-field' or 'abscopal' effect. Thus, ionizing rays appear to elicit immunogenic cell death, a functionally peculiar variant of apoptosis associated with the emission of a particularly immunostimulatory combination of damage-associated molecular patterns. In line with this notion, radiation therapy fosters, and thus exacerbates, the antineoplastic effects of various treatment modalities, including surgery, chemotherapy and various immunotherapeutic agents. Here, we summarize recent advances in the use of ionizing rays as a means to induce or potentiate therapeutically relevant anticancer immune responses. In addition, we present clinical trials initiated during the past 12 months to test the actual benefit of radioimmunotherapy in cancer patients.

  13. Radiation effects of high and low doses

    International Nuclear Information System (INIS)

    El-Naggar, A.M.

    1998-01-01

    The extensive proliferation of the uses and applications of atomic and nuclear energy resulted in possible repercussions on human health. The prominent features of the health hazards that may be incurred after exposure to high and low radiation doses are discussed. The physical and biological factors involved in the sequential development of radiation health effects and the different cellular responses to radiation injury are considered. The main criteria and features of radiation effects of high and low doses are comprehensively outlined

  14. Non-targeted bystander effects induced by ionizing radiation

    International Nuclear Information System (INIS)

    Morgan, William F.; Sowa, Marianne B.

    2007-01-01

    Radiation-induced bystander effects refer to those responses occurring in cells that were not subject to energy deposition events following ionizing radiation. These bystander cells may have been neighbors of irradiated cells, or physically separated but subject to soluble secreted signals from irradiated cells. Bystander effects have been observed in vitro and in vivo and for various radiation qualities. In tribute to an old friend and colleague, Anthony V. Carrano, who would have said 'well what are the critical questions that should be addressed, and so what?', we review the evidence for non-targeted radiation-induced bystander effects with emphasis on prevailing questions in this rapidly developing research field, and the potential significance of bystander effects in evaluating the detrimental health effects of radiation exposure

  15. Radiation effects in silicate glasses

    International Nuclear Information System (INIS)

    Bibler, N.E.; Howitt, D.G.

    1988-01-01

    The study of radiation effects in complex silicate glasses has received renewed attention because of their use in special applications such as high level nuclear waste immobilization and fiber optics. Radiation changes the properties of these glasses by altering their electronic and atomic configurations. These alterations or defects may cause dilatations or microscopic phase changes along with absorption centers that limit the optical application of the glasses. Atomic displacements induced in the already disordered structure of the glasses may affect their use where heavy irradiating particles such as alpha particles, alpha recoils, fission fragments, or accelerated ions are present. Large changes (up to 1%) in density may result. In some cases the radiation damage may be severe enough to affect the durability of the glass in aqueous solutions. In the paper, the authors review the literature concerning radiation effects on density, durability, stored energy, microstructure and optical properties of silicate glasses. Both simple glasses and complex glasses used for immobilization of nuclear waste are considered

  16. Acute Radiation Effects Resulting from Exposure to Solar Particle Event-Like Radiation

    Science.gov (United States)

    Kennedy, Ann; Cengel, Keith

    2012-07-01

    A major solar particle event (SPE) may place astronauts at significant risk for the acute radiation syndrome (ARS), which may be exacerbated when combined with other space flight stressors, such that the mission or crew health may be compromised. The National Space Biomedical Research Institute (NSBRI) Center of Acute Radiation Research (CARR) is focused on the assessment of risks of adverse biological effects related to the ARS in animal models exposed to space flight stressors combined with the types of radiation expected during an SPE. As part of this program, FDA-approved drugs that may prevent and/or mitigate ARS symptoms are being evaluated. The CARR studies are focused on the adverse biological effects resulting from exposure to the types of radiation, at the appropriate energies, doses and dose-rates, present during an SPE (and standard reference radiations, gamma rays or electrons). The ARS is a phased syndrome which often includes vomiting and fatigue. Other acute adverse biologic effects of concern are the loss of hematopoietic cells, which can result in compromised bone marrow and immune cell functions. There is also concern for skin damage from high SPE radiation doses, including burns, and resulting immune system dysfunction. Using 3 separate animal model systems (ferrets, mice and pigs), the major ARS biologic endpoints being evaluated are: 1) vomiting/retching and fatigue, 2) hematologic changes (with focus on white blood cells) and immune system changes resulting from exposure to SPE radiation with and without reduced weightbearing conditions, and 3) skin injury and related immune system functions. In all of these areas of research, statistically significant adverse health effects have been observed in animals exposed to SPE-like radiation. Countermeasures for the management of ARS symptoms are being evaluated. New research findings from the past grant year will be discussed. Acknowledgements: This research is supported by the NSBRI Center of Acute

  17. Graphene Field Effect Transistor for Radiation Detection

    Science.gov (United States)

    Li, Mary J. (Inventor); Chen, Zhihong (Inventor)

    2016-01-01

    The present invention relates to a graphene field effect transistor-based radiation sensor for use in a variety of radiation detection applications, including manned spaceflight missions. The sensing mechanism of the radiation sensor is based on the high sensitivity of graphene in the local change of electric field that can result from the interaction of ionizing radiation with a gated undoped silicon absorber serving as the supporting substrate in the graphene field effect transistor. The radiation sensor has low power and high sensitivity, a flexible structure, and a wide temperature range, and can be used in a variety of applications, particularly in space missions for human exploration.

  18. Radiation effects

    International Nuclear Information System (INIS)

    Collings, E.W.

    1986-01-01

    An important cause of deterioration in superconducting magnets intended for high-energy physics and fusion-reactor applications is radiation damage. The present chapter deals chiefly with the effects of electron, proton, gamma and neutron irradiation on the properties of stabilized Ti-Nb-base composite superconductors. The authors examine the particle-accelerator environment, electron irradiation of Ti-Nb superconductor, proton irradiation of Ti-Nb superconductor and its stabilizer, and deuteron irradiation of Ti-Nb superconductor. A section discussing the fusion reactor environment in general is presented, and the two principal classes of fusion reactor based on the magnetic-confinement concept, namely the tokamak and the mirrormachine are examined. Also discussed is neutron irradiation of Cu/TiNb composite superconductors and critical current density of neutronirradiated Ti-Nb. Finally, radiation damage to stabilizer and insulating materials is described

  19. Effect of HALS on radiation discoloration of PE

    International Nuclear Information System (INIS)

    Wang Huiliang; Wang Chun; Chen Wenxiu

    2001-01-01

    The effects of hindered amine light stabilizers (HALS) on the radiation-induced discoloration of polyethylene (PE) are studied by measuring the yellowness index (YI) of PE. It is found that all the HALS used are effective in preventing PE from radiation-induced discoloration. The YI of PE added pentamethyl HALS (PMPM, PPMPM) is a little higher than that of PE added corresponding tetramethyl HALS (TMPM, PTMPM) when radiation dose is low than 100 kGy, but when the radiation dose is higher than 100 kGy, the YI of PE added pentamethyl HALS is lower. Pentamethyl HALS is more effective in preventing PE from radiation-induced discoloration when radiation dose is higher. It is also found that polymeric HALS is more effective in preventing PE from radiation-induced discoloration than corresponding monomeric HALS when radiation dose is higher than 200 kGy. The formation of alkyl free radical, carbonyl after irradiation is measured. It is found that the relative concentration of free radical formed in PE added TMPM is higher than that of PE added PMPM when radiation dose is relatively high. The carbonyl index of PE containing pentamethyl HALS is less than that of PE containing tetramethyl HALS when radiation is relatively low, but the results is contrary when radiation dose is relatively high. It is believed that HALS prevents PE from radiation-induced discoloration by scavenging free radicals formed in irradiated PE

  20. Radiation effects on relativistic electrons in strong external fields

    International Nuclear Information System (INIS)

    Iqbal, Khalid

    2013-01-01

    The effects of radiation of high energy electron beams are a major issue in almost all types of charged particle accelerators. The objective of this thesis is both the analytical and numerical study of radiation effects. Due to its many applications the study of the self force has become a very active and productive field of research. The main part of this thesis is devoted to the study of radiation effects in laser-based plasma accelerators. Analytical models predict the existence of radiation effects. The investigation of radiation reaction show that in laser-based plasma accelerators, the self force effects lower the energy gain and emittance for moderate energies electron beams and increase the relative energy spread. However, for relatively high energy electron beams, the self radiation and retardation (radiation effects of one electron on the other electron of the system) effects increase the transverse emittance of the beam. The energy gain decreases to even lower value and relative energy spread increases to even higher value due to high radiation losses. The second part of this thesis investigates with radiation reaction in focused laser beams. Radiation effects are very weak even for high energy electrons. The radiation-free acceleration and the simple practical setup make direct acceleration in a focused laser beam very attractive. The results presented in this thesis can be helpful for the optimization of future electron acceleration experiments, in particular in the case of laser-plasma accelerators.

  1. Basic radiation effects in nuclear power electronics technology

    International Nuclear Information System (INIS)

    Gover, J.E.; Srour, J.R.

    1985-05-01

    An overview is presented of the effects of radiation in microelectronics technology. The approach taken throughout these notes is to review microscopic phenomena associated with radiation effects and to show how these lead to macroscopic effects in semiconductor devices and integrated circuits. Bipolar integrated circuits technology is reviewed in Appendix A. Appendix B gives present and future applications of radiation-tolerant microelectronics in nuclear power applications as well as the radiation tolerance requirements of these applications

  2. Radiation protection standards: a summary of the biological effects of ionising radiation and principles of radiation protection

    International Nuclear Information System (INIS)

    1994-01-01

    This leaflet in the NRPB At-a-Glance-Series briefly summarises the biological effects of radiation, harm and sensitivity to radiation, radiation protection principles, acceptability of risk and the control of doses to workers, the public and in medical procedures in the UK. (UK)

  3. Radiation effects in ice: New results

    International Nuclear Information System (INIS)

    Baragiola, R.A.; Fama, M.; Loeffler, M.J.; Raut, U.; Shi, J.

    2008-01-01

    Studies of radiation effects in ice are motivated by intrinsic interest and by applications in astronomy. Here we report on new and recent results on radiation effects induced by energetic ions in ice: amorphization of crystalline ice, compaction of microporous amorphous ice, electrostatic charging and dielectric breakdown and correlated structural/chemical changes in the irradiation of water-ammonia ices

  4. Cumulative radiation effect

    International Nuclear Information System (INIS)

    Kirk, J.; Cain, O.; Gray, W.M.

    1977-01-01

    Cumulative Radiation Effect (CRE) represents a scale of accumulative sub-tolerance radiation damage, with a unique value of the CRE describing a specific level of radiation effect. Computer calculations have been used to simplify the evaluation of problems associated with the applications of the CRE-system in radiotherapy. In a general appraisal of the applications of computers to the CRE-system, the various problems encountered in clinical radiotherapy have been categorised into those involving the evaluation of a CRE at a point in tissue and those involving the calculation of CRE distributions. As a general guide, the computer techniques adopted at the Glasgow Institute of Radiotherapeutics for the solution of CRE problems are presented, and consist basically of a package of three interactive programs for point CRE calculations and a Fortran program which calculates CRE distributions for iso-effect treatment planning. Many examples are given to demonstrate the applications of these programs, and special emphasis has been laid on the problem of treating a point in tissue with different doses per fraction on alternate treatment days. The wide range of possible clinical applications of the CRE-system has been outlined and described under the categories of routine clinical applications, retrospective and prospective surveys of patient treatment, and experimental and theoretical research. Some of these applications such as the results of surveys and studies of time optimisation of treatment schedules could have far-reaching consequences and lead to significant improvements in treatment and cure rates with the minimum damage to normal tissue. (author)

  5. Radiation-induced genomic instability and bystander effects: inter-related inflammatory-type non-targeted effects of exposure to ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Wright, E.G. (Molecular and Cellular Pathology Laboratories, Division of Pathology and Neuroscience, Ninewells Hospital and Medical School, Dundee, Scotland (United Kingdom))

    2008-12-15

    The dogma that genetic alterations are restricted to directly irradiated cells has been challenged by observations in which effects of ionizing radiation, characteristically associated with the consequences of energy deposition in the cell nucleus, arise in non-irradiated cells. These, so called, untargeted effects are demonstrated in cells that are the descendants of irradiated cells (radiation-induced genomic instability) or in cells that have communicated with neighbouring irradiated cells (radiation-induced bystander effects). There are also reports of long-range signals in vivo, known as clastogenic factors, with the capacity to induce damage in unirradiated cells. Clastogenic factors may be related to the inflammatory responses that have been implicated in some of the pathological consequences of radiation exposures. The phenotypic expression of untargeted effects reflects a balance between the type of signals produced and the responses of cell populations to such signals, both of which may be significantly influenced by cell type and genotype. There is accumulating evidence that untargeted effects in vitro involve inter-cellular signalling, production of cytokines and free radical generation. These are also features of inflammatory responses in vivo that are known to have the potential for both bystander-mediated and persisting damage as well as for conferring a predisposition to malignancy. At present it is far from clear how untargeted effects contribute to overall cellular radiation responses and in vivo consequences but it is possible that the various untargeted effects may reflect inter-related aspects of a non-specific inflammatory-type response to radiation-induced stress and injury and be involved in a variety of the pathological consequences of radiation exposures. (orig.)

  6. Radiation-induced genomic instability and bystander effects: inter-related inflammatory-type non-targeted effects of exposure to ionizing radiation

    International Nuclear Information System (INIS)

    Wright, E.G.

    2008-01-01

    The dogma that genetic alterations are restricted to directly irradiated cells has been challenged by observations in which effects of ionizing radiation, characteristically associated with the consequences of energy deposition in the cell nucleus, arise in non-irradiated cells. These, so called, untargeted effects are demonstrated in cells that are the descendants of irradiated cells (radiation-induced genomic instability) or in cells that have communicated with neighbouring irradiated cells (radiation-induced bystander effects). There are also reports of long-range signals in vivo, known as clastogenic factors, with the capacity to induce damage in unirradiated cells. Clastogenic factors may be related to the inflammatory responses that have been implicated in some of the pathological consequences of radiation exposures. The phenotypic expression of untargeted effects reflects a balance between the type of signals produced and the responses of cell populations to such signals, both of which may be significantly influenced by cell type and genotype. There is accumulating evidence that untargeted effects in vitro involve inter-cellular signalling, production of cytokines and free radical generation. These are also features of inflammatory responses in vivo that are known to have the potential for both bystander-mediated and persisting damage as well as for conferring a predisposition to malignancy. At present it is far from clear how untargeted effects contribute to overall cellular radiation responses and in vivo consequences but it is possible that the various untargeted effects may reflect inter-related aspects of a non-specific inflammatory-type response to radiation-induced stress and injury and be involved in a variety of the pathological consequences of radiation exposures. (orig.)

  7. Radiation effects on custom MOS devices

    International Nuclear Information System (INIS)

    Harris, R.

    1999-05-01

    This Thesis consists of four chapters: The first is primarily for background information on the effects of radiation on MOS devices and the theory of wafer bonding; the second gives a full discussion of all practical work carried out for manufacture of Field Effect test Capacitors, the third discusses manufacture of vacuum insulator Field Effect Transistors (FET's) and the fourth discusses the testing of these devices. Using a thermally bonded field effect capacitor structure, a vacuum dielectric was studied for use in high radiation environments with a view to manufacturing a CMOS compatible, micro machined transistor. Results are given in the form of high frequency C-V curves before and after a 120 kGy(Si), 12 MRad(Si), dose from a Co 60 source showing a 1 Volt shift. The work is then extended to the design and manufacture of a micro machined, under-etch technique, Field Effect Transistor for use in high radiation areas. Results are shown for Threshold, Subthreshold and Transfer characteristics before and after irradiation up to a total dose of 100kGy or 10MRad. The conclusion from this work is that it should be possible to commercially manufacture practical vacuum dielectric field effect transistors which are radiation hard to at least 120 kGy(Si). (author)

  8. Radiation Bystander Effects Mechanism

    Directory of Open Access Journals (Sweden)

    Shokohzaman Soleymanifard

    2009-06-01

    Full Text Available Introduction: Radiation Induced Bystander Effect (RIBE which cause radiation effects in non-irradiated cells, has challenged the principle according to which radiation traversal through the nucleus of a cell is necessary for producing biological responses. What is the mechanism of this phenomenon? To have a better understanding of this rather ambiguous concept substantial number of original and reviewed article were carefully examined. Results: Irradiated cells release molecules which can propagate in cell environment and/or transmit through gap junction intercellular communication. These molecules can reach to non-irradiated cells and transmit bystander signals. In many investigations, it has been confirmed that these molecules are growth factors, cytokines, nitric oxide and free radicals like reactive oxygen species (ROS. Transmission of by stander signal to neighboring cells persuades them to produce secondary growth factors which in their turn cause further cell injuries. Some investigators suggest, organelles other than nucleus (mitochondria and cell membrane are the origin of these signals.  There is another opinion which suggests double strand breaks (DSB are not directly generated in bystander cells, rather they are due to smaller damage like single strand breaks which accumulate and end up to DSB. Although bystander mechanisms have not been exactly known, it can be confirmed that multiple mechanisms and various pathways are responsible for this effect. Cell type, radiation type, experimental conditions and end points identify the dominant mechanism. Conclusion: Molecules and pathways which are responsible for RIBE, also cause systemic responses to other non-irradiation stresses. So RIBE is a kind of systemic stress or innate immune responses, which are performed by cell microenvironment. Irradiated cells and their signals are components of microenvironment for creating bystander effects.

  9. Ionizing radiation biological effects and the proper protective measures against it's harmful effects

    International Nuclear Information System (INIS)

    Hhalel, A.M.

    1990-01-01

    This book intrduces a good knowledge in specifications of ionizing radiation biological effects and the proper protective measures againest harmful effectes. The book is devided in to five main sections, the first one introduces the hostorical bachground of the contributions of a number of scietists in the basic knolwledge of radiation and its biological effects. The second section deals with the physical and chemical principles of radiation the third one talks about radiation detection. While the fourth section talks (via seven chapter) about the effectes of ionizing radiation on living organisms molecules cells, tissues organs systems and the living organism the fifth section talks about the uses of radiation sources, the probability of radiation accidents, protective measures, international recommendations related to doses and safe use of ionizing radiation. (Abed Al-wali Al-ajlouni). 53 refs., 107 figs., 13 tabs

  10. Radiation Effects on Spacecraft Structural Materials

    International Nuclear Information System (INIS)

    Wang, Jy-An J.; Ellis, Ronald J.; Hunter, Hamilton T.; Singleterry, Robert C. Jr.

    2002-01-01

    Research is being conducted to develop an integrated technology for the prediction of aging behavior for space structural materials during service. This research will utilize state-of-the-art radiation experimental apparatus and analysis, updated codes and databases, and integrated mechanical and radiation testing techniques to investigate the suitability of numerous current and potential spacecraft structural materials. Also included are the effects on structural materials in surface modules and planetary landing craft, with or without fission power supplies. Spacecraft structural materials would also be in hostile radiation environments on the surface of the moon and planets without appreciable atmospheres and moons around planets with large intense magnetic and radiation fields (such as the Jovian moons). The effects of extreme temperature cycles in such locations compounds the effects of radiation on structural materials. This paper describes the integrated methodology in detail and shows that it will provide a significant technological advance for designing advanced spacecraft. This methodology will also allow for the development of advanced spacecraft materials through the understanding of the underlying mechanisms of material degradation in the space radiation environment. Thus, this technology holds a promise for revolutionary advances in material damage prediction and protection of space structural components as, for example, in the development of guidelines for managing surveillance programs regarding the integrity of spacecraft components, and the safety of the aging spacecraft. (authors)

  11. Effects of radiation; Effets des radiations

    Energy Technology Data Exchange (ETDEWEB)

    Masse, R [Office de Protection contre les Rayonnements Ionisants, 78 - le Vesinet (France)

    2006-07-01

    The medical consequences of a whole-body irradiation come from the destruction of cells and inflammatory reactions it provokes. The most sensitive organs are the tissues that actively split. The embryo is particularly sensitive, from 200 mSv for the effects on the brain development. The reproduction functions are reached for man from 2000 mSv, the ovary sensitivity is less, the oocytes do not split after the fetus life. For adult the bone marrow outrage leads to the disappearing of blood cells (4000 mSv). The doses from 6000 to 10000 mSv lead the failure of the digestive system and lung. for the upper doses every tissue is reached, particularly by the effects on cells of blood vessels. Important brain dysfunctions appear beyond 10000 mSv. As regards the delayed effects of overexposures the epidemiology brings to light sanitary consequences of the exposure of the population to the ionizing radiations and requires that all the possible factors associated for that purpose are considered. About hereditary effects, it appears that moderate acute radiation exposures of even a relatively large human population must have little impact, in spite of the rate of spontaneous congenital deformations is of the order of 6 %. For the induction of cancers, it is not observed excess for doses lower than 200 mSv for adults and 100 mSv for children (the populations studied are survival people of hiroshima and Nagasaki, patients treated by irradiation, uranium miners, children exposed to radioactive iodine after Chernobylsk accident). To simplify an expression of the risk has been fixed to 5% of induced cancer by Sv for population and 4% by Sv for workers, the different being explained by the demography and the sensitivity of the youngest age groups. As regards the low doses of radiations, a bundle of convergent epidemiological observations notices the absence of effects of the low doses rates. Biological mechanisms, notably of repair are approached, then certain accidents (Goiania

  12. Effects of radiation; Effets des radiations

    Energy Technology Data Exchange (ETDEWEB)

    Masse, R. [Office de Protection contre les Rayonnements Ionisants, 78 - le Vesinet (France)

    2006-07-01

    The medical consequences of a whole-body irradiation come from the destruction of cells and inflammatory reactions it provokes. The most sensitive organs are the tissues that actively split. The embryo is particularly sensitive, from 200 mSv for the effects on the brain development. The reproduction functions are reached for man from 2000 mSv, the ovary sensitivity is less, the oocytes do not split after the fetus life. For adult the bone marrow outrage leads to the disappearing of blood cells (4000 mSv). The doses from 6000 to 10000 mSv lead the failure of the digestive system and lung. for the upper doses every tissue is reached, particularly by the effects on cells of blood vessels. Important brain dysfunctions appear beyond 10000 mSv. As regards the delayed effects of overexposures the epidemiology brings to light sanitary consequences of the exposure of the population to the ionizing radiations and requires that all the possible factors associated for that purpose are considered. About hereditary effects, it appears that moderate acute radiation exposures of even a relatively large human population must have little impact, in spite of the rate of spontaneous congenital deformations is of the order of 6 %. For the induction of cancers, it is not observed excess for doses lower than 200 mSv for adults and 100 mSv for children (the populations studied are survival people of hiroshima and Nagasaki, patients treated by irradiation, uranium miners, children exposed to radioactive iodine after Chernobylsk accident). To simplify an expression of the risk has been fixed to 5% of induced cancer by Sv for population and 4% by Sv for workers, the different being explained by the demography and the sensitivity of the youngest age groups. As regards the low doses of radiations, a bundle of convergent epidemiological observations notices the absence of effects of the low doses rates. Biological mechanisms, notably of repair are approached, then certain accidents (Goiania

  13. Radiation effects in wild terrestrial vertebrates - the EPIC collection.

    Science.gov (United States)

    Sazykina, Tatiana; Kryshev, Ivan I

    2006-01-01

    The paper presents data on radiation effects in populations of wild vertebrate animals inhabiting contaminated terrestrial ecosystems. The data were extracted from the database "Radiation effects on biota", compiled within the framework of the EC Project EPIC (2000-2003). The data collection, based on publications in Russian, demonstrates radiation effects in the areas characterized with high levels of radionuclides (Kyshtym radioactive trace; "spots" of enhanced natural radioactivity in the Komi region of Russia; territories contaminated from the Chernobyl fallout). The data covers a wide range of exposures from acute accidental irradiation to lifetime exposures at relatively low dose rates. Radiation effects include mortality, changes in reproduction, decrease of health, ecological effects, cytogenetic effects, adaptation to radiation, and others. Peculiarities of radiation effects caused by different radionuclides are described, also the severity of effects as they appear in different organisms (e.g. mice, frogs, birds, etc.).

  14. Radiation effects in wild terrestrial vertebrates - the EPIC collection

    International Nuclear Information System (INIS)

    Sazykina, Tatiana; Kryshev, Ivan I.

    2006-01-01

    The paper presents data on radiation effects in populations of wild vertebrate animals inhabiting contaminated terrestrial ecosystems. The data were extracted from the database 'Radiation effects on biota', compiled within the framework of the EC Project EPIC (2000-2003). The data collection, based on publications in Russian, demonstrates radiation effects in the areas characterized with high levels of radionuclides (Kyshtym radioactive trace; 'spots' of enhanced natural radioactivity in the Komi region of Russia; territories contaminated from the Chernobyl fallout). The data covers a wide range of exposures from acute accidental irradiation to lifetime exposures at relatively low dose rates. Radiation effects include mortality, changes in reproduction, decrease of health, ecological effects, cytogenetic effects, adaptation to radiation, and others. Peculiarities of radiation effects caused by different radionuclides are described, also the severity of effects as they appear in different organisms (e.g. mice, frogs, birds, etc.)

  15. Effectiveness estimation of camouflage measures with solar radiation and longwave radiation considered

    Energy Technology Data Exchange (ETDEWEB)

    Jung, J.S. [LG Electronics Corporation (Korea); Kauh, S.K. [Seoul National University, Seoul (Korea); Yoo, H.S. [Soongsil University, Seoul (Korea)

    1998-11-01

    Camouflage measures in military purpose utilizes the apparent temperature difference between the target and background, so it is essential to develop thermal analysis program for apparent temperature predictions and to apply some camouflage measures to real military targets for camouflage purpose. In this study, a thermal analysis program including conduction, convection and radiation is developed and the validity of radiation heat transfer terms is examined. The results show that longwave radiation along with solar radiation should be included in order to predict apparent temperature as well as physical temperature exactly. Longwave emissivity variation as an effective camouflage measures is applied to a real M2 tank. From the simulation results, it is found that an effective surface treatment, such as painting of a less emissive material or camouflage, clothing, may provide a temperature similarity or a spatial similarity, resulting in an effective camouflage. (author). 12 refs., 6 figs., 1 tab.

  16. Laser radiation effect on radiation-induced defects in heavy ion tracks in dielectrics

    International Nuclear Information System (INIS)

    Egorov, A.N.; Zhiryakov, B.M.; Kushin, V.V.; Lyapidevskij, V.K.; Khokhlov, N.B.

    1988-01-01

    Possibility of laser radiation resonance effect on radiation-induced defects in heavy ion tracks in dielectric materials is investigated. Absorption spectra in infrared, visible and ultraviolet ranges for cellulose nitrate samples irradiated by 6 MeV/nucleon 58 Ni ions and reactor gamma radiation are measured. Absorption spectra for irradiated and reference samples are presented. Two absorption bands λ 1 =0.33 μm (E 1 =3.9 eV) and λ 2 =0.72 μm (E 2 =1.7 eV) are detected. Etching rate decrease in a track under laser radiation effect is noticed. 3 refs.; 1 fig

  17. Ionizing radiations: effects and sources

    International Nuclear Information System (INIS)

    Vignes, S.; Nenot, J.C.

    1978-01-01

    Having first mentioned the effects of ionizing radiations in cancerogenisis, pre-natal, and genetic fields, the authors present the different sources of radiations and estimate their respective contributions to the total irradiation dose. Their paper makes reference to the main elements of a report issued by the United Nations Scientific Committee in 1977 [fr

  18. Study of biological effect of radiation

    International Nuclear Information System (INIS)

    Li Guisheng

    1992-01-01

    The some progress on the study of biological effect for protract exposure to low dose rate radiation is reported, and it is indicated that the potential risk of this exposure for the human health and the importance of the routine monitoring of radiation dose for various nuclear installations. The potential exposure to the low dose rate radiation would attract people's extra attention

  19. Molecular and cellular effects of radiations

    International Nuclear Information System (INIS)

    Peak, M.J.; Peak, J.G.; Ito, A.; Roth, R.M.

    1985-01-01

    This program is concerned with the basic nature of the biological effects of mutagenic and carcinogenic environmental radiations, including those solar ultraviolet and visible radiations responsible for the most common form of human cancer: cancer of the skin. Concentrating on the damages to DNA caused by these radiations, the program attempts to delineate the basic mechanisms whereby such damage may occur. 14 refs

  20. Thermal effects in radiation processing

    International Nuclear Information System (INIS)

    Zagorski, Z.P.

    1985-01-01

    The balance of ionizing radiation energy incident on an object being processed is discussed in terms of energy losses, influencing the amount really absorbed. To obtain the amount of heat produced, the absorbed energy is corrected for the change in internal energy of the system and for the heat effect of secondary reactions developing after the initiation. The temperature of a processed object results from the heat evolved and from the specific heat of the material comprising the object. The csub(p) of most materials is usually much lower than that of aqueous systems and therefore temperatures after irradiation are higher. The role of low specific heat in radiation processing at cryogenic conditions is stressed. Adiabatic conditions of accelerator irradiation are contrasted with the steady state thermal conditions prevailing in large gamma sources. Among specific questions discussed in the last part of the paper are: intermediate and final temperature of composite materials, measurement of real thermal effects in situ, neutralization of undesired warming experienced during radiation processing, processing at temperatures other than ambient and administration of very high doses of radiation. (author)

  1. Thermal effects in radiation processing

    International Nuclear Information System (INIS)

    Zagorski, Z.P.

    1984-01-01

    The balance of ionizing radiation energy incident on an object being processed is discussed in terms of energy losses, influencing the amount really absorbed. To obtain the amount of heat produced, the absorbed energy is corrected for the change in internal energy of the system and for the heat effect of secondary reactions developing after the initiation. The temperature of a processed object results from the heat evolved and from the specific heat of the material comprising the object. The specific heat of most materials is usually much lower than that of aqueous systems and therefore temperatures after irradiation are higher. The role of low specific heat in radiation processing at cryogenic conditions is stressed. Adiabatic conditions of accelerator irradiation are contrasted with the steady state thermal conditions prevailing in large gamma sources. Among specific questions discussed in the last part of the paper are: intermediate and final temperature of composite materials, measurement of real thermal effects in situ, neutralization of undesired warming experienced during radiation processing, processing at temperatures other than ambient and administration of very high doses of radiation

  2. Health Effects of Non-Ionizing Radiation on Human

    International Nuclear Information System (INIS)

    Zubaidah-Alatas; Yanti Lusiyanti

    2001-01-01

    Increases of development and use of equipment that procedures non-ionizing radiant energy such as laser, radar, microwave ovens, power lines and hand phones, bring about public concern about the possible health effects owing to the non-ionizing radiation exposure. Non ionizing electromagnetic radiation compared to ionizing radiation, has longer wavelength, lower frequency, and lower photon energy in its interaction with body tissues. The term on non-ionizing radiation refers to the groups of electromagnetic radiations with energies less than about 10 eV corresponding to wavelengths in the ultraviolet, visible, infra red microwave and radiofrequency spectral regions. This paper describes the current state of knowledge about types of non-ionizing radiation and the health effects at molecular and cellular levels as well as its effects on human health. (author)

  3. Radiation Effects in M and NEMS

    Science.gov (United States)

    2016-03-31

    electrical basis of operation of M&NEM structures? In particular, cumulative damage by non - ionizing energy loss can, in principle, alter the... Radiation Effects in M&NEMS Michael Alles, Kirill Bolotin, Alex Zettl, Brian Homeijer, Jim Davidson, Ronald Schrimpf, Robert Reed, Dan Fleetwood...understanding radiation effects on the relevant properties of the constituent materials and structures, particularly advanced 2D materials, and the

  4. Effects of radiation on scintillating fiber performance

    International Nuclear Information System (INIS)

    Bauer, M.L.; Cohn, H.; Efremenko, Yu.; Gordeev, A.; Kamyshkov, Yu.; Onopienko, D.; Savin, S.; Shmakov, K.; Tarkovsky, E.; Young, K.G.; Carey, R.; Rothman, M.; Sulak, L.; Worstell, W.; Parr, H.

    1992-01-01

    Continued rapid improvements in formulations for scintillating fibers require the ability to parameterize and predict effects of radiation on detector performance. Experimental techniques necessary to obtain needed information and calculational procedures used in performing predications for hadron scintillating fiber calorimetry in the Superconducting Supercollider environment are described. The experimental techniques involve control of the testing environment, consideration of dose rate effects, and other factors. These calculations involve the behavior of particle showers in the detector, expected levels of radiation, and parameterization of the radiation effects. A summary of significant work is also presented

  5. Effects of radiation on scintillating fiber performance

    International Nuclear Information System (INIS)

    Young, K.G.; Bauer, M.L.; Cohn, H.; Efremenko, Yu.; Gordeev, A.; Kamyshkov, Yu.; Onopienko, D.; Savin, S.; Shmakov, K.; Tarkovsky, E.; Carey, R.; Rothman, M.; Sulak, L.; Worstell, W.; Paar, H.

    1993-01-01

    Continued rapid improvements in formulations for scintillating fibers require the ability to parameterize and predict effects of radiation on detector performance. Experimental techniques necessary to obtain desired information and calculational procedures used in performing predictions for hadron scintillating fiber calorimetry in the Superconducting Supercollider environment are described. The experimental techniques involve control of the testing environment, consideration of dose rate effects, and other factors. The calculations involve the behavior of particle showers in the detector, expected levels of radiation, and parameterization of the radiation effects. A summary of significant work is also presented

  6. Targeted and non-targeted effects of ionizing radiation

    Directory of Open Access Journals (Sweden)

    Omar Desouky

    2015-04-01

    Full Text Available For a long time it was generally accepted that effects of ionizing radiation such as cell death, chromosomal aberrations, DNA damage, mutagenesis, and carcinogenesis result from direct ionization of cell structures, particularly DNA, or from indirect damage through reactive oxygen species produced by radiolysis of water, and these biological effects were attributed to irreparable or misrepaired DNA damage in cells directly hit by radiation. Using linear non-threshold model (LNT, possible risks from exposure to low dose ionizing radiation (below 100 mSv are estimated by extrapolating from data obtained after exposure to higher doses of radiation. This model has been challenged by numerous observations, in which cells that were not directly traversed by the ionizing radiation exhibited responses similar to those of the directly irradiated cells. Therefore, it is nowadays accepted that the detrimental effects of ionizing radiation are not restricted only in the irradiated cells, but also to non-irradiated bystander or even distant cells manifesting various biological effects.

  7. Radiation effects of ion beams on polymers

    International Nuclear Information System (INIS)

    Tagawa, Seiichi

    1993-01-01

    Recent progress in the radiation effects of ion beams on polymers are reviewed briefly. Our recent work on the radiation effects of ion beams on polystyrene thin films on silicon wafers and time resolved emission studies on polymers are described. (orig.)

  8. The late biological effects of ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-06-15

    Full text: The principal objective of the symposium was to review the current status of understanding of the late biological effects of ionizing radiation from external and internal sources. A second objective was to critically evaluate information obtained from epidemiological studies of human population groups as well as from animal experimentation in order to provide a solid scientific basis upon which problems of current concern, such as radiation protection standards and risk-benefit analysis, could be deliberated. Eighty-one papers were presented in 10 sessions which covered epidemiological studies of late effects in human populations exposed to internal and/or external ionizing radiation; quantitative and qualitative data from animal experimentation of late effects; methodological problems and modern approaches; factors influencing susceptibility or expression of late radiation injury; comparative evaluation of late effects induced by radiation and other environmental pollutants, and problems of risk assessment. In addition, there were two evening sessions for free discussion of problems of interpreting animal data, and of the epidemiological studies of occupationally exposed populations. Reports on atomic bomb survivors showed that these epidemiological studies are providing dependable data, such as dose-related excess infant mortality. The reports also revealed the need for consensus in the method employed in the interpretation of data. That was also the case with studies on occupationally exposed populations at Hanford plant, where disparate results were presented on radiation-induced neoplasia among radiation workers. These data are, however, considered not so significant in relative terms when compared to risks involved in other industries. It was recommended that national registry systems for the dosimetry and medical records of radiation workers be established and co-ordinated internationally in order to facilitate reliable epidemiological

  9. Radiation effect of polyether-urethane under action of different ionizing radiation

    International Nuclear Information System (INIS)

    Huang Wei; Chen Xiaojun; Gao Xiaoling; Xu Yunshu; Fu Yibei

    2006-01-01

    The research concerns in the radiation effect of γ-ray and electron beam on polyether-urethane. The thermal property and radical intensity were determined by differential thermal gravimetric analysis and electron spin resonance. The composition and content of gas products from samples irradiated by different ionizing radiation were analyzed by gas chromatography. The action mechanism of these two radiation resources of γ-ray and electron beam are same, but the means of energy deposit is different. It results in the differences of radical intensity and the thermal property of polyether-urethane as well as its gas products from the radiation decomposition. (authors)

  10. View of environmental radiation effects from the study of radiation biology in C. elegans

    International Nuclear Information System (INIS)

    Sakashita, Tetsuya

    2011-01-01

    Caenorhabditis (C.) elegans is a non-parasitic soil nematode and is well-known as a unique model organism, because of its complete cell-lineage, nervous network and genome sequences. Also, C. elegans can be easily manipulated in the laboratory. These advantages make C. elegans as a good in vivo model system in the field of radiation biology. Radiation effects in C. elegans have been studied for three decades. Here, I briefly review the current knowledge of the biological effects of ionizing irradiation in C. elegans with a scope of environmental radiation effects. Firstly, basic information of C. elegans as a model organism is described. Secondly, historical view is reported on the study of radiation biology in C. elegans. Thirdly, our research on learning behavior is presented. Finally, an opinion of the use of C. elegans for environmental radiation protection is referred. I believe that C. elegans may be a good promising in vivo model system in the field of environmental radiation biology. (author)

  11. [Radiation-induced bystander effect: the important part of ionizing radiation response. Potential clinical implications].

    Science.gov (United States)

    Wideł, Maria; Przybyszewski, Waldemar; Rzeszowska-Wolny, Joanna

    2009-08-18

    It has long been a central radiobiological dogma that the damaging effects of ionizing radiation, such as cell death, cytogenetic changes, apoptosis, mutagenesis, and carcinogenesis, are the results of the direct ionization of cell structures, particularly DNA, or indirect damage via water radiolysis products. However, several years ago attention turned to a third mechanism of radiation, termed the "bystander effect" or "radiation-induced bystander effect" (RIBE). This is induced by agents and signals emitted by directly irradiated cells and manifests as a lowering of survival, cytogenetic damage, apoptosis enhancement, and biochemical changes in neighboring non-irradiated cells. The bystander effect is mainly observed in in vitro experiments using very low doses of alpha particles (range; mGy, cGy), but also after conventional irradiation (X-rays, gamma rays) at low as well as conventional doses. The mechanisms responsible for the bystander effect are complex and still poorly understood. It is believed that molecular signals released from irradiated cells induce different signaling ways in non-irradiated neighboring cells, leading to the observed events. The molecular signals may be transmitted through gap junction intercellular communication and through a medium transfer mechanism. The nature of these transmitted factors are diverse, and still not definitely established. It seems that RIBE may have important clinical implications for health risk associated with radiation exposure. Potentially, this effect may have important implications in the creation of whole-body or localized side effects in tissues beyond the irradiation field and also in low-dose radiological and radioisotope diagnostics. Factors emitted by irradiated cells may result in the risk of genetic instability, mutations, and second primary cancer induction. They might also have their own part in inducing and extending post-radiation side effects in normal tissue. The bystander effect may be a

  12. Effects of radiations on ornamental fish

    International Nuclear Information System (INIS)

    Anita; Kalyankar, Amol D.; Ohlyan, Sunita; Gupta, R.K.

    2012-01-01

    Radiation is a process in which energetic particles or energetic waves travel through a medium or space. There are two distinct types of radiations: ionizing and non-ionizing. Ultraviolet, X-rays, and gamma rays are some examples of radiation. 'Ornamental fish' is designed for aquatic hobbyists and the aquatic industry for several purposes. UV light has two primary uses in fish culture: Controlling green water and disinfecting the water supply. Many proponents of UV disinfection sometimes overlook the additional benefits relating to ornamental fish; those being that cleaner water reduces the stress on the fish by not having to fight off diseases, thus enhancing its immune system and leading to faster growth and more brilliant colors. Ultraviolet sterilizers are often used in aquaria to help control unwanted microorganisms in the water. UV radiation also ensures that exposed pathogens cannot reproduce, thus decreasing the likelihood of a disease outbreak in an aquarium. Despite of these benefits, the ill-effects of radiations cannot be ruled out. Ultraviolet Radiation-induced DNA Damage is seen in the skin of the Platyfish Xiphophorus. Higher radiation doses may cause the gastrointestinal syndrome that leads to defects of the intestinal mucosa barrier with successive contamination of musculature. Exposure to UV radiation can kill the fish and induce sublethal effects in embryos, larvae and adults. The change in skin includes irregularity of skin surface, epidermal oedema, necrosis etc. Irradiation may badly influence the textural attributes of fish muscle. (author)

  13. Effects of ultraviolet radiation, visible light, and infrared radiation on erythema and pigmentation: a review.

    Science.gov (United States)

    Sklar, Lindsay R; Almutawa, Fahad; Lim, Henry W; Hamzavi, Iltefat

    2013-01-01

    The effects of ultraviolet radiation, visible light, and infrared radiation on cutaneous erythema, immediate pigment darkening, persistent pigment darkening, and delayed tanning are affected by a variety of factors. Some of these factors include the depth of cutaneous penetration of the specific wavelength, the individual skin type, and the absorption spectra of the different chromophores in the skin. UVB is an effective spectrum to induce erythema, which is followed by delayed tanning. UVA induces immediate pigment darkening, persistent pigment darkening, and delayed tanning. At high doses, UVA (primarily UVA2) can also induce erythema in individuals with skin types I-II. Visible light has been shown to induce erythema and a tanning response in dark skin, but not in fair skinned individuals. Infrared radiation produces erythema, which is probably a thermal effect. In this article we reviewed the available literature on the effects of ultraviolet radiation, visible light, and infrared radiation on the skin in regards to erythema and pigmentation. Much remains to be learned on the cutaneous effects of visible light and infrared radiation.

  14. Biological effects of high-energy radiation

    International Nuclear Information System (INIS)

    Curtis, S.B.

    1976-01-01

    The biological effects of high-energy radiation are reviewed, with emphasis on the effects of the hadronic component. Proton and helium ion effects are similar to those of the more conventional and sparsely ionizing x- and γ-radiation. Heavy-ions are known to be more biologically effective, but the long term hazard from accumulated damage has yet to be assessed. Some evidence of widely varying but dramatically increased effectiveness of very high-energy (approximately 70 GeV) hadron beams is reviewed. Finally, the importance of the neutron component in many situations around high-energy accelerators is pointed out

  15. Modeling Radiation Effectiveness for Inactivation of Bacillus Spores

    Science.gov (United States)

    2015-09-17

    radiation . 3.6.1 Ionizing Radiation Damage. Some of the ROS’ discussed in Section 3.3 cause indirect damage to the spore’s DNA. They can produce... ionizing radiation damage has focused on the effects of charged particles in their tracks. The charged particles create radiation - induced products and...3.8.1 Reaction-Diffusion of ROS Within the Spore. A demonstrative scenario will be explored in order to simulate the indirect effects of ionizing

  16. Radiation Effects Research Foundation

    International Nuclear Information System (INIS)

    1979-01-01

    The last day of March 1978 marked the completion of the first 3 years of operation of the Radiation Effects Research Foundation in Hiroshima and Nagasaki. RERF was established on 1 April 1975 as successor to the Atomic Bomb Casualty Commission which had been in continuous operation since 1947. This record of the first 3 years of operation consists of selected reports and other documents prepared in the course of conducting the business of RERF and includes a brief history, a late radiation effects that might be conducted at RERF. The wisdom and thought given to the research program and its operation by the Scientific Council and the Board of Directors is reflected in the minutes of their meetings which are included in the Appendix. (Mori, K.)

  17. Biological Effects of Interaction between Radiation and Chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Hyun, Kyung Man; Han, Min; Kim, Jin Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Nili, Mohammad [Dawnesh Radiation Research Institute, Barcelona (Spain)

    2009-05-15

    The organisms are exposed to natural radiations from cosmic or terrestrial origins. Radiation is known to cause cell death, mainly due to its ability to produce reactive oxygen species in cells. The combined action between radiation and various chemicals is a distinguishing feature of modern life. Mercury chloride is a widespread environmental pollutant that is known to have toxic effects. Synergistic effects of radiation and HgCl{sub 2} on human cells was previously reported. NAC is a well-known sulfhydryl-containing antioxidant whose role in radioprotection has been explored in several studies. There has been an increasing interest of studying the role of NAC as a radioprotective substance. The present study was designed not only to assess the synergistic effects between radiation and HgCl{sub 2}, but also to investigate protective effects of NAC on cells.

  18. Fusion-relevant basic radiation effects: theory and experiment

    International Nuclear Information System (INIS)

    Mansur, L.K.; Coghlan, W.A.; Farrell, K.; Horton, L.L.; Lee, E.H.; Lewis, M.B.; Packan, N.H.

    1983-01-01

    A summary is given of results of the basic radiation effects program at Oak Ridge National Laboratory, which are relevant to fusion reactor materials applications. The basic radiation effects program at ORNL is a large effort with the dual objectives of understanding the atomic and microstructural defect mechanisms underlying radiation effects and of determining principles for the design of radiation resistant materials. A strength of this effort is the parallel and integrated experimental and theoretical approaches in each major research area. The experimental effort is active in electron microscopy, ion irradiations and ion-beam techniques, neutron irradiations, surface analysis and in other areas. The theoretical effort is active in developing the theory of radiation effects for a broad range of phenomena and in applying it to the design and interpretation of experiments and to alloy design

  19. Radiation and man - evaluation of biological and environmental low level radiation effects

    International Nuclear Information System (INIS)

    Riklis, E.

    1977-01-01

    The harmful effects of acute radiation cannot be resolved by statistical means and require clearer knowledge of mechanisms of action and much wider collection of human experience before any definite sound stand can be taken. Much information has accumulated from animal experiments, and still the interpretations are not always clearcut, but for human experience it is only the occasional accident which can give a direct answer. Some of the phenomena attributed to low dose radiation are summarized. There are regions of radiation exposure about which we have only limited positive knowledge, an all low-dose risk estimates have been based on effects observed at relatively high doses. Much information has been gathered which does not support the severity of former basic principles, especially our knowledge of mechanisms of repair existing in most cells as natural defence against the damages caused by radiation as well as by many chemicals which act as mutagenic and carcinogenic agents. Understanding these mechanism, their scope of action and their availability to a damaged cell and organism will lead towards modification of the acceptable permissible exposures, in some cases towards severity, but in most cases towards leniency and higher values. For the evaluation of the effects of low level low dose-rate radiations, whether external, or from internal deposition of isotopes, only late somatic and genetic effects should be considered. (B.G.)

  20. Health effects in residents of high background radiation regions

    International Nuclear Information System (INIS)

    Hanson, G.P.

    1984-01-01

    Although the health effects of radiation doses in occupationally exposed persons had received attention, it was not until the 1950s, when the atmospheric atom bomb tests of the United States and the Soviet Union had raised the level of environmental radioactivity, that the long-term effects of low-level radiation dosage became a matter of popular concern throughout the world. The United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) was created, and the World Health Organization (WHO) appointed an expert committee to provide advice concerning radiation and human health. In its first report, the WHO expert committee identified several areas of high natural radiation where studies of the exposed population might possibly provide information concerning the effects of chromic low-level radiation dosage

  1. Radiation effects concerns at a spallation source

    International Nuclear Information System (INIS)

    Sommer, W.F.

    1990-01-01

    Materials used at spallation neutron sources are exposed to energetic particle and photon radiation. Mechanical and physical properties of these materials are altered; radiation damage on the atomic scale leads to radiation effects on the macroscopic scale. Most notable among mechanical-property radiation effects in metals and metal alloys are changes in tensile strength and ductility, changes in rupture strength, dimensional stability and volumetric swelling, and dimensional changes due to stress-induced creep. Physical properties such as electrical resistivity also are altered. The fission-reactor community has accumulated a good deal of data on material radiation effects. However, when the incident particle energy exceeds 50 MeV or so, a new form of radiation damage ensues; spallation reactions lead to more energetic atom recoils and the subsequent temporal and spatial distribution of point defects is much different from that due to a fission-reactor environment. In addition, spallation reactions cause atomic transmutations with these new atoms representing an impurity in the metal. The higher-energy case is of interest at spallation sources; limited detailed data exist for material performance in this environment. 35 refs., 13 figs., 1 tab

  2. Plenary panel 1: The scientific bases of radiation protection. Non-targeted effects of ionising radiation - Implications for radiation protection

    International Nuclear Information System (INIS)

    Salomaa, S.

    2006-01-01

    The universality of the target theory of radiation-induced effects is challenged by observations on non-targeted effects such as bystander effects, genomic instability and adaptive response. Essential features of non-targeted effects are that they do not require direct nuclear exposure by radiation and they are particularly significant at low doses. This new evidence suggests a need for a new paradigm in radiation biology. The new paradigm should cover both the classical (targeted) and the non-targeted effects. New aspects include the role of cellular communication and tissue-level responses. A better understanding of non-targeted effects may have important consequences for health risk assessment and, consequently, on radiation protection. Non-targeted effects may contribute to the estimation of cancer risk from occupational, medical and environmental exposures. In particular, they may have implications for the applicability of the Linear-No-Threshold (L.N.T.) model in extrapolating radiation risk data into the low-dose region. This also means that the adequacy of the concept of dose to estimate risk is challenged by these findings. Moreover, these effects may provide new mechanistic explanations for the development of non-cancer diseases. Further research is required to determine if these effects, typically measured in cell cultures, are applicable in tissue level, whole animals, and ultimately in humans. (authors)

  3. Plenary panel 1: The scientific bases of radiation protection. Non-targeted effects of ionising radiation - Implications for radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Salomaa, S. [STUK - Radiation and Nuclear Safety Authority, Helsinki (Finland)

    2006-07-01

    The universality of the target theory of radiation-induced effects is challenged by observations on non-targeted effects such as bystander effects, genomic instability and adaptive response. Essential features of non-targeted effects are that they do not require direct nuclear exposure by radiation and they are particularly significant at low doses. This new evidence suggests a need for a new paradigm in radiation biology. The new paradigm should cover both the classical (targeted) and the non-targeted effects. New aspects include the role of cellular communication and tissue-level responses. A better understanding of non-targeted effects may have important consequences for health risk assessment and, consequently, on radiation protection. Non-targeted effects may contribute to the estimation of cancer risk from occupational, medical and environmental exposures. In particular, they may have implications for the applicability of the Linear-No-Threshold (L.N.T.) model in extrapolating radiation risk data into the low-dose region. This also means that the adequacy of the concept of dose to estimate risk is challenged by these findings. Moreover, these effects may provide new mechanistic explanations for the development of non-cancer diseases. Further research is required to determine if these effects, typically measured in cell cultures, are applicable in tissue level, whole animals, and ultimately in humans. (authors)

  4. Cytogenetic effects of low-dose radiation

    International Nuclear Information System (INIS)

    Metalli, P.

    1983-01-01

    The effects of ionizing radiation on chromosomes have been known for several decades and dose-effect relationships are also fairly well established in the mid- and high-dose and dose-rate range for chromosomes of mammalian cells. In the range of low doses and dose rates of different types of radiation few data are available for direct analysis of the dose-effect relationships, and extrapolation from high to low doses is still the unavoidable approach in many cases of interest for risk assessment. A review is presented of the data actually available and of the attempts that have been made to obtain possible generalizations. Attention is focused on some specific chromosomal anomalies experimentally induced by radiation (such as reciprocal translocations and aneuploidies in germinal cells) and on their relevance for the human situation. (author)

  5. Genetic effects of ionising radiation

    International Nuclear Information System (INIS)

    Saunders, P.

    1981-01-01

    The mutagenic effects of ionising radiation on germ cells with resulting genetic abnormalities in subsequent generations, are considered. Having examined a simple model to explain the interaction of ionising radiation with genetic material and discussed its limitations, the methods whereby mutations are transmitted are discussed. Methods of estimating genetic risks and the results of such studies are examined. (U.K.)

  6. Radiation-effects state of the art 1965-1966

    Energy Technology Data Exchange (ETDEWEB)

    Hamman, D.J.; Drennan, J.E.; Veazie, W.H.; Shober, F.R.; Leach, E.R.

    1966-06-30

    Developments in the field of radiation effects on electronic components including semiconductors, polymetric materials, lubricants, flotation fluids, hydraulic fluids, structural metals and alloys, ceramics, space radiation environment, dosimetry, and ceramic and metallic fuel materials are reviewed. Programs currently being conducted in radiation effects are briefly given for each section of the report.

  7. Effects of gamma radiation in soybean

    International Nuclear Information System (INIS)

    Franco, Jose Gilmar; Franco, Suely Salumita Haddad; Arthur, Valter; Arthur, Paula Bergamin; Franco, Caio Haddad

    2015-01-01

    The degree of radiosensitivity depends mostly on the species, the stage of the embryo at irradiation, the doses employed and the criteria used to measure the effect. One of the most common criteria to evaluate radiosensitivity in seeds is to measure the average plant production. Soya dry seeds were exposed to low doses of gamma radiation from source of Cobalt-60, type Gammecell-220, at 0.245 kGy dose rate. In order to study stimulation effects of radiation on germination, plant growth and production. Five treatments radiation doses were applied as follows: 0 (control); 25; 50; 75 and 100 Gy. Seed germination and harvest of number of seeds and total production were assessed to identify occurrence of stimulation. Soya seeds and plants were handled as for usual seed production in Brazil. The low doses of gamma radiation in the seeds that stimulate the production were doses of 25, 50 and 75 Gy. There are evidences that the use of low doses of gamma radiation can stimulate germination and plant production. (author)

  8. Effects of gamma radiation in soybean

    Energy Technology Data Exchange (ETDEWEB)

    Franco, Jose Gilmar; Franco, Suely Salumita Haddad; Arthur, Valter; Arthur, Paula Bergamin, E-mail: arthur@cena.usp.br [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil); Franco, Caio Haddad [Centro Nacional de Pesquisa em Energia e Materiais (LNBio/CNPEM), Campinas, SP (Brazil). Laboratorio Nacional de Biociencias; Villavicencio, Anna Lucia, E-mail: zegilmar60@gmail.com, E-mail: gilmita@uol.com.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    The degree of radiosensitivity depends mostly on the species, the stage of the embryo at irradiation, the doses employed and the criteria used to measure the effect. One of the most common criteria to evaluate radiosensitivity in seeds is to measure the average plant production. Soya dry seeds were exposed to low doses of gamma radiation from source of Cobalt-60, type Gammecell-220, at 0.245 kGy dose rate. In order to study stimulation effects of radiation on germination, plant growth and production. Five treatments radiation doses were applied as follows: 0 (control); 25; 50; 75 and 100 Gy. Seed germination and harvest of number of seeds and total production were assessed to identify occurrence of stimulation. Soya seeds and plants were handled as for usual seed production in Brazil. The low doses of gamma radiation in the seeds that stimulate the production were doses of 25, 50 and 75 Gy. There are evidences that the use of low doses of gamma radiation can stimulate germination and plant production. (author)

  9. Radiation effects on DNA methylation in mice

    International Nuclear Information System (INIS)

    Komura, J.; Kurishita, A.; Miyamura, Y.; Ono, T.; Tawa, R.; Sakurai, H.

    1992-01-01

    Effects of ionizing radiation on DNA methylation in liver, brain and spleen were examined by high performance liquid chromatography (HPLC). The total methylated cytosine level in the genome was reduced within 8 hours after 3.8 Gy of irradiation in liver of adult mice. But no appreciable effect was observed in brain and spleen. When mice were irradiated at newborn, liver DNA revealed no change in methylated cytosine level. Even though slight effects of radiation were detected in he methylation of the c-myc and c-fos genes, they were only temporary and no long-term effects were observed. These data suggest that the effect of radiation on DNA methylation in vivo is not prevailing a DNA damage, but rather influenced much through biological parameters. (author)

  10. Radiation, chemicals and combined effects

    International Nuclear Information System (INIS)

    Sinclair, W.K.

    1991-01-01

    A brief background has been provided on current carcinogenic risks from ionizing radiation and their magnitude in background circumstances. The magnitude of the risks from possibly carcinogenic chemicals at background levels in air, water and food are surprisingly similar. The exception is, perhaps, for the single source of radon which, while variable, on the average stands out above all other sources. Some basic principles concerning the interaction of combined radiation and chemicals and some practical examples where the two interact synergistically to enhance radiation effects has also been provided. Areas for human research in the future are discussed. (Author)

  11. The ionizing radiation environment in space and its effects

    International Nuclear Information System (INIS)

    Adams, Jim; Falconer, David; Fry, Dan

    2012-01-01

    The ionizing radiation environment in space poses a hazard for spacecraft and space crews. The hazardous components of this environment are reviewed and those which contribute to radiation hazards and effects identified. Avoiding the adverse effects of space radiation requires design, planning, monitoring and management. Radiation effects on spacecraft are avoided largely though spacecraft design. Managing radiation exposures of space crews involves not only protective spacecraft design and careful mission planning. Exposures must be managed in real time. The now-casting and forecasting needed to effectively manage crew exposures is presented. The techniques used and the space environment modeling needed to implement these techniques are discussed.

  12. Heavy-ion radiation induced bystander effect in mice

    Science.gov (United States)

    Liang, Shujian; Sun, Yeqing; Zhang, Meng; Wang, Wei; Cui, Changna

    2012-07-01

    Radiation-induced bystander effect is defined as the induction of damage in neighboring non-hit cells by signals released from directly-irradiated cells. Recently, Low dose of high LET radiation induced bystander effects in vivo have been reported more and more. It has been indicated that radiation induced bystander effect was localized not only in bystander tissues but also in distant organs. Genomic, epigenetic, metabolomics and proteomics play significant roles in regulating heavy-ion radiation stress responses in mice. To identify the molecular mechanism that underlies bystander effects of heavy-ion radiation, the male mice head were exposed to 2000mGy dose of 12C heavy-ion radiation and the distant organ liver was detected on 1h, 6h, 12h and 24h after radiation, respectively. MSAP was used to monitor the level of polymorphic DNA methylation changes. The results show that heavy-ion irradiate mouse head can induce liver DNA methylation changes significantly. The percent of DNA methylation changes are time-dependent and highest at 6h after radiation. We also prove that the hypo-methylation changes on 1h and 6h after irradiation. But the expression level of DNA methyltransferase DNMT3a is not changed. UPLC/Synapt HDMS G2 was employed to detect the proteomics of bystander liver 1h after irradiation. 64 proteins are found significantly different between treatment and control group. GO process show that six of 64 which were unique in irradiation group are associated with apoptosis and DNA damage response. The results suggest that mice head exposed to heavy-ion radiation can induce damage and methylation pattern changed in distant organ liver. Moreover, our findings are important to understand the molecular mechanism of radiation induced bystander effects in vivo.

  13. Biological effects of radiation and health risks from exposure to low levels of ionizing radiation

    International Nuclear Information System (INIS)

    Kotian, Rahul P.; Kotian, Sahana Rahul; Sukumar, Suresh

    2013-01-01

    The very fact that ionizing radiation produces biological effects is known from many years. The first case of injury reported by Sir Roentgen was reported just after a few months after discovery of X-rays in 1895. As early as 1902, the first case of X-ray induced cancer was reported in the literature. Early human evidence of harmful effects as a result of exposure to radiation in large amounts existed in the 1920s and 1930s, based upon the experience of early radiologists, miners exposed to airborne radioactivity underground, persons working in the radium industry, and other special occupational groups. The long-term biological significance of smaller, repeated doses of radiation, however, was not widely appreciated until relatively recently, and most of our knowledge of the biological effects of radiation has been accumulated since World War II. The mechanisms that lead to adverse health effects after exposure to ionizing radiation are still not fully understood. Ionizing radiation has sufficient energy to change the structure of molecules, including DNA, within the cells of the body. Some of these molecular changes are so complex that it may be difficult for the body's repair mechanisms to mend them correctly. However, the evidence is that only a small fraction of such changes would be expected to result in cancer or other health effects. The most thoroughly studied individuals for the evaluation of health effects of ionizing radiation are the survivors of the Hiroshima and Nagasaki atomic bombings, a large population that includes all ages and both sexes.The Radiation Effects Research Foundation (RERF) in Japan has conducted followup studies on these survivors for more than 50 years. An important finding from these studies is that the occurrence of solid cancers increases in proportion to radiation dose. More than 60% of exposed survivors received a dose of radiation of less than 100 mSv (the definition of low dose used by the BEIR VII report). (author)

  14. Radiation effects on microelectronics

    International Nuclear Information System (INIS)

    Gover, J.E.

    1987-01-01

    Applications of radiation-hardened microelectronics in nuclear power systems include (a) light water reactor (LWR) containment building, postaccident instrumentation that can operate through the beta and gamma radiation released in a design basis loss-of-coolant accident; (b) advanced LWR instrumentation and control systems employing distributed digital integrated circuit (IC) technology to achieve a high degree of artificial intelligence and thereby reduce the probability of operator error under accident conditions; (c) instrumentation, command, control and communication systems for space nuclear power applications that must operate during the neutron and gamma-ray core leakage environments as well as the background electron, proton, and heavy charged particle environments of space; and (d) robotics systems designed for the described functions. Advanced microelectronics offer advantages in cost and reliability over alternative approaches to instrumentation and control. No semiconductor technology is hard to all classes of radiation effects phenomena. As the effects have become better understood, however, significant progress has been made in hardening IC technology. Application of hardened microelectronics to nuclear power systems has lagged military applications because of the limited market potential of hardened instruments and numerous institutional impediments

  15. Genetic effects of radiation

    International Nuclear Information System (INIS)

    Selby, P.B.

    1977-01-01

    Many of the most important findings concerning the genetic effects of radiation have been obtained in the Biology Division of Oak Ridge National Laboratory. The paper focuses on some of the major discoveries made in the Biology Division and on a new method of research that assesses damage to the skeletons of mice whose fathers were irradiated. The results discussed have considerable influence upon estimates of genetic risk in humans from radiation, and an attempt is made to put the estimated amount of genetic damage caused by projected nuclear power development into its proper perspective

  16. Radiation effects on the human organs, app. A

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    The appendix is subdivided into eleven chapters dealing with radiation effcts on organisms and comprising the following subjects: biological effects of ionizing radiations (dose, LET, RBE, formation of radicals, age and sex, cell types, biological repair), recommendations and protective measures for somatic risks, genetic risks, experimental models and dose-effect relationships, and internal radiation. The groups conclusions are given

  17. Radiation-induced bystander effect: The important part of ionizing radiation response. Potential clinical implications

    Directory of Open Access Journals (Sweden)

    Maria Wideł

    2009-08-01

    Full Text Available It has long been a central radiobiological dogma that the damaging effects of ionizing radiation, such as cell death, cytogenetic changes, apoptosis, mutagenesis, and carcinogenesis, are the results of the direct ionization of cell structures, particularly DNA, or indirect damage via water radiolysis products. However, several years ago attention turned to a third mechanism of radiation, termed the “bystander effect” or “radiation-induced bystander effect” (RIBE. This is induced by agents and signals emitted by directly irradiated cells and manifests as a lowering of survival, cytogenetic damage, apoptosis enhancement, and biochemical changes in neighboring non-irradiated cells. The bystander effect is mainly observed in in vitro experiments using very low doses of alpha particles (range; mGy, cGy, but also after conventional irradiation (X-rays, gamma rays at low as well as conventional doses. The mechanisms responsible for the bystander effect are complex and still poorly understood. It is believed that molecular signals released from irradiated cells induce different signaling ways in non-irradiated neighboring cells, leading to the observed events. The molecular signals may be transmitted through gap junction intercellular communication and through a medium transfer mechanism. The nature of these transmitted factors are diverse, and still not defi nitely established. It seems that RIBE may have important clinical implications for health risk associated with radiation exposure. Potentially, this effectmay have important implications in the creation of whole-body or localized side effects in tissues beyond the irradiation fi eld and also in low-dose radiological and radioisotope diagnostics. Factors emitted by irradiated cells may result in the risk of genetic instability, mutations, and second primary cancer induction. They might also have their own part in inducing and extending post-radiation side effects in normal tissue. The

  18. Radiation effects on and dose enhancement of electronic materials

    International Nuclear Information System (INIS)

    Srour, J.R.; Long, D.M.

    1984-01-01

    This book describes radiation effects on and dose enhancement factors for electronic materials. Alteration of the electrical properties of solid-state devices and integrated circuits by impinging radiation is well-known. Such changes may cause an electronic subsystem to fail, thus there is currently great interest in devising methods for avoiding radiation-induced degradation. The development of radiation-hardened devices and circuits is an exciting approach to solving this problem for many applications, since it could minimize the need for shielding or other system hardening techniques. Part 1 describes the basic mechanisms of radiation effects on electronic materials, devices, and integrated circuits. Radiation effects in bulk silicon and in silicon devices are treated. Ionizing radiation effects in silicon dioxide films and silicon MOS devices are discussed. Single event phenomena are considered. Key literature references and a bibliography are provided. Part II provides tabulations of dose enhancement factors for electronic devices in x-ray and gamma-ray environments. The data are applicable to a wide range of semiconductor devices and selected types of capacitors. Radiation environments discussed find application in system design and in radiation test facilities

  19. Effects of UV radiation on freshwater metazooplankton

    International Nuclear Information System (INIS)

    Tartarotti, B.

    1999-06-01

    There is evidence that fluxes of solar ultraviolet-B radiation (UV-B, 290-320 nm) are increasing over wide parts of the earth's surface due to stratospheric ozone depletion. UV radiation (290-400 nm) can have damaging effects on biomolecules and cell components that are common to most living organisms. The aim of this thesis is to gain a more thorough understanding of the potential impacts of solar radiation on freshwater metazooplankton. To detect UV-vulnerability in zooplankton populations dominating the zooplankton community of two clear-water, high mountain lakes located one in the Austrian Alps and another in the Chilean Andes, the survival of two copepod species was studied. The organisms were exposed to a 10- to 100-fold increase in UV-B radiation compared to those levels found at their natural, maximum daytime distribution. Both species vertically migrate and are pigmented. UV-absorbing compounds with a maximum absorption at ∼334 nm were also detected. Cyclops abyssorum tatricus, a common cyclopoid copepod species of Alpine lakes, was highly resistant to UV-B radiation and no significant lethal effect was observed. The calanoid copepod Boeckella gracilipes, frequent in Andean lakes, had a mortality ∼5 times higher in the treatment receiving full sunlight than in the UV-B excluded treatment (3.2 %) only when exposed for 70 h. The resistance of B. gracilipes was higher than that reported in the literature for the same species suggesting the existence of intraspecific differences in UV sensitivity. Survival, fecundity and development of the zooplankton community of a clear-water, high elevation Andean lake (33 o S) were studied with mesocosms experiments after prolonged UV exposure (48 days). When exposed to full sunlight, the population of the cladoceran Chydorus sphaericus and the rotifer Lepadella ovalis were strongly inhibited by UV-B, whereas both species were resistant to UV-A radiation. Conversely, UV-B radiation had no effect on the survival of the

  20. Chernobyl health effects: radiation or stress?

    International Nuclear Information System (INIS)

    Grinkhal', G.

    1996-01-01

    Consideration is given to results of wide-scale examination of human population, subjected to the effect of radiation in result of Chernobyl accident. The examined contingents consisted of liquidators, evacuated from 30-km zone, people still living in contamination territories, children of irradiated parents and children, who received large radiation doses. High levels of respiratory system diseases, digestive system diseases, cardiovascular diseases and nervous system diseases were revealed for these people. It was revealed that stress, socio-economic and chemical factors played sufficient role in disease incidence. It is shown that fair of radiation may damage more, than radiation itself

  1. Non-targeted and delayed effects of exposure to ionizing radiation

    International Nuclear Information System (INIS)

    Zuo Yahui; Tong Jian

    2007-01-01

    Non-targeted and delayed effects are relative phenomena in cellular responses to ionizing radiation. These effects (bystander effects, genomic instability and adaptive responses) have been studied most extensively for radiation exposures. It is clear that adaptive responses, bystander effects and genomic instability will play an important role in the low dose-response to radiation. This review will provide a synthesis of the known, and proposed interrelationships amongst low-dose cellular responses to radiation, It also will examine the potential biological significance of non-targeted and delayed effects of exposure to ionizing radiation. (authors)

  2. Biological radiation effects and radioprotection standards

    International Nuclear Information System (INIS)

    Clerc, H.

    1991-03-01

    In this report, after recalling the mode of action of ionizing radiations, the notions of dose, dose equivalents and the values of natural irradiation, the author describes the biological radiation effects. Then he presents the ICRP recommendations and their applications to the french radioprotection system

  3. Effect of gamma radiation on Campylobacter jejuni

    International Nuclear Information System (INIS)

    Lambert, J.D.; Maxcy, R.B.

    1984-01-01

    Radiation resistance of Campylobacter jejuni in broth, ground beef, and ground turkey meat was determined using dose levels from 0-200 Krad at -30 +/- 10 0 C, at 0-5 0 C, and at 30 +/- 10 0 C. Irradiation at -30 0 C increased radiation resistance of cultures in ground meats; broth cultures were not greatly influenced by temperature. The effect of culture age on radiation resistance was also evaluated using cells in various physiological phases. Age did not have a pronounced effect on radiation resistance. The largest D 10 value for C. jejuni was 32 Krad, which was less than D 10 values commonly reported for salmonellae. 20 references, 4 figures

  4. Side Effects of Chemotherapy and Radiation (For Parents)

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Side Effects of Chemotherapy and Radiation KidsHealth / For Parents / Side Effects of Chemotherapy and Radiation What's in this article? What to ...

  5. The effect of gamma-radiation on bilirubin

    International Nuclear Information System (INIS)

    Iqbal, M.S.; Shad, M.A.; Akhtar, M.I.

    2001-01-01

    The effect of gamma-radiations on bilirubin, in vitro, has been studied. It was found that gamma-radiation causes oxidation of bilirubin to biliverdine as one of the products. The likely implication of this effect in transformation of bilirubin to excretable products, in vino, in case of jaundice is discussed. (author)

  6. Effects of radiation on photographic film. A study

    International Nuclear Information System (INIS)

    Dutton, D.M.

    1971-01-01

    This study of the effects of radiation on photographic film is related to the Nevada Test Site's underground nuclear testing program, which has been active since implementation of the Limited Test Ban Treaty of 1963. Residual radioactivity, which has accidentally been released on several tests, adversely affects the photographic film used in test data acquisition. The report defines this problem in terms of radiation-caused image degradation, radiation/matter interactions, types of radiation released by accidental venting, and the photographic effects of gamma and x radiation. Techniques and experimental findings are documented that may be useful in recovering information from radiation-fogged film. Techniques discussed include processing methods, shielding, image enhancement techniques, and operational handling of potentially irradiated film. (U.S.)

  7. Medical exposure and the effects of radiation

    International Nuclear Information System (INIS)

    Okuyama, Chio

    2011-01-01

    Radiation gives cracks to genes. The influence is divided into deterministic effect with a threshold value, and the stochastic effect (tumor and genetic effect) which increases according to the exposure amount. Although we are put to various non-artificial radiations, which we cannot be avoided, on the earth, the contamination by artificial radiation can be defended. Artificial radioactive exposure includes medical exposure and non-medical exposure for example by nuclear power plant. As to medical examinations using radiation, the inquiry about the radiation exposure is increasing after the occurrence of the first nuclear power plant disaster of Fukushima. While concern about non-medical radioactive exposure increases, the uneasiness to medical irradiation is also increasing. The dose limit by artificial radioactive exposure other than medical exposure is set up in order to prevent the influence on the health. While the dose limit of the public exposure is set to the lower value than the total dose of non-artificial exposure concerning of a safety margin for all people, the dose limit of medical exposure is not defined, since it is thought that medical irradiation has a benefit for those who receive irradiation. Making an effort to decrease the radiation dose in performing the best medical treatment is the responsibility with which we are burdened. (author)

  8. Modification of genetic effects of gamma radiation by laser radiation

    International Nuclear Information System (INIS)

    Khotyljova, L.V.; Khokhlova, S.A.; Khokhlov, I.V.

    1988-01-01

    Full text: Mutants obtained by means of ionizing radiation and chemical mutagens often show low viability and productivity that makes their use in plant breeding difficult. Methods reducing the destructive mutagen action on important functions of plant organism and increasing quality and practical value of induced mutants would be interesting. We believe that one method for increasing efficiency of experimental mutagenesis in plants is the application of laser radiation as a modificator of genetic effects of ionizing radiation and chemical mutagens. Combined exposure of wheat seedlings to a gamma radiation dose of 2 kR and to laser radiation with the wave length of 632.8 nm (power density - 20 mVt/cm 2 , exposure - 30 min.) resulted in reducing the chromosomal aberration percentage from 30.5% in the gamma version to 16.3% in the combined treatment version. A radiosensibilizing effect was observed at additional exposure of gamma irradiated wheat seeds to laser light with the wave length of 441.6 nm where chromosomal aberration percentage increased from 22% in the gamma-irradiation version to 31% in the combined treatment version. By laser radiation it is also possible to normalize mitotic cell activity suppressed by gamma irradiation. Additional seedling irradiation with the light of helium-neon laser (632.8 nm) resulted in recovery of mitotic cell activity from 21% to 62% and increasing the average content of DNA per nucleus by 10%. The influence of only laser radiation on plant variability was also studied and it was shown that irradiation of wheat seeds and seedlings with pulsed and continuous laser light of visible spectrum resulted in phenotypically altered forms in M 2 . Their frequencies was dependent upon power density, dose and radiation wave length. Number of altered forms increased in going from long-wave to short-wave spectrum region. In comparing efficiency of different laser types of pulsed and continuous exposure (dose - 180 J/cm 2 ) 2% of altered

  9. The environmental effects of radiation on flight crews

    International Nuclear Information System (INIS)

    Connor, C.W.

    1991-01-01

    A review is presented of a continuing investigation of flight deck radiation and its potential effects on flight crews. Attention is given to the various critical factors concerned in UV radiation exposure and detection including skin cancer classifications, skin types, effectiveness of different sun protection factors, and flight deck color configuration and sunglasses. Consideration is given to both UV and ionizing radiation

  10. The biological effects of exposure to ionising radiation

    International Nuclear Information System (INIS)

    Higson, D.J.

    2016-01-01

    Scenarios for exposure to ionising radiation range from natural background radiation (chronic) to the explosions of atomic bombs (acute), with some medical, industrial and research exposures lying between these extremes. Biological responses to radiation that predominate at high doses incurred at high dose rates are different from those that predominate at low doses and low dose rates. Single doses from bomb explosions ranged up to many thousand mGy. Acute doses greater than about 1000 mGy cause acute radiation syndrome (ARS). Below this threshold, radiation has a variety of potential latent health effects: Change to the incidence of cancer is the most usual subject of attention but change to longevity may be the best overall measure because decreased incidences of non-cancer mortality have been observed to coincide with increased incidence of cancer mortality. Acute doses greater than 500 mGy cause increased risks of cancer and decreased life expectancy. For doses less than 100 mGy, beneficial overall health effects ('radiation hormesis') have been observed. At the other end of the spectrum, chronic exposure to natural radiation has occurred throughout evolution and is necessary for the normal life and health of current species. Dose rates greater than the present global average of about 2 mGy per year have either no discernible health effect or beneficial health effects up to several hundred mGy per year. It is clearly not credible that a single health effects model -- such as the linear no-threshold (LNT) model of risk estimation -- could fit all latent health effects. A more realistic model is suggested.

  11. Radiation effects in optical components

    International Nuclear Information System (INIS)

    Friebele, E.J.

    1987-01-01

    This report discusses components of high performance optical devices may be exposed to high energy radiation environments during their lifetime. The effect of these adverse environments depends upon a large number of parameters associated with the radiation (nature, energy, dose, dose rate, etc.) or the system (temperature, optical performance requirements, optical wavelength, optical power, path length, etc.), as well as the intrinsic susceptibility of the optical component itself to degradation

  12. Environmental dosimetry and radiation effects

    International Nuclear Information System (INIS)

    Woodhead, D.S.

    1997-01-01

    Specific assessment of the potential effects on wild organisms of increased radiation exposure arising from the authorized disposal of radioactive wastes to the environment requires two interrelated sets of information. First, an estimate is required of the incremental radiation exposure; and second, dose rate-response relationships are necessary to predict the potential impact of the estimated incremental exposure. Each of these aspects will be discussed in detail. (author)

  13. Measuring space radiation shielding effectiveness

    OpenAIRE

    Bahadori Amir; Semones Edward; Ewert Michael; Broyan James; Walker Steven

    2017-01-01

    Passive radiation shielding is one strategy to mitigate the problem of space radiation exposure. While space vehicles are constructed largely of aluminum, polyethylene has been demonstrated to have superior shielding characteristics for both galactic cosmic rays and solar particle events due to the high hydrogen content. A method to calculate the shielding effectiveness of a material relative to reference material from Bragg peak measurements performed using energetic heavy charged particles ...

  14. Biological effects of ionizing radiation - changing worker attitudes

    International Nuclear Information System (INIS)

    Johnson, N.; Schenley, C.

    1989-01-01

    Training Resources and Data Exchange (TRADE) Radiation Protection Training Special Interest Group has taken an innovative approach to providing DOE contractors with radiation worker training material information. Newly-hired radiation workers may be afraid to work near radiation and long-term radiation workers may become indifferent to the biological hazard of radiation. Commercially available training material is often presented at an inappropriate technical level or in an uninteresting style. These training problems have been addressed in the DOE system through development of a training videotape and supporting material package entitled Understanding Ionizing Radiation and its Biological Effects. The training package, developed and distributed by TRADE specifically to meet the needs of DOE contractor facilities, contains the videotape and accompanying paper supporting materials designed to assist the instructor. Learning objectives, presentation suggestion for the instructor, trainee worksheets, guided discussion questions, and trainee self-evaluation sheets are included in the training package. DOE contractors have agreed that incorporating this training module into radiation worker training programs enhances the quality of the training and increase worker understanding of the biological effects of ionizing radiation

  15. Effect of γ-radiation on the saccharification of cellulose

    International Nuclear Information System (INIS)

    De la Rosa, A.M.; Banzon, R.B.; Abad, L.V.; Nuguid, Z.F.; Bulos, A.S.

    1985-01-01

    The effect of gamma radiation on the acid and saccharification of agricultural cellulosic wastes was investigated. Radiation doses of 200 KGy and higher significantly increased the saccharification of rice straw, rice hull and corn husk. The observed radiation effects varied with the cellulosic material. Rice straw exhibited the greatest radiosensitivity while rice hull showed the least susceptibility to gamma radiation. Possible mechanisms for the radiation-induced degradation of cellulose and agricultural cellulosic wastes are discussed. (author)

  16. The Effects of Ionizing Radiation on the Oral Cavity.

    Science.gov (United States)

    de Barros da Cunha, Sandra Ribeiro; Ramos, Pedro Augusto Mendes; Nesrallah, Ana Cristina Aló; Parahyba, Cláudia Joffily; Fregnani, Eduardo Rodrigues; Aranha, Ana Cecília Corrêa

    2015-08-01

    The aim of this study is to present a literature review on the effects of the ionizing radiation from radiotherapy treatment on dental tissues. Among the effects of increasing global life expectancy and longevity of the teeth in the oral cavity, increasing rates of neoplastic diseases have been observed. One of the important treatment modalities for head and neck neoplastic diseases is radiotherapy, which uses ionizing radiation as the main mechanism of action. Therefore, it is essential for dentists to be aware of the changes in oral and dental tissues caused by ionizing radiation, and to develop treatment and prevention strategies. In general, there is still controversy about the effects of ionizing radiation on dental structures. However, qualitative and quantitative changes in saliva and oral microbiota, presence of oral mucositis and radiation-related caries are expected, as they represent the well-known side effects of treatment with ionizing radiation. Points that still remain unclear are the effects of radiotherapy on enamel and dentin, and on their mechanisms of bonding to contemporary adhesive materials. Ionizing radiation has shown important interaction with organic tissues, since more deleterious effects have been shown on the oral mucosa, salivary glands and dentin, than on enamel. With the increasing number of patients with cancer seeking dental treatment before and after head and neck radiotherapy, it is important for dentists to be aware of the effects of ionizing radiation on the oral cavity.

  17. Genomic instability and radiation effects

    International Nuclear Information System (INIS)

    Christian Streffer

    2007-01-01

    Complete text of publication follows. Cancer, genetic mutations and developmental abnormalities are apparently associated with an increased genomic instability. Such phenomena have been frequently shown in human cancer cells in vitro and in situ. It is also well-known that individuals with a genetic predisposition for cancer proneness, such as ataxia telangiectesia, Fanconi anaemia etc. demonstrate a general high genomic instability e.g. in peripheral lymphocytes before a cancer has developed. Analogous data have been found in mice which develop a specific congenital malformation which has a genetic background. Under these aspects it is of high interest that ionising radiation can increase the genomic instability of mammalian cells after exposures in vitro an in vivo. This phenomenon is expressed 20 to 40 cell cycles after the exposure e.g. by de novo chromosomal aberrations. Such effects have been observed with high and low LET radiation, high LET radiation is more efficient. With low LET radiation a good dose response is observed in the dose range 0.2 to 2.0 Gy, Recently it has been reported that senescence and genomic instability was induced in human fibroblasts after 1 mGy carbon ions (1 in 18 cells are hit), apparently bystander effects also occurred under these conditions. The instability has been shown with DNA damage, chromosomal aberrations, gene mutation and cell death. It is also transferred to the next generation of mice with respect to gene mutations, chromosomal aberrations and congenital malformations. Several mechanisms have been discussed. The involvement of telomeres has gained interest. Genomic instability seems to be induced by a general lesion to the whole genome. The transmission of one chromosome from an irradiated cell to an non-irradiated cell leads to genomic instability in the untreated cells. Genomic instability increases mutation rates in the affected cells in general. As radiation late effects (cancer, gene mutations and congenital

  18. Study on the radiation preservation of apples and the radiation effects

    International Nuclear Information System (INIS)

    Zhao Kejian; Lu Dunzhu; Wan Hong; Zhu Zhaonan; Xu Shanmei

    1987-01-01

    The radiation effects on respiration and ethylene production in apple and its radiation preservation were reported in this paper. It shows that, when irradiation was applied immediately after harvest, the respiratory rate and ethylene production increase with the increasing of irradiation dose. When irradiation was applied after 7-10 days of storage, the respiratory rate still rises with the dose, while there is a decrease in ethylene production with the increasing of dose. If the irradiation dose is less than 800 Gy the rise of respiratory rate of irraadiated apple returns to the level of the control within 5 days, but ethylene production of irradiated apple keeps a lower level. According to the above results, dose of 300-500 Gy may be recommended for radiation preseration of apple. Ascorbic acid is unstable and sensitive to radiation. The radiation effects on ascorbic acid in apple is very small because the saccharides and some organic acid in apple, especially malic acid, are able to protect ascorbic acid from radiation damage. From measuring the saccharides and acids in apple, it is obvious that there is no significant difference between irradiated and non-irradiated apple. Long-life free radical in apple was not detected after irradiation. The scald of apple is reduced from 60% to less than 15% after cold storage for 8 monthes. The taste results indicated, tasting them without knowing which is irradiated or not, that the irradiated apple is superior to controlled sample

  19. Radiomodifying effect of caffeine on mammalian cellular system using gamma radiation and proton beam radiation

    International Nuclear Information System (INIS)

    Samanth, Sneha P.; Yadav, Usha; Shirsath, K.B.; Desai, Utkarsha N.; Chaurasia, Rajesh K.; Bhat, Nagesh N.; Anjaria, K.B.; Sapra, B.K.

    2016-01-01

    Caffeine is a commonly consumed neurostimulant in the world. Reports suggest the radiomodifying effects of caffeine against low Linear Energy Transfer (LET) radiation when administered pre and post irradiation by releasing checkpoint arrest. In the present report, the radioprotective and radiosensitizing ability of caffeine (10μM - 2mM) were studied on Chinese Hamster Ovary (CRO) cell line against low as well as high LET radiation when administered pre, post and continuously during radiation. Effect of caffeine treatment on the genotoxicity induced by gamma and proton beam radiation was assessed by micronucleus assay. Effect of caffeine treatment on clonogenic survival of irradiated cells was also assessed

  20. Effect of ionizing radiations on connective tissue

    International Nuclear Information System (INIS)

    Altman, K.I.; Gerber, G.B.

    1980-01-01

    The effects of ionizing radiations on connective tissue in lung, heart, vasculature, kidney, skin, and skeletal tissues are reviewed. Special emphasis is given to the effect of ionizing radiations on vasculo-connective tissue and fibrotic changes following radiation-induced injury to organs and tissues. In order to put the subject matter in proper prospective, the general biochemistry, physiology, and pathology of connective tissue is reviewed briefly together with the participation of connective tissue in disease. The review closes with an assessment of future problems and an enumeration and discussion of important, as yet unanswered questions

  1. The transient radiation effects and hardness of programmed device

    International Nuclear Information System (INIS)

    Du Chuanhua; Xu Xianguo; Zhao Hailin

    2014-01-01

    A review and summary of research and development in the investigation of transient ionizing radiation effects in device and cirviut is presented. The transient ionizing radiation effects in two type of programmed device, that's 32 bit Microcontroller and antifuse FPGA, were studied. The expeiment test data indicate: The transient ionizing radiation effects of 32 bit Microcontroller manifested self-motion restart and Latchup, the Latchup threshold was 5 × 10"7 Gy (Si)/s. The transient ionizing radiation effects of FPGA was reset, no Latchup. The relationship of circuit effects to physical mechanisms was analized. A new method of hardness in circiut design was put forward. (authors)

  2. Effects of radiation and chemical substances on cells and organism

    International Nuclear Information System (INIS)

    Fremuth, F.

    1981-01-01

    The book treats the radiation chemistry part of biophysics and applied biophysics in the sphere of ionizing radiation. Discussed are the concepts of radiation units and radioactivity units and the relative biological efficiency. The effects of ionizing and UV radiations are analyzed at the level of macromolecular changes. Chapters dealing with genetic radiation effects discuss the effects at the cellular level with respect to cell proliferation. All these problems are used to illustrate the effect on the organism as a whole. The chapters on applied biophysics deal with the indications of radiation and chemical damage, sensitivity of cells and the organism, and the study and influencing of growth at the cellular level. The concluding chapter is devoted to the environmental impact of radiation. (J.P.)

  3. Effects of gamma radiation in tomato seeds

    International Nuclear Information System (INIS)

    Wiendl, Toni A.; Wiendl, Fritz W.; Franco, Suely S.H.; Franco, Jose G.; Althur, Valter; Arthur, Paula B.

    2013-01-01

    Tomato dry seeds of the hybrid 'Gladiador' F1 were exposed to low doses of gamma radiation from Co-60 source at 0,509 kGy tax rate in order to study stimulation effects of radiation on germination and plant growth. Eight treatments radiation doses were applied as follows: 0 (control); 2,5; 5,0; 7,5; 10,0; 12,5; 15,0; 20,0 Gy. Seed germination as well as green fruits number, harvested fruit number, fruit weight and total production were assessed to identify occurrence of stimulation. Tomato seeds and plants were handled as for usual tomato production in Brazil. Low doses of gamma radiation treatment in the seeds stimulate germination and substantially increase fruit number and total production up to 86% at 10 Gy dose. There are evidences that the use of low doses of gamma radiation can stimulate germination and plant production thus, showing hormetic effects. (author)

  4. Effect of radiation processing on meat tenderisation

    International Nuclear Information System (INIS)

    Kanatt, Sweetie R.; Chawla, S.P.; Sharma, Arun

    2015-01-01

    The effect of radiation processing (0, 2.5, 5 and 10 kGy) on the tenderness of three types of popularly consumed meat in India namely chicken, lamb and buffalo was investigated. In irradiated meat samples dose dependant reduction in water holding capacity, cooking yield and shear force was observed. Reduction in shear force upon radiation processing was more pronounced in buffalo meat. Protein and collagen solubility as well as TCA soluble protein content increased on irradiation. Radiation processing of meat samples resulted in some change in colour of meat. Results suggested that irradiation leads to dose dependant tenderization of meat. Radiation processing of meat at a dose of 2.5 kGy improved its texture and had acceptable odour. - Highlights: • Effect of radiation processing on tenderness of three meat systems was evaluated. • Dose dependant reduction in shear force seen in buffalo meat. • Collagen solubility increased with irradiation

  5. Effects of radiation

    International Nuclear Information System (INIS)

    Masse, R.

    2006-01-01

    The medical consequences of a whole-body irradiation come from the destruction of cells and inflammatory reactions it provokes. The most sensitive organs are the tissues that actively split. The embryo is particularly sensitive, from 200 mSv for the effects on the brain development. The reproduction functions are reached for man from 2000 mSv, the ovary sensitivity is less, the oocytes do not split after the fetus life. For adult the bone marrow outrage leads to the disappearing of blood cells (4000 mSv). The doses from 6000 to 10000 mSv lead the failure of the digestive system and lung. for the upper doses every tissue is reached, particularly by the effects on cells of blood vessels. Important brain dysfunctions appear beyond 10000 mSv. As regards the delayed effects of overexposures the epidemiology brings to light sanitary consequences of the exposure of the population to the ionizing radiations and requires that all the possible factors associated for that purpose are considered. About hereditary effects, it appears that moderate acute radiation exposures of even a relatively large human population must have little impact, in spite of the rate of spontaneous congenital deformations is of the order of 6 %. For the induction of cancers, it is not observed excess for doses lower than 200 mSv for adults and 100 mSv for children (the populations studied are survival people of hiroshima and Nagasaki, patients treated by irradiation, uranium miners, children exposed to radioactive iodine after Chernobylsk accident). To simplify an expression of the risk has been fixed to 5% of induced cancer by Sv for population and 4% by Sv for workers, the different being explained by the demography and the sensitivity of the youngest age groups. As regards the low doses of radiations, a bundle of convergent epidemiological observations notices the absence of effects of the low doses rates. Biological mechanisms, notably of repair are approached, then certain accidents (Goiania

  6. Cumulative radiation effect

    International Nuclear Information System (INIS)

    Kirk, J.; Gray, W.M.; Watson, E.R.

    1977-01-01

    In five previous papers, the concept of Cumulative Radiation Effect (CRE) has been presented as a scale of accumulative sub-tolerance radiation damage, with a unique value of the CRE describing a specific level of radiation effect. Simple nomographic and tabular methods for the solution of practical problems in radiotherapy are now described. An essential feature of solving a CRE problem is firstly to present it in a concise and readily appreciated form, and, to do this, nomenclature has been introduced to describe schedules and regimes as compactly as possible. Simple algebraic equations have been derived to describe the CRE achieved by multi-schedule regimes. In these equations, the equivalence conditions existing at the junctions between schedules are not explicit and the equations are based on the CREs of the constituent schedules assessed individually without reference to their context in the regime as a whole. This independent evaluation of CREs for each schedule has resulted in a considerable simplification in the calculation of complex problems. The calculations are further simplified by the use of suitable tables and nomograms, so that the mathematics involved is reduced to simple arithmetical operations which require at the most the use of a slide rule but can be done by hand. The order of procedure in the presentation and calculation of CRE problems can be summarised in an evaluation procedure sheet. The resulting simple methods for solving practical problems of any complexity on the CRE-system are demonstrated by a number of examples. (author)

  7. Truths and fallacies concerning radiation and its effects

    International Nuclear Information System (INIS)

    Wilkins, S.R.

    1984-01-01

    In childhood we learned many myths about radiation. For example, we were told that people exposed to x-rays would glow in the dark, become radioactive, or under the proper circumstances, turn into superhumans such as the ''Hulk'' or ''Spiderman.'' Although these and other childhood myths are not taken seriously, many misconceptions still exist about the effects of ionizing radiation. Does exposure to radiation necessarily imply an ill fate? It is the intent of this chapter to highlight a few of the truths and fallacies concerning radiation and its effects

  8. Health effects of low level radiation

    International Nuclear Information System (INIS)

    Hattori, Sadao

    1998-01-01

    In 1982, Prof. Thomas Don Luckey of Missouri Univ. asserted 'Radiation Hormesis' on the Journal of Health Physics and he published two books. CRIEPI initiated the research program on Radiation Hormesis following his assertion to confirm 'is it true or not?' After nearly ten year research activities on data surveys and animal tests with many Universities, we are realizing scientific truth of bio-positive effects by low level radiation exposures. The interesting bio-positive effects we found could be categorized in following five groups. 1) Rejuvenation of cells such as increase of SOD and cell membrane permeability, 2) Moderation of psychological stress through response of key enzymes, 3) Suppression and therapy of adult-diseases such as diabetes and hypertension, 4) Suppression of cancer through enhancement of immune systems such as lymphocytes, 5) Suppression of cancer and ratio-adaptive response by activation of DNA repair and apoptosis. In the responses of many specialists to our initiation of radiation hormesis research program following T.D. Luckey's claim about low level radiation, I have to pick up for the first, the great success of Prof. Sakamoto. Prof. Sakamoto had been already applying whole body low dose irradiation for ten years before our radiation hormesis research started on the therapy to suppress the cancer reappearing after treatment. He reported about his successful trial to real patients and showed an enhancement of immune system. (author)

  9. Health effects of low level radiation

    Energy Technology Data Exchange (ETDEWEB)

    Hattori, Sadao [Central Research Inst. of Electric Power Industry, Tokyo (Japan)

    1998-12-31

    In 1982, Prof. Thomas Don Luckey of Missouri Univ. asserted `Radiation Hormesis` on the Journal of Health Physics and he published two books. CRIEPI initiated the research program on Radiation Hormesis following his assertion to confirm `is it true or not?` After nearly ten year research activities on data surveys and animal tests with many Universities, we are realizing scientific truth of bio-positive effects by low level radiation exposures. The interesting bio-positive effects we found could be categorized in following five groups. 1) Rejuvenation of cells such as increase of SOD and cell membrane permeability, 2) Moderation of psychological stress through response of key enzymes, 3) Suppression and therapy of adult-diseases such as diabetes and hypertension, 4) Suppression of cancer through enhancement of immune systems such as lymphocytes, 5) Suppression of cancer and ratio-adaptive response by activation of DNA repair and apoptosis. In the responses of many specialists to our initiation of radiation hormesis research program following T.D. Luckey`s claim about low level radiation, I have to pick up for the first, the great success of Prof. Sakamoto. Prof. Sakamoto had been already applying whole body low dose irradiation for ten years before our radiation hormesis research started on the therapy to suppress the cancer reappearing after treatment. He reported about his successful trial to real patients and showed an enhancement of immune system. (author)

  10. Attributability of health effects at low radiation doses

    International Nuclear Information System (INIS)

    Gonzalez, Abel

    2008-01-01

    Full text: A controversy still persists on whether health effects can be alleged from radiation exposure situations involving low radiation doses (e.g. below the international dose limits for the public). Arguments have evolved around the validity of the dose-response representation that is internationally used for radiation protection purposes, namely the so-called linear-non-threshold (LNT) model. The debate has been masked by the intrinsic randomness of radiation interaction at the cellular level and also by gaps in the relevant scientific knowledge on the development and expression of health effects. There has also been a vague use, abuse, and misuse of radiation-related risk concepts and quantities and their associated uncertainties. As a result, there is some ambiguity in the interpretation of the phenomena and a general lack of awareness of the implications for a number of risk-causation qualities, namely its attributes and characteristics. In particular, the LNT model has been used not only for protection purposes but also for blindly attributing actual effects to specific exposure situations. The latter has been discouraged as being a misuse of the model, but the supposed incorrectness has not been clearly proven. The paper will endeavour to demonstrate unambiguously the following thesis in relation to health effects due to low radiation doses: 1) Their existence is highly plausible. A number of epidemiological statistical assessments of sufficiently large exposed populations show that, under certain conditions, the prevalence of the effects increases with dose. From these assessments, it can be hypothesized that the occurrence of the effects at any dose, however small, appears decidedly worthy of belief. While strictly the evidence does not allow to conclude that a threshold dose level does not exist either. In fact, a formal quantitative uncertainty analysis, combining the different uncertain components of estimated radiation-related risk, with and

  11. Attributability of Health Effects at Low Radiation Doses

    International Nuclear Information System (INIS)

    Gonzalez, A.J.

    2011-01-01

    Full text: A controversy still persists on whether health effects can be alleged from radiation exposure situations involving low radiation doses (e.g. below the international dose limits for the public). Arguments have evolved around the validity of the dose response representation that is internationally used for radiation protection purposes, namely the so-called linear-non-threshold (LNT) model. The debate has been masked by the intrinsic randomness of radiation interaction at the cellular level and also by gaps in the relevant scientific knowledge on the development and expression of health effects. There has also been a vague use, abuse, and misuse of radiation-related risk concepts and quantities and their associated uncertainties. As a result, there is some ambiguity in the interpretation of the phenomena and a general lack of awareness of the implications for a number of risk-causation qualities, namely its attributes and characteristics. In particular, the LNT model has been used not only for protection purposes but also for blindly attributing actual effects to specific exposure situations. The latter has been discouraged as being a misuse of the model, but the supposed incorrectness has not been clearly proven. The paper will endeavour to demonstrate unambiguously the following thesis in relation to health effects due to low radiation doses: (i) Their existence is highly plausible. A number of epidemiological statistical assessments of sufficiently large exposed populations show that, under certain conditions, the prevalence of the effects increases with dose. From these assessments, it can be hypothesized that the occurrence of the effects at any dose, however small, appears decidedly worthy of belief. While strictly the evidence does not allow to conclude that a threshold dose level does not exist either In fact, a formal quantitative uncertainty analysis, combining the different uncertain components of estimated radiation-related risk, with and

  12. Kinetic theory of radiation effects

    International Nuclear Information System (INIS)

    Mansur, L.K.

    1987-01-01

    To help achieve the quantitative and mechanistic understanding of these processes, the kinetic theory of radiation effects has been developed in the DOE basic energy sciences radiation effects and fusion reactor materials programs, as well as in corresponding efforts in other countries. This discipline grapples with a very wide range of phenomena and draws on numerous sub-fields of theory such as defect physics, diffusion, elasticity, chemical reaction rates, phase transformations and thermodynamics. The theory is cast in a mathematical framework of continuum dynamics. Issues particularly relevant to the present inquiry can be viewed from the standpoints of applications of the theory and areas requiring further progress

  13. Biologic effects of electromagnetic radiation and microwave

    International Nuclear Information System (INIS)

    Deng Hua

    2002-01-01

    Electromagnetic radiation and microwave exist mankind's environment widely. People realize they disserve authors' health when authors make use of them. Electromagnetic radiation is one of the major physic factors which injure people's health. A review of the biologic mechanism about electromagnetic radiation and microwave, their harmful effects to human body, problems in authors' research and the prospect

  14. Radioprotection effects of TMG to radical scavenger effect of the mice in radiation

    International Nuclear Information System (INIS)

    Gu, Yeunhwa; Hasegawa, Takeo; Oshima, Masami

    2002-01-01

    Now there is many it, and the radiotherapy that is one of cancer therapy is used by single or anticancer drug and combination. A chemical material has been used as radioprotector, but the use is limited conventionally by a serious side effect. Vitamin E derivative[TMG 2- (α - D-Glucopyranosyl) Methyl-2,5,7,8-Teramethyl -chorman-6-OL] which we are water-soluble, And is the nature material as well for the fetal teratogenicity that I use ICR mouse used for a malformed experiment frequently in this study, and sensibility for radiation is the highest, we studied radiation protection effect of TMG. As a result, as for the fetal malformed incidence, it was admitted that it fell in shifts and changes by administering TMG before radiation exposure. Decrease depression of degradation of a skeletal malformation rate in particular and fetal weight was recognized, and an individual level made radiation protection indication of TMG clear. In addition, that there was radioprotection effect for embryonic death by radiation was made clear by premedication doing TMG equally, and that there was protection effect for radiation exposure in a cell level same as an individual level was proved, and TMG showed the potency that it was it in radioprotector promising in the future. Furthermore, by what we reviewed about congenital defect for radiation, effect for skeletal malformation incidence and sensibility of embryonic cell level in organogenesis, we analyzed mechanism of protection effect of TMG for fetal teratogenicity by radiation experimentally

  15. Radioprotection effects of TMG to radical scavenger effect of the mice in radiation

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Yeunhwa; Hasegawa, Takeo; Oshima, Masami [Suzuka Univ. of Medical Science, Suzuka (Japan)] [and others

    2002-07-01

    Now there is many it, and the radiotherapy that is one of cancer therapy is used by single or anticancer drug and combination. A chemical material has been used as radioprotector, but the use is limited conventionally by a serious side effect. Vitamin E derivative[TMG 2- ({alpha} - D-Glucopyranosyl) Methyl-2,5,7,8-Teramethyl -chorman-6-OL] which we are water-soluble, And is the nature material as well for the fetal teratogenicity that I use ICR mouse used for a malformed experiment frequently in this study, and sensibility for radiation is the highest, we studied radiation protection effect of TMG. As a result, as for the fetal malformed incidence, it was admitted that it fell in shifts and changes by administering TMG before radiation exposure. Decrease depression of degradation of a skeletal malformation rate in particular and fetal weight was recognized, and an individual level made radiation protection indication of TMG clear. In addition, that there was radioprotection effect for embryonic death by radiation was made clear by premedication doing TMG equally, and that there was protection effect for radiation exposure in a cell level same as an individual level was proved, and TMG showed the potency that it was it in radioprotector promising in the future. Furthermore, by what we reviewed about congenital defect for radiation, effect for skeletal malformation incidence and sensibility of embryonic cell level in organogenesis, we analyzed mechanism of protection effect of TMG for fetal teratogenicity by radiation experimentally.

  16. Health effects of ionising radiation

    International Nuclear Information System (INIS)

    Mohammadi, S.

    2000-01-01

    Human and animal studies have shown an increased incidence of cancer and malformation due to radioactive materials and external radiation. The biological effects of radiation on tissues are the occurrence of morphological and functional changes in the body. The critical parts of the body are those tissues or organs which when irradiated, are likely to influence the health of the individual or its offspring. The probability of these changes depends on the radiation dose. There are two main types of damage due to radiation dose. Radiation Sickness with well-defined symptoms like cancer and inherited disorders which can appear after several years. A second type of damage, namely Acute Radiation Sickness results after exposure of the whole or parts of the body to high doses of radiation greater than 1 Gy. There are safety standards for the amount of dose equivalent that is taken as acceptable. The International Commission on Radiological Protection (ICRP) has given norms in which natural and medical causes were not included. These are given as recommended values (1966) and proposed values (2000), both in mSv/yr: population at large: 1.7 and 0.4; members of the public: 5 and 2; and radiologic workers: 50 and 20, respectively. Taking into account the increased number of reactor accidents, the question is how safe is our safety standards? Even when one is able to connect a quantitative risk with a radiation dose, there are three fundamental principles which we should obey in dealing with risks from radiation. These are: (1) Avoid any risk. (2) The risk should be related to the possible benefit. (3) Any dose below the politically agreed limits is acceptable

  17. Radiation-electromagnetic effect in germanium single crystals

    International Nuclear Information System (INIS)

    Kikoin, I.K.; Kikoin, L.I.; Lazarev, S.D.

    1980-01-01

    An experimental study was made of the radiation-electromagnetic effect in germanium single crystals when excess carriers were generated by bombardment with α particles, protons, or x rays in magnetic fields up to 8 kOe. The source of α particles and protons was a cyclotron and x rays were provided by a tube with a copper anode. The radiation-electromagnetic emf increased linearly on increase in the magnetic field and was directly proportional to the flux of charged particles at low values of the flux, reaching saturation at high values of the flux (approx.5 x 10 11 particles .cm -2 .sec -1 ). In the energy range 4--40 MeV the emf was practically independent of the α-particle energy. The sign of the emf was reversed when samples with a ground front surface were irradiated. Measurements of the photoelectromagnetic and Hall effects in the α-particle-irradiated samples showed that a p-n junction was produced by these particles and its presence should be allowed for in investigations of the radiation-electromagnetic effect. The measured even radiation-electromagnetic emf increased quadratically on increase in the magnetic field. An investigation was made of the barrier radiation-voltaic effect (when the emf was measured between the irradiated and unirradiated surfaces). Special masks were used to produce a set of consecutive p-n junctions in germanium crystals irradiated with α particles. A study of the photovoltaic and photoelectromagnetic effects in such samples showed that the method could be used to increase the efficiency of devices utilizing the photoelectromagnetic effect

  18. Medical effects of low doses of ionising radiation

    International Nuclear Information System (INIS)

    Coggle, J.E.

    1990-01-01

    Ionising radiation is genotoxic and causes biological effects via a chain of events involving DNA strand breaks and 'multiply damaged sites' as critical lesions that lead to cell death. The acute health effects of radiation after doses of a few gray, are due to such cell death and consequent disturbance of cell population kinetics. Because of cellular repair and repopulation there is generally a threshold dose of about 1-2 Gy below which such severe effects are not inducible. However, more subtle, sub-lethal mutational DNA damage in somatic cells of the body and the germ cells of the ovary and testis cause the two major low dose health risks -cancer induction and genetic (heritable) effects. This paper discusses some of the epidemiological and experimental evidence regarding radiation genetic effects, carcinogenesis and CNS teratogenesis. It concludes that current risk estimates imply that about 3% of all cancers; 1% of genetic disorders and between 0% and 0.3% of severe mental subnormality in the UK is attributable to the ubiquitous background radiation. The health risks associated with the medical uses of radiation are smaller, whilst the nuclear industry causes perhaps 1% of the health detriment attributable to background doses. (author)

  19. Effects of gamma radiation in tomato seeds

    Energy Technology Data Exchange (ETDEWEB)

    Wiendl, Toni A.; Wiendl, Fritz W.; Franco, Suely S.H.; Franco, Jose G.; Althur, Valter, E-mail: tawiendl@hotmail.com, E-mail: gilmita@uol.com.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Arthur, Paula B., E-mail: arthur@cena.usp.br [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil)

    2013-07-01

    Tomato dry seeds of the hybrid 'Gladiador' F1 were exposed to low doses of gamma radiation from Co-60 source at 0,509 kGy tax rate in order to study stimulation effects of radiation on germination and plant growth. Eight treatments radiation doses were applied as follows: 0 (control); 2,5; 5,0; 7,5; 10,0; 12,5; 15,0; 20,0 Gy. Seed germination as well as green fruits number, harvested fruit number, fruit weight and total production were assessed to identify occurrence of stimulation. Tomato seeds and plants were handled as for usual tomato production in Brazil. Low doses of gamma radiation treatment in the seeds stimulate germination and substantially increase fruit number and total production up to 86% at 10 Gy dose. There are evidences that the use of low doses of gamma radiation can stimulate germination and plant production thus, showing hormetic effects. (author)

  20. Biological effects of proton radiation: an update

    International Nuclear Information System (INIS)

    Girdhani, S.; Hlatky, L.; Sachs, R.

    2015-01-01

    Proton radiation provides significant dosimetric advantages when compared with gamma radiation due to its superior energy deposition characteristics. Although the physical aspects of proton radiobiology are well understood, biological and clinical endpoints are understudied. The current practice to assume the relative biological effectiveness of low linear energy transfer (LET) protons to be a generic value of about 1.1 relative to photons likely obscures important unrecognised differentials in biological response between these radiation qualities. A deeper understanding of the biological properties induced by proton radiation would have both radiobiological and clinical impact. This article briefly points to some of the literature pertinent to the effects of protons on tissue-level processes that modify disease progression, such as angiogenesis, cell invasion and cancer metastasis. Recent findings hint that proton radiation may, in addition to offering improved radio-therapeutic targeting, be a means to provide a new dimension for increasing therapeutic benefits for patients by manipulating these tissue-level processes. (authors)

  1. Terrestrial radiation effects in ULSI devices and electronic systems

    CERN Document Server

    Ibe, Eishi H

    2014-01-01

    A practical guide on how mathematical approaches can be used to analyze and control radiation effects in semiconductor devices within various environments Covers faults in ULSI devices to failures in electronic systems caused by a wide variety of radiation fields, including electrons, alpha -rays, muons, gamma rays, neutrons and heavy ions. Readers will learn the environmental radiation features at the ground or avionics altitude. Readers will also learn how to make numerical models from physical insight and what kind of mathematical approaches should be implemented to analyze the radiation effects. A wide variety of mitigation techniques against soft-errors are reviewed and discussed. The author shows how to model sophisticated radiation effects in condensed matter in order to quantify and control them. The book provides the reader with the knowledge on a wide variety of radiation fields and their effects on the electronic devices and systems. It explains how electronic systems including servers and rout...

  2. Effects of space-relevant radiation on pre-osteoblasts

    International Nuclear Information System (INIS)

    Hu, Yueyuan

    2014-01-01

    Until now limited research has been conducted to address the mechanisms leading ionizing radiation exposure induced bone loss. This is relevant for cancer radiotherapy and human spaceflight. Exposure to radiation can result in elevated bone fracture risk in patients receiving cancer radiotherapy. In human spaceflight, astronauts are exposed to space radiation which is a very complex mixture consisting primarily of high-energy charged particles. Osteoblasts are of mesenchymal origin and responsible for creating and maintaining skeletal architecture; these cells produce extracellular matrix proteins and regulators of matrix mineralization during initial bone formation and later bone remodeling. The aim of this work was to investigate the effects of ionizing radiation on pre-osteoblasts including cellular survival, cell cycle regulation and differentiation modification. Experiments with the pre-osteoblast cell line OCT-1 and the mesenchymal stem cell line C3H10T1/2 showed that radiation cell killing depends on dose and linear energy transfer (LET) and is most effective at an LET of ∝150 keV/μm. High-LET radiation has a much more pronounced ability to induce cell cycle arrest in the G2/M phase. After both X-rays and heavy ions exposure, expression of the cell cycle regulator CDKN1A was significantly up-regulated in a dose-dependent manner. The findings suggest that cell cycle regulation is more sensitive to high-LET radiation than cell survival, which is not solely regulated through elevated CDKN1A expression. Radiation exposure enhances osteoblastic differentiation and maturation, and mediates Runx2 and TGF-β1 expression during early differentiation of pre-osteoblasts. Osteogenic differentiation did not alter cellular radiosensitivity, DNA repair of radiation-induced damages and the effects of radiation on proliferation. Further experiments are needed to elucidate possible synergistic effects of microgravity and radiation on osteoblast differentiation. This may

  3. Effects of space-relevant radiation on pre-osteoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Yueyuan

    2014-02-12

    Until now limited research has been conducted to address the mechanisms leading ionizing radiation exposure induced bone loss. This is relevant for cancer radiotherapy and human spaceflight. Exposure to radiation can result in elevated bone fracture risk in patients receiving cancer radiotherapy. In human spaceflight, astronauts are exposed to space radiation which is a very complex mixture consisting primarily of high-energy charged particles. Osteoblasts are of mesenchymal origin and responsible for creating and maintaining skeletal architecture; these cells produce extracellular matrix proteins and regulators of matrix mineralization during initial bone formation and later bone remodeling. The aim of this work was to investigate the effects of ionizing radiation on pre-osteoblasts including cellular survival, cell cycle regulation and differentiation modification. Experiments with the pre-osteoblast cell line OCT-1 and the mesenchymal stem cell line C3H10T1/2 showed that radiation cell killing depends on dose and linear energy transfer (LET) and is most effective at an LET of ∝150 keV/μm. High-LET radiation has a much more pronounced ability to induce cell cycle arrest in the G2/M phase. After both X-rays and heavy ions exposure, expression of the cell cycle regulator CDKN1A was significantly up-regulated in a dose-dependent manner. The findings suggest that cell cycle regulation is more sensitive to high-LET radiation than cell survival, which is not solely regulated through elevated CDKN1A expression. Radiation exposure enhances osteoblastic differentiation and maturation, and mediates Runx2 and TGF-β1 expression during early differentiation of pre-osteoblasts. Osteogenic differentiation did not alter cellular radiosensitivity, DNA repair of radiation-induced damages and the effects of radiation on proliferation. Further experiments are needed to elucidate possible synergistic effects of microgravity and radiation on osteoblast differentiation. This may

  4. Radiation effects in vitreous and devitrified simulated waste glass

    International Nuclear Information System (INIS)

    Weber, W.J.; Turcotte, R.P.; Bunnell, L.R.; Roberts, F.P.; Westsik, J.H. Jr.

    1979-01-01

    The long-term radiation stability of vitreous and partially devitrified forms of high-level waste glass was investigated in accelerated experiments by 266 Cm doping. The effects of radiation on microstructure, phase behavior, density, impact strength, stored energy, and leachability are reported to a cumulative radiation dose of 5 x 10 18 α decays/cm 3 . This dose produces saturation of radiation effects in most properties. 4 figures

  5. Literature survey: health effects of radiation

    International Nuclear Information System (INIS)

    Tveten, U.; Garder, K.

    This report was originally written as a chapter of a report entitled 'Air pollution effects of electric power generation, a literature survey', written jointly by the Norwegian Institute for Air Research (NILU) and the Institutt for Atomenergi (IFA). (INIS RN242406). A survey is presented of the health effects of radiation. It has not, however, been the intention of the authors to make a complete list of all the literature relevant to this subject. The NILU/IFA report was meant as a first step towards a method of comparing the health effects of electric power generation by fission, gas and oil. Consequently information relevant to quantification of the health effects on humans has been selected. It is pointed out that quantitative information on the health effects of low radiation and dose rates, as are relevant to routine releases, does not exist for humans. The convention of linear extrapolation from higher doses and dose rates is used worldwide, but it is felt by most that the estimates are conservative. As an example of the use of the current best estimates, a calculation of normal release radiation doses is performed. (Auth.)

  6. Modification of carcinogenic and antitumor radiation effects (biomedical aspects)

    International Nuclear Information System (INIS)

    Vilenchik, M.M.

    1985-01-01

    In the book the data on modification of carcinogenic radiation effects by physiologicaly active compounds (caffeine, hormones, promoters and others) as well as on potentiation of antitumor radiation effects by means of hyperthermia are systematized. It is shown that as a basis of synergetic (superadditive) carcinogenic or antitumor radiation effects combined with other factor can be the inhibiting effects of the latter on the reparation process of radiation-induced DNA injuries. The results of experimental investigations and the data on quantitative analysis can be used as a theoretical basis for improvement of the ways and means of the prophylaxis of tumor diseases as well as for increasing the efficiency of radiotherapy

  7. Radiation effects on light sources and detectors

    International Nuclear Information System (INIS)

    Barnes, C.E.

    1985-01-01

    The rapidly expanding field of optoelectronics includes a wide variety of both military and non-military applications in which the systems must meet radiation exposure requirements. Herein, we review the work on radiation effects on sources and detectors for such optoelectronic systems. For sources the principal problem is permanent damage-induced light output degradation, while for detectors it is ionizing radiation-induced photocurrents

  8. Health Effects of Exposure to Low Dose of Radiation

    International Nuclear Information System (INIS)

    Alatas, Zubaidah

    2003-01-01

    Human beings are exposed to natural radiation from external sources include radionuclides in the earth and cosmic radiation, and by internal radiation from radionuclides, mainly uranium and thorium series, incorporated into the body. Living systems have adapted to the natural levels of radiation and radioactivity. But some industrial practices involving natural resources enhance these radionuclides to a degree that they may pose risk to humans and the environment if they are not controlled. Biological effects of ionizing radiation are the outcomes of physical and chemical processes that occur immediately after the exposure, then followed by biological process in the body. These processes will involve successive changes in the molecular, cellular, tissue and whole organism levels. Any dose of radiation, no matter how small, may produce health effects since even a single ionizing event can result in DNA damage. The damage to DNA in the nucleus is considered to be the main initiating event by which radiation causes damage to cells that results in the development of cancer and hereditary disease. It has also been indicated that cytogenetic damage can occur in cells that receive no direct radiation exposure, known as bystander effects. This paper reviews health risks of low dose radiation exposure to human body causing stochastic effects, i.e. cancer induction in somatic cells and hereditary disease in genetic cells. (author)

  9. Radiative effects of clouds and cryosphere in the Antarctic

    Directory of Open Access Journals (Sweden)

    Takashi Yamanouchi

    1997-03-01

    Full Text Available Examination of the effects of clouds, ice sheet and sea ice on the radiation budget in the Antarctic using Earth Radiation Budget Experiment (ERBE data were reported. The continental ice sheet affects not only the albedo, but also the surface temperature because of elevation, and hence the OLR. Sea ice, which is a critical climate feedback factor, appears to have less impact on radiation than do clouds. However, these surfaces lie underneath clouds, and it was found that the independent effect of sea ice is as large as that of clouds, and clouds are masking the radiative effect of sea ice by more than half. The radiation budget at the top of the atmosphere from satellite observation and that at the surface from the surface radiation measurements at Syowa and South Pole Stations were compared. Cloud radiative forcing at both stations for the surface, atmosphere and top of the atmosphere was derived.

  10. The toxic effects of ionizing radiations

    International Nuclear Information System (INIS)

    Draghita Payet, A.C.

    2006-06-01

    The sources of radiations to which the human body is subjected are of natural or artificial origin and the irradiation of the human body can take place either by internal or external way. The ionizing radiations act at several levels of the human body, the main thing being the molecule of DNA. The ionizing radiations have no specificity, the effects on the human body can be: somatic, genetic or hereditary, teratogen. In the case of a human being irradiation, we proceed to the diagnosis and to the treatment of the irradiated person, however, to decrease the incidence of injuries we use the radiation protection. The treatment if necessary will be established according to the irradiation type. (N.C.)

  11. Ceramics radiation effects issues for ITER

    International Nuclear Information System (INIS)

    Zinkle, S.J.

    1993-01-01

    The key radiation effects issues associated with the successful operation of ceramic materials in components of the planned International Thermonuclear Experimental Reactor (ITER) are discussed. Radiation-induced volume changes and degradation of the mechanical properties should not be a serious issue for the fluences planned for ITER. On the other hand, radiation-induced electrical degradation effects may severely limit the allowable exposure of ceramic insulators. Degradation of the loss tangent and thermal conductivity may also restrict the location of some components such as ICRH feedthrough insulators to positions far away from the first wall. In-situ measurements suggest that the degradation of physical properties in ceramics during irradiation is greater than that measured in postirradiation tests. Additional in-situ data during neutron irradiation are needed before engineering designs for ITER can be finalized

  12. Health effects of radiation damage

    International Nuclear Information System (INIS)

    Gasimova, K; Azizova, F; Mehdieva, K.

    2012-01-01

    Full text : A summary of the nature of radiactive contamination would be incomplete without some mention of the human health effects relatied to radioactivity and radioactive materials. Several excellent reviews at the variety of levels of detail have been written and should be consulted by the reader. Internal exposures of alpha and beta particles are important for ingested and inhaled radionuclides. Dosimetry models are used to estimate the dose from internally deposited radioactive particles. As mentioned above weighting parameters that take into account the radiation type, the biological half-life and the tissue or organ at risk are used to convert the physically absorbed dose in units of gray (or red) to the biologically significant committed equivalent dose and effective dose, measured in units of Sv (or rem). There is considerable controversy over the shape of the dose-response curve at the chronic low dose levels important for enviromental contamination. Proposed models include linear models, non-linear models and threshold models. Because risks at low dose must be extrapolated from available date at high doses, the shape of the dose-response curve has important implications for the environmental regulations used to protect the general public. The health effect of radiation damage depends on a combination of events of on the cellular, tissue and systemic levels. These lead to mutations and cellular of the irradiated parent cell. The dose level at which significant damage occurs depends on the cell type. Cells that reproduce rapidily, such as those found in bone marrow or the gastrointestinal tract, will be more sensitive to radiation than those that are longer lived, such as striated muscle or nerve cells. The effects of high radiation doses on an organ depends on the various cell types it contains

  13. V. Physical effects in ionizing radiation passage through matter

    International Nuclear Information System (INIS)

    1984-01-01

    The ionization of the medium during absorption of alpha particles is described. The ranges are given of alpha particles in the air and in certain liquids and solids. The absorption of protons and deuterons takes place similarly as in alpha particles but protons and deuterons have a bigger range at the same energy. The term half-thickness has been introduced for the absorption of beta particles. For different energies of beta particles the absorption of these particles is graphically represented for different materials. The greatest attention is devoted to the absorption of electromagnetic radiation, i.e., X radiation and gamma radiation. The mechanisms are explained of absorption by photoelectric effect, the Compton effect and electron pair formation. In X radiation radiotherapy, filters are used, mostly aluminium, copper or zinc plates. The values are given of radiation intensity for different thicknesses of aluminium and copper filters and a survey is given of combined filters for 220 to 400 kV. For radiotherapy purposes great attention is devoted to the calculation of the depth dose. The effects are discussed of ionizing radiation on photographic emulsion, on changes in the colouring of some substances and fluorescence. Also given are the biological effects of ionizing radiation and the theory of direct and indirect effects is briefly described. (E.S.)

  14. Effect of low-dose ionizing radiation on luminous marine bacteria: radiation hormesis and toxicity

    International Nuclear Information System (INIS)

    Kudryasheva, N.S.; Rozhko, T.V.

    2015-01-01

    The paper summarizes studies of effects of alpha- and beta-emitting radionuclides (americium-241, uranium-235+238, and tritium) on marine microorganisms under conditions of chronic low-dose irradiation in aqueous media. Luminous marine bacteria were chosen as an example of these microorganisms; bioluminescent intensity was used as a tested physiological parameter. Non-linear dose-effect dependence was demonstrated. Three successive stages in the bioluminescent response to americium-241 and tritium were found: 1 – absence of effects (stress recognition), 2 – activation (adaptive response), and 3 – inhibition (suppression of physiological function, i.e. radiation toxicity). The effects were attributed to radiation hormesis phenomenon. Biological role of reactive oxygen species, secondary products of the radioactive decay, is discussed. The study suggests an approach to evaluation of non-toxic and toxic stages under conditions of chronic radioactive exposure. - Highlights: • Luminous bacteria demonstrate nonlinear dose-effect relation in radioactive solutions. • Response to low-dose radiation includes 3 stages: threshold, activation, inhibition. • ROS are responsible for low-dose effects of alpha-emitting radionuclides. • Luminous marine bacteria are a convenient tool to study radiation hormesis

  15. Indirect radiation effects related to the environmental structure of targets

    International Nuclear Information System (INIS)

    Frankenberg, D.

    1976-01-01

    It is supposed, that in biological systems there are direct as well as indirect radiation effects. Their contributions to lethal effects depend mainly on two different kinds of structures within irradiated systems: the microscopic energy deposition patterns of radiation and the environmental structures of targets. The approach to determine these contributions of the lethal action of ionizing radiation in yeast cells was, to use chemical compounds, which specifically change the radical spectrum of water radiolysis. The efficiency of such chemical compounds in scavenging specifically water radicals was tested in aqueous solutions of thymine molecules, in which indirect radiation effects occur exclusively. The main result is, that the OH'-radical is by far the most effective radical to destroy thymine molecules. The relative contributions of direct and indirect radiation effects to lethal actions of ionizing radiation was investigated in yeast cells. The radical spectrum of water radiolysis was changed by bubbling the cell suspensions with different gases. The main result is, that there are no lethal radiation effects du to the action of water radicals

  16. Assessment of radiation safety awareness and attitude toward biological effect of radiation for employees in nuclear workplace

    International Nuclear Information System (INIS)

    Youngchuay, U.; Jetawattana, S.; Toeypho, V.; Eso, J.

    2016-01-01

    This study demonstrated a potential relevance of data pertaining to the interaction of awareness in radiation biology and their attitude towards radiation hazards. The obtained information is useful in ascertaining the effectiveness of the ongoing radiation safety program and will be further used to determine the relationships between the radiation effective dose and cytogenetic approach in these groups of workers. (author)

  17. Ultraviolet radiation and its biological effects

    International Nuclear Information System (INIS)

    Rames, J.; Bencko, V.

    1993-01-01

    In connexion with contamination of the atmosphere with freons, the interest is increasing in geophysical and health aspects of 'ozone holes' - the seasonal incidence of increased intensity of UV radiation. Its biological effects depend on the intensity of the radiation, the exposure time and the wavelength. There is a wide range of various sorts of damage, local as well as general. In addition to skin pigmentation and symptoms produced by an elevated histamine blood level, also changes are found which may have more serious and permanent consequences: changes in the number and structure of Langerhans islets, changes of the peripheral capillary walls, dimerization of pyrimidine and thymine in DNA. These changes demonstrably contribute to the development of skin malignancies. After exposure of the eye, changes in pigmentation are found, and depending on the dose, possibly also development of conjunctivitis or retinal damage. Recently the interaction of UV radiation with arsenic was investigated. On the other side, therapeutic effects of UV radiation combined with chemotherapy are used in dermatology, eg., for inhibition of contact sensitization. (author) 42 refs

  18. Solar Radiation effect on the bituminous binder

    International Nuclear Information System (INIS)

    Tadeo Rico, A.; Torres Perez, A.

    2010-01-01

    Asphalt, used as binder in road construction, becomes more brittle and harder during working life on the surface of the road pavement, conducting toward their deterioration. This is caused by the oxidation of the molecular functional groups of the asphalt molecular structure. Moreover, it is observed that ultraviolet radiation increases the oxidation process. However, the effect of solar light on the asphalt degradation has been poorly researched. The aim of this work is to study asphalt ageing caused by effect of solar radiation, by using standard test. Four commercial asphalts from different companies were selected: two with penetration number 50/70, and the other two polymer modified asphalts. From each of the asphalts forty samples were taken off and placed in four different aging conditions of temperature and radiation for a period ranging from 40 to 500 days. Ring and Ball test, and Fraass breaking Point test, were used to analyse the changes of asphalt properties after exposition to solar radiation. The results of the four analyzed asphalts showed a distinct behaviour; not only in the test temperature increase but also in the rate. Another experiment was carried out. Samples from a hot mix asphalt batch were placed under solar radiation, and were compacted by the Marshall procedure after increasing periods of time. Density and resistance to plastic flow using Marshall Apparatus were measured. Results showed an increase in the stability of samples under radiation. Both experiments show that the solar radiation is enough to cause changes in the asphalt molecular structure due to oxidation. So that, the study of the effect of the solar radiation on the asphalt properties could be a good tool to asses the performances of asphalt pavement. (Author) 26 refs.

  19. Biological radiation effects

    International Nuclear Information System (INIS)

    Sejourne, Michele.

    1977-01-01

    This work examines ionizing radiations: what they are, where they come from, their actions and consequences, finally the norms and preventive measures necessary to avoid serious contamination, whether the individual or the population in general is involved. Man has always been exposed to natural irradiation, but owing to the growing use of ionizing radiations both in medicine and in industry, not to mention nuclear tests and their use as an argument of dissuasion, the irradiation of human beings is increasing daily. Radioactive contamination does remain latent, apart from acute cases, but this is where the danger lies since the consequences may not appear until long after the irradiation. Of all biological effects due to the action of radioelements the genetic risk is one of the most important, affecting the entire population and especially the generations to come. The risk of cancer and leukemia induction plays a substantial part also since a large number of people may be concerned, depending on the mode of contamination involved. All these long-term dangers do not of course exclude the various general or local effects to which the individual alone may be exposed and which sometimes constitute a threat to life. As a result the use of ionizing radiations must be limited and should only be involved if no other process can serve instead. The regulations governing radioelements must be stringent and their application strictly supervised for the better protection of man. This protection must be not only individual but also collective since pollution exists in air, water and land passes to plants and animals and finally reaches the last link in the food chain, man [fr

  20. Radiation effects on bovine taste bud membranes

    International Nuclear Information System (INIS)

    Shatzman, A.R.; Mossman, K.L.

    1982-01-01

    In order to investigate the mechanisms of radiation-induced taste loss, the effects of radiation on preparations of enriched bovine taste bud membranes were studied. Taste buds containing circumvallate papilae, and surrounding control epithelial tissues devoid of taste buds, were obtained from steers and given radiation doses of 0-7000 cGy (rad). Tissue fractions were isolated into membrane-enriched and heterogeneous components using differential and sucrose gradient centrifugation of tissue homogenates. The yield of membranes, as measured by protein content in the buoyant membrane-enriched fractions, was reduced in quantity with increasing radiation dose. The relation between radiation dose and membrane quantity in membrane-enriched fractions could be fit by a simple exponential model with taste bud-derived membranes twice as radiosensitive as membranes from control epithelial tissue. Binding of sucrose, sodium, and acetate and fluoride stimulation of adenylate cyclase were nearly identical in both irradiated and nonirradiated intact membranes. Radiation had no effect on fractions of heterogeneous components. While it is not clear what changes are occurring in enriched taste cell membranes, damage to membranes may play an important role in the taste loss observed in patients following radiotherapy

  1. Methodological aspects of hygienic standardization of complex radiation and non-radiation effects on human organizm

    International Nuclear Information System (INIS)

    Liberman, A.N.; Sanovskaya, M.S.; Bronshtejn, I.Eh.; Orobej, V.V.

    1978-01-01

    Considered are the necessary requirements for the methodics of substantiating the hygienic standards for a combined effect of radiation and nonradiation factors on workers engaged in electronic, radio engineering branches of industry and a number of nuclear-physical units. These approaches were used in planning and conducting of investigations on hygienic evaluation of a combined effect of ionizing radiation, electromagnetic UHF radiation, noise and other factors. Along with experimental investigations on small laboratory animals, clinico-physiological examinations of people affected by a combined or predominantely separate effect of the above-mentioned factors have been carried out for many years. The material obtaed has been subjected to mathematical treatment with the use of dispersion analysis. The results testify to the intensification of the effect under conditions of a combined action of X-ray and UHF radiations and noise

  2. Biological effect of radiation on human

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yun Sil; Cho, Chul Koo; Lee, Su Jae [and others

    2000-04-01

    1. Adaptive response when 0.01 Gy was preirradiated before high challenging dose is induced in normal cell types such normal lymphocytes, primary keratinocytes, and L929 fibroblast cells but not in neoplastic cells such as L5178Y lymphoma cells, EL-4 lymphoma cells and 308 papilloma cells. 2. Heat shock protein (HSP) 25 and inducible HSP70 is responsible for the induction of adaptive response and radioresistance - cell cycle regulation, antiapoptotic molecule and PKC activation were involved. 3. Apoptosis was induced at most 5. hrs after irradiation in primary keratinocytes, in v-rasHa transformed keratinocytes, the maximum interval was 16 hrs, and in 308 papilloma cells, the maximum was 48 hrs. 4. PKC response by radiation is correlated with induction of apoptosis. 5. Rapid induction PKCdelta in primary keratinocytes and no response of PKC epsilon may involved in radiation induced apoptosis. 6. The rate of resorption was increased when radiation was given at 2.5 days after gestation. Early death including foetal death were highly expressed when radiation was given at 7.5 days after gestation. There are no difference in incidence of late death including embryonic death. 7. 2 Gy is the most effective dose in radiation induced teratogenesis in mouse model. 8. Growth retardation and small head was present when radiation was given at 5.5, 7.5, 11.5 and 15.5 days after gestation and small head showed high incidence at 11.5 days after gestation. 9. External malformation, internal malformation and skeletal malformation was induced when radiation was given at 7.5 days after gestation. 10. OGG1-mutated cells induced radiosensitive by G2/M cell cycle arrest. 11. Radiation induced G2/M phase cell cycle and correlated with radiosensitivity. 12. PKCalpha induced differentiation. 13. Radiation exposed cells showed carcinogenic effect. 14. Organ specific radiosensitivity was shown and protein expression was involved.

  3. Biological effect of radiation on human

    International Nuclear Information System (INIS)

    Lee, Yun Sil; Cho, Chul Koo; Lee, Su Jae

    2000-04-01

    1. Adaptive response when 0.01 Gy was preirradiated before high challenging dose is induced in normal cell types such normal lymphocytes, primary keratinocytes, and L929 fibroblast cells but not in neoplastic cells such as L5178Y lymphoma cells, EL-4 lymphoma cells and 308 papilloma cells. 2. Heat shock protein (HSP) 25 and inducible HSP70 is responsible for the induction of adaptive response and radioresistance - cell cycle regulation, antiapoptotic molecule and PKC activation were involved. 3. Apoptosis was induced at most 5. hrs after irradiation in primary keratinocytes, in v-rasHa transformed keratinocytes, the maximum interval was 16 hrs, and in 308 papilloma cells, the maximum was 48 hrs. 4. PKC response by radiation is correlated with induction of apoptosis. 5. Rapid induction PKCdelta in primary keratinocytes and no response of PKC epsilon may involved in radiation induced apoptosis. 6. The rate of resorption was increased when radiation was given at 2.5 days after gestation. Early death including foetal death were highly expressed when radiation was given at 7.5 days after gestation. There are no difference in incidence of late death including embryonic death. 7. 2 Gy is the most effective dose in radiation induced teratogenesis in mouse model. 8. Growth retardation and small head was present when radiation was given at 5.5, 7.5, 11.5 and 15.5 days after gestation and small head showed high incidence at 11.5 days after gestation. 9. External malformation, internal malformation and skeletal malformation was induced when radiation was given at 7.5 days after gestation. 10. OGG1-mutated cells induced radiosensitive by G2/M cell cycle arrest. 11. Radiation induced G2/M phase cell cycle and correlated with radiosensitivity. 12. PKCalpha induced differentiation. 13. Radiation exposed cells showed carcinogenic effect. 14. Organ specific radiosensitivity was shown and protein expression was involved

  4. Non-carcinogenic late effects of ionizing radiation; human data

    International Nuclear Information System (INIS)

    Beebe, G.W.

    1979-01-01

    The late effects of ionizing radiation may be somatic effect or potential effect, about which such informations as follows are required: teratogenesis the disturbances in growth and development, cataracts, infertility, cytogenetic aberration, and accelerated aging. Although much is known about the nature of the malformations produced by ionizing radiation, and about the vulnerability of human embryonal and fetal tissues during various stages of organogenesis, the quantitative information is uncertain and incomplete. The data on A-bomb survivors were flawed by confounding radiation dose with nutritional and other influences caused by the disasters created by war-time bombings. If the effects of radiation are real, they are quite small for the dose below 100 rad (kerma), are confined to the children of pre-pubertal age at the time of exposure, and are of much less consequence for low-LET radiation than for high. Radiation-induced lenticular changes are of graded severity, and as for cataracts, the threshold is in the range from 600 to 1,000 rad of low-LET radiation, and perhaps 75 to 100 rad for fast neutrons; the average latent period is 2 to 7 years. The estimate of the RBE for neutrons is in the range from 2 to 10, and dose-dependent. Ionizing radiation has important effects on fertility only at very high dose. The relationship of the quantitative aspects of the biologic significance of chromosomal aberration in somatic cells to dose may provide an interesting parallel to the carcinogenic effect. For neutrons, the dose-response curve appears to be linear, at least for stable aberration. (Yamashita, S.)

  5. Microstructural characterization of radiation effects in nuclear materials

    CERN Document Server

    2017-01-01

    Microstructural Characterization of Radiation Effects in Nuclear Materials provides an overview into experimental techniques that can be used to examine those effects (both neutron and charged particle) and can be used by researchers, technicians or students as a tool to introduce them to the various techniques. The need to examine the effect of radiation on materials is becoming increasingly important as nuclear energy is emerging as a growing source of renewable energy. The book opens with a discussion of why it is important to study the effects of radiation on materials and looks at current and future reactor designs and the various constraints faced by materials as a result of those designs. The book also includes an overview of the radiation damage mechanisms. The next section explores the various methods for characterizing damage including transmission electron microscopy, scanning transmission electron microscopy, analytical electron microscopy, electron backscatter diffraction, atom probe tomography,...

  6. Effect of gamma radiation on chrome-tanned sheepskin

    International Nuclear Information System (INIS)

    Kaldirimci, C.

    1982-01-01

    Effect of 60 γ-radiation on chrome-tanned, blue-stock sheepskin was investigated. Radiation was applied between 0.35-10.5 Mrad and the resultant physical and mechanical changes were observed. Radiation did not change the water adsorption capability of leather but caused significant reductions in shrinkage temperature and tensile strength. The correlations between dose and radiation hazards were determined. (author)

  7. Late effects of radiation: host factors

    International Nuclear Information System (INIS)

    Fry, R.J.M.; Storer, J.B.

    1983-01-01

    The paper discusses the influence of host factors on radiation late effects and in particular cancer. Radiation induces cellular changes that result in initiated cells with a potential to become cancers. The expression of the initiated cells as tumors is influenced, if not determined, by both tissue and systemic factors that are sex-, age-, and species-dependent

  8. Radiation effects on Fischer-Tropsch syntheses

    International Nuclear Information System (INIS)

    Hatada, M.; Matsuda, K.

    1977-01-01

    Radiation effects on Fischer-Tropsch synthesis has been examined using high dose rate electron beams and Fe-Cu-diatomaceous earth catalyst. Yields of saturated hydrocarbons were found to increase by irradiation, but the yields of these compounds were decreased by raising reaction temperature without irradiation, suggesting the presence of radiation chemical process in catalytic reactions. (author)

  9. Predicted solar cell edge radiation effects

    International Nuclear Information System (INIS)

    Gates, M.T.

    1993-01-01

    The Advanced Solar Cell Orbital Test (ASCOT) will test six types of solar cells in a high energy proton environment. During the design of the experiment a question was raised about the effects of proton radiation incident on the edge of the solar cells and whether edge radiation shielding was required. Historical geosynchronous data indicated that edge radiation damage is not detectable over the normal end of life solar cell degradation; however because the ASCOT radiation environment has a much higher and more energetic fluence of protons, considerably more edge damage is expected. A computer analysis of the problem was made by modeling the expected radiation damage at the cell edge and using a network model of small interconnected solar cells to predict degradation in the cell's electrical output. The model indicated that the deepest penetration of edge radiation was at the top of the cell near the junction where the protons have access to the cell through the low density cell/cover adhesive layer. The network model indicated that the cells could tolerate high fluences at their edge as long as there was high electrical resistance between the edge radiated region and the contact system on top of the cell. The predicted edge radiation related loss was less than 2% of maximum power for GaAs/Ge solar cells. As a result, no edge radiation protection was used for ASCOT

  10. Radiation Effects in Paediatric radiography

    International Nuclear Information System (INIS)

    Mutwasi, O.

    2006-01-01

    Diagnostic imaging has evolved from single technique to a field which we have a choice from many modalities. Some without radiation. Radiation producing modalities include plain films (low dose), Fluoroscopy (mid range dose), Computed tomography (high dose). Radiography dose can significantly be influenced in plain radiography by varying speed of screens, cassette construction and type of radiography. E.g. digital or computed. In computed or digital radiography we are no longer able to tell h igh dose b y the quality of images. The final image is by great extend a product of post processing algorithms. It's for this reasons that the basic understanding of the sensitivity and specifying of various types of examinations and of specifically radiation effects is mandatory for a paediatric imager

  11. Effects of low levels of radiation on humans

    International Nuclear Information System (INIS)

    Auxier, J.A.

    1981-01-01

    The state of knowledge on effects of low-level ionizing radiations on humans is reviewed. Several problems relating to dose thresholds or lack of thresholds for several types of cancer and high LET radiations and the effects of fractionation and dose protection are discussed

  12. Radiation doses and possible radiation effects of low-level, chronic radiation in vegetation

    International Nuclear Information System (INIS)

    Rhoads, W.A.; Franks, L.A.

    1975-01-01

    Measurements were made of radiation doses in soil and vegetation in Pu-contaminated areas at the Nevada Test Site with the objective of investigating low-level, low-energy gamma radiation (with some beta radiation) effects at the cytological or morphological level in native shrubs. In this preliminary investigation, the exposure doses to shrubs at the approximate height of stem apical meristems were estimated from 35 to 140 R for a ten-year period. The gamma exposure dose estimated for the same period was 20.7 percent +- 6.4 percent of that recorded by the dosimeters used in several kinds of field instrument surveys. Hence, a survey instrument reading made at about 25 cm in the tops of shrubs should indicate about 1 / 5 the dosimeter-measured exposures. No cytology has yet been undertaken because of the drought since last winter. (auth)

  13. Comparative studies on the effect of radiation-sensitizing agents used in radiating VX2 Carcinoma

    International Nuclear Information System (INIS)

    Migita, Hidenobu

    1975-01-01

    The effects of 5-Fu and BUdR as radiation-sensitizing agents macroscopically were investigated in 122 VX2 Carcinomas transplanted into the calves of the hind legs of rabbits. Experimental groups and contrast groups are divided into six as follows: A: No treatment, B: 5-Fu infusion, C: BUdR+Antimetabolite infusion, D: Radiation, E: 5-Fu infusion and radiation, and F: BUdR+Antimetabolite infusion and radiation. The amount of agent given to each was 5 mg/kg/day of 5-Fu and 50 mg/kg/day of BUdR, and the amount of radiation was 300 rad/day. 5-Fu was used as the Antimetabolite, and its amount was one-tenth of that in the 5-Fu Infusion Group. The agent and the radiation were given for five days. 1. In the 300 rad/day Group, the radiation was not enough to result in a complete cure. 2. In the two Agent Infusion Group, 5-Fu and BUdR+Antimetabolite proved to be anti-cancer, but neither of them resulted in effective treatment. 3. The 5-Fu Infusion and Radiation Group, showed a strong degenerative change in the tumor cell and a radiosensitive effect from 5-Fu, but the tumor was not lessened. 4. In the BUdR-Antimetabolite Infusion and Radiation Group, the tumor began to reduce on the third day. On the seventh and fourteenth days, necrosis of the greater part of tumor was seen, and the rest of the tumor cells were found to be in degenerative change. On the twenty first day, no live tumor cell was found, only dead remains of tumor cells. The results were confirmed both macroscopically and histopathologically. 5. BUdR can be expected to be effective in clinical application to oral malignant tumors. (Evans, J.)

  14. Effect of radiation resistance additives for insulation materials

    International Nuclear Information System (INIS)

    Yamamoto, Yasuaki; Yagyu, Hideki; Seguchi, Tadao.

    1988-01-01

    For the electric wires and cables used in radiation environment such as nuclear power stations and fuel reprocessing facilities, the properties of excellent radiation resistance are required. For these insulators and sheath materials, ethylene propylene rubber, polyethylene and other polymers have been used, but it cannot be said that they always have good radiation resistance. However, it has been well known that radiation resistance can be improved with small amount of additives, and heat resistance and burning retarding property as well as radiation resistance are given to the insulators of wires and cables for nuclear facilities by mixing various additives. In this research, the measuring method for quantitatively determining the effect of Anti-rad (radiation resistant additive) was examined. Through the measurement of gel fraction, radical formation and decomposed gas generation, the effect of Anti-rad protecting polymers from radiation deterioration was examined from the viewpoint of chemical reaction. The experimental method and the results are reported. The radiation energy for cutting C-H coupling is polymers is dispersed by Anti-rad, and the probability of cutting is lowered. Anti-rad catches and extinguishes radicals that start oxidation reaction. (K.I.)

  15. Effects of gamma radiation on commercial operational amplifiers

    International Nuclear Information System (INIS)

    Claro, Luiz H.; Santos, Jose A. dos

    2009-01-01

    The operational amplifiers are widely used in nuclear instrumentation. Their applications span the signal conditioning circuits, analog instrumentation, amplifiers, converters, oscillators and others. If an operational amplifier is used to work in a radiation environment, the device suffers degradation in its performance leading to the bad work in the systems. Some of these devices are designed as rad-hard components and therefore the effects of radiation damage are minimized, however its main disadvantage is the high cost and difficult to find in the market. As an alternative one can use the conventional electronic components available in the market and named COTS (Commercially Available Off-The-Shelf) but they must be tested under a radiation environment. In this work the effect of the radiation damage is studied in two typical operational amplifiers. Some electric parameters of these devices were measured for different gamma radiation doses and they were working at different input signal frequencies. A 60 Co isotopic radiation source was used and the results show that there is a certain degradation of the device depending on the radiation absorbed dose. (author)

  16. RADIATION EFFECTS IN NUCLEAR WASTE MATERIALS

    International Nuclear Information System (INIS)

    Weber, William J.

    2000-01-01

    The objective of this research was to develop fundamental understanding and predictive models of radiation effects in glasses and ceramics at the atomic, microscopic, and macroscopic levels, as well as an understanding of the effects of these radiation-induced solid-state changes on dissolution kinetics (i.e., radionuclide release). The research performed during the duration of this project has addressed many of the scientific issues identified in the reports of two DOE panels [1,2], particularly those related to radiation effects on the structure of glasses and ceramics. The research approach taken by this project integrated experimental studies and computer simulations to develop comprehensive fundamental understanding and capabilities for predictive modeling of radiation effects and dissolution kinetics in both glasses and ceramics designed for the stabilization and immobilization of high-level tank waste (HLW), plutonium residues and scraps, surplus weapons plutonium, other actinides, and other highly radioactive waste streams. Such fundamental understanding is necessary in the development of predictive models because all experimental irradiation studies on nuclear waste materials are ''accelerated tests'' that add a great deal of uncertainty to predicted behavior because the damage rates are orders of magnitude higher than the actual damage rates expected in nuclear waste materials. Degradation and dissolution processes will change with damage rate and temperature. Only a fundamental understanding of the kinetics of all the physical and chemical processes induced or affected by radiation will lead to truly predictive models of long-term behavior and performance for nuclear waste materials. Predictive models of performance of nuclear waste materials must be scientifically based and address both radiation effects on structure (i.e., solid-state effects) and the effects of these solid-state structural changes on dissolution kinetics. The ultimate goal of this

  17. Late effects of radiation on mature and growing bone

    International Nuclear Information System (INIS)

    Ramuz, O.; Mornex, F.; Bourhis, J.

    1997-01-01

    The physiopathology of radiation-induced bone damage is no completely elucidated. Ionizing radiation may induce an inhibition or an impairment of growing bone. This fact is of particular importance in children, and represents one of the most important dose-limiting factors in the radiotherapeutic management of children with malignant diseases. Scoliosis, epiphyseal slippage, avascular necrosis, abnormalities of craniofacial growth may be observed after radiation. Child's age at the time of treatment, location of irradiated bone and irradiation characteristics may influence the radiation related observed effects. In adults, pathological analysis of mature bone after ionizing radiation exposure are rare, suggesting that it is difficult to draw a clear feature of the action of radiation on the bone. Osteoporosis, medullary fibrosis and cytotoxicity on bone cells lead to fracture or necrosis. Various factors can influence bone tolerance to radiation such as bone involvement by tumor cells or infection, which is frequent is mandibulary osteoradionecrosis. Technical improvements in radiation techniques have also decreased radio-induced bone complications : the volume, fractionation and total dose are essential to consider. The absence of a consistent radiation-induced late effects evaluation scale has hampered efforts to analyze the influence of various therapeutic maneuvers and the comparison of results from different reported series. The currently proposed evaluation scale may help harmonizing the classification of radiation-induced bone late effects. (author)

  18. Biological effects of ionizing radiation; Efectos biologicos de la radiacion

    Energy Technology Data Exchange (ETDEWEB)

    Gisone, Pablo; Perez, Maria R [Autoridad Regulatoria Nuclear, Buenos Aires (Argentina)

    2001-07-01

    It has been emphasised the importance of DNA as the main target for ionizing radiation, that can induce damage by its direct action on this molecule or by an indirect effect mediated by free-radicals generated by water radiolysis. Biological effects of ionizing radiation are influenced not only by the dose but also by the dose-rate and the radiation quality. Radiation induced damage, mainly DNA single and double strand breaks, is detected by molecular sensors which in turn trigger signalling cascades leading to cell cycle arrest to allow DNA repair or programmed cell death (apoptosis). Those effects related with cell death, named deterministic, exhibits a dose-threshold below which they are not observed. Acute radiation syndrome and radiological burns are examples of this kind of effects. Other radiation induced effects, called stochastic, are the consequence of cell transformation and do not exhibit a dose-threshold. This is the case of cancer induction and hereditary effects. The aim of this presentation is briefly describe the main aspects of deterministic and stochastic effects from the point of view of radiobiology and radio pathology. (author)

  19. Late radiation effects in animals surviving lethal irradiation

    International Nuclear Information System (INIS)

    Dimitrov, L.A.

    1974-01-01

    Animals (rats, mice, dogs) survived lethal irradiation by means of prophylactic-therapeutic treatments or previously irradiated, were studied for late radiation effects: life span, cachexia and fat growing of hypophysical type, tissue or organ hypoplasia manifested by disturbed hemopoiesis, suppressed function of adrenal gland, etc., suppressed immune reactivity of the irradiated organism, atypical biochemical changes in DNA and protein metabolism, epilation, chronic dermatitis, ulcerations, reduced reproductivity or full sterility, damage of kidneys leading to nephrosclerosis, dishormonal states, cataracts, diffuse sclerotic processes, various kinds of malignant and non-malignant tumors. In these cases hemopoiesis compensated for a definite time peripheral blood composition, but during the late period it showed features of incompleteness: shorter life survival of erythrocytes and thrombocytes manifested by a decreased binding of labelled methionine in these blood elements, anemia and relative thrombocytopenia sometimes with an increased number of polychromatic erythrocytes in peripheral blood and a decreased number of reticulocytes at the same time; lymphopenia and relative leucopenia with an increased number of hypersegmented neutrophils. Decreased reproductivity and atypical biochemical changes available in the first generation of the irradiated animals showed the probable role of mutagenic factors in the emergence of some late radiation effects. A significant part of late radiation sequences were due to neuro-endocrine desintegrations which lead to a disturbed supply of the vessels and afterwards to their sclerosis. Some of the described late radiation effects were also observed in biological controls as festures of ageing while in irradiated animals they were manifested in an earlier period. After application of optimal amounts radioprotectors (AET, cysteamine, serotonin) a more marked protective effect is demonstrated in the early reactions (time survival

  20. Radiation effects on superconductivity

    International Nuclear Information System (INIS)

    Brown, B.S.

    1975-01-01

    The effect of radiation on the superconducting transition temperature (T/sub c/), upper critical field (H/sub c2/), and volume-pinning-force density (F/sub p/) were discussed for the three kinds of superconducting material (elements, alloys, and compounds). 11 figures, 3 tables, 86 references

  1. Radiative effects of global MODIS cloud regimes

    Science.gov (United States)

    Oreopoulos, Lazaros; Cho, Nayeong; Lee, Dongmin; Kato, Seiji

    2018-01-01

    We update previously published MODIS global cloud regimes (CRs) using the latest MODIS cloud retrievals in the Collection 6 dataset. We implement a slightly different derivation method, investigate the composition of the regimes, and then proceed to examine several aspects of CR radiative appearance with the aid of various radiative flux datasets. Our results clearly show the CRs are radiatively distinct in terms of shortwave, longwave and their combined (total) cloud radiative effect. We show that we can clearly distinguish regimes based on whether they radiatively cool or warm the atmosphere, and thanks to radiative heating profiles to discern the vertical distribution of cooling and warming. Terra and Aqua comparisons provide information about the degree to which morning and afternoon occurrences of regimes affect the symmetry of CR radiative contribution. We examine how the radiative discrepancies among multiple irradiance datasets suffering from imperfect spatiotemporal matching depend on CR, and whether they are therefore related to the complexity of cloud structure, its interpretation by different observational systems, and its subsequent representation in radiative transfer calculations. PMID:29619289

  2. Radiative Effects of Global MODIS Cloud Regimes

    Science.gov (United States)

    Oraiopoulos, Lazaros; Cho, Nayeong; Lee, Dong Min; Kato, Seiji

    2016-01-01

    We update previously published MODIS global cloud regimes (CRs) using the latest MODIS cloud retrievals in the Collection 6 dataset. We implement a slightly different derivation method, investigate the composition of the regimes, and then proceed to examine several aspects of CR radiative appearance with the aid of various radiative flux datasets. Our results clearly show the CRs are radiatively distinct in terms of shortwave, longwave and their combined (total) cloud radiative effect. We show that we can clearly distinguish regimes based on whether they radiatively cool or warm the atmosphere, and thanks to radiative heating profiles to discern the vertical distribution of cooling and warming. Terra and Aqua comparisons provide information about the degree to which morning and afternoon occurrences of regimes affect the symmetry of CR radiative contribution. We examine how the radiative discrepancies among multiple irradiance datasets suffering from imperfect spatiotemporal matching depend on CR, and whether they are therefore related to the complexity of cloud structure, its interpretation by different observational systems, and its subsequent representation in radiative transfer calculations.

  3. Effects of ionizing radiation and steady magnetic field on erythrocytes

    International Nuclear Information System (INIS)

    Ivanov, S. P.; Galutzov, B. P.; Kuzmanova, M. A.; Markov, M. S.

    1996-01-01

    A complex biophysical test for studying the effects of ionizing and non-ionizing radiation has been developed. The following cell and membrane parameters have been investigated: cell size, cell shape, cell distribution by size, electrophoretic mobility, extent of hemolysis, membrane transport and membrane impedance. Gamma ray doses of 2.2 Gy and 3.3 Gy were used as ionizing radiation and steady (DC) magnetic field of 5-90 mT representing the non-ionizing radiation. Erythrocytes from humans and rats were exposed in vitro to both ionizing and non-ionizing radiation. In some experiments ionizing radiation was applied in vivo as well. Each of the simultaneously studied parameters have been found to change as a function of applied radiation. The proposed test allows an estimation of the changes in the elastic, rheological and electrical parameters of cells and biological membranes. Results indicate that ionizing radiation is significantly more effective in an in vivo application, while magnetic fields are more effective when applied in vitro. Surprisingly, steady magnetic fields were found to act as protector against some harmful effects of ionizing radiation. (authors)

  4. Environmental radiation effects. A need to question old paradigms and to enhance collaboration between radiation biologists and radiation ecologists

    International Nuclear Information System (INIS)

    Hinton, T.G.; Whicker, F.W.

    2003-01-01

    The radiological sciences are a real enigma- the maturity and depth of understanding concerning human dosimetry contrasts sharply with our shallow understanding about radiological effects to biota. The richness of the radiological sciences is apparent by looking at the refinements made to the fundamental unit used in human dosimetry. The radiological sciences have developed to where probabilistic risk factors can now be applied that predict specific deleterious effects to humans per unit dose. And yet, these same radiological sciences that have made such advances in human dosimetry, are primitive when effects to biota are concerned. There are no specialized units, no agreed upon weighting factors, no factors that account for distributions within an organism's body, and certainly no risk factors. There are no internationally agreed upon criteria or policies that explicitly address protection of the environment from ionizing radiation. There is not even agreement as to what endpoint should be measured to quantify an environmental effect. The bold aspect of the ICRP framework is the inclusion of sub-lethal effects (reduced reproductive success, scorable DNA damage) as endpoints. A major research consortium funded by the European Union, is also recommending that cytogenetic damage be used as an effect endpoint. The inclusion of sub-lethal endpoints begs for a linkage between molecular effects and those observed in individuals and populations. To do so, will require a strengthening of what has traditionally been separated disciplines of radiation biology and radiation ecology. The impacts of phenomena studied in the petri dishes of radiation biologists (such as genomic instability, adaptive response, and bystander effects) need to be explored and correlated to effects observed in whole organisms and populations, in collaboration with radiation ecologists. (M. Suetake)

  5. Epistemological limitation for attributing health effects to natural radiation exposure

    International Nuclear Information System (INIS)

    González, Abel J.

    2010-01-01

    The attribution of health effects to prolonged radiation exposure situations, such as those experienced in nature, is a challenging problem. The paper describes the epistemological limitations for such attribution it demonstrate that in most natural exposure situations, the theory of radiation-related sciences is not capable to provide the scientific evidence that health effects actually occur (or do not occur) and, therefore, that radiation effects are attributable to natural exposure situations and imputable to nature. Radiation exposure at high levels is known to provoke health effects as tissue reactions. If individuals experience these effects they can be attributed to the specific exposure with a high degree of confidence under the following conditions: the dose incurred have been higher that the relevant dose-threshold for the specific effect; and an unequivocal pathological diagnosis is attainable ensuring that possible competing causes have been eliminated. Only under these conditions, the occurrence of the effect may be properly attested and attributed to the exposure. However, even high levels of natural radiation exposure are lower than relevant dose-thresholds for tissue reactions and, therefore, natural radiation exposure is generally unable to cause these type of effects. One exception to this general rule could be situations of high levels of natural radiation exposure that might be sufficient to induce opacities in the lens of the eyes (which could be considered a tissue-reaction type of effect)

  6. Study of oxygen inhibition effect on radiation curing

    International Nuclear Information System (INIS)

    Xiao Bin; Yang Xuemei; Zhao Pengji; Zeng Shuqing; Jiang Bo; Zhou Yong; Huang Wei; Zhou Youyi

    1995-01-01

    Michacl addition reaction product was used in the research of oxygen inhibition effect of radiation curing. The experimental results was measured by the content of gel and percentage of double bonds. It was proved that 9% of Michacl addition product could speed up 1.2 times of the radiation curing rate at 30 kGy of EB irradiation. This kind of formulation can withstand oxygen inhibition effect obviously, so it was the foundation of application for radiation curing in atmospheric condition

  7. Biological radiation effects

    International Nuclear Information System (INIS)

    Koggl, D.; Dedenkov, A.N.

    1986-01-01

    All nowadays problems of radio biology are considered: types of ionizing radiations, their interaction with material; damage of molecular structures and their reparation; reaction of cells and their recovery from radiation damage; reaction of the whole organism and its separate systems. Particular attention is given to the problems of radiation carcinogenesis and radiation hazard for man

  8. Effect of domperidone on radiation sickness

    Energy Technology Data Exchange (ETDEWEB)

    Sakakibara, T; Sato, K [Nihon Univ., Tokyo. School of Medicine; Watari, T; Tanaka, T; Furuta, A

    1981-07-01

    Domperidone was administered to 95 patients with radiation sickness following radiotherapy for various cancers. The chest and the mediastinum were irradiated in 43 patients, the upper and lower abdomen in 40 patients, and the head, neck, and supraclavicular region in 12 patients. As to radiation source, x-ray was used for 46 patients, ..gamma..-ray for 41 patients, electron beam for 3 patients, and more than one radiation was used for 5 patients. The dose given before the onset of radiation sickness totaled 3000 rad in 20 patients, 1000 rad -- 3000 rad in 41, and less than 1000 rad in 34. Domperidone was given to the patients one tablet (5 mg or 10 mg) P.O., 3 times per day before meals, for 1 -- 2 weeks. The overall effective rate of the drug was 68.4%. The 10 mg tablets were slightly more effective than the 5 mg ones. In the patients who were given the drug in a dose of 10 mg, the ameliorating rate of subjective symptoms was 68.1% for nausea, 88.9% for vomiting, 44.6% for anorexia, 17.5% for general fatigue, and 69.2% for dizziness. Laboratory findings showed no abnormal effects of the drug. One patient had itching with eruptions, which, however, was mild and disappeared immediately after withdrawal of the medication.

  9. Radiation Effects in Nuclear Waste Materials

    International Nuclear Information System (INIS)

    Weber, William J.; Wang, Lumin; Hess, Nancy J.; Icenhower, Jonathan P.; Thevuthasan, Suntharampillai

    2003-01-01

    The objective of this project is to develop a fundamental understanding of radiation effects in glasses and ceramics, as well as the influence of solid-state radiation effects on aqueous dissolution kinetics, which may impact the performance of nuclear waste forms and stabilized nuclear materials. This work provides the underpinning science to develop improved glass and ceramic waste forms for the immobilization and disposition of high-level tank waste, excess plutonium, plutonium residues and scrap, other actinides, and other nuclear waste streams. Furthermore, this work is developing develop predictive models for the performance of nuclear waste forms and stabilized nuclear materials. Thus, the research performed under this project has significant implications for the immobilization of High-Level Waste (HLW) and Nuclear Materials, two mission areas within the Office of Environmental Management (EM). With regard to the HLW mission, this research will lead to improved understanding of radiation-induced degradation mechanisms and their effects on dissolution kinetics, as well as development of predictive models for waste form performance. In the Nuclear Materials mission, this research will lead to improvements in the understanding of radiation effects on the chemical and structural properties of materials for the stabilization and long-term storage of plutonium, highly-enriched uranium, and other actinides. The research uses plutonium incorporation, ion-beam irradiation, and electron-beam irradiation to simulate the effects of alpha decay and beta decay on relevant glasses and ceramics. The research under this project has the potential to result in improved glass and ceramic materials for the stabilization and immobilization of high-level tank waste, plutonium residues and scraps, surplus weapons plutonium, highly-enriched uranium, other actinides, and other radioactive materials

  10. Radiation Effects in Nuclear Waste Materials

    International Nuclear Information System (INIS)

    Weber, William J.

    2005-01-01

    The objective of this project is to develop a fundamental understanding of radiation effects in glasses and ceramics, as well as the influence of solid-state radiation effects on aqueous dissolution kinetics, which may impact the performance of nuclear waste forms and stabilized nuclear materials. This work provides the underpinning science to develop improved glass and ceramic waste forms for the immobilization and disposition of high-level tank waste, excess plutonium, plutonium residues and scrap, other actinides, and other nuclear waste streams. Furthermore, this work is developing develop predictive models for the performance of nuclear waste forms and stabilized nuclear materials. Thus, the research performed under this project has significant implications for the immobilization of High-Level Waste (HLW) and Nuclear Materials, two mission areas within the Office of Environmental Management (EM). With regard to the HLW mission, this research will lead to improved understanding of radiation-induced degradation mechanisms and their effects on dissolution kinetics, as well as development of predictive models for waste form performance. In the Nuclear Materials mission, this research will lead to improvements in the understanding of radiation effects on the chemical and structural properties of materials for the stabilization and long-term storage of plutonium, highly-enriched uranium, and other actinides. The research uses plutonium incorporation, ion-beam irradiation, and electron-beam irradiation to simulate the effects of alpha decay and beta decay on relevant glasses and ceramics. The research under this project has the potential to result in improved glass and ceramic materials for the stabilization and immobilization of high-level tank waste, plutonium residues and scraps, surplus weapons plutonium, highly-enriched uranium, other actinides, and other radioactive materials

  11. Radiation effects, nuclear energy and comparative risks

    International Nuclear Information System (INIS)

    Gopinath, D.V.

    2007-01-01

    Nuclear energy had a promising start as an unlimited, inexpensive and environmentally benign source of energy for electricity generation. However, over the decades its growth was severely retarded due to concerns about its possible detrimental effects on the well-being of mankind and the environment. Since such concerns are essentially due to the gigantic magnitude of radioactivity and ionizing radiations associated with nuclear energy, this article starts with a comprehensive account of effects of the ionizing radiation on living systems. Quantitative description of types of radiation exposure and their varied effects is given. The origin, type and magnitude of mutagenic effects of radiation are described. The concept of radiation risk factors, basis for their evaluation and their currently accepted values are presented. With this background, origin and magnitude of radioactivity and associated ionizing radiations in nuclear reactors are presented and the elaborate measures to contain them are described. It is recognized that notwithstanding all the measures taken in the nuclear industry, certain amount of radiation exposure, however small, is inevitable and the values, based on the experience world over, are presented. Estimated health risk due to such exposures is evaluated. For a comparative analysis, risks in other options of electricity generation such as hydel and fossil-fuelled plants are described. It is seen that on an overall basis, the nuclear option is no more risky than the other commonly employed options, and is in fact, significantly less. Lastly, since every option of electricity generation entails some risk, the case of 'no addition of electricity, and its impact on the society are considered. Based on the analysis of extensive data provided by UNDP on the human development parameters for different countries in the world, it is shown that at least for developing countries, any option of addition of electricity would be far more desirable than the

  12. Radiation effects on eye components

    Science.gov (United States)

    Durchschlag, H.; Fochler, C.; Abraham, K.; Kulawik, B.

    1999-08-01

    The most important water-soluble components of the vertebrate eye (lens proteins, aqueous humor, vitreous, hyaluronic acid, ascorbic acid) have been investigated in aqueous solution, after preceding X- or UV-irradiation. Spectroscopic, chromatographic, electrophoretic, hydrodynamic and analytic techniques have been applied, to monitor several radiation damages such as destruction of aromatic and sulfur-containing amino acids, aggregation, crosslinking, dissociation, fragmentation, and partial unfolding. Various substances were found which were able to protect eye components effectively against radiation, some of them being also of medical relevance.

  13. Radiation effects on the integrity of paper

    International Nuclear Information System (INIS)

    Otero D'Almeida, Maria Luiza; Medeiros Barbosa, Patricia de Souza; Boaratti, Marcelo Fernando Guerra; Borrely, Sueli Ivone

    2009-01-01

    Books and documents attacked by fungi and insects have already been treated by radiation for disinfestations purposes. However, there is still need to investigate the influence of radiation on the cellulose paper structure. The aim of this research was to study the effects of radiation on paper properties, especially those related to strength and appearance. Paper sheets for this study were prepared in the laboratory, using bleached eucalyptus pulp as raw material. No additives were used to concentrate the attention only on the effects of irradiation on the pure cellulose matrix. The samples were irradiated at IPEN's 60 Co Gammacell irradiator with six radiation doses, from 3 to 15 kGy at the dose rate 0.817 Gy/s. The properties of paper sheets were tested after irradiation and compared with unirradiated samples according to ISO methods. No significant changes were detected in paper samples irradiated up to 15 kGy.

  14. Biological effects of nuclear radiation

    International Nuclear Information System (INIS)

    Hotz, G.

    1975-01-01

    After a brief survey about the main radiobiological effects caused by ionizing radiation, human symptoms after irradiation and incorporation are shown. The special radiotoxic effect of radionuclides which are chemically associated with metabolism-specific elements such as calcium and potassium is shown and methods of treatment are indicated. (ORU) [de

  15. Review of radiation effects in solid-nuclear-waste forms

    International Nuclear Information System (INIS)

    Weber, W.J.

    1981-09-01

    Radiation effects on the stability of high-level nuclear waste (HLW) forms are an important consideration in the development of technology to immobilize high-level radioactive waste because such effects may significantly affect the containment of the radioactive waste. Since the required containment times are long (10 3 to 10 6 years), an understanding of the long-term cumulative effects of radiation damage on the waste forms is essential. Radiation damage of nuclear waste forms can result in changes in volume, leach rate, stored energy, structure/microstructure, and mechanical properties. Any one or combination of these changes might significantly affect the long-term stability of the nuclear waste forms. This report defines the general radiation damage problem in nuclear waste forms, describes the simulation techniques currently available for accelerated testing of nuclear waste forms, and reviews the available data on radiation effects in both glass and ceramic (primarily crystalline) waste forms. 76 references

  16. Effect of head-irradiation upon epidermal mitotic activity during wound healing in the adrenalectomized mice

    International Nuclear Information System (INIS)

    Kobayashi, Koshi

    1977-01-01

    Epidermal mitotic activity during wound healing was estimated both in the adrenalectomized, head-irradiated mice and in the adrenalectomized, non-irradiated mice, and was compared with those obtained previously from the unoperated, head-irradiated mice. It was found that head-irradiation caused a mitotic depression to a much smaller extent in the adrenalectomized mice than it did in the unoperated mice, though adrenalectomy itself had exerted a great inhibitory effect upon the mitosis induced by an injury. Whether this abscopal effect of head-irradiation upon the mitotic activity was mediated via the adrenals, and whether in the adrenalectomized mice the head-irradiation acted to increase epidermal response to injury, making the mitotic pattern of adrenalectomized mice to come near that of control mice were discussed. (auth.)

  17. Radiation effects on Brassica seeds and seedlings

    Science.gov (United States)

    Deoli, Naresh; Hasenstein, Karl H.

    2016-07-01

    Space radiation consists of high energy charged particles and affects biological systems, but because of its stochastic, non-directional nature is difficult to replicate on Earth. Radiation damages biological systems acutely at high doses or cumulatively at low doses through progressive changes in DNA organization. These damages lead to death or cause of mutations. While radiation biology typically focuses on mammalian or human systems, little is known as to how radiation affects plants. In addition, energetic ion beams are widely used to generate new mutants in plants considering their high-LET (Linear Energy Transfer) as compared to gamma rays and X-rays. Understanding the effect of ionizing radiation on plant provides a basis for studying effects of radiation on biological systems and will help mitigate (space) radiation damage in plants. We exposed dry and imbibed Brassica rapa seeds and seedling roots to proton beams of varying qualities and compared the theoretical penetration range of different energy levels with observable growth response. We used 1, 2 and 3 MeV protons in air at the varying fluences to investigate the effect of direct irradiation on the seeds (1012 - 1015 ions/cm2) and seedlings (1013 ions/cm2). The range of protons in the tissue was calculated using Monte-Carlo based SRIM (Stopping and Range of Ions in Matter) software. The simulation and biological results indicate that ions did not penetrate the tissue of dry or hydrated seeds at all used ion energies. Therefore the entire energy was transferred to the treated tissue. Irradiated seeds were germinated vertically under dim light and roots growth was observed for two days after imbibition. The LD50 of the germination was about 2×1014 ions/cm2 and about 5×1014 ions/cm2 for imbibed and dry seeds, respectively. Since seedlings are most sensitive to gravity, the change in gravitropic behavior is a convenient means to assess radiation damage on physiological responses other than direct tissue

  18. Genetic effects of ionizing radiation – some questions with no answers

    International Nuclear Information System (INIS)

    Mosse, Irma B.

    2012-01-01

    There are a lot of questions about genetic effects of ionizing radiation, the main one is does ionizing radiation induce mutations in humans? There is no direct evidence that exposure of parents to radiation leads to excess heritable disease in offspring. What is the difference between human and other species in which radiation induced mutations are easily registered? During evolution germ cell selection ex vivo has been changed to a selection in vivo and we cannot observe such selection of radiation damaged cells in human. Low radiation doses – are they harmful or beneficial? The “hormesis” phenomenon as well as radioadaptive response proves positive effects of low radiation dose. Can analysis of chromosomal aberration rate in lymphocytes be used for dosimetry? Many uncontrolled factors may be responsible for significant mistakes of this method. Why did evolution preserve the bystander effect? This paper is discussion one and its goal is to pay attention on some effects of ionizing radiation. - Highlights: ► There are a lot of questions about genetic effects of ionizing radiation. ► Does ionizing radiation induce mutations in human? ► During evolution germ cell selection ex vivo has been changed to a selection in vivo. ► Radioadaptive response proves positive effects of low radiation doses. ► Many uncontrolled factors may be responsible for significant biodosimetry mistakes.

  19. Manifestations and mechanisms of non-targeted effects of ionizing radiation

    International Nuclear Information System (INIS)

    Wright, Eric G.

    2010-01-01

    A well-established radiobiological paradigm is that the biological effects of ionizing radiation occur in irradiated cells as a consequence of the DNA damage they incur. However, many observations of, so-called, non-targeted effects indicate that genetic alterations are not restricted to directly irradiated cells. Non-targeted effects are responses exhibited by non-irradiated cells that are the descendants of irradiated cells (radiation-induced genomic instability) or by cells that have communicated with irradiated cells (radiation-induced bystander effects). Radiation-induced genomic instability is characterized by chromosomal abnormalities, gene mutations and cell death. Similar effects, as well as responses that may be regarded as protective, have been attributed to bystander mechanisms. The majority of studies to date have used in vitro systems but some non-targeted effects have been demonstrated in vivo and there is also evidence for radiation-induced instability in the mammalian germ line. However, there may be situations where radiation-induced genomic instability in vivo may not necessarily identify genomically unstable somatic cells but the manifestation of responses to ongoing production of damaging signals generated by genotype-dependent mechanisms having properties in common with inflammatory processes. Non-targeted mechanisms have significant implications for understanding mechanisms of radiation action but the current state of knowledge does not permit definitive statements about whether these phenomena have implications for assessing radiation risk.

  20. Legal aspects of recent studies on the health effects of radiation

    International Nuclear Information System (INIS)

    Persson, L.

    1992-01-01

    The risk of ionising radiation has recently been reviewed by three different high-level bodies. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) issued in 1988 a report to the General Assembly with the title ''Sources, Effects and Risks of Ionising Radiation''. A review of the biological effects of ionizing radiations has also been performed by the United States National Research Council's Committee BEIR V, published in 1989, with the title ''Health Effects of Exposure to Low Levels of Ionising Radiation''. The International Commission on Radiological Protection (ICRP) has in November 1990 adopted its new recommendations issued as ICRP Publication 60. One of the newer health hazards is non-ionizing radiation (NIR), exposure to which extends from occupational into the field of public health. There are also collaborate studies on the health risks of non-ionizing radiation performed by e.g. the World Health Organization (WHO) and the International Radiation Protection Association (IRPA). The most recent studies on the health effects of radiation are discussed in the paper. (author)

  1. Exploring gamma radiation effect on exoelectron emission properties of bone

    International Nuclear Information System (INIS)

    Zakaria, M.; Dekhtyar, Y.; Bogucharska, T.; Noskov, V.

    2006-01-01

    Gamma radiation is used for radiation therapy to treat carcinogenic diseases including bone cancer. Ionising radiation kills carcinogenic calls. However, there are side effects of the gamma radiation on the bone surface electron structure. One of the effects is in the form of altering electron density of states of bone that, with time, influences biomedical reactions on bone life condition. (authors)

  2. Exploring gamma radiation effect on exoelectron emission properties of bone

    Energy Technology Data Exchange (ETDEWEB)

    Zakaria, M.; Dekhtyar, Y.; Bogucharska, T.; Noskov, V. [Riga Technical Univ., Biomedical Engineering and Nanotechnology Institute (Latvia)

    2006-07-01

    Gamma radiation is used for radiation therapy to treat carcinogenic diseases including bone cancer. Ionising radiation kills carcinogenic calls. However, there are side effects of the gamma radiation on the bone surface electron structure. One of the effects is in the form of altering electron density of states of bone that, with time, influences biomedical reactions on bone life condition. (authors)

  3. Effects of ionizing radiation on bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Suhadi, F [National Atomic Energy Agency, Jakarta (Indonesia). Pasar Djumat Research Centre

    1976-10-01

    The differences of radiosensitivities among bacteria in addition to the dependence upon the species or strains also depends on the environmental condition during irradiation (temperature, medium, the presence of protective or sensitizing agents, the gas phase or atmosphere, and water activity, or degree of hydration) and on the effects of the environmental condition before and after irradiation treatment (temperature of incubation, age of culture and growth medium). In general, spores are more resistant to radiation than vegetatic bacteria, with the exception that a few cocci are the most radiation resistant bacteria (Micrococcus and Streptococcus). The application of ionizing radiation in the fields of microbiology supports the radiation sterilization of medical and pharmaceutical products. In addition, microbiological aspects of food preservation, especially radurization, radicidation, and immunization studies by using irradiated microorganisms, are also important.

  4. The effects on populations of exposure to low levels of ionizing radiation. Report of the Advisory Committee on the Biological Effects of Ionizing Radiations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1972-11-01

    In the summer of 1970, the Federal Radiation Council (whose activities have since been transferred to the Radiation Office of the EPA) asked the National Academy of Sciences for information relevant to an evaluation of present radiation protection guides. This report is in response to that request. It presents a summary and analysis, by members of the Advisory Committee on the Biological Effects of Ionizing Radiations and its subcommittees, of current knowledge relating to risks from exposure to ionizing radiation. In many respects, the report is a sequel to the reports of the Committee on the Biological Effects of Atomic Radiation, published by the NAS-NRC from 1956 to 1961.

  5. The effects on populations of exposure to low levels of ionizing radiation. Report of the Advisory Committee on the Biological Effects of Ionizing Radiations

    International Nuclear Information System (INIS)

    1972-11-01

    In the summer of 1970, the Federal Radiation Council (whose activities have since been transferred to the Radiation Office of the EPA) asked the National Academy of Sciences for information relevant to an evaluation of present radiation protection guides. This report is in response to that request. It presents a summary and analysis, by members of the Advisory Committee on the Biological Effects of Ionizing Radiations and its subcommittees, of current knowledge relating to risks from exposure to ionizing radiation. In many respects, the report is a sequel to the reports of the Committee on the Biological Effects of Atomic Radiation, published by the NAS-NRC from 1956 to 1961

  6. Genetic effects of radiation. Annex I

    International Nuclear Information System (INIS)

    1982-01-01

    This Annex is aimed at an updating of the 1977 UNSCEAR report, which presented a detailed review of the genetic effects of ionizing radiation, especially those parts that require significant revisions in the light of new data. There is an extensive bibliography with over 1000 references. Particular emphasis is given to those data that are relevant to the evaluation of genetic radiation hazards in man.

  7. Ultra violet radiation : effects on animals

    International Nuclear Information System (INIS)

    Stockdale, P.H.G.

    1993-01-01

    The paper deals with the evolutionary and historical events that have increased the susceptibility of certain genotypes of humanity and domestic animals to ultra violet radiation. Further it discusses the general effects of ultraviolet B (UVB) on vertebrates and then the clinical syndromes seen in such animals as a result of prolonged exposure to this form of radiation. Finally it gives anecdotal comments on evidence for changes in the immediately above types of disease and describes the need for a better recording system for these conditions so that these hypothetical changes could be effectively monitored. (author). 12 refs

  8. Late radiation effects: status and needs of epidemiologic research

    International Nuclear Information System (INIS)

    Miller, R.W.

    1974-01-01

    Epidemiologic studies of late radiation effects in man are reviewed, based on exposure to the atomic bomb, radiotherapy, diagnostic radiations, and occupational or accidental exposures. Areas studied include: genetic effects, fertility, immunology, cancer, congenital malformations, growth and development, aging, cataracts, psychiatric effects, interactions with drugs or viruses, host susceptibility, and radiation factors. Cancer areas discussed include leukemia; thyroid, lung, breast, bone, and liver cancers; lymphoma; salivary gland tumors; brain tumors; nonleukemia cancers; intrauterine exposures; and preconception irradiation and childhood cancers. (U.S.)

  9. The effect of turbulence-radiation interaction on radiative entropy generation and heat transfer

    International Nuclear Information System (INIS)

    Caldas, Miguel; Semiao, Viriato

    2007-01-01

    The analysis under the second law of thermodynamics is the gateway for optimisation in thermal equipments and systems. Through entropy minimisation techniques it is possible to increase the efficiency and overall performance of all kinds of thermal systems. Radiation, being the dominant mechanism of heat transfer in high-temperature systems, plays a determinant role in entropy generation within such equipments. Turbulence is also known to be a major player in the phenomenon of entropy generation. Therefore, turbulence-radiation interaction is expected to have a determinant effect on entropy generation. However, this is a subject that has not been dealt with so far, at least to the extent of the authors' knowledge. The present work attempts to fill that void, by studying the effect of turbulence-radiation interaction on entropy generation. All calculations are approached in such a way as to make them totally compatible with standard engineering methods for radiative heat transfer, namely the discrete ordinates method. It was found that turbulence-radiation interaction does not significantly change the spatial pattern of entropy generation, or heat transfer, but does change significantly their magnitude, in a way approximately proportional to the square of the intensity of turbulence

  10. Studies of Non-Targeted Effects of Ionising Radiation

    International Nuclear Information System (INIS)

    Oleg V Belyakov; Heli Mononen; Marjo Peraelae

    2006-01-01

    The discovery of ionising radiation induced non-targeted effects is important for understanding the dose-response mechanisms relevant to low dose irradiation in vivo. One important question is whether the non-targeted effects relates to a protective mechanism or whether, conversely, it amplifies the number of cells damaged by the isolated radiation tracks of low dose exposures leading to an increased risk of carcinogenesis. One theory supported by the experimental data obtained during this project is that the main functions of the non-targeted effects are to decrease the risk of transformation in a multicellular organism exposed to radiation. Differences in the gene expression profiles, temporal and spatial patterns of key proteins expressed in directly irradiated and bystander cells may determine how the cells ultimately respond to low doses of radiation. Such a mechanism of co-operative response would make the tissue system much more robust. (N.C.)

  11. Studies of Non-Targeted Effects of Ionising Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Oleg V Belyakov; Heli Mononen; Marjo Peraelae [STUK - Radiation and Nuclear Safety Authority, Helsinki (Finland)

    2006-07-01

    The discovery of ionising radiation induced non-targeted effects is important for understanding the dose-response mechanisms relevant to low dose irradiation in vivo. One important question is whether the non-targeted effects relates to a protective mechanism or whether, conversely, it amplifies the number of cells damaged by the isolated radiation tracks of low dose exposures leading to an increased risk of carcinogenesis. One theory supported by the experimental data obtained during this project is that the main functions of the non-targeted effects are to decrease the risk of transformation in a multicellular organism exposed to radiation. Differences in the gene expression profiles, temporal and spatial patterns of key proteins expressed in directly irradiated and bystander cells may determine how the cells ultimately respond to low doses of radiation. Such a mechanism of co-operative response would make the tissue system much more robust. (N.C.)

  12. Extension lectures: the effects of radiation from atomic bombing

    International Nuclear Information System (INIS)

    Okumura, Yutaka; Mine, Mariko

    1999-01-01

    About 56,000 A-bomb survivors are living in Nagasaki city even today. Nagasaki citizens, whether they are A-bomb survivors or not, can not live without concerns on the existence of radiation effects. They have fears of any amount of radiation and are afraid that it may harm their life. As results of studies in the university on radiation effects are not familiar to the citizens, we have started extension lectures on 'the effects of radiation from A-bombing' to them since 1990. We discuss the problems as well as significance of the extension lectures by reporting the details of the extension lectures which we have managed in the past. (author)

  13. Research into the biological effects of ionizing radiation somatic effects II: non-cancer

    International Nuclear Information System (INIS)

    Bond, V.P.

    1980-01-01

    Somatic effects of radiation can be considered in two categories: low and high level effects. In the low level exposure region (defined here arbitrarily as a single dose of the order of 10 rads or less, or higher doses at very low dose rates), the only somatic effects other than cancer known definitely at present to have health significance are those on fertiltiy and on the developing individual from conception to near birth. Knowledge of these effects is inadequate at present, and the bulk of this report will be devoted to discussing the types of additional investigations required. With respect to non-cancer somatic effects of radiation at intermediate to high doses and dose rates, enough is known to describe in general the course of early (over the first days to perhaps six weeks) effects, following different doses of external radiation. In particular, the non-cancer late effects of intermediate to high doses of internal and external radiation need better definition. The distinction between non-cancer and cancer-related somatic effects is blurred, at least at high dose levels

  14. Effects of radiation, burn and combined radiation-burn injury on hemodynamics

    International Nuclear Information System (INIS)

    Ye Benlan; Cheng Tianming; Xiao Jiasi

    1996-01-01

    Changes in hemodynamics after radiation, burn and combined radiation burn injury within eight hours post injury were studied. The results indicate: (1) Shock of rats in the combined injury group is more severe than that in the burn group. One of the reasons is that the blood volume in the combined injury group is less than that in the burn group. Radiation injury plays an important role in this effect, which enhances the increase in vascular permeability and causes the loss of plasma. (2) Decrease in cardiac output and stroke work and increase in vascular resistance in the combined radiation burn group are more drastic than those in the burn group, which may cause and enhance shock. Replenishing fluid is useful for recovery of hemodynamics. (3) Rb uptake is increased in the radiation group which indicates that compensated increase of myocardial nutritional blood flow may take place before the changes of hemodynamics and shock. Changes of Rb uptake in the combined injury group is different from that in the radiation groups and in the burn group. The results also suggest that changes of ion channel activities may occur to a different extent after injury. (4) Verapamil is helpful to the recovery of hemodynamics post injury. It is better to combine verapamil with replenishing fluid

  15. Aharonov-Bohm effect in cyclotron and synchrotron radiations

    Energy Technology Data Exchange (ETDEWEB)

    Bagrov, V.G.; Gitman, D.M. E-mail: gitman@fma.if.usp.br; Levin, A.; Tlyachev, V.B

    2001-07-02

    We study the impact of Aharonov-Bohm solenoid on the radiation of a charged particle moving in a constant uniform magnetic field. With this aim in view, exact solutions of Klein-Gordon and Dirac equations are found in the magnetic-solenoid field. Using such solutions, we calculate exactly all the characteristics of one-photon spontaneous radiation both for spinless and spinning particle. Considering non-relativistic and relativistic approximations, we analyze cyclotron and synchrotron radiations in detail. Radiation peculiarities caused by the presence of the solenoid may be considered as a manifestation of Aharonov-Bohm effect in the radiation. In particular, it is shown that new spectral lines appear in the radiation spectrum. Due to angular distribution peculiarities of the radiation intensity, these lines can in principle be isolated from basic cyclotron and synchrotron radiation spectra.

  16. Aharonov-Bohm effect in cyclotron and synchrotron radiations

    International Nuclear Information System (INIS)

    Bagrov, V.G.; Gitman, D.M.; Levin, A.; Tlyachev, V.B.

    2001-01-01

    We study the impact of Aharonov-Bohm solenoid on the radiation of a charged particle moving in a constant uniform magnetic field. With this aim in view, exact solutions of Klein-Gordon and Dirac equations are found in the magnetic-solenoid field. Using such solutions, we calculate exactly all the characteristics of one-photon spontaneous radiation both for spinless and spinning particle. Considering non-relativistic and relativistic approximations, we analyze cyclotron and synchrotron radiations in detail. Radiation peculiarities caused by the presence of the solenoid may be considered as a manifestation of Aharonov-Bohm effect in the radiation. In particular, it is shown that new spectral lines appear in the radiation spectrum. Due to angular distribution peculiarities of the radiation intensity, these lines can in principle be isolated from basic cyclotron and synchrotron radiation spectra

  17. The effects of radiation on electronic systems

    International Nuclear Information System (INIS)

    Messenger, G.C.; Ash, M.S.

    1986-01-01

    This book is the first unified treatment of the analysis and design methods for protection of principally electronic systems from the deleterious effects of nuclear and electro-magnetic radiation. Coverage spans from a detailed description of the nuclear radiation sources to pertinent semiconductor physics, then to hardness assurance. This work combines the disciplines of solid state physics, semiconductor physics, circuit engineering, nuclear physics, together with electronics and electromagnetic theory into a book that can be used as a text with problems at the end of the majority of the chapters. Written by veterans in the field, the most significant feature of this book is its comprehensive treatment of the phenomena involved. This treatment includes the analysis and design of the effect of nuclear radiation on electronic systems from the experimental, theoretical, and engineering viewpoints. Unique pedagogical attempts are employed to make the material more understandable from the position of an enlightened engineering and scientific readership whose task is the design and analysis of radiation hardened electronic systems

  18. Effects of gamma radiation in annatto seeds

    Energy Technology Data Exchange (ETDEWEB)

    Franco, Camilo F. de Oliveira, E-mail: camilo.urucum@hotmail.com [Empresa Brasileira de Pesquisa Agropecuaria (EMBRAPA/EMEPA), Joao Pessoa, PB (Brazil); Arthur, Valter; Arthur, Paula B., E-mail: arthur@cena.usp.br [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil); Harder, Marcia N.C., E-mail: marcia.harder@fatec.sp.gov.br [Centro Paula Souza, Curso Superior de Tecnologia em Bicombustiveis (FATEC), Piracicaba, SP (Brazil); Filho, Jose C.; Neto, Miguel B., E-mail: jorgecazefilho@yahoo.com.br [Empresa Estadual de Pesquisa Agropecuaria da Paraiba (EMEPA), Joao Pessoa, PB (Brazil)

    2015-07-01

    The annatto bixin has emerged as a major source of natural dyes used in the world notably by the substitution of synthetics harmful to human health and ecologic tendency in obtaining industrial products free of additives with applications in industries textiles; cosmetics; pharmaceutical and food mainly. The aim of this research was to obtain increased of germination rate and dormancy breaking on annatto seeds by gamma radiation. Annatto dry seeds were exposed to low doses of gamma radiation from source of Cobalt-60, type Gammecell-220, at 0.456 kGy/hour dose rate. In order to study stimulation effects of radiation on germination rate and dormancy breaking in the seeds. Five treatments with gamma radiation doses were applied as follows: 0 (control); 100; 125; 150 and 175 Gy. After irradiation the annatto seeds were planted as for usual seed production. According to the results obtained in this experiment we can conclude that the low doses of gamma radiation utilized on the annatto seeds did not presented significantly effect on the germination of plants. But the best dose to increase the germination of seeds was 150 Gy. (author)

  19. Effects of gamma radiation in annatto seeds

    International Nuclear Information System (INIS)

    Franco, Camilo F. de Oliveira; Arthur, Valter; Arthur, Paula B.; Harder, Marcia N.C.; Filho, Jose C.; Neto, Miguel B.

    2015-01-01

    The annatto bixin has emerged as a major source of natural dyes used in the world notably by the substitution of synthetics harmful to human health and ecologic tendency in obtaining industrial products free of additives with applications in industries textiles; cosmetics; pharmaceutical and food mainly. The aim of this research was to obtain increased of germination rate and dormancy breaking on annatto seeds by gamma radiation. Annatto dry seeds were exposed to low doses of gamma radiation from source of Cobalt-60, type Gammecell-220, at 0.456 kGy/hour dose rate. In order to study stimulation effects of radiation on germination rate and dormancy breaking in the seeds. Five treatments with gamma radiation doses were applied as follows: 0 (control); 100; 125; 150 and 175 Gy. After irradiation the annatto seeds were planted as for usual seed production. According to the results obtained in this experiment we can conclude that the low doses of gamma radiation utilized on the annatto seeds did not presented significantly effect on the germination of plants. But the best dose to increase the germination of seeds was 150 Gy. (author)

  20. Delayed effects of radiation on enzymes in erythrocytes

    International Nuclear Information System (INIS)

    Li Jinying; Zhang Weiping; Liu Benti

    1998-01-01

    Objective: To study the delayed effects of radiation on the enzymes in erythrocytes. Methods: The activity of 8 enzymes, related glycolysis, hexose monophosphate shunt, nucleotide metabolism, redox reaction and esterase in erythrocytes of five patients with bone marrow form of acute radiation sickness (ARS) were assayed at 1,2,3 and 6 years after exposure to 60 Co radiation. Results: The decreased activities of glucose-6-phosphate dehydrogenase (G6PD), pyruvate kinase (PK), NADH-methemoglobin reductase (MR) during the stage of crisis and of acetylcholinesterase (ACE) during the stage of convalescence were recovered to varying extent, whereas the lowered activities of the first three enzymes in some cases remained unchanged. There was no correlation between the enzyme activity and the radiation dose as well as the age of the patients. Conclusion: It is demonstrated that the delayed effects of radiation damage to erythrocyte enzymes are most significant in PK of glycolysis, G6PD of hexose monophosphate shunt and MR of redox reaction. It is suggested that the genes related to the synthesis of erythrocyte enzymes may be damaged by radiation

  1. Model for radiation damage in cells by direct effect and by indirect effect: a radiation chemistry approach

    International Nuclear Information System (INIS)

    Michaels, H.B.; Hunt, J.W.

    1978-01-01

    A model is presented to describe the contributions of direct and indirect effects to the radiation damage of cells. The model is derived using principles of radiation chemistry and of pulse radiolysis in particular. From data available in the literature, parameters for cellular composition and values of rate constants for indirect action have been used in preliminary applications of the model. The results obtained in calculations of the protective effect of .OH and .H scavengers are consistent with experimental data. Possible modifications and improvements to the model are suggested, along with proposed future applications of the model in radiobiological studies

  2. Bystander effects and biota: implications of radiation-induced bystander effects for protection of the environment from ionising radiation

    International Nuclear Information System (INIS)

    Mothersill, C.E.; Seymour, C.B.

    2003-01-01

    Bystander effects are now known to be induced by both high and low LET in a variety of cells in culture. They have been proven to occur in vivo in mice following 0.5Gy total body irradiation and in blood from humans being treated for cancer by radiotherapy. Effects have also been detected in fish, crustacea and molluscs. The important questions now are not whether bystander effects occur but why and what implications they have, if any, for radiation protection. Different species and different genetic backgrounds within a species produce different types of bystander effect, different organs also produce different effects. This paper will review the data in this field and will discuss likely implications for protection of man and non-human biota. In particular it will look at the potential long-term outcomes for different organisational levels, from cell to ecosystem, of bystander mechanisms. In view of new concerns about the effects of low level radiation on non-human biota, emphasis will be placed on considering how bystander effects might operate at chronic low doses versus acute accidental low doses. Problems of radiation interaction with chemicals, whether chemicals can also induce 'bystander effects' , and how regulators might handle these situations which occur all the time in real environments, will be presented for discussion. Finally the paper will discuss likely implications of these mechanisms for evolutionary biology

  3. Radiation effects on structural materials

    International Nuclear Information System (INIS)

    Ghoniem, N.M.

    1991-01-01

    This report discusses the following topics on the effect radiation has on thermonuclear reactor materials: Atomic Displacements; Microstructure Evolution; Materials Engineering, Mechanics, and Design; Research on Low-Activation Steels; and Research Motivated by Grant Support

  4. Radiation effects on organic materials in nuclear plants. Final report

    International Nuclear Information System (INIS)

    Bruce, M.B.; Davis, M.V.

    1981-11-01

    A literature search was conducted to identify information useful in determining the lowest level at which radiation causes damage to nuclear plant equipment. Information was sought concerning synergistic effects of radiation and other environmental stresses. Organic polymers are often identified as the weak elements in equipment. Data on radiation effects are summarized for 50 generic name plastics and 16 elastomers. Coatings, lubricants, and adhesives are treated as separate groups. Inorganics and metallics are considered briefly. With a few noted exceptions, these are more radiation resistant than organic materials. Some semiconductor devices and electronic assemblies are extremely sensitive to radiation. Any damage threshold including these would be too low to be of practical value. With that exception, equipment exposed to less than 10 4 rads should not be significantly affected. Equipment containing no Teflon should not be significantly affected by 10 5 rads. Data concerning synergistic effects and radiation sensitization are discussed. The authors suggest correlations between the two effects

  5. Low-level radiation effects on immune cells

    International Nuclear Information System (INIS)

    Makinodan, T.

    1995-01-01

    The purpose of this study was to characterize the effects of chronic low-dose ionizing radiation (LDR) on murine immune cells. Previously, it had been reported that LDR enhances the proliferative activity of T cells in vitro and delays the growth of transplantable immunogenic tumors in vivo. This suggests that LDR eliminates immune suppressor cells, which downregulates immune response and/or adoptively upregulates the responsiveness of immune effector cells. It had also been reported that human lymphocytes become refractive to high dose radiation-induced chromosomal aberrations by pretreating mitotically active lymphocytes in vitro with very low doses of ionizing radiation, and the adaptive effect can be abrogated by cycloheximide. This suggests that protein synthesis is required for lymphocytes to respond adoptively to LDR

  6. The effects of cosmic radiation on implantable medical devices

    International Nuclear Information System (INIS)

    Bradley, P.

    1996-01-01

    Metal oxide semiconductor (MOS) integrated circuits, with the benefits of low power consumption, represent the state of the art technology for implantable medical devices. Three significant sources of radiation are classified as having the ability to damage or alter the behavior of implantable electronics; Secondary neutron cosmic radiation, alpha particle radiation from the device packaging and therapeutic doses(up to 70 Gγ) of high energy radiation used in radiation oncology. The effects of alpha particle radiation from the packaging may be eliminated by the use of polyimide or silicone rubber die coatings. The relatively low incidence of therapeutic radiation incident on an implantable device and the use of die coating leaves cosmic radiation induced secondary neutron single event upset (SEU) as the main pervasive ionising radiation threat to the reliability of implantable devices. A theoretical model which predicts the susceptibility of a RAM cell to secondary neutron cosmic radiation induced SEU is presented. The model correlates well within the statistical uncertainty associated with both the theoretical and field estimate. The predicted Soft Error Rate (SER) is 4.8 x l0 -12 upsets/(bit hr) compared to an observed upset rate of 8.5 x 10 -12 upsets/(bit hr) from 20 upsets collected over a total of 284672 device days. The predicted upset rate may increase by up to 20% when consideration is given to patients flying in aircraft The upset rate is also consistent with the expected geographical variations of the secondary cosmic ray neutron flux, although insufficient upsets precluded a statistically significant test. This is the first clinical data set obtained indicating the effects of cosmic radiation on implantable devices. Importantly, it may be used to predict the susceptibility of future to the implantable device designs to the effects of cosmic radiation

  7. Radiation protection and antitumor effects in Hatakeshimeji (Lyophyllum decastes sing)

    International Nuclear Information System (INIS)

    Ukawa, Yuuichi; Gu, Yeunhwa; Suzuki, Ikukatsu; Park, Sangrae; Hasegawa, Takeo; Tsukada, Sekihito; Terai, Kaoru; Tawaraya, Hitoshi

    2002-01-01

    The effect on an anti-tumor is admitted in the lyophyllum decastes sing extraction thing, and it has the action mechanism cleared to depend on the immunity action. The existence of the synergistic effect in effect on an anti-tumor radiation irradiation, an individual with the medication of lyophyllum decastes sing and effect on combination and the effect on protection of the leukocyte decrease by the radiation was examined by this research. After about 2x10 6 inoculated sarcoma 180 on the ICR mice, a lyophyllum decastes sing extraction thing gave 100mg/kg for 2 weeks in endoceliac at the every other day. After that, the radiation irradiation of 2 Gy was done three times, and it went to the sutra time target the number of the leukocytes, the lymph node ball some prizes of measurement. And, weight and tumor size were measured after the cancer cell inoculation two weeks. The decrease of the clear tumor size was recognized by the group that only a cancer cell was inoculated by the radiation independent irradiation group, lyophyllum decastes sing and the radiation combination group though tumor size increased as it passed. It faced by the group that only a cancer cell was inoculated after the irradiation 15 days though it died the precedent, and a half existed by lyophyllum decastes sing and the radiation combination group. And, the numbers of the leukocytes, the number of the lymphocyte were on the increase regardless of the existence of the radiation irradiation by the medication of lyophyllum decastes sing. It thinks with the thing that the effect is shown for the effect on immunity recovery in the radiotherapy and the prevention of a side effect of the radiation from this result. Showing the effect for not only effect on prevention of the cancer and effect on healing but also the effect on immunity recovery in the radiotherapy, the prevention of a side effect by taking lyophyllum decastes sing is considered

  8. Biological effects of high LET radiations

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Masami [Nagasaki Univ. (Japan). Faculty of Pharmaceutical Sciences

    1997-03-01

    Biological effect of radiation is different by a kind of it greatly. Heavy ions were generally more effective in cell inactivation, chromosome aberration induction, mutation induction and neoplastic cell transformation induction than {gamma}-rays in SHE cells. (author)

  9. Radiation Effects in Carbon Nanoelectronics

    Directory of Open Access Journals (Sweden)

    Cory D. Cress

    2012-07-01

    Full Text Available We experimentally investigate the effects of Co-60 irradiation on the electrical properties of single-walled carbon nanotube and graphene field-effect transistors. We observe significant differences in the radiation response of devices depending on their irradiation environment, and confirm that, under controlled conditions, standard dielectric hardening approaches are applicable to carbon nanoelectronics devices.

  10. Epigenetic Analysis of Heavy-ion Radiation Induced Bystander Effects in Mice

    Science.gov (United States)

    Zhang, Meng; Sun, Yeqing; Cui, Changna; Xue, Bei

    Abstract: Radiation-induced bystander effect was defined as the induction of damage in neighboring non-hit cells by signals released from directly-irradiated cells. Recently, low dose of high LET radiation induced bystander effects in vivo have been reported more and more. It has been indicated that radiation induced bystander effect was localized not only in bystander tissues but also in distant organs. Genomic, epigenetic and proteomics plays significant roles in regulating heavy-ion radiation stress responses in mice. To identify the molecular mechanism that underlies bystander effects of heavy-ion radiation, the male Balb/c and C57BL mice were exposed head-only to 40, 200, 2000mGy dose of (12) C heavy-ion radiation, while the rest of the animal body was shielded. Directly radiation organ ear and the distant organ liver were detected on 1h, 6h, 12h and 24h after radiation, respectively. Methylation-sensitive amplification polymorphism (MSAP) was used to monitor the level of polymorphic genomic DNA methylation changed with dose and time effects. The results show that heavy-ion irradiated mouse head could induce genomic DNA methylation changes significantly in both the directly radiation organ ear and the distant organ liver. The percent of DNA methylation changes were time-dependent and tissue-specific. Demethylation polymorphism rate was highest separately at 1 h in 200 mGy and 6 h in 2000 mGy after irradiation. The global DNA methylation changes tended to occur in the CG sites. The results illustrated that genomic methylation changes of heavy ion radiation-induced bystander effect in liver could be obvious 1 h after radiation and achieved the maximum at 6 h, while the changes could recover gradually at 12 h. The results suggest that mice head exposed to heavy-ion radiation can induce damage and methylation pattern changed in both directly radiation organ ear and distant organ liver. Moreover, our findings are important to understand the molecular mechanism of

  11. Long term effects of radiation in man

    International Nuclear Information System (INIS)

    Tso Chih Ping; Idris Besar

    1984-01-01

    An overview of the long term effects of radiation in man is presented, categorizing into somatic effects, genetic effects and teratogenic effects, and including an indication of the problems that arise in their determination. (author)

  12. Ionizing radiation: levels and effects. Volume I. Levels

    International Nuclear Information System (INIS)

    1972-01-01

    This is the sixth substantive report of the United Nations Scientific Committee on the Effects of Atomic Radiation to the General Assembly. It reviews the levels of radiation received from all sources to which man is exposed and, among the effects of ionizing radiation, it considers the genetic effects, the effects on the immune response and the induction of malignancies in animals and man. These are not the only effects of ionizing radiation. The acute consequences of massive amounts of radiation that may be received accidentally or during nuclear warfare are not reviewed here (the short discussion of this subject in the 1962 report is still largely valid, at least as an introduction), nor are the effects on the nervous system and the induction of chromosome anomalies in somatic cells, which were both considered by the Committee in its 1969 report. Unlike previous reports of the Committee, the present report is submitted to the General Assembly without the technical annexes in which the evidence considered by the Committee is discussed in detail and in which the bases for the Committee's conclusions, which are stated in the report, are fully documented. However, the annexes are being made available at the same time as the report in a separate publication, issued in two volumes and the Committee wishes to draw the attention of the General Assembly to the fact that the separation of the report from the annexes is for convenience only and that major importance attaches to the scientific evidence given in the annexes.

  13. Additive effects in radiation grafting and curing

    International Nuclear Information System (INIS)

    Viengkhou, V.; Ng, L.

    1996-01-01

    Full text: Detailed studies on the accelerative effect of novel additives in radiation grafting and curing using acrylated monomer/oligomer systems have been performed in the presence of ionising radiation and UV as sources. Methyl methacrylate (MMA) is used as typical monomer for these grafting studies in the presence of the additives with model backbone polymers, cellulose and propropylene. Additives which have been found to accelerate these grafting processes are: mineral acid, occlusion compounds like urea, thermal initiators and photoinitiators as well as multifunctional monomers such as multifunctional acrylates. The results from irradiation with gamma rays have also been compared with irradiation from a 90W UV lamp. The role of the above additives in accelerating the analogous process of radiation curing has been investigated. Acrylated urethanes, epoxies and polyesters are used as oligomers together with acrylated monomers in this work with uv lamps of 300 watts/inch as radiation source. In the UV curing process bonding between film and substrate is usually due to physical forces. In the present work the presence of additives are shown to influence the occurrence of concurrent grafting during cure thus affecting the nature of the bonding of the cured film. The conditions under which concurrent grafting with UV can occur will be examined. A mechanism for accelerative effect of these additives in both grafting and curing processes has been proposed involving radiation effects and partitioning phenomena

  14. Radiation effects in LDD MOS devices

    International Nuclear Information System (INIS)

    Woodruff, R.L.; Adams, J.R.

    1987-01-01

    The purpose of this work is to investigate the response of lightly doped drain (LDD) n-channel transistors to ionizing radiation. Transistors were fabricated with conventional (non-LDD) and lightly doped drain (LDD) structures using both standard (non-hardened) and radiation hardened gate oxides. Characterization of the transistors began with a correlation of the total-dose effects due to 10 keV x-rays with Co-60 gamma rays. The authors find that for the gate oxides and transistor structures investigated in this work, 10 keV x-rays produce more fixed-charge guild-up in the gate oxide, and more interface charge than do Co-60 gamma rays. They determined that the radiation response of LDD transistors is similar to that of conventional (non-LDD) transistors. In addition, both standard and radiation-hardened transistors subjected to hot carrier stress before irradiation show a similar radiation response. After exposure to 1.0 x 10 6 rads(Si), non-hardened transistors show increased susceptibility to hot-carrier graduation, while the radiation-hardened transistors exhibit similar hot-carrier degradation to non-irradiated devices. The authors have demonstrated a fully-integrated radiation hardened process tht is solid to 1.0 x 10 6 rads(Si), and shows promise for achieving 1.0 x 10 7 rad(Si) total-dose capability

  15. Neurophysiological appropriateness of ionizing radiation effects

    International Nuclear Information System (INIS)

    Nyagu, A.I.; Loganovsky, K.N.

    1997-01-01

    The goal of this study was to compare bioelectrical activity of the brain in remote period of acute radiation sickness (ARS), chronic and prenatal irradiation as a result of the Chernobyl disaster. Registration of computerized 19-channel EEG, visual and somato-sensory evoked potentials have been carried out for 70 patients who had a verified ARS, 100 Chernobyl disaster survivors, who have been working in the Chernobyl exclusion zone since 1986-87 during 5 and more years, 50 prenatally irradiated children, and relevant controls. The relative risks of neurophysiological abnormalities are 4.5 for the ARS-patients, 3.6 for the chronically irradiated persons and 3.7 for the prenatally irradiated children. The data obtained testify to possibility of radiation-induced neurophysiological abnormalities in examined Chernobyl accident survivors which seems to be non-stochastic effects of ionizing radiation. For all examined irradiated patients it was typically an increasing of δ- and β- powers of EEG, particularly, in the frontal lobe shifted to the left fronto-temporal region, but spectral power of both θ- and α-range was significantly depressed. Aforesaid signs together with data of evoked potentials reflect the structural and functional abnormalities of limbic system and the left hemisphere as the first revealed neurophysiological appropriateness of ionizing radiation effects. (author)

  16. Neurophysiological appropriateness of ionizing radiation effects

    Energy Technology Data Exchange (ETDEWEB)

    Nyagu, A I; Loganovsky, K N [Department of Neurology, Inst. of Clinical Radiology, Scientific Centre for Radiation Medicine of Academy of Medical Sciences of Ukraine, Kiev (Ukraine)

    1997-11-01

    The goal of this study was to compare bioelectrical activity of the brain in remote period of acute radiation sickness (ARS), chronic and prenatal irradiation as a result of the Chernobyl disaster. Registration of computerized 19-channel EEG, visual and somato-sensory evoked potentials have been carried out for 70 patients who had a verified ARS, 100 Chernobyl disaster survivors, who have been working in the Chernobyl exclusion zone since 1986-87 during 5 and more years, 50 prenatally irradiated children, and relevant controls. The relative risks of neurophysiological abnormalities are 4.5 for the ARS-patients, 3.6 for the chronically irradiated persons and 3.7 for the prenatally irradiated children. The data obtained testify to possibility of radiation-induced neurophysiological abnormalities in examined Chernobyl accident survivors which seems to be non-stochastic effects of ionizing radiation. For all examined irradiated patients it was typically an increasing of {delta}- and {beta}- powers of EEG, particularly, in the frontal lobe shifted to the left fronto-temporal region, but spectral power of both {theta}- and {alpha}-range was significantly depressed. Aforesaid signs together with data of evoked potentials reflect the structural and functional abnormalities of limbic system and the left hemisphere as the first revealed neurophysiological appropriateness of ionizing radiation effects. (author). 25 refs.

  17. Effects of gamma radiation on freeze-dried wheat seeds

    International Nuclear Information System (INIS)

    Ajayi, N.O.; Larsson, B.

    1975-07-01

    The effect of radiation on freeze-dried wheat seeds are reported. The response of the various parts of the seedling to radiation was found to differ from one another. There was no significant modification of the effect of radiation on the shoot and root growth, while the growth of the coleoptile was slightly reduced in the frezze-dried seeds. The change in the shoot growth-absorbed dose relationship reported by others to occur at high doses for oven-dried as compared to air-dried barley seeds was not seen for the control and freeze-dried wheat seeds. The freeze-dried seeds are believed to show only the effect of radiation without any modification due to drying as such. The dose-effect relationships may be splited into functions characterised by different radiosensitivity. The high sensitivty effect is mainly taking place within the first 40 krad of energy absorption, and the low sensitivity is dominating at higher doses. (author)

  18. Non-cancer effects of exposure to A-bomb radiation

    International Nuclear Information System (INIS)

    Stewart, A.M.; Kneale, G.W.

    1984-01-01

    A slight rearrangement of the data included in a recent report from the Radiation Effects Research Foundation (RERF) has shown differences between cardiovascular and other non-malignant diseases of A-bomb survivors which probably result from two factors: selection effects of early infection deaths and residual effects of marrow damage. Both effects were dose related but neither was obvious because one reduced the risk of later infection deaths and the other increased the risk. Allowance for these factors is bound to alter present RERF estimates for cancer effects of radiation and the change will probably be in an upward direction, thus bringing these estimates closer to ones based on radiation workers. (author)

  19. Effects of ionizing radiation on aquatic organisms and ecosystems

    International Nuclear Information System (INIS)

    1976-01-01

    A panel of experts in November 1971 specifically considered the effects of ionizing radiation on aquatic organisms and ecosystems and formulated detailed suggestions for research in the area. A further panel meeting took place in April 1974. The results of the work are presented in this report which is divided into 3 chapters in the first chapter the concentrations of natural and artificial radionuclides in aquatic environments and the radiation dose rates received by aquatic organisms are discussed. In particular, simple dosimetry models for phytoplankton, zooplankton, mollusca, crustacea and fish are presented which permit the estimation of the dose rates from incorporated radionuclides and from radionuclides in the external environment. In the second chapter the somatic and genetic effects of ionizing radiation on aquatic organisms are reviewed. Somatic effects are discussed separately as effects due to short-term (acute) exposure to near-lethal doses of radiation. Great attention is paid to the effects due to long-term (chronic) exposure at lower doses rates. Consideration is given to behaviour, repair mechanisms and metabolic stimulation after exposure, and also the influence of environmental factors on radiation effects. In the third chapter the potential effects of low-level irradiation on aquatic populations are considered. First, the possible consequences of somatic effects on egg and larval mortality, stock-recruitment, fecundity and ecosystem stability are discussed. Subsequently, the assessment of genetic effects as they relate to population genetics and increased mutation rates are considered

  20. Fast Neutron Radiation Effects on Bacillus Subtili

    International Nuclear Information System (INIS)

    Chen Xiaoming; Zhang Jianguo; Chu Shijin; Ren Zhenglong; Zheng Chun; Yang Chengde; Tan Bisheng

    2009-01-01

    To examine the sterilizing effect and mechanism of neutron radiation, Bacillus subtilis var. niger. strain (ATCC 9372) spores were irradiated with the fast neutron from the Chinese fast burst reactor II(CFBR-II). The plate-count results indicated that the D 10 value was 384.6 Gy with a neutron radiation dose rate of 7.4 Gy/min. The rudimental catalase activity of the spores declined obviously with the increase in the radiation dose. Meanwhile, under the scanning electron microscope, no visible influence of the neutron radiation on the spore configuration was detected even if the dose was increased to 4 kGy. The content and distribution of DNA double-strand breaks induced by neutron radiation at different doses were measured and quantified by pulsed-field gel electrophoresis (PFGE). Further analysis of the DNA release percentage (PR), the DNA breakage level (L), and the average molecular weight, indicated that DNA fragments were obviously distributed around the 5 kb regions at different radiation doses, which suggests that some points in the DNA molecule were sensitive to neutron radiation. Both PR and L varied regularly to some extent with the increase in radiation dose. Thus neutron radiation has a high sterilization power, and can induce falling enzyme activity and DNA breakage in Bacillus subtilis spores

  1. Effects of glucocorticoid hormones on radiation induced and 12-O-tetradecanoylphorbol-13-acetate enhanced radiation transformation in vitro

    International Nuclear Information System (INIS)

    Kennedy, A.R.; Umans, R.S.

    1988-01-01

    We have studied the interactions of glucocorticoid hormones with radiation in the induction of transformation in vitro in C3AH10T1/2 cells. We have observed that cortisone has its primary enhancing effect on radiation transformation when present after the radiation exposure during the ''expression period'', or the time after carcinogen exposure during which promoting agents have been shown to enhance radiation transformation in vitro, and that two different glucocorticoid hormones, dexamethasone and cortisone, have a suppressive effect on the 12-O-tetradecanoylphorbol-13-acetate (TPA) enhancement of radiation transformation in vitro

  2. Radiation effects in IRAS extrinsic infrared detectors

    Science.gov (United States)

    Varnell, L.; Langford, D. E.

    1982-01-01

    During the calibration and testing of the Infrared Astronomy Satellite (IRAS) focal plane, it was observed that the extrinsic photoconductor detectors were affected by gamma radiation at dose levels of the order of one rad. Since the flight environment will subject the focal plane to dose levels of this order from protons in single pass through the South Atlantic Anomaly, an extensive program of radiation tests was carried out to measure the radiation effects and to devise a method to counteract these effects. The effects observed after irradiation are increased responsivity, noise, and rate of spiking of the detectors after gamma-ray doses of less than 0.1 rad. The detectors can be returned almost to pre-irradiation performance by increasing the detector bias to breakdown and allowing a large current to flow for several minutes. No adverse effects on the detectors have been observed from this bias boost, and this technique will be used for IRAS with frequent calibration to ensure the accuracy of observations made with the instrument.

  3. Radiation and radiation effects; Strahlung und Strahlenwirkung

    Energy Technology Data Exchange (ETDEWEB)

    Neumaier, S. [Physikalisch-Technische Bundesanstalt, Berlin (Germany). Arbeitsgruppe Strahlenschutz; Janssen, H. [Physikalisch-Technische Bundesanstalt, Berlin (Germany). Abt. Ionisierende Strahlung

    2006-12-15

    The average dose incurred by the German population is about 4 millisievert p.a., about half of which results from natural radiation sources. The second half is caused nearly completely by medical applications. Only a very small fraction of the annual dose results from technical applications. This special issue of PTB focuses on the measuring problems relating to natural radiation sources and technical applications of ionizing radiation. The current contribution also outlines some important aspects of radiation exposure from medical applications. (orig.)

  4. Direct and indirect effects of ionizing radiation on grazer–phytoplankton interactions

    International Nuclear Information System (INIS)

    Nascimento, Francisco J.A.; Bradshaw, Clare

    2016-01-01

    Risk assessment of exposure to radionuclides and radiation does not usually take into account the role of species interactions. We investigated how the transfer of carbon between a primary producer, Raphidocelis subcapitata, and a consumer, Daphnia magna, was affected by acute exposure to gamma radiation. In addition to unexposed controls, different treatments were used where: a) only D. magna (Z treatment); b) only R. subcapitata (P treatment) and c) both D. magna and R. subcapitata (ZP treatment) were exposed to one of three acute doses of gamma radiation (5, 50 and 100 Gy). We then compared differences among treatments for three endpoints: incorporation of carbon by D. magna, D. magna growth and R. subcapitata densities. Carbon incorporation was affected by which combination of species was irradiated and by the radiation dose. Densities of R. subcapitata at the end of the experiment were also affected by which species had been exposed to radiation. Carbon incorporation by D. magna was significantly lower in the Z treatment, indicating reduced grazing, an effect stronger with higher radiation doses, possibly due to direct effects of gamma radiation. Top-down indirect effects of this reduced grazing were also seen as R. subcapitata densities increased in the Z treatment due to decreased herbivory. The opposite pattern was observed in the P treatment where only R. subcapitata was exposed to gamma radiation, while the ZP treatment showed intermediate results for both endpoints. In the P treatments, carbon incorporation by D. magna was significantly higher than in the other treatments, suggesting a higher grazing pressure. This, together with direct effects of gamma radiation on R. subcapitata, probably significantly decreased phytoplankton densities in the P treatment. Our results highlight the importance of taking into account the role of species interactions when assessing the effects of exposure to gamma radiation in aquatic ecosystems. - Highlights: • Direct

  5. Assessment of the biological effects of 'strange' radiation

    International Nuclear Information System (INIS)

    Pryakhin, E.A.; Tryapitsina, G.A.; Urutskoyev, L.I.; Akleyev, A.V.

    2006-01-01

    The results from studies of the effects produced by electrical explosions of foils made from super pure materials in water point to the emergence of new chemical elements. An additional finding was the discharge of 'strange' radiation accompanying the transformation of chemical elements. However, currently, the mechanism involved in the interaction between 'strange' radiation and a substance or a biological entity remains obscure. Therefore, the aim of the present research is to investigate the biological effects of the 'strange' radiation. Pilot studies were performed at the RECOM RRC 'Kurchatov Institute' in April-May of 2004. The animals used in the experiment were female mice of C57Bl/6 line aged 80 days with body weight 16-18 g. The animals were exposed to radiation discharged during explosions of Ti foils in water and aqueous solutions. The cages with animals were placed at 1 m from the epicenter of the explosion. Explosions were carried out on the 19. (3 explosions), 20. (4 explosions) and 22. (3 explosions) of April, 2004 (explosions No1373 - No1382, respectively). The animals were assigned to 4 experimental groups comprised of 17-20 mice per group. The animals received experimental exposure within 1, 2 and 3 days of the experiment. In total, the experimental groups were exposed to 3, 7 and 10 explosions, respectively. In order to identify the biological reactions, the following parameters were estimated: number of nucleated cells in the bone marrow, number of CFU in the spleen after additional gamma-irradiation (6 Gy), cell composition of the bone marrow, the rate of erythrocytes with the different level of maturation in the bone marrow, the rate of erythrocytes with the micronuclei in the bone marrow, the reaction of bone marrow cells to additional gamma-irradiation (2 Gy), number of leucocytes in the peripheral blood, and cell composition of the peripheral blood. The following conclusions were drawn from these studies: 1. 'strange' radiation resulting

  6. Microwave radiation - Biological effects and exposure standards

    Energy Technology Data Exchange (ETDEWEB)

    Lindsay, I.R.

    1980-06-01

    The thermal and nonthermal effects of exposure to microwave radiation are discussed and current standards for microwave exposure are examined in light of the proposed use of microwave power transmission from solar power satellites. Effects considered include cataractogenesis at levels above 100 mW/sq cm, and possible reversible disturbances such as headaches, sleeplessness, irritability, fatigue, memory loss, cardiovascular changes and circadian rhythm disturbances at levels less than 10 mW/sq cm. It is pointed out that while the United States and western Europe have adopted exposure standards of 10 mW/sq cm, those adopted in other countries are up to three orders of magnitude more restrictive, as they are based on different principles applied in determining safe limits. Various aspects of the biological effects of microwave transmissions from space are considered in the areas of the protection of personnel working in the vicinity of the rectenna, interactions of the transmitted radiation with cardiac pacemakers, and effects on birds. It is concluded that thresholds for biological effects from short-term microwave radiation are well above the maximal power density of 1 mW/sq cm projected at or beyond the area of exclusion of a rectenna.

  7. Method of neutralising the effects of electromagnetic radiation in a radiation detector and a radiation detector applying the procedure

    International Nuclear Information System (INIS)

    Gripentog, W.G.

    1972-01-01

    Circuitry is described by means of which radiation detectors of the Neher-White type, employing ionisation chambers can be unaffected by electromagnetic radiation which would otherwise cause inductive effects leading to erroneous signals. It is therefore unnecessary to use shielded cables for these instruments. (JIW)

  8. Direct and indirect effects of radiation on polar solid solutions

    International Nuclear Information System (INIS)

    Ershov, V.G.; Gaponova, I.S.

    1982-01-01

    Radiation-chemical decomposition of a solute is due to the direct effect of ionizing radiation on it and also to its reaction with radical-ion products of radiolysis of the solution. At low temperature, the movement of the reagents is limited, and thus it is possible to isolate and evaluate the contribution of direct and indirect effects of radiation on the solute. The present paper is devoted to an investigation of the mechanism of formation of radicals from a solute (LiNO 2 ) in a polar solid solution (CH 3 OH) under the effect of γ-radiation

  9. Radiation, waves, fields. Causes and effects on environment and health

    International Nuclear Information System (INIS)

    Leitgeb, N.

    1990-01-01

    The book discusses static electricity, alternating electric fields, magnetostatic fields, alternating magnetic fields, electromagnetic radiation, optical and ionizing radiation and their hazards and health effects. Each chapter presents basic physical and biological concepts and describes the common radiation sources and their biological effects. Each chapter also contains hints for everyday behaviour as well as in-depth information an specific scientific approaches for assessing biological effects; the latter are addressed to all expert readers working in these fields. There is a special chapter on the problem of so-called 'terrestrial radiation'. (orig.) With 88 figs., 31 tabs [de

  10. Characteristics of natural background external radiation and effective dose equivalent

    International Nuclear Information System (INIS)

    Fujimoto, Kenzo

    1989-01-01

    The two sources of natural radiation - cosmic rays and primordial radionuclides - are described. The factors affecting radiation doses received from natural radiation and the calculation of effective dose equivalent due to natural radiation are discussed. 10 figs., 3 tabs

  11. Performance Enhancement of Power Transistors and Radiation effect

    International Nuclear Information System (INIS)

    Hassn, Th.A.A.

    2012-01-01

    The main objective of this scientific research is studying the characteristic of bipolar junction transistor device and its performance under radiation fields and temperature effect as a control element in many power circuits. In this work we present the results of experimental measurements and analytical simulation of gamma – radiation effects on the electrical characteristics and operation of power transistor types 2N3773, 2N3055(as complementary silicon power transistor are designed for general-purpose switching and amplifier applications), three samples of each type were irradiated by gamma radiation with doses, 1 K rad, 5 K rad, 10 K rad, 30 K rad, and 10 Mrad, the experimental data are utilized to establish an analytical relation between the total absorbed dose of gamma irradiation and corresponding to effective density of generated charge in the internal structure of transistor, the electrical parameters which can be measured to estimate the generated defects in the power transistor are current gain, collector current and collected emitter leakage current , these changes cause the circuit to case proper functioning. Collector current and transconductance of each device are calibrated as a function of irradiated dose. Also the threshold voltage and transistor gain can be affected and also calibrated as a function of dose. A silicon NPN power transistor type 2N3773 intended for general purpose applications, were used in this work. It was designed for medium current and high power circuits. Performance and characteristic were discusses under temperature and gamma radiation doses. Also the internal junction thermal system of the transistor represented in terms of a junction thermal resistance (Rjth). The thermal resistance changed by ΔRjth, due to the external intended, also due to the gamma doses intended. The final result from the model analysis reveals that the emitter-bias configuration is quite stable by resistance ratio RB/RE. Also the current

  12. Radiation effects on polyethylenes

    International Nuclear Information System (INIS)

    Suzuki, T.; Oki, Y.; Numajiri, M.; Miura, T.; Kondo, K.; Tanabe, Y.; Ishiyama, M.; Ito, Y.

    1992-01-01

    Radiation effects on four kinds of polyethylenes were studied from the viewpoints of mechanical properties, free radicals and free volumes. The samples were irradiated using a cobalt 60 gamma source to give doses up to 3MGy. The degradation of mechanical strength due to gamma-irradiation was evaluated by the elongation at break and its tensile strength. Radiation induced free radicals were measured by ESR. Free volumes observed by the o-Ps component of the positron annihilation spectrum are normally the large ones located in the amorphous regions and after irradiation these are created in crystalline regions, too. The sizes and the relative numbers of free volumes were evaluated by lifetimes and intensities of a long-lived component of positronium, respectively. Using these data, the properties of polyethylenes before and after irradiation are discussed. (author)

  13. Health effects of ionizing radiation

    International Nuclear Information System (INIS)

    Radford, E.P.

    1980-01-01

    This presentation is restricted to the health effects of low doses of ionizing radiation. In general, these cumulative exposures are well below 100 rem, or about 50 times background or less. The two effects of interest in this dose range are genetic mutations and cancer production. The genetic effects will not be discussed in detail. The chief reason for the rise in risk estimates for cancer is the longer follow-up of exposed populations

  14. Radiation-induced caries as the late effect of radiation therapy in the head and neck region

    Directory of Open Access Journals (Sweden)

    Katarzyna Dobroś

    2015-10-01

    Full Text Available Overall improvement in the nationwide system of medical services has consequently boosted the number of successfully treated patients who suffer from head and neck cancer. It is essential to effectively prevent development of radiation-induced caries as the late effect of radiation therapy. Incidence and severity of radiation-induced changes within the teeth individually vary depending on the patient’s age, actual radiation dose, size of radiation exposure field, patient’s general condition and additional risk factors. Inadequately managed treatment of caries may lead to loss of teeth, as well as prove instrumental in tangibly diminishing individual quality of life in patients. Furthermore, the need to have the teeth deemed unyielding or unsuitable for the application of conservative methods of treatment duly extracted is fraught for a patient with an extra hazard of developing osteoradionecrosis (ORN, while also increasing all attendant therapeutic expenditures. The present paper aims to offer some practical insights into currently available methods of preventing likely development of radiation-induced caries.

  15. [Dose rate-dependent cellular and molecular effects of ionizing radiation].

    Science.gov (United States)

    Przybyszewski, Waldemar M; Wideł, Maria; Szurko, Agnieszka; Maniakowski, Zbigniew

    2008-09-11

    The aim of radiation therapy is to kill tumor cells while minimizing damage to normal cells. The ultimate effect of radiation can be apoptotic or necrotic cell death as well as cytogenetic damage resulting in genetic instability and/or cell death. The destructive effects of radiation arise from direct and indirect ionization events leading to peroxidation of macromolecules, especially those present in lipid-rich membrane structures as well as chromatin lipids. Lipid peroxidative end-products may damage DNA and proteins. A characteristic feature of radiation-induced peroxidation is an inverse dose-rate effect (IDRE), defined as an increase in the degree of oxidation(at constant absorbed dose) accompanying a lower dose rate. On the other hand, a low dose rate can lead to the accumulation of cells in G2, the radiosensitive phase of the cell cycle since cell cycle control points are not sensitive to low dose rates. Radiation dose rate may potentially be the main factor improving radiotherapy efficacy as well as affecting the intensity of normal tissue and whole-body side effects. A better understanding of dose rate-dependent biological effects may lead to improved therapeutic intervention and limit normal tissue reaction. The study reviews basic biological effects that depend on the dose rate of ionizing radiation.

  16. The effects of ionizing radiations on in utero development

    International Nuclear Information System (INIS)

    Lallemand, J.

    1984-01-01

    Following a reminder of embryology and methodology, a review is made of the main teratogenic effects related to radiation exposure, i.e. lethal effects, radioinduced malformations, maldevelopment and cancers. The sensitivity of the embryo and foetus to radiation seems to last during the whole gestation. Howewer, the latest investigations indicate that the main damage is mental retardation. This review concludes on practical considerations of radiation protection in the field of radiographic examinations of pregnant women [fr

  17. Possibilities to reduce the effect of ionizing radiation by interaction of two types of radiation into a matter: ionized and non-ionized radiation

    International Nuclear Information System (INIS)

    Tanvir

    2007-01-01

    Full text: At present it has been accepted that ionized radiation can cause biological effects on the human body and the only way of preventing this effect, is by shielding the source of radiation by absorbing materials. On the other hand, the technology of non-ionizing radiation is upgraded. The canalization of radiation through the wave-guide based structures and optical fiber is well established. This reminds us that passing through benzene non-ionized radiation give the 'Raman' effect, which can ensure the secondary generation of non-ionized radiation with the wave length of nanometer and so far. These types of non-ionized radiation can easily be correlated with the gamma radiation, which is ionized. We know that high-energized photon usually interacts with matter and reduces its energy to the matter and generate electro-magnetic waves into the molecules of the matter. It is also well known that through the wave-guide based structures and optical fiber; the path of energy distribution of photon is likely to be optical energetic modes. If two types of photon from two types of radiation (ionized and non-ionized) interact with matter and pass through the optical fiber, they can generate optical modes with various wavelengths and phase velocities. With 'Raman' effect we can generate secondary electromagnetic waves of nanometer; as well as optical modes into the optical fiber. These optical modes from two types of radiation with various phase velocities, having the similar wavelength, can decrease or accelerate some modes. On the view of signal distribution, we can assume that if two similar signals pass through the circuit with phase difference 180P 0 P, then the result posses no signal. We are also reminded that photon of γ - radiation can spread from 0 deg. to 180 deg. C, where the 'Compton' loss of radiation is minimum. In view of the electro-magnetic theory of Maxwell we can assume the energetic field of optical modes, which are generated into the optical

  18. The effects of pulsed nuclear radiation on model circuits. Vol. 1

    International Nuclear Information System (INIS)

    Gruen, E.; Kossyk, R.; Loerke, B.; Renz, W.

    1973-01-01

    An effective computer program RENS (Radiation Effects on Network Systems) was developed for transient analyses of electronic networks with extreme nonlinearities including radiation effects. The program was successfully applied to the TREE analysis of an analog amplifier whose response to ionizing radiation had been measured in an simulation experiment. (orig.) [de

  19. CARCINOGENIC EFFECTS OF LOW DOSES OF IONIZING RADIATION

    Science.gov (United States)

    Carcinogenic Effects of Low Doses of Ionizing RadiationR Julian Preston, Environmental Carcinogenesis Division, NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711The form of the dose-response curve for radiation-induced cancers, particu...

  20. Teaching of radiation for elementary and junior high students in Kagoshima and its effects on their radiation literacy

    International Nuclear Information System (INIS)

    Fukutoku, Yasuo

    2009-01-01

    Teaching of radiation-related subjects for school children takes an important part in promotion of social radiation literacy; however, the effect of school education on radiation literacy of students, as well as the current status regarding how and when children acquire their knowledge on radiation, have not been elucidated in Japan. In 2005 and 2006, a written surveillance on radiation education was conducted twice in Kagoshima prefecture targeting elementary and junior-high students under the consent of school teachers. Based on the results of these surveillances, the followings were revealed; (1) The elementary and junior-high students receive the information on radiation mainly by the conventional media, including books, television and radio, rather than by school education. (2) More than a half of all junior-high schools are teaching radiation-related subjects, in classes called 'Integrated study', 'Social studies', and 'Science'. (3) The cross tabulation analysis revealed that among the Novel Prize winners on radiation-related fields, 'Pierre and Marie Curie', 'Yukawa' and 'Tomonaga' were recognized by junior-high students by the conventional media, whereas 'Roentgen' and 'Koshiba' appeared to be recognized by school education. (4) Among the scientific terms, junior-high education seems to have some effect on recognition of 'radiation', 'radioactivity' and 'natural radiation'. 'X-rays' was highly recognized, however, the contribution of school education to the recognition was not significant. (5) Among the application examples of radiation, sources other than school education had a large effect on recognition of 'food irradiation', 'sterilization' of medical instruments, 'research on cultural assets' and 'dating', although the recognition was marginal. In contrast, the 'cancer treatment

  1. Genetical effects of radiations from products of nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    Spiers, F W

    1955-01-01

    Relative radiation dose-rates to man and to Drosophila are discussed. Data previously presented by Prof. J.B.S. Haldane on the genetical effects of radiation resulting from nuclear explosions are reviewed. A reply from Prof. Haldane presents revised calculations of radiation dose rates.

  2. Sources and effects of ionizing radiation. UNSCEAR 2000 report to the General Assembly, with scientific annexes. Volume II: Effects

    International Nuclear Information System (INIS)

    2000-01-01

    Over the past few years the United Nations Scientific Committee on the effects of Atomic Radiation has undertaken a broad review of the sources and effects of ionizing radiation. In the present report, the Committee, drawing on the main conclusions of its scientific assessment summarizes the developments in radiation science in the years leading up to the next millennium. It covers the following: the effects of radiation exposure; levels of radiation exposure; radiological consequences of the Chernobyl accident; sources of radiation exposure including natural exposures, man-made environmental exposures, medical and occupational exposures; radiation associated cancer. This volume includes five Annexes covering: DNA repair and mutagenesis; biological effects at low radiation doses; combined effects of radiation and other agents; epidemiological evaluation of radiation-induced cancer and exposure effects of the Chernobyl accident

  3. [Effect of heijiang pill on radiation skin ulcer in rats].

    Science.gov (United States)

    Fu, Qi; Yang, Yang; Xu, Yong-Mei

    2008-05-01

    To investigate the relationship between single dosage of 60Co radiation and the degree of radiation-induced skin ulcers, and to evaluate the curative effect of Heijiang Pill (HJP) on skin ulcer induced by various dosages of radiation in rats. Sixty-six Wistar female rats were randomly divided into three groups, the blank control group (n = 6) and the two radiation groups, each 30 rats, with their right hind leg exposed respectively to 60 Gy and 40 Gy of 60 Co radiation. The time of emergence and degree of skin ulcer were recorded. Then rats in the two radiation groups were subdivided into the HJP group, the Ethacridine group and the model group, 10 in each group, they received corresponding treatment after ulceration, and the incidence, pathology, cure rate and cure time of skin ulcer were observed in the 90 days of observation. The incidence of skin ulcer was higher and occurred earlier in rats radiated with 60 Gy than that with 40 Gy (P ulcer healing rate in rats treated with HJP was higher than that treated with Ethacridine (P cure time in the HJP group was shorter (P ulcers. HJP can effectively cure radiation skin ulcer, and the effect is especially significant on the ulcer induced by low dose radiation.

  4. Radiation-induced genomic instability and bystander effects: related inflammatory-type responses to radiation-induced stress and injury? A review.

    Science.gov (United States)

    Lorimore, S A; Wright, E G

    2003-01-01

    To review studies of radiation responses in the haemopoietic system in the context of radiation-induced genomic instability, bystander effects and inflammatory-type processes. There is considerable evidence that cells that themselves are not exposed to ionizing radiation but are the progeny of cells irradiated many cell divisions previously may express a high frequency of gene mutations, chromosomal aberrations and cell death. These effects are collectively known as radiation-induced genomic instability. A second untargeted effect results in non-irradiated cells exhibiting responses typically associated with direct radiation exposure but occurs as a consequence of contact with irradiated cells or by receiving soluble signals from irradiated cells. These effects are collectively known as radiation-induced bystander effects. Reported effects include increases or decreases in damage-inducible and stress-related proteins; increases or decreases in reactive oxygen species, cell death or cell proliferation, and induction of mutations and chromosome aberrations. This array of responses is reminiscent of effects mediated by cytokines and other similar regulatory factors that may involve, but do not necessarily require, gap junction-mediated transfer, have multiple inducers and a variety of context-dependent consequences in different cell systems. That chromosomal instability in haemopoietic cells can be induced by an indirect bystander-type mechanism both in vitro and in vivo provides a potential link between these two untargeted effects and there are radiation responses in vivo consistent with the microenvironment contributing secondary cell damage as a consequence of an inflammatory-type response to radiation-induced injury. Intercellular signalling, production of cytokines and free radicals are features of inflammatory responses that have the potential for both bystander-mediated and persisting damage as well as for conferring a predisposition to malignancy. The

  5. Effect of low dose radiation on apoptosis in mouse spleen

    International Nuclear Information System (INIS)

    Chen Dong; Liu Jiamei; Chen Aijun; Liu Shuzheng

    1999-01-01

    Objective: To study the effect of whole body irradiation (WBI) with different doses of X-ray on apoptosis in mouse spleen. Methods: Time course changes and dose-effect relationship of apoptosis in mouse spleen induced by WBI were observed with transmission electron microscopy (TEM) qualitatively and TUNEL method semi-quantitatively. Results: Many typical apoptotic lymphocytes were found by TEM in mouse spleen after WBI with 2 Gy. No marked alterations of ultrastructure were found following WBI with 0.075 Gy. It was observed by TUNEL that the apoptosis of splenocytes increased after high dose radiation and decreased following low dose radiation (LDR). The dose-effect relationship of radiation-induced apoptosis showed a J-shaped curve. Conclusion: The effect of different doses of ionizing radiation on apoptosis in mouse spleen was distinct. And the decrease of apoptosis after LDR is considered a manifestation of radiation hormesis

  6. Comparative proteomic analysis of rice after seed ground simulated radiation and spaceflight explains the radiation effects of space environment

    Science.gov (United States)

    Wang, Wei; Shi, Jinming; Liang, Shujian; Lei, Huang; Shenyi, Zhang; Sun, Yeqing

    In previous work, we compared the proteomic profiles of rice plants growing after seed space-flights with ground controls by two-dimensional difference gel electrophoresis (2-D DIGE) and found that the protein expression profiles were changed after seed space environment exposures. Spaceflight represents a complex environmental condition in which several interacting factors such as cosmic radiation, microgravity and space magnetic fields are involved. Rice seed is in the process of dormant of plant development, showing high resistance against stresses, so the highly ionizing radiation (HZE) in space is considered as main factor causing biological effects to seeds. To further investigate the radiation effects of space environment, we performed on-ground simulated HZE particle radiation and compared between the proteomes of seed irra-diated plants and seed spaceflight (20th recoverable satellite) plants from the same rice variety. Space ionization shows low-dose but high energy particle effects, for searching the particle effects, ground radiations with the same low-dose (2mGy) but different liner energy transfer (LET) values (13.3KeV/µm-C, 30KeV/µm-C, 31KeV/µm-Ne, 62.2KeV/µm-C, 500Kev/µm-Fe) were performed; using 2-D DIGE coupled with clustering and principle component analysis (PCA) for data process and comparison, we found that the holistic protein expression patterns of plants irradiated by LET-62.2KeV/µm carbon particles were most similar to spaceflight. In addition, although space environment presents a low-dose radiation (0.177 mGy/day on the satellite), the equivalent simulated radiation dose effects should still be evaluated: radiations of LET-62.2KeV/µm carbon particles with different cumulative doses (2mGy, 20mGy, 200mGy, 2000mGy) were further carried out and resulted that the 2mGy radiation still shared most similar proteomic profiles with spaceflight, confirming the low-dose effects of space radiation. Therefore, in the protein expression level

  7. Investigations of the effects of UV and X-ray radiation and the repair of radiation damage in the ciliate Stylonychia mytilus

    International Nuclear Information System (INIS)

    Dittmann, F.N.

    1978-01-01

    Using the example of Stylomychia mytilus, the effects of UV-radiation and ionizing X-ray radiation are compared. The effects on cell division and on the repair of radiation damage in DNA are compared. Sensitivity to UV radiation differs between the stages of the cell cycle while the effects of X-ray radiation are independent of phase. There is no difference in repair processes. (AJ) 891 AJ/AJ 892 MKO [de

  8. Signaling pathways underpinning the manifestations of ionizing radiation-induced bystander effects.

    Science.gov (United States)

    Hamada, Nobuyuki; Maeda, Munetoshi; Otsuka, Kensuke; Tomita, Masanori

    2011-06-01

    For nearly a century, ionizing radiation has been indispensable to medical diagnosis. Furthermore, various types of electromagnetic and particulate radiation have also been used in cancer therapy. However, the biological mechanism of radiation action remains incompletely understood. In this regard, a rapidly growing body of experimental evidence indicates that radiation exposure induces biological effects in cells whose nucleus has not been irradiated. This phenomenon termed the 'non-targeted effects' challenges the long-held tenet that radiation traversal through the cell nucleus is a prerequisite to elicit genetic damage and biological responses. The non-targeted effects include biological effects in cytoplasm-irradiated cells, bystander effects that arise in non-irradiated cells having received signals from irradiated cells, and genomic instability occurring in the progeny of irradiated cells. Such non-targeted responses are interrelated, and the bystander effect is further related with an adaptive response that manifests itself as the attenuated stressful biological effects of acute high-dose irradiation in cells that have been pre-exposed to low-dose or low-dose-rate radiation. This paper reviews the current body of knowledge about the bystander effect with emphasis on experimental approaches, in vitro and in vivo manifestations, radiation quality dependence, temporal and spatial dependence, proposed mechanisms, and clinical implications. Relations of bystander responses with the effects in cytoplasm-irradiated cells, genomic instability and adaptive response will also be briefly discussed.

  9. Radiation effects in polymers for plastic scintillation detectors

    International Nuclear Information System (INIS)

    Pla-Dalmau, A.; Bross, A.D.; Hurlbut, C.R.; Moser, S.W.

    1994-01-01

    Recent developments in both scintillating plastic optical fibers and photon detection devices have spawned new applications for plastic scintillator detectors. This renewed attention has encouraged research that addresses the radiation stability of plastic scintillators. The optical quality of the polymer degrades with exposure to ionizing radiation and thus the light yield of the detector decreases. A complete understanding of all the mechanisms contributing to this radiation-induced degradation of the polymer can lead to techniques that will extend the radiation stability of these materials. Various radiation damage studies have been performed under different atmospheres and dose rates. Currently, the use of additives to preserve the optical properties of the polymer matrix under radiation is being investigated. The authors discuss the effect of certain antioxidants, plasticizers, and cross-linking agents on the radiation resilience of plastic scintillators

  10. Neuroprotective Effects against POCD by Photobiomodulation: Evidence from Assembly/Disassembly of the Cytoskeleton

    Directory of Open Access Journals (Sweden)

    Ann D. Liebert

    2016-01-01

    Full Text Available Postoperative cognitive dysfunction (POCD is a decline in memory following anaesthesia and surgery in elderly patients. While often reversible, it consumes medical resources, compromises patient well-being, and possibly accelerates progression into Alzheimer's disease. Anesthetics have been implicated in POCD, as has neuroinflammation, as indicated by cytokine inflammatory markers. Photobiomodulation (PBM is an effective treatment for a number of conditions, including inflammation. PBM also has a direct effect on microtubule disassembly in neurons with the formation of small, reversible varicosities, which cause neural blockade and alleviation of pain symptoms. This mimics endogenously formed varicosities that are neuroprotective against damage, toxins, and the formation of larger, destructive varicosities and focal swellings. It is proposed that PBM may be effective as a preconditioning treatment against POCD; similar to the PBM treatment, protective and abscopal effects that have been demonstrated in experimental models of macular degeneration, neurological, and cardiac conditions.

  11. Time-resolved studies of direct effects of radiation on DNA

    International Nuclear Information System (INIS)

    Fielden, E.M.; O'Neill, P.; Al-Kazwini, A.

    1987-01-01

    The biological changes induced by ionising radiation are a consequence of radiation-induced chemical events taking place at times <1s. These events are strongly influenced by the presence of chemical modifiers. Since DNA is a principle target for radiation-induced cell killing, DNA-free radicals are generated by direct ionisation of DNA moieties (direct effect) and by reaction with hydroxyl radicals formed by radiolysis of the water which is in the vicinity of the DNA (indirect effect). In order to study the 'direct' effects of radiation on DNA the following model approaches are discussed:- 1) Use of the technique of pulse radiolysis to investigate in aqueous solution the interactions of deoxynucleosides with SO/sub 4//sup .-/ whereby one-electron oxidised species of the bases are generated; and 2) time resolved, radiation-induced changes to solid DNA and related macromolecules (e.g. radiation-induced luminescence) in order to obtain an understanding of charge/energy migration as a result of ionisation of DNA. The influence of chemical modifiers and of environment is discussed in terms of the properties of the radiation-induced species produced. Since the properties of base radicals produced by SO/sub 4//sup .-/ are similar to those of the base OH-adducts oxidising properties, potential similarities between the 'direct' and 'indirect' effects of radiation are presented

  12. Effects of low dose radiation on tumor-bearing mice

    International Nuclear Information System (INIS)

    Feng Li; Hou Dianjun; Huang Shanying; Deng Daping; Wang Linchao; Cheng Yufeng

    2007-01-01

    Objective: To explore the effects of low-dose radiation on tumor-bearing mice and radiotherapy induced by low-dose radiation. Methods: Male Wistar mice were implanted with Walker-256 sarcoma cells in the right armpit. On day 4, the mice were given 75 mGy whole-body X-ray radiation. From the fifth day, tumor volume was measured, allowing for the creation of a graph depicting tumor growth. Lymphocytes activity in mice after whole-body X-ray radiation with LDR was determinned by FCM. Cytokines level were also determined by ELISA. Results: Compared with the radiotherapy group, tumor growth was significantly slower in the mice pre-exposed to low-dose radiation (P<0.05), after 15 days, the average tumor weight in the mice pre- exposed to low-dose radiation was also significantly lower (P<0.05). Lymphocytes activity and the expression of the CK in mice after whole-body y-ray radiation with LDR increased significantly. Conclusions: Low-dose radiation can markedly improve the immune function of the lymphocyte, inhibit the tumor growth, increase the resistant of the high-dose radiotherapy and enhance the effect of radiotherapy. (authors)

  13. The development and purpose of the FREDERICA radiation effects database

    International Nuclear Information System (INIS)

    Copplestone, D.; Hingston, J.; Real, A.

    2008-01-01

    Any system for assessing the impact of a contaminant on the environment requires an analysis of the possible effects on the organisms and ecosystems concerned. To facilitate this, the FREDERICA radiation effects database has been developed to provide an online search of the known effects of ionising radiation on non-human species, taken from papers in the scientific peer reviewed literature. The FREDERICA radiation effects database has been produced by merging the work done on radiation effects under two European funded projects (FASSET and EPIC) and making the database available online. This paper highlights applications for the database, gaps in the available data and explains the use of quality scores to help users of the database determine which papers may benefit their research in terms of techniques and reproducibility

  14. Joint effects of pesticides and ultraviolet-B radiation on amphibian larvae

    International Nuclear Information System (INIS)

    Yu, Shuangying; Wages, Mike; Willming, Morgan; Cobb, George P.; Maul, Jonathan D.

    2015-01-01

    A combination of multiple stressors may be linked to global amphibian declines. Of these, pesticides and UVB radiation co-exposures were examined on the African clawed frog (Xenopus laevis) to provide information that may be useful for amphibian conservation. The independent action model and inferential statistics were used to examine interactions between pesticides (malathion, endosulfan, α-cypermethrin, or chlorothalonil) and environmentally relevant UVB exposures. UVB radiation alone caused 35–68% mortality and nearly 100% of malformations. Pesticides and UVB had additive effects on larval mortality; however, several non-additive effects (antagonistic and synergistic interactions) were observed for total body length. Insecticides mainly affected axial development, whereas UVB radiation caused high incidence of edema, gut malformations, and abnormal tail tips. These results suggest that sublethal developmental endpoints were more sensitive for detecting joint effects. This work has implications for amphibian risk assessments for ecosystems where pesticides and high UVB radiation may co-occur. - Highlights: • Interactive effects of UVB radiation-pesticide co-exposures were examined in frogs. • UVB radiation alone caused 35–68% mortality and nearly 100% of malformations. • Pesticides and UVB had additive effects on larval mortality. • Several non-additive effects were observed for total body length. • Amphibian risk assessments should consider UVB radiation exposure as a co-stressor. - Possible interactions between pesticides and UVB radiation support the idea that amphibian risk assessments should consider these co-stressors when high UVB radiation exposure is high.

  15. Effects of low dose radiation pretreatment on radiation injuried brain's free radicle

    International Nuclear Information System (INIS)

    Xu Fuqi; Wang Cheng; Xie Hong; Tian Ye

    2006-01-01

    Objective: To investigate the effect of low dose radiation pretreatment on radiation in- juried brain's free radicle to provide some useful data of brain radiation injury protection. Methods: One hundred mGy was selected as the pretreatment does, 25 Gy was selected as the challenge does. Experiment rats were divided into three groups randomly, group one as simple group:the group irradiated without exposing to pre-irradiation; group two as 6 h-group: the group irradiated with LDR pretreatment 6 h before exposing to 25 Gy irradiation; group three as 24 h-group:the group irradiated with LDR pretreatment 24 h before 25 Gy irradiation. The observation was done 6 hour's after irradiation, the effect of LDR pretreatment on increasing activity of the superoxide dismutase(SOD) and the content of malondialdehyde(MDA) after the brain tissue homogenate were detected. Results: Com- pared with the simple group, the group with LDR pretreatment showed increasing of SOD and decreasing of MDA at the 6th hour after 25Gy irradiation. In addition, there was no difference between the 6 h-group and the 24 h-group. Conclusion: LDR pretreatment can increase SOD and decrease MDA in some period. It could infer that the suitable LDR pretreatment could play a protective role in the brain radiation injury. (authors)

  16. Radiation effects in IFMIF Li target diagnostic systems

    International Nuclear Information System (INIS)

    Molla, J.; Vila, R.; Shikama, T.; Horiike, H.; Simakov, S.; Ciotti, M.; Ibarra, A.

    2009-01-01

    Diagnostics for the lithium target will be crucial for the operation of IFMIF. Several parameters as the lithium temperature, target thickness or wave pattern must be monitored during operation. Radiation effects may produce malfunctioning in any of these diagnostics due to the exposure to high radiation fields. The main diagnostic systems proposed for the operation of IFMIF are reviewed in this paper from the point of view of radiation damage. The main tools for the assessment of the performance of these diagnostics are the neutronics calculations by using specialised codes and the information accumulated during the last decades on the radiation effects in functional materials, components and diagnostics for ITER. This analysis allows to conclude that the design of some of the diagnostic systems must be revised to assure the high availability required for the target system.

  17. Effects of ionizing radiation on plant tissue cultures

    International Nuclear Information System (INIS)

    Hell, K.G.

    1978-01-01

    A short review is done of the biological effects of ionizing radiations on plant tissues kept in culture, from the work of Gladys King, in 1949, with X-ray irradiated tobacco. The role of plant hormones is discussed in the processes of growth inhibition and growth restoration of irradiated tissues, as well as morphogenesis. Radioresistance of cells kept in culture and the use of ionizing radiations as mutagens are also commented. Some aspects of the biological effects of ionizing radiations that need to be investigated are discussed, and the problem of genome instability of plant tissues kept in culture is pointed out. (M.A.) [pt

  18. Effective doses and standardised risk factors from paediatric diagnostic medical radiation exposures: Information for radiation risk communication

    International Nuclear Information System (INIS)

    Bibbo, Giovanni

    2018-01-01

    In the paediatric medical radiation setting, there is no consistency on the radiation risk information conveyed to the consumer (patient/carer). Each communicator may convey different information about the level of risk for the same radiation procedure, leaving the consumer confused and frustrated. There is a need to standardise risks resulting from medical radiation exposures. In this study, paediatric radiographic, fluoroscopic, CT and nuclear medicine examination data have been analysed to provide (i) effective doses and radiation induced cancer risk factors from common radiological and nuclear medicine diagnostic procedures in standardised formats, (II) awareness of the difficulties that may be encountered in communicating risks to the layperson, and (iii) an overview of the deleterious effects of ionising radiation so that the risk communicator can convey with confidence the risks resulting from medical radiation exposures. Paediatric patient dose data from general radiographic, computed tomography, fluoroscopic and nuclear medicine databases have been analysed in age groups 0 to <5 years, 5 to <10 years, 10 to <15 years and 15 to <18 years to determine standardised risk factors. Mean, minimum and maximum effective doses and the corresponding mean lifetime risks for general radiographic, fluoroscopic, CT and nuclear medicine examinations for different age groups have been calculated. For all examinations, the mean lifetime cancer induction risk is provided in three formats: statistical, fraction and category. Standardised risk factors for different radiological and nuclear medicine examinations and an overview of the deleterious effects of ionising radiation and the difficulties encountered in communicating the risks should facilitate risk communication to the patient/carer.

  19. Multiparametric assessment of radiation effects for the individual radiation sensitivity estimation

    International Nuclear Information System (INIS)

    2006-01-01

    The effects of low dose irradiation are highly relevant for radiation protection in the public. The sensitivity to clastogenic and tumorigenic effects of ionizing radiation (IR) varies considerably amongst individuals. Examples for genetically determined enhanced sensitivity are well known in some hereditary diseases: patients with chromosomal instability syndromes, Ataxia telangiectasia (A-T), Nijmegen Breakage Syndrome (NBS) and Bloom Syndrome (BS) show strongly enhanced sensitivity towards IR, severe immunodeficiencies, and a high incidence for developing leukemias and lymphomas. This obvious coincidence of enhanced radiosensitivity and tumor risk, and the frequently observed enhanced radiosensitivity of genetically non-defined tumor patients indicate that tumor patients may constitute a subpopulation with enriched genetical predisposition for enhanced radiosensitivity. Furthermore, a subpopulation of radiosensitive individuals may be part of the probably inconspicuous total population. For example, individuals heterozygous for the above mentioned genes (and possibly some other genes) show enhanced radiosensitivity if compared with the normal population. In general, heterozygous carriers of those hereditary deficiencies are clinically inconspicuous, but due an haploinsufficiency their tumour risk may be enhanced. This has been shown for mice carrying an heterozygous Nbs1 mutation (J.-Q. Wang, Lyon, pers. Communication). Our findings concerning enhanced radiation-induced chromosomal aberrations in heterozygous Nbs1 cell lines support this notion. The identification of high risk groups with enhanced radiosensitivity is therefore an important task for radioprotection. This project aimed at establishing a procedure which allows to test various cellular parameters as indicators for effects of radiation. A standard protocol for the isolation and cryoconservation of primary blood cells was developed. DNA repair analysis (Comet Assay) and radiation-induced apoptosis

  20. Degrading radiation effects on properties of bromobutyl rubber compounds

    Energy Technology Data Exchange (ETDEWEB)

    Scagliusi, Sandra R.; Cardoso, Elisabeth C.L.; Pozenato, Cristina A.; Lugao, Ademar B., E-mail: srscagliusi@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    The understanding of chemistry involved in degradation induced radiation is becoming more and more relevant in the re-use of polymeric materials, as well in beneficial radiation uses. Degrading radiation effects have been considered from viewpoint of controlled degradation for isoprene/isobutene in rubbers for recycling purposes. Bromobutyl rubber (BIIR) is an isobutylene/isoprene copolymer comprising 1.9 to 2.1% bromine and has a lot of applications including in tires air-chambers. In this work there were evaluated gamma-irradiation effects for re-use or recycling objectives in elastomeric bromobutyl compositions irradiated at 5, 15, 25, 50, 100,150 and 200 kGy. Mechanical properties, hardness and swelling were assessed in non-vulcanized and vulcanized rubber, non-irradiated and irradiated at different doses. The major gamma radiation effect in butyl rubber is the generation of free radicals along changes in mechanical properties. Irradiation effects in bromobutyl rubber compounds were comprehensively investigated, demonstrated and discussed. (author)

  1. Degrading radiation effects on properties of bromobutyl rubber compounds

    International Nuclear Information System (INIS)

    Scagliusi, Sandra R.; Cardoso, Elisabeth C.L.; Pozenato, Cristina A.; Lugao, Ademar B.

    2013-01-01

    The understanding of chemistry involved in degradation induced radiation is becoming more and more relevant in the re-use of polymeric materials, as well in beneficial radiation uses. Degrading radiation effects have been considered from viewpoint of controlled degradation for isoprene/isobutene in rubbers for recycling purposes. Bromobutyl rubber (BIIR) is an isobutylene/isoprene copolymer comprising 1.9 to 2.1% bromine and has a lot of applications including in tires air-chambers. In this work there were evaluated gamma-irradiation effects for re-use or recycling objectives in elastomeric bromobutyl compositions irradiated at 5, 15, 25, 50, 100,150 and 200 kGy. Mechanical properties, hardness and swelling were assessed in non-vulcanized and vulcanized rubber, non-irradiated and irradiated at different doses. The major gamma radiation effect in butyl rubber is the generation of free radicals along changes in mechanical properties. Irradiation effects in bromobutyl rubber compounds were comprehensively investigated, demonstrated and discussed. (author)

  2. Effects of ionizing radiation on the immune system

    International Nuclear Information System (INIS)

    Dubois, J.B.

    1986-01-01

    After reviewing the different lymphoid organs and the essential phases of the immune response, we studied the morphological and functional effects of ionizing radiation on the immunological system. Histologic changes in the lymph nodes, spleen, thymus, and different lymphocyte subpopulations were studied in relation with the radiation dose and irradiated volume (whole body irradiation, localized irradiation). Functional changes in the immune system induced by ionizing radiation were also investigated by a study of humoral-mediated immunity (antibody formation) and cell-mediated immunity (behavior of macrophages, B-cells, T suppressor cells, T helper cells, T effector cells, and natural killer cells). A study into the mechanisms of action of ionizing radiation and the immune processes it interferes with suggests several likely hypotheses (direct action on the immune cells, on their precursors, on seric mediators or on cell mediators). The effects on cancer patients' immune reactions of low radiation doses delivered to the various lymphoid organs are discussed, as well as the relationships between the host and the evolution of the tumor [fr

  3. Improved treatment of radiation effects on the skin

    International Nuclear Information System (INIS)

    Wandl, E.O.; Kaercher, K.H.; Wandl-Hainberger, I.

    1985-01-01

    The treatment concept developed by K.H. Kaercher was extended by a therapy using Elasten S cream. In the course of a highvoltage therapy using fast electrons or cobalt-60, interesting aspects in the treatment and progression of the radiation reactions of the skin were established. The dermato-therapeutic principles layed down by K.H. Kaercher with the treatment palette used hitherto, have without doubt invariably proven their value. The exclusive powder treatment, however, may be made more practical by application of the new treatment cream in accordance with the intervals in radiation treatment or as a basic treatment towards the end of therapy. Furthermore it is ideally suited for the care and after-treatment of skin, strained by radiation. It reduces considerably the remaining visible radiation reactions. The treatment with powder and emulsion has for more than 10 years proven effective. After the excellent results of the new cream during radiation treatment, additional positive effects are expected in a long-term trial which will be reported on separately. (orig.) [de

  4. Radiation effects on two-dimensional materials

    Energy Technology Data Exchange (ETDEWEB)

    Walker, R.C. II; Robinson, J.A. [Department of Materials Science, Penn State, University Park, PA (United States); Center for Two-Dimensional Layered Materials, Penn State, University Park, PA (United States); Shi, T. [Department of Mechanical and Nuclear Engineering, Penn State, University Park, PA (United States); Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI (United States); Silva, E.C. [GlobalFoundries, Malta, NY (United States); Jovanovic, I. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI (United States)

    2016-12-15

    The effects of electromagnetic and particle irradiation on two-dimensional materials (2DMs) are discussed in this review. Radiation creates defects that impact the structure and electronic performance of materials. Determining the impact of these defects is important for developing 2DM-based devices for use in high-radiation environments, such as space or nuclear reactors. As such, most experimental studies have been focused on determining total ionizing dose damage to 2DMs and devices. Total dose experiments using X-rays, gamma rays, electrons, protons, and heavy ions are summarized in this review. We briefly discuss the possibility of investigating single event effects in 2DMs based on initial ion beam irradiation experiments and the development of 2DM-based integrated circuits. Additionally, beneficial uses of irradiation such as ion implantation to dope materials or electron-beam and helium-beam etching to shape materials have begun to be used on 2DMs and are reviewed as well. For non-ionizing radiation, such as low-energy photons, we review the literature on 2DM-based photo-detection from terahertz to UV. The majority of photo-detecting devices operate in the visible and UV range, and for this reason they are the focus of this review. However, we review the progress in developing 2DMs for detecting infrared and terahertz radiation. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Gamma radiation effects on polydimethylsiloxane rubber foams under different radiation conditions

    Science.gov (United States)

    Sui, H. L.; Liu, X. Y.; Zhong, F. C.; Li, X. Y.; Wang, L.; Ju, X.

    2013-07-01

    Polydimethylsiloxane rubber foams were irradiated by gamma ray under different radiation conditions designed by orthogonal design method. Compression set measurement, infrared attenuated total reflectance spectroscopy (ATR) and X-ray induced photoelectron spectroscopy (XPS) were used. Three aging factors' influence effects on the mechanical property and chemical structure were studied. It was found that among the three factors and the chosen levels, both properties were affected most by radiation dose, while radiation dose rate had no obvious influence on both properties. The stiffening of the rubber foams was caused by cross-linking reactions in the Si-CH3. At the same radiation dose, the rigidity of the foams irradiated in air was lower than that in nitrogen. When polydimethylsiloxane was irradiated at a high dose in sealed nitrogen atmosphere, carbon element distribution would be changed. Hydrocarbons produced by gamma ray in the sealed tube would make the carbon content in the skin-deep higher than that in the middle, which indicated that polydimethylsiloxane rubber foams storing in a sealed atmosphere filled with enough hydrocarbons should be helpful to extend the service life.

  6. Gamma radiation effects on polydimethylsiloxane rubber foams under different radiation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Sui, H.L. [Department of Physics, University of Science and Technology Beijing, Beijing 100083 (China); Institute of Chemical Materials, CAEP, Mianyang 621900 (China); Liu, X.Y.; Zhong, F.C. [Institute of Chemical Materials, CAEP, Mianyang 621900 (China); Li, X.Y. [Institute of Nuclear Physics and Chemistry, CAEP, Mianyang 621900 (China); Wang, L. [Institute of Chemical Materials, CAEP, Mianyang 621900 (China); Ju, X., E-mail: jux@ustb.edu.cn [Department of Physics, University of Science and Technology Beijing, Beijing 100083 (China)

    2013-07-15

    Polydimethylsiloxane rubber foams were irradiated by gamma ray under different radiation conditions designed by orthogonal design method. Compression set measurement, infrared attenuated total reflectance spectroscopy (ATR) and X-ray induced photoelectron spectroscopy (XPS) were used. Three aging factors’ influence effects on the mechanical property and chemical structure were studied. It was found that among the three factors and the chosen levels, both properties were affected most by radiation dose, while radiation dose rate had no obvious influence on both properties. The stiffening of the rubber foams was caused by cross-linking reactions in the Si–CH{sub 3}. At the same radiation dose, the rigidity of the foams irradiated in air was lower than that in nitrogen. When polydimethylsiloxane was irradiated at a high dose in sealed nitrogen atmosphere, carbon element distribution would be changed. Hydrocarbons produced by gamma ray in the sealed tube would make the carbon content in the skin-deep higher than that in the middle, which indicated that polydimethylsiloxane rubber foams storing in a sealed atmosphere filled with enough hydrocarbons should be helpful to extend the service life.

  7. Cobalt-60 simulation of LOCA [loss of coolant accident] radiation effects

    International Nuclear Information System (INIS)

    Buckalew, W.H.

    1989-07-01

    The consequences of simulating nuclear reactor loss of coolant accident (LOCA) radiation effects with Cobalt-60 gamma ray irradiators have been investigated. Based on radiation induced damage in polymer base materials, it was demonstrated that electron/photon induced radiation damage could be related on the basis of average absorbed radiation dose. This result was used to estimate the relative effectiveness of the mixed beta/gamma LOCA and Cobalt-60 radiation environments to damage both bare and jacketed polymer base electrical insulation materials. From the results obtained, it is concluded that present simulation techniques are a conservative method for simulating LOCA radiation effects and that the practices have probably substantially overstressed both bare and jacketed materials during qualification testing. 9 refs., 8 figs., 5 tabs

  8. Radiation effect on PVC/ENR blends

    International Nuclear Information System (INIS)

    Chantara Thevy Ratnam; Khairul Zaman Mohd Dahlan

    1997-01-01

    The effect of irradiation on the physical properties of Polyvinyl Chloride / Epoxidised Natural Rubber Blends (PVC/ENR blends) were investigated. The enhancement in tensile strength, elongation at break, hardness and aging properties of the blends have confirmed the positive effect of irradiation on the blends. It is evident from gel fraction and infra red spectroscopic studies that the blends of PVC and ENR cross-linked upon irradiation. The results also revealed that at any blend composition, the enhancement in properties depend on irradiation dose which controls the degree of radiation induced cross-linking. In an attempt to maximize the constructive effect of irradiation, the influence of various additives such as stabilizers, radiation sensitizers, fillers and processing aids on the blend properties were studied. The changes in blend properties upon irradiation with the presents of above additives were also presented in this paper

  9. Effects of radiation rays on construction materials

    International Nuclear Information System (INIS)

    Akkurt, I.; Kilicarslan, S.; Basyigit, C.; Kacar, A.

    2006-01-01

    Molecules that are bring into existence material determined as gas, liquid and stiff according to their internal structures and heat. Materials show various reaction to various effects that is result from all kind of materials have various internal structures. Radiation is covert materials' mechanical, physical and chemical properties. Nowadays in construction formation there isn't using only one material it is preferred that kind of materials composition because of there are run into some problems about choosing and decision sort of material. Material that using in construction is classified as metals, plastics and ceramics in three groups. About sixty percent of construction cost is being formed from construction materials. In this study effects of various radiations on construction materials are being investigated and the end of study it is being suggestion some useful construction materials according to usage land and radiation properties

  10. Effect of radiation processing on meat tenderisation

    Science.gov (United States)

    Kanatt, Sweetie R.; Chawla, S. P.; Sharma, Arun

    2015-06-01

    The effect of radiation processing (0, 2.5, 5 and 10 kGy) on the tenderness of three types of popularly consumed meat in India namely chicken, lamb and buffalo was investigated. In irradiated meat samples dose dependant reduction in water holding capacity, cooking yield and shear force was observed. Reduction in shear force upon radiation processing was more pronounced in buffalo meat. Protein and collagen solubility as well as TCA soluble protein content increased on irradiation. Radiation processing of meat samples resulted in some change in colour of meat. Results suggested that irradiation leads to dose dependant tenderization of meat. Radiation processing of meat at a dose of 2.5 kGy improved its texture and had acceptable odour.

  11. Electromagnetic and radiation environments: effects on pacemakers

    International Nuclear Information System (INIS)

    Mouton, J.; Trochet, R.; Vicrey, J.; Sauvage, M.; Chauvenet, B.; Ostrovski, A.; Leroy, E.; Haug, R.; Dodinot, B.; Joffre, F.

    1999-01-01

    Nowadays, medical care development allows many people to share the benefits of implanted pacemakers (PM). PM can be perturbed and even fall in complete breakdowns in an electromagnetic and radiation environment. A stimuli-dependent patient can thus be seriously in danger. This article presents the effect of ionizing radiation from either a cobalt-60 source or from a linear accelerator (Saturne 43) on 12 pacemakers. It seems that technological progress make electronic circuits more sensitive to the cumulated dose of radiation. This survey shows that pacemakers have great difficulties to sustain ionizing radiation doses that are commonly delivered to patients during therapies. Usually perturbed functioning appears suddenly and means a strong shift of stimuli that might lead to heart failure

  12. Effect of low doses of ionizing radiation on human health

    International Nuclear Information System (INIS)

    Kovalenko, A.N.

    1990-01-01

    Data are reported on the possible mechanism of biological effects of low doses of ionizing radiation on the human body. The lesioning effect of this radiation resulted in some of the persons in the development of disorders of the function of information and vegetative-regulatory systems determined as a desintegration syndrome. This syndrome is manifested in unspecific neuro-vegetative disorders of the function of most important physiological and homeostatic system of the body leading to weakening of the processes of compensation and adaptation. This condition is characterized by an unspecific radiation syndrome as distinct from acute or chronic radiation disease which is a specific radiation syndrome

  13. Low dose radiation enhance the anti-tumor effect of high dose radiation on human glioma cell U251

    International Nuclear Information System (INIS)

    Wang Chang; Wang Guanjun; Tan Yehui; Jiang Hongyu; Li Wei

    2008-01-01

    Objective: To detect the effect on the growth of human glioma cell U251 induced by low dose irradiation and low dose irradiation combined with large dose irradiation. Methods: Human glioma cell line U251 and nude mice carried with human glioma were used. The tumor cells and the mice were treated with low dose, high dose, and low dose combined high dose radiation. Cells growth curve, MTT and flow cytometry were used to detect the proliferation, cell cycle and apoptosis of the cells; and the tumor inhibition rate was used to assess the growth of tumor in vivo. Results: After low dose irradiation, there was no difference between experimental group and control group in cell count, MTT and flow cytometry. Single high dose group and low dose combined high dose group both show significantly the suppressing effect on tumor cells, the apoptosis increased and there was cell cycle blocked in G 2 period, but there was no difference between two groups. In vivo apparent anti-tumor effect in high dose radiation group and the combining group was observed, and that was more significant in the combining group; the prior low dose radiation alleviated the injury of hematological system. There was no difference between single low dose radiation group and control. Conclusions: There is no significant effect on human glioma cell induced by low dose radiation, and low dose radiation could not induce adaptive response. But in vivo experience, low dose radiation could enhance the anti-tumor effect of high dose radiation and alleviated the injury of hematological system. (authors)

  14. Somatic and genetic effects of low-level radiation

    International Nuclear Information System (INIS)

    Upton, A.C.

    1974-01-01

    Although the biological effects of ionizing radiation are probably better known than those of any other physical or chemical agent in the environment, our information about such effects has come from observations at doses and dose rates which are orders of magnitude higher than natural background environmental radiation levels. Whether, therefore biological effects occur in response to such low levels can be estimated only by extrapolation, based on assumptions about the dose-effect relationship and the mechanisms of the effects in question. Present knowledge suggests the possibility that several types of biological effects may result from low-level irradiation. The induction of heritable genetic changes in germ cells and carcinogenic changes in somatic cells are considered to be the most important from the standpoint of their potential threat to health. On the basis of existing data, it is possible to make only tentative upper limit estimates of the risks of these effects at low doses. The estimates imply that the frequency of such effects attributable to exposure at natural background radiation levels would constitute only a small fraction of their natural incidence. 148 references

  15. Study of effects of radiation on silicone prostheses

    International Nuclear Information System (INIS)

    Shedbalkar, A.R.; Devata, A.; Padanilam, T.

    1980-01-01

    Radiation effects on silicone gel and dose distribution of radiation through mammary prostheses were studied. Silicone gel behaves like tissue. Half value thickness for silicone gel and water are almost the same. Linear absorption coefficient for silicone gel and water are comparable

  16. Effectiveness of topical steroids in the control of radiation dermatitis

    International Nuclear Information System (INIS)

    Glees, J.P.; Mameghan-Zadeh, H.; Sparkes, C.G.

    1979-01-01

    Radiation dermatitis often presents as a problem for patients and radiotherapists during treatment. Topical corticosteroids have been shown to have an anti-inflammatory effect in the treatment of many skin diseases and are commonly prescribed during a course of radiation treatment. A comparison of two different steroid creams, 1% hydrocortisone cream and 0.05% clobetasone butyrate (Eumovate), in a double blind trial was carried out in 54 patients undergoing radiation therapy for breast cancer. 'The cream' was administered when patients reached a given dose of 2000 rad (or earlier if required) whether a skin reaction was present or not. The aim of the trial was to evaluate the general effectiveness of steroids in controlling radiation dermatitis and whether one type of cream was superior to the other. The majority of patients using either cream derived benefit in its soothing effect. There was, however, a significant difference in the intensity of reactions seen, patients using clobetasone butyrate developed more severe radiation reactions despite both groups having similar radiation doses. The possibility of two differing populations having different responses to radiation is discussed as is the 'breakthrough phenomenon' described in the literature. It is concluded that neither cream should be used as first choice in the control of radiation dermatitis. (author)

  17. Evidence for beneficial low level radiation effects and radiation hormesis

    International Nuclear Information System (INIS)

    Feinendegen, L.E.

    2005-01-01

    Low doses in the mGy range cause a dual effect on cellular DNA. One effect concerns a relatively low probability of DNA damage per energy deposition event and it increases proportional with dose, with possible bystander effects operating. This damage at background radiation exposure is orders of magnitudes lower than that from endogenous sources, such as ROS. The other effect at comparable doses brings an easily obeservable adaptive protection against DNA damage from any, mainly endogenous sources, depending on cell type, species, and metabolism. Protective responses express adaptive responses to metabolic perturbations and also mimic oxygen stress responses. Adaptive protection operates in terms of DNA damage prevention and repair, and of immune stimulation. It develops with a delay of hours, may last for days to months, and increasingly disappears at doses beyond about 100 to 200 mGy. Radiation-induced apoptosis and terminal cell differentiation occurs also at higher doses and adds to protection by reducing genomic instability and the number of mutated cells in tissues. At low doses, damage reduction by adaptive protection against damage from endogenous sources predictably outweighs radiogenic damage induction. The analysis of the consequences of the particular low-dose scenario shows that the linear-no-threshold (LNT) hypothesis for cancer risk is scientifically unfounded and appears to be invalid in favor of a threshold or hormesis. This is consistent with data both from animal studies and human epidemiological observations on low-dose induced cancer. The LNT hypothesis should be abandoned and be replaced by a hypothesis that is scientifically justified. The appropriate model should include terms for both linear and non-linear response probabilities. Maintaining the LNT-hypothesis as basis for radiation protection causes unressonable fear and expenses. (author)

  18. Analysis of Proton Radiation Effects on Gallium Nitride High Electron Mobility Transistors

    Science.gov (United States)

    2017-03-01

    non - ionizing proton radiation damage effects at different energy levels on a GaN-on-silicon high electron mobility transistor...DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) In this work, a physics-based simulation of non - ionizing proton radiation damage effects at different...Polarization . . . . . . . . . . . . . . 6 2.3 Non - Ionizing Radiation Damage Effects . . . . . . . . . . . . . . . 10 2.4 Non - Ionizing Radiation Damage in

  19. UV radiation and its effects. Proceedings

    International Nuclear Information System (INIS)

    1993-01-01

    The National Science Strategy Committee for Climate Change was established in 1991 by the New Zealand Minister of Research, Science and Technology. It advises government through the Minister on research priorities and on levels of expenditure appropriate in various topics relating to climate change. An additional role is to promote coordination between research groups and the user communities to ensure an appropriate range of research strategies. To assist with implementing the latter aspects the NSS Committee will organise workshops on specific aspects of atmosphere and climate change, with a broad spectrum of participants. The first of these was the Workshop on UV Radiation and its Effects held in Christchurch on 20-21 May 1993. The workshop had 40 participants, including representatives from specialist science groups, medicine, veterinary science, farming, forestry and environmental groups. This publication will update the interested reader, whether scientist or lay-person, on the current state of knowledge on changing UV radiation levels and potential problems. As the summaries of papers show, research on ozone levels and on UV radiation and its effects is particularly appropriate for New Zealand scientists with their access to sites covering a wide range of latitudes from Antarctica to the Pacific Islands. New Zealand is part of an important international monitoring network, measuring local stratospheric ozone levels and related surface UV radiation levels. There are concerns about increasing UVB levels and the consequent effects on human health, plant and tree growth, and phytoplankton growth in the oceans. Priorities for further work on these areas are included in the summary of the workshop. (author). 13 figs.; 5 tabs

  20. Effect of radiation in radiotherapy

    International Nuclear Information System (INIS)

    Hirata, Hideki; Fujibuchi, Toshio; Saito, Tsutomu

    2013-01-01

    The title subject is easily explained for the deterministic effect, secondary cancer formation and case reports of accidental exposure at radiotherapy. For the deterministic effect, the dose-effect relationship is sigmoidal in normal and cancer tissues, and the more separated are their curves, the more favorable is the radiotherapy. TD 5/5 is the tolerable dose to yield <5% of irreversible radiation injury to the normal tissue within 5 years after the therapy and is generally dose-limiting. The curves are of various shapes depending on the tissue composition that its functional subunit (FSU) is parallel like lobules of the liver, or in series like neuron. Symptoms appear complicated on these factors. Recent development of CT-based therapeutic planning has made it possible to analyze the partial tissue volume to be irradiated and its absorbed dose by the relationship (dose volume histogram, DVH) between the electron density vs CT value regardless to anatomy. The normal tissue complication probability is a model composed from the physical DVH and biological factors of FSU composition and cellular radiation susceptibility, and is a measure of the irreversible late effect manifested in normal tissues. Epidemiology has shown the increased risk of secondary cancer formation by radiotherapy. Children are highly susceptible to this, and in adults undergoing the therapy of a certain cancer, it is known that the risk of radiation carcinogenesis is increased in the particular tissue. There are presented such case reports of accidental excessive exposure at radiotherapy as caused by an inappropriate use of detector, partial loss of data in a therapeutic planning device, reading of reversed MRI image, and too much repeated use of the old-type electric portal imaging device. (T.T.)

  1. Study of effect ultraviolet radiation on Aspergillus Flavus and Aspergillus Parasiticus

    International Nuclear Information System (INIS)

    Ghafourian, H.; Kafaei, F.; Raouf, J.B.

    2000-01-01

    In this article the results of ultraviolet radiation effects on Aspergillus Flavus and Aspergillus parasiticus to reach the quality control standards are presented. The purpose was to test the effect of ultraviolet radiation in 254 nanometer wavelength for fungi decontamination with respect to the exposure time of radiation and the distance between samples and radiation source. The ultraviolet radiation effects on plates containing Aspergillus Flavus and Aspergillus Parasiticus fungi were studied in the exposure time duration of 30, to 360 seconds of a fixed distance, and also for variable distances from 10 to 40 cm at a given exposure time. It is shown that in the exposure time of more than 360 second the ultraviolet radiation exposure highly decreases the number of Aspergillus Flavus and Aspergillus Parasiticus fungi colonies. By reducing the distance, the number of colonies decreases and it is minimized at a 10 cm distance in the time exposure of 360 second. The above results show that the ultraviolet radiation is an effective method for food decontamination and can be used in industry

  2. The effect of ionizing radiation on immune system

    International Nuclear Information System (INIS)

    Gyuleva, I.

    1999-01-01

    Delayed radiation effects of irradiation at relatively high doses - 0.52- 2 Gy in result of severe accidents are discussed. The immune response of lymphocyte populations manifested in formation of different kind of mutant cells at Hiroshima-A-bombing and Chernobyl accident are presented. It is of great interest the hypothesis presented launched by RERF (Japanese Foundation for Radiation Effect Research, Hiroshima) for radiation induced predominant of T H2 -lymphocytes in comparison to T H1 as delayed immune response at the Hiroshima-A-bomb survivors. The aspect of immune status is quite different at low doses irradiation (0.02 - 0.2 Gy). There is some stimulation in immune response known as hormesis effect. It is suggested that T-cell activation has key role in immune system stimulation at doses under 0.2 Gy. There is also activation of DNA-reparation mechanisms. Suppression of the hypothalamus-hypophysis-suprarenal axis brings to enhancing of immune potential. Chinese people living in a region with three-times higher background radiation, X-ray examined patients as well as occupationally exposed personnel have been investigated. Radioprotective effect of some cytokines and their influence on the individual radiosensitivity are also discussed.The investigations have to be continued because of some inconsistent results

  3. Biological effects of the ionizing radiation. Press breakfast

    International Nuclear Information System (INIS)

    Flury-Herard, A.; Boiteux, S.; Dutrillaux, B.; Toledano, M.

    2000-06-01

    This document brings together the subjects discussed during the Press breakfast of 29 june 2000 on the biological effects of the ionizing radiations, with scientists of the CEA and the CNRS. It presents the research programs and provides inquiries on the NDA operating to introduce the NDA damages by ionizing radiations, the possible repairs and the repair efficiency facing the carcinogenesis. Those researches allow the scientists to define laws on radiation protection. (A.L.B.)

  4. Internal friction, microstructure, and radiation effects

    International Nuclear Information System (INIS)

    Wechsler, M.S.; Sommer, W.F.; Davidson, D.R.

    1984-01-01

    A brief review is given of internal friction relaxation peaks and background internal friction. The microstructural origin of the internal friction is discussed. Particular emphasis is placed on radiation effects

  5. Effects of Scattering of Radiation on Wormholes

    Directory of Open Access Journals (Sweden)

    Alexander Kirillov

    2018-02-01

    Full Text Available Significant progress in the development of observational techniques gives us the hope to directly observe cosmological wormholes. We have collected basic effects produced by the scattering of radiation on wormholes, which can be used in observations. These are the additional topological damping of cosmic rays, the generation of a diffuse background around any discrete source, the generation of an interference picture, and distortion of the cosmic microwave background (CMB spectrum. It turns out that wormholes in the leading order mimic perfectly analogous effects of the scattering of radiation on the standard matter (dust, hot electron gas, etc.. However, in higher orders, a small difference appears, which allows for disentangling effects of wormholes and ordinary matter.

  6. Enhancements in biologically effective ultraviolet radiation following volcanic eruptions

    Science.gov (United States)

    Vogelmann, A. M.; Ackerman, T. P.; Turco, R. P.

    1992-01-01

    A radiative transfer model is used to estimate the changes in biologically effective radiation (UV-BE) at the earth's surface produced by the El Chichon (1982) and Mount Pinatubo (1991) eruptions. It is found that in both cases surface intensity can increase because the effect of ozone depletion outweighs the increased scattering.

  7. Simulation of first-wall radiation effects

    International Nuclear Information System (INIS)

    Logan, C.M.; Anderson, J.D.; Hansen, L.F.

    1975-01-01

    Many of the effects induced in metals as a result of exposure to a radiation environment are intimately associated with the energy of primary recoil atoms (PKAs). Protons with an energy of 16 MeV closely reproduce the PKA energy spectrum which will be present at the first wall in a D--T fusion reactor and should therefore closely reproduce the radiation effects induced by PKAs in the first wall. A preliminary experiment with protons was conducted to measure the sputtering rate and to look for the phenomenon of chunk emission recently observed by Kaminsky and co-workers in samples exposed to 14-MeV neutrons. We are also able to observe the average projected transport range of activated PKAs. (U.S.)

  8. Loading Effect on Tire Noise Radiation

    OpenAIRE

    Cao, Rui; Bolton, J Stuart

    2016-01-01

    Noise radiated by tires is a prominent noise pollution source and it is affected by many different parameters. Here, the effect of static load on tire noise radiation in a laboratory environment was investigated. The measurement was conducted by using the Tire Pavement Testing Apparatus (TPTA), on which a loaded tire can be run at speeds up to 50 km/hr; the tire noise was measured using a nearfield microphone method. The tire loading was varied from 500 to 900 pounds, and several different co...

  9. Photoprotection beyond ultraviolet radiation--effective sun protection has to include protection against infrared A radiation-induced skin damage.

    Science.gov (United States)

    Schroeder, P; Calles, C; Benesova, T; Macaluso, F; Krutmann, J

    2010-01-01

    Solar radiation is well known to damage human skin, for example by causing premature skin ageing (i.e. photoageing). We have recently learned that this damage does not result from ultraviolet (UV) radiation alone, but also from longer wavelengths, in particular near-infrared radiation (IRA radiation, 760-1,440 nm). IRA radiation accounts for more than one third of the solar energy that reaches human skin. While infrared radiation of longer wavelengths (IRB and IRC) does not penetrate deeply into the skin, more than 65% of the shorter wavelength (IRA) reaches the dermis. IRA radiation has been demonstrated to alter the collagen equilibrium of the dermal extracellular matrix in at least two ways: (a) by leading to an increased expression of the collagen-degrading enzyme matrix metalloproteinase 1, and (b) by decreasing the de novo synthesis of the collagen itself. IRA radiation exposure therefore induces similar biological effects to UV radiation, but the underlying mechanisms are substantially different, specifically, the cellular response to IRA irradiation involves the mitochondrial electron transport chain. Effective sun protection requires specific strategies to prevent IRA radiation-induced skin damage. 2010 S. Karger AG, Basel.

  10. Targeted and non-targeted effects of ionizing radiation

    OpenAIRE

    Omar Desouky; Nan Ding; Guangming Zhou

    2015-01-01

    For a long time it was generally accepted that effects of ionizing radiation such as cell death, chromosomal aberrations, DNA damage, mutagenesis, and carcinogenesis result from direct ionization of cell structures, particularly DNA, or from indirect damage through reactive oxygen species produced by radiolysis of water, and these biological effects were attributed to irreparable or misrepaired DNA damage in cells directly hit by radiation. Using linear non-threshold model (LNT), possible ris...

  11. Transistor Small Signal Analysis under Radiation Effects

    International Nuclear Information System (INIS)

    Sharshar, K.A.A.

    2004-01-01

    A Small signal transistor parameters dedicate the operation of bipolar transistor before and after exposed to gamma radiation (1 Mrad up to 5 Mrads) and electron beam(1 MeV, 25 mA) with the same doses as a radiation sources, the electrical parameters of the device are changed. The circuit Model has been discussed.Parameters, such as internal emitter resistance (re), internal base resistance, internal collector resistance (re), emitter base photocurrent (Ippe) and base collector photocurrent (Ippe). These parameters affect on the operation of the device in its applications, which work as an effective element, such as current gain (hFE≡β)degradation it's and effective parameter in the device operation. Also the leakage currents (IcBO) and (IEBO) are most important parameters, Which increased with radiation doses. Theoretical representation of the change in the equivalent circuit for NPN and PNP bipolar transistor were discussed, the input and output parameters of the two types were discussed due to the change in small signal input resistance of the two types. The emitter resistance(re) were changed by the effect of gamma and electron beam irradiation, which makes a change in the role of matching impedances between transistor stages. Also the transistor stability factors S(Ico), S(VBE) and S(β are detected to indicate the transistor operations after exposed to radiation fields. In low doses the gain stability is modified due to recombination of induced charge generated during device fabrication. Also the load resistance values are connected to compensate the effect

  12. Biotropic Effect of Radiation Conditions on Orbital Cosmic Stations

    Science.gov (United States)

    Tsetlin, Vladimir; Ushakov, Igor; Gurieva, Tamar; Moisa, Svetlana; Zotin, Alexei; Lobanov, Alexei

    On the orbit of pilot orbital stations the crews undergo to low doses of chronic irradiation of cosmic radiation. The studying of radiobiological effects in different living systems were carried out in the ship’s side (OC “MIR” and ICS) and model surface experiments (power dose 200 mGy/day, density of neutron flow 30 particles/sm2 sec). It was shown that ionized radiation effects on embryonal development of Japanese quail embryo, inducing morphological disturbances in 12% of embryos. Many years ontogenesis (more 15 years of life in OC “MIR”) of microbial association evoked replacement of dominant types of micromycetes and bacterium and increasing of colony-formed units (CFU) in four orders. In laboratory low doses of γ-radiation induced the increasing of flight strain biomass of Aspergillus niger that corresponds to a radiation hormezis and also the increasing of radio-sensitivity. Moreover, under γ-neutron radiation were marked some deviations in morphology of supporting cell and numerous head falls of Aspergillus niger. The irradiation of Protozoa by low doses led to that spontaneous motion activity of spirostoms (Spirostomum ambiguum Ehbg.) accommodated in water processing by mixed γ-neutron radiation decreased twice that testified the fact that the definite factor of γ-neutron radiation effect is the changing of water medium state. In dry seeds of the highest plants wetting in water of preliminary low doses α-and γ-irradiation cells gradually decreased. In hypomagnetic camera the opposite tendency was observed. It is established the phenomena of stimulating effect of low doses of continuous γ-radiation (source of radiation Co60, period of radiation 10 days, average daily power dose 1,5-2,0 mGy, summary dose 15 mGy) on mezenchim stem cells of mice bone brain - a radiation hormezis which revealed in the intensifying of proliferative activity and increasing of number of colony-formed units-F in bone brain in 1,5-4,5 times. Regenerative capacity of

  13. Effects of total dose of ionizing radiation on integrated circuits

    Energy Technology Data Exchange (ETDEWEB)

    Silveira, Marcilei A.G.; Cirne, K.H.; Gimenez, S.; Santos, R.B.B. [Centro Universitario da FEI, Sao Bernardo do Campo, SP (Brazil); Added, N.; Barbosa, M.D.L.; Medina, N.H.; Tabacniks, M.H. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica; Lima, J.A. de; Seixas Junior, L.E.; Melo, W. [Centro de Tecnologia da Informacao Paulo Archer, Sao Paulo, SP (Brazil)

    2011-07-01

    Full text: The study of ionizing radiation effects on materials used in electronic devices is of great relevance for the progress of global technological development and, particularly, it is a necessity in some strategic areas in Brazil. Electronic circuits are strongly influenced by radiation and the need for IC's featuring radiation hardness is largely growing to meet the stringent environment in space electronics. On the other hand, aerospace agencies are encouraging both scientific community and semiconductors industry to develop hardened-by-design components using standard manufacturing processes to achieve maximum performance, while significantly reducing costs. To understand the physical phenomena responsible for changes in devices exposed to ionizing radiation several kinds of radiation should then be considered, among them alpha particles, protons, gamma and X-rays. Radiation effects on the integrated circuits are usually divided into two categories: total ionizing dose (TID), a cumulative dose that shifts the threshold voltage and increases transistor's off-state current; single events effects (SEE), a transient effect which can deposit charge directly into the device and disturb the properties of electronic circuits. TID is one of the most common effects and may generate degradation in some parameters of the CMOS electronic devices, such as the threshold voltage oscillation, increase of the sub-threshold slope and increase of the off-state current. The effects of ionizing radiation are the creation of electron-hole pairs in the oxide layer changing operation mode parameters of the electronic device. Indirectly, there will be also changes in the device due to the formation of secondary electrons from the interaction of electromagnetic radiation with the material, since the charge carriers can be trapped both in the oxide layer and in the interface with the oxide. In this work we have investigated the behavior of MOSFET devices fabricated with

  14. Thyroid cancer due to biological effects of ionizing radiation

    International Nuclear Information System (INIS)

    Galvão, T.; Castro, N.; Teixeira, D.; Matuo, R.

    2017-01-01

    Thyroid cancer is considered the most common in the region of the head and neck. It can be caused by spontaneous mutations, but also by ionizing radiation. The effect of ionizing radiation on the thyroid has been studied for several decades. The exact cause of the cancer is not known, but people with certain risk factors are more vulnerable, such as exposure to radiation, family history and age over 40 years. The thyroid is susceptible to the effects of radiation and is involved in the field of diagnostic or therapeutic irradiation, and may present functional and structural changes. Radiation can act in different ways, such as inhibiting or activating specific functions of the follicular epithelium, reducing the number of functioning follicles, altering vascularization or vascular permeability and inducing immune reactions. These morphological and histological changes may be related to the development of thyroid cancer

  15. Radiations from GSM Base Stations and its Biological Effects

    African Journals Online (AJOL)

    Michael Horsfall

    All rights reserved ... radiofrequency radiations on albino mice placed in exposure cages and ... information in Nigeria on the possible effects of the .... The slides were left to dry on the hot plate ... potential health effect of the RF radiations. It is also a pointer to the need for .... The telecommunication industry is an essential.

  16. The study of the radiation protection of propolis to the radiation effects in mice

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Y.H.; Suzuki, Ikukatsu; Hasegawa, Takeo; Muto, H. [Suzuka Univ. of Medical Science, Mie (Japan); Yanagisawa, Takaharu; Iwasa, Toshihiro; Bamen, K.

    2000-05-01

    The profit which radiation brought to the Homo sapiens is very big. But, radiation has even harmful parameter for the human besides one case. After effect on man to the radiation is thought about, the individual of which sensibility is the highest is a fetus. Therefore, even an effects to this fetus is grasped precisely, and protection criterion and resource are decided from the viewpoint of the protection of radiation as well. If it does so, a child and maturitas aren't so difficult as in the protection of radiation and the managerial side. It was examined about control group, propolis administration chisels for medical use group, 1.5 Gy independent exposure group and propolis pluse 1.5 Gy group in this study. It was examined about the protection of radiation of propolis which to malformation, fetal death, arrested development, and so on in the organogenesis (8 days post conception) being done when sensibility is the highest against the teratogenesis. Preimplantation death rate was compared with the control group and the sham control group, and statistical significant difference wasn't recognized by a 1.5 Gy radiation independent exposure group, propolis administration 1.5 Gy radiation exposure group. As for the embryonic death rate, propolis was administered, and obviously embryonic death rate was poorer than the 1.5 Gy independent exposure group, and significant difference was recognized by a 1.5 Gy radiation exposure group (p<0.001). It has a 1.5 Gy radiation exposure group made clear by this research fetal death rate propolis administer more only 1.5 Gy exposure fetal death rate development low (p<0.001). Fetal death rate wasn't recognized by propolis administration group (Sham control). As for the teratogenesis rate, propolis was administered, and the teratogenesis rate of the 1.5 Gy radiation exposure group was higher than the 1.5 Gy radiation independent exposure group. But, this is thought anamorphosis appear by propolis administration so

  17. The study of the radiation protection of propolis to the radiation effects in mice

    International Nuclear Information System (INIS)

    Gu, Y.H.; Suzuki, Ikukatsu; Hasegawa, Takeo; Muto, H.; Yanagisawa, Takaharu; Iwasa, Toshihiro; Bamen, K.

    2000-01-01

    The profit which radiation brought to the Homo sapiens is very big. But, radiation has even harmful parameter for the human besides one case. After effect on man to the radiation is thought about, the individual of which sensibility is the highest is a fetus. Therefore, even an effects to this fetus is grasped precisely, and protection criterion and resource are decided from the viewpoint of the protection of radiation as well. If it does so, a child and maturitas aren't so difficult as in the protection of radiation and the managerial side. It was examined about control group, propolis administration chisels for medical use group, 1.5 Gy independent exposure group and propolis pluse 1.5 Gy group in this study. It was examined about the protection of radiation of propolis which to malformation, fetal death, arrested development, and so on in the organogenesis (8 days post conception) being done when sensibility is the highest against the teratogenesis. Preimplantation death rate was compared with the control group and the sham control group, and statistical significant difference wasn't recognized by a 1.5 Gy radiation independent exposure group, propolis administration 1.5 Gy radiation exposure group. As for the embryonic death rate, propolis was administered, and obviously embryonic death rate was poorer than the 1.5 Gy independent exposure group, and significant difference was recognized by a 1.5 Gy radiation exposure group (p<0.001). It has a 1.5 Gy radiation exposure group made clear by this research fetal death rate propolis administer more only 1.5 Gy exposure fetal death rate development low (p<0.001). Fetal death rate wasn't recognized by propolis administration group (Sham control). As for the teratogenesis rate, propolis was administered, and the teratogenesis rate of the 1.5 Gy radiation exposure group was higher than the 1.5 Gy radiation independent exposure group. But, this is thought anamorphosis appear by propolis administration so long as there was

  18. Models for Total-Dose Radiation Effects in Non-Volatile Memory

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Philip Montgomery; Wix, Steven D.

    2017-04-01

    The objective of this work is to develop models to predict radiation effects in non- volatile memory: flash memory and ferroelectric RAM. In flash memory experiments have found that the internal high-voltage generators (charge pumps) are the most sensitive to radiation damage. Models are presented for radiation effects in charge pumps that demonstrate the experimental results. Floating gate models are developed for the memory cell in two types of flash memory devices by Intel and Samsung. These models utilize Fowler-Nordheim tunneling and hot electron injection to charge and erase the floating gate. Erase times are calculated from the models and compared with experimental results for different radiation doses. FRAM is less sensitive to radiation than flash memory, but measurements show that above 100 Krad FRAM suffers from a large increase in leakage current. A model for this effect is developed which compares closely with the measurements.

  19. Radiation, its biological effects and uses: past experiences and future perspectives

    International Nuclear Information System (INIS)

    Bharti, Neha; Pande, Nivedita

    2012-01-01

    Radiation refers to electromagnetic energy that travels through space in the form of particles or waves. It is energy such as heat, light, sound, radio waves and radar. It is everywhere including in the food we eat and the air that we breathe. Biological effects of radiation including cell killing, mutagenesis and carcinogenesis are all due to damage to DNA; Radiation releases OH ions from water molecules, which cause the cell damage due to their oxidizing effect. The mechanism by which radiation causes damage to human tissue, or any other material, is by ionization of atoms in the material. Genetic or heritable effects appear in the future generations of the exposed person as a result of radiation damage to the reproductive cells. Radiation may alter the DNA within any cell. Cell damage and death that result from mutations in somatic cells occur only in the organism in which the mutation occurred and are therefore termed somatic or no heritable effects. Acute radiation dose is defined as a large dose delivered during a short period of time. Genetic or heritable effects appear in the future generations of the exposed person as a result of radiation damage to the reproductive cells. The radiation used for cancer treatment may come from a machine outside the body, or it may come from radioactive material placed in the body near tumor cells or injected into the bloodstream. Radiation is used to help remove toxic pollutants, such as exhaust gases from coal-fired power stations and industry. For example, electron beam radiation can remove dangerous sulphur dioxides and nitrogen oxides from our environment and used to help remove toxic pollutants, such as exhaust gases from coal-fired power stations and industry. (author)

  20. Advances in the biological effects of terahertz wave radiation.

    Science.gov (United States)

    Zhao, Li; Hao, Yan-Hui; Peng, Rui-Yun

    2014-01-01

    The terahertz (THz) band lies between microwave and infrared rays in wavelength and consists of non-ionizing radiation. Both domestic and foreign research institutions, including the army, have attached considerable importance to the research and development of THz technology because this radiation exhibits both photon-like and electron-like properties, which grant it considerable application value and potential. With the rapid development of THz technology and related applications, studies of the biological effects of THz radiation have become a major focus in the field of life sciences. Research in this field has only just begun, both at home and abroad. In this paper, research progress with respect to THz radiation, including its biological effects, mechanisms and methods of protection, will be reviewed.

  1. Dichromatic laser radiation effects on DNA of Escherichia coli and plasmids

    Science.gov (United States)

    Martins, W. A.; Polignano, G. A. C.; Guimarães, O. R.; Geller, M.; Paoli, F.; Fonseca, A. S.

    2015-04-01

    Dichromatic and consecutive laser radiations have attracted increased attention for clinical applications as offering new tools for the treatment of dysfunctional tissues in situations where monochromatic radiation is not effective. This work evaluated the survival, filamentation and morphology of Escherichia coli cells, and the induction of DNA lesions, in plasmid DNA exposed to low-intensity consecutive dichromatic laser radiation. Exponential and stationary wild type and formamidopyrimidine DNA glycosylase/MutM protein deficient E. coli cultures were exposed to consecutive low-intensity dichromatic laser radiation (infrared laser immediately after red laser) to study the survival, filamentation and morphology of bacterial cells. Plasmid DNA samples were exposed to dichromatic radiation to study DNA lesions by electrophoretic profile. Dichromatic laser radiation affects the survival, filamentation and morphology of E. coli cultures depending on the growth phase and the functional repair mechanism of oxidizing lesions in DNA, but does not induce single/double strands breaks or alkali-labile DNA lesions. Results show that low-intensity consecutive dichromatic laser radiation induces biological effects that differ from those induced by monochromatic laser radiation, suggesting that other therapeutic effects could be obtained using dichromatic radiation.

  2. The biological effects of ionising radiation on Crustaceans: A review

    International Nuclear Information System (INIS)

    Fuller, Neil; Lerebours, Adélaïde; Smith, Jim T.; Ford, Alex T.

    2015-01-01

    Highlights: • We comprehensively review the effects of ionising radiation in crustaceans. • Current environmental radioprotection levels found to be inadequate in some cases. • Mutation is shown to be a sensitive endpoint of radiation exposure. • Lowest observed effect dose rate varies by orders of magnitude. - Abstract: Historic approaches to radiation protection are founded on the conjecture that measures to safeguard humans are adequate to protect non-human organisms. This view is disparate with other toxicants wherein well-developed frameworks exist to minimise exposure of biota. Significant data gaps for many organisms, coupled with high profile nuclear incidents such as Chernobyl and Fukushima, have prompted the re-evaluation of our approach toward environmental radioprotection. Elucidating the impacts of radiation on biota has been identified as priority area for future research within both scientific and regulatory communities. The crustaceans are ubiquitous in aquatic ecosystems, comprising greater than 66,000 species of ecological and commercial importance. This paper aims to assess the available literature of radiation-induced effects within this subphylum and identify knowledge gaps. A literature search was conducted pertaining to radiation effects on four endpoints as stipulated by a number of regulatory bodies: mortality, morbidity, reproduction and mutation. A major finding of this review was the paucity of data regarding the effects of environmentally relevant radiation doses on crustacean biology. Extremely few studies utilising chronic exposure durations or wild populations were found across all four endpoints. The dose levels at which effects occur was found to vary by orders of magnitude thus presenting difficulties in developing phyla-specific benchmark values and reference levels for radioprotection. Based on the limited data, mutation was found to be the most sensitive endpoint of radiation exposure, with mortality the least sensitive

  3. The biological effects of ionising radiation on Crustaceans: A review

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, Neil; Lerebours, Adélaïde [Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Ferry Road, Portsmouth, Hampshire PO4 9LY (United Kingdom); Smith, Jim T. [School of Earth & Environmental Sciences, University of Portsmouth, Burnaby Building, Burnaby Road, Portsmouth, Hampshire PO1 3QL (United Kingdom); Ford, Alex T., E-mail: alex.ford@port.ac.uk [Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Ferry Road, Portsmouth, Hampshire PO4 9LY (United Kingdom)

    2015-10-15

    Highlights: • We comprehensively review the effects of ionising radiation in crustaceans. • Current environmental radioprotection levels found to be inadequate in some cases. • Mutation is shown to be a sensitive endpoint of radiation exposure. • Lowest observed effect dose rate varies by orders of magnitude. - Abstract: Historic approaches to radiation protection are founded on the conjecture that measures to safeguard humans are adequate to protect non-human organisms. This view is disparate with other toxicants wherein well-developed frameworks exist to minimise exposure of biota. Significant data gaps for many organisms, coupled with high profile nuclear incidents such as Chernobyl and Fukushima, have prompted the re-evaluation of our approach toward environmental radioprotection. Elucidating the impacts of radiation on biota has been identified as priority area for future research within both scientific and regulatory communities. The crustaceans are ubiquitous in aquatic ecosystems, comprising greater than 66,000 species of ecological and commercial importance. This paper aims to assess the available literature of radiation-induced effects within this subphylum and identify knowledge gaps. A literature search was conducted pertaining to radiation effects on four endpoints as stipulated by a number of regulatory bodies: mortality, morbidity, reproduction and mutation. A major finding of this review was the paucity of data regarding the effects of environmentally relevant radiation doses on crustacean biology. Extremely few studies utilising chronic exposure durations or wild populations were found across all four endpoints. The dose levels at which effects occur was found to vary by orders of magnitude thus presenting difficulties in developing phyla-specific benchmark values and reference levels for radioprotection. Based on the limited data, mutation was found to be the most sensitive endpoint of radiation exposure, with mortality the least sensitive

  4. Sterilizing radiation effects on selected polymers

    International Nuclear Information System (INIS)

    Skiens, W.E.

    1979-03-01

    The mechanism of radiation effects and their industrial applications are discussed for the following classes of polymers: thermoplastics, thermosets, elastomers, films and fibers, and adhesives/coatings/potting compounds. 35 references, 3 tables

  5. Oxygen effect in radiation biology: caffeine and serendipity

    International Nuclear Information System (INIS)

    Kesavan, P.C.

    2005-01-01

    The 'hit theory' developed in 1920s to explain the actions of ionizing radiation on cells and organisms was purely physical, and its limitation was its inadequacy to address the contemporary findings such as the oxygen enhancement of radiobiological damage, and the increased radio- sensitivity of dividing compared to non-dividing cells. The textbooks written prior to 1970s did not either refer at all to oxygen as a radiosensitizer, or had mentioned it only in a passing manner; yet 'oxygen effect' was emerging as the central dogma in radiation biology. The oxygen effect in radiation biology is highly interdisciplinary encompassing atomic physics (i.e. interaction of photon with matter), radiation chemistry (formation of reactive oxygen species), molecular signalling, gene expression and genetic alterations in cells (mutation, cancer) or the cell death (apoptosis, necrosis, mitotic catastrophe, etc.). Cell death in higher organisms is now recognized as the precursor of possible error-free cell replacement repair. (author)

  6. Biopositive Effects of Ionizing Radiation?

    International Nuclear Information System (INIS)

    Broda, E.

    1972-01-01

    This paper was written for a talk given by E. Broda in Vienna for an event organised by the chemical physical society, the Austrian biochemical society and the Austrian biophysical society in December 1972. In this paper Broda analyses the question of biopositive effects of ionizing radiation. (nowak)

  7. Radiation effects on video imagers

    International Nuclear Information System (INIS)

    Yates, G.J.; Bujnosek, J.J.; Jaramillo, S.A.; Walton, R.B.; Martinez, T.M.; Black, J.P.

    1985-01-01

    Radiation sensitivity of several photoconductive, photoemissive, and solid state silicon-based video imagers was measured by analyzing stored photocharge induced by irradiation with continuous and pulsed sources of high energy photons and neutrons. Transient effects as functions of absorbed dose, dose rate, fluences, and ionizing particle energy are presented

  8. Effects of Chronic Low-Dose Radiation on Human Neural Progenitor Cells

    Science.gov (United States)

    Katsura, Mari; Cyou-Nakamine, Hiromasa; Zen, Qin; Zen, Yang; Nansai, Hiroko; Amagasa, Shota; Kanki, Yasuharu; Inoue, Tsuyoshi; Kaneki, Kiyomi; Taguchi, Akashi; Kobayashi, Mika; Kaji, Toshiyuki; Kodama, Tatsuhiko; Miyagawa, Kiyoshi; Wada, Youichiro; Akimitsu, Nobuyoshi; Sone, Hideko

    2016-01-01

    The effects of chronic low-dose radiation on human health have not been well established. Recent studies have revealed that neural progenitor cells are present not only in the fetal brain but also in the adult brain. Since immature cells are generally more radiosensitive, here we investigated the effects of chronic low-dose radiation on cultured human neural progenitor cells (hNPCs) derived from embryonic stem cells. Radiation at low doses of 31, 124 and 496 mGy per 72 h was administered to hNPCs. The effects were estimated by gene expression profiling with microarray analysis as well as morphological analysis. Gene expression was dose-dependently changed by radiation. By thirty-one mGy of radiation, inflammatory pathways involving interferon signaling and cell junctions were altered. DNA repair and cell adhesion molecules were affected by 124 mGy of radiation while DNA synthesis, apoptosis, metabolism, and neural differentiation were all affected by 496 mGy of radiation. These in vitro results suggest that 496 mGy radiation affects the development of neuronal progenitor cells while altered gene expression was observed at a radiation dose lower than 100 mGy. This study would contribute to the elucidation of the clinical and subclinical phenotypes of impaired neuronal development induced by chronic low-dose radiation.

  9. Effects of ionizing radiation on nitric oxide myoglobin

    International Nuclear Information System (INIS)

    Kamarei, A.R.; Karel, M.

    1983-01-01

    Bovine nitric oxide myoglobin (NOMb) was irradiated with 40-4000 krad of γ-radiation, and the effects on the haem studied using absorption spectroscopy and electron spin resonance (e.s.r.) spectroscopy. The results show the following behaviour: (a) The bright red colour of NOMb changes to brown upon irradiation. This is similar to changes observed in radiation sterilized, nitrite-containing meats. (b) NOMb becomes progressively denitrosylated, with met-myoglobin (metMb) as the immediate product. (c) Upon increasing doses of radiation (up to 800 krad) at O 0 C parallel to NOMb denitrosylation, metMb is gradually converted, by water radiolytic products, to other products, believed to be ferromyoglobin and ferrimyoglobin peroxide. A minor quantity of 'choleglobin-type' pigments may also be formed at the highest doses. (d) Freezing of NOMb has a substantial protective effect against radiation. (e) Native bovine NOMb behaves as a pentaco-ordinate (hfs of 3 peaks with equal intensity); the bond between iron and Nsub(epsilon) is thus dramatically stretched and weakened. (f) Using a thermal energy analyser, no NO could be detected over irradiated NOMb solution, indicating rapid reaction of NO liberated from NOMb by radiation, with radiolytic products of water. (author)

  10. Effects of low dose radiation and epigenetic regulation

    International Nuclear Information System (INIS)

    Jiao Benzheng; Ma Shumei; Yi Heqing; Kong Dejuan; Zhao Guangtong; Gao Lin; Liu Xiaodong

    2010-01-01

    Purpose: To conclude the relationship between epigenetics regulation and radiation responses, especially in low-dose area. Methods: The literature was examined for papers related to the topics of DNA methylation, histone modifications, chromatin remodeling and non-coding RNA modulation in low-dose radiation responses. Results: DNA methylation and radiation can regulate reciprocally, especially in low-dose radiation responses. The relationship between histone methylation and radiation mainly exists in the high-dose radiation area; histone deacetylase (HDAC) inhibitors show a promising application to enhance radiation sensitivity, no matter whether in low-dose or high-dose areas; the connection between γ-H2AX and LDR has been remained unknown, although γ-H2AX has been shown no radiation sensitivities with 1-15 Gy irradiation; histone ubiquitination play an important role in DNA damage repair mechanism. Moreover, chromatin remodeling has an integral role in DSB repair and the chromatin response, in general, may be precede DNA end resection. Finally, the effect of radiation on miRNA expression seems to vary according to cell type, radiation dose, and post-irradiation time point. Conclusion: Although the advance of epigenetic regulation on radiation responses, which we are managing to elucidate in this review, has been concluded, there are many questions and blind blots deserved to investigated, especially in low-dose radiation area. However, as progress on epigenetics, we believe that many new elements will be identified in the low-dose radiation responses which may put new sights into the mechanisms of radiation responses and radiotherapy. (authors)

  11. Combined effect of gamma radiation and stress cracking in polystyrene

    International Nuclear Information System (INIS)

    Amorim, Fernando A.; Rabello, Marcelo S.; Silva, Leonardo G.A.

    2011-01-01

    This study aimed to evaluate the combined effect of gamma radiation and stress cracking in polystyrene. Three different grades of polystyrene were analysed. The material was submitted to tensile tests and relaxation, analysis of molecular weight and determination of crosslinking. The results showed an increase in tensile strength in the specimens that had been exposed to radiation. The higher the molecular weight polystyrene showed better mechanical properties and after suffering the effects of gamma radiation there was an increase of 5.67% in the resistance to stress cracking effects. (author)

  12. Narrowing the Gap in Quantification of Aerosol-Cloud Radiative Effects

    Science.gov (United States)

    Feingold, G.; McComiskey, A. C.; Yamaguchi, T.; Kazil, J.; Johnson, J. S.; Carslaw, K. S.

    2016-12-01

    Despite large advances in our understanding of aerosol and cloud processes over the past years, uncertainty in the aerosol-cloud radiative effect/forcing is still of major concern. In this talk we will advocate a methodology for quantifying the aerosol-cloud radiative effect that considers the primacy of fundamental cloud properties such as cloud amount and albedo alongside the need for process level understanding of aerosol-cloud interactions. We will present a framework for quantifying the aerosol-cloud radiative effect, regime-by-regime, through process-based modelling and observations at the large eddy scale. We will argue that understanding the co-variability between meteorological and aerosol drivers of the radiative properties of the cloud system may be as important an endeavour as attempting to untangle these drivers.

  13. Biochemical studies on the effect of radiation on plants

    International Nuclear Information System (INIS)

    Yonies, R.M.M.

    1997-01-01

    The effect of gamma radiation, microwave radiation, interaction between gamma and microwave radiation and storage of radiated oil seeds (soybean and sesame) were investigated in this study to find out the best treatment which have the maximum reduction of anti nutritional factors (Trypsin inhibitor and lipoxygenase activities) without significant effect on the chemical constituents. The gamma rays was used at three doses of 2.5, 5.0 and 8.0 K.Gy, microwave radiation was at 70 level power for 2 and 4 mins, and the storage of seeds was at rome temperature, R.H.50-55% for 6 months. The results showed no significant changes in the chemical constituents (ash, moisture, protein, carbohydrate, lipid) in both investigated seeds under all treatments. On the other hand, the best treatments which had highly significant reduction effects on the anti nutritional factors (trypsin inhibitor, tannins, phytic acis, phenols and lipoxygenase) were 8.0 K.Gy for 6 months, 4 mins M.W. for soybean, 2 mins M.W. for sesame and 8.0 K.Gy +4 mins M.W. at 6 months. 38 tabs., 39 figs., 279 refs

  14. Studies of health effects of low dose radiation and its application to medicare

    International Nuclear Information System (INIS)

    Yamaoka, Kiyonori; Ishida, Kenji; Iwasaki, Toshiyasu; Koana, Takao; Magae, Junji; Watanabe, Masami; Sakamoto, Kiyohiko

    2008-01-01

    The articles contain following 7 topics of low dose radiation effects. Studies of Health Effects of Low dose Radiation and Its Application to Medicare'', describes the indication of Rn therapy and investigations of its usefulness mechanism mainly in Misasa Spa, Okayama Pref. ''Challenges for the Paradigm Shift (CRIEPI Studies)'', introduces studies against the paradigm that radiation dose is linearly and proportionally hazardous. ''Studies of High Background Radiation Area (CRIEPI Studies)'', describes global HBRA studies on chromosome affection and effect of smoking in HBRA. ''Is the Radiation Effect on Man Proportional to Dose? (CRIEPI Studies)'', describes studies of immature sperm irradiated at low dose against Linear-Non-threshold Theory (LNT) hypothesis. ''Induction of Radiation Resistance by Low Dose Radiation and Assessment of Its Effect in Models of Human Diseases (CRIEPI Studies)'', explains the adoptive response in radiation effect, suppression of carcinogenesis and immune regulation by previous low dose radiation in the mouse, and improvement of diabetes in the db/db mouse. ''Modulation of Biological Effects of Low Dose Radiation: Adoptive Response, Bystander Effect, Genetic Instability and Radiation Hormesis'', summarizes findings of each item. ''Cancer Treatment with Low dose Radiation to the Whole Body'', describes basic studies in the mouse tumor in relation to suppression of carcinogenesis and metastasis, immune activation and treatment, and successful clinical studies in patients with ovary, colon cancers and malignant lymphoma where survival has been significantly improved: a base of recent European Organization for Research and Treatment of Cancer (EORTC) clinical trials. The mechanism is essentially based on immune activation of patients to cure the disease. (R.T.)

  15. The Brookhaven Radiation Effects Facility

    Energy Technology Data Exchange (ETDEWEB)

    Grand, P.; Snead, C.L.; Ward, T.

    1988-01-01

    The Neutral Particle Beam (NPB) Radiation Effects Facility (REF), funded by the Strategic Defense Initiative Office (SDIO) through the Defense Nuclear Agency (DNA) and the Air Force Weapons Laboratory (AFWL), has been constructed at Brookhaven National Laboratory (BNL). Operation started in October 1986. The facility is capable of delivering pulsed H{sup -}, H{sup o}, and H{sup +} beams of 100 to 200 MeV energy up to 30 mA peak current. Pulses can be adjusted from 5 {mu}s to 500 {mu}s length at a repetition rate of 5 pps. The beam spot on target is adjustable from 3 to 100 cm diameter (2 {sigma}) resulting in a maximum dose of about 10 MRads (Si) per pulse (small beam spot). Experimental use of the REF is being primarily supported by the SDI lethality (LTH-4) program. The program has addressed ionization effects in electronics, both dose rate and total dose dependence, radiation-sensitive components, and dE/dx effects in energetic materials including propellants and high explosives (HE). This paper describes the facility, its capabilities and potential, and the experiments that have been carried out to date or are being planned. 2 refs., 10 figs.

  16. The Brookhaven Radiation Effects Facility

    International Nuclear Information System (INIS)

    Grand, P.; Snead, C.L.; Ward, T.

    1988-01-01

    The Neutral Particle Beam (NPB) Radiation Effects Facility (REF), funded by the Strategic Defense Initiative Office (SDIO) through the Defense Nuclear Agency (DNA) and the Air Force Weapons Laboratory (AFWL), has been constructed at Brookhaven National Laboratory (BNL). Operation started in October 1986. The facility is capable of delivering pulsed H - , H/sup o/, and H + beams of 100 to 200 MeV energy up to 30 mA peak current. Pulses can be adjusted from 5 μs to 500 μs length at a repetition rate of 5 pps. The beam spot on target is adjustable from 3 to 100 cm diameter (2 σ) resulting in a maximum dose of about 10 MRads (Si) per pulse (small beam spot). Experimental use of the REF is being primarily supported by the SDI lethality (LTH-4) program. The program has addressed ionization effects in electronics, both dose rate and total dose dependence, radiation-sensitive components, and dE/dx effects in energetic materials including propellants and high explosives (HE). This paper describes the facility, its capabilities and potential, and the experiments that have been carried out to date or are being planned. 2 refs., 10 figs

  17. Combination effect of cisplatin and radiation in murine solid tumors

    International Nuclear Information System (INIS)

    Egawa, Shin; Lee, Kan-ei; Ishibashi, Akira; Komiyama, Hiroki; Umezawa, Iwao.

    1986-01-01

    The combination effect of cisplatin and radiation was studied using the two different murine systems of sarcoma 180 and Ehrlich solid tumors. In sarcoma 180 solid tumor the minimal effective doses (MED) of cisplatin and radiation were 19.5 mg/kg and 10375 rad respectively whereas these doses did not show any effective antitumor activity practically. Administration of cisplatin with a doses of 9 mg/kg given 24 hours before radiation (1000 rad), however, showed synergistic antitumor activity. In Ehrlich solid tumor the MED of cisplatin and radiation were 13.8 mg/kg and 2892 rad respectively. Treatment with cisplatin, 3, 6 or 9 mg/kg, given 24 hours before radiation (1000 rad) showed also synergistic antitumor activity also. Sodium thiosulfate (STS) rescue was effective in reducing toxicity of cisplatin on combined use of the drug with radiation. Cell kinetics of sarcoma 180 solid tumor in vivo after the combined treatment was analyzed by computer aided flowcytometry. Accumulation of cells in the radiosensitive G 2 + M phase was observed 18 to 42 hours after a single intraperitoneal administration of 9 mg/kg of cisplatin. It is strongly suggested that this synchronization is one of the mechanisms of the synergism in the combination therapy. (author)

  18. Environmental Radiation Effects on Mammals A Dynamical Modeling Approach

    CERN Document Server

    Smirnova, Olga A

    2010-01-01

    This text is devoted to the theoretical studies of radiation effects on mammals. It uses the framework of developed deterministic mathematical models to investigate the effects of both acute and chronic irradiation in a wide range of doses and dose rates on vital body systems including hematopoiesis, small intestine and humoral immunity, as well as on the development of autoimmune diseases. Thus, these models can contribute to the development of the system and quantitative approaches in radiation biology and ecology. This text is also of practical use. Its modeling studies of the dynamics of granulocytopoiesis and thrombocytopoiesis in humans testify to the efficiency of employment of the developed models in the investigation and prediction of radiation effects on these hematopoietic lines. These models, as well as the properly identified models of other vital body systems, could provide a better understanding of the radiation risks to health. The modeling predictions will enable the implementation of more ef...

  19. Genetic effects of ionizing radiation and repair processes

    International Nuclear Information System (INIS)

    Tuschl, H.

    1986-11-01

    Since DNA (=desoxyribonucleic acid) is the largest molecule within the cell it is the most important target for direct and indirect radiation effects. Within DNA the total genetic information is stored, thus damage to DNA in germ cells causes genetic disorders and damage in somatic cells is implicated in cancer and immunodeficiences. Alterations of DNA structure are not only due to ionizing radiation effects, but also to spontaneous DNA modifications and damage from interactions with environmental ultraviolet light and chemical agents. To maintain its genetic integrity, each organism had to develop different repair systems able to recognize and remove DNA damage. Repeated exposure to a DNA damaging agent can even lead to adaptation processes and increased resistance to the same agent. At normal function of repair systems it can be assumed that the capacity of those systems is adequate to scope with the effects of low radiation doses. (Author)

  20. Effect of ionizing radiations on bacterial endotoxins: comparison between gamma radiations and accelerated electrons

    Energy Technology Data Exchange (ETDEWEB)

    Guyomard, S; Goury, V; Darbord, J C

    1988-01-01

    Determinations of the effect of radiation sterilization processing on purified endotoxins, in aqueous solution or on dried support, are reported. These observations allow us to accept gamma radiations for sterilization of parenteral devices with an estimated probability of existence of non apyrogenic items, based upon a similar definition of the usual Sterility Assurance Level (SAL = 10/sup -6/).

  1. Biological effects of low-dose ionizing radiation exposure; Biologische Wirkungen niedriger Dosen ionisierender Strahlung

    Energy Technology Data Exchange (ETDEWEB)

    Reinoehl-Kompa, Sabine; Baldauf, Daniela; Heller, Horst (comps.)

    2009-07-01

    The report on the meeting of the Strahlenschutzkommission 2007 concerning biological effects of low-dose ionizing radiation exposure includes the following contributions: Adaptive response. The importance of DNA damage mechanisms for the biological efficiency of low-energy photons. Radiation effects in mammography: the relative biological radiation effects of low-energy photons. Radiation-induced cataracts. Carcinomas following prenatal radiation exposure. Intercellular apoptosis induction and low-dose irradiation: possible consequences for the oncogenesis control. Mechanistic models for the carcinogenesis with radiation-induced cell inactivation: application to all solid tumors in the Japanese atomic bomb survivors. Microarrays at low radiation doses. Mouse models for the analysis of biological effects of low-dose ionizing radiation. The bystander effect: observations, mechanisms and implications. Lung carcinoma risk of Majak workers - modeling of carcinogenesis and the bystander effect. Microbeam studies in radiation biology - an overview. Carcinogenesis models with radiation-induced genomic instability. Application to two epidemiological cohorts.

  2. Effectiveness of eye drops protective against ultraviolet radiation.

    Science.gov (United States)

    Daxer, A; Blumthaler, M; Schreder, J; Ettl, A

    1998-01-01

    To test the effectiveness of commercially available ultraviolet (UV)-protective eye drops (8-hydroxy-1-methylchinolinium methylsulphate) which are recommended for protection against both solar and artificial UV radiation. The spectral transmission in the wavelength range from 250 to 500 nm was investigated in 1-nm steps using a high-resolution double monochromator with holographic gratings of 2,400 lines/mm and a 1,000-watt halogen lamp as light source. The transmission spectrum was measured for different values of the layer thickness. The transmission of a liquid layer of about 10 microns, which corresponds to the thickness of the human tear film, shows a cut-off at 290 nm with a transmission of about 25-50% at shorter wavelengths. For wavelengths longer than 290 nm the transmission is higher than 90%. The threshold time ratio for keratitis formation with and without eye drops is above 0.93 considering solar radiation on the earth's surface and above 0.65 considering radiation from arc-welding, respectively. The transmission spectrum of the eye drops under realistic conditions does not show a protective effect against solar UV radiation. However, there exists reduction of UVC radiation in the spectral range typical of artificial UV sources such as arc-welding. We cannot recommend the application of these eye drops as an UV-protective aid against eye damage by solar UV radiation.

  3. Radiation and their deleterious effects: special respect to X-ray

    International Nuclear Information System (INIS)

    Purohit, R.K.; Joshi, Pankaj Kumar; Basu, Arindam; Chakarwati, Aruna; Agarwal, Manisha

    2012-01-01

    Radiation have been influencing the living and non living systems on earth, since their evolution from simple, humble beginnings to diversely complex system of the present day biological world. Most of the radiations have been the basis for conduction and completion of vital life processes like photosynthesis which form the base and initiation point of flow of energy within the biological world. However there are some radiation called as ionizing radiation with energy content of more then 124 eV, which have the capacity to cause deleterious effects in livings system ranging from simple unicellular organisms to the large and complex animals and plants. The discovery of X-ray by William Conrad Roentgen in 1898 provided the originating point for radiation biology as a well defined discipline. Together with the discovery of X-ray radioactivity and new radioactive elements the biological effects of ionizing radiation began to be studied immediately after the discovery of X-ray. By the year 1896 press reports regarding the skin injuries involved skin erythemas and ulceration in persons who experienced the frequent and prolonged action of X-ray had appeared. By 1959, 359 radiologists were known to have died of X-ray induced cancer of skin or of leukemia. The deleterious effects of radiation on a large scale became evident when a large number of deaths, approximately 10,300 had occurred when USA dropped atom bomb on the Japanese towns of Hiroshima and Nagasaki, leaving about 80,000 persons injured. The effects of these two explosions are still evident in generation of today and also these twin incidents evoked awareness among the researchers to investigate the nature and effects of