WorldWideScience

Sample records for abscopal radiation effects

  1. Investigation of Abscopal and Bystander Effects in Immunocompromised Mice After Exposure to Pencilbeam and Microbeam Synchrotron Radiation.

    Science.gov (United States)

    Fernandez-Palomo, Cristian; Schültke, Elisabeth; Bräuer-Krisch, Elke; Laissue, Jean Albert; Blattmann, Hans; Seymour, Colin; Mothersill, Carmel

    2016-08-01

    Out-of-field effects are of considerable interest in radiotherapy. The mechanisms are poorly understood but are thought to involve signaling processes, which induce responses in non-targeted cells and tissues. The immune response is thought to play a role. The goal of this research was to study the induction of abscopal effects in the bladders of NU-Foxn1 mice after irradiating their brains using Pencil Beam (PB) or microbeam (MRT) irradiation at the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. Athymic nude mice injected with F98 glioma cells into their right cerebral hemisphere 7 d earlier were treated with either MRT or PB. After recovery times of 2, 12, and 48 h, the urinary bladders were extracted and cultured as tissue explants for 24 h. The growth medium containing the potential signaling factors was harvested, filtered, and transferred to HaCaT reporter cells to assess their clonogenic survival and calcium signaling potential. The results show that in the tumor-free mice, both treatment modalities produce strong bystander/abscopal signals using the clonogenic reporter assay; however, the calcium data do not support a calcium channel mediated mechanism. The presence of a tumor reduces or reverses the effect. PB produced significantly stronger effects in the bladders of tumor-bearing animals. The authors conclude that immunocompromised mice produce signals, which can alter the response of unirradiated reporter cells; however, a novel mechanism appears to be involved.

  2. Proposed Approach for Revealing Unknown Mediators of the Abscopal Effect

    Directory of Open Access Journals (Sweden)

    Khaled Seidia

    2013-07-01

    Full Text Available It is sometimes asserted, as a matter of dogma, that a local treatment cannot have systemic effects. However, treatment with radiotherapy directly localised on a tumour can profoundly affect tumour cells in the other tissues far from the radiated part. In 1953, Dr. Mole called this surprising phenomenon the ‘abscopal effect’. Since its discovery, very little is known about the exact mechanism and the key mediators of this astonishing phenomenon and many other questions in this context still remain unanswered. An understanding of this phenomenon could help to control the fatal face of cancer which is metastasis, and this discovery in turn will introduce promising strategies for treatment of advanced and not-curable cancers. Based on current information, we propose that there is a particular molecule(s or macromolecule(s that mediate(s the abscopal effect. We also speculate that the frequency of the abscopal effect varies between different tumour types and the newly discovered molecule(s or macromolecule(s can enhance/instigate the abscopal effect in those tumour types that show a low frequency of the abscopal effec

  3. Can immunostimulatory agents enhance the abscopal effect of radiotherapy?

    Science.gov (United States)

    Levy, Antonin; Chargari, Cyrus; Marabelle, Aurelien; Perfettini, Jean-Luc; Magné, Nicolas; Deutsch, Eric

    2016-07-01

    Ionising radiation (IR) may harm cancer cells through a rare indirect out-of-field phenomenon described as the abscopal effect. Increasing evidence demonstrates that radiotherapy could be capable of generating tumour-specific immune responses. On the other hand, effects of IR also include inhibitory immune signals on the tumour microenvironment. Following these observations, and in the context of newly available immunostimulatory agents in metastatic cancers (anti-cytotoxic T lymphocyte-associated antigen 4 and programmed cell death protein-1 or -ligand 1 [PD1 or PDL-1]), there is a remarkable potential for synergistic combinations of IR with such agents that act through the reactivation of immune surveillance. Here, we present and discuss the pre-clinical and clinical rationale supporting the enhancement of the abscopal effect of IR on the blockade of immune checkpoints and discuss the evolving potential of immunoradiotherapy.

  4. The Abscopal Effect Associated With a Systemic Anti-melanoma Immune Response

    Energy Technology Data Exchange (ETDEWEB)

    Stamell, Emily F. [Division of Dermatology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (United States); Wolchok, Jedd D. [Melanoma and Sarcoma Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Ludwig Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Ludwig Center for Cancer Immunotherapy, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Weill-Cornell Medical College, New York, New York (United States); Gnjatic, Sacha [Ludwig Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Ludwig Center for Cancer Immunotherapy, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Lee, Nancy Y. [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Brownell, Isaac, E-mail: Isaac.brownell@nih.gov [Dermatology Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Dermatology Branch, National Cancer Institute, Bethesda, Maryland (United States)

    2013-02-01

    The clearance of nonirradiated tumors after localized radiation therapy is known as the abscopal effect. Activation of an antitumor immune response has been proposed as a mechanism for the abscopal effect. Here we report a patient with metastatic melanoma who received palliative radiation to his primary tumor with subsequent clearance of all his nonirradiated in-transit metastases. Anti-MAGEA3 antibodies were found upon serological testing, demonstrating an association between the abscopal effect and a systemic antitumor immune response. A brain recurrence was then treated with a combination of stereotactic radiosurgery and immunotherapy with ipilimumab. The patient experienced a complete remission that included resolution of nodal metastases, with a concomitant increase in MAGEA3 titers and a new response to the cancer antigen PASD1. This case supports the immune hypothesis for the abscopal effect, and illustrates the potential of combining radiotherapy and immunotherapy in the treatment of melanoma.

  5. Study of abscopal radiation effects on multicellular organisms; Etudes sur les effets a distance dans les organismes multicellulaires irradies

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, F. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    Amongst the lesions brought about by total body irradiation, two basically different types can be distinguished: those appearing in the area which has absorbed radiant energy and those emerging in areas remote from the irradiated tissues (abscopal effects). The abscopal effects are produced by toxic tissue breakdown products, which are removed by the bloodstream and interfere with particularly sensitive structures (radiotoxins). The radiotoxins mobilize other biologically active substances, interfering with the same tissues which may display abscopal effects. This is well established for the hormones of the adrenal cortex. Furthermore, important fractions of the radiotoxins are neutralized by the reticuloendothelial system. Temporary blockade of this system enhances the efficiency of radiotoxins and greatly increases mortality of the irradiated animals. One can therefore conclude that the reticuloendothelial system affords a natural defense against an essential reaction of total body irradiation: the effect of the radiotoxins. (author) [French] Les lesions consecutives a une irradiation peuvent etre classees en deux categories: celles qui se produisent au niveau du tissu irradie et celles qui apparaissent en dehors de celui-ci. Ces dernieres - appelees -'effets a distance'- sont dues a l'action de produits d'histolyse apparaissant au niveau du volume tissulaire ayant absorbe l'energie radiante, emportes par le courant sanguin et agissant sur des structures specialement receptives (Radiotoxines). Ces corps provoquait, dans des structures eloignees du siege de l'action locale du rayonnement, la secretion d'autres corps biologiquement actifs, capables d'agir sur les memes tissus pouvant presenter des effets a distance, compliquant ainsi leur mecanisme. Ceci est etabli pour les corticosteroides. De plus, des fractions importantes des radiotoxines sont neutralisees par le systeme reticuloendothelial. Puisque le blocage de ce

  6. Immune Modulation and Stereotactic Radiation: Improving Local and Abscopal Responses

    Directory of Open Access Journals (Sweden)

    Jing Zeng

    2013-01-01

    Full Text Available New and innovative treatment strategies for cancer patients in the fields of immunotherapy and radiotherapy are rapidly developing in parallel. Among the most promising preclinical treatment approaches is combining immunotherapy with radiotherapy where early data suggest synergistic effects in several tumor model systems. These studies demonstrate that radiation combined with immunotherapy can result in superior efficacy for local tumor control. More alluring is the emergence of data suggesting an equally profound systemic response also known as “abscopal” effects with the combination of radiation and certain immunotherapies. Studies addressing optimal radiation dose, fractionation, and modality to be used in combination with immunotherapy still require further exploration. However, recent anecdotal clinical reports combining stereotactic or hypofractionated radiation regimens with immunotherapy have resulted in dramatic sustained clinical responses, both local and abscopal. Technologic advances in clinical radiation therapy has made it possible to deliver hypofractionated regimens anywhere in the body using stereotactic radiation techniques, facilitating further clinical investigations. Thus, stereotactic radiation in combination with immunotherapy agents represents an exciting and potentially fruitful new space for improving cancer therapeutic responses.

  7. A meta-analysis of the abscopal effect in preclinical models: Is the biologically effective dose a relevant physical trigger?

    Science.gov (United States)

    Strolin, Silvia; Bossi, Gianluca; Strigari, Lidia

    2017-01-01

    Background Preclinical in vivo studies using small animals are considered crucial in translational cancer research and clinical implementation of novel treatments. This is of paramount relevance in radiobiology, especially for any technological developments permitted to deliver high doses in single or oligo-fractionated regimens, such as stereotactic ablative radiotherapy (SABR). In this context, clinical success in cancer treatment needs to be guaranteed, sparing normal tissue and preventing the potential spread of disease or local recurrence. In this work we introduce a new dose-response relationship based on relevant publications concerning preclinical models with regard to delivered dose, fractionation schedule and occurrence of biological effects on non-irradiated tissue, abscopal effects. Methods We reviewed relevant publications on murine models and the abscopal effect in radiation cancer research following PRISMA methodology. In particular, through a log-likelihood method, we evaluated whether the occurrence of abscopal effects may be related to the biologically effective dose (BED). To this aim, studies accomplished with different tumor histotypes were considered in our analysis including breast, colon, lung, fibrosarcoma, pancreas, melanoma and head and neck cancer. For all the tumors, the α / β ratio was assumed to be 10 Gy, as generally adopted for neoplastic cells. Results Our results support the hypothesis that the occurrence rate of abscopal effects in preclinical models increases with BED. In particular, the probability of revealing abscopal effects is 50% when a BED of 60 Gy is generated. Conclusion Our study provides evidence that SABR treatments associated with high BEDs could be considered an effective strategy in triggering the abscopal effect, thus shedding light on the promising outcomes revealed in clinical practice. PMID:28222111

  8. MO-FG-BRA-04: Leveraging the Abscopal Effect Via New Design Radiotherapy Biomaterials Loaded with Immune Checkpoint Inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Y; Cifter, G; Altundal, Y; Moreau, M; Sajo, E [Univ Massachusetts Lowell, Lowell, MA (United States); Sinha, N [Wentworth Institute of Technology, Boston, MA (United States); Makrigiorgos, G [Dana Farber Cancer Institute, Boston, MA (United States); Harvard Medical School, Boston, MA (United States); Ngwa, W [Univ Massachusetts Lowell, Lowell, MA (United States); Dana Farber Cancer Institute, Boston, MA (United States); Harvard Medical School, Boston, MA (United States)

    2015-06-15

    Purpose: Studies show that stereotactic body radiation therapy (SBRT) of a primary tumor in combination with immune checkpoint inhibitors (ICI) could Result in an immune-mediated regression of metastasis outside the radiation field, a phenomenon known as abscopal effect. However toxicities due to repeated systematic administration of ICI have been shown to be a major obstacle in clinical trials. Towards overcoming these toxicity limitations, we investigate a potential new approach whereby the ICI are administered via sustained in-situ release from radiotherapy (RT) biomaterials (e.g. fiducials) coated with a polymer containing the ICI. Methods: New design RT biomaterials were prepared by coating commercially available spacers/fiducials with a biocompatible polymer (PLGA) film containing fluorescent nanoparticles of size needed to load the ICI. The release of the nanoparticles was investigated in-vitro. Meanwhile, an experimentally determined in- vivo nanoparticle diffusion coefficient was employed in analytic calculations based on Fick’s second law to estimate the time for achieving the concentrations of ICI in the tumor draining lymph node (TDLN) that are needed to engender the abscopal effect during SBRT. The ICI investigated here was anti-CTLA-4 antibody (ipilimumab) at approved FDA concentrations. Results: Our in -vitro study results showed that RT biomaterials could be designed to achieve burst release of nanoparticles within one day. Meanwhile, our calculations indicate that for a 2 to 4 cm tumor it would take 4–22 days, respectively, following burst release, for the required concentration of ICI nanoparticles to accumulate in the TDLN during SBRT. Conclusion: Current investigations combining RT and immunotherapy involve repeated intravenous administration of ICI leading to significant systemic toxicities. Our preliminary results highlight a potential new approach for sustained in-situ release of the ICI from new design RT biomaterials. These results

  9. Fractionated but not single dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody

    Science.gov (United States)

    Dewan, M. Zahidunnabi; Galloway, Ashley E.; Kawashima, Noriko; Dewyngaert, J. Keith; Babb, James S.; Formenti, Silvia C.; Demaria, Sandra

    2009-01-01

    Purpose This study tested the hypothesis that the type of dose-fractionation regimen determines the ability of radiotherapy to synergize with anti-CTLA-4 antibody. Experimental design TSA mouse breast carcinoma cells were injected s.c. into syngeneic mice at two separate sites, defined as a “primary” site that was irradiated, and a “secondary” site outside the radiotherapy field. When both tumors were palpable mice were randomly assigned to 8 groups receiving no radiotherapy or 3 distinct regimens of radiotherapy (20 Gy × 1, 8 Gy × 3 or 6 Gy × 5 fractions in consecutive days) in combination or not with 9H10 mAb against CTLA-4. Mice were followed for tumors growth/regression. Similar experiments were conducted in the MCA38 mouse colon carcinoma model. Results In either of the 2 models tested treatment with 9H10 alone had no detectable effect. Each of the radiotherapy regimens caused comparable growth delay of the primary tumors, but had no effect on the secondary tumors, outside the radiation field. Conversely, the combination of 9H10 and either fractionated radiotherapy regimens achieved enhanced tumor response at the primary site (p<0.0001). Moreover, an abscopal effect, defined as a significant growth inhibition of the tumor outside the field occurred only in mice treated with the combination of 9H10 and fractionated radiotherapy (p<0.01). Frequency of CD8+ T cells showing tumor-specific IFNγ production was proportional to the inhibition of the secondary tumor. Conclusions Fractionated, but not single dose radiotherapy, induces an abscopal effect when in combination with anti-CTLA-4 antibody, in two preclinical carcinoma models. PMID:19706802

  10. The Effect of Radiation on the Immune Response to Cancers

    Directory of Open Access Journals (Sweden)

    Bonggoo Park

    2014-01-01

    Full Text Available In cancer patients undergoing radiation therapy, the beneficial effects of radiation can extend beyond direct cytotoxicity to tumor cells. Delivery of localized radiation to tumors often leads to systemic responses at distant sites, a phenomenon known as the abscopal effect which has been attributed to the induction and enhancement of the endogenous anti-tumor innate and adaptive immune response. The mechanisms surrounding the abscopal effect are diverse and include trafficking of lymphocytes into the tumor microenvironment, enhanced tumor recognition and killing via up-regulation of tumor antigens and antigen presenting machinery and, induction of positive immunomodulatory pathways. Here, we discuss potential mechanisms of radiation-induced enhancement of the anti-tumor response through its effect on the host immune system and explore potential combinational immune-based strategies such as adoptive cellular therapy using ex vivo expanded NK and T cells as a means of delivering a potent effector population in the context of radiation-enhanced anti-tumor immune environment.

  11. Non-targeted effects of ionising radiation—Implications for low dose risk

    DEFF Research Database (Denmark)

    Kadhim, Munira; Salomaa, Sisko; Wright, Eric;

    2013-01-01

    Non-DNA targeted effects of ionising radiation, which include genomic instability, and a variety of bystander effects including abscopal effects and bystander mediated adaptive response, have raised concerns about the magnitude of low-dose radiation risk. Genomic instability, bystander effects...

  12. Induction of abscopal anti-tumor immunity and immunogenic tumor cell death by ionizing irradiation - implications for cancer therapies.

    Science.gov (United States)

    Frey, B; Rubner, Y; Wunderlich, R; Weiss, E-M; Pockley, A G; Fietkau, R; Gaipl, U S

    2012-01-01

    Although cancer progression is primarily driven by the expansion of tumor cells, the tumor microenvironment and anti-tumor immunity also play important roles. Herein, we consider how tumors can become established by escaping immune surveillance and also how cancer cells can be rendered visible to the immune system by standard therapies such as radiotherapy or chemotherapy, either alone or in combination with additional immune stimulators. Although local radiotherapy results in DNA damage (targeted effects), it is also capable of inducing immunogenic forms of tumor cell death which are associated with a release of immune activating danger signals (non-targeted effects), such as necrosis. Necrotic tumor cells may result from continued exposure to death stimuli and/or an impaired phosphatidylserine (PS) dependent clearance of the dying tumor cells. In such circumstances, mature dendritic cells take up tumor antigen and mediate the induction of adaptive and innate anti-tumor immunity. Locally-triggered, systemic immune activation can also lead to a spontaneous regression of tumors or metastases that are outside the radiation field - an effect which is termed abscopal. Preclinical studies have demonstrated that combining radiotherapy with immune stimulation can induce anti-tumor immunity. Given that it takes time for immunity to develop following exposure to immunogenic tumor cells, we propose practical combination therapies that should be considered as a basis for future research and clinical practice. It is essential that radiation oncologists become more aware of the importance of the immune system to the success of cancer therapy.

  13. Radiation effects in semiconductors

    CERN Document Server

    2011-01-01

    There is a need to understand and combat potential radiation damage problems in semiconductor devices and circuits. Written by international experts, this book explains the effects of radiation on semiconductor devices, radiation detectors, and electronic devices and components. These contributors explore emerging applications, detector technologies, circuit design techniques, new materials, and innovative system approaches. The text focuses on how the technology is being used rather than the mathematical foundations behind it. It covers CMOS radiation-tolerant circuit implementations, CMOS pr

  14. Radiative transfer dynamo effect

    Science.gov (United States)

    Munirov, Vadim R.; Fisch, Nathaniel J.

    2017-01-01

    Magnetic fields in rotating and radiating astrophysical plasma can be produced due to a radiative interaction between plasma layers moving relative to each other. The efficiency of current drive, and with it the associated dynamo effect, is considered in a number of limits. It is shown here, however, that predictions for these generated magnetic fields can be significantly higher when kinetic effects, previously neglected, are taken into account.

  15. Radiation effects in glasses

    Energy Technology Data Exchange (ETDEWEB)

    Ehrt, D.; Vogel, W. (Otto-Schott-Inst., Chemische Fakultaet, Friedrich-Schiller-Univ., Jena (Germany))

    1992-03-01

    Glass was produced by man about 4000 years ago. The scientific exploration of glass is very young and closely connected with Jena. Fraunhofer, Goethe, Dobereiner, Abbe, Zeiss and Schott are famous names on this field. Both crystals and glasses are solids. However, there are fundamental differences in their properties and behavior. Glass is a thermodynamically unstable state and has a defect structure compared to the crystal. Glass and its properties are subject to a variety of changes under the influence of high energy radiation. In general, effects extend from the reduction of specific ions to the collapse of the entire network. Ultraviolet and X-ray radiation effects on UV-transmitting glasses will be discussed. (orig.).

  16. Effects of radiation; Effets des radiations

    Energy Technology Data Exchange (ETDEWEB)

    Masse, R. [Office de Protection contre les Rayonnements Ionisants, 78 - le Vesinet (France)

    2006-07-01

    The medical consequences of a whole-body irradiation come from the destruction of cells and inflammatory reactions it provokes. The most sensitive organs are the tissues that actively split. The embryo is particularly sensitive, from 200 mSv for the effects on the brain development. The reproduction functions are reached for man from 2000 mSv, the ovary sensitivity is less, the oocytes do not split after the fetus life. For adult the bone marrow outrage leads to the disappearing of blood cells (4000 mSv). The doses from 6000 to 10000 mSv lead the failure of the digestive system and lung. for the upper doses every tissue is reached, particularly by the effects on cells of blood vessels. Important brain dysfunctions appear beyond 10000 mSv. As regards the delayed effects of overexposures the epidemiology brings to light sanitary consequences of the exposure of the population to the ionizing radiations and requires that all the possible factors associated for that purpose are considered. About hereditary effects, it appears that moderate acute radiation exposures of even a relatively large human population must have little impact, in spite of the rate of spontaneous congenital deformations is of the order of 6 %. For the induction of cancers, it is not observed excess for doses lower than 200 mSv for adults and 100 mSv for children (the populations studied are survival people of hiroshima and Nagasaki, patients treated by irradiation, uranium miners, children exposed to radioactive iodine after Chernobylsk accident). To simplify an expression of the risk has been fixed to 5% of induced cancer by Sv for population and 4% by Sv for workers, the different being explained by the demography and the sensitivity of the youngest age groups. As regards the low doses of radiations, a bundle of convergent epidemiological observations notices the absence of effects of the low doses rates. Biological mechanisms, notably of repair are approached, then certain accidents (Goiania

  17. Radiation effects on structural materials

    Energy Technology Data Exchange (ETDEWEB)

    Ghoniem, N.M.

    1991-06-28

    This report discusses the following topics on the effect radiation has on thermonuclear reactor materials: Atomic Displacements; Microstructure Evolution; Materials Engineering, Mechanics, and Design; Research on Low-Activation Steels; and Research Motivated by Grant Support.

  18. Topical Day on Biological Effects of Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Baatout, S.; Jacquet, P.

    1997-05-15

    The topical day has been focussed on the potential effects of ionizing radiation on human health. A general overview on molecular and biophysical aspects of radiation, its effects on cells and organisms, and the contribution of radiobiology to radiation protection and risk assessment is given. The genetic effects of radiation and its effects on the developing organism, the effects of radiation on the cell cycle and the mechanisms of radiation induced apoptosis were also discussed.

  19. Radiation-induced cardiovascular effects

    Science.gov (United States)

    Tapio, Soile

    Recent epidemiological studies indicate that exposure to ionising radiation enhances the risk of cardiovascular mortality and morbidity in a moderate but significant manner. Our goal is to identify molecular mechanisms involved in the pathogenesis of radiation-induced cardiovascular disease using cellular and mouse models. Two radiation targets are studied in detail: the vascular endothelium that plays a pivotal role in the regulation of cardiac function, and the myocardium, in particular damage to the cardiac mitochondria. Ionising radiation causes immediate and persistent alterations in several biological pathways in the endothelium in a dose- and dose-rate dependent manner. High acute and cumulative doses result in rapid, non-transient remodelling of the endothelial cytoskeleton, as well as increased lipid peroxidation and protein oxidation of the heart tissue, independent of whether exposure is local or total body. Proteomic and functional changes are observed in lipid metabolism, glycolysis, mitochondrial function (respiration, ROS production etc.), oxidative stress, cellular adhesion, and cellular structure. The transcriptional regulators Akt and PPAR alpha seem to play a central role in the radiation-response of the endothelium and myocardium, respectively. We have recently started co-operation with GSI in Darmstadt to study the effect of heavy ions on the endothelium. Our research will facilitate the identification of biomarkers associated with adverse cardiac effects of ionising radiation and may lead to the development of countermeasures against radiation-induced cardiac damage.

  20. Radiation Effects in Carbon Nanoelectronics

    Directory of Open Access Journals (Sweden)

    Cory D. Cress

    2012-07-01

    Full Text Available We experimentally investigate the effects of Co-60 irradiation on the electrical properties of single-walled carbon nanotube and graphene field-effect transistors. We observe significant differences in the radiation response of devices depending on their irradiation environment, and confirm that, under controlled conditions, standard dielectric hardening approaches are applicable to carbon nanoelectronics devices.

  1. Biological effects of ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Blaylock, B.G. [SENES Oak Ridge Inc., Oak Ridge, TN (United States); Theodorakis, C.W.; Shugart, L.R. [Oak Ridge National Lab., Oak Ridge, TN (United States). Environmental Sciences Division

    1996-12-31

    Natural populations have always been exposed to background levels of ionizing radiation; however, with the event of the nuclear age, studies about the effects of higher-than-background levels of ionizing radiation on individuals or populations of organisms became important. Originally, concern was focused on survival after large, acute radiation doses, and numerous studies document the somatic and genetic effects of acute ionizing radiation. However, there is a growing realization that chronic long-term exposure to higher-than-background levels of environmental radiation is more likely than is large acute exposure. Less than 10% of the literature on ionizing radiation effects deals with chronic long-term effects, and very few studies involve natural populations. In 1977, mosquito fish, Gambusia affinis, were experimentally introduced into a 0,45 ha, decommissioned, radioactive waste pond where the measured dose at the sediment-water interface was 1,150 rad/year. One year later, the fecundity of the population had not changed significantly. Eighteen years later, studies of the fish showed an inverse correlation between DNA strand breakage and fecundity in the contaminated pond. More recent studies have provided evidence that genetic diversity of the fish has increased in the contaminated site. These fish also have a greater prevalence of certain DNA banding patterns. Individuals displaying these banding patterns have a higher fecundity and lower degree of DNA strand breakage than individuals with less common banding patterns. Gambusia affinis has apparently adapted to the high background radiation, successfully surviving for approximately 50 generations. 31 refs, 5 figs.

  2. Radiation effects on video imagers

    Science.gov (United States)

    Yates, G. J.; Bujnosek, J. J.; Jaramillo, S. A.; Walton, R. B.; Martinez, T. M.

    1986-02-01

    Radiation senstivity of several photoconductive, photoemissive, and solid state silicon-based video imagers was measured by analysing stored photo-charge induced by irradiation with continuous and pulsed sources of high energy photons and neutrons. Transient effects as functions of absorbed dose, dose rate, fluences, and ionizing particle energy are presented.

  3. Radiation Effects in Refractory Alloys

    Science.gov (United States)

    Zinkle, Steven J.; Wiffen, F. W.

    2004-02-01

    In order to achieve the required low reactor mass per unit electrical power for space reactors, refractory alloys are essential due to their high operating temperature capability that in turn enables high thermal conversion efficiencies. One of the key issues associated with refractory alloys is their performance in a neutron irradiation environment. The available radiation effects data are reviewed for alloys based on Mo, W, Re, Nb and Ta. The largest database is associated with Mo alloys, whereas Re, W and Ta alloys have the least available information. Particular attention is focused on Nb-1Zr, which is a proposed cladding and structural material for the reactor in the Jupiter Icy Moons Orbiter (JIMO) project. All of the refractory alloys exhibit qualitatively similar temperature-dependent behavior. At low temperatures up to ~0.3TM, where TM is the melting temperature, the dominant effect of radiation is to produce pronounced radiation hardening and concomitant loss of ductility. The radiation hardening also causes a dramatic decrease in the fracture toughness of the refractory alloys. These low temperature radiation effects occur at relatively low damage levels of ~0.1 displacement per atom, dpa (~2×1024 n/m2, E>0.1 MeV). As a consequence, operation at low temperatures in the presence of neutron irradiation must be avoided for all refractory alloys. At intermediate temperatures (0.3 to 0.6 TM), void swelling and irradiation creep are the dominant effects of irradiation. The amount of volumetric swelling associated with void formation in refractory alloys is generally within engineering design limits (>10 dpa). Very little experimental data exist on irradiation creep of refractory alloys, but data for other body centered cubic alloys suggest that the irradiation creep will produce negligible deformation for near-term space reactor applications.

  4. Thermal effects in radiation processing

    Energy Technology Data Exchange (ETDEWEB)

    Zagorski, Z.P.

    1984-10-21

    The balance of ionizing radiation energy incident on an object being processed is discussed in terms of energy losses, influencing the amount really absorbed. To obtain the amount of heat produced, the absorbed energy is corrected for the change in internal energy of the system and for the heat effect of secondary reactions developing after the initiation. The temperature of a processed object results from the heat evolved and from the specific heat of the material comprising the object. The specific heat of most materials is usually much lower than that of aqueous systems and therefore temperatures after irradiation are higher. The role of low specific heat in radiation processing at cryogenic conditions is stressed. Adiabatic conditions of accelerator irradiation are contrasted with the steady state thermal conditions prevailing in large gamma sources. Among specific questions discussed in the last part of the paper are: intermediate and final temperature of composite materials, measurement of real thermal effects in situ, neutralization of undesired warming experienced during radiation processing, processing at temperatures other than ambient and administration of very high doses of radiation.

  5. Radiative effects of tropospheric ionisation

    Directory of Open Access Journals (Sweden)

    K. L. Aplin

    2003-06-01

    Full Text Available Despite the increasing evidence that cosmic ray variations may influence clouds and climate, there has been little discussion of the direct radiative effects of atmospheric ionisation. Laboratory experiments show that hydrated molecular cluster-ions, formed in the atmosphere by cosmic rays, absorb in the infra-red continuum at wavelengths of 9–12 μm. The tropospheric magnitude of this effect is estimated: transmittance anomalies from clear sky ion concentrations peak at ~2% at 10 km in the mid-latitudes. A simple isothermal clear sky atmospheric model suggests the integrated effect of the absorption is ~2 Wm−2. The effect appears detectable in existing surface data sets; surface micrometeorological data shows a significant anticorrelation between downwelling infra-red radiation and atmospheric cosmic ray ionisation. This is consistent with the infra-red attenuation observed in laboratory studies of cluster-ion absorption. If atmospheric ionisation from cosmic rays has universally direct radiative effects, then reinterpretation of satellite cloud data may be necessary.

  6. Radiation effects in reconfigurable FPGAs

    Science.gov (United States)

    Quinn, Heather

    2017-04-01

    Field-programmable gate arrays (FPGAs) are co-processing hardware used in image and signal processing. FPGA are programmed with custom implementations of an algorithm. These algorithms are highly parallel hardware designs that are faster than software implementations. This flexibility and speed has made FPGAs attractive for many space programs that need in situ, high-speed signal processing for data categorization and data compression. Most commercial FPGAs are affected by the space radiation environment, though. Problems with TID has restricted the use of flash-based FPGAs. Static random access memory based FPGAs must be mitigated to suppress errors from single-event upsets. This paper provides a review of radiation effects issues in reconfigurable FPGAs and discusses methods for mitigating these problems. With careful design it is possible to use these components effectively and resiliently.

  7. Cellular Effects of Electromagnetic Radiation.

    Science.gov (United States)

    2014-09-26

    8217-- - - .- . - .- ’*-_- - 7 - r - .STUDIES OF EXPOSURE TO AMPLITUDE-MODULATED FIELDS The electromagnetic fields to which naval personnel are exposed tend to...radiation) ,.- Biological effects of electromagnetic fields , 20. ABSTRACT (Contimee an revers side II neceesmv aiId identify by Wek numbe") , .P-Giant...cells of characean algae were examined for electrophysiological sequelae to acute electromagnetic field irradiation at 10 mW/cm Carrier frequencies

  8. Effects of radiation on carbapenems

    Science.gov (United States)

    Tepe, Semra; Polat, Mustafa; Korkmaz, Mustafa

    In the present work, effects of gamma radiation on solid meropenem trihydrate (MPT), which is the active ingredient of carbapenem antibiotics, were investigated by electron spin resonance (ESR) spectroscopy. Irradiated MPT presents an ESR spectrum consisting of many resonance peaks. Heights measured with respect to the spectrum baseline of these resonance peaks were used to explore the evolutions of the radicalic species responsible for the experimental spectrum under different conditions. Variations of the denoted 11 peak heights with microwave power, sample temperature and applied radiation doses and decay of the involved radicalic species at room and at high temperatures were studied. On the basis of the results derived from these studies, a molecular model consisting of the presence of four different radicalic species was proposed, and spectroscopic parameters of these species were calculated through spectrum simulation calculations. The dosimetric potential of MPT was also explored and it was concluded that MPT presents the characteristics of normal and accidental dosimetric materials.

  9. Current clinical trials testing combinations of immunotherapy and radiation.

    Science.gov (United States)

    Crittenden, Marka; Kohrt, Holbrook; Levy, Ronald; Jones, Jennifer; Camphausen, Kevin; Dicker, Adam; Demaria, Sandra; Formenti, Silvia

    2015-01-01

    Preclinical evidence of successful combinations of ionizing radiation with immunotherapy has inspired testing the translation of these results to the clinic. Interestingly, the preclinical work has consistently predicted the responses encountered in clinical trials. The first example came from a proof-of-principle trial started in 2001 that tested the concept that growth factors acting on antigen-presenting cells improve presentation of tumor antigens released by radiation and induce an abscopal effect. Granulocyte-macrophage colony-stimulating factor was administered during radiotherapy to a metastatic site in patients with metastatic solid tumors to translate evidence obtained in a murine model of syngeneic mammary carcinoma treated with cytokine FLT-3L and radiation. Subsequent clinical availability of vaccines and immune checkpoint inhibitors has triggered a wave of enthusiasm for testing them in combination with radiotherapy. Examples of ongoing clinical trials are described in this report. Importantly, most of these trials include careful immune monitoring of the patients enrolled and will generate important data about the proimmunogenic effects of radiation in combination with a variety of immune modulators, in different disease settings. Results of these studies are building a platform of evidence for radiotherapy as an adjuvant to immunotherapy and encourage the growth of this novel field of radiation oncology.

  10. Radiation Effects in Nuclear Ceramics

    Directory of Open Access Journals (Sweden)

    L. Thomé

    2012-01-01

    Full Text Available Due to outstanding physicochemical properties, ceramics are key engineering materials in many industrial domains. The evaluation of the damage created in ceramics employed in radiative media is a challenging problem for electronic, space, and nuclear industries. In this latter field, ceramics can be used as immobilization forms for radioactive wastes, inert fuel matrices for actinide transmutation, cladding materials for gas-cooled fission reactors, and structural components for fusion reactors. Information on the radiation stability of nuclear materials may be obtained by simulating the different types of interactions involved during the slowing down of energetic particles with ion beams delivered by various types of accelerators. This paper presents a review of the radiation effects occurring in nuclear ceramics, with an emphasis on recent results concerning the damage accumulation processes. Energetic ions in the KeV-GeV range are used to explore the nuclear collision (at low energy and electronic excitation (at high energy regimes. The recovery by electronic excitation of the damage created by ballistic collisions (SHIBIEC process is also addressed.

  11. Effects of radiation upon gastrointestinal motility

    Institute of Scientific and Technical Information of China (English)

    Mary F Otterson

    2007-01-01

    Whether due to therapeutic or belligerent exposure, the gastrointestinal effects of irradiation produce symptoms dreaded by a majority of the population. Nausea, vomiting, diarrhea and abdominal cramping are hallmarks of the prodromal phase of radiation sickness, occurring hours to days following radiation exposure. The prodromal phase is distinct from acute radiation sickness in that the absorptive, secretory and anatomic changes associated with radiation damage are not easily identifiable. It is during this phase of radiation sickness that gastrointestinal motility significantly changes. In addition, there is evidence that motor activity of the gut contributes to some of the acute and chronic effects of radiation.

  12. RADIATION EFFECTS IN MATERIAL MICROSTRUCTURE.

    Energy Technology Data Exchange (ETDEWEB)

    SIMOS,N.

    2007-05-30

    Next generation nuclear power systems, high-power particle accelerators and space technology will inevitably rely on higher performance materials that will be able to function in the extreme environments of high irradiation, high temperatures, corrosion and stress. The ability of any material to maintain its functionality under exposure to harsh conditions is directly linked to the material structure at the nano- and micro-scales. Understanding of the underlying processes is key to the success of such undertakings. This paper presents experimental results of the effects of radiation exposure on several unique alloys, composites and crystals through induced changes in the physio-mechanical macroscopic properties.

  13. Effects of radiation on laser diodes.

    Energy Technology Data Exchange (ETDEWEB)

    Phifer, Carol Celeste

    2004-09-01

    The effects of ionizing and neutron radiation on the characteristics and performance of laser diodes are reviewed, and the formation mechanisms for nonradiative recombination centers, the primary type of radiation damage in laser diodes, are discussed. Additional topics include the detrimental effects of aluminum in the active (lasing) volume, the transient effects of high-dose-rate pulses of ionizing radiation, and a summary of ways to improve the radiation hardness of laser diodes. Radiation effects on laser diodes emitting in the wavelength region around 808 nm are emphasized.

  14. Applying radiation health effects data to radiation protection policies

    Energy Technology Data Exchange (ETDEWEB)

    Muckerheide, James [Center for Nuclear Technology and Society at WPI, Worcester Polytechnic Institute, Worcester, MA (United States)

    2000-05-01

    Data from the peer-reviewed scientific literature establish a sound basis to define a low-dose, low-dose-rate, dose-response. These data include human health dose-response studies; immunologically 'whole' animal studies; and cellular and molecular biological studies of complete biological systems for the relevant immunological and physiological responses. Initiatives are required to constructively apply these data to both radiation research and radiation protection policies. First, current low level radiation health effects research must apply existing data to define research projects to integrate and confirm existing dose-response data, with specific emphasis on the biological bases that exist in definitive and reproducible cellular and biological dose-response. Second, dose-response assessment must identify and incorporate all existing substantial and confirmed data, including natural radiation sources, to establish the bases for radiation protection policy for interventions to protect public health and safety. A preliminary assessment of these data is applied to: 1) Specify research that can be constructively applied to describe radiation health effects dose-response. 2) Apply health effects dose-response to radiation and radioactivity applications policies to maximize radiation health effects interventions for occupational applications, medical applications, and other radiation and radioactive materials applications controls to cost-effectively assure public health and safety. An assessment of the proposed revisions to ICRP radiation protection policies is provided that associates the basis for administrative limits with the previous proposal of the US NRC for a 'Below Regulatory Concern' (BRC) policy. This proposal ignores the context of the fact that very low levels of radiation exposure are far within the variations of natural radiation exposures, and therefore can have no gross net consequences. The equivalent failure of the BRC proposal

  15. Radiation effects in the environment

    Energy Technology Data Exchange (ETDEWEB)

    Begay, F.; Rosen, L.; Petersen, D.F.; Mason, C.; Travis, B. [Los Alamos National Lab., NM (United States); Yazzie, A. [Navajo Nation, Window Rock, AZ (United States). Dept. of History; Isaac, M.C.P.; Seaborg, G.T. [Lawrence Berkeley National Lab., CA (United States); Leavitt, C.P. [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Physics and Astronomy

    1999-04-01

    Although the Navajo possess substantial resource wealth-coal, gas, uranium, water-this potential wealth has been translated into limited permanent economic or political power. In fact, wealth or potential for wealth has often made the Navajo the victims of more powerful interests greedy for the assets under limited Navajo control. The primary focus for this education workshop on the radiation effects in the environment is to provide a forum where scientists from the nuclear science and technology community can share their knowledge toward the advancement and diffusion of nuclear science and technology issues for the Navajo public. The scientists will make an attempt to consider the following basic questions; what is science; what is mathematics; what is nuclear radiation? Seven papers are included in this report: Navajo view of radiation; Nuclear energy, national security and international stability; ABC`s of nuclear science; Nuclear medicine: 100 years in the making; Radon in the environment; Bicarbonate leaching of uranium; and Computational methods for subsurface flow and transport. The proceedings of this workshop will be used as a valuable reference materials in future workshops and K-14 classrooms in Navajo communities that need to improve basic understanding of nuclear science and technology issues. Results of the Begay-Stevens research has revealed the existence of strange and mysterious concepts in the Navajo Language of nature. With these research results Begay and Stevens prepared a lecture entitled The Physics of Laser Fusion in the Navajo language. This lecture has been delivered in numerous Navajo schools, and in universities and colleges in the US, Canada, and Alaska.

  16. Material Effectiveness for Radiation Shielding

    Science.gov (United States)

    2003-01-01

    Materials with a smaller mean atomic mass, such as lithium (Li) hydride and polyethylene, make the best radiation shields for astronauts. The materials have a higher density of nuclei and are better able to block incoming radiation. Also, they tend to produce fewer and less dangerous secondary particles after impact with incoming radiation.

  17. Spallation radiation effects in materials

    Energy Technology Data Exchange (ETDEWEB)

    Mansur, L.K.; Farrell, K.; Wechsler, M.S. [Oak Ridge National Lab., TN (United States)

    1996-06-01

    Spallation refers to the process whereby particles (chiefly neutrons) are ejected from nuclei upon bombardment by high-energy protons. Spallation neutron sources (SNS`s) use these neutrons for neutron scattering and diffraction research, and SNS`s are proposed as the basis for systems for tritium production and transmutation of nuclear waste. Materials in SNS`s are exposed to the incident proton beam (energies typically about 1000 MeV) and to the spallation neutrons (spectrum of energies extending up to about 1000 MeV). By contrast the fission neutrons in nuclear reactors have an average energy of only about 2 MeV, and the neutrons in fusion reactors would have energies below about 14 MeV. Furthermore, the protons and neutrons in SNS`s for scattering and diffraction research are pulsed at frequencies of about 10 to 60 Hz, from which significant changes in the kinetics of point and extended defects may be expected. In addition, much higher transmutation rates occur in SNS-irradiated materials, On the whole, then, significant differences in microstructural development and macroscopic properties may result upon exposure in SNS systems, as compared with fission and fusion irradiations. In a more general sense, subjecting materials to new radiation environments has almost routinely led to new discoveries. To the extent that data are avaiable, however, the spallation environment appears to increase the degree of damage without introducing totally new effects. The first part of this presentation is an overview of radiation effects in materials, outlining essential concepts and property changes and their physical bases. This background is followed by a description of SNS irradiation environments and the effects on materials of exposure to these environments. A special discussion is given of the selection of target (e.g., liquid mercury), container (e.g., austenitic stainless steel or ferritic/martensitic steel), and structural materials in SNS systems.

  18. TU-CD-303-02: Beyond Radiation Induced Double Strand Breaks - a New Horizon for Radiation Therapy Research

    Energy Technology Data Exchange (ETDEWEB)

    Chang, S. [UNC School of Medicine (United States)

    2015-06-15

    Recent advances in cancer research have shed new light on the complex processes of how therapeutic radiation initiates changes at cellular, tissue, and system levels that may lead to clinical effects. These new advances may transform the way we use radiation to combat certain types of cancers. For the past two decades many technological advancements in radiation therapy have been largely based on the hypothesis that direct radiation-induced DNA double strand breaks cause cell death and thus tumor control and normal tissue damage. However, new insights have elucidated that in addition to causing cellular DNA damage, localized therapeutic radiation also initiates cascades of complex downstream biological responses in tissue that extend far beyond where therapeutic radiation dose is directly deposited. For instance, studies show that irradiated dying tumor cells release tumor antigens that can lead the immune system to a systemic anti-cancer attack throughout the body of cancer patient; targeted irradiation to solid tumor also increases the migration of tumor cells already in bloodstream, the seeds of potential metastasis. Some of the new insights may explain the long ago discovered but still unexplained non-localized radiation effects (bystander effect and abscopal effect) and the efficacy of spatially fractionated radiation therapy (microbeam radiation therapy and GRID therapy) where many “hot” and “cold” spots are intentionally created throughout the treatment volume. Better understanding of the mechanisms behind the non-localized radiation effects creates tremendous opportunities to develop new and integrated cancer treatment strategies that are based on radiotherapy, immunology, and chemotherapy. However, in the multidisciplinary effort to advance new radiobiology, there are also tremendous challenges including a lack of multidisciplinary researchers and imaging technologies for the microscopic radiation-induced responses. A better grasp of the essence of

  19. Radiation effects on four polysulfone films

    Science.gov (United States)

    Santos, B.; Sykes, G. F.

    1981-01-01

    The response of polysulfones to proton and electron radiation is evaluated by assessing the radiation durability of four selected sulfones, establishing radiation interaction mechanisms with the polymer chain, and determining the dependence of radiation durability on chemical structure. Chain scission appears to predominate at lower doses up to about 10 to the 9th rad, and past this threshold the second mechanism, crosslinking, seems to predominate. This is evidenced by the increase in modulus, glass transition temperature, and increased quantity of thermally stable residue at high temperatures. The variations of chemical structure of the polysulfones appear to have little effect on the response to radiation.

  20. Radiation effects on biochemical systems

    Energy Technology Data Exchange (ETDEWEB)

    Seddon, G.M

    2000-04-01

    Xanthine oxidase catalyses the oxidative hydroxylation of hypoxanthine, xanthine and a wide range of carbonyl compounds. The enzyme exists as an oxidase and a dehydrogenase; both catalyze the oxidation of the same substrates. Steady state radiolysis and pulse radiolysis were used to generate oxidative and reductive free radicals. Their effects on the enzymatic activity of xanthine oxidase were determined. Initially inactivation studies were carried out to evaluate the extent to which radiolysis in aqueous solution affects the enzyme activity. Values of D{sub 37} and G{sub inactivation} were calculated following irradiation in the presence of free radical scavengers and in the presence of catalase and superoxide dismutase. The kinetic constants Vmax and Km were also determined following radiolysis. The effect of ionising radiation on the iron content of xanthine oxidase was measured using atomic absorption spectrometry. Native gel electrophoresis and iso-electric focussing were performed in an attempt to demonstrate changes in the overall structure of the enzyme. The binding of xanthine oxidase to heparin was carried out by measuring, (1) the displacement of methylene blue (MB{sup +}) from a heparin-MB{sup +} complex, (2) affinity chromatography and, (3) pulse radiolysis. The effect of irradiation on the binding process was investigated using techniques (1) and (2). Finally the radiation-induced conversion of xanthine oxidase to dehydrogenase was established. The results indicate that xanthine oxidase is inactivated greatest in the presence of air and irradiation causes Vmax to he reduced and Km to increase. The iron content of irradiated xanthine oxidase is unaffected. Electrophoresis shows the enzyme becomes fragmented and the isoelectric points of the fragments vary over a wide range of pH. Binding of xanthine oxidase to heparin as measured by displacement of MB{sup +} from a heparin-MB{sup +} complex suggests that irradiation increases the affinity of the enzyme

  1. Protective effects in radiation modification of elastomers

    Science.gov (United States)

    Głuszewski, Wojciech; Zagórski, Zbigniew P.; Rajkiewicz, Maria

    2014-12-01

    Saturated character of ethylene/octene thermoplastic elastomers demands an application of nonconventional methods of crosslinking connections between chains of molecules. These are organic peroxides, usually in the presence of coagents or an application of ionizing radiation. Several approaches (radiation, peroxide, peroxide/plus radiation and radiation/plus peroxide) were applied in crosslinking of elastomere Engage 8200. Attention was directed to the protection effects by aromatic peroxides and by photo- and thermostabilizers on radiolysis of elastomers. Role of dose of radiation, dose rate of radiation as well as the role of composition of elastomere on the radiation yield of hydrogen and absorbtion of oxygen was investigated. DRS method was used to follow postirradiation degradation. Influence of crosslinking methods on properties of elastomers is described. Results were interpreted from the point of view of protective actions of aromatic compounds.

  2. Radiation Effects in Nuclear Waste Materials

    Energy Technology Data Exchange (ETDEWEB)

    William j. Weber; Lumin Wang; Jonathan Icenhower

    2004-07-09

    The objective of this project is to develop a fundamental understanding of radiation effects in glasses and ceramics, as well as the influence of solid-state radiation effects on aqueous dissolution kinetics, which may impact the performance of nuclear waste forms and stabilized nuclear materials.

  3. High-Intensity Synchrotron Radiation Effects

    CERN Document Server

    Suetsugu, Y

    2016-01-01

    Various effects of intense synchrotron radiation on the performance of particle accelerators, especially for storage rings, are discussed. Following a brief introduction to synchrotron radiation, the basic concepts of heat load, gas load, electron emission, and the countermeasures against these effects are discussed.

  4. Radiation Effects on Polymers - XI

    DEFF Research Database (Denmark)

    Ghanem, N. A.; El-Awady, N. I.; Singer, Klaus Albert Julius;

    1979-01-01

    With the aim of improving properties of cellulose acetate membranes for reverse osmosis desalination, grafting was performed using high energy electrons. In this paper, the grafting parameters (radiation dose and method, monomer concentration, solvents, chain transfer agent and redox system...

  5. Physics of intense, high energy radiation effects.

    Energy Technology Data Exchange (ETDEWEB)

    Hjalmarson, Harold Paul; Hartman, E. Frederick; Magyar, Rudolph J.; Crozier, Paul Stewart

    2011-02-01

    This document summarizes the work done in our three-year LDRD project titled 'Physics of Intense, High Energy Radiation Effects.' This LDRD is focused on electrical effects of ionizing radiation at high dose-rates. One major thrust throughout the project has been the radiation-induced conductivity (RIC) produced by the ionizing radiation. Another important consideration has been the electrical effect of dose-enhanced radiation. This transient effect can produce an electromagnetic pulse (EMP). The unifying theme of the project has been the dielectric function. This quantity contains much of the physics covered in this project. For example, the work on transient electrical effects in radiation-induced conductivity (RIC) has been a key focus for the work on the EMP effects. This physics in contained in the dielectric function, which can also be expressed as a conductivity. The transient defects created during a radiation event are also contained, in principle. The energy loss lead the hot electrons and holes is given by the stopping power of ionizing radiation. This information is given by the inverse dielectric function. Finally, the short time atomistic phenomena caused by ionizing radiation can also be considered to be contained within the dielectric function. During the LDRD, meetings about the work were held every week. These discussions involved theorists, experimentalists and engineers. These discussions branched out into the work done in other projects. For example, the work on EMP effects had influence on another project focused on such phenomena in gases. Furthermore, the physics of radiation detectors and radiation dosimeters was often discussed, and these discussions had impact on related projects. Some LDRD-related documents are now stored on a sharepoint site (https://sharepoint.sandia.gov/sites/LDRD-REMS/default.aspx). In the remainder of this document the work is described in catergories but there is much overlap between the atomistic

  6. Health effects of prenatal radiation exposure.

    Science.gov (United States)

    Williams, Pamela M; Fletcher, Stacy

    2010-09-01

    Pregnant women are at risk of exposure to nonionizing and ionizing radiation resulting from necessary medical procedures, workplace exposure, and diagnostic or therapeutic interventions before the pregnancy is known. Nonionizing radiation includes microwave, ultrasound, radio frequency, and electromagnetic waves. In utero exposure to nonionizing radiation is not associated with significant risks; therefore, ultrasonography is safe to perform during pregnancy. Ionizing radiation includes particles and electromagnetic radiation (e.g., gamma rays, x-rays). In utero exposure to ionizing radiation can be teratogenic, carcinogenic, or mutagenic. The effects are directly related to the level of exposure and stage of fetal development. The fetus is most susceptible to radiation during organogenesis (two to seven weeks after conception) and in the early fetal period (eight to 15 weeks after conception). Noncancer health effects have not been detected at any stage of gestation after exposure to ionizing radiation of less than 0.05 Gy (5 rad). Spontaneous abortion, growth restriction, and mental retardation may occur at higher exposure levels. The risk of cancer is increased regardless of the dose. When an exposure to ionizing radiation occurs, the total fetal radiation dose should be estimated and the mother counseled about the potential risks so that she can make informed decisions about her pregnancy management.

  7. Radiation effects in optoelectronic devices. [Review

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, C.E.; Wiczer, J.J.

    1984-05-01

    Purpose of this report is to provide not only a summary of radiation damage studies at Sandia National Laboratories, but also of those in the literature on the components of optoelectronic systems: light emitting diodes (LEDs), laser diodes, photodetectors, optical fibers, and optical isolators. This review of radiation damage in optoelectronic components is structured according to device type. In each section, a brief discussion of those device properties relevant to radiation effects is given.

  8. Biological effects of high LET radiations

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Masami [Nagasaki Univ. (Japan). Faculty of Pharmaceutical Sciences

    1997-03-01

    Biological effect of radiation is different by a kind of it greatly. Heavy ions were generally more effective in cell inactivation, chromosome aberration induction, mutation induction and neoplastic cell transformation induction than {gamma}-rays in SHE cells. (author)

  9. Flare loop radiative hydrodynamics. III - Nonlocal radiative transfer effects

    Science.gov (United States)

    Canfield, R. C.; Fisher, G. H.; Mcclymont, A. N.

    1983-01-01

    The study has three goals. The first is to demonstrate that processes exist whose intrinsic nonlocal nature cannot be represented by local approximations. The second is to elucidate the physical nature and origins of these nonlocal processes. The third is to suggest that the methods and results described here may prove useful in constructing semiempirical models of the chromosphere by means more efficient than trial and error. Matrices are computed that describe the effect of a temperature perturbation at an arbitrary point in the loop on density, hydrogen ionized fraction, total radiative loss rate, and radiative loss rate of selected hydrogen lines and continua at all other points. It is found that the dominant nonlocal radiative transfer effects can be separated into flux divergence coefficient effects and upper level population effects. The former are most important when the perturbation takes place in a region of significant opacity. Upper level population effects arise in both optically thick and thin regions in response to nonlocal density, ionization, and interlocking effects.

  10. Bystander Effects of Ionizing Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Little, John B. [Harvard T.H. Chan School of Public Health, Boston, MA (United States). Dept. of Genetics and Complex Diseases

    2017-01-17

    The objectives of this grant renewal are to provide administrative support and travel funds to allow the continued participation of the principal investigator (Dr. John B. Little) as an advisor to research initiated by several research fellows from his laboratory. The actual research will be carried out under the direction of Dr. Hatsumi Nagasawa with the collaboration of Dr. Joel Bedford at the Colorado State University, and by Drs. Edouard Azzam and Sonia de Toledo at the University of Medicine and Dentistry of New Jersey. Dr. Little will advise on the planning of experiments and development of experimental protocols, the analysis of data, and the preparation of manuscripts for publication. The Specific Aims for several of the planned experiments include: 1) to extend studies of the role of recombinational repair in the bystander effect by examining other genes in this pathway and cell lines deficient in excision repair; 2) to continue studies to determine the nature of the damage signal transmitted to bystander cells including the expression of several connexins in the bystander response, and the extent to which the enhanced oxidative metabolism observed in bystander cells may relate to the nature of the transmitted bystander signal; 3) to utilize a genome-wide approach to examine the genetic basis for the hypersensitivity to ionization we have observed in unaffected parents of patients with hereditary retinoblastoma, as well as from a group of a apparently normal individuals that show similar radiosensitivity; 4) to complete studies concerning the induction of high frequencies of cells with massive chromosome damage in clonal derivatives of p53 and p21 knockout mouse cell lines; in particular to examine the role of telomere changes in this phenomenon. Overall, the results of these studies should enhance our understanding of the risk of low dose exposures to ionizing radiation, including human populations to residential radon as well as occupational exposures.

  11. Dose-effect relationship in radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Oberhausen, E.

    1983-01-01

    As criterion for the evaluation of risk in connection with nuclear accidents the diminishing of life expectance is assumed. This would allow a better weighting of the different detriments. The possible dose-effect relations for the different detriments caused by radiation are discussed. Some models for a realistic evaluation of the different radiation detriments are proposed.

  12. Physics of radiation effects in crystals

    CERN Document Server

    Johnson, RA

    1986-01-01

    ``Physics of Radiation Effects in Crystals'' is presented in two parts. The first part covers the general background and theory of radiation effects in crystals, including the theory describing the generation of crystal lattice defects by radiation, the kinetic approach to the study of the disposition of these defects and the effects of the diffusion of these defects on alloy compositions and phases. Specific problems of current interest are treated in the second part and include anisotropic dimensional changes in x-uranium, zirconium and graphite, acceleration of thermal creep in reactor ma

  13. Effects of gamma radiation in tomato seeds

    Energy Technology Data Exchange (ETDEWEB)

    Wiendl, Toni A.; Wiendl, Fritz W.; Franco, Suely S.H.; Franco, Jose G.; Althur, Valter, E-mail: tawiendl@hotmail.com, E-mail: gilmita@uol.com.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Arthur, Paula B., E-mail: arthur@cena.usp.br [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil)

    2013-07-01

    Tomato dry seeds of the hybrid 'Gladiador' F1 were exposed to low doses of gamma radiation from Co-60 source at 0,509 kGy tax rate in order to study stimulation effects of radiation on germination and plant growth. Eight treatments radiation doses were applied as follows: 0 (control); 2,5; 5,0; 7,5; 10,0; 12,5; 15,0; 20,0 Gy. Seed germination as well as green fruits number, harvested fruit number, fruit weight and total production were assessed to identify occurrence of stimulation. Tomato seeds and plants were handled as for usual tomato production in Brazil. Low doses of gamma radiation treatment in the seeds stimulate germination and substantially increase fruit number and total production up to 86% at 10 Gy dose. There are evidences that the use of low doses of gamma radiation can stimulate germination and plant production thus, showing hormetic effects. (author)

  14. Abscopal induction of leukaemia and osteosarcoma following administration of alpha-emitting radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Lord, B.I. (Paterson Institute for Cancer Research, Christie Hospital Manchester, Manchester (United Kingdom))

    2008-12-15

    Alpha-particle-emitting, bone-seeking radionuclides can induce leukaemia and/ or osteosarcoma in mice. Furthermore, plutonium-239, given to male mice before mating with normal females, while not directly leading to leukaemia in the progeny does lead to enhanced susceptibility to leukaemogenic agents. In the first case, the amounts of radionuclide are very small in experimental terms; and zero in the case of transgenerational activity. In both cases, the development of the disorders is remote in time and location relative to that of the contaminating radionuclide, making interpretation of the mechanisms and estimation of radiation risk problematic. It is necessary, then, to address questions involving the basis of haemopoiesis itself. Cellular kinetics of the development of blood from the pluripotent stem cells to the mature functional cells are outlined, describing compensatory proliferation mechanisms and extensive movement of cells throughout the marrow space. The locations of potential oncogenic target cells are identified and the nature of the stromal microenvironment that regulates haemopoiesis is defined. Plutonium-239, given to male mice, targets spermatogenesis at the stem cell level leaving unidentified damage that is inherited by his offspring. This leaves the offspring susceptible to a leukaemogenic agent encountered later in life. The characteristics of this, corroborated by consideration of the cellular kinetics, are of an inherited genomic instability. Cells of the microenvronment, inheriting the same genetic damage, probably act in the role of an enhancing 'bystander'. In adult mice, the mechanisms are different. Bone turnover results in radioactivity being gradually transported through the marrow by long-lived macrophages. A model based on temporal microdistributions of activity, defining specific target cell regions, is able to illustrate that considering bone marrow as a uniform mass of cells is inadequate to describe the observed

  15. Sterilizing radiation effects on selected polymers

    Energy Technology Data Exchange (ETDEWEB)

    Skiens, W. E.

    1979-03-01

    The mechanism of radiation effects and their industrial applications are discussed for the following classes of polymers: thermoplastics, thermosets, elastomers, films and fibers, and adhesives/coatings/potting compounds. 35 references, 3 tables. (DLC)

  16. TU-CD-303-04: Radiation-Induced Long Distance Tumor Cell Migration Into and Out of the Radiation Field and Its Clinical Implication

    Energy Technology Data Exchange (ETDEWEB)

    Graves, E. [Stanford University (United States)

    2015-06-15

    Recent advances in cancer research have shed new light on the complex processes of how therapeutic radiation initiates changes at cellular, tissue, and system levels that may lead to clinical effects. These new advances may transform the way we use radiation to combat certain types of cancers. For the past two decades many technological advancements in radiation therapy have been largely based on the hypothesis that direct radiation-induced DNA double strand breaks cause cell death and thus tumor control and normal tissue damage. However, new insights have elucidated that in addition to causing cellular DNA damage, localized therapeutic radiation also initiates cascades of complex downstream biological responses in tissue that extend far beyond where therapeutic radiation dose is directly deposited. For instance, studies show that irradiated dying tumor cells release tumor antigens that can lead the immune system to a systemic anti-cancer attack throughout the body of cancer patient; targeted irradiation to solid tumor also increases the migration of tumor cells already in bloodstream, the seeds of potential metastasis. Some of the new insights may explain the long ago discovered but still unexplained non-localized radiation effects (bystander effect and abscopal effect) and the efficacy of spatially fractionated radiation therapy (microbeam radiation therapy and GRID therapy) where many “hot” and “cold” spots are intentionally created throughout the treatment volume. Better understanding of the mechanisms behind the non-localized radiation effects creates tremendous opportunities to develop new and integrated cancer treatment strategies that are based on radiotherapy, immunology, and chemotherapy. However, in the multidisciplinary effort to advance new radiobiology, there are also tremendous challenges including a lack of multidisciplinary researchers and imaging technologies for the microscopic radiation-induced responses. A better grasp of the essence of

  17. Inverse Faraday Effect driven by Radiation Friction

    CERN Document Server

    Liseykina, T V; Macchi, A

    2015-01-01

    In the interaction of extremely intense ($>10^{23}~\\mbox{W cm}^{-2}$), circularly polarized laser pulses with thick targets, theory and simulations show that a major fraction of the laser energy is converted into incoherent radiation because of collective electron motion during the "hole boring" dynamics. The effective dissipation due to radiative losses allows the absorption of electromagnetic angular momentum, which in turn leads to the generation of an axial magnetic field of tens of gigagauss value. This peculiar "inverse Faraday effect" is demonstrated in three-dimensional simulations including radiation friction.

  18. Visible Effects of Invisible Hidden Valley Radiation

    CERN Document Server

    Carloni, Lisa

    2010-01-01

    Assuming there is a new gauge group in a Hidden Valley, and a new type of radiation, can we observe it through its effect on the kinematic distributions of recoiling visible particles? Specifically, what are the collider signatures of radiation in a hidden sector? We address these questions using a generic SU(N)-like Hidden Valley model that we implement in Pythia. We find that in both the e+e- and the LHC cases the kinematic distributions of the visible particles can be significantly affected by the valley radiation. Without a proper understanding of such effects, inferred masses of "communicators" and of invisible particles can be substantially off.

  19. Cloud effects on middle ultraviolet global radiation

    Science.gov (United States)

    Borkowski, J.; Chai, A.-T.; Mo, T.; Green, A. E. O.

    1977-01-01

    An Eppley radiometer and a Robertson-Berger sunburn meter are employed along with an all-sky camera setup to study cloud effects on middle ultraviolet global radiation at the ground level. Semiempirical equations to allow for cloud effects presented in previous work are compared with the experimental data. The study suggests a means of defining eigenvectors of cloud patterns and correlating them with the radiation at the ground level.

  20. Correlated Uncertainties in Radiation Shielding Effectiveness

    Science.gov (United States)

    Werneth, Charles M.; Maung, Khin Maung; Blattnig, Steve R.; Clowdsley, Martha S.; Townsend, Lawrence W.

    2013-01-01

    The space radiation environment is composed of energetic particles which can deliver harmful doses of radiation that may lead to acute radiation sickness, cancer, and even death for insufficiently shielded crew members. Spacecraft shielding must provide structural integrity and minimize the risk associated with radiation exposure. The risk of radiation exposure induced death (REID) is a measure of the risk of dying from cancer induced by radiation exposure. Uncertainties in the risk projection model, quality factor, and spectral fluence are folded into the calculation of the REID by sampling from probability distribution functions. Consequently, determining optimal shielding materials that reduce the REID in a statistically significant manner has been found to be difficult. In this work, the difference of the REID distributions for different materials is used to study the effect of composition on shielding effectiveness. It is shown that the use of correlated uncertainties allows for the determination of statistically significant differences between materials despite the large uncertainties in the quality factor. This is in contrast to previous methods where uncertainties have been generally treated as uncorrelated. It is concluded that the use of correlated quality factor uncertainties greatly reduces the uncertainty in the assessment of shielding effectiveness for the mitigation of radiation exposure.

  1. Acute effects of solar particle event radiation

    Science.gov (United States)

    Kennedy, Ann R.; Weissman, Drew; Sanzari, Jenine K.; Krigsfeld, Gabriel S.; Wan, X. Steven; Romero-Weaver, Ana L.; Diffenderfer, Eric S.; Lin, L.; Cengel, K.

    2014-01-01

    A major solar particle event (SPE) may place astronauts at significant risk for the acute radiation syndrome (ARS), which may be exacerbated when combined with other space flight stressors, such that the mission or crew health may be compromised. The National Space Biomedical Research Institute (NSBRI) Center of Acute Radiation Research (CARR) is focused on the assessment of risks of adverse biological effects related to the ARS in animals exposed to space flight stressors combined with the types of radiation expected during an SPE. The CARR studies are focused on the adverse biological effects resulting from exposure to the types of radiation, at the appropriate energies, doses and dose-rates, present during an SPE (and standard reference radiations: gamma rays or electrons). All animal studies described have been approved by the University of PA IACUC. Some conclusions from recent CARR investigations are as follows: (i) the relative biological effectiveness (RBE) values for SPE-like protons compared with standard reference radiations (gammas or electrons) for white blood cells (WBCs) vary greatly between mice, ferrets and pigs, with the RBE values being greater in ferrets than those in mice, and considerably greater in pigs compared with those in ferrets or mice [1, 2]. This trend for the data suggests that the RBE values for WBCs in humans could be considerably greater than those observed in small mammals, and SPE proton radiation may be far more hazardous to humans than previously estimated from small animal studies. (ii) Very low doses of SPE proton radiation (25 cGy) increase blood clotting times in ferrets, and the low SPE-like dose rate has more severe effects than high dose rate radiation [3]. (iii) Results from pig and ferret studies suggest that disseminated intravascular coagulation is a major cause of death at doses near the LD50 level for SPE-like proton and gamma radiation. (iv) Exposure to SPE-like proton or gamma radiation, in combination with

  2. Effective dose: a radiation protection quantity

    CERN Document Server

    Menzel, H G

    2012-01-01

    Modern radiation protection is based on the principles of justification, limitation, and optimisation. Assessment of radiation risks for individuals or groups of individuals is, however, not a primary objective of radiological protection. The implementation of the principles of limitation and optimisation requires an appropriate quantification of radiation exposure. The International Commission on Radiological Protection (ICRP) has introduced effective dose as the principal radiological protection quantity to be used for setting and controlling dose limits for stochastic effects in the regulatory context, and for the practical implementation of the optimisation principle. Effective dose is the tissue weighted sum of radiation weighted organ and tissue doses of a reference person from exposure to external irradiations and internal emitters. The specific normalised values of tissue weighting factors are defined by ICRP for individual tissues, and used as an approximate age- and sex-averaged representation of th...

  3. Radiation Effects in Nuclear Waste Materials

    Energy Technology Data Exchange (ETDEWEB)

    Weber, William J.; Corrales, L. Rene; Ness, Nancy J.; Williford, Ralph E.; Heinisch, Howard L.; Thevuthasan, Suntharampillai; Icenhower, Jonathan P.; McGrail, B. Peter; Devanathan, Ramaswami; Van Ginhoven, Renee M.; Song, Jakyoung; Park, Byeongwon; Jiang, Weilin; Begg, Bruce D.; Birtcher, R. B.; Chen, X.; Conradson, Steven D.

    2000-10-02

    Radiation effects from the decay of radionuclides may impact the long-term performance and stability of nuclear waste forms and stabilized nuclear materials. In an effort to address these concerns, the objective of this project was the development of fundamental understanding of radiation effects in glasses and ceramics, particularly on solid-state radiation effects and their influence on aqueous dissolution kinetics. This study has employed experimental, theoretical and computer simulation methods to obtain new results and insights into radiation damage processes and to initiate the development of predictive models. Consequently, the research that has been performed under this project has significant implications for the High-Level Waste and Nuclear Materials focus areas within the current DOE/EM mission. In the High-Level Waste (HLW) focus area, the results of this research could lead to improvements in the understanding of radiation-induced degradation mechanisms and their effects on dissolution kinetics, as well as development of predictive models for waste form performance. In the Nuclear Materials focus area, the results of this research could lead to improvements in the understanding of radiation effects on the chemical and structural properties of materials for the stabilization and long-term storage of plutonium, highly-enriched uranium, and other actinides. Ultimately, this research could result in improved glass and ceramic materials for the stabilization and immobilization of high-level tank waste, plutonium residues and scraps, surplus weapons plutonium, highly-enriched uranium, other actinides, and other radioactive materials.

  4. Non-targeted effects of photon and particle irradiation and the interaction with the immune system

    Directory of Open Access Journals (Sweden)

    Thomas Ernst Schmid

    2012-07-01

    Full Text Available Ionizing irradiation is an important clinical approach to treat solid tumors. Modern radiation technologies aim to selectively kill tumor cells and protect the surrounding normal tissue. The standard paradigm for radiation effects in cellular systems involves damage of the DNA including DNA double strand breaks, which are considered as most effective in destroying tumor cells. Due to their enhanced physical and radiobiological properties, high linear energy transfer (LET radiation qualities are of special interest in tumor therapy. Future radiation therapy strategies aim to utilize carbon ions to effectively treat highly aggressive tumors. More recently, evidence is emerging for non-DNA targeted effects of radiation, including mutations, chromosomal aberrations and changes in gene expression, which can occur in cells that were not directly exposed to radiation. Radiation oncologists are only gradually beginning to appreciate the clinical relevance of radiation-induced bystander effects, genomic instability and abscopal effects. Since these effects are sensed by the immune system, a combination of immunotherapy and irradiation presents a new therapeutic opportunity in the future.

  5. Radiation effects on branched polysilanes

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, K.; Seki, S.; Tagawa, S. [Osaka Univ., Ibaraki (Japan). Inst. of Scientific and Industrial Research; Shibata, H.; Iwai, T. [Tokyo Univ. (Japan). Research Center for Nuclear Science and Technology

    2000-03-01

    We observed crosslinking and scission caused by gamma radiation in linear and branched polysilanes which have from 5% to 33% of the branching points. The crosslinking reactions become predominant for the irradiation with branching density increasing. The cleavage did not take place exclusively at the branching points and branching polysilanes are sensitive to radiation extraordinary as compared with linear polysilane from a careful study of the radiolysis products of a series of polysilanes. This is due to the increasing Si {center_dot} contributing to the crosslinking reaction and that they are not resonance-stabilized by double bonds as the reaction mechanism in the irradiated polysilanes. However, the gelation curve in linear PMPS irradiated by 2 MeV He{sup +} is almost consistent with that in branching PMPS, indicating that the size of chemical track is responsible for the gel fraction. The crosslinking G value for high molecular weight PMPS irradiated by 2 MeV He{sup +} was drastically decreased as compared with that for low molecular weight. It suggests that there are a large number of intramolecular crosslinking points for high molecular weight PMPS. (author)

  6. Fallout radiation effects analysis methodology. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1988-03-31

    Fallout radiation is viewed by the weapons effects community as a potentially serious impediment to maintaining or restoring critical National Security Emergency Preparedness (NSEP) telecommunication capabilities in a nuclear environment. The OMNCS' Electromagnetic Pulse Mitigation Program is designed, in part, to identify the survival probability (survivability) of the nation's NSEP telecommunications infrastructure against fallout radiation effects. The OMNCS (Office of the Manager National Communications System) is developing a balanced approach consisting of fallout radiation stress tests on the electronic piece-parts and the use of estimated performance measures of telecommunication network elements in network simulation models to predict user connectivity levels. It is concluded that, given limited available data, the proposed method can predict fallout radiation effects on network telecommunication equipment. The effects of fallout radiation are small at low dosage levels (bin 1 and bin 2). More pronounced variations in equipment performance were exhibited for radiation dosage in the 1k-5k Rads(Si) bin. Finally, the results indicate that by increasing the sample size to approximately 200 samples, the statistical quality of survivability predictions can be significantly improved.

  7. Radiation effects on ion exchange materials

    Energy Technology Data Exchange (ETDEWEB)

    Gangwer, T.E.; Goldstein, M.; Pillay, K.K.S.

    1977-11-01

    An extensive literature review and data compilation has been completed on the radiation-damage of ion exchange resins. The primary goal of the study has been to review the available literature on ion exchange materials used in, as well as those with potential for use in, the nuclear fuel and waste reprocessing areas. The physical and chemical properties of ion exchangers are reviewed. Experimental parameters useful in characterizing the effects of radiation on synthetic ion exchange resins are identified or defined. In compiling the diverse types of data, an effort was made to present the experimental data or experimentally based parameters in a format that would be useful for inter-comparing radiation effects on resins. When subject to radiation there are various general trends or qualitative effects displayed by the different types of resins. These radiation-trends and effects have been formulated into qualitative statements. The present day level of understanding of the behavior of resins under ionizing radiation is too limited to justify quantitative predictive modeling. The limitations and deficiencies of the literature are discussed and the experimentation needed to achieve quantitative modeling are outlined. 14 figs., 108 references.

  8. Effect of gamma radiation on Campylobacter jejuni

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, J.D.; Maxcy, R.B.

    Radiation resistance of Campylobacter jejuni in broth, ground beef, and ground turkey meat was determined using dose levels from 0-200 Krad at -30 +/- 10/sup 0/C, at 0-5/sup 0/C, and at 30 +/- 10/sup 0/C. Irradiation at -30/sup 0/C increased radiation resistance of cultures in ground meats; broth cultures were not greatly influenced by temperature. The effect of culture age on radiation resistance was also evaluated using cells in various physiological phases. Age did not have a pronounced effect on radiation resistance. The largest D/sub 10/ value for C. jejuni was 32 Krad, which was less than D/sub 10/ values commonly reported for salmonellae. 20 references, 4 figures.

  9. Biological effect of radiation on human

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yun Sil; Cho, Chul Koo; Lee, Su Jae [and others

    2000-04-01

    1. Adaptive response when 0.01 Gy was preirradiated before high challenging dose is induced in normal cell types such normal lymphocytes, primary keratinocytes, and L929 fibroblast cells but not in neoplastic cells such as L5178Y lymphoma cells, EL-4 lymphoma cells and 308 papilloma cells. 2. Heat shock protein (HSP) 25 and inducible HSP70 is responsible for the induction of adaptive response and radioresistance - cell cycle regulation, antiapoptotic molecule and PKC activation were involved. 3. Apoptosis was induced at most 5. hrs after irradiation in primary keratinocytes, in v-rasHa transformed keratinocytes, the maximum interval was 16 hrs, and in 308 papilloma cells, the maximum was 48 hrs. 4. PKC response by radiation is correlated with induction of apoptosis. 5. Rapid induction PKCdelta in primary keratinocytes and no response of PKC epsilon may involved in radiation induced apoptosis. 6. The rate of resorption was increased when radiation was given at 2.5 days after gestation. Early death including foetal death were highly expressed when radiation was given at 7.5 days after gestation. There are no difference in incidence of late death including embryonic death. 7. 2 Gy is the most effective dose in radiation induced teratogenesis in mouse model. 8. Growth retardation and small head was present when radiation was given at 5.5, 7.5, 11.5 and 15.5 days after gestation and small head showed high incidence at 11.5 days after gestation. 9. External malformation, internal malformation and skeletal malformation was induced when radiation was given at 7.5 days after gestation. 10. OGG1-mutated cells induced radiosensitive by G2/M cell cycle arrest. 11. Radiation induced G2/M phase cell cycle and correlated with radiosensitivity. 12. PKCalpha induced differentiation. 13. Radiation exposed cells showed carcinogenic effect. 14. Organ specific radiosensitivity was shown and protein expression was involved.

  10. Stochasticity effects in quantum radiation reaction

    CERN Document Server

    Neitz, N

    2013-01-01

    When an ultrarelativistic electron beam collides with a sufficiently intense laser pulse, radiation-reaction effects can strongly alter the beam dynamics. In the realm of classical electrodynamics, radiation reaction has a beneficial effect on the electron beam as it tends to reduce its energy spread. Here, we show that when quantum effects become important, radiation reaction induces the opposite effect, i.e., the electron beam spreads out after interacting with the laser pulse. We identify the physical origin of this opposite tendency in the intrinsic stochasticity of photon emission, which becomes substantial in the full quantum regime. Our numerical simulations indicated that the predicted effects of the stochasticity can be measured already with presently available lasers and electron accelerators.

  11. Stochasticity effects in quantum radiation reaction.

    Science.gov (United States)

    Neitz, N; Di Piazza, A

    2013-08-02

    When an ultrarelativistic electron beam collides with a sufficiently intense laser pulse, radiation-reaction effects can strongly alter the beam dynamics. In the realm of classical electrodynamics, radiation reaction has a beneficial effect on the electron beam as it tends to reduce its energy spread. Here we show that when quantum effects become important, radiation reaction induces the opposite effect; i.e., the energy distribution of the electron beam spreads out after interacting with the laser pulse. We identify the physical origin of this opposite tendency in the intrinsic stochasticity of photon emission, which becomes substantial in the quantum regime. Our numerical simulations indicate that the predicted effects of the stochasticity can be measured already with presently available lasers and electron accelerators.

  12. Anti-damping effect of radiation reaction

    Science.gov (United States)

    Wang, G.; Li, H.; Shen, Y. F.; Yuan, X. Z.; Zi, J.

    2010-01-01

    The anti-damping effect of radiation reaction, which means the radiation reaction does non-negative work on a radiating charge, is investigated at length by using the Lorentz-Dirac equation (LDE) for the motion of a point charge respectively acted on by (a) a pure electric field, (b) a pure magnetic field and (c) the fields of an electromagnetic wave. We found that the curvature of the charge's trajectory plays an important role in the radiation reaction force, and the anti-damping effect cannot take place for the real macroscopic motions of a point charge. The condition for this anti-damping effect to take place is that the gradient of the external force field must exceed a certain value over the region of magnitude of the classical radius of massive charges (~10-15 m). Our results are potentially helpful to lessen the controversy on LDE and justify it as the correct classical equation describing the radiating charge's motion. If this anti-damping effect of LDE were a real existing physical process, it could serve as a mechanism within the context of classical electrodynamics for the stability of hydrogen atoms. Using the picture of an electron in quantum electrodynamics, namely the negative bare charge surrounded by the polarized positive charges of vacuum, we can obtain a reasonable explanation for the energy transferred to the electron during the occurrence of the anti-damping effect, on which the venerable work of Wheeler and Feynman has thrown some light.

  13. Plutonium, Mineralogy and Radiation Effects

    Science.gov (United States)

    Ewing, R. C.

    2006-05-01

    During the past fifty years, more than 1,800 metric tonnes of Pu and substantial quantities of other "minor" actinides, such as Np, Am and Cm, have been generated in nuclear reactors. Some of these transuranic elements can be a source of energy in fission reactions (e.g., 239Pu), a source of fissile material for nuclear weapons (e.g., 239Pu and 237Np), or are of environmental concern because of their long half- lives and radiotoxicity (e.g., 239Pu, t1/2 = 24,100 years, and 237Np, t1/2 = 2.1 million years). There are two basic strategies for the disposition of these elements: 1.) to "burn" or transmute the actinides using nuclear reactors or accelerators; 2.) to "sequester" the actinides in chemically durable, radiation-resistant materials that are suitable for geologic disposal. There has been substantial interest in the use of actinide-bearing minerals, such as zircon or isometric pyrochlore, A2B2O7 (A = rare earths; B = Ti, Zr, Sn, Hf; Fd3m; Z=8), for the immobilization of actinides, particularly plutonium. One of the principal concerns has been the accumulation of structural damage caused by alpha-decay events, particularly from the recoil nucleus. Systematic ion beam irradiation studies of rare-earth pyrochlores have led to the discovery that certain compositions (B = Zr, Hf) are stable to very high fluences of alpha-decay event damage. Some compositions, Gd2Ti2O7, are amorphized at relatively low doses (0.2 displacements per atom, dpa, at room temperature), while other compositions, Gd2Zr2O7, do not amorphize (even at doses of > 40 dpa at 25K), but instead disorder to a defect fluorite structure. By changing the composition of the A-site (e.g., substitution of different rare earth elements), the temperature above which the pyrochlore composition can no longer be amorphized, Tc, varies by >600 K (e.g., Lu2Ti2O7: Tc = 480 K; Gd2Ti2O7: Tc = 1120 K). The variation in response to irradiation as a function of composition can be used to model the long

  14. Radiation effects on LDPE/EVA blends

    Energy Technology Data Exchange (ETDEWEB)

    Sharif, Jamaliah; Aziz, S.H.S.A.Sharifah Hanisah Syed Abdul; Hashim, Kamaruddin

    2000-04-01

    The effect of radiation on the properties of low density polyethylene (LDPE) and ethylene vinyl acetate (EVA) blends were investigated. The improvement of the measured gel content, thermal elongation, tensile strength, elongation at break and heat deformation of the blends have confirmed the positive effect of electron beam irradiation on the blends.

  15. Effects of radiation and debris to SSPS

    OpenAIRE

    Utashima, Masayoshi; 歌島 昌由

    2004-01-01

    This paper studies effects of the radiation and space debris to the Space Solar Power Systems (SSPS). In the first half of the paper, the in-space transportation from low-Earth orbit to geostationary Earth orbit is studied in consideration of these effects. In the second half, the debris impacts to SSPS on geostationary Earth orbit are analyzed.

  16. Radiation effects on Brassica seeds and seedlings

    Science.gov (United States)

    Deoli, Naresh; Hasenstein, Karl H.

    2016-07-01

    Space radiation consists of high energy charged particles and affects biological systems, but because of its stochastic, non-directional nature is difficult to replicate on Earth. Radiation damages biological systems acutely at high doses or cumulatively at low doses through progressive changes in DNA organization. These damages lead to death or cause of mutations. While radiation biology typically focuses on mammalian or human systems, little is known as to how radiation affects plants. In addition, energetic ion beams are widely used to generate new mutants in plants considering their high-LET (Linear Energy Transfer) as compared to gamma rays and X-rays. Understanding the effect of ionizing radiation on plant provides a basis for studying effects of radiation on biological systems and will help mitigate (space) radiation damage in plants. We exposed dry and imbibed Brassica rapa seeds and seedling roots to proton beams of varying qualities and compared the theoretical penetration range of different energy levels with observable growth response. We used 1, 2 and 3 MeV protons in air at the varying fluences to investigate the effect of direct irradiation on the seeds (1012 - 1015 ions/cm2) and seedlings (1013 ions/cm2). The range of protons in the tissue was calculated using Monte-Carlo based SRIM (Stopping and Range of Ions in Matter) software. The simulation and biological results indicate that ions did not penetrate the tissue of dry or hydrated seeds at all used ion energies. Therefore the entire energy was transferred to the treated tissue. Irradiated seeds were germinated vertically under dim light and roots growth was observed for two days after imbibition. The LD50 of the germination was about 2×1014 ions/cm2 and about 5×1014 ions/cm2 for imbibed and dry seeds, respectively. Since seedlings are most sensitive to gravity, the change in gravitropic behavior is a convenient means to assess radiation damage on physiological responses other than direct tissue

  17. Radiative transfer effects in primordial hydrogen recombination

    CERN Document Server

    Ali-Haïmoud, Yacine; Hirata, Christopher M

    2010-01-01

    The calculation of a highly accurate cosmological recombination history has been the object of particular attention recently, as it constitutes the major theoretical uncertainty when predicting the angular power spectrum of Cosmic Microwave Background anisotropies. Lyman transitions, in particular the Lyman-alpha line, have long been recognized as one of the bottlenecks of recombination, due to their very low escape probabilities. The Sobolev approximation does not describe radiative transfer in the vicinity of Lyman lines to a sufficient degree of accuracy, and several corrections have already been computed in other works. In this paper, the impact of some previously ignored radiative transfer effects is calculated. First, the effect of Thomson scattering in the vicinity of the Lyman-alpha line is evaluated, using a full redistribution kernel incorporated into a radiative transfer code. The effect of feedback of distortions generated by the optically thick deuterium Lyman-alpha line blueward of the hydrogen ...

  18. Oide Effect and Radiation in Bending Magnets

    CERN Document Server

    Blanco, Oscar; Bambade, Philip

    2014-01-01

    Including radiation effects during lattice design optimization is crucial in high energy accelerators. Oide effect and radiation in bending magnets are reviewed aiming to include them in the optical design process to minimize the IP beam size. The Oide double integral is expressed in simpler terms in order to speed up calculations, concluding in how longer quadrupoles with lower gradients may help reducing the Oide effect. Radiation in bending magnets is reviewed for linear lattices, generalizing to the case when the final dispersion is different from zero and making comparisons with theoretical results and particle tracking. An agreement between the theory, the implemented approximation included in MAPCLASS2 and the six-dimensional tracking in PLACET has been found.

  19. Effects of gamma radiation in annatto seeds

    Energy Technology Data Exchange (ETDEWEB)

    Franco, Camilo F. de Oliveira, E-mail: camilo.urucum@hotmail.com [Empresa Brasileira de Pesquisa Agropecuaria (EMBRAPA/EMEPA), Joao Pessoa, PB (Brazil); Arthur, Valter; Arthur, Paula B., E-mail: arthur@cena.usp.br [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil); Harder, Marcia N.C., E-mail: marcia.harder@fatec.sp.gov.br [Centro Paula Souza, Curso Superior de Tecnologia em Bicombustiveis (FATEC), Piracicaba, SP (Brazil); Filho, Jose C.; Neto, Miguel B., E-mail: jorgecazefilho@yahoo.com.br [Empresa Estadual de Pesquisa Agropecuaria da Paraiba (EMEPA), Joao Pessoa, PB (Brazil)

    2015-07-01

    The annatto bixin has emerged as a major source of natural dyes used in the world notably by the substitution of synthetics harmful to human health and ecologic tendency in obtaining industrial products free of additives with applications in industries textiles; cosmetics; pharmaceutical and food mainly. The aim of this research was to obtain increased of germination rate and dormancy breaking on annatto seeds by gamma radiation. Annatto dry seeds were exposed to low doses of gamma radiation from source of Cobalt-60, type Gammecell-220, at 0.456 kGy/hour dose rate. In order to study stimulation effects of radiation on germination rate and dormancy breaking in the seeds. Five treatments with gamma radiation doses were applied as follows: 0 (control); 100; 125; 150 and 175 Gy. After irradiation the annatto seeds were planted as for usual seed production. According to the results obtained in this experiment we can conclude that the low doses of gamma radiation utilized on the annatto seeds did not presented significantly effect on the germination of plants. But the best dose to increase the germination of seeds was 150 Gy. (author)

  20. Effects of gamma radiation in soybean

    Energy Technology Data Exchange (ETDEWEB)

    Franco, Jose Gilmar; Franco, Suely Salumita Haddad; Arthur, Valter; Arthur, Paula Bergamin, E-mail: arthur@cena.usp.br [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil); Franco, Caio Haddad [Centro Nacional de Pesquisa em Energia e Materiais (LNBio/CNPEM), Campinas, SP (Brazil). Laboratorio Nacional de Biociencias; Villavicencio, Anna Lucia, E-mail: zegilmar60@gmail.com, E-mail: gilmita@uol.com.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    The degree of radiosensitivity depends mostly on the species, the stage of the embryo at irradiation, the doses employed and the criteria used to measure the effect. One of the most common criteria to evaluate radiosensitivity in seeds is to measure the average plant production. Soya dry seeds were exposed to low doses of gamma radiation from source of Cobalt-60, type Gammecell-220, at 0.245 kGy dose rate. In order to study stimulation effects of radiation on germination, plant growth and production. Five treatments radiation doses were applied as follows: 0 (control); 25; 50; 75 and 100 Gy. Seed germination and harvest of number of seeds and total production were assessed to identify occurrence of stimulation. Soya seeds and plants were handled as for usual seed production in Brazil. The low doses of gamma radiation in the seeds that stimulate the production were doses of 25, 50 and 75 Gy. There are evidences that the use of low doses of gamma radiation can stimulate germination and plant production. (author)

  1. TGFβ is a master regulator of radiation therapy-induced anti-tumor immunity

    Science.gov (United States)

    Vanpouille-Box, Claire; Diamond, Julie M.; Pilones, Karsten A.; Zavadil, Jiri; Babb, James S.; Formenti, Silvia C.; Barcellos-Hoff, Mary Helen; Demaria, Sandra

    2015-01-01

    T cells directed to endogenous tumor antigens are powerful mediators of tumor regression. Recent immunotherapy advances have identified effective interventions to unleash tumor-specific T cell activity in patients who naturally develop them. Eliciting T cell responses to a patient's individual tumor remains a major challenge. Radiation therapy can induce immune responses to model antigens expressed by tumors, but it remains unclear if it can effectively prime T cells specific for endogenous antigens expressed by poorly immunogenic tumors. We hypothesized that TGFβ activity is a major obstacle hindering the ability of radiation to generate an in situ tumor vaccine. Here we show that antibody-mediated TGFβ neutralization during radiation therapy effectively generates CD8+ T cell responses to multiple endogenous tumor antigens in poorly immunogenic mouse carcinomas. Generated T cells were effective at causing regression of irradiated tumors and non-irradiated lung metastases or synchronous tumors (abscopal effect). Gene signatures associated with IFNγ and immune-mediated rejection were detected in tumors treated with radiation therapy and TGFβ blockade in combination but not as single agents. Upregulation of programmed death (PD) ligand-1 and -2 in neoplastic and myeloid cells and PD-1 on intratumoral T cells limited tumor rejection resulting in rapid recurrence. Addition of anti-PD-1 antibodies extended survival achieved with radiation and TGFβ blockade. Thus, TGFβ is a fundamental regulator of radiation therapy ability to generate an in situ tumor vaccine. The combination of local radiation therapy with TGFβ neutralization offers a novel individualized strategy for vaccinating patients against their tumors. PMID:25858148

  2. Toxicity risk of non-target organs at risk receiving low-dose radiation: case report

    Directory of Open Access Journals (Sweden)

    Chen Yu-Jen

    2009-12-01

    Full Text Available Abstract The spine is the most common site for bone metastases. Radiation therapy is a common treatment for palliation of pain and for prevention or treatment of spinal cord compression. Helical tomotherapy (HT, a new image-guided intensity modulated radiotherapy (IMRT, delivers highly conformal dose distributions and provides an impressive ability to spare adjacent organs at risk, thus increasing the local control of spinal column metastases and decreasing the potential risk of critical organs under treatment. However, there are a lot of non-target organs at risk (OARs occupied by low dose with underestimate in this modern rotational IMRT treatment. Herein, we report a case of a pathologic compression fracture of the T9 vertebra in a 55-year-old patient with cholangiocarcinoma. The patient underwent HT at a dose of 30 Gy/10 fractions delivered to T8-T10 for symptom relief. Two weeks after the radiotherapy had been completed, the first course of chemotherapy comprising gemcitabine, fluorouracil, and leucovorin was administered. After two weeks of chemotherapy, however, the patient developed progressive dyspnea. A computed tomography scan of the chest revealed an interstitial pattern with traction bronchiectasis, diffuse ground-glass opacities, and cystic change with fibrosis. Acute radiation pneumonitis was diagnosed. Oncologists should be alert to the potential risk of radiation toxicities caused by low dose off-targets and abscopal effects even with highly conformal radiotherapy.

  3. Effects of the neutron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Alcober, V. (Junta de Energia Nuclear, Madrid (Spain)); Martinez Ruis, F.; Manuzi, M.A. (Dpto. de Traumatologia Centro Ramon y Cajal, Madrid (Spain))

    1984-01-01

    An introduction to the cortical bone neutron irradiation subject and to the effect of the irradiation on the mechanical properties of bone considered as a composite material is presented. Only the special case of the simple flexion has been treated. The evolution of the load-deflection curve as a function of the epithermal neutron dose has been studied. Some hypotheses on the role performed by the organic and mineral phases are introduced.

  4. Antiproton radiation found effective in cancer research

    CERN Multimedia

    2003-01-01

    "An international collaboration of scientists has completed the first ever antiproton beam experiments designed to reveal the biological effectiveness of antiproton radiation in terminating cells used for cancer research...PBar Labs assembled the collaboration at CERN (European Organization for Nuclear Research in Geneva) to perform the measurements" (1 page).

  5. Aharonov-Bohm Effect in Synchrotron Radiation

    CERN Document Server

    Bagrov, V G; Levin, A; Tlyachev, V B

    2001-01-01

    Synchrotron radiation of a charged particle in a constant uniform magnetic field and in the presence of the Aharonov-Bohm solenoid field is studied in the frame of the relativistic quantum theory. First, to this end exact solutions of the Klein-Gordon and Dirac equations are found. Using such solutions, all characteristics of one photon spontaneous irradiation, such as its intensity and angular distribution and polarization were calculated and analyzed. It is shown that usual spectrum of the synchrotron radiation is essentially affected by the presence of the solenoid (the Aharonov-Bohm effect). We believe that this deformation may be observed by spectroscopic methods of measurement. It is shown that

  6. Memory effects in radiative jet energy loss

    CERN Document Server

    Michler, Frank; Greiner, Carsten

    2009-01-01

    In heavy-ion collisions the created quark-gluon plasma forms a quickly evolving background, leading to a time dependent radiative behavior of high momentum partons traversing the medium. We use the Schwinger Keldysh formalism to describe the jet evolution as a non-equilibrium process including the Landau-Pomeranschuk-Migdal effect. Concentrating on photon emission, a comparison of our results to a quasistatic calculation shows good agreement, leading to the conclusion that the radiative behavior follows the changes in the medium almost instantaneously.

  7. Alpha Radiation Effects on Silicon Oxynitride Waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Morichetti, Francesco; Grillanda, Stefano; Manandhar, Sandeep; Shutthanandan, Vaithiyalingam; Kimerling, Lionel; Melloni, Andrea; Agarwal, Anuradha M.

    2016-09-21

    Photonic technologies are today of great interest for use in harsh environments, such as outer space, where they can potentially replace current communication systems based on radiofrequency components. However, very much alike to electronic devices, the behavior of optical materials and circuits can be strongly altered by high-energy and high-dose ionizing radiations. Here, we investigate the effects of alpha () radiation with MeV-range energy on silicon oxynitride (SiON) optical waveguides. Irradiation with a dose of 5×1015 cm-2 increases the refractive index of the SiON core by nearly 10-2, twice as much that of the surrounding silica cladding, leading to a significant increase of the refractive index contrast of the waveguide. The higher mode confinement induced by -radiation reduces the loss of tightly bent waveguides. We show that this increases the quality factor of microring resonators by 20%, with values larger than 105 after irradiation.

  8. Anti-damping effect of radiation reaction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, G; Yuan, X Z [School of Physics and Electric Information, Wenzhou University, Wenzhou 325035 (China); Li, H [Department of Physics, Yantai University, Yantai 264005 (China); Shen, Y F [Department of Physics, China University of Mining and Technology, Xuzhou 221008 (China); Zi, J [National Laboratory of Surface Physics, Fudan University, Shanghai 200433 (China)], E-mail: gz_wang131@yahoo.cn

    2010-01-15

    The anti-damping effect of radiation reaction, which means the radiation reaction does non-negative work on a radiating charge, is investigated at length by using the Lorentz-Dirac equation (LDE) for the motion of a point charge respectively acted on by (a) a pure electric field, (b) a pure magnetic field and (c) the fields of an electromagnetic wave. We found that the curvature of the charge's trajectory plays an important role in the radiation reaction force, and the anti-damping effect cannot take place for the real macroscopic motions of a point charge. The condition for this anti-damping effect to take place is that the gradient of the external force field must exceed a certain value over the region of magnitude of the classical radius of massive charges ({approx}10{sup -15} m). Our results are potentially helpful to lessen the controversy on LDE and justify it as the correct classical equation describing the radiating charge's motion. If this anti-damping effect of LDE were a real existing physical process, it could serve as a mechanism within the context of classical electrodynamics for the stability of hydrogen atoms. Using the picture of an electron in quantum electrodynamics, namely the negative bare charge surrounded by the polarized positive charges of vacuum, we can obtain a reasonable explanation for the energy transferred to the electron during the occurrence of the anti-damping effect, on which the venerable work of Wheeler and Feynman has thrown some light.

  9. Effects of XUV radiation on circumbinary planets

    CERN Document Server

    Sanz-Forcada, J; Micela, G

    2014-01-01

    Several circumbinary planets have recently been discovered. The orbit of a planet around a binary stellar system poses several dynamic constraints. The effects that radiation from the host stars may have on the planet atmospheres must be considered. Because of the configuration of a close binary system, these stars have a high rotation rate, which causes a permanent state of high stellar activity and copious XUV radiation. The accumulated effects are stronger than for exoplanets around single stars, and cause a faster evaporation of their atmospheres. We evaluate the effects that stellar radiation has on the evaporation of exoplanets around binary systems and on the survival of these planets. We considered the XUV spectral range to account for the photons that are easily absorbed by a planet atmosphere that is mainly composed of hydrogen. A more complex atmospheric composition is expected to absorb this radiation more efficiently. We used direct X-ray observations to evaluate the energy in the X-rays range an...

  10. Exploring gamma radiation effect on exoelectron emission properties of bone

    Energy Technology Data Exchange (ETDEWEB)

    Zakaria, M.; Dekhtyar, Y.; Bogucharska, T.; Noskov, V. [Riga Technical Univ., Biomedical Engineering and Nanotechnology Institute (Latvia)

    2006-07-01

    Gamma radiation is used for radiation therapy to treat carcinogenic diseases including bone cancer. Ionising radiation kills carcinogenic calls. However, there are side effects of the gamma radiation on the bone surface electron structure. One of the effects is in the form of altering electron density of states of bone that, with time, influences biomedical reactions on bone life condition. (authors)

  11. Radiation Effects in Nuclear Waste Materials

    Energy Technology Data Exchange (ETDEWEB)

    Weber, William J.

    2005-09-30

    The objective of this project is to develop a fundamental understanding of radiation effects in glasses and ceramics, as well as the influence of solid-state radiation effects on aqueous dissolution kinetics, which may impact the performance of nuclear waste forms and stabilized nuclear materials. This work provides the underpinning science to develop improved glass and ceramic waste forms for the immobilization and disposition of high-level tank waste, excess plutonium, plutonium residues and scrap, other actinides, and other nuclear waste streams. Furthermore, this work is developing develop predictive models for the performance of nuclear waste forms and stabilized nuclear materials. Thus, the research performed under this project has significant implications for the immobilization of High-Level Waste (HLW) and Nuclear Materials, two mission areas within the Office of Environmental Management (EM). With regard to the HLW mission, this research will lead to improved understanding of radiation-induced degradation mechanisms and their effects on dissolution kinetics, as well as development of predictive models for waste form performance. In the Nuclear Materials mission, this research will lead to improvements in the understanding of radiation effects on the chemical and structural properties of materials for the stabilization and long-term storage of plutonium, highly-enriched uranium, and other actinides. The research uses plutonium incorporation, ion-beam irradiation, and electron-beam irradiation to simulate the effects of alpha decay and beta decay on relevant glasses and ceramics. The research under this project has the potential to result in improved glass and ceramic materials for the stabilization and immobilization of high-level tank waste, plutonium residues and scraps, surplus weapons plutonium, highly-enriched uranium, other actinides, and other radioactive materials.

  12. Radiation Effects in Nuclear Waste Materials

    Energy Technology Data Exchange (ETDEWEB)

    Weber, William J.

    2005-06-01

    The objective of this project is to develop a fundamental understanding of radiation effects in glasses and ceramics, as well as the influence of solid-state radiation effects on aqueous dissolution kinetics, which may impact the performance of nuclear waste forms and stabilized nuclear materials. This work provides the underpinning science to develop improved glass and ceramic waste forms for the immobilization and disposition of high-level tank waste, excess plutonium, plutonium residues and scrap, other actinides, and other nuclear waste streams. Furthermore, this work is developing develop predictive models for the performance of nuclear waste forms and stabilized nuclear materials. Thus, the research performed under this project has significant implications for the immobilization of High-Level Waste (HLW) and Nuclear Materials, two mission areas within the Office of Environmental Management (EM). With regard to the HLW mission, this research will lead to improved understanding of radiation-induced degradation mechanisms and their effects on dissolution kinetics, as well as development of predictive models for waste form performance. In the Nuclear Materials mission, this research will lead to improvements in the understanding of radiation effects on the chemical and structural properties of materials for the stabilization and long-term storage of plutonium, highly-enriched uranium, and other actinides. The research uses plutonium incorporation, ion-beam irradiation, and electron-beam irradiation to simulate the effects of alpha decay and beta decay on relevant glasses and ceramics. The research under this project has the potential to result in improved glass and ceramic materials for the stabilization and immobilization of high-level tank waste, plutonium residues and scraps, surplus weapons plutonium, highly-enriched uranium, other actinides, and other radioactive materials.

  13. Radiative effects in radiative shocks in shock tubes

    Science.gov (United States)

    Drake, R. P.; Doss, F. W.; McClarren, R. G.; Adams, M. L.; Amato, N.; Bingham, D.; Chou, C. C.; DiStefano, C.; Fidkowski, K.; Fryxell, B.; Gombosi, T. I.; Grosskopf, M. J.; Holloway, J. P.; van der Holst, B.; Huntington, C. M.; Karni, S.; Krauland, C. M.; Kuranz, C. C.; Larsen, E.; van Leer, B.; Mallick, B.; Marion, D.; Martin, W.; Morel, J. E.; Myra, E. S.; Nair, V.; Powell, K. G.; Rauchwerger, L.; Roe, P.; Rutter, E.; Sokolov, I. V.; Stout, Q.; Torralva, B. R.; Toth, G.; Thornton, K.; Visco, A. J.

    2011-09-01

    Using modern high-energy-density facilities it is straightforward to produce radiative shock waves in which the transfer of energy by radiation controls the hydrodynamic structure of the system. Some of these experiments use shock tubes. This paper discusses such experiments, with an emphasis on the simple physical relations that determine the primary features of such shocks and on the details and impact of radiative energy transfer in such systems. Notable aspects include the creation of high-density shocked layers, the flow of radiative energy toward regions of higher energy density, and the creation of secondary shocks by ablation of the tube walls ahead of the primary shock front. Simulations of one such experimental system are also shown.

  14. Effect of laser radiation on rat radiosensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Laprun, I.B.

    1979-03-01

    Quite a few experimental data have been obtained to date indicating that radioresistance of the organism is enhanced under the influence of electromagnetic emissions in the radiofrequency and optical ranges. But no studies were made of the possible radioprotective properties of coherent laser radiation. At the same time, it was demonstrated that the low-energy emission of optical quantum generators (lasers) in the red band stimulates the protective forces of the organism and accelerates regenerative processes; i.e., it induces effects that are the opposite of that of ionizing radiation. Moreover, it was recently demonstrated that there is activation of catalase, a radiosensitive enzyme that plays an important role in the metabolism of peroxide compounds, under the influence of lasers. For this reason, the effect of pre-exposure to laser beams on radiosensitivity of rats was tested.

  15. Radiation Effects in the Space Telecommunications Environment

    Energy Technology Data Exchange (ETDEWEB)

    Fleetwood, Daniel M.; Winokur, Peter S.

    1999-05-17

    Trapped protons and electrons in the Earth's radiation belts and cosmic rays present significant challenges for electronics that must operate reliably in the natural space environment. Single event effects (SEE) can lead to sudden device or system failure, and total dose effects can reduce the lifetime of a telecommmiications system with significant space assets. One of the greatest sources of uncertainty in developing radiation requirements for a space system is accounting for the small but finite probability that the system will be exposed to a massive solar particle event. Once specifications are decided, standard laboratory tests are available to predict the total dose response of MOS and bipolar components in space, but SEE testing of components can be more challenging. Prospects are discussed for device modeling and for the use of standard commercial electronics in space.

  16. Advanced CMOS Radiation Effects Testing and Analysis

    Science.gov (United States)

    Pellish, J. A.; Marshall, P. W.; Rodbell, K. P.; Gordon, M. S.; LaBel, K. A.; Schwank, J. R.; Dodds, N. A.; Castaneda, C. M.; Berg, M. D.; Kim, H. S.; Phan, A. M.; Seidleck, C. M.

    2014-01-01

    Presentation at the annual NASA Electronic Parts and Packaging (NEPP) Program Electronic Technology Workshop (ETW). The material includes an update of progress in this NEPP task area over the past year, which includes testing, evaluation, and analysis of radiation effects data on the IBM 32 nm silicon-on-insulator (SOI) complementary metal oxide semiconductor (CMOS) process. The testing was conducted using test vehicles supplied by directly by IBM.

  17. Casimir Effect, Hawking Radiation and Trace Anomaly

    CERN Document Server

    Setare, M R

    2001-01-01

    The Casimir energy for massless scalar field of two parallel conductor, in two dimensional Schwarzchild black hole background, with Dirichlet boundary conditions is calculated by making use of general properties of renormalized stress tensor. We show that vacuum expectation value of stress tensor can be obtain by Casimir effect, trace anomaly and Hawking radiation. Four-dimensional of this problem, by this method, is under progress by this author.

  18. 47 CFR 22.867 - Effective radiated power limits.

    Science.gov (United States)

    2010-10-01

    ... Effective radiated power limits. The effective radiated power (ERP) of ground and airborne stations... peak ERP of airborne mobile station transmitters must not exceed 12 Watts. (b) The peak ERP of...

  19. 47 CFR 95.855 - Transmitter effective radiated power limitation.

    Science.gov (United States)

    2010-10-01

    ... Transmitter effective radiated power limitation. The effective radiated power (ERP) of each CTS and RTU shall... with an ERP exceeding 20 watts. No mobile RTU may transmit with an ERP exceeding 4 watts....

  20. TU-CD-303-03: Localized Radiation Can Induce Systemic Anti-Cancer Immune and Non-Immune Responses and How We Might Utilize It

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, M. [National Institutes of Health (United States)

    2015-06-15

    Recent advances in cancer research have shed new light on the complex processes of how therapeutic radiation initiates changes at cellular, tissue, and system levels that may lead to clinical effects. These new advances may transform the way we use radiation to combat certain types of cancers. For the past two decades many technological advancements in radiation therapy have been largely based on the hypothesis that direct radiation-induced DNA double strand breaks cause cell death and thus tumor control and normal tissue damage. However, new insights have elucidated that in addition to causing cellular DNA damage, localized therapeutic radiation also initiates cascades of complex downstream biological responses in tissue that extend far beyond where therapeutic radiation dose is directly deposited. For instance, studies show that irradiated dying tumor cells release tumor antigens that can lead the immune system to a systemic anti-cancer attack throughout the body of cancer patient; targeted irradiation to solid tumor also increases the migration of tumor cells already in bloodstream, the seeds of potential metastasis. Some of the new insights may explain the long ago discovered but still unexplained non-localized radiation effects (bystander effect and abscopal effect) and the efficacy of spatially fractionated radiation therapy (microbeam radiation therapy and GRID therapy) where many “hot” and “cold” spots are intentionally created throughout the treatment volume. Better understanding of the mechanisms behind the non-localized radiation effects creates tremendous opportunities to develop new and integrated cancer treatment strategies that are based on radiotherapy, immunology, and chemotherapy. However, in the multidisciplinary effort to advance new radiobiology, there are also tremendous challenges including a lack of multidisciplinary researchers and imaging technologies for the microscopic radiation-induced responses. A better grasp of the essence of

  1. Biologically based multistage modeling of radiation effects

    Energy Technology Data Exchange (ETDEWEB)

    William Hazelton; Suresh Moolgavkar; E. Georg Luebeck

    2005-08-30

    This past year we have made substantial progress in modeling the contribution of homeostatic regulation to low-dose radiation effects and carcinogenesis. We have worked to refine and apply our multistage carcinogenesis models to explicitly incorporate cell cycle states, simple and complex damage, checkpoint delay, slow and fast repair, differentiation, and apoptosis to study the effects of low-dose ionizing radiation in mouse intestinal crypts, as well as in other tissues. We have one paper accepted for publication in ''Advances in Space Research'', and another manuscript in preparation describing this work. I also wrote a chapter describing our combined cell-cycle and multistage carcinogenesis model that will be published in a book on stochastic carcinogenesis models edited by Wei-Yuan Tan. In addition, we organized and held a workshop on ''Biologically Based Modeling of Human Health Effects of Low dose Ionizing Radiation'', July 28-29, 2005 at Fred Hutchinson Cancer Research Center in Seattle, Washington. We had over 20 participants, including Mary Helen Barcellos-Hoff as keynote speaker, talks by most of the low-dose modelers in the DOE low-dose program, experimentalists including Les Redpath (and Mary Helen), Noelle Metting from DOE, and Tony Brooks. It appears that homeostatic regulation may be central to understanding low-dose radiation phenomena. The primary effects of ionizing radiation (IR) are cell killing, delayed cell cycling, and induction of mutations. However, homeostatic regulation causes cells that are killed or damaged by IR to eventually be replaced. Cells with an initiating mutation may have a replacement advantage, leading to clonal expansion of these initiated cells. Thus we have focused particularly on modeling effects that disturb homeostatic regulation as early steps in the carcinogenic process. There are two primary considerations that support our focus on homeostatic regulation. First, a number of

  2. Analytic approximate radiation effects due to Bremsstrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Zvi I.

    2012-02-01

    The purpose of this note is to provide analytic approximate expressions that can provide quick estimates of the various effects of the Bremsstrahlung radiation produced relatively low energy electrons, such as the dumping of the beam into the beam stop at the ERL or field emission in superconducting cavities. The purpose of this work is not to replace a dependable calculation or, better yet, a measurement under real conditions, but to provide a quick but approximate estimate for guidance purposes only. These effects include dose to personnel, ozone generation in the air volume exposed to the radiation, hydrogen generation in the beam dump water cooling system and radiation damage to near-by magnets. These expressions can be used for other purposes, but one should note that the electron beam energy range is limited. In these calculations the good range is from about 0.5 MeV to 10 MeV. To help in the application of this note, calculations are presented as a worked out example for the beam dump of the R&D Energy Recovery Linac.

  3. Reliability and radiation effects in compound semiconductors

    CERN Document Server

    Johnston, Allan

    2010-01-01

    This book discusses reliability and radiation effects in compound semiconductors, which have evolved rapidly during the last 15 years. Johnston's perspective in the book focuses on high-reliability applications in space, but his discussion of reliability is applicable to high reliability terrestrial applications as well. The book is important because there are new reliability mechanisms present in compound semiconductors that have produced a great deal of confusion. They are complex, and appear to be major stumbling blocks in the application of these types of devices. Many of the reliability problems that were prominent research topics five to ten years ago have been solved, and the reliability of many of these devices has been improved to the level where they can be used for ten years or more with low failure rates. There is also considerable confusion about the way that space radiation affects compound semiconductors. Some optoelectronic devices are so sensitive to damage in space that they are very difficu...

  4. Radiation piezoelectric effect in germanium single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kikoin, I.K.; Kikoin, L.I.; Lazarev, S.D.

    1977-06-01

    Irradiation with ionizing particles of a germanium single crystal and uniaxial deformation at right-angles to the particle beam produced an electric field and a corresponding emf due to the radiation piezoelectric effect. Measurements were carried out when such a single crystal was irradiated with ..cap alpha.. particles and protons. The piezoelectric emf increased linearly with the compressive stress and the ..cap alpha..-particle flux intensity. The emf depended weakly on the particle energy. The observed effect was due to the anisotropy resulting from uniaxial deformation.

  5. The effects of solar radiation and black body re-radiation on thermal comfort.

    Science.gov (United States)

    Hodder, Simon; Parsons, Ken

    2008-04-01

    When the sun shines on people in enclosed spaces, such as in buildings or vehicles, it directly affects thermal comfort. There is also an indirect effect as surrounding surfaces are heated exposing a person to re-radiation. This laboratory study investigated the effects of long wave re-radiation on thermal comfort, individually and when combined with direct solar radiation. Nine male participants (26.0 +/- 4.7 years) took part in three experimental sessions where they were exposed to radiation from a hot black panel heated to 100 degrees C; direct simulated solar radiation of 600 Wm(-2) and the combined simulated solar radiation and black panel radiation. Exposures were for 30 min, during which subjective responses and mean skin temperatures were recorded. The results showed that, at a surface temperature of 100 degrees C (close to maximum in practice), radiation from the flat black panel provided thermal discomfort but that this was relatively small when compared with the effects of direct solar radiation. It was concluded that re-radiation, from a dashboard in a vehicle, for example, will not have a major direct influence on thermal comfort and that existing models of thermal comfort do not require a specific modification. These results showed that, for the conditions investigated, the addition of re-radiation from internal components has an effect on thermal sensation when combined with direct solar radiation. However, it is not considered that it will be a major factor in a real world situation. This is because, in practice, dashboards are unlikely to maintain very high surface temperatures in vehicles without an unacceptably high air temperature. This study quantifies the contribution of short- and long-wave radiation to thermal comfort. The results will aid vehicle designers to have a better understanding of the complex radiation environment. These include direct radiation from the sun as well as re-radiation from the dashboard and other internal surfaces.

  6. Radiation Effects on DC-DC Converters

    Science.gov (United States)

    Zhang, De-Xin; AbdulMazid, M. D.; Attia, John O.; Kankam, Mark D. (Technical Monitor)

    2001-01-01

    In this work, several DC-DC converters were designed and built. The converters are Buck Buck-Boost, Cuk, Flyback, and full-bridge zero-voltage switched. The total ionizing dose radiation and single event effects on the converters were investigated. The experimental results for the TID effects tests show that the voltages of the Buck Buck-Boost, Cuk, and Flyback converters increase as total dose increased when using power MOSFET IRF250 as a switching transistor. The change in output voltage with total dose is highest for the Buck converter and the lowest for Flyback converter. The trend of increase in output voltages with total dose in the present work agrees with those of the literature. The trends of the experimental results also agree with those obtained from PSPICE simulation. For the full-bridge zero-voltage switch converter, it was observed that the dc-dc converter with IRF250 power MOSFET did not show a significant change of output voltage with total dose. In addition, for the dc-dc converter with FSF254R4 radiation-hardened power MOSFET, the output voltage did not change significantly with total dose. The experimental results were confirmed by PSPICE simulation that showed that FB-ZVS converter with IRF250 power MOSFET's was not affected with the increase in total ionizing dose. Single Event Effects (SEE) radiation tests were performed on FB-ZVS converters. It was observed that the FB-ZVS converter with the IRF250 power MOSFET, when the device was irradiated with Krypton ion with ion-energy of 150 MeV and LET of 41.3 MeV-square cm/mg, the output voltage increased with the increase in fluence. However, for Krypton with ion-energy of 600 MeV and LET of 33.65 MeV-square cm/mg, and two out of four transistors of the converter were permanently damaged. The dc-dc converter with FSF254R4 radiation hardened power MOSFET's did not show significant change at the output voltage with fluence while being irradiated by Krypton with ion energy of 1.20 GeV and LET of 25

  7. Gamma Radiation Effects on Peanut Skin Antioxidants

    Directory of Open Access Journals (Sweden)

    Adriano Costa de Camargo

    2012-03-01

    Full Text Available Peanut skin, which is removed in the peanut blanching process, is rich in bioactive compounds with antioxidant properties. The aims of this study were to measure bioactive compounds in peanut skins and evaluate the effect of gamma radiation on their antioxidant activity. Peanut skin samples were treated with 0.0, 5.0, 7.5, or 10.0 kGy gamma rays. Total phenolics, condensed tannins, total flavonoids, and antioxidant activity were evaluated. Extracts obtained from the peanut skins were added to refined-bleached-deodorized (RBD soybean oil. The oxidative stability of the oil samples was determined using the Oil Stability Index method and compared to a control and synthetic antioxidants (100 mg/kg BHT and 200 mg/kg TBHQ. Gamma radiation changed total phenolic content, total condensed tannins, total flavonoid content, and the antioxidant activity. All extracts, gamma irradiated or not, presented increasing induction period (h, measured by the Oil Stability Index method, when compared with the control. Antioxidant activity of the peanut skins was higher than BHT. The present study confirmed that gamma radiation did not affect the peanut skin extracts’ antioxidative properties when added to soybean oil.

  8. Gamma radiation effects on peanut skin antioxidants.

    Science.gov (United States)

    de Camargo, Adriano Costa; de Souza Vieira, Thais Maria Ferreira; Regitano-D'Arce, Marisa Aparecida Bismara; Calori-Domingues, Maria Antonia; Canniatti-Brazaca, Solange Guidolin

    2012-01-01

    Peanut skin, which is removed in the peanut blanching process, is rich in bioactive compounds with antioxidant properties. The aims of this study were to measure bioactive compounds in peanut skins and evaluate the effect of gamma radiation on their antioxidant activity. Peanut skin samples were treated with 0.0, 5.0, 7.5, or 10.0 kGy gamma rays. Total phenolics, condensed tannins, total flavonoids, and antioxidant activity were evaluated. Extracts obtained from the peanut skins were added to refined-bleached-deodorized (RBD) soybean oil. The oxidative stability of the oil samples was determined using the Oil Stability Index method and compared to a control and synthetic antioxidants (100 mg/kg BHT and 200 mg/kg TBHQ). Gamma radiation changed total phenolic content, total condensed tannins, total flavonoid content, and the antioxidant activity. All extracts, gamma irradiated or not, presented increasing induction period (h), measured by the Oil Stability Index method, when compared with the control. Antioxidant activity of the peanut skins was higher than BHT. The present study confirmed that gamma radiation did not affect the peanut skin extracts' antioxidative properties when added to soybean oil.

  9. Late effects of ionizing radiation on testis; Effets tardifs des radiations ionisantes sur le testicules

    Energy Technology Data Exchange (ETDEWEB)

    Bardet, E. [Centre Regional de Lutte Contre le Cancer Rene-Gauducheau, 44 - Nantes (France)

    1997-12-01

    Most of the basic data regarding the effect of radiation on the testis are issued from animal studies. They demonstrate the extreme radiosensitivity on the germ cell lineage but little is known about the reversible or definitive aspects of these radiation induced effects. In man, the late non stochastic effects of radiation to the testicle are mainly related to persisting spermatogenesis disturbances or/and hormone related problems. Morphological, physiological, radiobiological specificities of the human testis along with numerous parameters depending on radiation conditions make it difficult to evaluate the late effects and radiation tolerance doses. Evaluation of such effects based on a common scale for therapeutic radiation schedules would improve the present understanding and possibility prevent the occurrence of these delayed effects, for the benefit of patients. (author)

  10. Effects of UV radiation on phytoplankton

    Science.gov (United States)

    Smith, Raymond C.; Cullen, John J.

    1995-07-01

    It is now widely documented that reduced ozone will result in increased levels of ultraviolet (UV) radiation, especially UV-B (280-320nm), incident at the surface of the earth [Watson, 1988; Anderson et al., 1991; Schoeberl and Hartmann, 1991; Frederick and Alberts, 1991; WMO, 1991; Madronich, 1993; Kerr and McElroy, 1993], and there is considerable and increasing evidence that these higher levels of UV-B radiation may be detrimental to various forms of marine life in the upper layers of the ocean. With respect to aquatic ecosystems, we also know that this biologically- damaging mid-ultraviolet radiation can penetrate to ecologically- significant depths in marine and freshwater systems [Jerlov, 1950; Lenoble, 1956; Smith and Baker, 1979; Smith and Baker, 1980; Smith and Baker, 1981; Kirk et al., 1994]. This knowledge, plus the dramatic decline in stratospheric ozone over the Antarctic continent each spring, now known to be caused by anthropogenically released chemicals [Solomon, 1990; Booth et al., 1994], has resulted in increased UV-environmental research and a number of summary reports. The United Nations Environmental Program (UNEP) has provided recent updates with respect to the effects of ozone depletion on aquatic ecosystems (Hader, Worrest, Kumar in UNEP 1989, 1991, Hader, Worrest, Kumar and Smith UNEP 1994) and the Scientific Committee on Problems of the Environment (SCOPE) has provided [SCOPE, 1992] a summary of the effects of increased UV radiation on biological systems. SCOPE has also reported [SCOPE, 1993] on the effects of increased UV on the biosphere. In addition, several books have recently been published reviewing various aspects of environmental UV photobiology [Young et al., 1993], UV effects on humans, animals and plants [Tevini, 1993], the biological effects of UV radiation in Antarctica [Weiler and Penhale, 1994], and UV research in freshwater ecosystems [Williamson and Zagarese, 1994]. Several other reviews are relevant [NAS, 1984; Caldwell

  11. Side Effects of Chemotherapy and Radiation (For Parents)

    Science.gov (United States)

    ... 1- to 2-Year-Old Side Effects of Chemotherapy and Radiation KidsHealth > For Parents > Side Effects of Chemotherapy and Radiation Print A A A What's in ... and can no longer do their jobs efficiently. Chemotherapy (or "chemo") and radiation , the two most common ...

  12. Oxygen effects in radiation biology and radiation chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Powers, E.L.; Held, K.D.

    1979-01-01

    The question of the influence of O/sub 2/ on the radiation sensitivity of organisms, cells and biomolecules is reviewed. Evidence is presented to show that there are two mechanisms that govern the manner in which O/sub 2/ acts in cells. It is also suggested that these may in addition be other mechanisms but no evidence is presented to support this. (ACR)

  13. Space storms and radiation causes and effects

    CERN Document Server

    Schrijver, Carolus J

    2010-01-01

    Heliophysics is a fast-developing scientific discipline that integrates studies of the Sun's variability, the surrounding heliosphere, and the environment and climate of planets. The Sun is a magnetically variable star and for planets with intrinsic magnetic fields, planets with atmospheres, or planets like Earth with both, there are profound consequences. This 2010 volume, the second in this series of three heliophysics texts, integrates the many aspects of space storms and the energetic radiation associated with them - from causes on the Sun to effects in planetary environments. It reviews t

  14. Gamma Radiation Effects on Peanut Skin Antioxidants

    OpenAIRE

    Adriano Costa de Camargo; Thais Maria Ferreira de Souza Vieira; Marisa Aparecida Bismara Regitano-D’Arce; Maria Antonia Calori-Domingues; Solange Guidolin Canniatti-Brazaca

    2012-01-01

    Peanut skin, which is removed in the peanut blanching process, is rich in bioactive compounds with antioxidant properties. The aims of this study were to measure bioactive compounds in peanut skins and evaluate the effect of gamma radiation on their antioxidant activity. Peanut skin samples were treated with 0.0, 5.0, 7.5, or 10.0 kGy gamma rays. Total phenolics, condensed tannins, total flavonoids, and antioxidant activity were evaluated. Extracts obtained from the peanut skins were added to...

  15. Medical response to effects of ionising radiation. [Nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Crosbie, W.A.; Gittus, J.H. (UKAEA Headquarters, London (UK))

    1989-01-01

    The proceedings of a conference on 'Medical Response to Effects of Ionising Radiation' in 1989 in the form of nineteen papers published as a book. Topics discussed include radiation accidents at nuclear facilities, the medical management of radiation casualties, the responsibilities, plans and resources for coping with a nuclear accident and finally the long term effects of radiation, including leukaemia epidemiology studies. All papers were selected and indexed separately. (UK).

  16. Radiative Effects in the Standard Model Extension

    CERN Document Server

    Zhukovskii, V C; Murchikova, E M

    2006-01-01

    The possibility of radiative effects induced by the Lorentz and CPT non-invariant interaction term for fermions in the Standard Model Extension is investigated. In particular, electron-positron photo-production and photon emission by electrons and positrons were studied. The rates of these processes were calculated in the Furry picture. It was demonstrated that the rates obtained in the framework of the model adopted strongly depend on the polarization states of the particles involved. Indeed, ultra-relativistic particles should occupy states with a preferred spin orientation, i.e., photons have the sign of polarization opposite to the sign of the effective potential, while charged particle are preferably in the state with the helicity coinciding with the sign of the effective potential. This leads to evident spatial asymmetries which may have certain consequences observable in astrophysical and cosmological studies.

  17. Conditions for effects of radiation pulsing

    CERN Document Server

    Trinkaus, H

    2002-01-01

    The possibility of pulsing effects on radiation damage is due to differences in the delay times of relevant defect reactions and/or to the non-linear dependence of such reactions on defect production rates. Thus, significant pulsing effects require (1) proper relationships of the internal time scales of defect production and reaction to the time scales of pulsing and (2) sufficiently large pulsing induced fluctuations in relevant microstructural variables. We show that the first condition, which we quantify by a 'relative dynamic bias', is indeed fulfilled in wide ranges of the main irradiation parameters. The second condition, quantified by an 'absolute dynamic bias', is, however, found to restrict the parameter ranges of possible pulsing effects substantially. For planned spallation neutron sources and similar accelerator driven systems facilities we find, for instance, that, in the temperature range of interest, the defect yield of one pulse (controlling the absolute dynamic bias) is much too small to allo...

  18. MEDICAL AND ENVIRONMENTAL EFFECTS OF UV RADIATION.

    Energy Technology Data Exchange (ETDEWEB)

    SUTHERLAND, B.M.

    2001-07-26

    Organisms living on the earth are exposed to solar radiation, including its ultraviolet (UV) components (for general reviews, the reader is referred to Smith [1] and Young et al. [2]). UV wavelength regions present in sunlight are frequently designated as UVB (290-320 nm) and UVA (320-400 nm). In today's solar spectrum, UVA is the principal UV component, with UVB present at much lower levels. Ozone depletion will increase the levels of UVB reaching the biosphere, but the levels of UVA will not be changed significantly [3]. Because of the high efficiency of UVB in producing damage in biological organisms in the laboratory experiments, it has sometimes been assumed that UVA has little or no adverse biological effects. However, accumulating data [4, 5], including action spectra (efficiency of biological damage as a function of wavelength of radiation; see Section 5) for DNA damage in alfalfa seedlings [6], in human skin [7], and for a variety of plant damages (Caldwell, this volume) indicate that UVA can induce damage in DNA in higher organisms. Thus, understanding the differential effects of UVA and UVB wavebands is essential for estimating the biological consequences of stratospheric ozone depletion.

  19. Lauriston S. Taylor Lecture on radiation protection and measurements: what makes particle radiation so effective?

    Science.gov (United States)

    Blakely, Eleanor A

    2012-11-01

    The scientific basis for the physical and biological effectiveness of particle radiations has emerged from many decades of meticulous basic research. A diverse array of biologically relevant consequences at the molecular, cellular, tissue, and organism level have been reported, but what are the key processes and mechanisms that make particle radiation so effective, and what competing processes define dose dependences? Recent studies have shown that individual genotypes control radiation-regulated genes and pathways in response to radiations of varying ionization density. The fact that densely ionizing radiations can affect different gene families than sparsely ionizing radiations, and that the effects are dose- and time-dependent, has opened up new areas of future research. The complex microenvironment of the stroma and the significant contributions of the immune response have added to our understanding of tissue-specific differences across the linear energy transfer (LET) spectrum. The importance of targeted versus nontargeted effects remains a thorny but elusive and important contributor to chronic low dose radiation effects of variable LET that still needs further research. The induction of cancer is also LET-dependent, suggesting different mechanisms of action across the gradient of ionization density. The focus of this 35th Lauriston S. Taylor Lecture is to chronicle the step-by-step acquisition of experimental clues that have refined our understanding of what makes particle radiation so effective, with emphasis on the example of radiation effects on the crystalline lens of the human eye.

  20. Predicted levels of human radiation tolerance extrapolated from clinical studies of radiation effects

    Science.gov (United States)

    Lushbaugh, C. C.

    1972-01-01

    Results of clinical studies of radiation effects on man are used to evaluate space radiation hazards encountered during manned space travel. Considered are effects of photons as well as of mixed fission neutrons and gamma irradiations in establishing body radiosensitivity and tolerance levels. Upper and lower dose-response-time relations for acute radiation syndromes in patients indicate that man is more than sufficiently radioresistant to make the risks of an early radiation effect during one short space mission intangibly small in relation to the other nonradiation risks involved.

  1. Radiation effects in power converters: Design of a radiation hardened integrated switching DC/DC converter

    Science.gov (United States)

    Adell, Philippe

    When electronic devices are used in space and military systems, they may be exposed to various types of radiation, including photons, electrons, protons, neutrons, and heavy ions. The effects of radiation on the semiconductor devices within the systems range from gradual degradation to catastrophic failure. In order to design and produce reliable systems for space or military applications, it is necessary to understand the device-level effects of radiation and develop appropriate strategies for reducing system susceptibility. This research focuses on understanding radiation effects in power converters for space and military applications. We show that power converters are very sensitive to radiation (total-dose, single event effects and displacement damage) and that their radiation response is dependent on input bias conditions and load conditions. We compared the radiation hardness of various power converter topologies using experiments and simulations. Evaluation of these designs under different modes of operation is demonstrated to be critical for determining radiation hardness. We emphasize the correlation between radiation effects and the role of the dynamic response of these topologies. For instance, total dose exposure has been found to degrade loop gain and affect regulation in some converters. We propose several radiation-hardening solutions to improve the radiation response of these designs. For instance, we demonstrate the design of a digitally controlled boost converter suitable for space applications based on an SRAM FPGA. A design hardening solution has been developed and successfully applied through VHDL simulations and experiments to assure the continuous operation of the converter in the presence of SEES (more precisely SEFIs). This research led to the design of a digitally controlled radiation hardened integrated switching buck converter. The proposed design is suitable for micro-satellite applications and is based on a high-voltage/CMOS process

  2. Gamma radiation effects on peanut skin antioxidants

    Energy Technology Data Exchange (ETDEWEB)

    Camargo, Adriano Costa de [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil); Canniatti-Brazaca, Solange Guidolin; Vieira, Thais Maria Ferreira de Souza; Regitano-d' Arce, Marisa Aparecida Bismara; Calori-Domingues, Maria Antonia, E-mail: sgcbraza@usp.b, E-mail: tvieira@esalq.usp.b, E-mail: mabra@esalq.usp.b, E-mail: macdomin@esalq.usp.b [Escola Superior de Agricultura Luiz de Queiroz (ESALQ/USP), Piracicaba, SP (Brazil). Dept. de Agroindustria, Alimentos e Nutricao

    2011-07-01

    Peanut skin, which is removed in the peanut blanching process, is rich in bioactive compounds with antioxidant properties. The viability of using natural sources of antioxidants to replace synthetic antioxidants was assessed. The aims of this study were to measure bioactive compounds in peanut skins and evaluate the effect of gamma radiation on their antioxidant activity. Peanut skin samples were treated with 0.0, 5.0, 7.5, or 10.0 kGy gamma rays at a dose rate of 7.5 kGy/h using a {sup 60}Co source. Total phenolics, condensed tannins, total flavonoids, and antioxidant activity were evaluated. Extracts obtained from the peanut skins were added to refined-bleached deodorized (RBD) soybean oil that was free from synthetic antioxidants. The oxidative stability of the oil samples was determined using the Rancimat method and compared to a control and synthetic antioxidants (100 mg/kg BHT and 200 mg/kg TBHQ). Gamma radiation changed total phenolic content, total condensed tannins, total flavonoid content, and the antioxidant activity. Ethanolic extracts, gamma irradiated or not, presented increasing induction period (h), measured by the Rancimat method, when compared with the control. Antioxidant activity of the peanut skins was higher than BHT but lower than THBQ. The present study confirmed that gamma radiation did not affect the peanut skin extracts' antioxidative level when added to soybean oil. The induction period of the control soybean oil was 5.7 h, while soybean oil with added ethanolic peanut skin extract had an induction period of 7.2 h, on average. (author)

  3. Biological effects of space radiation and development of effective countermeasures

    Science.gov (United States)

    Kennedy, Ann R.

    2014-04-01

    As part of a program to assess the adverse biological effects expected from astronauts' exposure to space radiation, numerous different biological effects relating to astronauts' health have been evaluated. There has been major focus recently on the assessment of risks related to exposure to solar particle event (SPE) radiation. The effects related to various types of space radiation exposure that have been evaluated are: gene expression changes (primarily associated with programmed cell death and extracellular matrix (ECM) remodeling), oxidative stress, gastrointestinal tract bacterial translocation and immune system activation, peripheral hematopoietic cell counts, emesis, blood coagulation, skin, behavior/fatigue (including social exploration, submaximal exercise treadmill and spontaneous locomotor activity), heart functions, alterations in biological endpoints related to astronauts' vision problems (lumbar puncture/intracranial pressure, ocular ultrasound and histopathology studies), and survival, as well as long-term effects such as cancer and cataract development. A number of different countermeasures have been identified that can potentially mitigate or prevent the adverse biological effects resulting from exposure to space radiation.

  4. Light-Cone Effect of Radiation Fields in Cosmological Radiative Transfer Simulations

    CERN Document Server

    Ahn, Kyungjin

    2015-01-01

    We present a novel method to implement time-delayed propagation of radiation fields in cosmological radiative transfer simulations. Time-delayed propagation of radiation fields requires construction of retarded-time fields by tracking the location and lifetime of radiation sources along the corresponding light-cones. Cosmological radiative transfer simulations have, until now, ignored this "light-cone effect" or implemented ray-tracing methods that are computationally demanding. We show that radiative transfer calculation of the time-delayed fields can be easily achieved in numerical simulations when periodic boundary conditions are used, by calculating the time-discretized retarded-time Green's function using the Fast Fourier Transform (FFT) method and convolving it with the source distribution. We also present a direct application of this method to the long-range radiation field of Lyman-Werner band photons, which is important in the high-redshift astrophysics with first stars.

  5. Radiation physical chemistry effects on organic detectors

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita, C.H.; Duarte, C.L.; Hamada, M.M. E-mail: mmhamada@net.ipen.br

    2003-06-01

    The radiation damage effect on a liquid scintillating system was evaluated in the PPO and POPOP solutes. Samples containing PPO (1%w/v) and POPOP (0.2%w/v) diluted in toluene were irradiated at different doses, using a {sup 60}Co irradiator at 1.8 Gy/s. The transmittance and the chemical degradation of those solutes were evaluated as a function of dose. The PPO transmittance at 360 nm decayed exponentially with the dose, while the POPOP transmittance at 420 nm decayed linearly. The chemical degradation on the PPO and POPOP was fitted to a bi-exponential mathematical model as a function of dose. The first exponential (fast slope) was interpreted as damage produced by toluene radiolytics whereas the second exponential (slow slope) was interpreted as the damage caused by primary interaction of the {gamma}-radiation with targets, i.e., {gamma} photons that hit PPO and POPOP directly. The w (eV/damage molecule) and G (damaged molecules/100 eV) parameters were estimated in this paper.

  6. Radiation effects on DC-DC Converters

    Science.gov (United States)

    Zhang, Dexin; Attia, John O.; Kankam, Mark D. (Technical Monitor)

    2000-01-01

    DC-DC switching converters are circuits that can be used to convert a DC voltage of one value to another by switching action. They are increasing being used in space systems. Most of the popular DC-DC switching converters utilize power MOSFETs. However power MOSFETs, when subjected to radiation, are susceptible to degradation of device characteristics or catastrophic failure. This work focuses on the effects of total ionizing dose on converter performance. Four fundamental switching converters (buck converter, buck-boost converter, cuk converter, and flyback converter) were built using Harris IRF250 power MOSFETs. These converters were designed for converting an input of 60 volts to an output of about 12 volts with a switching frequency of 100 kHz. The four converters were irradiated with a Co-60 gamma source at dose rate of 217 rad/min. The performances of the four converters were examined during the exposure to the radiation. The experimental results show that the output voltage of the converters increases as total dose increases. However, the increases of the output voltage were different for the four different converters, with the buck converter and cuk converter the highest and the flyback converter the lowest. We observed significant increases in output voltage for cuk converter at a total dose of 24 krad (si).

  7. Stimulatory effects of low ionizing radiation on plant

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, S.; Kurisu, Y.; Murata, I.; Takahashi, A. [Department of Nuclear Engineering, Osaka Univ., Suita, Osaka (Japan); Masui, H.; Iida, T. [Department of Electronic, Information Systems and Energy Engineering, Osaka Univ., Suita, Osaka (Japan); Yamamoto, T. [Radioisotope Research Center, Osaka Univ., Suita, Osaka (Japan)

    2000-05-01

    Recently, the study for radiation hormesis was strongly carried out for animals and plants; subharmful dose of radiation may stimulate any organism. The concept of radiation hormesis effect consists of 1) biopositive effects of low dose radiation; influence caused by low dose radiation is totally different from one caused by high dose radiation, low dose radiation produces physiological useful effects against high dose radiation, and 2) radio-adaptive response; radiation also acts the organism as stress. Irradiated with small dose radiation previously, it raises its own defense response against the stress (radiation), resulting in the phenomenon that radiation influence decreases in appearance. In this paper we have investigated the phenomenon of radiation hormesis effects for plants through irradiation experiments with neutrons and gamma-rays to find out the mechanism. In the present experiment, dry seeds of Raphanus sativus were irradiated with D-T neutrons (10 {mu}Gy {approx} 100 kGy), D-D neutrons (1 mGy {approx} 100 mGy), thermal and fast neutrons (irradiation in a nuclear reactor: 100 {mu}Gy {approx} 10 Gy), 60Co gamma-rays (10 {mu}Gy {approx} 10 Gy). To confirm existence of the radiation hormesis effects, germination percentage, length of hypocotyl, length of root and total weight of seed leaf were measured at 7th day after starting cultivation. We estimated relative effectiveness as the hormesis effect, that is the ratio of mean values of measured subjects for the irradiated and control groups. For Raphanus sativus, the hormesis effect on seed leaf growth has been observed in the seed group irradiated by D-T neutrons and D-D neutrons. The observed hormesis effect is from 5 to 25 percents. (author)

  8. Improving the radiation hardness of graphene field effect transistors

    Science.gov (United States)

    Alexandrou, Konstantinos; Masurkar, Amrita; Edrees, Hassan; Wishart, James F.; Hao, Yufeng; Petrone, Nicholas; Hone, James; Kymissis, Ioannis

    2016-10-01

    Ionizing radiation poses a significant challenge to the operation and reliability of conventional silicon-based devices. Here, we report the effects of gamma radiation on graphene field-effect transistors (GFETs), along with a method to mitigate those effects by developing a radiation-hardened version of our back-gated GFETs. We demonstrate that activated atmospheric oxygen from the gamma ray interaction with air damages the semiconductor device, and damage to the substrate contributes additional threshold voltage instability. Our radiation-hardened devices, which have protection against these two effects, exhibit minimal performance degradation, improved stability, and significantly reduced hysteresis after prolonged gamma radiation exposure. We believe this work provides an insight into graphene's interactions with ionizing radiation that could enable future graphene-based electronic devices to be used for space, military, and other radiation-sensitive applications.

  9. II. Biological studies of radiation effects

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, J.H.

    1948-05-24

    With the completion of the 184 inch cyclotron in Berkeley and the successful construction of a deflector system, it was possible to bring the 190 Mev deuteron and the 380 Mev alpha beams out into the air and to begin a study of the effects of high-energy deuteron beams by direct irradiation of biological specimens. The direct biological use of deuteron beams was attempted earlier in Berkeley by Marshak, MacLeish, and Walker in 1940. These and other investigators have been aware for some time of the potential usefulness of high energy particle beams for radio-biological studies and their suitability for biological investigations. R.R. Wilson advanced the idea of using fast proton beams to deliver radiation and intervening tissues. R.E. Zirkle pointed out that such particle beams may be focused or screened until a cross-section of the beam is small enough to study effects of irradiation under the microscope on single cells or on parts of single cells. This article gives an overview of the radiological use of high energy deuteron beams, including the following topics: potential uses of high energy particle beams; experiments on the physical properties of the beam; lethal effect of the deuteron beam on mice.

  10. The effect of radiative feedback on disc fragmentation

    CERN Document Server

    Mercer, Anthony

    2016-01-01

    Protostellar discs may become massive enough to fragment producing secondary low-mass objects: planets, brown dwarfs and low-mass stars. We study the effect of radiative feedback from such newly-formed secondary objects using radiative hydrodynamic simulations. We compare the results of simulations without any radiative feedback from secondary objects with those where two types of radiative feedback are considered: (i) continuous, and (ii) episodic. We find that: (i) continuous radiative feedback stabilizes the disc and suppresses further fragmentation, reducing the number secondary objects formed; (ii) episodic feedback from secondary objects heats and stabilises the disc when the outburst occurs, but shortly after the outburst stops, the disc becomes unstable and fragments again. However, fewer secondary objects are formed compared to the the case without radiative feedback. We also find that the mass growth of secondary objects is mildly suppressed due to the effect of their radiative feedback. However, th...

  11. Plenary panel 1: The scientific bases of radiation protection. Non-targeted effects of ionising radiation - Implications for radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Salomaa, S. [STUK - Radiation and Nuclear Safety Authority, Helsinki (Finland)

    2006-07-01

    The universality of the target theory of radiation-induced effects is challenged by observations on non-targeted effects such as bystander effects, genomic instability and adaptive response. Essential features of non-targeted effects are that they do not require direct nuclear exposure by radiation and they are particularly significant at low doses. This new evidence suggests a need for a new paradigm in radiation biology. The new paradigm should cover both the classical (targeted) and the non-targeted effects. New aspects include the role of cellular communication and tissue-level responses. A better understanding of non-targeted effects may have important consequences for health risk assessment and, consequently, on radiation protection. Non-targeted effects may contribute to the estimation of cancer risk from occupational, medical and environmental exposures. In particular, they may have implications for the applicability of the Linear-No-Threshold (L.N.T.) model in extrapolating radiation risk data into the low-dose region. This also means that the adequacy of the concept of dose to estimate risk is challenged by these findings. Moreover, these effects may provide new mechanistic explanations for the development of non-cancer diseases. Further research is required to determine if these effects, typically measured in cell cultures, are applicable in tissue level, whole animals, and ultimately in humans. (authors)

  12. Radiation effects on organic materials in nuclear plants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bruce, M B; Davis, M V

    1981-11-01

    A literature search was conducted to identify information useful in determining the lowest level at which radiation causes damage to nuclear plant equipment. Information was sought concerning synergistic effects of radiation and other environmental stresses. Organic polymers are often identified as the weak elements in equipment. Data on radiation effects are summarized for 50 generic name plastics and 16 elastomers. Coatings, lubricants, and adhesives are treated as separate groups. Inorganics and metallics are considered briefly. With a few noted exceptions, these are more radiation resistant than organic materials. Some semiconductor devices and electronic assemblies are extremely sensitive to radiation. Any damage threshold including these would be too low to be of practical value. With that exception, equipment exposed to less than 10/sup 4/ rads should not be significantly affected. Equipment containing no Teflon should not be significantly affected by 10/sup 5/ rads. Data concerning synergistic effects and radiation sensitization are discussed. The authors suggest correlations between the two effects.

  13. Terrestrial radiation effects in ULSI devices and electronic systems

    CERN Document Server

    Ibe, Eishi H

    2014-01-01

    A practical guide on how mathematical approaches can be used to analyze and control radiation effects in semiconductor devices within various environments Covers faults in ULSI devices to failures in electronic systems caused by a wide variety of radiation fields, including electrons, alpha -rays, muons, gamma rays, neutrons and heavy ions. Readers will learn the environmental radiation features at the ground or avionics altitude. Readers will also learn how to make numerical models from physical insight and what kind of mathematical approaches should be implemented to analyze the radiation effects. A wide variety of mitigation techniques against soft-errors are reviewed and discussed. The author shows how to model sophisticated radiation effects in condensed matter in order to quantify and control them. The book provides the reader with the knowledge on a wide variety of radiation fields and their effects on the electronic devices and systems. It explains how electronic systems including servers and rout...

  14. Effects of ionizing radiations on in utero development

    Energy Technology Data Exchange (ETDEWEB)

    Lallemand, J. (EdF, 75 - Paris (France))

    1984-01-01

    Following a reminder of embryology and methodology, a review is made of the main teratogenic effects related to radiation exposure, i.e. lethal effects, radioinduced malformations, maldevelopment and cancers. The sensitivity of the embryo and foetus to radiation seems to last during the whole gestation. Howewer, the latest investigations indicate that the main damage is mental retardation. This review concludes on practical considerations of radiation protection in the field of radiographic examinations of pregnant women.

  15. Studies on EB radiation effect on PA610

    Energy Technology Data Exchange (ETDEWEB)

    Yang Kebin; Zhang Huaming; Li Xiurong; Xiong Ruilin [Sichuan Forever Group Co. Ltd., China Academy of Engineering Physics, Miangany (China)

    2000-03-01

    Radiation effect of PA610 with polyfunctional monomer trially isocyanurate (TAIC) was studied, the results show that crosslinking effect of EB radiation on PA610 is obvious. After the PA610 samples were radiated by EB with dosage 75KGY, the physical characters of PA610 materials were greatly improved, especially their tensile strength being increased about 18% and their impact strength about 50%, but their water and oil absorption were decreased. So, EB radiation can enhance PA610 materials physical strength, resistance to solvents and water and increase their thermal-deformation temperature. (author)

  16. Basic mechanisms of radiation effects in the natural space radiation environment

    Energy Technology Data Exchange (ETDEWEB)

    Schwank, J.R.

    1994-06-01

    Four general topics are covered in respect to the natural space radiation environment: (1) particles trapped by the earth`s magnetic field, (2) cosmic rays, (3) radiation environment inside a spacecraft, (4) laboratory radiation sources. The interaction of radiation with materials is described by ionization effects and displacement effects. Total-dose effects on MOS devices is discussed with respect to: measurement techniques, electron-hole yield, hole transport, oxide traps, interface traps, border traps, device properties, case studies and special concerns for commercial devices. Other device types considered for total-dose effects are SOI devices and nitrided oxide devices. Lastly, single event phenomena are discussed with respect to charge collection mechanisms and hard errors. (GHH)

  17. Acute Radiation Effects Resulting from Exposure to Solar Particle Event-Like Radiation

    Science.gov (United States)

    Kennedy, Ann; Cengel, Keith

    2012-07-01

    A major solar particle event (SPE) may place astronauts at significant risk for the acute radiation syndrome (ARS), which may be exacerbated when combined with other space flight stressors, such that the mission or crew health may be compromised. The National Space Biomedical Research Institute (NSBRI) Center of Acute Radiation Research (CARR) is focused on the assessment of risks of adverse biological effects related to the ARS in animal models exposed to space flight stressors combined with the types of radiation expected during an SPE. As part of this program, FDA-approved drugs that may prevent and/or mitigate ARS symptoms are being evaluated. The CARR studies are focused on the adverse biological effects resulting from exposure to the types of radiation, at the appropriate energies, doses and dose-rates, present during an SPE (and standard reference radiations, gamma rays or electrons). The ARS is a phased syndrome which often includes vomiting and fatigue. Other acute adverse biologic effects of concern are the loss of hematopoietic cells, which can result in compromised bone marrow and immune cell functions. There is also concern for skin damage from high SPE radiation doses, including burns, and resulting immune system dysfunction. Using 3 separate animal model systems (ferrets, mice and pigs), the major ARS biologic endpoints being evaluated are: 1) vomiting/retching and fatigue, 2) hematologic changes (with focus on white blood cells) and immune system changes resulting from exposure to SPE radiation with and without reduced weightbearing conditions, and 3) skin injury and related immune system functions. In all of these areas of research, statistically significant adverse health effects have been observed in animals exposed to SPE-like radiation. Countermeasures for the management of ARS symptoms are being evaluated. New research findings from the past grant year will be discussed. Acknowledgements: This research is supported by the NSBRI Center of Acute

  18. Space radiation effects on plant and mammalian cells

    Science.gov (United States)

    Arena, C.; De Micco, V.; Macaeva, E.; Quintens, R.

    2014-11-01

    The study of the effects of ionizing radiation on organisms is related to different research aims. The current review emphasizes the studies on the effects of different doses of sparsely and densely ionizing radiation on living organisms, with the final purpose of highlighting specific and common effects of space radiation in mammals and plants. This topic is extremely relevant in the context of radiation protection from space environment. The response of different organisms to ionizing radiation depends on the radiation quality/dose and/or the intrinsic characteristics of the living system. Macromolecules, in particular DNA, are the critical targets of radiation, even if there is a strong difference between damages encountered by plant and mammalian cells. The differences in structure and metabolism between the two cell types are responsible for the higher resistance of the plant cell compared with its animal counterpart. In this review, we report some recent findings from studies performed in Space or on Earth, simulating space-like levels of radiation with ground-based facilities, to understand the effect of ionizing radiation on mammalian and plant cells. In particular, our attention is focused on genetic alterations and repair mechanisms in mammalian cells and on structures and mechanisms conferring radioresistance to plant cells.

  19. Adverse Effects of Radiation and Chemotherapy

    OpenAIRE

    1991-01-01

    The long-term consequences of radiation and chemotherapy on intellectual and endocrine function in children with brain tumors is reviewed from the Departments of Neurology and Pediatrics, State University of New York, Buffalo, NY.

  20. Solenoid and Synchrotron radiation effects in CLIC

    CERN Document Server

    Dalena, B; Tomás, R; Angal-Kalinin, D

    2010-01-01

    The emission of Synchrotron Radiation in the CLIC BDS is one of the major limitations of the machine performance. An extensive revision of this phenomenon is presented with special emphasis on the Interaction point (IP) solenoid.

  1. Studies of the hemolytic effect of radiation

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, S.; Katz, E.; Porter, L.M.; Jacobson, L.O.; Watson, C.J.

    1945-07-10

    These studies were aimed at elucidating affects of radiation in inducing hemolysis independent of inhibition of erythropoiesis. Research studies were conducted both on human patients and dogs. Phosphorus-32 in mc amounts were administered either intravenously or orally to patients suffering Polycythemia rubra vera. Dogs were treated with either P-32 or x-radiation. Hemoglobin metabolism was monitored in all test subjects by hematology, blood chemistry, and fecal excretion of hemoglobin catabolites.

  2. Effect of Radiation Drag on Hoyle-Lyttleton Accretion

    CERN Document Server

    Nio, T; Fukue, J; Nio, Tomomi; Matsuda, Takuya; Fukue, Jun

    1998-01-01

    Hoyle-Lyttleton type accretion is investigated, by taking account of not only the effect of radiation pressure but the effect of radiation drag. We calculate the trajectories of particles for three cases: only the effect of gravity is considered (case A); the effect of radiation pressure is taken into account (case B); the effect of radiation drag as well as radiation pressure is taken into account (case C). The accretion radii for former two cases are $2GM/v_{\\infty}^2$ for case A and $2GM(1-\\Gamma)/v_{\\infty}^2$ for case B, where M is the mass of the accreted object, $v_{\\infty}$ the relative velocity, and Gamma the normalized luminosity of the accreted object. We found that the accretion radius for case C is in between those of cases A and B under the present approximation; i.e., the accretion radius decreases due to radiation pressure while it increases due to radiation drag. In addition, the accretion radius for case C becomes larger as the incident velocity becomes fast. The effect of radiation drag bec...

  3. Effects of ionizing radiation; Effecten van ioniserende straling

    Energy Technology Data Exchange (ETDEWEB)

    Loos, M.; Hardeman, F.; Holmstock, L.; Hurtgen, C.; Mahieu, L.; Sohier, A.; Vandecasteele, C.; Vanhavere, F.; Vanmaercke, H.; Zeevaert, T

    1998-12-01

    Starting with a brief introduction to radiation protection, the report gives an overview of exposure to ionising radiation in Belgium due to activities in relation to the nuclear fuel cycle, processing and disposal of radioactive waste and other artificial or natural sources. Where appropriate, the Belgian situation discussed from an international perspective. The radiological impact of reprocessing and non-reprocessing are compared. The biological effects of ionizing radiation, epidemiological studies as well as surveillance programmes on the Belgian territory are reported on.

  4. Radiation effects on microelectronics and future space missions

    Science.gov (United States)

    Patterson, Jeffrey D.

    2003-01-01

    This paper briefly reviews the three basic radiation effect mechanisms, and how they interrupt the functionality of currently available non-volatile memory technologies. This paper also presents a very general overview of the radiation environments expected in future space exploration missions. Unfortunately, these environments will be very harsh, from a radiation standpoint, and thus a significant effort is required to develop non-volatile technologies that will meet future mission requirements.

  5. Treatment of cloud radiative effects in general circulation models

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W.C.; Dudek, M.P.; Liang, X.Z.; Ding, M. [State Univ. of New York, Albany, NY (United States)] [and others

    1996-04-01

    We participate in the Atmospheric Radiation Measurement (ARM) program with two objectives: (1) to improve the general circulation model (GCM) cloud/radiation treatment with a focus on cloud verticle overlapping and layer cloud optical properties, and (2) to study the effects of cloud/radiation-climate interaction on GCM climate simulations. This report summarizes the project progress since the Fourth ARM Science Team meeting February 28-March 4, 1994, in Charleston, South Carolina.

  6. Radiation hydrodynamics of triggered star formation: the effect of the diffuse radiation field

    CERN Document Server

    Haworth, Thomas J

    2011-01-01

    We investigate the effect of including diffuse field radiation when modelling the radiatively driven implosion of a Bonnor-Ebert sphere (BES). Radiation-hydrodynamical calculations are performed by using operator splitting to combine Monte Carlo photoionization with grid-based Eulerian hydrodynamics that includes self-gravity. It is found that the diffuse field has a significant effect on the nature of radiatively driven collapse which is strongly coupled to the strength of the driving shock that is established before impacting the BES. This can result in either slower or more rapid star formation than expected using the on-the-spot approximation depending on the distance of the BES from the source object. As well as directly compressing the BES, stronger shocks increase the thickness and density in the shell of accumulated material, which leads to short, strong, photo-evaporative ejections that reinforce the compression whenever it slows. This happens particularly effectively when the diffuse field is includ...

  7. Non-targeted effects of ionising radiation - Implications for radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Sisko Salomaa [STUK - Radiation and Nuclear Safety Authority, Helsinki (Finland)

    2006-07-01

    The universality of the target theory of radiation-induced effects is challenged by observations on non-targeted effects such as bystander effects, genomic instability and adaptive response. Essential features of non-targeted effects are that they do not require direct nuclear exposure by radiation and they are particularly significant at low doses. This new evidence suggests a need for a new paradigm in radiation biology. The new paradigm should cover both the classical (targeted) and the non-targeted effects. New aspects include the role of cellular communication and tissue-level responses. A better understanding of non-targeted effects may have important consequences for health risk assessment and, consequently, on radiation protection. Non-targeted effects may contribute to the estimation of cancer risk from occupational, medical and environmental exposures. In particular, they may have implications for the applicability of the Linear-No-Threshold (LNT) model in extrapolating radiation risk data into the low-dose region. This also means that the adequacy of the concept of dose to estimate risk is challenged by these findings. Moreover, these effects may provide new mechanistic explanations for the development of non-cancer diseases. Further research is required to determine if these effects, typically measured in cell cultures, are applicable in tissue level, whole animals, and ultimately in humans. (author)

  8. The study of the radiation protection of propolis to the radiation effects in mice

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Y.H.; Suzuki, Ikukatsu; Hasegawa, Takeo; Muto, H. [Suzuka Univ. of Medical Science, Mie (Japan); Yanagisawa, Takaharu; Iwasa, Toshihiro; Bamen, K.

    2000-05-01

    The profit which radiation brought to the Homo sapiens is very big. But, radiation has even harmful parameter for the human besides one case. After effect on man to the radiation is thought about, the individual of which sensibility is the highest is a fetus. Therefore, even an effects to this fetus is grasped precisely, and protection criterion and resource are decided from the viewpoint of the protection of radiation as well. If it does so, a child and maturitas aren't so difficult as in the protection of radiation and the managerial side. It was examined about control group, propolis administration chisels for medical use group, 1.5 Gy independent exposure group and propolis pluse 1.5 Gy group in this study. It was examined about the protection of radiation of propolis which to malformation, fetal death, arrested development, and so on in the organogenesis (8 days post conception) being done when sensibility is the highest against the teratogenesis. Preimplantation death rate was compared with the control group and the sham control group, and statistical significant difference wasn't recognized by a 1.5 Gy radiation independent exposure group, propolis administration 1.5 Gy radiation exposure group. As for the embryonic death rate, propolis was administered, and obviously embryonic death rate was poorer than the 1.5 Gy independent exposure group, and significant difference was recognized by a 1.5 Gy radiation exposure group (p<0.001). It has a 1.5 Gy radiation exposure group made clear by this research fetal death rate propolis administer more only 1.5 Gy exposure fetal death rate development low (p<0.001). Fetal death rate wasn't recognized by propolis administration group (Sham control). As for the teratogenesis rate, propolis was administered, and the teratogenesis rate of the 1.5 Gy radiation exposure group was higher than the 1.5 Gy radiation independent exposure group. But, this is thought anamorphosis appear by propolis administration so

  9. The Thermal Sunyaev-Zeldovich Effect of Primordial Recombination Radiation

    CERN Document Server

    Kholupenko, E E; Ivanchik, A V; Varshalovich, D A

    2014-01-01

    It is well known that recombination radiation of primordial hydrogen-helium plasma leads to the distortions of the planckian spectrum shape of the cosmic microwave background radiation (CMB). We discuss the thermal Sunayev-Zeldovich (SZ) effect with taking into account primordial recombination radiation (PRR). Since in the thermal SZ effect the redistribution of the photons depends on the derivatives of the spectrum, the value of relative correction to SZ effect due to PRR significantly higher than relative corrections due to PRR in the initial spectrum. Calculations of corrections to the thermal SZ effect due to PRR show that depending on the cluster parameters: 1) in the range of frequencies $\

  10. Quantum radiation reaction effects in multiphoton Compton scattering.

    Science.gov (United States)

    Di Piazza, A; Hatsagortsyan, K Z; Keitel, C H

    2010-11-26

    Radiation reaction effects in the interaction of an electron and a strong laser field are investigated in the realm of quantum electrodynamics. We identify the quantum radiation reaction with the multiple photon recoils experienced by the laser-driven electron due to consecutive incoherent photon emissions. After determining a quantum radiation dominated regime, we demonstrate how in this regime quantum signatures of the radiation reaction strongly affect multiphoton Compton scattering spectra and that they could be measurable in principle with presently available laser technology.

  11. Radiation effects in concrete for nuclear power plants – Part I: Quantification of radiation exposure and radiation effects

    Energy Technology Data Exchange (ETDEWEB)

    Field, K.G., E-mail: fieldkg@ornl.gov; Remec, I.; Pape, Y. Le

    2015-02-15

    Highlights: • Neutron and gamma rays fields in concrete biological shield are calculated. • An extensive database on irradiated concrete properties has been collected. • Concrete mechanical properties decrease beyond 1.0 × 10{sup 19} n/cm{sup 2} fluence. • Loss of properties appears correlated with radiation induced-aggregate swelling. • Commercial reactor bio-shield may experience long-term irradiation damage. - Abstract: A large fraction of light water reactor (LWR) construction utilizes concrete, including safety-related structures such as the biological shielding and containment building. Concrete is an inherently complex material, with the properties of concrete structures changing over their lifetime due to the intrinsic nature of concrete and influences from local environment. As concrete structures within LWRs age, the total neutron fluence exposure of the components, in particular the biological shield, can increase to levels where deleterious effects are introduced as a result of neutron irradiation. This work summarizes the current state of the art on irradiated concrete, including a review of the current literature and estimates the total neutron fluence expected in biological shields in typical LWR configurations. It was found a first-order mechanism for loss of mechanical properties of irradiated concrete is due to radiation-induced swelling of aggregates, which leads to volumetric expansion of the concrete. This phenomena is estimated to occur near the end of life of biological shield components in LWRs based on calculations of estimated peak neutron fluence in the shield after 80 years of operation.

  12. Collective effects in the radiation pressure force

    CERN Document Server

    Bachelard, R; Guerin, W; Kaiser, R

    2016-01-01

    We discuss the role of diffuse, Mie and cooperative scattering on the radiation pressure force acting on the center of mass of a cloud of cold atoms. Even though a mean-field Ansatz (the `timed Dicke state'), previously derived from a cooperative scattering approach, has been shown to agree satisfactorily with experiments, diffuse scattering also describes very well most features of the radiation pressure force on large atomic clouds. We compare in detail an incoherent, random walk model for photons and a diffraction approach to the more complete description based on coherently coupled dipoles. We show that a cooperative scattering approach, although it provides a quite complete description of the scattering process, is not necessary to explain the previous experiments on the radiation pressure force.

  13. On the instability effects in radiation-sensitive chalcogenide glasses

    Energy Technology Data Exchange (ETDEWEB)

    Balitska, V. [Lviv State University for Vital Activity Safety, 35 Kleparivska str., Lviv, UA-79007 (Ukraine); Lviv Institute of Materials of SRC ' Carat' , 202 Stryjska str., Lviv, UA-79031 (Ukraine); Kovalskiy, A. [Lviv Institute of Materials of SRC ' Carat' , 202 Stryjska str., Lviv, UA-79031 (Ukraine); International Materials Institute for New Functionality in Glass, Lehigh University, 5 East Packer Avenue, Bethlehem, PA 18015-3195 (United States); Shpotyuk, O. [Lviv Institute of Materials of SRC ' Carat' , 202 Stryjska str., Lviv, UA-79031 (Ukraine); International Materials Institute for New Functionality in Glass, Lehigh University, 5 East Packer Avenue, Bethlehem, PA 18015-3195 (United States)], E-mail: shpotyuk@novas.lviv.ua; Vakiv, M. [Lviv Institute of Materials of SRC ' Carat' , 202 Stryjska str., Lviv, UA-79031 (Ukraine)

    2007-04-15

    The features of application of radiation-sensitive media based on chalcogenide glasses of As-Ge-S system for registration of high-energy {gamma}-radiation are analysed. It is shown that compositional features of the observed time-instability effect should be taken into account in order to ensure a higher accuracy of the developed dosimeters.

  14. Biological effects of ionizing radiations; Effets biologiques des rayonnements ionisants

    Energy Technology Data Exchange (ETDEWEB)

    Nenot, J.C. [CEA Fontenay-aux-Roses, 92 (France). Inst. de Protection et de Surete Nucleaire]|[Commission Internationale de protection radiologique (France)]|[Association Internationale de Radiopathologie (France)

    1999-01-01

    Since ten years the ionizing radiations are more and more often used in various domains as medical, industrial or research sector. In the same way, these radiation impacts on the environment and the living organisms, have been studied intensively. The effects mechanism knowledge improved considerably and allowed to better protect the workers and the public. (A.L.B.)

  15. 47 CFR 22.913 - Effective radiated power limits.

    Science.gov (United States)

    2010-10-01

    ... radiated power (ERP) of transmitters in the Cellular Radiotelephone Service must not exceed the limits in this section. (a) Maximum ERP. In general, the effective radiated power (ERP) of base transmitters and... areas, as those areas are defined in § 22.949, the ERP of base transmitters and cellular repeaters...

  16. 47 CFR 22.627 - Effective radiated power limits.

    Science.gov (United States)

    2010-10-01

    ... radiated power limits. The effective radiated power (ERP) of transmitters operating on the channels listed in § 22.621 must not exceed the limits in this section. (a) Maximum ERP. The ERP must not exceed the applicable limits in this paragraph under any circumstances. Frequency range (MHz) Maximum ERP (watts)...

  17. 47 CFR 22.659 - Effective radiated power limits.

    Science.gov (United States)

    2010-10-01

    ... radiated power limits. The purpose of the rules in this section, which limit effective radiated power (ERP... subsequently relocated. (a) Maximum ERP. The ERP of base transmitters must not exceed 100 Watts under any circumstances. The ERP of mobile transmitters must not exceed 60 Watts under any circumstances. (b)...

  18. Effects of space-relevant radiation on pre-osteoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Yueyuan

    2014-02-12

    Until now limited research has been conducted to address the mechanisms leading ionizing radiation exposure induced bone loss. This is relevant for cancer radiotherapy and human spaceflight. Exposure to radiation can result in elevated bone fracture risk in patients receiving cancer radiotherapy. In human spaceflight, astronauts are exposed to space radiation which is a very complex mixture consisting primarily of high-energy charged particles. Osteoblasts are of mesenchymal origin and responsible for creating and maintaining skeletal architecture; these cells produce extracellular matrix proteins and regulators of matrix mineralization during initial bone formation and later bone remodeling. The aim of this work was to investigate the effects of ionizing radiation on pre-osteoblasts including cellular survival, cell cycle regulation and differentiation modification. Experiments with the pre-osteoblast cell line OCT-1 and the mesenchymal stem cell line C3H10T1/2 showed that radiation cell killing depends on dose and linear energy transfer (LET) and is most effective at an LET of ∝150 keV/μm. High-LET radiation has a much more pronounced ability to induce cell cycle arrest in the G2/M phase. After both X-rays and heavy ions exposure, expression of the cell cycle regulator CDKN1A was significantly up-regulated in a dose-dependent manner. The findings suggest that cell cycle regulation is more sensitive to high-LET radiation than cell survival, which is not solely regulated through elevated CDKN1A expression. Radiation exposure enhances osteoblastic differentiation and maturation, and mediates Runx2 and TGF-β1 expression during early differentiation of pre-osteoblasts. Osteogenic differentiation did not alter cellular radiosensitivity, DNA repair of radiation-induced damages and the effects of radiation on proliferation. Further experiments are needed to elucidate possible synergistic effects of microgravity and radiation on osteoblast differentiation. This may

  19. Radiation effects on materials in high-radiation environments: A workshop summary

    Science.gov (United States)

    Weber, W. J.; Mansur, L. K.; Clinard, F. W.; Parkin, D. M.

    1991-08-01

    A workshop on Radiation Effects on Materials in High-Radiation Environments was held in Salt Lake City, Utah (USA) from August 13 to 15, 1990 under the auspices of the Division of Materials Sciences, Office of Basic Energy Sciences, US Department of Energy. The workshop focused on ceramics, alloys, and intermetallics and covered research needs and capabilities, recent experimental data, theory, and computer simulations. It was concluded that there is clearly a continuing scientific and technological need for fundamental knowledge on the underlying causes of radiation-induced property changes in materials. Furthermore, the success of many current and emerging nuclear-related technologies critically depend on renewed support for basic radiation-effects research, irradiation facilities, and training of scientists. The highlights of the workshop are reviewed and specific recommendations are made regarding research needs.

  20. Kinetic treatment of radiation reaction effects

    Science.gov (United States)

    Noble, Adam; Gratus, Jonathan; Burton, David; Ersfeld, Bernhard; Islam, M. Ranaul; Kravets, Yevgen; Raj, Gaurav; Jaroszynski, Dino

    2011-05-01

    Modern accelerators and light sources subject bunches of charged particles to quasiperiodic motion in extremely high electric fields, under which they may emit a substantial fraction of their energy. To properly describe the motion of these particle bunches, we require a kinetic theory of radiation reaction. We develop such a theory based on the notorious Lorentz-Dirac equation, and explore how it reduces to the usual Vlasov theory in the appropriate limit. As a simple illustration of the theory, we explore the radiative damping of Langmuir waves.

  1. Quantum radiation by electrons in lasers and the Unruh effect

    CERN Document Server

    Schützhold, Ralf

    2010-01-01

    In addition to the Larmor radiation known from classical electrodynamics, electrons in a laser field may emit pairs of entangled photons -- which is a pure quantum effect. We investigate this quantum effect and discuss why it is suppressed in comparison with the classical Larmor radiation (which is just Thomson backscattering of the laser photons). Further, we provide an intuitive explanation of this process (in a simplified setting) in terms of the Unruh effect.

  2. Space and terrestrial radiation effects in flash memories

    Science.gov (United States)

    Bagatin, Marta; Gerardin, Simone; Paccagnella, Alessandro

    2017-03-01

    We present a comprehensive review of the effects of ionizing radiation on advanced flash memories. The effects of ionizing radiation as well as the mechanisms underlying the observed phenomena are thoroughly discussed on both floating gate cells and the complex control circuitry. The covered effects are relevant for all floating-gate based flash memories that require very high levels of reliability, from critical applications at the terrestrial level to radiation-harsh environments, such as space, nuclear power plants, and high-energy physics experiments.

  3. Radiation effects on science instruments in Grand Tour type missions

    Science.gov (United States)

    Parker, R. H.

    1972-01-01

    The extent of the radiation effects problem is delineated, along with the status of protective designs for 15 representative science instruments. Designs for protecting science instruments from radiation damage is discussed for the various instruments to be employed in the Grand Tour type missions. A literature search effort was undertaken to collect science instrument components damage/interference effects data on the various sensitive components such as Si detectors, vidicon tubes, etc. A small experimental effort is underway to provide verification of the radiation effects predictions.

  4. Rays Sting: The Acute Cellular Effects of Ionizing Radiation Exposure.

    Science.gov (United States)

    Franco, A; Ciccarelli, M; Sorriento, D; Napolitano, L; Fiordelisi, A; Trimarco, B; Durante, M; Iaccarino, G

    2016-05-01

    High-precision radiation therapy is a clinical approach that uses the targeted delivery of ionizing radiation, and the subsequent formation of reactive oxygen species (ROS) in high proliferative, radiation sensitive cancers. In particular, in thoracic cancer ratdiation treatments, can not avoid a certain amount of cardiac toxicity. Given the low proliferative rate of cardiac myocytes, research has looked at the effect of radiation on endothelial cells and consequent coronary heart disease as the mechanism of ratdiation induced cardiotoxicity. In fact, little is known concerning the direct effect of radiation on mitochondria dynamis in cardiomyocyte. The main effect of ionizing radiation is the production of ROS and recent works have uncovered that they directly participates to pivotal cell function like mitochondrial quality control. In particular ROS seems to act as check point within the cell to promote either mitochondrial biogenesis and survival or mitochondrial damage and apoptosis. Thus, it appears evident that the functional state of the cell, as well as the expression patterns of molecules involved in mitochondrial metabolism may differently modulate mitochondrial fate in response to radiation induced ROS responses. Different molecules have been described to localize to mitochondria and regulate ROS production in response to stress, in particular GRK2. In this review we will discuss the evidences on the cardiac toxicity induced by X ray radiation on cardiomyocytes with emphasis on the role played by mitochondria dynamism.

  5. Radiation Effects Simulation of Fuel Assemblies

    Institute of Scientific and Technical Information of China (English)

    CUI; Yao

    2015-01-01

    Due to a large number of photons irradiated by the fuel assemblies after radiation in the reactor,the data acquisition and image reconstruction will be interfered seriously for the nuclear fuel assembly non-destructive testing system.Therefore,in process of the fuel assembly NDT system

  6. Radiation Effects on Polymers-X

    DEFF Research Database (Denmark)

    Aly, M. I.; Singer, Klaus Albert Julius; Ghanem, N. A.

    1978-01-01

    obtained at radiation doses between 2 and 3 Mrad, at acrylic acid concentrations of 40–60% and at FeSO4 · 7H2O concentrations of 0.25-0.5% by weight. The grafted films were tested for reverse osmosis properties. A membrane with 60% polyacrylic acid content gave 87% salt rejection and a water flux of 0...

  7. The development and purpose of the FREDERICA radiation effects database.

    Science.gov (United States)

    Copplestone, D; Hingston, J; Real, A

    2008-09-01

    Any system for assessing the impact of a contaminant on the environment requires an analysis of the possible effects on the organisms and ecosystems concerned. To facilitate this, the FREDERICA radiation effects database has been developed to provide an online search of the known effects of ionising radiation on non-human species, taken from papers in the scientific peer reviewed literature. The FREDERICA radiation effects database has been produced by merging the work done on radiation effects under two European funded projects (FASSET and EPIC) and making the database available online. This paper highlights applications for the database, gaps in the available data and explains the use of quality scores to help users of the database determine which papers may benefit their research in terms of techniques and reproducibility.

  8. Effects of solar radiation on collagen-based biomaterials

    Directory of Open Access Journals (Sweden)

    Alina Sionkowska

    2006-01-01

    Full Text Available The effect of solar radiation on collagen and collagen/synthetic polymer blends in the form of thin films and solutions has been studied by UV-VIS and FTIR spectroscopies. Films and solutions of collagen blended with poly(vinyl alcohol (PVA and poly(vinyl pyrrolidone (PVP were irradiated by solar light. It was found that UV-VIS spectra, which characterize collagen, collagen/PVA, and collagen/PVP blended films, were significantly altered by solar radiation. FTIR spectra of collagen, collagen/PVA, and collagen/PVP films showed that after solar irradiation, the positions of Amide A bands were shifted to lower wavenumbers. There was not any significant alteration in the position of Amide I and Amide II bands of collagen and its blends after solar radiation. The effect of solar UV radiation in comparison with artificial UV radiation has been discussed.

  9. A new solvent suppression method via radiation damping effect

    Institute of Scientific and Technical Information of China (English)

    Cui Xiao-Hong; Peng Ling; Zhang Zhen-Min; Cai Shu-Hui; Chen Zhong

    2011-01-01

    Radiation damping effects induced by the dominated solvent in a solution sample can be applied to suppress the solvent signal.The precession pathway and rate back to equilibrium state between solute and solvent spins are different under radiation damping.In this paper,a series of pulse sequences using radiation damping were designed for the solvent suppression in nuclear magnetic resonance (NMR) spectroscopy.Compared to the WATERGATE method,the solute signals adjacent to the solvent would not be influenced by using the radiation damping method.The one-dimensional (1D) 1H NMR,two-dimensional (2D) gCOSY,and J-resolved experimental results show the practicability of solvent suppression via radiation damping effects in 1D and 2D NMR spectroscopy.

  10. The effect of radiative feedback on disc fragmentation

    Science.gov (United States)

    Mercer, Anthony; Stamatellos, Dimitris

    2017-02-01

    Protostellar discs may become massive enough to fragment producing secondary low-mass objects: planets, brown dwarfs and low-mass stars. We study the effect of radiative feedback from such newly formed secondary objects using radiative hydrodynamic simulations. We compare the results of simulations without any radiative feedback from secondary objects with those where two types of radiative feedback are considered: (i) continuous and (ii) episodic. We find that (i) continuous radiative feedback stabilizes the disc and suppresses further fragmentation, reducing the number of secondary objects formed; (ii) episodic feedback from secondary objects heats and stabilizes the disc when the outburst occurs, but shortly after the outburst stops, the disc becomes unstable and fragments again. However, fewer secondary objects are formed compared to the case without radiative feedback. We also find that the mass growth of secondary objects is mildly suppressed due to the effect of their radiative feedback. However, their mass growth also depends on where they form in the disc and on their subsequent interactions, such that their final masses are not drastically different from the case without radiative feedback. We find that the masses of secondary objects formed by disc fragmentation are from a few MJ to a few 0.1 M⊙. Planets formed by fragmentation tend to be ejected from the disc. We conclude that planetary-mass objects on wide orbits (wide-orbit planets) are unlikely to form by disc fragmentation. Nevertheless, disc fragmentation may be a significant source of free-floating planets and brown dwarfs.

  11. X-ray diffraction radiation in conditions of Cherenkov effect

    NARCIS (Netherlands)

    Tishchenko, A. A.; Potylitsyn, A. P.; Strikhanov, M. N.

    2006-01-01

    X-ray diffraction radiation from ultra-relativistic electrons moving near an absorbing target is considered. The emission yield is found to increase significantly in conditions of Cherenkov effect. (c) 2006 Elsevier B.V. All rights reserved.

  12. Effect of particle clustering on radiative transfer in turbulent flows

    CERN Document Server

    Liberman, M; Rogachevskii, I; Haugen, N E L

    2016-01-01

    The effect of particle clustering on the radiation penetration length in particle laden turbulent flows is studied using a mean-field approach. Particle clustering in temperature stratified turbulence implies the formation of small-scale clusters with a high concentration of particles, exceeding the mean concentration by a few orders of magnitude. We show that the radiative penetration length increases by several orders of magnitude due to the particle clustering in a turbulent flow. Such strong radiative clearing effect plays a key role in a number of atmospheric and astrophysical phenomena, and can be of fundamental importance for understanding the origin of dust explosions.

  13. Conference on Radiation and its Effects on Components and Systems

    CERN Document Server

    2017-01-01

    The aim of RADECS conferences is to provide an annual European forum for the presentation and discussion of the latest advances in the field of radiation effects on electronic and photonic materials, devices, circuits, sensors, and systems. The scope of the conference encompasses technological processes and design techniques for producing radiation tolerant systems for space, aeronautical or terrestrial applications, as well as relevant methodologies for their characterization and qualification. The conference features a technical program, an Industrial Exhibit, and one day tutorial or ‘short course’ on radiation effects. The technical program includes oral and poster sessions and round tables.

  14. FALLOUT RADIATION: EFFECTS ON THE SKIN

    Energy Technology Data Exchange (ETDEWEB)

    Conard, R. A.; Cronkite, E. P.; Bond, V. P.

    1963-02-06

    Until recently it has been generally assumed that injury to the skin from ionizing radiation was not a serious hazard associated with the detonation of nuclear dcvices. However, in 1954 the importance of this hazard became apparent when widespread lesions of the skin developed in a large group of people accidentally exposed to fallout radiation in the Marshall Islands following the experimental detonation of a large nuclear device. The accident in the Marshall Islands affords an example of large numbers of lesions of the skin in human beings from the fallout. Studies have been documented and will be referred to frequently in this chapter. The possibility of such accidents must be considered seriously in view of the increasingly widespread use of radioisotopes.

  15. Radiative Feedback Effects during Cosmic Reionization

    Science.gov (United States)

    Sullivan, David; Iliev, Ilian T.

    2016-10-01

    We present coupled radiation hydrodynamical simulations of the epoch of reionization, aimed at probing self-feedback on galactic scales. Unlike previous works, which assume a (quasi) homogeneous UV background, we self-consistently evolve both the radiation field and the gas to model the impact of previously unresolved processes such as spectral hardening and self-shielding. We find that the characteristic halo mass with a gas fraction half the cosmic mean, Mc (z), a quantity frequently used in semi-analytical models of galaxy formation, is significantly larger than previously assumed. While this results in an increased suppression of star formation in the early Universe, our results are consistent with the extrapolated stellar abundance matching models from Moster et al. 2013.

  16. Coherent Radiation Effects in the LCLS Undulator

    CERN Document Server

    Reiche, Sven

    2004-01-01

    For X-ray Free-Electron Lasers, a change in the electron energy while amplifying the FEL radiation can shift the resonance condition out of the bandwidth of the FEL. The largest sources of energy loss is incoherent undulator radiation. Because the loss per electron depends only on the undulator parameters and the beam energy, which are fixed for a given resonant wavelength, the average energy loss can be compensated for by a fixed taper of the undulator. Coherent radiation has a strong enhancement proportional to the number of electrons in the bunch for wavelengths comparable to or longer than the bunch dimension or bunch sub-structures. If the coherent loss is comparable to that of the incoherent the required taper depends on the bunch charge and the applied compression scheme and a change of these parameters would require a change of the taper. This imposes a limitation on the operation of FELs, where the taper can only be adjusted manually. In this presentation we analyze the coherent emission of undulator...

  17. Expected radiation effects in plutonium immobilization ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Van Konynenburg, R.A., LLNL

    1997-09-01

    The current formulation of the candidate ceramic for plutonium immobilization consists primarily of pyrochlore, with smaller amounts of hafnium-zirconolite, rutile, and brannerite or perovskite. At a plutonium loading of 10.5 weight %, this ceramic would be made metamict (amorphous) by radiation damage resulting from alpha decay in a time much less than 10,000 years, the actual time depending on the repository temperature as a function of time. Based on previous experimental radiation damage work by others, it seems clear that this process would also result in a bulk volume increase (swelling) of about 6% for ceramic that was mechanically unconfined. For the candidate ceramic, which is made by cold pressing and sintering and has porosity amounting to somewhat more than this amount, it seems likely that this swelling would be accommodated by filling in the porosity, if the material were tightly confined mechanically by the waste package. Some ceramics have been observed to undergo microcracking as a result of radiation-induced anisotropic or differential swelling. It is unlikely that the candidate ceramic will microcrack extensively, for three reasons: (1) its phase composition is dominated by a single matrix mineral phase, pyrochlore, which has a cubic crystal structure and is thus not subject to anisotropic swelling; (2) the proportion of minor phases is small, minimizing potential cracking due to differential swelling; and (3) there is some flexibility in sintering process parameters that will allow limitation of the grain size, which can further limit stresses resulting from either cause.

  18. Radiation Effects on Polypropylene Carbon Nanofibers

    Science.gov (United States)

    Hamilton, John; Mion, Thomas; Chipara, Alin C.; Ibrahim, Elamin I.; Lozano, Karen; Chipara, Magdalena; Tidrow, Steven C.; Chipara, Mircea

    2010-03-01

    Dispersion of carbon nanostructures within polymeric matrices affects most physical and chemical properties of the polymeric matrix (increased Young modulus, improved thermal stability, faster crystallization rates, higher equilibrium degree of crystallinity, modified glass, melting, and crystallization temperatures, enhanced thermal and electrical conductivity). Such changes have been reported and explained by thorough spectroscopic investigations. Nevertheless, little is known about the radiation stability of such nanocomposites. The research is focused on spectroscopic investigations of radiation-induced modifications in isotactic polypropylene (iPP)-vapor grown nanofiber (VGCNF)composites. VGCNF were dispersed within iPP by extrusion at 180^oC. Composites containing various amounts of VGCNFs ranging from 0 to 20 % wt. were prepared and subjected to gamma irradiation, at room temperature, at various integral doses (10 MGy, 20 MGy, and 30 MGy). Raman spectroscopy, ATR, and WAXS were used to assess the radiation-induced modifications in these nanocomposites. Acknowledgements: This research was supported by the Welch Foundation (Department of Chemistry at UTPA) and by US Army Research Office (AMSRD-ARL-RO-SI: 54498-MS-ISP).

  19. Effective temperature and exergy of monochromic blackbody radiation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A new parameter named monochromic effective temperature Tλ is proposed, which represents the thermodynamic quality of monochromic blackbody radiation. The exergy of the monochromic blackbody radiation is expressed by Tλ. The monochromic effective temperature equation is developed, which shows that the produci of Tλ and the wavelength is constant, which equals 5.33016×10-3 tion in photosynthesis can be explained by the results of this work.

  20. Radiation-induced edge effects in deep submicron CMOS transistors

    CERN Document Server

    Faccio, F

    2005-01-01

    The study of the TID response of transistors and isolation test structures in a 130 nm commercial CMOS technology has demonstrated its increased radiation tolerance with respect to older technology nodes. While the thin gate oxide of the transistors is extremely tolerant to dose, charge trapping at the edge of the transistor still leads to leakage currents and, for the narrow channel transistors, to significant threshold voltage shift-an effect that we call Radiation Induced Narrow Channel Effect (RINCE).

  1. Effects of electromagnetic radiation on the hemorheology of rats

    Science.gov (United States)

    Huang, Zhiwei; Tian, Tian; Xiao, Bo; Li, Wen

    2017-01-01

    The current work examines the effects of electromagnetic radiation on the hemorheology to provide an experimental basis for radiation protection. Electromagnetic radiation was generated by a Helmholtz coil constructed from copper wire. There were six rats altogether: three rats in the experimental group, and three rats in the control group. The rats in the experimental group were continuously exposed to radiation for 10 hours every day, and rats in the control group remained in a normal environment. After 30 days, the characteristics of hemorheology of the two groups were compared. The average plasma viscosity, whole blood high shear velocity, and whole blood low shear viscosity were lower in rats in the experimental group than in rats in the control group, while the whole blood shear viscosity was higher in the experimental group than in the control group. Results suggest that long term exposure to electromagnetic radiation does have certain impacts on the cardiovascular system, deeming it necessary to take preventative measures.

  2. Effects of high vs low-level radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Bond, V.P.

    1983-01-01

    In order to appreciate adequately the various possible effects of radiation, particularly from high-level vs low-level radiation exposure (HLRE, vs LLRE), it is necessary to understand the substantial differences between (a) exposure as used in exposure-incidence curves, which are always initially linear and without threshold, and (b) dose as used in dose-response curves, which always have a threshold, above which the function is curvilinear with increasing slope. The differences are discussed first in terms of generally familiar nonradiation situations involving dose vs exposure, and then specifically in terms of exposure to radiation, vs a dose of radiation. Examples are given of relevant biomedical findings illustrating that, while dose can be used with HLRE, it is inappropriate and misleading the LLRE where exposure is the conceptually correct measure of the amount of radiation involved.

  3. Studies of Non-Targeted Effects of Ionising Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Oleg V Belyakov; Heli Mononen; Marjo Peraelae [STUK - Radiation and Nuclear Safety Authority, Helsinki (Finland)

    2006-07-01

    The discovery of ionising radiation induced non-targeted effects is important for understanding the dose-response mechanisms relevant to low dose irradiation in vivo. One important question is whether the non-targeted effects relates to a protective mechanism or whether, conversely, it amplifies the number of cells damaged by the isolated radiation tracks of low dose exposures leading to an increased risk of carcinogenesis. One theory supported by the experimental data obtained during this project is that the main functions of the non-targeted effects are to decrease the risk of transformation in a multicellular organism exposed to radiation. Differences in the gene expression profiles, temporal and spatial patterns of key proteins expressed in directly irradiated and bystander cells may determine how the cells ultimately respond to low doses of radiation. Such a mechanism of co-operative response would make the tissue system much more robust. (N.C.)

  4. Environmental Radiation Effects on Mammals A Dynamical Modeling Approach

    CERN Document Server

    Smirnova, Olga A

    2010-01-01

    This text is devoted to the theoretical studies of radiation effects on mammals. It uses the framework of developed deterministic mathematical models to investigate the effects of both acute and chronic irradiation in a wide range of doses and dose rates on vital body systems including hematopoiesis, small intestine and humoral immunity, as well as on the development of autoimmune diseases. Thus, these models can contribute to the development of the system and quantitative approaches in radiation biology and ecology. This text is also of practical use. Its modeling studies of the dynamics of granulocytopoiesis and thrombocytopoiesis in humans testify to the efficiency of employment of the developed models in the investigation and prediction of radiation effects on these hematopoietic lines. These models, as well as the properly identified models of other vital body systems, could provide a better understanding of the radiation risks to health. The modeling predictions will enable the implementation of more ef...

  5. The effect of ionizing radiation on metoprolol.

    Science.gov (United States)

    Ogrodowczyk, Magdalena; Marciniec, Barbara; Czwajda, Aleksandra

    2013-07-01

    The influence of ionising radiation on physico-chemical properties of metoprolol tartrate (MT) in solid phase was studied. The compound was irradiated by radiation produced by a beam of high-energy electrons in an accelerator, in doses from 25 to 400 kGy, and the possible changes in the samples were detected by organoleptic analysis (colour, forms, clarity), chromatographic and spectrometric methods. Already at the standard sterilisation dose of 25 kGy, the presence of free radicals (0.3764 × 10(16) spin/g) and a decrease in the melting point by 1°C were noted. At higher doses of irradiation products of radiolysis appeared (100 kGy) and the colour was changed from white to pale cream (200 kGy). Our observation was that with increasing mass loss of MT after irradiation with 100, 200 and 400 kGy, the concentration of free radicals increased from 1.0330 to 1.6869 × 10(16) spin/g. The radiolytic yield of total radiolysis was 4.54 × 10(7) mol/J for 100 kGy, 7.42 × 10(7) mol/J for 200 kGy and 4.74 × 10(7) mol/J for 400 kGy. No significant changes were observed in the character of FT-IR spectra, but in UV an increase in intensity of the band at the analytical wavelength was noted. As follows from the results MT shows high radiochemical stability for the typical sterilisation doses 25-50 kGy, and will probably be able to be sterilised by radiation in the dose of 25 kGy.

  6. The radiation reaction effect in ultra intense laser foil interactions

    Science.gov (United States)

    Klimo, O.; Jirka, M.; Masek, M.; Limpouch, J.; Bussmann, M.; Korn, G.

    2013-05-01

    Since the radiation reaction effect on electron propagation is very small in most cases, it can be usually neglected and the Lorentz force equation can be applied. However, ultra-intense lasers with normalized vector potential of the order of 100 can accelerate electrons to relativistic velocities with very high gamma factor. When the electron is accelerated to such high velocities the amount of emitted radiation may become large and radiation damping and emission of energetic photons should be considered. This work studies the influence of the radiation reaction force on laser interaction with solid foil targets. It compares different approaches adopted in PIC simulations to take into account the radiation reaction. The simulations of a counter-propagating relativistic electron and an ultra-intense laser beam demonstrate a strong energy loss of electrons due to non-linear Compton scattering. The interaction of ultra-intense laser pulse with solid foil is studied using PIC simulations. It is shown that the effect of radiation reaction strongly depends on the recirculation of high-energy electrons. When the recirculation is efficient, the radiation coming from the target is much more intense and it shows different spectral and angular characteristics.

  7. Radiation hormesis. Stimulatory effects of low level ionizing radiation on plant

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, Shigenobu; Masui, Hisashi; Yoshida, Shigeo; Murata, Isao [Osaka Univ., Suita (Japan). Faculty of Engineering

    1999-04-01

    Recently, the study for radiation hormesis has been executed against animals and plants; subharmful doses of radiation may evoke a stimulatory response in any organism. We executed irradiating experiments of dry seeds with fusion (D-T) neutron, fission neutron, cobalt-60 gamma-ray and investigated existence of the radiation hormesis effects by measuring germination, the length of a stalk and the total weight of a seed leaf on the 7th day after starting cultivation. And we estimated radiation hormesis effects by relative effectiveness, the ratio of the mean value of measurement subjects for the irradiated group to that of non-irradiated group. In relation to Raphanus sativus, the hormesis effects on seed leaf growth from irradiated seeds have only turned up in seed groups irradiated by the fusion (D-T) neutron. We have confirmed that absorbed dose range which revealed the effects is from 1 cGy to 10 Gy and the increasing rate is from 5 percent to 25 percent against a control group. (author)

  8. Radiation effects on reactor pressure vessel supports

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R.E. [Nuclear Regulatory Commission, Washington, DC (United States). Div. of Engineering Technology; Lipinski, R.E. [Idaho National Engineering Lab., Rockville, MD (United States)

    1996-05-01

    The purpose of this report is to present the findings from the work done in accordance with the Task Action Plan developed to resolve the Nuclear Regulatory Commission (NRC) Generic Safety Issue No. 15, (GSI-15). GSI-15 was established to evaluate the potential for low-temperature, low-flux-level neutron irradiation to embrittle reactor pressure vessel (RPV) supports to the point of compromising plant safety. An evaluation of surveillance samples from the High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) had suggested that some materials used for RPV supports in pressurized-water reactors could exhibit higher than expected embrittlement rates. However, further tests designed to evaluate the applicability of the HFIR data to reactor RPV supports under operating conditions led to the conclusion that RPV supports could be evaluated using traditional method. It was found that the unique HFIR radiation environment allowed the gamma radiation to contribute significantly to the embrittlement. The shielding provided by the thick steel RPV shell ensures that degradation of RPV supports from gamma irradiation is improbable or minimal. The findings reported herein were used, in part, as the basis for technical resolution of the issue.

  9. Short-term effects of radiation in glioblastoma spheroids

    DEFF Research Database (Denmark)

    Asferg Petterson, Stine; Pind Jakobsen, Ida; Jensen, Stine Skov;

    2016-01-01

    and five days. We found a small reduction in primary spheroid size after radiation and an associated small increase in uptake of the cell death marker propidium iodide. Using immunohistochemistry, P53 expression was found to be significantly increased, whereas the Ki-67 proliferation index...... capacity. Gene expression analysis of nine stem cell- and two hypoxia-related genes did not reveal any upregulation after radiation. In conclusion, this study suggests that a major short-term effect of radiation is pronounced reduction of tumor cell proliferation. We found no upregulation of stem cell...

  10. Adaptation hypothesis of biological effectiveness of ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kudritsky, Yu.K.; Georgievsky, A.B.; Karpov, V.I.

    1993-12-31

    The adoptation hypothesis of biological effectiveness of ionizing radiations is based on the recognition of the invariability of general biological laws for radiobiology and on the comprehension of life evolution regularities and axiomatic principles of environment and biota unity. The ionizing radiation factor is essential for life which could not exist beyond the radiation field. The possibility of future development of the adaptation hypothesis serves as a basis for it`s transformation into the theoretical foundation of radiobiology. This report discusses the aspects of the adaptation theory.

  11. Temperature effects on radiation damage to silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Barberis, E.; Cartiglia, N.; Leslie, J.; Pitzl, D.; Rowe, W.A.; Sadrozinski, H.F.W. (SCIPP, Univ. California, Santa Cruz, CA (United States)); Boissevain, J.G.; Ferguson, P.; Holzscheiter, K.; Kapustinsky, J.S.; Palounek, A.P.T.; Sommer, W.F.; Sondheim, W.E.; Ziock, H.J. (Los Alamos National Lab., NM (United States)); Ellison, J.A.; Fleming, J.K.; Jerger, S.; Joyce, D.; Lietzke, C.; Wimpenny, S.J. (Univ. California, Riverside, CA (United States)); Matthews, J.A.J.; Skinner, D. (Univ. New Mexico, Albuquerque, NM (United States))

    1993-03-01

    Motivated by the large particle fluences anticipated for the SSC and LHC, we are performing a systematic study of radiation damage to silicon microstrip detectors. Here we report radiation effects on detectors cooled to 0deg C (the proposed operating point for a large SSC silicon tracker) including leakage currents and change in depletion voltage. We also present results on the annealing behavior of the radiation damage. Finally, we report results of charge collection measurements of the damaged detectors made with an [sup 241]Am [alpha] source. (orig.).

  12. Effect of radiative cooling on collapsing charged grains

    Indian Academy of Sciences (India)

    B P Pandey; Vinod Krishan; M Roy

    2001-01-01

    The effect of the radiative cooling of electrons on the gravitational collapse of cold dust grains with fluctuating electric charge is investigated. We find that the radiative cooling as well as the charge fluctuations, both, enhance the growth rate of the Jeans instability. However, the Jeans length, which is zero for cold grains and nonradiative plasma, becomes finite in the presence of radiative cooling of electrons and is further enhanced due to charge fluctuations of grains resulting in an increased threshold of the spatial scale for the Jeans instability.

  13. Effects of gamma-Radiation on Select Lipids and Antioxidants

    Science.gov (United States)

    Gandolph, Jacob; Mauer, Lisa; Perchonok, Michele

    2006-01-01

    Radiation encountered on an extended duration space mission (estimates of 3 Sieverts for a mission to Mars) poses a threat not only to human health, but also to the quality, nutritional value, and palatability of the food system. Free radicals generated by radiation interaction with foods may initiate many unwanted reactions including: 1) autoxidation in lipids that alters flavor, odor, and concentrations of essential fatty acids, and 2) depletion of antioxidants food products and dietary supplements. Studies have shown that antioxidants may provide long term health protection from oxidative stress caused by radiation exposure; therefore, consumption of antioxidants will be important. Stability of essential fatty acids is also important for astronauts long-term health status. The objectives of this study were to characterize the effects of low dose gamma-radiation on lipids and antioxidants by monitoring oxidation and reducing power, respectively, in model systems. Select oils and antioxidants were exposed to levels of gamma-radiation ranging from 0 to 1000 Gy (1 Gy = 1 Sv) using a Gammacell 220 and stored at ambient or elevated temperatures (65 C) for up to 3 months prior to analysis. A Fricke dosimeter was used to verify differences between the radiation doses administered. Primary and secondary products of lipid oxidation in soybean and peanut oils were monitored using conjugated diene and 2-thiobarbituric acid (TBARs) assays. Changes in fatty acid composition and formation and vitamin E levels were also measured. The reducing power of antioxidant compounds, including vitamins C and E and beta-carotene, was determined using the ferric reducing antioxidant power (FRAP) assay. Significant differences (alpha =0.05) were present between all radiation doses tested using the Fricke dosimeter. Increasing radiation doses above 3 Sv resulted in significantly (alpha =0.05) elevated levels of oxidation and free fatty acids in soybean and peanut oils. Decreases in

  14. Targeted and non-targeted effects of ionizing radiation

    Directory of Open Access Journals (Sweden)

    Omar Desouky

    2015-04-01

    Full Text Available For a long time it was generally accepted that effects of ionizing radiation such as cell death, chromosomal aberrations, DNA damage, mutagenesis, and carcinogenesis result from direct ionization of cell structures, particularly DNA, or from indirect damage through reactive oxygen species produced by radiolysis of water, and these biological effects were attributed to irreparable or misrepaired DNA damage in cells directly hit by radiation. Using linear non-threshold model (LNT, possible risks from exposure to low dose ionizing radiation (below 100 mSv are estimated by extrapolating from data obtained after exposure to higher doses of radiation. This model has been challenged by numerous observations, in which cells that were not directly traversed by the ionizing radiation exhibited responses similar to those of the directly irradiated cells. Therefore, it is nowadays accepted that the detrimental effects of ionizing radiation are not restricted only in the irradiated cells, but also to non-irradiated bystander or even distant cells manifesting various biological effects.

  15. Advances in the biological effects of terahertz wave radiation.

    Science.gov (United States)

    Zhao, Li; Hao, Yan-Hui; Peng, Rui-Yun

    2014-01-01

    The terahertz (THz) band lies between microwave and infrared rays in wavelength and consists of non-ionizing radiation. Both domestic and foreign research institutions, including the army, have attached considerable importance to the research and development of THz technology because this radiation exhibits both photon-like and electron-like properties, which grant it considerable application value and potential. With the rapid development of THz technology and related applications, studies of the biological effects of THz radiation have become a major focus in the field of life sciences. Research in this field has only just begun, both at home and abroad. In this paper, research progress with respect to THz radiation, including its biological effects, mechanisms and methods of protection, will be reviewed.

  16. Advances in the biological effects of terahertz wave radiation

    Institute of Scientific and Technical Information of China (English)

    Li Zhao; Yan-Hui Hao; Rui-Yun Peng

    2014-01-01

    The terahertz (THz) band lies between microwave and infrared rays in wavelength and consists of non-ionizing radiation. Both domestic and foreign research institutions, including the army, have attached considerable importance to the research and development of THz technology because this radiation exhibits both photon-like and electron-like properties, which grant it considerable application value and potential. With the rapid development of THz technology and related applications, studies of the biological effects of THz radiation have become a major focus in the field of life sciences. Research in this field has only just begun, both at home and abroad. In this paper, research progress with respect to THz radiation, including its biological effects, mechanisms and methods of protection, will be reviewed.

  17. More Abstracts on Effects of Radiation on Electronic Devices

    Science.gov (United States)

    Bouquet, Frank L.

    1987-01-01

    Second volume of bibliography summarizes literature on radiation effects on new electronic devices. Includes those of protons, electrons, neutrons, gamma rays, and cosmic rays at energies up to about 20 GeV. Volume contains 219 abstracts from unclassified sources. Organized into four sections: dose-rate effects, new technology, post-irradiaton effects, and test environments.

  18. Effects of ionizing radiation in ginkgo and guarana

    Energy Technology Data Exchange (ETDEWEB)

    Rabelo Soriani, Renata [Departamento de Farmacia, Faculdade de Ciencias Farmaceuticas, Universidade de Sao Paulo, Avenida professor Lineu Prestes, 580-Bloco13, Cidade Universitaria, CEP 05508900 Sao Paulo (Brazil); Satomi, Lucilia Cristina [Departamento de Farmacia, Faculdade de Ciencias Farmaceuticas, Universidade de Sao Paulo, Avenida professor Lineu Prestes, 580-Bloco13, Cidade Universitaria, CEP 05508900 Sao Paulo (Brazil); Pinto, Terezinha de Jesus A. [Departamento de Farmacia, Faculdade de Ciencias Farmaceuticas, Universidade de Sao Paulo, Avenida professor Lineu Prestes, 580-Bloco13, Cidade Universitaria, CEP 05508900 Sao Paulo (Brazil)]. E-mail: tjapinto@usp.br

    2005-07-01

    Raw plant materials normally carry high bioburden due to their origin, offering potential hazards to consumers. The use of decontamination processes is therefore an important step towards the consumer safety and therapeutical efficiency. Several authors have reported the treatment of medicinal herbs with ionizing radiation. This work evaluated the effects of different radiation doses on the microbial burden and chemical constituents of ginkgo (Ginkgo biloba L.) and guarana (Paullinia cupana H.B.K.)

  19. Plasma effects in high frequency radiative transfer

    Science.gov (United States)

    Alonso, C. T.

    1981-02-01

    A survey of collective plasma processes which can affect the transfer of high frequency radiation in a hot dense plasma is given. For pedagogical reasons plasma processes are examined by relating them to a particular reference plasma which consists of fully ionized carbon at a temperature kT = 1 KeV (ten million degrees Kelvin) and an electron density N = 3 x 10 to the 23rd power/cu cm, (which corresponds to a mass density rho = 1 gm/cu cm) and an ion density N sub i = 5 x 10 to the 22nd power/cu cm. The transport of photons, ranging from 1 eV to 1 KeV in energy, in such plasmas is considered. Such photons are to be used as diagnostic probes of hot dense laboratory plasmas.

  20. Radiation induced dynamic mutations and transgenerational effects.

    Science.gov (United States)

    Niwa, Ohtsura

    2006-01-01

    Many studies have confirmed that radiation can induce genomic instability in whole body systems. Although the molecular mechanisms underlying induced genomic instability are not known at present, this interesting phenomenon could be the manifestation of a cellular fail-safe system in which fidelity of repair and replication is down-regulated to tolerate DNA damage. Two features of genomic instability namely, delayed mutation and untargeted mutation, require two mechanisms of ;damage memory' and ;damage sensing, signal transduction and execution' to induce mutations at a non damaged-site. In this report, the phenomenon of transgenerational genomic instability and possible mechanisms are discussed using mouse data collected in our laboratory as the main bases.

  1. RADIATION EFFECTS ON EPOXY CARBON FIBER COMPOSITE

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, E

    2008-05-30

    Carbon fiber-reinforced bisphenol-A epoxy matrix composite was evaluated for gamma radiation resistance. The composite was exposed to total gamma doses of 50, 100, and 200 Mrad. Irradiated and baseline samples were tested for tensile strength, hardness and evaluated using FTIR (Fourier transform infrared) spectroscopy and DSC (differential scanning calorimetry) for structural changes. Scanning electron microscopy was used to evaluate microstructural behavior. Mechanical testing of the composite bars revealed no apparent change in modulus, strain to failure, or fracture strength after exposures. However, testing of only the epoxy matrix revealed changes in hardness, thermal properties, and FTIR results with increasing gamma irradiation. The results suggest the epoxy within the composite can be affected by exposure to gamma irradiation.

  2. Effects of gamma radiation on snake venoms

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, N.; Spencer, P.J.; Andrade, H.F.; Guarnieri, M.C.; Rogero, J.R

    1998-06-01

    Ionizing radiation is able to detoxify several venoms, including snake venoms, without affecting significantly their immunogenic properties. In order to elucidate this phenomena, we conceived a comparative pharmacological study between native and irradiated (2,000 Gy) crotoxin, the main toxin of the South American rattlesnake Crotalus durissus terrificus. Crotoxin was isolated and purified by molecular exclusion chromatography, pI precipitation and, subsequently submitted to irradiation. Gel filtration of the irradiated toxin resulted in some high molecular weight aggregates formation. Crotoxin toxicity decreased two folds after irradiation, as determined by LD{sub 50} in mice. Native and irradiated crotoxin biodistribution ocurred in the same general manner, with renal elimination. However, in contrast to irradiated crotoxin, the native form was initially retained in kidneys. A later concentration (2-3 hr) appeared in phagocytic mononuclear cells rich organs (liver and spleen) and neural junction rich organs (muscle and brain)

  3. Fundamental radiation effects parameters in metals and ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J. [Oak Ridge National Lab., TN (United States)

    1998-03-01

    Useful information on defect production and migration can be obtained from examination of the fluence-dependent defect densities in irradiated materials, particularly when a transition from linear to sublinear accumulation is observed. Further work is needed on several intriguing reported radiation effects in metals. The supralinear defect cluster accumulation regime in thin foil irradiated metals needs further experimental confirmation, and the physical mechanisms responsible for its presence need to be established. Radiation hardening and the associated reduction in strain hardening capacity in FCC metals is a serious concern for structural materials. In general, the loss of strain hardening capacity is associated with dislocation channeling, which occurs when a high density of small defect clusters are produced (stainless steel irradiated near room temperature is a notable exception). Detailed investigations of the effect of defect cluster density and other physical parameters such as stacking fault energy on dislocation channeling are needed. Although it is clearly established that radiation hardening depends on the grain size (radiation-modified Hall-Petch effect), further work is needed to identify the physical mechanisms. In addition, there is a need for improved hardening superposition models when a range of different obstacle strengths are present. Due to a lack of information on point defect diffusivities and the increased complexity of radiation effects in ceramics compared to metals, many fundamental radiation effects parameters in ceramics have yet to be determined. Optical spectroscopy data suggest that the oxygen monovacancy and freely migrating interstitial fraction in fission neutron irradiated MgO and Al{sub 2}O{sub 3} are {approximately}10% of the NRT displacement value. Ionization induced diffusion can strongly influence microstructural evolution in ceramics. Therefore, fundamental data on ceramics obtained from highly ionizing radiation sources

  4. Effect of Wheel Load on Wheel Vibration and Sound Radiation

    Institute of Scientific and Technical Information of China (English)

    HAN Jian; WANG Ruiqian; WANG Di; GUAN Qinghua; ZHANG Yumei; XIAO Xinbiao; JIN Xuesong

    2015-01-01

    The current researches of wheel vibration and sound radiation mainly focus on the low noise damped wheel. Compared with the traditional research, the relationship between the sound and wheel/rail contact is difficulty and worth studying. However, there are few studies on the effect of wheel load on wheel vibration and sound radiation. In this paper, laboratory test carried out in a semi-anechoic room investigates the effect of wheel load on wheel natural frequencies, damping ratios, wheel vibration and its sound radiation. The laboratory test results show that the vibration of the wheel and total sound radiation decrease significantly with the increase of the wheel load from 0 t to 1 t. The sound energy level of the wheel decreases by 3.7 dB. When the wheel load exceeds 1 t, the attenuation trend of the vibration and sound radiation of the wheel becomes slow. And the increase of the wheel load causes the growth of the wheel natural frequencies and the mode damping ratios. Based on the finite element method (FEM) and boundary element method (BEM), a rolling noise prediction model is developed to calculate the influence of wheel load on the wheel vibration and sound radiation. In the calculation, the used wheel/rail excitation is the measured wheel/rail roughness. The calculated results show that the sound power level of the wheel decreases by about 0.4 dB when the wheel load increases by 0.5 t. The sound radiation of the wheel decreases slowly with wheel load increase, and this conclusion is verified by the field test. This research systematically studies the effect of wheel load on wheel vibration and sound radiation, gives the relationship between the sound and wheel/rail contact and analyzes the reasons, therefore, it provides a reference for further research.

  5. Radiation sterilization of fluoroquinolones in solid state: Investigation of effect of gamma radiation and electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Babita K., E-mail: singhbab2001@rediffmail.co [Department of Chemistry, RTM Nagpur University Campus, Amravati Road, Nagpur 440033 (India); Central Forensic Science Laboratory, Ramanthapur, Hyderabad 500013 (India); Parwate, Dilip V. [Department of Chemistry, RTM Nagpur University Campus, Amravati Road, Nagpur 440033 (India); Dassarma, Indrani B. [Jhulelal Institute of Technology, Nagpur (India); Shukla, Sudhir K. [Central Forensic Science Laboratory, Ramanthapur, Hyderabad 500013 (India)

    2010-09-15

    The effect of gamma radiation from {sup 60}Co source and 2 MeV electron beam was studied on two fluoroquinolone antibiotics viz norfloxacin and gatifloxacin in the solid state. The changes in reflectance spectrum, yellowness index, vibrational characteristics, thermal behavior, UV spectrum, chemical potency (HPLC) and microbiological potency were investigated. ESR measurement gave the number of free radical species formed and their population. The nature of final radiolytic impurities was assessed by studying the HPLC impurity profile. Both norfloxacin and gatifloxacin were observed to be radiation resistant, and did not show significant changes in their physico-chemical properties. They could be radiation sterilized at a dose of 25 kGy.

  6. The Effect of Radiation "Memory" in Alkali-Halide Crystals

    Science.gov (United States)

    Korovkin, M. V.; Sal'nikov, V. N.

    2017-01-01

    The exposure of the alkali-halide crystals to ionizing radiation leads to the destruction of their structure, the emergence of radiation defects, and the formation of the electron and hole color centers. Destruction of the color centers upon heating is accompanied by the crystal bleaching, luminescence, and radio-frequency electromagnetic emission (REME). After complete thermal bleaching of the crystal, radiation defects are not completely annealed, as the electrons and holes released from the color centers by heating leave charged and locally uncompensated defects. Clusters of these "pre centers" lead to electric microheterogeneity of the crystal, the formation of a quasi-electret state, and the emergence of micro-discharges accompanied by radio emission. The generation of REME associated with residual defectiveness, is a manifestation of the effect of radiation "memory" in dielectrics.

  7. Environmental Radiation Effects: A Need to Question Old Paradigms

    Energy Technology Data Exchange (ETDEWEB)

    Hinton, T.G.; Bedford, J.; Ulsh, B.; Whicker, F. Ward

    2003-03-27

    A historical perspective is given of the current paradigm that does not explicitly protect the environment from radiation, but instead, relies on the concept that if dose limits are set to protect humans then the environment is automatically protected as well. We summarize recent international questioning of this paradigm and briefly present three different frameworks for protecting biota that are being considered by the U.S. DOE, the Canadian government and the International Commission on Radiological Protection. We emphasize that an enhanced collaboration is required between what has traditionally been separated disciplines of radiation biology and radiation ecology if we are going to properly address the current environmental radiation problems. We then summarize results generated from an EMSP grant that allowed us to develop a Low Dose Irradiation Facility that specifically addresses effects of low-level, chronic irradiation on multiple levels of biological organization.

  8. Radiative instabilities in plasmas: impurity motion and recombination effects

    Energy Technology Data Exchange (ETDEWEB)

    Morozov, D.K.; Herrera, J.J.E. [Instituto de Ciencias y Artes, Chiapas (Mexico). Escuela de Biologia

    1995-03-01

    Radiative instabilities in an impurity-seeded plasma are investigated when the plasma is supposed to be highly but partially ionized. Since in such plasmas radiative losses strongly depend on neutral and impurity densities, their dynamics are taken into account. As a result, a new radiative-recombination instability is found and described. We show that the influence of the ionization-recombination balance on plasma stability is sufficient for plasma densities above 10{sup 14} cm{sup -3}. The effects of a finite impurity Larmor radius are not small and play a stabilizing role as well as the thermal forces. On the other hand, compressibility of the magnetic field leads to plasma destabilization. We note that this radiative-recombination instability accumulates impurities in a cold zone while cleaning other regions. (Author).

  9. Effects of ionizing radiation on modern ion exchange materials

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, S.F.; Pillay, K.K.S.

    1993-10-01

    We review published studies of the effects of ionizing radiation on ion exchange materials, emphasizing those published in recent years. A brief overview is followed by a more detailed examination of recent developments. Our review includes styrene/divinylbenzene copolymers with cation-exchange or anion-exchange functional groups, polyvinylpyridine anion exchangers, chelating resins, multifunctional resins, and inorganic exchangers. In general, strong-acid cation exchange resins are more resistant to radiation than are strong-base anion exchange resins, and polyvinylpyridine resins are more resistant than polystyrene resins. Cross-linkage, salt form, moisture content, and the surrounding medium all affect the radiation stability of a specific exchanger. Inorganic exchangers usually, but not always, exhibit high radiation resistance. Liquid ion exchangers, which have been used so extensively in nuclear processing applications, also are included.

  10. New Scientific Pearl about Biologic Effect of Ionizing Radiation

    Directory of Open Access Journals (Sweden)

    S. A. Alamdaran

    2008-01-01

    Full Text Available Soon after the discovery of X-ray by Rontgen in 1895, it became evident that radiation can cause some somatic damage to tissues. The hazards of X-ray exposure were clearly known when many large hospitals had radiology departments. The greatest increased in knowledge about X-ray risks had accrued from the dropping of the two atomic bombs in Japan in 1945 and some other atomic accident. For example, among the Japanese bomb survivors from Hiroshima and Nagasaki, there have been about 400 extra cancer deaths. These were the origin of radiology personnel and people fear from radiation exposure and resistant in against simple X-ray exam (radiophobia. However, new scientific data on the effects radiation on survivors, especially about biologic effect of ionizing rays, background radiation exposure, amount of endogenous radiation, hormosis phenomenon and comparison radiation risk with other risk over lifetime are still being continuously revised and risk estimates updated. Fundamentally, this risk is much"nlower than whatever already estimated and it is insignificant in diagnostic domain. Better perception of physician from these instances help to prevent of false radiophobia and to make proper use of diagnostic and therapeutic advantages of ionizing beam.

  11. Thermal effects of radiation from cellular telephones

    Science.gov (United States)

    Wainwright, Peter

    2000-08-01

    A finite element thermal model of the head has been developed to calculate temperature rises generated in the brain by radiation from cellular telephones and similar electromagnetic devices. A 1 mm resolution MRI dataset was segmented semiautomatically, assigning each volume element to one of ten tissue types. A finite element mesh was then generated using a fully automatic tetrahedral mesh generator developed at NRPB. There are two sources of heat in the model: firstly the natural metabolic heat production; and secondly the power absorbed from the electromagnetic field. The SAR was derived from a finite difference time domain model of the head, coupled to a model `mobile phone', namely a quarter-wavelength antenna mounted on a metal box. The steady-state temperature distribution was calculated using the standard Pennes `bioheat equation'. In the normal cerebral cortex the high blood perfusion rate serves to provide an efficient cooling mechanism. In the case of equipment generally available to the public, the maximum temperature rise found in the brain was about 0.1 °C. These results will help in the further development of criteria for exposure guidelines, and the technique developed may be used to assess temperature rises associated with SARs for different types of RF exposure.

  12. The biological effects of ionising radiation on Crustaceans: A review

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, Neil; Lerebours, Adélaïde [Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Ferry Road, Portsmouth, Hampshire PO4 9LY (United Kingdom); Smith, Jim T. [School of Earth & Environmental Sciences, University of Portsmouth, Burnaby Building, Burnaby Road, Portsmouth, Hampshire PO1 3QL (United Kingdom); Ford, Alex T., E-mail: alex.ford@port.ac.uk [Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Ferry Road, Portsmouth, Hampshire PO4 9LY (United Kingdom)

    2015-10-15

    Highlights: • We comprehensively review the effects of ionising radiation in crustaceans. • Current environmental radioprotection levels found to be inadequate in some cases. • Mutation is shown to be a sensitive endpoint of radiation exposure. • Lowest observed effect dose rate varies by orders of magnitude. - Abstract: Historic approaches to radiation protection are founded on the conjecture that measures to safeguard humans are adequate to protect non-human organisms. This view is disparate with other toxicants wherein well-developed frameworks exist to minimise exposure of biota. Significant data gaps for many organisms, coupled with high profile nuclear incidents such as Chernobyl and Fukushima, have prompted the re-evaluation of our approach toward environmental radioprotection. Elucidating the impacts of radiation on biota has been identified as priority area for future research within both scientific and regulatory communities. The crustaceans are ubiquitous in aquatic ecosystems, comprising greater than 66,000 species of ecological and commercial importance. This paper aims to assess the available literature of radiation-induced effects within this subphylum and identify knowledge gaps. A literature search was conducted pertaining to radiation effects on four endpoints as stipulated by a number of regulatory bodies: mortality, morbidity, reproduction and mutation. A major finding of this review was the paucity of data regarding the effects of environmentally relevant radiation doses on crustacean biology. Extremely few studies utilising chronic exposure durations or wild populations were found across all four endpoints. The dose levels at which effects occur was found to vary by orders of magnitude thus presenting difficulties in developing phyla-specific benchmark values and reference levels for radioprotection. Based on the limited data, mutation was found to be the most sensitive endpoint of radiation exposure, with mortality the least sensitive

  13. Radiation effects in nuclear waste materials. 1998 annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Weber, W.J.; Corrales, L.R. [Pacific Northwest National Lab., Richland, WA (US); Birtcher, R.C. [Argonne National Lab., IL (US); Nastasi, M. [Los Alamos National Lab., NM (US)

    1998-06-01

    'The objective of this multidisciplinary, multi-institutional research effort is to develop a fundamental understanding of radiation effects in glasses and ceramics at the atomic, microscopic, and macroscopic levels. The goal is to provide the underpinning science and models necessary to assess the performance of glasses and ceramics designed for the immobilization and disposal of high-level tank waste, plutonium residues, excess weapons plutonium, and other highly radioactive waste streams. A variety of experimental and computer simulation methods are employed in this effort. In general, research on glasses focuses on the electronic excitations due to ionizing radiation emitted from beta decay, since this is currently thought to be the principal mechanism for deleterious radiation effects in nuclear waste glasses. Research on ceramics focuses on defects and structural changes induced by the elastic interactions between alpha-decay particles and the atoms in the structure. Radiation effects can lead to changes in physical and chemical properties that may significantly impact long-term performance of nuclear waste materials. The current lack of fundamental understanding of radiation effects in nuclear waste materials makes it impossible to extrapolate the limited existing data bases to larger doses, lower dose rates, different temperature regimes, and different glass compositions or ceramic structures. This report summarizes work after almost 2 years of a 3-year project. Work to date has resulted in 9 publications. Highlights of the research over the past year are presented.'

  14. Background radiation effects and hazards in planetary instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, Gillian [Space Research Centre, Michael Atiyah Building, Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH, (United Kingdom)]. E-mail: gib@star.le.ac.uk; Sims, Mark R. [Space Research Centre, Michael Atiyah Building, Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH, (United Kingdom); Fraser, George [Space Research Centre, Michael Atiyah Building, Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH, (United Kingdom); Klingelhoefer, Goestar [Institut fuer Anorganische und Analytische Chemie, Johannes-Gutenberg-Universitaet, Staudinger Weg 9, 55128 Mainz (Germany); Bernhardt, Bodo [Institut fuer Anorganische und Analytische Chemie, Johannes-Gutenberg-Universitaet, Staudinger Weg 9, 55128 Mainz (Germany); Davidson, Andrew [EADS Astrium, Gunnels Wood Road, Stevenage SG1 2AS, (United Kingdom)

    2006-08-01

    Recent and proposed future planetary missions are becoming increasingly concerned with detailed geochemical assessment, often in a bid to ascertain the presence of water and life supporting geochemical systems. The instruments involved may use some kind of radioactive source, e.g. X-ray fluorescence spectrometry, Moessbauer spectrometry, neutron scattering. Having radioactive sources on a lander/rover poses various potential problems, in regard to both safety to personnel involved in the building of the instrument and to radiation effects on spacecraft structure and on other instruments. Indeed background radiation effects from one instrument may dominate measurements in another resulting in loss of scientific performance. Drawing on experience with the Beagle 2 probe which contained two instruments with radioactive sources, we present a discussion on the management of radiation hazards and background effects posed by radioactive sources for such planetary missions.

  15. Effects of diagnostic ionizing radiation on pregnancy via TEM

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed, W H; Artoli, A M [Al Neelain University Department of Medical and Biophysics 11121 Khartoum (Sudan)], E-mail: wasilhashim@yahoo.com

    2008-08-15

    In Sudan, X-rays are routinely used at least once for measurements of pelvis during the gestation period, though this is highly prohibited worldwide, except for a few life threatening cases. To demonstrate the effect of diagnostic ionizing radiation on uterus, fetus and neighboring tissues to the ovaries, two independent experiments on pregnant rabbits were conducted. The first experiment was a proof of concept that diagnostic ionizing radiation is hazardous throughout the gestation period. The second experiment was done through Transmission Electron Microscopy (TEM) to elucidate the morphological changes in the ultra structure of samples taken from irradiated pregnant rabbits. This study uses TEM to test the effect of diagnostic radiation of less than 0.6 Gray on the cellular level. Morphological changes have been captured and the images were analyzed to quantify these effects.

  16. Functional proteomic analysis revealed ground-base ion radiations cannot reflect biological effects of space radiations of rice

    Science.gov (United States)

    Wang, Wei; Sun, Yeqing; Zhao, Qian; Han, Lu

    2016-07-01

    Highly ionizing radiation (HZE) in space is considered as main factor causing biological effects. Radiobiological studies during space flights are unrepeatable due to the variable space radiation environment, ground-base ion radiations are usually performed to simulate of the space biological effect. Spaceflights present a low-dose rate (0.1˜~0.3mGy/day) radiation environment inside aerocrafts while ground-base ion radiations present a much higher dose rate (100˜~500mGy/min). Whether ground-base ion radiation can reflect effects of space radiation is worth of evaluation. In this research, we compared the functional proteomic profiles of rice plants between on-ground simulated HZE particle radiation and spaceflight treatments. Three independent ground-base seed ionizing radiation experiments with different cumulative doses (dose range: 2˜~20000mGy) and different liner energy transfer (LET) values (13.3˜~500keV/μμm) and two independent seed spaceflight experiments onboard Chinese 20th satellite and SZ-6 spacecraft were carried out. Alterations in the proteome were analyzed by two-dimensional difference gel electrophoresis (2-D DIGE) with MALDI-TOF/TOF mass spectrometry identifications. 45 and 59 proteins showed significant (pmetabolic process, protein folding and phosphorylation. The results implied that ground-base radiations cannot truly reflect effects of spaceflight radiations, ground-base radiation was a kind of indirect effect to rice causing oxidation and metabolism stresses, but space radiation was a kind of direct effect leading to macromolecule (DNA and protein) damage and signal pathway disorders. This functional proteomic analysis work might provide a new evaluation method for further on-ground simulated HZE radiation experiments.

  17. Geometric doppler effect: spin-split dispersion of thermal radiation.

    Science.gov (United States)

    Dahan, Nir; Gorodetski, Yuri; Frischwasser, Kobi; Kleiner, Vladimir; Hasman, Erez

    2010-09-24

    A geometric Doppler effect manifested by a spin-split dispersion relation of thermal radiation is observed. A spin-dependent dispersion splitting was obtained in a structure consisting of a coupled thermal antenna array. The effect is due to a spin-orbit interaction resulting from the dynamics of the surface waves propagating along the structure whose local anisotropy axis is rotated in space. The observation of the spin-symmetry breaking in thermal radiation may be utilized for manipulation of spontaneous or stimulated emission.

  18. Radiative Transfer Effects during Photoheating of the Intergalactic Medium

    CERN Document Server

    Abel, T; Abel, Tom; Haehnelt, Martin G.

    1999-01-01

    The thermal history of the intergalactic medium (IGM) after reionization is to a large extent determined by photoheating. Here we demonstrate that calculations of the photoheating rate which neglect radiative transfer effects substantially underestimate the energy input during and after reionization. The neglect of radiative transfer effects results in temperatures of the IGM which are too low by a factor of two after HeII reionization. We briefly discuss implications for the absorption properties of the IGM and the distribution of baryons in shallow potential wells.

  19. Effect of ionizing radiation on rat parotid gland

    Energy Technology Data Exchange (ETDEWEB)

    Boraks, George; Tampelini, Flavio Silva; Pereira, Kleber Fernando; Chopard, Renato Paulo [University of Sao Paulo (USP), SP (Brazil). Inst. of Biomedical Sciences. Dept. of Anatomy]. E-mail: rchopard@usp.br

    2008-01-15

    A common side effect of radiotherapy used in the treatment of oral cancer is the occurrence of structural and physiological alterations of the salivary glands due to exposure to ionizing radiation, as demonstrated by conditions such as decreased salivary flow. The present study evaluated ultrastructural alterations in the parotid glands of rats receiving a fractionated dose (1,500-cGy) of radiation emitted by a Cesium-137 source and rats that were not subjected to ionizing radiation. After sacrifice, the parotid glands were removed and examined by transmission electron microscopy. Damage such as cytoplasmic vacuolisation, dilatation of the endoplasmic reticulum and destruction of mitochondria, as well as damage to the cellular membrane of acinar cells, were observed. These findings lead to the conclusion that ionizing radiation promotes alterations in the glandular parenchyma, and that these alterations are directly related to the dose level of absorbed radiation. Certain phenomena that appear in the cytoplasm and nuclear material indicate that ionizing radiation causes acinar cell death (apoptosis). (author)

  20. Biophysics and medical effects of enhanced radiation weapons.

    Science.gov (United States)

    Reeves, Glen I

    2012-08-01

    Enhanced radiation weapons (ERW) are fission-fusion devices where the massive numbers of neutrons generated during the fusion process are intentionally allowed to escape rather than be confined to increase yield (and fallout products). As a result, the energy partition of the weapon output shifts from blast and thermal energies toward prompt radiation. The neutron/gamma output ratio is also increased. Neutrons emitted from ERW are of higher energy than the Eave of neutrons from fission weapons. These factors affect the patterns of injury distribution; delay wound healing in combined injuries; reduce the therapeutic efficacy of medical countermeasures; and increase the dose to radiation-only casualties, thus potentiating the likelihood of encountering radiation-induced incapacitation. The risk of radiation-induced carcinogenesis is also increased. Radiation exposure to first responders from activation products is increased over that expected from a fission weapon of similar yield. However, the zone of dangerous fallout is significantly reduced in area. At least four nations have developed the potential to produce such weapons. Although the probability of detonation of an ERW in the near future is very small, it is nonzero, and clinicians and medical planners should be aware of the medical effects of ERW.

  1. Occultation Modeling for Radiation Obstruction Effects on Spacecraft Systems

    Science.gov (United States)

    de Carufel, Guy; Li, Zu Qun; Harvey, Jason; Crues, Edwin Z.; Bielski, Paul

    2016-01-01

    A geometric occultation model has been developed to determine line-of-sight obstruction of radiation sources expected for different NASA space exploration mission designs. Example applications includes fidelity improvements for surface lighting conditions, radiation pressure, thermal and power subsystem modeling. The model makes use of geometric two dimensional shape primitives to most effectively model space vehicles. A set of these primitives is used to represent three dimensional obstructing objects as a two dimensional outline from the perspective of an observing point of interest. Radiation sources, such as the Sun or a Moon's albedo is represented as a collection of points, each of which is assigned a flux value to represent a section of the radiation source. Planetary bodies, such as a Martian moon, is represented as a collection of triangular facets which are distributed in spherical height fields for optimization. These design aspects and the overall model architecture will be presented. Specific uses to be presented includes a study of the lighting condition on Phobos for a possible future surface mission, and computing the incident flux on a spacecraft's solar panels and radiators from direct and reflected solar radiation subject to self-shadowing or shadowing by third bodies.

  2. Countermeasures for Space Radiation Induced Malignancies and Acute Biological Effects

    Science.gov (United States)

    Kennedy, Ann

    The hypothesis being evaluated in this research program is that control of radiation induced oxidative stress will reduce the risk of radiation induced adverse biological effects occurring as a result of exposure to the types of radiation encountered during space travel. As part of this grant work, we have evaluated the protective effects of several antioxidants and dietary supplements and observed that a mixture of antioxidants (AOX), containing L-selenomethionine, N-acetyl cysteine (NAC), ascorbic acid, vitamin E succinate, and alpha-lipoic acid, is highly effective at reducing space radiation induced oxidative stress in both in vivo and in vitro systems, space radiation induced cytotoxicity and malignant transformation in vitro [1-7]. In studies designed to determine whether the AOX formulation could affect radiation induced mortality [8], it was observed that the AOX dietary supplement increased the 30-day survival of ICR male mice following exposure to a potentially lethal dose (8 Gy) of X-rays when given prior to or after animal irradiation. Pretreatment of animals with antioxidants resulted in significantly higher total white blood cell and neutrophil counts in peripheral blood at 4 and 24 hours following exposure to doses of 1 Gy and 8 Gy. Antioxidant treatment also resulted in increased bone marrow cell counts following irradiation, and prevented peripheral lymphopenia following 1 Gy irradiation. Supplementation with antioxidants in irradiated animals resulted in several gene expression changes: the antioxidant treatment was associated with increased Bcl-2, and decreased Bax, caspase-9 and TGF-β1 mRNA expression in the bone marrow following irradiation. These results suggest that modulation of apoptosis may be mechanistically involved in hematopoietic system radioprotection by antioxidants. Maintenance of the antioxidant diet was associated with improved recovery of the bone marrow following sub-lethal or potentially lethal irradiation. Taken together

  3. Effect of radiofrequency radiation in cultured mammalian cells: A review.

    Science.gov (United States)

    Manna, Debashri; Ghosh, Rita

    2016-01-01

    The use of mobile phone related technologies will continue to increase in the foreseeable future worldwide. This has drawn attention to the probable interaction of radiofrequency electromagnetic radiation with different biological targets. Studies have been conducted on various organisms to evaluate the alleged ill-effect on health. We have therefore attempted to review those work limited to in vitro cultured cells where irradiation conditions were well controlled. Different investigators have studied varied endpoints like DNA damage, cell cycle arrest, reactive oxygen species (ROS) formation, cellular morphology and viability to weigh the genotoxic effect of such radiation by utilizing different frequencies and dose rates under various irradiation conditions that include continuous or pulsed exposures and also amplitude- or frequency-modulated waves. Cells adapt to change in their intra and extracellular environment from different chemical and physical stimuli through organized alterations in gene or protein expression that result in the induction of stress responses. Many studies have focused on such effects for risk estimations. Though the effects of microwave radiation on cells are often not pronounced, some investigators have therefore combined radiofrequency radiation with other physical or chemical agents to observe whether the effects of such agents were augmented or not. Such reports in cultured cellular systems have also included in this review. The findings from different workers have revealed that, effects were dependent on cell type and the endpoint selection. However, contradictory findings were also observed in same cell types with same assay, in such cases the specific absorption rate (SAR) values were significant.

  4. Protective Effect of Chitin Urocanate Nanofibers against Ultraviolet Radiation

    Directory of Open Access Journals (Sweden)

    Ikuko Ito

    2015-12-01

    Full Text Available Urocanic acid is a major ultraviolet (UV-absorbing chromophore. Chitins are highly crystalline structures that are found predominantly in crustacean shells. Alpha-chitin consists of microfibers that contain nanofibrils embedded in a protein matrix. Acid hydrolysis is a common method used to prepare chitin nanofibrils (NFs. We typically obtain NFs by hydrolyzing chitin with acetic acid. However, in the present study, we used urocanic acid to prepare urocanic acid chitin NFs (UNFs and examined its protective effect against UVB radiation. Hos: HR-1 mice coated with UNFs were UVB irradiated (302 nm, 150 mJ/cm2, and these mice showed markedly lower UVB radiation-induced cutaneous erythema than the control. Additionally, sunburn cells were rarely detected in the epidermis of UNFs-coated mice after UVB irradiation. Although the difference was not as significant as UNFs, the number of sunburn cells in mice treated with acetic acid chitin nanofibrils (ANFs tended to be lower than in control mice. These results demonstrate that ANFs have a protective effect against UVB and suggest that the anti-inflammatory and antioxidant effects of NFs influence the protective effect of ANFs against UVB radiation. The combination of NFs with other substances that possess UV-protective effects, such as urocanic acid, may provide an enhanced protective effect against UVB radiation.

  5. Caffeine Markedly Enhanced Radiation-Induced Bystander Effects

    Institute of Scientific and Technical Information of China (English)

    JIANG Erkang; WU Lijun

    2009-01-01

    A bstract In this paper it is shown that incubation with 2 mM caffeine enhanced significantly the MN (micronucleus) formation in both the 1 cGy a-particle irradiated and non-irradiated by- stander regions. Moreover, caffeine treatment made the non-irradiated bystander cells more sensi- tive to damage signals. Treated by c-PTIO(2-(4-carboxy-phenyl)-4,4,5,5-tetramethyl-imidazoline- 1-oxyl-3-oxide), a nitric oxide (NO) scavenger, the MN frequencies were effectively inhibited, showing that nitric oxide might be very important in mediating the enhanced damage. These results indicated that caffeine enhanced the low dose a-particle radiation-induced damage in ir- radiated and non-irradiated bystander regions, and therefore it is important to investigate the relationship between the radiosensitizer and radiation-induced bystander effects (RIBE).

  6. Intermittent Jolts of Galactic UV Radiation Mutagenetic Effects

    CERN Document Server

    Scalo, J M; Williams, P; Scalo, John M.; Williams, Peter

    2001-01-01

    We estimate the frequency of intermittent hypermutation events and disruptions of planetary/satellite photochemistry due to ultraviolet radiation from core collapse supernova explosions. Calculations are presented for planetary systems in the local Milky Way, including the important moderating effects of vertical Galactic structure and UV absorption by interstellar dust. The events are particularly frequent for satellites of giant gas planets at \\gtrsim 5-10 AU distance from solar-type parent stars, or in the conventional habitable zones for planets orbiting spectral type K and M parent stars, with rates of significant jolts about 10^3 - 10^4 per Gyr. The steep source spectra and existing data on UVA and longer-wavelength radiation damage in terrestrial organisms suggest that the mutational effects may operate even on planets with ozone shields. We argue that the mutation doubling dose for UV radiation should be much smaller than the mean lethal dose, using terrestrial prokaryotic organisms as our model, and ...

  7. Space Radiation and the Challenges Towards Effective Shielding Solutions

    Science.gov (United States)

    Barghouty, Abdulnasser

    2014-01-01

    The hazards of space radiation and their effective mitigation strategies continue to pose special science and technology challenges to NASA. It is widely accepted now that shielding space vehicles and structures will have to rely on new and innovative materials since aluminum, like all high Z materials, are poor shields against the particulate and highly ionizing nature of space radiation. Shielding solutions, motivated and constrained by power and mass limitations, couple this realization with "multifunctionality," both in design concept as well as in material function and composition. Materials endowed with effective shielding properties as well as with some degree of multi-functionality may be the kernel of the so-called "radiation-smart" structures and designs. This talk will present some of the challenges and potential mitigation ideas towards the realization of such structures and designs.

  8. Effects of solar radiation on hair and photoprotection.

    Science.gov (United States)

    Dario, Michelli F; Baby, André R; Velasco, Maria Valéria R

    2015-12-01

    In this paper the negative effects of solar radiation (ultraviolet, visible and infrared wavelengths) on hair properties like color, mechanical properties, luster, protein content, surface roughness, among others, will be discussed. Despite knowing that radiation damages hair, there are no consensus about the particular effect of each segment of solar radiation on the hair shaft. The hair photoprotection products are primarily targeted to dyed hair, specially auburn pigments, and gray shades. They are usually based on silicones, antioxidants and quaternary chemical UV filters that have more affinity for negatively charged hair surface and present higher efficacy. Unfortunately, there are no regulated parameters, like for skin photoprotection, for efficacy evaluation of hair care products, which makes impossible to compare the results published in the literature. Thus, it is important that researchers make an effort to apply experimental conditions similar to a real level of sun exposure, like dose, irradiance, time, temperature and relative humidity.

  9. Diffraction and polarization effects in Earth radiation budget measurements.

    Science.gov (United States)

    Mahan, J R; Barki, A R; Priestley, K J

    2016-12-01

    Thermal radiation emitted and reflected from the Earth and viewed from near-Earth orbit may be characterized by its spectral distribution, its degree of coherence, and its state of polarization. The current generation of broadband Earth radiation budget instruments has been designed to minimize the effect of diffraction and polarization on science products. We used Monte Carlo ray-trace (MCRT) models that treat individual rays as quasi-monochromatic, polarized entities to explore the possibility of improving the performance of such instruments by including measures of diffraction and polarization during calibration and operation. We have demonstrated that diffraction and polarization sensitivity associated with typical Earth radiation budget instrument design features has a negligible effect on measurements.

  10. Therapeutic effects of low radiation doses

    Energy Technology Data Exchange (ETDEWEB)

    Trott, K.R. (Dept. of Radiation Biology, St. Bartholomew' s Medical College, London (United Kingdom))

    1994-01-01

    This editorial explores the scientific basis of radiotherapy with doses of < 1 Gy for various non-malignant conditions, in particular dose-effect relationships, risk-benefit considerations and biological mechanisms. A review of the literature, particularly clinical and experimental reports published more than 50 years ago was conducted to clarify the following problems. 1. The dose-response relationships for the therapeutic effects on three groups of conditions: non-malignant skin disease, arthrosis and other painful degenerative joint disorders and anti-inflammatory radiotherapy; 2. risks after radiotherapy and after the best alternative treatments; 3. the biological mechanisms of the different therapeutic effects. Radiotherapy is very effective in all three groups of disease. Few dose-finding studies have been performed, all demonstrating that the optimal doses are considerable lower than the generally recommended doses. In different conditions, risk-benefit analysis of radiotherapy versus the best alternative treatment yields very different results: whereas radiotherapy for acute postpartum mastitis may not be justified any more, the risk-benefit ratio of radiotherapy of other conditions and particularly so in dermatology and some anti-inflammatory radiotherapy appears to be more favourable than the risk-benefit ratio of the best alternative treatments. Radiotherapy can be very effective treatment for various non-malignant conditions such as eczema, psoriasis, periarthritis humeroscapularis, epicondylitis, knee arthrosis, hydradenitis, parotitis and panaritium and probably be associated with less acute and long-term side effects than similarly effective other treatments. Randomized clinical studies are required to find the optimal dosage which, at present, may be unnecessarily high.

  11. Effects of radiation on direct-drive laser target interaction

    Science.gov (United States)

    Colombant, D. G.

    1999-11-01

    Radiation may be useful for reducing laser imprint and Rayleigh-Taylor (RT) growth in direct-drive target pellets. We will discuss the important role of radiation in a proposed direct-drive X-ray preheated target concept(S.Bodner et al., Phys. Plasmas 5,1901(1998)). In this design, a high-Z coating surrounds a thin plastic coat, over a DT-wicked foam and on top of the DT fuel. Radiation effects will be examined and discussed in the context of this design. The soft X-ray radiation emitted during the foot of the laser pulse - at a few 10^12W/cm^2- preheats the foam ablator which contributes to the reduction of the RT instability. The ablator also stops the radiation, allowing the fuel to stay on a low adiabat. Radiation in the blow-off corona of the target establishes a long scalelength plasma. This separates the ablation region from the laser absorption region where the remaining defects in laser uniformity/pellet surface finish constitute the seed for hydrodynamic instabilities. However, when the pulse intensity rises, the pressure generated by the laser in combination with the changing opacity of the plasma causes the plasma to be pushed back toward the ablator. This is called a Radiative Plasma Structure (RPS)(J.Dahlburg et al., J.Q.S.R.T. 54,113(1995)). These RPS's are a potential problem because they may carry with them the imprint which was present in the low-density corona. We will show and discuss these various effects, as well as some of the experimental work(C.Pawley et al., this conference) under way in connection with this program. These experiments are essential in order to validate both the design concepts and the numerical models, which include on-line state-of-the-art atomic physics modeling(M.Klapisch et al.,Phys. Plasmas 5,1919(1998)).

  12. Radiation shielding effectiveness of newly developed superconductors

    Science.gov (United States)

    Singh, Vishwanath P.; Medhat, M. E.; Badiger, N. M.; Saliqur Rahman, Abu Zayed Mohammad

    2015-01-01

    Gamma ray shielding effectiveness of superconductors with a high mass density has been investigated. We calculated the mass attenuation coefficients, the mean free path (mfp) and the exposure buildup factor (EBF). The gamma ray EBF was computed using the Geometric Progression (G-P) fitting method at energies 0.015-15 MeV, and for penetration depths up to 40 mfp. The fast-neutron shielding effectiveness has been characterized by the effective neutron removal cross-section of the superconductors. It is shown that CaPtSi3, CaIrSi3, and Bi2Sr2Ca1Cu2O8.2 are superior shielding materials for gamma rays and Tl0.6Rb0.4Fe1.67Se2 for fast neutrons. The present work should be useful in various applications of superconductors in fusion engineering and design.

  13. Skyglow effects in UV and visible spectra: Radiative fluxes

    Science.gov (United States)

    Kocifaj, Miroslav; Solano Lamphar, Hector Antonio

    2013-09-01

    Several studies have tried to understand the mechanisms and effects of radiative transfer under different night-sky conditions. However, most of these studies are limited to the various effects of visible spectra. Nevertheless, the invisible parts of the electromagnetic spectrum can pose a more profound threat to nature. One visible threat is from what is popularly termed skyglow. Such skyglow is caused by injudiciously situated or designed artificial night lighting systems which degrade desired sky viewing. Therefore, since lamp emissions are not limited to visible electromagnetic spectra, it is necessary to consider the complete spectrum of such lamps in order to understand the physical behaviour of diffuse radiation at terrain level. In this paper, the downward diffuse radiative flux is computed in a two-stream approximation and obtained ultraviolet spectral radiative fluxes are inter-related with luminous fluxes. Such a method then permits an estimate of ultraviolet radiation if the traditionally measured illuminance on a horizontal plane is available. The utility of such a comparison of two spectral bands is shown, using the different lamp types employed in street lighting. The data demonstrate that it is insufficient to specify lamp type and its visible flux production independently of each other. Also the UV emissions have to be treated by modellers and environmental scientists because some light sources can be fairly important pollutants in the near ultraviolet. Such light sources can affect both the living organisms and ambient environment.

  14. Improved treatment of radiation effects on the skin

    Energy Technology Data Exchange (ETDEWEB)

    Wandl, E.O.; Kaercher, K.H.; Wandl-Hainberger, I.

    1985-04-29

    The treatment concept developed by K.H. Kaercher was extended by a therapy using Elasten S cream. In the course of a highvoltage therapy using fast electrons or cobalt-60, interesting aspects in the treatment and progression of the radiation reactions of the skin were established. The dermato-therapeutic principles layed down by K.H. Kaercher with the treatment palette used hitherto, have without doubt invariably proven their value. The exclusive powder treatment, however, may be made more practical by application of the new treatment cream in accordance with the intervals in radiation treatment or as a basic treatment towards the end of therapy. Furthermore it is ideally suited for the care and after-treatment of skin, strained by radiation. It reduces considerably the remaining visible radiation reactions. The treatment with powder and emulsion has for more than 10 years proven effective. After the excellent results of the new cream during radiation treatment, additional positive effects are expected in a long-term trial which will be reported on separately.

  15. Synergistic effect of ozonation and ionizing radiation for PVA decomposition.

    Science.gov (United States)

    Sun, Weihua; Chen, Lujun; Zhang, Yongming; Wang, Jianlong

    2015-08-01

    Ozonation and ionizing radiation are both advanced oxidation processes (AOPs) without chemical addition and secondary pollution. Also, the two processes' efficiency is determined by different pH conditions, which creates more possibilities for their combination. Importantly, the combined process of ozonation and ionizing radiation could be suitable for treating wastewaters with extreme pH values, i.e., textile wastewater. To find synergistic effects, the combined process of ozonation and ionizing radiation mineralization was investigated for degradation of polyvinyl alcohol (PVA) at different pH levels. A synergistic effect was found at initial pH in the range 3.0-9.4. When the initial pH was 3.0, the combined process of ozonation and ionizing radiation gave a PVA mineralization degree of 17%. This was 2.7 times the sum achieved by the two individual processes, and factors of 2.1 and 1.7 were achieved at initial pH of 7.0 and 9.4, respectively. The combined process of ozonation and ionizing radiation was demonstrated to be a feasible strategy for treatment of PVA-containing wastewater.

  16. Evaluating Shielding Effectiveness for Reducing Space Radiation Cancer Risks

    Science.gov (United States)

    Cucinotta, Francis A.; Kim, Myung-Hee Y.; Ren, Lei

    2007-01-01

    We discuss calculations of probability distribution functions (PDF) representing uncertainties in projecting fatal cancer risk from galactic cosmic rays (GCR) and solar particle events (SPE). The PDF s are used in significance tests of the effectiveness of potential radiation shielding approaches. Uncertainties in risk coefficients determined from epidemiology data, dose and dose-rate reduction factors, quality factors, and physics models of radiation environments are considered in models of cancer risk PDF s. Competing mortality risks and functional correlations in radiation quality factor uncertainties are treated in the calculations. We show that the cancer risk uncertainty, defined as the ratio of the 95% confidence level (CL) to the point estimate is about 4-fold for lunar and Mars mission risk projections. For short-stay lunar missions (shielding, especially for carbon composites structures with high hydrogen content. In contrast, for long duration lunar (>180 d) or Mars missions, GCR risks may exceed radiation risk limits, with 95% CL s exceeding 10% fatal risk for males and females on a Mars mission. For reducing GCR cancer risks, shielding materials are marginally effective because of the penetrating nature of GCR and secondary radiation produced in tissue by relativistic particles. At the present time, polyethylene or carbon composite shielding can not be shown to significantly reduce risk compared to aluminum shielding based on a significance test that accounts for radiobiology uncertainties in GCR risk projection.

  17. Effects of very high radiation on SiPMs

    Energy Technology Data Exchange (ETDEWEB)

    Heering, A., E-mail: Adriaan.Heering@cern.ch [University of Notre Dame, Notre Dame, IN 46556 (United States); Musienko, Yu, E-mail: Iouri.Musienko@cern.ch [University of Notre Dame, Notre Dame, IN 46556 (United States); Instutute for Nuclear Research RAS, pr. 60-letiya Oktyabrya 7a, 117312 Moscow (Russian Federation); Ruchti, R.; Wayne, M. [University of Notre Dame, Notre Dame, IN 46556 (United States); Karneyeu, A.; Postoev, V. [Instutute for Nuclear Research RAS, pr. 60-letiya Oktyabrya 7a, 117312 Moscow (Russian Federation)

    2016-07-11

    During the last 5 years we have successfully completed R&D for the instrumentation of silicon photo multipliers (SiPMs) for the CMS HCAL Phase 1 upgrade in 2018. Much focus was put on radiation damage during these years. For the HCAL we expect a maximum total dose of 10{sup 12} n/cm{sup 2} for a total lifetime integrated luminosity of 3000 fb{sup −1}. Good correlation between cell size and performance with high radiation was found during this R&D. To evaluate the possibility of using the SiPMs in the wider CMS environment we have exposed the current state of the art smallest cell SiPMs to radiation of 6×10{sup 12} p/cm{sup 2} in 62 MeV LIF beam line in 2014 at UCL Belgium and up to 1.3×10{sup 14} p/cm{sup 2} in the CERN PS 23 GeV proton beam in late 2014. The SiPM's main parameters were measured before and after irradiation. Here we report on the effects of noise increase and breakdown voltage shift due to the extremely high dose. - Highlights: • Modeling of noise increase in SiPMs vs. 1 MeV equivalent neutron radiation. • Other effects in SiPMs exposed to very high radiation.

  18. Rheology of Indian Honey: Effect of Temperature and Gamma Radiation

    Directory of Open Access Journals (Sweden)

    Sudhanshu Saxena

    2014-01-01

    Full Text Available Honey brands commonly available in Indian market were characterized for their rheological and thermal properties. Viscosity of all the honey samples belonging to different commercial brands was found to decrease with increase in temperature (5–40°C and their sensitivity towards temperature varied significantly as explained by calculating activation energy based on Arrhenius model and ranged from 54.0 to 89.0 kJ/mol. However, shear rate was not found to alter the viscosity of honey indicating their Newtonian character and the shear stress varied linearly with shear rate for all honey samples. Honey is known to contain pathogenic microbial spores and in our earlier study gamma radiation was found to be effective in achieving microbial decontamination of honey. The effect of gamma radiation (5–15 kGy on rheological properties of honey was assessed, and it was found to remain unchanged upon radiation treatment. The glass transition temperatures (Tg of these honey analyzed by differential scanning calorimetry varied from −44.1 to −54.1°C and remained unchanged upon gamma radiation treatment. The results provide information about some key physical properties of commercial Indian honey. Radiation treatment which is useful for ensuring microbial safety of honey does not alter these properties.

  19. Radiation Preservation of Foods and Its Effect on Nutrients

    Science.gov (United States)

    Josephson, Edward S.; Thomas, Miriam H.

    1970-01-01

    Presents a discussion of (1) some possible applications of ionizing radiation to the treatment and preservation of food and (2) the effects of irradiation on nutrients such as proteins, fats, oils, carbohydrates and vitamins. The authors suggest that the irradiation process has great potential in food technology. Bibliography. (LC)

  20. Study of radiation effects on mammalian cells in vitro

    Science.gov (United States)

    Sinclair, W. K.

    1968-01-01

    Radiation effect on single cells and cell populations of Chinese hamster lung tissue is studied in vitro. The rate and position as the cell progresses through the generation cycle shows division delay, changes in some biochemical processes in the cell, chromosomal changes, colony size changes, and loss of reproductive capacity.

  1. Effect of arc on radiation thermometry in welding process

    Institute of Scientific and Technical Information of China (English)

    李亮玉; 王燕; 武宝林

    2002-01-01

    The effect of arc on radiation thermometry is analyzed in a field close to the arc during the welding process, and the ratio of signal to noise and other factors are obtained for a small current arc .The method of the temperature measurement is feasible when the arc current is decreased to a smaller value in the welding process.

  2. A theory of cooperative effects in stimulated Cerenkov radiation

    NARCIS (Netherlands)

    Dekker, H.

    1976-01-01

    In this paper the possibility of cooperative effects in Cerenkov radiation will be discussed theoretically. A crude sketch is given of a possible capture of photons from a part of the rather broadband Cerenkov spectrum in a high quality resonator. We then introduce a classical Markoffian master equa

  3. Research of Fast Neutron Radiation Effect on Rats

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    In order to research the fast neutron radiation effect on rats,the 8 weeks Wistar male rats were wholly irradiated by 14 MeV fast neutron with 5 Gy. In the experiment,the rats were divided into normal and irradiation group, and killed

  4. Reminder of the edge effect in Synchrotron radiation

    CERN Document Server

    Burkhardt, H

    1998-01-01

    The synchrotron radiation in the LHC will be rather soft and weak, compared to high energy electron machines. Still it is expected to generate non negligible heating and photon-induced gas desorption. A summary of standard formulas and numbers for the LHC have been collected in this note, including a very rough discussion of the spectrum shift expected by the edge effect.

  5. Radiation therapy of prostate cancer applied with cooling effect

    Energy Technology Data Exchange (ETDEWEB)

    Furuhata, Akihiko; Ogawa, Katsuaki; Miyazaki, Machiko; Iwai, Hiroshi [Yokosuka National Hospital, Kanagawa (Japan); Takeda, Takashi

    1995-05-01

    The radio-sensitivity of prostate carcinoma is a resistant one. Also a prostate locates close to rectum, urethra and bladder of which mucus membranes are intermediate sensitive for irradiation, and causes side effects frequently. In this study, we applied with hyperfraction and local membrane cooling to the radiation therapy of the prostate cancer. This brought favorable clinical results with decreased morbidities. (author).

  6. Genetic effects of radiation. [Extrapolation of mouse data to man

    Energy Technology Data Exchange (ETDEWEB)

    Selby, P.B.

    1976-01-01

    Data are reviewed from studies on the genetic effects of x radiation in mice and the extrapolation of the findings for estimating genetic hazards in man is discussed. Data are included on the frequency of mutation induction following acute or chronic irradiation of male or female mice at various doses and dose rates.

  7. 47 CFR 22.535 - Effective radiated power limits.

    Science.gov (United States)

    2010-10-01

    ... limits. The effective radiated power (ERP) of transmitters operating on the channels listed in § 22.531 must not exceed the limits in this section. (a) Maximum ERP. The ERP must not exceed the applicable limits in this paragraph under any circumstances. Frequency range (MHz) Maximum ERP (Watts) 35-36 600...

  8. Radiation-electromagnetic effect in germanium single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kikoin, I.K.; Kikoin, L.I.; Lazarev, S.D.

    1980-10-01

    An experimental study was made of the radiation-electromagnetic effect in germanium single crystals when excess carriers were generated by bombardment with ..cap alpha.. particles, protons, or x rays in magnetic fields up to 8 kOe. The source of ..cap alpha.. particles and protons was a cyclotron and x rays were provided by a tube with a copper anode. The radiation-electromagnetic emf increased linearly on increase in the magnetic field and was directly proportional to the flux of charged particles at low values of the flux, reaching saturation at high values of the flux (approx.5 x 10/sup 11/ particles .cm/sup -2/ .sec/sup -1/). In the energy range 4--40 MeV the emf was practically independent of the ..cap alpha..-particle energy. The sign of the emf was reversed when samples with a ground front surface were irradiated. Measurements of the photoelectromagnetic and Hall effects in the ..cap alpha..-particle-irradiated samples showed that a p-n junction was produced by these particles and its presence should be allowed for in investigations of the radiation-electromagnetic effect. The measured even radiation-electromagnetic emf increased quadratically on increase in the magnetic field. An investigation was made of the barrier radiation-voltaic effect (when the emf was measured between the irradiated and unirradiated surfaces). Special masks were used to produce a set of consecutive p-n junctions in germanium crystals irradiated with ..cap alpha.. particles. A study of the photovoltaic and photoelectromagnetic effects in such samples showed that the method could be used to increase the efficiency of devices utilizing the photoelectromagnetic effect.

  9. Effect of bremsstrahlung radiation emission on fast electrons in plasmas

    Science.gov (United States)

    Embréus, O.; Stahl, A.; Fülöp, T.

    2016-09-01

    Bremsstrahlung radiation emission is an important energy loss mechanism for energetic electrons in plasmas. In this paper we investigate the effect of spontaneous bremsstrahlung emission on the momentum-space structure of the electron distribution, fully accounting for the emission of finite-energy photons by modeling the bremsstrahlung interactions with a Boltzmann collision operator. We find that electrons accelerated by electric fields can reach significantly higher energies than predicted by the commonly used radiative stopping-power model. Furthermore, we show that the emission of soft photons can contribute significantly to the dynamics of electrons with an anisotropic distribution by causing pitch-angle scattering at a rate that increases with energy.

  10. Radiation damage to DNA: the effect of LET

    Energy Technology Data Exchange (ETDEWEB)

    Ward, J.F.; Milligan, J.R. [California Univ., San Diego, La Jolla, CA (United States). School of Medicine

    1997-03-01

    Mechanisms whereby ionizing radiation induced damage are introduced into cellular DNA are discussed. The types of lesions induced are summarized and the rationale is presented which supports the statement that radiation induced singly damaged sites are biologically unimportant. The conclusion that multiply damaged sites are critical is discussed and the mechanisms whereby such lesions are formed are presented. Structures of multiply damaged sites are summarized and problems which they present to cellular repair systems are discussed. Lastly the effects of linear energy transfer on the complexity of multiply damaged sites are surveyed and the consequences of this increased complexity are considered in terms of cell survival and mutation. (author)

  11. Tunnelling Effect and Hawking Radiation from a Vaidya Black Hole

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jing-Yi; ZHAO Zheng

    2006-01-01

    @@ We extend Parikh's study to the non-stationary black hole. As an example of the non-stationary black hole, we investigate the tunnelling effect and Hawking radiation from a Vaidya black hole whose Bondi mass is identical to its mass parameter. The Hawking radiation is considered as a tunnelling process across the event horizon and we calculate the tunnelling probability. It is found that the result is different from Parikh's study because drH/dv is the function of Bondi mass m(v).

  12. Direct Radiative Effect of Intense Dust Outbreaks in the Mediterranean

    Science.gov (United States)

    Gkikas, A.; Obiso, V.; Basart, S.; Jorba, O.; Pérez García-Pando, C.; Hatzianastassiou, N.; Gassó, S.; Baldasano, J. M.

    2015-12-01

    The broader Mediterranean basin is affected by intense desert dust outbreaks in spring. In the present study, we make use of satellite observations and modelling to investigate dust radiative impacts during three consecutive dust outbreaks occurred over the Mediterranean in the period 9/4-15/4/2008. The direct radiative effect (DRE) is estimated by using two simulations run with the NMMB/BSC-Dust model, where the interaction between dust aerosols and radiation is activated and deactivated, respectively. The simulation domain covers the North Africa, the Middle East and Europe at 0.25ºx0.25° and 40σ-layers. The first outbreak took place over the central and eastern Mediterranean on the 9th reaching aerosol optical depths (AODs) close to 1. The second one, with AODs up to 2, lasted from 10th to 14th affecting mainly the central Mediterranean. The third one, with AODs up to 5, affected the Iberian Peninsula on the 15th. DREs are computed for the outgoing radiation at the top of the atmosphere (TOA), the absorbed radiation into the atmosphere (ATMAB), for the downwelling (SURF) and the absorbed (NETSURF) radiation at surface, for the shortwave (SW), longwave (LW) and NET (SW+LW) radiation. According to our results, it is evident that DREs' spatial patterns are driven by those of AOD. Negative (cooling) instantaneous DRETOA, DRESURF and DRENETSURF values up to -500W/m2, -700W/m2 and -600W/m2, respectively, and positive (warming) instantaneous DREATMAB up to 340W/m2 are found for the SW spectrum, during daytime. Opposite but less pronounced effects are encountered for the LW radiation and during nightime. Due to these perturbations on the radiation field, the surface temperature is reduced locally by up to 8°C during daytime and increased by up to 4°C during nightime. It is found that the regional average NET DREs can be as large as -12W/m2, -45W/m2, -30W/m2 and 27W/m2 for TOA, SURF, NETSURF and ATMAB, respectively. Impacts on atmospheric stability and dust

  13. Ion beam radiation effects in monazite

    Energy Technology Data Exchange (ETDEWEB)

    Picot, V. [Institut de Chimie Separative de Marcoule, UMR 5257, BP 17171, 30207 Bagnols-sur-Ceze (France); Deschanels, X. [Institut de Chimie Separative de Marcoule, UMR 5257, BP 17171, 30207 Bagnols-sur-Ceze (France)], E-mail: xavier.deschanels@cea.fr; Peuget, S. [CEA Centre de Marcoule, BP 17171, 30207 Bagnols-sur-Ceze (France); Glorieux, B. [Laboratoire des Procedes, Materiaux et Energie Solaire, UPR 8521, Rambla de la Thermodynamique, 66100 Perpignan (France); Seydoux-Guillaume, A.M. [Laboratoire des Mecanismes et Transferts en Geologie, CNRS, Universite Paul Sabatier, IRD, OMP, 14 Avenue Edouard Belin, 31400 Toulouse (France); Wirth, R. [GeoForschungsZentrum Potsdam, PB 4.1, Telegrafenberg, 14473 Potsdam (Germany)

    2008-11-15

    Monazite is a potential matrix for conditioning minor actinides arising from spent fuel reprocessing. The matrix behavior under irradiation must be investigated to ensure long-term containment performance. Monazite compounds were irradiated by gold and helium ions to simulate the consequences of alpha decay. This article describes the effects of such irradiation on the structural and macroscopic properties (density and hardness) of monazites LaPO{sub 4} and La{sub 0.73}Ce{sub 0.27}PO{sub 4}. Irradiation by gold ions results in major changes in the material properties. At a damage level of 6.7 dpa, monazite exhibits volume expansion of about 8.1%, a 59% drop in hardness, and structure amorphization, although Raman spectroscopy analysis shows that the phosphate-oxygen bond is unaffected. Conversely, no change in the properties of these compounds was observed after He ion implantation. These results indicate that ballistic effects predominate in the studied dose range.

  14. Effect of gamma radiation on honey quality control

    Science.gov (United States)

    Bera, A.; Almeida-Muradian, L. B.; Sabato, S. F.

    2009-07-01

    Honey is one of the most complex substances produced by bees, mainly from the nectar of flowers. Gamma radiation is a technique that can be used to decrease the number of microbiological problems associated with food and increase the shelf life of certain products. The objective of this study was to verify the effect of gamma radiation with source of cobalto-60 (10 kGy) on some parameters used in honey quality control. Seven samples of pure honey were obtained from local markets in Sao Paulo, Brazil, in 2007. The methods used are in accordance with Brazilian Regulations. The physicochemical parameters analyzed were: moisture, HMF, free acidity, pH, sugars and ash. The results showed that gamma radiation, in the dose mentioned above, did not cause significant physicochemical alterations.

  15. Two Effective Heuristics for Beam Angle Optimization in Radiation Therapy

    CERN Document Server

    Yarmand, Hamed

    2013-01-01

    In radiation therapy, mathematical methods have been used for optimizing treatment planning for delivery of sufficient dose to the cancerous cells while keeping the dose to critical surrounding structures minimal. This optimization problem can be modeled using mixed integer programming (MIP) whose solution gives the optimal beam orientation as well as optimal beam intensity. The challenge, however, is the computation time for this large scale MIP. We propose and investigate two novel heuristic approaches to reduce the computation time considerably while attaining high-quality solutions. We introduce a family of heuristic cuts based on the concept of 'adjacent beams' and a beam elimination scheme based on the contribution of each beam to deliver the dose to the tumor in the ideal plan in which all potential beams can be used simultaneously. We show the effectiveness of these heuristics for intensity modulated radiation therapy (IMRT) and stereotactic body radiation therapy (SBRT) on a clinical liver case.

  16. Long-Term Lunar Radiation Degradation Effects on Materials

    Science.gov (United States)

    Rojdev, Kristina; ORourke, Mary Jane; Koontz, Steve; Alred, John; Hill, Charles; Devivar, Rodrigo; Morera-Felix, Shakira; Atwell, William; Nutt, Steve; Sabbann, Leslie

    2010-01-01

    The National Aeronautics and Space Administration (NASA) is focused on developing technologies for extending human presence beyond low Earth orbit. These technologies are to advance the state-of-the-art and provide for longer duration missions outside the protection of Earth's magnetosphere. One technology of great interest for large structures is advanced composite materials, due to their weight and cost savings, enhanced radiation protection for the crew, and potential for performance improvements when compared with existing metals. However, these materials have not been characterized for the interplanetary space environment, and particularly the effects of high energy radiation, which is known to cause damage to polymeric materials. Therefore, a study focusing on a lunar habitation element was undertaken to investigate the integrity of potential structural composite materials after exposure to a long-term lunar radiation environment. An overview of the study results are presented, along with a discussion of recommended future work.

  17. Effects of gamma radiation in cauliflower (Brassica spp) minimally processed

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, Thaise C.F.; Rogovschi, Vladimir D.; Thomaz, Fernanda S.; Trindade, Reginaldo A.; Villavicencio, Anna L.C.H. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mails: villavic@ipen.br; thaisecfnunes@hotmail.com; Alencar, Severino M. [Escola Superior de Agricultura Luiz de Queiroz, Piracicaba, SP (Brazil)

    2007-07-01

    Consumers demand for health interests and the latest diet trends. The consumption of vegetables worldwide has increased every year over the past decade, consequently, less extreme treatments or additives are being required. Minimally processed foods have fresh-like characteristics and satisfy the new consumer demand. Food irradiation is an exposure process of the product to controlled sources of gamma radiation with the intention to destroy pathogens and to extend the shelf life. Minimally processed cauliflower (Brassica oleraceae) exposed to low dose of gamma radiation does not show any change in sensory attributes. The aim of this study was to analyze the effects of the low doses of gamma radiation on sensorial aspects like appearance, texture and flavor of minimally processed cauliflower. (author)

  18. CLIC 3TeV Beamsize Optimization with Radiation Effects

    CERN Document Server

    Blanco, OR; Tomas, R

    2013-01-01

    Oide effect and radiation in bending magnets are reviewed aiming to include this in the optical design process to minimize the beam size. The Oide double integral is expressed in simpler terms in order to speed up calculations. Part of the Oide function is used to evaluate how prone is a quadrupole magnet to contribute to the beam size increase, concluding in larger magnets with lower gradients. Radiation in bending magnets is reviewed for linear lattices, solving the case when the dispersion is different from zero and using the result to compare with theoretical results and a tracking code. An agreement between the theory, the implemented approximation included in MAPCLASS2 and the six-dimensional radiation in PLACET has been found.

  19. Effect of gamma radiation on honey quality control

    Energy Technology Data Exchange (ETDEWEB)

    Bera, A. [Radiation Technology Center, IPEN-CNEN/SP, A. Lineu Prestes, 2242, 05508-000 Sao Paulo (Brazil)], E-mail: berale@usp.br; Almeida-Muradian, L.B. [Av. Prof. Lineu Prestes, 580-Cidade Universitaria, Sao Paulo (Brazil); Sabato, S.F. [Radiation Technology Center, IPEN-CNEN/SP, A. Lineu Prestes, 2242, 05508-000 Sao Paulo (Brazil)], E-mail: sfsabato@ipen.br

    2009-07-15

    Honey is one of the most complex substances produced by bees, mainly from the nectar of flowers. Gamma radiation is a technique that can be used to decrease the number of microbiological problems associated with food and increase the shelf life of certain products. The objective of this study was to verify the effect of gamma radiation with source of cobalto-60 (10 kGy) on some parameters used in honey quality control. Seven samples of pure honey were obtained from local markets in Sao Paulo, Brazil, in 2007. The methods used are in accordance with Brazilian Regulations. The physicochemical parameters analyzed were: moisture, HMF, free acidity, pH, sugars and ash. The results showed that gamma radiation, in the dose mentioned above, did not cause significant physicochemical alterations.

  20. Effect of UV Radiation by Projectors on 3D Printing

    Directory of Open Access Journals (Sweden)

    Kovalenko Iaroslav

    2017-01-01

    Full Text Available Polymers that solidify under light radiation are commonly used in digital light processing (DLP 3D printing. A wide range of photopolymers use photoinitiators that react to radiation in range of ultraviolet (UV wavelength. In the present study we provided measurement of radiant fluence in the UV wavelength range from 280 nm to 400 nm for two data projectors and compared effect of radiation on quality of 3D printing. One projector is commonly used DLP projector with high energy lamp. Second one is an industrial projector, in which RGB light emitting diodes (LEDs are replaced by UV LEDs with wattage at the level of 3.6 % of the first one. Achieved data confirmed uneven distribution of radiant energy on illuminated area. These results validate, that undesired heating light causes internal stress inside built models that causes defects in final products.

  1. Endocrine effects of Fukushima: Radiation-induced endocrinopathy

    Science.gov (United States)

    Niazi, Asfandyar Khan; Niazi, Shaharyar Khan

    2011-01-01

    The unfortunate accidents of Chernobyl and Fukushima have led to an enormous amount of radioactive material being released into the atmosphere. Radiation exposure to the human body may be as a result of accidents, such as those in Chernobyl and Fukushima, or due to occupational hazards, such as in the employees of nuclear plants, or due to therapeutic or diagnostic procedures. These different sources of radiations may affect the human body as a whole or may cause localized damage to a certain area of the body, depending upon the extent and dosage of the irradiation. More or less every organ is affected by radiation exposure. Some require a higher dose to be affected while others may be affected at a lower dose. All the endocrine glands are susceptible to damage by radiation exposure; however, pituitary, thyroid and gonads are most likely to be affected. In addition to the endocrine effects, the rates of birth defects and carcinomas may also be increased in the population exposed to excessive radiation. PMID:21731864

  2. Greenhouse effect from the point of view of radiative transfer

    CERN Document Server

    Barcza, Szabolcs

    2016-01-01

    Radiative power balance of a planet in the solar system is delineated. The terrestrial powers are transformed to average global flux in an effective atmospheric column (EAC) approximation, its components are delineated. The estimated and measured secular changes of the average global flux are compared to the fluxes derived from the Stefan-Boltzmann law using the observed global annual temperatures in the decades between 1880 and 2010. The conclusion of this procedure is that the radiative contribution of the greenhouse gas ${\\rm CO}_2$ is some $21\\pm 7$~\\% to the observed global warming from the end of the XIXth century excluding the feedback mechanisms playing determining role in the climate system. Stationary radiative flux transfer is treated in an air column as a function of the column density of the absorbent. Upper and lower limit of radiative forcing is given by assuming true absorption and coherent scatter of the monochromatic radiation. An integral formula is given for the outgoing long wave radiatio...

  3. Radiation damage effects in CMR manganite materials

    Energy Technology Data Exchange (ETDEWEB)

    Chattopadhyay, S. [Department of Physics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700 009 (India); Pal, Sudipta [Department of Solid State Physics, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032 (India); Sarkar, A. [Department of Physics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700 009 (India); Department of Physics, Bangabasi Morning College, 19 Rajkumar Chakraborty Sarani, Kolkata 700 009 (India); Ravi Kumar [Nuclear Science Centre, Aruna Asaf Ali Marg, Post Box 10502, New Delhi 110 067 (India); Chaudhuri, B.K. [Department of Solid State Physics, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032 (India)]. E-mail: sspbkc@mahendra.iacs.res.in

    2005-04-01

    Polycrystalline La{sub 0.5}Pb{sub 0.5}Mn{sub 1-x}Cr {sub x}O{sub 3} (x = 0.075 and 0.15) samples have been irradiated with 50 MeV Li{sup 3+} ions with different fluences and the effects on the transport properties have been studied by means of the temperature and magnetic field dependent resistivity measurements. Due to Li{sup 3+} ion irradiation, the resistivity increases and the metal-insulator transition temperature (T {sub mi}) decreases. At low temperatures (below T {sub mi}), a dominant contribution of the electron-magnon scattering process is observed for all the irradiated and unirradiated samples. The low temperature resistivity behavior as well as the magnetoresistance is modified due to irradiation. The changes in the magnetotransport properties due to irradiation have been compared with the changes caused due to Mn site substitution.

  4. Biotropic Effect of Radiation Conditions on Orbital Cosmic Stations

    Science.gov (United States)

    Tsetlin, Vladimir; Ushakov, Igor; Gurieva, Tamar; Moisa, Svetlana; Zotin, Alexei; Lobanov, Alexei

    On the orbit of pilot orbital stations the crews undergo to low doses of chronic irradiation of cosmic radiation. The studying of radiobiological effects in different living systems were carried out in the ship’s side (OC “MIR” and ICS) and model surface experiments (power dose 200 mGy/day, density of neutron flow 30 particles/sm2 sec). It was shown that ionized radiation effects on embryonal development of Japanese quail embryo, inducing morphological disturbances in 12% of embryos. Many years ontogenesis (more 15 years of life in OC “MIR”) of microbial association evoked replacement of dominant types of micromycetes and bacterium and increasing of colony-formed units (CFU) in four orders. In laboratory low doses of γ-radiation induced the increasing of flight strain biomass of Aspergillus niger that corresponds to a radiation hormezis and also the increasing of radio-sensitivity. Moreover, under γ-neutron radiation were marked some deviations in morphology of supporting cell and numerous head falls of Aspergillus niger. The irradiation of Protozoa by low doses led to that spontaneous motion activity of spirostoms (Spirostomum ambiguum Ehbg.) accommodated in water processing by mixed γ-neutron radiation decreased twice that testified the fact that the definite factor of γ-neutron radiation effect is the changing of water medium state. In dry seeds of the highest plants wetting in water of preliminary low doses α-and γ-irradiation field in 100-300 times lower than geomagnetic one) the germination of seeds was higher approximately twice under γ-radiation. Low doses of γ-radiation decreased and α-radiation increased a negative influence of hypo-magnetic field on these processes. It was shown that hypomagnetic field occurred, in general, beneficial effect on the development of Planorbarius corneus: the portion of teratogenic effect is decreased, embryos initially occurred in hypomagnetic conditions were characterized by lowering mortality. Mobility

  5. Effect of Deep Space Radiation on Human Hematopoietic Cells

    Science.gov (United States)

    Kalota, Anna; Bennett, Paula; Swider, Cezary R.; Sutherland, Betsy M.; Gewirtz, Alan M.

    Astronaut flight crews on long-term missions in deep space will be exposed to a unique radiation environment as a result of exposure to galactic cosmic rays (GCR) and solar particle events (SPE). This environment consists predominantly of high energy protons, helium and high charge, high energy (HZE) atomic nuclei from iron predominantly, but all other elements as well. The effect of such particles, alone, or in combination, on human hematopoietic stem and progenitor cells (HSPC) has not been well studied but is clearly of interest since blood forming cells are known to be sensitive to radiation, and irreversible damage to these cells could quickly compromise a mission due to loss of marrow function. To better understand the effects of GCR and SPE on human stem/progenitor cell function, we have exposed partially purified CD34+ normal human marrow cells to protons, radioactive Fe, and Ti, alone, and in combination at varying doses up to 70cGy, and down to 1, 2, and 4 particle hits per nucleus. We then examined the effects of these radiations on HSPC function, as assessed by the ability to form CFU-GEMM, and LTCIC colonies in semi-solid culture medium. At the highest doses (50 and 70cGy), all radiation types tested significantly diminished the ability of CD34+ cells to form such colonies. The number of CFU-GEMM in irradiated samples was 70-90

  6. Radiation effects on rare-earth doped optical fibers

    Energy Technology Data Exchange (ETDEWEB)

    Girard, S.; Marcandella, C. [CEA Bruyeres-le-Chatel, DIF 91 (France); Ouerdane, Y.; Tortech, B.; Boukenter, A.; Meunier, J.P.; Vivona, M. [Lab. Hubert Curien, CNRS, 42 - Saint-Etienne (France); Vivona, M.; Robin, Th.; Cadier, B. [iXFiber SAS, 22 - lannion (France)

    2010-07-01

    In this paper, we reviewed our previous work concerning the responses of rare-earth (RE) doped fibers (Yb, Er and Er/Yb) to various types of radiations like gamma-rays, X-rays and protons. For all these harsh environments, the main measured macroscopic radiation-induced effect is an increase of the linear attenuation of these waveguides due to the generation of point defects in the RE-doped core and silica-based cladding. To evaluate the vulnerability of this class of optical fibers for space missions, we characterize the growth and decay kinetics of their radiation-induced attenuation (RIA) during and after irradiation for various compositions. Laboratory testing reveals that this class of optical fibers is very sensitive to radiations compared to passive (RE-free) samples. As a consequence, despite the small length used for space applications, the understanding of the radiation-induced effects in this class of optical fibers becomes necessary before their integration as part of fiber-based systems like gyroscopes or communication systems. In this paper, we more particularly discussed about the relative influence of the rare-earth ions (Er{sup 3+} and/or Yb{sup 3+}) and of the glass matrix dopants (Al, P, ... ) on the optical degradation due to radiations. This has been done by using a set of five prototype optical fibers designed by the fiber manufacturer iXFiber SAS to enlighten the role of these parameters. Additional spectroscopic tools like con-focal microscopy of luminescence are also used to detect possible changes in the spectroscopy of the rare-earth ions and their consequences on the functionality of the active optical fibers. (authors)

  7. Direct radiative effect by multicomponent aerosol over China

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xin; Song, Yu; Zhao, Chun; Cai, Xuhui; Zhang, Hongsheng; Zhu, Tong

    2015-05-01

    The direct radiative effect (DRE) of multiple aerosol species (sulfate, nitrate, ammonium, black carbon (BC), organic carbon (OC), and mineral aerosol) and their spatiotemporal variations over China were investigated using a fully coupled meteorology–chemistry model (WRF-Chem) for the entire year of 2006. We made modifications to improve model performance, including updating land surface parameters, improving the calculation of transition metal-catalyzed oxidation of SO2, and adding in heterogeneous reactions between mineral aerosol and acid gases. The modified model well reproduced the magnitude, seasonal pattern, and spatial distribution of the measured meteorological conditions, concentrations of PM10 and its components, and aerosol optical depth (AOD). A diagnostic iteration method was used to estimate the overall DRE of aerosols and contributions from different components. At the land surface, all kinds of aerosol species reduced the incident net radiation flux with a total DRE of 10.2 W m-2 over China. Aerosols significantly warm the atmosphere with the national mean DRE of +10.8 W m-2. BC was the leading radiative-heating component (+8.7 W m-2), followed by mineral aerosol (+1.1 W m-2). At the top of the atmosphere (TOA), BC introduced the largest radiative perturbation (+4.5 W m-2), followed by sulfate (-1.4 W m-2). The overall perturbation of aerosols on radiation transfer is quite small over China, demonstrating the counterbalancing effect between scattering and adsorbing aerosols. Aerosol DRE at the TOA had distinct seasonality, generally with a summer maximum and winter minimum, mainly determined by mass loadings, hygroscopic growth, and incident radiation flux.

  8. AGGLOMERATION AND RADIATION EFFECT OF THE PULL OF URBANIZATION

    Institute of Scientific and Technical Information of China (English)

    QI Jin-li

    2003-01-01

    In order to explore the train of thought for China's urbanizing development and coordinated rural eco-nomic development, and to find good ways of solving rural problems through urbanization, this paper absorbs the push-and-pull forces theory and the systematic dynamic theory in the traditional population migration theories, views urbanization as a dynamic system, makes research on the push-and-pull mechanism of urbanization. The pull ingpower of urbanization is analyzed according to two aspects, the agglomeration effect and the radiation effect of cities. The agglomeration effect provides continuous propelling force for urbanization, and the radiation effect furtheraccelerates the urbanization process by pushing forward the development of rural economy. Of course, the slow de-velopment of urbanization can result in the hindrance to rural economic development.

  9. Control of synchrotron radiation effects during recirculation with bunch compression

    Energy Technology Data Exchange (ETDEWEB)

    Douglas, David [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Benson, Stephen [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Li, Rui [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Roblin, Yves [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Tennant, Christopher [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Krafft, Geoffrey [Old Dominion Univ., Norfolk, VA (United States); Terzic, Balsa [Old Dominion Univ., Norfolk, VA (United States); Tsai, Cheng [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2015-05-01

    Studies of beam quality during recirculation have been extended to an arc providing bunch compression with positive momentum compaction. It controls both incoherent and coherent synchrotron radiation (ISR and CSR) using methods including optics balance and generates little microbunching gain. We detail the dynamical basis for the design, discuss the design process, give an example, and provide simulations of ISR and CSR effects. Reference will be made to a complete analysis of microbunching effects.

  10. Tunable acoustic radiation pattern assisted by effective impedance boundary

    Science.gov (United States)

    Qian, Feng; Quan, Li; Wang, Li-Wei; Liu, Xiao-Zhou; Gong, Xiu-Fen

    2016-02-01

    The acoustic wave propagation from a two-dimensional subwavelength slit surrounded by metal plates decorated with Helmholtz resonators (HRs) is investigated both numerically and experimentally in this work. Owing to the presence of HRs, the effective impedance of metal surface boundary can be manipulated. By optimizing the distribution of HRs, the asymmetric effective impedance boundary will be obtained, which contributes to generating tunable acoustic radiation pattern such as directional acoustic beaming. These dipole-like radiation patterns have high radiation efficiency, no fingerprint of sidelobes, and a wide tunable range of the radiation pattern directivity angle which can be steered by the spatial displacements of HRs. Project supported by the National Basic Research Program of China (Grant Nos. 2012CB921504 and 2011CB707902), the National Natural Science Foundation of China (Grant No.11474160), the Fundamental Research Funds for Central Universities, China (Grant No. 020414380001), the State Key Laboratory of Acoustics, Chinese Academy of Sciences (Grant No. SKLOA201401), the Priority Academic Program Development of Jiangsu Higher Education Institutions, and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry.

  11. Evanescent radiation, quantum mechanics and the Casimir effect

    Science.gov (United States)

    Schatten, Kenneth H.

    1989-01-01

    An attempt to bridge the gap between classical and quantum mechanics and to explain the Casimir effect is presented. The general nature of chaotic motion is discussed from two points of view: the first uses catastrophe theory and strange attractors to describe the deterministic view of this motion; the underlying framework for chaos in these classical dynamic systems is their extreme sensitivity to initial conditions. The second interpretation refers to randomness associated with probabilistic dynamics, as for Brownian motion. The present approach to understanding evanescent radiation and its relation to the Casimir effect corresponds to the first interpretation, whereas stochastic electrodynamics corresponds to the second viewpoint. The nonlinear behavior of the electromagnetic field is also studied. This well-understood behavior is utilized to examine the motions of two orbiting charges and shows a closeness between the classical behavior and the quantum uncertainty principle. The evanescent radiation is used to help explain the Casimir effect.

  12. The Effects of Crosswind Flight on Rotor Harmonic Noise Radiation

    Science.gov (United States)

    Greenwood, Eric; Sim, Ben W.

    2013-01-01

    In order to develop recommendations for procedures for helicopter source noise characterization, the effects of crosswinds on main rotor harmonic noise radiation are assessed using a model of the Bell 430 helicopter. Crosswinds are found to have a significant effect on Blade-Vortex Interaction (BVI) noise radiation when the helicopter is trimmed with the fuselage oriented along the inertial flight path. However, the magnitude of BVI noise remains unchanged when the pilot orients the fuselage along the aerodynamic velocity vector, crabbing for zero aerodynamic sideslip. The effects of wind gradients on BVI noise are also investigated and found to be smaller in the crosswind direction than in the headwind direction. The effects of crosswinds on lower harmonic noise sources at higher flight speeds are also assessed. In all cases, the directivity of radiated noise is somewhat changed by the crosswind. The model predictions agree well with flight test data for the Bell 430 helicopter captured under various wind conditions. The results of this investigation would suggest that flight paths for future acoustic flight testing are best aligned across the prevailing wind direction to minimize the effects of winds on noise measurements when wind cannot otherwise be avoided.

  13. Genetic susceptibility: radiation effects relevant to space travel.

    Science.gov (United States)

    Peng, Yuanlin; Nagasawa, Hatsumi; Warner, Christy; Bedford, Joel S

    2012-11-01

    Genetic variation in the capacity to repair radiation damage is an important factor influencing both cellular and tissue radiosensitivity variation among individuals as well as dose rate effects associated with such damage. This paper consists of two parts. The first part reviews some of the available data relating to genetic components governing such variability among individuals in susceptibility to radiation damage relevant for radiation protection and discusses the possibility and extent to which these may also apply for space radiations. The second part focuses on the importance of dose rate effects and genetic-based variations that influence them. Very few dose rate effect studies have been carried out for the kinds of radiations encountered in space. The authors present here new data on the production of chromosomal aberrations in noncycling low passage human ATM+/+ or ATM+/- cells following irradiations with protons (50 MeV or 1 GeV), 1 GeV(-1) n iron ions and gamma rays, where doses were delivered at a high dose rate of 700 mGy(-1) min, or a lower dose rate of 5 mGy min(-1). Dose responses were essentially linear over the dose ranges tested and not significantly different for the two cell strains. Values of the dose rate effectiveness factor (DREF) were expressed as the ratio of the slopes of the dose-response curves for the high versus the lower (5 mGy min(-1)) dose rate exposures. The authors refer to this as the DREF5. For the gamma ray standard, DREF5 values of approximately two were observed. Similar dose rate effects were seen for both energies of protons (DREF5 ≈ 2.2 in both cases). For 1 GeV(-1) n iron ions [linear energy transfer (LET) ≈ 150 keV μ(-1)], the DREF5 was not 1 as might have been expected on the basis of LET alone but was approximately 1.3. From these results and conditions, the authors estimate that the relative biological effectiveness for 1 GeV(-1) n iron ions for high and low dose rates, respectively, were about 10 and 15

  14. The Effect of Whole-Body Radiation on Blood Levels of Gastrointestinal Peptides in the Rat

    OpenAIRE

    Katanyutanon, Sakdhisapol; WU, RONGQIAN; Wang, Ping

    2008-01-01

    Radiation-induced injury may occur in various incidents as well as the terrorist radiation exposure scenario. The digestive tract is among the most radiosensitive organs in the body and its function, which is partly regulated by gastrointestinal (GI) peptides, can be affected by radiation exposure. However, very little is known about the effect of whole-body radiation on blood GI peptides. The aim of this study therefore was to determine the effect of whole-body radiation on circulating level...

  15. The effects of gamma radiation on soybean isoflavones contents

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Marcos R.R. de; Mastro, Nelida L. del [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)], e-mail: nlmastro@ipen.br, e-mail: mrramos@ipen.br; Mandarino, Jose M.G. [EMBRAPA Soybean, Londrina, PR (Brazil)], e-mail: jmarcos@cnpso.embrapa.br

    2009-07-01

    Soybean (Glycine max) is the most common source of isoflavones in human feeding. It was suggested that there is a correlation among antioxidant activity of flavonoids and total phenolics content. Plants use isoflavones and their derivatives as part of the plant's defensive arsenal, to ward off disease-causing pathogenic fungi and other microbes. Highly processed foods made from legumes, such as tofu, retain most of their isoflavone content, with the exception of fermented miso, which has increased levels. Little is known about the influence of oxidative stress induced by radiation on the isoflavones contents. In the present paper, the effects of gamma irradiation on soybean isoflavones contents are presented. Samples from several Brazilian soybean cultivars were gamma irradiated with doses of 0, 1, 2, 5 e 10 kGy, dose rate about 3 kGy/h in a {sup 60}Co (Gammacell 220 - AECL). Isoflavones contents were determined after extraction with 70% ethanol containing 0.1% acetic acid by an HPLC method. The total isoflavone content remained almost unchanged with the increase of radiation dose up to 10 kGy. Although a general correlation among total isoflavone content and radiation dose was not found, some data suggest that for a few of the isoflavones from specific cultivars, the increase in the radiation dose induced a decrease in their content as for glucosyl glucosides and malonyl isoflavones, as well as an increase in their aglycone content. (author)

  16. Stochastic Effects in Computational Biology of Space Radiation Cancer Risk

    Science.gov (United States)

    Cucinotta, Francis A.; Pluth, Janis; Harper, Jane; O'Neill, Peter

    2007-01-01

    Estimating risk from space radiation poses important questions on the radiobiology of protons and heavy ions. We are considering systems biology models to study radiation induced repair foci (RIRF) at low doses, in which less than one-track on average transverses the cell, and the subsequent DNA damage processing and signal transduction events. Computational approaches for describing protein regulatory networks coupled to DNA and oxidative damage sites include systems of differential equations, stochastic equations, and Monte-Carlo simulations. We review recent developments in the mathematical description of protein regulatory networks and possible approaches to radiation effects simulation. These include robustness, which states that regulatory networks maintain their functions against external and internal perturbations due to compensating properties of redundancy and molecular feedback controls, and modularity, which leads to general theorems for considering molecules that interact through a regulatory mechanism without exchange of matter leading to a block diagonal reduction of the connecting pathways. Identifying rate-limiting steps, robustness, and modularity in pathways perturbed by radiation damage are shown to be valid techniques for reducing large molecular systems to realistic computer simulations. Other techniques studied are the use of steady-state analysis, and the introduction of composite molecules or rate-constants to represent small collections of reactants. Applications of these techniques to describe spatial and temporal distributions of RIRF and cell populations following low dose irradiation are described.

  17. Effects of stratospheric radiations on human glioblastoma cells.

    Science.gov (United States)

    Cerù, Maria Paola; Amicarelli, Fernanda; Cristiano, Loredana; Colafarina, Sabrina; Aimola, Pierpaolo; Falone, Stefano; Cinque, Benedetta; Ursini, Ornella; Moscardelli, Roberto; Ragni, Pietro

    2005-01-01

    The aim of this work was to evaluate the effect of stratospheric radiations on neural tumour cells. ADF human glioblastoma cells were hosted on a stratospheric balloon within the 2002 biological experiment campaign of the Italian Space Agency. The flight at an average height of 37 km lasted about 24 hrs. Cell morphology, number and viability, cell cycle and apoptosis, some antioxidant enzymes and proteins involved in cell cycle regulation, DNA repair and gene expression were studied. Stratospheric radiations caused a significant decrease in cell number, as well as a block of proliferation, but not apoptosis or necrosis. Radiations also induced activation and induction of some antioxidant enzymes, increase in DNA repair-related proteins (p53 and Proliferating Cell Nuclear Antigen) and variations of the transcription factors Peroxisome Proliferator-Activated Receptors. Morphologically, test cells exhibited more electron dense cytoplasm and less condensed chromatin than controls and modification of their surfaces. Our results indicate that glioblastoma cells, exposed to continuous stratospheric radiations for 24 hrs, show activation of cell cycle check point, decrease of cell number, variations of Peroxisome Proliferator-Activated Receptors and increase of Reactive Oxygen Species-scavenging enzymes.

  18. Neurological Adverse Effects after Radiation Therapy for Stage II Seminoma

    DEFF Research Database (Denmark)

    Ebbeskov Lauritsen, Liv; Meidahl Petersen, Peter; Daugaard, Gedske

    2012-01-01

    We report 3 cases of patients with testicular cancer and stage II seminoma who developed neurological symptoms with bilateral leg weakness about 4 to 9 months after radiation therapy (RT). They all received RT to the para-aortic lymph nodes with a total dose of 40 Gy (36 Gy + 4 Gy as a boost....../or to the spinal cord. RT is believed to produce plexus injury by both direct toxic effects and secondary microinfarction of the nerves, but the exact pathophysiology of RT-induced injury is unclear. Since reported studies of radiation-induced neurological adverse effects are limited, it is difficult to estimate...... their frequency and outcome. The treatment of neurological symptoms due to RT is symptomatic....

  19. Gamma radiation effects on pequi fruits (Caryocar brasiliense Camb.)

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Marcio Ramatiz L.; Arthur, Valter [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil). Lab. de Irradiacao de Alimentos e Radioentomologia], e-mail: mramatiz@eafce.gov.br, e-mail: vaarthur@cena.usp.br; Salgado, Jocelem M.; Spoto, Marta H. Fillet; Canniatti-Brazaca, Solange G. [Universidade de Sao Paulo (USP), Piracicaba, SP (Brazil). Escola Superior de Agricultura Luiz de Queiroz (ESALQ). Dept. de Agroindustria, Alimentos e Nutricao], e-mail: jmsalgad@esalq.usp.br, e-mail: mhfspoto@esalq.usp.br, e-mail: sgcbraza@esalq.usp.br

    2009-07-01

    The objective of this work was to evaluate the effects of gamma radiation on characteristics of pequi fruits (Caryocar brasiliense Camb.). Just now, they are gained attention of researchers due their nutritional properties, between then is the pequi fruits. Fruits come from Goias State was classified, washed and processed to separate the endocarp (edible part) from pericarp. The endocarps were packing in polyethylene bags with 150 g, labeled and submitted to radiation process (0.0, 0.4, 0.6 and 1.0 kGy doses) on multipurpose irradiator located in IPEN/USP. The samples were analyzed to chemical (pH, trititable acidity, deg Brix, ratio TSS/TTA, lipids, ash, humidity, protein, soluble and insoluble fiber, total carotenoids and antioxidant activity) and physical properties (loss weight, texture and color). The irradiation process using gamma rays from Co{sup 60} was effective to protect pequi fruits in postharvest period. (author)

  20. Radiation damage effects in standard float zone silicon diodes

    Energy Technology Data Exchange (ETDEWEB)

    Pascoalino, Kelly C.; Camargo, Fabio; Barbosa, Renata F.; Goncalves, Josemary A.C.; Tobias, Carmen C.B., E-mail: ccbueno@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2009-07-01

    The aim of this work was to study the radiation damage effects on the electrical properties of standard float zone diodes (STFZ). Such effects were evaluated by measuring the current and capacitance of these devices as a function of the reverse voltage. For comparison, current and capacitance measurements were carried out with a non-irradiated STFZ device. The irradiation was performed in the Radiation Technology Center (CTR) at IPEN/CNEN-SP using a {sup 60}Co irradiator (Gammacell 220 - Nordion) with a dose rate of about 2.2 kGy/h. Samples were irradiated at room temperature in steps variable from 50 kGy up 140 kGy which lead to an accumulated dose of 460 kGy. The results obtained have shown that the upper dose limit for a 'damageless' STFZ diode is about 50 kGy. (author)

  1. Double humps and radiation effects of SOI NMOSFET

    Institute of Scientific and Technical Information of China (English)

    Cui Jiangwei; Yu Xuefeng; Ren Diyuan; He Chengfa; Gao Bo; Li Ming; Lu Jian

    2011-01-01

    Radiation experiments have been carried out with a SOI NMOSFET. The behavior of double humps was studied under irradiation. The characterization of the hump was demonstrated. The results have shown that the shape of the hump changed along with the total dose and the reason for this was analyzed. In addition, the coupling effect of the back-gate transistor was more important for the main transistor than the parasitic transistor.

  2. Double humps and radiation effects of SOI NMOSFET

    Energy Technology Data Exchange (ETDEWEB)

    Cui Jiangwei; Yu Xuefeng; Ren Diyuan; He Chengfa; Gao Bo; Li Ming; Lu Jian, E-mail: cuijiangwei@sina.cn [Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011 (China)

    2011-06-15

    Radiation experiments have been carried out with a SOI NMOSFET. The behavior of double humps was studied under irradiation. The characterization of the hump was demonstrated. The results have shown that the shape of the hump changed along with the total dose and the reason for this was analyzed. In addition, the coupling effect of the back-gate transistor was more important for the main transistor than the parasitic transistor. (semiconductor devices)

  3. CARES: Carbonaceous Aerosol and Radiative Effects Study Science Plan

    Energy Technology Data Exchange (ETDEWEB)

    Zaveri, RA; Shaw, WJ; Cziczo, DJ

    2010-05-27

    Carbonaceous aerosol components, which include black carbon (BC), urban primary organic aerosols (POA), biomass burning aerosols, and secondary organic aerosols (SOA) from both urban and biogenic precursors, have been previously shown to play a major role in the direct and indirect radiative forcing of climate. The primary objective of the CARES 2010 intensive field study is to investigate the evolution of carbonaceous aerosols of different types and their effects on optical and cloud formation properties.

  4. Studying laser radiation effect on steel structure and properties

    Directory of Open Access Journals (Sweden)

    А. М. Gazaliyev

    2016-07-01

    Full Text Available There was studied the effect of laser radiation on the structure and properties of annealed and tempered steel with different content of carbon. For surface hardening there was used a laser complex equipped with Nd: YAG pulse laser with power density up to 30 kW/сm2. As a result of the carried-out studies there were calculated characteristics of laser, steel microstructure and properties.

  5. Radiating fluid spheres in the effective variables approximation

    CERN Document Server

    Barreto, W; Martínez, H

    2002-01-01

    We study the evolution of spherically symmetric radiating fluid distributions using the effective variables method, implemented {\\it ab initio} in Schwarzschild coordinates. To illustrate the procedure and to establish some comparison with the original method, we integrate numerically the set of equations at the surface for two different models. The first model is derived from the Schwarzschild interior solution. The second model is inspired in the Tolman VI solution.

  6. The regulatory effects of radiation and histone deacetylase inhibitor on liver cancer cell cycle

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung Ho; Choi, Hyung Seok; Jang, Dong Gun; Lee, Hong Je; Yang, Seoung Oh [Dept. Nuclear Medicine, Dongnam Institute of Radiological and Medicine Sciences Cancer Center, Busan (Korea, Republic of)

    2013-11-15

    Radiation has been an effective tool for treating cancer for a long time. Radiation therapy induces DNA damage within cancer cells and destroys their ability to reproduce. Radiation therapy is often combined with other treatments, like surgery and chemotherapy. Here, we describe the effects of radiation and histone deacetylase inhibitor, Trichostain A, on cell cycle regulation in hepatoma cells. Results demonstrate that the treatment of radiation TSA induces cell cycle arrest, thereby stimulating cell death in hepatoma cells. In addition, since different cells or tissues have different reactivity to radiation and TSA, these results might be an indicator for the combination therapy with radiation and drugs in diverse cancers.

  7. Low dose radiation damage effects in silicon strip detectors

    Science.gov (United States)

    Wiącek, P.; Dąbrowski, W.

    2016-11-01

    The radiation damage effects in silicon segmented detectors caused by X-rays have become recently an important research topic driven mainly by development of new detectors for applications at the European X-ray Free Electron Laser (E-XFEL). However, radiation damage in silicon strip is observed not only after extreme doses up to 1 GGy expected at E-XFEL, but also at doses in the range of tens of Gy, to which the detectors in laboratory instruments like X-ray diffractometers or X-ray spectrometers can be exposed. In this paper we report on investigation of radiation damage effects in a custom developed silicon strip detector used in laboratory diffractometers equipped with X-ray tubes. Our results show that significant degradation of detector performance occurs at low doses, well below 200 Gy, which can be reached during normal operation of laboratory instruments. Degradation of the detector energy resolution can be explained by increasing leakage current and increasing interstrip capacitance of the sensor. Another observed effect caused by accumulation of charge trapped in the surface oxide layer is change of charge division between adjacent strips. In addition, we have observed unexpected anomalies in the annealing process.

  8. Managing Radiation Therapy Side Effects: What to Do When You Have Loose Stools (Diarrhea)

    Science.gov (United States)

    ... rice • White toast Fruits and other foods • Applesauce • Bananas • Canned fruit, such as peaches and pears • Gelatin ( ... series of 9 Radiation Therapy Side Effects Fact Sheets at: www. cancer. gov/ radiation- side- effects

  9. The effect of radiation therapy on hemophilic arthropathy

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Jin Oh; Hong, Seong Eon; Kim, Sang Gi; Shin, Dong Oh [School of Medicine, KyungHee University, Seoul (Korea, Republic of)

    2005-06-15

    Repetitive bleeding into the joint space is the cause of debilitative hemophilic arthropathy. To interrupt this process, we treated the hemophilic patients suffering from repetitive joint bleeding with radiation therapy. From 1997 to 2001, a total of 41 joints from 37 hemophilic arthropathy patients were treated with radiation therapy at KyungHee University Hospital. The treated joints were 35 ankles, 3 knees and 3 elbows, respectively. The age of the patients ranged from 4 to 27 years (median age: 11 years). The radiation dose ranged from 900 cGy to 2360 cGy (median dose: 900 cGy). The fraction size was 150 cGy, 180 cGy or 200 cGy. The number of bleeding in one year before and after radiotherapy was compared. There was a tendency of frequent bleeding for the patients younger than 11 ({rho} 0.051) but there was also a tendency for more improvement in this group ({rho} 0.057). The number of joint bleedings was related with joint pain ({rho} 0.012) and joint swelling ({rho} = 0.033) but not with the Arbold-Hilgartner stage ({rho} 0.739),cartilage destruction ({rho} = 0.718) and synovial hypertrophy ({rho} = 0.079). The number of bleeding was reduced in thirty-three cases, and eight cases showed no improvement after radiation therapy. The average number of bleeding in a month was 2.52 before radiotherapy, but this was reduced to 1.4 after radiotherapy ({rho} = 0.017). Radiation therapy was effective for the hemophilia patients with repetitive joint bleeding to decrease the bleeding frequency and to prevent hemophilic arthropathy.

  10. Effects of microwave radiation on peripheral lymphocyte subpopulations in rats

    Directory of Open Access Journals (Sweden)

    Jin-ling YIN

    2011-10-01

    Full Text Available Objective To investigate the effects and mechanisms of microwave radiation on peripheral lymphocyte subpopulations in Wistar rats.Methods A total of 100 Wistar rats(180-220g were exposed to microwave with different average power densities of 5,10,30 and 60 mW/cm2,and sham exposure of 0mW/cm2 was performed in a control group at the same time.At day 1,7,14 and 28 after microwave irradiation,the changes in peripheral CD3+,CD4+,CD8+ T cells,ratio of CD4+/CD8+ and CD45RA+ B lymphocyte in rats were analyzed by flow cytometry(FCM.Results The CD3+ T cells decreased significantly in 10-30mW/cm2 groups at day 7 and in 5-30 mW/cm2 groups at day 14 after radiation as compared with control group(P < 0.05,and CD4+ T cells decreased significantly in 10mW/cm2 group at day 14 after radiation as compared with control group(P < 0.01.From day 1 to day 14 after radiation,CD8+ T cells showed a reduction in number in all irradiated groups when compared with the control,but statistical significance was only found in the 30mW/cm2 group(P < 0.05.The CD4+/CD8+ ratio increased in 5mW/cm2 group on day 1,while decreased significantly in 5-30mW/cm2 groups on day 14 after radiation as compared with control group(P < 0.05.After microwave exposure,however,CD45RA+ B cells in 30mW/cm2 group at day 1 and in 30-60mW/cm2 groups at day 14 after radiation increased significantly in a dose-dependent manner.Conclusion A definite dosage of microwave radiation,ranging from 5-60mW/cm2,may induce changes in subpopulations of peripheral lymphocytes and cause acute immune function impairment in rats.

  11. Effect of low dose ionizing radiation upon concentration of

    Energy Technology Data Exchange (ETDEWEB)

    Viliae, M.; Kraljeviae, P.; Simpraga, M.; Miljaniae, S.

    2004-07-01

    It is known that low dose ionizing radiation might have stimulating effects (Luckey, 1982, Kraljeviae, 1988). This fact has also been confirmed in the previous papers of Kraljeviae et al. (2000-2000a; 2001). Namely, those authors showed that irradiation of chicken eggs before incubation by a low dose of 0.15 Gy gamma radiation increases the activity aspartateaminotrasferases (AST) and alanine-aminotransferases (ALT) in blood plasma of chickens hatched from irradiated eggs, as well as growth of chickens during the fattening period. Low doses might also cause changes in the concentration of some biochemical parameters in blood plasma of the same chickens such as changes in the concentration of total proteins, glucose and cholesterol. In this paper, an attempt was made to investigate the effects of low dose gamma radiation upon the concentration of sodium and potassium in the blood plasma of chickens which were hatched from eggs irradiated on the 19th day of incubation by dose of 0.15 Gy. Obtained results were compared with the results from the control group (chickens hatched from nonirradiated eggs). After hatching, all other conditions were the same for both groups. Blood samples were drawn from heart, and later from the wing vein on days 1, 3, 5, 7, 10, 20, 30 and 42. The concentration of sodium and potassium was determined spectrophotometrically by atomic absorbing spectrophotometer Perkin-Elmer 1100B. The concentration of sodium and potassium in blood plasma of chickens hatched from eggs irradiated on the 19th day of incubation by dose of 0.15 Gy indicated a statistically significant increase (P>0.01) only on the first day of the experiment. Obtained results showed that irradiation of eggs on the 19th day of incubation by dose of 0.15 Gy gamma radiation could have effects upon the metabolism of electrolytes in chickens. (Author)

  12. Effects of {gamma}-radiation on white tea volatiles

    Energy Technology Data Exchange (ETDEWEB)

    Fanaro, Gustavo B.; Silveira, Ana Paula M.; Nunes, Thaise C.F.; Costa, Helbert S.F.; Villavicencio, Anna L.C.H. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)], e-mail: gbfanaro@ipen.br; Purgatto, Eduardo [Universidade de Sao Paulo (USP), SP (Brazil). Faculdade de Ciencias Farmaceuticas. Dept. de Alimentos e Nutricao Experimental

    2009-07-01

    Tea is the second most widely consumed beverages in the world and is processed from two and a bud of Camellia sinensis (L.). Depending on the processing may give rise to four mainly teas (green, black, oolong and white tea). The white tea is the one that has recently awakened interest in scientific community due the fact that this tea has more antioxidant property and activity than green tea. A further industrialization and commercialization of these plants become a problem of public health. The presence of potentially toxigenic fungi can be found in these products, indicating a great potential for the presence of mycotoxins that can cause acute and chronic effects in different organs and systems of the human body. Ionizing radiation is one of the most effective means disinfecting dry food ingredients. This treatment can inhibit cellular life division, like microorganisms, promoting a molecular structural modification. The aim of this study was evaluate the effects of radiation on volatile formation in white tea. Samples were irradiated in room temperature at {sup 60}Co source Gammacell 220 (A.E.C. Ltda) at doses of 0, 5, 10, 15 and 20-kGy. The volatiles organic compound was extracted by hydrodistillation and the extract was separated and identified by gas chromatography-mass spectrometry (GC-MS) analysis. The results show that the quantities of volatiles formations are directly proportional to the increase of radiation dose. About 37.86% of the compounds were stable at all radiation doses and 47.53% of new compounds were identified after irradiation. (author)

  13. [Effects of laser radiation on the periodontium. An animal model approach. Effects of usual radiation dosage].

    Science.gov (United States)

    Noguerol Rodriguez, B; Alandez Chamorro, J; Cañizares Garcia, J; Campos Muñoz, A; Sicilia Felechosa, A

    1989-05-01

    Twenty four albino mice of forty days old were selected. Twelve forty days old albino mice were irradiated with a Helium-Neon laser source, dose of 10.50566 Jul/cm2. They were divided in two groups according to time of animal sacrifice (immediately after irradiation and ten days after). As control were used twelve mice using the same time as the experimental groups, but without radiation. T.E.M. ultrathin sections showed alteration only in the conjunctiva and in the bone tissues, but not in the epithelial tissue. The bone showed two osteocyte population according to their response to irradiation. The first population showed characteristic comparable with the controls, and the second showed alterations suggestive of a degenerative process. The connective tissue also showed two fibroblasts populations, the first showed signs of a big synthesizing activity, and the second, degenerative signs. The first fibroblast population appeared in the animals sacrificed immediately after irradiation.

  14. Radiation protection effect by the combination of propolis and agaricus

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Yeunhwa; Yamada, Katsunori; Ukawa, Yuuichi [Suzuka Univ. of Medical Science, Suzuka (Japan)] [and others

    2002-07-01

    The aims of the radioprotection are a human and the safety keeping of the environment. The leukocyte that much research is to do in the animals, and relations between the lymphocyte and the radiation are being made distinct until now. It paid attention to it in this determination stage, and lymphocyte toward the radiation was observed by using the ICR mice used for the lymphocyte simulation abundantly in this research. And, it was examined about the fetal effect toward the radiation. So, an excuse as a radioprotective agent of the effect on the fetus toward the radiation was examined experimentally by using the propolis and agaricus by this research. Therefore, it is a purpose to obtain information as a medicament of the radioprotection. ICR mice were used for the experiment. The pregnant mice were placed in plastic cages for radiation exposure, and were treated with a single whole-body X -radiation at 1 Gy and 2Gy with a dose rate of 35 cGy/min on 8 days after the conception. 100 mg/kg of propolis and agaricus. The total number of irradiated dams observed in this study was 40, a total of 38 non-irradiated control and sham control dams was also prepared, and 659 non-irradiated live fetuses served as controls. Statistical significant difference was recognized between the lymphocyte of the 1.0Gy and 2.0Gy group and the 1.0Gy and 2.0Gy + propolis and agaricus extracts of water solution administrated group toward the lymphocyte and embryonic death of control group and sham control group (p<0.01). But, when it was compared with the lymphocyte and embryonic death rate of the 1.0Gy and 2.0Gy group and the 1.0Gy and 2.0Gy + Propolis and agaricus group, the lymphocyte rate of the 1.0Gy and 2.0Gy + Propolis and agaricus group was decrease. And, if propolis and agaricus was administered, the embryo beyond the haploid number that did implantation was found out in the exposure beyond 1.0Gy or 2.0Gy.

  15. Gamma radiation effects on siloxane-based additive manufactured structures

    Science.gov (United States)

    Schmalzer, Andrew M.; Cady, Carl M.; Geller, Drew; Ortiz-Acosta, Denisse; Zocco, Adam T.; Stull, Jamie; Labouriau, Andrea

    2017-01-01

    Siloxane-basedadditive manufactured structures prepared by the direct ink write (DIW) technology were exposed to ionizing irradiation in order to gauge radiolysis effects on structure-property relationships. These well-defined 3-D structures were subjected to moderate doses of gamma irradiation in an inert atmosphere and characterized by a suite of experimental methods. Changes in thermal, chemical, microstructure, and mechanical properties were evaluated by DSC, TGA, FT-IR, mass spectroscopy, EPR, solvent swelling, SEM, and uniaxial compressive load techniques. Our results demonstrated that 3-D structures made from aromatic-free siloxane resins exhibited hardening after being exposed to gamma radiation. This effect was accompanied by gas evolution, decreasing in crystallization levels, decreasing in solvent swelling and damage to the microstructure. Furthermore, long-lived radiation-induced radicals were not detected by EPR methods. Our results are consistent with cross-link formation being the dominant degradation mechanism over chain scission reactions. On the other hand, 3-D structures made from high phenyl content siloxane resins showed little radiation damage as evidenced by low off gassing.

  16. Mitochondrial mutagenesis induced by tumor-specific radiation bystander effects.

    LENUS (Irish Health Repository)

    Gorman, Sheeona

    2012-02-01

    The radiation bystander effect is a cellular process whereby cells not directly exposed to radiation display cellular alterations similar to directly irradiated cells. Cellular targets including mitochondria have been postulated to play a significant role in this process. In this study, we utilized the Random Mutation Capture assay to quantify the levels of random mutations and deletions in the mitochondrial genome of bystander cells. A significant increase in the frequency of random mitochondrial mutations was found at 24 h in bystander cells exposed to conditioned media from irradiated tumor explants (p = 0.018). CG:TA mutations were the most abundant lesion induced. A transient increase in the frequency of random mitochondrial deletions was also detected in bystander cells exposed to conditioned media from tumor but not normal tissue at 24 h (p = 0.028). The increase in both point mutations and deletions was transient and not detected at 72 h. To further investigate mitochondrial dysfunction, mitochondrial membrane potential and reactive oxygen species were assessed in these bystander cells. There was a significant reduction in mitochondrial membrane potential and this was positively associated with the frequency of random point mutation and deletions in bystander cells treated with conditioned media from tumor tissue (r = 0.71, p = 0.02). This study has shown that mitochondrial genome alterations are an acute consequence of the radiation bystander effect secondary to mitochondrial dysfunction and suggests that this cannot be solely attributable to changes in ROS levels alone.

  17. Effect of radiation-induced modification in fluoroelastomer

    Energy Technology Data Exchange (ETDEWEB)

    Zen, Heloisa Augusto; Lugao, Ademar Benevolo, E-mail: helozen@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Polymers exposed to ionizing irradiation, even at low doses, often undergo structural changes accompanied by molecular crosslinking and chain scission (degradation) reactions. The general effect of the radiation on polymers is determined by the ratio of crosslinking to chain scission events. This ratio depends on parameters such as chemical structure, physical state, radicals stability and mobility, irradiation rate and irradiation atmosphere. The radiation process is a large used technique to promote modification in their structures to apply them in different areas and is well known for its merits and potential in modifying the chemical and the physical properties of polymeric materials without cause drastic changes in their inherent properties, depend on the dose irradiated. In this study was used fluoroelastomer with 70% - fluor that having excellent thermal, chemical and mechanical properties. Vulcanized and non-vulcanized samples of this material were submitted to gamma radiation under air atmosphere in order to observe the effect of atmosphere in the polymer matrix. The irradiated doses were 5, 10 and 20kGy, at room temperature. The characterization was made by scanning electron microscope (SEM), infrared spectroscopy using attenuate reflectance (ATR-IR) and X-ray diffraction. The results demonstrated which was expected, the degradation reactions were observed. (author)

  18. Effects of {sup 60}Co radiation on bothropstoxin-1 structure

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, P.J.; Nascimento, N.; Rogero, J.R. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil). Div. de Radiobiologia; Byrne, M.; Smith, L.A. [United States Army Medical Research, Frederick, MD (United States). Inst. of Infectious Diseases. Toxinology Div.

    2000-07-01

    Gamma radiation is able to detoxify snake venoms and toxins without significantly affecting their immunogenic properties. This method has been successfully employed to attenuate toxins for antisera production without inducing toxic effects in animals undergoing immunization. However, the mechanism of attenuation is not fully understood and much work remains at the molecular level in order to further characterize the effects of radiation on these proteins. The present study was undertaken to evaluate structural modifications following irradiation of bothropstoxin-1 (bthTx-1), a myotoxin from Bothrops jararacussu. It is believed that the functional form of the toxin is a homodimer with the binding affinity provided by electrostatic and hydrophobic interactions. Purified BthTx-1 was irradiated with 500, 1000 and 2000 Gy of {sup 60}Co gamma radiation. The irradiated and native toxins were compared by mass spectrometry, circular dichroism (CD) and tryptophan fluorescence quenching, results suggest that the monomer-monomer interactions are hydrophobic in nature. No significant differences were observed between the two forms of the toxin by CD spectral interpretation. However, significant losses of secondary structure could be observed when the native and irradiated BthTX-1 were compared after disulfide bond reduction. Fluorescence data indicates that the solvent accessibility of Trp 77 has been modified, which may explain the differences in quaternary structure. (author)

  19. Teratogen effects of ionizing radiations. Effets teratogenes des rayonnements ionisants

    Energy Technology Data Exchange (ETDEWEB)

    Vera, P. (Hopital Beaujon, 92 - Clichy (France)); Gambini, D.J.; Collignon-le-Bouedec, M.A.; Barritault, L. (Hopital Laennec, 75 - Paris (France))

    1994-03-01

    This article treats the problem of teratogenesis of ionizing radiations. If no malformations has been seen before 20*10 [sup -2] Grays and no carcinogen effect before 30*10 [sup -2] Grays, it is reasonable to limit the irradiation of pregnant women. If there is an emergency for mother's life as it is the case in thrombo-embolic pathology, all ways of protection must be used: high voltage, diaphragms, reduction of time exposure, abdomen protection with screens, fast screen-film couples, radioscopy television, limiting number of negatives, make the mother drink after the examination to eliminate the radioactive products. Note that beta radiations are contraindicated and preferentially use, when it is possible, echography, echo doppler or nuclear magnetic resonance.

  20. Effects of radiation damping on Z-spectra.

    Science.gov (United States)

    Williamson, David C; Närväinen, Johanna; Hubbard, Penny L; Kauppinen, Risto A; Morris, Gareth A

    2006-12-01

    Radiation damping induced by the strong water magnetization in Z-spectroscopy experiments can be sufficient to perturb significantly the resultant Z-spectrum. With a probe tuned to exact electrical resonance the effects are relatively straightforward, narrowing the central feature of the Z-spectrum. Where, as is commonly the case, the probe is tuned sufficiently well to give optimum signal-to-noise ratio and radiofrequency field strength but is not at exact resonance, radiation damping introduces an unexpected asymmetry into the Z-spectrum. This has the potential to complicate the use of Z-spectrum asymmetry to study chemical exchange, for example in the estimation of pH in vivo.

  1. Radiation Effects on Breakdown Characteristics of Multi Guarded Devices

    CERN Document Server

    Da Rold, M; Bisello, D; Candelori, A; Da Re, A; Dalla Betta, Gian Franco; Paccagnella, A; Soncini, G; Verzellesi, G; Wheadon, R

    1997-01-01

    Multiguard structures are used in order to enhance the breakdown voltage of microstrip detectors. In this work we studied the electrical properties of devices designed in four different layouts on n-Si substrates, based on a central diode surrounded by various p+ and/or n+ floating rings. In particular we measured the main DC characteristics and we compared the experimental results with those simulated by a two-dimensional drift-diffusion computer model. Device noise was also measured for the central diode as a function of the applied voltage. We repeated all measurements after neutron and gamma irradiation, in view of the application of these devices to silicon microstrip detectors for future high energy physics experiments. For example at the LHC the level of radiation damage expected during the detector lifetime implies very high bias voltages for the detector operation. Multiguards can offer a solution, provided the optimisation of the design takes into account the radiation effects.

  2. Ion irradiation and biomolecular radiation damage II. Indirect effect

    CERN Document Server

    Wang, Wei; Su, Wenhui

    2010-01-01

    It has been reported that damage of genome in a living cell by ionizing radiation is about one-third direct and two-thirds indirect. The former which has been introduced in our last paper, concerns direct energy deposition and ionizing reactions in the biomolecules; the latter results from radiation induced reactive species (mainly radicals) in the medium (mainly water) surrounding the biomolecules. In this review, a short description of ion implantation induced radical formation in water is presented. Then we summarize the aqueous radical reaction chemistry of DNA, protein and their components, followed by a brief introduction of biomolecular damage induced by secondary particles (ions and electron). Some downstream biological effects are also discussed.

  3. Radiation-induced bystander effects in vivo are sex specific

    Energy Technology Data Exchange (ETDEWEB)

    Koturbash, Igor; Kutanzi, Kristy; Hendrickson, Karl; Rodriguez-Juarez, Rocio; Kogosov, Dmitry [Department of Biological Sciences, University of Lethbridge, Alberta T1K 3M4 (Canada); Kovalchuk, Olga [Department of Biological Sciences, University of Lethbridge, Alberta T1K 3M4 (Canada)], E-mail: olga.kovalchuk@uleth.ca

    2008-07-03

    Ionizing radiation (IR) effects span beyond the area of direct exposure and can be observed in neighboring and distant naive cells and organs. This phenomenon is termed a 'bystander effect'. IR effects in directly exposed tissue in vivo are epigenetically mediated and distinct in males and females. Yet, IR-induced bystander effects have never been explored in a sex-specificity domain. We used an in vivo mouse model, whereby the bystander effects are studied in spleen of male and female animals subjected to head exposure when the rest of the body is protected by a medical-grade lead shield. We analyzed the induction of DNA damage and alterations in global DNA methylation. Molecular parameters were correlated with cellular proliferation and apoptosis levels. The changes observed in bystander organs are compared to the changes in unexposed animals and animals exposed to predicted and measured scatter doses. We have found the selective induction of DNA damage levels, global DNA methylation, cell proliferation and apoptosis in exposed and bystander spleen tissue of male and female mice. Sex differences were significantly diminished in animals subjected to a surgical removal of gonads. These data constitute the first evidence of sex differences in radiation-induced bystander effects in mouse spleen in vivo. We show the role of sex hormones in spleen bystander responses and discuss implications of the observed changes.

  4. Effects of UV-B radiation on wax biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, J. [Dept. of Agricultural and Environmental Science, Newcastle-Upon-Tyne (United Kingdom); Paul, N. [Dept. of Agricultural and Environmental Science, Newcastle-Upon-Tyne (United Kingdom)]|[Inst. of Environmental and Biological Sciences, Lancaster Univ. (United Kingdom); Percy, K. [Dept. of Agricultural and Environmental Science, Newcastle-Upon-Tyne (United Kingdom)]|[Canadian Forest Service, Natural Resources Canada, Fredericton, NB (Canada); Broadbent, P. [Dept. of Agricultural and Environmental Science, Newcastle-Upon-Tyne (United Kingdom)]|[Inst. of Environmental and Biological Sciences, Lancaster Univ. (United Kingdom); McLaughlin, C. [Dept. of Agricultural and Environmental Science, Newcastle-Upon-Tyne (United Kingdom)]|[Canadian Forest Service, Natural Resources Canada, Fredericton, NB (Canada); Mullineaux, P. [Dept. of Agricultural and Environmental Science, Newcastle-Upon-Tyne (United Kingdom)]|[John Innes Inst., Norwich (United Kingdom); Creissen, G. [Dept. of Agricultural and Environmental Science, Newcastle-Upon-Tyne (United Kingdom)]|[John Innes Inst., Norwich (United Kingdom); Wellburn, A. [Dept. of Agricultural and Environmental Science, Newcastle-Upon-Tyne (United Kingdom)]|[Inst. of Environmental and Biological Sciences, Lancaster Univ. (United Kingdom)

    1994-12-31

    Two genotypes of tobacco (Nicotiana tabacum L.) were exposed in controlled environment chambers to three levels of biologically effective ultraviolet-B radiation (UV-B{sub BE}; 280-320nm): 0, 4.54 (ambient) and 5.66 ({approx} 25% enhancement) kJ m{sup -2} d{sup -1}. After 28 days, the quantity of wax deposited on leaf surfaces was determined gravimetrically; epicuticular wax chemical composition was determined by capillary gas chromatography with homologue assignments confirmed by gas chromatography-mass spectrometry. Leaf wettability was assessed by measuring the contact angle of water droplets placed on leaf surfaces. Tobacco wax consisted of three major hydrocarbon classes: Straight-chain alkanes (C{sub 27}-C{sub 33}) which comprised {approx} 59% of the hydrocarbon fraction, containing a predominance of odd-chain alkanes with C{sub 31} as the most abundant homologue; branched-chain alkanes (C{sub 25}-C{sub 32}) which comprised {approx}38% of the hydrocarbon fraction with anteiso 3-methyltriacontane (C{sub 30}) as the predominant homologue; and fatty acids (C{sub 14}-C{sub 18}) which comprised {approx} 3% of the wax. Exposure to enhanced UV-B radiation reduced the quantity of wax on the adaxial surface of the transgenic mutant, and resulted in marked changes in the chemical composition of the wax on the exposed leaf surface. Enhanced UV-B decreased the quantity of straight-chain alkanes, increased the quantity of branched-chain alkanes and fatty acids, and resulted in shifts toward shorter straight-chain lengths. Furthermore, UV-B-induced changes in wax composition were associated with increased wettability of tobacco leaf surfaces. Overall, the data are consistent with the view that UV-B radiation has a direct and fundamental effect on wax biosynthesis. Relationships between the physico-chemical nature of the leaf surface and sensitivity to UV-B radiation are discussed. (orig.)

  5. Impacts of emission reductions on aerosol radiative effects

    Directory of Open Access Journals (Sweden)

    J.-P. Pietikäinen

    2015-05-01

    Full Text Available The global aerosol–climate model ECHAM-HAMMOZ was used to investigate changes in the aerosol burden and aerosol radiative effects in the coming decades. Four different emissions scenarios were applied for 2030 (two of them applied also for 2020 and the results were compared against the reference year 2005. Two of the scenarios are based on current legislation reductions: one shows the maximum potential of reductions that can be achieved by technical measures, and the other is targeted to short-lived climate forcers (SLCFs. We have analyzed the results in terms of global means and additionally focused on eight subregions. Based on our results, aerosol burdens show an overall decreasing trend as they basically follow the changes in primary and precursor emissions. However, in some locations, such as India, the burdens could increase significantly. The declining emissions have an impact on the clear-sky direct aerosol effect (DRE, i.e. the cooling effect. The DRE could decrease globally 0.06–0.4 W m−2 by 2030 with some regional increases, for example, over India (up to 0.84 W m−2. The global changes in the DRE depend on the scenario and are smallest in the targeted SLCF simulation. The aerosol indirect radiative effect could decline 0.25–0.82 W m−2 by 2030. This decrease takes place mostly over the oceans, whereas the DRE changes are greatest over the continents. Our results show that targeted emission reduction measures can be a much better choice for the climate than overall high reductions globally. Our simulations also suggest that more than half of the near-future forcing change is due to the radiative effects associated with aerosol–cloud interactions.

  6. Aerosol properties and associated radiative effects over Cairo (Egypt)

    Science.gov (United States)

    El-Metwally, M.; Alfaro, S. C.; Wahab, M. M. Abdel; Favez, O.; Mohamed, Z.; Chatenet, B.

    2011-02-01

    Cairo is one of the largest megacities in the World and the particle load of its atmosphere is known to be particularly important. In this work we aim at assessing the temporal variability of the aerosol's characteristics and the magnitude of its impacts on the transfer of solar radiation. For this we use the level 2 quality assured products obtained by inversion of the instantaneous AERONET sunphotometer measurements performed in Cairo during the Cairo Aerosol CHaracterization Experiment (CACHE), which lasted from the end of October 2004 to the end of March 2006. The analysis of the temporal variation of the aerosol's optical depth (AOD) and spectral dependence suggests that the aerosol is generally a mixture of at least 3 main components differing in composition and size. This is confirmed by the detailed analysis of the monthly-averaged size distributions and associated optical properties (single scattering albedo and asymmetry parameter). The components of the aerosol are found to be 1) a highly absorbing background aerosol produced by daily activities (traffic, industry), 2) an additional, 'pollution' component produced by the burning of agricultural wastes in the Nile delta, and 3) a coarse desert dust component. In July, an enhancement of the accumulation mode is observed due to the atmospheric stability favoring its building up and possibly to secondary aerosols being produced by active photochemistry. More generally, the time variability of the aerosol's characteristics is due to the combined effects of meteorological factors and seasonal production processes. Because of the large values of the AOD achieved during the desert dust and biomass burning episodes, the instantaneous aerosol radiative forcing (RF) at both the top (TOA) and bottom (BOA) of the atmosphere is maximal during these events. For instance, during the desert dust storm of April 8, 2005 RF BOA, RF TOA, and the corresponding atmospheric heating rate peaked at - 161.7 W/m 2, - 65.8 W/m 2

  7. Distinctions of effects of pulsed laser radiation and /sup 60/Co gamma radiation on some microorganisms. [Escherichia coli; Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Petin, V.G.; Rusina, L.K.; Sebrant, Yu.V.; Baranov, V.Yu.; Malyuta, D.D.; Niz' ev, V.G.

    1979-03-01

    Studies were made of the sensitivity of yeast cells varying in ploidy and bacterial cells varying in genotype to the effects of pulsed laser radiation and the combined effect of laser and ionizing radiation. It was demonstrated that there is no additivity of irradiation with a train of pulses, as compared to a single pulse. The impairment of cellular reproductive capacity under the influence of lasers was irreversible.

  8. Effects of lactic bacteria on immunological activation and radiation damage

    Energy Technology Data Exchange (ETDEWEB)

    Monzen, Hajime; Yuki, Rumio [Otsu Red Cross Hospital, Shiga (Japan); Gu, Yeunhwa; Hasegawa, Takeo [Suzuka Univ. of Medical Science, Mie (Japan). Graduate School

    2003-03-01

    Although some studies have suggested that certain substances, such as vitamins and glucan, found in natural food products may have protective effect against radiation injuries, no substance is used practically as radioprotectors. Safe radioprotectors without side effects are, however, yet to see. Enterococcus faecalis (Ef) in intestines is known to enhance immunity of the host as a biological response modifier. In this report, we have examined the radiation protection effect of Ef using C3H mice and assessed the effect of Ef on the natural killer (NK) cells activity of the splenic cells in the mice. Less body weight losses after irradiation were observed among Ef injection groups, in comparison with control groups. Our data showed a strong tendency to prolong the surviving fraction among the groups with the Ef injection. Hence, the Ef treatment appeared to have protected mucosal damage caused by the X-ray irradiation. The NK cells activities were markedly enhanced after the Ef injection as well. With the evidence mentioned above, we conclude that the Ef may have positive effect on patients who undergo a radiotherapy. (author)

  9. Radiation effects on communication performance of radio frequency identification tags.

    Science.gov (United States)

    Mori, Kazuyuki; Meng, Zhaowu; Kikuchi, Hirosumi; Kataoka, Yasuhide; Nakazato, Kazuhisa; Deji, Shizuhiko; Ito, Shigeki; Saze, Takuya; Hirota, Masahiro; Nishizawa, Kunihide

    2010-11-01

    Radioactive materials (sources) are managed by bookkeeping and stocktaking. The radiation protection section staffs should check the sources manually. Annual effective dose concerning stocktaking of them are estimated at some mSv concerning fingers. A radio frequency identification (RFID) tag's absorbed dose is estimated at some dozen Gy. RFID for stocktaking automatically was devised. Radiation effects on the communication performance of RFID tags were investigated by using response times and read ranges as indices. The RFID system was composed of a computer, a detector, and transponders (tag) consisting of an integrated circuit chip and an antenna. The tag is joined to the source for identification. The tags were irradiated at doses between 5 and 5,000 Gy by an x-ray irradiator. The response times and the read ranges were tracked from 40 to 23,200 min after irradiation. Relative read ranges fluctuated between 0.9 and 1.1 in the dose region less than 2,000 Gy, but fluctuated greatly in the dose region beyond 2,000 Gy. Malfunctioning tags appeared from 3,000 Gy, and all tags malfunctioned in the dose region over 4,500 Gy. The threshold dose leading to malfunction was determined to be 2,100 Gy. Time variation of relative read ranges was classified into four patterns. The pattern shifted from pattern 1 to 4 when the dose was increased. The relative read ranges lengthened in pattern 1. The relative read rages were approximately 1.0 in pattern 2. The read ranges tentatively shortened, then recovered in pattern 3. The tags malfunctioned in pattern 4. Once the tags malfunctioned, they never recovered their performance. Radiation enhances or deteriorates communication performance depending on dosage. Tags can spontaneously recover from radiation deterioration. The time variation of the read ranges can be illustrated by enhancement, deterioration, and recovery. The mechanism of four patterns is explained based on the variation of the frequency harmonization strength and

  10. Heavy irradiation effects in radiation-resistant optical fibers

    Energy Technology Data Exchange (ETDEWEB)

    Shikama, Tatsuo [Tohoku Univ., Oarai, Ibaraki (Japan). Oarai Branch, Inst. for Materials Research

    1998-07-01

    Development of a system for optical measurements in a nuclear reactor has been progressing to investigate dynamic changes in a material caused by heavy irradiation. In such system, transfer of optical signals to out-pile measuring systems is being attempted by the use of optical fibers. In this report, the characteristics of optical fibers in the heavy irradiation field were summarized. It has been known that amorphous silica might produce radiolysis and structural defects by the exposure to ionizing radiation. The effects of heavy irradiation on molten silica were extremely complicated. A large intensity of visible light absorption occurred from an early time during start-up of the reactor. The absorption range was limited below 700 nm for the radiation associating fast neutron and the absorption was mostly attributed to non-bridging oxygen hole center. The depletion of optical transferring capacity under the radiation might be related to the internal stress. Therefore, it seems desirable to use optical fibers in the conditions without leading too much stress. (M.N.)

  11. Effects of heavy ion radiation on digital micromirror device performance

    Science.gov (United States)

    Travinsky, Anton; Vorobiev, Dmitry; Ninkov, Zoran; Raisanen, Alan D.; Pellish, Jonny; Robberto, Massimo; Heap, Sara

    2016-09-01

    There is a pressing need in the astronomical community for space-suitable multiobject spectrometers (MOSs). Several digital micromirror device (DMD)-based prototype MOSs have been developed for ground-based observatories; however, their main use will come with deployment on a space-based mission. Therefore, the performance of DMDs under exoatmospheric radiation needs to be evaluated. DMDs were rewindowed with 2-μm thick pellicle and tested under accelerated heavy-ion radiation (control electronics shielded from radiation), with a focus on the detection of single-event effects (SEEs) including latch-up events. Testing showed that while DMDs are sensitive to nondestructive ion-induced state changes, all SEEs are cleared with a soft reset (i.e., sending a pattern to the device). The DMDs did not experience single-event induced permanent damage or functional changes that required a hard reset (power cycle), even at high ion fluences. This suggests that the SSE rate burden will be manageable for a DMD-based instrument when exposed to solar particle fluxes and cosmic rays in orbit.

  12. Effects of microgravity and cosmic radiations on human T lymphocytes

    Directory of Open Access Journals (Sweden)

    P. Pippia

    2011-01-01

    Full Text Available In space living organisms, including cells, are affected by two new environmental conditions: microgravity and cosmic radiations. Several experiments in dedicated space missions and in simulated microgravity have shown that low gravity causes a dramatic depression of the mitogenic in vitro activation of T lymphocytes. The goal of this reserch was to determine in space (on board the International Space Station the ability of adherent monocytes to migrate, as well as to interact with T-cells. A reduced motility of the J-111 cells and changes in the structures of actin, tubulin and vinculin were observed. Moreover, we demonstrated that LFA-I/ICAM-I interactions occur in space and are dependent on activation time but show differences in number, arrangement and fluorescence intensity, depending on time and experimental conditions. In order to evaluate the effects of cosmic radiations on the gene expression in human T lymphocytes we exposed these cells to high quote cosmic radiation during two stratospheric balloon trans-mediterranean flights (BIRBA missions. The gene expression was analized by cDNA microarray hybridization technology. Activated T cells react to the ionizing stress by activating genes involved in cell cycle check-point, oxidative stress response, heat shock proteins production or by repressing denes involved in antigen recognition.

  13. Radiation effects on life span in Caenorhabditis elegans

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, T.E.; Hartman, P.S.

    1988-09-01

    Wild-type and radiation-sensitive (Rad) mutants of Caenorhabditis elegans were irradiated using a /sup 137/Cs source (2.7 krads/min.) at several developmental stages and subsequently monitored for life span. Acute doses of radiation ranged from 1 krad to 300 krads. All stages required doses above 100 krads to reduce mean life span. Dauers and third stage larvae were more sensitive, and 8-day-old adults were the most resistant. Occasional statistically significant but nonrepeatable increases in survival were observed after intermediate levels of irradiation (10-30 krads). Unirradiated rad-4 and rad-7 had life spans similar to wild-type; all others had a significant reduction in survival. The mutants were about as sensitive as wild-type to the effects of ionizing radiation including occasional moderate life span extensions at intermediate doses. We conclude that the moderate life span extensions sometimes observed after irradiation are likely to be mediated by a means other than the induction of DNA repair enzymes.

  14. Effectiveness of radiation processing in elimination of Aeromonas from food

    Energy Technology Data Exchange (ETDEWEB)

    Nagar, Vandan [Food Technology Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Bandekar, Jayant R., E-mail: jrb@barc.gov.i [Food Technology Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2011-08-15

    Genus Aeromonas has emerged as an important human pathogen because it causes a variety of diseases including gastroenteritis and extra-intestinal infections. Contaminated water, sprouts, vegetables, seafood and food of animal origin have been considered to be the important sources of Aeromonas infection. In the present study, radiation sensitivity of indigenous strains of Aeromonas spp. from different food samples was evaluated. The decimal reduction dose (D{sub 10}) values of different Aeromonas isolates in saline at 0-4 {sup o}C were in the range of 0.031-0.046 kGy. The mixed sprouts, chicken and fish samples were inoculated with a cocktail of five most resistant isolates (A. salmonicida Y567, A. caviae A85, A. jandaei A514A, A. hydrophila CECT 839{sup T} and A. veronii Y47) and exposed to {gamma} radiation to study the effectiveness of radiation treatment in elimination of Aeromonas. D{sub 10} values of Aeromonas cocktail in mixed sprouts, chicken and fish samples were found to be 0.081{+-}0.001, 0.089{+-}0.003 and 0.091{+-}0.003 kGy, respectively. Radiation treatment with a 1.5 kGy dose resulted in complete elimination of 10{sup 5} CFU/g of Aeromonas spp. from mixed sprouts, chicken and fish samples. No recovery of Aeromonas was observed in the 1.5 kGy treated samples stored at 4 {sup o}C up to 12 (mixed sprouts) and 7 days (chicken and fish samples), even after enrichment and selective plating. This study demonstrates that a 1.5 kGy dose of irradiation treatment could result in complete elimination of 10{sup 5} CFU/g of Aeromonas spp. from mixed sprouts, chicken and fish samples.

  15. Effectiveness of radiation processing in elimination of Aeromonas from food

    Science.gov (United States)

    Nagar, Vandan; Bandekar, Jayant R.

    2011-08-01

    Genus Aeromonas has emerged as an important human pathogen because it causes a variety of diseases including gastroenteritis and extra-intestinal infections. Contaminated water, sprouts, vegetables, seafood and food of animal origin have been considered to be the important sources of Aeromonas infection. In the present study, radiation sensitivity of indigenous strains of Aeromonas spp. from different food samples was evaluated. The decimal reduction dose (D10) values of different Aeromonas isolates in saline at 0-4 °C were in the range of 0.031-0.046 kGy. The mixed sprouts, chicken and fish samples were inoculated with a cocktail of five most resistant isolates (A. salmonicida Y567, A. caviae A85, A. jandaei A514A, A. hydrophila CECT 839T and A. veronii Y47) and exposed to γ radiation to study the effectiveness of radiation treatment in elimination of Aeromonas. D10 values of Aeromonas cocktail in mixed sprouts, chicken and fish samples were found to be 0.081±0.001, 0.089±0.003 and 0.091±0.003 kGy, respectively. Radiation treatment with a 1.5 kGy dose resulted in complete elimination of 105 CFU/g of Aeromonas spp. from mixed sprouts, chicken and fish samples. No recovery of Aeromonas was observed in the 1.5 kGy treated samples stored at 4 °C up to 12 (mixed sprouts) and 7 days (chicken and fish samples), even after enrichment and selective plating. This study demonstrates that a 1.5 kGy dose of irradiation treatment could result in complete elimination of 105 CFU/g of Aeromonas spp. from mixed sprouts, chicken and fish samples.

  16. Radiation dosimetry.

    OpenAIRE

    Cameron, J

    1991-01-01

    This article summarizes the basic facts about the measurement of ionizing radiation, usually referred to as radiation dosimetry. The article defines the common radiation quantities and units; gives typical levels of natural radiation and medical exposures; and describes the most important biological effects of radiation and the methods used to measure radiation. Finally, a proposal is made for a new radiation risk unit to make radiation risks more understandable to nonspecialists.

  17. Effect of solar radiation on severity of soybean rust.

    Science.gov (United States)

    Young, Heather M; George, Sheeja; Narváez, Dario F; Srivastava, Pratibha; Schuerger, Andrew C; Wright, David L; Marois, James J

    2012-08-01

    Soybean rust (SBR), caused by Phakopsora pachyrhizi, is a damaging fungal disease of soybean (Glycine max). Although solar radiation can reduce SBR urediniospore survival, limited information is available on how solar radiation affects SBR progress within soybean canopies. Such information can aid in developing accurate SBR prediction models. To manipulate light penetration into soybean canopies, structures of shade cloth attenuating 30, 40, and 60% sunlight were constructed over soybean plots. In each plot, weekly evaluations of severity in lower, middle, and upper canopies, and daily temperature and relative humidity were recorded. Final plant height and leaf area index were also recorded for each plot. The correlation between amount of epicuticular wax and susceptibility of leaves in the lower, middle, and upper canopies was assessed with a detached leaf assay. Final disease severity was 46 to 150% greater in the lower canopy of all plots and in the middle canopy of 40 and 60% shaded plots. While daytime temperature within the canopy of nonshaded soybean was greater than shaded soybean by 2 to 3°C, temperatures recorded throughout typical evenings and mornings of the growing season in all treatments were within the range (10 to 28.5°C) for SBR development as was relative humidity. This indicates temperature and relative humidity were not limiting factors in this experiment. Epicuticular wax and disease severity in detached leaf assays from the upper canopy had significant negative correlation (P = 0.009, R = -0.84) regardless of shade treatment. In laboratory experiments, increasing simulated total solar radiation (UVA, UVB, and PAR) from 0.15 to 11.66 MJ m(-2) increased mortality of urediniospores from 2 to 91%. Variability in disease development across canopy heights in early planted soybean may be attributed to the effects of solar radiation not only on urediniospore viability, but also on plant height, leaf area index, and epicuticular wax, which influence

  18. Radioprotection, biological effects of the radiations and security in the handling of radioactive material

    CERN Document Server

    Teran, M

    2000-01-01

    The development of the philosophy of the radioprotection is dependent on the understanding of the effects of the radiation in the man. Behind the fact that the radiation is able to produce biological damages there are certain factors with regard to the biological effects of the radiations that determine the boarding of the radioprotection topics.

  19. Non-Riemannian effective spacetime effects on Hawking radiation in superfluids

    CERN Document Server

    Garcia de Andrade, L C

    2005-01-01

    Riemannian effective spacetime description of Hawking radiation in $^{3}He-A$ superfluids is extended to non-Riemannian effective spacetime. An example is given of non-Riemannian effective geometry of the rotational motion of the superfluid vacuum around the vortex where the effective spacetime Cartan torsion can be associated to the Hawking giving rise to a physical interpretation of effective torsion recently introduced in the literature in the form of an acoustic torsion in superfluid $^{4}He$ (PRD-70(2004),064004). Curvature and torsion singularities of this $^{3}He-A$ fermionic superfluid are investigated. This Lense-Thirring effective metric, representing the superfluid vacuum in rotational motion, is shown not support Hawking radiation when the isotropic $^{4}He$ is restored at far distances from the vortex axis. Hawking radiation can be expressed also in topological solitons (moving domain walls) in fermionic superfluids in non-Riemannian (teleparallel) $(1+1)$ dimensional effective spacetime. A telep...

  20. The protective effects of trace elements against side effects induced by ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Hosseinimehr, Seyed Jaial [Dept. of Radiopharmacy, Faculty of Pharmacy, Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari (Iran, Islamic Republic of)

    2015-06-15

    Trace elements play crucial role in the maintenance of genome stability in the cells. Many endogenous defense enzymes are containing trace elements such as superoxide dismutase and metalloproteins. These enzymes are contributing in the detoxification of reactive oxidative species (ROS) induced by ionizing radiation in the cells. Zinc, copper, manganese, and selenium are main trace elements that have protective roles against radiation-induced DNA damages. Trace elements in the free salt forms have protective effect against cell toxicity induced by oxidative stress, metal-complex are more active in the attenuation of ROS particularly through superoxide dismutase mimetic activity. Manganese-complexes in protection of normal cell against radiation without any protective effect on cancer cells are more interesting compounds in this topic. The aim of this paper to review the role of trace elements in protection cells against genotoxicity and side effects induced by ionizing radiation.

  1. Universality of nonperturbative QCD effects in radiative B-decays

    CERN Document Server

    Descotes-Genon, S

    2003-01-01

    We demonstrate, by an explicit one-loop calculation, that at leading twist the nonperturbative effects in B -> gamma l nu, B -> gamma gamma and B -> gamma l+ l- radiative decays are contained in a common multiplicative factor (\\Lambda_B(E_\\gamma), where E_\\gamma is the energy of the photon). We argue that this result holds also at higher orders. Ratios of the amplitudes for these processes do not depend on scales below the mass of the B-meson (M_B), and can be calculated as perturbative series in \\alpha_s(M_B)

  2. Effect of bremsstrahlung radiation emission on fast electrons in plasmas

    CERN Document Server

    Embréus, Ola; Fülöp, Tünde

    2016-01-01

    Bremsstrahlung radiation emission is an important energy loss mechanism for energetic electrons in plasmas. In this paper we investigate the effect of spontaneous bremsstrahlung emission on the momentum-space structure of the electron distribution, fully accounting for the emission of finite-energy photons. We find that electrons accelerated by electric fields can reach significantly higher energies than what is expected from energy-loss considerations. Furthermore, we show that the emission of soft photons can contribute significantly to the dynamics of electrons with an anisotropic distribution.

  3. Effect of ionizing radiation on platelet function in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Kalovidouris, A.E.; Papayannis, A.G. (Evangelismos Hospital, Athens (Greece))

    1981-01-01

    The effect of ionizing radiation on platelet function was investigated in vitro. Platelet-rich plasma (300x10/sup 9//l) was irradiated with doses of 1, 4, 10, 20 and 50 Gy. Platelet function tests were performed on both irradiated and control (non-irradiated) platelet samples. The platelet function tests were (1) platelet aggregation by ADP (1, 2, 4 ..mu..mol final concentration), adrenaline and collagen, (2) ADP-release from platelets, (3) clot retraction and (4) platelet factor-3 availability. It was found that roentgen irradiation of platelets in vitro did not affect these platelet function tests.

  4. Biological effect of non-ionizing radiations on microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Kikuo; Yamamoto, Takayoshi [Osaka Univ., Radioisotope Research Center, Suita, Osaka (Japan); Nakaoka, Yasuo [Osaka Univ., Graduate School of Engineering Science, Department of Biophysical Engineering, Toyonaka, Osaka (Japan)

    2000-05-01

    We studied the effect of extremely low frequency magnetic fields (ELF-MF) of 60-Hz and 500 mT on the growth and the mutation frequency of the budding yeast S.cerevisiae and on the behavior of the ciliate Paramecium multimicronucleatum. The growth rate and mutation frequencies of several strains of S.cerevisiae (wild type and radiation sensitive mutants, rad or rev) were examined but no significant difference was observed. Moreover, the behavior of P.multimicronucleatum under the ELF-MF was examined. When exposed to a vertical field of 0.6 T, the cells accumulated at the upper end of the cuvette. (author)

  5. Computer program for pulsed thermocouples with corrections for radiation effects

    Science.gov (United States)

    Will, H. A.

    1981-01-01

    A pulsed thermocouple was used for measuring gas temperatures above the melting point of common thermocouples. This was done by allowing the thermocouple to heat until it approaches its melting point and then turning on the protective cooling gas. This method required a computer to extrapolate the thermocouple data to the higher gas temperatures. A method that includes the effect of radiation in the extrapolation is described. Computations of gas temperature are provided, along with the estimate of the final thermocouple wire temperature. Results from tests on high temperature combustor research rigs are presented.

  6. Radiation effects in x-irradiated hydroxy compounds

    Science.gov (United States)

    Budzinski, Edwin E.; Potter, William R.; Box, Harold C.

    1980-01-01

    Radiation effects are compared in single crystals of xylitol, sorbitol, and dulcitol x-irradiated at 4.2 °K. In xylitol and dulcitol, but not in sorbitol, a primary oxidation product is identified as an alkoxy radical. ENDOR measurements detected three proton hyperfine couplings associated with the alkoxy ESR absorption, one of which is attributed to a proton three bond lengths removed from the seat of unpaired spin density. Intermolecular trapping of electrons is observed in all three crystals. ENDOR measurements were made of the hyperfine couplings between the trapped electron and the hydroxy protons forming the trap.

  7. Ozone precursors have regionally variable effect on radiative forcing

    Science.gov (United States)

    Schultz, Colin

    2013-02-01

    When released near the surface, carbon monoxide, assorted nitrogen oxides (NOx ), and nonmethane hydrocarbons (NMHC) contribute to the production of ozone, a key component of photochemical smog, which is known to have serious deleterious effects on human health. However, when ozone gets lifted into the troposphere, it is a greenhouse gas. That these ozone precursors have such a dual-pronged effect—affecting both human health and the global radiation budget—suggests that mitigating their emissions could be a potential method to both improve air quality and dampen the rate of anthropogenic climate change.

  8. The radiation protection effect of propolis to embryonic effects in ICR mice

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Sachiyo; Gu, Yeunhwa; Suzuki, Ikukatsu; Hasegawa, Takeo; Yamamoto, Youichi; Muto, Hroe; Yanagisawa, Takaharu; Iwasa, Toshihiro [Suzuka University, Mie (Japan)

    1999-07-01

    The profit which radiation brought to the Homo sapiens is very big. But, radiation has even harmful parameter for the human besides one case. After effect on man to the radiation is thought about, the individiual of which sensibility is the highest is a fetus. As for the embryonic death rate, propolis was administered, and obviously embryonic death rate was poorer than the 1.5Gy independent exposure group, and significant difference was recognized by a 1.5Gy radiation exposure group (p<0.001). It had a 1.5Gy radiation exposure group made clear by this research fetal death rate propolis administer more only 1.5Gy exposure fetal death rate development low (p<0.001). Fetal death rate wasn't recognized by propolis administration group (Sham control). As for the teratogenesis rate, propolis was administered, and the teratogenesis rate of the 1.5Gy radiation exposure group was higher than the 1.5Gy radiation independent exposure group. But, this is thought anamorphosis appear by propolis administration so long as there was much number of the survival fetuses. The modality of the external malformation which appeared was exencephaly, anaomalise of tail, anophthalmia, cleft palate, hydrcephaly, and so on. As for the fetal body weight were recognized, a 1.5Gy group and propolis administered 1.5Gy radiation exposure group decreased in comparison with the control as for significant difference (p<0.001)

  9. Geant4 electromagnetic physics updates for space radiation effects simulation

    Science.gov (United States)

    Ivantchenko, Anton; Nieminen, Petteri; Incerti, Sebastien; Santin, Giovanni; Ivantchenko, Vladimir; Grichine, Vladimir; Allison, John; Karamitos, Mathiew

    The Geant4 toolkit is used in many applications including space science studies. The new Geant4 version 10.0 released in December 2013 includes a major revision of the toolkit and offers multi-threaded mode for event level parallelism. At the same time, Geant4 electromagnetic and hadronic physics sub-libraries have been significantly updated. In order to validate the new and updated models Geant4 verification tests and benchmarks were extended. Part of these developments was sponsored by the European Space Agency in the context of research aimed at modelling radiation biological end effects. In this work, we present an overview of results of several benchmarks for electromagnetic physics models relevant to space science. For electromagnetic physics, recently Compton scattering, photoelectric effect, and Rayleigh scattering models have been improved and extended down to lower energies. Models of ionization and fluctuations have also been improved; special micro-dosimetry models for Silicon and liquid water were introduced; the main multiple scattering model was consolidated; and the atomic de-excitation module has been made available to all models. As a result, Geant4 predictions for space radiation effects obtained with different Physics Lists are in better agreement with the benchmark data than previous Geant4 versions. Here we present results of electromagnetic tests and models comparison in the energy interval 10 eV - 10 MeV.

  10. Late health effects of chronic radiation exposure of bone marrow

    Energy Technology Data Exchange (ETDEWEB)

    Yarmoshenko, Ilia V.; Malinovsky, Georgy P.; Konshina, Lidia G.; Zhukovsky, Michael V. [Institute of Industrial Ecology UB RAS, 620219, 20, Sophy Kovalevskoy St., Ekaterinburg (Russian Federation); Tuzankina, Irina A. [Institute of Immunology and Physiology UB RAS, 620049, 106, Pervomayskaya St., Ekaterinburg (Russian Federation)

    2014-07-01

    Accidental explosion of waste storage tank at former soviet plutonium production plant 'Mayak' in 1957 resulted in emission of considerable amount of radioactive substances to the atmosphere. Atmospheric transfer and fallout caused contamination of the environment by Sr-90 and short-lived radionuclides (East-Ural Radioactive Trace, EURT). Due to consumption of contaminated food and milk some internal organs were affected to relatively high radiation exposure. Archive data of causes of deaths of rural population of EURT northern part for period 1957-2000 were used to create the Register on causes of deaths. Register records related to the settlements where initial surface contamination by Sr-90 was above and below 3.7 kBq/m2 were included to exposed (4 844 records) and unexposed (6 158 records) group respectively. Basing on the Register the analysis of cancer and non-cancer health effects of radiation exposure was conducted. By estimating proportionate mortality ratios statistically significant excess mortality due to the groups of causes of death as follow was observed in exposed population: stomach, liver and cervix cancers; group consisted only of stomach cancer; non-cancer deceases of infectious etiology. Non-significant but remarkably high risk was observed for the following groups of causes of death: bone cancer; leukemia; liver cancer; cervix cancer. Insignificant, virtually zero risk was found for: non-gastrointestinal solid cancers; colon and lung cancers; non-infectious non-cancer deceases. At the same time, considerable radiation doses were absorbed in bone (mean bone surface dose about 0.1 Gy) and colon (mean dose about 0.07 Gy). Doses absorbed in other organs and tissues were negligible and amounted less than 0.01 Gy for most tissues. It can be seen that some disagreement between observed effects and absorbed doses is revealed. Most remarkable is the high excess risks of stomach, liver and cervix cancers as well as non-cancer deceases of

  11. Characterizations of and Radiation Effects in Several Emerging CMOS Technologies

    Science.gov (United States)

    Shufeng Ren

    the total ionizing dose (TID) effect, to understand the associated physical mechanisms, and to help to inspire ideas to improve radiation immunity of these novel devices. The experimental methods used in this thesis research include the measurements of C-V, I-V characteristics, where novel gate stack and interface characterization techniques are employed, such as AC Gm method, 1/f low frequency noise method, inelastic electron tunneling spectroscopy (IETS) for chemical bonding and defects detection, and carrier transport modeling. Sentaurus TCAD simulations are also carried out to obtain more physical insight in the complex, extremely scaled, device structures.

  12. Early effects of preoperative radiation therapy for invasive bladder cancer

    Energy Technology Data Exchange (ETDEWEB)

    Isaka, Shigeo; Igarashi, Tatsuo; Ito, Haruo

    1983-10-01

    22 patients with high grade invasive bladder cancer were treated with preoperative radiation therapy (910 rad by fast neutron or 3000 rad by X ray during 2 weeks) followed by radical cystectomy and urinary diversion. 62.5 % of patients showed reduction in tumor size more than 50% evaluated by cystogram. Stage down was observed in 38% of patients compared between clinical and pathological stage. Histopathological effect of GII or GIII, according to the criteria described by Ohboshi, was noticed in 79 % of the patients. Better effect seemed to be obtained in fast neutron treated group than in X ray group. 19 patients received curative surgery, and 18 patients were alive without recurrence after 10 months (mean observed term). One died from lung metastasis 4.5 months after surgery. 50% of the patients complained of side effects of irradiation although they were tolerable, and 32% of the patients had major complications of surgery.

  13. Topological magnetoelectric effects in microwave far-field radiation

    CERN Document Server

    Berezin, M; Shavit, R

    2015-01-01

    Similar to electromagnetism, described by the Maxwell equations, the physics of magnetoelectric (ME) phenomena deals with the fundamental problem of the relationship between electric and magnetic fields. Despite a formal resemblance between the two notions, they concern effects of different natures. In general, ME coupling effects manifest in numerous macroscopic phenomena in solids with space and time symmetry breakings. Recently it was shown that the near fields in the proximity of a small ferrite particle with magnetic dipolar mode (MDM) oscillations have the space and time symmetry breakings and topological properties of these fields are different from topological properties of the free space electromagnetic (EM) fields. Such MDM originated fields, called magnetoelectric (ME) fields, carry both spin and orbital angular momentums. They are characterized by power flow vortices and non zero helicity. In this paper, we report on observation of the topological ME effects in far field microwave radiation based ...

  14. Convection and radiation effects in hollow, compound optical fibers

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, J.I. [Room I-320-D, ETS Ingenieros Industriales, Universidad de Malaga, Plaza El Ejido, s/n, 29013 Malaga (Spain)

    2005-09-01

    A coupled model for the study of hollow, compound optical fiber drawing processes that accounts for the heat transfer in the preform and fiber and for the motion of the gases surrounding the preform and fiber by means of two-dimensional equations, employs a net radiative model for the radiative heat exchanges amongst the preform, fiber, irises and furnace walls, and uses asymptotic one-dimensional equations for the geometry, axial velocity component and temperature along the fiber for small Biot numbers is presented. It is shown that the coupled model predicts that radiative heat exchanges are about three times larger than forced convection effects, and free convection is not important. It is also shown that the fiber's geometry, axial velocity and temperature predicted by the coupled model are in remarkable good agreement with those obtained with only the one-dimensional model for hollow, compound fibers using a properly chosen constant Biot number. The results of the one-dimensional model for hollow, compound fibers show that, as the heat transfer losses from the fiber increase, the fiber's dynamic viscosity increases, the fiber exhibits a strong necking phenomenon and the fiber's axial velocity increases rapidly from its value at the die's exit to a constant value downstream and then remains constant. For the boundary conditions considered in this paper, it is shown that the activation energies of the viscosity laws for the inner and outer materials of the hollow, compound fiber do not have very strong effects on the fiber's geometry, axial velocity component and temperature, whereas the fiber's solidification point moves towards the die as the thermal Peclet number is decreased. It is also shown that the pre-exponential factor and activation energy of the dynamic viscosity law do not play a key role in determining the fiber's geometry and temperature for the conditions analyzed in this paper. (authors)

  15. Biological effects of low level exposures to chemicals and radiation

    Energy Technology Data Exchange (ETDEWEB)

    Calabrese, E.J. (ed.)

    1992-01-01

    In May 1990 a group of scientists representing several federal agencies, the International Society of Regulatory Toxicology and Pharmacology, the private sector, and academia met to develop a strategy to encourage the study of the biological effects of low level exposures (BELLE) to chemical agents and radioactivity. A workshop was held in 1991 with seven invited speakers focusing on the toxicological implications of biological adaptations. The selection of topics and speakers was designed to consider critically the concept of hormesis, not only in a broad, conceptual manner, but also at the molecular and biochemical levels. These presentations offered a complementary perspective on the diverse range of molecular mechanisms that can become activated at low levels of toxicant exposure. In addition to chemical toxicology research, an overview of current research on Effects of low-dose radiation on the immune response' was presented as well as Cellular adaptation as an important response during chemical carcinogenesis'. The final presentation was devoted to biostatistical considerations when designing studies that address issues associated with the biological responses to low doses of chemicals and radiation, as well as issues in interpretation of the findings from such studies.

  16. Combination Effect of Nimotuzumab with Radiation in Colorectal Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hye Kyung; Kim, Mi Sook; Jeong, Jae Hoon [Korea Institute of Radiologicaland Medical Sciences, Seoul (Korea, Republic of)

    2010-11-15

    To investigate the radiosensitizing effect of the selective epidermal growth factor receptor (EGFR) inhibitor nimotuzumab in human colorectal cancer cell lines. Four human colorectal cancer cell lines, HCT-8, LoVo, WiDr, and HCT-116 were treated with nimotuzumab and/or radiation. The effects on cell proliferation, viability, and cell cycle progression were measured by MTT, clonogenic survival assay, flow cytometry, and Western blot. An immunoblot analysis revealed that EGFR phosphorylation was inhibited by nimotuzumab in colorectal cancer cell lines. Under these experimental conditions, pre-treatment with nimotuzumab increased radiosensitivity of colorectal cancer cell lines, except for cell line HCT-116. However, cell proliferation or cell cycle progression was not affected by the addition of nimotuzumab, irrespective of irradiation. Nimotuzumab enhanced the radiosensitivity of colorectal cancer cells in vitro by inhibiting EGFR-mediated cell survival signaling. This study provided a rationale for the clinical application of the selective EGFR inhibitor, nimotuzumab in combination with radiation in colorectal cancer cells.

  17. Errors and Uncertainties in Dose Reconstruction for Radiation Effects Research

    Energy Technology Data Exchange (ETDEWEB)

    Strom, Daniel J.

    2008-04-14

    Dose reconstruction for studies of the health effects of ionizing radiation have been carried out for many decades. Major studies have included Japanese bomb survivors, atomic veterans, downwinders of the Nevada Test Site and Hanford, underground uranium miners, and populations of nuclear workers. For such studies to be credible, significant effort must be put into applying the best science to reconstructing unbiased absorbed doses to tissues and organs as a function of time. In many cases, more and more sophisticated dose reconstruction methods have been developed as studies progressed. For the example of the Japanese bomb survivors, the dose surrogate “distance from the hypocenter” was replaced by slant range, and then by TD65 doses, DS86 doses, and more recently DS02 doses. Over the years, it has become increasingly clear that an equal level of effort must be expended on the quantitative assessment of uncertainty in such doses, and to reducing and managing uncertainty. In this context, this paper reviews difficulties in terminology, explores the nature of Berkson and classical uncertainties in dose reconstruction through examples, and proposes a path forward for Joint Coordinating Committee for Radiation Effects Research (JCCRER) Project 2.4 that requires a reasonably small level of effort for DOSES-2008.

  18. Neurological AdverseEffects after Radiation Therapyfor Stage II Seminoma

    Directory of Open Access Journals (Sweden)

    Liv Ebbeskov Lauritsen

    2012-08-01

    Full Text Available We report 3 cases of patients with testicular cancer and stage II seminoma who developed neurological symptoms with bilateral leg weakness about 4 to 9 months after radiation therapy (RT. They all received RT to the para-aortic lymph nodes with a total dose of 40 Gy (36 Gy + 4 Gy as a boost against the tumour bed with a conventional fractionation of2 Gy/day, 5 days per week. RT was applied as hockey-stick portals, also called L-fields. In 2 cases, the symptoms fully resolved. Therapeutic irradiation can cause significant injury to the peripheral nerves of the lumbosacral plexus and/or to the spinal cord. RT is believed to produce plexus injury by both direct toxic effects and secondary microinfarction of the nerves, but the exact pathophysiology of RT-induced injury is unclear. Since reported studies of radiation-induced neurological adverse effects are limited, it is difficult to estimate their frequency and outcome. The treatment of neurological symptoms due to RT is symptomatic.

  19. Neurobehavioral Effects of Space Radiation on Psychomotor Vigilance Tests

    Science.gov (United States)

    Hienz, Robert; Davis, Catherine; Weed, Michael; Guida, Peter; Gooden, Virginia; Brady, Joseph; Roma, Peter

    Neurobehavioral Effects of Space Radiation on Psychomotor Vigilance Tests INTRODUCTION Risk assessment of the biological consequences of living in the space radiation environment represents one of the highest priority areas of NASA radiation research. Of critical importance is the need for a risk assessment of damage to the central nervous system (CNS) leading to functional cognitive/behavioral changes during long-term space missions, and the development of effective shielding or biological countermeasures to such risks. The present research focuses on the use of an animal model that employs neurobehavioral tests identical or homologous to those currently in use in human models of risk assessment by U.S. agencies such as the Depart-ment of Defense and Federal Aviation and Federal Railroad Administrations for monitoring performance and estimating accident risks associated with such variables as fatigue and/or alcohol or drug abuse. As a first approximation for establishing human risk assessments due to exposure to space radiation, the present work provides animal performance data obtained with the rPVT (rat Psychomotor Vigilance Test), an animal analog of the human PVT that is currently employed for human risk assessments via quantification of sustained attention (e.g., 'vigilance' or 'readiness to perform' tasks). Ground-based studies indicate that radiation can induce neurobehavioral changes in rodents, including impaired performance on motor tasks and deficits in spatial learning and memory. The present study is testing the hypothesis that radiation exposure impairs motor function, performance accuracy, vigilance, motivation, and memory in adult male rats. METHODS The psychomotor vigilance test (PVT) was originally developed as a human cognitive neurobe-havioral assay for tracking the temporally dynamic changes in sustained attention, and has also been used to track changes in circadian rhythm. In humans the test requires responding to a small, bright

  20. Beta radiation shielding with lead and plastic: effect on bremsstrahlung radiation when switching the shielding order.

    Science.gov (United States)

    Van Pelt, Wesley R; Drzyzga, Michael

    2007-02-01

    Lead and plastic are commonly used to shield beta radiation. Radiation protection literature is ubiquitous in advising the placement of plastic first to absorb all the beta particles before any lead shielding is used. This advice is based on the well established theory that radiative losses (bremsstrahlung production) are more prevalent in higher atomic number (Z) materials than in low Z materials. Using 32P beta radiation, we measured bremsstrahlung photons transmitted through lead and plastic (Lucite) shielding in different test configurations to determine the relative efficacy of lead alone, plastic alone, and the positional order of lead and plastic. With the source (32P) and detector held at a constant separation distance, we inserted lead and/or plastic absorbers and measured the reduction in bremsstrahlung radiation level measured by the detector. With these test conditions, analysis of measured bremsstrahlung radiation in various thicknesses and configurations of lead and plastic shielding shows the following: placing plastic first vs. lead first reduces the transmitted radiation level only marginally (10% to 40%); 2 mm of additional lead is sufficient to correct the "mistake" of placing the lead first; and for equal thicknesses or weights of lead and plastic, lead is a more efficient radiation shield than plastic.

  1. Report on the Radiation Effects Testing of the Infrared and Optical Transition Radiation Camera Systems

    Energy Technology Data Exchange (ETDEWEB)

    Holloway, Michael Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-04-20

    Presented in this report are the results tests performed at Argonne National Lab in collaboration with Los Alamos National Lab to assess the reliability of the critical 99Mo production facility beam monitoring diagnostics. The main components of the beam monitoring systems are two cameras that will be exposed to radiation during accelerator operation. The purpose of this test is to assess the reliability of the cameras and related optical components when exposed to operational radiation levels. Both X-ray and neutron radiation could potentially damage camera electronics as well as the optical components such as lenses and windows. This report covers results of the testing of component reliability when exposed to X-ray radiation. With the information from this study we provide recommendations for implementing protective measures for the camera systems in order to minimize the occurrence of radiation-induced failure within a ten month production run cycle.

  2. Phenomenological approach to introduce damping effects on radiation field states

    CERN Document Server

    D'Almeida, N G; Serra, R M; Moussa, M H Y

    2000-01-01

    In this work we propose an approach to deal with radiation field states which incorporates damping effects at zero temperature. By using some well known results on dissipation of a cavity field state, obtained by standard ab-initio methods, it was possible to infer through a phenomenological way the explicit form for the evolution of the state vector for the whole system: the cavity-field plus reservoir. This proposal turns out to be of extreme convenience to account for the influence of the reservoir over the cavity field. To illustrate the universal applicability of our approach we consider the attenuation effects on cavity-field states engineering. A proposal to maximize the fidelity of the process is presented.

  3. Aspirin (acetylsalicylic acid) effects on behavioral thermoregulation with microwave radiation.

    Science.gov (United States)

    Vitulli, W F; Laconsay, K L; Agnew, A C; Henderson, M E; Quinn, J M; Holland, B E; DePace, A N

    1993-08-01

    Aspirin is a widely used over-the-counter drug in our society which has wide therapeutic value, yet not all of the behavioral side effects have been studied. Different doses of aspirin solutions were administered (ip) prior to fixed-interval 2-min. schedules of microwave reinforcement in rats tested in a cold environment. Four Sprague-Dawley rats were conditioned to regulate their thermal environment with 5-sec. exposures of MW reinforcement. Friedman's nonparametric test showed significant differences among aspirin and saline-control doses. Post hoc sign tests showed that a moderate dose of aspirin increased operant behavior reinforced by MW radiation, yet lower and higher doses decreased and then increased the rate of responding which resulted in an inverted U-shaped trend. Possible multiple effects of aspirin in terms of its thermoregulatory as well as its pain-tolerance properties, and implications for hypothalamic "set point" are discussed.

  4. Cooperation effect of radiation in Nd:YAP

    Science.gov (United States)

    Koselja, Michael P.; Kubelka, Jiri; Kvapil, Jiri

    1993-06-01

    Behavior of radiation of Nd:YAP and Nd:YAG in a resonator with extremely low Q-value have been studied. The light pulses of the form discrete spikes around 1.08 micrometers have been observed using a relatively low pumping energies in Nd:YAP. The formation of these pulses has threshold character. Additional measurement such as second harmonic generation, far field distribution and spectral behavior have shown that emitted pulses have a typical laser character. Derived value of threshold gain parameter with material losses (g0 - (alpha) ) for threshold energy is 0.581 cm-1. No similar effect was observed for Nd:YAG, even for four timeshigher value of threshold energy than Nd:YAP. Obtained results demonstrate the cooperative effects of Nd3+ ions in Nd:YAP through a correlation between electromagnetic and crystal field.

  5. Effects on vegetable seeds due to non ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Acri, G.; Oliva, A.; Falcone, G. [Universita della Calabria, Dipt. di Fisica, Cosenza (Italy); Acri, G.; Testagrossa, B.; Vermiglio, G.; Tripepi, M.G. [Universita della Calabria, Dipt. di Ecologia, Cosenza (Italy); Bitonti, M.B.; Chiappetta, A. [Universita di Messina, Dipt. di Protezionistica Ambientale, Sanitaria, Sociale ed Industriale, Messina (Italy)

    2006-07-01

    Based on the tightly relationship between light and plants growth and development, the present work aims to obtain some further insight into the effects of non ionizing radiation the photo-autotrophic organisms, due to the relevant implications for both scientific knowledge and economical and social effects. In this context, a set of experiments was conducted to investigate the influence of a long-lasting exposition to both RF at 1850 MHz and polarized light source on roots elongation of corn kernels. The radical apparatus was chosen as a sensible parameter and the elongation of the roots was monitored as a function of time. Mitotic index and length of meta-xylem cells were estimated in root apex as an index of cell proliferation and cell expansion activity, respectively. (N.C.)

  6. The global land Cryosphere Radiative Effect during the MODIS era

    Science.gov (United States)

    Singh, D.; Flanner, M. G.; Perket, J.

    2015-07-01

    Cryosphere Radiative Effect (CrRE) is the instantaneous influence of snow- and ice-cover on Earth's top of atmosphere (TOA) solar energy budget. Here, we apply measurements from the Moderate Resolution Imaging Spectrometer (MODIS), combined with microwave retrievals of snow presence and radiative kernels produced from 4 different models, to derive CrRE over global land during 2001-2013. We estimate global annual mean land CrRE during this period of -2.6 W m-2, with variations from -2.2 to -3.0 W m-2 resulting from use of different kernels, and variations of -2.4 to -2.6 W m-2 resulting from different algorithmic determinations of snow presence and surface albedo. Slightly more than half of the global land CrRE originates from perennial snow on Antarctica, whereas the majority of the Northern Hemisphere effect originates from seasonal snow. Consequently, the Northern Hemisphere land CrRE peaks at -6.0 W m-2 in April, whereas the Southern Hemisphere effect more closely follows the austral insolation cycle, peaking in December. Mountain glaciers resolved in 0.05° MODIS data contribute about -0.037 W m-2 (1.4 %) of the global effect, with the majority (94 %) of this contribution originating from the Himalayas. Inter-annual trends in the global annual mean land CrRE are not statistically significant during the MODIS era, but trends are positive (less negative) over large areas of Northern Asia, especially during spring, and slightly negative over Antarctica, possibly due to increased snowfall. During a common overlap period of 2001-2008, our MODIS estimates of the Northern Hemisphere land CrRE are about 18 % smaller (less negative) than previous estimates derived from coarse-resolution AVHRR data, though inter-annual variations are well correlated (r = 0.78), indicating that these data are useful in determining longer term trends in land CrRE.

  7. The effect of space radiation of the nervous system

    Science.gov (United States)

    Gauger, Grant E.; Tobias, Cornelius A.; Yang, Tracy; Whitney, Monroe

    The long-term effects of irradiation by accelerated heavy ions on the structure and function of the nervous system have not been studied extensively. Although the adult brain is relatively resistant to low LET radiation, cellular studies indicate that individual heavy ions can produce serious membrane lesions and multiple chromatin breaks. Capillary hemorrhages may follow high LET particle irradiation of the developing brain as high RBE effects. Evidence has been accumulating that the glial system and blood-brain barrier (BBB) are relatively sensitive to injury by ionizing radiation. While DNA repair is active in neural systems, it may be assumed that a significant portion of this molecular process is misrepair. Since the expression of cell lethality usually requires cell division, and nerve cells have an extremely low rate of division, it is possible that some of the characteristic changes of premature aging may represent a delayed effect of chromatin misrepair in brain. Altered microcirculation, decreased local metabolism, entanglement and reduction in synaptic density, premature loss of neurons, myelin degeneration, and glial proliferation are late signs of such injuries. HZE particles are very efficient in producing carcinogenic cell transformation, reaching a peak for iron particles. The promotion of viral transformation is also efficient up to an energy transfer of approximately 300 keV/micron. The RBE for carcinogenesis in nerve tissues remains unknown. On the basis of available information concerning HZE particle flux in interplanetary space, only general estimates of the magnitude of the effects of long-term spaceflight on some nervous system parameters may be constructed.

  8. Ionizing radiation effects on the matter and its applications in research and industry

    Energy Technology Data Exchange (ETDEWEB)

    Cruz Z, E. [Instituto de Ciencias Nucleares, UNAM, Ciudad Universitaria, Mexico 04510, D. F. (Mexico); Martinez B, G. [Laboratorio de Investigacion y Desarrollo de Materiales Avanzados, Facultad de Quimica, Universidad Autonoma del Estado de Mexico, Km. 12 Carretera Toluca-Atlacomulco, San Cayetano 50200, Estado de Mexico (Mexico)], e-mail: ecruz@nucleares.unam.mx

    2009-07-01

    Ionizing radiation as alpha and beta particles, electron accelerated, neutron particle, and X-rays and photons with relative high energy, as an useful radiation tool for many applications. the last two kind radiations are know as electromagnetic radiation. The radiation effects on the matter are well know that produces about fourteen processes during interaction with solids, aqueous solution and gases. In applications, commonly it depends of the nature and interest on the material samples that their characteristics can modify with the energy deposited on them. This part is devoted to more important effects produced by ionizing radiation with the matter and talk about the wide range applications recently; crystals radiation detectors and for application in medicine, detection of foodstuffs irradiated for preservation, and the application of ionizing radiation on polymeric materials. (Author)

  9. The effect of therapeutic radiation on canine alveolar ridges augmented with hydroxylapatite

    DEFF Research Database (Denmark)

    Pinholt, E M; Kwon, P H

    1992-01-01

    The purpose of this investigation was to evaluate the effect of radiation on hydroxylapatite (HA) implanted subperiosteally for alveolar ridge augmentation in dogs. All bicuspids and molars were extracted from 16 dogs. After 6 weeks, nonporous HA granules were implanted subperiosteally on the alv...... radiation. The radiation did not cause development of dehiscence or osteonecrosis....

  10. Radiation effects in Zr and Hf containing garnets

    Energy Technology Data Exchange (ETDEWEB)

    Whittle, Karl R. [Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, PMB1, Menai, NSW 2234 (Australia); Department of Materials Science and Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom); Blackford, Mark G.; Smith, Katherine L. [Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, PMB1, Menai, NSW 2234 (Australia); Zaluzec, Nestor J. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Weyland, Matthew [Monash Centre for Electron Microscopy, Monash University, Victoria 3800 (Australia); Department of Materials Engineering, Monash University, Victoria 3800 (Australia); Lumpkin, Gregory R. [Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, PMB1, Menai, NSW 2234 (Australia)

    2015-07-15

    Garnets have been considered as host phases for the safe immobilisation of high-level nuclear waste, as they have been shown to accommodate a wide range of elements across three different cation sites, such as Ca, Y, Mn on the a-site, Fe, Al, U, Zr, and Ti on the b-site, and Si, Fe, Al on the c-site. Garnets, due to their ability to have variable composition, make ideal model materials for the examination of radiation damage and recovery in nuclear materials, including as potential waste forms. Kimzeyite, Ca{sub 3}Zr{sub 2}FeAlSiO{sub 12}, has been shown naturally to contain up to 30 wt% Zr, and has previously been examined to elucidate both the structure and ordering within the lattice. This study examines the effects of radiation damage and recovery using in-situ ion beam irradiation with 1 MeV Kr ions at the IVEM-TANDEM facility, Argonne National Laboratory. The complementary Hf containing system Ca{sub 3}Hf{sub 2}FeAlSiO{sub 12} was also examined, and found to have a different response to irradiation damage. A sample of irradiated Ca{sub 3}Zr{sub 2}FeAlSiO{sub 12}, at 1000 K, was characterised using aberration corrected (S)TEM and found to contain discreet, nano-sized, crystalline Fe rich particles, indicating a competing process during recovery is occurring.

  11. Effects of gamma radiation on bee venom: preliminary studies

    Energy Technology Data Exchange (ETDEWEB)

    Costa, H.; Boni-Mitake, M.; Souza, C.F.; Rogero, J.R. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil). Div. de Radiobiologia

    1999-11-01

    Africanized honeybees are very common insects in Brazil and frequently cause accidents followed by important immunological reactions and even deaths. Their venoms are composed of a complex mixture of substances of general biological actions. several works utilizing ionizing radiation showed that it is able to modify protein structures, and successfully detoxify snake venoms toxins, although maintaining its immunological properties. The main objective of this paper was to study the effects of gamma radiation on bee venom, regarding some biochemical and toxicological aspects. Africanized Apis melllifera whole venom (2 mg/ml) in 0.15 M Na Cl solution was irradiated with 2 kGy in a {sup 60} Co source. Preliminary studies has been carried out in order to identify some biochemical changes after irradiation. Concerning this, irradiated and native venom were submitted to a molecular exclusion chromatography (Sephadex G-100), UV absorption spectrum and protein concentration analysis. It could be seen that irradiated bee venom spectrum presented differences when compared to native bee venom, suggesting that some structural alterations has occurred. Protein concentration and chromatography profiles were not changes after irradiation. In order to evaluate the toxicity a lethality assay (L D{sub 50}) has been performed with both venoms, and irradiated venom showed to be less toxic than native one. (author) 23 refs., 3 figs., 1 tab.

  12. The effects of radiofrequency electromagnetic radiation on sperm function.

    Science.gov (United States)

    Houston, B J; Nixon, B; King, B V; De Iuliis, G N; Aitken, R J

    2016-12-01

    Mobile phone usage has become an integral part of our lives. However, the effects of the radiofrequency electromagnetic radiation (RF-EMR) emitted by these devices on biological systems and specifically the reproductive systems are currently under active debate. A fundamental hindrance to the current debate is that there is no clear mechanism of how such non-ionising radiation influences biological systems. Therefore, we explored the documented impacts of RF-EMR on the male reproductive system and considered any common observations that could provide insights on a potential mechanism. Among a total of 27 studies investigating the effects of RF-EMR on the male reproductive system, negative consequences of exposure were reported in 21. Within these 21 studies, 11 of the 15 that investigated sperm motility reported significant declines, 7 of 7 that measured the production of reactive oxygen species (ROS) documented elevated levels and 4 of 5 studies that probed for DNA damage highlighted increased damage due to RF-EMR exposure. Associated with this, RF-EMR treatment reduced the antioxidant levels in 6 of 6 studies that discussed this phenomenon, whereas consequences of RF-EMR were successfully ameliorated with the supplementation of antioxidants in all 3 studies that carried out these experiments. In light of this, we envisage a two-step mechanism whereby RF-EMR is able to induce mitochondrial dysfunction leading to elevated ROS production. A continued focus on research, which aims to shed light on the biological effects of RF-EMR will allow us to test and assess this proposed mechanism in a variety of cell types.

  13. RADIATION EFFECTS ON EPOXY/CARBON FIBER COMPOSITE

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, E; Eric Skidmore, E

    2008-12-12

    The Department of Energy Savannah River Site vitrifies nuclear waste incident to defense programs through its Defense Waste Processing Facility (DWPF). The piping in the DWPF seal pot jumper configuration must withstand the stresses during an unlikely but potential deflagration event, and maintain its safety function for a 20-year service life. Carbon fiber-reinforced epoxy composites (CFR) were proposed for protection and reinforcement of piping during such an event. The proposed CFR materials have been ASME-approved (Section XI, Code Case N-589-1) for post-construction maintenance and is DOT-compliant per 49CFR 192 and 195. The proposed carbon fiber/epoxy composite reinforcement system was originally developed for pipeline rehabilitation and post-construction maintenance in petrochemical, refineries, DOT applications and other industries. The effects of ionizing radiation on polymers and organic materials have been studied for many years. The majority of available data are based on traditional exposures to gamma irradiation at high dose rates ({approx}10,000 Gy/hr) allowing high total dose within reasonable test periods and general comparison of different materials exposed at such conditions. However, studies in recent years have shown that degradation of many polymers are sensitive to dose rate, with more severe degradation often observed at similar or even lower total doses when exposed to lower dose rates. This behavior has been primarily attributed to diffusion-limited oxidation which is minimized during very high dose rate exposures. Most test standards for accelerated aging and nuclear qualification of components acknowledge these limitations. The results of testing to determine the radiation resistance and microstructural effects of gamma irradiation exposure on a bisphenol-A based epoxy matrix composite reinforced with carbon fibers are presented. This work provides a foundation for a more extensive evaluation of dose rate effects on advanced epoxy

  14. Effect of radiation on the function of the residual pancreas

    Energy Technology Data Exchange (ETDEWEB)

    Matsuoka, Yoshisuke; Tsujii, Hirohiko; Kamada, Tadashi; Irie, Goro

    1987-12-01

    For patients with carcinomas of the bile duct and the pancreas, a pancreatoduodenectomy is generally the first choise of treatment. In our institute, the residual pancreas after surgery is transplanted into the abdominal wall in order to prevent diabetes mellites. We irradiated the residual pancreas postoperatively with a dosage of 15 to 43 Gy in order to inhibit the exocrine function. We then removed the drainage catheter from the residual pancreas. In the treatment, the endocrine function can be preserved. With respect to the radiation effect on the exocrine function, the amount of pancreatic secretion showed a transient increase in the first few days after the start of the irradiation, followed by a mild decrease. The serum amylase decreased immediatelly after the start of irradiation and increased sequentially during long-term observations. The amylase in the pancreatic juice showed a remarkable decrease immediatelly after the start of irradiation, and this decrease was maintained during long-term observations (The minimum level was observed from the dosage of 20 to 30 Gy). In order to analyse the radiation effect on the endocrine function, 50 g OGTTs were performed before and after irradiation in thirteen patients. In two of the thirteen patients, the results of the tests showed a new diabetic pattern after irradiation, which required insulin in one patient. It was concluded from our study that irradiation to the residual pancreas with in the dosage of 15 to 43 Gy the catheters in the residual pancreas could be removed in fourteen of fifteen patients without any unfavorable effect.

  15. Radiation-pressure-dominant acceleration: Polarization and radiation reaction effects and energy increase in three-dimensional simulations.

    Science.gov (United States)

    Tamburini, M; Liseykina, T V; Pegoraro, F; Macchi, A

    2012-01-01

    Polarization and radiation reaction (RR) effects in the interaction of a superintense laser pulse (I>10(23) W cm-2) with a thin plasma foil are investigated with three dimensional particle-in-cell (PIC) simulations. For a linearly polarized laser pulse, strong anisotropies such as the formation of two high-energy clumps in the plane perpendicular to the propagation direction and significant radiation reactions effects are observed. On the contrary, neither anisotropies nor significant radiation reaction effects are observed using circularly polarized laser pulses, for which the maximum ion energy exceeds the value obtained in simulations of lower dimensionality. The dynamical bending of the initially flat plasma foil leads to the self-formation of a quasiparabolic shell that focuses the impinging laser pulse strongly increasing its energy and momentum densities.

  16. Nursing-led management of side effects of radiation: evidence-based recommendations for practice

    Directory of Open Access Journals (Sweden)

    Poirier P

    2013-03-01

    Full Text Available Patricia PoirierUniversity of Maine School of Nursing, Orono, ME, USAAbstract: It has been estimated that 50%–60% of patients diagnosed with cancer will receive radiation therapy at some point in their treatment. Although radiation therapy can play a significant role in the cure or control of cancer, and the palliation of symptoms, it also has side effects. Side effects of radiation therapy can interfere with patient quality of life and daily functioning. Severe side effects can lead to delays in treatment, potentially affecting the outcome of treatment. All patients receiving radiation therapy are at risk of fatigue and skin reactions in the area of the body being treated. Other side effects of radiation therapy are specific to the part of the body being treated. Radiation therapy to the head and neck area may cause oral mucositis, dryness, and nutritional deficiencies. Radiation therapy to the chest or lung area may lead to difficulty in swallowing and eating. Radiation therapy to the pelvis frequently causes diarrhea. There are many nursing interventions available to manage the side effects of treatment based on best available evidence and expert opinion. Nurses in all settings are essential in helping patients manage the side effects of treatment and maintain their quality of life. The purpose of this review is to provide nurses with evidence-based recommendations and suggestions for managing common acute side effects of radiation therapy.Keywords: evidence-based practice, radiation therapy, side effects, nursing management

  17. The effect of green tea on radiation-induced late biological effect in mice

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Ho; Kim, Se Ra; Lee, Hae June; Jo, Sung Kee [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2004-07-01

    This study was performed to determine the effect of Green tea on the late biological effect of mice irradiated with 3 Gy of gamma-radiation. There were various findings including hematopoietic and lymphoid tumor, lung cancer, ovarian cancer and cancer of other lesions. Further studies are needed to characterize better the protective nature of active compounds.

  18. Contribution of modern medical imaging technology to radiation health effects in exposed populations

    Energy Technology Data Exchange (ETDEWEB)

    Fabrikant, J.I,

    1980-11-01

    The introduction of technically-advanced imaging systems in medicine carries with it potential health hazards, particularly from ionizing and nonionizing radiation exposure of human populations. This paper will discuss what we know and what we do not know about the health effects of low-level radiation, how the risks of radiation-induced health effects may be estimated, the sources of the scientific data, the dose-response models used, the uncertainties which limit precision of estimation of excess health risks from low-level radiation, and what the implications might be for radiation protection in medicine and public health policy.

  19. UV radiation in marine ectotherms: Molecular effects and responses

    Energy Technology Data Exchange (ETDEWEB)

    Dahms, Hans-U. [National Research Lab of Marine Molecular and Environmental Bioscience, Department of Chemistry and the Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Department of Green Life Science, College of Natural Science, Sangmyung University, Seoul 110-743 (Korea, Republic of); Lee, Jae-Seong, E-mail: jslee2@hanyang.ac.kr [National Research Lab of Marine Molecular and Environmental Bioscience, Department of Chemistry and the Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2010-04-01

    This review summarizes current knowledge on ultraviolet radiation (UVR)-induced cellular and molecular damage in marine ectotherms (invertebrates and fish). UVR impairs sperm motility, reduces fertilization, and causes embryo malformation that in turn affects recruitment and therefore the sustainability of natural populations. The direct molecular effects of UVR are mediated by absorption of certain wavelengths by specific macromolecules and the dissipation of the absorbed energy via photochemical reactions. Most organisms have defense mechanisms that either prevent UVR-induced damage, or mechanisms that repair the damage. Photoprotective pigments, antioxidant defense compounds, and cell cycle development genes are some of the molecules involved in UVR defense. Photoenzymatic repair and nucleotide excision repair are the two primary DNA repair systems in marine ectotherms. We anticipate that toxicogenomic studies will gain importance in UVR research because they can elucidate the primary processes involved in UVR damage and the cellular response to this damage.

  20. Measurements of radiation effects on a 4 Mb PSRAM memory

    Science.gov (United States)

    Gonçalez, Odair Lelis; Pereira Junior, Evaldo Carlos Fonseca; Vaz, Rafael Galhardo; Pereira, Marlon Antonio; Wirth, Gilson Inácio; Both, Thiago Hanna

    2014-11-01

    The results of a static test of total ionizing dose (TID) effects on an ISSI 4Mb PSRAM memory are reported in this work. The irradiation was performed at the IEAv's Laboratory of Ionizing Radiation with 1.17 and 1.32 MeV gamma-rays from a 60Co source at a dose rate of 2.5 krad/h up to an accumulated dose of 215.7 krad. The TID threshold for bit flip found in this experiment was 52.5 krad. From a sampling of 4096 memory addresses it was estimated a bit flip rate of approximately 50% at an accumulated dose of 215.7 krad.

  1. Neutrino Radiation Showing a Christodoulou Memory Effect in General Relativity

    CERN Document Server

    Bieri, Lydia

    2013-01-01

    We describe neutrino radiation in general relativity by introducing the energy-momentum tensor of a null fluid into the Einstein equations. Investigating the geometry and analysis at null infinity, we prove that a component of the null fluid enlarges the Christodoulou memory effect of gravitational waves. The description of neutrinos in general relativity as a null fluid can be regarded as a limiting case of a more general description using the massless limit of the Einstein-Vlasov system. The present authors with co-authors have work in progress to generalize the results of this paper using this more general description. Gigantic neutrino bursts occur in our universe in core-collapse supernovae and in the mergers of neutron star binaries.

  2. Effects of Mechanical and Radiative Supernova Feedback on Subhalo Evolution

    Science.gov (United States)

    Quirk, Amanda; Choi, Ena; Ostriker, Jeremiah P.

    2017-01-01

    Using cosmological hydrodynamical simulations, we investigate the effects supernova feedback has on populations of subhalos at current redshift. A group of halos was run through two simulations, each with different feedback models. One had thermal feedback, and the other had mechanical and radiative feedback. We used a friend-of-friend halo finder on the output of these simulations to explore the stellar and dark matter subhalos created. The number of stellar subhalos created by the mechanical feedback simulation was significantly less than the number created by the thermal feedback model, especially at low mass. Thus, the mechanical feedback model created a number of stellar subhalos more consistent with observations. The mechanical feedback model also showed a presence of dark matter subhalos that lacked stellar particles, or dark subhalos. The results of this analysis can give insight to the Missing Satellite Problem.

  3. Effects of ultraviolet radiation on mole rats kidney: A histopathologic and ultrastructural study

    Directory of Open Access Journals (Sweden)

    Hüseyin Türker

    2014-04-01

    Full Text Available The purpose of this study was to realize the ultrastructural effects of ultraviolet radiation on the kidney tissue cells of mole rats (Spalax leucodon. The mole rats of 180–200 g body weight were divided into the control and radiation-trial groups. The control group was not given any radiation. The other groups were irradiated with artificially produced UVC radiation for 14, 28 and 60 days. The kidney tissue samples were prepared at the end of experiments and analyzed by the light and electron microscope. Several effects were observed in the kidney tissues cells analyzed in accordance with the dose magnitude of radiation. These results clearly show the detrimental effects of UVC radiation on kidney tissue cells in exposure periods dependent on radiation dose and exposure time.

  4. Effects in Plant Populations Resulting from Chronic Radiation Exposure

    Energy Technology Data Exchange (ETDEWEB)

    Geras' kin, Stanislav A.; Volkova, Polina Yu.; Vasiliyev, Denis V.; Dikareva, Nina S.; Oudalova, Alla A. [Russian Institute of Agricultural Radiology and Agroecology, 249032, Obninsk (Russian Federation)

    2014-07-01

    environment activates genetic mechanisms, changing a population's resistance to exposure. However, there are ecological situations in which enhanced resistance has not evolved or has not persisted. Consequently, there are good theoretical and practical reasons for more attention being paid to the mechanisms by which populations becomes more radioresistant and to those situations where radio-adaptation appears not to be taking place. Since radio-adaptation plays an important role in response of populations on radiation exposure, this process needs to be incorporated into management programmes. To this very day, the effects of chronic exposure on living organisms and populations remain poorly explored, and represent a much needed field of research. In spite of the long history of the research, we are still far from complete understanding underlying processes in exposed populations. Neglecting field-collected data in favour of simplified short-term experiments that tend to overestimate adverse effects will obviously have detrimental effect for understanding, predicting, and mitigating consequences of the radiation impact on the environment. Much more is to be elucidated in our understanding before we will be able to give an objective and comprehensive assessment of the biological consequences of chronic, low-level radiation exposures to natural plant and animal populations. (authors)

  5. The Effect of Radiations on the Structural and Electrical Properties of Device Technologies: Comparison and Trends

    OpenAIRE

    Jain, C.P.

    2014-01-01

    The effects of radiation on the structural and electrical properties of electronic devices are complex in nature and have changed much during decades of device evolution. These effects are mainly because of radiation induced charge build-up in oxide and interfacial regions. This paper presents a details of these radiation induced effects, their dependencies, and the change in structural properties and electrical characterises of different devices before and after irradiation are measured and ...

  6. Assessment of the effects of environmental radiation on wind chill equivalent temperatures.

    Science.gov (United States)

    Shitzer, Avraham

    2008-09-01

    Combinations of wind-driven convection and environmental radiation in cold weather, make the environment "feel" colder. The relative contributions of these mechanisms, which form the basis for estimating wind chill equivalent temperatures (WCETs), are studied over a wide range of environmental conditions. Distinction is made between direct solar radiation and environmental radiation. Solar radiation, which is not included in the analysis, has beneficial effects, as it counters and offsets some of the effects due to wind and low air temperatures. Environmental radiation effects, which are included, have detrimental effects in enhancing heat loss from the human body, thus affecting the overall thermal sensation due to the environment. The analysis is performed by a simple, steady-state analytical model of human-environment thermal interaction using upper and lower bounds of environmental radiation heat exchange. It is shown that, over a wide range of relevant air temperatures and reported wind speeds, convection heat losses dominate over environmental radiation. At low wind speeds radiation contributes up to about 23% of the overall heat loss from exposed skin areas. Its relative contributions reduce considerably as the time of the exposure prolongs and exposed skin temperatures drop. At still higher wind speeds, environmental radiation effects become much smaller contributing about 5% of the total heat loss. These values fall well within the uncertainties associated with the parameter values assumed in the computation of WCETs. It is also shown that environmental radiation effects may be accommodated by adjusting reported wind speeds slightly above their reported values.

  7. Radiation Resistant Hybrid Lotus Effect Photoelectrocatalytic Self-Cleaning Anti-Contamination Coatings Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will develop radiation resistant hybrid Lotus Effect photoelectrocatalytic self-cleaning anti-contamination coatings for application to Lunar...

  8. Effect of ionizing radiation on advanced life support medications

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, D.J.; Hubbard, L.B.; Broadbent, M.V.; Stewart, P.; Jaeger, M.

    1987-06-01

    Advanced life support medications stored in emergency department stretcher areas, diagnostic radiology rooms, and radiotherapy suites are exposed to ionizing radiation. We hypothesized that radiation may decrease the potency and thus the shelf life of medications stored in these areas. Atropine, dopamine, epinephrine, and isoproterenol were exposed to a wide range of ionizing radiation. The potency of the four drugs was unaffected by levels of radiation found in ED stretcher areas and high-volume diagnostic radiograph rooms (eg, chest radiograph, computed tomography, fluoroscopy). The potency of atropine may be reduced by gamma radiation in high-use radiotherapy suites. However, dopamine, epinephrine, and isoproterenol were unaffected by high doses of gamma radiation. Atropine, dopamine, epinephrine, and isoproterenol may be safely kept in ED stretcher areas and diagnostic radiology rooms without loss of potency over the shelf life of the drugs.

  9. Second international conference on computer simulation of radiation effects in solids

    Energy Technology Data Exchange (ETDEWEB)

    de la Rubia, T.D.; Gilmer, G.H. [comps.

    1994-08-01

    A total of 102 abstracts are included, arranged under the following headings: interatomic potentials and theoretical methods, displacement cascades and radiation effects in metals, radiation effects in semiconductors, sputtering and surface processes, cluster-solid interactions, highly charged ions and inelastic effects, and posters (A and B).

  10. Genetic radiation effects of Hiroshima and Nagasaki atomic bombs

    Energy Technology Data Exchange (ETDEWEB)

    Srsen, S. (Komenskeho Univ., Bratislava (Czechoslovakia). Lekarska Fakulta)

    1984-05-01

    A group of researchers examined persons who had survived the Hiroshima and Nagasaki bombs and were irradiated and their progeny with the aim of getting an idea of the genetic effects of these explosions. Teratogenic effects are not discussed. In the lymphocytes of the peripheral blood of persons who had been exposed to high dose irradiation the researchers found a significant increase in chromosomal aberrations by conventional and more recent methods of chromosomal analysis. In parents who had survived the atomic holocaust there were no significant deviations as against the rest of the population in still births, neonatal defects, infant mortality, and mortality of first generation progeny, in neonate weight, the sex ratio, increased occurence of leukosis and chromosomal aberrations in their children. These negative findings in the first generation do not signify that there is no danger from atomic bomb blasts for human kind. They only indicate that the effects of radiation were too small to be found by routine methods or that the methods used were not suitable.

  11. Placement and efficiency effects on radiative forcing of solar installations

    Energy Technology Data Exchange (ETDEWEB)

    Burg, Brian R.; Ruch, Patrick; Paredes, Stephan; Michel, Bruno, E-mail: bmi@zurich.ibm.com [IBM Research - Zurich, Säumerstrasse 4, CH-8803 Rüschlikon (Switzerland)

    2015-09-28

    The promise for harnessing solar energy being hampered by cost, triggered efforts to reduce them. As a consequence low-efficiency, low-cost photovoltaics (PV) panels prevail. Conversely, in the traditional energy sector efficiency is extremely important due to the direct costs associated to fuels. This also affects solar energy due to the radiative forcing caused by the dark solar panels. In this paper we extend the concept of energy payback time by including the effect of albedo change, which gives a better assessment of the system sustainability. We present an analysis on the short and medium term climate forcing effects of different solar collectors in Riyadh, Saudi Arabia and demonstrate that efficiency is important to reduce the collector area and cost. This also influences the embodied energy and the global warming potential. We show that a placement of a high concentration photovoltaic thermal solar power station outside of the city using a district cooling system has a double beneficial effect since it improves the solar conversion efficiency and reduces the energy demand for cooling in the city. We also explain the mechanisms of the current economic development of solar technologies and anticipate changes.

  12. Imaging and radiation effects of gold nanoparticles in tumour cells

    Science.gov (United States)

    McQuaid, Harold N.; Muir, Mark F.; Taggart, Laura E.; McMahon, Stephen J.; Coulter, Jonathan A.; Hyland, Wendy B.; Jain, Suneil; Butterworth, Karl T.; Schettino, Giuseppe; Prise, Kevin M.; Hirst, David G.; Botchway, Stanley W.; Currell, Fred J.

    2016-01-01

    Gold nanoparticle radiosensitization represents a novel technique in enhancement of ionising radiation dose and its effect on biological systems. Variation between theoretical predictions and experimental measurement is significant enough that the mechanism leading to an increase in cell killing and DNA damage is still not clear. We present the first experimental results that take into account both the measured biodistribution of gold nanoparticles at the cellular level and the range of the product electrons responsible for energy deposition. Combining synchrotron-generated monoenergetic X-rays, intracellular gold particle imaging and DNA damage assays, has enabled a DNA damage model to be generated that includes the production of intermediate electrons. We can therefore show for the first time good agreement between the prediction of biological outcomes from both the Local Effect Model and a DNA damage model with experimentally observed cell killing and DNA damage induction via the combination of X-rays and GNPs. However, the requirement of two distinct models as indicated by this mechanistic study, one for short-term DNA damage and another for cell survival, indicates that, at least for nanoparticle enhancement, it is not safe to equate the lethal lesions invoked in the local effect model with DNA damage events.

  13. War Induced Aerosol Optical, Microphysical and Radiative Effects

    Science.gov (United States)

    Munshi, Pavel; Tiwari, Shubhansh

    2017-01-01

    The effect of war on air pollution and climate is assessed in this communication. War today in respect of civil wars and armed conflict in the Middle East area is taken into consideration. Impacts of war are not only in loss of human life and property, but also in the environment. It is well known that war effects air pollution and in the long run contribute to anthropogenic climate change, but general studies on this subject are few because of the difficulties of observations involved. In the current scenario of the ongoing conflict in the Middle East regions, deductions in parameters of atmosphere are discussed. Aerosol Optical Depth, Aerosol loads, Black Carbon, Ozone,Dust, regional haze and many more are analyzed using various satellite data. Multi-model analysis is also studied to verify the analysis. Type segregation of aerosols, in-depth constraints to atmospheric chemistry, biological effects and particularly atmospheric physics in terms of radiative forcing, etc. are discussed. Undergraduate in Earth Sciences.

  14. Placement and efficiency effects on radiative forcing of solar installations

    Science.gov (United States)

    Burg, Brian R.; Ruch, Patrick; Paredes, Stephan; Michel, Bruno

    2015-09-01

    The promise for harnessing solar energy being hampered by cost, triggered efforts to reduce them. As a consequence low-efficiency, low-cost photovoltaics (PV) panels prevail. Conversely, in the traditional energy sector efficiency is extremely important due to the direct costs associated to fuels. This also affects solar energy due to the radiative forcing caused by the dark solar panels. In this paper we extend the concept of energy payback time by including the effect of albedo change, which gives a better assessment of the system sustainability. We present an analysis on the short and medium term climate forcing effects of different solar collectors in Riyadh, Saudi Arabia and demonstrate that efficiency is important to reduce the collector area and cost. This also influences the embodied energy and the global warming potential. We show that a placement of a high concentration photovoltaic thermal solar power station outside of the city using a district cooling system has a double beneficial effect since it improves the solar conversion efficiency and reduces the energy demand for cooling in the city. We also explain the mechanisms of the current economic development of solar technologies and anticipate changes.

  15. The global land Cryosphere Radiative Effect during the MODIS era

    Directory of Open Access Journals (Sweden)

    D. Singh

    2015-07-01

    Full Text Available Cryosphere Radiative Effect (CrRE is the instantaneous influence of snow- and ice-cover on Earth's top of atmosphere (TOA solar energy budget. Here, we apply measurements from the Moderate Resolution Imaging Spectrometer (MODIS, combined with microwave retrievals of snow presence and radiative kernels produced from 4 different models, to derive CrRE over global land during 2001–2013. We estimate global annual mean land CrRE during this period of −2.6 W m-2, with variations from −2.2 to −3.0 W m-2 resulting from use of different kernels, and variations of −2.4 to −2.6 W m-2 resulting from different algorithmic determinations of snow presence and surface albedo. Slightly more than half of the global land CrRE originates from perennial snow on Antarctica, whereas the majority of the Northern Hemisphere effect originates from seasonal snow. Consequently, the Northern Hemisphere land CrRE peaks at −6.0 W m-2 in April, whereas the Southern Hemisphere effect more closely follows the austral insolation cycle, peaking in December. Mountain glaciers resolved in 0.05° MODIS data contribute about −0.037 W m-2 (1.4 % of the global effect, with the majority (94 % of this contribution originating from the Himalayas. Inter-annual trends in the global annual mean land CrRE are not statistically significant during the MODIS era, but trends are positive (less negative over large areas of Northern Asia, especially during spring, and slightly negative over Antarctica, possibly due to increased snowfall. During a common overlap period of 2001–2008, our MODIS estimates of the Northern Hemisphere land CrRE are about 18 % smaller (less negative than previous estimates derived from coarse-resolution AVHRR data, though inter-annual variations are well correlated (r = 0.78, indicating that these data are useful in determining longer term trends in land CrRE.

  16. Effect of staff training on radiation dose in pediatric CT

    Energy Technology Data Exchange (ETDEWEB)

    Hojreh, Azadeh, E-mail: azadeh.hojreh@meduniwien.ac.at [Medical University of Vienna, Department of Biological Imaging and Image-guided Therapy, Division of General and Paediatric Radiology, Waehringer Guertel 18–20, A-1090 Vienna (Austria); Weber, Michael, E-mail: michael.Weber@Meduniwien.Ac.At [Medical University of Vienna, Department of Biomedical Imaging and Image-guided Therapy, Division of General and Paediatric Radiology, Waehringer Guertel 18–20, A-1090 Vienna (Austria); Homolka, Peter, E-mail: peter.Homolka@Meduniwien.Ac.At [Medical University of Vienna, Centre for Medical Physics and Biomedical Engineering, Waehringer Guertel 18–20, A-1090 Vienna (Austria)

    2015-08-15

    Highlights: • Pediatric patient CT doses were compared before and after staff training. • Staff training increasing dose awareness resulted in patient dose reduction. • Application of DRL reduced number of CT's with unusually high doses. • Continuous education and training are effective regarding dose optimization. - Abstract: Objective: To evaluate the efficacy of staff training on radiation doses applied in pediatric CT scans. Methods: Pediatric patient doses from five CT scanners before (1426 scans) and after staff training (2566 scans) were compared statistically. Examinations included cranial CT (CCT), thoracic, abdomen–pelvis, and trunk scans. Dose length products (DLPs) per series were extracted from CT dose reports archived in the PACS. Results: A pooled analysis of non-traumatic scans revealed a statistically significant reduction in the dose for cranial, thoracic, and abdomen/pelvis scans (p < 0.01). This trend could be demonstrated also for trunk scans, however, significance could not be established due to low patient frequencies (p > 0.05). The percentage of scans performed with DLPs exceeding the German DRLs was reduced from 41% to 7% (CCT), 19% to 5% (thorax-CT), from 9% to zero (abdominal–pelvis CT), and 26% to zero (trunk; DRL taken as summed DRLs for thorax plus abdomen–pelvis, reduced by 20% accounting for overlap). Comparison with Austrian DRLs – available only for CCT and thorax CT – showed a reduction from 21% to 3% (CCT), and 15 to 2% (thorax CT). Conclusions: Staff training together with application of DRLs provide an efficient approach for optimizing radiation dose in pediatric CT practice.

  17. Quantifying Diurnal Cloud Radiative Effects by Cloud Type in the Tropical Western Pacific

    Energy Technology Data Exchange (ETDEWEB)

    Burleyson, Casey D.; Long, Charles N.; Comstock, Jennifer M.

    2015-06-01

    Cloud radiative effects are examined using long-term datasets collected at the three Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facilities in the tropical western Pacific. We quantify the surface radiation budget, cloud populations, and cloud radiative effects by partitioning the data by cloud type, time of day, and as a function of large scale modes of variability such as El Niño Southern Oscillation (ENSO) phase and wet/dry seasons at Darwin. The novel facet of our analysis is that we break aggregate cloud radiative effects down by cloud type across the diurnal cycle. The Nauru cloud populations and subsequently the surface radiation budget are strongly impacted by ENSO variability whereas the cloud populations over Manus only shift slightly in response to changes in ENSO phase. The Darwin site exhibits large seasonal monsoon related variations. We show that while deeper convective clouds have a strong conditional influence on the radiation reaching the surface, their limited frequency reduces their aggregate radiative impact. The largest source of shortwave cloud radiative effects at all three sites comes from low clouds. We use the observations to demonstrate that potential model biases in the amplitude of the diurnal cycle and mean cloud frequency would lead to larger errors in the surface energy budget compared to biases in the timing of the diurnal cycle of cloud frequency. Our results provide solid benchmarks to evaluate model simulations of cloud radiative effects in the tropics.

  18. Guidelines for effective radiation transport for cable SGEMP modeling

    Energy Technology Data Exchange (ETDEWEB)

    Drumm, Clifton Russell [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Fan, Wesley C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Turner, C. David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-07-01

    This report describes experiences gained in performing radiation transport computations with the SCEPTRE radiation transport code for System Generated ElectroMagnetic Pulse (SGEMP) applications. SCEPTRE is a complex code requiring a fairly sophisticated user to run the code effectively, so this report provides guidance for analysts interested in performing these types of calculations. One challenge in modeling coupled photon/electron transport for SGEMP is to provide a spatial mesh that is sufficiently resolved to accurately model surface charge emission and charge deposition near material interfaces. The method that has been most commonly used to date to compute cable SGEMP typically requires a sub-micron mesh size near material interfaces, which may be difficult for meshing software to provide for complex geometries. We present here an alternative method for computing cable SGEMP that appears to substantially relax this requirement. The report also investigates the effect of refining the energy mesh and increasing the order of the angular approximation to provide some guidance on determining reasonable parameters for the energy/angular approximation needed for x-ray environments. Conclusions for -ray environments may be quite different and will be treated in a subsequent report. In the course of the energy-mesh refinement studies, a bug in the cross-section generation software was discovered that may cause under prediction of the result by as much as an order of magnitude for the test problem studied here, when the electron energy group widths are much smaller than those for the photons. Results will be presented and compared using cross sections generated before and after the fix. We also describe adjoint modeling, which provides sensitivity of the total charge drive to the source energy and angle of incidence, which is quite useful for comparing the effect of changing the source environment and for determining most stressing angle of incidence and

  19. GLYCOLIC ACID PHYSICAL PROPERTIES, IMPURITIES, AND RADIATION EFFECTS ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D.; Pickenheim, B.; Hay, M.

    2011-06-20

    The Defense Waste Processing Facility (DWPF) is pursuing alternative reductants/flowsheets to increase attainment to meet closure commitment dates. In fiscal year 2009, SRNL evaluated several options and recommended the further assessment of the nitric/formic/glycolic acid flowsheet. SRNL is currently performing testing with this flowsheet to support the DWPF down-select of alternate reductants. As part of the evaluation, SRNL was requested to determine the physical properties of formic and glycolic acid blends. Blends of formic acid in glycolic acid were prepared and their physical properties tested. Increasing amounts of glycolic acid led to increases in blend density, viscosity and surface tension as compared to the 90 wt% formic acid that is currently used at DWPF. These increases are small, however, and are not expected to present any difficulties in terms of processing. The effect of sulfur impurities in technical grade glycolic acid was studied for its impact on DWPF glass quality. While the glycolic acid specification allows for more sulfate than the current formic acid specification, the ultimate impact is expected to be on the order of 0.03 wt% sulfur in glass. Note that lower sulfur content glycolic acid could likely be procured at some increased cost if deemed necessary. A paper study on the effects of radiation on glycolic acid was performed. The analysis indicates that substitution of glycolic acid for formic acid would not increase the radiolytic production rate of H{sub 2} and cause an adverse effect in the SRAT or SME process. It has been cited that glycolic acid solutions that are depleted of O{sub 2} when subjected to large radiation doses produced considerable quantities of a non-diffusive polymeric material. Considering a constant air purge is maintained in the SRAT and the solution is continuously mixed, oxygen depletion seems unlikely, however, if this polymer is formed in the SRAT solution, the rheology of the solution may be affected and

  20. Guidelines for effective radiation transport for cable SGEMP modeling

    Energy Technology Data Exchange (ETDEWEB)

    Drumm, Clifton Russell [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Fan, Wesley C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Turner, C. David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-07-01

    This report describes experiences gained in performing radiation transport computations with the SCEPTRE radiation transport code for System Generated ElectroMagnetic Pulse (SGEMP) applications. SCEPTRE is a complex code requiring a fairly sophisticated user to run the code effectively, so this report provides guidance for analysts interested in performing these types of calculations. One challenge in modeling coupled photon/electron transport for SGEMP is to provide a spatial mesh that is sufficiently resolved to accurately model surface charge emission and charge deposition near material interfaces. The method that has been most commonly used to date to compute cable SGEMP typically requires a sub-micron mesh size near material interfaces, which may be difficult for meshing software to provide for complex geometries. We present here an alternative method for computing cable SGEMP that appears to substantially relax this requirement. The report also investigates the effect of refining the energy mesh and increasing the order of the angular approximation to provide some guidance on determining reasonable parameters for the energy/angular approximation needed for x-ray environments. Conclusions for γ-ray environments may be quite different and will be treated in a subsequent report. In the course of the energy-mesh refinement studies, a bug in the cross-section generation software was discovered that may cause underprediction of the result by as much as an order of magnitude for the test problem studied here, when the electron energy group widths are much smaller than those for the photons. Results will be presented and compared using cross sections generated before and after the fix. We also describe adjoint modeling, which provides sensitivity of the total charge drive to the source energy and angle of incidence, which is quite useful for comparing the effect of changing the source environment and for determining most stressing angle of incidence and source

  1. Radiative Energy Loss of Heavy Quark and Dead Cone Effect in Ultra-relativistic Heavy Ion Collisions

    Institute of Scientific and Technical Information of China (English)

    XIANG Wen-Chang; DING Heng-Tong; ZHOU Dai-Cui

    2005-01-01

    @@ The lowest-order heavy quark radiative energy loss has been analysed to quantify the dead cone effect. The medium-induced gluon radiation is found to fill the dead cone, it is reduced at large gluon energies compared to the radiation of light quarks. We calculate the radiative energy loss of heavy quarks in the condition of dead cone effect. It is found that the radiative energy loss with dead cone effect is smaller than that without the dead cone effect.

  2. Radiation reaction effects on the interaction of an electron with an intense laser pulse.

    Science.gov (United States)

    Kravets, Yevgen; Noble, Adam; Jaroszynski, Dino

    2013-07-01

    Radiation reaction effects will play an important role in near-future laser facilities, yet their theoretical description remains obscure. We explore the Ford-O'Connell equation for radiation reaction, and discuss its relation to other commonly used treatments. By analyzing the interaction of a high energy electron in an intense laser pulse, we find that radiation reaction effects prevent the particle from accessing a regime in which the Landau-Lifshitz approximation breaks down.

  3. Effects of subdiaphragmatic vagotomy on the acquisition of a radiation-induced conditioned taste aversion

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, W.A.; Rabin, B.M.; Lee, J.

    1987-01-01

    The effect of subdiaphragmatic vagotomy on the acquisition of a radiation-induced taste aversion was examined to assess the importance of the vagus nerve in transmitting information on the peripheral toxicity of radiation to the brain. Vagotomy had no effect on taste aversion learning, consistent with reports using other toxins. The data support the involvement of a blood-borne factor in the acquisition of taste aversion induced by ionizing radiation.

  4. Weathering of coil-coatings: UV radiation and thermal effects

    Directory of Open Access Journals (Sweden)

    Castela, A. S.

    2003-12-01

    Full Text Available The effect of heat and of QUV ageing on coil coatings was tested by electrochemical impedance, and the results compared with surface analysis of the polymers by FTIR and XPS. It was shown that UV radiation is more relevant than heat to chemical degradation. A different correlation between water permeation and chemical degradation was observed depending on the coating thickness: for the thinner coatings, the higher UV degradation has corresponded to increased water absorption, whereas in the thicker coating, the bulk effect of heat was more relevant to water permeation.

    El efecto del calor y del envejecimiento, QUV, sobre recubrimiemtos de bobinas se probó mediante la impedancia electroquímica, y los resultados se compararon con análisis superficiales de los polímeros usando FTIR y XPS. Se encontró que la radiación UV es más importante que el calor en la degradación química. Una correlación diferente, entre agua infiltrada y degradación química, se observó, dependiendo del espesor del recubrimiento: para los recubrimientos más delgados, mayor degradación UV correspondió a un incremento de absorción de agua; en cambio, para los recubrimientos más gruesos, el efecto del calor fue más importante para la infiltración del agua.

  5. Gamma radiation effects on commercial Mexican bread making wheat flour

    Energy Technology Data Exchange (ETDEWEB)

    Agundez-Arvizu, Z. [Departamento de Ciencias Quimico Biologicas, Universidad de Sonora, Hermosillo, Sonora 83000 (Mexico); Fernandez-Ramirez, M.V. [Departamento de Ciencias Quimico Biologicas, Universidad de Sonora, Hermosillo, Sonora 83000 (Mexico); Arce-Corrales, M.E. [Departamento de Ciencias Quimico Biologicas, Universidad de Sonora, Hermosillo, Sonora 83000 (Mexico); Cruz-Zaragoza, E. [Instituto de Ciencias Nucleares-UNAM, A.P. 70-543, Mexico 04510 DF (Mexico); Melendrez, R. [Centro de Investigacion en Fisica, Universidad de Sonora, Apartado Postal 5-088, Hermosillo, Sonora 83190 (Mexico); Chernov, V. [Centro de Investigacion en Fisica, Universidad de Sonora, Apartado Postal 5-088, Hermosillo, Sonora 83190 (Mexico); Barboza-Flores, M. [Centro de Investigacion en Fisica, Universidad de Sonora, Apartado Postal 5-088, Hermosillo, Sonora 83190 (Mexico)]. E-mail: mbarboza@cajeme.cifus.uson.mx

    2006-04-15

    Gamma irradiation is considered to be an alternative method for food preservation to prevent food spoilage, insect infestation and capable of reducing the microbial load. In the present investigation, commercial Mexican bread making wheat flour was irradiated at 1.0 kGy using a {sup 6}C Gammabeam 651 PT irradiator facility. No changes were detected in moisture, protein and ashes in gamma irradiated samples as compared to those of non-irradiated samples. Slight radiation effects were observed in the alveogram values and farinograph properties; the falling number decreased 11%, the absorption as well as the mixing tolerance were practically unchanged by irradiation. An increase of 15% in the stability value and a 29% in the dough development time were observed. Also the deformation energy decreased 7% with no change at all in the tenacity/extensibility factor. Total aerobic, yeast and mold counts were reduced 96%, 25% and 75%; respectively by the irradiation process. The obtained results confirm that gamma irradiation is effective in reducing the microbial load in bread making wheat flour without a significant change in the physicochemical and baking properties.

  6. The effect of radiation on the stochastic web

    Directory of Open Access Journals (Sweden)

    Y. Ashkenazy

    2000-01-01

    Full Text Available A charged particle circling in a uniform magnetic field and kicked by an electric field is considered. An iterative map is developed, under the assumption of small magnetic field. Comparison between the (relativistic non-radiative case and the (relativistic radiative case shows that in both cases one can observe a stochastic web structure, and that both cases are qualitatively similar.

  7. Immunomodulatory effects of radiation: what is next for cancer therapy?

    Science.gov (United States)

    Kumari, Anita; Simon, Samantha S; Moody, Tomika D; Garnett-Benson, Charlie

    2016-01-01

    Despite its former reputation as being immunosuppressive, it has become evident that radiation therapy can enhance antitumor immune responses. This quality can be harnessed by utilizing radiation as an adjuvant to cancer immunotherapies. Most studies combine the standard radiation dose and regimens indicated for the given disease state, with novel cancer immunotherapies. It has become apparent that low-dose radiation, as well as doses within the hypofractionated range, can modulate tumor cells making them better targets for immune cell reactivity. Herein, we describe the range of phenotypic changes induced in tumor cells by radiation, and explore the diverse mechanisms of immunogenic modulation reported at these doses. We also review the impact of these doses on the immune cell function of cytotoxic cells in vivo and in vitro.

  8. Proton radiation effects on optical constants of Al film reflector

    Institute of Scientific and Technical Information of China (English)

    Liu Hai; Wei Qiang; He Shi-Yu; Zhao Dan

    2006-01-01

    The Al film reflectors can yield a high-reflectance over a broad wavelength region, and have been widely used in the spacecraft optical instruments for high quality optical applications. Under the irradiation of charged particles in the Earth radiation belt, the reflectors could be deteriorated. In order to reveal the deterioration mechanism, the change in optical constants of Al film reflector induced by proton radiation with 60 keV was studied in an environment of vacuum with heat sink. Experimental results showed that when the radiation damage primarily occurs in the Al reflecting film,the extinction coefficient k will gradually decrease with increasing radiation fluence, which results in the decrease of the energies of reflective light. Therefore, the proton radiation induced an obvious degradation of spectral reflectance in the wavelength region from 200 to 800 nm on the Al film reflector.

  9. Survivors and scientists: Hiroshima, Fukushima, and the Radiation Effects Research Foundation, 1975-2014.

    Science.gov (United States)

    Lindee, Susan

    2016-04-01

    In this article, I reflect on the Radiation Effects Research Foundation and its ongoing studies of long-term radiation risk. Originally called the Atomic Bomb Casualty Commission (1947-1975), the Radiation Effects Research Foundation has carried out epidemiological research tracking the biomedical effects of radiation at Hiroshima and Nagasaki for almost 70 years. Radiation Effects Research Foundation scientists also played a key role in the assessment of populations exposed at Chernobyl and are now embarking on studies of workers at the Fukushima Daiichi Nuclear Power Plant. I examine the role of estimating dosimetry in post-disaster epidemiology, highlight how national identity and citizenship have mattered in radiation risk networks, and track how participants interpreted the relationships between nuclear weapons and nuclear energy. Industrial interests in Japan and the United States sought to draw a sharp line between the risks of nuclear war and the risks of nuclear power, but the work of the Radiation Effects Research Foundation (which became the basis of worker protection standards for the industry) and the activism of atomic bomb survivors have drawn these two nuclear domains together. This is so particularly in the wake of the Fukushima disaster, Japan's 'third atomic bombing'. The Radiation Effects Research Foundation is therefore a critical node in a complex global network of scientific institutions that adjudicate radiation risk and proclaim when it is present and when absent. Its history, I suggest, can illuminate some properties of modern disasters and the many sciences that engage with them.

  10. Ion beam induced luminescence: Relevance to radiation induced bystander effects

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, S.B., E-mail: ahmad.rabilal@gmail.com [Medical Physics and Applied Radiation Sciences, University of McMaster, Hamilton, Ontario (Canada); McNeill, F.E., E-mail: fmcneill@mcmaster.ca [Medical Physics and Applied Radiation Sciences, University of McMaster, Hamilton, Ontario (Canada); Byun, S.H., E-mail: soohyun@mcmaster.ca [Medical Physics and Applied Radiation Sciences, University of McMaster, Hamilton, Ontario (Canada); Prestwich, W.V., E-mail: prestwic@mcmaster.ca [Medical Physics and Applied Radiation Sciences, University of McMaster, Hamilton, Ontario (Canada); Seymour, C., E-mail: seymouc@mcmaster.ca [Medical Physics and Applied Radiation Sciences, University of McMaster, Hamilton, Ontario (Canada); Mothersill, C.E., E-mail: mothers@mcmaster.ca [Medical Physics and Applied Radiation Sciences, University of McMaster, Hamilton, Ontario (Canada)

    2012-10-01

    The aim of this work is quantify the light emitted as a result of charged particle interaction in materials which may be of relevance to radiation induced 'bystander effects' studies. We have developed a system which employs single photon counting to measure the light emitted from samples irradiated under vacuum by a charged particle beam. The system uses a fast photomultiplier tube with a peak cathode response at 420 nm. It has been tested in a proof-of-principle experiment using polystyrene targets. Light output, as a result of irradiation, was measured. The luminescence yield appears to have a non-linear behavior with the incident ion fluence: it rises exponentially to an asymptotic value. The target was irradiated with beam energies varying from 1 to 2 MeV and showed saturation at or before an incident fluence rate of 3 Multiplication-Sign 10{sup 13} H{sup +}/cm{sup 2} s. The average saturation value for the photon output was found to be 40 Multiplication-Sign 10{sup 6} cps. Some measurements were performed using filters to study the emission at specific wavelengths. In the case of filtered light measurements, the photon output was found to saturate at 28 Multiplication-Sign 10{sup 3}, 10 Multiplication-Sign 10{sup 6}, and 35 Multiplication-Sign 10{sup 6} cps for wavelengths of 280 {+-} 5 nm, 320 {+-} 5 nm and 340 {+-} 5 nm respectively. The light output reaches a maximum value because of damage induced in the polymer. Our measurements indicate a 'damage cross section' of the order of 10{sup -14} cm{sup 2}. The average radiant intensity was found to increase at wavelengths of 280 and 320 nm when the proton energy was increased. This was not found to occur at 340 nm. In conclusion, the light emission at specific wavelengths was found to depend upon the incident proton fluence and the proton energy. The wavelengths of the emitted light measured in this study have significance for the understanding of radiation induced bystander effects.

  11. Non-thermal continuous and modulated electromagnetic radiation fields effects on sleep EEG of rats

    Directory of Open Access Journals (Sweden)

    Haitham S. Mohammed

    2013-03-01

    Full Text Available In the present study, the alteration in the sleep EEG in rats due to chronic exposure to low-level non-thermal electromagnetic radiation was investigated. Two types of radiation fields were used; 900 MHz unmodulated wave and 900 MHz modulated at 8 and 16 Hz waves. Animals has exposed to radiation fields for 1 month (1 h/day. EEG power spectral analyses of exposed and control animals during slow wave sleep (SWS and rapid eye movement sleep (REM sleep revealed that the REM sleep is more susceptible to modulated radiofrequency radiation fields (RFR than the SWS. The latency of REM sleep increased due to radiation exposure indicating a change in the ultradian rhythm of normal sleep cycles. The cumulative and irreversible effect of radiation exposure was proposed and the interaction of the extremely low frequency radiation with the similar EEG frequencies was suggested.

  12. The effect of pitch and collimation on radiation dose in spiral CT

    Institute of Scientific and Technical Information of China (English)

    CHENG Qi-Jun; TSANG Cheung; FENG Ding-Hua

    2005-01-01

    Measurements of radiation dose to patients in spiral computed tomography (CT) were completed for various collimations, table speeds and pitch. A standard CT head dosimetry phantom and thermoluminescent dosimeters (TLD) were used for the measurement. The.effect of collimation and pitch on radiation dose was studied. The results indicated that the radiation dose at the given tube current, voltage and rotation speed was inversely proportional to pitch. And the increasing times of dose were as decreasing times of pitch. This regular pattern was tenable for radiation dose at both central holes and peripheral holes of the phantom at pitch = 1, >1 and <1. The collimation had no impact on the radiation dose. The results also indicated that radiation dose at central holes was nearly equal to that at peripheral holes. There was no significant difference between them statistically. The study demonstrates that the pitch in spiral CT scans is the primary parameter and has significant impact on radiation dose.

  13. Non-thermal continuous and modulated electromagnetic radiation fields effects on sleep EEG of rats.

    Science.gov (United States)

    Mohammed, Haitham S; Fahmy, Heba M; Radwan, Nasr M; Elsayed, Anwar A

    2013-03-01

    In the present study, the alteration in the sleep EEG in rats due to chronic exposure to low-level non-thermal electromagnetic radiation was investigated. Two types of radiation fields were used; 900 MHz unmodulated wave and 900 MHz modulated at 8 and 16 Hz waves. Animals has exposed to radiation fields for 1 month (1 h/day). EEG power spectral analyses of exposed and control animals during slow wave sleep (SWS) and rapid eye movement sleep (REM sleep) revealed that the REM sleep is more susceptible to modulated radiofrequency radiation fields (RFR) than the SWS. The latency of REM sleep increased due to radiation exposure indicating a change in the ultradian rhythm of normal sleep cycles. The cumulative and irreversible effect of radiation exposure was proposed and the interaction of the extremely low frequency radiation with the similar EEG frequencies was suggested.

  14. Radiation dosimetry

    CERN Document Server

    Hine, Gerald J; Hine, Gerald J

    1956-01-01

    Radiation Dosimetry focuses on the advancements, processes, technologies, techniques, and principles involved in radiation dosimetry, including counters and calibration and standardization techniques. The selection first offers information on radiation units and the theory of ionization dosimetry and interaction of radiation with matter. Topics include quantities derivable from roentgens, determination of dose in roentgens, ionization dosimetry of high-energy photons and corpuscular radiations, and heavy charged particles. The text then examines the biological and medical effects of radiation,

  15. Effects of Chronic Low-Dose Radiation on Human Neural Progenitor Cells

    Science.gov (United States)

    Katsura, Mari; Cyou-Nakamine, Hiromasa; Zen, Qin; Zen, Yang; Nansai, Hiroko; Amagasa, Shota; Kanki, Yasuharu; Inoue, Tsuyoshi; Kaneki, Kiyomi; Taguchi, Akashi; Kobayashi, Mika; Kaji, Toshiyuki; Kodama, Tatsuhiko; Miyagawa, Kiyoshi; Wada, Youichiro; Akimitsu, Nobuyoshi; Sone, Hideko

    2016-01-01

    The effects of chronic low-dose radiation on human health have not been well established. Recent studies have revealed that neural progenitor cells are present not only in the fetal brain but also in the adult brain. Since immature cells are generally more radiosensitive, here we investigated the effects of chronic low-dose radiation on cultured human neural progenitor cells (hNPCs) derived from embryonic stem cells. Radiation at low doses of 31, 124 and 496 mGy per 72 h was administered to hNPCs. The effects were estimated by gene expression profiling with microarray analysis as well as morphological analysis. Gene expression was dose-dependently changed by radiation. By thirty-one mGy of radiation, inflammatory pathways involving interferon signaling and cell junctions were altered. DNA repair and cell adhesion molecules were affected by 124 mGy of radiation while DNA synthesis, apoptosis, metabolism, and neural differentiation were all affected by 496 mGy of radiation. These in vitro results suggest that 496 mGy radiation affects the development of neuronal progenitor cells while altered gene expression was observed at a radiation dose lower than 100 mGy. This study would contribute to the elucidation of the clinical and subclinical phenotypes of impaired neuronal development induced by chronic low-dose radiation.

  16. Effects of Chronic Low-Dose Radiation on Human Neural Progenitor Cells

    Science.gov (United States)

    Katsura, Mari; Cyou-Nakamine, Hiromasa; Zen, Qin; Zen, Yang; Nansai, Hiroko; Amagasa, Shota; Kanki, Yasuharu; Inoue, Tsuyoshi; Kaneki, Kiyomi; Taguchi, Akashi; Kobayashi, Mika; Kaji, Toshiyuki; Kodama, Tatsuhiko; Miyagawa, Kiyoshi; Wada, Youichiro; Akimitsu, Nobuyoshi; Sone, Hideko

    2016-01-01

    The effects of chronic low-dose radiation on human health have not been well established. Recent studies have revealed that neural progenitor cells are present not only in the fetal brain but also in the adult brain. Since immature cells are generally more radiosensitive, here we investigated the effects of chronic low-dose radiation on cultured human neural progenitor cells (hNPCs) derived from embryonic stem cells. Radiation at low doses of 31, 124 and 496 mGy per 72 h was administered to hNPCs. The effects were estimated by gene expression profiling with microarray analysis as well as morphological analysis. Gene expression was dose-dependently changed by radiation. By thirty-one mGy of radiation, inflammatory pathways involving interferon signaling and cell junctions were altered. DNA repair and cell adhesion molecules were affected by 124 mGy of radiation while DNA synthesis, apoptosis, metabolism, and neural differentiation were all affected by 496 mGy of radiation. These in vitro results suggest that 496 mGy radiation affects the development of neuronal progenitor cells while altered gene expression was observed at a radiation dose lower than 100 mGy. This study would contribute to the elucidation of the clinical and subclinical phenotypes of impaired neuronal development induced by chronic low-dose radiation. PMID:26795421

  17. Evidence of Dopant Type-Inversion and Other Radiation Damage Effects of the CDF Silicon Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Ballarin, Roberto [Univ. of the Basque Country, Leioa (Spain)

    2010-06-01

    The aim of this document is to study the effect of radiation damage on the silicon sensors. The reflection of the effect of radiation can be observed in two fundamental parameters of the detector: the bias current and the bias voltage. The leakage current directly affects the noise, while the bias voltage is required to collect the maximum signal deposited by the charged particle.

  18. Effect of X-radiation on single crystals of gallium and indium monoselenides

    Energy Technology Data Exchange (ETDEWEB)

    Akopyan, R.A.; Zhuravlev, V.M. (Moskovskij Inst. Ehlektronnoj Tekhniki (USSR))

    1983-06-01

    InSe and GaSe monocrystals doped with lead reveal considerable sensitivity to 0.1-0.5 A x radiation. The relation well describing the effect of x radiation on these single crystals is proposed. The prevailing mechanism of the effect is photoelectric absorption on k shells of component atoms.

  19. Dynamics around black holes: Radiation Emission and Tidal Effects

    CERN Document Server

    Brito, Richard

    2012-01-01

    In this thesis we study several dynamical processes involving black holes in four and higher dimensions. First, using perturbative techniques, we compare the massless and massive scalar radiation emitted by a particle radially infalling into a Schwarzchild black hole. We show that the late-time waveform of massive scalar perturbations is dominated by a universal oscillatory decaying tail, which appears due to curvature effects. We also show that the energy spectrum is in perfect agreement with a ZFL calculation once no-hair properties of black holes are taken into account. In the second part, we study the phenomenon of superradiance in higher dimensions and conjecture that the maximum energy extracted from a rotating black hole can be understood in terms of the ergoregion proper volume. We then study some consequences of superradiance in the dynamics of moons orbiting around higher-dimensional rotating black holes. In four-dimensional spacetime, moons around black holes generate low-amplitude tides, and the e...

  20. Effects induced by XeCl laser radiation and germicidal lamp radiation on E. coli strains survival and mutability

    Science.gov (United States)

    Belloni, F.; Alifano, P.; Lorusso, A.; Monaco, C.; Nassisi, V.; Talà, A.; Tredici, M.

    2006-04-01

    In this work the mutagenic effect on Escherichia coli strains induced by UV radiation emitted by a XeCl laser (λ = 308 nm) has been analysed as a function of the exposure dose and compared with the effect induced by 254 nm radiation emitted by a conventional germicidal lamp. E. coli strains, wild-type (recA+) and mutant (recA1, defective in DNA damage repair systems), plated on LB agar, supplemented with rifampicin when requested, were irradiated by means of a germicidal lamp in the dose range 0 - 9 mJ/cm2. Similar strains were exposed to 308 nm pulsed laser radiation (τ = 20 ns FWHM; max. pulse energy: 100 mJ) in the dose range 0-1.0 x 10 4 mJ/cm2. The discrepancy between the results obtained with the lamp and the laser on the mutation frequency, suggested that the biological response to the two radiation sources involves distinct mechanisms. This hypothesis was supported by the evidence that exposure to near-UV 308 nm induced mutagenesis in the recA-defective strain at an extent considerably higher than in the recA-proficient strain.

  1. Effect of “Noisy” sun conditions on aircrew radiation exposure

    Science.gov (United States)

    Lewis, B. J.; Green, A. R.; Bennett, L. G. I.

    2009-07-01

    In computer codes used to estimate the aircrew radiation exposure from galactic cosmic radiation, a quiet sun model is usually assumed. A revised computer code (PCAIRE ver. 8.0f) is used to calculate the impact of noisy sun conditions on aircrew radiation exposure. The revised code incorporates the effect of solar storm activity, which can perturb the geomagnetic field lines, altering cutoff rigidities and hence the shielding capability of the Earth's magnetic field. The effect of typical solar storm conditions on aircrew radiation exposure is shown to be minimal justifying the usual assumptions.

  2. Radiation effects on MHD flow past an impulsively started infinite vertical plate with mass diffusion

    Directory of Open Access Journals (Sweden)

    Chandrakala P.

    2014-02-01

    Full Text Available The effects of thermal radiation on a flow past an impulsively started infinite vertical plate in the presence of a magnetic field have been studied. The fluid considered is a gray, absorbing-emitting radiation but non-scattering medium. The dimensionless governing equations are solved by an efficient, more accurate, unconditionally stable and fast converging implicit scheme. The effects of velocity and temperature for different parameters such as the thermal radiation, magnetic field, Schmidt number, thermal Grashof number and mass Grashof number are studied. It is observed that the velocity decreases in the presence of thermal radiation or a magnetic field

  3. Mathematical modeling and numerical analysis of thermal distribution in arch dams considering solar radiation effect.

    Science.gov (United States)

    Mirzabozorg, H; Hariri-Ardebili, M A; Shirkhan, M; Seyed-Kolbadi, S M

    2014-01-01

    The effect of solar radiation on thermal distribution in thin high arch dams is investigated. The differential equation governing thermal behavior of mass concrete in three-dimensional space is solved applying appropriate boundary conditions. Solar radiation is implemented considering the dam face direction relative to the sun, the slop relative to horizon, the region cloud cover, and the surrounding topography. It has been observed that solar radiation changes the surface temperature drastically and leads to nonuniform temperature distribution. Solar radiation effects should be considered in thermal transient analysis of thin arch dams.

  4. Comment on "Recent progress in thermodynamics of radiation - exergy of radiation, effective temperature of photon and entropy constant of photon"

    Institute of Scientific and Technical Information of China (English)

    LIU LinHua

    2009-01-01

    Chen et al. proposed the concepts of effective temperature of photon and entropy constant of photon in a recent paper [Chen Z S, Mo S P, Hu P. Recent progress in thermodynamics of radiation-exergy of radiation, effective temperature of photon and entropy constant of photon. Sci China Ser E-Tech Sci,2008, 51(8): 1096-1109] by enduing a single photon with macroscale thermodynamic parameters such as exergy and entropy. This paper argues that applying these concepts and their inferences to macro-scale thermodynamic system will lead to the results which conflict with macroscale thermodynamic laws. This means that the concepts of effective temperature of photon and entropy constant of photon are not correct.

  5. Radiation, temperature, and vacuum effects on piezoelectric wafer active sensors

    Science.gov (United States)

    Giurgiutiu, Victor; Postolache, Cristian; Tudose, Mihai

    2016-03-01

    The effect of radiation, temperature, and vacuum (RTV) on piezoelectric wafer active sensors (PWASs) is discussed. This study is relevant for extending structural health monitoring (SHM) methods to space vehicle applications that are likely to be subjected to harsh environmental conditions such as extreme temperatures (hot and cold), cosmic radiation, and interplanetary vacuums. This study contains both theoretical and experimental investigations with the use of electromechanical impedance spectroscopy (EMIS). In the theoretical part, analytical models of circular PWAS resonators were used to derive analytical expressions for the temperature sensitivities of EMIS resonance and antiresonance behavior. Closed-form expressions for frequency and peak values at resonance and antiresonance were derived as functions of the coefficients of thermal expansion, {α }1, {α }2, {α }3; the Poisson ratio, ν and its sensitivity, \\partial ν /\\partial T; the relative compliance gradient (\\partial {s}11E/\\partial T)/{s}11E; and the Bessel function root, z and its sensitivity, \\partial z/\\partial T. In the experimental part, tests were conducted to subject the PWAS transducers to RTV conditions. In one set of experiments, several RTV exposure, cycles were applied with EMIS signatures recorded at the beginning and after each of the repeated cycles. In another set of experiments, PWAS transducers were subjected to various temperatures and the EMIS signatures were recorded at each temperature after stabilization. The processing of measured EMIS data from the first set of experiments revealed that the resonance and antiresonance frequencies changed by less than 1% due to RTV exposure, whereas the resonance and antiresonance amplitudes changed by around 15%. After processing an individual set of EMIS data from the second set of experiments, it was determined that the relative temperature sensitivity of the antiresonance frequency ({f}{{AR}}/{f}{{AR}}) is approximately 63.1× {10

  6. A case study of the radiative effect of aerosols over Europe: EUCAARI-LONGREX

    Science.gov (United States)

    Esteve, Anna R.; Highwood, Eleanor J.; Ryder, Claire L.

    2016-06-01

    The radiative effect of anthropogenic aerosols over Europe during the 2008 European Integrated Project on Aerosol Cloud Climate and Air Quality Interactions Long Range Experiment (EUCAARI-LONGREX) campaign has been calculated using measurements collected by the Facility for Airborne Atmospheric Measurements (FAAM) BAe-146 aircraft and radiative transfer modelling. The aircraft sampled anthropogenically perturbed air masses across north-western Europe under anticyclonic conditions with aerosol optical depths ranging from 0.047 to 0.357. For one specially designed "radiative closure" flight, simulated irradiances have been compared to radiation measurements for a case of aged European aerosol in order to explore the validity of model assumptions and the degree of radiative closure that can be attained given the spatial and temporal variability of the observations and their measurement uncertainties. Secondly, the diurnally averaged aerosol radiative effect throughout EUCAARI-LONGREX has been calculated. The surface radiative effect ranged between -3.9 and -22.8 W m-2 (mean -11 ± 5 W m-2), whilst top-of-the-atmosphere (TOA) values were between -2.1 and -12.0 W m-2 (mean -5 ± 3 W m-2). We have quantified the uncertainties in our calculations due to the way in which aerosols and other parameters are represented in a radiative transfer model. The largest uncertainty in the aerosol radiative effect at both the surface and the TOA comes from the spectral resolution of the information used in the radiative transfer model (˜ 17 %) and the aerosol description (composition and size distribution) used in the Mie calculations of the aerosol optical properties included in the radiative transfer model (˜ 7 %). The aerosol radiative effect at the TOA is also highly sensitive to the surface albedo (˜ 12 %).

  7. Effect of bremsstrahlung radiation emission on distributions of runaway electrons in magnetized plasmas

    CERN Document Server

    Embréus, Ola; Newton, Sarah; Papp, Gergely; Hirvijoki, Eero; Fülöp, Tünde

    2015-01-01

    Bremsstrahlung radiation is an important energy loss mechanism for energetic electrons in plasmas. In this paper we investigate the effect of bremsstrahlung radiation reaction on the electron distribution in 2D momentum space. We show that the emission of bremsstrahlung radiation leads to non-monotonic features in the electron distribution function and describe how the simultaneous inclusion of synchrotron and bremsstrahlung radiation losses affects the dynamics of fast electrons. We give quantitative expressions for (1) the maximum electron energy attainable in the presence of bremsstrahlung losses and (2) when bremsstrahlung radiation losses are expected to have a stronger effect than synchrotron losses, and verify these expressions numerically. We find that, in typical tokamak scenarios, synchrotron radiation losses will dominate over bremsstrahlung losses, except in cases of very high density, such as during massive gas injection.

  8. Vacuum ultraviolet radiation effects on two-dimensional MoS2 field-effect transistors

    Science.gov (United States)

    McMorrow, Julian J.; Cress, Cory D.; Arnold, Heather N.; Sangwan, Vinod K.; Jariwala, Deep; Schmucker, Scott W.; Marks, Tobin J.; Hersam, Mark C.

    2017-02-01

    Atomically thin MoS2 has generated intense interest for emerging electronics applications. Its two-dimensional nature and potential for low-power electronics are particularly appealing for space-bound electronics, motivating the need for a fundamental understanding of MoS2 electronic device response to the space radiation environment. In this letter, we quantify the response of MoS2 field-effect transistors (FETs) to vacuum ultraviolet (VUV) total ionizing dose radiation. Single-layer (SL) and multilayer (ML) MoS2 FETs are compared to identify differences that arise from thickness and band structure variations. The measured evolution of the FET transport properties is leveraged to identify the nature of VUV-induced trapped charge, isolating the effects of the interface and bulk oxide dielectric. In both the SL and ML cases, oxide trapped holes compete with interface trapped electrons, exhibiting an overall shift toward negative gate bias. Raman spectroscopy shows no variation in the MoS2 signatures as a result of VUV exposure, eliminating significant crystalline damage or oxidation as possible radiation degradation mechanisms. Overall, this work presents avenues for achieving radiation-hard MoS2 devices through dielectric engineering that reduces oxide and interface trapped charge.

  9. Evaluation of Spacecraft Shielding Effectiveness for Radiation Protection

    Science.gov (United States)

    Cucinotta, Francis A.; Wilson, John W.

    1999-01-01

    The potential for serious health risks from solar particle events (SPE) and galactic cosmic rays (GCR) is a critical issue in the NASA strategic plan for the Human Exploration and Development of Space (HEDS). The excess cost to protect against the GCR and SPE due to current uncertainties in radiation transmission properties and cancer biology could be exceedingly large based on the excess launch costs to shield against uncertainties. The development of advanced shielding concepts is an important risk mitigation area with the potential to significantly reduce risk below conventional mission designs. A key issue in spacecraft material selection is the understanding of nuclear reactions on the transmission properties of materials. High-energy nuclear particles undergo nuclear reactions in passing through materials and tissue altering their composition and producing new radiation types. Spacecraft and planetary habitat designers can utilize radiation transport codes to identify optimal materials for lowering exposures and to optimize spacecraft design to reduce astronaut exposures. To reach these objectives will require providing design engineers with accurate data bases and computationally efficient software for describing the transmission properties of space radiation in materials. Our program will reduce the uncertainty in the transmission properties of space radiation by improving the theoretical description of nuclear reactions and radiation transport, and provide accurate physical descriptions of the track structure of microscopic energy deposition.

  10. Effect of Microwave Radiation on Enzymatic and Chemical Peptide Bond Synthesis on Solid Phase

    Directory of Open Access Journals (Sweden)

    Alessandra Basso

    2009-01-01

    Full Text Available Peptide bond synthesis was performed on PEGA beads under microwave radiations. Classical chemical coupling as well as thermolysin catalyzed synthesis was studied, and the effect of microwave radiations on reaction kinetics, beads' integrity, and enzyme activity was assessed. Results demonstrate that microwave radiations can be profitably exploited to improve reaction kinetics in solid phase peptide synthesis when both chemical and biocatalytic strategies are used.

  11. Assessment of cytotoxic effect mechanisms of gas-discharge plasma radiation

    OpenAIRE

    Ivanova I.P.; Trofimova S.V.; Vedunova М.V.; Zhabereva А.S.; Bugrova M.L.; Piskaryov I.M.; Karpel Vel Leitner N.

    2014-01-01

    The aim of the investigation was to assess the mechanisms of cytotoxic effect of gas-discharge plasma radiation on lymphosarcoma and breast cancer cells. Materials and Methods. The experiment was carried out on the strains of rat lymphosarcoma (LSR) and breast cancer (RMK1) cells. 4 ml of cell suspension at (4–6)·106/ml concentration was exposed to gas-discharge plasma radiation in various time modes. Plasma radiation was generated by impulse device with the following set characteristics:...

  12. Heat engineering characteristics of the radiator for effective electronic equipment cooling systems

    Directory of Open Access Journals (Sweden)

    Rudenko A. I.

    2011-06-01

    Full Text Available The article presents the results of heat transfer charac-teristics research of the radiator on basis of a heat pipe for cooling of personal computer elements. It is determined that using acetone and ethanol as heat carriers under heat flow density q4·104 W/m2 is preferable. It is shown that the introduced radiators are considerably more effective than the radiators of conventional design with flat heat exchange surface with a rectangle plate fin.

  13. The Inhibitory Effects of Low-Dose Ionizing Radiation in IgE-Mediated Allergic Responses.

    Directory of Open Access Journals (Sweden)

    Hae Mi Joo

    Full Text Available Ionizing radiation has different biological effects according to dose and dose rate. In particular, the biological effect of low-dose radiation is unclear. Low-dose whole-body gamma irradiation activates immune responses in several ways. However, the effects and mechanism of low-dose radiation on allergic responses remain poorly understood. Previously, we reported that low-dose ionizing radiation inhibits mediator release in IgE-mediated RBL-2H3 mast cell activation. In this study, to have any physiological relevance, we investigated whether low-dose radiation inhibits allergic responses in activated human mast cells (HMC-1(5C6 and LAD2 cells, mouse models of passive cutaneous anaphylaxis and the late-phase cutaneous response. High-dose radiation induced cell death, but low-dose ionizing radiation of <0.5 Gy did not induce mast cell death. Low-dose ionizing radiation that did not induce cell death significantly suppressed mediator release from human mast cells (HMC-1(5C6 and LAD2 cells that were activated by antigen-antibody reaction. To determine the inhibitory mechanism of mediator released by low-dose ionizing radiation, we examined the phosphorylation of intracellular signaling molecules such as Lyn, Syk, phospholipase Cγ, and protein kinase C, as well as the intracellular free Ca2+ concentration ([Ca2+]i. The phosphorylation of signaling molecules and [Ca2+]i following stimulation of FcεRI receptors was inhibited by low dose ionizing radiation. In agreement with its in vitro effect, ionizing radiation also significantly inhibited inflammatory cells infiltration, cytokine mRNA expression (TNF-α, IL-4, IL-13, and symptoms of passive cutaneous anaphylaxis reaction and the late-phase cutaneous response in anti-dinitrophenyl IgE-sensitized mice. These results indicate that ionizing radiation inhibits both mast cell-mediated immediate- and delayed-type allergic reactions in vivo and in vitro.

  14. Synergetic effects of U-V radiations and malnutrition of lens (experimental study

    Directory of Open Access Journals (Sweden)

    Angra S

    1991-01-01

    Full Text Available The synergistic effects of protein deficiency and U-V radiation is cataractogenic as seen in our experimental model though individually these had no damaging effect on enzymatic profile and clinical appearance.

  15. Effects of High Dietary HEME Iron and Radiation on Cardiovascular Function

    Science.gov (United States)

    Westby, Christian M.; Brown, A. K.; Platts, S. H.

    2012-01-01

    The radiation related health risks to astronauts is of particular concern to NASA. Data support that exposure to radiation is associated with a number of disorders including a heightened risk for cardiovascular diseases. Independent of radiation, altered nutrient status (e.g. high dietary iron) also increases ones risk for cardiovascular disease. However, it is unknown whether exposure to radiation in combination with high dietary iron further increases ones cardiovascular risk. The intent of our proposal is to generate compulsory data examining the combined effect of radiation exposure and iron overload on sensitivity to radiation injury to address HRP risks: 1) Risk Factor of Inadequate Nutrition; 2) Risk of Cardiac Rhythm Problems; and 3) Risk of Degenerative Tissue or other Health Effects from Space Radiation. Towards our goal we propose two distinct pilot studies using the following specific aims: Vascular Aim 1: To determine the short-term consequences of the independent and combined effects of exposure to gamma radiation and elevated body iron stores on measures of endothelial function and cell viability and integrity. We hypothesize that animals that have high body iron stores and are exposed to gamma radiation will show a greater reduction in endothelial dependent nitric oxid production and larger pathological changes in endothelial integrity than animals that have only 1 of those treatments (either high iron stores or exposure to gamma radiation). Vascular Aim 2: Identify and compare the effects of gamma radiation and elevated body iron stores on the genetic and epigenetic regulation of proteins associated with endothelial cell function. We hypothesize that modifications of epigenetic control and posttranslational expression of proteins associated with endothelial cell function will be differentially altered in rats with high body iron stores and exposed to gamma radiation compared to rats with only 1 type of treatment. Cardiac Aim 1: To determine the

  16. [Effect of decimeter polarized electromagnetic radiation on germinating capacity of seeds].

    Science.gov (United States)

    Polevik, N D

    2013-01-01

    The effect of a polarization structure of electromagnetic radiation on the germinating capacity of seeds of such weeds as Green foxtail (Setaria viridis) and Green amaranth (Amaranthus retroflexus) has been studied. Seeds have been exposed to impulse electromagnetic radiation in a frequency of 896 MHz with linear, elliptical right-handed and elliptical left-handed polarizations at different power flux density levels. It is determined that the effect of the right-handed polarized electromagnetic radiation increases and the influence of the left-handed polarized one reduces the germinating capacity of seeds compared to the effect of the linearly polarized electromagnetic radiation. It is shown that the seeds have an amplitude polarization selectivity as evinced by the major effect of the right-handed polarized radiation on seeds. An electrodynamic model as the right-handed elliptically polarized antenna with the given quantity of the ellipticity of polarization is suggested to use in description of this selectivity.

  17. Effect of ultraviolet radiation, smoking and nutrition on hair.

    Science.gov (United States)

    Trüeb, Ralph M

    2015-01-01

    Similar to the rest of the skin, the hair is exposed to noxious environmental factors. While ultraviolet radiation (UVR) and smoking are well appreciated as major factors contributing to the extrinsic aging of the skin, their effects on the condition of hair have only lately attracted the attention of the medical community. Terrestrial solar UVR ranges from approximately 290 to 400 nm; UV-B (290-315 nm) reaches only the upper dermis, while the penetration of UV-A (315-400 nm) into the dermis increases with wavelength. The two most important chronic effects of UVR on the skin and bald scalp are photocarcinogenesis and solar elastosis; however, the effects of UVR on hair have largely been ignored. As a consequence of increased leisure time and a growing popularity of outdoor activities and holidays in the sun, the awareness of sun protection of the skin has become important and should also apply to the hair. Besides being the single-most preventable cause of significant cardiovascular and pulmonary morbidity and an important cause of death, the association of tobacco smoking with various adverse effects on the skin and hair has also been recognized. Increasing public awareness of the association between smoking and hair loss seems to offer a good opportunity for the prevention or cessation of smoking, since the appearance of hair plays an important role in the overall physical appearance and self-perception of people. Finally, the quantity and quality of hair are closely related to the nutritional state of an individual. Normal supply, uptake, and transport of proteins, calories, trace elements, and vitamins are of fundamental importance in tissues with high biosynthetic activity, such as the hair follicle. In instances of protein and calorie malnutrition as well as essential amino acid, trace element, and vitamin deficiencies, hair growth and pigmentation may be impaired. Ultimately, important commercial interest lies in the question of whether increasing the

  18. Effect of Increasing Temperature on Carbonaceous Aerosol Direct Radiative Effect over Southeastern US

    Science.gov (United States)

    Mielonen, Tero; Kokkola, Harri; Hienola, Anca; Kühn, Thomas; Merikanto, Joonas; Korhonen, Hannele; Arola, Antti; Kolmonen, Pekka; Sogacheva, Larisa; de Leeuw, Gerrit

    2016-04-01

    Aerosols are an important regulator of the Earth's climate. They scatter and absorb incoming solar radiation and thus cool the climate by reducing the amount of energy reaching the atmospheric layers and the surface below (direct effect). A certain subset of the particles can also act as initial formation sites for cloud droplets and thereby modify the microphysics, dynamics, radiative properties and lifetime of clouds (indirect effects). The magnitude of aerosol radiative effects remains the single largest uncertainty in current estimates of anthropogenic radiative forcing. One of the key quantities needed for accurate estimates of anthropogenic radiative forcing is an accurate estimate of the radiative effects from natural unperturbed aerosol. The dominant source of natural aerosols over Earth's vast forested regions are biogenic volatile organic compounds (BVOC) which, following oxidation in the atmosphere, can condense onto aerosol particles to form secondary organic aerosol (SOA) and significantly modify the particles' properties. In accordance with the expected positive temperature dependence of BVOC emissions, several previous studies have shown that some aerosol properties, such as mass concentration and ability to act as cloud condensation nuclei (CCN), also correlate positively with temperature at many forested sites. There is conflicting evidence as to whether the aerosol direct effects have a temperature dependence due to increased BVOC emissions. The main objective of this study is to investigate the causes of the observed effect of increasing temperatures on the aerosol direct radiative effect, and to provide a quantitative estimate of this effect and of the resulting negative feedback in a warming climate. More specifically, we will investigate the causes of the positive correlation between aerosol optical depth (AOD) and land surface temperature (LST) over southeastern US where biogenic emissions are a significant source of atmospheric particles. In

  19. Studies on Radiation Protection Effect of the Beer

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Jong Gi; Ha, Tae Young; Hwang, Chul; Hyan; Lee, Young Hwa [Dept. of Radiation Oncology, Busan National University Hospital, Busan (Korea, Republic of)

    2007-09-15

    In this study, it was investigated whether commercially produced beer is able to prevent a lymphocyte from radiation induced apoptosis. Whole blood samples were acquired from 5 healthy volunteers (male, 26-38 years old) and the lymphocyte were isolated by density gradient centrifugation. Radiation induced apoptosis of the lymphocyte were investigated by 0.5 Gy, 1.0 Gy, 2.0 Gy, 3.0 Gy to 5.0 Gy irradiation. In some experiments, the donor drunk beer and then blood samples were collected. In other experiments, melatonin or glycine betain was added to lymphocyte culture medium. Treated or untreated lymphocytes were cultured for 60 hours and radiation induced apoptosis of the lymphocyte was analyzed by annexin-V staining through flow cytometery. Relative radiation induced apoptosis ratio of the untreated lymphocytes is 1.22{+-}1.1, 1.22{+-}1.1, 1.38{+-}1.0, 1.47{+-}1.1, 1.50{+-}1.2 by radiation dose of 0.5 Gy, 1.0 Gy, 2.0 Gy, 3.0 Gy and 5.0 Gy respectively. Relative radiation induced apoptosis ratio of lymphocytes is isolated from beer drunken donors is 0.971.0, 0.991.0, 1.11{+-}0.9, 1.29{+-}1.1, 1.15{+-}1.1 by radiation doses respectively which are reduced 21.5% compared with untreated lymphocyte. Relative radiation induced apoptosis ratio of the lymphocytes is isolated from non-alcohol beer drunken donors is 1.22{+-}1.1, 1.17{+-}1.1, 1.13{+-}1.3, 1.38{+-}1.2, 1.32{+-}1.1 by radiation dose of 0.5 Gy, 1.0 Gy, 2.0 Gy, 3.0 Gy and 5.0 Gy respectively which are reduced 10.8% compared with the untreated lymphocyte. As a result, it is suggested that beer may protect the lymphocyte from radiation damage and inhibit apoptosis.

  20. Dichromatic laser radiation effects on DNA of Escherichia coli and plasmids

    Science.gov (United States)

    Martins, W. A.; Polignano, G. A. C.; Guimarães, O. R.; Geller, M.; Paoli, F.; Fonseca, A. S.

    2015-04-01

    Dichromatic and consecutive laser radiations have attracted increased attention for clinical applications as offering new tools for the treatment of dysfunctional tissues in situations where monochromatic radiation is not effective. This work evaluated the survival, filamentation and morphology of Escherichia coli cells, and the induction of DNA lesions, in plasmid DNA exposed to low-intensity consecutive dichromatic laser radiation. Exponential and stationary wild type and formamidopyrimidine DNA glycosylase/MutM protein deficient E. coli cultures were exposed to consecutive low-intensity dichromatic laser radiation (infrared laser immediately after red laser) to study the survival, filamentation and morphology of bacterial cells. Plasmid DNA samples were exposed to dichromatic radiation to study DNA lesions by electrophoretic profile. Dichromatic laser radiation affects the survival, filamentation and morphology of E. coli cultures depending on the growth phase and the functional repair mechanism of oxidizing lesions in DNA, but does not induce single/double strands breaks or alkali-labile DNA lesions. Results show that low-intensity consecutive dichromatic laser radiation induces biological effects that differ from those induced by monochromatic laser radiation, suggesting that other therapeutic effects could be obtained using dichromatic radiation.

  1. Thalidomide effect in endothelial cell of acute radiation proctitis

    Institute of Scientific and Technical Information of China (English)

    Ki-Tae Kim; Hiun-Suk Chae; Jin-Soo Kim; Hyung-Keun Kim; Young-Seok Cho; Whang Choi; Kyu-Yong Choi; Sang-Young Rho; Suk-Jin Kang

    2008-01-01

    AIM: To determine whether thalidomide prevents microvascular injury in acute radiation proctitis in white rats. METHODS: Fourteen female Wistar rats were used:six in the radiation group,six in the thalidomide group,and two in normal controls.The radiation and thalidomide groups were irradiated at the pelvic area using a single 30 Gy exposure.The thalidomide (150 mg/kg) was injected into the peritoneum for 7 d from the day of irradiation.All animals were sacrificed and the rectums were removed on day 8 after irradiation.The microvessels of resected specimens were immunohistochemically stained with thrombomodulin (TM),yon Willebrand Factor (vWF),and vascular endothelial growth factor (VEGF).RESULTS: The microscopic scores did not differ significantly between the radiation and thalidomide groups,but both were higher than in the control group.Expression of TM was significantly lower in the endothelial cells (EC) of the radiation group than in the control and thalidomide groups (P < 0.001).The number of capillaries expressing vWF in the EC was higher in the radiation group (15.3 ± 6.8) than in the control group (3.7 ± 1.7),and the number of capillaries expressing vWF was attenuated by thalidomide (10.8 ± 3.5,P < 0.001).The intensity of VEGF expression in capillaries was greater in the radiation group than in the control group and was also attenuated by thalidomide (P = 0.003).CONCLUSION: The mechanisms of acute radiationinduced proctitis in the rats are related to endothelial cell injury of microvessel,which may be attenuated with thalidomide.

  2. Effects of exposure to different types of radiation on behaviors mediated by peripheral or central systems

    Science.gov (United States)

    Rabin, B. M.; Joseph, J. A.; Erat, S.

    The effects of exposure to ionizing radiation on behavior may result from effects on peripheral or on central systems. For behavioral endpoints that are mediated by peripheral systems (e.g., radiation-induced conditioned taste aversion or vomiting), the behavioral effects of exposure to heavy particles (^56Fe, 600 MeV/n) are qualitatively similar to the effects of exposure to gamma radiation (^60Co) and to fission spectrum neutrons. For these endpoints, the only differences between the different types of radiation are in terms of relative behavioral effectiveness. For behavioral endpoints that are mediated by central systems (e.g., amphetamine-induced taste aversion learning), the effects of exposure to ^56Fe particles are not seen following exposure to lower LET gamma rays or fission spectrum neutrons. These results indicate that the effects of exposure to heavy particles on behavioral endpoints cannot necessarily be extrapolated from studies using gamma rays, but require the use of heavy particles.

  3. Effects of gamma radiation on Sporothrix schenckii yeast cells

    Energy Technology Data Exchange (ETDEWEB)

    Lacerda, Camila M. de Sousa; Martins, Estefania Mara Nascimento; Andrade, Antero S.R. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)], e-mail: cmsl@cdtn.br, e-mail: estefaniabio@yahoo.com.br, e-mail: antero@cdtn.br; Resende, Maria Aparecida de [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Microbiologia], e-mail: maressend@mono.icb.ufmg.br

    2009-07-01

    Sporotrichosis is a subacute or chronic infection caused by the fungus Sporothrix schenckii. Zoonotic transmission can occur after scratches or bites of animals, mainly cats, rodents, and armadillos. Up to the moment, no approved vaccine was reported for S. schenckii or to any important pathogenic fungi infection in humans, indicating the need to expand the research in this field and to explore new alternatives. The aim of this study was to evaluate the effects of gamma radiation in the viability, metabolic activity and reproductive ability of S. schenckii yeast cells for further studies on the development of a vaccine for immunization of cats and dogs. The culture of S. schenckii, in solid medium, was irradiated at doses ranging from 1.0 to 9.0 kGy. After each dose the reproductive capacity, viability and protein synthesis were estimated. The results showed that a reduction of 6 log{sub 10} cycles in the number of colonies was achieved at 6.0 kGy and after 8.0 kGy no colonies could be recovered. The viability analysis indicated that yeast cells remained viable up to 9.0 kGy. The results of protein synthesis analysis showed that the yeast cells, irradiated up to 9.0 kGy, were able to synthesize proteins. Our preliminary results indicated that for the yeast cells of S. schenckii, it is possible to find an absorbed dose in which the pathogen loses its reproductive ability, while retaining its viability, a necessary condition for the development of a radioattenuated yeast vaccine. (author)

  4. Effects of gamma radiation on melon read-to-eat

    Energy Technology Data Exchange (ETDEWEB)

    Pires, Juliana A.; Polizel, Francine Fernanda, E-mail: jujuba_angelo@yahoo.com.br, E-mail: fran_sininho@hotmail.com [Faculdade de Tecnologia em Piracicaba (FATEP), Piracicaba, SP (Brazil); Harder, Marcia N.C.; Silva, Lucia C.A.S.; Arthur, Paula B.; Arthur, Valter, E-mail: mnharder@terra.com.br, E-mail: lcasilva@cena.usp.br, E-mail: paula.arthur@hotmail.com, E-mail: arthur@cena.usp.br [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil)

    2013-07-01

    This work comes from the irradiation of Cantaloupe melons (Cucumis melo L.), with the aid of gamma irradiation (Co60) to physical and chemical changes to assess their conservation. The research aimed to evaluate the effects of irradiation on melons, including the possibility of conservation, through pH, acidity, soluble solids and fresh squash. The samples were minimally processed and submitted to gamma radiation Co{sup 60} at doses of 0 (control); 1kGy and 2kGy. Physicochemical analyzes were made in periods of 1, 7 and 14 days after irradiation treatment. On day 1 and day 7, pH levels in irradiated samples had increased compared to control. Since the 14th day, the dose decreased 1kGy equaling the control. Soluble solids showed a statistical gradual decrease according to the increase of dose. The 14th had no significant difference while the 7th the dose was increased. The 1kGy sample decreased in another dose compared to the control. In fresh squash, absent statistics were observed for all samples in the three periods. And for the analysis of titratable acidity, there was observed no significant difference at day 1. There was observed a decrease in the 2kGy and 1kGy dose to 7 days compared to the control. On 14th day, a reduction in the dose of 2kGy and deterioration of 1kGy dose of the sample. Therefore, it demonstrates the irradiation doses of 2kGy, 1kGy physic-chemically alters the Cantaloupe melon pH, soluble solids content and acidity. And the dose of 2kGy is the one that longer preserves samples based on acidity values, greater and smaller values of soluble solids. (author)

  5. Effective disinfection of rough rice using infrared radiation heating.

    Science.gov (United States)

    Wang, Bei; Khir, Ragab; Pan, Zhongli; El-Mashad, Hamed; Atungulu, Griffiths G; Ma, Haile; McHugh, Tara H; Qu, Wenjuan; Wu, Bengang

    2014-09-01

    The objective of this study was to investigate the effect of infrared (IR) heating and tempering treatments on disinfection of Aspergillus flavus in freshly harvested rough rice and storage rice. Rice samples with initial moisture contents (IMCs) of 14.1 to 27.0% (wet basis) were infected with A. flavus spores before the tests. The infected samples were heated by IR radiation to 60°C in less than 1 min, and then samples were tempered at 60°C for 5, 10, 20, 30, 60, or 120 min. High heating rates and corresponding high levels of moisture removal were achieved using IR heating. The highest total moisture removal was 5.3% for the fresh rice with an IMC of 27.0% after IR heating and then 120 min of tempering. IR heating followed by tempering for 120 min resulted in 2.5- and 8.3-log reductions of A. flavus spores in rough rice with the lowest and highest IMCs, respectively. To study the effect on disinfection of rewetting dried storage rice, the surface of the dry rice was rewetted to achieve IMCs of 14.7 to 19.4% (wet basis). The rewetting process for the dry rice had a significant effect on disinfection. IR heating followed by tempering for 60 min resulted in 7.2-log reductions in A. flavus on rewetted rough rice. The log-linear plus tail model was applied to estimate the tempering time needed to achieve a 5-log reduction of A. flavus in rice of different IMCs. At least 30 and 20 min of tempering were needed for fresh rice and rewetted rice, respectively, with the highest IMCs. The recommended conditions of simultaneous disinfection and drying for fresh rice was IR heating to 60°C followed by tempering for 120 min and natural cooling, resulting in a final MC of 16.5 to 22.0%, depending on the IMC. For the rewetted dry rice with an IMC of 19.4%, the recommended condition for disinfection and drying involved only 20 min of tempering. The final MC of the sample was 13.8%, which is a safe MC for storage rice.

  6. Effect of Ionizing Radiation on the Properties of Porous Silicon Nanostructures

    Directory of Open Access Journals (Sweden)

    I.B. Olenych

    2015-12-01

    Full Text Available The influence of ionizing radiation from 226Ra source on the electrical and photoluminescent properties of porous silicon nanostructures was investigated. After the radiation exposure, AC resistance of experimental samples decreased and luminescence band was changed. Temperature dependencies of electrical conductivity and depolarization current were studied in 80-325 K temperature range. Effect of radiation on the energy distribution of localized electronic states in porous silicon based structures is analyzed. Obtained results expand the application prospective of porous silicon for radiation sensing.

  7. Neutron Radiation Effect On 2N2222 And NTE 123 NPN Silicon Bipolar Junction Transistors

    Science.gov (United States)

    Oo, Myo Min; Rashid, N. K. A. Md; Karim, J. Abdul; Zin, M. R. Mohamed; Hasbullah, N. F.

    2013-12-01

    This paper examines neutron radiation with PTS (Pneumatic Transfer System) effect on silicon NPN bipolar junction transistors (2N2222 and NTE 123) and analysis of the transistors in terms of electrical characterization such as current gain after neutron radiation. The key parameters are measured with Keithley 4200SCS. Experiment results show that the current gain degradation of the transistors is very sensitive to neutron radiation. The neutron radiation can cause displacement damage in the bulk layer of the transistor structure. The current degradation is believed to be governed by increasing recombination current between the base and emitter depletion region.

  8. Total dose radiation effects on SOI NMOS transistors with different layouts

    Institute of Scientific and Technical Information of China (English)

    TIAN Hao; ZHANG Zheng-Xuan; HE Wei; YU Wen-Jie; WANG Ru; CHEN Ming

    2008-01-01

    Partially-depleted Silicon-On-Insulator Negative Channel Metal Oxide Semiconductor (SOI NMOS)transistors with different layouts are fabricated on radiation hard Separation by IMplanted OXygen (SIMOX)substrate and tested using 10 keV X-ray radiation sources.The radiation performance is characterized by transistor threshold voltage shift and transistor leakage currents as a function of the total dose up to 2.0×106 rad(Si).The results show that the total dose radiation effects on NMOS devices are very sensitive to their layout structures.

  9. Multiparametric assessment of radiation effects for the individual radiation sensitivity estimation; Multiparametrische Erfassung von Strahlenwirkungen zur Abschaetzung der individuellen Strahlenempfindlichkeit

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The effects of low dose irradiation are highly relevant for radiation protection in the public. The sensitivity to clastogenic and tumorigenic effects of ionizing radiation (IR) varies considerably amongst individuals. Examples for genetically determined enhanced sensitivity are well known in some hereditary diseases: patients with chromosomal instability syndromes, Ataxia telangiectasia (A-T), Nijmegen Breakage Syndrome (NBS) and Bloom Syndrome (BS) show strongly enhanced sensitivity towards IR, severe immunodeficiencies, and a high incidence for developing leukemias and lymphomas. This obvious coincidence of enhanced radiosensitivity and tumor risk, and the frequently observed enhanced radiosensitivity of genetically non-defined tumor patients indicate that tumor patients may constitute a subpopulation with enriched genetical predisposition for enhanced radiosensitivity. Furthermore, a subpopulation of radiosensitive individuals may be part of the probably inconspicuous total population. For example, individuals heterozygous for the above mentioned genes (and possibly some other genes) show enhanced radiosensitivity if compared with the normal population. In general, heterozygous carriers of those hereditary deficiencies are clinically inconspicuous, but due an haploinsufficiency their tumour risk may be enhanced. This has been shown for mice carrying an heterozygous Nbs1 mutation (J.-Q. Wang, Lyon, pers. Communication). Our findings concerning enhanced radiation-induced chromosomal aberrations in heterozygous Nbs1 cell lines support this notion. The identification of high risk groups with enhanced radiosensitivity is therefore an important task for radioprotection. This project aimed at establishing a procedure which allows to test various cellular parameters as indicators for effects of radiation. A standard protocol for the isolation and cryoconservation of primary blood cells was developed. DNA repair analysis (Comet Assay) and radiation-induced apoptosis

  10. Grain alignment induced by radiative torques: effects of internal relaxation of energy and complex radiation fields

    CERN Document Server

    Hoang, Thiem

    2008-01-01

    Earlier studies of grain alignment dealt mostly with interstellar grains that have strong internal relaxation of energy which aligns grain axis of maximum moment of inertia with respect to grain's angular momentum. In this paper, we study the alignment by radiative torques for large irregular grains, e.g., grains in accretion disks, for which internal relaxation is subdominant. We use both numerical calculations and the analytical model of a helical grain introduced by us earlier. We demonstrate that grains in such a regime exhibit more complex dynamics. In particular, if initially the grain axis of maximum moment of inertia makes a small angle with angular momentum, then radiative torques can align the grain axis of maximum moment of inertia with angular momentum, and both axis of maximum moment of inertia and angular momentum are aligned with the magnetic field when attractors with high angular momentum (high-J attractors) are available. For the alignment without high-J attractors, beside the earlier studie...

  11. Bystander effect induced by UV radiation; why should we be interested?

    Science.gov (United States)

    Widel, Maria

    2012-11-14

    The bystander effect, whose essence is an interaction of cells directly subjected to radiation with adjacent non-subjected cells, via molecular signals, is an important component of ionizing radiation action. However, knowledge of the bystander effect in the case of ultraviolet (UV) radiation is quite limited. Reactive oxygen and nitrogen species generated by UV in exposed cells induce bystander effects in non-exposed cells, such as reduction in clonogenic cell survival and delayed cell death, oxidative DNA damage and gene mutations, induction of micronuclei, lipid peroxidation and apoptosis. Although the bystander effect after UV radiation has been recognized in cell culture systems, its occurrence in vivo has not been studied. However, solar UV radiation, which is the main source of UV in the environment, may induce in human dermal tissue an inflammatory response and immune suppression, events which can be considered as bystander effects of UV radiation. The oxidative damage to DNA, genomic instability and the inflammatory response may lead to carcinogenesis. UV radiation is considered one of the important etiologic factors for skin cancers, basal- and squamous-cell carcinomas and malignant melanoma. Based on the mechanisms of actions it seems that the UV-induced bystander effect can have some impact on skin damage (carcinogenesis?), and probably on cells of other tissues. The paper reviews the existing data about the UV-induced bystander effect and discusses a possible implication of this phenomenon for health risk. 

  12. Effects of radiation on the structure of bothropstoxin-1

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, P.J. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)]. E-mail: pspencer@net.ipen.br

    2000-07-01

    Ionizing radiation has been widely employed to attenuate venoms and toxins, preserving and even enhancing their immunogenic properties. However, little is known about molecular changes in irradiated proteins. In this work, we compared native and irradiated bothropstoxin-1, with the aim of characterizing the structural modifications induced by radiation. Our results indicate that radiation promotes a transition from the multimeric to the monomeric state in a dose-dependent manner. Spectral and calorimetric analysis suggest that the irradiated molecules undergo oxidation and partially unfold the remaining elements being stabilized by the seven disulphide bonds. The binding pattern of monoclonal antibodies raised against irradiated bothropstoxin indicated that most of the recognized epitopes are linear present on the surface of both native and irradiated toxin. Also, irradiated toxin appears to be more immunogenic, inducing the formation of native toxin-binding antibodies. (author)

  13. Effects of Solar UV Radiation and Climate Change on Biogeochemical Cycling: Interactions and Feedbacks

    Science.gov (United States)

    Solar UV radiation, climate and other drivers of global change are undergoing significant changes and models forecast that these changes will continue for the remainder of this century. Here we assess the effects of solar UV radiation on biogeochemical cycles and the interactions...

  14. Effect of powder compaction on radiation-thermal synthesis of lithium-titanium ferrites

    Science.gov (United States)

    Surzhikov, A. P.; Lysenko, E. N.; Vlasov, V. A.; Malyshev, A. V.; Korobeynikov, M. V.; Mikhailenko, M. A.

    2017-01-01

    Effect of powder compaction on the efficiency of thermal and radiation-thermal synthesis of lithium-substituted ferrites was investigated by X-Ray diffraction and specific magnetization analysis. It was shown that the radiation-thermal heating of compacted powder reagents mixture leads to an increase in efficiency of lithium-titanium ferrites synthesis.

  15. Single and compound effects of radiation and microgravity responses in Caenorhabditis elegans

    Science.gov (United States)

    Wang, Wei; Sun, Yeqing; Xu, Dan; Yang, Jun; Luo, Yajing

    2016-07-01

    Space radiation and microgravity are main factors of spaceflight which could cause effects on organism. However, studies on the combined effects of microgravity and radiation have had conflicting results. For further elucidate the single factor effects of radiation or microgravity and the compound factor effects of them, the wild-type strain (Bristol N2) and muscle repair defective strain (dys-1) of Caenorhabditis elegansin dauer larvae were treated by ground simulated radiation in different doses (0.2Gy,2Gy) and/or 16.5-day simulated microgravity. The locomotory capacity assay and proteomic analysis were processed after the recovery of dauer larvae to adult. Locomotory capacity assay showed that the N2 nematodes were susceptible to simulated microgravity while dys-1 nematodes were susceptible to simulation radiation especially in high dose radiation (2Gy). The compound factor of microgravity and radiation has different influences to different strains. Proteomic results indicated that a wide range but different biological processes were involved in responding to radiation and/or microgravity.

  16. Chemistry in a dry cloud: the effects of radiation and turbulence

    NARCIS (Netherlands)

    Vil...-Guerau, de J.; Cuijpers, J.W.M.

    2000-01-01

    The combined effect of ultraviolet radiation and turbulent mixing on chemistry in a cloud-topped boundary layer is investigated. The authors study a flow driven by longwave radiative cooling at cloud top. They consider a chemical cycle that is composed of a first-order reaction whose photodissociati

  17. Effect of disc reflectors on radiation impedance of short-backfire antenna

    Science.gov (United States)

    Marougi, S. D.

    1982-02-01

    Using near-field analysis, the influence of large and small disc reflectors used in short-backfire antennas on the radiation impedance of a dipole feed element has been investigated. The effect of each reflector is evaluated separately, and the overall change in the radiation impedance of the dipole is predicted.

  18. The Effects of Landcover Pattern on Urban Surface Net Radiation Retrieved by Remote Sensing

    Science.gov (United States)

    Zhao, X.

    2015-12-01

    Taking Xiamen city as the study area, this research retrieved surface net radiation using meteorological data and Landsat 5 TM images of the four seasons in the year 2009. Meanwhile the 65 different landscape metrics of each analysis unit were acquired using landscape analysis method. Then the most effective landscape metrics affecting surface net radiation were determined by correlation analysis, partial correlation analysis, stepwise regression method, etc. At both class and landscape levels, this paper comprehensively analyzed the temporal and spatial variations of the surface net radiation as well as the effects of land cover pattern on it in Xiamen from a multi-seasonal perspective. The results showed that: Xiamen's surface net radiation is the maximum in summer, followed by spring, autumn. The surface net radiation in winter is the minimum. Net radiation flux is higher for water and forestland and is lower for built-up land and bare land, etc. The spatial composition of land cover pattern shows significant influence on surface net radiation. The proportion of bare land and the proportion of forest land are effective and important factors which affect the changes of surface net radiation all the year round. But the spatial allocation of land cover pattern has no significant influence on surface net radiation. Moreover, the proportion of forest land is more capable for explaining surface net radiation than the proportion of bare land. Its total annual explanatory ability is better than the latter. So the proportion of forest land is the most important and continuously effective factor which affects and explains the cross-seasonal differences of surface net radiation. This study is helpful in exploring the formation and evolution mechanism of urban heat island. It also gave theoretical hints and realistic guidance for urban planning and sustainable development.

  19. Gamma radiation effects on the viscosity of green banana flour

    Energy Technology Data Exchange (ETDEWEB)

    Uehara, Vanessa B.; Inamura, Patricia Y.; Mastro, Nelida L. Del [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)], e-mail: vanessa.uehara@usp.br, e-mail: patyoko@yahoo.com, e-mail: nlmastro@ipen.br

    2009-07-01

    Banana (Musa sp) is a tropical fruits with great acceptability among consumers and produced in Brazil in a large scale. Bananas are not being as exploited as they could be in prepared food, and research could stimulate greater interest from industry. The viscosity characteristics and a product consistency can determine its acceptance by the consumer. Particularly the starch obtained from green banana had been studied from the nutritional point of view since the concept of Resistant Starch was introduced. Powder RS with high content of amylose was included in an approved food list with alleged functional properties in Brazilian legislation. Ionizing radiation can be used as a public health intervention measure for the control of food-borne diseases. Radiation is also a very convenient tool for polymer materials modification through degradation, grafting and crosslinking. In this work the influence of ionizing radiation on the rheological behavior of green banana pulp was investigated. Samples of green banana pulp flour were irradiated in a {sup 60}Co Gammacell 220 (AECL) with doses of 0 kGy,1 kGy, 3 kGy, 5 kGy and 10 kGy in glass recipients. After irradiation 3% and 5% aqueous dilution were prepared and viscosity measurements performed in a Brooksfield, model DVIII viscometer using spindle SC4-18 and SC4-31. There was a reduction of the initial viscosity of the samples as a consequence of radiation processing, being the reduction inversely proportional to the flour concentration. The polysaccharide content of the banana starch seems to be degraded by radiation in solid state as shown by the reduction of viscosity as a function of radiation dose. (author)

  20. Radiatively Driven Winds from Effective Boundary Layer around Black Holes

    Indian Academy of Sciences (India)

    Indranil Chattopadhyay; Sandip K. Chakrabarti

    2002-03-01

    Matter accreting onto black holes suffers a standing or oscillating shock wave in much of the parameter space. The post-shock region is hot, puffed up and reprocesses soft photons from a Keplerian disc to produce the characteristic hard tail of the spectrum of accretion discs. The post-shock torus is also the base of the bipolar jets. We study the interaction of these jets with the hard photons emitted from the disc. We show that radiative force can accelerate outflows but the drag can limit the terminal speed. We introduce an equilibrium speed eq as a function of distance, above which the flow will experience radiative deceleration.

  1. Effect of secondary radiation force on aggregation between encapsulated microbubbles

    Institute of Scientific and Technical Information of China (English)

    Zhang Yan-Li; Zheng Hai-Rng; Tang Meng-Xing; Zhang Dong

    2011-01-01

    Secondary radiation force can be an attractive force causing aggregates of encapsulated microbubbles in ultrasonic molecular imaging. The influence of the secondary radiation force on aggregation between two coated bubbles is investigated in this study. Numerical calculations are performed based on four simultaneous differential equations of radial and translational motions.Results show that the secondary force can change from attraction to repulsion during approach,and stable microbubble pairs can be formed in the vicinity of resonant regions; the possibility of microbubble aggregations can be reduced by using low exciting amplitude,ultrasonic frequencies deviating from the resonant frequencies or microbubbles with small compressibility.

  2. Ionizing radiation effects on food vitamins: a review

    Energy Technology Data Exchange (ETDEWEB)

    Dionisio, Ana Paula, E-mail: annadionisio@yahoo.com.b [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Faculdade de Engenharia de Alimentos. Dept. de Ciencia de Alimentos; Gomes, Renata Takassugui; Oetterer, Marilia [Universidade de Sao Paulo (USP), Piracicaba, SP (Brazil). Escola Superior de Agricultura Luiz de Queiroz. Dept. de Agroindustria, Alimentos e Nutricao

    2009-09-15

    Ionizing radiation has been widely used in industrial processes, especially in the sterilization of medicines, pharmaceuticals, cosmetic products, and in food processing. Similar to other techniques of food processing, irradiation can induce certain alterations that can modify both the chemical composition and the nutritional value of foods. These changes depend on the food composition, the irradiation dose and factors such as temperature and presence or absence of oxygen in the irradiating environment. The sensitivity of vitamins to radiation is unpredictable and food vitamin losses during the irradiation are often substantial. The aim of this study was to discuss retention or loss of vitamins in several food products submitted to an irradiation process. (author)

  3. Radiation and annealing effects on integrated bipolar Operational Amplifier

    Science.gov (United States)

    Assaf, J.

    2017-02-01

    Integrated bipolar Operational Amplifier (op-amp) type μA 741 was irradiated with neutrons and gamma rays. The radiation on gain factors, slew rate, and power supply current have been evaluated. The experimental results show a decrease of these parameter values after exposing to the radiation. The advantage of the increase of the voltage power supplies and the thermal annealing treatment on the damaged parameters was also explored. The relationship among different frequency response parameters is also studied leading to an analytical formula for the above degraded parameters.

  4. Effects of Thermal Radiation on Hydromagnetic Flow due to a Porous Rotating Disk with Hall Effect

    Directory of Open Access Journals (Sweden)

    S.P Anjali Devi

    2012-01-01

    Full Text Available Radiation effect on steady laminar hydromagnetic flow of a viscous, Newtonian and electrically conducting fluid past a porous rotating infinite disk is studied taking Hall current into account. The system of axisymmetric nonlinear partial differential equations governing the MHD flow and heat transfer are reduced to nonlinear ordinary differential equations by introducing suitable similarity variables introduced by von Karman and the resulting nonlinear equations are solved numerically using Runge-Kutta based shooting method. A parametric study of all parameters involved was conducted and a representative set of results showing the effect of the magnetic field, the radiation parameter, the uniform suction/injection parameter and Hall parameter are illustrated graphically. The numerical values of the radial and tangential skin-friction coefficient and Nusselt number are calculated and displayed in the tables showing the effects of various parameters. Finally, a good comparison between the present numerical predictions and the previously published data are presented in the absence of magnetic field and radiation.

  5. Late effects of radiation on mature and growing bone; Effets tardifs des radiations sur l`os mature et en croissance

    Energy Technology Data Exchange (ETDEWEB)

    Ramuz, O.; Mornex, F. [Centre Hospitalier Universitaire Lyon-Sud, 69 - Pierre-Benite (France); Bourhis, J. [Institut Gustave Roussy, 94 - Villejuif (France)

    1997-12-01

    The physiopathology of radiation-induced bone damage is no completely elucidated. Ionizing radiation may induce an inhibition or an impairment of growing bone. This fact is of particular importance in children, and represents one of the most important dose-limiting factors in the radiotherapeutic management of children with malignant diseases. Scoliosis, epiphyseal slippage, avascular necrosis, abnormalities of craniofacial growth may be observed after radiation. Child`s age at the time of treatment, location of irradiated bone and irradiation characteristics may influence the radiation related observed effects. In adults, pathological analysis of mature bone after ionizing radiation exposure are rare, suggesting that it is difficult to draw a clear feature of the action of radiation on the bone. Osteoporosis, medullary fibrosis and cytotoxicity on bone cells lead to fracture or necrosis. Various factors can influence bone tolerance to radiation such as bone involvement by tumor cells or infection, which is frequent is mandibulary osteoradionecrosis. Technical improvements in radiation techniques have also decreased radio-induced bone complications : the volume, fractionation and total dose are essential to consider. The absence of a consistent radiation-induced late effects evaluation scale has hampered efforts to analyze the influence of various therapeutic maneuvers and the comparison of results from different reported series. The currently proposed evaluation scale may help harmonizing the classification of radiation-induced bone late effects. (author)

  6. Effects of solar UV radiation and climate change on biogeochemical cycling: interactions and feedbacks

    OpenAIRE

    Zepp, R. G.; D. J. Erickson; Paul, N.D.; Sulzberger, B.

    2011-01-01

    Solar UV radiation, climate and other drivers of global change are undergoing significant changes and models forecast that these changes will continue for the remainder of this century. Here we assess the effects of solar UV radiation on biogeochemical cycles and the interactions of these effects with climate change, including feedbacks on climate. Such interactions occur in both terrestrial and aquatic ecosystems. While there is significant uncertainty in the quantification of these effects,...

  7. Effects of ozone depletion and UV-B radiation on humans and the environment

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, K.R. [Guelph Univ., ON (Canada). Centre for Toxicology

    2008-03-15

    This paper summarized current research related to the effects of ultraviolet (UV-B) radiation on human health and the environment. Effects included direct responses in human as well as effects on biogeochemistry and the environmental cycling of substances. UV radiation has many harmful effects on the skin, eyes, and immune systems of humans. Skin cancer is a leading cause of death among fair-skinned populations exposed to UV radiation. The role of UV radiation in cataract formation was discussed, as well as issues related to the suppression of immune responses. The link between sunlight exposure and vitamin D levels in human populations was examined. The effects of UV radiation on terrestrial and aquatic ecosystems were reviewed. Issues related to biogeochemistry and atmospheric processes were discussed. The review suggested that changes in the intensity of solar UV radiation due to ozone depletion will have important repercussions for all organisms on the planet. It was concluded that the combined effects of UV-B radiation and climate change will not be easy to predict. 201 refs., 4 figs.

  8. Radiation effect on temperature distribution in three-dimensional Couette flow with suction or injection

    Institute of Scientific and Technical Information of China (English)

    Bhupendra.Kumar Sharma; Mamta Agarwal; R.C.Chaudhary

    2007-01-01

    A theoretical analysis of three-dimensional Couette flow with radiation effect on temperature distribution has been analysed, when the injection of the fluid at the lower stationary plate is a transverse sinusoidal one and its corresponding removal by constant suction through the upper porous plate is in uniform motion. Due to this type of injection velocity, the flow becomes three-dimensional. The effect of Prandtl number,radiation parameter and injection parameter on rate of heat transfer has been examined by the help of graphs. The Prandtl number has a much greater effect on the temperature distribution than the injection or radiation parameter.

  9. Report on policy and activities concerning public awareness of health effects of low-level radiation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1986-11-01

    In the summer of 1986, the Executive Committee authorized a study limited to determining policy and practices relevant to dissemination of information to the public on radiation health effects in three federal agencies. This report summarizes findings on two broad questions related to the communication issue: What, if any, are the policies under which federal agencies operate in disseminating information on health effects of radiation and what are the current programs and activities designed to provide the public information on health effects of radiation.

  10. Effects of GSM-Frequency Electromagnetic Radiation on Some Physiological and Biochemical Parameters in Rats.

    Science.gov (United States)

    Khirazova, E E; Baizhumanov, A A; Trofimova, L K; Deev, L I; Maslova, M V; Sokolova, N A; Kudryashova, N Yu

    2012-10-01

    Single exposure of white outbred rats to electromagnetic radiation with a frequency 905 MHz (GSM frequency) for 2 h increased anxiety, reduced locomotor, orientation, and exploration activities in females and orientation and exploration activities in males. Glucocorticoid levels and antioxidant system activity increased in both males and females. In addition to acute effects, delayed effects of radiation were observed in both males and females 1 day after the exposure. These results demonstrated significant effect of GSM-range radiation on the behavior and activity of stress-realizing and stress-limiting systems of the body.

  11. Effect of Joule heating and thermal radiation in flow of third grade fluid over radiative surface.

    Science.gov (United States)

    Hayat, Tasawar; Shafiq, Anum; Alsaedi, Ahmed

    2014-01-01

    This article addresses the boundary layer flow and heat transfer in third grade fluid over an unsteady permeable stretching sheet. The transverse magnetic and electric fields in the momentum equations are considered. Thermal boundary layer equation includes both viscous and Ohmic dissipations. The related nonlinear partial differential system is reduced first into ordinary differential system and then solved for the series solutions. The dependence of velocity and temperature profiles on the various parameters are shown and discussed by sketching graphs. Expressions of skin friction coefficient and local Nusselt number are calculated and analyzed. Numerical values of skin friction coefficient and Nusselt number are tabulated and examined. It is observed that both velocity and temperature increases in presence of electric field. Further the temperature is increased due to the radiation parameter. Thermal boundary layer thickness increases by increasing Eckert number.

  12. Effect of Joule heating and thermal radiation in flow of third grade fluid over radiative surface.

    Directory of Open Access Journals (Sweden)

    Tasawar Hayat

    Full Text Available This article addresses the boundary layer flow and heat transfer in third grade fluid over an unsteady permeable stretching sheet. The transverse magnetic and electric fields in the momentum equations are considered. Thermal boundary layer equation includes both viscous and Ohmic dissipations. The related nonlinear partial differential system is reduced first into ordinary differential system and then solved for the series solutions. The dependence of velocity and temperature profiles on the various parameters are shown and discussed by sketching graphs. Expressions of skin friction coefficient and local Nusselt number are calculated and analyzed. Numerical values of skin friction coefficient and Nusselt number are tabulated and examined. It is observed that both velocity and temperature increases in presence of electric field. Further the temperature is increased due to the radiation parameter. Thermal boundary layer thickness increases by increasing Eckert number.

  13. BEIR-III report and the health effects of low-level radiation

    Energy Technology Data Exchange (ETDEWEB)

    Fabrikant, J.I.

    1980-01-01

    The present BEIR-III Committee has not highlighted any controversy over the health effects of low-level radiation. In its evaluation of the experimental data and epidemiological surveys, the Committee has carefully reviewed and assessed the value of all the available scientific evidence for estimating numerical risk coefficients for the health hazards to human populations exposed to low levels of ionizing radiation. Responsible public awareness of the possible health effects of ionizing radiations from medical and industrial radiation exposure, centers on three important matters of societal concern: (1) to place into perspective the extent of harm to the health of man and his descendants to be expected in the present and in the future from those societal activities involving ionizing radiation; (2) to develop quantitative indices of harm based on dose-effect relationships; such indices could then be used with prudent caution to introduce concepts of the regulation of population doses on the basis of somatic and genetic risks; and (3) to identify the magnitude and extent of radiation activities which could cause harm, to assess their relative significance, and to provide a framework for recommendations on how to reduce unnecessary radiation exposure to human populations. The main difference of the BEIR Committee Report is not so much from new data or new interpretations of existing data, but rather from a philosophical approach and appraisal of existing and future radiation protection resulting from an atmosphere of constantly changing societal conditions and public attitudes. (PCS)

  14. Radiation Dose-Volume Effects In the Esophagus

    Science.gov (United States)

    Werner-Wasik, Maria; Yorke, Ellen; Deasy, Joseph; Nam, Jiho; Marks, Lawrence B.

    2013-01-01

    Publications relating esophageal radiation toxicity to clinical variables and to quantitative dose and dose–volume measures derived from three-dimensional conformal radiotherapy for non–small-cell lung cancer are reviewed. A variety of clinical and dosimetric parameters have been associated with acute and late toxicity. Suggestions for future studies are presented. PMID:20171523

  15. Effects of Elevated Solar UV-B Radiation from Ozone Depletion on Terrestrial Ecosystems

    Institute of Scientific and Technical Information of China (English)

    LIU Qing; Terry V. Callaghan; ZUO Yuanyuan

    2004-01-01

    In the last three decades much research has been carried out to investigate the biological effects of a thinning stratospheric ozone layer accompanied by an enhanced level of solar ultraviolet-B radiation at the Earth's surface. Enhanced UV-B radiation affects ecosystems in many ways directly and indirectly. The responses can be biochemical, physiological, morphological or anatomical, and the direction of the response can vary between different species, communities and ecosystems. In this paper we firstly introduce general concepts, and methods for measuring the ecological effects of UV-B radiation. Secondly, we provide an overview interpretation of the effects of enhanced UV-B on terrestrial ecosystems from recent studies. These studies include effects of UV-B on growth and reproduction, composition of communities, competitive balance, decomposition of litter, and interactions with other factors etc. Finally, we recommend future research directions to identify the effects of elevated UV-B radiation on ecosystems in China.

  16. Effects of gamma radiation on antinutritional factors of soybean

    Energy Technology Data Exchange (ETDEWEB)

    Toledo, Tais C.F. de; Arthur, Valter [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Lab. de Irradiacao de Alimentos e Radioentomologia]. E-mail: tcftoled@cena.usp.br; arthur@cena.usp.br; Brazaca, Solange G.C. [Universidade de Sao Paulo (USP), Piracicaba, SP (Brazil). Escola Superior de Agricultura Luiz de Queiroz. Dept. de Agroindustria, Alimentos e Nutricao]. E-maik: sgcbraza@esalq.usp.br; Piedade, Sonia M. de S. [Escola Superior de Agricultura Luiz de Queiroz (ESALQ/USP), Piracicaba, SP (Brazil). Dept. de Ciencias Exatas]. E-mail: piedade@esalq.usp.br

    2007-07-01

    The soybean is one of the most important legume cultivated in the world. Some leguminous, particularly soybeans, contain significant amounts of bioactive compounds that may change the utilization of nutrients by the organism, when consumed. The main protein responsible for the low nutritional value of raw soybean grains and the trypsin and lectin inhibitors. Some methods can be used to minimize lost during storage, and the ionizing radiation with Cobalto-60 constitutes a safe and efficient method for the increase in the time of useful life of foods. The sum of observations exposed in previous chapters leads to the proposal of determining the possible alterations promoted by the use of gamma radiation (with doses of 2, 4 and 8 kGy) in the alteration of antinutrients (total phenolic, trypsin inhibitor and tannins) in soybean (cultivars BRS 212, BRS 213, BRS 214, BRS 231 and EMBRAPA 48). Total phenolic ranged from 2.46 to 10.83 mg/g, and the dose of 8 kGy promoted an increase on the content of total phenolic compounds in all raw samples and in cooked samples from some cultivars. The trypsin inhibited ranged from 18.19 to 71.64 UTI/g, and all cultivars presented the same behavior in relation to radiation for inhibited trypsin units both for raw and cooked samples, with significant differences (p{<=}0.05) between all doses used. For tannins, ranged from 0.01 to 0.39 mg/g, and the gamma radiation promoted reduction on the tannin contents as the radiation dose increased until a limited dose. All the antinutrients studied underwent reduction with increases on the doses. (author)

  17. Role of ATP as a Key Signaling Molecule Mediating Radiation-Induced Biological Effects

    Science.gov (United States)

    Ohshima, Yasuhiro; Nakatsukasa, Hiroko; Tsukimoto, Mitsutoshi

    2017-01-01

    Adenosine triphosphate (ATP) serves as a signaling molecule for adaptive responses to a variety of cytotoxic agents and plays an important role in mediating the radiation stress-induced responses that serve to mitigate or repair the injurious effects of γ radiation on the body. Indeed, low doses of radiation may have a net beneficial effect by activating a variety of protective mechanisms, including antitumor immune responses. On the other hand, ATP signaling may be involved in the radiation resistance of cancer cells. Here, focusing on our previous work, we review the evidence that low-dose γ irradiation (0.25-0.5 Gy) induces release of extracellular ATP, and that the released ATP mediates multiple radiation-induced responses, including increased intracellular antioxidant synthesis, cell-mediated immune responses, induction of DNA damage repair systems, and differentiation of regulatory T cells.

  18. Contact radiotherapy of cutaneous hemangiomas: therapeutic effects and radiation sequelae in 818 patients.

    Science.gov (United States)

    Braun-Falco, O; Schultze, U; Meinhof, W; Goldschmidt, H

    1975-10-29

    The paper presents statistical data on the therapeutic effects and radiation sequelae following Chaoul contact therapy of 818 cutaneous hemangiomas treated between 1938 and 1952. 73.3% of all irradiated hemangiomas showed initial improvement but complete involution with an excellent cosmetic result was observed in only 50% of lesions 5 years after treatment. During the same period of time, more than one-third of all patients developed mild to moderate cutaneous radiation sequelae (hyper- or hypopigmentation and telangiectases, rarely atrophy). The high incidence of late radiation effects is probably relation to the high total doses administered in this series of patients, the very short intervals between treatments and the age of the patients. Other radiation radiation hazards are also discussed. Since large studies have proven conclusively that spontaneous involution occurs in 95% of hemangiomas after several years, indications for radiotherapy of hemangiomas are extremely limited.

  19. Role of ATP as a Key Signaling Molecule Mediating Radiation-Induced Biological Effects.

    Science.gov (United States)

    Kojima, Shuji; Ohshima, Yasuhiro; Nakatsukasa, Hiroko; Tsukimoto, Mitsutoshi

    2017-01-01

    Adenosine triphosphate (ATP) serves as a signaling molecule for adaptive responses to a variety of cytotoxic agents and plays an important role in mediating the radiation stress-induced responses that serve to mitigate or repair the injurious effects of γ radiation on the body. Indeed, low doses of radiation may have a net beneficial effect by activating a variety of protective mechanisms, including antitumor immune responses. On the other hand, ATP signaling may be involved in the radiation resistance of cancer cells. Here, focusing on our previous work, we review the evidence that low-dose γ irradiation (0.25-0.5 Gy) induces release of extracellular ATP, and that the released ATP mediates multiple radiation-induced responses, including increased intracellular antioxidant synthesis, cell-mediated immune responses, induction of DNA damage repair systems, and differentiation of regulatory T cells.

  20. UV radiation in global climate change. Measurements, modeling and effects on ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Wei; Slusser, James R. (eds.) [Colorado State Univ., CO (United States). Natural Resource Ecology Lab.; Schmoldt, Daniel L. [Waterfront Centre, Washington, DC (United States). Cooperative State Research Education and Extension Service

    2010-07-01

    Numerous studies report that ultraviolet (UV) radiation is harmful to living organisms and detrimental to human health. Growing concerns regarding the increased levels of UV-B radiation that reach the earth's surface have led to the development of ground- and space-based measurement programs. Further study is needed on the measurement, modeling, and effects of UV radiation. The chapters of this book describe the research conducted across the globe over the past three decades in the areas of: (1) current and predicted levels of UV radiation and its associated impact on ecosystems and human health, as well as economic and social implications; (2) new developments in UV instrumentation, advances in calibration (ground- and satellite-based), measurement methods, modeling efforts, and their applications; and (3) the effects of global climate change on UV radiation. (orig.)

  1. Effect of ionizing radiation on antioxidant compounds present in cork wastewater.

    Science.gov (United States)

    Madureira, J; Melo, R; Botelho, M L; Leal, J P; Fonseca, I M

    2013-01-01

    A preliminary study of the gamma radiation effects on the antioxidant compounds present in cork cooking water was carried out. Radiation studies were performed using radiation between 20 and 50 kGy at 0.4 and 2.4 kGy h(-1). The radiation effects on organic matter content were evaluated by chemical oxygen demand. The antioxidant activity was measured by ferric reducing power assay. The total phenolic content was studied using the Folin-Ciocalteau method. Results show that gamma radiation increases both the amount of phenolic compounds and antioxidant capacity of cork cooking water. These results highlight the potential of this technology for increasing the added value of cork waters.

  2. Solar irradiance changes and photobiological effects at Earth's surface following astrophysical ionizing radiation events

    CERN Document Server

    Thomas, Brian C; Snyder, Brock R

    2015-01-01

    Astrophysical ionizing radiation events have been recognized as a potential threat to life on Earth, primarily through depletion of stratospheric ozone and subsequent increase in surface-level solar ultraviolet radiation. Simulations of the atmospheric effects of a variety of events (such as supernovae, gamma-ray bursts, and solar proton events) have been previously published, along with estimates of biological damage at Earth's surface. In this work, we employed the TUV radiative transfer model to expand and improve calculations of surface-level irradiance and biological impacts following an ionizing radiation event. We considered changes in surface-level UVB, UVA, and photosynthetically active radiation (visible light) for clear-sky conditions and fixed aerosol parameter values. We also considered a wide range of biological effects on organisms ranging from humans to phytoplankton. We found that past work overestimated UVB irradiance, but that relative estimates for increase in exposure to DNA damaging radi...

  3. The radioprotection to the radiation side effect in EEM(extracts of edible mushrooms)

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Yeunhwa; Matsumori, Masaki; Park, Sangrae [Suzuka Univ. of Medical Science, Suzuka (Japan)] [and others

    2002-07-01

    At present, much radiotherapy that is one of treatment for the individual, the anti-cancer medicine or the combination is using a cancer. Chemosynthesis has been used as a radiation protection medicine until before. But, the use is restricted due to the serious side effect. The ICR mouse being used for the malformation experiment frequently was used in this research. Then, EEM (extracts of edible mushrooms (an extraction from Flammulina velutires and lyuophyllum ulmarium)) that it is natural products material to the fetus most radiation sensitivity malformation. It was examined about effect on radiation protection. It was recognized as the fetus malformation rate that it declined by giving EEM before the radiation irradiation in some benefit as a result. Moreover, repression of a decrease of fetus weight was recognized, and effect on radiation protection of EEM was explained in the individual level. And, I had the effect on protection that faced a corpuscle cell by the radiation by giving EEM in the same way explained, too. As for the cell level as well, it was proved that there was effect on protection against the radiation irradiation in the same way as the individual level. Furthermore, an examination was done about the effects on the external malformation to the radiation, the embryonic death rate and the sensitivity of the lymphocyte at the organogenesis stage. Furthermore, the study was done about the effects on the malformation to the radiation, the embryonic death rate and the sensitivity of the lymphocyte at the fetus of organogenesis stage. It was made to take feed and water freely. It was made to do mating in this experiment by using the ICR mice of female age of 9-13 weeks, male age of 9-15 weeks.

  4. Autophagy promotes radiation-induced senescence but inhibits bystander effects in human breast cancer cells.

    Science.gov (United States)

    Huang, Yao-Huei; Yang, Pei-Ming; Chuah, Qiu-Yu; Lee, Yi-Jang; Hsieh, Yi-Fen; Peng, Chih-Wen; Chiu, Shu-Jun

    2014-07-01

    Ionizing radiation induces cellular senescence to suppress cancer cell proliferation. However, it also induces deleterious bystander effects in the unirradiated neighboring cells through the release of senescence-associated secretory phenotypes (SASPs) that promote tumor progression. Although autophagy has been reported to promote senescence, its role is still unclear. We previously showed that radiation induces senescence in PTTG1-depleted cancer cells. In this study, we found that autophagy was required for the radiation-induced senescence in PTTG1-depleted breast cancer cells. Inhibition of autophagy caused the cells to switch from radiation-induced senescence to apoptosis. Senescent cancer cells exerted bystander effects by promoting the invasion and migration of unirradiated cells through the release of CSF2 and the subsequently activation of the JAK2-STAT3 and AKT pathways. However, the radiation-induced bystander effects were correlated with the inhibition of endogenous autophagy in bystander cells, which also resulted from the activation of the CSF2-JAK2 pathway. The induction of autophagy by rapamycin reduced the radiation-induced bystander effects. This study reveals, for the first time, the dual role of autophagy in radiation-induced senescence and bystander effects.

  5. Effects of UV-B radiation on the growth interaction of Ulva pertusa and Alexandrium tamarense

    Institute of Scientific and Technical Information of China (English)

    CAI Heng-jiang; TANG Xue-xi; ZHANG Pei-yu; DONG Dong; QU Liang

    2005-01-01

    Enhanced UV-B(280- 320 nm) radiation resulting from ozone depletion is one of global environmental problems. Not only marine organisms but also marine ecosystems can be affected by enhanced UV-B radiation. The effects of UV-B radiation on interaction of macro-algae and micro-algae were investigated using Ulva pertusa Kjellman and Alexandrium tamarense as the materials in this study.The results demonstrated that UV-B radiation could inhibit the growth of Ulva pertusa and Alexandrium tamarense when they were both mono-cultured, and the growth inhibition of algae was more significant with increasing doses of UV-B radiation. Alexandrium tamarense could inhibit the growth of Ulva pertusa in mixed culture, and the growth inhibition was more significant when increasing the initial cell density. However, Ulva pertusa could inhibit the growth of Alexandriurm tamarense in early phase and stimulate the growth in latter phase when they were grown in mixed culture. Lower initial cell density(102 cell/mi) of Alexandriurm tamarense could inhibit the growth of Ulva pertusa under UV-B radiation treatment,however, with the initial cell density increasing(103 and 104 cell/ml), the growth of Ulva pertusa was stimulated under lower dose of UV-B radiation and inhibited under higher dose of UV-B radiation by Alexandrium tamarense.Compared with that in mixed culture, Ulva pertusa showed more positive inhibition to the growth of Alexandrium tamarense under UV-B radiation treatment.

  6. Simulation of the Radiative Effect of Black Carbon Aerosols and the Regional Climate Responses over China

    Institute of Scientific and Technical Information of China (English)

    吴涧; 蒋维楣; 符淙斌; 苏炳凯; 刘红年; 汤剑平

    2004-01-01

    As part of the development work of the Chinese new regional climate model (RIEMS), the radiative process of black carbon (BC) aerosols has been introduced into the original radiative procedures of RIEMS,and the transport model of BC aerosols has also been established and combined with the RIEMS model.Using the new model system, the distribution of black carbon aerosols and their radiative effect over the China region are investigated. The influences of BC aerosole on the atmospheric radiative transfer and on the air temperature, land surface temperature, and total rainfall are analyzed. It is found that BC aerosols induce a positive radiative forcing at the top of the atmosphere (TOA), which is dominated by shortwave radiative forcing. The maximum radiative forcing occurs in North China in July and in South China in April. At the same time, negative radiative forcing is observed on the surface. Based on the radiative forcing comparison between clear sky and cloudy sky, it is found that cloud can enforce the TOA positive radiative forcing and decrease the negative surface radiative forcing. The responses of the climate system in July to the radiative forcing due to BC aerosols are the decrease in the air temperature in the middle and lower reaches of the Changjiang River and Huaihe area and most areas of South China, and the weak increase or decrease in air temperature over North China. The total rainfall in the middle and lower reaches of the Changjiang River area is increased, but it decreased in North China in July.

  7. Effects of low dose gamma radiation on the early growth of red pepper and the resistance to subsquent high dose of radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. S.; Baek, M. H.; Kim, D. H.; Lee, Y. K. [KAERI, Taejon (Korea, Republic of); Lee, Y. B. [Chungnam National Univ., Taejon (Korea, Republic of)

    2001-05-01

    Red pepper (capsicum annuum L. cv. Jokwang and cv. Johong) seeds were irradiated with the dose of 0{approx}50 Gy to investigated the effect of the low dose gamma radiation on the early growth and resistance to subsequent high dose of radiation. The effect of the low dose gamma radiation on the early growth and resistance to subsequenct high dose of radiation were enhanced in Johong cultivar but not in Jokwang cultivar. Germination rate and early growth of Johong cultivar were noticeably increased at 4 Gy-, 8 Gy- and 20 Gy irradiation group. Resistance to subsequent high dose of radiation of Johong cultivar were increased at almost all of the low dose irradiation group. Especially it was highest at 4 Gy irradiation group. The carotenoid contents and enzyme activity on the resistance to subsequent high dose of radiation of Johong cultivar were increased at the 4 Gy and 8 Gy irradiation group.

  8. Representing 3-D cloud radiation effects in two-stream schemes: 1. Longwave considerations and effective cloud edge length

    Science.gov (United States)

    Schäfer, Sophia A. K.; Hogan, Robin J.; Klinger, Carolin; Chiu, J. Christine; Mayer, Bernhard

    2016-07-01

    Current weather and climate models neglect 3-D radiative transfer through cloud sides, which can change the cloud radiative effect (CRE) significantly. This two-part paper describes the development of the SPeedy Algorithm for Radiative TrAnsfer through CloUd Sides (SPARTACUS) to capture these effects efficiently in a two-stream radiation scheme for use in global models. The present paper concerns the longwave spectral region, where not much work has been done previously, although the limited previous work has suggested that radiative transfer through cloud sides increases the longwave surface CRE of shallow cumulus by around 30%. To assist the development of a longwave capability for SPARTACUS, we use a reference case of an isolated, isothermal, optically thick, cubic cloud in vacuum, for which 3-D effects increase CRE by exactly 200%. It is shown that for any cloud shape, the 3-D effect can be represented in SPARTACUS provided that correct account is made for (1) the effective zenith angle of diffuse radiation emitted from a cloud, (2) the spatial distribution of fluxes in the cloud, (3) cloud clustering that enhances the interception of emitted radiation by neighboring clouds, and (4) radiative smoothing leading to the effective cloud edge length being less than the measured value. We find empirically that the circumference of an ellipse fitted to a horizontal cross section through a cumulus cloud provides a good estimate of the radiatively effective cloud edge length, which provides some guidance to how cloud observations could be analyzed to extract their most important properties for radiation.

  9. Effects of cosmic radiation on devices and embedded systems in aircrafts

    Energy Technology Data Exchange (ETDEWEB)

    Prado, Adriane C.M.; Federico, Claudio A.; Pereira Junior, Evaldo C.F.; Goncalez, Odair L., E-mail: claudiofederico@ieav.cta.br, E-mail: odairlelisgoncalez@gmail.com, E-mail: adriane.acm@hotmail.com, E-mail: evaldocarlosjr@gmail.com [Instituto de Estudos Avancados (IEAV/DCTA), Sao Jose dos Campos, SP (Brazil)

    2013-07-01

    Modern avionics systems use new electronic technologies devices that, due to their high degree of sophistication and miniaturization, are more susceptible to the effects of ionizing radiation, particularly the effect called 'Single Event Effect' (SEE) produced by neutron. Studies regarding the effects of radiation on electronic systems for space applications, such as satellites and orbital stations, have already been in progress for several years. However, tolerance requirements and specific studies, focusing on testing dedicated to avionics, have caused concern and gained importance in the last decade as a result of the accidents attributed to SEE in aircraft. Due to the development of a higher ceiling, an increase in airflow and a greater autonomy of certain aircrafts, the problem regarding the control of ionizing radiation dose received by the pilots, the crew and sensitive equipment became important in the areas of occupational health, radiation protection and flight safety. This paper presents an overview of the effects of ionizing radiation on devices and embedded systems in aircrafts, identifying and classifying these effects in relation to their potential risks in each device class. The assessment of these effects in avionics is a very important and emerging issue nowadays, which is being discussed by groups of the international scientific community; however, in South America, groups working in this area are still unknown. Consequently, this work is a great contribution and significantly valuable to the area of aeronautical engineering and flight safety associated to the effects of radiation on electronic components embedded in aircraft. (author)

  10. Effect of epicatechin against radiation-induced oral mucositis: in vitro and in vivo study.

    Directory of Open Access Journals (Sweden)

    Yoo Seob Shin

    Full Text Available PURPOSE: Radiation-induced oral mucositis limits the delivery of high-dose radiation to head and neck cancer. This study investigated the effectiveness of epicatechin (EC, a component of green tea extracts, on radiation-induced oral mucositis in vitro and in vivo. EXPERIMENTAL DESIGN: The effect of EC on radiation-induced cytotoxicity was analyzed in the human keratinocyte line HaCaT. Radiation-induced apoptosis, change in mitochondrial membrane potential (MMP, reactive oxygen species (ROS generation and changes in the signaling pathway were investigated. In vivo therapeutic effects of EC for oral mucositis were explored in a rat model. Rats were monitored by daily inspections of the oral cavity, amount of oral intake, weight change and survival rate. For histopathologic evaluation, hematoxylin-eosin staining and TUNEL staining were performed. RESULTS: EC significantly inhibited radiation-induced apoptosis, change of MMP, and intracellular ROS generation in HaCaT cells. EC treatment markedly attenuated the expression of p-JNK, p-38, and cleaved caspase-3 after irradiation in the HaCaT cells. Rats with radiation-induced oral mucositis showed decreased oral intake, weight and survival rate, but oral administration of EC significantly restored all three parameters. Histopathologic changes were significantly decreased in the EC-treated irradiated rats. TUNEL staining of rat oral mucosa revealed that EC treatment significantly decreased radiation-induced apoptotic cells. CONCLUSIONS: This study suggests that EC significantly inhibited radiation-induced apoptosis in keratinocytes and rat oral mucosa and may be a safe and effective candidate treatment for the prevention of radiation-induced mucositis.

  11. Effects of Radiation Exposure From Cardiac Imaging: How Good Are the Data?

    Science.gov (United States)

    Einstein, Andrew J.

    2012-01-01

    Concerns about medical exposure to ionizing radiation have become heightened in recent years due to rapid growth in procedure volumes and the high radiation doses incurred from some procedures. This article summarizes the evidence base undergirding concerns about radiation exposure in cardiac imaging. After classifying radiation effects, explaining terminology used to quantify the radiation received by patients, and describing typical doses from cardiac imaging procedures, I address the major epidemiological studies having bearing on radiation effects at doses comparable to those received by patients undergoing cardiac imaging. These include studies of atomic bomb survivors, nuclear industry workers, and children exposed in utero to x-rays, all of which have evidenced increased cancer risks at low doses. Additional higher dose epidemiological studies of cohorts exposed to radiation in the context of medical treatment are described and found to be generally compatible with these cardiac-dose-level studies, albeit with exceptions. Using risk projection models developed by the US National Academies that incorporate these data and reflect several evidence-based assumptions, cancer risk from cardiac imaging can be estimated and compared to benefits from imaging. Several ongoing epidemiological studies will provide better understanding of radiation-associated cancer risks. PMID:22300689

  12. Effects of UV radiation on the RNA/DNA ratio of Copepods from Antarctica and Chile

    Institute of Scientific and Technical Information of China (English)

    Paulo F. Lagos; M. Jesús Valdés; Karen Manríquez

    2015-01-01

    The effect of ultraviolet (UV) radiation on marine organisms has been an important focus of recent research, with depletion of the ozone layer resulting in increased UV radiation at high latitudes. Several studies have identiifed negative impacts of UV radiation on the biology of zooplanktonic organisms. This study used the RNA/DNA ratio as a measure of stress in copepod assemblages from Fíldes Bay in Antarctica and Quintay Bay on the central coast of Chile, two areas with high UV radiation but different photobiologic histories. Controlled time-light experiments were performed with copepods from the two locations, exposing them to white light, UV light, or darkness. The results showed different responses to UV radiation. Copepods from Fíldes Bay showed a slow metabolic response to UV radiation after 4 and 8 h of exposure. Copepods from Quintay Bay showed a fast metabolic response after 4 h of exposure (4 orders of magnitude higher than that for Fíldes Bay copepods) followed by a rapid return toward baseline after 8 h of exposure. These different responses probably relfect the time the copepod assemblages have been exposed to increased UV radiation and the extent of adaptive stress responses to cope with that increased UV radiation. The results of this study show that the RNA/DNA ratio is a useful indicator of the physiologic status of marine organisms and is a useful tool to measure the effects of changing environmental conditions on marine ecosystems, such as those associated with global climate change.

  13. Effect of gamma radiation on micromechanical hardness of lead-free solder joint

    Energy Technology Data Exchange (ETDEWEB)

    Paulus, Wilfred [Universiti Kebangsaan Malaysia, Bangi, 43600 Kajang, Selangor (Malaysia); Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia); Rahman, Irman Abdul; Jalar, Azman; Kamil, Insan; Bakar, Maria Abu [Universiti Kebangsaan Malaysia, Bangi, 43600 Kajang, Selangor (Malaysia); Yusoff, Wan Yusmawati Wan [Universiti Pertahanan Nasional Malaysia, Kem Sg. Besi, 57000 Kuala Lumpur (Malaysia)

    2015-09-25

    Lead-free solders are important material in nano and microelectronic surface mounting technology for various applications in bio medicine, environmental monitoring, spacecraft and satellite instrumentation. Nevertheless solder joint in radiation environment needs higher reliability and resistance to any damage caused by ionizing radiations. In this study a lead-free 99.0Sn0.3Ag0.7Cu wt.% (SAC) solder joint was developed and subjected to various doses of gamma radiation to investigate the effects of the ionizing radiation to micromechanical hardness of the solder. Averaged hardness of the SAC joint was obtained from nanoindentation test. The results show a relationship between hardness values of indentations and the increment of radiation dose. Highest mean hardness, 0.2290 ± 0.0270 GPa was calculated on solder joint which was exposed to 5 Gray dose of gamma radiation. This value indicates possible radiation hardening effect on irradiated solder. The hardness gradually decreased to 0.1933 ± 0.0210 GPa and 0.1631 ± 0.0173 GPa when exposed to doses 50 and 500 gray respectively. These values are also lower than the hardness of non irradiated sample which was calculated as 0.2084 ± 0.0.3633 GPa indicating possible radiation damage and needs further related atomic dislocation study.

  14. Effect of Radiation Exposure on the Retention of Commercial NAND Flash Memory

    Science.gov (United States)

    Oldham, Timothy R.; Chen, D.; Friendlich, M.; Carts, M. A.; Seidleck, C. M.; LaBel, K. A.

    2011-01-01

    We have compared the data retention of irradiated commercial NAND flash memories with that of unirradiated controls. Under some circumstanc es, radiation exposure has a significant effect on the retention of f lash memories.

  15. Standard Practice for Dosimetry of Proton Beams for use in Radiation Effects Testing of Electronics

    Energy Technology Data Exchange (ETDEWEB)

    McMahan, Margaret A.; Blackmore, Ewart; Cascio, Ethan W.; Castaneda, Carlos; von Przewoski, Barbara; Eisen, Harvey

    2008-07-25

    Representatives of facilities that routinely deliver protons for radiation effect testing are collaborating to establish a set of standard best practices for proton dosimetry. These best practices will be submitted to the ASTM International for adoption.

  16. Effects of microwave radiation on microtubules and axonal transport. [Brain and vagus nerve of rabbits

    Energy Technology Data Exchange (ETDEWEB)

    Paulsson, L.E.; Hamnerius, Y.; McLean, W.G.

    1977-04-01

    Microwave radiation is known to have a variety of effects on man and experimental animals. We have looked for a common factor in these effects and have suggested that the action of the radiation on the subcellular structure microtubules could be such a factor. We have therefore studied the effect of 3.1 GHz pulsed microwave radiation on the chemical and functional properties of microtubules in vitro. The biological materials were obtained from albino rabbits. We have investigated the binding of colchicine in brain extracts, the polymerization of microtubules in brain extracts, and the transport of proteins in the vagus nerve during microwave irradiation. The absorbed power density was carefully determined and the temperature was kept within permissible limits. No effect of the radiation could be detected at absorbed power densities lower than 4 x 10/sup 5/ W/m/sup 3/ (mean).

  17. RADIATION DOSE–VOLUME EFFECTS IN RADIATION-INDUCED RECTAL INJURY

    Science.gov (United States)

    Michalski, Jeff M.; Gay, Hiram; Jackson, Andrew; Tucker, Susan L.; Deasy, Joseph O.

    2010-01-01

    The available dose/volume/outcome data for rectal injury were reviewed. The volume of rectum receiving ≥60Gy is consistently associated with the risk of Grade ≥2 rectal toxicity or rectal bleeding. Parameters for the Lyman-Kutcher-Burman normal tissue complication probability model from four clinical series are remarkably consistent, suggesting that high doses are predominant in determining the risk of toxicity. The best overall estimates (95% confidence interval) of the Lyman-Kutcher-Burman model parameters are n = 0.09 (0.04–0.14); m = 0.13 (0.10–0.17); and TD50 = 76.9 (73.7–80.1) Gy. Most of the models of late radiation toxicity come from three-dimensional conformal radiotherapy dose-escalation studies of early-stage prostate cancer. It is possible that intensity-modulated radiotherapy or proton beam dose distributions require modification of these models because of the inherent differences in low and intermediate dose distributions. PMID:20171506

  18. Health effects in women exposed to low levels of ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Fabrikant, J.I.

    1982-06-01

    There are three delayed health effects of radiation which appear at the present time to have importance to women in radiation protection. These are: (1) the probability of cancer-induction at low doses and low-dose rates; (2) the consideration of those cancers in women, notably the breast and the thyroid, attributable to radiation exposure; and (3) the probability of induction of developmental abnormalities in the newborn following low-dose exposure in utero. The bases for the concern over these effects are discussed. (ACR)

  19. The radiation-induced galvanic effect at a metal-dielectric interface

    Science.gov (United States)

    Zaitsev, V. I.; Barykov, I. A.; Kartashov, A. V.; Terent'ev, O. V.; Rodionov, N. B.

    2016-11-01

    The effect observed upon interaction between the electromagnetic radiation with quantum energy of 25-1000 eV and a dielectric with metal coating is investigated. The radiation source was a megampere Z-pinch. Measurements performed on optical glass samples showed that radiation with a power of 106 W/cm2 in the electric circuit switching on the metalized dielectric induces the current. It is shown that the observed galvanic effect originates from the generation of hot electrons in the dielectric.

  20. Influence of grain size on radiation effects in a low carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Alsabbagh, Ahmad, E-mail: ahalsabb@ncsu.edu [Department of Nuclear Engineering, North Carolina State University (United States); Valiev, Ruslan Z. [Institute of Physics of Advanced Materials, Ufa State Aviation Technical University (Russian Federation); Murty, K.L. [Department of Nuclear Engineering, North Carolina State University (United States)

    2013-11-15

    Ultra-fine grain (UFG) metals with a relatively large volume of interfaces are expected to be more radiation resistant than conventional metals; grain boundaries act as unsaturable sinks for neutron irradiation induced defects. Effects of neutron irradiation on conventional and ultra-fine grain structured carbon steel are studied using the PULSTAR reactor at NC State University to relatively low fluence (∼1.15 × 10{sup −3} dpa). The low dose irradiation of ultrafine grained carbon steel revealed minute radiation effects in contrast to the observed radiation hardening and reduction of ductility in its conventional grained counterpart.

  1. Radiation effects on hydroxypropyl methylcellulose phthalate in aqueous system

    Energy Technology Data Exchange (ETDEWEB)

    Xu Ling; Yue Zhiying; Wang Min [Beijing National Laboratory for Molecular Sciences (BNLMS), Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Zhai Maolin [Beijing National Laboratory for Molecular Sciences (BNLMS), Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China)], E-mail: mlzhai@pku.edu.cn; Yoshii, Fumio; Seko, Noriaki [Environment and Industrial Materials Research Division, Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki 370-1292 (Japan); Peng Jing; Wei Genshuan; Li Jiuqiang [Beijing National Laboratory for Molecular Sciences (BNLMS), Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China)

    2007-12-15

    A water-insoluble cellulose derivative, hydroxypropyl methylcellulose phthalate (HPMCP) hydrogels, was converted to Na type to form hydrogel in paste-like status by radiation crosslinking. Mechanism for radiation crosslinking of cellulose-derivatives in paste-like status was discussed. Crosslinkers, i.e. methyl N,N-bis-acrylamide (MBA) or ethyleneglycol dimethacrylate (EGDMA) has been used to decrease gelation dose (Dg) of synthesis HPMCP hydrogels and improve its mechanical properties. HPMCP-MBA hydrogels were found to be more rigid and HPMCP-EGDMA hydrogels were more flexible. Swelling degree of HPMCP hydrogel in many kinds of salt solutions followed Hofmeister series, which is ubiquitous in polyelectrolyte hydrogel. Specific reswelling was observed in concentrated KF solution, implying a very strong F{sup -} binding ability of benzyl group. The comprehensive results obtained in this study will be utilized on the design of HPMCP-based controlled release system.

  2. EFFECTS OF RADIATION ON ESTABLISHED FORENSIC EVIDENCE CONTAINMENT METHODS

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, C.; Duff, M.; Clark, E.; Chapman, G.

    2010-11-29

    The Federal Bureau of Investigation (FBI) Laboratory is currently exploring needs and protocols for the storage of evidentiary items contaminated with radioactive material. While a large body of knowledge on the behavior of storage polymers in radiation fields exists, this knowledge has not been applied to the field of forensics and maintaining evidentiary integrity. The focus of this research was to evaluate the behavior of several traditional evidentiary containment polymers when exposed to significant alpha, beta, gamma, neutron and mixed radiation sources. Doses were designed to simulate exposures possible during storage of materials. Several products were found to be poorly suited for use in this specific application based on standardized mechanical testing results. Remaining products were determined to warrant further investigation for the storage of radiologically contaminated evidence.

  3. Geometrical Effects on the Electromagnetic Radiation from Lightning Return Strokes

    Science.gov (United States)

    Willett, J. C.; Smith, D. A.; LeVine, D. M.; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    The morphological difference between the electromagnetic radiation-field waveforms of "first" and "subsequent" return strokes in cloud-to-ground lightning flashes is well known and can be used to identify the formation of new channels to ground. This difference is generally believed due to the existence of branches on first-stroke channels, whereas subsequent strokes re-illuminate only the main channel of a previous stroke; but experimental evidence for this hypothesis is relatively weak. It has been argued for the influence of channel geometry on the fine structure of radiation from subsequent return strokes by comparing the field-change waveforms recorded at the same station from strokes within the same flash and between different flashes of both natural and triggered lightning. The present paper introduces new evidence for both of these hypotheses from a comparison of waveforms between sensors in different directions from the same stroke.

  4. Development of high effectiveness biomimetic materials by radiation

    Energy Technology Data Exchange (ETDEWEB)

    Nho, Youngchang; Lim, Younmook; Gwon, Huijeong; Park, Jongseok; Jeong, Sungin; Jo, Seonyoung

    2013-09-15

    The aims of this project is to develop the high-performance biomedical new materials. In the 1{sup st} project, we have developed the polymer matrix for drug delivery systems (DDS) for mucosa membrane. We studied on the drug release behavior such as election of drug loading method for antibiotics, propolis and adrenocortic hormone valuation of drug release behavior. The oral DDS is to cure gingival disease as well as inflammation in mouth. It is expected that a new market will be created in the field of DDS for oral mucosa. The 2{sup nd} project, we have developed the multi-functional artificial skin for substitution of animal test such as toxicity, whitening, wrinkle improvement, skin for substitution and skin sensitivity by radiation. It is expected for the above development of biocompatible artificial skin model with good physical property by using radiation technique to be useful for the future biology, cosmetics and pharmaceutical research.

  5. Radiation effects on hydroxypropyl methylcellulose phthalate in aqueous system

    Science.gov (United States)

    Xu, Ling; Yue, Zhiying; Wang, Min; Zhai, Maolin; Yoshii, Fumio; Seko, Noriaki; Peng, Jing; Wei, Genshuan; Li, Jiuqiang

    2007-12-01

    A water-insoluble cellulose derivative, hydroxypropyl methylcellulose phthalate (HPMCP) hydrogels, was converted to Na type to form hydrogel in paste-like status by radiation crosslinking. Mechanism for radiation crosslinking of cellulose-derivatives in paste-like status was discussed. Crosslinkers, i.e. methyl N, N-bis-acrylamide (MBA) or ethyleneglycol dimethacrylate (EGDMA) has been used to decrease gelation dose (Dg) of synthesis HPMCP hydrogels and improve its mechanical properties. HPMCP-MBA hydrogels were found to be more rigid and HPMCP-EGDMA hydrogels were more flexible. Swelling degree of HPMCP hydrogel in many kinds of salt solutions followed Hofmeister series, which is ubiquitous in polyelectrolyte hydrogel. Specific reswelling was observed in concentrated KF solution, implying a very strong F - binding ability of benzyl group. The comprehensive results obtained in this study will be utilized on the design of HPMCP-based controlled release system.

  6. Gamma radiation induced effects on slaughterhouse wastewater treatment

    Science.gov (United States)

    Melo, Rita; Cabo Verde, Sandra; Branco, Joaquim; Botelho, M. Luisa

    2008-01-01

    A preliminary study using gamma radiation on slaughterhouse wastewater samples was carried out. Chemical oxygen demand (COD), biochemical oxygen demand (BOD) and total suspended solids (TSS) results were obtained at a dose rate of 0.9 kGy h -1. A decrease of COD, BOD and colour was observed after irradiation at high absorbed doses. The microbiological results, following irradiation in the same conditions, correlated with the BOD results. The results obtained highlight the potential of this technology for wastewater treatment.

  7. Effects of femtosecond laser radiation on the skin

    Science.gov (United States)

    Rogov, P. Yu; Bespalov, V. G.

    2016-08-01

    A mathematical model of linear and nonlinear processes is presented occurring under the influence of femtosecond laser radiation on the skin. There was held an analysis and the numerical solution of an equation system describing the dynamics of the electron and phonon subsystems were received. The results can be used to determine the maximum permissible levels of energy generated by femtosecond laser systems and the establishment of Russian laser safety standards for femtosecond laser systems.

  8. Radiation Exposure Effects and Shielding Analysis of Carbon Nanotube Materials

    Science.gov (United States)

    Wilkins, Richard; Armendariz, Lupita (Technical Monitor)

    2002-01-01

    Carbon nanotube materials promise to be the basis for a variety of emerging technologies with aerospace applications. Potential applications to human space flight include spacecraft shielding, hydrogen storage, structures and fixtures and nano-electronics. Appropriate risk analysis on the properties of nanotube materials is essential for future mission safety. Along with other environmental hazards, materials used in space flight encounter a hostile radiation environment for all mission profiles, from low earth orbit to interplanetary space.

  9. Biological Effects of Nonionizing Electromagnetic Radiation. Volume V, Number 1.

    Science.gov (United States)

    1980-09-01

    reviewed. On a molecular RADIATION (ABSTRACT). (Eng.i level, the electromagnetic field causes the motion Davydov. B. I. (No affiliation given): Antipov...Eng.) Visalberghi. E SUBJECTED TO MICROWAVE RADIA- (Instituto di Biologia Generale. Universita di Pisa. TION AS EMBRYOS (MEETING ABSTRACT). (Eng...the irradiation. A se- tions of electromagnetic energy on molecular ions cond MF exposure was efficient only after more than and their behavior at

  10. Effect of aging and radiation in mice of different genotypes

    Energy Technology Data Exchange (ETDEWEB)

    Storer, J.B.

    1976-01-01

    Data are presented on the life span of nine inbred strains and five hybrid strains of mice based on 400 mice of each sex for inbred and 200 mice of each sex for hybrid. Some of these mice were exposed when 120 days old to 250 R or 450 R of x radiation delivered at a dose rate of 60 R/min. Data on strain, sample size, and mean survival times are presented in tables.

  11. Modeling Radiation Effectiveness for Inactivation of Bacillus Spores

    Science.gov (United States)

    2015-09-17

    will undergo germination which is the first step in the process by which bacteria transforms from a dormant spore into a vegetative cell [28]. The...order to survive a dose of radiation, a spore must repair its damaged DNA during germination . The DNA repair process is dependent on reactions catalyzed...in the next section. 2.2 Life Cycle of a Bacterial Spore A dormant spore is formed via a multi- step process called sporulation (refer to Figure 2.5

  12. Solar Irradiance Changes And Photobiological Effects At Earth's Surface Following Astrophysical Ionizing Radiation Events

    Science.gov (United States)

    Thomas, Brian; Neale, Patrick

    2016-01-01

    Astrophysical ionizing radiation events have been recognized as a potential threat to life on Earth for decades. Although there is some direct biological damage on the surface from redistributed radiation several studies have indicated that the greatest long term threat is from ozone depletion and subsequent heightened solar ultraviolet (UV) radiation. It is known that organisms exposed to this irradiation experience harmful effects such as sunburn and even direct damage to DNA, proteins, or other cellular structures. Simulations of the atmospheric effects of a variety of events (such as supernovae, gamma-ray bursts, and solar proton events) have been previously published, along with estimates of biological damage at Earth's surface. In the present work, we employed a radiative transfer model to expand and improve calculations of surface-level irradiance and biological impacts following an ionizing radiation event. We considered changes in surface-level UVB, UVA, and photosynthetically active radiation (visible light). Using biological weighting functions we have considered a wide range of effects, including: erythema and skin cancer in humans; inhibition of photosynthesis in the diatom Phaeodactylum sp. and dinoflagellate Prorocentrum micans inhibition of carbon fixation in Antarctic phytoplankton; inhibition of growth of oat (Avena sativa L. cv. Otana) seedlings; and cataracts. We found that past work overestimated UVB irradiance, but that relative estimates for increase in exposure to DNA damaging radiation are still similar to our improved calculations. We also found that the intensity of biologically damaging radiation varies widely with organism and specific impact considered; these results have implications for biosphere-level damage following astrophysical ionizing radiation events. When considering changes in surface-level visible light irradiance, we found that, contrary to previous assumptions, a decrease in irradiance is only present for a short time in

  13. Reduced exposure to microwave radiation by rats: frequency specific effects

    Energy Technology Data Exchange (ETDEWEB)

    D' Andrea, J.A.; DeWitt, J.R.; Portuguez, L.M.; Gandhi, O.P.

    1988-01-01

    Previous research has shown that SAR hotspots are induced within the laboratory rat and that the resulting thermal hotspots are not entirely dissipated by bloodflow. Two experiments were conducted to determine if hotspot formation in the body and tail of the rat, which is radiation frequency specific, would have behavioral consequences. In the first experiment rats were placed in a plexiglas cage one side of which, when occupied by the rat, commenced microwave radiation exposure; occupancy of the other side terminated exposure. Groups of rats were tested during a baseline period to determine the naturally preferred side of the cage. Subsequent exposure to 360-MHz, 700-MHz or 2450-MHz microwave radiation was made contingent on preferred-side occupancy. A significant reduction in occupancy of the preferred side of the cage, and hence, microwaves subsequently occurred. Reduced exposure to 360-MHz and 2450-MHz microwaves at 1, 2, 6 and 10 W/kg were significantly different from 700-MHz microwaves. In the second experiment semichronic exposures revealed the threshold for reduced exposure of 2450-MHz microwaves to be located between whole-body SAR's of 2.1 and 2.8 W/kg.

  14. Radiation Effects on Polypropylene Carbon Nanofibers Composites: Spectroscopic Investigations

    Science.gov (United States)

    Hamilton, John; Mion, Thomas; Cristian Chipara, Alin; Ibrahim, Elamin I.; Lozano, Karen; Tidrow, Steven; Magdalena Chipara, Dorina; Chipara, Mircea

    2010-03-01

    Dispersion of carbon nanostructures within polymeric matrices affects their physical and chemical properties (increased Young modulus, improved thermal stability, faster crystallization rates, higher equilibrium degree of crystallinity, modified glass, melting, and crystallization temperatures, enhanced thermal and electrical conductivity). Nevertheless, little is known about the radiation stability of such nanocomposites. The research is focused on spectroscopic investigations of radiation-induced modifications in isotactic polypropylene (iPP)-vapor grown nanofiber (VGCNF) composites. VGCNF were dispersed within iPP by extrusion at 180^oC. Composites containing various amounts of VGCNFs ranging from 0 to 20 % wt. were prepared and subjected to gamma irradiation, at room temperature, at various integral doses (10 MGy, 20 MGy, and 30 MGy). Raman spectroscopy, ATR, and WAXS were used to assess the radiation-induced modifications in these nanocomposites. Acknowledgements: This research was supported by the Welch Foundation (Department of Chemistry at UTPA), by Air Force Research Laboratory (FA8650-07-2-5061) and by US Army Research Laboratory/Office (W911NF-08-1-0353).

  15. UVB radiation induced effects on cells studied by FTIR spectroscopy

    CERN Document Server

    Di Giambattista, Lucia; Gaudenzi, S; Pozzi, D; Grandi, M; Morrone, S; Silvestri, I; Castellano, A Congiu; 10.1007/s00249-009-0446-9

    2010-01-01

    We have made a preliminary analysis of the results about the eVects on tumoral cell line (lymphoid T cell line Jurkat) induced by UVB radiation (dose of 310 mJ/cm^2) with and without a vegetable mixture. In the present study, we have used two techniques: Fourier transform infrared spectroscopy (FTIR) and flow cytometry. FTIR spectroscopy has the potential to provide the identiWcation of the vibrational modes of some of the major compounds (lipid, proteins and nucleic acids) without being invasive in the biomaterials. The second technique has allowed us to perform measurements of cytotoxicity and to assess the percentage of apoptosis. We already studied the induction of apoptotic process in the same cell line by UVB radiation; in particular, we looked for correspondences and correlations between FTIR spetroscopy and flow cytometry data finding three highly probable spectroscopic markers of apoptosis (Pozzi et al. in Radiat Res 168:698-705, 2007). In the present work, the results have shown significant changes ...

  16. Radiation effects and soft errors in integrated circuits and electronic devices

    CERN Document Server

    Fleetwood, D M

    2004-01-01

    This book provides a detailed treatment of radiation effects in electronic devices, including effects at the material, device, and circuit levels. The emphasis is on transient effects caused by single ionizing particles (single-event effects and soft errors) and effects produced by the cumulative energy deposited by the radiation (total ionizing dose effects). Bipolar (Si and SiGe), metal-oxide-semiconductor (MOS), and compound semiconductor technologies are discussed. In addition to considering the specific issues associated with high-performance devices and technologies, the book includes th

  17. The indirect effect of radiation reduces the repair fidelity of NHEJ as verified in repair deficient CHO cell lines exposed to different radiation qualities and potassium bromate

    Energy Technology Data Exchange (ETDEWEB)

    Bajinskis, Ainars, E-mail: ainars.bajinskis@gmt.su.se [Centre for Radiation Protection Research, Department of Genetics, Microbiology and Toxicology, Stockholm University, S-10691 Stockholm (Sweden); Olsson, Gunilla; Harms-Ringdahl, Mats [Centre for Radiation Protection Research, Department of Genetics, Microbiology and Toxicology, Stockholm University, S-10691 Stockholm (Sweden)

    2012-03-01

    The complexity of DNA lesions induced by ionizing radiation is mainly dependent on radiation quality, where the indirect action of radiation may contribute to different extent depending on the type of radiation under study. The effect of indirect action of radiation can be investigated by using agents that induce oxidative DNA damage or by applying free radical scavengers. The aim of this study was to investigate the role of the indirect effect of radiation for the repair fidelity of non-homologous end-joining (NHEJ), homologous recombination repair (HRR) and base excision repair (BER) when DNA damage of different complexity was induced by gamma radiation, alpha particles or from base damages (8-oxo-dG) induced by potassium bromate (KBrO{sub 3}). CHO cells lines deficient in XRCC3 (HRR) irs1SF, XRCC7 (NHEJ) V3-3 and XRCC1 (BER) EM9 were irradiated in the absence or presence of the free radical scavenger dimethyl sulfoxide (DMSO). The endpoints investigated included rate of cell proliferation by the DRAG assay, clonogenic cell survival and the level of primary DNA damage by the comet assay. The results revealed that the indirect effect of low-LET radiation significantly reduced the repair fidelity of both NHEJ and HRR pathways. For high-LET radiation the indirect effect of radiation also significantly reduced the repair fidelity for the repair deficient cell lines. The results suggest further that the repair fidelity of the error prone NHEJ repair pathway is more impaired by the indirect effect of high-LET radiation relative to the other repair pathways studied. The response to bromate observed for the two DSB repair deficient cell lines strongly support earlier studies that bromate induces complex DNA damages. The significantly reduced repair fidelity of irs1SF and V3-3 suggests that NHEJ as well as HRR are needed for the repair, and that complex DSBs are formed after bromate exposure.

  18. Do Fractal Models of Clouds Produces the Right 3D Radiative Effects?

    Science.gov (United States)

    Varnai, Tamas; Marshak, Alexander; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Stochastic fractal models of clouds are often used to study 3D radiative effects and their influence on the remote sensing of cloud properties. Since it is important that the cloud models produce a correct radiative response, some researchers require the model parameters to match observed cloud properties such as scale-independent optical thickness variability. Unfortunately, matching these properties does not necessarily imply that the cloud models will cause the right 3D radiative effects. First, the matched properties alone only influence the 3D effects but do not completely determine them. Second, in many cases the retrieved cloud properties have been already biased by 3D radiative effects, and so the models may not match the true real clouds. Finally, the matched cloud properties cannot be considered independent from the scales at which they have been retrieved. This paper proposes an approach that helps ensure that fractal cloud models are realistic and produce the right 3D effects. The technique compares the results of radiative transfer simulations for the model clouds to new direct observations of 3D radiative effects in satellite images.

  19. Radiation damping effects on the interaction of ultraintense laser pulses with an overdense plasma.

    Science.gov (United States)

    Zhidkov, A; Koga, J; Sasaki, A; Uesaka, M

    2002-05-01

    A strong effect of radiation damping on the interaction of an ultraintense laser pulse with an overdense plasma slab is found and studied via a relativistic particle-in-cell simulation including ionization. Hot electrons generated by the irradiation of a laser pulse with a radiance of I lambda(2)>10(22) W microm(2)/cm(2) and duration of 20 fs can convert more than 35% of the laser energy to radiation. This incoherent x-ray emission lasts for only the pulse duration and can be intense. The radiation efficiency is shown to increase nonlinearly with laser intensity. Similar to cyclotron radiation, the radiation damping may restrain the maximal energy of relativistic electrons in ultraintense-laser-produced plasmas.

  20. Effects of two dust storms on solar radiation in the Beijing-Tianjin area

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, M.; Chen, Z.; Huang, R.; Wang, Q.; Arimoto, R.; Parungo, F.; Lenschow, D.; Okada, K.; Wu, P. [National Research Center for Marine Environm, Forecasts, Beijing (Taiwan, Province of China)]|[Univ. of Rhode Island, Narragansett, RI (United States)]|[NOAA, Boulder, CO (United States)]|[National Center for Atmospheric Research, Boulder, CO (United States)]|[Meteorological Research Inst., Tsukuba (Japan)

    1994-12-01

    Advanced Very High Resolution Radiometer (AVHRR) albedo data obtained from the NOAA-11 satellite and chemical data for aerosol particle samples collected in Beijing were intepreted together with meteorological data to study the radiative effects of Asian dust. Compared with the clea-sky background, the albedo values for the Beijing area during two dust storms in April 1993 increased by 20 to 125%; the direct solar radiation flux at the surface decreased; and the scattered radiation flux at the surface increased. The total solar radiation flux at the ground during the two dust storms decreased by 40% and 10% respectively. Furthermore, the extent of the changes was related to the strength of the dust storms. This paper demonstrates the feasibility of using satellite data to study the radiative forcing of dust storms.