WorldWideScience

Sample records for abscisic acid-mediated repression

  1. Mechanisms of abscisic acid-mediated control of stomatal aperture.

    Science.gov (United States)

    Munemasa, Shintaro; Hauser, Felix; Park, Jiyoung; Waadt, Rainer; Brandt, Benjamin; Schroeder, Julian I

    2015-12-01

    Drought stress triggers an increase in the level of the plant hormone abscisic acid (ABA), which initiates a signaling cascade to close stomata and reduce water loss. Recent studies have revealed that guard cells control cytosolic ABA concentration through the concerted actions of biosynthesis, catabolism as well as transport across membranes. Substantial progress has been made at understanding the molecular mechanisms of how the ABA signaling core module controls the activity of anion channels and thereby stomatal aperture. In this review, we focus on our current mechanistic understanding of ABA signaling in guard cells including the role of the second messenger Ca(2+) as well as crosstalk with biotic stress responses. PMID:26599955

  2. Abscisic Acid-mediated Epigenetic Processes in Plant Development and Stress Responses

    Institute of Scientific and Technical Information of China (English)

    Viswanathan Chinnusamy; Zhizhong Gong; Jian-Kang Zhu

    2008-01-01

    Abscisic acid (ABA) regulates diverse plant processes, growth and development under non-stress conditions and plays a pivotal role in abiotic stress tolerance. Although ABA-regulated genetic processes are well known, recent discoveries reveal that epigenetic processes are an integral part of ABA-regulated processes. Epigenetic mechanisms, namely, histone modifications and cytosine DNA methylation-induced modification of genome give rise to epigenomes, which add diversity and complexity to the genome of organisms. Histone monoubiquitination appears to regulate ABA levels in developing seeds through histone H2B monoubiquitination. ABA and H2B ubiquitination dependent chromatin remodeling regulate seed dormancy. Transcription factor networks necessary for seed maturation are repressed by histone deacetylases (HDACs)-dependent and PICKLE chromatin remodeling complexes (CRCs), whereas ABA induces the expression of these genes directly or through repression of HDACs. Abiotic stress-induced ABA regulates stomatal response and stress-responsive gene expression through HDACs and HOS15-dependent histone deacetylation, as well as through the ATP-dependent SWITCH/SUCROSE NONFERMENTING CRC. ABA also probably regulates the abiotic stress response through DNA methylation and short interfering RNA pathways. Further studies on ABA-regulated spigenome will be of immense use to understand the plant development, stress adaptation and stress memory.

  3. Transcriptional coordination and abscisic acid mediated regulation of sucrose transport and sucrose-to-starch metabolism related genes during grain filling in wheat (Triticum aestivum L.).

    Science.gov (United States)

    Mukherjee, Shalini; Liu, Aihua; Deol, Kirandeep K; Kulichikhin, Konstanin; Stasolla, Claudio; Brûlé-Babel, Anita; Ayele, Belay T

    2015-11-01

    Combining physiological, molecular and biochemical approaches, this study investigated the transcriptional coordination and abscisic acid (ABA) mediated regulation of genes involved in sucrose import and its conversion to starch during grain filling in wheat. Sucrose import appears to be mediated by seed localized TaSUT1, mainly TaSUT1D, while sucrose cleavage by TaSuSy2. Temporal overlapping of the transcriptional activation of AGPL1 and AGPS1a that encode AGPase with that of the above genes suggests their significance in the synthesis of ADP-glucose; TaAGPL1A and TaAGPL1D contributing the majority of AGPL1 transcripts. ABA induced repressions of TaSUT1, TaSuSy2, TaAGPL1 and TaAGPS1a imply that ABA negatively regulates sucrose import into the endosperm and its subsequent metabolism to ADP-glucose, the substrate for starch synthesis. The formations of amyloses and amylopectin from ADP-glucose appear to be mediated by specific members of GBSS, and SS, SBE and DBE gene families, and the ABA-induced transcriptional change in most of these genes implies that ABA regulates amylose and amylopectin synthesis. The findings provide insights into the molecular mechanisms underlying the coordination and ABA mediated regulation of sucrose transport into the developing endosperm and its subsequent metabolism to starch during grain filling in wheat.

  4. Three WRKY transcription factors additively repress abscisic acid and gibberellin signaling in aleurone cells.

    Science.gov (United States)

    Zhang, Liyuan; Gu, Lingkun; Ringler, Patricia; Smith, Stanley; Rushton, Paul J; Shen, Qingxi J

    2015-07-01

    Members of the WRKY transcription factor superfamily are essential for the regulation of many plant pathways. Functional redundancy due to duplications of WRKY transcription factors, however, complicates genetic analysis by allowing single-mutant plants to maintain wild-type phenotypes. Our analyses indicate that three group I WRKY genes, OsWRKY24, -53, and -70, act in a partially redundant manner. All three showed characteristics of typical WRKY transcription factors: each localized to nuclei and yeast one-hybrid assays indicated that they all bind to W-boxes, including those present in their own promoters. Quantitative real time-PCR (qRT-PCR) analyses indicated that the expression levels of the three WRKY genes varied in the different tissues tested. Particle bombardment-mediated transient expression analyses indicated that all three genes repress the GA and ABA signaling in a dosage-dependent manner. Combination of all three WRKY genes showed additive antagonism of ABA and GA signaling. These results suggest that these WRKY proteins function as negative transcriptional regulators of GA and ABA signaling. However, different combinations of these WRKY genes can lead to varied strengths in suppression of their targets.

  5. Arabidopsis CALCIUM-DEPENDENT PROTEIN KINASE8 and CATALASE3 Function in Abscisic Acid-Mediated Signaling and H2O2 Homeostasis in Stomatal Guard Cells under Drought Stress.

    Science.gov (United States)

    Zou, Jun-Jie; Li, Xi-Dong; Ratnasekera, Disna; Wang, Cun; Liu, Wen-Xin; Song, Lian-Fen; Zhang, Wen-Zheng; Wu, Wei-Hua

    2015-05-01

    Drought is a major threat to plant growth and crop productivity. Calcium-dependent protein kinases (CDPKs, CPKs) are believed to play important roles in plant responses to drought stress. Here, we report that Arabidopsis thaliana CPK8 functions in abscisic acid (ABA)- and Ca(2+)-mediated plant responses to drought stress. The cpk8 mutant was more sensitive to drought stress than wild-type plants, while the transgenic plants overexpressing CPK8 showed enhanced tolerance to drought stress compared with wild-type plants. ABA-, H2O2-, and Ca(2+)-induced stomatal closing were impaired in cpk8 mutants. Arabidopsis CATALASE3 (CAT3) was identified as a CPK8-interacting protein, confirmed by yeast two-hybrid, coimmunoprecipitation, and bimolecular fluorescence complementation assays. CPK8 can phosphorylate CAT3 at Ser-261 and regulate its activity. Both cpk8 and cat3 plants showed lower catalase activity and higher accumulation of H2O2 compared with wild-type plants. The cat3 mutant displayed a similar drought stress-sensitive phenotype as cpk8 mutant. Moreover, ABA and Ca(2+) inhibition of inward K(+) currents were diminished in guard cells of cpk8 and cat3 mutants. Together, these results demonstrated that CPK8 functions in ABA-mediated stomatal regulation in responses to drought stress through regulation of CAT3 activity. PMID:25966761

  6. Optimal Financial Repression

    OpenAIRE

    Olga A. Norkina; Sergey E. Pekarski

    2014-01-01

    Modern financial repression in advanced economies does not rely on increasing seigniorage revenue, but mostly rests upon regulatory measures to enlarge the demand for public debt that delivers extremely low or negative real interest rate. In this paper we propose the extension of the overlapping generations model to question the optimality of financial repression in the form of non-market placement of the public debt in the captive pension fund. We show that financial repression and capital i...

  7. Searching for repressed memory.

    Science.gov (United States)

    McNally, Richard J

    2012-01-01

    This chapter summarizes the work of my research group on adults who report either repressed, recovered, or continuous memories of childhood sexual abuse (CSA) or who report no history of CSA. Adapting paradigms from cognitive psychology, we tested hypotheses inspired by both the "repressed memory" and "false memory" perspectives on recovered memories of CSA. We found some evidence for the false memory perspective, but no evidence for the repressed memory perspective. However, our work also suggests a third perspective on recovered memories that does not require the concept of repression. Some children do not understand their CSA when it occurs, and do not experience terror. Years later, they recall the experience, and understanding it as abuse, suffer intense distress. The memory failed to come to mind for years, partly because the child did not encode it as terrifying (i.e., traumatic), not because the person was unable to recall it.

  8. Racism and Surplus Repression.

    Science.gov (United States)

    Johnson, Howard

    1983-01-01

    Explores the relationship between Herbert Marcuse's theory of "surplus repression" and Freud's theory of the "unconscious" with respect to latent, hidden, covert, or subliminal aspects of racism in the United States. Argues that unconscious racism, manifested in evasion/avoidance, acting out/projection, and attempted justification, perpetuates…

  9. Reviewing the Tannic Acid Mediated Synthesis of Metal Nanoparticles

    Directory of Open Access Journals (Sweden)

    Tufail Ahmad

    2014-01-01

    Full Text Available Metal nanoparticles harbour numerous exceptional physiochemical properties absolutely different from those of bulk metal as a function of their extremely small size and large superficial area to volume. Naked metal nanoparticles are synthesized by various physical and chemical methods. Chemical methods involving metal salt reduction in solution enjoy an extra edge over other protocols owing to their relative facileness and capability of controlling particle size along with the attribute of surface tailoring. Although chemical methods are the easiest, they are marred by the use of hazardous chemicals such as borohydrides. This has led to inclination of scientific community towards eco-friendly agents for the reduction of metal salts to form nanoparticles. Tannic acid, a plant derived polyphenolic compound, is one such agent which embodies characteristics of being harmless and environmentally friendly combined with being a good reducing and stabilizing agent. In this review, first various methods used to prepare metal nanoparticles are highlighted and further tannic acid mediated synthesis of metal nanoparticles is emphasized. This review brings forth the most recent findings on this issue.

  10. Retinoic acid-mediated gene expression in transgenic reporter zebrafish.

    Science.gov (United States)

    Perz-Edwards, A; Hardison, N L; Linney, E

    2001-01-01

    Retinoic acid-mediated gene activation is important for normal vertebrate development. The size and nature of retinoic acid make it difficult to identify the precise cellular location of this signaling molecule throughout an embryo. Additionally, retinoic acid (RA) signaling is regulated by a complex combination of receptors, coactivators, and antagonizing proteins. Thus, in order to integrate these signals and identify regions within a whole developing embryo where cells can respond transcriptionally to retinoic acid, we have used a reporter transgenic approach. We have generated several stable lines of transgenic zebrafish which use retinoic acid response elements to drive fluorescent protein expression. In these zebrafish lines, transgene expression is localized to regions of the neural tube, retina, notochord, somites, heart, pronephric ducts, branchial arches, and jaw muscles in embryos and larvae. Transgene expression can be induced in additional regions of the neural tube and retina as well as the immature notochord, hatching gland, enveloping cell layer, and fin by exposing embryos to retinoic acid. Treatment with retinoic acid synthase inhibitors, citral and diethylaminobenzaldehyde (DEAB), during neurulation, greatly reduces transgene expression. DEAB treatment of embryos at gastrulation phenocopies the embryonic effects of vitamin A deprivation or targeted disruption of the RA synthase retinaldehyde dehydrogenase-2 in other vertebrates. Together these data suggest that the reporter expression we see in zebrafish is dependent upon conserved vertebrate pathways of RA synthesis.

  11. Cetalox and analogues: synthesis via acid-mediated polyene cyclizations.

    Science.gov (United States)

    Snowden, Roger L

    2008-06-01

    Using a novel, acid-mediated cyclization methodology, a direct access to Cetalox ((+/-)-1; a commercially important ambergris-type odorant) and various structurally related didehydro (i.e., 19, 26, and 30) and tetradehydro (i.e., 28 and 37/38) analogues is described. Treatment of either (E,E)-14 or (E)-15 with an excess of FSO(3)H in 2-nitropropane at -90 degrees stereospecifically afforded (+/-)-1 in 40 and 42% yield, respectively. Under similar conditions, cyclization of (E)-18 or 20 furnished 19 in 60 and 64% yield, respectively. Analogously, using an excess of ClSO(3)H in CH(2)Cl(2) at -80 degrees, 26 is formed with high stereoselectivity by cyclization of either (E)-24 or (Z)-25 (52 and 31% yield, resp.); in the same manner, 28 was prepared from 27 (22% yield). The same principle was applied to the synthesis of racemic Superambrox (30), via cyclization of 35, but only with poor selectivity (22%) and low yield (7%). Another approach via cyclization of (E)-40 under solvolysis conditions (excess TFA in CH(2)Cl(2) at -10 degrees) gave a higher yield (15%) with improved selectivity (43%). Finally, cyclization of 34 (1:1 diastereoisomer mixture) afforded 37/38 (10:1) in 27% yield. The qualitative organoleptic properties of 19, 26, 28, 30, and 37/38 (10:1) are briefly discussed. PMID:18618391

  12. Financial repression and fiscal policy

    NARCIS (Netherlands)

    Gupta, KL; Lensink, R

    1997-01-01

    This paper develops a simulation model to assess the consequences of government's trying to raise revenues through financial repression in developing countries. The measures of financial repression studied are (1) government borrowing from the banking sector to finance its budget deficit (2) governm

  13. Response of barley aleurone layers to abscisic acid

    Energy Technology Data Exchange (ETDEWEB)

    Ho, D.T.H.; Varner, J.E.

    1976-02-01

    Cordycepin, an inhibitor of RNA synthesis in barley (Hordeum vulgare L.) aleurone cells, does not inhibit the gibberellic acid-enhanced ..cap alpha..-amylase (EC 3.2.1.1.) synthesis in barley aleurone layers if it is added 12 hours or more after the addition of the hormone. However, the accumulation of ..cap alpha..-amylase activity after 12 hours of gibberellic acid can be decreased by abscisic acid. The accumulation of ..cap alpha..-amylase activity is sustained or quickly restored when cordycepin is added simultaneously or some time after abscisic acid, indicating that the response of aleurone layers to abscisic acid depends on the continuous synthesis of a short lived RNA. By analysis of the newly synthesized proteins by gel electrophoresis with sodium dodecylsulfate, it was observed that the synthesis of ..cap alpha..-amylase is decreased in the presence of abscisic acid while the synthesis of most of the other proteins remains unchanged. From the rate of resumption of ..cap alpha..-amylase production in the presence of cordycepin and abscisic acid, it appears that abscisic acid does not have a measurable effect on the stability of ..cap alpha..-amylase mRNA.

  14. Glucose repression in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Kayikci, Omur; Nielsen, Jens

    2015-01-01

    Glucose is the primary source of energy for the budding yeast Saccharomyces cerevisiae. Although yeast cells can utilize a wide range of carbon sources, presence of glucose suppresses molecular activities involved in the use of alternate carbon sources as well as it represses respiration and...... gluconeogenesis. This dominant effect of glucose on yeast carbon metabolism is coordinated by several signaling and metabolic interactions that mainly regulate transcriptional activity but are also effective at post-transcriptional and post-translational levels. This review describes effects of glucose repression...... on yeast carbon metabolism with a focus on roles of the Snf3/Rgt2 glucose-sensing pathway and Snf1 signal transduction in establishment and relief of glucose repression....

  15. GENETIC ANALYSIS OF ABSCISIC ACID BIOSYNTHESIS

    Energy Technology Data Exchange (ETDEWEB)

    MCCARTY D R

    2012-01-10

    The carotenoid cleavage dioxygenases (CCD) catalyze synthesis of a variety of apo-carotenoid secondary metabolites in plants, animals and bacteria. In plants, the reaction catalyzed by the 11, 12, 9-cis-epoxy carotenoid dioxygenase (NCED) is the first committed and key regulated step in synthesis of the plant hormone, abscisic acid (ABA). ABA is a key regulator of plant stress responses and has critical functions in normal root and seed development. The molecular mechanisms responsible for developmental control of ABA synthesis in plant tissues are poorly understood. Five of the nine CCD genes present in the Arabidopsis genome encode NCED's involved in control of ABA synthesis in the plant. This project is focused on functional analysis of these five AtNCED genes as a key to understanding developmental regulation of ABA synthesis and dissecting the role of ABA in plant development. For this purpose, the project developed a comprehensive set of gene knockouts in the AtNCED genes that facilitate genetic dissection of ABA synthesis. These mutants were used in combination with key molecular tools to address the following specific objectives: (1) the role of ABA synthesis in root development; (2) developmental control of ABA synthesis in seeds; (3) analysis of ATNCED over-expressers; (4) preliminary crystallography of the maize VP14 protein.

  16. Roles of Abscisic Acid in Fruit Ripening

    Directory of Open Access Journals (Sweden)

    Sutthiwal SETHA

    2012-12-01

    Full Text Available Abscisic acid (ABA is a plant growth regulator, and it plays a variety of important roles throughout a plant’s life cycle. These roles include seed development and dormancy, plant response to environmental stresses, and fruit ripening. ABA concentration is very low in unripe fruit, but it increases as a fruit ripens, so it is therefore believed that ABA plays an important role in regulating the rate of fruit ripening. This article reviews the effect of ABA on ripening and quality of climacteric and non-climacteric fruits. The effects of ABA application on fruit ripening are subsequently discussed. Moreover, it is found that during fruit ripening, ABA also contributes to other functions, such as ethylene and respiratory metabolism, pigment and color changes, phenolic metabolism and nutritional contents, cell wall metabolism and fruit softening, and sugar and acid metabolism. These processes are all discussed as part of the relationship between ABA and fruit ripening, and the possibilities for its commercial application and use are highlighted.

  17. Abscisic Acid Regulation of Root Hydraulic Conductivity and Aquaporin Gene Expression Is Crucial to the Plant Shoot Growth Enhancement Caused by Rhizosphere Humic Acids.

    Science.gov (United States)

    Olaetxea, Maite; Mora, Verónica; Bacaicoa, Eva; Garnica, María; Fuentes, Marta; Casanova, Esther; Zamarreño, Angel M; Iriarte, Juan C; Etayo, David; Ederra, Iñigo; Gonzalo, Ramón; Baigorri, Roberto; García-Mina, Jose M

    2015-12-01

    The physiological and metabolic mechanisms behind the humic acid-mediated plant growth enhancement are discussed in detail. Experiments using cucumber (Cucumis sativus) plants show that the shoot growth enhancement caused by a structurally well-characterized humic acid with sedimentary origin is functionally associated with significant increases in abscisic acid (ABA) root concentration and root hydraulic conductivity. Complementary experiments involving a blocking agent of cell wall pores and water root transport (polyethylenglycol) show that increases in root hydraulic conductivity are essential in the shoot growth-promoting action of the model humic acid. Further experiments involving an inhibitor of ABA biosynthesis in root and shoot (fluridone) show that the humic acid-mediated enhancement of both root hydraulic conductivity and shoot growth depended on ABA signaling pathways. These experiments also show that a significant increase in the gene expression of the main root plasma membrane aquaporins is associated with the increase of root hydraulic conductivity caused by the model humic acid. Finally, experimental data suggest that all of these actions of model humic acid on root functionality, which are linked to its beneficial action on plant shoot growth, are likely related to the conformational structure of humic acid in solution and its interaction with the cell wall at the root surface.

  18. Violent repression of environmental protests.

    Science.gov (United States)

    Poulos, Helen M; Haddad, Mary Alice

    2016-01-01

    As global sea levels and natural resource demands rise, people around the world are increasingly protesting environmental threats to their lives and livelihoods. What are the conditions under which these peaceful environmental protests are violently repressed? This paper uses the random forest algorithm to conduct an event analysis of grassroots environmental protests around the world. Utilizing a database of 175 grassroots environmental protests, we found that: (1) a large proportion (37 %) of the protests involved violent repression; (2) most of the violence (56 %) was directed against marginalized groups; and (3) violence was geographically concentrated the global south in Latin America and Asia. The primary predictors of violence were political empowerment, GDP per capita, industry type, the presence of marginalized groups, and geographic region. Our analysis reveals a complex relationship between governance, resource extraction, and international funding that often resulted in human rights violations against marginalized groups. PMID:27026924

  19. Reactive oxygen species are involved in gibberellin/abscisic acid signaling in barley aleurone cells.

    Science.gov (United States)

    Ishibashi, Yushi; Tawaratsumida, Tomoya; Kondo, Koji; Kasa, Shinsuke; Sakamoto, Masatsugu; Aoki, Nozomi; Zheng, Shao-Hui; Yuasa, Takashi; Iwaya-Inoue, Mari

    2012-04-01

    Reactive oxygen species (ROS) act as signal molecules for a variety of processes in plants. However, many questions about the roles of ROS in plants remain to be clarified. Here, we report the role of ROS in gibberellin (GA) and abscisic acid (ABA) signaling in barley (Hordeum vulgare) aleurone cells. The production of hydrogen peroxide (H2O2), a type of ROS, was induced by GA in aleurone cells but suppressed by ABA. Furthermore, exogenous H2O2 appeared to promote the induction of α-amylases by GA. In contrast, antioxidants suppressed the induction of α-amylases. Therefore, H2O2 seems to function in GA and ABA signaling, and in regulation of α-amylase production, in aleurone cells. To identify the target of H2O2 in GA and ABA signaling, we analyzed the interrelationships between H2O2 and DELLA proteins Slender1 (SLN1), GA-regulated Myb transcription factor (GAmyb), and ABA-responsive protein kinase (PKABA) and their roles in GA and ABA signaling in aleurone cells. In the presence of GA, exogenous H2O2 had little effect on the degradation of SLN1, the primary transcriptional repressor mediating GA signaling, but it promoted the production of the mRNA encoding GAMyb, which acts downstream of SLN1 and involves induction of α-amylase mRNA. Additionally, H2O2 suppressed the production of PKABA mRNA, which is induced by ABA:PKABA represses the production of GAMyb mRNA. From these observations, we concluded that H2O2 released the repression of GAMyb mRNA by PKABA and consequently promoted the production of α-amylase mRNA, thus suggesting that the H2O2 generated by GA in aleurone cells is a signal molecule that antagonizes ABA signaling.

  20. Functional analysis of a Lemna gibba rbcS promoter regulated by abscisic acid and sugar.

    Science.gov (United States)

    Wang, Youru

    2013-04-01

    Photosynthesis-associated nuclear genes (PhANGs) are able to respond to multiple environmental and developmental signals, including light, sugar and abscisic acid (ABA). PhANGs have been extensively studied at the level of transcriptional regulation, and several cis-acting elements important for light responsiveness have been identified in their promoter sequences. However, the regulatory elements involved in sugar and ABA regulation of PhANGs have not been completely characterized. A ribulose-1,5-bisphosphate carboxylase small subunit gene (rbcS) promoter (SSU5C promoter) was isolated from duckweed (Lemna gibba). A series of SSU5C promoter 5' deletion fragments were fused to an intron-gus gene, and transgenic tobacco suspension cell lines were generated. Assay of tobacco suspension cell line harbouring the complete promoter in the fusion construct indicated that SSU5C promoter was negatively regulated by sugar and ABA under the condition of regular photoperiod. 5' deletion analysis of SSU5C promoter in transgenic tobacco suspension cell lines confirmed that a region between positions -310 and -152 included the ABA-response region, and that sugar-response cis-acting elements might be located in the region between -152 and -117. Taken together, our results confirmed that the cis-regulatory region responsible for repression by ABA and sugar in the SSU5C promoter was located between -310 and -117. PMID:23640406

  1. Reactive oxygen species, abscisic acid and ethylene interact to regulate sunflower seed germination.

    Science.gov (United States)

    El-Maarouf-Bouteau, Hayat; Sajjad, Yasar; Bazin, Jérémie; Langlade, Nicolas; Cristescu, Simona M; Balzergue, Sandrine; Baudouin, Emmanuel; Bailly, Christophe

    2015-02-01

    Sunflower (Helianthus annuus L.) seed dormancy is regulated by reactive oxygen species (ROS) and can be alleviated by incubating dormant embryos in the presence of methylviologen (MV), a ROS-generating compound. Ethylene alleviates sunflower seed dormancy whereas abscisic acid (ABA) represses germination. The purposes of this study were to identify the molecular basis of ROS effect on seed germination and to investigate their possible relationship with hormone signalling pathways. Ethylene treatment provoked ROS generation in embryonic axis whereas ABA had no effect on their production. The beneficial effect of ethylene on germination was lowered in the presence of antioxidant compounds, and MV suppressed the inhibitory effect of ABA. MV treatment did not alter significantly ethylene nor ABA production during seed imbibition. Microarray analysis showed that MV treatment triggered differential expression of 120 probe sets (59 more abundant and 61 less abundant genes), and most of the identified transcripts were related to cell signalling components. Many transcripts less represented in MV-treated seeds were involved in ABA signalling, thus suggesting an interaction between ROS and ABA signalling pathways at the transcriptional level. Altogether, these results shed new light on the crosstalk between ROS and plant hormones in seed germination. PMID:24811898

  2. Reactive oxygen species, abscisic acid and ethylene interact to regulate sunflower seed germination.

    Science.gov (United States)

    El-Maarouf-Bouteau, Hayat; Sajjad, Yasar; Bazin, Jérémie; Langlade, Nicolas; Cristescu, Simona M; Balzergue, Sandrine; Baudouin, Emmanuel; Bailly, Christophe

    2015-02-01

    Sunflower (Helianthus annuus L.) seed dormancy is regulated by reactive oxygen species (ROS) and can be alleviated by incubating dormant embryos in the presence of methylviologen (MV), a ROS-generating compound. Ethylene alleviates sunflower seed dormancy whereas abscisic acid (ABA) represses germination. The purposes of this study were to identify the molecular basis of ROS effect on seed germination and to investigate their possible relationship with hormone signalling pathways. Ethylene treatment provoked ROS generation in embryonic axis whereas ABA had no effect on their production. The beneficial effect of ethylene on germination was lowered in the presence of antioxidant compounds, and MV suppressed the inhibitory effect of ABA. MV treatment did not alter significantly ethylene nor ABA production during seed imbibition. Microarray analysis showed that MV treatment triggered differential expression of 120 probe sets (59 more abundant and 61 less abundant genes), and most of the identified transcripts were related to cell signalling components. Many transcripts less represented in MV-treated seeds were involved in ABA signalling, thus suggesting an interaction between ROS and ABA signalling pathways at the transcriptional level. Altogether, these results shed new light on the crosstalk between ROS and plant hormones in seed germination.

  3. Functional analysis of a Lemna gibba rbcS promoter regulated by abscisic acid and sugar

    Indian Academy of Sciences (India)

    Youru Wang

    2013-04-01

    Photosynthesis-associated nuclear genes (PhANGs) are able to respond to multiple environmental and developmental signals, including light, sugar and abscisic acid (ABA). PhANGs have been extensively studied at the level of transcriptional regulation, and several cis-acting elements important for light responsiveness have been identified in their promoter sequences. However, the regulatory elements involved in sugar and ABA regulation of PhANGs have not been completely characterized. A ribulose-1,5-bisphosphate carboxylase small subunit gene (rbcS) promoter (SSU5C promoter) was isolated from duckweed (Lemna gibba). A series of SSU5C promoter 5′ deletion fragments were fused to an intron–gus gene, and transgenic tobacco suspension cell lines were generated. Assay of tobacco suspension cell line harbouring the complete promoter in the fusion construct indicated that SSU5C promoter was negatively regulated by sugar and ABA under the condition of regular photoperiod. 5′ deletion analysis of SSU5C promoter in transgenic tobacco suspension cell lines confirmed that a region between positions $-310$ and $-152$ included the ABA-response region, and that sugar-response cis-acting elements might be located in the region between $-152$ and $-117$. Taken together, our results confirmed that the cis-regulatory region responsible for repression by ABA and sugar in the SSU5C promoter was located between $-310$ and $-117$.

  4. Abscisic acid and assimilate partitioning during seed development.

    NARCIS (Netherlands)

    Bruijn, de S.M.

    1993-01-01

    This thesis describes the influence of abscisic acid (ABA) on the transport of assimilates to seeds and the deposition of reserves in seeds. It is well-known from literature that ABA accumulates in seeds during development, and that ABA concentrations in seeds correlate rather well with seed size an

  5. Mitogen-activated protein kinase and abscisic acid signal transduction

    NARCIS (Netherlands)

    Heimovaara-Dijkstra, S.; Testerink, C.; Wang, M.

    1998-01-01

    The phytohormone abscisic acid (ABA) is a classical plant hormone, responsible for regulation of abscission, diverse aspects of plant and seed development, stress responses and germination. It was found that ABA signal transduction in plants can involve the activity of type 2C-phosphatases (PP2C), c

  6. Gibberellins repress photomorphogenesis in darkness.

    Science.gov (United States)

    Alabadí, David; Gil, Joan; Blázquez, Miguel A; García-Martínez, José L

    2004-03-01

    Plants undergo two different developmental programs depending on whether they are growing in darkness (skotomorphogenesis) or in the presence of light (photomorphogenesis). It has been proposed that the latter is the default pathway followed by many plants after germination and before the seedling emerges from soil. The transition between the two pathways is tightly regulated. The conserved COP1-based complex is central in the light-dependent repression of photomorphogenesis in darkness. Besides this control, hormones such as brassinosteroids (BRs), cytokinins, auxins, or ethylene also have been shown to regulate, to different extents, this developmental switch. In the present work, we show that the hormone gibberellin (GA) widely participates in this regulation. Studies from Arabidopsis show that both chemical and genetic reductions of endogenous GA levels partially derepress photomorphogenesis in darkness. This is based both on morphological phenotypes, such as hypocotyl elongation and hook and cotyledon opening, and on molecular phenotypes, such as misregulation of the light-controlled genes CAB2 and RbcS. Genetic studies indicate that the GA signaling elements GAI and RGA participate in these responses. Our results also suggest that GA regulation of this response partially depends on BRs. This regulation seems to be conserved across species because lowering endogenous GA levels in pea (Pisum sativum) induces full de-etiolation in darkness, which is not reverted by BR application. Our results, therefore, attribute an important role for GAs in the establishment of etiolated growth and in repression of photomorphogenesis. PMID:14963246

  7. RNAi and heterochromatin repress centromeric meiotic recombination

    DEFF Research Database (Denmark)

    Ellermeier, Chad; Higuchi, Emily C; Phadnis, Naina;

    2010-01-01

    to genetic disabilities, including birth defects. The basis by which centromeric meiotic recombination is repressed has been largely unknown. We report here that, in fission yeast, RNAi functions and Clr4-Rik1 (histone H3 lysine 9 methyltransferase) are required for repression of centromeric recombination...

  8. Thyroid hormone receptor can modulate retinoic acid-mediated axis formation in frog embryogenesis.

    OpenAIRE

    Banker, D E; Eisenman, R N

    1993-01-01

    Thyroid hormone receptor acts as a hormone-dependent transcriptional transactivator and as a transcriptional repressor in the absence of thyroid hormone. Specifically, thyroid hormone receptor can repress retinoic acid-induced gene expression through interactions with retinoic acid receptor. (Retinoic acid is a potent teratogen in the frog Xenopus laevis, acting at early embryonic stages to interfere with the formation of anterior structures. Endogenous retinoic acid is thought to act in norm...

  9. Saturated phosphatidic acids mediate saturated fatty acid–induced vascular calcification and lipotoxicity

    OpenAIRE

    Masuda, Masashi; Miyazaki-Anzai, Shinobu; Audrey L Keenan; Okamura, Kayo; Kendrick, Jessica; Chonchol, Michel; Offermanns, Stefan; James M. Ntambi; Kuro-o, Makoto; Miyazaki, Makoto

    2015-01-01

    Recent evidence indicates that saturated fatty acid–induced (SFA-induced) lipotoxicity contributes to the pathogenesis of cardiovascular and metabolic diseases; however, the molecular mechanisms that underlie SFA-induced lipotoxicity remain unclear. Here, we have shown that repression of stearoyl-CoA desaturase (SCD) enzymes, which regulate the intracellular balance of SFAs and unsaturated FAs, and the subsequent accumulation of SFAs in vascular smooth muscle cells (VSMCs), are characteristic...

  10. Tumour–stromal interactions in acid-mediated invasion: A mathematical model

    KAUST Repository

    Martin, Natasha K.

    2010-12-01

    It is well established that the tumour microenvironment can both promote and suppress tumour growth and invasion, however, most mathematical models of invasion view the normal tissue as inhibiting tumour progression via immune modulation or spatial constraint. In particular, the production of acid by tumour cells and the subsequent creation of a low extracellular pH environment has been explored in several \\'acid-mediated tumour invasion\\' models where the acidic environment facilitates normal cell death and permits tumour invasion. In this paper, we extend the acid-invasion model developed by Gatenby and Gawlinski (1996) to include both the competitive and cooperative interactions between tumour and normal cells, by incorporating the influence of extracellular matrix and protease production at the tumour-stroma interface. Our model predicts an optimal level of tumour acidity which produces both cell death and matrix degradation. Additionally, very aggressive tumours prevent protease production and matrix degradation by excessive normal cell destruction, leading to an acellular (but matrix filled) gap between the tumour and normal tissue, a feature seen in encapsulated tumours. These results suggest, counterintuitively, that increasing tumour acidity may, in some cases, prevent tumour invasion.

  11. Arabidopsis glutamate receptor homolog3.5 modulates cytosolic Ca2+ level to counteract effect of abscisic acid in seed germination.

    Science.gov (United States)

    Kong, Dongdong; Ju, Chuanli; Parihar, Aisha; Kim, So; Cho, Daeshik; Kwak, June M

    2015-04-01

    Seed germination is a critical step in a plant's life cycle that allows successful propagation and is therefore strictly controlled by endogenous and environmental signals. However, the molecular mechanisms underlying germination control remain elusive. Here, we report that the Arabidopsis (Arabidopsis thaliana) glutamate receptor homolog3.5 (AtGLR3.5) is predominantly expressed in germinating seeds and increases cytosolic Ca2+ concentration that counteracts the effect of abscisic acid (ABA) to promote germination. Repression of AtGLR3.5 impairs cytosolic Ca2+ concentration elevation, significantly delays germination, and enhances ABA sensitivity in seeds, whereas overexpression of AtGLR3.5 results in earlier germination and reduced seed sensitivity to ABA. Furthermore, we show that Ca2+ suppresses the expression of ABSCISIC ACID INSENSITIVE4 (ABI4), a key transcription factor involved in ABA response in seeds, and that ABI4 plays a fundamental role in modulation of Ca2+-dependent germination. Taken together, our results provide molecular genetic evidence that AtGLR3.5-mediated Ca2+ influx stimulates seed germination by antagonizing the inhibitory effects of ABA through suppression of ABI4. These findings establish, to our knowledge, a new and pivotal role of the plant glutamate receptor homolog and Ca2+ signaling in germination control and uncover the orchestrated modulation of the AtGLR3.5-mediated Ca2+ signal and ABA signaling via ABI4 to fine-tune the crucial developmental process, germination, in Arabidopsis.

  12. Uprooting an abscisic acid paradigm: Shoots are the primary source.

    Science.gov (United States)

    McAdam, Scott A M; Manzi, Matías; Ross, John J; Brodribb, Timothy J; Gómez-Cadenas, Aurelio

    2016-06-01

    In the past, a conventional wisdom has been that abscisic acid (ABA) is a xylem-transported hormone that is synthesized in the roots, while acting in the shoot to close stomata in response to a decrease in plant water status. Now, however, evidence from two studies, which we have conducted independently, challenges this root-sourced ABA paradigm. We show that foliage-derived ABA has a major influence over root development and that leaves are the predominant location for ABA biosynthesis during drought stress. PMID:27031537

  13. Amelioration of Chilling Injuries in Watermelon Seedlings by Abscisic Acid

    OpenAIRE

    Korkmaz, Ahmet

    2002-01-01

    A greenhouse study, designed in a randomized complete block design with five replications, was carried out at Clemson University, Clemson, SC, USA, in the spring of 1997. The objective of the study was to investigate whether abscisic acid (ABA) would mitigate chilling damages in the watermelon, a chilling-sensitive plant. 'Crimson Sweet' [Citrullus lanatus (Thumb) Matsum. & Nakai.] watermelon seedlings were grown in a greenhouse with a temperature regime of 25ºC (day) and 20ºC...

  14. Radioimmunoassay for free and bound forms of abscisic acid

    International Nuclear Information System (INIS)

    A radioimmunoassay (RIA) for the quanitation of abscisic acid (ABA) has been developed. The assay is extremely sensitive and measuring ranges extend from 10 pg to 10 ng. Although the assay was free of contaminant interference when applied to avocado material, crude extract analysis yielded a composite of free and bound forms of ABA. Equivalents of 20 mg of plant material were spotted onto silica gel plates (GF245 solvent:toluene:ethyl acetate : acetic acid 25:15:3), developed and the relative Rf zones removed and subjected to RIA. The technique was tested on avocados

  15. Action of Abscisic Acid on Auxin Transport and its Relation to Phototropism

    DEFF Research Database (Denmark)

    Naqvi, S. M.; Engvild, Kjeld Christensen

    1974-01-01

    The action of abscisic acid on the kinetics of auxin transport through Zea mays L. (cv. Goudster) coleoptiles has been investigated. Abscisic acid applied simultaneously with indoleacetic acid-2-14C in the donor block reduced the transport intensity without materially affecting the basipetal...

  16. Genetic interaction of two abscisic acid signaling regulators, HY5 and FIERY1, in mediating lateral root formation

    KAUST Repository

    Chen, Hao

    2011-01-01

    Root architecture is continuously shaped in a manner that helps plants to better adapt to the environment. Gene regulation at the transcriptional or post-transcriptional levels largely controls this environmental response. Recently, RNA silencing has emerged as an important player in gene regulation and is involved in many aspects of plant development, including lateral root formation. In a recent study, we found that FIERY1, a bifunctional abiotic stress and abscisic acid (ABA) signaling regulator and an endogenous RNA silencing suppressor, mediates auxin response during lateral root formation in Arabidopsis. We proposed that FRY1 regulates lateral root development through its activity on adenosine 3,5-bisphosphate (PAP), a strong inhibitor of exoribonucleases (XRNs). Interestingly, some of the phenotypes of fry1, such as enhanced response to light in repressing hypocotyl elongation and hypersensitivity to ABA in lateral root growth, are opposite to those of another light- and ABA-signaling mutant, hy5. Here we analyzed the hy5 fry1 double mutant for root and hypocotyl growth. We found that the hy5 mutation can suppress the enhanced light sensitivity in fry1 hypocotyl elongation and restore the lateral root formation. The genetic interaction between HY5 and FRY1 indicates that HY5 and FRY1 may act in overlapping pathways that mediate light signaling and lateral root development. © 2011 Landes Bioscience.

  17. Analysis of Global Expression Profiles of Arabidopsis Genes Under Abscisic Acid and H2O2 Applications

    Institute of Scientific and Technical Information of China (English)

    Peng-Cheng Wang; Yan-Yan Du; Guo-Yong An; Yun Zhou; Chen Miao; Chun-Peng Song

    2006-01-01

    To gain insight into the coordination of gene expression profiles under abscisic acid (ABA) and H2O2 applications,global changes in gene expression in response to ABA and H2O2 in Arabidopsis seedlings were investigated using GeneChip (Santa Clara, CA, USA) arrays. Among over 24 000 genes present in the arrays, 459 transcripts were found to be significantly increased, whereas another 221 decreased following H2O2 treatment compared with control. Similar to treatment with H2O2, ABA treatment elevated the transcription of 391 genes and repressed that of 322 genes. One hundred and forty-three upregulated genes and 75 downregulated genes were shared between the two treatments and these genes were mainly involved in metabolism, signal transduction, transcription, defense, and resistance. Only two genes, which encode an APETALA2/dehydration-responsive element binding protein (AP2/DREBP) family transcriptional factor and a late embryogenesisabundant protein, were downregulated by H2O2, but upregulated by ABA. These results suggest that, similar to ABA, H2O2 plays a global role in gene transcription of Arabidopsisseedlings. The transcriptional responses induced by the application of exogenous ABA and H2O2 overlapped substantially. These two treatments regulated most of the downstream genes in a coordinated manner.

  18. Involvement of abscisic acid in correlative control of flower abscission in soybean

    Energy Technology Data Exchange (ETDEWEB)

    Yarrow, G.L.

    1985-01-01

    Studies were carried out in three parts: (1) analysis of endogenous abscisic acid (ABA) in abscising and non-abscising flowers, (2) partitioning of radio-labelled ABA and photoassimilates within the soybean raceme, and (3) shading experiments, wherein endogenous levels, metabolism and partitioning of ABA were determined. Endogenous concentrations of ABA failed to show any consistent relationship to abscission of soybean flowers. Partitioning of radiolabelled ABA and photoassimilates displayed consistently higher sink strengths (% DPM) for both /sup 3/H-ABA and /sup 14/C-photoassimilates for non-abscising flowers than for abscising flowers within control racemes. Shading flowers with aluminum foil, 48 hrs prior to sampling, resulted in lowered endogenous ABA concentrations at 12, 17 and 22 days after anthesis (DAA), but not at 0 or 4 DAA. No differences were found in the catabolism of /sup 3/H-ABA between shaded (abscising) and non-shaded (non-abscising) flowers. Reduced partitioning of ABA and photoassimilates to shaded flowers resulted when shades were applied at 0, 4, 12, and 17 DAA, but not at 22 DAA.

  19. A Direct, Biomass-Based Synthesis of Benzoic Acid: Formic Acid-Mediated Deoxygenation of the Glucose-Derived Materials Quinic Acid and Shikimic Acid

    Energy Technology Data Exchange (ETDEWEB)

    Arceo, Elena; Ellman, Jonathan; Bergman, Robert

    2010-05-03

    An alternative biomass-based route to benzoic acid from the renewable starting materials quinic acid and shikimic acid is described. Benzoic acid is obtained selectively using a highly efficient, one-step formic acid-mediated deoxygenation method.

  20. Anacardic acid-mediated changes in membrane potential and pH gradient across liposomal membranes.

    Science.gov (United States)

    Toyomizu, Masaaki; Okamoto, Katsuyuki; Akiba, Yukio; Nakatsu, Tetsuo; Konishi, Tetsuya

    2002-01-01

    We have previously shown that anacardic acid has an uncoupling effect on oxidative phosphorylation in rat liver mitochondria using succinate as a substrate (Life Sci. 66 (2000) 229-234). In the present study, for clarification of the physicochemical characteristics of anacardic acid, we used a cyanine dye (DiS-C3(5)) and 9-aminoacridine (9-AA) to determine changes of membrane potential (DeltaPsi) and pH difference (DeltapH), respectively, in a liposome suspension in response to the addition of anacardic acid to the suspension. The anacardic acid quenched DiS-C3(5) fluorescence at concentrations higher than 300 nM, with the degree of quenching being dependent on the log concentration of the acid. Furthermore, the K(+) diffusion potential generated by the addition of valinomycin to the suspension decreased for each increase in anacardic acid concentration used over 300 nM, but the sum of the anacardic acid- and valinomycin-mediated quenching was additively increasing. This indicates that the anacardic acid-mediated quenching was not due simply to increments in the K(+) permeability of the membrane. Addition of anacardic acid in the micromolar range to the liposomes with DeltaPsi formed by valinomycin-K(+) did not significantly alter 9-AA fluorescence, but unexpectedly dissipated DeltaPsi. The DeltaPsi preformed by valinomycin-K(+) decreased gradually following the addition of increasing concentrations of anacardic acid. The DeltaPsi dissipation rate was dependent on the pre-existing magnitude of DeltaPsi, and was correlated with the logarithmic concentration of anacardic acid. Furthermore, the initial rate of DeltapH dissipation increased with logarithmic increases in anacardic acid concentration. These results provide the evidence for a unique function of anacardic acid, dissimilar to carbonylcyanide p-trifluoromethoxyphenylhydrazone or valinomycin, in that anacardic acid behaves as both an electrogenic (negative) charge carrier driven by DeltaPsi, and a 'proton

  1. Arabidopsis WRKY6 Transcription Factor Acts as a Positive Regulator of Abscisic Acid Signaling during Seed Germination and Early Seedling Development.

    Science.gov (United States)

    Huang, Yun; Feng, Cui-Zhu; Ye, Qing; Wu, Wei-Hua; Chen, Yi-Fang

    2016-02-01

    The phytohormone abscisic acid (ABA) plays important roles during seed germination and early seedling development. Here, we characterized the function of the Arabidopsis WRKY6 transcription factor in ABA signaling. The transcript of WRKY6 was repressed during seed germination and early seedling development, and induced by exogenous ABA. The wrky6-1 and wrky6-2 mutants were ABA insensitive, whereas WRKY6-overexpressing lines showed ABA-hypersensitive phenotypes during seed germination and early seedling development. The expression of RAV1 was suppressed in the WRKY6-overexpressing lines and elevated in the wrky6 mutants, and the expression of ABI3, ABI4, and ABI5, which was directly down-regulated by RAV1, was enhanced in the WRKY6-overexpressing lines and repressed in the wrky6 mutants. Electrophoretic mobility shift and chromatin immunoprecipitation assays showed that WRKY6 could bind to the RAV1 promoter in vitro and in vivo. Overexpression of RAV1 in WRKY6-overexpressing lines abolished their ABA-hypersensitive phenotypes, and the rav1 wrky6-2 double mutant showed an ABA-hypersensitive phenotype, similar to rav1 mutant. Together, the results demonstrated that the Arabidopsis WRKY6 transcription factor played important roles in ABA signaling by directly down-regulating RAV1 expression.

  2. Farnesylation mediates brassinosteroid biosynthesis to regulate abscisic acid responses.

    Science.gov (United States)

    Northey, Julian G B; Liang, Siyu; Jamshed, Muhammad; Deb, Srijani; Foo, Eloise; Reid, James B; McCourt, Peter; Samuel, Marcus A

    2016-01-01

    Protein farnesylation is a post-translational modification involving the addition of a 15-carbon farnesyl isoprenoid to the carboxy terminus of select proteins(1-3). Although the roles of this lipid modification are clear in both fungal and animal signalling, many of the mechanistic functions of farnesylation in plant signalling are still unknown. Here, we show that CYP85A2, the cytochrome P450 enzyme that performs the last step in brassinosteroid biosynthesis (conversion of castasterone to brassinolide)(4), must be farnesylated to function in Arabidopsis. Loss of either CYP85A2 or CYP85A2 farnesylation results in reduced brassinolide accumulation and increased plant responsiveness to the hormone abscisic acid (ABA) and overall drought tolerance, explaining previous observations(5). This result not only directly links farnesylation to brassinosteroid biosynthesis but also suggests new strategies to maintain crop yield under challenging climatic conditions. PMID:27455172

  3. Arabidopsis YAK1 regulates abscisic acid response and drought resistance.

    Science.gov (United States)

    Kim, Dongjin; Ntui, Valentine Otang; Xiong, Liming

    2016-07-01

    Abscisic acid (ABA) is an important phytohormone that controls several plant processes such as seed germination, seedling growth, and abiotic stress response. Here, we report that AtYak1 plays an important role in ABA signaling and postgermination growth in Arabidopsis. AtYak1 knockout mutant plants were hyposensitive to ABA inhibition of seed germination, cotyledon greening, seedling growth, and stomatal movement. atyak1-1 mutant plants display reduced drought stress resistance, as evidenced by water loss rate and survival rate. Molecular genetic analysis revealed that AtYak1 deficiency led to elevated expression of stomatal-related gene, MYB60, and down-regulation of several stress-responsive genes. Altogether, these results indicate that AtYak1 plays a role as a positive regulator in ABA-mediated drought response in Arabidopsis. PMID:27264339

  4. Tomato ABSCISIC ACID STRESS RIPENING (ASR gene family revisited.

    Directory of Open Access Journals (Sweden)

    Ido Golan

    Full Text Available Tomato ABSCISIC ACID RIPENING 1 (ASR1 was the first cloned plant ASR gene. ASR orthologs were then cloned from a large number of monocot, dicot and gymnosperm plants, where they are mostly involved in response to abiotic (drought and salinity stress and fruit ripening. The tomato genome encodes five ASR genes: ASR1, 2, 3 and 5 encode low-molecular-weight proteins (ca. 110 amino acid residues each, whereas ASR4 encodes a 297-residue polypeptide. Information on the expression of the tomato ASR gene family is scarce. We used quantitative RT-PCR to assay the expression of this gene family in plant development and in response to salt and osmotic stresses. ASR1 and ASR4 were the main expressed genes in all tested organs and conditions, whereas ASR2 and ASR3/5 expression was two to three orders of magnitude lower (with the exception of cotyledons. ASR1 is expressed in all plant tissues tested whereas ASR4 expression is limited to photosynthetic organs and stamens. Essentially, ASR1 accounted for most of ASR gene expression in roots, stems and fruits at all developmental stages, whereas ASR4 was the major gene expressed in cotyledons and young and fully developed leaves. Both ASR1 and ASR4 were expressed in flower organs, with ASR1 expression dominating in stamens and pistils, ASR4 in sepals and petals. Steady-state levels of ASR1 and ASR4 were upregulated in plant vegetative organs following exposure to salt stress, osmotic stress or the plant abiotic stress hormone abscisic acid (ABA. Tomato plants overexpressing ASR1 displayed enhanced survival rates under conditions of water stress, whereas ASR1-antisense plants displayed marginal hypersensitivity to water withholding.

  5. The great repression: chromatin and cryptic transcription.

    Science.gov (United States)

    Hennig, Bianca P; Fischer, Tamás

    2013-01-01

    The eukaryotic chromatin structure is essential in correctly defining transcription units. Impairing this structure can activate cryptic promoters, and lead to the accumulation of aberrant RNA transcripts. Here we discuss critical pathways that are responsible for the repression of cryptic transcription and the maintenance of genome integrity.

  6. Characterization and Functional Analysis of Pyrabactin Resistance-Like Abscisic Acid Receptor Family in Rice

    OpenAIRE

    Tian, Xiaojie; Wang, Zhenyu; Li, Xiufeng; Lv, Tianxiao; Liu, Huazhao; Wang, Lizhi; Niu, Hongbin; Bu, Qingyun

    2015-01-01

    Background Abscisic acid (ABA) plays crucial roles in regulating plant growth and development, especially in responding to abiotic stress. The pyrabactin resistance-like (PYL) abscisic acid receptor family has been identified and widely characterized in Arabidopsis. However, PYL families in rice were largely unknown. In the present study, 10 out of 13 PYL orthologs in rice (OsPYL) were isolated and investigated. Results Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) an...

  7. Cancer, acute stress disorder, and repressive coping

    DEFF Research Database (Denmark)

    Pedersen, Anette Fischer; Zachariae, Robert

    2010-01-01

    The purpose of this study was to investigate the association between repressive coping style and Acute Stress Disorder (ASD) in a sample of cancer patients. A total of 112 cancer patients recently diagnosed with cancer participated in the study. ASD was assessed by the Stanford Acute Stress...... Reaction Questionnaire, and repressive coping was assessed by a combination of scores from the Marlowe-Crowne Social Desirability Scale, and the Bendig version of the Taylor Manifest Anxiety Scale. Significantly fewer patients classified as "repressors" were diagnosed with ASD compared to patients...... classified as "non-repressors". However, further investigations revealed that the lower incidence of ASD in repressors apparently was caused by a low score on anxiety and not by an interaction effect between anxiety and defensiveness. Future studies have to investigate whether different psychological...

  8. Nuclear AXIN2 represses MYC gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Rennoll, Sherri A.; Konsavage, Wesley M.; Yochum, Gregory S., E-mail: gsy3@psu.edu

    2014-01-03

    Highlights: •AXIN2 localizes to cytoplasmic and nuclear compartments in colorectal cancer cells. •Nuclear AXIN2 represses the activity of Wnt-responsive luciferase reporters. •β-Catenin bridges AXIN2 to TCF transcription factors. •AXIN2 binds the MYC promoter and represses MYC gene expression. -- Abstract: The β-catenin transcriptional coactivator is the key mediator of the canonical Wnt signaling pathway. In the absence of Wnt, β-catenin associates with a cytosolic and multi-protein destruction complex where it is phosphorylated and targeted for proteasomal degradation. In the presence of Wnt, the destruction complex is inactivated and β-catenin translocates into the nucleus. In the nucleus, β-catenin binds T-cell factor (TCF) transcription factors to activate expression of c-MYC (MYC) and Axis inhibition protein 2 (AXIN2). AXIN2 is a member of the destruction complex and, thus, serves in a negative feedback loop to control Wnt/β-catenin signaling. AXIN2 is also present in the nucleus, but its function within this compartment is unknown. Here, we demonstrate that AXIN2 localizes to the nuclei of epithelial cells within normal and colonic tumor tissues as well as colorectal cancer cell lines. In the nucleus, AXIN2 represses expression of Wnt/β-catenin-responsive luciferase reporters and forms a complex with β-catenin and TCF. We demonstrate that AXIN2 co-occupies β-catenin/TCF complexes at the MYC promoter region. When constitutively localized to the nucleus, AXIN2 alters the chromatin structure at the MYC promoter and directly represses MYC gene expression. These findings suggest that nuclear AXIN2 functions as a rheostat to control MYC expression in response to Wnt/β-catenin signaling.

  9. Transthyretin represses neovascularization in diabetic retinopathy

    Science.gov (United States)

    Shao, Jun

    2016-01-01

    Purpose The apoptosis of human umbilical vein endothelial cells has been reportedly induced by the protein transthyretin (TTR). In human ocular tissue, TTR is generally considered to be secreted mainly by retinal pigment epithelial cells (hRPECs); however, whether TTR affects the development of neovascularization in diabetic retinopathy (DR) remains unclear. Methods Natural and simulated DR media were used to culture human retinal microvascular endothelial cells (hRECs). Hyperglycemia was simulated by increasing the glucose concentration from 5.5 mM up to 25 mM, while hypoxia was induced with 200 µM CoCl2. To understand the effects of TTR on hRECs, cell proliferation was investigated under natural and DR conditions. Overexpression of TTR, an in vitro wound-healing assay, and a tube formation assay were employed to study the repression of TTR on hRECs. Real-time fluorescence quantitative PCR (qRT-PCR) was used to study the mRNA levels of DR-related genes, such as Tie2, VEGFR1, VEGFR2, Angpt1, and Angpt2. Results The proliferation of hRECs was significantly decreased in the simulated hyperglycemic and hypoxic DR environments. The cells were further repressed by added exogenous or endogenous TTR only under hyperglycemic conditions. The in vitro migration and tube formation processes of the hRECs were inhibited with TTR; furthermore, in the hyperglycemia and hyperglycemia/hypoxia environments, the levels of Tie2 and Angpt1 mRNA were enhanced with exogenous TTR, while those of VEGFR1, VEGFR2, and Angpt1 were repressed. Conclusions In hyperglycemia, the proliferation, migration, and neovascularization of hRECs were significantly inhibited by TTR. The key genes for DR neovascularization, including Tie2, VEGFR1, VEGFR2, Angpt1, and Angpt2, were regulated by TTR. Under DR conditions, TTR significantly represses neovascularization by inhibiting the proliferation, migration and tube formation of hRECs. PMID:27746673

  10. Arabidopsis AtDjA3 null mutant shows increased sensitivity to abscisic acid, salt, and osmotic stress in germination and postgermination stages

    Directory of Open Access Journals (Sweden)

    Silvia eSalas-Muñoz

    2016-02-01

    Full Text Available DnaJ proteins are essential co-chaperones involved in abiotic and biotic stress responses. Arabidopsis AtDjA3 gene encodes a molecular co-chaperone of 420 amino acids, which belongs to the J-protein family. In this study, we report the functional characterization of the AtDjA3 gene using the Arabidopsis knockout line designated j3 and the 35S::AtDjA3 overexpression lines. Loss of AtDjA3 function was associated with small seed production. In fact, j3 mutant seeds showed a reduction of 24% in seed weight compared to Col-0 seeds. Expression analysis showed that the AtDjA3 gene was modulated in response to NaCl, glucose, and abscisic acid. The j3 line had increased sensitivity to NaCl and glucose treatments in the germination and cotyledon development in comparison to parental Col-0. Furthermore, the j3 mutant line exhibited higher abscisic acid sensitivity in comparison to parental Col-0 and 35S::AtDjA3 overexpression lines. In addition, we examined the expression of ABI3 gene, which is a central regulator in ABA signalling, in j3 mutant and 35S::AtDjA3 overexpression lines. Under 5 μM ABA treatment at 24 h, j3 mutant seedlings displayed higher ABI3 expression, whereas in 35S::AtDjA3 overexpression lines, ABI3 gene expression was repressed. Taken together, these results demonstrate that the AtDjA3 gene is involved in seed development and abiotic stress tolerance.

  11. Abscisic Acid: Hidden Architect of Root System Structure

    Directory of Open Access Journals (Sweden)

    Jeanne M. Harris

    2015-08-01

    Full Text Available Plants modulate root growth in response to changes in the local environment, guided by intrinsic developmental genetic programs. The hormone Abscisic Acid (ABA mediates responses to different environmental factors, such as the presence of nitrate in the soil, water stress and salt, shaping the structure of the root system by regulating the production of lateral roots as well as controlling root elongation by modulating cell division and elongation. Curiously, ABA controls different aspects of root architecture in different plant species, perhaps providing some insight into the great diversity of root architecture in different plants, both from different taxa and from different environments. ABA is an ancient signaling pathway, acquired well before the diversification of land plants. Nonetheless, how this ancient signaling module is implemented or interacts within a larger signaling network appears to vary in different species. This review will examine the role of ABA in the control of root architecture, focusing on the regulation of lateral root formation in three plant species, Arabidopsis thaliana, Medicago truncatula and Oryza sativa. We will consider how the implementation of the ABA signaling module might be a target of natural selection, to help contribute to the diversity of root architecture in nature.

  12. Compartmentation and equilibration of abscisic acid in isolated Xanthium cells

    Energy Technology Data Exchange (ETDEWEB)

    Bray, E.A.; Zeevaart, J.A.D.

    1986-01-01

    The compartmentation of endogenous abscisic acid (ABA), applied (+/-)-(/sup 3/H)ABA, and (+/-)-trans-ABA was measured in isolated mesophyll cells of the Chicago strain of Xanthium strumarium L. The release of ABA to the medium in the presence or absence of DMSO was used to determine the equilibration of ABA in the cells. It was found that a greater percentage of the (+/-)-(/sup 3/H)ABA and the (+/-)-trans-ABA was released into the medium than of the endogenous ABA, indicating that applied ABA did not equilibrate with the endogenous material. Therefore, in further investigations only the compartmentation of endogenous ABA was studied. Endogenous ABA was released from Xanthium cells according to the pH gradients among the various cellular compartments. Thus, darkness, high external pH, KNO/sub 2/, and drought-stress all increased the efflux of ABA from the cells. Efflux of ABA from the cells in the presence of 0.6 M mannitol occurred within 30 seconds, but only 8% of the endogenous material was released during the 20 minute treatment.

  13. Abscisic Acid and Abiotic Stress Tolerance in Crop Plants.

    Science.gov (United States)

    Sah, Saroj K; Reddy, Kambham R; Li, Jiaxu

    2016-01-01

    Abiotic stress is a primary threat to fulfill the demand of agricultural production to feed the world in coming decades. Plants reduce growth and development process during stress conditions, which ultimately affect the yield. In stress conditions, plants develop various stress mechanism to face the magnitude of stress challenges, although that is not enough to protect them. Therefore, many strategies have been used to produce abiotic stress tolerance crop plants, among them, abscisic acid (ABA) phytohormone engineering could be one of the methods of choice. ABA is an isoprenoid phytohormone, which regulates various physiological processes ranging from stomatal opening to protein storage and provides adaptation to many stresses like drought, salt, and cold stresses. ABA is also called an important messenger that acts as the signaling mediator for regulating the adaptive response of plants to different environmental stress conditions. In this review, we will discuss the role of ABA in response to abiotic stress at the molecular level and ABA signaling. The review also deals with the effect of ABA in respect to gene expression. PMID:27200044

  14. ABI4 regulates primary seed dormancy by regulating the biogenesis of abscisic acid and gibberellins in arabidopsis.

    Directory of Open Access Journals (Sweden)

    Kai Shu

    2013-06-01

    Full Text Available Seed dormancy is an important economic trait for agricultural production. Abscisic acid (ABA and Gibberellins (GA are the primary factors that regulate the transition from dormancy to germination, and they regulate this process antagonistically. The detailed regulatory mechanism involving crosstalk between ABA and GA, which underlies seed dormancy, requires further elucidation. Here, we report that ABI4 positively regulates primary seed dormancy, while negatively regulating cotyledon greening, by mediating the biogenesis of ABA and GA. Seeds of the Arabidopsis abi4 mutant that were subjected to short-term storage (one or two weeks germinated significantly more quickly than Wild-Type (WT, and abi4 cotyledons greened markedly more quickly than WT, while the rates of germination and greening were comparable when the seeds were subjected to longer-term storage (six months. The ABA content of dry abi4 seeds was remarkably lower than that of WT, but the amounts were comparable after stratification. Consistently, the GA level of abi4 seeds was increased compared to WT. Further analysis showed that abi4 was resistant to treatment with paclobutrazol (PAC, a GA biosynthesis inhibitor, during germination, while OE-ABI4 was sensitive to PAC, and exogenous GA rescued the delayed germination phenotype of OE-ABI4. Analysis by qRT-PCR showed that the expression of genes involved in ABA and GA metabolism in dry and germinating seeds corresponded to hormonal measurements. Moreover, chromatin immunoprecipitation qPCR (ChIP-qPCR and transient expression analysis showed that ABI4 repressed CYP707A1 and CYP707A2 expression by directly binding to those promoters, and the ABI4 binding elements are essential for this repression. Accordingly, further genetic analysis showed that abi4 recovered the delayed germination phenotype of cyp707a1 and cyp707a2 and further, rescued the non-germinating phenotype of ga1-t. Taken together, this study suggests that ABI4 is a key

  15. The zinc finger transcription factor SlZFP2 negatively regulates abscisic acid biosynthesis and fruit ripening in tomato.

    Science.gov (United States)

    Weng, Lin; Zhao, Fangfang; Li, Rong; Xu, Changjie; Chen, Kunsong; Xiao, Han

    2015-03-01

    Abscisic acid (ABA) regulates plant development and adaptation to environmental conditions. Although the ABA biosynthesis pathway in plants has been thoroughly elucidated, how ABA biosynthetic genes are regulated at the molecular level during plant development is less well understood. Here, we show that the tomato (Solanum lycopersicum) zinc finger transcription factor SlZFP2 is involved in the regulation of ABA biosynthesis during fruit development. Overexpression of SlZFP2 resulted in multiple phenotypic changes, including more branches, early flowering, delayed fruit ripening, lighter seeds, and faster seed germination, whereas down-regulation of its expression caused problematic fruit set, accelerated ripening, and inhibited seed germination. SlZFP2 represses ABA biosynthesis during fruit development through direct suppression of the ABA biosynthetic genes NOTABILIS, SITIENS, and FLACCA and the aldehyde oxidase SlAO1. We also show that SlZFP2 regulates fruit ripening through transcriptional suppression of the ripening regulator COLORLESS NON-RIPENING. Using bacterial one-hybrid screening and a selected amplification and binding assay, we identified the (A/T)(G/C)TT motif as the core binding sequence of SlZFP2. Furthermore, by RNA sequencing profiling, we found that 193 genes containing the SlZFP2-binding motifs in their promoters were differentially expressed in 2 d post anthesis fruits between the SlZFP2 RNA interference line and its nontransgenic sibling. We propose that SlZFP2 functions as a repressor to fine-tune ABA biosynthesis during fruit development and provides a potentially valuable tool for dissecting the role of ABA in fruit ripening.

  16. Effects of mechanical stress or abscisic acid on growth, water status and leaf abscisic acid content of eggplant seedlings

    Science.gov (United States)

    Latimer, J. G.; Mitchell, C. A.

    1988-01-01

    Container-grown eggplant (Solanum melongena L. var esculentum Nees. 'Burpee's Black Beauty') seedlings were conditioned with brief, periodic mechanical stress or abscisic acid (ABA) in a greenhouse prior to outdoor exposure. Mechanical stress consisted of seismic (shaking) or thigmic (stem flexing) treatment. Exogenous ABA (10(-3) or 10(-4)M) was applied as a soil drench 3 days prior to outdoor transfer. During conditioning, only thigmic stress reduced stem elongation and only 10(-3) M ABA reduced relative growth rate (RGR). Both conditioning treatments increased leaf specific chlorophyll content, but mechanical stress did not affect leaf ABA content. Outdoor exposure of unconditioned eggplant seedlings decreased RGR and leaf-specific chlorophyll content, but tended to increase leaf ABA content relative to that of plants maintained in the greenhouse. Conditioning did not affect RGR of plants subsequently transferred outdoors, but did reduce stem growth. Seismic stress applied in the greenhouse reduced dry weight gain by plants subsequently transferred outdoors. Mechanical stress treatments increased leaf water potential by 18-25% relative to that of untreated plants.

  17. Nonlinear stability of a heterogeneous state in a PDE-ODE model for acid-mediated tumor invasion.

    Science.gov (United States)

    Tao, Youshan; Tello, J Ignacio

    2016-02-01

    This work studies a general reaction-diffusion model for acid-mediated tumor invasion, where tumor cells produce excess acid that primarily kills healthy cells, and thereby invade the microenvironment. The acid diffuses and could be cleared by vasculature, and the healthy and tumor cells are viewed as two species following logistic growth with mutual competition. A key feature of this model is the density-limited diffusion for tumor cells, reflecting that a healthy tissue will spatially constrain a tumor unless shrunk. Under appropriate assumptions on model parameters and on initial data, it is shown that the unique heterogeneous state is nonlinearly stable, which implies a long-term coexistence of the healthy and tumor cells in certain parameter space. Our theoretical result suggests that acidity may play a significant role in heterogeneous tumor progression. PMID:26776259

  18. Abscisic acid ameliorates the systemic sclerosis fibroblast phenotype in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Bruzzone, Santina, E-mail: santina.bruzzone@unige.it [Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova (Italy); Centre of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 9, 16132 Genova (Italy); Advanced Biotechnology Center, Largo Rosanna Benzi 10, 16132 Genova (Italy); Battaglia, Florinda [Centre of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 9, 16132 Genova (Italy); Mannino, Elena [Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova (Italy); Parodi, Alessia [Centre of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 9, 16132 Genova (Italy); Fruscione, Floriana [Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova (Italy); Advanced Biotechnology Center, Largo Rosanna Benzi 10, 16132 Genova (Italy); Basile, Giovanna [Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova (Italy); Salis, Annalisa; Sturla, Laura [Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova (Italy); Centre of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 9, 16132 Genova (Italy); Negrini, Simone; Kalli, Francesca; Stringara, Silvia [Centre of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 9, 16132 Genova (Italy); Filaci, Gilberto [Centre of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 9, 16132 Genova (Italy); Department of Internal Medicine, Viale Benedetto XV 6, 16132 Genova (Italy); and others

    2012-05-25

    Highlights: Black-Right-Pointing-Pointer ABA is an endogenous hormone in humans, regulating different cell responses. Black-Right-Pointing-Pointer ABA reverts some of the functions altered in SSc fibroblasts to a normal phenotype. Black-Right-Pointing-Pointer UV-B irradiation increases ABA content in SSc cultures. Black-Right-Pointing-Pointer SSc fibroblasts could benefit from exposure to ABA and/or to UV-B. -- Abstract: The phytohormone abscisic acid (ABA) has been recently identified as an endogenous hormone in humans, regulating different cell functions, including inflammatory processes, insulin release and glucose uptake. Systemic sclerosis (SSc) is a chronic inflammatory disease resulting in fibrosis of skin and internal organs. In this study, we investigated the effect of exogenous ABA on fibroblasts obtained from healthy subjects and from SSc patients. Migration of control fibroblasts induced by ABA was comparable to that induced by transforming growth factor-{beta} (TGF-{beta}). Conversely, migration toward ABA, but not toward TGF-{beta}, was impaired in SSc fibroblasts. In addition, ABA increased cell proliferation in fibroblasts from SSc patients, but not from healthy subjects. Most importantly, presence of ABA significantly decreased collagen deposition by SSc fibroblasts, at the same time increasing matrix metalloproteinase-1 activity and decreasing the expression level of tissue inhibitor of metalloproteinase (TIMP-1). Thus, exogenously added ABA appeared to revert some of the functions altered in SSc fibroblasts to a normal phenotype. Interestingly, ABA levels in plasma from SSc patients were found to be significantly lower than in healthy subjects. UV-B irradiation induced an almost 3-fold increase in ABA content in SSc cultures. Altogether, these results suggest that the fibrotic skin lesions in SSc patients could benefit from exposure to high(er) ABA levels.

  19. Plant water stress: Associations between ethylene and abscisic acid response

    Directory of Open Access Journals (Sweden)

    Carolina Salazar

    2015-08-01

    Full Text Available Agriculture is severely impacted by water stress due either to excess (hypoxia/anoxia or deficit of water availability. Hypoxia/anoxia is associated with oxygen (O2 deficiency or depletion, inducing several anatomical, morphological, physiological, and molecular changes. The majority of these alterations are adaptive mechanisms to cope with low O2 availability; among them, alterations in shoot length, aerenchyma formation and adventitious roots have been described in several studies. The aim of this review was to address the association between abscisic acid (ABA and ethylene in function of water availability in plants. The major physiological responses to low O2 are associated with changes in root respiration, stomatal conductance, photosynthesis, and fermentation pathways in roots. In addition, several changes in gene expression have been associated with pathways that are not present under normal O2 supply. The expression of ethylene receptor genes is up-regulated by low O2, and ethylene seems to have a crucial role in anatomical and physiological effects during hypoxia/anoxia. During O2 depletion, ethylene accumulation down-regulates ABA by inhibiting rate-limiting enzymes in ABA biosynthesis and by activating ABA breakdown to phaseic acid. With regard to water deficit, drought is primarily sensed by the roots, inducing a signal cascade to the shoots via xylem causing physiological and morphological changes. Several genes are regulated up or down with osmotic stress; the majority of these responsive genes can be driven by either an ABA-dependent or ABA-independent pathway. Some studies suggest that ethylene shuts down leaf growth very fast after the plant senses limited water availability. Ethylene accumulation can antagonize the control of gas exchange and leaf growth upon drought and ABA accumulation.

  20. In vitro reconstitution of an abscisic acid signalling pathway

    KAUST Repository

    Fujii, Hiroaki

    2009-11-18

    The phytohormone abscisic acid (ABA) regulates the expression of many genes in plants; it has critical functions in stress resistance and in growth and development. Several proteins have been reported to function as ABA receptors, and many more are known to be involved in ABA signalling. However, the identities of ABA receptors remain controversial and the mechanism of signalling from perception to downstream gene expression is unclear. Here we show that by combining the recently identified ABA receptor PYR1 with the type 2C protein phosphatase (PP2C) ABI1, the serine/threonine protein kinase SnRK2.6/OST1 and the transcription factor ABF2/AREB1, we can reconstitute ABA-triggered phosphorylation of the transcription factor in vitro. Introduction of these four components into plant protoplasts results in ABA-responsive gene expression. Protoplast and test-tube reconstitution assays were used to test the function of various members of the receptor, protein phosphatase and kinase families. Our results suggest that the default state of the SnRK2 kinases is an autophosphorylated, active state and that the SnRK2 kinases are kept inactive by the PP2Cs through physical interaction and dephosphorylation. We found that in the presence of ABA, the PYR/PYL (pyrabactin resistance 1/PYR1-like) receptor proteins can disrupt the interaction between the SnRK2s and PP2Cs, thus preventing the PP2C-mediated dephosphorylation of the SnRK2s and resulting in the activation of the SnRK2 kinases. Our results reveal new insights into ABA signalling mechanisms and define a minimal set of core components of a complete major ABA signalling pathway. © 2009 Macmillan Publishers Limited. All rights reserved.

  1. Transcriptional Responses to Gibberellin and Abscisic Acid in Barley Aleurone

    Institute of Scientific and Technical Information of China (English)

    Kegui Chen; Yong-Qiang Charles An

    2006-01-01

    Cereal aleurone has been established as a model system to investigate giberrellin (GA) and abscisic acid (ABA) responses. Using Barley 1 GeneChip, we examined the mRNA accumulation of over 22 000 genes in de-embryonated barley aleurone treated with GA and ABA. We observed that 1328 genes had more than a threefold change in response to GA treatment, whereas 206 genes had a more than threefold change in response to ABA treatment. Interestingly, approximately 2.5-fold more genes were up-regulated than downregulated by ABA. Eighty-three genes were differentially regulated by both GA and ABA. Most of the genes were subject to antagonistic regulation by ABA and GA, particularly for genes related to seed maturation and germination, such as genes encoding late embryogenesis abundant proteins and storage mobilization enzymes. This supports the antagonistic roles of GA and ABA in seed maturation and seed germination.Interestingly, we observed that a significant percentage of the genes were coordinately regulated by both GA and ABA. Some GA-responsive genes encoded proteins involved in ethylene, jasmonate, brassinosteroid and auxin metabolic and signaling transduction pathways, suggesting their potential interaction with the GA response. We also identified a group of transcription factor genes, such as MYB and Homeobox genes, that were differentially regulated by GA. In addition, a number of GA- and/or ABA-responsive genes encoded components potentially involved in GA and ABA signal transduction pathway. Overall, the present study provides a comprehensive and global view of transcript expression accompanying the GA and ABA response in barley aleurone and identifies a group of genes with potential regulatory functions in GA- and ABA-signaling pathways for future functional validation.

  2. Abscisic acid ameliorates the systemic sclerosis fibroblast phenotype in vitro

    International Nuclear Information System (INIS)

    Highlights: ► ABA is an endogenous hormone in humans, regulating different cell responses. ► ABA reverts some of the functions altered in SSc fibroblasts to a normal phenotype. ► UV-B irradiation increases ABA content in SSc cultures. ► SSc fibroblasts could benefit from exposure to ABA and/or to UV-B. -- Abstract: The phytohormone abscisic acid (ABA) has been recently identified as an endogenous hormone in humans, regulating different cell functions, including inflammatory processes, insulin release and glucose uptake. Systemic sclerosis (SSc) is a chronic inflammatory disease resulting in fibrosis of skin and internal organs. In this study, we investigated the effect of exogenous ABA on fibroblasts obtained from healthy subjects and from SSc patients. Migration of control fibroblasts induced by ABA was comparable to that induced by transforming growth factor-β (TGF-β). Conversely, migration toward ABA, but not toward TGF-β, was impaired in SSc fibroblasts. In addition, ABA increased cell proliferation in fibroblasts from SSc patients, but not from healthy subjects. Most importantly, presence of ABA significantly decreased collagen deposition by SSc fibroblasts, at the same time increasing matrix metalloproteinase-1 activity and decreasing the expression level of tissue inhibitor of metalloproteinase (TIMP-1). Thus, exogenously added ABA appeared to revert some of the functions altered in SSc fibroblasts to a normal phenotype. Interestingly, ABA levels in plasma from SSc patients were found to be significantly lower than in healthy subjects. UV-B irradiation induced an almost 3-fold increase in ABA content in SSc cultures. Altogether, these results suggest that the fibrotic skin lesions in SSc patients could benefit from exposure to high(er) ABA levels.

  3. An endogenous growth model of money, banking, and financial repression

    OpenAIRE

    Espinosa, Marco; Yip, Chong K.

    1996-01-01

    In this paper, we develop an endogenous growth model with financial intermediation to examine the effects of financial repression on growth, inflation, and welfare. By limiting the liquidity provision, binding reserve requirements always suppress economic growth while their effect on inflation is a function, among other things, of the degree of repression. For example, contrary to previous claims, if financial repression is severe enough so that an informal financial sector emerges, liberaliz...

  4. BEND3 mediates transcriptional repression and heterochromatin organization.

    Science.gov (United States)

    Khan, Abid; Prasanth, Supriya G

    2015-01-01

    Transcription repression plays a central role in gene regulation. Transcription repressors utilize diverse strategies to mediate transcriptional repression. We have recently demonstrated that BEND3 (BANP, E5R and Nac1 domain) protein represses rDNA transcription by stabilizing a NoRC component. We discuss the role of BEND3 as a global regulator of gene expression and propose a model whereby BEND3 associates with chromatin remodeling complexes to modulate gene expression and heterochromatin organization.

  5. Mechanism of catabolite repression of tryptophanase synthesis in Escherichia coli.

    Science.gov (United States)

    Isaacs, H; Chao, D; Yanofsky, C; Saier, M H

    1994-08-01

    Repression of tryptophanase (tryptophan indole-lyase) by glucose and its non-metabolizable analogue methyl alpha-glucoside has been studied employing a series of isogenic strains of Escherichia coli lacking cyclic AMP phosphodiesterase and altered for two of the proteins of the phosphoenolpyruvate:sugar phosphotransferase system (PTS), Enzyme I and Enzyme IIAGlc. Basal activity of tryptophanase was depressed mildly by inclusion of glucose in the growth medium, but inducible tryptophanase synthesis was subject to strong glucose repression in the parental strain, which exhibited normal PTS enzyme activities. Methyl alpha-glucoside was without effect in this strain. Loss of Enzyme I decreased sensitivity to repression by glucose but enhanced sensitivity to repression by methyl alpha-glucoside. Loss of Enzyme IIAGlc activity largely abolished repression by methyl alpha-glucoside but had a less severe effect on glucose repression. The repressive effects of both sugars were fully reversed by inclusion of cyclic AMP in the growth medium. Tryptophan uptake under the same conditions was inhibited weakly by glucose and more strongly by methyl alpha-glucoside in the parental strain. Inhibition by both sugars was alleviated by partial loss of Enzyme I. Inhibition by methyl alpha-glucoside appeared to be largely due to energy competition and was not responsible for repression of tryptophanase synthesis. Measurement of net production of cyclic AMP as well as intracellular concentrations of cyclic AMP revealed a good correlation with intensity of repression. The results suggest that while basal tryptophanase synthesis is relatively insensitive to catabolite repression, inducible synthesis is subject to strong repression by two distinct mechanisms, one dependent on enzyme IIAGlc of the PTS and the other independent of this protein. Both mechanisms are attributable to depressed rates of cyclic AMP synthesis. No evidence for a cyclic-AMP-independent mechanism of catabolite

  6. ATRX represses alternative lengthening of telomeres.

    Science.gov (United States)

    Napier, Christine E; Huschtscha, Lily I; Harvey, Adam; Bower, Kylie; Noble, Jane R; Hendrickson, Eric A; Reddel, Roger R

    2015-06-30

    The unlimited proliferation of cancer cells requires a mechanism to prevent telomere shortening. Alternative Lengthening of Telomeres (ALT) is an homologous recombination-mediated mechanism of telomere elongation used in tumors, including osteosarcomas, soft tissue sarcoma subtypes, and glial brain tumors. Mutations in the ATRX/DAXX chromatin remodeling complex have been reported in tumors and cell lines that use the ALT mechanism, suggesting that ATRX may be an ALT repressor. We show here that knockout or knockdown of ATRX in mortal cells or immortal telomerase-positive cells is insufficient to activate ALT. Notably, however, in SV40-transformed mortal fibroblasts ATRX loss results in either a significant increase in the proportion of cell lines activating ALT (instead of telomerase) or in a significant decrease in the time prior to ALT activation. These data indicate that loss of ATRX function cooperates with one or more as-yet unidentified genetic or epigenetic alterations to activate ALT. Moreover, transient ATRX expression in ALT-positive/ATRX-negative cells represses ALT activity. These data provide the first direct, functional evidence that ATRX represses ALT. PMID:26001292

  7. Repression of somatic cell fate in the germline.

    Science.gov (United States)

    Robert, Valérie J; Garvis, Steve; Palladino, Francesca

    2015-10-01

    Germ cells must transmit genetic information across generations, and produce gametes while also maintaining the potential to form all cell types after fertilization. Preventing the activation of somatic programs is, therefore, crucial to the maintenance of germ cell identity. Studies in Caenorhabditis elegans, Drosophila melanogaster, and mouse have revealed both similarities and differences in how somatic gene expression is repressed in germ cells, thereby preventing their conversion into somatic tissues. This review will focus on recent developments in our understanding of how global or gene-specific transcriptional repression, chromatin regulation, and translational repression operate in the germline to maintain germ cell identity and repress somatic differentiation programs. PMID:26043973

  8. Abscisic acid and sucrose regulate tomato and strawberry fruit ripening through the abscisic acid-stress-ripening transcription factor.

    Science.gov (United States)

    Jia, Haifeng; Jiu, Songtao; Zhang, Cheng; Wang, Chen; Tariq, Pervaiz; Liu, Zhongjie; Wang, Baoju; Cui, Liwen; Fang, Jinggui

    2016-10-01

    Although great progress has been made towards understanding the role of abscisic acid (ABA) and sucrose in fruit ripening, the mechanisms underlying the ABA and sucrose signalling pathways remain elusive. In this study, transcription factor ABA-stress-ripening (ASR), which is involved in the transduction of ABA and sucrose signalling pathways, was isolated and analysed in the nonclimacteric fruit, strawberry and the climacteric fruit, tomato. We have identified four ASR isoforms in tomato and one in strawberry. All ASR sequences contained the ABA stress- and ripening-induced proteins and water-deficit stress-induced proteins (ABA/WDS) domain and all ASR transcripts showed increased expression during fruit development. The expression of the ASR gene was influenced not only by sucrose and ABA, but also by jasmonic acid (JA) and indole-3-acetic acid (IAA), and these four factors were correlated with each other during fruit development. ASR bound the hexose transporter (HT) promoter, which contained a sugar box that activated downstream gene expression. Overexpression of the ASR gene promoted fruit softening and ripening, whereas RNA interference delayed fruit ripening, as well as affected fruit physiological changes. Change in ASR gene expression influenced the expression of several ripening-related genes such as CHS, CHI, F3H, DFR, ANS, UFGT, PG, PL, EXP1/2, XET16, Cel1/2 and PME. Taken together, this study may provide new evidence on the important role of ASR in cross-signalling between ABA and sucrose to regulate tomato and strawberry fruit ripening. The findings of this study also provide new insights into the regulatory mechanism underlying fruit development.

  9. Abscisic acid and sucrose regulate tomato and strawberry fruit ripening through the abscisic acid-stress-ripening transcription factor.

    Science.gov (United States)

    Jia, Haifeng; Jiu, Songtao; Zhang, Cheng; Wang, Chen; Tariq, Pervaiz; Liu, Zhongjie; Wang, Baoju; Cui, Liwen; Fang, Jinggui

    2016-10-01

    Although great progress has been made towards understanding the role of abscisic acid (ABA) and sucrose in fruit ripening, the mechanisms underlying the ABA and sucrose signalling pathways remain elusive. In this study, transcription factor ABA-stress-ripening (ASR), which is involved in the transduction of ABA and sucrose signalling pathways, was isolated and analysed in the nonclimacteric fruit, strawberry and the climacteric fruit, tomato. We have identified four ASR isoforms in tomato and one in strawberry. All ASR sequences contained the ABA stress- and ripening-induced proteins and water-deficit stress-induced proteins (ABA/WDS) domain and all ASR transcripts showed increased expression during fruit development. The expression of the ASR gene was influenced not only by sucrose and ABA, but also by jasmonic acid (JA) and indole-3-acetic acid (IAA), and these four factors were correlated with each other during fruit development. ASR bound the hexose transporter (HT) promoter, which contained a sugar box that activated downstream gene expression. Overexpression of the ASR gene promoted fruit softening and ripening, whereas RNA interference delayed fruit ripening, as well as affected fruit physiological changes. Change in ASR gene expression influenced the expression of several ripening-related genes such as CHS, CHI, F3H, DFR, ANS, UFGT, PG, PL, EXP1/2, XET16, Cel1/2 and PME. Taken together, this study may provide new evidence on the important role of ASR in cross-signalling between ABA and sucrose to regulate tomato and strawberry fruit ripening. The findings of this study also provide new insights into the regulatory mechanism underlying fruit development. PMID:27005823

  10. The Arabidopsis Transcription Factor NAC016 Promotes Drought Stress Responses by Repressing AREB1 Transcription through a Trifurcate Feed-Forward Regulatory Loop Involving NAP.

    Science.gov (United States)

    Sakuraba, Yasuhito; Kim, Ye-Sol; Han, Su-Hyun; Lee, Byoung-Doo; Paek, Nam-Chon

    2015-06-01

    Drought and other abiotic stresses negatively affect plant growth and development and thus reduce productivity. The plant-specific NAM/ATAF1/2/CUC2 (NAC) transcription factors have important roles in abiotic stress-responsive signaling. Here, we show that Arabidopsis thaliana NAC016 is involved in drought stress responses; nac016 mutants have high drought tolerance, and NAC016-overexpressing (NAC016-OX) plants have low drought tolerance. Using genome-wide gene expression microarray analysis and MEME motif searches, we identified the NAC016-specific binding motif (NAC16BM), GATTGGAT[AT]CA, in the promoters of genes downregulated in nac016-1 mutants. The NAC16BM sequence does not contain the core NAC binding motif CACG (or its reverse complement CGTG). NAC016 directly binds to the NAC16BM in the promoter of ABSCISIC ACID-RESPONSIVE ELEMENT BINDING PROTEIN1 (AREB1), which encodes a central transcription factor in the stress-responsive abscisic acid signaling pathway and represses AREB1 transcription. We found that knockout mutants of the NAC016 target gene NAC-LIKE, ACTIVATED BY AP3/PI (NAP) also exhibited strong drought tolerance; moreover, NAP binds to the AREB1 promoter and suppresses AREB1 transcription. Taking these results together, we propose that a trifurcate feed-forward pathway involving NAC016, NAP, and AREB1 functions in the drought stress response, in addition to affecting leaf senescence in Arabidopsis. PMID:26059204

  11. Regulation of Senescence in Carnation (Dianthus caryophyllus): Effect of Abscisic Acid and Carbon Dioxide on Ethylene Production.

    Science.gov (United States)

    Mayak, S; Dilley, D R

    1976-11-01

    Abscisic acid hastened senescence of carnation flowers and this was preceded by stimulation of accelerated ethylene production. Carbon dioxide delayed the onset of autocatalytic ethylene production in flowers regardless of treatment with abscisic acid. Flowers exhibited a low and transient climacteric of ethylene production without wilting while in 4% carbon dioxide and underwent accelerated ethylene production culminating in wilting when removed from carbon dioxide. Hypobaric ventilation, which lowers ethylene to hyponormal levels within tissues, extended flower longevity and largely negated enhancement of senescence by abscisic acid. Supplementing hypobarically ventilated flowers with ethylene hastened senescence irrespective of abscisic acid treatment. Collectively, the data indicate that abscisic acid hastens senescence of carnations largely as a result of advancing the onset of autocatalytic ethylene production.

  12. Determination of abscisic acid based on the fluorescent quenching of quantum dots

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The quenching mechanism of the fluorescence of quantum dots by abscisic acid has been systematically investigated.The quenching constant KSV = 5.1 × 1011 / M was obtained under the optimized condition.On the basis of that,a very sensitive method for the determination of abscisic acid has been developed.The linear equation was F0/F = 0.9309 + 0.5072 C(pmol/L) and its linear range was 0.2-3.0 pmol/L with a correlation coefficient of 0.9939.The limit of detection was 0.09 pmol/L.

  13. SAGA complex components and acetate repression in Aspergillus nidulans.

    Science.gov (United States)

    Georgakopoulos, Paraskevi; Lockington, Robin A; Kelly, Joan M

    2012-11-01

    Alongside the well-established carbon catabolite repression by glucose and other sugars, acetate causes repression in Aspergillus nidulans. Mutations in creA, encoding the transcriptional repressor involved in glucose repression, also affect acetate repression, but mutations in creB or creC, encoding components of a deubiquitination system, do not. To understand the effects of acetate, we used a mutational screen that was similar to screens that uncovered mutations in creA, creB, and creC, except that glucose was replaced by acetate to identify mutations that were affected for repression by acetate but not by glucose. We uncovered mutations in acdX, homologous to the yeast SAGA component gene SPT8, which in growth tests showed derepression for acetate repression but not for glucose repression. We also made mutations in sptC, homologous to the yeast SAGA component gene SPT3, which showed a similar phenotype. We found that acetate repression is complex, and analysis of facA mutations (lacking acetyl CoA synthetase) indicates that acetate metabolism is required for repression of some systems (proline metabolism) but not for others (acetamide metabolism). Although plate tests indicated that acdX- and sptC-null mutations led to derepressed alcohol dehydrogenase activity, reverse-transcription quantitative real-time polymerase chain reaction showed no derepression of alcA or aldA but rather elevated induced levels. Our results indicate that acetate repression is due to repression via CreA together with metabolic changes rather than due to an independent regulatory control mechanism.

  14. Abscisic acid biosynthesis in leaves and roots of Xanthium strumarium

    Energy Technology Data Exchange (ETDEWEB)

    Creelman, R.A.; Gage, D.A.; Stults, J.T.; Zeevaart, J.A.D.

    1987-11-01

    Research on the biosynthesis of abscisic acid (ABA) has focused primarily on two pathways: (a) the direct pathway from farnesyl pyrophosphate, and (b) the indirect pathway involving a carotenoid precursor. The authors have investigated which biosynthetic pathway is operating in turgid and stressed Xanthium leaves, and in stressed Xanthium roots using long-term incubations in /sup 18/O/sub 2/. It was found that in stressed leaves three atoms of /sup 18/O from /sup 18/O/sub 2/ are incorporated into the ABA molecule, and that the amount of /sup 18/O incorporated increases with time. One /sup 18/O atom is incorporated rapidly into the carboxyl group of ABA, whereas the other two atoms are very slowly incorporated into the ring oxygens. The fourth oxygen atom in the carboxyl group of ABA is derived from water. ABA from stressed roots of Xanthium incubated in /sup 18/O/sub 2/ shows a labeling pattern similar to that of ABA in stressed leaves, but with incorporation of more /sup 18/O into the tertiary hydroxyl group at C-1' after 6 and 12 hours than found in ABA from stressed leaves. It is proposed that the precursors to stress-induced ABA are xanthophylls, and that a xanthophyll lacking an oxygen function at C-6 plays a crucial role in ABA biosynthesis in Xanthium roots. In turgid Xanthium leaves, /sup 18/O is incorporated into ABA to a much lesser extent that it is in stressed leaves, whereas exogenously applied /sup 14/C-ABA is completely catabolized within 48 hours. This suggests that ABA in turgid leaves is either (a) made via a biosynthetic pathway which is different from the one in stressed leaves, or (b) has a half-life on the order of days as compared with a half-life of 15.5 hours in water-stressed Xanthium leaves. Phaseic acid showed a labeling pattern similar to that of ABA, but with an additional /sup 18/O incorporated during 8'-hydroxylation of ABA to phaseic acid.

  15. Plant callus: mechanisms of induction and repression.

    Science.gov (United States)

    Ikeuchi, Momoko; Sugimoto, Keiko; Iwase, Akira

    2013-09-01

    Plants develop unorganized cell masses like callus and tumors in response to various biotic and abiotic stimuli. Since the historical discovery that the combination of two growth-promoting hormones, auxin and cytokinin, induces callus from plant explants in vitro, this experimental system has been used extensively in both basic research and horticultural applications. The molecular basis of callus formation has long been obscure, but we are finally beginning to understand how unscheduled cell proliferation is suppressed during normal plant development and how genetic and environmental cues override these repressions to induce callus formation. In this review, we will first provide a brief overview of callus development in nature and in vitro and then describe our current knowledge of genetic and epigenetic mechanisms underlying callus formation. PMID:24076977

  16. Abscisic Acid, High-Light, and Oxidative Stress Down-Regulate a Photosynthetic Gene via a Promoter Motif Not Involved in Phytochrome-Mediated Transcriptional Regulation

    Institute of Scientific and Technical Information of China (English)

    Roberto J. Staneloni; María José Rodriguez-Batiller; Jorge J. Casal

    2008-01-01

    In etiolated seedlings, light perceived by phytochrome promotes the expression of light-harvesting chlorophyll a/b protein of photosystem Ⅱ (Lhcb) genes. However, excess of photosynthetically active radiation can reduce Lhcb expression. Here, we investigate the convergence and divergence of phytochrome, high-light stress and abscisic acid (ABA)signaling, which could connect these processes. Etiolated Arabidopsis thaliana seedlings bearing an Lhcb promoter fused to a reporter were exposed to continuous far-red light to activate phytochrome and not photosynthesis, and treated with ABA. We identified a cis-acting region of the promoter required for down-regulation by ABA. This region contains a CCAC sequence recently found to be necessary for ABI4-binding to an Lhcb promoter. However, we did not find a G-box-binding core motif often associated with the ABI4-binding site in genes promoted by light and repressed by ABI4. Mutations involving this motif also impaired the responses to reduced water potential, the response to high photosynthetic light and the response to methyl viologen but not the response to low temperature or to Norflurazon. We propose a model based on current and previous findings, in which hydrogen peroxide produced in the chloroplasts under high light conditions interacts with the ABA signaling network to regulate Lhcb expression. Since the mutation that affects high-light and methyl viologen responses does not affect phytochrome-mediated responses, the regulation by retrograde and phytochrome signaling can finally be separated at the target promoter level.

  17. Solar sterilization of abscised fruit: a cultural practice to reduce infestations of Anastrepha obliqua around orchards

    Science.gov (United States)

    Abscised mangoes, Mangifera indica L., of several varieties were stored under varying conditions of insolation, including no sun (stored in a laboratory), shade (stored under the shade of a mango tree), full sun (stored in direct view of the sun), and covered in a black plastic bag and stored in dir...

  18. Acid-mediated reactions under microfluidic conditions: A new strategy for practical synthesis of biofunctional natural products

    Directory of Open Access Journals (Sweden)

    Katsunori Tanaka

    2009-08-01

    Full Text Available Microfluidic conditions were applied to acid-mediated reactions, namely, glycosylation, reductive opening of the benzylidene acetal groups, and dehydration, which are the keys to the practical synthesis of N-glycans and the immunostimulating natural product, pristane. A distinctly different reactivity from that in conventional batch stirring was found; the vigorous micromixing of the reactants with the concentrated acids is critical especially for the “fast” reactions to be successful. Such a common feature might be due to the integration of all favorable aspects of microfluidic conditions, i.e., efficient mixing, precise temperature control, and the easy handling of the reactive intermediate by controlling the residence time. The microfluidic reactions cited in this review indicate the need to reinvestigate the traditional or imaginary reactions which have so far been performed and evaluated only in batch apparatus, and therefore they could be recognized as a new strategy in synthesizing natural products of prominent biological activity in a “practical” and a “industrial” manner.

  19. Repression of the Auxin Response Pathway Increases Arabidopsis Susceptibility to Necrotrophic Fungi

    Institute of Scientific and Technical Information of China (English)

    Francisco Llorente; Paul Muskett; Andrea Sánchez-Vallet; Gemma López; Brisa Ramos; Clara Sánchez-Rodríguez; Lucia Jordá; Jane Parker; Antonio Molina

    2008-01-01

    In plants, resistance to necrotrophic pathogens depends on the interplay between different hormone systems, such as those regulated by salicylic acid (SA), jasmonic acid (JA), ethylene, and abscisic acid. Repression of auxin signaling by the SA pathway was recently shown to contribute to antibacterial resistance. Here, we demonstrate that Arabidopsis auxin signaling mutants axrl, axr2, and axr6 that have defects in the auxin-stimulated SCF (Skpl-Cullin-F-box) ubiquitination pathway exhibit increased susceptibility to the necrotrophic fungi Plectosphaerella cucumerina and Botrytis cinerea. Also, stabilization of the auxin transcriptional repressor AXR3 that is normally targeted for removal by the SCF-ubiquitin/proteasome machinery occurs upon P. cucumerina infection. Pharmacological inhibition of auxin transport or proteasome function each compromise necrotroph resistance of wild-type plants to a similar extent as in non-treated auxin response mutants. These results suggest that auxin signaling is important for resistance to the necrotrophic fungi P. cucumerina and B. cinerea. SGTlb (one of two Arabidopsis SGT1 genes encoding HSP90/HSC70 co-chaperones) promotes the functions of SCF E3-ubiquitin ligase complexes in auxin and JA responses and resistance conditioned by certain Resistance (R) genes to biotrophic pathogens. We find that sgtlb mutants are as resistant to P. cucumerina as wild-type plants. Conversely, auxin/SCF signaling mutants are uncompromised in RPP4-triggered resistance to the obligate biotrophic oomycete, Hyaloperonospora parasitica. Thus, the predominant action of SGTlb in R gene-conditioned resistance to oomycetes appears to be at a site other than assisting SCF E3-ubiquitin ligases. However, genetic additivity of sgtlb axr1 double mutants in susceptibility to H. parasitica suggests that SCF-mediated ubiquitination contributes to limiting biotrophic pathogen colonization once plant-pathogen compatibility is established.

  20. An Update on Abscisic Acid Signaling in Plants and More...

    Institute of Scientific and Technical Information of China (English)

    Aleksandra Wasilewska; Florina Vlad; Caroline Sirichandra; Yulia Redko; Fabien Jammes; Christiane Valon; Nicolas Frei dit Frey; Jeffrey Leung

    2008-01-01

    The mode of abscisic acid (ABA) action,and its relations to drought adaptive responses in particular,has been a captivating area of plant hormone research for much over a decade.The hormone triggers stomatal closure to limit water loss through transpiration,as well as mobilizes a battery of genes that presumably serve to protect the cells from the ensuing oxidative damage in prolonged stress.The signaling network orchestrating these various responses is,however,highly complex.This review summarizes several significant advances made within the last few years.The biosynthetic pathway of the hormone is now almost completely elucidated,with the latest identification of the ABA4 gene encoding a neoxanthin synthase,which seems essential for de novo ABA biosynthesis during water stress.This leads to the interesting question on how ABA is then delivered to perception sites.In this respect,regulated transport has attracted renewed focus by the unexpected finding of a shoot-to-root translocation of ABA during drought response,and at the cellular level,by the identification of a β-galactosidase that releases biologically active ABA from inactive ABA-glucose ester.Surprising candidate ABA receptors were also identified in the form of the Flowering Time Control Protein A (FCA)and the Chloroplastic Magnesium Protoporphyrin-IX Chelatase H subunit (CHLH) in chloroplast-nucleus communication,both of which have been shown to bind ABA in vitro.On the other hand,the protein(s) corresponding to the physiologically detectable cell-surface ABA receptor(s) is (are) still not known with certainty.Genetic and physiological studies based on the guard cell have reinforced the central importance of reversible phosphorylation in modulating rapid ABA responses.Sucrose Non-Fermenting Related Kinases (SnRK),Calcium-Dependent Protein Kinases (CDPK),Protein Phosphatases (PP) of the 2C and 2A classes figure as prominent regulators in this single-cell model.Identifying their direct in vivo targets of

  1. Biotechnological characteristics of callusogenesis in maize immature embryo culture under the influence of abscisic acid and 6-benzylaminopurine

    Directory of Open Access Journals (Sweden)

    O. E. Abraimova

    2010-02-01

    Full Text Available The effect of abscisic acid and 6-benzylaminopurine on the induction of callus tissue in maize immature embryo culture was studied. For the majority of investigated genotypes abscisic acid stimulated, but 6-benzylaminopurine inhibited the formation of morphogenic calli in induction medium. It was noted that genotype appeared to be an important factor that determined the character of the influence of phytohormonal composition of the medium on the induction of the specific types of calli. Using of 0.04-0.10 mg/l abscisic acid is recommended for biotechnological production of morphogenic callus tissue in dependence of donor plant genotype.

  2. Targeted Transcriptional Repression in Bacteria Using CRISPR Interference (CRISPRi).

    Science.gov (United States)

    Hawkins, John S; Wong, Spencer; Peters, Jason M; Almeida, Ricardo; Qi, Lei S

    2015-01-01

    Clustered regularly interspersed short palindromic repeats (CRISPR) interference (CRISPRi) is a powerful technology for sequence-specifically repressing gene expression in bacterial cells. CRISPRi requires only a single protein and a custom-designed guide RNA for specific gene targeting. In Escherichia coli, CRISPRi repression efficiency is high (~300-fold), and there are no observable off-target effects. The method can be scaled up as a general strategy for the repression of many genes simultaneously using multiple designed guide RNAs. Here we provide a protocol for efficient guide RNA design, cloning, and assay of the CRISPRi system in E. coli. In principle, this protocol can be used to construct CRISPRi systems for gene repression in other species of bacteria.

  3. Legitimation, Kooptation und Repression im NS-Regime

    OpenAIRE

    Bialas, Wolfgang

    2012-01-01

    "This essay deals with the interplay between cooptation, legitimation, and repression with a special emphasis on the Nazi attitude and the behavior towards politically indifferent Germans. It analyzes the ideological framework of justification for the repressive Nazi politics that were also used to recruit followers who had a clean conscience and felt they were doing the right thing. Nazi ideology rejected the bourgeois - Christian concepts of universal human rights and dignity as anachronist...

  4. Repressive coping and alexithymia in idiopathic environmental intolerance

    DEFF Research Database (Denmark)

    Skovbjerg, Sine; Zachariae, Robert; Rasmussen, Alice;

    2010-01-01

    To examine if the non-expression of negative emotions (i.e., repressive coping) and differences in the ability to process and regulate emotions (i.e., alexithymia) is associated with idiopathic environmental intolerance (IEI).......To examine if the non-expression of negative emotions (i.e., repressive coping) and differences in the ability to process and regulate emotions (i.e., alexithymia) is associated with idiopathic environmental intolerance (IEI)....

  5. Mechanisms of transcriptional repression by histone lysine methylation

    DEFF Research Database (Denmark)

    Hublitz, Philip; Albert, Mareike; Peters, Antoine H F M

    2009-01-01

    During development, covalent modification of both, histones and DNA contribute to the specification and maintenance of cell identity. Repressive modifications are thought to stabilize cell type specific gene expression patterns, reducing the likelihood of reactivation of lineage-unrelated genes......, transcription factor binding and the antagonizing activities of distinct epigenetic regulators such as histone methyltransferases (HMTs) and histone demethylases (HDMs). Subsequently, we compare chromatin signatures associated with different types of transcriptional outcomes from stable repression to highly...

  6. Coordinated regulation of transcriptional repression by the RBP2 H3K4 demethylase and Polycomb-Repressive Complex 2

    DEFF Research Database (Denmark)

    Pasini, Diego; Hansen, Klaus H; Christensen, Jesper;

    2008-01-01

    Polycomb group (PcG) proteins regulate important cellular processes such as embryogenesis, cell proliferation, and stem cell self-renewal through the transcriptional repression of genes determining cell fate decisions. The Polycomb-Repressive Complex 2 (PRC2) is highly conserved during evolution......, and its intrinsic histone H3 Lys 27 (K27) trimethylation (me3) activity is essential for PcG-mediated transcriptional repression. Here, we show a functional interplay between the PRC2 complex and the H3K4me3 demethylase Rbp2 (Jarid1a) in mouse embryonic stem (ES) cells. By genome-wide location analysis we...... found that Rbp2 is associated with a large number of PcG target genes in mouse ES cells. We show that the PRC2 complex recruits Rbp2 to its target genes, and that this interaction is required for PRC2-mediated repressive activity during ES cell differentiation. Taken together, these results demonstrate...

  7. Drought Tolerance Induced by Foliar Application of Abscisic Acid and Sulfonamide Compounds in Tomato

    Directory of Open Access Journals (Sweden)

    Leila Zeinali Yadegari

    2014-03-01

    Full Text Available The effects of exogenous abscisic acid and two sulfonamide compounds: Sulfacetamide and Sulfasalazine were studied on tolerance of tomato (Lycopersicon esculentum Mill. cv. Super chief under drought stress and compared with abscisic acid effects. Eight-week old plants were treated with ABA (10 and 25 mg/L, Sulfacetamide (25, 50 and 100 mg/L and Sulfasalazine (25, 50 and 100 mg/L. Solutions were sprayed daily and sampling was done at 0 h, 48 h, 96 h, 144 h and 48 h after re-watering (recovery phase or 192 h. Treated plants showed relatively greater drought tolerance. This indicates that, Sulfacetamide and Sulfasalazine may improve resistance in tomato, like ABA, increasing levels of proline, glycine betaine and malondialdehyde and the activity of ascorbate peroxidase. Daily application of Sulfasalazine and Sulfacetamide during drought stress period was effective in increasing tomato plants tolerance to drought as was ABA.

  8. Starch and sucrose synthesis in Phaseolus vulgaris as affected by light, CO2, and abscisic acid

    International Nuclear Information System (INIS)

    Phaseolus vulgaris L. leaves were subjected to various light, CO2, and O2 levels and abscisic acid, then given a 10 minute pulse of 14CO2 followed by a 5 minute chase with unlabeled CO2. After the chase period, very little label remained in the ionic fractions except at low CO2 partial pressure. Most label was found in the neutral, alcohol soluble fraction or in the insoluble fraction digestable by amyloglucosidase. Sucrose formation was linearly related to assimilation rate. Starch formation increased linearly with assimilation rate, but did not occur if the assimilation rate was below 4 micromoles per square meter per second. Neither abscisic acid, nor high CO2 in combination with low O2 caused significant perturbations of the sucrose/starch formation ratio. These studies indicate that the pathways for starch and sucrose synthesis both are controlled by the rate of net CO2 assimilation, with sucrose the preferred product at very low assimilation rates

  9. Two glucosylated abscisic acid derivates from avocado seeds (Persea americana Mill. Lauraceae cv. Hass).

    Science.gov (United States)

    del Refugio Ramos, María; Jerz, Gerold; Villanueva, Socorro; López-Dellamary, Fernando; Waibel, Reiner; Winterhalter, Peter

    2004-04-01

    Phytochemical investigation of avocado seed material (Persea americana Mill., Lauraceae) resulted in the isolation of two glucosylated abscisic acid derivates. One of these was not known as a natural product and can be regarded as a potential 'missing link' in abscisic acid metabolism in plants. After fractionation by high-speed countercurrent chromatography, and multiple steps of column chromatography, structures were elucidated by 1D-, 2D-NMR, electrospray-MS to be the novel beta-d-glucoside of (1'S,6'R)-8'-hydroxyabscisic acid, and (1'R,3'R,5'R,8'S)-epi-dihydrophaseic acid beta-d-glucoside. Absolute configuration was determined by circulardichroism, optical rotation, and by NOE experiments.

  10. Karrikins delay soybean seed germination by mediating abscisic acid and gibberellin biogenesis under shaded conditions

    OpenAIRE

    Yongjie Meng; Feng Chen; Haiwei Shuai; Xiaofeng Luo; Jun Ding; Shengwen Tang; Shuanshuan Xu; Jianwei Liu; Weiguo Liu; Junbo Du; Jiang Liu; Feng Yang; Xin Sun; Taiwen Yong; Xiaochun Wang

    2016-01-01

    Karrikins (KAR) are a class of signal compounds, discovered in wildfire smoke, which affect seed germination. Currently, numerous studies have focused on the model plant Arabidopsis in the KAR research field, rather than on crops. Thus the regulatory mechanisms underlying KAR regulation of crop seed germination are largely unknown. Here, we report that KAR delayed soybean seed germination through enhancing abscisic acid (ABA) biosynthesis, while impairing gibberellin (GA) biogenesis. Interest...

  11. Abscisic Acid Catabolism in Maize Kernels in Response to Water Deficit at Early Endosperm Development

    OpenAIRE

    Wang, Zhaolong; MAMBELLI, STEFANIA; SETTER, TIM L.

    2002-01-01

    To further our understanding of the greater susceptibility of apical kernels in maize inflorescences to water stress, abscisic acid (ABA) catabolism activity was evaluated in developing kernels with chirally separated (+)‐[3H]ABA. The predominant pathway of ABA catabolism was via 8′‐hydroxylase to form phaseic acid, while conjugation to glucose was minor. In response to water deficit imposed on whole plants during kernel development, ABA accumulated to higher concentrations in apical than bas...

  12. PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid

    OpenAIRE

    Kang, J; Hwang, J U; Lee, M; Kim, Y. Y.; Assmann, S M; Martinoia, E.; Lee, Y

    2010-01-01

    Abscisic acid (ABA) is a ubiquitous phytohormone involved in many developmental processes and stress responses of plants. ABA moves within the plant, and intracellular receptors for ABA have been recently identified; however, no ABA transporter has been described to date. Here, we report the identification of the ATP-binding cassette (ABC) transporter Arabidopsis thaliana Pleiotropic drug resistance transporter PDR12 (AtPDR12)/ABCG40 as a plasma membrane ABA uptake transporter. Uptake of ABA ...

  13. Exogenous abscisic acid significantly affects proteome in tea plant (Camellia sinensis) exposed to drought stress

    OpenAIRE

    Lin Zhou; Hui Xu; Sue Mischke; Meinhardt, Lyndel W.; Dapeng Zhang; Xujun Zhu; Xinghui Li; Wanping Fang

    2014-01-01

    Tea [Camellia sinensis (L.) O. Kuntze] is an important economic crop, and drought is the most important abiotic stress affecting yield and quality. Abscisic acid (ABA) is an important phytohormone responsible for activating drought resistance. Increased understanding of ABA effects on tea plant under drought stress is essential to develop drought-tolerant tea genotypes, along with crop management practices that can mitigate drought stress. The objective of the present investigation is evaluat...

  14. EFFECT OF EXOGENOUS ABSCISIC ACID ON GROWTH AND BIOCHEMICAL CHANGES IN THE HALOPHYTE SUAEDA MARITIMA

    Directory of Open Access Journals (Sweden)

    Anbarasi G.

    2015-04-01

    Full Text Available Different types of phytohormones are being extensively used to alleviate the adverse effect of salinity stress on plant growth. Among those, Abscisic acid (ABA is a plant stress hormone and one of the most important signaling molecules in plants. Drought and salinity activate De-novo abscisic acid synthesis prevent further water loss by evaporation through stomata, mediated by changes in the guard cell turgor pressure. Under osmotic stress abscisic acid induce the accumulation of protein involved in the biosynthesis of osmolites which increasing the stress tolerance of plant. In addition, exogenous application of ABA enhances the tolerance of plants or plant cells to cold, heat, drought, anoxia and heavy metal stresses. This study was carried out to study the exogenous abscisic (ABA acid induced regulatory role on the growth, water content, protein content, chlorophyll content, osmolyte accumulation and protein profiling through SDS PAGE in a halophyte, Suaeda maritima. The osmolyte accumulation of proline and glycine betaine was found to be more in 50 µM ABA concentrations. The protein profiling through SDS PAGE revealed that ̴ 66KDa proteins was not expressed in the control plant and in 10μM ABA treated plants. Interestingly, the ABA treatment induced a new protein of 14.2KDa in 10μM concentration. The ABA treated plants with concentrations 50μM, 100μM and 150μM showed changes in the expression of protein in abundance than the control and 10μM ABA treated plants. The findings in this study indicate that among all the concentrations, 50μM ABA concentration treated plants exhibited higher growth rate.

  15. Quantification of Abscisic Acid, Cytokinin, and Auxin Content in Salt-Stressed Plant Tissues

    OpenAIRE

    Dobrev, P.; Vaňková, R. (Radomíra)

    2012-01-01

    Plant hormones cytokinins, auxin (indole-3-acetic acid), and abscisic acid are central to regulation of plant growth and defence to abiotic stresses such as salinity. Quantification of the hormone levels and determination of their ratios can reveal different plant strategies to cope with the stress, e.g., suppression of growth or mobilization of plant metabolism. This chapter describes a procedure enabling such quantification. Due to the high variability of these hormones in plant tissues, it...

  16. Abscisic acid is not necessary for gravitropism in primary roots of Zea mays

    Science.gov (United States)

    Moore, R.

    1990-01-01

    Primary roots of Zea mays L. cv. Tx 5855 treated with fluridone are strongly graviresponsive, but have undetectable levels of abscisic acid (ABA). Primary roots of the carotenoid-deficient w-3, vp-5, and vp-7 mutants of Z. mays are also graviresponsive despite having undetectable amounts of ABA. Graviresponsive roots of untreated and wild-type seedlings contain 286 to 317 ng ABA g-1 f. wt, respectively. These results indicate that ABA is not necessary for root gravicurvature.

  17. Induction of phytic acid synthesis by abscisic acid in suspension-cultured cells of rice

    OpenAIRE

    Matsuno, Koya; Fujimura, Tatsuhito

    2014-01-01

    A pathway of phytic acid (PA) synthesis in plants has been revealed via investigations of low phytic acid mutants. However, the regulation of this pathway is not well understood because it is difficult to control the environments of cells in the seeds, where PA is mainly synthesized. We modified a rice suspension culture system in order to study the regulation of PA synthesis. Rice cells cultured with abscisic acid (ABA) accumulate PA at higher levels than cells cultured without ABA, and PA a...

  18. Effect of drought and abscisic acid application on the osmotic adjustment of four wheat cultivars

    International Nuclear Information System (INIS)

    The accumulation of osmolytes in leaf tissues and the abscisic acid-induced stomatal closure are well-recognized mechanisms associated with drought tolerance in crop plants. We determine the response in terms of osmotic potential and the contents of leaf proline, glycine betaine and soluble sugar at booting and grain filling stages of four wheat (Triticum aestivum L.) cultivars to drought and exogenously applied abscisic acid (ABA) in a pot study. Leaf sample were collected 3, 6 and 9 days after drought induction and at 48 and 72 h of re-watering (recovery). Marked decreases in osmotic potential associated with the accumulation of proline, glycine betaine and soluble sugars occurred under conditions of drought stress Accession 011320 was most sensitive to drought and showed the largest decrease in osmotic potential and least accumulation of proline, sugar and glycine betaine The inhibitory effects of drought stress were ameliorated by exogenous application of ABA. This ameliorating effect was more pronounced at the booting than at grain filling stage particularly in the sensitive accession 011320. Upon rewatering the recovery from drought stress was found to be greater in case of abscisic acid application. The leaf praline content is seen to be a suitable indicator for selecting drought-tolerant genotypes. (author)

  19. Abscisic acid and blue light signaling pathways in chloroplast movements in Arabidopsis mesophyll.

    Science.gov (United States)

    Eckstein, Aleksandra; Krzeszowiec, Weronika; Banaś, Agnieszka Katarzyna; Janowiak, Franciszek; Gabryś, Halina

    2016-01-01

    Abscisic acid (ABA) and phototropins act antagonistically to control stomatal movements. Here, we investigated the role of ABA in phototropin-directed chloroplast movements in mesophyll cells of Arabidopsis thaliana. We analyzed the expression of phototropins at mRNA and protein level under the influence of ABA. PHOT1 mRNA level was decreased by ABA in the dark while it was insensitive to ABA in light. PHOT2 mRNA level was independent of the hormone treatment. The levels of phototropin proteins were down-regulated by ABA, both in darkness and light. No impact of exogenous ABA on amplitudes and kinetics of chloroplast movements was detected. Chloroplast responses in wild type Arabidopsis and three mutants, abi4, abi2 (abscisic acid insensitive4, 2) and aba1 (abscisic acid1), were measured to account for endogenous ABA signaling. The chloroplast responses were slightly reduced in abi2 and aba1 mutants in strong light. To further investigate the effect, abi2 and aba1 mutants were supplemented with exogenous ABA. In the aba1 mutant, the reaction was rescued but in abi2 it was unaffected. Our results show that ABA is not directly involved in phototropin-controlled chloroplast responses in mature leaves of Arabidopsis. However, the disturbance of ABA biosynthesis and signaling in mutants affects some elements of the chloroplast movement mechanism. In line with its role as a stress hormone, ABA appears to enhance plant sensitivity to light and promote the chloroplast avoidance response.

  20. The occurrence of abscisic acid in inhibitors B1 and C from immature fruit of Ceratonia siliqua L. (carob) and in commercial carob syrup.

    Science.gov (United States)

    Most, B H; Gaskin, P; Macmillan, J

    1970-03-01

    The presence of abscisic acid in the inhibitors B1 and C from immature carob fruit, whole and minus seed, has been established by thin-layer and gas chromatography and by combined gas chromatography-mass spectrometry. Abscisic acid has been identified in commercial carob syrup by the same means. Most, if not all, of the growth inhibitory activity in these fractions is accounted for as abscisic acid by quantitative gas chromatography as the methyl ester. Trimethylsilylation of abscisic acid with bis (trimethylsilyl) acetamide in pyridine gives two isomeric tris(trimethylsilyl) derivatives.

  1. CRISPR Technology for Genome Activation and Repression in Mammalian Cells.

    Science.gov (United States)

    Du, Dan; Qi, Lei S

    2016-01-01

    Targeted modulation of transcription is necessary for understanding complex gene networks and has great potential for medical and industrial applications. CRISPR is emerging as a powerful system for targeted genome activation and repression, in addition to its use in genome editing. This protocol describes how to design, construct, and experimentally validate the function of sequence-specific single guide RNAs (sgRNAs) for sequence-specific repression (CRISPRi) or activation (CRISPRa) of transcription in mammalian cells. In this technology, the CRISPR-associated protein Cas9 is catalytically deactivated (dCas9) to provide a general platform for RNA-guided DNA targeting of any locus in the genome. Fusion of dCas9 to effector domains with distinct regulatory functions enables stable and efficient transcriptional repression or activation in mammalian cells. Delivery of multiple sgRNAs further enables activation or repression of multiple genes. By using scaffold RNAs (scRNAs), different effectors can be recruited to different genes for simultaneous activation of some and repression of others. The CRISPRi and CRISPRa methods provide powerful tools for sequence-specific control of gene expression on a genome-wide scale to aid understanding gene functions and for engineering genetic regulatory systems. PMID:26729910

  2. CRISPR Technology for Genome Activation and Repression in Mammalian Cells.

    Science.gov (United States)

    Du, Dan; Qi, Lei S

    2016-01-04

    Targeted modulation of transcription is necessary for understanding complex gene networks and has great potential for medical and industrial applications. CRISPR is emerging as a powerful system for targeted genome activation and repression, in addition to its use in genome editing. This protocol describes how to design, construct, and experimentally validate the function of sequence-specific single guide RNAs (sgRNAs) for sequence-specific repression (CRISPRi) or activation (CRISPRa) of transcription in mammalian cells. In this technology, the CRISPR-associated protein Cas9 is catalytically deactivated (dCas9) to provide a general platform for RNA-guided DNA targeting of any locus in the genome. Fusion of dCas9 to effector domains with distinct regulatory functions enables stable and efficient transcriptional repression or activation in mammalian cells. Delivery of multiple sgRNAs further enables activation or repression of multiple genes. By using scaffold RNAs (scRNAs), different effectors can be recruited to different genes for simultaneous activation of some and repression of others. The CRISPRi and CRISPRa methods provide powerful tools for sequence-specific control of gene expression on a genome-wide scale to aid understanding gene functions and for engineering genetic regulatory systems.

  3. Valproic acid mediates miR-124 to down-regulate a novel protein target, GNAI1.

    Science.gov (United States)

    Oikawa, Hirotaka; Goh, Wilson W B; Lim, Vania K J; Wong, Limsoon; Sng, Judy C G

    2015-12-01

    Valproic acid (VPA) is an anti-convulsant drug that is recently shown to have neuroregenerative therapeutic actions. In this study, we investigate the underlying molecular mechanism of VPA and its effects on Bdnf transcription through microRNAs (miRNAs) and their corresponding target proteins. Using in silico algorithms, we predicted from our miRNA microarray and iTRAQ data that miR-124 is likely to target at guanine nucleotide binding protein alpha inhibitor 1 (GNAI1), an adenylate cyclase inhibitor. With the reduction of GNAI1 mediated by VPA, the cAMP is enhanced to increase Bdnf expression. The levels of GNAI1 protein and Bdnf mRNA can be manipulated with either miR-124 mimic or inhibitor. In summary, we have identified a novel molecular mechanism of VPA that induces miR-124 to repress GNAI1. The implication of miR-124→GNAI1→BDNF pathway with valproic acid treatment suggests that we could repurpose an old drug, valproic acid, as a clinical application to elevate neurotrophin levels in treating neurodegenerative diseases.

  4. Arabidopsis AtDjA3 Null Mutant Shows Increased Sensitivity to Abscisic Acid, Salt, and Osmotic Stress in Germination and Post-germination Stages

    Science.gov (United States)

    Salas-Muñoz, Silvia; Rodríguez-Hernández, Aída A.; Ortega-Amaro, Maria A.; Salazar-Badillo, Fatima B.; Jiménez-Bremont, Juan F.

    2016-01-01

    DnaJ proteins are essential co-chaperones involved in abiotic and biotic stress responses. Arabidopsis AtDjA3 gene encodes a molecular co-chaperone of 420 amino acids, which belongs to the J-protein family. In this study, we report the functional characterization of the AtDjA3 gene using the Arabidopsis knockout line designated j3 and the 35S::AtDjA3 overexpression lines. Loss of AtDjA3 function was associated with small seed production. In fact, j3 mutant seeds showed a reduction of 24% in seed weight compared to Col-0 seeds. Expression analysis showed that the AtDjA3 gene was modulated in response to NaCl, glucose, and abscisic acid (ABA). The j3 line had increased sensitivity to NaCl and glucose treatments in the germination and cotyledon development in comparison to parental Col-0. Furthermore, the j3 mutant line exhibited higher ABA sensitivity in comparison to parental Col-0 and 35S::AtDjA3 overexpression lines. In addition, we examined the expression of ABI3 gene, which is a central regulator in ABA signaling, in j3 mutant and 35S::AtDjA3 overexpression lines. Under 5 μM ABA treatment at 24 h, j3 mutant seedlings displayed higher ABI3 expression, whereas in 35S::AtDjA3 overexpression lines, ABI3 gene expression was repressed. Taken together, these results demonstrate that the AtDjA3 gene is involved in seed development and abiotic stress tolerance. PMID:26941772

  5. Insight into 2α-Chloro-2′(2′,6′)-(Di)Halogenopicropodophyllotoxins Reacting with Carboxylic Acids Mediated by BF3·Et2O

    OpenAIRE

    Lingling Fan; Xiaoyan Zhi; Zhiping Che; Hui Xu

    2015-01-01

    Stereospecific nucleophilic substitution at the C-4α position of 2α-chloro-2′(2′,6′)-(di)halogenopicropodophyllotoxin derivatives with carboxylic acids mediated by BF3·Et2O was described. Interestingly, this stereoselective products were completely controlled by the reaction time. That is, if the reaction time was prolonged to 24.5–31 h, the resulting compounds were all transformed into the unusual C-ring aromatization products. Additionally, it demonstrated that BF3·Et2O and reaction tempera...

  6. Suppression and repression: A theoretical discussion illustrated by a movie

    Directory of Open Access Journals (Sweden)

    Maria Lucia de Souza Campos Paiva

    2012-02-01

    Full Text Available The first translations of Freud's work into Portuguese have presented problems because they were not translated from the German language. More than a hundred years after the beginning of Psychoanalysis, there are still many discussions on Freud's metapsychology and a considerable difficulty in obtaining a consensus on the translation of some concepts. This paper refers back to Freud's concepts of primal repression, repression and suppression. In order to discuss such concepts, we have made use of a film, co-produced by Germans and Argentineans, which is named "The Song in me" (Das Lied in mir, released to the public in 2011 and directed by Florian Micoud Cossen. Through this motion picture, the following of Freud's concepts are analyzed, and the differentiation between them is discussed: suppression and repression, as well as the importance of their precise translation.

  7. Reduced specificity of negative autobiographical memories in repressive coping.

    Science.gov (United States)

    Geraerts, Elke; Dritschel, Barbara; Kreplin, Ute; Miyagawa, Liv; Waddington, Joanne

    2012-12-01

    The current study examined memory specificity of autobiographical memories in individuals with and without a repressive coping style. It seems conceivable that reduced memory specificity may be a way to reduce accessibility of negative experiences, one of the hallmark features of a repressive coping style. It was therefore hypothesized that repressors would show reduced specificity when retrieving negative memories. In order to study memory specificity, participants (N = 103) performed the autobiographical memory test. Results showed that individuals with a repressive coping style were significantly less specific in retrieving negative experiences, relative to control groups of low anxious, high anxious, and defensive high anxious individuals. This result was restricted to negative memory retrieval, as participants did not differ in memory specificity for positive experiences. These results show that repressors retrieve negative autobiographical memories in an overgeneral way, possibly in order to avoid negative affect. PMID:23200428

  8. Chromatin Repressive Complexes in Stem Cells, Development, and Cancer

    DEFF Research Database (Denmark)

    Laugesen, Anne; Helin, Kristian

    2014-01-01

    of the polycomb repressive complexes, PRC1 and PRC2, and the HDAC1- and HDAC2-containing complexes, NuRD, Sin3, and CoREST, in stem cells, development, and cancer, as well as the ongoing efforts to develop therapies targeting these complexes in human cancer. Furthermore, we discuss the role of repressive......The chromatin environment is essential for the correct specification and preservation of cell identity through modulation and maintenance of transcription patterns. Many chromatin regulators are required for development, stem cell maintenance, and differentiation. Here, we review the roles...... complexes in modulating thresholds for gene activation and their importance for specification and maintenance of cell fate....

  9. Relationships of abscised cotton fruit to boll weevil (Coleoptera: Curculionidae) feeding, oviposition, and development.

    Science.gov (United States)

    Showler, Allan T

    2008-02-01

    Abscised cotton, Gossypium hirsutum L., fruit in field plots planted at different times were examined to assess adult boll weevil, Anthonomus grandis grandis Boheman (Coleoptera: Curculionidae), use of squares and bolls during 2002 and 2003 in the Lower Rio Grande Valley of Texas. Although boll abscission is not necessarily related to infestation, generally more bolls abscised than squares and abundances of fallen bolls were not related to the planting date treatments. During 2003, fallen squares were most abundant in the late-planted treatment. Although large squares (5.5-8-mm-diameter) on the plant are preferred for boll weevil oviposition, diameter of abscised squares is not a reliable measurement because of shrinkage resulting from desiccation and larval feeding. Fallen feeding-punctured squares and bolls were most abundant in late plantings but differences between fallen feeding-punctured squares versus fallen feeding-punctured bolls were found in only one treatment in 2003. During the same year, fallen oviposition-punctured squares were more numerous in the late-planted treatment than in the earlier treatments. Treatment effects were not found on numbers of oviposition-punctured bolls, but fallen oviposition-punctured squares were more common than bolls in the late-planted treatment compared with earlier treatments each year. Dead weevil eggs, larvae, and pupae inside fallen fruit were few and planting date treatment effects were not detected. Living third instars and pupae were more abundant in fallen squares of the late-planted treatment than in the earlier treatments and bolls of all three treatments. This study shows that fallen squares in late-planted cotton contribute more to adult boll weevil populations than bolls, or squares of earlier plantings. PMID:18330118

  10. Addressing the repressed needs of the Arabic client.

    Science.gov (United States)

    Dwairy, M

    1997-01-01

    In comparison to families in Western society, the traditional Arabic family plays a relatively greater role in providing support for adult progeny. This serves to condition adult offspring to continue to comply with the will and values of the family. Therefore, in exchange for familial support, Arabic individuals learn to repress authentic needs and emotions, and within that process they relinquish the need for self-actualization. Arabic society discourages individualism and opposes self-actualization by means of simultaneous punishment and moralization. Thus, there is a relatively greater development of the social value system (or superego) and comparatively less development of the self (or ego). In comparison to Western society, Arabic individuals continue to experience greater oppression during adulthood. Given these cultural differences, the processes of reliving and activating repressed needs and emotions, which ultimately serves to promote self-actualization, will transform intrapsychic conflicts into interpersonal and social ones. Thus, personal actions typically encouraged during Western psychotherapy are likely to produce significant social oppression. Indeed, promoting awareness of repressed needs and emotions often leads the Arabic client to become more helpless, because such wishes will rarely be socially sanctioned or satisfactorily fulfilled. Therefore, when addressing repressed needs and emotions in psychotherapy, ego strength, cultural identity, and degree of strictness of the client's family of origin must be considered. PMID:9231529

  11. Financial repression, money growth, and seignorage: The Polish experience

    NARCIS (Netherlands)

    Aarle, B. van; Budina, N.

    1997-01-01

    Financial Repression, Money Growth and Seignorage: The Polish Experience. — A small analytical framework is developed to analyze the relation between reserve requirements, base money growth and seignorage revenues. From the analysis, the authors can derive of steady-state seignorage revenues as a fu

  12. Onset of carbon catabolite repression in Aspergillus nidulans

    NARCIS (Netherlands)

    Flipphi, M.; Vondervoort, van de P.J.I.; Ruijter, G.J.G.; Visser, J.; Arst Jr., H.N.; Felenbok, B.

    2003-01-01

    The role of hexose phosphorylating enzymes in the signaling of carbon catabolite repression was investigated in the filamentous fungus Aspergillus nidulans. A D-fructose non-utilizing, hexokinase-deficient (hxkA1, formerly designated frA1) strain was utilized to obtain new mutants lacking either glu

  13. miRNA-dependent translational repression in the Drosophila ovary.

    Directory of Open Access Journals (Sweden)

    John Reich

    Full Text Available BACKGROUND: The Drosophila ovary is a tissue rich in post-transcriptional regulation of gene expression. Many of the regulatory factors are proteins identified via genetic screens. The more recent discovery of microRNAs, which in other animals and tissues appear to regulate translation of a large fraction of all mRNAs, raised the possibility that they too might act during oogenesis. However, there has been no direct demonstration of microRNA-dependent translational repression in the ovary. METHODOLOGY/PRINCIPAL FINDINGS: Here, quantitative analyses of transcript and protein levels of transgenes with or without synthetic miR-312 binding sites show that the binding sites do confer translational repression. This effect is dependent on the ability of the cells to produce microRNAs. By comparison with microRNA-dependent translational repression in other cell types, the regulated mRNAs and the protein factors that mediate repression were expected to be enriched in sponge bodies, subcellular structures with extensive similarities to the P bodies found in other cells. However, no such enrichment was observed. CONCLUSIONS/SIGNIFICANCE: Our results reveal the variety of post-transcriptional regulatory mechanisms that operate in the Drosophila ovary, and have implications for the mechanisms of miRNA-dependent translational control used in the ovary.

  14. Repression of competition favours cooperation : experimental evidence from bacteria

    NARCIS (Netherlands)

    Kümmerli, Rolf; van den Berg, Piet; Griffin, Ashleigh S; West, Stuart A; Gardner, Andy

    2010-01-01

    Repression of competition (RC) within social groups has been suggested as a key mechanism driving the evolution of cooperation, because it aligns the individual's proximate interest with the interest of the group. Despite its enormous potential for explaining cooperation across all levels of biologi

  15. Intellectual Performance as a Function of Repression and Menstrual Cycle.

    Science.gov (United States)

    Englander-Golden, Paula; And Others

    Performance on complex (Space Relations and Verbal Reasoning) and simple (Digit Symbol) tests was investigated as a function of Byrne's Repression-Sensitization (RS) dimension, phase of menstrual cycle and premenstrual-menstrual (PM) symptomatology in a group of females not taking oral contraceptives. Two control groups, consisting of males and…

  16. The Arabidopsis lectin receptor kinase LecRK-V.5 represses stomatal immunity induced by Pseudomonas syringae pv. tomato DC3000.

    Directory of Open Access Journals (Sweden)

    Marie Desclos-Theveniau

    2012-02-01

    Full Text Available Stomata play an important role in plant innate immunity by limiting pathogen entry into leaves but molecular mechanisms regulating stomatal closure upon pathogen perception are not well understood. Here we show that the Arabidopsis thaliana L-type lectin receptor kinase-V.5 (LecRK-V.5 negatively regulates stomatal immunity. Loss of LecRK-V.5 function increased resistance to surface inoculation with virulent bacteria Pseudomonas syringae pv tomato DC3000. Levels of resistance were not affected after infiltration-inoculation, suggesting that LecRK-V.5 functions at an early defense stage. By contrast, lines overexpressing LecRK-V.5 were more susceptible to Pst DC3000. Enhanced resistance in lecrk-V.5 mutants was correlated with constitutive stomatal closure, while increased susceptibility phenotypes in overexpression lines were associated with early stomatal reopening. Lines overexpressing LecRK-V.5 also demonstrated a defective stomatal closure after pathogen-associated molecular pattern (PAMP treatments. LecRK-V.5 is rapidly expressed in stomatal guard cells after bacterial inoculation or treatment with the bacterial PAMP flagellin. In addition, lecrk-V.5 mutants guard cells exhibited constitutive accumulation of reactive oxygen species (ROS and inhibition of ROS production opened stomata of lecrk-V.5. LecRK-V.5 is also shown to interfere with abscisic acid-mediated stomatal closure signaling upstream of ROS production. These results provide genetic evidences that LecRK-V.5 negatively regulates stomatal immunity upstream of ROS biosynthesis. Our data reveal that plants have evolved mechanisms to reverse bacteria-mediated stomatal closure to prevent long-term effect on CO(2 uptake and photosynthesis.

  17. Abscisic acid content and stomatal sensitivity to CO/sub 2/ in leaves of Xanthium strumarium L. after pretreatments in warm and cold growth chambers

    Energy Technology Data Exchange (ETDEWEB)

    Raschke, K.; Pierce, M.; Popiela, C.C.

    1976-01-01

    The degree of stomatal sensitivity to CO/sub 2/ was positively correlated with the content of abscisic acid of leaves of Xanthium strumarium grown in a greenhouse and then transferred for 24 hours or more to a cold (5/10 C, night/day) or a warm growth chamber (20/23 C). This correlation did not exist in plants kept in the greenhouse continuously (high abscisic acid, no CO/sub 2/ sensitivity), nor in plants transferred from the cold to the warm chamber (low absicisic acid, high CO/sub 2/ sensitivity). The abscisic acid content of leaves was correlated with water content only within narrow limits, if at all. At equal water contents, prechilled leaves contained more abscisic acid than leaves of plants pretreated in the warm chamber. There appear to be at least two compartments for abscisic acid in the leaf.

  18. Regulation of pqs quorum sensing via catabolite repression control in Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Zhang, Lianbo; Gao, Qingguo; Chen, Wanying;

    2013-01-01

    Pseudomonas aeruginosa catabolite repression control protein regulates the Pseudomonas quinolone signal quorum sensing, which further controls synthesis of virulence factor pyocyanin, biofilm formation and survival during infection models. Our study suggests that deregulation of the catabolite repression by P...

  19. RBP1 Recruits Both Histone Deacetylase-Dependent and -Independent Repression Activities to Retinoblastoma Family Proteins

    OpenAIRE

    Lai, Albert; Lee, Joseph M; Yang, Wen-Ming; DeCaprio, James A.; William G Kaelin; Seto, Edward; Branton, Philip E.

    1999-01-01

    Retinoblastoma (RB) tumor suppressor family proteins block cell proliferation in part by repressing certain E2F-specific promoters. Both histone deacetylase (HDAC)-dependent and -independent repression activities are associated with the RB “pocket.” The mechanism by which these two repression functions occupy the pocket is unknown. A known RB-binding protein, RBP1, was previously found by our group to be an active corepressor which, if overexpressed, represses E2F-mediated transcription via i...

  20. Dopamine signaling leads to loss of Polycomb repression and aberrant gene activation in experimental parkinsonism

    DEFF Research Database (Denmark)

    Södersten, Erik; Feyder, Michael; Lerdrup, Mads;

    2014-01-01

    Polycomb group (PcG) proteins bind to and repress genes in embryonic stem cells through lineage commitment to the terminal differentiated state. PcG repressed genes are commonly characterized by the presence of the epigenetic histone mark H3K27me3, catalyzed by the Polycomb repressive complex 2. ...

  1. Large-scale proteome analysis of abscisic acid and ABSCISIC ACID INSENSITIVE3-dependent proteins related to desiccation tolerance in Physcomitrella patens.

    Science.gov (United States)

    Yotsui, Izumi; Serada, Satoshi; Naka, Tetsuji; Saruhashi, Masashi; Taji, Teruaki; Hayashi, Takahisa; Quatrano, Ralph S; Sakata, Yoichi

    2016-03-18

    Desiccation tolerance is an ancestral feature of land plants and is still retained in non-vascular plants such as bryophytes and some vascular plants. However, except for seeds and spores, this trait is absent in vegetative tissues of vascular plants. Although many studies have focused on understanding the molecular basis underlying desiccation tolerance using transcriptome and proteome approaches, the critical molecular differences between desiccation tolerant plants and non-desiccation plants are still not clear. The moss Physcomitrella patens cannot survive rapid desiccation under laboratory conditions, but if cells of the protonemata are treated by the phytohormone abscisic acid (ABA) prior to desiccation, it can survive 24 h exposure to desiccation and regrow after rehydration. The desiccation tolerance induced by ABA (AiDT) is specific to this hormone, but also depends on a plant transcription factor ABSCISIC ACID INSENSITIVE3 (ABI3). Here we report the comparative proteomic analysis of AiDT between wild type and ABI3 deleted mutant (Δabi3) of P. patens using iTRAQ (Isobaric Tags for Relative and Absolute Quantification). From a total of 1980 unique proteins that we identified, only 16 proteins are significantly altered in Δabi3 compared to wild type after desiccation following ABA treatment. Among this group, three of the four proteins that were severely affected in Δabi3 tissue were Arabidopsis orthologous genes, which were expressed in maturing seeds under the regulation of ABI3. These included a Group 1 late embryogenesis abundant (LEA) protein, a short-chain dehydrogenase, and a desiccation-related protein. Our results suggest that at least three of these proteins expressed in desiccation tolerant cells of both Arabidopsis and the moss are very likely to play important roles in acquisition of desiccation tolerance in land plants. Furthermore, our results suggest that the regulatory machinery of ABA- and ABI3-mediated gene expression for desiccation

  2. ORA47 (octadecanoid-responsive AP2/ERF-domain transcription factor 47) regulates jasmonic acid and abscisic acid biosynthesis and signaling through binding to a novel cis-element.

    Science.gov (United States)

    Chen, Hsing-Yu; Hsieh, En-Jung; Cheng, Mei-Chun; Chen, Chien-Yu; Hwang, Shih-Ying; Lin, Tsan-Piao

    2016-07-01

    ORA47 (octadecanoid-responsive AP2/ERF-domain transcription factor 47) of Arabidopsis thaliana is an AP2/ERF domain transcription factor that regulates jasmonate (JA) biosynthesis and is induced by methyl JA treatment. The regulatory mechanism of ORA47 remains unclear. ORA47 is shown to bind to the cis-element (NC/GT)CGNCCA, which is referred to as the O-box, in the promoter of ABI2. We proposed that ORA47 acts as a connection between ABA INSENSITIVE1 (ABI1) and ABI2 and mediates an ABI1-ORA47-ABI2 positive feedback loop. PORA47:ORA47-GFP transgenic plants were used in a chromatin immunoprecipitation (ChIP) assay to show that ORA47 participates in the biosynthesis and/or signaling pathways of nine phytohormones. Specifically, many abscisic acid (ABA) and JA biosynthesis and signaling genes were direct targets of ORA47 under stress conditions. The JA content of the P35S:ORA47-GR lines was highly induced under wounding and moderately induced under water stress relative to that of the wild-type plants. The wounding treatment moderately increased ABA accumulation in the transgenic lines, whereas the water stress treatment repressed the ABA content. ORA47 is proposed to play a role in the biosynthesis of JA and ABA and in regulating the biosynthesis and/or signaling of a suite of phytohormone genes when plants are subjected to wounding and water stress. PMID:26974851

  3. The p450 monooxygenase BcABA1 is essential for abscisic acid biosynthesis in Botrytis cinerea

    DEFF Research Database (Denmark)

    Siewers, V.; Smedsgaard, Jørn; Tudzynski, P.

    2004-01-01

    The phytopathogenic ascomycete Botrytis cinerea is known to produce abscisic acid (ABA), which is thought to be involved in host-pathogen interaction. Biochemical analyses had previously shown that, in contrast to higher plants, the fungal ABA biosynthesis probably does not proceed via carotenoids...

  4. The antagonistic regulation of abscisic acid-inhibited root growth by brassinosteroids is partially mediated via direct suppression of ABSCISIC ACID INSENSITIVE 5 expression by BRASSINAZOLE RESISTANT 1.

    Science.gov (United States)

    Yang, Xiaorui; Bai, Yang; Shang, Jianxiu; Xin, Ruijiao; Tang, Wenqiang

    2016-09-01

    Brassinosteroids (BRs) and abscisic acid (ABA) are plant hormones that antagonistically regulate many aspects of plant growth and development; however, the mechanisms that regulate the crosstalk of these two hormones are still not well understood. BRs regulate plant growth and development by activating BRASSINAZOLE RESISTANT 1 (BZR1) family transcription factors. Here we show that the crosstalk between BRs and ABA signalling is partially mediated by BZR1 regulated gene expression. bzr1-1D is a dominant mutant with enhanced BR signalling; our results showed that bzr1-1D mutant is less sensitive to ABA-inhibited primary root growth. By RNA sequencing, a subset of BZR1 regulated ABA-responsive root genes were identified. Of these genes, the expression of a major ABA signalling component ABA INSENSITIVE 5 (ABI5) was found to be suppressed by BR and by BZR1. Additional evidences showed that BZR1 could bind strongly with several G-box cis-elements in the promoter of ABI5, suppress the expression of ABI5 and make plants less sensitive to ABA. Our study demonstrated that ABI5 is a direct target gene of BZR1, and modulating the expression of ABI5 by BZR1 plays important roles in regulating the crosstalk between the BR and ABA signalling pathways. PMID:27149247

  5. An Updated GA Signaling 'Relief of Repression' Regulatory Model

    Institute of Scientific and Technical Information of China (English)

    Xiu-Hua Gao; Sen-Lin Xiao; Qin-Fang Yao; Yu-Juan Wang; Xiang-Dong Fu

    2011-01-01

    Gibberellic acid (GA)regulates many aspects of plant growth and development. The DELLA proteins act to restrain plant growth, and GA relieves this repression by promoting their degradation via the 26S proteasome pathway.The elucidation of the crystalline structure of the GA soluble receptor GID1 protein represents an important breakthrough for understanding the way in which GA is perceived and how it induces the destabilization of the DELLA proteins. Recent advances have revealed that the DELLA proteins are involved in protein-protein interactions within various environmental and hormone signaling pathways. In this review, we highlight our current understanding of the 'relief of repression" model that aims to explain the role of GA and the function of the DELLA proteins, incorporating the many aspects of cross-talk shown to exist in the control of plant development and the response to stress.

  6. Repression predicts outcome following multidisciplinary treatment of chronic pain.

    Science.gov (United States)

    Burns, J W

    2000-01-01

    This study examined whether repression predicts outcome following multidisciplinary treatment for chronic pain and whether links between anxiety and outcome are obscured by repressors. Ninety-three chronic pain patients completed a 4-week pain program. Lifting capacity, walking endurance, depression, pain severity, and activity were measured at pre- and posttreatment. Low-anxious, repressor, high-anxious, and defensive/high-anxious groups were formed from median splits of Anxiety Content (ACS) and Lie scales of the Minnesota Multiphasic Personality Inventory-2 (MMPI-2; Butcher, Dahlstrom, Graham, Tellegen, & Kaemmer, 1989). Significant ACS x Lie interactions were found for lifting capacity, depression, and pain severity changes. Planned comparisons showed that both repressors and high-anxious patients performed poorly on lifting capacity; repressors alone recovered poorly on depression and pain severity. Results imply that repression may interfere with the process and outcome of pain programs. PMID:10711590

  7. Polycomb group protein-mediated repression of transcription

    DEFF Research Database (Denmark)

    Morey, Lluís; Helin, Kristian

    2010-01-01

    The polycomb group (PcG) proteins are essential for the normal development of multicellular organisms. They form multi-protein complexes that work as transcriptional repressors of several thousand genes controlling differentiation pathways during development. How the PcG proteins work as transcri......The polycomb group (PcG) proteins are essential for the normal development of multicellular organisms. They form multi-protein complexes that work as transcriptional repressors of several thousand genes controlling differentiation pathways during development. How the PcG proteins work...... as transcriptional repressors is incompletely understood, but involves post-translational modifications of histones by two major PcG protein complexes: polycomb repressive complex 1 and polycomb repressive complex 2....

  8. Repressive coping and alexithymia in ideopathic environmental intolerance

    DEFF Research Database (Denmark)

    Skovbjerg, Sine; Zachariae, Robert; Rasmussen, Alice;

    2010-01-01

    with the IEI variables, but there was no evidence of a role of the repressive coping construct. While the total alexithymia score was unrelated to IEI, the TAS-20 subscale of difficulties identifying feelings (DIF) was independently associated with symptoms attributed to IEI. Negative affectivity was a strong...... and negative emotional reactions, defensiveness and difficulties identifying feelings were found, suggesting a need for exploring the influence of these emotional reactions in IEI....

  9. Repressive effects of resveratrol on androgen receptor transcriptional activity.

    Directory of Open Access Journals (Sweden)

    Wen-feng Shi

    Full Text Available BACKGROUND: The chemopreventive effects of resveratrol (RSV on prostate cancer have been well established; the androgen receptor (AR plays pivotal roles in prostatic tumorigenesis. However, the exact underlying molecular mechanisms about the effects of RSV on AR have not been fully elucidated. A model system is needed to determine whether and how RSV represses AR transcriptional activity. METHODOLOGY: The AR cDNA was first cloned into the retroviral vector pOZ-N and then integrated into the genome of AR-negative HeLa cells to generate the AR(+ cells. The constitutively expressed AR was characterized by monitoring hormone-stimulated nuclear translocation, DNA binding, and transcriptional activation, with the AR(- cells serving as controls. AR(+ cells were treated with RSV, and both AR protein levels and AR transcriptional activity were measured simultaneously. Chromatin immunoprecipitation (ChIP assays were used to detect the effects of RSV on the recruitment of AR to its cognate element (ARE. RESULTS: AR in the AR (+ stable cell line functions in a manner similar to that of endogenously expressed AR. Using this model system we clearly demonstrated that RSV represses AR transcriptional activity independently of any effects on AR protein levels. However, neither the hormone-mediated nucleus translocation nor the AR/ARE interaction was affected by RSV treatment. CONCLUSION: We demonstrated unambiguously that RSV regulates AR target gene expression, at least in part, by repressing AR transcriptional activity. Repressive effects of RSV on AR activity result from mechanisms other than the affects of AR nuclear translocation or DNA binding.

  10. ANXIETY, REPRESSION AND FORECLOSURE: SOME REMARKS TO THE CLINIC

    OpenAIRE

    Sonia Leite

    2009-01-01

    The paper focus on Freud’s studies on anxiety and highlights Lacan’s contributions to the subject. It emphasizes the clinical importance of freudian distinction between anxiety as a signal and realistic – or automatic – anxiety in order to answer the question: assuming that, concerning neurosis, what causes repression is a signal of anxiety, could it also be said that, in psychosis, it is realistic anxiety that produces foreclosure?

  11. Financial Liberalization and Financial Repression in Formerly Socialist Economies

    OpenAIRE

    Cevdet Denizer; Ray M. Desai; Nikolay Gueorguiev

    2000-01-01

    The financial systems of developing countries tend to be restricted or repressed by burdensome reserve requirements, interest-rate ceilings, foreign-exchange regulations, constraints on banks? balance sheets, and the heavy financial-sector taxation. This article explores preliminary evidence from the post-communist economies of Eastern Europe and the former Soviet Union. Using data from 25 countries between 1991 and 1996, we find that the standard public-finance framework has limited applicab...

  12. Debt sustainability in historical perspective: The role of fiscal repression

    OpenAIRE

    Voth, Joachim; Drelichman, Mauricio

    2008-01-01

    This article examines the debt history of two contenders for European hegemony: 16th-century Spain and 18th-century Britain. We analyze their fiscal behavior using measures of overborrowing and fiscal policy functions. Our results suggest that stringency was not key for Britain?s success in avoiding default. Instead, fiscal repression allowed the United Kingdom to borrow at below-market rates, thereby outspending its continental rivals.

  13. Repression and activation by multiprotein complexes that alter chromatin structure.

    Science.gov (United States)

    Kingston, R E; Bunker, C A; Imbalzano, A N

    1996-04-15

    Recent studies have provided strong evidence that macromolecular complexes are used in the cell to remodel chromatin structure during activation and to create an inaccessible structure during repression, Although there is not yet any rigorous demonstration that modification of chromatin structure plays a direct, causal role in either activation or repression, there is sufficient smoke to indicate the presence of a blazing inferno nearby. It is clear that complexes that remodel chromatin are tractable in vitro; hopefully this will allow the establishment of systems that provide a direct analysis of the role that remodeling might play in activation. These studies indicate that establishment of functional systems to corroborate the elegant genetic studies on repression might also be tractable. As the mechanistic effects of these complexes are sorted out, it will become important to understand how the complexes are regulated. In many of the instances discussed above, the genes whose products make up these complexes were identified in genetic screens for effects on developmental processes. This implies a regulation of the activity of these complexes in response to developmental cues and further implies that the work to fully understand these complexes will occupy a generation of scientists.

  14. Snai1 represses Nanog to promote embryonic stem cell differentiation

    Directory of Open Access Journals (Sweden)

    F. Galvagni

    2015-06-01

    Full Text Available Embryonic stem cell (ESC self-renewal and pluripotency is maintained by an external signaling pathways and intrinsic regulatory networks involving ESC-specific transcriptional complexes (mainly formed by OCT3/4, Sox2 and Nanog proteins, the Polycomb repressive complex 2 (PRC2 and DNA methylation [1–8]. Among these, Nanog represents the more ESC specific factor and its repression correlates with the loss of pluripotency and ESC differentiation [9–11]. During ESC early differentiation, many development-associated genes become upregulated and although, in general, much is known about the pluripotency self-renewal circuitry, the molecular events that lead ESCs to exit from pluripotency and begin differentiation are largely unknown. Snai1 is one the most early induced genes during ESC differentiation in vitro and in vivo [12,13]. Here we show that Snai1 is able to directly repress several stemness-associated genes including Nanog. We use a ESC stable-line expressing a inducible Snai1 protein. We here show microarray analysis of embryonic stem cells (ESC expressing Snail-ER at various time points of induction with 4-OH. Data were deposited in Gene Expression Omnibus (GEO datasets under reference GSE57854 and here: http://epigenetics.hugef-research.org/data.php.

  15. Revisiting the Master-Signifier, or, Mandela and Repression.

    Science.gov (United States)

    Hook, Derek; Vanheule, Stijn

    2015-01-01

    The concept of the master-signifier has been subject to a variety of applications in Lacanian forms of political discourse theory and ideology critique. While there is much to be commended in literature of this sort, it often neglects salient issues pertaining to the role of master signifiers in the clinical domain of (individual) psychical economy. The popularity of the concept of the master (or "empty") signifier in political discourse analysis has thus proved a double-edged sword. On the one hand it demonstrates how crucial psychical processes are performed via the operations of the signifier, extending thus the Lacanian thesis that identification is the outcome of linguistic and symbolic as opposed to merely psychological processes. On the other, the use of the master signifier concept within the political realm to track discursive formations tends to distance the term from the dynamics of the unconscious and operation of repression. Accordingly, this paper revisits the master signifier concept, and does so within the socio-political domain, yet while paying particular attention to the functioning of unconscious processes of fantasy and repression. More specifically, it investigates how Nelson Mandela operates as a master signifier in contemporary South Africa, as a vital means of knitting together diverse elements of post-apartheid society, enabling the fantasy of the post-apartheid nation, and holding at bay a whole series of repressed and negated undercurrents. PMID:26834664

  16. Revisiting the master-signifier, or, Mandela and repression

    Directory of Open Access Journals (Sweden)

    Derek eHook

    2016-01-01

    Full Text Available The concept of the master-signifier has been subject to a variety of applications in Lacanian forms of political discourse theory and ideology critique. While there is much to be commended in literature of this sort, it often neglects salient issues pertaining to the role of master signifiers in the clinical domain of (individual psychical economy. The popularity of the concept of the master (or ‘empty’ signifier in political discourse analysis has thus proved a double-edged sword. On the one hand it demonstrates how crucial psychical processes are performed via the operations of the signifier, extending thus the Lacanian thesis that identification is as much the outcome of linguistic and symbolic as opposed to merely psychological processes. On the other, the use of the master signifier concept within the political realm to track discursive formations tends to distance the term from the dynamics of the unconscious and operation of repression. Accordingly, this paper revisits the master signifier concept, and does so within the socio-political domain, yet while paying particular attention to the functioning of unconscious processes of fantasy and repression. More specifically, it investigates how Nelson Mandela operates as a master signifier in contemporary South Africa, as a vital means of knitting together diverse elements of post-apartheid society, enabling the fantasy of the post-apartheid nation, and holding at bay a whole series of repressed and negated undercurrents.

  17. Revisiting the Master-Signifier, or, Mandela and Repression

    Science.gov (United States)

    Hook, Derek; Vanheule, Stijn

    2016-01-01

    The concept of the master-signifier has been subject to a variety of applications in Lacanian forms of political discourse theory and ideology critique. While there is much to be commended in literature of this sort, it often neglects salient issues pertaining to the role of master signifiers in the clinical domain of (individual) psychical economy. The popularity of the concept of the master (or “empty”) signifier in political discourse analysis has thus proved a double-edged sword. On the one hand it demonstrates how crucial psychical processes are performed via the operations of the signifier, extending thus the Lacanian thesis that identification is the outcome of linguistic and symbolic as opposed to merely psychological processes. On the other, the use of the master signifier concept within the political realm to track discursive formations tends to distance the term from the dynamics of the unconscious and operation of repression. Accordingly, this paper revisits the master signifier concept, and does so within the socio-political domain, yet while paying particular attention to the functioning of unconscious processes of fantasy and repression. More specifically, it investigates how Nelson Mandela operates as a master signifier in contemporary South Africa, as a vital means of knitting together diverse elements of post-apartheid society, enabling the fantasy of the post-apartheid nation, and holding at bay a whole series of repressed and negated undercurrents. PMID:26834664

  18. Abscisic acid is a negative regulator of root gravitropism in Arabidopsis thaliana.

    Science.gov (United States)

    Han, Woong; Rong, Honglin; Zhang, Hanma; Wang, Myeong-Hyeon

    2009-01-23

    The plant hormone abscisic acid (ABA) plays a role in root gravitropism and has led to an intense debate over whether ABA acts similar to auxin by translating the gravitational signal into directional root growth. While tremendous advances have been made in the past two decades in establishing the role of auxin in root gravitropism, little progress has been made in characterizing the role of ABA in this response. In fact, roots of plants that have undetectable levels of ABA and that display a normal gravitropic response have raised some serious doubts about whether ABA plays any role in root gravitropism. Here, we show strong evidence that ABA plays a role opposite to that of auxin and that it is a negative regulator of the gravitropic response of Arabidopsis roots.

  19. A central role of abscisic acid in stress-regulated carbohydrate metabolism.

    Directory of Open Access Journals (Sweden)

    Stefan Kempa

    Full Text Available BACKGROUND: Abiotic stresses adversely affect plant growth and development. The hormone abscisic acid (ABA plays a central role in the response and adaptation to environmental constraints. However, apart from the well established role of ABA in regulating gene expression programmes, little is known about its function in plant stress metabolism. PRINCIPAL FINDINGS: Using an integrative multiparallel approach of metabolome and transcriptome analyses, we studied the dynamic response of the model glyophyte Arabidopsis thaliana to ABA and high salt conditions. Our work shows that salt stress induces complex re-adjustment of carbohydrate metabolism and that ABA triggers the initial steps of carbon mobilisation. SIGNIFICANCE: These findings open new perspectives on how high salinity and ABA impact on central carbohydrate metabolism and highlight the power of iterative combinatorial approaches of non-targeted and hypothesis-driven experiments in stress biology.

  20. Emerging roles of protein kinase CK2 in abscisic acid (ABA signaling

    Directory of Open Access Journals (Sweden)

    Belmiro eVilela

    2015-11-01

    Full Text Available The phytohormone abscisic acid (ABA regulates many aspects of plant growth and development as well as responses to multiple stresses. Post-translational modifications such as phosphorylation or ubiquitination have pivotal roles in the regulation of ABA signaling. In addition to the positive regulator sucrose non-fermenting-1 related protein kinase 2 (SnRK2, the relevance of the role of other protein kinases, such as CK2, has been recently highlighted. We have recently established that CK2 phosphorylates the maize ortholog of open stomata 1 OST1, ZmOST1, suggesting a role of CK2 phosphorylation in the control of ZmOST1 protein degradation (Vilela et al., 2015. CK2 is a pleiotropic enzyme involved in multiple developmental and stress-responsive pathways. This review summarizes recent advances that taken together suggest a prominent role of protein kinase CK2 in ABA signaling and related processes.

  1. Isolation and Crystal Structure of 1′,4′-Trans-diol of Abscisic Acid

    Institute of Scientific and Technical Information of China (English)

    WANG Tian-Shan; ZHOU Jin-Yan; TAN Hong

    2006-01-01

    1 ′,4′-Trans-diol of abscisic acid was isolated from botrytis cinerea as a colorless crystal. The molecular and crystal structures have been determined by X-ray diffraction analysis. It crystallizes in orthorhombic system, space group P212121 with a = 6.724(3), b = 17.559(6), c =12.265(2) (A), a = β = y = 90°, V = 1448.1(8) (A)3, Z = 4, Dx = 1.222 g/cm3, F(000) = 576 and μ(MoKa) = 0.087 mm-1. The final R = 0.0628 and wR = 0.1604 for 2501 independent reflections with Rint = 0.0160 and 1679 observed reflections with I >2σ(Ⅰ). There are three intermolecular hydrogen bonds in a unit cell.

  2. Involvement of Polyamine Oxidase in Abscisic Acid induced Cytosolic Antioxidant Defense in Leaves of Maize

    Institute of Scientific and Technical Information of China (English)

    Beibei Xue; Aying Zhang; Mingyi Jiang

    2009-01-01

    Using pharmacological and biochemical approaches, the role of maize polyamine oxidase (MPAO) in abscisic acid (ABA)induced antioxidant defense in leaves of maize (Zea mays L.) plants was investigated. Exogenous ABA treatment enhanced the expression of the MPAO gene and the activities of apoplastic MPAO. Pretreatment with two different inhibitors for apoplastic MPAO partly reduced hydrogen peroxide (H2O2) accumulation induced by ABA and blocked the ABA-induced expression of the antioxidant genes superoxide dismutase 4 and cytosolic ascorbate peroxidase and the activities of the cytosolic antioxidant enzymes. Treatment with spermidine, the optimum substrate of MPAO, also induced the expression and the activities of the antioxidant enzymes, and the upregulation of the antioxidant enzymes was prevented by two inhibitors of MPAO and two scavengers of H2O2. These results suggest that MPAO contributes to ABA-induced cytosolic antioxidant defense through H2O2, a Spd catabolic product.

  3. Effect of Paclobutrazol on Water Stress-Induced Abscisic Acid in Apple Seedling Leaves

    Science.gov (United States)

    Wang, Shiow Y.; Sun, Tung; Ji, Zuo L.; Faust, Miklos

    1987-01-01

    Abscisic acid (ABA) was quantitated by enzyme-linked immunosorbent assay (ELISA) in water-stressed leaves from control apple seedlings, and also from apple seedlings treated for 28 days with paclobutrazol ([2RS, 3RS]-1-[4-chlorophenyl]-4,4-dimethyl-2-[1,2,4-triazol-1-yl] pentan-3-ol). The ELISA quantitative estimates were also validated by gas chromatography-electron capture detector and lettuce seed germination inhibition bioassay. Paclobutrazol treatment reduced endogenous ABA levels by about one-third, and prevented the marked accumulation of water-stress-induced ABA that occurred in untreated seedlings. The presence of ABA in the apple leaf extracts was confirmed by gas chromatography-mass spectrometry. PMID:16665559

  4. Role of Abscisic Acid and Water Stress on the Activities of Antioxidant Enzymes in Wheat

    Directory of Open Access Journals (Sweden)

    Hadeesa Naz

    2014-07-01

    Full Text Available Eight wheat varieties (Chinese Spring, Pavon, Gabo, Saleem-2000, Zamindar-04, Siren, NR-264 and Marvi were compared for their response to exogenous application of abscisic acid (ABA, Water Stress (WS and Control (C during invitro condition. Their responses were studied in the form of seedlings growth and antioxidant enzymes. Exogenous application of ABA reflected ameliorating effect on catalase activity. Water stress treatment led to increase in levels of catalase except Pavon. Increased activity of antioxidant enzymes showed tolerance capacity under water stress. Correlation coefficient analysis reflected negative and significant relationship between total protein contents and peroxidase and catalase. Further, investigations are needed to enhance the understanding on the effect of different abiotic stresses and growth hormones during early seed development.

  5. Abscisic acid signaling: thermal stability shift assays as tool to analyze hormone perception and signal transduction.

    Directory of Open Access Journals (Sweden)

    Fen-Fen Soon

    Full Text Available Abscisic acid (ABA is a plant hormone that plays important roles in growth and development. ABA is also the central regulator to protect plants against abiotic stresses, such as drought, high salinity, and adverse temperatures, and ABA signaling is therefore a promising biotechnological target for the generation of crops with increased stress resistance. Recently, a core signal transduction pathway has been established, in which ABA receptors, type 2C protein phosphatases, and AMPK-related protein kinases control the regulation of transcription factors, ion channels, and enzymes. Here we use a simple protein thermal stability shift assay to independently validate key aspects of this pathway and to demonstrate the usefulness of this technique to detect and characterize very weak (Kd ≥ 50 µM interactions between receptors and physiological and synthetic agonists, to determine and analyze protein-protein interactions, and to screen small molecule inhibitors.

  6. Exogenous abscisic acid application during grain filling in winter wheat improves cold tolerance of offspring's seedlings

    DEFF Research Database (Denmark)

    Li, X.; Cai, J.; Liu, Fulai;

    2014-01-01

    Low temperature seriously depresses seed germination and seedling growth in winter wheat (Triticum aestivum L.). In this study, wheat plants were sprayed with abscisic acid (ABA) and fluridone (inhibitor of ABA biosynthesis) at 19 days after anthesis (DAA) and repeated at 26 DAA. The seeds of those...... plants were harvested, and seed germination and offspring's seedling growth under low temperature were evaluated. The results showed that exogenous ABA application decreased seed weight and slightly reduced seed set and seed number per spike. Under low temperature, seeds from ABA-treated plants showed...... reduced germination rate, germination index, growth of radicle and coleoptile, amylase activity and depressed starch degradation as compared with seeds from non-ABA-treated plants; however, activities of the antioxidant enzymes in both germinating seeds and seedling were enhanced from those exposed...

  7. Movement of abscisic acid into the apoplast in response to water stress in Xanthium strumarium L

    Energy Technology Data Exchange (ETDEWEB)

    Cornish, K.; Zeevaart, J.A.D.

    1985-07-01

    The effect of water stress on the redistribution of abscisic acid (ABA) in mature leaves of Xanthium strumarium L. was investigated using a pressure dehydration technique. In both turgid and stressed leaves, the ABA in the xylem exudate, the apoplastic ABA, increased before bulk leaf stress-induced ABA accumulation began. In the initially turgid leaves, the ABA level remained constant in both the apoplast and the leaf as a whole until wilting symptoms appeared. Following turgor loss, sufficient quantities of ABA moved into the apoplast to stimulate stomatal closure. Thus, the initial increase of apoplastic ABA may be relevant to the rapid stomatal closure seen in stressed leaves before their bulk leaf ABA levels rise. Following recovery from water stress, elevated levels of ABA remained in the apoplast after the bulk leaf contents had returned to their prestress values. This apoplastic ABA may retard stomatal reopening during the initial recovery period. 32 references, 5 figures.

  8. ATAF1 transcription factor directly regulates abscisic acid biosynthetic gene NCED3 in Arabidopsis thaliana

    DEFF Research Database (Denmark)

    Jensen, Michael Krogh; Lindemose, Søren; De Masi, Federico;

    2013-01-01

    ATAF1, an Arabidopsis thaliana NAC transcription factor, plays important roles in plant adaptation to environmental stress and development. To search for ATAF1 target genes, we used protein binding microarrays and chromatin-immunoprecipitation (ChIP). This identified T[A,C,G]CGT[A,G] and TT......[A,C,G]CGT as ATAF1 consensus binding sequences. Co-expression analysis across publicly available microarray experiments identified 25 genes co-expressed with ATAF1. The promoter regions of ATAF1 co-expressors were significantly enriched for ATAF1 binding sites, and TTGCGTA was identified in the promoter of the key...... abscisic acid (ABA) phytohormone biosynthetic gene NCED3. ChIP-qPCR and expression analysis showed that ATAF1 binding to the NCED3 promoter correlated with increased NCED3 expression and ABA hormone levels. These results indicate that ATAF1 regulates ABA biosynthesis....

  9. Abscisic acid-cytokinin antagonism modulates resistance against pseudomonas syringae in Tobacco

    DEFF Research Database (Denmark)

    Grosskinsky, Dominik Kilian; van der Graaff, Eric; Roitsch, Thomas Georg

    2014-01-01

    Phytohormones are known as essential regulators of plant defenses, with ethylene, jasmonic acid, and salicylic acid as the central immunity backbone, while other phytohormones have been demonstrated to interact with this. Only recently, a function of the classic phytohormone cytokinin in plant...... immunity has been described in Arabidopsis, rice, and tobacco. Although interactions of cytokinins with salicylic acid and auxin have been indicated, the complete network of cytokinin interactions with other immunity-relevant phytohormones is not yet understood. Therefore, we studied the interaction...... of kinetin and abscisic acid as a negative regulator of plant immunity to modulate resistance in tobacco against Pseudomonas syringae. By analyzing infection symptoms, pathogen proliferation, and accumulation of the phytoalexin scopoletin as a key mediator of kinetin-induced resistance in tobacco...

  10. ABSCISIC ACID-INSENSITIVE 4 negatively regulates flowering through directly promoting Arabidopsis FLOWERING LOCUS C transcription

    Science.gov (United States)

    Shu, Kai; Chen, Qian; Wu, Yaorong; Liu, Ruijun; Zhang, Huawei; Wang, Shengfu; Tang, Sanyuan; Yang, Wenyu; Xie, Qi

    2016-01-01

    During the life cycle of a plant, one of the major biological processes is the transition from the vegetative to the reproductive stage. In Arabidopsis, flowering time is precisely controlled by extensive environmental and internal cues. Gibberellins (GAs) promote flowering, while abscisic acid (ABA) is considered as a flowering suppressor. However, the detailed mechanism through which ABA inhibits the floral transition is poorly understood. Here, we report that ABSCISIC ACID-INSENSITIVE 4 (ABI4), a key component in the ABA signalling pathway, negatively regulates floral transition by directly promoting FLOWERING LOCUS C (FLC) transcription. The abi4 mutant showed the early flowering phenotype whereas ABI4-overexpressing (OE-ABI4) plants had delayed floral transition. Consistently, quantitative reverse transcription–PCR (qRT–PCR) assay revealed that the FLC transcription level was down-regulated in abi4, but up-regulated in OE-ABI4. The change in FT level was consistent with the pattern of FLC expression. Chromatin immunoprecipitation-qPCR (ChIP-qPCR), electrophoretic mobility shift assay (EMSA), and tobacco transient expression analysis showed that ABI4 promotes FLC expression by directly binding to its promoter. Genetic analysis demonstrated that OE-ABI4::flc-3 could not alter the flc-3 phenotype. OE-FLC::abi4 showed a markedly delayed flowering phenotype, which mimicked OE-FLC::WT, and suggested that ABI4 acts upstream of FLC in the same genetic pathway. Taken together, these findings suggest that ABA inhibits the floral transition by activating FLC transcription through ABI4. PMID:26507894

  11. Functional annotation of the transcriptome of Sorghum bicolor in response to osmotic stress and abscisic acid

    Directory of Open Access Journals (Sweden)

    Kumari Sunita

    2011-10-01

    Full Text Available Abstract Background Higher plants exhibit remarkable phenotypic plasticity allowing them to adapt to an extensive range of environmental conditions. Sorghum is a cereal crop that exhibits exceptional tolerance to adverse conditions, in particular, water-limiting environments. This study utilized next generation sequencing (NGS technology to examine the transcriptome of sorghum plants challenged with osmotic stress and exogenous abscisic acid (ABA in order to elucidate genes and gene networks that contribute to sorghum's tolerance to water-limiting environments with a long-term aim of developing strategies to improve plant productivity under drought. Results RNA-Seq results revealed transcriptional activity of 28,335 unique genes from sorghum root and shoot tissues subjected to polyethylene glycol (PEG-induced osmotic stress or exogenous ABA. Differential gene expression analyses in response to osmotic stress and ABA revealed a strong interplay among various metabolic pathways including abscisic acid and 13-lipoxygenase, salicylic acid, jasmonic acid, and plant defense pathways. Transcription factor analysis indicated that groups of genes may be co-regulated by similar regulatory sequences to which the expressed transcription factors bind. We successfully exploited the data presented here in conjunction with published transcriptome analyses for rice, maize, and Arabidopsis to discover more than 50 differentially expressed, drought-responsive gene orthologs for which no function had been previously ascribed. Conclusions The present study provides an initial assemblage of sorghum genes and gene networks regulated by osmotic stress and hormonal treatment. We are providing an RNA-Seq data set and an initial collection of transcription factors, which offer a preliminary look into the cascade of global gene expression patterns that arise in a drought tolerant crop subjected to abiotic stress. These resources will allow scientists to query gene

  12. The relationship between repressive and defensive coping styles and monocyte, eosinophile, and serum glucose levels: support for the opioid peptide hypothesis of repression.

    Science.gov (United States)

    Jamner, L D; Schwartz, G E; Leigh, H

    1988-01-01

    The opioid peptide hypothesis of repression (1) predicts that repressive coping is associated with increased functional endorphin levels in the brain, which can result in decreased immunocompetence and hyperglycemia. In a random sample of 312 patients seen at a Yale Medical School outpatient clinic, significant main effects of coping style were found for monocyte and eosinophile counts, serum glucose levels, and self-reports of medication allergies. Specifically, repressive and defensive high-anxious patients demonstrated significantly decreased monocyte counts. In addition, repressive coping was associated with elevated eosinophile counts, serum glucose levels, and self-reported reactions to medications. This behavioral, immunologic, and endocrine profile is consistent with the opioid peptide hypothesis, which provides an integrative framework for relating the attenuated emotional experience of pain and distress characteristic of repressive coping with reduced resistance to infectious and neoplastic disease. PMID:2853404

  13. ATF3 represses PPARγ expression and inhibits adipocyte differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Min-Kyung; Jung, Myeong Ho, E-mail: jung0603@pusan.ac.kr

    2014-11-07

    Highlights: • ATF3 decrease the expression of PPARγ and its target gene in 3T3-L1 adipocytes. • ATF3 represses the promoter activity of PPARγ2 gene. • ATF/CRE (−1537/−1530) is critical for ATF3-mediated downregulation of PPARγ. • ATF3 binds to the promoter region containing the ATF/CRE. • ER stress inhibits adipocyte differentiation through downregulation of PPARγ by ATF3. - Abstract: Activating transcription factor 3 (ATF3) is a stress-adaptive transcription factor that mediates cellular stress response signaling. We previously reported that ATF3 represses CCAAT/enhancer binding protein α (C/EBPα) expression and inhibits 3T3-L1 adipocyte differentiation. In this study, we explored potential role of ATF3 in negatively regulating peroxisome proliferator activated receptor-γ (PPARγ). ATF3 decreased the expression of PPARγ and its target gene in 3T3-L1 adipocytes. ATF3 also repressed the activity of −2.6 Kb promoter of mouse PPARγ2. Overexpression of PPARγ significantly prevented the ATF3-mediated inhibition of 3T3-L1 differentiation. Transfection studies with 5′ deleted-reporters showed that ATF3 repressed the activity of −2037 bp promoter, whereas it did not affect the activity of −1458 bp promoter, suggesting that ATF3 responsive element is located between the −2037 and −1458. An electrophoretic mobility shift assay and chromatin immunoprecipitation assay demonstrated that ATF3 binds to ATF/CRE site (5′-TGACGTTT-3′) between −1537 and −1530. Mutation of the ATF/CRE site abrogated ATF3-mediated transrepression of the PPARγ2 promoter. Treatment with thapsigargin, endoplasmic reticulum (ER) stress inducer, increased ATF3 expression, whereas it decreased PPARγ expression. ATF3 knockdown significantly blocked the thapsigargin-mediated downregulation of PPARγ expression. Furthermore, overexpression of PPARγ prevented inhibition of 3T3-L1 differentiation by thapsigargin. Collectively, these results suggest that ATF3-mediated

  14. The complexity of miRNA-mediated repression

    OpenAIRE

    Wilczynska, A.; Bushell, M.

    2014-01-01

    Since their discovery 20 years ago, miRNAs have attracted much attention from all areas of biology. These short (∼22 nt) non-coding RNA molecules are highly conserved in evolution and are present in nearly all eukaryotes. They have critical roles in virtually every cellular process, particularly determination of cell fate in development and regulation of the cell cycle. Although it has long been known that miRNAs bind to mRNAs to trigger translational repression and degradation, there had bee...

  15. A Repressed Soul: An Analysis of Louise Bentley

    Institute of Scientific and Technical Information of China (English)

    孟子艳

    2008-01-01

    Louise Bentley, one of the grotesques in Winesburg Ohio, turns to be neurotic under the long-term repression in a patriarchal environment. Growing up in the negligence of her father and without a mother figure, Louise is starved of love in her childhood. Her father' s attitudes towards her turns to be a traumatic experience in her unconscious;later in her life, she fails to be a loving mother. With repeated failure of communication with others, with desires and thoughts throws her into the abyss of isolation and loneliness.

  16. Blood-Brain Glucose Transfer: Repression in Chronic Hyperglycemia

    Science.gov (United States)

    Gjedde, Albert; Crone, Christian

    1981-10-01

    Diabetic patients with increased plasma glucose concentrations may develop cerebral symptoms of hypoglycemia when their plasma glucose is rapidly lowered to normal concentrations. The symptoms may indicate insufficient transport of glucose from blood to brain. In rats with chronic hyperglycemia the maximum glucose transport capacity of the blood-brain barrier decreased from 400 to 290 micromoles per 100 grams per minute. When plasma glucose was lowered to normal values, the glucose transport rate into brain was 20 percent below normal. This suggests that repressive changes of the glucose transport mechanism occur in brain endothelial cells in response to increased plasma glucose.

  17. Proline and Abscisic Acid Content in Droughted Corn Plant Inoculated with Azospirillum sp. and Arbuscular Mycorrhizae Fungi

    Directory of Open Access Journals (Sweden)

    NOVRI YOULA KANDOWANGKO

    2009-03-01

    Full Text Available Plants that undergo drought stress perform a physiological response such as accumulation of proline in the leaves and increased content abscisic acid. A research was conducted to study proline and abscisic acid (ABA content on drought-stressed corn plant with Azospirillum sp. and arbuscular mycorrhizae fungi (AMF inoculated at inceptisol soil from Bogor, West Java. The experiments were carried out in a green house from June up to September 2003, using a factorial randomized block design. In pot experiments, two factors were assigned, i.e. inoculation with Azospirillum (0, 0.50, 1.00, 1.50 ml/pot and inoculation with AMF Glomus manihotis (0, 12.50, 25.00, 37.50 g/pot. The plants were observed during tasseling up to seed filling periods. Results of experiments showed that the interaction between Azospirillum sp. and AMF was synergistically increased proline, however it decreased ABA.

  18. Insight into 2α-Chloro-2‧(2‧,6‧)-(Di)Halogenopicropodophyllotoxins Reacting with Carboxylic Acids Mediated by BF3·Et2O

    Science.gov (United States)

    Fan, Lingling; Zhi, Xiaoyan; Che, Zhiping; Xu, Hui

    2015-11-01

    Stereospecific nucleophilic substitution at the C-4α position of 2α-chloro-2‧(2‧,6‧)-(di)halogenopicropodophyllotoxin derivatives with carboxylic acids mediated by BF3·Et2O was described. Interestingly, this stereoselective products were completely controlled by the reaction time. That is, if the reaction time was prolonged to 24.5-31 h, the resulting compounds were all transformed into the unusual C-ring aromatization products. Additionally, it demonstrated that BF3·Et2O and reaction temperature were the important factors for C-ring aromatization, and AlCl3 could be substituted for BF3·Et2O as a lewis acid for C-ring aromatization. Halogenation of E-ring of 2β-chloropodophyllotoxins with NCS or NBS also led to the same C-ring aromatization compounds. Especially compounds 5c, 6g and 7b exhibited insecticidal activity equal to that of toosendanin.

  19. Insight into 2α-Chloro-2'(2',6')-(Di)Halogenopicropodophyllotoxins Reacting with Carboxylic Acids Mediated by BF3·Et2O.

    Science.gov (United States)

    Fan, Lingling; Zhi, Xiaoyan; Che, Zhiping; Xu, Hui

    2015-01-01

    Stereospecific nucleophilic substitution at the C-4α position of 2α-chloro-2'(2',6')-(di)halogenopicropodophyllotoxin derivatives with carboxylic acids mediated by BF3·Et2O was described. Interestingly, this stereoselective products were completely controlled by the reaction time. That is, if the reaction time was prolonged to 24.5-31 h, the resulting compounds were all transformed into the unusual C-ring aromatization products. Additionally, it demonstrated that BF3·Et2O and reaction temperature were the important factors for C-ring aromatization, and AlCl3 could be substituted for BF3·Et2O as a lewis acid for C-ring aromatization. Halogenation of E-ring of 2β-chloropodophyllotoxins with NCS or NBS also led to the same C-ring aromatization compounds. Especially compounds 5c, 6g and 7b exhibited insecticidal activity equal to that of toosendanin. PMID:26573374

  20. Ascorbic acid and reactive oxygen species are involved in the inhibition of seed germination by abscisic acid in rice seeds

    OpenAIRE

    Ye, Nenghui; Zhu, Guohui; Liu, Yinggao; Zhang, Aying; Li, Yingxuan; Liu, Rui; Shi, Lu; Jia, Liguo; Zhang, Jianhua

    2011-01-01

    The antagonism between abscisic acid (ABA) and gibberellin (GA) plays a key role in controlling seed germination, but the mechanism of antagonism during this process is not known. The possible links among ABA, reactive oxygen species (ROS), ascorbic acid (ASC), and GA during rice seed germination were investigated. Unlike in non-seed tissues where ROS production is increased by ABA, ABA reduced ROS production in imbibed rice seeds, especially in the embryo region. Such reduced ROS also led to...

  1. Antagonism between abscisic acid and gibberellins is partially mediated by ascorbic acid during seed germination in rice

    OpenAIRE

    Ye, Nenghui; Zhang, Jianhua

    2012-01-01

    The antagonism between abscisic acid (ABA) and gibberellin (GA) plays a key role in controlling seed germination,1,2 but the mechanism of antagonism during this process is not known. In the associated study,3 we investigated the relationship among ABA, reactive oxygen species (ROS), ascorbic acid (ASC) and GA during rice seed germination. ROS production is reduced by ABA, which hence results in decreasing ASC accumulation during imbibition. GA accumulation was also suppressed by a reduced ROS...

  2. Foliar abscisic acid-to-ethylene accumulation and response regulate shoot growth sensitivity to mild drought in wheat

    OpenAIRE

    Valluru, Ravi; Davies, William John; Reynolds, Matthew; Dodd, Ian Charles

    2016-01-01

    Although, plant hormones play an important role in adjusting growth in response to environmental perturbation, the relative contributions of abscisic acid (ABA) and ethylene remain elusive. Using six spring wheat genotypes differing for stress tolerance, we show that young seedlings of the drought-tolerant (DT) group maintained or increased shoot dry weight (SDW) while the drought-susceptible (DS) group decreased SDW in response to mild drought. Both the DT and DS groups increased endogenous ...

  3. Foliar abscisic acid-to-ethylene accumulation and response regulate shoot growth sensitivity to mild drought in wheat

    OpenAIRE

    Ravi eValluru; William J eDavies; Matthew P eReynolds; Ian C eDodd

    2016-01-01

    Although plant hormones play an important role in adjusting growth in response to environmental perturbation, the relative contributions of abscisic acid (ABA) and ethylene remain elusive. Using six spring wheat genotypes differing for stress tolerance, we show that young seedlings of the drought-tolerant (DT) group maintained or increased shoot dry weight (SDW) while the drought-susceptible (DS) group decreased SDW in response to mild drought. Both the DT and DS groups increased endogenous A...

  4. Exogenous application of abscisic acid may improve the growth and yield of sunflower hybrids under drought

    International Nuclear Information System (INIS)

    Sunflower genotypes perform differently under different water regimes. Drought stress at various growth stages drastically reduces the growth, development and yield of sunflower hybrids. However, exogenous application of abscisic acid helps in mitigating drought stress by improving growth, development and yield of sunflower. In the present study, three sunflower hybrids viz. DK-4040 (large stature), S-278 (medium stature) and SF-187 (short stature) were exposed to varied irrigation regimes and abscisic acid application schedule i.e. T1: four irrigations with schedule (25DAS, at bud, flower initiation and at achene formation) and with no ABA spray,T/sub 2/: three irrigations with schedule (25DAS, at flower initiation and at achene formation) and with no ABA spray, T/sub 3/: three irrigations with schedule (25DAS, at flower initiation and at achene formation) and with 8 mu MABA spray at bud initiation, T/sub 4/: three irrigations with schedule (25DAS, at bud initiation and at achene formation) and with no ABA spray, T/sub 5/: three irrigations with schedule (25DAS, at bud initiation and at achene formation) and with 8 mu M ABA spray at flower initiation. Experiment was laid out in Randomized Complete Design with factorial arrangement having three replications. ABA application at bud or at flower initiation under drought stress helped in mitigating the detrimental effects by improving growth and yield of sunflower hybrids. Enhancement in drought tolerance of sunflower genotypes was better when ABA was applied at bud initiation stage than that of at flower initiation stage under drought. Improvements in head diameter, achenes per head, 1000-achene weight, achene yield, oil yield, biological yield, harvest index, leaf area index and crop growth rate was recorded. Sunflower hybrid DK-4040 showed more improvement in drought tolerance byfoliar application of ABA under water deficit stress than that of the SF-187 and S-278. It is suggested that sunflower hybrid DK 4040

  5. Role of abscisic acid (aba) in modulating the responses of two apple rootstocks to drought stress

    International Nuclear Information System (INIS)

    Drought stress is considered as the main limiting factor for apple (Malus domestica L.) production in some semi-arid areas of China. In this study, we investigated the modulation role of abscisic acid (ABA) and fluridone (ABA synthesis inhibitor) on water relations and antioxidant enzyme system in 2-year-old seedlings of two apple rootstocks i.e. Malus sieversii (Ledeb.) Roem. (MS) and Malus hupehensis (Pamp.) Rehd. (MH). Drought stress induced ion leakage, accumulation of malondiadehyde (MDA) and decreases in leaf water potential and relative water content (RWC) in both rootstocks, which were significantly alleviated by exogenous ABA application. Drought stress also induced markedly increases in endogenous ABA content and activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), monodehydroascorbate reductase (MDHAR), and glutathione reductase (GR), to a greater magnitude in MS as compared to MH rootstock. Concentration of 100 mol/L and 50 mol/L ABA had the most positive effects on drought-stressed rootstocks of MS and MH, respectively. Spraying optimum exogenous ABA contributed to enhancement in most of the above antioxidant enzymes activities but reduction in content of MDA and maintained the appropriate leaf water potential and RWC in both rootstocks. Pretreatment with fluridone aggravated ion leakage and the accumulation of MDA in two apple rootstocks under drought stress, which was overcome by exogenous ABA application to some extent. In conclusion, the endogenous ABA was probably involved in the regulation of two apple rootstocks in responses to drought stress. (author)

  6. Role of Soybean GmbZIP132 under Abscisic Acid and Salt Stresses

    Institute of Scientific and Technical Information of China (English)

    Yong Liao; Jin-Song Zhang; Shou-Yi Chen; Wan-Ke Zhang

    2008-01-01

    Plant basic-leucina zipper (bZIP) transcription factors play important roles in many biological processes. In the present study, a bZIP gene, GmbZIP132, was cloned from soybean and its biological function under abiotic stresses was studied. The transcription of GmbZIP132 was Induced by drought and high salt treatments. Among all of the organs analyzed, its expression was the highest in cotyUedon and stems. GmbZIP132 could weakly bind to the GCN4-1ika motif (GLM) (5'-GTGAGTCAT-3') In yeast one-hybrid assay. Compared with wild-type (WT) Arabidopsis plants, transgenic plants overexpressing GmbZIP132 showed reduced abscisic acid sensitivity and increased water loss rate. At the stage of germination, transgenic plants were more tolerant to salt treatment than wild-type plants. The expression of some abiotic stress-related genes, such as rd29B, DREB2A, and PSCS, were upregulatsd in the transgenic plants. These results indicated that GmbZIP132 was an abiotic atress-related gene, and its overexpression could increase the salt tolerance of transgenic Arabidopsis plants dudng germination, yet no significant difference of tolerance to abiotic stresses was found between transgenic and wild type plants at the seedling stage.

  7. Production of Polyamines Is Enhanced by Endogenous Abscisic Acid in Maize Seedlings Subjected to Salt Stress

    Institute of Scientific and Technical Information of China (English)

    Jun LIU; Ming-Yi JIANG; Yi-Feng ZHOU; You-Liang LIU

    2005-01-01

    It is known that salt stress and exogenously applied abscisic acid (ABA) can enhance the polyamine content in plants and that salt stress itself can lead to an increase in endogenous ABA production.In the present study, the relationships between salt-induced ABA and polyamine accumulation were investigated using ABA-deficient mutant (vp5/vp5) maize (Zea mays L.) seedlings and ABA and polyamine :biosynthesis inhibitors. The results show that reduced endogenous ABA levels, as a result of either the mutation or by using a chemical inhibitor (sodium tungstate), also reduced the accumulation of polyamines in salt-stressed leaves of maize seedlings. The polyamine synthesis inhibitors D-arginine and αdifluoromethylornithine also reduced the polyamine content of the leaves of maize seedling under salt stress. Both ABA and polyamine enhanced the dry weight accumulation of salt-stressed seedlings and also increased the activities of the two dominant tonoplast membrane enzymes, H+-ATPase and H+-PPase, when plants were under salt stress. The results suggest that salt stress induces an increase in endogenous ABA levels, which then enhances polyamine synthesis. Such responses may increase a plant's tolerance to salt.

  8. K-channels inhibited by hydrogen peroxide mediate abscisic acid signaling in Vicia guard cells

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A number of studies show that environmental stress conditions increase abscisic acid (ABA) and hydrogen peroxide (H2O2) levels in plant cells. Despite this central role of ABA in altering stomatal aperture by regulating guard cell ion transport, little is known concerning the relationship between ABA and H2O2 in signal transduction leading to stomatal movement. Epidermal strip bioassay illustrated that ABA-inhibited stomatal opening and ABA-induced stomatal closure were abolished partly by externally added catalase (CAT) or diphenylene iodonium (DPI), which are a H2O2 scavenger and a NADPH oxidase inhibitor respectively. In contrast, internally added CAT or DPI nearly completely or partly reversed ABA-induced closure in half-stoma. Consistent with these results, whole-cell patch-clamp analysis showed that intracellular application of CAT or DPI partly abolished ABA-inhibited inward K+ current across the plasma membrane of guard cells. H2O2 mimicked ABA to inhibit inward K+ current, an effect which was reversed by the addition of ascorbic acid (Vc) in patch clamping micropipettes. These results suggested that H2O2 mediated ABA-induced stomatal movement by targeting inward K+ channels at plasma membrane.

  9. A gate-latch-lock mechanism for hormone signalling by abscisic acid receptors

    KAUST Repository

    Melcher, Karsten

    2009-12-03

    Abscisic acid (ABA) is a ubiquitous hormone that regulates plant growth, development and responses to environmental stresses. Its action is mediated by the PYR/PYL/RCAR family of START proteins, but it remains unclear how these receptors bind ABA and, in turn, how hormone binding leads to inhibition of the downstream type 2C protein phosphatase (PP2C) effectors. Here we report crystal structures of apo and ABA-bound receptors as well as a ternary PYL2-ABA-PP2C complex. The apo receptors contain an open ligand-binding pocket flanked by a gate that closes in response to ABA by way of conformational changes in two highly conserved ?-loops that serve as a gate and latch. Moreover, ABA-induced closure of the gate creates a surface that enables the receptor to dock into and competitively inhibit the PP2C active site. A conserved tryptophan in the PP2C inserts directly between the gate and latch, which functions to further lock the receptor in a closed conformation. Together, our results identify a conserved gate-latch-lock mechanism underlying ABA signalling. © 2009 Macmillan Publishers Limited. All rights reserved.

  10. Growth, Gas Exchange, Abscisic Acid, and Calmodulin Response to Salt Stress in Three Poplars

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In the present study, we investigated the effects of increasing salinity on growth, gas exchange, abscisic acid(ABA), calmodulin (CAM), and the relevance to salt tolerance in seedlings of Populus euphratica Oliv. and cuttings of P. "pupularis 35-44" (P. popularis) and P. x euramericana cv. 1-214 (P. cv. Italica). The relative growth rates of shoot height (RGRH) for P. cv. Italica and P. popularis were severely reduced by increasing salt stress,whereas the growth reduction was relatively less in P. euphratica. Similarly, P. euphratica maintained higher net photosynthetic rates (Pn) and unit transpiration rates (TRN) than P. cv. Italica and P. popularis under conditions of higher salinity. Salinity caused a significant increase in leaf ABA and CaM in the three genotypes after the onset of stress, but NaCl-induced ABA and CaM accumulation was more pronounced in P. euphratica,suggesting that P. euphratica plants are more sensitive in sensing soil salinity than the other two poplars.Furthermore, P. euphratica maintained relatively higher ABA and CaM concentrations under conditions of high salinity. The higher capacity to synthesize stress signals, namely ABA and CaM, in P. euphratica and the contribution of this to the salt resistance of P. euphratica are discussed.

  11. Postharvest Exogenous Application of Abscisic Acid Reduces Internal Browning in Pineapple.

    Science.gov (United States)

    Zhang, Qin; Liu, Yulong; He, Congcong; Zhu, Shijiang

    2015-06-10

    Internal browning (IB) is a postharvest physiological disorder causing economic losses in pineapple, but there is no effective control measure. In this study, postharvest application of 380 μM abscisic acid (ABA) reduced IB incidence by 23.4-86.3% and maintained quality in pineapple fruit. ABA reduced phenolic contents and polyphenol oxidase and phenylalanine ammonia lyase activities; increased catalase and peroxidase activities; and decreased O2(·-), H2O2, and malondialdehyde levels. This suggests ABA could control IB through inhibiting phenolics biosynthesis and oxidation and enhancing antioxidant capability. Furthermore, the efficacy of IB control by ABA was not obviously affected by tungstate, ABA biosynthesis inhibitor, nor by diphenylene iodonium, NADPH oxidase inhibitor, nor by lanthanum chloride, calcium channel blocker, suggesting that ABA is sufficient for controlling IB. This process might not involve H2O2 generation, but could involve the Ca(2+) channels activation. These results provide potential for developing effective measures for controlling IB in pineapple. PMID:26007196

  12. Relative quantification of phosphoproteomic changes in grapevine (Vitis vinifera L.) leaves in response to abscisic acid

    Science.gov (United States)

    Rattanakan, Supakan; George, Iniga; Haynes, Paul A; Cramer, Grant R

    2016-01-01

    In a previous transcriptomic analysis, abscisic acid (ABA) was found to affect the abundance of a number of transcripts in leaves of Cabernet Sauvignon grapevines with roots that had been exposed to 10 μm ABA for 2 h. Other work has indicated that ABA affects protein abundance and protein phosphorylation as well. In this study we investigated changes in protein abundance and phosphorylation of Cabernet Sauvignon grapevine leaves. Protein abundance was assessed by both label-free and isobaric-label quantitive proteomic methods. Each identified common proteins, but also additional proteins not found with the other method. Overall, several thousand proteins were identified and several hundred were quantified. In addition, hundreds of phosphoproteins were identified. Tens of proteins were found to be affected in the leaf after the roots had been exposed to ABA for 2 h, more than half of them were phosphorylated proteins. Many phosphosites were confirmed and several new ones were identified. ABA increased the abundance of some proteins, but the majority of the proteins had their protein abundance decreased. Many of these proteins were involved in growth and plant organ development, including proteins involved in protein synthesis, photosynthesis, sugar and amino-acid metabolism. This study provides new insights into how ABA regulates plant responses and acclimation to water deficits. PMID:27366326

  13. Microarray Analysis of Transcriptional Responses to Abscisic Acid and Salt Stress in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Yucheng Wang

    2013-05-01

    Full Text Available Abscisic acid (ABA plays a crucial role in plant responses to abiotic stress. To investigate differences in plant responses to salt and ABA stimulus, differences in gene expression in Arabidopsis in response to salt and ABA were compared using an Agilent oligo microarray. A total of 144 and 139 genes were significantly up- and downregulated, respectively, under NaCl stress, while 406 and 381 genes were significantly up- and downregulated, respectively, under ABA stress conditions. In addition, 31 genes were upregulated by both NaCl and ABA stresses, and 23 genes were downregulated by these stressors, suggesting that these genes may play similar roles in plant responses to salt and ABA stress. Gene ontology (GO analysis revealed four subgroups of genes, including genes in the GO categories “Molecular transducer activity”, “Growth”, “Biological adhesion” and “Pigmentation”, which were expressed in response to ABA stress but not NaCl stress. In addition, genes that play specific roles during salt or ABA stress were identified. Our results may help elucidate differences in the response of plants to salt and ABA stress.

  14. Abscisic Acid Movement into the Apoplastic solution of Water-Stressed Cotton Leaves

    Science.gov (United States)

    Hartung, Wolfram; Radin, John W.; Hendrix, Donald L.

    1988-01-01

    Leaves of cotton (Gossypium hirsutum L.) were subjected to overpressures in a pressure chamber, and the exuded sap was collected and analyzed. The exudate contained low concentrations of solutes that were abundant in total leaf extracts, and photosynthetic rates and stomatal conductance were completely unaffected by a cycle of pressurization and rehydration. These criteria and others indicate that the experimental techniques inflicted no damage upon the leaf cells. The pH and abscisic acid (ABA) content of the apoplastic fluid both increased greatly with pressure-induced dehydration. Although ABA concentrations did not reach a steady state, the peak levels were above 1 micromolar, an order of magnitude greater than bulk ABA concentrations of the leaf blades. Treatment of leaves with fusicoccin decreased the K+ concentration, greatly reduced the pH rise, and completely eliminated the increase in ABA in the apoplast upon dehydration. When water-stressed leaves were pressurized, the pH of the exuded sap was increased by 0.2 units per 1 megapascal decrease in initial leaf water potential. Buffer capacity of the sap was least in the pH range of interest (6.5-7.5), allowing extremely small changes in H+ fluxes to create large changes in apoplastic pH. The data indicate that dehydration causes large changes in apoplastic pH, perhaps by effects on ATPases; the altered pH then enhances the release of ABA from mesophyll cells into the apoplastic fluid. PMID:16666007

  15. Proanthocyanidins Inhibit Seed Germination by Maintaining a High Level of Abscisic Acid in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Liguo Jia; Jianhua Zhang; Qiuyu Wu; Nenghui Ye; Rui Liu; Lu Shi; Weifeng Xu; Hui Zhi; A. N. M. Rubaiyath Bin Rahman; Yiji Xia

    2012-01-01

    Proanthocyanidins (PAs) are the main products of the flavonoid biosynthetic pathway in seeds,but their biological function during seed germination is still unclear.We observed that seed germination is delayed with the increase of exogenous PA concentration in Arabidopsis.A similar inhibitory effect occurred in peeled Brassica napus seeds,which was observed by measuring radicle elongation.Using abscisic acid (ABA),a biosynthetic and metabolic inhibitor,and gene expression analysis by real-time polymerase chain reaction,we found that the inhibitory effect of PAs on seed germination is due to their promotion of ABA via de novo biogenesis,rather than by any inhibition of its degradation.Consistent with the relationship between PA content and ABA accumulation in seeds,PA-deficient mutants maintain a lower level of ABA compared with wild-types during germination.Our data suggest that PA distribution in the seed coat can act as a doorkeeper to seed germination.PA regulation of seed germination is mediated by the ABA signaling pathway.

  16. Osmotic stress, endogenous abscisic acid and the control of leaf morphology in Hippuris vulgaris L

    Science.gov (United States)

    Goliber, T. E.; Feldman, L. J.

    1989-01-01

    Previous reports indicate that heterophyllous aquatic plants can be induced to form aerial-type leaves on submerged shoots when they are grown in exogenous abscisic acid (ABA). This study reports on the relationship between osmotic stress (e.g. the situation encountered by a shoot tip when it grows above the water surface), endogenous ABA (as measured by gas chromatography-electron capture detector) and leaf morphology in the heterophyllous aquatic plant, Hippuris vulgaris. Free ABA could not be detected in submerged shoots of H. vulgaris but in aerial shoots ABA occurred at ca. 40 ng (g fr wt)-1. When submerged shoots were osmotically stressed ABA appeared at levels of 26 to 40 ng (g fr wt)-1. These and other data support two main conclusions: (1) Osmotically stressing a submerged shoot causes the appearance of detectable levels of ABA. (2) The rise of ABA in osmotically stressed submerged shoots in turn induces a change in leaf morphology from the submerged to the aerial form. This corroborates the hypothesis that, in the natural environment, ABA levels rise in response to the osmotic stress encountered when a submerged shoot grows up through the water/air interface and that the increased ABA leads to the production of aerial-type leaves.

  17. The Arabidopsis LYST INTERACTING PROTEIN 5 Acts in Regulating Abscisic Acid Signaling and Drought Response.

    Science.gov (United States)

    Xia, Zongliang; Huo, Yongjin; Wei, Yangyang; Chen, Qiansi; Xu, Ziwei; Zhang, Wei

    2016-01-01

    Multivesicular bodies (MVBs) are unique endosomes containing vesicles in the lumens and play essential roles in many eukaryotic cellular processes. The Arabidopsis LYST INTERACTING PROTEIN 5 (LIP5), a positive regulator of MVB biogenesis, has critical roles in biotic and abiotic stress responses. However, whether the abscisic acid (ABA) signaling is involved in LIP5-mediated stress response is largely unknown. Here, we report that LIP5 functions in regulating ABA signaling and drought response in Arabidopsis. Analyses of a LIP5 promoter-β-glucuronidase (GUS) construct revealed substantial GUS activity in whole seedlings. The expression of LIP5 was induced by ABA and drought, and overexpression of LIP5 led to ABA hypersensitivity, enhanced stomatal closure, reduced water loss, and, therefore, increased drought tolerance. On the contrary, LIP5 knockdown mutants showed ABA-insensitive phenotypes and reduced drought tolerance; suggesting that LIP5 acts in regulating ABA response. Further analysis using a fluorescent dye revealed that ABA and water stress induced cell endocytosis or vesicle trafficking in a largely LIP5-dependent manner. Furthermore, expression of several drought- or ABA-inducible marker genes was significantly down-regulated in the lip5 mutant seedlings. Collectively, our data suggest that LIP5 positively regulates drought tolerance through ABA-mediated cell signaling. PMID:27313589

  18. Abscisic acid - an overlooked player in plant-microbe symbioses formation?

    Science.gov (United States)

    Stec, Natalia; Banasiak, Joanna; Jasiński, Michał

    2016-01-01

    Abscisic acid (ABA) is an ubiquitous plant hormone and one of the foremost signalling molecules, controlling plants' growth and development, as well as their response to environmental stresses. To date, the function of ABA has been extensively investigated as an abiotic stress molecule which regulates the plants' water status. However, in the context of symbiotic associations, ABA is less recognized. In contrast to well-described auxin/cytokinin and gibberellin/strigolactone involvement in symbioses, ABA has long been underestimated. Interestingly, ABA emerges as an important player in arbuscular mycorrhiza and legume-rhizobium symbiosis. The plant's use of stress hormones like ABA in regulation of those interactions directly links the efficiency of these processes to the environmental status of the plant, notably during drought stress. Here we provide an overview of ABA interplay in beneficial associations of plants with microorganisms and propose ABA as a potential factor determining whether the investment in establishing the interaction is higher than the profit coming from it. PMID:26828669

  19. Agrochemical control of plant water use using engineered abscisic acid receptors.

    Science.gov (United States)

    Park, Sang-Youl; Peterson, Francis C; Mosquna, Assaf; Yao, Jin; Volkman, Brian F; Cutler, Sean R

    2015-04-23

    Rising temperatures and lessening fresh water supplies are threatening agricultural productivity and have motivated efforts to improve plant water use and drought tolerance. During water deficit, plants produce elevated levels of abscisic acid (ABA), which improves water consumption and stress tolerance by controlling guard cell aperture and other protective responses. One attractive strategy for controlling water use is to develop compounds that activate ABA receptors, but agonists approved for use have yet to be developed. In principle, an engineered ABA receptor that can be activated by an existing agrochemical could achieve this goal. Here we describe a variant of the ABA receptor PYRABACTIN RESISTANCE 1 (PYR1) that possesses nanomolar sensitivity to the agrochemical mandipropamid and demonstrate its efficacy for controlling ABA responses and drought tolerance in transgenic plants. Furthermore, crystallographic studies provide a mechanistic basis for its activity and demonstrate the relative ease with which the PYR1 ligand-binding pocket can be altered to accommodate new ligands. Thus, we have successfully repurposed an agrochemical for a new application using receptor engineering. We anticipate that this strategy will be applied to other plant receptors and represents a new avenue for crop improvement. PMID:25652827

  20. Prediction and Validation of Promoters Involved in the Abscisic Acid Response in Physcomitrella patens

    Institute of Scientific and Technical Information of China (English)

    Gerrit Timmerhaus; Sebastian T.Hanke; Karl Buchta; Stefan A. Rensing

    2011-01-01

    Detection of cis-regulatory elements, such as transcription factor binding sites (TFBS), through utilization of ortholog conservation is possible only if genomic data from closely related organisms are available. An alternative ap-proach is the detection of TFBS based on their overrepresentation in promoters of co-regulated genes. However, this ap-proach usually suffers from a high rate of false-positive prediction. Here, we have conducted a case study using promoters of genes known to be strongly induced by the phytohormone abscisic acid (ABA)in the model plant Physcornitrella patens,a moss. Putative TFBS were detected using three de novo motif detection tools in a strict consensus approach. The resulting motifs were validated using data from microarray expression profiling and were able to predict ABA-induced genes with high specificity (90.48%)at mediocre sensitivity (33.33%). In addition, 27 genes predicted to contain ABA-responsive TFBS were validated using real-time PCR. Here, a total of 37% of the genes could be shown to be induced upon ABA treatment,while 70% were found to be regulated by ABA. We conclude that the consensus approach for motif detection using co-regulation information can be used to identify genes that are regulated under a given stimulus. In terms of evolution, we find that the ABA response has apparently been conserved since the first land plants on the level of families involved in transcriptional regulation.

  1. A gate-latch-lock mechanism for hormone signalling by abscisic acid receptors

    Energy Technology Data Exchange (ETDEWEB)

    Melcher, Karsten; Ng, Ley-Moy; Zhou, X Edward; Soon, Fen-Fen; Xu, Yong; Suino-Powell, Kelly M; Park, Sang-Youl; Weiner, Joshua J; Fujii, Hiroaki; Chinnusamy, Viswanathan; Kovach, Amanda; Li, Jun; Wang, Yonghong; Li, Jiayang; Peterson, Francis C; Jensen, Davin R; Yong, Eu-Leong; Volkman, Brian F; Cutler, Sean R; Zhu, Jian-Kang; Xu, H Eric; (NU Sinapore); (Van Andel); (MCW); (UCR); (Chinese Aca. Sci.)

    2010-01-12

    Abscisic acid (ABA) is a ubiquitous hormone that regulates plant growth, development and responses to environmental stresses. Its action is mediated by the PYR/PYL/RCAR family of START proteins, but it remains unclear how these receptors bind ABA and, in turn, how hormone binding leads to inhibition of the downstream type 2C protein phosphatase (PP2C) effectors. Here we report crystal structures of apo and ABA-bound receptors as well as a ternary PYL2-ABA-PP2C complex. The apo receptors contain an open ligand-binding pocket flanked by a gate that closes in response to ABA by way of conformational changes in two highly conserved β-loops that serve as a gate and latch. Moreover, ABA-induced closure of the gate creates a surface that enables the receptor to dock into and competitively inhibit the PP2C active site. A conserved tryptophan in the PP2C inserts directly between the gate and latch, which functions to further lock the receptor in a closed conformation. Together, our results identify a conserved gate-latch-lock mechanism underlying ABA signalling.

  2. Phenolic compounds in juice of “Isabel” grape treated with abscisic acid for color improvement

    Directory of Open Access Journals (Sweden)

    Yamamoto Lilian Yukari

    2015-01-01

    Full Text Available Isabel grape is the main cultivar used to produce juice in Brazil, which has rusticity and high productivity, but it is deficient in anthocyanins, a pigment responsible for the color. Thus, an alternative is the application of abscisic acid (S-ABA, which is responsible to promote the synthesis of anthocyanins. The aim of this work was to evaluate the phenolic compounds composition in “Isabel” grape juice treated with S-ABA, by HPLC-DAD–ESI-MS/MS technique. The results showed the increasing in total anthocyanin concentration in juices, with S-ABA treatments, as well as the proportion of B-ring tri-substituted anthocyanidins. Regarding total flavonols, differences were only significant in juices obtained in 2012 season. S-ABA treatments did not significantly affect the hydroxycinnamic acid derivatives, flavan-3-ols, resveratrol and antioxidant capacity of juices. Juice from “Isabel” grapes treated with S-ABA provides an enhancement of total anthocyanin concentration, mainly when grapes are treated before or at the onset of véraison.

  3. Exogenous Abscisic Acid and Gibberellic Acid Elicit Opposing Effects on Fusarium graminearum Infection in Wheat.

    Science.gov (United States)

    Buhrow, Leann M; Cram, Dustin; Tulpan, Dan; Foroud, Nora A; Loewen, Michele C

    2016-09-01

    Although the roles of salicylate (SA) and jasmonic acid (JA) have been well-characterized in Fusarium head blight (FHB)-infected cereals, the roles of other phytohormones remain more ambiguous. Here, the association between an array of phytohormones and FHB pathogenesis in wheat is investigated. Comprehensive profiling of endogenous hormones demonstrated altered cytokinin, gibberellic acid (GA), and JA metabolism in a FHB-resistant cultivar, whereas challenge by Fusarium graminearum increased abscisic acid (ABA), JA, and SA in both FHB-susceptible and -resistant cultivars. Subsequent investigation of ABA or GA coapplication with fungal challenge increased and decreased FHB spread, respectively. These phytohormones-induced effects may be attributed to alteration of the F. graminearum transcriptome because ABA promoted expression of early-infection genes, including hydrolases and cytoskeletal reorganization genes, while GA suppressed nitrogen metabolic gene expression. Neither ABA nor GA elicited significant effects on F. graminearum fungal growth or sporulation in axenic conditions, nor do these phytohormones affect trichothecene gene expression, deoxynivalenol mycotoxin accumulation, or SA/JA biosynthesis in F. graminearum-challenged wheat spikes. Finally, the combined application of GA and paclobutrazol, a Fusarium fungicide, provided additive effects on reducing FHB severity, highlighting the potential for combining fungicidal agents with select phytohormone-related treatments for management of FHB infection in wheat. PMID:27135677

  4. Hydrogen peroxide modulates abscisic acid signaling in root growth and development in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    BAI Ling; ZHOU Yun; ZHANG XiaoRan; SONG ChunPeng; Gao MingQing

    2007-01-01

    Exogenous abscisic acid (ABA) can inhibit root growth and promote formation of more root hairs in the root tip of Arabidopsis. However, the molecular mechanisms that underlie root ABA signaling are largely unknown. We report here that hydrogen peroxide (H2O2) reduces the root growth of wild type,and the phenotype of H2O2 on the root growth is similar to ABA response. Meanwhile ABA-induced changes in the morphology of root system can be partly reversed by ascorbic acid in wild type and abolished in NADPH oxidase defective mutant atrbohF and atrbohC. Further, ABA can induce H2O2 accumulation in the root cells and enhance transcription level of OXI1, which is necessary for many more AOS-dependent processes such as root hair growth in Arabidopsis. Our results suggest that H2O2 as an important signal molecule is required for the ABA-regulated root growth and development in Arabidopsis.

  5. Heat-stable proteins and abscisic acid action in barley aleurone cells

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, J.V. (CSIRO, Canberra (Australia)); Shaw, D.C. (Australian National Univ., Canberra (Australia))

    1989-12-01

    ({sup 35}S)Methionine labeling experiments showed that abscisic acid (ABA) induced the synthesis of at least 25 polypeptides in mature barley (Hordeum vulgare) aleurone cells. The polypeptides were not secreted. Whereas most of the proteins extracted from aleurone cells were coagulated by heating to 100{degree}C for 10 minutes, most of the ABA-induced polypeptides remained in solution (heat-stable). ABA had little effect on the spectrum of polypeptides that were synthesized and secreted by aleurone cells, and most of these secreted polypeptides were also heat-stable. Coomassie blue staining of sodium dodecyl sulfate polyacrylamide gels indicated that ABA-induced polypeptides already occurred in high amounts in mature aleurone layers having accumulated during grain development. About 60% of the total protein extracted from mature aleurone was heat stable. Amino acid analyses of total preparations of heat-stable and heat-labile proteins showed that, compared to heat-labile proteins, heat-stable intracellular proteins were characterized by higher glutamic acid/glutamine (Glx) and glycine levels and lower levels of neutral amino acids. Secreted heat-stable proteins were rich in Glx and proline. The possibilities that the accumulation of the heat-stable polypeptides during grain development is controlled by ABA and that the function of these polypeptides is related to their abundance and extraordinary heat stability are considered.

  6. Control of macaw palm seed germination by the gibberellin/abscisic acid balance.

    Science.gov (United States)

    Bicalho, E M; Pintó-Marijuan, M; Morales, M; Müller, M; Munné-Bosch, S; Garcia, Q S

    2015-09-01

    The hormonal mechanisms involved in palm seed germination are not fully understood. To better understand how germination is regulated in Arecaceae, we used macaw palm (Acrocomia aculeata (Jacq.) Lodd. Ex Mart.) seed as a model. Endogenous hormone concentrations, tocopherol and tocotrienol and lipid peroxidation during germination were studied separately in the embryo and endosperm. Evaluations were performed in dry (D), imbibed (I), germinated (G) and non-germinated (NG) seeds treated (+GA3 ) or not treated (control) with gibberellins (GA). With GA3 treatment, seeds germinated faster and to a higher percentage than control seeds. The +GA3 treatment increased total bioactive GA in the embryo during germination relative to the control. Abscisic acid (ABA) concentrations decreased gradually from D to G in both tissues. Embryos of G seeds had a lower ABA content than NG seeds in both treatments. The GA/ABA ratio in the embryo was significantly higher in G than NG seeds. The +GA3 treatment did not significantly affect the GA/ABA ratio in either treatment. Cytokinin content increased from dry to germinated seeds. Jasmonic acid (JA) increased and 1-aminocyclopropane-1-carboylic acid (ACC) decreased after imbibition. In addition, α-tocopherol and α-tocotrienol decreased, while lipid peroxidation increased in the embryo during germination. We conclude that germination in macaw palm seed involves reductions in ABA content and, consequently, increased GA/ABA in the embryo. Furthermore, the imbibition process generates oxidative stress (as observed by changes in vitamin E and MDA).

  7. The receptor kinase IMPAIRED OOMYCETE SUSCEPTIBILITY1 attenuates abscisic acid responses in Arabidopsis.

    Science.gov (United States)

    Hok, Sophie; Allasia, Valérie; Andrio, Emilie; Naessens, Elodie; Ribes, Elsa; Panabières, Franck; Attard, Agnès; Ris, Nicolas; Clément, Mathilde; Barlet, Xavier; Marco, Yves; Grill, Erwin; Eichmann, Ruth; Weis, Corina; Hückelhoven, Ralph; Ammon, Alexandra; Ludwig-Müller, Jutta; Voll, Lars M; Keller, Harald

    2014-11-01

    In plants, membrane-bound receptor kinases are essential for developmental processes, immune responses to pathogens and the establishment of symbiosis. We previously identified the Arabidopsis (Arabidopsis thaliana) receptor kinase IMPAIRED OOMYCETE SUSCEPTIBILITY1 (IOS1) as required for successful infection with the downy mildew pathogen Hyaloperonospora arabidopsidis. We report here that IOS1 is also required for full susceptibility of Arabidopsis to unrelated (hemi)biotrophic filamentous oomycete and fungal pathogens. Impaired susceptibility in the absence of IOS1 appeared to be independent of plant defense mechanism. Instead, we found that ios1-1 plants were hypersensitive to the plant hormone abscisic acid (ABA), displaying enhanced ABA-mediated inhibition of seed germination, root elongation, and stomatal opening. These findings suggest that IOS1 negatively regulates ABA signaling in Arabidopsis. The expression of ABA-sensitive COLD REGULATED and RESISTANCE TO DESICCATION genes was diminished in Arabidopsis during infection. This effect on ABA signaling was alleviated in the ios1-1 mutant background. Accordingly, ABA-insensitive and ABA-hypersensitive mutants were more susceptible and resistant to oomycete infection, respectively, showing that the intensity of ABA signaling affects the outcome of downy mildew disease. Taken together, our findings suggest that filamentous (hemi)biotrophs attenuate ABA signaling in Arabidopsis during the infection process and that IOS1 participates in this pathogen-mediated reprogramming of the host. PMID:25274985

  8. Interactions between ethylene, abscisic acid and cytokinin during germination and seedling establishment in Arabidopsis

    Indian Academy of Sciences (India)

    Veeraputhiran Subbiah; Karingu Janardhan Reddy

    2010-09-01

    In order to investigate the interaction of the plant hormones ethylene, abscisic acid (ABA) and cytokinin in seed germination and early seedling development, we studied germination in ethylene-related mutants of Arabidopsis. Mutations in the genes etr1 and ein2, which reduce ethylene responses, showed increased dormancy and a delay in germination in comparison with wild type. Mutations in etr1, ein2 and ein6 also resulted in increased sensitivity to ABA with respect to inhibition of germination. Conversely, mutations in ctr1 and eto3, which lead to an increased ethylene response and overproduction of ethylene, respectively, decreased sensitivity to ABA during germination. Increased ABA sensitivity was also effected in wild type seeds by the presence during germination of AgNO3, an inhibitor of ethylene action. The addition of the cytokinin N-6 benzyl adenine (BA) reversed the increased sensitivity of ethylene-resistant mutants to ABA. The action of cytokinin in reversing increased ABA sensitivity of ethylene-resistant mutants also suggests that at least part of the action of cytokinin in promoting germination is independent of its role in stimulating ethylene production. These observations further extend the evidence in support of interaction between ethylene, ABA and cytokinin signalling in controlling seed germination and early seedling development in Arabidopsis.

  9. The Dynamics of Embolism Refilling in Abscisic Acid (ABA-Deficient Tomato Plants

    Directory of Open Access Journals (Sweden)

    Francesca Secchi

    2012-12-01

    Full Text Available Plants are in danger of embolism formation in xylem vessels when the balance between water transport capacity and transpirational demand is compromised. To maintain this delicate balance, plants must regulate the rate of transpiration and, if necessary, restore water transport in embolized vessels. Abscisic acid (ABA is the dominant long-distance signal responsible for plant response to stress, and it is possible that it plays a role in the embolism/refilling cycle. To test this idea, a temporal analysis of embolism and refilling dynamics, transpiration rate and starch content was performed on ABA-deficient mutant tomato plants. ABA-deficient mutants were more vulnerable to embolism formation than wild-type plants, and application of exogenous ABA had no effect on vulnerability. However, mutant plants treated with exogenous ABA had lower stomatal conductance and reduced starch content in the xylem parenchyma cells. The lower starch content could have an indirect effect on the plant’s refilling activity. The results confirm that plants with high starch content (moderately stressed mutant plants were more likely to recover from loss of water transport capacity than plants with low starch content (mutant plants with application of exogenous ABA or plants experiencing severe water stress. This study demonstrates that ABA most likely does not play any direct role in embolism refilling, but through the modulation of carbohydrate content, it could influence the plant’s capacity for refilling.

  10. The Arabidopsis Vacuolar Sorting Receptor1 Is Required for Osmotic Stress-Induced Abscisic Acid Biosynthesis

    KAUST Repository

    Wang, Zhen-Yu

    2014-11-21

    Osmotic stress activates the biosynthesis of the phytohormone abscisic acid (ABA) through a pathway that is rate limited by the carotenoid cleavage enzyme 9-cis-epoxycarotenoid dioxygenase (NCED). To understand the signal transduction mechanism underlying the activation of ABA biosynthesis, we performed a forward genetic screen to isolate mutants defective in osmotic stress regulation of the NCED3 gene. Here, we identified the Arabidopsis (Arabidopsis thaliana) Vacuolar Sorting Receptor1 (VSR1) as a unique regulator of ABA biosynthesis. The vsr1 mutant not only shows increased sensitivity to osmotic stress, but also is defective in the feedback regulation of ABA biosynthesis by ABA. Further analysis revealed that vacuolar trafficking mediated by VSR1 is required for osmotic stress-responsive ABA biosynthesis and osmotic stress tolerance. Moreover, under osmotic stress conditions, the membrane potential, calcium flux, and vacuolar pH changes in the vsr1 mutant differ from those in the wild type. Given that manipulation of the intracellular pH is sufficient to modulate the expression of ABA biosynthesis genes, including NCED3, and ABA accumulation, we propose that intracellular pH changes caused by osmotic stress may play a signaling role in regulating ABA biosynthesis and that this regulation is dependent on functional VSR1.

  11. Salicylic acid antagonizes abscisic acid inhibition of shoot growth and cell cycle progression in rice

    Science.gov (United States)

    Meguro, Ayano; Sato, Yutaka

    2014-04-01

    We analysed effects of abscisic acid (ABA, a negative regulatory hormone), alone and in combination with positive or neutral hormones, including salicylic acid (SA), on rice growth and expression of cell cycle-related genes. ABA significantly inhibited shoot growth and induced expression of OsKRP4, OsKRP5, and OsKRP6. A yeast two-hybrid assay showed that OsKRP4, OsKRP5, and OsKRP6 interacted with OsCDKA;1 and/or OsCDKA;2. When SA was simultaneously supplied with ABA, the antagonistic effect of SA completely blocked ABA inhibition. SA also blocked ABA inhibition of DNA replication and thymidine incorporation in the shoot apical meristem. These results suggest that ABA arrests cell cycle progression by inducing expression of OsKRP4, OsKRP5, and OsKRP6, which inhibit the G1/S transition, and that SA antagonizes ABA by blocking expression of OsKRP genes.

  12. REST represses a subset of the pancreatic endocrine differentiation program

    DEFF Research Database (Denmark)

    Martin, David; Kim, Yung-Hae; Sever, Dror;

    2015-01-01

    To contribute to devise successful beta-cell differentiation strategies for the cure of Type 1 diabetes we sought to uncover barriers that restrict endocrine fate acquisition by studying the role of the transcriptional repressor REST in the developing pancreas. Rest expression is prevented...... in neurons and in endocrine cells, which is necessary for their normal function. During development, REST represses a subset of genes in the neuronal differentiation program and Rest is down-regulated as neurons differentiate. Here, we investigate the role of REST in the differentiation of pancreatic...... endocrine cells, which are molecularly close to neurons. We show that Rest is widely expressed in pancreas progenitors and that it is down-regulated in differentiated endocrine cells. Sustained expression of REST in Pdx1(+) progenitors impairs the differentiation of endocrine-committed Neurog3...

  13. Acid-Mediated N-H/α,β-C(sp(3))-H Trifunctionalization of Pyrrolidine: Intermolecular [3 + 2] Cycloaddition for the Construction of 2,3-Dihydro-1H-Pyrrolizine Derivatives.

    Science.gov (United States)

    Zheng, Kai-Lu; Shu, Wen-Ming; Ma, Jun-Rui; Wu, Yan-Dong; Wu, An-Xin

    2016-08-01

    A one-pot acid-mediated reaction has been developed for the N-H/α,β-C(sp(3))-H trifunctionalization of pyrrolidine without any metallic reagents or external oxidants. This reaction involves the intermolecular [3 + 2] cycloaddition of in situ-generated azomethine ylides with acrylic esters to provide facile access to 2,3-dihydro-1H-pyrrolizine derivatives in high yields under mild conditions. PMID:27396906

  14. A Hexose Transporter Homologue Controls Glucose Repression in the Methylotrophic Yeast Hansenula polymorpha

    NARCIS (Netherlands)

    Stasyk, Oleh V.; Stasyk, Olena G.; Komduur, Janet; Veenhuis, Marten; Cregg, James M.; Sibirny, Andrei A.

    2004-01-01

    Peroxisome biogenesis and synthesis of peroxisomal enzymes in the methylotrophic yeast Hansenula polymorpha are under the strict control of glucose repression. We identified an H. polymorpha glucose catabolite repression gene (HpGCR1) that encodes a hexose transporter homologue. Deficiency in GCR1 l

  15. JARID2 regulates binding of the Polycomb repressive complex 2 to target genes in ES cells

    DEFF Research Database (Denmark)

    Pasini, Diego; Cloos, Paul A C; Walfridsson, Julian;

    2010-01-01

    The Polycomb group (PcG) proteins have an important role in controlling the expression of genes essential for development, differentiation and maintenance of cell fates. The Polycomb repressive complex 2 (PRC2) is believed to regulate transcriptional repression by catalysing the di- and tri-methy...

  16. MYCN repression of Lifeguard/FAIM2 enhances neuroblastoma aggressiveness

    Science.gov (United States)

    Planells-Ferrer, L; Urresti, J; Soriano, A; Reix, S; Murphy, D M; Ferreres, J C; Borràs, F; Gallego, S; Stallings, R L; Moubarak, R S; Segura, M F; Comella, J X

    2014-01-01

    Neuroblastoma (NBL) is the most common solid tumor in infants and accounts for 15% of all pediatric cancer deaths. Several risk factors predict NBL outcome: age at the time of diagnosis, stage, chromosome alterations and MYCN (V-Myc Avian Myelocytomatosis Viral Oncogene Neuroblastoma-Derived Homolog) amplification, which characterizes the subset of the most aggressive NBLs with an overall survival below 30%. MYCN-amplified tumors develop exceptional chemoresistance and metastatic capacity. These properties have been linked to defects in the apoptotic machinery, either by silencing components of the extrinsic apoptotic pathway (e.g. caspase-8) or by overexpression of antiapoptotic regulators (e.g. Bcl-2, Mcl-1 or FLIP). Very little is known on the implication of death receptors and their antagonists in NBL. In this work, the expression levels of several death receptor antagonists were analyzed in multiple human NBL data sets. We report that Lifeguard (LFG/FAIM2 (Fas apoptosis inhibitory molecule 2)/NMP35) is downregulated in the most aggressive and undifferentiated tumors. Intringuingly, although LFG has been initially characterized as an antiapoptotic protein, we have found a new association with NBL differentiation. Moreover, LFG repression resulted in reduced cell adhesion, increased sphere growth and enhanced migration, thus conferring a higher metastatic capacity to NBL cells. Furthermore, LFG expression was found to be directly repressed by MYCN at the transcriptional level. Our data, which support a new functional role for a hitherto undiscovered MYCN target, provide a new link between MYCN overexpression and increased NBL metastatic properties. PMID:25188511

  17. Application time and concentrations of abscisic acid on the color development of ‘Isabel’ grapes

    Directory of Open Access Journals (Sweden)

    Renata Koyama

    2014-09-01

    Full Text Available The grape ‘Isabel’ main cultivar used for juice production in Brazil has a deficiency of coloring and an alternative is the application of abscisic acid (S-ABA, since the accumulation of anthocyanins, pigment that interferes in the color of berries, appears to be regulated by this growth regulator. The aim of this research was to evaluate the effect of different concentrations of S-ABA applied at different times in the clusters of ‘Isabel’ grapes to improve their color attributes. The vines were conducted in a vertical support structure, spaced 2 x 1 m in cordon. A randomized block design was used as a statistical model, with 4 replications and 5 treatments, as follows: control; S-ABA 200 mg L-1 applied seven days after veraison (DAV; S-ABA 400 mg L-1 7 DAV; S-ABA 200 mg L-1 7 DAV +S-ABA 200 mg L-1 10 days before harvest (DBH; S-ABA 400 mg L-1 7 DAV + 400 mg L-1 10 DBH. At harvest the following variables were evaluated: mass and diameter of the berries, mass and length of the clusters; soluble solids (SS, titratable acidity (TA and maturation index (TSS/TA. It was also evaluated the concentration of anthocyanins and total polyphenol index in wine and juice, prepared by the extraction method of the pan and color of the berries by colorimetry. The application of S-ABA did not influence the physical characteristics of the grapes, however, favored the increase of SS and SS/TA of the berries, except for the concentration of 200 mg L-1 applied seven days after veraison. The S-ABA has an effect on improving the content of anthocyanins of the berries and the juice of the ‘Isabel’ grape, mainly in the 400 mg L-1 applied 7 DAV + 10 DBH, besides enabling the improvement in the color attribute of berries.

  18. Abscisic Acid Induces Rapid Reductions in Mesophyll Conductance to Carbon Dioxide.

    Science.gov (United States)

    Sorrentino, Giuseppe; Haworth, Matthew; Wahbi, Said; Mahmood, Tariq; Zuomin, Shi; Centritto, Mauro

    2016-01-01

    The rate of photosynthesis (A) of plants exposed to water deficit is a function of stomatal (gs) and mesophyll (gm) conductance determining the availability of CO2 at the site of carboxylation within the chloroplast. Mesophyll conductance often represents the greatest impediment to photosynthetic uptake of CO2, and a crucial determinant of the photosynthetic effects of drought. Abscisic acid (ABA) plays a fundamental role in signalling and co-ordination of plant responses to drought; however, the effect of ABA on gm is not well-defined. Rose, cherry, olive and poplar were exposed to exogenous ABA and their leaf gas exchange parameters recorded over a four hour period. Application with ABA induced reductions in values of A, gs and gm in all four species. Reduced gm occurred within one hour of ABA treatment in three of the four analysed species; indicating that the effect of ABA on gm occurs on a shorter timescale than previously considered. These declines in gm values associated with ABA were not the result of physical changes in leaf properties due to altered turgor affecting movement of CO2, or caused by a reduction in the sub-stomatal concentration of CO2 (Ci). Increased [ABA] likely induces biochemical changes in the properties of the interface between the sub-stomatal air-space and mesophyll layer through the actions of cooporins to regulate the transport of CO2. The results of this study provide further evidence that gm is highly responsive to fluctuations in the external environment, and stress signals such as ABA induce co-ordinated modifications of both gs and gm in the regulation of photosynthesis. PMID:26862904

  19. Predicting essential components of signal transduction networks: a dynamic model of guard cell abscisic acid signaling.

    Directory of Open Access Journals (Sweden)

    Song Li

    2006-10-01

    Full Text Available Plants both lose water and take in carbon dioxide through microscopic stomatal pores, each of which is regulated by a surrounding pair of guard cells. During drought, the plant hormone abscisic acid (ABA inhibits stomatal opening and promotes stomatal closure, thereby promoting water conservation. Dozens of cellular components have been identified to function in ABA regulation of guard cell volume and thus of stomatal aperture, but a dynamic description is still not available for this complex process. Here we synthesize experimental results into a consistent guard cell signal transduction network for ABA-induced stomatal closure, and develop a dynamic model of this process. Our model captures the regulation of more than 40 identified network components, and accords well with previous experimental results at both the pathway and whole-cell physiological level. By simulating gene disruptions and pharmacological interventions we find that the network is robust against a significant fraction of possible perturbations. Our analysis reveals the novel predictions that the disruption of membrane depolarizability, anion efflux, actin cytoskeleton reorganization, cytosolic pH increase, the phosphatidic acid pathway, or K(+ efflux through slowly activating K(+ channels at the plasma membrane lead to the strongest reduction in ABA responsiveness. Initial experimental analysis assessing ABA-induced stomatal closure in the presence of cytosolic pH clamp imposed by the weak acid butyrate is consistent with model prediction. Simulations of stomatal response as derived from our model provide an efficient tool for the identification of candidate manipulations that have the best chance of conferring increased drought stress tolerance and for the prioritization of future wet bench analyses. Our method can be readily applied to other biological signaling networks to identify key regulatory components in systems where quantitative information is limited.

  20. Abscisic Acid Induces Rapid Reductions in Mesophyll Conductance to Carbon Dioxide.

    Directory of Open Access Journals (Sweden)

    Giuseppe Sorrentino

    Full Text Available The rate of photosynthesis (A of plants exposed to water deficit is a function of stomatal (gs and mesophyll (gm conductance determining the availability of CO2 at the site of carboxylation within the chloroplast. Mesophyll conductance often represents the greatest impediment to photosynthetic uptake of CO2, and a crucial determinant of the photosynthetic effects of drought. Abscisic acid (ABA plays a fundamental role in signalling and co-ordination of plant responses to drought; however, the effect of ABA on gm is not well-defined. Rose, cherry, olive and poplar were exposed to exogenous ABA and their leaf gas exchange parameters recorded over a four hour period. Application with ABA induced reductions in values of A, gs and gm in all four species. Reduced gm occurred within one hour of ABA treatment in three of the four analysed species; indicating that the effect of ABA on gm occurs on a shorter timescale than previously considered. These declines in gm values associated with ABA were not the result of physical changes in leaf properties due to altered turgor affecting movement of CO2, or caused by a reduction in the sub-stomatal concentration of CO2 (Ci. Increased [ABA] likely induces biochemical changes in the properties of the interface between the sub-stomatal air-space and mesophyll layer through the actions of cooporins to regulate the transport of CO2. The results of this study provide further evidence that gm is highly responsive to fluctuations in the external environment, and stress signals such as ABA induce co-ordinated modifications of both gs and gm in the regulation of photosynthesis.

  1. NFX1-LIKE2 (NFXL2 suppresses abscisic acid accumulation and stomatal closure in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Janina Lisso

    Full Text Available The NFX1-LIKE1 (NFXL1 and NFXL2 genes were identified as regulators of salt stress responses. The NFXL1 protein is a nuclear factor that positively affects adaptation to salt stress. The nfxl1-1 loss-of-function mutant displayed reduced survival rates under salt and high light stress. In contrast, the nfxl2-1 mutant, defective in the NFXL2 gene, and NFXL2-antisense plants exhibited enhanced survival under these conditions. We show here that the loss of NFXL2 function results in abscisic acid (ABA overaccumulation, reduced stomatal conductance, and enhanced survival under drought stress. The nfxl2-1 mutant displayed reduced stomatal aperture under all conditions tested. Fusicoccin treatment, exposition to increasing light intensities, and supply of decreasing CO(2 concentrations demonstrated full opening capacity of nfxl2-1 stomata. Reduced stomatal opening presumably is a consequence of elevated ABA levels. Furthermore, seedling growth, root growth, and stomatal closure were hypersensitive to exogenous ABA. The enhanced ABA responses may contribute to the improved drought stress resistance of the mutant. Three NFXL2 splice variants were cloned and named NFXL2-78, NFXL2-97, and NFXL2-100 according to the molecular weight of the putative proteins. Translational fusions to the green fluorescent protein suggest nuclear localisation of the NFXL2 proteins. Stable expression of the NFXL2-78 splice variant in nfxl2-1 plants largely complemented the mutant phenotype. Our data show that NFXL2 controls ABA levels and suppresses ABA responses. NFXL2 may prevent unnecessary and costly stress adaptation under favourable conditions.

  2. Identification of Interactions between Abscisic Acid and Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase.

    Directory of Open Access Journals (Sweden)

    Marek M Galka

    Full Text Available Abscisic acid ((+-ABA is a phytohormone involved in the modulation of developmental processes and stress responses in plants. A chemical proteomics approach using an ABA mimetic probe was combined with in vitro assays, isothermal titration calorimetry (ITC, x-ray crystallography and in silico modelling to identify putative (+-ABA binding-proteins in crude extracts of Arabidopsis thaliana. Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco was identified as a putative ABA-binding protein. Radiolabelled-binding assays yielded a Kd of 47 nM for (+-ABA binding to spinach Rubisco, which was validated by ITC, and found to be similar to reported and experimentally derived values for the native ribulose-1,5-bisphosphate (RuBP substrate. Functionally, (+-ABA caused only weak inhibition of Rubisco catalytic activity (Ki of 2.1 mM, but more potent inhibition of Rubisco activation (Ki of ~ 130 μM. Comparative structural analysis of Rubisco in the presence of (+-ABA with RuBP in the active site revealed only a putative low occupancy (+-ABA binding site on the surface of the large subunit at a location distal from the active site. However, subtle distortions in electron density in the binding pocket and in silico docking support the possibility of a higher affinity (+-ABA binding site in the RuBP binding pocket. Overall we conclude that (+-ABA interacts with Rubisco. While the low occupancy (+-ABA binding site and weak non-competitive inhibition of catalysis may not be relevant, the high affinity site may allow ABA to act as a negative effector of Rubisco activation.

  3. Effects of abscisic acid and xanthoxin on elongation and gravitropism in primary roots of Zea mays

    Science.gov (United States)

    Lee, J. S.; Hasenstein, K. H.; Mulkey, T. J.; Yang, R. L.; Evans, M. L.

    1990-01-01

    We examined the involvement of abscisic acid (ABA) and xanthoxin (Xan) in maize root gravitropism by (1) testing the ability of ABA to allow positive gravitropism in dark-grown seedlings of the maize cultivar LG11, a cultivar known to require light for positive gravitropism of the primary root, (2) comparing curvature in roots in which half of the cap had been excised and replaced with agar containing either ABA or indole-3-acetic acid (IAA), (3) measuring gravitropism in roots of seedlings submerged in oxygenated solutions of ABA or IAA and (4) testing the effect of Xan on root elongation. Using a variety of methods of applying ABA to the root, we found that ABA did not cause horizontally-oriented primary roots of dark-grown seedlings to become positively gravitropic. Replacing half of the root cap of vertically oriented roots with an agar block containing ABA had little or no effect on curvature relative to that of controls in which the half cap was replaced by a plain agar block. Replacement of the removed half cap with IAA either canceled or reversed the curvature displayed by controls. When light-grown seedlings were submerged in ABA they responded strongly to gravistimulation while those in IAA did not. Xan (up to 0.1 mM) did not affect root elongation. The results indicate that ABA is not a likely mediator of root gravitropism and that the putative ABA precursor, Xan, lacks the appropriate growth-inhibiting properties to serve as a mediator of root gravitropism.

  4. Abscisic acid metabolism in relation to water stress and leaf age in Xanthium strumarium

    Energy Technology Data Exchange (ETDEWEB)

    Cornish, K.; Zeevaart, J.A.D.

    1984-12-01

    Intact plants of Xanthium strumarium L. were subjected to a water stress-recovery cycle. As the stress took effect, leaf growth ceased and stomatal resistance increased. The mature leaves then wilted, followed by the half expanded ones. Water, solute, and pressure potentials fell steadily in all leaves during the rest of the stress period. After 3 days, the young leaves lost turgor and the plants were rewatered. All the leaves rapidly regained turgor and the younger ones recommenced elongation. Stomatal resistance declined, but several days elapsed before pre-stress values were attained. Abscisic aid (ABA) and phaseic acid (PA) levels rose in all the leaves after the mature ones wilted. ABA-glucose ester (ABA-GE) levels increased to a lesser extent, and the young leaves contained little of this conjugate. PA leveled off in the older leaves during the last 24 hours of stress, and ABA levels declined slightly. The young leaves accumulated ABA and PA throughout the stress period and during the 14-hour period immediately following rewatering. The ABA and PA contents, expressed per unit dry weight, were highest in the young leaves. Upon rewatering, large quantities of PA appeared in the mature leaves as ABA levels fell to the pre-stress level within 14 hours. In the half expanded and young leaves, it took several days to reach pre-stress ABA values. ABA-GE synthesis ceased in the mature leaves, once the stress was relieved, but continued in the half expanded and young leaves for 2 days. Mature leaves, when detached and stressed, accumulated an amount of ABA similar to that in leaves on the intact plant. In contrast, detached and stressed young leaves produced little ABA. Studies with radioactive (+/-)-ABA indicated that in young leaves the conversion of ABA to PA took place at a much lower rate than in mature ones. 25 references, 10 figures, 2 tables.

  5. Abscisic acid and stress signals induce Viviparous1 expression in seed and vegetative tissues of maize.

    Science.gov (United States)

    Cao, Xueyuan; Costa, Liliana M; Biderre-Petit, Corinne; Kbhaya, Bouchab; Dey, Nrisingha; Perez, Pascual; McCarty, Donald R; Gutierrez-Marcos, Jose F; Becraft, Philip W

    2007-02-01

    Viviparous1 (Vp1) encodes a B3 domain-containing transcription factor that is a key regulator of seed maturation in maize (Zea mays). However, the mechanisms of Vp1 regulation are not well understood. To examine physiological factors that may regulate Vp1 expression, transcript levels were monitored in maturing embryos placed in culture under different conditions. Expression of Vp1 decreased after culture in hormone-free medium, but was induced by salinity or osmotic stress. Application of exogenous abscisic acid (ABA) also induced transcript levels within 1 h in a dose-dependent manner. The Vp1 promoter fused to beta-glucuronidase or green fluorescent protein reproduced the endogenous Vp1 expression patterns in transgenic maize plants and also revealed previously unknown expression domains of Vp1. The Vp1 promoter is active in the embryo and aleurone cells of developing seeds and, upon drought stress, was also found in phloem cells of vegetative tissues, including cobs, leaves, and stems. Sequence analysis of the Vp1 promoter identified a potential ABA-responsive complex, consisting of an ACGT-containing ABA response element (ABRE) and a coupling element 1-like motif. Electrophoretic mobility shift assay confirmed that the ABRE and putative coupling element 1 components specifically bound proteins in embryo nuclear protein extracts. Treatment of embryos in hormone-free Murashige and Skoog medium blocked the ABRE-protein interaction, whereas exogenous ABA or mannitol treatment restored this interaction. Our data support a model for a VP1-dependent positive feedback mechanism regulating Vp1 expression during seed maturation. PMID:17208960

  6. LTP3 contributes to disease susceptibility in Arabidopsis by enhancing abscisic acid (ABA) biosynthesis.

    Science.gov (United States)

    Gao, Shan; Guo, Wenya; Feng, Wen; Liu, Liang; Song, Xiaorui; Chen, Jian; Hou, Wei; Zhu, Hongxia; Tang, Saijun; Hu, Jian

    2016-04-01

    Several plant lipid transfer proteins (LTPs) act positively in plant disease resistance. Here, we show that LTP3 (At5g59320), a pathogen and abscisic acid (ABA)-induced gene, negatively regulates plant immunity in Arabidopsis. The overexpression of LTP3 (LTP3-OX) led to an enhanced susceptibility to virulent bacteria and compromised resistance to avirulent bacteria. On infection of LTP3-OX plants with Pseudomonas syringae pv. tomato, genes involved in ABA biosynthesis, NCED3 and AAO3, were highly induced, whereas salicylic acid (SA)-related genes, ICS1 and PR1, were down-regulated. Accordingly, in LTP3-OX plants, we observed increased ABA levels and decreased SA levels relative to the wild-type. We also showed that the LTP3 overexpression-mediated enhanced susceptibility was partially dependent on AAO3. Interestingly, loss of function of LTP3 (ltp3-1) did not affect ABA pathways, but resulted in PR1 gene induction and elevated SA levels, suggesting that LTP3 can negatively regulate SA in an ABA-independent manner. However, a double mutant consisting of ltp3-1 and silent LTP4 (ltp3/ltp4) showed reduced susceptibility to Pseudomonas and down-regulation of ABA biosynthesis genes, suggesting that LTP3 acts in a redundant manner with its closest homologue LTP4 by modulating the ABA pathway. Taken together, our data show that LTP3 is a novel negative regulator of plant immunity which acts through the manipulation of the ABA-SA balance. PMID:26123657

  7. Influence Mechanism of Endogenous Abscisic Acid on Storage Softening Process of Hardy Kiwifruit

    Directory of Open Access Journals (Sweden)

    Li Shuqian

    2014-01-01

    Full Text Available In order to study the relation of Abscisic Acid (ABA with other biochemistry factors during hardy kiwifruit softening process. The changing trend of ABA under the fruits storage conditions of 20 and 0C was analyzed. A conclusion is drawn as below: During storage under 20C, it shows the highest content of ABA in 4 days to 222.19 &mu g/L, which reaches the almost same content in 3 and 5 days. The value keeps inclining since 5 days and decline rate is lower in 7 and 8 days. The lowest value is reached to 20.88 &mug/L in 10 days. During storage under 0C, ABA content is at a relatively high level but shows the slow down trend. ABA content falls greatly from 9 to 11 days. After this period, ABA content still follows up-trend and declining then. The peak appears in 15 days to 90.49 &mug/L, but it is lower than that in the first nine days. Moreover, peak during storage in environment under 0C is lower than that during the storage in environment at normal temperature, accordingly delaying fruit softening. As the ABA content rises to the highest level, the fruit hardness drops drastically. When ABA content slightly changes, the hardness decreases gently. ABA content is featured that same changing trend of ethylene content, respiratory intensity, pectase content and amylase content. Moreover, ABA has the same peak appearance time as amylase but it is later than appearance of both pectase and ethylene, they basically match each other. The rule of peak appearance time is not obvious for ABA and amylase. Mutual inhibition exists between peak appearance time of ABA and respiratory intensity. Quick ABA rise is accompanied with slow amylase rise and vice versa.

  8. Inhibitors from carob (Ceratonia siliqua L.) : III. Comparisons with abscisic acid.

    Science.gov (United States)

    Corcoran, M R

    1970-06-01

    Inhibitory extracts of carob and abscisic acid (ABA) were compared and found to behave differently in three types of tests. The carob inhibitors remained at the origin upon thin-layer chromatography in two different solvent systems while a cis-trans mixture of ABA had Rf's of 2.5 and 3.5 in the first system (chloroform:acetic acid, 95:5), and 3.5 and 4.5 in the second system (benzene:acetic acid:water, 8:3:5). When ABA and carob extract were mixed and then chromatographed, the ABA had the same Rf values as ABA chromatographed alone.Assays utilizing light-grown, dwarf peas showed that a weight ratio of 1000: 1 ABA:gibberellic acid (GA3) was necessary to inhibit GA3-induced growth by 50% while carob fraction C is inhibitory to GA3 at a ratio of 17:1. The amount of ABA which inhibited 50% of the growth induced by 0.05 μg GA3 reduced the endogenous growth of both dwarf and non-dwarf pea seedlings; in contrast, concentrations of carob extract up to 100 times greater than the amount necessary for 50% inhibition of the growth response caused by 0.05 μg GA3 did not affect endogenous growth.Only very small amounts of inhibitory activity from carob extract were transferred from water to chloroform at a pH (2.0) at which most of the ABA was transferred.

  9. Effect of abscisic acid, Paclobutrazol and Salicylic acid on the growth and Pigment variation in Solanum Trilobatum (l

    Directory of Open Access Journals (Sweden)

    D. Nivedithadevi

    2012-09-01

    Full Text Available Solanum trilobatum (Family: Solanaceae is one of the common Indian medicinal plants and it has been used in traditional medicine for many centuries. This plant is a thorny creeper with bluish violet flower, more commonly available in southern India has been used traditional in Siddha system of medicines to treat various diseases. The roots, leaves, berries and flowers are used for cough. The decoction of entire Solanum trilobatum plant is used to treat acute and chronic bronchitis. It has been widely used to treat respiratory disorders. This plant is commonly used to treat asthma, cough, dysonoea, chronic febrile infections and difficult parturition. The constituents of this plant include sobatum, -solamarine, solanine, solasodine, glycoalkaloid, diosogenin and tomatidine. Plant growth regulators are substance that influences physiological processes of plants at very low concentration. Abscisic acid is a many important plant growth development processed. Paclobutrazol is a triazolic group of fungicide which has plant growth regulating properties. Salicylic acid is phenolic phytohormones and is formed in plants with role of plant growth and development. The given treatments were started at 70th day followed by 80th, 90th and 100th days. The groups were treated with respect growth hormones by spraying method. After 10th day, the plants were harvested for further analysis. On over all physical assessment plants treated with paclobutrazol were found to have more whole plant fresh weight, dry weight, root length and stem length followed by abscisic acid and salicylic acid. After the physical evaluation, the leaves were collected from each group for pigment analysis. Chlorophyll, carotenoid, anthocyanin and xanthophylls pigment contents were increased in abscisic acid followed by paclobutrazol and salicylic acid.

  10. Arabidopsis cysteine-rich receptor-like kinase 45 functions in the responses to abscisic acid and abiotic stresses

    KAUST Repository

    Zhang, Xiujuan

    2013-06-01

    The phytohormone abscisic acid (ABA) regulates seed germination, plant growth and development, and response to abiotic stresses such as drought and salt stresses. Receptor-like kinases are well known signaling components that mediate plant responses to developmental and environmental stimuli. Here, we characterized the biological function of an ABA and stress-inducible cysteine-rich receptor-like protein kinase, CRK45, in ABA signaling in Arabidopsis thaliana. The crk45 mutant was less sensitive to ABA than the wild type during seed germination and early seedling development, whereas CRK45 overexpression plants were more sensitive to ABA compared to the wild type. Furthermore, overexpression of CRK45 led to hypersensitivity to salt and glucose inhibition of seed germination, whereas the crk45 mutant showed the opposite phenotypes. In addition, CRK45 overexpression plants had enhanced tolerance to drought. Gene expression analyses revealed that the expression of representative stress-responsive genes was significantly enhanced in CRK45 overexpression plants in response to salt stress. ABA biosynthetic genes such as NCED3,. 22NCED3, 9-Cis-Epoxycarotenoid Dioxygenase 3.NCED5,. 33NCED5, 9-Cis-Epoxycarotenoid Dioxygenase 5.ABA2,. 44ABA2, Abscisic Acid Deficient 2. and AAO355AAO3, Abscisic Aldehyde Oxidase 3. were also constitutively elevated in the CRK45 overexpression plants. We concluded that CRK45 plays an important role in ABA signaling that regulates Arabidopsis seeds germination, early seedling development and abiotic stresses response, by positively regulating ABA responses in these processes. © 2013 Elsevier Masson SAS.

  11. Repressive coping, stigmatization, psychological distress, and quality of life among behavioral weight management participants.

    Science.gov (United States)

    Truong, Erin A K; Olson, KayLoni L; Emery, Charles F

    2016-08-01

    Repressive coping has been associated with elevated risk of disease and negative health outcomes in past studies. Although a prior study of healthy men found that repression was associated with lower body mass index (BMI), no study has examined repressive coping among obese individuals. This study examined the relationship of repressive coping with BMI and obesity-relevant psychosocial factors among 104 overweight and obese participants in a behavioral weight management program. Participants completed questionnaires assessing repressive coping, stigmatization, psychological distress, and quality of life. BMI was objectively measured. Repressors reported lower stigmatization, anxiety, and depression as well as higher emotional and weight-related quality of life. Repressors and non-repressors had equivalent BMI and reported similar impairment in physical quality of life, but stigmatization moderated the relationship between repressive coping and physical quality of life (b=0.31, p=0.039), reflecting better physical quality of life among non-repressors with lower stigmatization. Obese individuals who engage in repressive coping may tend to underreport psychological symptoms, social difficulties, and impairments in quality of life. Higher physical quality of life among non-repressors with lower stigmatization may reflect a combined influence of coping and social processes in physical quality of life among obese individuals.

  12. H2O2 mediates the crosstalk of brassinosteroid and abscisic acid in tomato responses to heat and oxidative stresses

    OpenAIRE

    Zhou, Jie; Wang, Jian; Li, Xin; Xia, Xiao-Jian; Zhou, Yan-Hong; Shi, Kai; Chen, Zhixiang; Yu, Jing-Quan

    2014-01-01

    The production of H2O2 is critical for brassinosteroid (BR)- and abscisic acid (ABA)-induced stress tolerance in plants. In this study, the relationship between BR and ABA in the induction of H2O2 production and their roles in response to heat and paraquat (PQ) oxidative stresses were studied in tomato. Both BR and ABA induced increases in RBOH1 gene expression, NADPH oxidase activity, apoplastic H2O2 accumulation, and heat and PQ stress tolerance in wild-type plants. BR could only induced tr...

  13. FIA functions as an early signal component of abscisic acid signal cascade in Vicia faba guard cells

    OpenAIRE

    Sugiyama, Yusuke; Uraji, Misugi; Watanabe-Sugimoto, Megumi; Okuma, Eiji; Munemasa, Shintaro; Shimoishi, Yasuaki; Nakamura, Yoshimasa; Mori, Izumi C.; Iwai, Sumio; Murata, Yoshiyuki

    2011-01-01

    An abscisic acid (ABA)-insensitive Vicia faba mutant, fia (fava bean impaired in ABA-induced stomatal closure) had previously been isolated. In this study, it was investigated how FIA functions in ABA signalling in guard cells of Vicia faba. Unlike ABA, methyl jasmonate (MeJA), H2O2, and nitric oxide (NO) induced stomatal closure in the fia mutant. ABA did not induce production of either reactive oxygen species or NO in the mutant. Moreover, ABA did not suppress inward-rectifying K+ (Kin) cur...

  14. THE DYNAMICS OF REPRESSIVE HABITUS LAWS: ETHNOGRAPHIC CASE STUDY IN UNWIMA

    Directory of Open Access Journals (Sweden)

    Teddy Asmara

    2015-01-01

    Full Text Available This research describes repressive legal habitus Unwima community by focusing on the issue of why they create a legal cognition such manner and how to empower them in the public domain when facing a lawsuit in court and examination process in higher education office. The results of the research with ethnographic methods and interpretative analysis, First, that repressive legal habitus is a part of the neo-feudalistic thinking in education management. Second, the empowerment of repressive legal habitus in the public domain potentially generate a legal behavior of impulsive that tends to a manipulative, coercive, veiled, and other immorality practices.

  15. Four chromo-domain proteins of Schizosaccharomyces pombe differentially repress transcription at various chromosomal locations.

    OpenAIRE

    Thon, G.; Verhein-Hansen, J.

    2000-01-01

    Transcription is repressed in regions of the fission yeast genome close to centromeres, telomeres, or the silent mating-type cassettes mat2-P and mat3-M. The repression involves the chromo-domain proteins Swi6 and Clr4. We report that two other chromo-domain proteins, Chp1 and Chp2, are also important for these position effects. Chp1 showed a specificity for centromeric regions. Its essentiality for the transcriptional repression of centromeric markers correlates with its importance for chrom...

  16. Multiple mechanisms mediate glucose repression of the yeast GAL1 gene.

    OpenAIRE

    Lamphier, M S; Ptashne, M

    1992-01-01

    Several mechanisms contribute to the glucose repression of the GAL1 gene in Saccharomyces cerevisiae. We show that one mechanism involves the transcriptional down-regulation of the GAL4 gene and a second requires the GAL80 gene. We also examine the contribution of cis-acting negative elements in the GAL1 promoter to glucose repression. In an otherwise wild-type strain disruption of any one of these three mechanisms alleviates repression of GAL1 only 2- to 4-fold. However, in the absence of th...

  17. miR-200b mediates post-transcriptional repression of ZFHX1B

    DEFF Research Database (Denmark)

    Christoffersen, Nanna Rønbjerg; Silahtaroglu, Asli; Ørom, Ulf Lupo Andersson;

    2007-01-01

    of E-cadherin. We show that Zfhx1b and miR-200b are regionally coexpressed in the adult mouse brain and that miR-200b represses the expression of Zfhx1b via multiple sequence elements present in the 3'-untranslated region. Overexpression of miR-200b leads to repression of endogenous ZFHX1B......, and inhibition of miR-200b relieves the repression of ZFHX1B. In accordance with these findings, miR-200b regulates the activity of the E-cadherin promoter....

  18. Promoter DNA hypermethylation and gene repression in undifferentiated Arabidopsis cells.

    Directory of Open Access Journals (Sweden)

    María Berdasco

    Full Text Available Maintaining and acquiring the pluripotent cell state in plants is critical to tissue regeneration and vegetative multiplication. Histone-based epigenetic mechanisms are important for regulating this undifferentiated state. Here we report the use of genetic and pharmacological experimental approaches to show that Arabidopsis cell suspensions and calluses specifically repress some genes as a result of promoter DNA hypermethylation. We found that promoters of the MAPK12, GSTU10 and BXL1 genes become hypermethylated in callus cells and that hypermethylation also affects the TTG1, GSTF5, SUVH8, fimbrin and CCD7 genes in cell suspensions. Promoter hypermethylation in undifferentiated cells was associated with histone hypoacetylation and primarily occurred at CpG sites. Accordingly, we found that the process specifically depends on MET1 and DRM2 methyltransferases, as demonstrated with DNA methyltransferase mutants. Our results suggest that promoter DNA methylation may be another important epigenetic mechanism for the establishment and/or maintenance of the undifferentiated state in plant cells.

  19. LATS2 Positively Regulates Polycomb Repressive Complex 2

    Science.gov (United States)

    Torigata, Kosuke; Daisuke, Okuzaki; Mukai, Satomi; Hatanaka, Akira; Ohka, Fumiharu; Motooka, Daisuke; Nakamura, Shota; Ohkawa, Yasuyuki; Yabuta, Norikazu; Kondo, Yutaka; Nojima, Hiroshi

    2016-01-01

    LATS2, a pivotal Ser/Thr kinase of the Hippo pathway, plays important roles in many biological processes. LATS2 also function in Hippo-independent pathway, including mitosis, DNA damage response and epithelial to mesenchymal transition. However, the physiological relevance and molecular basis of these LATS2 functions remain obscure. To understand novel functions of LATS2, we constructed a LATS2 knockout HeLa-S3 cell line using TAL-effector nuclease (TALEN). Integrated omics profiling of this cell line revealed that LATS2 knockout caused genome-wide downregulation of Polycomb repressive complex 2 (PRC2) and H3K27me3. Cell-cycle analysis revealed that downregulation of PRC2 was not due to cell cycle aberrations caused by LATS2 knockout. Not LATS1, a homolog of LATS2, but LATS2 bound PRC2 on chromatin and phosphorylated it. LATS2 positively regulates histone methyltransferase activity of PRC2 and their expression at both the mRNA and protein levels. Our findings reveal a novel signal upstream of PRC2, and provide insight into the crucial role of LATS2 in coordinating the epigenome through regulation of PRC2. PMID:27434182

  20. DELLA proteins interact with FLC to repress flowering transition

    Institute of Scientific and Technical Information of China (English)

    Hongwei Guo

    2016-01-01

    Flowering is a highly orchestrated and extremely critical process in a plant’s life cycle. Previous study has demonstrated that SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) and FLOWERING LOCUS T (FT) integrate the gibberellic acid (GA) signaling pathway and vernalization pathway in regulating flowering time, but detailed molecular mechanisms remain largely unclear. In GA signaling pathway, DELLA proteins are a group of master transcriptional regulators, while in vernalization pathway FLOWERING LOCUS C (FLC) is a core transcriptional repressor that down-regulates the expression of SOC1 and FT. Here, we report that DELLA proteins interact with FLC in vitro and in vivo, and the LHRI domains of DELLAs and the C-terminus of MADS domain of FLC are required for these interactions. Phenotypic and gene expression analysis showed that mutation of FLC reduces while over-expression of FLC enhances the GA response in the flowering process. Further, DELLA-FLC interactions promote the repression ability of FLC on its target genes. In summary, these findings report that the interaction between MADS box transcription factor FLC and GRAS domain regulator DELLAs may integrate various signaling inputs in flowering time control, and shed new light on the regulatory mechanism both for FLC and DELLAs in regulating gene expression.

  1. microRNAs- powerful repression comes from small RNAs

    Institute of Scientific and Technical Information of China (English)

    MA Cong; LIU YuFei; HE Lin

    2009-01-01

    microRNAs (miRNAs) encode a novel class of small, non-coding RNAs that regulate gene expression post-trancriptionally, miRNAs comprise one of the major non-coding RNA families, whose diverse bio-logical functions and unusual capacity for gene regulation have attracted enormous interests in the RNA world. Over the past 16 years, genetic, biochemical and computational approaches have greatly shaped the growth of the field, leading to the identification of thousands of miRNA genes in nearly all metazoans. The key molecular machinery for miRNA biogenesis and silencing has been identified, yet the precise biochemical and regulatory mechanisms still remain elusive. However, recent findings have shed new light on how miRNAs are generated and how they function to repress gene expression.miRNAs provide a paradigm for endogenous small RNAs that mediate gene silencing at a genome-wide level. The gene silencing mediated by these small RNAs constitutes a major component of gene regu-lation during various developmental and physiological processes. The accumulating knowledge about their biogenesis and gene silencing mechanism will add a now dimension to our understanding about the complex gene regulatory networks.

  2. microRNAs-powerful repression comes from small RNAs

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    microRNAs (miRNAs) encode a novel class of small, non-coding RNAs that regulate gene expression post-trancriptionally. miRNAs comprise one of the major non-coding RNA families, whose diverse bio- logical functions and unusual capacity for gene regulation have attracted enormous interests in the RNA world. Over the past 16 years, genetic, biochemical and computational approaches have greatly shaped the growth of the field, leading to the identification of thousands of miRNA genes in nearly all metazoans. The key molecular machinery for miRNA biogenesis and silencing has been identified, yet the precise biochemical and regulatory mechanisms still remain elusive. However, recent findings have shed new light on how miRNAs are generated and how they function to repress gene expression. miRNAs provide a paradigm for endogenous small RNAs that mediate gene silencing at a genome-wide level. The gene silencing mediated by these small RNAs constitutes a major component of gene regu- lation during various developmental and physiological processes. The accumulating knowledge about their biogenesis and gene silencing mechanism will add a new dimension to our understanding about the complex gene regulatory networks.

  3. Possible Roles for Polycomb Repressive Complex 2 in Cereal Endosperm

    Directory of Open Access Journals (Sweden)

    Kaoru eTonosaki

    2015-03-01

    Full Text Available The Polycomb Repressive Complex 2 (PRC2 is an evolutionarily conserved multimeric protein complex in both plants and animals. In contrast to animals, plants have evolved a range of different components of PRC2 and form diverse complexes that act in the control of key regulatory genes at many stages of development during the life cycle. A number of studies, particularly in the model species Arabidopsis thaliana, have highlighted the role of PRC2 and of epigenetic controls via parent-of-origin specific gene expression for endosperm development. However, recent research in cereal plants has revealed that although some components of PRC2 show evolutionary conservation with respect to parent-of-origin specific gene expression patterns, the identity of the imprinted genes encoding PRC2 components is not conserved. This disparity may reflect the facts that cereal plant genomes have undergone different patterns of duplication during evolution compared to Arabidopsis thaliana and that the endosperm development program is not identical in monocots and eudicots. In this context, we focus this review on the expression of imprinted PRC2 genes and their roles in endosperm development in cereals.

  4. Superoxide dismutase during glucose repression of Hansenula polymorpha CBS 4732.

    Science.gov (United States)

    Hristozova, Tsonka; Rasheva, Tanya; Nedeva, Trayana; Kujumdzieva, Anna

    2002-01-01

    Hansenula polymorpha CBS 4732 was studied during cultivation on methanol and different glucose concentrations. Activities of Cu/Zn and Mn superoxide dismutase, catalase and methanol oxidase were investigated. During cultivation on methanol, increased superoxide dismutase and catalase activities and an induced methanol oxidase were achieved. Transfer of a methanol grown culture to medium with a high glucose concentration caused growth inhibition, low consumption of carbon, nitrogen and phosphate substrates, methanol oxidase inactivation as well as decrease of catalase activity (21.8 +/- 0.61 deltaE240 x min(-1) x mg protein(-1)). At the same time, a high value for superoxide dismutase enzyme was found (42.9 +/- 0.98 U x mg protein(-1), 25% of which was represented by Mn superoxide dismutase and 75% - by the Cu/Zn type). During derepression methanol oxidase was negligible (0.005 +/- 0.0001 U x mg protein(-1)), catalase tended to be the same as in the repressed culture, while superoxide dismutase activity increased considerably (63.67 +/- 1.72 U x mg protein(-1), 69% belonging to the Cu/Zn containing enzyme). Apparently, the cycle of growth inhibition and reactivation of Hansenula polymorpha CBS 4732 cells is strongly connected with the activity of the enzyme superoxide dismutase. PMID:12064733

  5. Repression of the albumin gene in Novikoff hepatoma cells

    International Nuclear Information System (INIS)

    Novikoff hepatoma cells have lost their capacity to synthesize albumin. As a first approach to study the mechanisms underlying this event, in vitro translation in a reticulocyte system was performed using total polyadenylated mRNA from rat liver and Novikoff hepatoma cells. Immunoprecipitation of the in vitro translation products with albumin-specific antibody revealed a total lack of albumin synthesis in Novikoff hepatoma, suggesting the absence of functional albumin mRNA in these cells. Titration experiments using as probe albumin cDNA cloned in pBR322 plasmid demonstrated the absence of albumin-specific sequences in both polysomal and nuclear polyadenylated and total RNA from Novikoff cells. This albumin recombinant plasmid was obtained by screening a rat liver cDNA library with albumin [/sup 32/P]cDNA reverse transcribed from immuno-precipitated mRNA. The presence of an albumin-specific gene insert was documented with translation assays as well as by restriction mapping. Repression of the albumin gene at the transcriptional level was further demonstrated by RNA blotting experiments using the cloned albumin cDNA probe. Genomic DNA blots using the cloned albumin cDNA as probe did not reveal any large-scale deletions, insertions, or rearrangements in the albumin gene, suggesting that the processes involved in the suppression of albumin mRNA synthesis do not involve extensive genomic rearrangements

  6. Andrei Sakharov Prize Talk: Supporting Repressed Scientists: Continuing Efforts

    Science.gov (United States)

    Birman, Joseph L.

    2010-02-01

    Some years ago, Max Perutz asked ``By What Right Do We Scientists Invoke Human Rights?" My presentation will start with mentioning actions of the international community which relate to this question. Such action as the creation in 1919 of the International Research Council, and continuing on to the present with the UN sanctioned International Council of Scientific Unions [ICSU], and other Committees such as those formed by APS, CCS, NYAS, AAAS which give support to repressed scientists around the world now. My own work has attempted to combine my individual initiatives with work as a member and officer of these groups. Together with like minded colleagues who are deeply affected when colleagues are discharged from their positions, exiled, imprisoned and subject to brutal treatment, often after mock ``trials", we react. On visits in 1968 to conferences in Budapest, and then in 1969 to Moscow, Tallin and Leningrad I became personally and deeply touched by the lives of colleagues who were seriously constrained by living under dictatorships. I could move freely into and out of their countries,speak openly about my work or any other matter. They could not, under penalty of possibly serious punishment. Yet, I felt these people were like my extended family. If my grandparents had not left Eastern Europe for the USA in the late 189Os our situations could have been reversed. A little later in the 197O's, ``refusenik" and ``dissident" scientists in the USSR needed support. Colleagues like Andrei Sakharov, Naum Meiman, Mark Azbel, Yakov Alpert, Yuri Orlov and others were being punished for exercising their rights under the UN sanctioned international protocals on ``Universality of Science and Free Circulation of Scientists". Their own governments [which signed these agreements] ignored the very protections they had supported. On frequent trips to the USSR during the 7Os,and 8Os I also seized the opportunity for ``individual initiative" to help these colleagues. I asked for

  7. Regulation of Water Deficit-Induced Abscisic Acid Accumulation by Apoplastic Ascorbic Acid in Maize Seedlings

    Institute of Scientific and Technical Information of China (English)

    Jian-Fang HU; Gui-Fen LI; Zhi-Hui GAO; Lin CHEN; Hui-Bo REN; Wen-Suo JIA

    2005-01-01

    Water deficit-induced abscisic acid (ABA) accumulation is one of the most important stress signaling pathways in plant cells. Redox regulation of cellular signaling has currently attracted particular attention, but much less is known about its roles and mechanisms in plant signaling. Herein, we report that water deficit-induced ABA accumulation could be regulated by ascorbic acid (AA)-controlled redox status in leave apoplast. The AA content in non-stressed leaves was approximately 3 μmol/g FW, corresponding to a mean concentration of 3 mmol/L in a whole cell. Because AA is mainly localized in the cytosol and chloroplasts, the volume of which is much smaller than that of the whole cell, AA content in cytosolic and chloroplast compartments should be much higher than 3 mmol/L. Water deficit-induced ABA accumulation in both leaf and root tissues of maize seedlings was significantly inhibited by AA and reduced glutathione (GSH) at concentrations of 500 μmol/L and was completely blocked by 50 mmol/L AA and GSH. These results suggest that the AA-induced inhibition of ABA accumulation should not occur at sites where AA exists in high concentrations. Although water deficit led to a small increase in the dehydroascorbic acid (DHA) content, no significant changes in AA content were observed in either leaf or root tissues. When compared with the whole leaf cell, the AA content in the apoplastic compartment was much lower (i.e.approximately 70 nmol/g FW, corresponding to 0.7 mmol/L). Water deficit induced a significant decrease (approximately 2.5-fold) in the AA content and an increase (approximately 3.4-fold) in the DHA content in the apoplastic compartment, thus leading to a considerably decreased redox status there, which may have contributed to the relief of AA-induced inhibition of ABA accumulation, alternatively, promoting water deficit-induced ABA accumulation. Reactive oxygen species (ROS) could not mimic water deficit in inducing ABA accumulation, suggesting that

  8. QTLs and candidate genes for desiccation and abscisic acid content in maize kernels

    Directory of Open Access Journals (Sweden)

    Charcosset Alain

    2010-01-01

    Full Text Available Abstract Background Kernel moisture at harvest is an important trait since a low value is required to prevent unexpected early germination and ensure seed preservation. It is also well known that early germination occurs in viviparous mutants, which are impaired in abscisic acid (ABA biosynthesis. To provide some insight into the genetic determinism of kernel desiccation in maize, quantitative trait loci (QTLs were detected for traits related to kernel moisture and ABA content in both embryo and endosperm during kernel desiccation. In parallel, the expression and mapping of genes involved in kernel desiccation and ABA biosynthesis, were examined to detect candidate genes. Results The use of an intermated recombinant inbred line population allowed for precise QTL mapping. For 29 traits examined in an unreplicated time course trial of days after pollination, a total of 78 QTLs were detected, 43 being related to kernel desiccation, 15 to kernel weight and 20 to ABA content. Multi QTL models explained 35 to 50% of the phenotypic variation for traits related to water status, indicating a large genetic control amenable to breeding. Ten of the 20 loci controlling ABA content colocated with previously detected QTLs controlling water status and ABA content in water stressed leaves. Mapping of candidate genes associated with kernel desiccation and ABA biosynthesis revealed several colocations between genes with putative functions and QTLs. Parallel investigation via RT-PCR experiments showed that the expression patterns of the ABA-responsive Rab17 and Rab28 genes as well as the late embryogenesis abundant Emb5 and aquaporin genes were related to desiccation rate and parental allele effect. Database searches led to the identification and mapping of two zeaxanthin epoxidase (ZEP and five novel 9-cis-epoxycarotenoid dioxygenase (NCED related genes, both gene families being involved in ABA biosynthesis. The expression of these genes appeared independent in

  9. Molecular mechanisms in the activation of abscisic acid receptor PYR1.

    Directory of Open Access Journals (Sweden)

    Lyudmyla Dorosh

    Full Text Available The pyrabactin resistance 1 (PYR1/PYR1-like (PYL/regulatory component of abscisic acid (ABA response (RCAR proteins comprise a well characterized family of ABA receptors. Recent investigations have revealed two subsets of these receptors that, in the absence of ABA, either form inactive homodimers (PYR1 and PYLs 1-3 or mediate basal inhibition of downstream target type 2C protein phosphatases (PP2Cs; PYLs 4-10 respectively in vitro. Addition of ABA has been shown to release the apo-homodimers yielding ABA-bound monomeric holo-receptors that can interact with PP2Cs; highlighting a competitive-interaction process. Interaction selectivity has been shown to be mediated by subtle structural variations of primary sequence and ligand binding effects. Now, the dynamical contributions of ligand binding on interaction selectivity are investigated through extensive molecular dynamics (MD simulations of apo and holo-PYR1 in monomeric and dimeric form as well as in complex with a PP2C, homology to ABA insensitive 1 (HAB1. Robust comparative interpretations were enabled by a novel essential collective dynamics approach. In agreement with recent experimental findings, our analysis indicates that ABA-bound PYR1 should efficiently bind to HAB1. However, both ABA-bound and ABA-extracted PYR1-HAB1 constructs have demonstrated notable similarities in their dynamics, suggesting that apo-PYR1 should also be able to make a substantial interaction with PP2Cs, albeit likely with slower complex formation kinetics. Further analysis indicates that both ABA-bound and ABA-free PYR1 in complex with HAB1 exhibit a higher intra-molecular structural stability and stronger inter-molecular dynamic correlations, in comparison with either holo- or apo-PYR1 dimers, supporting a model that includes apo-PYR1 in complex with HAB1. This possibility of a conditional functional apo-PYR1-PP2C complex was validated in vitro. These findings are generally consistent with the competitive

  10. Transcriptional regulatory programs underlying barley germination and regulatory functions of Gibberellin and abscisic acid

    Directory of Open Access Journals (Sweden)

    Lin Li

    2011-06-01

    Full Text Available Abstract Background Seed germination is a complex multi-stage developmental process, and mainly accomplished through concerted activities of many gene products and biological pathways that are often subjected to strict developmental regulation. Gibberellins (GA and abscisic acid (ABA are two key phytohormones regulating seed germination and seedling growth. However, transcriptional regulatory networks underlying seed germination and its associated biological pathways are largely unknown. Results The studies examined transcriptomes of barley representing six distinct and well characterized germination stages and revealed that the transcriptional regulatory program underlying barley germination was composed of early, late, and post-germination phases. Each phase was accompanied with transcriptional up-regulation of distinct biological pathways. Cell wall synthesis and regulatory components including transcription factors, signaling and post-translational modification components were specifically and transiently up-regulated in early germination phase while histone families and many metabolic pathways were up-regulated in late germination phase. Photosynthesis and seed reserve mobilization pathways were up-regulated in post-germination phase. However, stress related pathways and seed storage proteins were suppressed through the entire course of germination. A set of genes were transiently up-regulated within three hours of imbibition, and might play roles in initiating biological pathways involved in seed germination. However, highly abundant transcripts in dry barley and Arabidopsis seeds were significantly conserved. Comparison with transcriptomes of barley aleurone in response to GA and ABA identified three sets of germination responsive genes that were regulated coordinately by GA, antagonistically by ABA, and coordinately by GA but antagonistically by ABA. Major CHO metabolism, cell wall degradation and protein degradation pathways were up

  11. Alleviation of Osmotic Stress Effects by Exogenous Application of Salicylic or Abscisic Acid on Wheat Seedlings

    Directory of Open Access Journals (Sweden)

    Katarzyna Cyganek

    2013-06-01

    Full Text Available The aim of the study was to assess the role of salicylic acid (SA and abscisic acid (ABA in osmotic stress tolerance of wheat seedlings. This was accomplished by determining the impact of the acids applied exogenously on seedlings grown under osmotic stress in hydroponics. The investigation was unique in its comprehensiveness, examining changes under osmotic stress and other conditions, and testing a number of parameters simultaneously. In both drought susceptible (SQ1 and drought resistant (CS wheat cultivars, significant physiological and biochemical changes were observed upon the addition of SA (0.05 mM or ABA (0.1 μM to solutions containing half-strength Hoagland medium and PEG 6000 (−0.75 MPa. The most noticeable result of supplementing SA or ABA to the medium (PEG + SA and PEG + ABA was a decrease in the length of leaves and roots in both cultivars. While PEG treatment reduced gas exchange parameters, chlorophyll content in CS, and osmotic potential, and conversely, increased lipid peroxidation, soluble carbohydrates in SQ1, proline content in both cultivars and total antioxidants activity in SQ1, PEG + SA or PEG + ABA did not change the values of these parameters. Furthermore, PEG caused a two-fold increase of endogenous ABA content in SQ1 and a four-fold increase in CS. PEG + ABA increased endogenous ABA only in SQ1, whereas PEG + SA caused a greater increase of ABA content in both cultivars compared to PEG. In PEG-treated plants growing until the harvest, a greater decrease of yield components was observed in SQ1 than in CS. PEG + SA, and particularly PEG + ABA, caused a greater increase of these yield parameters in CS compared to SQ1. In conclusion, SA and ABA ameliorate, particularly in the tolerant wheat cultivar, the harmful effects and after effects of osmotic stress induced by PEG in hydroponics through better osmotic adjustment achieved by an increase in proline and carbohydrate content as well as by an increase in antioxidant

  12. Abscisic acid metabolite profiling as indicators of plastic responses to drought in grasses from arid Patagonian Monte (Argentina).

    Science.gov (United States)

    Cenzano, Ana M; Masciarelli, O; Luna, M Virginia

    2014-10-01

    The identification of hormonal and biochemical traits that play functional roles in the adaptation to drought is necessary for the conservation and planning of rangeland management. The aim of this study was to evaluate the effects of drought on i) the water content (WC) of different plant organs, ii) the endogenous level of abscisic acid (ABA) and metabolites (phaseic acid-PA, dihydrophaseic acid-DPA and abscisic acid conjugated with glucose ester-ABA-GE), iii) the total carotenoid concentration and iv) to compare the traits of two desert perennial grasses (Pappostipa speciosa and Poa ligularis) with contrasting morphological and functional drought resistance traits and life-history strategies. Both species were subjected to two levels of gravimetric soil moisture (the highest near field capacity during autumn-winter and the lowest corresponding to summer drought). Drought significantly increased the ABA and DPA levels in the green leaves of P. speciosa and P. ligularis. Drought decreased ABA in the roots of P. speciosa while it increased ABA in the roots of P. ligularis. P. ligularis had the highest ABA level and WC in green leaves. While P. speciosa had the highest DPA levels in leaves. In conclusion, we found the highest ABA level in the mesophytic species P. ligularis and the lowest ABA level in the xerophytic species P. speciosa, revealing that the ABA metabolite profile in each grass species is a plastic response to drought resistance. PMID:25245790

  13. Conclusion on the peer review of the pesticide risk assessment of the active substance S-abscisic acid

    Directory of Open Access Journals (Sweden)

    European Food Safety Authority

    2013-08-01

    Full Text Available The conclusions of the European Food Safety Authority (EFSA following the peer review of the initial risk assessments carried out by the competent authority of the rapporteur Member State the Netherlands, for the pesticide active substance S-abscisic acid are reported. The context of the peer review was that required by Commission Regulation EU No 188/2011. The conclusions were reached on the basis of the evaluation of the representative uses of S-abscisic acid as a plant growth regulator on tomato seedlings and grapes. The reliable endpoints concluded as being appropriate for use in regulatory risk assessment, derived from the available studies and literature in the dossier peer reviewed, are presented. Missing information identified as being required by the regulatory framework is listed. Concerns are identified in the areas of residues and ecotoxicology, as the consumer risk assessment and the risk assessment for higher aquatic plants for some metabolites could not be finalised based on the data available.

  14. Isolation of an osmotic stress- and abscisic acid-induced gene encoding an acidic endochitinase from Lycopersicon chilense.

    Science.gov (United States)

    Chen, R D; Yu, L X; Greer, A F; Cheriti, H; Tabaeizadeh, Z

    1994-10-28

    We have identified one osmotic stress- and abscisic acid-responsive member of the endochitinase (EC 3.2.1.14) gene family from leaves of drought-stressed Lycopersicon chilense plants, a natural inhabitant of extremely arid regions in South America. The 966-bp full-length cDNA (designated pcht28) encodes an acidic chitinase precursor with an amino-terminal signal peptide. The mature protein is predicted to have 229 amino acid residues with a relative molecular mass of 24,943 and pI value of 6.2. Sequence analysis revealed that pcht28 has a high degree of homology with class II chitinases (EC 3.2.1.14) from tomato and tobacco. Expression of the pcht28 protein in Escherichia coli verified that it is indeed a chitinase. Northern blot analysis indicated that this gene has evolved a different pattern of expression from that of other family members reported thus far. It is highly induced by both osmotic stress and the plant hormone abscisic acid. Southern blot analysis of genomic DNA suggested that the pcht28-related genes may form a small multigene family in this species. The efficiency of induction of the gene by drought stress, in leaves and stems, is significantly higher in L. chilense than in the cultivated tomato. It is speculated that, besides its general defensive function, the pcht28-encoded chitinase may play a particular role in plant development or in protecting plants from pathogen attack during water stress. PMID:7816027

  15. The Arabidopsis aleurone layer responds to nitric oxide, gibberellin, and abscisic acid and is sufficient and necessary for seed dormancy.

    Science.gov (United States)

    Bethke, Paul C; Libourel, Igor G L; Aoyama, Natsuyo; Chung, Yong-Yoon; Still, David W; Jones, Russell L

    2007-03-01

    Seed dormancy is a common phase of the plant life cycle, and several parts of the seed can contribute to dormancy. Whole seeds, seeds lacking the testa, embryos, and isolated aleurone layers of Arabidopsis (Arabidopsis thaliana) were used in experiments designed to identify components of the Arabidopsis seed that contribute to seed dormancy and to learn more about how dormancy and germination are regulated in this species. The aleurone layer was found to be the primary determinant of seed dormancy. Embryos from dormant seeds, however, had a lesser growth potential than those from nondormant seeds. Arabidopsis aleurone cells were examined by light and electron microscopy, and cell ultrastructure was similar to that of cereal aleurone cells. Arabidopsis aleurone cells responded to nitric oxide (NO), gibberellin (GA), and abscisic acid, with NO being upstream of GA in a signaling pathway that leads to vacuolation of protein storage vacuoles and abscisic acid inhibiting vacuolation. Molecular changes that occurred in embryos and aleurone layers prior to germination were measured, and these data show that both the aleurone layer and the embryo expressed the NO-associated gene AtNOS1, but only the embryo expressed genes for the GA biosynthetic enzyme GA3 oxidase.

  16. De-repression of RaRF-mediated RAR repression by adenovirus E1A in the nucleolus.

    Science.gov (United States)

    Um, Soo-Jong; Youn, Hye Sook; Kim, Eun-Joo

    2014-02-21

    Transcriptional activity of the retinoic acid receptor (RAR) is regulated by diverse binding partners, including classical corepressors and coactivators, in response to its ligand retinoic acid (RA). Recently, we identified a novel corepressor of RAR called the retinoic acid resistance factor (RaRF) (manuscript submitted). Here, we report how adenovirus E1A stimulates RAR activity by associating with RaRF. Based on immunoprecipitation (IP) assays, E1A interacts with RaRF through the conserved region 2 (CR2), which is also responsible for pRb binding. The first coiled-coil domain of RaRF was sufficient for this interaction. An in vitro glutathione-S-transferase (GST) pull-down assay was used to confirm the direct interaction between E1A and RaRF. Further fluorescence microscopy indicated that E1A and RaRF were located in the nucleoplasm and nucleolus, respectively. However, RaRF overexpression promoted nucleolar translocation of E1A from the nucleoplasm. Both the RA-dependent interaction of RAR with RaRF and RAR translocation to the nucleolus were disrupted by E1A. RaRF-mediated RAR repression was impaired by wild-type E1A, but not by the RaRF binding-defective E1A mutant. Taken together, our data suggest that E1A is sequestered to the nucleolus by RaRF through a specific interaction, thereby leaving RAR in the nucleoplasm for transcriptional activation.

  17. The contentious fans: the impact of repression, media coverage, grievances and aggressive play on supporters’ violence

    NARCIS (Netherlands)

    R. Braun; R. Vliegenthart

    2008-01-01

    This article poses the question of which macro-sociological explanations best predict the level of soccer supporters’ violence. By conceptualizing supporters’ violence as a form of contentious violence, four possible explanations are proposed: repression, media attention, unemployment and aggressive

  18. Repressive coping style and autonomic reactions to two experimental stressors in healthy men and women.

    Science.gov (United States)

    Jørgensen, Michael Martini; Zachariae, Robert

    2006-04-01

    Autonomic and affective responses to two different stress tasks were measured in 45 males and 74 females, categorized as repressive, true low-anxious, true high-anxious, and defensive high-anxious. Electrodermal activity (EDA) was used as a measure of sympathetic activity and the high frequency (HF) spectral component of heart rate variability as a measure of parasympathetic activity. Contrary to our predictions, reactivity of repressors did not differ from the reactivity of true low-anxious participants. The results draw attention to previous inconsistent findings within the literature on repressive coping style and autonomic nervous system dysregulation. It is suggested that future research could benefit from the use of more consistent operationalizations of the repressive coping construct and from comparing alternative measures of repressive coping within the same study. PMID:16542356

  19. FOXP3 interactions with histone acetyltransferase and class II histone deacetylases are required for repression

    OpenAIRE

    Li, Bin; Samanta, Arabinda; Song, Xiaomin; Iacono, Kathryn T.; Bembas, Kathryn; Tao, Ran; Basu, Samik; Riley, James L.; Hancock, Wayne W.; Shen, Yuan; Saouaf, Sandra J.; Greene, Mark I.

    2007-01-01

    The forkhead family protein FOXP3 acts as a repressor of transcription and is both an essential and sufficient regulator of the development and function of regulatory T cells. The molecular mechanism by which FOXP3-mediated transcriptional repression occurs remains unclear. Here, we report that transcriptional repression by FOXP3 involves a histone acetyltransferase–deacetylase complex that includes histone acetyltransferase TIP60 (Tat-interactive protein, 60 kDa) and class II histone deacety...

  20. THE TUG OF CONFESSION AND REPRESSION IN MICHEL FOUCAULT'S THE HISTORY OF SEXUALITY

    OpenAIRE

    Preeti Puri

    2014-01-01

    Michel Foucault, the magician of ideas has illuminated many shady areas of Western intellectual history. Throughout his career he kept returning to Freud and carved to formulate a counterproject to psychoanalysis. The focal point of the present paper is to figure out whether the contemporary man is actually repressed or a manifestation of confession as vouched by Michel Foucault. To delve into the binary opposition of repression/ confession the issues focused in the present paper ...

  1. Protein sequestration versus Hill-type repression in circadian clock models.

    Science.gov (United States)

    Kim, Jae Kyoung

    2016-08-01

    Circadian (∼24 h) clocks are self-sustained endogenous oscillators with which organisms keep track of daily and seasonal time. Circadian clocks frequently rely on interlocked transcriptional-translational feedback loops to generate rhythms that are robust against intrinsic and extrinsic perturbations. To investigate the dynamics and mechanisms of the intracellular feedback loops in circadian clocks, a number of mathematical models have been developed. The majority of the models use Hill functions to describe transcriptional repression in a way that is similar to the Goodwin model. Recently, a new class of models with protein sequestration-based repression has been introduced. Here, the author discusses how this new class of models differs dramatically from those based on Hill-type repression in several fundamental aspects: conditions for rhythm generation, robust network designs and the periods of coupled oscillators. Consistently, these fundamental properties of circadian clocks also differ among Neurospora, Drosophila, and mammals depending on their key transcriptional repression mechanisms (Hill-type repression or protein sequestration). Based on both theoretical and experimental studies, this review highlights the importance of careful modelling of transcriptional repression mechanisms in molecular circadian clocks. PMID:27444022

  2. Evaluation of sgRNA target sites for CRISPR-mediated repression of TP53.

    Directory of Open Access Journals (Sweden)

    Ingrid E B Lawhorn

    Full Text Available The CRISPR (clustered regularly interspaced short palindromic repeats platform has been developed as a general method to direct proteins of interest to gene targets. While the native CRISPR system delivers a nuclease that cleaves and potentially mutates target genes, researchers have recently employed catalytically inactive CRISPR-associated 9 nuclease (dCas9 in order to target and repress genes without DNA cleavage or mutagenesis. With the intent of improving repression efficiency in mammalian cells, researchers have also fused dCas9 with a KRAB repressor domain. Here, we evaluated different genomic sgRNA targeting sites for repression of TP53. The sites spanned a 200-kb distance, which included the promoter, transcript sequence, and regions flanking the endogenous human TP53 gene. We showed that repression up to 86% can be achieved with dCas9 alone (i.e., without use of the KRAB domain by targeting the complex to sites near the TP53 transcriptional start site. This work demonstrates that efficient transcriptional repression of endogenous human genes can be achieved by the targeted delivery of dCas9. Yet, the efficiency of repression strongly depends on the choice of the sgRNA target site.

  3. The role of abscisic and acid in disturbed stomatal response characteristics of tradescantia virginiana during growth at high relative air humidity

    NARCIS (Netherlands)

    Rezaei Nejad, A.; Meeteren, van U.

    2007-01-01

    In this study, the role of abscisic acid (ABA) in altered stomatal responses of Tradescantia virginiana leaves grown at high relative air humidity (RH) was investigated. A lower ABA concentration was found in leaves grown at high RH compared with leaves grown at moderate RH. As a result of a daily a

  4. Activator control of nucleosome occupancy in activation and repression of transcription.

    Directory of Open Access Journals (Sweden)

    Gene O Bryant

    2008-12-01

    Full Text Available The relationship between chromatin structure and gene expression is a subject of intense study. The universal transcriptional activator Gal4 removes promoter nucleosomes as it triggers transcription, but how it does so has remained obscure. The reverse process, repression of transcription, has often been correlated with the presence of nucleosomes. But it is not known whether nucleosomes are required for that effect. A new quantitative assay describes, for any given location, the fraction of DNA molecules in the population that bears a nucleosome at any given instant. This allows us to follow the time courses of nucleosome removal and reformation, in wild-type and mutant cells, upon activation (by galactose and repression (by glucose of the GAL genes of yeast. We show that upon being freed of its inhibitor Gal80 by the action of galactose, Gal4 quickly recruits SWI/SNF to the genes, and that nucleosome "remodeler" rapidly removes promoter nucleosomes. In the absence of SWI/SNF, Gal4's action also results in nucleosome removal and the activation of transcription, but both processes are significantly delayed. Addition of glucose to cells growing in galactose represses transcription. But if galactose remains present, Gal4 continues to work, recruiting SWI/SNF and maintaining the promoter nucleosome-free despite it being repressed. This requirement for galactose is obviated in a mutant in which Gal4 works constitutively. These results show how an activator's recruiting function can control chromatin structure both during gene activation and repression. Thus, both under activating and repressing conditions, the activator can recruit an enzymatic machine that removes promoter nucleosomes. Our results show that whereas promoter nucleosome removal invariably accompanies activation, reformation of nucleosomes is not required for repression. The finding that there are two routes to nucleosome removal and activation of transcription-one that requires the

  5. [The ABC of abscisic acid action in plant drought stress responses].

    Science.gov (United States)

    Leung, Jeffrey; Valon, Christiane; Moreau, Bertrand; Boeglin, Martin; Lefoulon, Cécile; Joshi-Saha, Archana; Chérel, Isabelle

    2012-01-01

    The combined daily consumption of fresh water ranges from 200 to 700 liters per capita per day in most developed countries, with about 70% being used for agricultural needs. Unlike other resources such as the different forms of energy, water has no other alternatives. With the looming prospect of global water crisis, the recent laudable success in deciphering the early steps in the signal transduction of the "stress hormone" abscisic acid (ABA) has ignited hopes that crops can be engineered with the capacity to maintain productivity while requiring less water input. Although ABA was first discovered in plants, it has resurfaced in the human brain (and many other non-plant organisms : sea sponge, some parasites, hydra to name a few), suggesting that its existence may be widespread. In humans, more amazingly, ABA has shown anti-inflammatory and antiviral properties. Even its receptors and key signaling intermediates have homologs in the human genome suggesting that evolution has re-fashioned these same proteins into new functional contexts. Thus, learning about the molecular mechanisms of ABA in action using the more flexible plant model will be likely beneficial to other organisms, and especially in human diseases, which is topical in the medical circle. ABA can accumulate up to 10 to 30-fold in plants under drought stress relative to unstressed conditions. The built up of the hormone then triggers diverse adaptive pathways permitting plants to withstand temporary bouts of water shortage. One favorite experimental model to unravel ABA signaling mechanisms in all of its intimate detail is based on the hormone's ability to elicit stomatal closure - a rapid cellular response of land plants to limit water loss through transpiration. Each microscopic stoma, or pore, is contoured by two specialized kidney-shaped cells called the guard cells. Because land plants are protected by a waxy cuticle impermeable to gas exchange, the stomatal pores are thus the primary portals for

  6. Natural memory beyond the storage model: Repression, trauma, and the construction of a personal past

    Directory of Open Access Journals (Sweden)

    Nikolai Axmacher

    2010-11-01

    Full Text Available Naturally occurring memory processes show features which are difficult to investigate by conventional cognitive neuroscience paradigms. Distortions of memory for problematic contents are described both by psychoanalysis (internal conflicts and research on post-traumatic stress disorder (external traumata. Typically, declarative memory for these contents is impaired – possibly due to repression in the case of internal conflicts or due to dissociation in the case of external traumata – but they continue to exert an unconscious pathological influence: neurotic symptoms or psychosomatic disorders after repression or flashbacks and intrusions in post-traumatic stress disorder after dissociation. Several experimental paradigms aim at investigating repression in healthy control subjects. We argue that these paradigms do not adequately operationalize the clinical process of repression, because they rely on an intentional inhibition of random stimuli (suppression. Furthermore, these paradigms ignore that memory distortions due to repression or dissociation are most accurately characterized by a lack of self-referential processing, resulting in an impaired integration of these contents into the self. This aspect of repression and dissociation cannot be captured by the concept of memory as a storage device which is usually employed in the cognitive neurosciences. It can only be assessed within the framework of a constructivist memory concept, according to which successful memory involves a reconstruction of experiences such that they fit into a representation of the self. We suggest several experimental paradigms that allow for the investigation of the neural correlates of repressed memories and trauma-induced memory distortions based on a constructivist memory concept.

  7. Derangement of a factor upstream of RARalpha triggers the repression of a pleiotropic epigenetic network.

    Directory of Open Access Journals (Sweden)

    Francesca Corlazzoli

    Full Text Available BACKGROUND: Chromatin adapts and responds to extrinsic and intrinsic cues. We hypothesize that inheritable aberrant chromatin states in cancer and aging are caused by genetic/environmental factors. In previous studies we demonstrated that either genetic mutations, or loss, of retinoic acid receptor alpha (RARalpha, can impair the integration of the retinoic acid (RA signal at the chromatin of RA-responsive genes downstream of RARalpha, and can lead to aberrant repressive chromatin states marked by epigenetic modifications. In this study we tested whether the mere interference with the availability of RA signal at RARalpha, in cells with an otherwise functional RARalpha, can also induce epigenetic repression at RA-responsive genes downstream of RARalpha. METHODOLOGY/PRINCIPAL FINDINGS: To hamper the availability of RA at RARalpha in untransformed human mammary epithelial cells, we targeted the cellular RA-binding protein 2 (CRABP2, which transports RA from the cytoplasm onto the nuclear RARs. Stable ectopic expression of a CRABP2 mutant unable to enter the nucleus, as well as stable knock down of endogenous CRABP2, led to the coordinated transcriptional repression of a few RA-responsive genes downstream of RARalpha. The chromatin at these genes acquired an exacerbated repressed state, or state "of no return". This aberrant state is unresponsive to RA, and therefore differs from the physiologically repressed, yet "poised" state, which is responsive to RA. Consistent with development of homozygosis for epigenetically repressed loci, a significant proportion of cells with a defective CRABP2-mediated RA transport developed heritable phenotypes indicative of loss of function. CONCLUSION/SIGNIFICANCE: Derangement/lack of a critical factor necessary for RARalpha function induces epigenetic repression of a RA-regulated gene network downstream of RARalpha, with major pleiotropic biological outcomes.

  8. Effects of Formulated Fertilizer Synergist on Abscisic Acid Accumulation, Proline Content and Photosynthetic Characteristics of Rice under Drought

    Institute of Scientific and Technical Information of China (English)

    WANG Shao-xian; XIA Shi-tou; PENG Ke-qin; KUANG Feng-chun; CAO Yong; XIAO Lang-tao

    2007-01-01

    To investigate the effects of formulated fertilizer synergist on the drought tolerance in rice, pot experiment was conducted to analyze the photosynthetic characteristics and the accumulation of abscisic acid (ABA) and proline in middle-season rice variety Peiliangyou 93. The synergist could improve the net photosynthetic rate, and coordination between the water loss and the CO2 absorption as well as reduce the harmful effect on photosynthetic process under drought conditions. Under drought, the ABA accumulated massively both in roots and leaves, while the ABA content in roots was far higher than that in leaves. The results indicate that synergist could increase the ABA accumulation, but reduce the proline accumulation in rice plant under drought.

  9. Uptake of (2-/sup 14/C)abscisic acid and distribution of /sup 14/C in apple embryos

    Energy Technology Data Exchange (ETDEWEB)

    Barthe, P.; Bulard, C.

    1981-01-01

    Pyrus malus L. var. Golden delicious embryos were incubated with (+-)-(2-/sup 14/C) abscisic acid (ABA). After incubations of various durations, the radioactivity was measured in whole embryos, cotyledons, and embryonic axes. With either 48-h or 16-d incubation periods, the uptake of (/sup 14/C) ABA depended upon the mode of culture used. The lowest values corresponded to the absorption by the embryonic axis, the highest to the absorption by the distal parts of the two cotyledons. The cotyledons accumulated the main part of the radioactivity under all conditions. Dormant and almost completely after-ripened embryos cultivated for 4 d showed no significant differences in the radioactivity uptake for identical modes of culture. There was a linear relationship between exogenous ABA concentrations (0.5 to 3.10/sup -5/ M) and ABA uptake for embryos cultivated for 4 d with the distal parts of the cotyledons immersed in the medium.

  10. Sensitivity during the forced swim test is a key factor in evaluating the antidepressant effects of abscisic acid in mice.

    Science.gov (United States)

    Qi, Cong-Cong; Shu, Yu-Mian; Chen, Fang-Han; Ding, Yu-Qiang; Zhou, Jiang-Ning

    2016-03-01

    Abscisic acid (ABA), a crucial phytohormone, is distributed in the brains of mammals and has been shown to have antidepressant effects in the chronic unpredictable mild stress test. The forced swim test (FST) is another animal model that can be used to assess antidepressant-like behavior in rodents. Here, we report that the antidepressant effects of ABA are associated with sensitivities to the FST in mice. Based on mean immobility in the 5-min forced swim pre-test, ICR mice were divided into short immobility mice (SIM) and long immobility mice (LIM) substrains. FST was carried out 8 days after drug administration. Learned helplessness, as shown by increased immobility, was only observed in SIM substrain and could be prevented by an 8-day ABA treatment. Our results show that ABA has antidepressant effects in SIM substrain and suggest that mice with learned helplessness might be more suitable for screening potential antidepressant drugs.

  11. Structural Insights into Maize Viviparous14, a Key Enzyme in the Biosynthesis of the Phytohormone Abscisic Acid W

    Energy Technology Data Exchange (ETDEWEB)

    Messing, S.; Gabelli, S; Echeverria, I; Vogel, J; Guan, J; Tan, B; Klee, H; McCarty, D; Amzela, M

    2010-01-01

    The key regulatory step in the biosynthesis of abscisic acid (ABA), a hormone central to the regulation of several important processes in plants, is the oxidative cleavage of the 11,12 double bond of a 9-cis-epoxycarotenoid. The enzyme viviparous14 (VP14) performs this cleavage in maize (Zea mays), making it a target for the rational design of novel chemical agents and genetic modifications that improve plant behavior through the modulation of ABA levels. The structure of VP14, determined to 3.2-{angstrom} resolution, provides both insight into the determinants of regio- and stereospecificity of this enzyme and suggests a possible mechanism for oxidative cleavage. Furthermore, mutagenesis of the distantly related CCD1 of maize shows how the VP14 structure represents a template for all plant carotenoid cleavage dioxygenases (CCDs). In addition, the structure suggests how VP14 associates with the membrane as a way of gaining access to its membrane soluble substrate.

  12. Comparative effects of auxin and abscisic acid on growth, hydrogen ion efflux and gravitropism in primary roots of maize

    Science.gov (United States)

    Evans, M. L.; Mulkey, T. J.

    1984-01-01

    In order to test the idea that auxin action on root growth may be mediated by H(+) movement, the correlation of auxin action on growth and H(+) movement in roots was examined along with changes in H(+) efflux patterns associated with the asymmetric growth which occurs during gravitropism. The effects of indoleacetic acid (IAA) and abscisic acid (AbA) on growth, H(+) secretion, and gravitropism in roots were compared. Results show a close correlation existent between H(+) efflux and growth in maize roots. In intact roots there is strong H(+) efflux from the elongation zone. Growth-promoting concentrations of IAA stimulate H(+) efflux. During gravitropism the H(+) efflux from the elongation zone becomes asymmetric; the evidence indicates that auxin redistribution contributes to the development of acid efflux asymmetry. That AbA stimulates root growth is reflected in its ability to stimulate H(+) efflux from apical root segments.

  13. Structural Insights into Maize Viviparous14, a Key Enzyme in the Biosynthesis of the Phytohormone Abscisic Acid

    Energy Technology Data Exchange (ETDEWEB)

    Messing, Simon A.J.; Gabelli, Sandra B.; Echeverria, Ignacia; Vogel, Jonathan T.; Guan, Jiahn Chou; Tan, Bao Cai; Klee, Harry J.; McCarty, Donald R.; Amzel, L. Mario (JHU); (Florida)

    2011-09-06

    The key regulatory step in the biosynthesis of abscisic acid (ABA), a hormone central to the regulation of several important processes in plants, is the oxidative cleavage of the 11,12 double bond of a 9-cis-epoxycarotenoid. The enzyme viviparous14 (VP14) performs this cleavage in maize (Zea mays), making it a target for the rational design of novel chemical agents and genetic modifications that improve plant behavior through the modulation of ABA levels. The structure of VP14, determined to 3.2-{angstrom} resolution, provides both insight into the determinants of regio- and stereospecificity of this enzyme and suggests a possible mechanism for oxidative cleavage. Furthermore, mutagenesis of the distantly related CCD1 of maize shows how the VP14 structure represents a template for all plant carotenoid cleavage dioxygenases (CCDs). In addition, the structure suggests how VP14 associates with the membrane as a way of gaining access to its membrane soluble substrate.

  14. FIA functions as an early signal component of abscisic acid signal cascade in Vicia faba guard cells.

    Science.gov (United States)

    Sugiyama, Yusuke; Uraji, Misugi; Watanabe-Sugimoto, Megumi; Okuma, Eiji; Munemasa, Shintaro; Shimoishi, Yasuaki; Nakamura, Yoshimasa; Mori, Izumi C; Iwai, Sumio; Murata, Yoshiyuki

    2012-02-01

    An abscisic acid (ABA)-insensitive Vicia faba mutant, fia (fava bean impaired in ABA-induced stomatal closure) had previously been isolated. In this study, it was investigated how FIA functions in ABA signalling in guard cells of Vicia faba. Unlike ABA, methyl jasmonate (MeJA), H(2)O(2), and nitric oxide (NO) induced stomatal closure in the fia mutant. ABA did not induce production of either reactive oxygen species or NO in the mutant. Moreover, ABA did not suppress inward-rectifying K(+) (K(in)) currents or activate ABA-activated protein kinase (AAPK) in mutant guard cells. These results suggest that FIA functions as an early signal component upstream of AAPK activation in ABA signalling but does not function in MeJA signalling in guard cells of Vicia faba. PMID:22131163

  15. Up-regulation of abscisic acid signaling pathway facilitates aphid xylem absorption and osmoregulation under drought stress.

    Science.gov (United States)

    Guo, Huijuan; Sun, Yucheng; Peng, Xinhong; Wang, Qinyang; Harris, Marvin; Ge, Feng

    2016-02-01

    The activation of the abscisic acid (ABA) signaling pathway reduces water loss from plants challenged by drought stress. The effect of drought-induced ABA signaling on the defense and nutrition allocation of plants is largely unknown. We postulated that these changes can affect herbivorous insects. We studied the effects of drought on different feeding stages of pea aphids in the wild-type A17 of Medicago truncatula and ABA signaling pathway mutant sta-1. We examined the impact of drought on plant water status, induced plant defense signaling via the abscisic acid (ABA), jasmonic acid (JA), and salicylic acid (SA) pathways, and on the host nutritional quality in terms of leaf free amino acid content. During the penetration phase of aphid feeding, drought decreased epidermis/mesophyll resistance but increased mesophyll/phloem resistance of A17 but not sta-1 plants. Quantification of transcripts associated with ABA, JA and SA signaling indicated that the drought-induced up-regulation of ABA signaling decreased the SA-dependent defense but increased the JA-dependent defense in A17 plants. During the phloem-feeding phase, drought had little effect on the amino acid concentrations and the associated aphid phloem-feeding parameters in both plant genotypes. In the xylem absorption stage, drought decreased xylem absorption time of aphids in both genotypes because of decreased water potential. Nevertheless, the activation of the ABA signaling pathway increased water-use efficiency of A17 plants by decreasing the stomatal aperture and transpiration rate. In contrast, the water potential of sta-1 plants (unable to close stomata) was too low to support xylem absorption activity of aphids; the aphids on sta-1 plants had the highest hemolymph osmolarity and lowest abundance under drought conditions. Taken together this study illustrates the significance of cross-talk between biotic-abiotic signaling pathways in plant-aphid interaction, and reveals the mechanisms leading to alter

  16. Repression is relieved before attenuation in the trp operon of Escherichia coli as tryptophan starvation becomes increasingly severe.

    OpenAIRE

    Yanofsky, C; Kelley, R.L.; Horn, V.

    1984-01-01

    Expression of the tryptophan operon of Escherichia coli is regulated over about a 500- to 600-fold range by the combined action of repression and attenuation. Repression regulates transcription initiation in response to variation in the intracellular concentration of tryptophan. Attenuation regulates transcription termination at a site in the leader region of the operon in response to changes in the extent of charging of tRNATrp. We measured repression independently of attenuation to ascertai...

  17. ASXL1 Represses Retinoic Acid Receptor-mediated Transcription through Associating with HP1 and LSD1*

    OpenAIRE

    Lee, Sang-Wang; Cho, Yang-Sook; Na, Jung-Min; Park, Ui-Hyun; Kang, Myengmo; Kim, Eun-Joo; Um, Soo-Jong

    2009-01-01

    We previously suggested that ASXL1 (additional sex comb-like 1) functions as either a coactivator or corepressor for the retinoid receptors retinoic acid receptor (RAR) and retinoid X receptor in a cell type-specific manner. Here, we provide clues toward the mechanism underlying ASXL1-mediated repression. Transfection assays in HEK293 or H1299 cells indicated that ASXL1 alone possessing autonomous transcriptional repression activity significantly represses RAR- or retinoid X receptor-dependen...

  18. FOXP3 interactions with histone acetyltransferase and class II histone deacetylases are required for repression.

    Science.gov (United States)

    Li, Bin; Samanta, Arabinda; Song, Xiaomin; Iacono, Kathryn T; Bembas, Kathryn; Tao, Ran; Basu, Samik; Riley, James L; Hancock, Wayne W; Shen, Yuan; Saouaf, Sandra J; Greene, Mark I

    2007-03-13

    The forkhead family protein FOXP3 acts as a repressor of transcription and is both an essential and sufficient regulator of the development and function of regulatory T cells. The molecular mechanism by which FOXP3-mediated transcriptional repression occurs remains unclear. Here, we report that transcriptional repression by FOXP3 involves a histone acetyltransferase-deacetylase complex that includes histone acetyltransferase TIP60 (Tat-interactive protein, 60 kDa) and class II histone deacetylases HDAC7 and HDAC9. The N-terminal 106-190 aa of FOXP3 are required for TIP60-FOXP3, HDAC7-FOXP3 association, as well as for the transcriptional repression of FOXP3 via its forkhead domain. FOXP3 can be acetylated in primary human regulatory T cells, and TIP60 promotes FOXP3 acetylation in vivo. Overexpression of TIP60 but not its histone acetyltransferase-deficient mutant promotes, whereas knockdown of endogenous TIP60 relieved, FOXP3-mediated transcriptional repression. A minimum FOXP3 ensemble containing native TIP60 and HDAC7 is necessary for IL-2 production regulation in T cells. Moreover, FOXP3 association with HDAC9 is antagonized by T cell stimulation and can be restored by the protein deacetylation inhibitor trichostatin A, indicating a complex dynamic aspect of T suppressor cell regulation. These findings identify a previously uncharacterized complex-based mechanism by which FOXP3 actively mediates transcriptional repression. PMID:17360565

  19. Plant NAC-type transcription factor proteins contain a NARD domain for repression of transcriptional activation.

    Science.gov (United States)

    Hao, Yu-Jun; Song, Qing-Xin; Chen, Hao-Wei; Zou, Hong-Feng; Wei, Wei; Kang, Xu-Sheng; Ma, Biao; Zhang, Wan-Ke; Zhang, Jin-Song; Chen, Shou-Yi

    2010-10-01

    Plant-specific transcription factor NAC proteins play essential roles in many biological processes such as development, senescence, morphogenesis, and stress signal transduction pathways. In the NAC family, some members function as transcription activators while others act as repressors. In the present study we found that though the full-length GmNAC20 from soybean did not have transcriptional activation activity, the carboxy-terminal activation domain of GmNAC20 had high transcriptional activation activity in the yeast assay system. Deletion experiments revealed an active repression domain with 35 amino acids, named NARD (NAC Repression Domain), in the d subdomain of NAC DNA-binding domain. NARD can reduce the transcriptional activation ability of diverse transcription factors when fused to either the amino-terminal or the carboxy-terminal of the transcription factors. NARD-like sequences are also present in other NAC family members and they are functional repression domain when fused to VP16 in plant protoplast assay system. Mutation analysis of conserved amino acid residues in NARD showed that the hydrophobic LVFY motif may partially contribute to the repression function. It is hypothesized that the interactions between the repression domain NARD and the carboxy-terminal activation domain may finally determine the ability of NAC family proteins to regulate downstream gene expressions.

  20. Repression by RB1 characterizes genes involved in the penultimate stage of erythroid development.

    Science.gov (United States)

    Zhang, Ji; Loyd, Melanie R; Randall, Mindy S; Morris, John J; Shah, Jayesh G; Ney, Paul A

    2015-01-01

    Retinoblastoma-1 (RB1), and the RB1-related proteins p107 and p130, are key regulators of the cell cycle. Although RB1 is required for normal erythroid development in vitro, it is largely dispensable for erythropoiesis in vivo. The modest phenotype caused by RB1 deficiency in mice raises questions about redundancy within the RB1 family, and the role of RB1 in erythroid differentiation. Here we show that RB1 is the major pocket protein that regulates terminal erythroid differentiation. Erythroid cells lacking all pocket proteins exhibit the same cell cycle defects as those deficient for RB1 alone. RB1 has broad repressive effects on gene transcription in erythroid cells. As a group, RB1-repressed genes are generally well expressed but downregulated at the final stage of erythroid development. Repression correlates with E2F binding, implicating E2Fs in the recruitment of RB1 to repressed genes. Merging differential and time-dependent changes in expression, we define a group of approximately 800 RB1-repressed genes. Bioinformatics analysis shows that this list is enriched for terms related to the cell cycle, but also for terms related to terminal differentiation. Some of these have not been previously linked to RB1. These results expand the range of processes potentially regulated by RB1, and suggest that a principal role of RB1 in development is coordinating the events required for terminal differentiation. PMID:26397180

  1. Wnt-mediated repression via bipartite DNA recognition by TCF in the Drosophila hematopoietic system.

    Directory of Open Access Journals (Sweden)

    Chen U Zhang

    2014-08-01

    Full Text Available The Wnt/β-catenin signaling pathway plays many important roles in animal development, tissue homeostasis and human disease. Transcription factors of the TCF family mediate many Wnt transcriptional responses, promoting signal-dependent activation or repression of target gene expression. The mechanism of this specificity is poorly understood. Previously, we demonstrated that for activated targets in Drosophila, TCF/Pangolin (the fly TCF recognizes regulatory DNA through two DNA binding domains, with the High Mobility Group (HMG domain binding HMG sites and the adjacent C-clamp domain binding Helper sites. Here, we report that TCF/Pangolin utilizes a similar bipartite mechanism to recognize and regulate several Wnt-repressed targets, but through HMG and Helper sites whose sequences are distinct from those found in activated targets. The type of HMG and Helper sites is sufficient to direct activation or repression of Wnt regulated cis-regulatory modules, and protease digestion studies suggest that TCF/Pangolin adopts distinct conformations when bound to either HMG-Helper site pair. This repressive mechanism occurs in the fly lymph gland, the larval hematopoietic organ, where Wnt/β-catenin signaling controls prohemocytic differentiation. Our study provides a paradigm for direct repression of target gene expression by Wnt/β-catenin signaling and allosteric regulation of a transcription factor by DNA.

  2. A transient reversal of miRNA-mediated repression controls macrophage activation.

    Science.gov (United States)

    Mazumder, Anup; Bose, Mainak; Chakraborty, Abhijit; Chakrabarti, Saikat; Bhattacharyya, Suvendra N

    2013-11-01

    In mammalian macrophages, the expression of a number of cytokines is regulated by miRNAs. Upon macrophage activation, proinflammatory cytokine mRNAs are translated, although the expression of miRNAs targeting these mRNAs remains largely unaltered. We show that there is a transient reversal of miRNA-mediated repression during the early phase of the inflammatory response in macrophages, which leads to the protection of cytokine mRNAs from miRNA-mediated repression. This derepression occurs through Ago2 phosphorylation, which results in its impaired binding to miRNAs and to the corresponding target mRNAs. Macrophages expressing a mutant, non-phosphorylatable AGO2--which remains bound to miRNAs during macrophage activation--have a weakened inflammatory response and fail to prevent parasite invasion. These findings highlight the relevance of the transient relief of miRNA repression for macrophage function.

  3. An Introduction to CRISPR Technology for Genome Activation and Repression in Mammalian Cells.

    Science.gov (United States)

    Du, Dan; Qi, Lei S

    2016-01-04

    CRISPR interference/activation (CRISPRi/a) technology provides a simple and efficient approach for targeted repression or activation of gene expression in the mammalian genome. It is highly flexible and programmable, using an RNA-guided nuclease-deficient Cas9 (dCas9) protein fused with transcriptional regulators for targeting specific genes to effect their regulation. Multiple studies have shown how this method is an effective way to achieve efficient and specific transcriptional repression or activation of single or multiple genes. Sustained transcriptional modulation can be obtained by stable expression of CRISPR components, which enables directed reprogramming of cell fate. Here, we introduce the basics of CRISPRi/a technology for genome repression or activation.

  4. Pluripotency factor binding and Tsix expression act synergistically to repress Xist in undifferentiated embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Nesterova Tatyana B

    2011-10-01

    Full Text Available Abstract Background Expression of Xist, the master regulator of X chromosome inactivation, is extinguished in pluripotent cells, a process that has been linked to programmed X chromosome reactivation. The key pluripotency transcription factors Nanog, Oct4 and Sox2 are implicated in Xist gene extinction, at least in part through binding to an element located in Xist intron 1. Other pathways, notably repression by the antisense RNA Tsix, may also be involved. Results Here we employ a transgene strategy to test the role of the intron 1 element and Tsix in repressing Xist in ES cells. We find that deletion of the intron 1 element causes a small increase in Xist expression and that simultaneous deletion of the antisense regulator Tsix enhances this effect. Conclusion We conclude that Tsix and pluripotency factors act synergistically to repress Xist in undifferentiated embryonic stem cells. Double mutants do not exhibit maximal levels of Xist expression, indicating that other pathways also play a role.

  5. The effects of social context and defensiveness on the physiological responses of repressive copers.

    Science.gov (United States)

    Barger, S D; Kircher, J C; Croyle, R T

    1997-11-01

    In previous research (T.L. Newton & R.J. Contrada, 1992), social context was found to moderate exaggerated physiological reactivity among individuals identified as using a repressive coping style. In this experiment, 119 undergraduates were classified into low-anxious, high-anxious, repressor, and defensive high-anxious coping categories. All participants completed a stressful speech task under either a public or private social context condition. The experimental social context was related to physiological reactivity and self-reported affect but did not moderate reactivity among repressive copers. Additionally, reactivity among repressive copers was not attributable to high defensiveness alone. Consistent with a theory of emotional inhibition, nonspecific skin conductance responses, but not heart rate, discriminated between repressors and nonrepressors. PMID:9417480

  6. Repressive BMP2 gene regulatory elements near the BMP2 promoter

    International Nuclear Information System (INIS)

    The level of bone morphogenetic protein 2 (BMP2) profoundly influences essential cell behaviors such as proliferation, differentiation, apoptosis, and migration. The spatial and temporal pattern of BMP2 synthesis, particular in diverse embryonic cells, is highly varied and dynamic. We have identified GC-rich sequences within the BMP2 promoter region that strongly repress gene expression. These elements block the activity of a highly conserved, osteoblast enhancer in response to FGF2 treatment. Both positive and negative gene regulatory elements control BMP2 synthesis. Detecting and mapping the repressive motifs is essential because they impede the identification of developmentally regulated enhancers necessary for normal BMP2 patterns and concentration.

  7. Menin Directly Represses Expression of Gli1 Independent of the Canonical Hedgehog Signaling Pathway

    OpenAIRE

    Gurung, Buddha; Feng, Zijie; Hua, Xianxin

    2013-01-01

    Multiple Endocrine Neoplasia Type I (MEN1), a familial tumor syndrome results from mutations in the MEN1 gene, which encodes a tumor suppressor, menin. It has been previously shown that menin plays an important role in both repressing and activating gene expression. However, it is not well understood how menin represses expression of multiple genes. Here we show that upon Men1 excision, Gli1 and its target genes including PTCH1 and C-MYC are elevated in the absence of an apparent Hedgehog (Hh...

  8. Dominant negative autoregulation limits steady-state repression levels in gene networks.

    Science.gov (United States)

    Semsey, Szabolcs; Krishna, Sandeep; Erdossy, János; Horváth, Péter; Orosz, László; Sneppen, Kim; Adhya, Sankar

    2009-07-01

    Many transcription factors repress transcription of their own genes. Negative autoregulation has been shown to reduce cell-cell variation in regulatory protein levels and speed up the response time in gene networks. In this work we examined transcription regulation of the galS gene and the function of its product, the GalS protein. We observed a unique operator preference of the GalS protein characterized by dominant negative autoregulation. We show that this pattern of regulation limits the repression level of the target genes in steady states. We suggest that transcription factors with dominant negative autoregulation are designed for regulating gene expression during environmental transitions. PMID:19429616

  9. LIN-39/Hox triggers cell division and represses EFF-1/fusogen-dependent vulval cell fusion

    OpenAIRE

    Shemer, Gidi; Podbilewicz, Benjamin

    2002-01-01

    General mechanisms by which Hox genes establish cell fates are known. However, a few Hox effectors mediating cell behaviors have been identified. Here we found the first effector of LIN-39/HoxD4/Dfd in Caenorhabditis elegans. In specific vulval precursor cells (VPCs), LIN-39 represses early and late expression of EFF-1, a membrane protein essential for cell fusion. Repression of eff-1 is also achieved by the activity of CEH-20/Exd/Pbx, a known cofactor of Hox proteins. Unfused VPCs in lin-39(...

  10. Repressive BMP2 gene regulatory elements near the BMP2 promoter

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Shan [Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry (UMDNJ), New Jersey Medical School (NJMS), Newark, NJ (United States); Chandler, Ronald L. [Department of Molecular Physiology and Biophysics, Center for Human Genetics Research, Vanderbilt University School of Medicine, Nashville, TN (United States); Fritz, David T. [Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry (UMDNJ), New Jersey Medical School (NJMS), Newark, NJ (United States); Mortlock, Douglas P. [Department of Molecular Physiology and Biophysics, Center for Human Genetics Research, Vanderbilt University School of Medicine, Nashville, TN (United States); Rogers, Melissa B., E-mail: rogersmb@umdnj.edu [Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry (UMDNJ), New Jersey Medical School (NJMS), Newark, NJ (United States)

    2010-02-05

    The level of bone morphogenetic protein 2 (BMP2) profoundly influences essential cell behaviors such as proliferation, differentiation, apoptosis, and migration. The spatial and temporal pattern of BMP2 synthesis, particular in diverse embryonic cells, is highly varied and dynamic. We have identified GC-rich sequences within the BMP2 promoter region that strongly repress gene expression. These elements block the activity of a highly conserved, osteoblast enhancer in response to FGF2 treatment. Both positive and negative gene regulatory elements control BMP2 synthesis. Detecting and mapping the repressive motifs is essential because they impede the identification of developmentally regulated enhancers necessary for normal BMP2 patterns and concentration.

  11. Engineering of carbon catabolite repression in recombinant xylose fermenting Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Roca, Christophe Francois Aime; Haack, Martin Brian; Olsson, Lisbeth

    2004-01-01

    Two xylose-fermenting glucose-derepressed Saccharomyces cerevisiae strains were constructed in order to investigate the influence of carbon catabolite repression on xylose metabolism. S. cerevisiae CPB.CR2 (Deltamig1, XYL1, XYL2, XKS1) and CPB.MBH2 (Deltamig1, Deltamig2, XYL1, XYL2, XKS1) were...... of CPB.CR2, where the cells are assumed to grow under non-repressive conditions as they sense almost no glucose, invertase activity was lower during growth on xylose and glucose than on glucose only. The 3-fold reduction in invertase activity could only be attributed to the presence of xylose, suggesting...

  12. Abscisic Acid and Cytokinin-Induced Osmotic and Antioxidant Regulation in Two Drought-Tolerant and Drought-Sensitive Cultivars of Wheat During Grain Filling Under Water Deficit in Field Conditions

    Directory of Open Access Journals (Sweden)

    Mohammad-Reza SARAFRAZ-ARDAKANI

    2014-09-01

    Full Text Available Phytohormones play critical roles in regulating plant responses to stress. The present study investigates the effect of cytokinin, abscisic acid and cytokinin/abscisic acid interaction on some osmoprotectants and antioxidant parameters induced by drought stress in two wheat cultivars (Triticum aestivum L. of ‘Pishgam’ and ‘MV-17’ as tolerant and sensitive to drought during post-anthesis phase, respectively grown in field conditions. The most considerable effect of the treatments was exhibited 21 days after anthesis. Under drought conditions, the flag leaf soluble carbohydrate content increased in both cultivars while starch content was remarkably decreased in ‘Pishgam’ as compared to ‘MV-17’. Abscisic acid increased total soluble sugar and reduced starch more than other hormonal treatments, although it decreased studied monosaccharaides in ‘Pishgam’, especially. Drought stress induced high proportion of gylycinebetain and free proline in ‘Pishgam’ cultivar. Application of abscisic acid and cytokinin/abscisic acid interaction increased gylycinebetain and proline content in both cultivars under irrigation and drought conditions. The tolerant cultivar exhibited less accumulation of hydrogen peroxide and malondialdehyde in relation to significant increase of catalase and peroxidase activities and α-tocpherol content under drought conditions. All hormonal treatments increased the named enzyme activities under both irrigation and drought conditions, while higher accumulation of α-tocopherol was only showed in case of cytokinin application. Also, abscisic acid and cytokinin/abscisic acid could decrease drought-induced hydrogen peroxide and malondialdehyde level to some extent, although abscisic acid increased both of hydrogen peroxide andmalondialdehyde content in irrigation phase, especially.

  13. Mutations in the Arabidopsis Lst8 and Raptor genes encoding partners of the TOR complex, or inhibition of TOR activity decrease abscisic acid (ABA) synthesis.

    Science.gov (United States)

    Kravchenko, Alena; Citerne, Sylvie; Jéhanno, Isabelle; Bersimbaev, Rakhmetkazhi I; Veit, Bruce; Meyer, Christian; Leprince, Anne-Sophie

    2015-11-27

    The Target of Rapamycin (TOR) kinase regulates essential processes in plant growth and development by modulation of metabolism and translation in response to environmental signals. In this study, we show that abscisic acid (ABA) metabolism is also regulated by the TOR kinase. Indeed ABA hormone level strongly decreases in Lst8-1 and Raptor3g mutant lines as well as in wild-type (WT) Arabidopsis plants treated with AZD-8055, a TOR inhibitor. However the growth and germination of these lines are more sensitive to exogenous ABA. The diminished ABA hormone accumulation is correlated with lower transcript levels of ZEP, NCED3 and AAO3 biosynthetic enzymes, and higher transcript amount of the CYP707A2 gene encoding a key-enzyme in abscisic acid catabolism. These results suggest that the TOR signaling pathway is implicated in the regulation of ABA accumulation in Arabidopsis.

  14. Major latex protein-like protein 43 (MLP43) functions as a positive regulator during abscisic acid responses and confers drought tolerance in Arabidopsis thaliana

    OpenAIRE

    WANG, YANPING; Yang, Li; Chen, Xi; Ye, Tiantian; Zhong, Bao; Liu, Ruijie; Wu, Yan; Chan, Zhulong

    2015-01-01

    Drought stress is one of the disadvantageous environmental conditions for plant growth and reproduction. Given the importance of abscisic acid (ABA) to plant growth and abiotic stress responses, identification of novel components involved in ABA signalling transduction is critical. In this study, we screened numerous Arabidopsis thaliana mutants by seed germination assay and identified a mutant mlp43 (major latex protein-like 43) with decreased ABA sensitivity in seed germination. The mlp43 m...

  15. A GH3 family member, OsGH3-2, modulates auxin and abscisic acid levels and differentially affects drought and cold tolerance in rice

    OpenAIRE

    Du, Hao; Wu, Nai; Fu, Jing; Wang, Shiping; Li, Xianghua; Xiao, Jinghua; Xiong, Lizhong

    2012-01-01

    Plant responses to abiotic stresses are coordinated by arrays of growth and developmental processes. Indole-3-acetic acid (IAA) and abscisic acid (ABA) play critical roles in developmental programmes and environmental responses, respectively, through complex signalling and metabolism networks. However, crosstalk between the two phytohormones in the stress responses remains largely unknown. Here, it is reported that a GH3 family gene, OsGH3-2, encoding an enzyme catalysing IAA conjugation to a...

  16. Repression of p15INK4b expression by Myc through association with Miz-1

    DEFF Research Database (Denmark)

    Staller, P; Peukert, K; Kiermaier, A;

    2001-01-01

    Deregulated expression of c-myc can induce cell proliferation in established cell lines and in primary mouse embryonic fibroblasts (MEFs), through a combination of both transcriptional activation and repression by Myc. Here we show that a Myc-associated transcription factor, Miz-1, arrests cells ...... p15INK4b messenger RNA in primary cells and are, as a consequence, deficient in immortalization....

  17. Sucrose-induced translational repression of plant bZIP-type transcription factors

    NARCIS (Netherlands)

    Wiese, A.; Elzinga, N.; Wobbes, B.; Smeekens, S.

    2005-01-01

    Sugars as signalling molecules exert control on the transcription of many plant genes. Sugar signals also alter mRNA and protein stability. Increased sucrose concentrations specifically repress translation of the S-class basic region leucine zipper (bZIP) type transcription factor AtbZIP11/ATB2. Thi

  18. Polycomb complex 2 is required for E-cadherin repression by the Snail1 transcription factor

    DEFF Research Database (Denmark)

    Herranz, Nicolás; Pasini, Diego; Díaz, Víctor M;

    2008-01-01

    The transcriptional factor Snail1 is a repressor of E-cadherin gene (CDH1) expression essential for triggering epithelial-mesenchymal transition (EMT). Snail1 represses CDH1 directly binding its promoter and inducing the synthesis of Zeb1 repressor. In this article we show that repression of CDH1...... by Snail1, but not by Zeb1, is dependent on the activity of the Polycomb repressive complex 2 (PRC2). ES cells null for Suz12, one of the components of PRC2, show higher levels of Cdh1 mRNA than control ES cells. In tumour cells, interference of PRC2 activity prevents the ability of Snail1 to down......-regulate CDH1 and partially de-represses CDH1. Chromatin immunoprecipitation assays demonstrated that Snail1 increases the binding of Suz12 to CDH1 promoter and the tri-methylation of lysine 27 in the histone 3. Moreover, Snail1 interacts with Suz12 and Ezh2 as shown by coimmunoprecipitation experiments...

  19. Personality and Psychopathology in African Unaccompanied Refugee Minors: Repression, Resilience and Vulnerability

    Science.gov (United States)

    Huemer, Julia; Volkl-Kernstock, Sabine; Karnik, Niranjan; Denny, Katherine G.; Granditsch, Elisabeth; Mitterer, Michaela; Humphreys, Keith; Plattner, Belinda; Friedrich, Max; Shaw, Richard J.; Steiner, Hans

    2013-01-01

    Examining personality and psychopathological symptoms among unaccompanied refugee minors (URMs), we measured intra-individual dimensions (repression and correlates thereof) usually associated with resilience. Forty-one URMs completed the Weinberger Adjustment Inventory (WAI), assessing personality, and the Youth Self-Report (YSR), describing…

  20. Pluripotency factors and Polycomb Group proteins repress aryl hydrocarbon receptor expression in murine embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Chia-I Ko

    2014-01-01

    Full Text Available The aryl hydrocarbon receptor (AHR is a transcription factor and environmental sensor that regulates expression of genes involved in drug-metabolism and cell cycle regulation. Chromatin immunoprecipitation analyses, Ahr ablation in mice and studies with orthologous genes in invertebrates suggest that AHR may also play a significant role in embryonic development. To address this hypothesis, we studied the regulation of Ahr expression in mouse embryonic stem cells and their differentiated progeny. In ES cells, interactions between OCT3/4, NANOG, SOX2 and Polycomb Group proteins at the Ahr promoter repress AHR expression, which can also be repressed by ectopic expression of reprogramming factors in hepatoma cells. In ES cells, unproductive RNA polymerase II binds at the Ahr transcription start site and drives the synthesis of short abortive transcripts. Activation of Ahr expression during differentiation follows from reversal of repressive marks in Ahr promoter chromatin, release of pluripotency factors and PcG proteins, binding of Sp factors, establishment of histone marks of open chromatin, and engagement of active RNAPII to drive full-length RNA transcript elongation. Our results suggest that reversible Ahr repression in ES cells holds the gene poised for expression and allows for a quick switch to activation during embryonic development.

  1. The natural product peiminine represses colorectal carcinoma tumor growth by inducing autophagic cell death

    International Nuclear Information System (INIS)

    Autophagy is evolutionarily conservative in eukaryotic cells that engulf cellular long-lived proteins and organelles, and it degrades the contents through fusion with lysosomes, via which the cell acquires recycled building blocks for the synthesis of new molecules. In this study, we revealed that peiminine induces cell death and enhances autophagic flux in colorectal carcinoma HCT-116 cells. We determined that peiminine enhances the autophagic flux by repressing the phosphorylation of mTOR through inhibiting upstream signals. Knocking down ATG5 greatly reduced the peiminine-induced cell death in wild-type HCT-116 cells, while treating Bax/Bak-deficient cells with peiminine resulted in significant cell death. In summary, our discoveries demonstrated that peiminine represses colorectal carcinoma cell proliferation and cell growth by inducing autophagic cell death. - Highlights: • Peiminine induces autophagy and upregulates autophagic flux. • Peiminine represses colorectal carcinoma tumor growth. • Peiminine induces autophagic cell death. • Peiminine represses mTOR phosphorylation by influencing PI3K/Akt and AMPK pathway

  2. Financial Repression as a Policy Choice: The Case of Ukraine, 1992—2000

    Directory of Open Access Journals (Sweden)

    Robert S. Kravchuk

    2004-10-01

    Full Text Available By their nature, instruments of financial repression distort interest rates, foreign exchange rates, patterns of investment, and the economic incentives of both borrowers and lenders. In order to deal with the economic pathologies introduced by the government’s own credit and financial policies, governments inevitably find that they must intervene further, to ration credit and impose controls, generally on prices, wages, interest rates, foreign exchange rates and other transactions. Not only did Ukraine exhibit all of the symptoms of financial repression in the 1990s, but the basic policy instruments of financial repression also became too familiar in Ukraine. In fact, to one extent or another, in the 1990s Ukraine employed several of these measures (often in combination as means to suppress the effects of excessive amounts of state consumption, the resultant inflation, and its own credit policies. In the long run, economic growth will suffer, however, because repression reduces the capacity of the financial system to respond to the needs of firms and households in the real economy.

  3. A bifunctional O-GlcNAc transferase governs flagellar motility through anti-repression

    OpenAIRE

    Shen, Aimee; Kamp, Heather D.; Gründling, Angelika; Darren E Higgins

    2006-01-01

    Flagellar motility is an essential mechanism by which bacteria adapt to and survive in diverse environments. Although flagella confer an advantage to many bacterial pathogens for colonization during infection, bacterial flagellins also stimulate host innate immune responses. Consequently, many bacterial pathogens down-regulate flagella production following initial infection. Listeria monocytogenes is a facultative intracellular pathogen that represses transcription of flagellar motility genes...

  4. The natural product peiminine represses colorectal carcinoma tumor growth by inducing autophagic cell death

    Energy Technology Data Exchange (ETDEWEB)

    Lyu, Qing [School of Life Sciences, Tsinghua University, Beijing, 100084 (China); Key Lab in Healthy Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055 (China); Tou, Fangfang [Jiangxi Provincial Key Lab of Oncology Translation Medicine, Jiangxi Cancer Hospital, Nanchang, 330029 (China); Su, Hong; Wu, Xiaoyong [First Affiliated Hospital, Guiyang College of Traditional Chinese Medicine, Guiyang, 550002 (China); Chen, Xinyi [Department of Hematology and Oncology, Beijing University of Chinese Medicine, Beijing, 100029 (China); Zheng, Zhi, E-mail: zheng_sheva@hotmail.com [Jiangxi Provincial Key Lab of Oncology Translation Medicine, Jiangxi Cancer Hospital, Nanchang, 330029 (China)

    2015-06-19

    Autophagy is evolutionarily conservative in eukaryotic cells that engulf cellular long-lived proteins and organelles, and it degrades the contents through fusion with lysosomes, via which the cell acquires recycled building blocks for the synthesis of new molecules. In this study, we revealed that peiminine induces cell death and enhances autophagic flux in colorectal carcinoma HCT-116 cells. We determined that peiminine enhances the autophagic flux by repressing the phosphorylation of mTOR through inhibiting upstream signals. Knocking down ATG5 greatly reduced the peiminine-induced cell death in wild-type HCT-116 cells, while treating Bax/Bak-deficient cells with peiminine resulted in significant cell death. In summary, our discoveries demonstrated that peiminine represses colorectal carcinoma cell proliferation and cell growth by inducing autophagic cell death. - Highlights: • Peiminine induces autophagy and upregulates autophagic flux. • Peiminine represses colorectal carcinoma tumor growth. • Peiminine induces autophagic cell death. • Peiminine represses mTOR phosphorylation by influencing PI3K/Akt and AMPK pathway.

  5. The neuronal repellent SLIT2 is a target for repression by EZH2 in prostate cancer.

    Science.gov (United States)

    Yu, J; Cao, Q; Yu, J; Wu, L; Dallol, A; Li, J; Chen, G; Grasso, C; Cao, X; Lonigro, R J; Varambally, S; Mehra, R; Palanisamy, N; Wu, J Y; Latif, F; Chinnaiyan, A M

    2010-09-30

    The neuronal repellent SLIT2 is repressed in a number of cancer types primarily through promoter hypermethylation. SLIT2, however, has not been studied in prostate cancer. Through genome-wide location analysis we identified SLIT2 as a target of polycomb group (PcG) protein EZH2. The EZH2-containing polycomb repressive complexes bound to the SLIT2 promoter inhibiting its expression. SLIT2 was downregulated in a majority of metastatic prostate tumors, showing a negative correlation with EZH2. This repressed expression could be restored by methylation inhibitors or EZH2-suppressing compounds. In addition, a low level of SLIT2 expression was associated with aggressive prostate, breast and lung cancers. Functional assays showed that SLIT2 inhibited prostate cancer cell proliferation and invasion. Thus, this study showed for the first time the epigenetic silencing of SLIT2 in prostate tumors, and supported SLIT2 as a potential biomarker for aggressive solid tumors. Importantly, PcG-mediated repression may serve as a precursor for the silencing of SLIT2 by DNA methylation in cancer.

  6. Catabolite repression and nitrogen control of allantoin-degrading enzymes in Pseudomonas aeruginosa

    NARCIS (Netherlands)

    Janssen, D.B.; Drift, C. van der

    1983-01-01

    The formation of the allantoin-degrading enzymes allantoinase, allantoicase and ureidoglycolase in Pseudomonas aeruginosa was found to be regulated by induction, catabolite repression and nitrogen control. Induction was observed when urate, allantoin or allantoate were included in the growth medium,

  7. Epigenetic repression of male gametophyte-specific genes in the Arabidopsis sporophyte

    DEFF Research Database (Denmark)

    Hoffmann, Robert D; Palmgren, Michael Broberg

    2013-01-01

    -regulated in the sporophyte has yet to be established. In this study, we have performed a bioinformatics analysis of publicly available genome-wide epigenetics data of several sporophytic tissues. By combining this analysis with DNase I footprinting data, we assessed means by which the repression of pollen-specific genes...

  8. Reduced expression of ribosomal proteins relieves microRNA-mediated repression.

    Science.gov (United States)

    Janas, Maja M; Wang, Eric; Love, Tara; Harris, Abigail S; Stevenson, Kristen; Semmelmann, Karlheinz; Shaffer, Jonathan M; Chen, Po-Hao; Doench, John G; Yerramilli, Subrahmanyam V B K; Neuberg, Donna S; Iliopoulos, Dimitrios; Housman, David E; Burge, Christopher B; Novina, Carl D

    2012-04-27

    MicroRNAs (miRNAs) regulate physiological and pathological processes by inducing posttranscriptional repression of target messenger RNAs (mRNAs) via incompletely understood mechanisms. To discover factors required for human miRNA activity, we performed an RNAi screen using a reporter cell line of miRNA-mediated repression of translation initiation. We report that reduced expression of ribosomal protein genes (RPGs) dissociated miRNA complexes from target mRNAs, leading to increased polysome association, translation, and stability of miRNA-targeted mRNAs relative to untargeted mRNAs. RNA sequencing of polysomes indicated substantial overlap in sets of genes exhibiting increased or decreased polysomal association after Argonaute or RPG knockdowns, suggesting similarity in affected pathways. miRNA profiling of monosomes and polysomes demonstrated that miRNAs cosediment with ribosomes. RPG knockdowns decreased miRNAs in monosomes and increased their target mRNAs in polysomes. Our data show that most miRNAs repress translation and that the levels of RPGs modulate miRNA-mediated repression of translation initiation. PMID:22541556

  9. Pluripotency factors and Polycomb Group proteins repress aryl hydrocarbon receptor expression in murine embryonic stem cells.

    Science.gov (United States)

    Ko, Chia-I; Wang, Qin; Fan, Yunxia; Xia, Ying; Puga, Alvaro

    2014-01-01

    The aryl hydrocarbon receptor (AHR) is a transcription factor and environmental sensor that regulates expression of genes involved in drug-metabolism and cell cycle regulation. Chromatin immunoprecipitation analyses, Ahr ablation in mice and studies with orthologous genes in invertebrates suggest that AHR may also play a significant role in embryonic development. To address this hypothesis, we studied the regulation of Ahr expression in mouse embryonic stem cells and their differentiated progeny. In ES cells, interactions between OCT3/4, NANOG, SOX2 and Polycomb Group proteins at the Ahr promoter repress AHR expression, which can also be repressed by ectopic expression of reprogramming factors in hepatoma cells. In ES cells, unproductive RNA polymerase II binds at the Ahr transcription start site and drives the synthesis of short abortive transcripts. Activation of Ahr expression during differentiation follows from reversal of repressive marks in Ahr promoter chromatin, release of pluripotency factors and PcG proteins, binding of Sp factors, establishment of histone marks of open chromatin, and engagement of active RNAPII to drive full-length RNA transcript elongation. Our results suggest that reversible Ahr repression in ES cells holds the gene poised for expression and allows for a quick switch to activation during embryonic development.

  10. REST mediates androgen receptor actions on gene repression and predicts early recurrence of prostate cancer

    DEFF Research Database (Denmark)

    Svensson, Charlotte; Ceder, Jens; Iglesias Gato, Diego;

    2014-01-01

    The androgen receptor (AR) is a key regulator of prostate tumorgenesis through actions that are not fully understood. We identified the repressor element (RE)-1 silencing transcription factor (REST) as a mediator of AR actions on gene repression. Chromatin immunoprecipitation showed that AR binds...

  11. The role of Hansenula polymorpha MIG1 homologues in catabolite repression and pexophagy

    NARCIS (Netherlands)

    Stasyk, Olena G.; Van Zutphen, Tim; Kang, Huyn Ah; Stasyk, Oleh V.; Veenhuis, Marten; Sibirny, Andriy A.

    2007-01-01

    In the methanol-utilizing yeast Hansenula polymorpha, glucose and ethanol trigger the repression of peroxisomal enzymes at the transcriptional level, and rapid and selective degradation of methanol-induced peroxisomes by means of a process termed pexophagy. In this report we demonstrate that deficie

  12. Decitabine represses osteoclastogenesis through inhibition of RANK and NF-κB.

    Science.gov (United States)

    Guan, Hanfeng; Mi, Baoguo; Li, Yong; Wu, Wei; Tan, Peng; Fang, Zhong; Li, Jing; Zhang, Yong; Li, Feng

    2015-05-01

    DNA methylation is essential for maintenance of stable repression of gene transcription during differentiation and tumorigenesis. Demethylating reagents including decitabine could release the repression, leading to perturbed transcription program. Recently others and we showed that, in B cell lymphomas, decitabine repressed B cell specific gene transcription and activated NF-κB signaling, causing decreased expression of translocated oncogenes including MYC and attenuated tumor cell proliferation. During osteoclastogenesis, changes in DNA methylation occurred in numerous genes, implicating important roles for DNA methylation in osteoclastogenesis. In the present study, we found that decitabine inhibited osteoclastogenesis. The inhibitory effect could be at least partially attributed to reduced expression of multiple osteoclast specific genes including RANK by decitabine. Moreover, decitabine inhibited activity of NF-κB, AP-1 and extracellular signal-regulated kinase (ERK), but not PI3K/Akt pathway. In vivo, using ovariectomized mouse as a model, we observed that decitabine reduced the osteoclast activity and bone loss. In conclusion, our findings demonstrated that decitabine was an inhibitor of osteoclastogenesis by repression of osteoclast specific transcription program including the RANK, NF-κB and AP-1 pathways. DNA methylation might be indispensable for osteoclastogenesis. The use of decitabine could represent a novel strategy in treatment of diseases associated with increased osteoclast activity.

  13. Plant, cell, and molecular mechanisms of abscisic-acid regulation of stomatal apertures. In vivo phosphorylation of phosphoenolpyruvate carboxylase in guard cells of Vicia faba L. is enhanced by fusicoccin and suppressed by abscisic acid

    Energy Technology Data Exchange (ETDEWEB)

    Du, Z.; Aghoram, K.; Outlaw, W.H. Jr.

    1996-12-31

    Plants regulate water loss and CO{sub 2} gain by modulating the aperture sizes of stomata that penetrate the epidermis. Aperture size itself is increased by osmolyte accumulation and consequent turgor increase in the pair of guard cells that flank each stoma. Guard-cell phosphoenolpyruvate carboxylase, which catalyzes the regulated step leading to malate synthesis, is crucial for charge and pH maintenance during osmolyte accumulation. Regulation of this cytosolic enzyme by effectors is well documented, but additional regulation by posttranslational modification is predicted by the alteration of PEPC kinetics during stomatal opening. In this study, the authors have investigated whether this alteration is associated with the phosphorylation status of this enzyme. Using sonicated epidermal peels (isolated guard cells) pre-loaded with {sub 32}PO{sub 4}, the authors induced stomatal opening and guard-cell malate accumulation by incubation with 5 {micro}M fusicoccin (FC). In corroboratory experiments, guard cells were incubated with 5 {micro}M fusicoccin (FC). In corroboratory experiments, guard cells were incubated with the FC antagonist, 10 {micro}M abscisic acid (ABA). The phosphorylation status of PEPC was assessed by immunoprecipitation, electrophoresis, immunoblotting, and autoradiography. PEPC was phosphorylated when stomata were stimulated to open, and phosphorylation was lessened by incubation with ABA.

  14. Targeted repression of AXIN2 and MYC gene expression using designer TALEs

    International Nuclear Information System (INIS)

    Highlights: • We designed TALE–SID fusion proteins to target AXIN2 and MYC. • TALE–SIDs bound the chromosomal AXIN2 and MYC genes and repressed their expression. • TALE–SIDs repress β-cateninS45F-dependent AXIN2 and MYC transcription. - Abstract: Designer TALEs (dTALEs) are chimeric transcription factors that can be engineered to regulate gene expression in mammalian cells. Whether dTALEs can block gene transcription downstream of signal transduction cascades, however, has yet to be fully explored. Here we tested whether dTALEs can be used to target genes whose expression is controlled by Wnt/β-catenin signaling. TALE DNA binding domains were engineered to recognize sequences adjacent to Wnt responsive enhancer elements (WREs) that control expression of axis inhibition protein 2 (AXIN2) and c-MYC (MYC). These custom DNA binding domains were linked to the mSin3A interaction domain (SID) to generate TALE–SID chimeric repressors. The TALE–SIDs repressed luciferase reporter activity, bound their genomic target sites, and repressed AXIN2 and MYC expression in HEK293 cells. We generated a novel HEK293 cell line to determine whether the TALE–SIDs could function downstream of oncogenic Wnt/β-catenin signaling. Treating these cells with doxycycline and tamoxifen stimulates nuclear accumulation of a stabilized form of β-catenin found in a subset of colorectal cancers. The TALE–SIDs repressed AXIN2 and MYC expression in these cells, which suggests that dTALEs could offer an effective therapeutic strategy for the treatment of colorectal cancer

  15. Transcriptional repression in normal human keratinocytes by wild-type and mutant p53.

    Science.gov (United States)

    Alvarez-Salas, L M; Velazquez, A; Lopez-Bayghen, E; Woodworth, C D; Garrido, E; Gariglio, P; DiPaolo, J A

    1995-05-01

    Wild-type p53 is a nuclear phosphoprotein that inhibits cell proliferation and represses transcriptionally most TATA box-containing promoters in transformed or tumor-derived cell lines. This study demonstrates that p53 alters transcription of the long control region (LCR) of human papillomavirus type 18 (HPV-18). Wild-type and mutant p53 143Val to Ala repressed the HPV-18 LCR promoter in normal human keratinocytes, the natural host cell for HPV infections. Repression by wild-type p53 was also observed in C-33A cells and in an HPV-16-immortalized cell line with an inducible wild-type p53. However, when C-33A cells were cotransfected with the HPV-18 LCR and mutant 143Val to Ala, repression did not occur. Mutant p53 135Cys to Ser did not induce repression in either normal human keratinocytes or in the C-33A line; although like 143Val to Ala, it is thought to affect the DNA binding activity of the wild-type protein. The ability of mutant p53 143Val to Ala to inactivate the HPV early promoter in normal cells (by approximately 60% reduction) suggests that this mutant may be able to associate with wild-type p53 and interact with TATA box-binding proteins. Therefore, these results demonstrate that the transcriptional activities of p53 mutants may be dependent upon the cell type assayed and the form of its endogenous p53. Furthermore, normal human keratinocytes represent an alternative model for determining the activities of p53 mutants.

  16. Targeted repression of AXIN2 and MYC gene expression using designer TALEs

    Energy Technology Data Exchange (ETDEWEB)

    Rennoll, Sherri A.; Scott, Samantha A.; Yochum, Gregory S., E-mail: gsy3@psu.edu

    2014-04-18

    Highlights: • We designed TALE–SID fusion proteins to target AXIN2 and MYC. • TALE–SIDs bound the chromosomal AXIN2 and MYC genes and repressed their expression. • TALE–SIDs repress β-catenin{sup S45F}-dependent AXIN2 and MYC transcription. - Abstract: Designer TALEs (dTALEs) are chimeric transcription factors that can be engineered to regulate gene expression in mammalian cells. Whether dTALEs can block gene transcription downstream of signal transduction cascades, however, has yet to be fully explored. Here we tested whether dTALEs can be used to target genes whose expression is controlled by Wnt/β-catenin signaling. TALE DNA binding domains were engineered to recognize sequences adjacent to Wnt responsive enhancer elements (WREs) that control expression of axis inhibition protein 2 (AXIN2) and c-MYC (MYC). These custom DNA binding domains were linked to the mSin3A interaction domain (SID) to generate TALE–SID chimeric repressors. The TALE–SIDs repressed luciferase reporter activity, bound their genomic target sites, and repressed AXIN2 and MYC expression in HEK293 cells. We generated a novel HEK293 cell line to determine whether the TALE–SIDs could function downstream of oncogenic Wnt/β-catenin signaling. Treating these cells with doxycycline and tamoxifen stimulates nuclear accumulation of a stabilized form of β-catenin found in a subset of colorectal cancers. The TALE–SIDs repressed AXIN2 and MYC expression in these cells, which suggests that dTALEs could offer an effective therapeutic strategy for the treatment of colorectal cancer.

  17. Accumulation of eicosapolyenoic acids enhances sensitivity to abscisic acid and mitigates the effects of drought in transgenic Arabidopsis thaliana.

    Science.gov (United States)

    Yuan, Xiaowei; Li, Yaxiao; Liu, Shiyang; Xia, Fei; Li, Xinzheng; Qi, Baoxiu

    2014-04-01

    IgASE1, a C₁₈ Δ(9)-specific polyunsaturated fatty acid elongase from the marine microalga Isochrysis galbana, is able to convert linoleic acid and α-linolenic acid to eicosadienoic acid and eicosatrienoic acid in Arabidopsis. Eicosadienoic acid and eicosatrienoic acid are precursors of arachidonic acid, eicosapentaenoic acid, and docosahexaenoic acid, which are synthesized via the Δ(8) desaturation biosynthetic pathways. This study shows that the IgASE1-expressing transgenic Arabidopsis exhibited altered morphology (decreased leaf area and biomass) and enhanced drought resistance compared to wild-type plants. The transgenic Arabidopsis were hypersensitive to abscisic acid (ABA) during seed germination, post-germination growth, and seedling development. They had elevated leaf ABA levels under well-watered and dehydrated conditions and their stomata were more sensitive to ABA. Exogenous application of eicosadienoic acid and eicosatrienoic acid can mimic ABA and drought responses in the wild type plants, similar to that found in the transgenic ones. The transcript levels of genes involved in the biosynthesis of ABA (NCED3, ABA1, AAO3) as well as other stress-related genes were upregulated in this transgenic line upon osmotic stress (300 mM mannitol). Taken together, these results indicate that these two eicosapolyenoic acids or their derived metabolites can mitigate the effects of drought in transgenic Arabidopsis, at least in part, through the action of ABA.

  18. Abscisic acid regulates root growth under osmotic stress conditions via an interacting hormonal network with cytokinin, ethylene and auxin.

    Science.gov (United States)

    Rowe, James H; Topping, Jennifer F; Liu, Junli; Lindsey, Keith

    2016-07-01

    Understanding the mechanisms regulating root development under drought conditions is an important question for plant biology and world agriculture. We examine the effect of osmotic stress on abscisic acid (ABA), cytokinin and ethylene responses and how they mediate auxin transport, distribution and root growth through effects on PIN proteins. We integrate experimental data to construct hormonal crosstalk networks to formulate a systems view of root growth regulation by multiple hormones. Experimental analysis shows: that ABA-dependent and ABA-independent stress responses increase under osmotic stress, but cytokinin responses are only slightly reduced; inhibition of root growth under osmotic stress does not require ethylene signalling, but auxin can rescue root growth and meristem size; osmotic stress modulates auxin transporter levels and localization, reducing root auxin concentrations; PIN1 levels are reduced under stress in an ABA-dependent manner, overriding ethylene effects; and the interplay among ABA, ethylene, cytokinin and auxin is tissue-specific, as evidenced by differential responses of PIN1 and PIN2 to osmotic stress. Combining experimental analysis with network construction reveals that ABA regulates root growth under osmotic stress conditions via an interacting hormonal network with cytokinin, ethylene and auxin. PMID:26889752

  19. Gene Overexpression and RNA Silencing Tools for the Genetic Manipulation of the S-(+-Abscisic Acid Producing Ascomycete Botrytis cinerea

    Directory of Open Access Journals (Sweden)

    Zhong-Tao Ding

    2015-05-01

    Full Text Available The phytopathogenic ascomycete Botrytis cinerea produces several secondary metabolites that have biotechnical significance and has been particularly used for S-(+-abscisic acid production at the industrial scale. To manipulate the expression levels of specific secondary metabolite biosynthetic genes of B. cinerea with Agrobacterium tumefaciens-mediated transformation system, two expression vectors (pCBh1 and pCBg1 with different selection markers and one RNA silencing vector, pCBSilent1, were developed with the In-Fusion assembly method. Both expression vectors were highly effective in constitutively expressing eGFP, and pCBSilent1 effectively silenced the eGFP gene in B. cinerea. Bcaba4, a gene suggested to participate in ABA biosynthesis in B. cinerea, was then targeted for gene overexpression and RNA silencing with these reverse genetic tools. The overexpression of bcaba4 dramatically induced ABA formation in the B. cinerea wild type strain Bc-6, and the gene silencing of bcaba4 significantly reduced ABA-production in an ABA-producing B. cinerea strain.

  20. Kinetic Characterisation of a Single Chain Antibody against the Hormone Abscisic Acid: Comparison with Its Parental Monoclonal

    Science.gov (United States)

    Badescu, George O.; Marsh, Andrew; Smith, Timothy R.; Thompson, Andrew J.; Napier, Richard M.

    2016-01-01

    A single-chain Fv fragment antibody (scFv) specific for the plant hormone abscisic acid (ABA) has been expressed in the bacterium Escherichia coli as a fusion protein. The kinetics of ABA binding have been measured using surface plasmon resonance spectrometry (BIAcore 2000) using surface and solution assays. Care was taken to calculate the concentration of active protein in each sample using initial rate measurements under conditions of partial mass transport limitation. The fusion product, parental monoclonal antibody and the free scFv all have low nanomolar affinity constants, but there is a lower dissociation rate constant for the parental monoclonal resulting in a three-fold greater affinity. Analogue specificity was tested and structure-activity binding preferences measured. The biologically-active (+)-ABA enantiomer is recognised with an affinity three orders of magnitude higher than the inactive (-)-ABA. Metabolites of ABA including phaseic acid, dihydrophaseic acid and deoxy-ABA have affinities over 100-fold lower than that for (+)-ABA. These properties of the scFv make it suitable as a sensor domain in bioreporters specific for the naturally occurring form of ABA. PMID:27023768

  1. Abscisic acid-induced rearrangement of intracellular structures associated with freezing and desiccation stress tolerance in the liverwort Marchantia polymorpha.

    Science.gov (United States)

    Akter, Khaleda; Kato, Masahiro; Sato, Yuki; Kaneko, Yasuko; Takezawa, Daisuke

    2014-09-15

    The plant growth regulator abscisic acid (ABA) is known to be involved in triggering responses to various environmental stresses such as freezing and desiccation in angiosperms, but little is known about its role in basal land plants, especially in liverworts, representing the earliest land plant lineage. We show here that survival rate after freezing and desiccation of Marchantia polymorpha gemmalings was increased by pretreatment with ABA in the presence of increasing concentrations of sucrose. ABA treatment increased accumulation of soluble sugars in gemmalings, and sugar accumulation was further increased by addition of sucrose to the culture medium. ABA treatment of gemmalings also induced accumulation of transcripts for proteins with similarity to late embryogenesis abundant (LEA) proteins, which accumulate in association with acquisition of desiccation tolerance in maturing seeds. Observation by light and electron microscopy indicated that the ABA treatment caused fragmentation of vacuoles with increased cytosolic volume, which was more prominent in the presence of a high concentration of external sucrose. ABA treatment also increased the density of chloroplast distribution and remarkably enlarged their volume. These results demonstrate that ABA induces drastic physiological changes in liverwort cells for stress tolerance, accompanied by accumulation of protectants against dehydration and rearrangement and morphological alterations of cellular organelles. PMID:25046754

  2. Epoxycarotenoid-mediated synthesis of abscisic acid in Physcomitrella patens implicating conserved mechanisms for acclimation to hyperosmosis in embryophytes.

    Science.gov (United States)

    Takezawa, Daisuke; Watanabe, Naoki; Ghosh, Totan Kumar; Saruhashi, Masashi; Suzuki, Atsushi; Ishiyama, Kanako; Somemiya, Shinnosuke; Kobayashi, Masatomo; Sakata, Yoichi

    2015-04-01

    Plants acclimate to environmental stress signals such as cold, drought and hypersalinity, and provoke internal protective mechanisms. Abscisic acid (ABA), a carotenoid-derived phytohormone, which increases in response to the stress signals above, has been suggested to play a key role in the acclimation process in angiosperms, but the role of ABA in basal land plants such as mosses, including its biosynthetic pathways, has not been clarified. Targeted gene disruption of PpABA1, encoding zeaxanthin epoxidase in the moss Physcomitrella patens was conducted to determine the role of endogenous ABA in acclimation processes in mosses. The generated ppaba1 plants were found to accumulate only a small amount of endogenous ABA. The ppaba1 plants showed reduced osmotic acclimation capacity in correlation with reduced dehydration tolerance and accumulation of late embryogenesis abundant proteins. By contrast, cold-induced freezing tolerance was less affected in ppaba1, indicating that endogenous ABA does not play a major role in the regulation of cold acclimation in the moss. Our results suggest that the mechanisms for osmotic acclimation mediated by carotenoid-derived synthesis of ABA are conserved in embryophytes and that acquisition of the mechanisms played a crucial role in terrestrial adaptation and colonization by land plant ancestors. PMID:25545104

  3. The role of the atypical kinases ABC1K7 and ABC1K8 in abscisic acid responses

    Directory of Open Access Journals (Sweden)

    Anna eManara

    2016-03-01

    Full Text Available The ABC1K family of atypical kinases (activity of bc1 complex kinase is represented in bacteria, archaea and eukaryotes. In plants they regulate diverse physiological processes in the chloroplasts and mitochondria, but their precise functions are poorly defined. ABC1K7 and ABC1K8 are probably involved in oxidative stress responses, isoprenyl lipid synthesis and distribution of iron within chloroplasts. Because reactive oxygen species take part in abscisic acid (ABA-mediated processes, we investigated the functions of ABC1K7 and ABC1K8 during germination, stomatal movement and leaf senescence. Both genes were upregulated by ABA treatment and some ABA-responsive physiological processes were affected in abc1k7 and abc1k8 mutants. Germination was more severely affected by ABA, osmotic stress and salt stress in the single and double mutants; the stomatal aperture was smaller in the mutants under standard growth conditions and was not further reduced by exogenous ABA application; ABA-induced senescence symptoms were more severe in the leaves of the single and double mutants compared to wild type leaves. Taken together, our results suggest that ABC1K7 and ABC1K8 might be involved in the cross-talk between ABA and ROS signaling.

  4. Jasmonate signaling involves the abscisic acid receptor PYL4 to regulate metabolic reprogramming in Arabidopsis and tobacco

    Science.gov (United States)

    Lackman, Petri; González-Guzmán, Miguel; Tilleman, Sofie; Carqueijeiro, Inês; Pérez, Amparo Cuéllar; Moses, Tessa; Seo, Mitsunori; Kanno, Yuri; Häkkinen, Suvi T.; Van Montagu, Marc C. E.; Thevelein, Johan M.; Maaheimo, Hannu; Oksman-Caldentey, Kirsi-Marja; Rodriguez, Pedro L.; Rischer, Heiko; Goossens, Alain

    2011-01-01

    The phytohormones jasmonates (JAs) constitute an important class of elicitors for many plant secondary metabolic pathways. However, JAs do not act independently but operate in complex networks with crosstalk to several other phytohormonal signaling pathways. Here, crosstalk was detected between the JA and abscisic acid (ABA) signaling pathways in the regulation of tobacco (Nicotiana tabacum) alkaloid biosynthesis. A tobacco gene from the PYR/PYL/RCAR family, NtPYL4, the expression of which is regulated by JAs, was found to encode a functional ABA receptor. NtPYL4 inhibited the type-2C protein phosphatases known to be key negative regulators of ABA signaling in an ABA-dependent manner. Overexpression of NtPYL4 in tobacco hairy roots caused a reprogramming of the cellular metabolism that resulted in a decreased alkaloid accumulation and conferred ABA sensitivity to the production of alkaloids. In contrast, the alkaloid biosynthetic pathway was not responsive to ABA in control tobacco roots. Functional analysis of the Arabidopsis (Arabidopsis thaliana) homologs of NtPYL4, PYL4 and PYL5, indicated that also in Arabidopsis altered PYL expression affected the JA response, both in terms of biomass and anthocyanin production. These findings define a connection between a component of the core ABA signaling pathway and the JA responses and contribute to the understanding of the role of JAs in balancing tradeoffs between growth and defense. PMID:21436041

  5. Integrin-like Protein Is Involved in the Osmotic Stress-induced Abscisic Acid Biosynthesis in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Bing Lü; Feng Chen; Zhong-Hua Gong; Hong Xie; Jian-Sheng Liang

    2007-01-01

    We studied the perception of plant cells to osmotic stress that leads to the accumulation of abscisic acid (ABA) in stressed Arabidopsis thaliana L. cells. A significant difference was found between protoplasts and cells in terms of their responses to osmotic stress and ABA biosynthesis, implying that cell wall and/or cell wall-plasma membrane interaction are essential in identifying osmotic stress. Western blotting and immunofluorescence localization experiments, using polyclonal antibody against human integrin β1, revealed the existence of a protein similar to the integrin protein of animals in the suspension-cultured cells located in the plasma membrane fraction.Treatment with a synthetic pentapeptide, Gly-Arg-Gly-Asp-Ser (GRGDS), which contains an RGD domain and interacts specifically with integrin protein and thus blocks the cell wall-plasma membrane interaction, significantly inhibited osmotic stress-induced ABA biosynthesis in cells, but not in protoplasts. These results demonstrate that cell wall and/or cell wall-plasma membrane interaction mediated by integrin-like proteins played important roles in osmotic stress-induced ABA biosynthesis in Arabidopsis thaliana.

  6. The plant cuticle is required for osmotic stress regulation of abscisic acid biosynthesis and osmotic stress tolerance in Arabidopsis

    KAUST Repository

    Wang, Zhenyu

    2011-05-01

    Osmotic stress activates the biosynthesis of abscisic acid (ABA). One major step in ABA biosynthesis is the carotenoid cleavage catalyzed by a 9-cis epoxycarotenoid dioxygenase (NCED). To understand the mechanism for osmotic stress activation of ABA biosynthesis, we screened for Arabidopsis thaliana mutants that failed to induce the NCED3 genee xpression in response to osmotic stress treatments. The ced1 (for 9-cis epoxycarotenoid dioxy genase defective 1) mutant isolated in this study showed markedly reduced expression of NCED3 in response to osmotic stress (polyethylene glycol)treatments compared with the wild type. Other ABA biosynthesis genes are also greatly reduced in ced1 under osmotic stress. ced1 mutant plants are very sensitive to even mild osmotic stress. Map-based cloning revealed unexpectedly thatCED1 encodes a putative a/b hydrolase domain-containing protein and is allelic to the BODYGUARD gene that was recently shown to be essential for cuticle biogenesis. Further studies discovered that other cut in biosynthesis mutants are also impaired in osmotic stress induction of ABA biosynthesis genes and are sensitive to osmotic stress. Our work demonstrates that the cuticle functions not merely as a physical barrier to minimize water loss but also mediates osmotic stress signaling and tolerance by regulating ABA biosynthesis and signaling. © 2011 American Society of Plant Biologists. All rights reserved.

  7. Abscisic acid promotes accumulation of toxin ODAP in relation to free spermine level in grass pea seedlings (Lathyrus sativus L.).

    Science.gov (United States)

    Xiong, You-Cai; Xing, Geng-Mei; Li, Feng-Min; Wang, Shao-Ming; Fan, Xian-Wei; Li, Zhi-Xiao; Wang, Ya-Fu

    2006-01-01

    Interrelationship among abscisic acid (ABA) content, accumulation of free polyamines and biosynthesis of beta-N-oxalyl-l-alpha,beta-diaminopropionic acid (ODAP) was studied in grass pea (Lathyrus sativus L.) seedlings under drought stress induced by 10% polyethylene glycol (PEG6000). Increase of ABA content occurred prior to that of ODAP and polyamine contents, and was found significantly positive correlation between ABA content and ODAP content. Addition of exogenous ABA increased ODAP content in leaves. On the other hand, pretreatment with alpha-difluoromethylarginine (DFMA), a polyamine biosynthesis inhibitor, significantly suppressed the accumulation of free putrescine (Put), free spermidine (Spd) and free spermine (Spm), which in turn inhibited biosynthesis of ODAP in well-watered leaves. Meanwhile, addition of exogenous Put alleviated DFMA-induced inhibition on the biosynthesis of Put and Spd, but did not affect the biosynthesis of Spm and ODAP in well-watered leaves. Same result was also achieved in drought-stressed leaves. Increasing accumulation of ODAP was significantly correlated with increasing Spm content (R=0.7957**) but not with that of Spd and Put. Therefore, it can be argued that ABA stimulated the biosynthesis of ODAP simultaneously with increasing the level of free Spm under drought stress condition.

  8. Overexpression of AtABCG25 enhances the abscisic acid signal in guard cells and improves plant water use efficiency.

    Science.gov (United States)

    Kuromori, Takashi; Fujita, Miki; Urano, Kaoru; Tanabata, Takanari; Sugimoto, Eriko; Shinozaki, Kazuo

    2016-10-01

    In addition to improving drought tolerance, improvement of water use efficiency is a major challenge in plant physiology. Due to their trade-off relationships, it is generally considered that achieving stress tolerance is incompatible with maintaining stable growth. Abscisic acid (ABA) is a key phytohormone that regulates the balance between intrinsic growth and environmental responses. Previously, we identified AtABCG25 as a cell-membrane ABA transporter that export ABA from the inside to the outside of cells. AtABCG25-overexpressing plants showed a lower transpiration phenotype without any growth retardation. Here, we dissected this useful trait using precise phenotyping approaches. AtABCG25 overexpression stimulated a local ABA response in guard cells. Furthermore, AtABCG25 overexpression enhanced drought tolerance, probably resulting from maintenance of water contents over the common threshold for survival after drought stress treatment. Finally, we observed enhanced water use efficiency by overexpression of AtABCG25, in addition to drought tolerance. These results were consistent with the function of AtABCG25 as an ABA efflux transporter. This unique trait may be generally useful for improving the water use efficiency and drought tolerance of plants. PMID:27593465

  9. The parasitic plant Cuscuta australis is highly insensitive to abscisic acid-induced suppression of hypocotyl elongation and seed germination.

    Directory of Open Access Journals (Sweden)

    Juan Li

    Full Text Available Around 1% of angiosperms are parasitic plants. Their growth and development solely or partly depend on host plants from which they extract water, nutrients, and other molecules using a parasitic plant-specific organ, the haustorium. Strong depletion of nutrients can result in serious growth retardation and in some cases, death of the hosts. The genus Cuscuta (dodder comprises about 200 holoparasitic species occurring on all continents. Their seedlings have no roots and cotyledons but are only string-like hypocotyls. When they contact suitable host plants, haustoria are formed and thereafter seedlings rapidly develop into vigorously growing branches without roots and leaves. This highly specialized lifestyle suggests that Cuscuta plants likely have unique physiology in development and stress responses. Using germination and seedling growth assays, we show that C. australis seeds and seedlings are highly insensitive to abscisic acid (ABA. Transcriptome analysis and protein sequence alignment with Arabidopsis, tomato, and rice homologs revealed that C. australis most likely consists of only four functional ABA receptors. Given that Cuscuta plants are no longer severely challenged by drought stress, we hypothesize that the ABA-mediated drought resistance pathway in Cuscuta spp. might have had degenerated over time during evolution.

  10. Regulation of reactive oxygen species-mediated abscisic acid signaling in guard cells and drought tolerance by glutathione

    Directory of Open Access Journals (Sweden)

    Shintaro eMunemasa

    2013-11-01

    Full Text Available The phytohormone abscisic acid (ABA induces stomatal closure in response to drought stress, leading to reduction of transpirational water loss. A thiol tripeptide glutathione (GSH is an important regulator of cellular redox homeostasis in plants. Although it has been shown that cellular redox state of guard cells controls ABA-mediated stomatal closure, roles of GSH in guard cell ABA signaling were largely unknown. Recently we demonstrated that GSH functions as a negative regulator of ABA signaling in guard cells. In this study we performed more detailed analyses to reveal how GSH regulates guard cell ABA signaling using the GSH-deficient Arabidopsis mutant cad2-1. The cad2-1 mutant exhibited reduced water loss from rosette leaves. Whole-cell current recording using patch clamp technique revealed that the cad2-1 mutation did not affect ABA regulation of S-type anion channels. We found enhanced activation of Ca2+ permeable channels by hydrogen peroxide (H2O2 in cad2-1 guard cells. The cad2-1 mutant showed enhanced H2O2-induced stomatal closure and significant increase of ROS accumulation in whole leaves in response to ABA. Our findings provide a new understanding of guard cell ABA signaling and a new strategy to improve plant drought tolerance.

  11. Elevated air movement enhances stomatal sensitivity to abscisic acid in leaves developed at high relative air humidity

    Directory of Open Access Journals (Sweden)

    Dália R.A. Carvalho

    2015-05-01

    Full Text Available High relative air humidity (RH ≥ 85% during growth leads to stomata malfunctioning, resulting in water stress when plants are transferred to conditions of high evaporative demand. In this study, we hypothesized that an elevated air movement (MOV 24 h per day, during the whole period of leaf development would increase abscisic acid concentration ([ABA] enhancing stomatal functioning. Pot rose ‘Toril’ was grown at moderate (61% or high (92% RH combined with a negligible MOV or with a continuous MOV of 0.92 m s-1. High MOV reduced stomatal pore length and aperture in plants developed at high RH. Moreover, stomatal function improved when high MOV-treated plants were subjected to leaflet desiccation and ABA feeding. Endogenous concentration of ABA and its metabolites in the leaves was reduced by 35% in high RH, but contrary to our hypothesis this concentration was not significantly affected by high MOV. Interestingly, in detached leaflets grown at high RH, high MOV increased stomatal sensitivity to ABA since the amount of exogenous ABA required to decrease the transpiration rate was significantly reduced. This is the first study to show that high MOV increases stomatal functionality in leaves developed at high RH by reducing the stomatal pore length and aperture and enhancing stomatal sensitivity to ABA rather than increasing leaf [ABA].

  12. Melatonin enhances cold tolerance in drought-primed wild-type and abscisic acid-deficient mutant barley.

    Science.gov (United States)

    Li, Xiangnan; Tan, Dun-Xian; Jiang, Dong; Liu, Fulai

    2016-10-01

    Melatonin is involved in multiple plant developmental processes and various stress responses. To explore the roles of melatonin played as well as its association with abscisic acid (ABA) in a process of drought priming-induced cold tolerance (DPICT), a wild-type barley and its ABA-deficient mutant Az34 counterpart were selected for comparison, in which the effects of melatonin application (either foliarly or rhizospherically) and/or drought priming on the cold tolerance of both types of barleys were systematically investigated. It was demonstrated that the early drought priming induced an increase of endogenous melatonin production, which is not ABA dependent. In addition, exogenously applied melatonin resulted in higher ABA concentration in the drought-primed plants than in the nonprimed plants when exposed to cold stress, indicating that ABA responded in a drought-dependent manner. The interplay of melatonin and ABA leads to plants maintaining better water status. Drought priming-induced melatonin accumulation enhanced the antioxidant capacity in both chloroplasts and mitochondria, which sustained the photosynthetic electron transport in photosynthetic apparatus of the plants under cold stress. These results suggest that the exogenous melatonin application enhances the DPICT by modulating subcellular antioxidant systems and ABA levels in barley. PMID:27299847

  13. The parasitic plant Cuscuta australis is highly insensitive to abscisic acid-induced suppression of hypocotyl elongation and seed germination.

    Science.gov (United States)

    Li, Juan; Hettenhausen, Christian; Sun, Guiling; Zhuang, Huifu; Li, Jian-Hong; Wu, Jianqiang

    2015-01-01

    Around 1% of angiosperms are parasitic plants. Their growth and development solely or partly depend on host plants from which they extract water, nutrients, and other molecules using a parasitic plant-specific organ, the haustorium. Strong depletion of nutrients can result in serious growth retardation and in some cases, death of the hosts. The genus Cuscuta (dodder) comprises about 200 holoparasitic species occurring on all continents. Their seedlings have no roots and cotyledons but are only string-like hypocotyls. When they contact suitable host plants, haustoria are formed and thereafter seedlings rapidly develop into vigorously growing branches without roots and leaves. This highly specialized lifestyle suggests that Cuscuta plants likely have unique physiology in development and stress responses. Using germination and seedling growth assays, we show that C. australis seeds and seedlings are highly insensitive to abscisic acid (ABA). Transcriptome analysis and protein sequence alignment with Arabidopsis, tomato, and rice homologs revealed that C. australis most likely consists of only four functional ABA receptors. Given that Cuscuta plants are no longer severely challenged by drought stress, we hypothesize that the ABA-mediated drought resistance pathway in Cuscuta spp. might have had degenerated over time during evolution. PMID:26258814

  14. Plant Raf-like kinase integrates abscisic acid and hyperosmotic stress signaling upstream of SNF1-related protein kinase2.

    Science.gov (United States)

    Saruhashi, Masashi; Kumar Ghosh, Totan; Arai, Kenta; Ishizaki, Yumiko; Hagiwara, Kazuya; Komatsu, Kenji; Shiwa, Yuh; Izumikawa, Keiichi; Yoshikawa, Harunori; Umezawa, Taishi; Sakata, Yoichi; Takezawa, Daisuke

    2015-11-17

    Plant response to drought and hyperosmosis is mediated by the phytohormone abscisic acid (ABA), a sesquiterpene compound widely distributed in various embryophyte groups. Exogenous ABA as well as hyperosmosis activates the sucrose nonfermenting 1 (SNF1)-related protein kinase2 (SnRK2), which plays a central role in cellular responses against drought and dehydration, although the details of the activation mechanism are not understood. Analysis of a mutant of the moss Physcomitrella patens with reduced ABA sensitivity and reduced hyperosmosis tolerance revealed that a protein kinase designated "ARK" (for "ABA and abiotic stress-responsive Raf-like kinase") plays an essential role in the activation of SnRK2. ARK encoded by a single gene in P. patens belongs to the family of group B3 Raf-like MAP kinase kinase kinases (B3-MAPKKKs) mediating ethylene, disease resistance, and salt and sugar responses in angiosperms. Our findings indicate that ARK, as a novel regulatory component integrating ABA and hyperosmosis signals, represents the ancestral B3-MAPKKKs, which multiplied, diversified, and came to have specific functions in angiosperms. PMID:26540727

  15. Accumulation of eicosapolyenoic acids enhances sensitivity to abscisic acid and mitigates the effects of drought in transgenic Arabidopsis thaliana.

    Science.gov (United States)

    Yuan, Xiaowei; Li, Yaxiao; Liu, Shiyang; Xia, Fei; Li, Xinzheng; Qi, Baoxiu

    2014-04-01

    IgASE1, a C₁₈ Δ(9)-specific polyunsaturated fatty acid elongase from the marine microalga Isochrysis galbana, is able to convert linoleic acid and α-linolenic acid to eicosadienoic acid and eicosatrienoic acid in Arabidopsis. Eicosadienoic acid and eicosatrienoic acid are precursors of arachidonic acid, eicosapentaenoic acid, and docosahexaenoic acid, which are synthesized via the Δ(8) desaturation biosynthetic pathways. This study shows that the IgASE1-expressing transgenic Arabidopsis exhibited altered morphology (decreased leaf area and biomass) and enhanced drought resistance compared to wild-type plants. The transgenic Arabidopsis were hypersensitive to abscisic acid (ABA) during seed germination, post-germination growth, and seedling development. They had elevated leaf ABA levels under well-watered and dehydrated conditions and their stomata were more sensitive to ABA. Exogenous application of eicosadienoic acid and eicosatrienoic acid can mimic ABA and drought responses in the wild type plants, similar to that found in the transgenic ones. The transcript levels of genes involved in the biosynthesis of ABA (NCED3, ABA1, AAO3) as well as other stress-related genes were upregulated in this transgenic line upon osmotic stress (300 mM mannitol). Taken together, these results indicate that these two eicosapolyenoic acids or their derived metabolites can mitigate the effects of drought in transgenic Arabidopsis, at least in part, through the action of ABA. PMID:24609499

  16. OsHK3 is a crucial regulator of abscisic acid signaling involved in antioxidant defense in rice

    Institute of Scientific and Technical Information of China (English)

    Feng Wen; Tingting Qin; Yao Wang; Wen Dong; Aying Zhang; Mingpu Tan; Mingyi Jiang

    2015-01-01

    In this study, the role of the rice (Oryza sativa L.) histidine kinase OsHK3 in abscisic acid (ABA)‐induced antioxi-dant defense was investigated. Treatments with ABA, H2O2, and polyethylene glycol (PEG) induced the expression of OsHK3 in rice leaves, and H2O2 is required for ABA‐induced increase in the expression of OsHK3 under water stress. Subcel ular localization analysis showed that OsHK3 is located in the cytoplasm and the plasma membrane. The transient expres-sion analysis and the transient RNA interference test in rice protoplasts showed that OsHK3 is required for ABA‐induced upregulation in the expression of antioxidant enzymes genes and the activities of antioxidant enzymes. Further analysis showed that OsHK3 functions upstream of the calcium/calmodulin‐dependent protein kinase OsDMI3 and the mito-gen‐activated protein kinase OsMPK1 to regulate the activities of antioxidant enzymes in ABA signaling. Moreover, OsHK3 was also shown to regulate the expression of nicotinamide adenine dinucleotide phosphate oxidase genes, OsrbohB and OsrbohE, and the production of H2O2 in ABA signaling. Our data indicate that OsHK3 play an important role in the regulation of ABA‐induced antioxidant defense and in the feedback regula-tion of H2O2 production in ABA signaling.

  17. Endogenous abscisic acid promotes hypocotyl growth and affects endoreduplication during dark-induced growth in tomato (Solanum lycopersicum L..

    Directory of Open Access Journals (Sweden)

    Jan F Humplík

    Full Text Available Dark-induced growth (skotomorphogenesis is primarily characterized by rapid elongation of the hypocotyl. We have studied the role of abscisic acid (ABA during the development of young tomato (Solanum lycopersicum L. seedlings. We observed that ABA deficiency caused a reduction in hypocotyl growth at the level of cell elongation and that the growth in ABA-deficient plants could be improved by treatment with exogenous ABA, through which the plants show a concentration dependent response. In addition, ABA accumulated in dark-grown tomato seedlings that grew rapidly, whereas seedlings grown under blue light exhibited low growth rates and accumulated less ABA. We demonstrated that ABA promotes DNA endoreduplication by enhancing the expression of the genes encoding inhibitors of cyclin-dependent kinases SlKRP1 and SlKRP3 and by reducing cytokinin levels. These data were supported by the expression analysis of the genes which encode enzymes involved in ABA and CK metabolism. Our results show that ABA is essential for the process of hypocotyl elongation and that appropriate control of the endogenous level of ABA is required in order to drive the growth of etiolated seedlings.

  18. Implication of abscisic acid on ripening and quality in sweet cherries: differential effects during pre- and postharvest

    Directory of Open Access Journals (Sweden)

    Verónica eTijero

    2016-05-01

    Full Text Available Sweet cherry, a non-climacteric fruit, is usually cold-stored during postharvest to prevent over-ripening. The aim of the study was to evaluate the role of abscisic acid (ABA on fruit growth and ripening of this fruit, considering as well its putative implication in over-ripening and effects on quality. We measured the endogenous concentrations of ABA during the ripening of sweet cherries (Prunus avium L. var. Prime Giant collected from orchard trees and in cherries exposed to 4ºC and 23ºC during 10d of postharvest. Furthermore, we examined to what extent endogenous ABA concentrations were related to quality parameters, such as fruit biomass, anthocyanin accumulation and levels of vitamins C and E. Endogenous concentrations of ABA in fruits increased progressively during fruit growth and ripening on the tree, to decrease later during postharvest at 23ºC. Cold treatment, however, increased ABA levels and led to an inhibition of over-ripening. Furthermore, ABA levels positively correlated with anthocyanin and vitamin E levels during preharvest, but not during postharvest. We conclude that ABA plays a major role in sweet cherry development, stimulating its ripening process and positively influencing quality parameters during preharvest. The possible influence of ABA preventing over-ripening in cold-stored sweet cherries is also discussed.

  19. Implication of Abscisic Acid on Ripening and Quality in Sweet Cherries: Differential Effects during Pre- and Post-harvest.

    Science.gov (United States)

    Tijero, Verónica; Teribia, Natalia; Muñoz, Paula; Munné-Bosch, Sergi

    2016-01-01

    Sweet cherry, a non-climacteric fruit, is usually cold-stored during post-harvest to prevent over-ripening. The aim of the study was to evaluate the role of abscisic acid (ABA) on fruit growth and ripening of this fruit, considering as well its putative implication in over-ripening and effects on quality. We measured the endogenous concentrations of ABA during the ripening of sweet cherries (Prunus avium L. var. Prime Giant) collected from orchard trees and in cherries exposed to 4°C and 23°C during 10 days of post-harvest. Furthermore, we examined to what extent endogenous ABA concentrations were related to quality parameters, such as fruit biomass, anthocyanin accumulation and levels of vitamins C and E. Endogenous concentrations of ABA in fruits increased progressively during fruit growth and ripening on the tree, to decrease later during post-harvest at 23°C. Cold treatment, however, increased ABA levels and led to an inhibition of over-ripening. Furthermore, ABA levels positively correlated with anthocyanin and vitamin E levels during pre-harvest, but not during post-harvest. We conclude that ABA plays a major role in sweet cherry development, stimulating its ripening process and positively influencing quality parameters during pre-harvest. The possible influence of ABA preventing over-ripening in cold-stored sweet cherries is also discussed. PMID:27200070

  20. Sustained exposure to abscisic acid enhances the colonization potential of the mutualist fungus Piriformospora indica on Arabidopsis thaliana roots.

    Science.gov (United States)

    Peskan-Berghöfer, Tatjana; Vilches-Barro, Amaya; Müller, Teresa M; Glawischnig, Erich; Reichelt, Michael; Gershenzon, Jonathan; Rausch, Thomas

    2015-11-01

    Root colonization by the beneficial fungus Piriformospora indica is controlled by plant innate immunity, but factors that channel this interaction into a mutualistic relationship are not known. We have explored the impact of abscisic acid (ABA) and osmotic stress on the P. indica interaction with Arabidopsis thaliana. The activation of plant innate immunity in roots was determined by measuring the concentration of the phytoalexin camalexin and expression of transcription factors regulating the biosynthesis of tryptophan-related defence metabolites. Furthermore, the impact of the fungus on the content of ABA, salicylic acid, jasmonic acid (JA) and JA-related metabolites was examined. We demonstrated that treatment with exogenous ABA or the ABA analogue pyrabactin increased fungal colonization efficiency without impairment of plant fitness. Concomitantly, ABA-deficient mutants of A. thaliana (aba1-6 and aba2-1) were less colonized, while plants exposed to moderate stress were more colonized than corresponding controls. Sustained exposure to ABA attenuated expression of transcription factors MYB51, MYB122 and WRKY33 in roots upon P. indica challenge or chitin treatment, and prevented an increase in camalexin content. The results indicate that ABA can strengthen the interaction with P. indica as a consequence of its impact on plant innate immunity. Consequently, ABA will be relevant for the establishment and outcome of the symbiosis under stress conditions.

  1. Kinetic Characterisation of a Single Chain Antibody against the Hormone Abscisic Acid: Comparison with Its Parental Monoclonal.

    Directory of Open Access Journals (Sweden)

    George O Badescu

    Full Text Available A single-chain Fv fragment antibody (scFv specific for the plant hormone abscisic acid (ABA has been expressed in the bacterium Escherichia coli as a fusion protein. The kinetics of ABA binding have been measured using surface plasmon resonance spectrometry (BIAcore 2000 using surface and solution assays. Care was taken to calculate the concentration of active protein in each sample using initial rate measurements under conditions of partial mass transport limitation. The fusion product, parental monoclonal antibody and the free scFv all have low nanomolar affinity constants, but there is a lower dissociation rate constant for the parental monoclonal resulting in a three-fold greater affinity. Analogue specificity was tested and structure-activity binding preferences measured. The biologically-active (+-ABA enantiomer is recognised with an affinity three orders of magnitude higher than the inactive (--ABA. Metabolites of ABA including phaseic acid, dihydrophaseic acid and deoxy-ABA have affinities over 100-fold lower than that for (+-ABA. These properties of the scFv make it suitable as a sensor domain in bioreporters specific for the naturally occurring form of ABA.

  2. Ethylene responses in rice roots and coleoptiles are differentially regulated by a carotenoid isomerase-mediated abscisic acid pathway.

    Science.gov (United States)

    Yin, Cui-Cui; Ma, Biao; Collinge, Derek Phillip; Pogson, Barry James; He, Si-Jie; Xiong, Qing; Duan, Kai-Xuan; Chen, Hui; Yang, Chao; Lu, Xiang; Wang, Yi-Qin; Zhang, Wan-Ke; Chu, Cheng-Cai; Sun, Xiao-Hong; Fang, Shuang; Chu, Jin-Fang; Lu, Tie-Gang; Chen, Shou-Yi; Zhang, Jin-Song

    2015-04-01

    Ethylene and abscisic acid (ABA) act synergistically or antagonistically to regulate plant growth and development. ABA is derived from the carotenoid biosynthesis pathway. Here, we analyzed the interplay among ethylene, carotenoid biogenesis, and ABA in rice (Oryza sativa) using the rice ethylene response mutant mhz5, which displays a reduced ethylene response in roots but an enhanced ethylene response in coleoptiles. We found that MHZ5 encodes a carotenoid isomerase and that the mutation in mhz5 blocks carotenoid biosynthesis, reduces ABA accumulation, and promotes ethylene production in etiolated seedlings. ABA can largely rescue the ethylene response of the mhz5 mutant. Ethylene induces MHZ5 expression, the production of neoxanthin, an ABA biosynthesis precursor, and ABA accumulation in roots. MHZ5 overexpression results in enhanced ethylene sensitivity in roots and reduced ethylene sensitivity in coleoptiles. Mutation or overexpression of MHZ5 also alters the expression of ethylene-responsive genes. Genetic studies revealed that the MHZ5-mediated ABA pathway acts downstream of ethylene signaling to inhibit root growth. The MHZ5-mediated ABA pathway likely acts upstream but negatively regulates ethylene signaling to control coleoptile growth. Our study reveals novel interactions among ethylene, carotenogenesis, and ABA and provides insight into improvements in agronomic traits and adaptive growth through the manipulation of these pathways in rice.

  3. Abscisic acid as an internal integrator of multiple physiological processes modulates leaf senescence onset in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Yuwei eSong

    2016-02-01

    Full Text Available Many studies have shown that exogenous abscisic acid (ABA promotes leaf abscission and senescence. However, owing to a lack of genetic evidence, ABA function in plant senescence has not been clearly defined. Here, two-leaf early-senescence mutants (eas that were screened by chlorophyll fluorescence imaging and named eas1-1 and eas1-2 showed high photosynthetic capacity in the early stage of plant growth compared with the wild type. Gene mapping showed that eas1-1 and eas1-2 are two novel ABA2 allelic mutants. Under unstressed conditions, the eas1 mutations caused plant dwarf, early germination, larger stomatal apertures, and early leaf senescence compared with those of the wild type. Flow cytometry assays showed that the cell apoptosis rate in eas1 mutant leaves was higher than that of the wild type after day 30. A significant increase in the transcript levels of several senescence-associated genes, especially SAG12, was observed in eas1 mutant plants in the early stage of plant growth. More importantly, ABA-activated calcium channel activity in plasma membrane and induced the increase of cytoplasmic calcium concentration in guard cells are suppressed due to the mutation of EAS1. In contrast, the eas1 mutants lost chlorophyll and ion leakage significant faster than in the wild type under treatment with calcium channel blocker. Hence, our results indicate that endogenous ABA level is an important factor controlling the onset of leaf senescence through Ca2+ signaling.

  4. Effects of Exterior Abscisic Acid on Calcium Distribution of Mesophyll Cells and Calcium Concentration of Guard Cells in Maize Seedlings

    Institute of Scientific and Technical Information of China (English)

    GUO Xiu-lin; MA Yuan-yuan; LIU Zi-hui; LIU Bin-hui

    2008-01-01

    In this study, the direct effects of exterior abscisic acid (ABA) on both calcium distribution of mesophyll cells and cytosolic calcium concentration of guard cells were examined. The distribution of Ca2+ localization were observed with calcium antimonate precipitate-electromicroscopic-cyto-chemical methods after treated with ABA and pretreated with ethylene glycol-bis-(2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA), verapamil (Vp), and trifluoperazine (TFP). The laser scanning confocal microscopy was used to measure the cytosolic calcium concentrations of guard cells under different treatments. The results showed that the cytosolic Ca2+ concentration of mesophyll cells was induced to increase by ABA, but to decrease in both outside cell and the vacuoles within 10 min after treatments. The cytosolic calcium concentration of guard cells was increased gradually with the lag in treatment time. However, both EGTA and TFP could inverse those effects, indicating that the increase of cytosolic calcium induced by exterior ABA was mainly caused by calcium influx. The results also showed that calmodulin could influence both the calcium distribution of mesophyll cells and calcium concentration of guard cells. It shows that calmodulin participates in the process of ABA signal transduction, but the mechanism is not known as yet. The changes both calcium distribution of mesophyll cells and calcium concentration of guard cells further proved that the variations of cytosolic Ca2+ concentration induced by ABA were involved in the stomatal movements of maize seedlings.

  5. Interaction between abscisic acid and nitric oxide in PB90-induced catharanthine biosynthesis of catharanthus roseus cell suspension cultures.

    Science.gov (United States)

    Chen, Qian; Chen, Zunwei; Lu, Li; Jin, Haihong; Sun, Lina; Yu, Qin; Xu, Hongke; Yang, Fengxia; Fu, Mengna; Li, Shengchao; Wang, Huizhong; Xu, Maojun

    2013-01-01

    Elicitations are considered to be an important strategy to improve production of secondary metabolites of plant cell cultures. However, mechanisms responsible for the elicitor-induced production of secondary metabolites of plant cells have not yet been fully elucidated. Here, we report that treatment of Catharanthus roseus cell suspension cultures with PB90, a protein elicitor from Phytophthora boehmeriae, induced rapid increases of abscisic acid (ABA) and nitric oxide (NO), subsequently followed by the enhancement of catharanthine production and up-regulation of Str and Tdc, two important genes in catharanthine biosynthesis. PB90-induced catharanthine production and the gene expression were suppressed by the ABA inhibitor and NO scavenger respectively, showing that ABA and NO are essential for the elicitor-induced catharanthine biosynthesis. The relationship between ABA and NO in mediating catharanthine biosynthesis was further investigated. Treatment of the cells with ABA triggered NO accumulation and induced catharanthine production and up-regulation of Str and Tdc. ABA-induced catharanthine production and gene expressions were suppressed by the NO scavenger. Conversely, exogenous application of NO did not stimulate ABA generation and treatment with ABA inhibitor did not suppress NO-induced catharanthine production and gene expressions. Together, the results showed that both NO and ABA were involved in PB90-induced catharanthine biosynthesis of C. roseus cells. Furthermore, our data demonstrated that ABA acted upstream of NO in the signaling cascade leading to PB90-induced catharanthine biosynthesis of C. roseus cells. PMID:23554409

  6. Studies on the growth and indole-3-acetic acid and abscisic acid content of Zea mays seedlings grown in microgravity

    Science.gov (United States)

    Schulze, A.; Jensen, P. J.; Desrosiers, M.; Buta, J. G.; Bandurski, R. S.

    1992-01-01

    Measurements were made of the fresh weight, dry weight, dry weight-fresh weight ratio, free and conjugated indole-3-acetic acid, and free and conjugated abscisic acid in seedlings of Zea mays grown in darkness in microgravity and on earth. Imbibition of the dry kernels was 17 h prior to launch. Growth was for 5 d at ambient orbiter temperature and at a chronic accelerational force of the order of 3 x 10(-5) times earth gravity. Weights and hormone content of the microgravity seedlings were, with minor exceptions, not statistically different from seedlings grown in normal gravity. The tissues of the shuttle-grown plants appeared normal and the seedlings differed only in the lack of orientation of roots and shoots. These findings, based upon 5 d of growth in microgravity, cannot be extrapolated to growth in microgravity for weeks, months, and years, as might occur on a space station. Nonetheless, it is encouraging, for prospects of bioregeneration of the atmosphere and food production in a space station, that no pronounced differences in the parameters measured were apparent during the 5 d of plant seedling growth in microgravity.

  7. Growth and graviresponsiveness of primary roots of Zea mays seedlings deficient in abscisic acid and gibberellic acid

    Science.gov (United States)

    Moore, R.; Dickey, K.

    1985-01-01

    The objective of this research was to determine if gibberellic acid (GA) and/or abscisic acid (ABA) are necessary for graviresponsiveness by primary roots of Zea mays. To accomplish this objective we measured the growth and graviresponsiveness of primary roots of seedlings in which the synthesis of ABA and GA was inhibited collectively and individually by genetic and chemical means. Roots of seedlings treated with Fluridone (an inhibitor of ABA biosynthesis) and Ancymidol (an inhibitor of GA biosynthesis) were characterized by slower growth rates but not significantly different gravicultures as compared to untreated controls. Gravicurvatures of primary roots of d-5 mutants (having undetectable levels of GA) and vp-9 mutants (having undectable levels of ABA) were not significantly different from those of wild-type seedlings. Roots of seedlings in which the biosynthesis of ABA and GA was collectively inhibited were characterized by gravicurvatures not significantly different for those of controls. These results (1) indicate that drastic reductions in the amount of ABA and GA in Z. mays seedlings do not significantly alter root graviresponsiveness, (2) suggest that neither ABA nor GA is necessary for root gravicurvature, and (3) indicate that root gravicurvature is not necessarily proportional to root elongation.

  8. Graviresponsiveness and abscisic-acid content of roots of carotenoid-deficient mutants of Zea mays L

    Science.gov (United States)

    Moore, R.; Smith, J. D.

    1985-01-01

    The abscisic-acid (ABA) content of roots of the carotenoid-deficient w-3, vp-5, and vp-7 mutants of Z. mays was analyzed using gas chromatography-mass spectrometry with an analysis sensitivity of 6 ng ABA g-1 fresh weight (FW). Roots of normal seedlings of the same lines were characterized by the following amounts of ABA (as ng ABA g-1 FW, +/- standard deviation): w-3, 279 +/- 43; vp-5, 237 +/- 26; vp-7, 338 +/- 61. We did not detect any ABA in roots of any of the mutants. Thus, the lack of carotenoids in these mutants correlated positively with the apparent absence of ABA. Primary roots of normal and mutant seedlings were positively gravitropic, with no significant differences in the curvatures of roots of normal as compared with mutant seedlings. These results indicate that ABA 1) is synthesized in maize roots via the carotenoid pathway, and 2) is not necessary for positive gravitropism by primary roots of Z. mays.

  9. Eucalyptus ESTs involved in the production of 9-cis epoxycarotenoid dioxygenase, a regulatory enzyme of abscisic acid production

    Directory of Open Access Journals (Sweden)

    Iraê A. Guerrini

    2005-01-01

    Full Text Available Abscisic acid (ABA regulates stress responses in plants, and genomic tools can help us to understand the mechanisms involved in that process. FAPESP, a Brazilian research foundation, in association with four private forestry companies, has established the FORESTs database (https://forests.esalq.usp.br. A search was carried out in the Eucalyptus expressed sequence tag database to find ESTs involved with 9-cis epoxycarotenoid dioxygenase (NCED, the regulatory enzyme for ABA biosynthesis, using the basic local BLAST alignment tool. We found four clusters (EGEZLV2206B11.g, EGJMWD2252H08.g, EGBFRT3107F10.g, and EGEQFB1200H10.g, which represent similar sequences of the gene that produces NCED. Data showed that the EGBFRT3107F10.g cluster was similar to the maize (Zea mays NCED enzyme, while EGEZLV2206B11.g and EGJMWD2252H08.g clusters were similar to the avocado (Persea americana NCED enzyme. All Eucalyptus clusters were expressed in several tissues, especially in flower buds, where ABA has a special participation during the floral development process.

  10. Evidence for a universal pathway of abscisic acid biosynthesis in higher plants from sup 18 O incorporation patterns

    Energy Technology Data Exchange (ETDEWEB)

    Zeevaart, J.A.D.; Heath, T.G.; Gage, D.A. (Michigan State University, East Lansing (USA))

    1989-12-01

    Previous labeling studies of abscisic acid (ABA) with {sup 18}O{sub 2} have been mainly conducted with water-stressed leaves. In this study, {sup 18}O incorporation into ABA of stressed leaves of various species was compared with {sup 18}O labeling of ABA of turgid leaves and of fruit tissue in different stages of ripening. In stressed leaves of all six species investigated, avocado (Persea americana), barley (Hordeum vulgare), bean (Phaseolus vulgaris), cocklebur (Xanthium strumarium), spinach (Spinacia oleracea), and tobacco (Nicotiana tabacum), {sup 18}O was most abundant in the carboxyl group, whereas incorporation of a second and third {sup 18}O in the oxygen atoms on the ring of ABA was much less prominent after 24 h in {sup 18}O{sub 2}. ABA from turgid bean leaves showed significant {sup 18}O incorporation, again with highest {sup 18}O enrichment in the carboxyl group. On the basis of {sup 18}O-labeling patterns observed in ABA from different tissues it is concluded that, despite variations in precusor pool sizes and intermediate turnover rates, there is a universal pathway of ABA biosynthesis in higher plants which involves cleavage of a larger precursor molecule, presumably an oxygenated carotenoid.

  11. Abscisic acid content, transpiration, and stomatal conductance as related to leaf age in plants Xanthium strumarium L

    Energy Technology Data Exchange (ETDEWEB)

    Raschke, K.; Zeevaart, J.A.D.

    1976-01-01

    Among the four uppermost leaves of greenhouse-grown plants of Xanthium strumarium L., the content of abscisic acid per unit fresh or dry weight was highest in the youngest leaf and decreased gradually with increasing age of the leaves. Expressed per leaf, the second youngest leaf was richest in ABA; the amount of ABA per leaf declined only slightly as the leaves expanded. Transpiration and stomatal conductance were negatively correlated with the ABA concentration in the leaves; the youngest leaf lost the least amount of water. This correlation was always very good if the youngest leaf was compared with the older leaves but not always good among the older leaves. Since stomatal sensitivity to exogenous (+-)-ABA was the same in leaves of all four age groups ABA may be in at least two compartments in the leaf, one of which is isolated from the guard cells. The ability to synthesize ABA in response to wilting or chilling was strongly expressed in young leaves and declined with leaf age. There was no difference between leaves in their content of the metabolites of ABA, phaseic, and dihydrophaseic acid, expressed per unit weight.

  12. Expression of genes associated with the biosynthetic pathways of abscisic acid, gibberellin, and ethylene during the germination of lettuce seeds.

    Science.gov (United States)

    Clemente, A C S; Guimarães, R M; Martins, D C; Gomes, L A A; Caixeta, F; Reis, R G E; Rosa, S D V F

    2015-01-01

    Seed germination and dormancy are complex phenomena that are controlled by many genes and environmental factors. Such genes are indicated by phytohormones that interact with each other, and may cause dormancy or promote seed germination. The objective of this study was to investigate gene expression associated with the biosynthetic pathways of abscisic acid (ABA), gibberellic acid (GA), and ethylene (ET) in dormant and germinated lettuce seeds. The expressions of LsNCED, LsGA3ox1, and ACO-B were evaluated in germinating and dormant seeds from the cultivars Everglades, Babá de Verão, Verônica, Salinas, Colorado, and Regina 71. The expressions of LsNCED, LsGA3ox1, and ACO-B were related to the biosynthesis of ABA, GA, and ET, respectively; therefore, the presence of these substances depends on genotype. LsNCED expression only occurred in dormant seeds, and was connected to dormancy. LsGA3ox1expression only occurred in germinated seeds, and was connected to germination. The ACO-B gene was involved in ET biosynthesis, and was expressed differently in germinated and dormant seeds, depending on the genotype, indicating different functions for different characteristics. Furthermore, sensitivity to phytohormones appeared to be more important than the expression levels of LsNCED, LsGA3ox1, or ACO-B.

  13. Meristem maintenance, auxin, jasmonic and abscisic acid pathways as a mechanism for phenotypic plasticity in Antirrhinum majus

    Science.gov (United States)

    Weiss, Julia; Alcantud-Rodriguez, Raquel; Toksöz, Tugba; Egea-Cortines, Marcos

    2016-01-01

    Plants grow under climatic changing conditions that cause modifications in vegetative and reproductive development. The degree of changes in organ development i.e. its phenotypic plasticity seems to be determined by the organ identity and the type of environmental cue. We used intraspecific competition and found that Antirrhinum majus behaves as a decoupled species for lateral organ size and number. Crowding causes decreases in leaf size and increased leaf number whereas floral size is robust and floral number is reduced. Genes involved in shoot apical meristem maintenance like ROA and HIRZ, cell cycle (CYCD3a; CYCD3b, HISTONE H4) or organ polarity (GRAM) were not significantly downregulated under crowding conditions. A transcriptomic analysis of inflorescence meristems showed Gene Ontology enriched pathways upregulated including Jasmonic and Abscisic acid synthesis and or signalling. Genes involved in auxin synthesis such as AmTAR2 and signalling AmANT were not affected by crowding. In contrast, AmJAZ1, AmMYB21, AmOPCL1 and AmABA2 were significantly upregulated. Our work provides a mechanistic working hypothesis where a robust SAM and stable auxin signalling enables a homogeneous floral size while changes in JA and ABA signalling maybe responsible for the decreased leaf size and floral number. PMID:26804132

  14. Evidence for a universal pathway of abscisic acid biosynthesis in higher plants from 18O incorporation patterns

    International Nuclear Information System (INIS)

    Previous labeling studies of abscisic acid (ABA) with 18O2 have been mainly conducted with water-stressed leaves. In this study, 18O incorporation into ABA of stressed leaves of various species was compared with 18O labeling of ABA of turgid leaves and of fruit tissue in different stages of ripening. In stressed leaves of all six species investigated, avocado (Persea americana), barley (Hordeum vulgare), bean (Phaseolus vulgaris), cocklebur (Xanthium strumarium), spinach (Spinacia oleracea), and tobacco (Nicotiana tabacum), 18O was most abundant in the carboxyl group, whereas incorporation of a second and third 18O in the oxygen atoms on the ring of ABA was much less prominent after 24 h in 18O2. ABA from turgid bean leaves showed significant 18O incorporation, again with highest 18O enrichment in the carboxyl group. On the basis of 18O-labeling patterns observed in ABA from different tissues it is concluded that, despite variations in precusor pool sizes and intermediate turnover rates, there is a universal pathway of ABA biosynthesis in higher plants which involves cleavage of a larger precursor molecule, presumably an oxygenated carotenoid

  15. Repression/depression of conjugative plasmids and their influence on the mutation-selection balance in static environments.

    Directory of Open Access Journals (Sweden)

    Yoav Atsmon-Raz

    Full Text Available We study the effect that conjugation-mediated Horizontal Gene Transfer (HGT has on the mutation-selection balance of a population in a static environment. We consider a model whereby a population of unicellular organisms, capable of conjugation, comes to mutation-selection balance in the presence of an antibiotic, which induces a first-order death rate constant [Formula: see text] for genomes that are not resistant. We explicitly take into consideration the repression/de-repression dynamics of the conjugative plasmid, and assume that a de-repressed plasmid remains temporarily de-repressed after copying itself into another cell. We assume that both repression and de-repression are characterized by first-order rate constants [Formula: see text]and [Formula: see text], respectively. We find that conjugation has a deleterious effect on the mean fitness of the population, suggesting that HGT does not provide a selective advantage in a static environment, but is rather only useful for adapting to new environments. This effect can be ameliorated by repression, suggesting that while HGT is not necessarily advantageous for a population in a static environment, its deleterious effect on the mean fitness can be negated via repression. Therefore, it is likely that HGT is much more advantageous in a dynamic landscape. Furthermore, in the limiting case of a vanishing spontaneous de-repression rate constant, we find that the fraction of conjugators in the population undergoes a phase transition as a function of population density. Below a critical population density, the fraction of conjugators is zero, while above this critical population density the fraction of conjugators rises continuously to one. Our model for conjugation-mediated HGT is related to models of infectious disease dynamics, where the conjugators play the role of the infected (I class, and the non-conjugators play the role of the susceptible (S class.

  16. Tomato PYR/PYL/RCAR abscisic acid receptors show high expression in root, differential sensitivity to the abscisic acid agonist quinabactin, and the capability to enhance plant drought resistance.

    Science.gov (United States)

    González-Guzmán, Miguel; Rodríguez, Lesia; Lorenzo-Orts, Laura; Pons, Clara; Sarrión-Perdigones, Alejandro; Fernández, Maria A; Peirats-Llobet, Marta; Forment, Javier; Moreno-Alvero, Maria; Cutler, Sean R; Albert, Armando; Granell, Antonio; Rodríguez, Pedro L

    2014-08-01

    Abscisic acid (ABA) plays a crucial role in the plant's response to both biotic and abiotic stress. Sustainable production of food faces several key challenges, particularly the generation of new varieties with improved water use efficiency and drought tolerance. Different studies have shown the potential applications of Arabidopsis PYR/PYL/RCAR ABA receptors to enhance plant drought resistance. Consequently the functional characterization of orthologous genes in crops holds promise for agriculture. The full set of tomato (Solanum lycopersicum) PYR/PYL/RCAR ABA receptors have been identified here. From the 15 putative tomato ABA receptors, 14 of them could be grouped in three subfamilies that correlated well with corresponding Arabidopsis subfamilies. High levels of expression of PYR/PYL/RCAR genes was found in tomato root, and some genes showed predominant expression in leaf and fruit tissues. Functional characterization of tomato receptors was performed through interaction assays with Arabidopsis and tomato clade A protein phosphatase type 2Cs (PP2Cs) as well as phosphatase inhibition studies. Tomato receptors were able to inhibit the activity of clade A PP2Cs differentially in an ABA-dependent manner, and at least three receptors were sensitive to the ABA agonist quinabactin, which inhibited tomato seed germination. Indeed, the chemical activation of ABA signalling induced by quinabactin was able to activate stress-responsive genes. Both dimeric and monomeric tomato receptors were functional in Arabidopsis plant cells, but only overexpression of monomeric-type receptors conferred enhanced drought resistance. In summary, gene expression analyses, and chemical and transgenic approaches revealed distinct properties of tomato PYR/PYL/RCAR ABA receptors that might have biotechnological implications. PMID:24863435

  17. Targeted transcriptional repression using a chimeric TALE-SRDX repressor protein

    KAUST Repository

    Mahfouz, Magdy M.

    2011-12-14

    Transcriptional activator-like effectors (TALEs) are proteins secreted by Xanthomonas bacteria when they infect plants. TALEs contain a modular DNA binding domain that can be easily engineered to bind any sequence of interest, and have been used to provide user-selected DNA-binding modules to generate chimeric nucleases and transcriptional activators in mammalian cells and plants. Here we report the use of TALEs to generate chimeric sequence-specific transcriptional repressors. The dHax3 TALE was used as a scaffold to provide a DNA-binding module fused to the EAR-repression domain (SRDX) to generate a chimeric repressor that targets the RD29A promoter. The dHax3. SRDX protein efficiently repressed the transcription of the RD29A

  18. Cinema e contraluz: limiares da repressão na cultura midiática argentina

    Directory of Open Access Journals (Sweden)

    Márcio Serelle

    2014-12-01

    Full Text Available This paper examines the backlighting technique used in Argentine movies (mainly Valentín, Kamchatka, and The Secret in Their Eyes, seen as a kind of narrative composition in which events related to dictatorships and other forms of repression operate in the dark, but strongly affect the fate of the characters. Starting from a brief overview of the internationalization of the Argentine film industry, which, as early as the mid-1980s, had already articulated conventional dramatic structures and political denunciation, this study analyzes how part of the cinema of this century represents the violence of authoritarian states. Be it through imaginative investment, metalanguage, or allegory, these narratives renounce graphic images of the violence of repressive apparatuses and create dramaturgical compositions of highly effective communication. Thus, this work discusses the reflective capacity of these films as it pertains to the relationship between the fictional, mediatic and social contexts.

  19. MYC Association with Cancer Risk and a New Model of MYC-Mediated Repression

    Science.gov (United States)

    Cole, Michael D.

    2014-01-01

    MYC is one of the most frequently mutated and overexpressed genes in human cancer but the regulation of MYC expression and the ability of MYC protein to repress cellular genes (including itself) have remained mysterious. Recent genome-wide association studies show that many genetic polymorphisms associated with disease risk map to distal regulatory elements that regulate the MYC promoter through large chromatin loops. Cancer risk-associated single-nucleotide polymorphisms (SNPs) contain more potent enhancer activity, promoting higher MYC levels and a greater risk of disease. The MYC promoter is also subject to complex regulatory circuits and limits its own expression by a feedback loop. A model for MYC autoregulation is discussed which involves a signaling pathway between the PTEN (phosphatase and tensin homolog) tumor suppressor and repressive histone modifications laid down by the EZH2 methyltransferase. PMID:24985129

  20. Role of the proto-oncogene Pokemon in cellular transformation and ARF repression.

    Science.gov (United States)

    Maeda, Takahiro; Hobbs, Robin M; Merghoub, Taha; Guernah, Ilhem; Zelent, Arthur; Cordon-Cardo, Carlos; Teruya-Feldstein, Julie; Pandolfi, Pier Paolo

    2005-01-20

    Aberrant transcriptional repression through chromatin remodelling and histone deacetylation has been postulated to represent a driving force underlying tumorigenesis because histone deacetylase inhibitors have been found to be effective in cancer treatment. However, the molecular mechanisms by which transcriptional derepression would be linked to tumour suppression are poorly understood. Here we identify the transcriptional repressor Pokemon (encoded by the Zbtb7 gene) as a critical factor in oncogenesis. Mouse embryonic fibroblasts lacking Zbtb7 are completely refractory to oncogene-mediated cellular transformation. Conversely, Pokemon overexpression leads to overt oncogenic transformation both in vitro and in vivo in transgenic mice. Pokemon can specifically repress the transcription of the tumour suppressor gene ARF through direct binding. We find that Pokemon is aberrantly overexpressed in human cancers and that its expression levels predict biological behaviour and clinical outcome. Pokemon's critical role in cellular transformation makes it an attractive target for therapeutic intervention. PMID:15662416

  1. Military westernization and state repression in the post-Cold War era.

    Science.gov (United States)

    Swed, Ori; Weinreb, Alexander

    2015-09-01

    The waves of unrest that have shaken the Arab world since December 2010 have highlighted significant differences in the readiness of the military to intervene in political unrest by forcefully suppressing dissent. We suggest that in the post-Cold War period, this readiness is inversely associated with the level of military westernization, which is a product of the acquisition of arms from western countries. We identify two mechanisms linking the acquisition of arms from western countries to less repressive responses: dependence and conditionality; and a longer-term diffusion of ideologies regarding the proper form of civil-military relations. Empirical support for our hypothesis is found in an analysis of 2523 cases of government response to political unrest in 138 countries in the 1996-2005 period. We find that military westernization mitigates state repression in general, with more pronounced effects in the poorest countries. However, we also identify substantial differences between the pre- and post-9/11 periods.

  2. Investigating the Effects of Financial Repression on Private Investment in Agriculture Sector

    Directory of Open Access Journals (Sweden)

    Abdolmajid Jalaee

    2014-09-01

    Full Text Available One of the present phenomena that virtually explain weaknesses in financial systems of different countries is financial repression. Financial repression encompasses the different interferences of governments in financial markets through determining the ceiling interest on bank deposits, high rates of legal reserves, and the government’s interference in distribution of bank credits,which prevents the efficient performance of financial market for better allocating resources and funds. On the other hand, investment in agricultural sector enjoys a significant importance due to the growth of production and employment in this sector and rooting for the same notions in other economic sectors. Regarding the fact that the subject matter of the current paper is of utmost importance, it tries to investigate the impacts of financial repression on investments in agricultural sector. In order to realize this objective, measures such as the size of the government in economy, the measure for financial intermediation of banks, and the ratio of savings to GDP (Gross Domestic Product were utilized as the factors for financial repression. The regression results of ARDL showed that the effects from the measures of government size in economy and financial intermediation of banks had a negative and significant impact on private investment in agricultural sector. This means that the bigger the size of government in economy the less the willingness of the private sector for investing in agriculture. Moreover, regarding the fact that the majority of banks in Iran are governmental, the measure for financial intermediation of banks had a negative and significant impact on private investment of agricultural sector.

  3. Insomnia symptoms and repressive coping in a sample of older Black and White women

    OpenAIRE

    Pierre-Louis Jessy; Consedine Nathan S; Magai Carol; Jean-Louis Girardin; Zizi Ferdinand; Casimir Georges J; Belzie Louis

    2007-01-01

    Abstract Background This study examined whether ethnic differences in insomnia symptoms are mediated by differences in repressive coping styles. Methods A total of 1274 women (average age = 59.36 ± 6.53 years) participated in the study; 28% were White and 72% were Black. Older women in Brooklyn, NY were recruited using a stratified, cluster-sampling technique. Trained staff conducted face-to-face interviews lasting 1.5 hours acquiring sociodemographic data, health characteristics, and risk fa...

  4. From sensorimotor inhibition to Freudian repression: insights from psychosis applied to neurosis

    Directory of Open Access Journals (Sweden)

    Ariane eBazan

    2012-11-01

    Full Text Available First, three case studies are presented of psychotic patients having in common an inability to hold something down or out. In line with other theories on psychosis, we propose that a key change is at the efference copy system. Going back to Freud’s mental apparatus, we propose that the messages of discharge of the motor neurones, mobilised to direct perception, also called indications of reality, are equivalent to the modern efference copies. With this key, the reading of the cases is coherent with the psychodynamic understanding of psychosis, being a downplay of secondary processes, and consequently, a dominance of primary processes. Moreover, putting together the sensorimotor idea of a failure of efference copy-mediated inhibition with the psychoanalytic idea of a failing repression in psychosis, the hypothesis emerges that the attenuation enabled by the efference copy dynamics is, in some instances, the physiological instantiation of repression. Second, we applied this idea to the mental organisation in neurosis. Indeed, the efference copy-mediated attenuation is thought to be the mechanism through which sustained activation of an intention, without reaching it – i.e. inhibition of an action – gives rise to mental imagery. Therefore, as inhibition is needed for any targeted action or for normal language understanding, acting in the world or processing language structurally induces mental imagery, constituting a subjective unconscious mental reality. Repression is a special instance of inhibition for emotionally threatening stimuli. These stimuli require stronger inhibition, leaving (the attenuation of the motor intentions totally unanswered, in order to radically prevent execution which would lead to development of excess affect. This inhibition, then, yields a specific type of motor imagery, called phantoms, which induce mental preoccupation, as well as symptoms which, especially through their form, refer to the repressed motor

  5. Does base-pairing strength play a role in microRNA repression?

    Science.gov (United States)

    Carmel, Ido; Shomron, Noam; Heifetz, Yael

    2012-11-01

    MicroRNAs (miRNAs) are short, single-stranded RNAs that silence gene expression by either degrading mRNA or repressing translation. Each miRNA regulates a specific set of mRNA "targets" by binding to complementary sequences in their 3' untranslated region. In this study, we examined the importance of the base-pairing strength of the miRNA-target duplex to repression. We hypothesized that if base-pairing strength affects the functionality of miRNA repression, organisms with higher body temperature or that live at higher temperatures will have miRNAs with higher G/C content so that the miRNA-target complex will remain stable. In the nine model organisms examined, we found a significant correlation between the average G/C content of miRNAs and physiological temperature, supporting our hypothesis. Next, for each organism examined, we compared the average G/C content of miRNAs that are conserved among distant organisms and that of miRNAs that are evolutionarily recent. We found that the average G/C content of ancient miRNAs is lower than recent miRNAs in homeotherms, whereas the trend was inversed in poikilotherms, suggesting that G/C content is associated with temperature, thus further supporting our hypothesis. In the organisms examined, the average G/C content of miRNA "seed" sequences was higher than that of mature miRNAs, which was higher than pre-miRNA loops, suggesting an association between the degree of functionality of the sequence and its average G/C content. Our analyses show a possible association between the base-pairing strength of miRNA-targets and the temperature of an organism, suggesting that base-pairing strength plays a role in repression by miRNAs. PMID:23019592

  6. p53 represses human papillomavirus type 16 DNA replication via the viral E2 protein

    OpenAIRE

    Morgan Iain M; Taylor Ewan R; Kowalczyk Anna M; Brown Craig; Gaston Kevin

    2008-01-01

    Abstract Background Human papillomavirus (HPV) DNA replication can be inhibited by the cellular tumour suppressor protein p53. However, the mechanism through which p53 inhibits viral replication and the role that this might play in the HPV life cycle are not known. The papillomavirus E2 protein is required for efficient HPV DNA replication and also regulates viral gene expression. E2 represses transcription of the HPV E6 and E7 oncogenes and can thereby modulate indirectly host cell prolifera...

  7. BMP signaling turns up in fragile X syndrome: FMRP represses BMPR2.

    Science.gov (United States)

    Broihier, Heather T

    2016-01-01

    Fragile X syndrome is the most common inherited form of intellectual disability and results from a loss of function of the translational repressor FMRP. In this issue of Science Signaling, Kashima et al find that FMRP binds to and represses a specific isoform of BMPR2, a type II bone morphogenetic protein (BMP) receptor. Reducing signaling through this BMP pathway reverses neuroanatomical defects observed in fragile X models. PMID:27273094

  8. Active repression by RARγ signaling is required for vertebrate axial elongation.

    Science.gov (United States)

    Janesick, Amanda; Nguyen, Tuyen T L; Aisaki, Ken-ichi; Igarashi, Katsuhide; Kitajima, Satoshi; Chandraratna, Roshantha A S; Kanno, Jun; Blumberg, Bruce

    2014-06-01

    Retinoic acid receptor gamma 2 (RARγ2) is the major RAR isoform expressed throughout the caudal axial progenitor domain in vertebrates. During a microarray screen to identify RAR targets, we identified a subset of genes that pattern caudal structures or promote axial elongation and are upregulated by increased RAR-mediated repression. Previous studies have suggested that RAR is present in the caudal domain, but is quiescent until its activation in late stage embryos terminates axial elongation. By contrast, we show here that RARγ2 is engaged in all stages of axial elongation, not solely as a terminator of axial growth. In the absence of RA, RARγ2 represses transcriptional activity in vivo and maintains the pool of caudal progenitor cells and presomitic mesoderm. In the presence of RA, RARγ2 serves as an activator, facilitating somite differentiation. Treatment with an RARγ-selective inverse agonist (NRX205099) or overexpression of dominant-negative RARγ increases the expression of posterior Hox genes and that of marker genes for presomitic mesoderm and the chordoneural hinge. Conversely, when RAR-mediated repression is reduced by overexpressing a dominant-negative co-repressor (c-SMRT), a constitutively active RAR (VP16-RARγ2), or by treatment with an RARγ-selective agonist (NRX204647), expression of caudal genes is diminished and extension of the body axis is prematurely terminated. Hence, gene repression mediated by the unliganded RARγ2-co-repressor complex constitutes a novel mechanism to regulate and facilitate the correct expression levels and spatial restriction of key genes that maintain the caudal progenitor pool during axial elongation in Xenopus embryos.

  9. The Role of Bile Salt Export Pump Gene Repression in Drug-Induced Cholestatic Liver Toxicity

    OpenAIRE

    Garzel, Brandy; Yang, Hui; Zhang, Lei; Huang, Shiew-Mei; Polli, James E.; Wang, Hongbing

    2014-01-01

    The bile salt export pump (BSEP, ABCB11) is predominantly responsible for the efflux of bile salts, and disruption of BSEP function is often associated with altered hepatic homeostasis of bile acids and cholestatic liver injury. Accumulating evidence suggests that many drugs can cause cholestasis through interaction with hepatic transporters. To date, a relatively strong association between drug-induced cholestasis and attenuated BSEP activity has been proposed. However, whether repression of...

  10. Fate of the H-NS-repressed bgl operon in evolution of Escherichia coli.

    Directory of Open Access Journals (Sweden)

    T Sabari Sankar

    2009-03-01

    Full Text Available In the enterobacterial species Escherichia coli and Salmonella enterica, expression of horizontally acquired genes with a higher than average AT content is repressed by the nucleoid-associated protein H-NS. A classical example of an H-NS-repressed locus is the bgl (aryl-beta,D-glucoside operon of E. coli. This locus is "cryptic," as no laboratory growth conditions are known to relieve repression of bgl by H-NS in E. coli K12. However, repression can be relieved by spontaneous mutations. Here, we investigated the phylogeny of the bgl operon. Typing of bgl in a representative collection of E. coli demonstrated that it evolved clonally and that it is present in strains of the phylogenetic groups A, B1, and B2, while it is presumably replaced by a cluster of ORFans in the phylogenetic group D. Interestingly, the bgl operon is mutated in 20% of the strains of phylogenetic groups A and B1, suggesting erosion of bgl in these groups. However, bgl is functional in almost all B2 isolates and, in approximately 50% of them, it is weakly expressed at laboratory growth conditions. Homologs of bgl genes exist in Klebsiella, Enterobacter, and Erwinia species and also in low GC-content Gram-positive bacteria, while absent in E. albertii and Salmonella sp. This suggests horizontal transfer of bgl genes to an ancestral Enterobacterium. Conservation and weak expression of bgl in isolates of phylogenetic group B2 may indicate a functional role of bgl in extraintestinal pathogenic E. coli.

  11. Multi-Faceted Characterization of a Novel LuxR-Repressible Promoter Library for Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Susanna Zucca

    Full Text Available The genetic elements regulating the natural quorum sensing (QS networks of several microorganisms are widely used in synthetic biology to control the behaviour of single cells and engineered bacterial populations via ad-hoc constructed synthetic circuits. A number of novel engineering-inspired biological functions have been implemented and model systems have also been constructed to improve the knowledge on natural QS systems. Synthetic QS-based parts, such as promoters, have been reported in literature, to provide biological components with functions that are not present in nature, like modified induction logic or activation/repression by additional molecules. In this work, a library of promoters that can be repressed by the LuxR protein in presence of the QS autoinducer N-3-oxohexanoyl-L-homoserine lactone (AHL was reported for Escherichia coli, to expand the toolkit of genetic parts that can be used to engineer novel synthetic QS-based systems. The library was constructed via polymerase chain reaction with highly constrained degenerate oligonucleotides, designed according to the consensus -35 and -10 sequences of a previously reported constitutive promoter library of graded strength, to maximize the probability of obtaining functional clones. All the promoters have a lux box between the -35 and -10 regions, to implement a LuxR-repressible behaviour. Twelve unique library members of graded strength (about 100-fold activity range were selected to form the final library and they were characterized in several genetic contexts, such as in different plasmids, via different reporter genes, in presence of a LuxR expression cassette in different positions and in response to different AHL concentrations. The new obtained regulatory parts and corresponding data can be exploited by synthetic biologists to implement an artificial AHL-dependent repression of transcription in genetic circuits. The target transcriptional activity can be selected among the

  12. Self-Serving Episodic Memory Biases: Findings in the Repressive Coping Style

    OpenAIRE

    Alston, Lauren L.; Carissa eKratchmer; Anna eJeznach; Bartlett, Nathan T.; Patrick SR Davidson; Esther eFujiwara

    2013-01-01

    Individuals with a repressive coping style self-report low anxiety, but show high defensiveness and high physiological arousal. Repressors have impoverished negative autobiographical memories and are better able to suppress memory for negatively valenced and self-related laboratory materials when asked to do so. Research on spontaneous forgetting of negative information in repressors suggests that they show significant forgetting of negative items, but only after a delay. Unknown is whether i...

  13. Translation initiation factor 5A in Picrorhiza is up-regulated during leaf senescence and in response to abscisic acid.

    Science.gov (United States)

    Parkash, Jai; Vaidya, Tanmay; Kirti, Shruti; Dutt, Som

    2014-05-25

    Translation initiation, the first step of protein synthesis process is the principal regulatory step controlling translation and involves a pool of translation initiation factors. In plants, from recent studies it is becoming evident that these translation initiation factors impact various aspects of plant growth and development in addition to their role in protein synthesis. Eukaryotic translation initiation factor eIF5A is one such factor which functions in start site selection for the eIF2-GTP-tRNAi ternary complex within the ribosomal-bound preinitiation complex and also stabilizes the binding of GDP to eIF2. In the present study we have cloned and analysed a gene (eIF5a) encoding eIF5A from Picrorhiza (Picrorhiza kurrooa Royle ex Benth.) a medicinal plant of the western Himalayan region. The full length eIF5a cDNA consisted of 838 bp with an open reading frame of 480 bp, 88 bp 5' untranslated region and 270 bp 3' untranslated region. The deduced eIF5A protein contained 159 amino acids with a molecular weight of 17.359 kDa and an isoelectric point of 5.59. Secondary structure analysis revealed eIF5A having 24.53% α-helices, 8.81% β-turns, 23.27% extended strands and 43.40% random coils. pk-eIF5a transcript was found to be expressing during the active growth phase as well as during leaf senescence stage, however, highest expression was observed during leaf senescence stage. Further, its expression was up-regulated in response to exogenous application of abscisic acid. Both high intensity as well as low intensity light decreased the expression of pk-eIF5a. The findings suggest eIF5a to be an important candidate to develop genetic engineering based strategies for delaying leaf senescence. PMID:24656625

  14. Overexpression of OsWRKY72 gene interferes in the abscisic acid signal and auxin transport pathway of Arabidopsis

    Indian Academy of Sciences (India)

    Song Yu; Chen Ligang; Zhang Liping; Yu Diqiu

    2010-09-01

    Through activating specific transcriptional programmes, plants can launch resistance mechanisms to stressful environments and acquire a new equilibrium between development and defence. To screen the rice WRKY transcription factor which functions in abiotic stress tolerance and modulates the abscisic acid (ABA) response, we generated a whole array of 35S-OsWRKY transgenic Arabidopsis. In this study, we report that 35S-OsWRKY72 transgenic Arabidopsis, whose seed germination was retarded under normal conditions, emerged more sensitive to mannitol, NaCl, ABA stresses and sugar starvation than vector plants. Meanwhile, 35S-OsWRKY72 transgenic Arabidopsis displayed early flowering, reduced apical dominance, lost high temperature-induced hypocotyl elongation response, and enhanced gravitropism response, which were similar to the auxin-related gene mutants aux1, axr1 and bud1. Further, semi-quantitative RT-PCR showed that the expression patterns of three auxin-related genes AUX1, AXR1 and BUD1 were significantly altered in rosette leaves and inflorescences of 35S-OsWRKY72 plants compared with control Arabidopsis, and two ABA-related genes ABA2 and ABI4 were induced in 35S-OsWRKY72 seedlings. In addition, northern blot analysis indicated that, in rice, OsWRKY72 was inducible by polyethylene glycol (PEG), NaCl, naphthalene acetic acid (NAA), ABA and 42°C, similar to its orthologue AtWRKY75 in Arabidopsis, implying that these two WRKY genes might be required for multiple physiological processes in their plants. Together, these results suggest that OsWRKY72 interferes in the signal cross-talk between the ABA signal and auxin transport pathway in transgenic Arabidopsis.

  15. Abscisic acid refines the synthesis of chloroplast proteins in maize (Zea mays in response to drought and light.

    Directory of Open Access Journals (Sweden)

    Xiuli Hu

    Full Text Available To better understand abscisic acid (ABA regulation of the synthesis of chloroplast proteins in maize (Zea mays L. in response to drought and light, we compared leaf proteome differences between maize ABA-deficient mutant vp5 and corresponding wild-type Vp5 green and etiolated seedlings exposed to drought stress. Proteins extracted from the leaves of Vp5 and vp5 seedlings were used for two-dimensional electrophoresis (2-DE and subsequent matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF mass spectrometry (MS. After Coomassie brilliant blue staining, approximately 450 protein spots were reproducibly detected on 2-DE gels. A total of 36 differentially expressed protein spots in response to drought and light were identified using MALDI-TOF MS and their subcellular localization was determined based on the annotation of reviewed accession in UniProt Knowledgebase and the software prediction. As a result, corresponding 13 proteins of the 24 differentially expressed protein spots were definitely localized in chloroplasts and their expression was in an ABA-dependent way, including 6 up-regulated by both drought and light, 5 up-regulated by drought but down-regulated by light, 5 up-regulated by light but down-regulated by drought; 5 proteins down-regulated by drought were mainly those involved in photosynthesis and ATP synthesis. Thus, the results in the present study supported the vital role of ABA in regulating the synthesis of drought- and/or light-induced proteins in maize chloroplasts and would facilitate the functional characterization of ABA-induced chloroplast proteins in C(4 plants.

  16. Daily irrigation attenuates xylem abscisic acid concentration and increases leaf water potential of Pelargonium × hortorum compared with infrequent irrigation.

    Science.gov (United States)

    Boyle, Richard K A; McAinsh, Martin; Dodd, Ian C

    2016-09-01

    The physiological response of plants to different irrigation frequencies may affect plant growth and water use efficiency (WUE; defined as shoot biomass/cumulative irrigation). Glasshouse-grown, containerized Pelargonium × hortorum BullsEye plants were irrigated either daily at 100% of plant evapotranspiration (ET) (well-watered; WW), or at 50% ET applied either daily [frequent deficit irrigation (FDI)] or cumulatively every 4 days [infrequent deficit irrigation (IDI)], for 24 days. Both FDI and IDI applied the same irrigation volume. Xylem sap was collected from the leaves, and stomatal conductance (gs ) and leaf water potential (Ψleaf ) measured every 2 days. As soil moisture decreased, gs decreased similarly under both FDI and IDI throughout the experiment. Ψleaf was maintained under IDI and increased under FDI. Leaf xylem abscisic acid (ABA) concentrations ([X-ABA]leaf ) increased as soil moisture decreased under both IDI and FDI, and was strongly correlated with decreased gs , but [X-ABA]leaf was attenuated under FDI throughout the experiment (at the same level of soil moisture as IDI plants). These physiological changes corresponded with differences in plant production. Both FDI and IDI decreased growth compared with WW plants, and by the end of the experiment, FDI plants also had a greater shoot fresh weight (18%) than IDI plants. Although both IDI and FDI had higher WUE than WW plants during the first 10 days of the experiment (when biomass did not differ between treatments), the deficit irrigation treatments had lower WUE than WW plants in the latter stages when growth was limited. Thus, ABA-induced stomatal closure may not always translate to increased WUE (at the whole plant level) if vegetative growth shows a similar sensitivity to soil drying, and growers must adapt their irrigation scheduling according to crop requirements. PMID:26910008

  17. Effects of abscisic acid and high osmoticum on storage protein gene expression in microspore embryos of Brassica napus

    International Nuclear Information System (INIS)

    Storage protein gene expression, characteristic of mid- to late embryogenesis, was investigated in microspore embryos of rapeseed (Brassica napus). These embryos, derived from the immature male gametophyte, accumulate little or no detectable napin or cruciferin mRNA when cultured on hormone-free medium containing 13% sucrose. The addition of abscisic acid (ABA) to the medium results in an increase in detectable transcripts encoding both these polypeptides. Storage protein mRNA is induced at 1 micromolar ABA with maximum stimulation occurring between 5 and 50 micromolar. This hormone induction results in a level of storage protein mRNA that is comparable to that observed in zygotic embryos of an equivalent morphological stage. Effects similar to that of ABA are noted when 12.5% sorbitol is added to the microspore embryo medium (osmotic potential = 25.5 bars). Time course experiments, to study the induction of napin and cruciferin gene expression demonstrated that the ABA effect occurred much more rapidly than the high osmoticum effect, although after 48 hours, the levels of napin or cruciferin mRNA detected were similar in both treatments. This difference in the rates of induction is consistent with the idea that the osmotic effect may be mediated by ABA which is synthesized in response to the reduced water potential. Measurements of ABA (by gas chromatography-mass spectrometry using [2H6]ABA as an internal standard) present in microspore embryos during sorbitol treatment and in embryos treated with 10 micromolar ABA were performed to investigate this possibility. Within 2 hours of culture on high osmoticum the level of ABA increased substantially and significantly above control and reached a maximum concentration within 24 hours. This elevated concentration was maintained for 48 hours after culturing and represents a sixfold increase over control embryos

  18. Abscisic acid, a stress hormone helps in improving water relations and yield of sunflower (helianthus annuus l.) hybrids under drought

    International Nuclear Information System (INIS)

    Genotypic variation in water relations under drought is an important index of studying drought tolerance of crops. Abscisic acid (ABA) application helped in mitigating drought stress by improving water relations and yield. Three sunflower hybrids viz., DK-4040 (tall stature), S-278 (medium stature) and SF-187 (short stature) were subjected to different irrigation and ABA application regimes i.e., four irrigations (25 days after sowing (DAS), at bud initiation, at flower initiation and at achene formation) and with no ABA spray, three irrigations (25 days after sowing, at flower initiation and at achene formation) and with no ABA spray, three irrigations (25 days after sowing, at flower initiation and at achene formation) and with ABA spray at bud initiation, three irrigations (25 days after sowing), at bud initiation and at achene formation) and with no ABA spray, three irrigations (25 days after sowing), at bud initiation and at achene formation) and with ABA spray at flower initiation. The experiment was laid out in randomized complete block design with split plot arrangement and had three replications. Exogenous application of ABA under drought at either stage (bud or flower initiation) was helpful in ameliorating drought stress by improving water relations and yield of sunflower hybrids; however response was better when ABA was applied under drought at bud initiation than at flower initiation stage. Sunflower hybrid DK- 4040 showed better enhancement of drought tolerance by exogenous application of ABA under drought than SF-187 and S-278 because it showed more improvement in water potential, osmotic potential, turgor pressure, relative leaf water contents and achene yield. (author)

  19. Structural basis for basal activity and autoactivation of abscisic acid (ABA) signaling SnRK2 kinases

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Ley-Moy; Soon, Fen-Fen; Zhou, X. Edward; West, Graham M.; Kovach, Amanda; Suino-Powell, Kelly M.; Chalmers, Michael J.; Li, Jun; Yong, Eu-Leong; Zhu, Jian-Kang; Griffin, Patrick R.; Melcher, Karsten; Xu, H. Eric (Van Andel); (Scripps); (Purdue); (NU Singapore)

    2014-10-02

    Abscisic acid (ABA) is an essential hormone that controls plant growth, development, and responses to abiotic stresses. Central for ABA signaling is the ABA-mediated autoactivation of three monomeric Snf1-related kinases (SnRK2.2, -2.3, and -2.6). In the absence of ABA, SnRK2s are kept in an inactive state by forming physical complexes with type 2C protein phosphatases (PP2Cs). Upon relief of this inhibition, SnRK2 kinases can autoactivate through unknown mechanisms. Here, we report the crystal structures of full-length Arabidopsis thaliana SnRK2.3 and SnRK2.6 at 1.9- and 2.3-{angstrom} resolution, respectively. The structures, in combination with biochemical studies, reveal a two-step mechanism of intramolecular kinase activation that resembles the intermolecular activation of cyclin-dependent kinases. First, release of inhibition by PP2C allows the SnRK2s to become partially active because of an intramolecular stabilization of the catalytic domain by a conserved helix in the kinase regulatory domain. This stabilization enables SnRK2s to gain full activity by activation loop autophosphorylation. Autophosphorylation is more efficient in SnRK2.6, which has higher stability than SnRK2.3 and has well-structured activation loop phosphate acceptor sites that are positioned next to the catalytic site. Together, these data provide a structural framework that links ABA-mediated release of PP2C inhibition to activation of SnRK2 kinases.

  20. Abscisic acid regulates pinoresinol-lariciresinol reductase gene expression and secoisolariciresinol accumulation in developing flax (Linum usitatissimum L.) seeds.

    Science.gov (United States)

    Renouard, Sullivan; Corbin, Cyrielle; Lopez, Tatiana; Montguillon, Josiane; Gutierrez, Laurent; Lamblin, Frédéric; Lainé, Eric; Hano, Christophe

    2012-01-01

    Secoisolariciresinol diglucoside (SDG), the main phytoestrogenic lignan of Linum usitatissimum, is accumulated in the seed coat of flax during its development and pinoresinol-lariciresinol reductase (PLR) is a key enzyme in flax for its synthesis. The promoter of LuPLR1, a flax gene encoding a pinoresinol lariciresinol reductase, contains putative regulatory boxes related to transcription activation by abscisic acid (ABA). Gel mobility shift experiments evidenced an interaction of nuclear proteins extracted from immature flax seed coat with a putative cis-acting element involved in ABA response. As ABA regulates a number of physiological events during seed development and maturation we have investigated its involvement in the regulation of this lignan synthesis by different means. ABA and SDG accumulation time courses in the seed as well as LuPLR1 expression were first determined in natural conditions. These results showed that ABA timing and localization of accumulation in the flax seed coat could be correlated with the LuPLR1 gene expression and SDG biosynthesis. Experimental modulations of ABA levels were performed by exogenous application of ABA or fluridone, an inhibitor of ABA synthesis. When submitted to exogenous ABA, immature seeds synthesized 3-times more SDG, whereas synthesis of SDG was reduced in immature seeds treated with fluridone. Similarly, the expression of LuPLR1 gene in the seed coat was up-regulated by exogenous ABA and down-regulated when fluridone was applied. These results demonstrate that SDG biosynthesis in the flax seed coat is positively controlled by ABA through the transcriptional regulation of LuPLR1 gene.

  1. Effect of Putrescine, 4-PU-30, and Abscisic Acid on Maize Plants Grown under Normal, Drought, and Rewatering Conditions.

    Science.gov (United States)

    Todorov; Alexieva; Karanov

    1998-12-01

    The experiments were carried out with maize (Zea mays L.) seedlings, hybrid Kneja 530, grown hydroponically in a growth chamber. Twelve-day-old plants were foliar treated with putrescine, N1-(2-chloro-4-pyridyl)-N2-phenylurea (4-PU-30), and abscisic acid (ABA) at concentrations of 10(-5) m. Twenty-four hours later the plants were subjected to a water deficit program, induced by 15% polyethylene glycol (PEG; molecular weight, 6,000). Three days after drought stress half of the plants were transferred to nutrient solution for the next 3 days. The effects of the water shortage, rewatering, and plant growth regulator (PGR) treatment on the fresh and dry weights, leaf pigment content, proline level, relative water content (RWC), transpiration rate, activities of catalase and guaiacol peroxidase, hydrogen peroxide content, and level of the products of lipid peroxidation were studied. It was established that the application of PGRs alleviated to some extent the plant damage provoked by PEG stress. At the end of the water shortage program the plants treated with these PGRs possessed higher fresh weight than drought-subjected control seedlings. It was found also that putrescine increased the dry weight of plants. Under drought, the RWC and transpiration rate of seedlings declined, but PGR treatment reduced these effects. The accumulation of free proline, malondialdehyde, and hydrogen peroxide was prevented in PGR-treated plants compared with the water stress control. The results provided further information about the influence of putrescine, 4-PU-30, and ABA on maize plants grown under normal, drought, and rewatering conditions. Key Words. Maize-Putrescine-4-PU-30-ABA-Drought

  2. Abscisic acid activates a Ca2+-calmodulin-stimulated protein kinase involved in antioxidant defense in maize leaves

    Institute of Scientific and Technical Information of China (English)

    Shucheng Xu

    2010-01-01

     The role of a calcium-dependent and calmodulin(CaM)stimulated protein kinase in abscisic acid(ABA)-induced antioxidant defense was determined in leaves of maize (Zea mays).In-gel kinase assays showed that treatments with ABA or H2O2 induced the activation of a 49-kDa protein kinase and a 52-kDa protein kinase significantly.Furthermore,we showed that the 52-kDa protein kinase has the characteristics of CaM-stimulating activity and is sensitive to calcium-CaM-dependent protein kinase Ⅱ (CaMK Ⅱ)inhibitor KN-93 or CaM antagonist W-7.Treatments with ABA or H2O2 not only induced the acti vation of the 52-kDa protein kinase,but also enhanced the total activities of the antioxidant enzymes,including catalase,ascorbate peroxidase,glutathione reductase,and superoxide dismutase.Such enhancements were blocked by pretreatment with a CaMK inhibitor and a reactive oxygen species(ROS)inhibitor or scavenger.Pretreatment with the CaMK inhibitor also substantially arrested the ABA-induced H2O2 production.Kinase activity enhancements induced by ABA were attenuated by pretreatment with an ROS inhibitor or scavenger.These results suggest that the 52-kDa CaMK is involved in ABA-induced antioxidant defense and that cross-talk between CaMK and H2O2 plays a pivotal role in ABA signaling.We infer that CaMK acts both upstream and downstream of H2O2,but mainly acts between ABA and H2O2 in ABA-induced antioxidant-defensive signaling.

  3. Cross-talk between calcium-calmodulin and nitric oxide in abscisic acid signaling in leaves of maize plants

    Institute of Scientific and Technical Information of China (English)

    Jianrong Sang; Aying Zhang; Fan Lin; Mingpu Tan; Mingyi Jiang

    2008-01-01

    Using pharmacological and biochemical approaches,the signaling pathways between hydrogen peroxide (H2O2),calcium (Ca2+)-calmodulin (CAM),and nitric oxide (NO) in abscisic acid (ABA)-induced antioxidant defense were investigated in leaves of maize (Zea mays L.) plants.Treatments with ABA,H2O2,and CaCI2 induced increases in the generation of NO in maize mesophyll cells and the activity of nitric oxide synthase (NOS) in the cytosolic and microsomal fractions of maize leaves.However,such increases were blocked by the pretreatments with Ca2+ inhibitors and CaM antagonists.Meanwhile,pretreatments with two NOS inhibitors also suppressed the Ca2+-induced increase in the production of NO.On the other hand,treatments with ABA and the NO donor sodium nitroprusside (SNP) also led to increases in the concentration of cytosolic Ca2+ in protoplasts of mesophyll cells and in the expression of calmodulin 1 (CaMI) gene and the contents of CaM in leaves of maize plants,and the increases induced by ABA were reduced by the pretreatments with a NO scavenger and a NOS inhibitor.Moreover,SNP-induced increases in the expression of the antioxidant genes superoxide dismutase 4 (SOD4),cytosolic ascorbate peroxidase (cAPX),and glutathione reductase 1 (GRI) and the activities of the chloroplastic and cytosolic antioxidant enzymes were arrested by the pretreatments with Ca2+ inhibitors and CaM antagonists.Our results suggest that Ca2+-CaM functions both upstream and downstream of NO production,which is mainly from NOS,in ABA- and H2O2-induced antioxidant defense in leaves of maize plants.

  4. Alleviation of Drought Stress by Hydrogen Sulfide Is Partially Related to the Abscisic Acid Signaling Pathway in Wheat

    Science.gov (United States)

    Wang, Chenyang; Qin, Haixia; Han, Qiaoxia; Hou, Junfeng; Lu, Hongfang; Xie, Yingxin; Guo, Tiancai

    2016-01-01

    Little information is available describing the effects of exogenous H2S on the ABA pathway in the acquisition of drought tolerance in wheat. In this study, we investigated the physiological parameters, the transcription levels of several genes involved in the abscisic acid (ABA) metabolism pathway, and the ABA and H2S contents in wheat leaves and roots under drought stress in response to exogenous NaHS treatment. The results showed that pretreatment with NaHS significantly increased plant height and the leaf relative water content of seedlings under drought stress. Compared with drought stress treatment alone, H2S application increased antioxidant enzyme activities and reduced MDA and H2O2 contents in both leaves and roots. NaHS pretreatment increased the expression levels of ABA biosynthesis and ABA reactivation genes in leaves; whereas the expression levels of ABA biosynthesis and ABA catabolism genes were up-regulated in roots. These results indicated that ABA participates in drought tolerance induced by exogenous H2S, and that the responses in leaves and roots are different. The transcription levels of genes encoding ABA receptors were up-regulated in response to NaHS pretreatment under drought conditions in both leaves and roots. Correspondingly, the H2S contents in leaves and roots were increased by NaHS pretreatment, while the ABA contents of leaves and roots decreased. This implied that there is complex crosstalk between these two signal molecules, and that the alleviation of drought stress by H2S, at least in part, involves the ABA signaling pathway. PMID:27649534

  5. Arabidopsis plastid AMOS1/EGY1 integrates abscisic acid signaling to regulate global gene expression response to ammonium stress

    KAUST Repository

    Li, Baohai

    2012-10-12

    Ammonium (NH4 +) is a ubiquitous intermediate of nitrogen metabolism but is notorious for its toxic effects on most organisms. Extensive studies of the underlying mechanisms of NH4 + toxicity have been reported in plants, but it is poorly understood how plants acclimate to high levels of NH4 +. Here, we identified an Arabidopsis (Arabidopsis thaliana) mutant, ammonium overly sensitive1 (amos1), that displays severe chlorosis under NH4 + stress. Map-based cloning shows amos1 to carry a mutation in EGY1 (for ethylene-dependent, gravitropism-deficient, and yellow-green-like protein1), which encodes a plastid metalloprotease. Transcriptomic analysis reveals that among the genes activated in response to NH4 +, 90% are regulated dependent on AMOS1/ EGY1. Furthermore, 63% of AMOS1/EGY1-dependent NH4 +-activated genes contain an ACGTG motif in their promoter region, a core motif of abscisic acid (ABA)-responsive elements. Consistent with this, our physiological, pharmacological, transcriptomic, and genetic data show that ABA signaling is a critical, but not the sole, downstream component of the AMOS1/EGY1-dependent pathway that regulates the expression of NH4 +-responsive genes and maintains chloroplast functionality under NH4 + stress. Importantly, abi4 mutants defective in ABA-dependent and retrograde signaling, but not ABA-deficient mutants, mimic leaf NH4 + hypersensitivity of amos1. In summary, our findings suggest that an NH4 +-responsive plastid retrograde pathway, which depends on AMOS1/EGY1 function and integrates with ABA signaling, is required for the regulation of expression of the presence of high NH4 + levels. © 2012 American Society of Plant Biologists. All Rights Reserved.

  6. Daily irrigation attenuates xylem abscisic acid concentration and increases leaf water potential of Pelargonium × hortorum compared with infrequent irrigation.

    Science.gov (United States)

    Boyle, Richard K A; McAinsh, Martin; Dodd, Ian C

    2016-09-01

    The physiological response of plants to different irrigation frequencies may affect plant growth and water use efficiency (WUE; defined as shoot biomass/cumulative irrigation). Glasshouse-grown, containerized Pelargonium × hortorum BullsEye plants were irrigated either daily at 100% of plant evapotranspiration (ET) (well-watered; WW), or at 50% ET applied either daily [frequent deficit irrigation (FDI)] or cumulatively every 4 days [infrequent deficit irrigation (IDI)], for 24 days. Both FDI and IDI applied the same irrigation volume. Xylem sap was collected from the leaves, and stomatal conductance (gs ) and leaf water potential (Ψleaf ) measured every 2 days. As soil moisture decreased, gs decreased similarly under both FDI and IDI throughout the experiment. Ψleaf was maintained under IDI and increased under FDI. Leaf xylem abscisic acid (ABA) concentrations ([X-ABA]leaf ) increased as soil moisture decreased under both IDI and FDI, and was strongly correlated with decreased gs , but [X-ABA]leaf was attenuated under FDI throughout the experiment (at the same level of soil moisture as IDI plants). These physiological changes corresponded with differences in plant production. Both FDI and IDI decreased growth compared with WW plants, and by the end of the experiment, FDI plants also had a greater shoot fresh weight (18%) than IDI plants. Although both IDI and FDI had higher WUE than WW plants during the first 10 days of the experiment (when biomass did not differ between treatments), the deficit irrigation treatments had lower WUE than WW plants in the latter stages when growth was limited. Thus, ABA-induced stomatal closure may not always translate to increased WUE (at the whole plant level) if vegetative growth shows a similar sensitivity to soil drying, and growers must adapt their irrigation scheduling according to crop requirements.

  7. Roles of Gibberellins and Abscisic Acid in Regulating Germination of Suaeda salsa Dimorphic Seeds Under Salt Stress.

    Science.gov (United States)

    Li, Weiqiang; Yamaguchi, Shinjiro; Khan, M Ajmal; An, Ping; Liu, Xiaojing; Tran, Lam-Son P

    2015-01-01

    Seed heteromorphism observed in many halophytes is an adaptive phenomenon toward high salinity. However, the relationship between heteromorphic seed germination and germination-related hormones under salt stress remains elusive. To gain an insight into this relationship, the roles of gibberellins (GAs) and abscisic acid (ABA) in regulating germination of Suaeda salsa dimorphic brown and black seeds under salinity were elucidated by studying the kinetics of the two hormones during germination of the two seed types with or without salinity treatment. Morphological analysis suggested that brown and black are in different development stage. The content of ABA was higher in dry brown than in black seeds, which gradually decreased after imbibition in water and salt solutions. Salt stress induced ABA accumulation in both germinating seed types, with higher induction effect on black than brown seeds. Black seeds showed lower germination percentage than brown seeds under both water and salt stress, which might be attributed to their higher ABA sensitivity rather than the difference in ABA content between black and brown seeds. Bioactive GA4 and its biosynthetic precursors showed higher levels in brown than in black seeds, whereas deactivated GAs showed higher content in black than brown seeds in dry or in germinating water or salt solutions. High salinity inhibited seed germination through decreasing the levels of GA4 in both seeds, and the inhibited effect of salt stress on GA4 level of black seeds was more profound than that of brown seeds. Taken together higher GA4 content, and lower ABA sensitivity contributed to the higher germination percentage of brown seeds than black seeds in water and salinity; increased ABA content and sensitivity, and decreased GA4 content by salinity were more profound in black than brown seeds, which contributed to lower germination of black seeds than brown seeds in salinity. The differential regulation of ABA and GA homeostases by salt

  8. Alleviation of Drought Stress by Hydrogen Sulfide Is Partially Related to the Abscisic Acid Signaling Pathway in Wheat.

    Science.gov (United States)

    Ma, Dongyun; Ding, Huina; Wang, Chenyang; Qin, Haixia; Han, Qiaoxia; Hou, Junfeng; Lu, Hongfang; Xie, Yingxin; Guo, Tiancai

    2016-01-01

    Little information is available describing the effects of exogenous H2S on the ABA pathway in the acquisition of drought tolerance in wheat. In this study, we investigated the physiological parameters, the transcription levels of several genes involved in the abscisic acid (ABA) metabolism pathway, and the ABA and H2S contents in wheat leaves and roots under drought stress in response to exogenous NaHS treatment. The results showed that pretreatment with NaHS significantly increased plant height and the leaf relative water content of seedlings under drought stress. Compared with drought stress treatment alone, H2S application increased antioxidant enzyme activities and reduced MDA and H2O2 contents in both leaves and roots. NaHS pretreatment increased the expression levels of ABA biosynthesis and ABA reactivation genes in leaves; whereas the expression levels of ABA biosynthesis and ABA catabolism genes were up-regulated in roots. These results indicated that ABA participates in drought tolerance induced by exogenous H2S, and that the responses in leaves and roots are different. The transcription levels of genes encoding ABA receptors were up-regulated in response to NaHS pretreatment under drought conditions in both leaves and roots. Correspondingly, the H2S contents in leaves and roots were increased by NaHS pretreatment, while the ABA contents of leaves and roots decreased. This implied that there is complex crosstalk between these two signal molecules, and that the alleviation of drought stress by H2S, at least in part, involves the ABA signaling pathway. PMID:27649534

  9. Roles of gibberellins and abscisic acid in regulating germination of Suaeda salsa dimorphic seeds under salt stress

    Directory of Open Access Journals (Sweden)

    Weiqiang eLi

    2016-01-01

    Full Text Available Seed heteromorphism observed in many halophytes is an adaptive phenomenon toward high salinity. However, the relationship between heteromorphic seed germination and germination-related hormones under salt stress remains elusive. To gain an insight into this relationship, the roles of gibberellins (GAs and abscisic acid (ABA in regulating germination of Suaeda salsa dimorphic brown and black seeds under salinity were elucidated by studying the kinetics of the two hormones during germination of the two seed types with or without salinity treatment. Morphological analysis suggested that brown and black are in different development stage. The content of ABA was higher in dry brown than in black seeds, which gradually decreased after imbibition in water and salt solutions. Salt stress induced ABA accumulation in both germinating seed types, with higher induction effect on black than brown seeds. Black seeds showed lower germination percentage than brown seeds under both water and salt stress, which might be attributed to their higher ABA sensitivity rather than the difference in ABA content between black and brown seeds. Bioactive GA4 and its biosynthetic precursors showed higher levels in brown than in black seeds, whereas deactivated GAs showed higher content in black than brown seeds in dry or in germinating water or salt solutions. High salinity inhibited seed germination through decreasing the levels of GA4 in both seeds, and the inhibited effect of salt stress on GA4 level of black seeds was more profound than that of brown seeds. Taken together higher GA4 content, and lower ABA sensitivity contributed to the higher germination percentage of brown seeds than black seeds in water and salinity; increased ABA content and sensitivity, and decreased GA4 content by salinity were more profound in black than brown seeds, which contributed to lower germination of black seeds than brown seeds in salinity. The differential regulation of ABA and GA

  10. Nuclear-localized AtHSPR links abscisic acid-dependent salt tolerance and antioxidant defense in Arabidopsis.

    Science.gov (United States)

    Yang, Tao; Zhang, Liang; Hao, Hongyan; Zhang, Peng; Zhu, Haowei; Cheng, Wei; Wang, Yongli; Wang, Xinyu; Wang, Chongying

    2015-12-01

    Salt stress from soil or irrigation water limits plant growth. A T-DNA insertion mutant in C24, named athspr (Arabidopsis thaliana heat shock protein-related), showed several phenotypes, including reduced organ size and enhanced sensitivity to environmental cues. The athspr mutant is severely impaired under salinity levels at which wild-type (WT) plants grow normally. AtHSPR encodes a nuclear-localized protein with ATPase activity, and its expression was enhanced by high salinity and abscisic acid (ABA). Overexpression (OE) of AtHSPR significantly enhanced tolerance to salt stress by increasing the activities of the antioxidant system and by maintaining K(+) /Na(+) homeostasis. Quantitative RT-PCR analyses showed that OE of AtHSPR increased the expression of ABA/stress-responsive, salt overly sensitive (SOS)-related and antioxidant-related genes. In addition, ABA content was reduced in athspr plants with or without salt stress, and exogenous ABA restored WT-like salt tolerance to athspr plants. athspr exhibited increased leaf stomatal density and stomatal index, slower ABA-induced stomatal closure and reduced drought tolerance relative to the WT. AtHSPR OE enhanced drought tolerance by reducing leaf water loss and stomatal aperture. Transcript profiling in athspr showed a differential salt-stress response for genes involved in accumulation of reactive oxygen species (ROS), ABA signaling, cell death, stress response and photosynthesis. Taken together, our results suggested that AtHSPR is involved in salt tolerance in Arabidopsis through modulation of ROS levels, ABA-dependent stomatal closure, photosynthesis and K(+) /Na(+) homeostasis. PMID:26603028

  11. Functional roles of the pepper RING finger protein gene, CaRING1, in abscisic acid signaling and dehydration tolerance.

    Science.gov (United States)

    Lim, Chae Woo; Hwang, Byung Kook; Lee, Sung Chul

    2015-09-01

    Plants are constantly exposed to a variety of biotic and abiotic stresses, which include pathogens and conditions of high salinity, low temperature, and drought. Abscisic acid (ABA) is a major plant hormone involved in signal transduction pathways that mediate the defense response of plants to abiotic stress. Previously, we isolated Ring finger protein gene (CaRING1) from pepper (Capsicum annuum), which is associated with resistance to bacterial pathogens, accompanied by hypersensitive cell death. Here, we report a new function of the CaRING1 gene product in the ABA-mediated defense responses of plants to dehydration stress. The expression of the CaRING1 gene was induced in pepper leaves treated with ABA or exposed to dehydration or NaCl. Virus-induced gene silencing of CaRING1 in pepper plants exhibited low degree of ABA-induced stomatal closure and high levels of transpirational water loss in dehydrated leaves. These led to be more vulnerable to dehydration stress in CaRING1-silenced pepper than in the control pepper, accompanied by reduction of ABA-regulated gene expression and low accumulation of ABA and H2O2. In contrast, CaRING1-overexpressing transgenic plants showed enhanced sensitivity to ABA during the seedling growth and establishment. These plants were also more tolerant to dehydration stress than the wild-type plants because of high ABA accumulation, enhanced stomatal closure and increased expression of stress-responsive genes. Together, these results suggest that the CaRING1 acts as positive factor for dehydration tolerance in Arabidopsis by modulating ABA biosynthesis and ABA-mediated stomatal closing and gene expression. PMID:26249046

  12. Genome-Wide Analysis of MicroRNA Responses to the Phytohormone Abscisic Acid in Populus euphratica.

    Science.gov (United States)

    Duan, Hui; Lu, Xin; Lian, Conglong; An, Yi; Xia, Xinli; Yin, Weilun

    2016-01-01

    MicroRNA (miRNA) is a type of non-coding small RNA with a regulatory function at the posttranscriptional level in plant growth development and in response to abiotic stress. Previous studies have not reported on miRNAs responses to the phytohormone abscisic acid (ABA) at a genome-wide level in Populus euphratica, a model tree for studying abiotic stress responses in woody plants. Here we analyzed the miRNA response to ABA at a genome-wide level in P. euphratica utilizing high-throughput sequencing. To systematically perform a genome-wide analysis of ABA-responsive miRNAs in P. euphratica, nine sRNA libraries derived from three groups (control, treated with ABA for 1 day and treated with ABA for 4 days) were constructed. Each group included three libraries from three individual plantlets as biological replicate. In total, 151 unique mature sequences belonging to 75 conserved miRNA families were identified, and 94 unique sequences were determined to be novel miRNAs, including 56 miRNAs with miRNA(*) sequences. In all, 31 conserved miRNAs and 31 novel miRNAs response to ABA significantly differed among the groups. In addition, 4132 target genes were predicted for the conserved and novel miRNAs. Confirmed by real-time qPCR, expression changes of miRNAs were inversely correlated with the expression profiles of their putative targets. The Populus special or novel miRNA-target interactions were predicted might be involved in some biological process related stress tolerance. Our analysis provides a comprehensive view of how P. euphratica miRNA respond to ABA, and moreover, different temporal dynamics were observed in different ABA-treated libraries. PMID:27582743

  13. Dynamic distribution and the role of abscisic acid during seed development of a lady’s slipper orchid, Cypripedium formosanum

    Science.gov (United States)

    Lee, Yung-I; Chung, Mei-Chu; Yeung, Edward C.; Lee, Nean

    2015-01-01

    Background and Aims Although abscisic acid (ABA) is commonly recognized as a primary cause of seed dormancy, there is a lack of information on the role of ABA during orchid seed development. In order to address this issue, the localization and quantification of ABA were determined in developing seeds of Cypripedium formosanum. Methods The endogenous ABA profile of seeds was measured by enzyme-linked immunosorbent assay (ELISA). Temporal and spatial distributions of ABA in developing seeds were visualized by immunohistochemical staining with monoclonal ABA antibodies. Fluoridone was applied to test the causal relationship between ABA content and seed germinability. Key Results ABA content was low at the proembryo stage, then increased rapidly from 120 to 150 days after pollination (DAP), accompanied by a progressive decrease in water content and seed germination. Immunofluorescence signals indicated an increase in fluorescence over time from the proembryo stage to seed maturation. From immunogold labelling, gold particles could be seen within the cytoplasm of embryo-proper cells during the early stages of seed development. As seeds approached maturity, increased localization of gold particles was observed in the periplasmic space, the plasmalemma between embryo-proper cells, the surface wall of the embryo proper, and the inner walls of inner seed-coat cells. At maturity, gold particles were found mainly in the apoplast, such as the surface wall of the embryo proper, and the shrivelled inner and outer seed coats. Injection of fluoridone into capsules resulted in enhanced germination of mature seeds. Conclusions The results indicate that ABA is the key inhibitor of germination in C. formosanum. The distinct accumulation pattern of ABA suggests that it is synthesized in the cytosol of embryo cells during the early stages of seed development, and then exported to the apoplastic region of the cells for subsequent regulatory processes as seeds approach maturity. PMID

  14. Foliar abscisic acid-to-ethylene accumulation and response regulate shoot growth sensitivity to mild drought in wheat

    Directory of Open Access Journals (Sweden)

    Ravi eValluru

    2016-04-01

    Full Text Available Although plant hormones play an important role in adjusting growth in response to environmental perturbation, the relative contributions of abscisic acid (ABA and ethylene remain elusive. Using six spring wheat genotypes differing for stress tolerance, we show that young seedlings of the drought-tolerant (DT group maintained or increased shoot dry weight (SDW while the drought-susceptible (DS group decreased SDW in response to mild drought. Both the DT and DS groups increased endogenous ABA and ethylene concentrations under mild drought compared to control. The DT and DS groups exhibited different SDW response trends, whereby the DS group decreased while the DT group increased SDW, to increased concentrations of ABA and ethylene under mild drought, although both groups decreased ABA/ethylene ratio under mild drought albeit at different levels. We concluded that SDW of the DT and DS groups might be distinctly regulated by specific ABA:ethylene ratio. Further, a foliar-spray of low concentrations (0.1 μM of ABA increased shoot relative growth rate (RGR in the DS group while ACC (1-aminocyclopropane-1-carboxylic acid, ethylene precursor spray increased RGR in both groups compared to control. Furthermore, the DT group accumulated a significantly higher galactose while a significantly lower maltose in the shoot compared to the DS group. Taken all together, these results suggest an impact of ABA, ethylene and ABA:ethylene ratio on SDW of wheat seedlings that may partly underlie a genotypic variability of different shoot growth sensitivities to drought among crop species under field conditions. We propose that phenotyping based on hormone accumulation, response and hormonal ratio would be a viable, rapid, and an early–stage selection tool aiding genotype selection for stress tolerance.

  15. ZmABA2, an interacting protein of ZmMPK5, is involved in abscisic acid biosynthesis and functions.

    Science.gov (United States)

    Ma, Fangfang; Ni, Lan; Liu, Libo; Li, Xi; Zhang, Huan; Zhang, Aying; Tan, Mingpu; Jiang, Mingyi

    2016-02-01

    In maize (Zea mays), the mitogen-activated protein kinase ZmMPK5 has been shown to be involved in abscisic acid (ABA)-induced antioxidant defence and to enhance the tolerance of plants to drought, salt stress and oxidative stress. However, the underlying molecular mechanisms are poorly understood. Here, using ZmMPK5 as bait in yeast two-hybrid screening, a protein interacting with ZmMPK5 named ZmABA2, which belongs to a member of the short-chain dehydrogenase/reductase family, was identified. Pull-down assay and bimolecular fluorescence complementation analysis and co-immunoprecipitation test confirmed that ZmMPK5 interacts with ZmABA2 in vitro and in vivo. Phosphorylation of Ser173 in ZmABA2 by ZmMPK5 was shown to increase the activity of ZmABA2 and the protein stability. Various abiotic stimuli induced the expression of ZmABA2 in leaves of maize plants. Pharmacological, biochemical and molecular biology and genetic analyses showed that both ZmMPK5 and ZmABA2 coordinately regulate the content of ABA. Overexpression of ZmABA2 in tobacco plants was found to elevate the content of ABA, regulate seed germination and root growth under drought and salt stress and enhance the tolerance of tobacco plants to drought and salt stress. These results suggest that ZmABA2 is a direct target of ZmMPK5 and is involved in ABA biosynthesis and functions. PMID:26096642

  16. Functional analysis of TaABF1 during abscisic acid and gibberellin signalling in aleurone cells of cereal grains.

    Science.gov (United States)

    Harris, Lauren J; Martinez, Sarah A; Keyser, Benjamin R; Dyer, William E; Johnson, Russell R

    2013-06-01

    The wheat transcription factor TaABF1 physically interacts with the protein kinase PKABA1 and mediates both abscisic acid (ABA)-induced and ABA-suppressed gene expression. In bombarded aleurone cells of imbibing grains, the effect of TaABF1 in down-regulating the gibberellin (GA)-induced Amy32b promoter was stronger in the presence of exogenous ABA. As these grains contained low levels of endogenous ABA, the effect of TaABF1 may also be mediated by ABA-induced activation even in the absence of exogenous ABA. Levels of TaABF1 protein decreased slightly during imbibition of afterripened grains. However, TaABF1 levels (especially in aleurone layers) were not substantially affected by exogenous ABA or GA, indicating that changes in TaABF1 protein level are not an important part of regulating its role in hormone signalling. We found that TaABF1 was phosphorylated in vivo in aleurone cells, suggesting a role for post-translational modification in regulating TaABF1 activity. Induction of Amy32b by overexpression of the transcription factor GAMyb could not be prevented by TaABF1, indicating that TaABF1 acts upstream of GAMyb transcription in the signalling pathway. Supporting this view, knockdown of TaABF1 by RNA interference resulted in increased expression from the GAMyb promoter. These results are consistent with a model in which TaABF1 is constitutively present in aleurone cells, while its ability to down-regulate GAMyb is regulated in response to ABA.

  17. Hardening with salicylic acid induces concentration-dependent changes in abscisic acid biosynthesis of tomato under salt stress.

    Science.gov (United States)

    Horváth, Edit; Csiszár, Jolán; Gallé, Ágnes; Poór, Péter; Szepesi, Ágnes; Tari, Irma

    2015-07-01

    The role of salicylic acid (SA) in the control of abscisic acid (ABA) biosynthesis is controversial although both plant growth regulators may accumulate in tissues under abiotic and biotic stress conditions. Hardening of tomato plants to salinity stress with 10(-4)M SA ("high SA") resulted in an up-regulation of ABA biosynthesis genes, zeaxanthin epoxidase (SlZEP1), 9-cis-epoxycarotenoid dioxygenase (SlNCED1) and aldehyde oxidases (SlAO1 and SlAO2) in the roots and led to ABA accumulation both in root and leaf tissues. In plants pre-treated with lower concentration of SA (10(-7)M, "low SA"), the up-regulation of SlNCED1 in the roots promoted ABA accumulation in the root tissues but the hormone concentration remained at control level in the leaves. Salt stress induced by 100mM NaCl reduced the transcript abundance of ABA biosynthetic genes and inhibited SlAO activity in plants hardened with "high SA", but the tissues maintained root ABA level over the untreated control. The combined effect of "high SA" and ABA under salt stress led to partially recovered photosynthetic activity, reduced ethylene production in root apices, and restored root growth, which is one of the main features of salt tolerance. Unlike "high SA", hardening with "low SA" had no influence on ethylene production, and led to reduced elongation of roots in plants exposed to 100mM NaCl. The up-regulation of carotenoid cleavage dioxygenases SlCCD1A and SlCCD1B by SA, which produce apocarotenoids, may open new pathways in SA sensing and signalling processes.

  18. sRNA Antitoxins: More than One Way to Repress a Toxin

    Directory of Open Access Journals (Sweden)

    Jia Wen

    2014-08-01

    Full Text Available Bacterial toxin-antitoxin loci consist of two genes: one encodes a potentially toxic protein, and the second, an antitoxin to repress its function or expression. The antitoxin can either be an RNA or a protein. For type I and type III loci, the antitoxins are RNAs; however, they have very different modes of action. Type I antitoxins repress toxin protein expression through interacting with the toxin mRNA, thereby targeting the mRNA for degradation or preventing its translation or both; type III antitoxins directly bind to the toxin protein, sequestering it. Along with these two very different modes of action for the antitoxin, there are differences in the functions of the toxin proteins and the mobility of these loci between species. Within this review, we discuss the major differences as to how the RNAs repress toxin activity, the potential consequences for utilizing different regulatory strategies, as well as the confirmed and potential biological roles for these loci across bacterial species.

  19. Blue light-mediated transcriptional activation and repression of gene expression in bacteria.

    Science.gov (United States)

    Jayaraman, Premkumar; Devarajan, Kavya; Chua, Tze Kwang; Zhang, Hanzhong; Gunawan, Erry; Poh, Chueh Loo

    2016-08-19

    Light-regulated modules offer unprecedented new ways to control cellular behavior in precise spatial and temporal resolution. The availability of such tools may dramatically accelerate the progression of synthetic biology applications. Nonetheless, current optogenetic toolbox of prokaryotes has potential issues such as lack of rapid and switchable control, less portable, low dynamic expression and limited parts. To address these shortcomings, we have engineered a novel bidirectional promoter system for Escherichia coli that can be induced or repressed rapidly and reversibly using the blue light dependent DNA-binding protein EL222. We demonstrated that by modulating the dosage of light pulses or intensity we could control the level of gene expression precisely. We show that both light-inducible and repressible system can function in parallel with high spatial precision in a single cell and can be switched stably between ON- and OFF-states by repetitive pulses of blue light. In addition, the light-inducible and repressible expression kinetics were quantitatively analysed using a mathematical model. We further apply the system, for the first time, to optogenetically synchronize two receiver cells performing different logic behaviors over time using blue light as a molecular clock signal. Overall, our modular approach layers a transformative platform for next-generation light-controllable synthetic biology systems in prokaryotes. PMID:27353329

  20. Reconstruction and logical modeling of glucose repression signaling pathways in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Oliveira Ana

    2009-01-01

    Full Text Available Abstract Background In the yeast Saccharomyces cerevisiae, the presence of high levels of glucose leads to an array of down-regulatory effects known as glucose repression. This process is complex due to the presence of feedback loops and crosstalk between different pathways, complicating the use of intuitive approaches to analyze the system. Results We established a logical model of yeast glucose repression, formalized as a hypergraph. The model was constructed based on verified regulatory interactions and it includes 50 gene transcripts, 22 proteins, 5 metabolites and 118 hyperedges. We computed the logical steady states of all nodes in the network in order to simulate wildtype and deletion mutant responses to different sugar availabilities. Evaluation of the model predictive power was achieved by comparing changes in the logical state of gene nodes with transcriptome data. Overall, we observed 71% true predictions, and analyzed sources of errors and discrepancies for the remaining. Conclusion Though the binary nature of logical (Boolean models entails inherent limitations, our model constitutes a primary tool for storing regulatory knowledge, searching for incoherencies in hypotheses and evaluating the effect of deleting regulatory elements involved in glucose repression.

  1. Generation of a glucose de-repressed mutant of Trichoderma reesei using disparity mutagenesis.

    Science.gov (United States)

    Iwakuma, Hidekazu; Koyama, Yoshiyuki; Miyachi, Ayako; Nasukawa, Masashi; Matsumoto, Hitoshi; Yano, Shuntaro; Ogihara, Jun; Kasumi, Takafumi

    2016-01-01

    We obtained a novel glucose de-repressed mutant of Trichoderma reesei using disparity mutagenesis. A plasmid containing DNA polymerase δ lacking proofreading activity, and AMAI, an autonomously replicating sequence was introduced into T. reesei ATCC66589. The rate of mutation evaluated with 5-fluoroorotic acid resistance was approximately 30-fold higher than that obtained by UV irradiation. The transformants harboring incompetent DNA polymerase δ were then selected on 2-deoxyglucose agar plates with hygromycin B. The pNP-lactoside hydrolyzing activities of mutants were 2 to 5-fold higher than the parent in liquid medium containing glucose. Notably, the amino acid sequence of cre1, a key gene involved in glucose repression, was identical in the mutant and parent strains, and further, the cre1 expression levels was not abolished in the mutant. Taken together, these results demonstrate that the strains of T. reesei generated by disparity mutagenesis are glucose de-repressed variants that contain mutations in yet-unidentified factors other than cre1.

  2. Combinatorial activation and repression by seven transcription factors specify Drosophila odorant receptor expression.

    Directory of Open Access Journals (Sweden)

    Shadi Jafari

    Full Text Available The mechanism that specifies olfactory sensory neurons to express only one odorant receptor (OR from a large repertoire is critical for odor discrimination but poorly understood. Here, we describe the first comprehensive analysis of OR expression regulation in Drosophila. A systematic, RNAi-mediated knock down of most of the predicted transcription factors identified an essential function of acj6, E93, Fer1, onecut, sim, xbp1, and zf30c in the regulation of more than 30 ORs. These regulatory factors are differentially expressed in antennal sensory neuron classes and specifically required for the adult expression of ORs. A systematic analysis reveals not only that combinations of these seven factors are necessary for receptor gene expression but also a prominent role for transcriptional repression in preventing ectopic receptor expression. Such regulation is supported by bioinformatics and OR promoter analyses, which uncovered a common promoter structure with distal repressive and proximal activating regions. Thus, our data provide insight into how combinatorial activation and repression can allow a small number of transcription factors to specify a large repertoire of neuron classes in the olfactory system.

  3. Germ cell nuclear factor directly represses the transcription of peroxisome proliferator-activated receptor delta gene

    Institute of Scientific and Technical Information of China (English)

    Chengqiang He; Naizheng Ding; Jie Kang

    2008-01-01

    Germ cell nuclear factor (GCNF) is a transcription factor that can repress gene transcription and plays an important role during spermatogenesis. Peroxisome proliferator-activated receptor delta (PPARδ) is a nuclear hormone receptor belonging to the steroid receptor superfamily.It can activate the expression of many genes,including those involved in lipid metabolism.In this report,we showed that GCNF specifically interacts with PPARδ promoter.Overexpression of GCNF in African green monkey SV40 transformed kidney fibroblast COS7 cells and mouse embryo fibroblast NIH 3T3 cells represses the activity of PPARδ promoter.The mutation of GCNF response element in PPARδ promoter relieves the repression in NIH 3T3 cells and mouse testis.Moreover,we showed that GCNF in nuclear extracts of mouse testis is able to bind to PPARδ promoter directly.We also found that GCNF and PPARδ mRNA were expressed with different patterns in mouse testis by in situ hybridization.These results suggested that GCNF might be a negative regulator of PPARδ gene expression through its direct interaction with PPARδ promoter in mouse testis.

  4. Insomnia symptoms and repressive coping in a sample of older Black and White women

    Directory of Open Access Journals (Sweden)

    Pierre-Louis Jessy

    2007-01-01

    Full Text Available Abstract Background This study examined whether ethnic differences in insomnia symptoms are mediated by differences in repressive coping styles. Methods A total of 1274 women (average age = 59.36 ± 6.53 years participated in the study; 28% were White and 72% were Black. Older women in Brooklyn, NY were recruited using a stratified, cluster-sampling technique. Trained staff conducted face-to-face interviews lasting 1.5 hours acquiring sociodemographic data, health characteristics, and risk factors. A sleep questionnaire was administered and individual repressive coping styles were assessed. Fisher's exact test and Spearman and Pearson analyses were used to analyze the data. Results The rate of insomnia symptoms was greater among White women [74% vs. 46%; χ2 = 87.67, p 1,1272 = 304.75, p s = -0.43, p s = -0.18, p Conclusion Relationships between ethnicity and insomnia symptoms are jointly dependent on the degree of repressive coping, suggesting that Black women may be reporting fewer insomnia symptoms because of a greater ability to route negative emotions from consciousness. It may be that Blacks cope with sleep problems within a positive self-regulatory framework, which allows them to deal more effectively with sleep-interfering psychological processes to stressful life events and to curtail dysfunctional sleep-interpreting processes.

  5. To suppress, or not to suppress? That is repression: controlling intrusive thoughts in addictive behaviour.

    Science.gov (United States)

    Moss, Antony C; Erskine, James A K; Albery, Ian P; Allen, James Richard; Georgiou, George J

    2015-05-01

    Research to understand how individuals cope with intrusive negative or threatening thoughts suggests a variety of different cognitive strategies aimed at thought control. In this review, two of these strategies--thought suppression and repressive coping--are discussed in the context of addictive behaviour. Thought suppression involves conscious, volitional attempts to expel a thought from awareness, whereas repressive coping, which involves the avoidance of thoughts without the corresponding conscious intention, appears to be a far more automated process. Whilst there has been an emerging body of research exploring the role of thought suppression in addictive behaviour, there remains a dearth of research which has considered the role of repressive coping in the development of, and recovery from, addiction. Based on a review of the literature, and a discussion of the supposed mechanisms which underpin these strategies for exercising mental control, a conceptual model is proposed which posits a potential common mechanism. This model makes a number of predictions which require exploration in future research to fully understand the cognitive strategies utilised by individuals to control intrusive thoughts related to their addictive behaviour. PMID:25648574

  6. Repression of hla by rot is dependent on sae in Staphylococcus aureus.

    Science.gov (United States)

    Li, Dongmei; Cheung, Ambrose

    2008-03-01

    The regulatory locus sae is a two-component system in Staphylococcus aureus that regulates many important virulence factors, including alpha-toxin (encoded by hla) at the transcriptional level. The SarA homologs Rot and SarT were previously shown to be repressors of hla in selected S. aureus backgrounds. To delineate the interaction of rot and sae and the contribution of sarT to hla expression, an assortment of rot and sae isogenic single mutants, a rot sae double mutant, and a rot sae sarT markerless triple mutant were constructed from wild-type strain COL. Using Northern blot analysis and transcriptional reporter gene green fluorescent protein, fusion, and phenotypic assays, we found that the repression of hla by rot is dependent on sae. A rot sae sarT triple mutant was not able to rescue the hla defect of the rot sae double mutant. Among the three sae promoters, the distal sae P3 promoter is the strongest in vitro. Interestingly, the sae P3 promoter activities correlate with hla expression in rot, rot sae, and rot sae sarT mutants of COL. Transcriptional study has also shown that rot repressed sae, especially at the sae P3 promoter. Collectively, our data implicated the importance of sae in the rot-mediated repression of hla in S. aureus.

  7. Neutrophil elastase, an innate immunity effector molecule, represses flagellin transcription in Pseudomonas aeruginosa.

    Science.gov (United States)

    Sonawane, Avinash; Jyot, Jeevan; During, Russell; Ramphal, Reuben

    2006-12-01

    Recognition of pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors triggers an innate immune response to colonizing or invading bacteria. Conversely, many bacteria have evolved mechanisms to dampen this response by downregulating the synthesis of such PAMPs. We have previously demonstrated that Pseudomonas aeruginosa growing in mucopurulent human respiratory mucus from cystic fibrosis patients represses the expression of its flagellin, a potent stimulant of the innate immune response. Here we demonstrate that this phenomenon occurs in response to the presence of neutrophil elastase in such mucus. Nonpurulent mucus from animals had no such repressive effect. Furthermore, lysed neutrophils from human blood reproduced the flagellin-repressive effect ex mucus and, significantly, had no effect on the viability of this organism. Neutrophil elastase, a component of the innate host defense system, has been described to be bactericidal for gram-negative bacteria and to degrade bacterial virulence factors. Thus, the resistance of P. aeruginosa to the bactericidal effect of neutrophil elastase, as well as this organism's ability to sense this enzyme's presence and downregulate the synthesis of a PAMP, may be the key factors in allowing P. aeruginosa to colonize the lungs. These findings demonstrate the dynamic nature of this bacterium's response to host defenses that ensures its success as a colonizer and also highlights the dual nature of defense molecules that confer advantages and disadvantages to both hosts and pathogens. PMID:16982831

  8. RNAi mediates post-transcriptional repression of gene expression in fission yeast Schizosaccharomyces pombe

    International Nuclear Information System (INIS)

    Highlights: • Protein coding genes accumulate anti-sense sRNAs in fission yeast S. pombe. • RNAi represses protein-coding genes in S. pombe. • RNAi-mediated gene repression is post-transcriptional. - Abstract: RNA interference (RNAi) is a gene silencing mechanism conserved from fungi to mammals. Small interfering RNAs are products and mediators of the RNAi pathway and act as specificity factors in recruiting effector complexes. The Schizosaccharomyces pombe genome encodes one of each of the core RNAi proteins, Dicer, Argonaute and RNA-dependent RNA polymerase (dcr1, ago1, rdp1). Even though the function of RNAi in heterochromatin assembly in S. pombe is established, its role in controlling gene expression is elusive. Here, we report the identification of small RNAs mapped anti-sense to protein coding genes in fission yeast. We demonstrate that these genes are up-regulated at the protein level in RNAi mutants, while their mRNA levels are not significantly changed. We show that the repression by RNAi is not a result of heterochromatin formation. Thus, we conclude that RNAi is involved in post-transcriptional gene silencing in S. pombe

  9. Smad4 suppresses the tumorigenesis and aggressiveness of neuroblastoma through repressing the expression of heparanase

    Science.gov (United States)

    Qu, Hongxia; Zheng, Liduan; Jiao, Wanju; Mei, Hong; Li, Dan; Song, Huajie; Fang, Erhu; Wang, Xiaojing; Li, Shiwang; Huang, Kai; Tong, Qiangsong

    2016-01-01

    Heparanase (HPSE) is the only endo-β-D-glucuronidase that is correlated with the progression of neuroblastoma (NB), the most common extracranial malignancy in childhood. However, the mechanisms underlying HPSE expression in NB still remain largely unknown. Herein, through analyzing cis-regulatory elements and mining public microarray datasets, we identified SMAD family member 4 (Smad4) as a crucial transcription regulator of HPSE in NB. We demonstrated that Smad4 repressed the HPSE expression at the transcriptional levels in NB cells. Mechanistically, Smad4 suppressed the HPSE expression through directly binding to its promoter and repressing the lymphoid enhancer binding factor 1 (LEF1)-facilitated transcription of HPSE via physical interaction. Gain- and loss-of-function studies demonstrated that Smad4 inhibited the growth, invasion, metastasis, and angiogenesis of NB cells in vitro and in vivo. Restoration of HPSE expression prevented the NB cells from changes in these biological features induced by Smad4. In clinical NB specimens, Smad4 was under-expressed and inversely correlated with HPSE levels, while LEF1 was highly expressed and positively correlated with HPSE expression. Patients with high Smad4 expression, low LEF1 or HPSE levels had greater survival probability. These results demonstrate that Smad4 suppresses the tumorigenesis and aggressiveness of NB through repressing the HPSE expression. PMID:27595937

  10. A response regulator promotes Francisella tularensis intramacrophage growth by repressing an anti-virulence factor.

    Science.gov (United States)

    Ramsey, Kathryn M; Dove, Simon L

    2016-08-01

    The orphan response regulator PmrA is essential for the intramacrophage growth and survival of Francisella tularensis. PmrA was thought to promote intramacrophage growth by binding directly to promoters on the Francisella Pathogenicity Island (FPI) and positively regulating the expression of FPI genes, which encode a Type VI secretion system required for intramacrophage growth. Using both ChIP-Seq and RNA-Seq we identify those regions of the F. tularensis chromosome occupied by PmrA and those genes that are regulated by PmrA. We find that PmrA associates with 252 distinct regions of the F. tularensis chromosome, but exerts regulatory effects at only a few of these locations. Rather than by functioning directly as an activator of FPI gene expression we present evidence that PmrA promotes intramacrophage growth by repressing the expression of a single target gene we refer to as priM (PmrA-repressed inhibitor of intramacrophage growth). Our findings thus indicate that the role of PmrA in facilitating intracellular growth is to repress a previously unknown anti-virulence factor. PriM is the first bacterially encoded factor to be described that can interfere with the intramacrophage growth and survival of F. tularensis. PMID:27169554

  11. Quorum regulatory small RNAs repress type VI secretion in Vibrio cholerae.

    Science.gov (United States)

    Shao, Yi; Bassler, Bonnie L

    2014-06-01

    Type VI secretion is critical for Vibrio cholerae to successfully combat phagocytic eukaryotes and to survive in the presence of competing bacterial species. V. cholerae type VI secretion system genes are encoded in one large and two small clusters. In V. cholerae, type VI secretion is controlled by quorum sensing, the cell-cell communication process that enables bacteria to orchestrate group behaviours. The quorum-sensing response regulator LuxO represses type VI secretion genes at low cell density and the quorum-sensing regulator HapR activates type VI secretion genes at high cell density. We demonstrate that the quorum regulatory small RNAs (Qrr sRNAs) that function between LuxO and HapR in the quorum-sensing cascade are required for these regulatory effects. The Qrr sRNAs control type VI secretion via two mechanisms: they repress expression of the large type VI secretion system cluster through base pairing and they repress HapR, the activator of the two small type VI secretion clusters. This regulatory arrangement ensures that the large cluster encoding many components of the secretory machine is expressed prior to the two small clusters that encode the secreted effectors. Qrr sRNA-dependent regulation of the type VI secretion system is conserved in pandemic and non-pandemic V. cholerae strains.

  12. An exploratory study of the interaction of cognitive complexity, dogmatism, and repression-sensitization among college students

    Science.gov (United States)

    Starbird, Dannel H.; Biller, Henry B.

    1976-01-01

    A total of 219 male and female college students returned questionnaire measures relating to cognitive complexity, dogmatism, and repression-sensitization. Analyses revealed very complex interactions among the variables. (Author/SB)

  13. Molecular cloning and characterization of drought stress responsive abscisic acid-stress-ripening (Asr 1) gene from wild jujube, Ziziphus nummularia (Burm.f.) Wight & Arn.

    Science.gov (United States)

    Padaria, Jasdeep Chatrath; Yadav, Radha; Tarafdar, Avijit; Lone, Showkat Ahmad; Kumar, Kanika; Sivalingam, Palaiyur Nanjappan

    2016-08-01

    Drought is a calamitous abiotic stress hampering agricultural productivity all over the world and its severity is likely to increase further. Abscisic acid-stress-ripening proteins (ASR), are a group of small hydrophilic proteins which are induced by abscisic acid, stress and ripening in many plants. In the present study, ZnAsr 1 gene was fully characterized for the first time from Ziziphus nummularia, which is one of the most low water forbearing plant. Full length ZnAsr 1 gene was characterised and in silico analysis of ZnASR1 protein was done for predicting its phylogeny and physiochemical properties. To validate transcriptional pattern of ZnAsr 1 in response to drought stress, expression profiling in polyethylene glycol (PEG) induced Z. nummularia seedlings was studied by RT-qPCR analysis and heterologous expression of the recombinant ZnAsr1 in Escherichia coli. The nucleotide sequence analysis revealed that the complete open reading frame of ZnAsr 1 is 819 bp long encoding a protein of 273 amino acid residues, consisting of a histidine rich N terminus with an abscisic acid/water deficit stress domain and a nuclear targeting signal at the C terminus. In expression studies, ZnAsr 1 gene was found to be highly upregulated under drought stress and recombinant clones of E. coli cells expressing ZnASR1 protein showed better survival in PEG containing media. ZnAsr1 was proven to enhance drought stress tolerance in the recombinant E.coli cells expressing ZnASR1. The cloned ZnAsr1 after proper validation in a plant system, can be used to develop drought tolerant transgenic crops. PMID:27209581

  14. GIT2 represses Crk- and Rac1-regulated cell spreading and Cdc42-mediated focal adhesion turnover

    OpenAIRE

    Frank, Scott R.; Adelstein, Molly R; Hansen, Steen H.

    2006-01-01

    G protein-coupled receptor kinase interactors (GITs) regulate focal adhesion (FA) turnover, cell spreading, and motility through direct interaction with paxillin and the Rac-exchange factor Pak-interacting exchange factor β (βPIX). However, it is not clear whether GITs function to activate or repress motility or if the predominant GIT forms, GIT1 and GIT2, serve distinct or redundant roles. Here we demonstrate an obligatory role for endogenous GIT2 in repression of lamellipodial extension and...

  15. Synergistic repression of the embryonic programme by SET DOMAIN GROUP 8 and EMBRYONIC FLOWER 2 in Arabidopsis seedlings

    OpenAIRE

    Tang, Xurong; Lim, Myung-Ho; Pelletier, Julie; Tang, Mingjuan; Nguyen, Vi; Keller, Wilfred A.; Tsang, Edward W. T.; Wang, Aiming; Rothstein, Steven. J.; Harada, John J.; Cui, Yuhai

    2011-01-01

    The seed maturation programme occurs only during the late phase of embryo development, and repression of the maturation genes is pivotal for seedling development. However, mechanisms that repress the expression of this programme in vegetative tissues are not well understood. A genetic screen was performed for mutants that express maturation genes in leaves. Here, it is shown that mutations affecting SDG8 (SET DOMAIN GROUP 8), a putative histone methyltransferase, cause ectopic expression of a...

  16. Functional domains of the human orphan receptor ARP-1/COUP-TFII involved in active repression and transrepression.

    OpenAIRE

    Achatz, G; Hölzl, B; Speckmayer, R; Hauser, C; Sandhofer, F; Paulweber, B.

    1997-01-01

    The orphan receptor ARP-1/COUP-TFII, a member of the chicken ovalbumin upstream promoter transcription factor (COUP-TF) subfamily of nuclear receptors, strongly represses transcriptional activity of numerous genes, including several apolipoprotein-encoding genes. Recently it has been demonstrated that the mechanism by which COUP-TFs reduce transcriptional activity involves active repression and transrepression. To map the domains of ARP-1/COUP-TFII required for repressor activity, a detailed ...

  17. E2 represses the late gene promoter of human papillomavirus type 8 at high concentrations by interfering with cellular factors.

    OpenAIRE

    Stubenrauch, F.; Leigh, I M; Pfister, H

    1996-01-01

    The late gene promoter P7535 of the epidermodysplasia verruciformis-associated human papillomavirus type 8 (HPV8) is regulated by the viral E2 protein. Transfection experiments performed with the human skin keratinocyte cell line RTS3b and P7535 reporter plasmids revealed transactivation at low amounts and a repression of basal promoter activity at high amounts of E2 expression vector. This repression was promoter specific and correlated with the amount of transiently expressed E2 protein. Mu...

  18. In silico finding of Putative Cis-Acting Elements for the Tethering of Polycomb Repressive Complex2 in Human Genome

    OpenAIRE

    Hajjari, Mohammadreza; Behmanesh, Mehrdad; Jahani, Mohammad Mehdi

    2014-01-01

    Polycomb Repressive Complex2 maintains a predetermined state of transcription which constitutes a cellular memory stable over many cell divisions. Since this complex acts through the regulation of chromatin structure, it is important to understand how it is recruited to chromatin. The specific target sequences of this complex such as PRE (polycomb repressive element) have not been completely recognized in human genome. In this study, we have compared the target sequences of this complex with ...

  19. Mir-29 repression in bladder outlet obstruction contributes to matrix remodeling and altered stiffness.

    Directory of Open Access Journals (Sweden)

    Mari Ekman

    Full Text Available Recent work has uncovered a role of the microRNA (miRNA miR-29 in remodeling of the extracellular matrix. Partial bladder outlet obstruction is a prevalent condition in older men with prostate enlargement that leads to matrix synthesis in the lower urinary tract and increases bladder stiffness. Here we tested the hypothesis that miR-29 is repressed in the bladder in outlet obstruction and that this has an impact on protein synthesis and matrix remodeling leading to increased bladder stiffness. c-Myc, NF-κB and SMAD3, all of which repress miR-29, were activated in the rat detrusor following partial bladder outlet obstruction but at different times. c-Myc and NF-κB activation occurred early after obstruction, and SMAD3 phosphorylation increased later, with a significant elevation at 6 weeks. c-Myc, NF-κB and SMAD3 activation, respectively, correlated with repression of miR-29b and miR-29c at 10 days of obstruction and with repression of miR-29c at 6 weeks. An mRNA microarray analysis showed that the reduction of miR-29 following outlet obstruction was associated with increased levels of miR-29 target mRNAs, including mRNAs for tropoelastin, the matricellular protein Sparc and collagen IV. Outlet obstruction increased protein levels of eight out of eight examined miR-29 targets, including tropoelastin and Sparc. Transfection of human bladder smooth muscle cells with antimiR-29c and miR-29c mimic caused reciprocal changes in target protein levels in vitro. Tamoxifen inducible and smooth muscle-specific deletion of Dicer in mice reduced miR-29 expression and increased tropoelastin and the thickness of the basal lamina surrounding smooth muscle cells in the bladder. It also increased detrusor stiffness independent of outlet obstruction. Taken together, our study supports a model where the combined repressive influences of c-Myc, NF-κB and SMAD3 reduce miR-29 in bladder outlet obstruction, and where the resulting drop in miR-29 contributes to

  20. Mir-29 repression in bladder outlet obstruction contributes to matrix remodeling and altered stiffness.

    Science.gov (United States)

    Ekman, Mari; Bhattachariya, Anirban; Dahan, Diana; Uvelius, Bengt; Albinsson, Sebastian; Swärd, Karl

    2013-01-01

    Recent work has uncovered a role of the microRNA (miRNA) miR-29 in remodeling of the extracellular matrix. Partial bladder outlet obstruction is a prevalent condition in older men with prostate enlargement that leads to matrix synthesis in the lower urinary tract and increases bladder stiffness. Here we tested the hypothesis that miR-29 is repressed in the bladder in outlet obstruction and that this has an impact on protein synthesis and matrix remodeling leading to increased bladder stiffness. c-Myc, NF-κB and SMAD3, all of which repress miR-29, were activated in the rat detrusor following partial bladder outlet obstruction but at different times. c-Myc and NF-κB activation occurred early after obstruction, and SMAD3 phosphorylation increased later, with a significant elevation at 6 weeks. c-Myc, NF-κB and SMAD3 activation, respectively, correlated with repression of miR-29b and miR-29c at 10 days of obstruction and with repression of miR-29c at 6 weeks. An mRNA microarray analysis showed that the reduction of miR-29 following outlet obstruction was associated with increased levels of miR-29 target mRNAs, including mRNAs for tropoelastin, the matricellular protein Sparc and collagen IV. Outlet obstruction increased protein levels of eight out of eight examined miR-29 targets, including tropoelastin and Sparc. Transfection of human bladder smooth muscle cells with antimiR-29c and miR-29c mimic caused reciprocal changes in target protein levels in vitro. Tamoxifen inducible and smooth muscle-specific deletion of Dicer in mice reduced miR-29 expression and increased tropoelastin and the thickness of the basal lamina surrounding smooth muscle cells in the bladder. It also increased detrusor stiffness independent of outlet obstruction. Taken together, our study supports a model where the combined repressive influences of c-Myc, NF-κB and SMAD3 reduce miR-29 in bladder outlet obstruction, and where the resulting drop in miR-29 contributes to matrix remodeling and

  1. Low Temperature-Induced 30 (LTI30) positively regulates drought stress resistance in Arabidopsis: effect on abscisic acid sensitivity and hydrogen peroxide accumulation

    OpenAIRE

    Shi, Haitao; Chen, Yinhua; Qian, Yongqiang; Chan, Zhulong

    2015-01-01

    As a dehydrin belonging to group II late embryogenesis abundant protein (LEA) family, Arabidopsis Low Temperature-Induced 30 (LTI30)/XERO2 has been shown to be involved in plant freezing stress resistance. However, the other roles of AtLTI30 remain unknown. In this study, we found that the expression of AtLTI30 was largely induced by drought stress and abscisic acid (ABA) treatments. Thereafter, AtLTI30 knockout mutants and overexpressing plants were isolated to investigate the possible invol...

  2. Timing is critical for effective glucocorticoid receptor mediated repression of the cAMP-induced CRH gene.

    Directory of Open Access Journals (Sweden)

    Siem van der Laan

    Full Text Available Glucocorticoid negative feedback of the hypothalamus-pituitary-adrenal axis is mediated in part by direct repression of gene transcription in glucocorticoid receptor (GR expressing cells. We have investigated the cross talk between the two main signaling pathways involved in activation and repression of corticotrophin releasing hormone (CRH mRNA expression: cyclic AMP (cAMP and GR. We report that in the At-T20 cell-line the glucocorticoid-mediated repression of the cAMP-induced human CRH proximal promoter activity depends on the relative timing of activation of both signaling pathways. Activation of the GR prior to or in conjunction with cAMP signaling results in an effective repression of the cAMP-induced transcription of the CRH gene. In contrast, activation of the GR 10 minutes after onset of cAMP treatment, results in a significant loss of GR-mediated repression. In addition, translocation of ligand-activated GR to the nucleus was found as early as 10 minutes after glucocorticoid treatment. Interestingly, while both signaling cascades counteract each other on the CRH proximal promoter, they synergize on a synthetic promoter containing 'positive' response elements. Since the order of activation of both signaling pathways may vary considerably in vivo, we conclude that a critical time-window exists for effective repression of the CRH gene by glucocorticoids.

  3. Activation and repression functions of an SR splicing regulator depend on exonic versus intronic-binding position.

    Science.gov (United States)

    Shen, Manli; Mattox, William

    2012-01-01

    SR proteins and related factors play widespread roles in alternative pre-mRNA splicing and are known to promote splice site recognition through their Arg-Ser-rich effector domains. However, binding of SR regulators to some targets results in repression of splice sites through a distinct mechanism. Here, we investigate how activated and repressed targets of the Drosophila SR regulator Transformer2 elicit its differing effects on splicing. We find that, like activation, repression affects early steps in the recognition of splice sites and spliceosome assembly. Repositioning of regulatory elements reveals that Tra2 complexes that normally repress splicing from intronic positions activate splicing when located in an exon. Protein tethering experiments demonstrate that this position dependence is an intrinsic property of Tra2 and further show that repression and activation are mediated by separate effector domains of this protein. When other Drosophila SR factors (SF2 and Rbp1) that activate splicing from exonic positions were tethered intronically they failed to either activate or repress splicing. Interestingly, both activities of Tra2 favor the exonic identity of the RNA sequences that encompass its binding sites. This suggests a model in which these two opposite functions act in concert to define both the position and extent of alternatively spliced exons.

  4. Stability of XIST repression in relation to genomic imprinting following global genome demethylation in a human cell line

    Energy Technology Data Exchange (ETDEWEB)

    Araújo, E.S.S. de [Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP (Brazil); Centro Internacional de Pesquisa, A.C. Camargo Cancer Center, São Paulo, SP (Brazil); Vasques, L.R. [Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP (Brazil); Stabellini, R.; Krepischi, A.C.V. [Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP (Brazil); Centro Internacional de Pesquisa, A.C. Camargo Cancer Center, São Paulo, SP (Brazil); Pereira, L.V. [Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP (Brazil)

    2014-10-17

    DNA methylation is essential in X chromosome inactivation and genomic imprinting, maintaining repression of XIST in the active X chromosome and monoallelic repression of imprinted genes. Disruption of the DNA methyltransferase genes DNMT1 and DNMT3B in the HCT116 cell line (DKO cells) leads to global DNA hypomethylation and biallelic expression of the imprinted gene IGF2 but does not lead to reactivation of XIST expression, suggesting that XIST repression is due to a more stable epigenetic mark than imprinting. To test this hypothesis, we induced acute hypomethylation in HCT116 cells by 5-aza-2′-deoxycytidine (5-aza-CdR) treatment (HCT116-5-aza-CdR) and compared that to DKO cells, evaluating DNA methylation by microarray and monitoring the expression of XIST and imprinted genes IGF2, H19, and PEG10. Whereas imprinted genes showed biallelic expression in HCT116-5-aza-CdR and DKO cells, the XIST locus was hypomethylated and weakly expressed only under acute hypomethylation conditions, indicating the importance of XIST repression in the active X to cell survival. Given that DNMT3A is the only active DNMT in DKO cells, it may be responsible for ensuring the repression of XIST in those cells. Taken together, our data suggest that XIST repression is more tightly controlled than genomic imprinting and, at least in part, is due to DNMT3A.

  5. Gene Repression in Haloarchaea Using the CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-Cas I-B System.

    Science.gov (United States)

    Stachler, Aris-Edda; Marchfelder, Anita

    2016-07-15

    The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system is used by bacteria and archaea to fend off foreign genetic elements. Since its discovery it has been developed into numerous applications like genome editing and regulation of transcription in eukaryotes and bacteria. For archaea currently no tools for transcriptional repression exist. Because molecular biology analyses in archaea become more and more widespread such a tool is vital for investigating the biological function of essential genes in archaea. Here we use the model archaeon Haloferax volcanii to demonstrate that its endogenous CRISPR-Cas system I-B can be harnessed to repress gene expression in archaea. Deletion of cas3 and cas6b genes results in efficient repression of transcription. crRNAs targeting the promoter region reduced transcript levels down to 8%. crRNAs targeting the reading frame have only slight impact on transcription. crRNAs that target the coding strand repress expression only down to 88%, whereas crRNAs targeting the template strand repress expression down to 8%. Repression of an essential gene results in reduction of transcription levels down to 22%. Targeting efficiencies can be enhanced by expressing a catalytically inactive Cas3 mutant. Genes can be targeted on plasmids or on the chromosome, they can be monocistronic or part of a polycistronic operon.

  6. Multiple determinants of splicing repression activity in the polypyrimidine tract binding proteins, PTBP1 and PTBP2.

    Science.gov (United States)

    Keppetipola, Niroshika M; Yeom, Kyu-Hyeon; Hernandez, Adrian L; Bui, Tessa; Sharma, Shalini; Black, Douglas L

    2016-08-01

    Most human genes generate multiple protein isoforms through alternative pre-mRNA splicing, but the mechanisms controlling alternative splicing choices by RNA binding proteins are not well understood. These proteins can have multiple paralogs expressed in different cell types and exhibiting different splicing activities on target exons. We examined the paralogous polypyrimidine tract binding proteins PTBP1 and PTBP2 to understand how PTBP1 can exhibit greater splicing repression activity on certain exons. Using both an in vivo coexpression assay and an in vitro splicing assay, we show that PTBP1 is more repressive than PTBP2 per unit protein on a target exon. Constructing chimeras of PTBP1 and 2 to determine amino acid features that contribute to their differential activity, we find that multiple segments of PTBP1 increase the repressive activity of PTBP2. Notably, when either RRM1 of PTBP2 or the linker peptide separating RRM2 and RRM3 are replaced with the equivalent PTBP1 sequences, the resulting chimeras are highly active for splicing repression. These segments are distinct from the known region of interaction for the PTBP1 cofactors Raver1 and Matrin3 in RRM2. We find that RRM2 of PTBP1 also increases the repression activity of an otherwise PTBP2 sequence, and that this is potentially explained by stronger binding by Raver1. These results indicate that multiple features over the length of the two proteins affect their ability to repress an exon. PMID:27288314

  7. Hormone-induced repression of genes requires BRG1-mediated H1.2 deposition at target promoters.

    Science.gov (United States)

    Nacht, Ana Silvina; Pohl, Andy; Zaurin, Roser; Soronellas, Daniel; Quilez, Javier; Sharma, Priyanka; Wright, Roni H; Beato, Miguel; Vicent, Guillermo P

    2016-08-15

    Eukaryotic gene regulation is associated with changes in chromatin compaction that modulate access to DNA regulatory sequences relevant for transcriptional activation or repression. Although much is known about the mechanism of chromatin remodeling in hormonal gene activation, how repression is accomplished is much less understood. Here we report that in breast cancer cells, ligand-activated progesterone receptor (PR) is directly recruited to transcriptionally repressed genes involved in cell proliferation along with the kinases ERK1/2 and MSK1. PR recruits BRG1 associated with the HP1γ-LSD1 complex repressor complex, which is further anchored via binding of HP1γ to the H3K9me3 signal deposited by SUV39H2. In contrast to what is observed during gene activation, only BRG1 and not the BAF complex is recruited to repressed promoters, likely due to local enrichment of the pioneer factor FOXA1. BRG1 participates in gene repression by interacting with H1.2, facilitating its deposition and stabilizing nucleosome positioning around the transcription start site. Our results uncover a mechanism of hormone-dependent transcriptional repression and a novel role for BRG1 in progestin regulation of breast cancer cell growth. PMID:27390128

  8. Stability of XIST repression in relation to genomic imprinting following global genome demethylation in a human cell line

    International Nuclear Information System (INIS)

    DNA methylation is essential in X chromosome inactivation and genomic imprinting, maintaining repression of XIST in the active X chromosome and monoallelic repression of imprinted genes. Disruption of the DNA methyltransferase genes DNMT1 and DNMT3B in the HCT116 cell line (DKO cells) leads to global DNA hypomethylation and biallelic expression of the imprinted gene IGF2 but does not lead to reactivation of XIST expression, suggesting that XIST repression is due to a more stable epigenetic mark than imprinting. To test this hypothesis, we induced acute hypomethylation in HCT116 cells by 5-aza-2′-deoxycytidine (5-aza-CdR) treatment (HCT116-5-aza-CdR) and compared that to DKO cells, evaluating DNA methylation by microarray and monitoring the expression of XIST and imprinted genes IGF2, H19, and PEG10. Whereas imprinted genes showed biallelic expression in HCT116-5-aza-CdR and DKO cells, the XIST locus was hypomethylated and weakly expressed only under acute hypomethylation conditions, indicating the importance of XIST repression in the active X to cell survival. Given that DNMT3A is the only active DNMT in DKO cells, it may be responsible for ensuring the repression of XIST in those cells. Taken together, our data suggest that XIST repression is more tightly controlled than genomic imprinting and, at least in part, is due to DNMT3A

  9. Gene Repression in Haloarchaea Using the CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-Cas I-B System*

    Science.gov (United States)

    Stachler, Aris-Edda; Marchfelder, Anita

    2016-01-01

    The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system is used by bacteria and archaea to fend off foreign genetic elements. Since its discovery it has been developed into numerous applications like genome editing and regulation of transcription in eukaryotes and bacteria. For archaea currently no tools for transcriptional repression exist. Because molecular biology analyses in archaea become more and more widespread such a tool is vital for investigating the biological function of essential genes in archaea. Here we use the model archaeon Haloferax volcanii to demonstrate that its endogenous CRISPR-Cas system I-B can be harnessed to repress gene expression in archaea. Deletion of cas3 and cas6b genes results in efficient repression of transcription. crRNAs targeting the promoter region reduced transcript levels down to 8%. crRNAs targeting the reading frame have only slight impact on transcription. crRNAs that target the coding strand repress expression only down to 88%, whereas crRNAs targeting the template strand repress expression down to 8%. Repression of an essential gene results in reduction of transcription levels down to 22%. Targeting efficiencies can be enhanced by expressing a catalytically inactive Cas3 mutant. Genes can be targeted on plasmids or on the chromosome, they can be monocistronic or part of a polycistronic operon. PMID:27226589

  10. Analysis of ADP-glucose pyrophosphorylase expression during turion formation induced by abscisic acid in Spirodela polyrhiza (greater duckweed

    Directory of Open Access Journals (Sweden)

    Wang Wenqin

    2012-01-01

    Full Text Available Abstract Background Aquatic plants differ in their development from terrestrial plants in their morphology and physiology, but little is known about the molecular basis of the major phases of their life cycle. Interestingly, in place of seeds of terrestrial plants their dormant phase is represented by turions, which circumvents sexual reproduction. However, like seeds turions provide energy storage for starting the next growing season. Results To begin a characterization of the transition from the growth to the dormant phase we used abscisic acid (ABA, a plant hormone, to induce controlled turion formation in Spirodela polyrhiza and investigated their differentiation from fronds, representing their growth phase, into turions with respect to morphological, ultra-structural characteristics, and starch content. Turions were rich in anthocyanin pigmentation and had a density that submerged them to the bottom of liquid medium. Transmission electron microscopy (TEM of turions showed in comparison to fronds shrunken vacuoles, smaller intercellular space, and abundant starch granules surrounded by thylakoid membranes. Turions accumulated more than 60% starch in dry mass after two weeks of ABA treatment. To further understand the mechanism of the developmental switch from fronds to turions, we cloned and sequenced the genes of three large-subunit ADP-glucose pyrophosphorylases (APLs. All three putative protein and exon sequences were conserved, but the corresponding genomic sequences were extremely variable mainly due to the invasion of miniature inverted-repeat transposable elements (MITEs into introns. A molecular three-dimensional model of the SpAPLs was consistent with their regulatory mechanism in the interaction with the substrate (ATP and allosteric activator (3-PGA to permit conformational changes of its structure. Gene expression analysis revealed that each gene was associated with distinct temporal expression during turion formation. APL2 and

  11. Onset of herbivore-induced resistance in systemic tissue primed for jasmonate-dependent defenses is activated by abscisic acid

    Directory of Open Access Journals (Sweden)

    Irene A. Vos

    2013-12-01

    Full Text Available In Arabidopsis, the MYC2 transcription factor on the one hand and the AP2/ERF transcription factors ORA59 and ERF1 on the other hand regulate distinct branches of the jasmonic acid (JA signaling pathway in an antagonistic fashion, co-regulated by abscisic acid (ABA and ethylene, respectively. Feeding by larvae of the specialist herbivorous insect Pieris rapae (small cabbage white butterfly results in activation of the MYC-branch and concomitant suppression of the ERF-branch in insect-damaged leaves. Here we investigated differential JA signaling activation in undamaged systemic leaves of P. rapae-infested plants. We found that the MYC2 transcription factor gene was induced both in the local insect-damaged leaves and the systemic undamaged leaves of P. rapae-infested Arabidopsis plants. However, in contrast to the insect-damaged leaves, the undamaged tissue did not show activation of the MYC-branch marker gene VSP1. Comparison of the hormone signal signature revealed that the levels of JA and (+-7-iso-jasmonoyl-L-isoleucine (JA-Ile raised to similar extents in locally damaged and systemically undamaged leaves, but the production of ABA and the JA precursor 12-oxo-phytodienoic acid (OPDA was enhanced only in the local herbivore-damaged leaves, and not in the distal undamaged leaves. Challenge of undamaged leaves of pre-infested plants with either P. rapae larvae or exogenously applied ABA led to potentiated expression levels of MYC2 and VSP1, with the latter reaching extremely high expression levels. Moreover, P. rapae-induced resistance, as measured by reduction of caterpillar growth on pre-infested plants, was blocked in the ABA biosynthesis mutant aba2-1, that was also impaired in P. rapae-induced expression of VSP1. Together, these results suggest that ABA is a crucial regulator of herbivore-induced resistance by activating primed JA-regulated defense responses upon secondary herbivore attack in Arabidopsis.

  12. Regulation of the High-Affinity Nitrate Transport System in Wheat Roots by Exogenous Abscisic Acid and Glutamine

    Institute of Scientific and Technical Information of China (English)

    Chao Cai; Xue-Qiang Zhao; Yong-Guan Zhu; Bin Li; Yi-Ping Tong; Zhen-Sheng Li

    2007-01-01

    Nitrate is a major nitrogen (N) source for most crops.Nitrate uptake by root cells is a key step of nitrogen metabolism and has been widely studied at the physiological and molecular levels.Understanding how nitrate uptake is regulated will help us engineer crops with improved nitrate uptake efficiency.The present study investigated the regulation of the high-affinity nitrate transport system (HATS) by exogenous abscisic acid (ABA) and glutamine (Gin) in wheat (Triticum aestivum L.) roots.Wheat seedlings grown in nutrient solution containing 2 mmollL nitrate as the only nitrogen source for 2 weeks were deprived of N for 4d and were then transferred to nutrient solution containing 50 μmol/L ABA, and 1 mmol/L Gin in the presence or absence of 2 mmol/L nitrate for 0, 0.5, 1, 2, 4, and 8 h.Treated wheat plants were then divided into two groups.One group of plants was used to investigate the mRNA levels of the HATS components NRT2 and NAR2 genes in roots through semi-quantitative RT-PCR approach, and the other set of plants were used to measure high-affinity nitrate influx rates in a nutrient solution containing 0.2 mmol/L 15 N-labeled nitrate.The results showed that exogenous ABA induced the expression of the TaNRT2.1, TaNRT2.2, TaNRT2.3, TaNAR2.1, and TaNAR2.2 genes in roots when nitrate was not present in the nutrient solution, but did not further enhance the induction of these genes by nitrate.Glutamine, which has been shown to inhibit the expression of NRT2 genes when nitrate is present in the growth media, did not inhibit this induction.When Gin was supplied to a nitrate-free nutrient solution, the expression of these five genes in roots was induced.These results imply that the inhibition by Gin of NRT2 expression occurs only when nitrate is present in the growth media.Although exogenous ABA and Gin induced HATS genes in the roots of wheat, they did not induce nitrate influx.

  13. The small ethylene response factor ERF96 is involved in the regulation of the abscisic acid response in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Xiaoping eWang

    2015-11-01

    Full Text Available Ethylene regulates many aspects of plant growth and development including seed germination, leaf senescence, and fruit ripening, and of plant responses to environmental stimuli including both biotic and abiotic stresses. Ethylene Response Factors (ERFs are plant-specific transcription factors and are a subfamily of the AP2 (APETALA2/ERF transcription factor family. The function of many members in this large gene family remains largely unknown. ERF96, a member of the Group IX ERF family transcription factors, has recently been shown to be a transcriptional activator that is involved in plant defense response in Arabidopsis. Here we provide evidence that ERF96 is a positive regulator of abscisic acid (ABA responses. Bioinformatics analysis indicated that there are a total four small ERFs in Arabidopsis including ERF95, ERF96, ERF97 and ERF98, and that ERF96 forms a cluster with ERF95 and ERF97. By using quantitative RT-PCR, we found that ERF96 is expressed in all tissues and organs examined except roots, with relatively high expression in flowers and seeds. Results from the protoplast transfection assay results indicated that the EDLL motif-containing C-terminal domain is responsible for ERF96’s transcriptional activity. Although loss-of-function mutant of ERF96 was morphologically similar to wild type plants, transgenic plants overexpressing ERF96 had smaller rosette size and were delayed in flowering time. In ABA sensitivity assays, we found that ERF96 overexpression plants were hypersensitive to ABA in terms of ABA inhibition of seed germination, early seedling development and root elongation. Consistent with these observations, elevated transcript levels of some ABA-responsive genes including RD29A, ABI5, ABF3, ABF4, P5CS and COR15A were observed in the transgenic plants in the presence of ABA. However, in the absence of ABA treatment, the transcript levels of these ABA-responsive genes remained largely unchanged. Our experiments also showed

  14. The Arabidopsis MYB96 Transcription Factor Is a Positive Regulator of ABSCISIC ACID-INSENSITIVE4 in the Control of Seed Germination.

    Science.gov (United States)

    Lee, Kyounghee; Lee, Hong Gil; Yoon, Seongmun; Kim, Hyun Uk; Seo, Pil Joon

    2015-06-01

    Seed germination is a key developmental transition that initiates the plant life cycle. The timing of germination is determined by the coordinated action of two phytohormones, gibberellin and abscisic acid (ABA). In particular, ABA plays a key role in integrating environmental information and inhibiting the germination process. The utilization of embryonic lipid reserves contributes to seed germination by acting as an energy source, and ABA suppresses lipid degradation to modulate the germination process. Here, we report that the ABA-responsive R2R3-type MYB transcription factor MYB96, which is highly expressed in embryo, regulates seed germination by controlling the expression of abscisic acid-insensitive4 (ABI4) in Arabidopsis (Arabidopsis thaliana). In the presence of ABA, germination was accelerated in MYB96-deficient myb96-1 seeds, whereas the process was significantly delayed in MYB96-overexpressing activation-tagging myb96-ox seeds. Consistently, myb96-1 seeds degraded a larger extent of lipid reserves even in the presence of ABA, while reduced lipid mobilization was observed in myb96-ox seeds. MYB96 directly regulates ABI4, which acts as a repressor of lipid breakdown, to define its spatial and temporal expression. Genetic analysis further demonstrated that ABI4 is epistatic to MYB96 in the control of seed germination. Taken together, the MYB96-ABI4 module regulates lipid mobilization specifically in the embryo to ensure proper seed germination under suboptimal conditions.

  15. Bile Acids Function Synergistically To Repress Invasion Gene Expression in Salmonella by Destabilizing the Invasion Regulator HilD.

    Science.gov (United States)

    Eade, Colleen R; Hung, Chien-Che; Bullard, Brian; Gonzalez-Escobedo, Geoffrey; Gunn, John S; Altier, Craig

    2016-08-01

    Salmonella spp. are carried by and can acutely infect agricultural animals and humans. After ingestion, salmonellae traverse the upper digestive tract and initiate tissue invasion of the distal ileum, a virulence process carried out by the type III secretion system encoded within Salmonella pathogenicity island 1 (SPI-1). Salmonellae coordinate SPI-1 expression with anatomical location via environmental cues, one of which is bile, a complex digestive fluid that causes potent repression of SPI-1 genes. The individual components of bile responsible for SPI-1 repression have not been previously characterized, nor have the bacterial signaling processes that modulate their effects been determined. Here, we characterize the mechanism by which bile represses SPI-1 expression. Individual bile acids exhibit repressive activity on SPI-1-regulated genes that requires neither passive diffusion nor OmpF-mediated entry. By using genetic methods, the effects of bile and bile acids were shown to require the invasion gene transcriptional activator hilD and to function independently of known upstream signaling pathways. Protein analysis techniques showed that SPI-1 repression by bile acids is mediated by posttranslational destabilization of HilD. Finally, we found that bile acids function synergistically to achieve the overall repressive activity of bile. These studies demonstrate a common mechanism by which diverse environmental cues (e.g., certain short-chain fatty acids and bile acids) inhibit SPI-1 expression. These data provide information relevant to Salmonella pathogenesis during acute infection in the intestine and during chronic infection of the gallbladder and inform the basis for development of therapeutics to inhibit invasion as a means of repressing Salmonella pathogenicity.

  16. Effects of neutralizing agents on enzymatic hydrolysis of corn stover pretreated by dilute acid-mediated steam explosion%中和剂对稀酸蒸爆玉米秸秆酶解效果的影响

    Institute of Scientific and Technical Information of China (English)

    张红漫; 赵晶; 林增祥; 黄和

    2011-01-01

    Com stovers pretreated by dilute sulphuric acid-mediated steam explosion were neutralized to pH 5 with Ca(OH) 2, NaOH and NH40H, or alternatively washed with water to the same pH. The cellulose conversion rates by enzymatic hydrolysis under the conditions of solide liquid ratio of 1: 10 and cellulases loading of 14 U/g cellulose were investigated. The results showed that after enzymatic hydrolysis for 72 h, the cellulose conversion rates of the cooresponding samples were up to 91.7%, 80. 7%, 83. 1%and 81.7%, respectively. Meanwhile, the effects of various factors on the efficency of cellulase hysrolysis were also discussed. Considering the cost and following fermentation process, the neutralizing agent NH4OH was the choice for the industrialization production.%以稀酸蒸爆的玉米秸秆为研究对象,考察直接水洗、Ca(OH)2 、NaOH、氨水中和物料至pH 5,在固液比1:10、酶添加量为每克纤维素14 U(滤纸酶活)的酶解条件下对纤维素转化率的影响.结果表明:水洗、Ca(OH)2、NaOH、氨水中和物料酶解72 h后,纤维素转化率分别为91.7%、80.7%、83.1%及81.7%.同时对影响纤维素酶解效率的各种因素进行了探讨.从综合成本及后续发酵过程考虑,用氨水中和稀酸蒸爆物料更适合于工业化生产.

  17. Tbx3 represses PTEN and is over-expressed in head and neck squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Burgucu Durmus

    2012-10-01

    Full Text Available Abstract Background Despite advances in diagnostic and treatment strategies, head and neck squamous cell cancer (HNSCC constitutes one of the worst cancer types in terms of prognosis. PTEN is one of the tumour suppressors whose expression and/or activity have been found to be reduced in HNSCC, with rather low rates of mutations within the PTEN gene (6-8%. We reasoned that low expression levels of PTEN might be due to a transcriptional repression governed by an oncogene. Tbx2 and Tbx3, both of which are transcriptional repressors, have been found to be amplified or over-expressed in various cancer types. Thus, we hypothesize that Tbx3 may be over expressed in HNSCC and may repress PTEN, thus leading to cancer formation and/or progression. Methods Using immunohistochemistry and quantitative PCR (qPCR, protein and mRNA levels of PTEN and Tbx3 were identified in samples excised from cancerous and adjacent normal tissues from 33 patients who were diagnosed with HNSCC. In addition, HeLa and HEK cell lines were transfected with a Tbx3 expressing plasmid and endogenous PTEN mRNA and protein levels were determined via qPCR and flow cytometry. Transcription assays were performed to demonstrate effects of Tbx3 on PTEN promoter activity. Mann–Whitney, Spearman’s Correlation and Wilcoxon signed-rank tests were used to analyze the data. Results We demonstrate that in HNSCC samples, Tbx3 mRNA levels are increased with respect to their normal tissue counterparts (p Conclusions We show that Tbx3 is up-regulated in tissue samples of HNSCC patients and that Tbx3 represses PTEN transcription. Thus, our data not only reveals a new mechanism that may be important in cancer formation, but also suggests that Tbx3 can be used as a potential biomarker in cancer.

  18. Repression of androgen receptor transcription through the E2F1/DNMT1 axis.

    Directory of Open Access Journals (Sweden)

    Conrad David Valdez

    Full Text Available Although androgen receptor (AR function has been extensively studied, regulation of the AR gene itself has been much less characterized. In this study, we observed a dramatic reduction in the expression of androgen receptor mRNA and protein in hyperproliferative prostate epithelium of keratin 5 promoter driven E2F1 transgenic mice. To confirm an inhibitory function for E2F1 on AR transcription, we showed that E2F1 inhibited the transcription of endogenous AR mRNA, subsequent AR protein, and AR promoter activity in both human and mouse epithelial cells. E2F1 also inhibited androgen-stimulated activation of two AR target gene promoters. To elucidate the molecular mechanism of E2F-mediated inhibition of AR, we evaluated the effects of two functional E2F1 mutants on AR promoter activity and found that the transactivation domain appears to mediate E2F1 repression of the AR promoter. Because DNMT1 is a functional intermediate of E2F1 we examined DNMT1 function in AR repression. Repression of endogenous AR in normal human prostate epithelial cells was relieved by DNMT1 shRNA knock down. DNMT1 was shown to be physically associated within the AR minimal promoter located 22 bps from the transcription start site; however, methylation remained unchanged at the promoter regardless of DNMT1 expression. Taken together, our results suggest that DNMT1 operates either as a functional intermediary or in cooperation with E2F1 inhibiting AR gene expression in a methylation independent manner.

  19. Cyclin D1 represses gluconeogenesis via inhibition of the transcriptional coactivator PGC1α.

    Science.gov (United States)

    Bhalla, Kavita; Liu, Wan-Ju; Thompson, Keyata; Anders, Lars; Devarakonda, Srikripa; Dewi, Ruby; Buckley, Stephanie; Hwang, Bor-Jang; Polster, Brian; Dorsey, Susan G; Sun, Yezhou; Sicinski, Piotr; Girnun, Geoffrey D

    2014-10-01

    Hepatic gluconeogenesis is crucial to maintain normal blood glucose during periods of nutrient deprivation. Gluconeogenesis is controlled at multiple levels by a variety of signal transduction and transcriptional pathways. However, dysregulation of these pathways leads to hyperglycemia and type 2 diabetes. While the effects of various signaling pathways on gluconeogenesis are well established, the downstream signaling events repressing gluconeogenic gene expression are not as well understood. The cell-cycle regulator cyclin D1 is expressed in the liver, despite the liver being a quiescent tissue. The most well-studied function of cyclin D1 is activation of cyclin-dependent kinase 4 (CDK4), promoting progression of the cell cycle. We show here a novel role for cyclin D1 as a regulator of gluconeogenic and oxidative phosphorylation (OxPhos) gene expression. In mice, fasting decreases liver cyclin D1 expression, while refeeding induces cyclin D1 expression. Inhibition of CDK4 enhances the gluconeogenic gene expression, whereas cyclin D1-mediated activation of CDK4 represses the gluconeogenic gene-expression program in vitro and in vivo. Importantly, we show that cyclin D1 represses gluconeogenesis and OxPhos in part via inhibition of peroxisome proliferator-activated receptor γ coactivator-1α (PGC1α) activity in a CDK4-dependent manner. Indeed, we demonstrate that PGC1α is novel cyclin D1/CDK4 substrate. These studies reveal a novel role for cyclin D1 on metabolism via PGC1α and reveal a potential link between cell-cycle regulation and metabolic control of glucose homeostasis.

  20. Nrf2-dependent repression of interleukin-12 expression in human dendritic cells exposed to inorganic arsenic.

    Science.gov (United States)

    Macoch, Mélinda; Morzadec, Claudie; Génard, Romain; Pallardy, Marc; Kerdine-Römer, Saadia; Fardel, Olivier; Vernhet, Laurent

    2015-11-01

    Inorganic arsenic, a well-known Nrf2 inducer, exerts immunosuppressive properties. In this context, we recently reported that the differentiation of human blood monocytes into immature dendritic cells (DCs), in the presence of low and noncytotoxic concentrations of arsenic, represses the ability of DCs to release key cytokines in response to different stimulating agents. Particularly, arsenic inhibits the expression of human interleukin-12 (IL-12, also named IL-12p70), a major proinflammatory cytokine that controls the differentiation of Th1 lymphocytes. In the present study, we determined if Nrf2 could contribute to these arsenic immunotoxic effects. To this goal, human monocyte-derived DCs were first differentiated in the absence of metalloid and then pretreated with arsenic just before DC stimulation with lipopolysaccharide (LPS). Under these experimental conditions, arsenic rapidly and stably activates Nrf2 and increases the expression of Nrf2 target genes. It also significantly inhibits IL-12 expression in activated DCs, at both mRNA and protein levels. Particularly, arsenic reduces mRNA levels of IL12A and IL12B genes which encodes the p35 and p40 subunits of IL-12p70, respectively. tert-Butylhydroquinone (tBHQ), a reference Nrf2 inducer, mimics arsenic effects and potently inhibits IL-12 expression. Genetic inhibition of Nrf2 expression markedly prevents the repression of both IL12 mRNA and IL-12 protein levels triggered by arsenic and tBHQ in human LPS-stimulated DCs. In addition, arsenic significantly reduces IL-12 mRNA levels in LPS-activated bone marrow-derived DCs from Nrf2+/+ mice but not in DCs from Nrf2-/- mice. Finally, we show that, besides IL-12, arsenic significantly reduces the expression of IL-23, another heterodimer containing the p40 subunit. In conclusion, our study demonstrated that arsenic represses IL-12 expression in human-activated DCs by specifically stimulating Nrf2 activity.

  1. Influence of repressive coping style on cortical activation during encoding of angry faces.

    Directory of Open Access Journals (Sweden)

    Astrid Veronika Rauch

    Full Text Available BACKGROUND: Coping plays an important role for emotion regulation in threatening situations. The model of coping modes designates repression and sensitization as two independent coping styles. Repression consists of strategies that shield the individual from arousal. Sensitization indicates increased analysis of the environment in order to reduce uncertainty. According to the discontinuity hypothesis, repressors are sensitive to threat in the early stages of information processing. While repressors do not exhibit memory disturbances early on, they manifest weak memory for these stimuli later. This study investigates the discontinuity hypothesis using functional magnetic resonance imaging (fMRI. METHODS: Healthy volunteers (20 repressors and 20 sensitizers were selected from a sample of 150 students on the basis of the Mainz Coping Inventory. During the fMRI experiment, subjects evaluated and memorized emotional and neutral faces. Subjects performed two sessions of face recognition: immediately after the fMRI session and three days later. RESULTS: Repressors exhibited greater activation of frontal, parietal and temporal areas during encoding of angry faces compared to sensitizers. There were no differences in recognition of facial emotions between groups neither immediately after exposure nor after three days. CONCLUSIONS: The fMRI findings suggest that repressors manifest an enhanced neural processing of directly threatening facial expression which confirms the assumption of hyper-responsivity to threatening information in repression in an early processing stage. A discrepancy was observed between high neural activation in encoding-relevant brain areas in response to angry faces in repressors and no advantage in subsequent memory for these faces compared to sensitizers.

  2. Dexamethasone Induces Cardiomyocyte Terminal Differentiation via Epigenetic Repression of Cyclin D2 Gene.

    Science.gov (United States)

    Gay, Maresha S; Dasgupta, Chiranjib; Li, Yong; Kanna, Angela; Zhang, Lubo

    2016-08-01

    Dexamethasone treatment of newborn rats inhibited cardiomyocyte proliferation and stimulated premature terminal differentiation of cardiomyocytes in the developing heart. Yet mechanisms remain undetermined. The present study tested the hypothesis that the direct effect of glucocorticoid receptor-mediated epigenetic repression of cyclin D2 gene in the cardiomyocyte plays a key role in the dexamethasone-mediated effects in the developing heart. Cardiomyocytes were isolated from 2-day-old rats. Cells were stained with a cardiomyocyte marker α-actinin and a proliferation marker Ki67. Cyclin D2 expression was evaluated by Western blot and quantitative real-time polymerase chain reaction. Promoter methylation of CcnD2 was determined by methylated DNA immunoprecipitation (MeDIP). Overexpression of Cyclin D2 was conducted by transfection of FlexiCcnD2 (+CcnD2) construct. Treatment of cardiomyocytes isolated from newborn rats with dexamethasone for 48 hours significantly inhibited cardiomyocyte proliferation with increased binucleation and decreased cyclin D2 protein abundance. These effects were blocked with Ru486 (mifepristone). In addition, the dexamethasone treatment significantly increased cyclin D2 gene promoter methylation in newborn rat cardiomyocytes. 5-Aza-2'-deoxycytidine inhibited dexamethasone-mediated promoter methylation, recovered dexamethasone-induced cyclin D2 gene repression, and blocked the dexamethasone-elicited effects on cardiomyocyte proliferation and binucleation. In addition, the overexpression of cyclin D2 restored the dexamethasone-mediated inhibition of proliferation and increase in binucleation in newborn rat cardiomyocytes. The results demonstrate that dexamethasone acting on glucocorticoid receptors has a direct effect and inhibits proliferation and stimulates premature terminal differentiation of cardiomyocytes in the developing heart via epigenetic repression of cyclin D2 gene. PMID:27302109

  3. MicroRNA-22 promotes cell survival upon UV radiation by repressing PTEN

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Guangyun [Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN (United States); Center for Adult Cancer Research, University of Tennessee Health Science Center, Memphis, TN (United States); Jilin Province Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun (China); Shi, Yuling [Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN (United States); Center for Adult Cancer Research, University of Tennessee Health Science Center, Memphis, TN (United States); Wu, Zhao-Hui, E-mail: zwu6@uthsc.edu [Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN (United States); Center for Adult Cancer Research, University of Tennessee Health Science Center, Memphis, TN (United States)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer miR-22 is induced in cells treated with UV radiation. Black-Right-Pointing-Pointer ATM is required for miR-22 induction in response to UV. Black-Right-Pointing-Pointer miR-22 targets 3 Prime -UTR of PTEN to repress its expression in UV-treated cells. Black-Right-Pointing-Pointer Upregulated miR-22 inhibits apoptosis in cells exposed to UV. -- Abstract: DNA damage response upon UV radiation involves a complex network of cellular events required for maintaining the homeostasis and restoring genomic stability of the cells. As a new class of players involved in DNA damage response, the regulation and function of microRNAs in response to UV remain poorly understood. Here we show that UV radiation induces a significant increase of miR-22 expression, which appears to be dependent on the activation of DNA damage responding kinase ATM (ataxia telangiectasia mutated). Increased miR-22 expression may result from enhanced miR-22 maturation in cells exposed to UV. We further found that tumor suppressor gene phosphatase and tensin homolog (PTEN) expression was inversely correlated with miR-22 induction and UV-induced PTEN repression was attenuated by overexpression of a miR-22 inhibitor. Moreover, increased miR-22 expression significantly inhibited the activation of caspase signaling cascade, leading to enhanced cell survival upon UV radiation. Collectively, these results indicate that miR-22 is an important player in the cellular stress response upon UV radiation, which may promote cell survival via the repression of PTEN expression.

  4. Dominant Repression by Arabidopsis Transcription Factor MYB44 Causes Oxidative Damage and Hypersensitivity to Abiotic Stress

    Directory of Open Access Journals (Sweden)

    Helene Persak

    2014-02-01

    Full Text Available In any living species, stress adaptation is closely linked with major changes of the gene expression profile. As a substrate protein of the rapidly stress-induced mitogen-activated protein kinase MPK3, Arabidopsis transcription factor MYB44 likely acts at the front line of stress-induced re-programming. We recently characterized MYB44 as phosphorylation-dependent positive regulator of salt stress signaling. Molecular events downstream of MYB44 are largely unknown. Although MYB44 binds to the MBSII element in vitro, it has no discernible effect on MBSII-driven reporter gene expression in plant co-transfection assays. This may suggest limited abundance of a synergistic co-regulator. MYB44 carries a putative transcriptional repression (Ethylene responsive element binding factor-associated Amphiphilic Repression, EAR motif. We employed a dominant repressor strategy to gain insights into MYB44-conferred stress resistance. Overexpression of a MYB44-REP fusion markedly compromised salt and drought stress tolerance—the opposite was seen in MYB44 overexpression lines. MYB44-mediated resistance likely results from induction of tolerance-enhancing, rather than from repression of tolerance-diminishing factors. Salt stress-induced accumulation of destructive reactive oxygen species is efficiently prevented in transgenic MYB44, but accelerated in MYB44-REP lines. Furthermore, heterologous overexpression of MYB44-REP caused tissue collapse in Nicotiana. A mechanistic model of MAPK-MYB-mediated enhancement in the antioxidative capacity and stress tolerance is proposed. Genetic engineering of MYB44 variants with higher trans-activating capacity may be a means to further raise stress resistance in crops.

  5. Translationally Repressed mRNA Transiently Cycles through Stress Granules during Stress

    OpenAIRE

    Mollet, Stephanie; Cougot, Nicolas; Wilczynska, Ania; Dautry, François; Kress, Michel; Bertrand, Edouard; Weil, Dominique

    2008-01-01

    In mammals, repression of translation during stress is associated with the assembly of stress granules in the cytoplasm, which contain a fraction of arrested mRNA and have been proposed to play a role in their storage. Because physical contacts are seen with GW bodies, which contain the mRNA degradation machinery, stress granules could also target arrested mRNA to degradation. Here we show that contacts between stress granules and GW bodies appear during stress-granule assembly and not after ...

  6. Cold shock domain proteins repress transcription from the GM-CSF promoter.

    OpenAIRE

    Coles, L S; P. Diamond; Occhiodoro, F; Vadas, M A; Shannon, M F

    1996-01-01

    The human granulocyte-macrophage colony stimulating factor (GM-CSF) gene promoter binds a sequence-specific single-strand DNA binding protein termed NF-GMb. We previously demonstrated that the NF-GMb binding sites were required for repression of tumor necrosis factor-alpha (TNF-alpha) induction of the proximal GM-CSF promoter sequences in fibroblasts. We now describe the isolation of two different cDNA clones that encode cold shock domain (CSD) proteins with NF-GMb binding characteristics. On...

  7. Product binding enforces the genomic specificity of a yeast Polycomb repressive complex

    OpenAIRE

    Dumesic, Phillip A.; Homer, Christina M.; Moresco, James J.; Pack, Lindsey R.; Shanle, Erin K.; Coyle, Scott M.; Strahl, Brian D.; Fujimori, Danica G.; John R Yates; Madhani, Hiten D.

    2014-01-01

    We characterize the Polycomb system that assembles repressive subtelomeric domains of H3K27 methylation (H3K27me) in the yeast Cryptococcus neoformans. Purification of this PRC2-like protein complex reveals orthologs of animal PRC2 components as well as a chromodomain-containing subunit, Ccc1, which recognizes H3K27me. Whereas removal of either the EZH or EED ortholog eliminates H3K27me, disruption of mark recognition by Ccc1 causes H3K27me to redistribute. Strikingly, the resulting pattern o...

  8. Sip1 Is a Catabolite Repression-Specific Negative Regulator of Gal Gene Expression

    OpenAIRE

    Mylin, L. M.; Bushman, V. L.; Long, R. M.; X. Yu; Lebo, C. M.; Blank, T. E.; Hopper, J E

    1994-01-01

    The yeast Snflp kinase is required for normal expression of amny genes involved in utilization of non-glucose carbon. Snflp is known to associate with several proteins. One is Sip1p, a protein that becomes phosphorylated in the presence of Snflp and thus is a candidate Snflp kinase substrate. We have isolated the SIP1 gene as a multicopy suppressor of the gal83-associated defect in glucose repression of GAL gene expression. Multicopy SIP1 also suppressed the gal82-associated defect in glucose...

  9. Gene expression in self-repressing system with multiple gene copies.

    Science.gov (United States)

    Miekisz, Jacek; Szymańska, Paulina

    2013-02-01

    We analyze a simple model of a self-repressing system with multiple gene copies. Protein molecules may bound to DNA promoters and block their own transcription. We derive analytical expressions for the variance of the number of protein molecules in the stationary state in the self-consistent mean-field approximation. We show that the Fano factor (the variance divided by the mean value) is bigger for the one-gene case than for two gene copies and the difference decreases to zero as frequencies of binding and unbinding increase to infinity. PMID:23354928

  10. Gene Expression in Self-repressing System with Multiple Gene Copies

    OpenAIRE

    Miȩkisz, Jacek; Szymańska, Paulina

    2013-01-01

    We analyze a simple model of a self-repressing system with multiple gene copies. Protein molecules may bound to DNA promoters and block their own transcription. We derive analytical expressions for the variance of the number of protein molecules in the stationary state in the self-consistent mean-field approximation. We show that the Fano factor (the variance divided by the mean value) is bigger for the one-gene case than for two gene copies and the difference decreases to zero as frequencies...

  11. Bureau-repression: Administrative Sanction and Social Control in Modern Spain

    Directory of Open Access Journals (Sweden)

    Pedro Oliver Olmo

    2015-12-01

    Full Text Available This paper explains the creation of an intelligible suggestion for better understanding the administrative sanction in many disciplines in social sciences: the bureau-repression. The coining of this concept is due especially to the repression to which social protestors and demonstrators have been subject since the birth of the 15-M movement in Spain. However, bureau-repression had already begun being exercised in the years following the Transition, and it has developed in parallel to the stage of Security State that characterizes the state system of social control. A detailed analysis of the administrative sanction is performed for many benefits which such sanction provides for those in power, who use it both to silence voices from the street and to dispose of elements which are harmful for the neoliberal system (disadvantaged groups or immigrants. In short, the reader will find the underlying political and repressive background which, at first glance, is usually a monetary fine, and will discover that there are ways to avoid this dense surveillance exercised over the governed people (bureau-resistance. Este artículo explica la creación de una sugerencia inteligible para una mejor comprensión de la sanción administrativa en muchas disciplinas de las ciencias sociales: la burorrepresión. Este término nació especialmente a raíz de la represión que han sufrido los manifestantes de las protestas sociales desde el nacimiento del movimiento 15-M en España. Sin embargo, la burorrepresión ya había comenzado a ejercerse en los años que siguieron a la Transición, y se ha desarrollado de forma paralela al estado de seguridad que caracteriza el sistema estatal de control social. Se realiza un análisis detallado de la sanción administrativa, desarrollada en beneficio de los que están en el poder, quienes la usan tanto para silenciar las voces de la calle como para deshacerse de elementos que sean perjudiciales para el sistema neoliberal

  12. Individual differences in self-reported thought control: the role of the repressive coping sytle.

    Science.gov (United States)

    Luciano, Juan Vicente; Algarabel, Salvador

    2006-05-01

    The purpose of the present research is to assess differences between repressors and non repressors in some aspects associated with conscious thought control. Thus, Sixty-three Spanish university students with different combinations of trait anxiety and defensiveness completed the Thought Control Ability Questionnaire (TCAQ) and the White Bear Suppression Inventory (WBSI). Data analysis showed that subjects with low anxiety (repressors and low anxious) reported higher perceived ability to control unpleasant thoughts and less tendency to suppress than did subjects with high anxiety (high anxious and defensive high anxious). Implications of these results are discussed in relation to recent researches that have explored the association between repression and thought suppression. PMID:17296036

  13. Repression of both isoforms of disproportionating enzyme leads to higher malto-oligosaccharide content and reduced growth in potato

    DEFF Research Database (Denmark)

    Mogensen, Henrik Lütken; Lloyd, James Richard; Glaring, Mikkel A.;

    2010-01-01

    Two glucanotransferases, disproportionating enzyme 1 (StDPE1) and disproportionating enzyme 2 (StDPE2), were repressed using RNA interference technology in potato, leading to plants repressed in either isoform individually, or both simultaneously. This is the first detailed report of their combin......-oligosaccharides, starch content and photosynthetic activity and thereby plant growth possibly by a negative feedback mechanism....... repression. Plants lacking StDPE1 accumulated slightly more starch in their leaves than control plants and high levels of maltotriose, while those lacking StDPE2 contained maltose and large amounts of starch. Plants repressed in both isoforms accumulated similar amounts of starch to those lacking StDPE2...... proteins, supporting a cytosolic role of the StDPE2 enzyme in leaf starch metabolism, as has been observed for Arabidopsis DPE2. It is concluded that StDPE1 and StDPE2 have individual essential roles in starch metabolism in potato and consequently repression of these disables regulation of leaf malto...

  14. Polycomb repressive complex 2 regulates MiR-200b in retinal endothelial cells: potential relevance in diabetic retinopathy.

    Directory of Open Access Journals (Sweden)

    Michael Anthony Ruiz

    Full Text Available Glucose-induced augmented vascular endothelial growth factor (VEGF production is a key event in diabetic retinopathy. We have previously demonstrated that downregulation of miR-200b increases VEGF, mediating structural and functional changes in the retina in diabetes. However, mechanisms regulating miR-200b in diabetes are not known. Histone methyltransferase complex, Polycomb Repressive Complex 2 (PRC2, has been shown to repress miRNAs in neoplastic process. We hypothesized that, in diabetes, PRC2 represses miR-200b through its histone H3 lysine-27 trimethylation mark. We show that human retinal microvascular endothelial cells exposed to high levels of glucose regulate miR-200b repression through histone methylation and that inhibition of PRC2 increases miR-200b while reducing VEGF. Furthermore, retinal tissue from animal models of diabetes showed increased expression of major PRC2 components, demonstrating in vivo relevance. This research established a repressive relationship between PRC2 and miR-200b, providing evidence of a novel mechanism of miRNA regulation through histone methylation.

  15. The Transcriptional Repressive Activity of KRAB Zinc Finger Proteins Does Not Correlate with Their Ability to Recruit TRIM28

    Science.gov (United States)

    Murphy, Kristin E.; Shylo, Natalia A.; Alexander, Katherine A.; Churchill, Angela J.; Copperman, Cecilia; García-García, María J.

    2016-01-01

    KRAB domain Zinc finger proteins are one of the most abundant families of transcriptional regulators in higher vertebrates. The prevailing view is that KRAB domain proteins function as potent transcriptional repressors by recruiting TRIM28 and promoting heterochromatin spreading. However, the extent to which all KRAB domain proteins are TRIM28-dependent transcriptional repressors is currently unclear. Our studies on mouse ZFP568 revealed that TRIM28 recruitment by KRAB domain proteins is not sufficient to warrant transcriptional repressive activity. By using luciferase reporter assays and yeast two-hybrid experiments, we tested the ability of ZFP568 and other mouse KRAB domain proteins to repress transcription and bind TRIM28. We found that some mouse KRAB domain proteins are poor transcriptional repressors despite their ability to recruit TRIM28, while others showed strong KRAB-dependent transcriptional repression, but no TRIM28 binding. Together, our results show that the transcriptional repressive activity of KRAB-ZNF proteins does not correlate with their ability to recruit TRIM28, and provide evidence that KRAB domains can regulate transcription in a TRIM28-independent fashion. Our findings challenge the current understanding of the molecular mechanisms used by KRAB domain proteins to control gene expression and highlight that a high percentage of KRAB domain proteins in the mouse genome differ from the consensus KRAB sequence at amino acid residues that are critical for TRIM28 binding and/or repressive activity. PMID:27658112

  16. I-mfa domain proteins specifically interact with HTLV-1 Tax and repress its transactivating functions.

    Science.gov (United States)

    Kusano, Shuichi; Yoshimitsu, Makoto; Hachiman, Miho; Ikeda, Masanori

    2015-12-01

    The I-mfa domain proteins HIC (also known as MDFIC) and I-mfa (also known as MDFI) are candidate tumor suppressor genes that are involved in cellular and viral transcriptional regulation. Here, we show that HIC and I-mfa directly interact with human T-cell leukemia virus type-1 (HTLV-1) Tax protein in vitro. In addition, HIC and I-mfa repress Tax-dependent transactivation of an HTLV-1 long terminal repeat (LTR) reporter construct in COS-1, Jurkat and high-Tax-producing HTLV-1-infected T cells. HIC also interacts with Tax through its I-mfa domain in vivo and represses Tax-dependent transactivation of HTLV-1 LTR and NF-κB reporter constructs in an interaction-dependent manner. Furthermore, we show that HIC decreases the nuclear distribution and stimulates the proteasomal degradation of Tax. These data reveal that HIC specifically interacts with HTLV-1 Tax and negatively regulates Tax transactivational activity by altering its subcellular distribution and stability.

  17. DEWAX-mediated transcriptional repression of cuticular wax biosynthesis in Arabidopsis thaliana.

    Science.gov (United States)

    Suh, Mi Chung; Go, Young Sam

    2014-06-06

    The aerial parts of plants are covered with a cuticular wax layer, which is the first barrier between a plant and its environment. Although cuticular wax deposition increases more in the light than in the dark, little is known about the molecular mechanisms underlying the regulation of cuticular wax biosynthesis. Recently DEWAX (Decrease Wax Biosynthesis) encoding an AP2/ERF transcription factor was found to be preferentially expressed in the epidermis and induced by darkness. Wax analysis of the dewax knockout mutant, wild type, and DEWAX overexpression lines (OX) indicates that DEWAX is a negative regulator of cuticular wax biosynthesis. DEWAX represses the expression of wax biosynthetic genes CER1, LACS2, ACLA2, and ECR via direct interaction with their promoters. Cuticular wax biosynthesis is negatively regulated twice a day by the expression of DEWAX; throughout the night and another for stomata closing. Taken together, it is evident that DEWAX-mediated negative regulation of the wax biosynthetic genes plays role in determining the total wax loads produced in Arabidopsis during daily dark and light cycles. In addition, significantly higher levels of DEWAX transcripts in leaves than stems suggest that DEWAX-mediated transcriptional repression might be involved in the organ-specific regulation of total wax amounts on plant surfaces.

  18. Pax6 represses androgen receptor-mediated transactivation by inhibiting recruitment of the coactivator SPBP.

    Directory of Open Access Journals (Sweden)

    Julianne Elvenes

    Full Text Available The androgen receptor (AR has a central role in development and maintenance of the male reproductive system and in the etiology of prostate cancer. The transcription factor Pax6 has recently been reported to act as a repressor of AR and to be hypermethylated in prostate cancer cells. SPBP is a transcriptional regulator that previously has been shown to enhance the activity of Pax6. In this study we have identified SPBP to act as a transcriptional coactivator of AR. We also show that Pax6 inhibits SPBP-mediated enhancement of AR activity on the AR target gene probasin promoter, a repression that was partly reversed by increased expression of SPBP. Enhanced expression of Pax6 reduced the amount of SPBP associated with the probasin promoter when assayed by ChIP in HeLa cells. We mapped the interaction between both AR and SPBP, and AR and Pax6 to the DNA-binding domains of the involved proteins. Further binding studies revealed that Pax6 and SPBP compete for binding to AR. These results suggest that Pax6 represses AR activity by displacing and/or inhibiting recruitment of coactivators to AR target promoters. Understanding the mechanism for inhibition of AR coactivators can give rise to molecular targeted drugs for treatment of prostate cancer.

  19. The Costimulatory Receptor OX40 Inhibits Interleukin-17 Expression through Activation of Repressive Chromatin Remodeling Pathways.

    Science.gov (United States)

    Xiao, Xiang; Shi, Xiaomin; Fan, Yihui; Wu, Chenglin; Zhang, Xiaolong; Minze, Laurie; Liu, Wentao; Ghobrial, Rafik M; Lan, Peixiang; Li, Xian Chang

    2016-06-21

    T helper 17 (Th17) cells are prominently featured in multiple autoimmune diseases, but the regulatory mechanisms that control Th17 cell responses are poorly defined. Here we found that stimulation of OX40 triggered a robust chromatin remodeling response and produced a "closed" chromatin structure at interleukin-17 (IL-17) locus to inhibit Th17 cell function. OX40 activated the NF-κB family member RelB, and RelB recruited the histone methyltransferases G9a and SETDB1 to the Il17 locus to deposit "repressive" chromatin marks at H3K9 sites, and consequently repressing IL-17 expression. Unlike its transcriptional activities, RelB acted independently of both p52 and p50 in the suppression of IL-17. In an experimental autoimmune encephalomyelitis (EAE) disease model, we found that OX40 stimulation inhibited IL-17 and reduced EAE. Conversely, RelB-deficient CD4(+) T cells showed enhanced IL-17 induction and exacerbated the disease. Our data uncover a mechanism in the control of Th17 cells that might have important clinic implications. PMID:27317259

  20. Nitric oxide inhibits larval settlement in Amphibalanus amphitrite cyprids by repressing muscle locomotion and molting

    KAUST Repository

    Zhang, Gen

    2015-08-28

    Nitric oxide (NO) is a universal signaling molecule and plays a negative role in the metamorphosis of many biphasic organisms. Recently, the NO/NO (cyclic guanosine monophosphate) signaling pathway was reported to repress larval settlement in the barnacle Amphibalanus amphitrite. To understand the underlying molecular mechanism, we analyzed changes in the proteome of A. amphitrite cyprids in response to different concentrations of the NO donor sodium nitroprusside (SNP; 62.5, 250 and 1000 μM) using a label-free proteomics method. Compared with the control, the expression of 106 proteins differed in all three treatments. These differentially expressed proteins were assigned to 13 pathways based on KEGG pathway enrichment analysis. SNP treatment stimulated the expression of heat shock proteins and arginine kinase, which are functionally related to NO synthases, increased the expression levels of glutathione transferases for detoxification, and activated the iron-mediated fatty acid degradation pathway and the citrate cycle through ferritin. Moreover, NO repressed the level of myosins and cuticular proteins, which indicated that NO might inhibit larval settlement in A. amphitrite by modulating the process of muscle locomotion and molting.

  1. miR-29 Represses the Activities of DNA Methyltransferases and DNA Demethylases

    Directory of Open Access Journals (Sweden)

    Izuho Hatada

    2013-07-01

    Full Text Available Members of the microRNA-29 (miR-29 family directly target the DNA methyltransferases, DNMT3A and DNMT3B. Disturbances in the expression levels of miR-29 have been linked to tumorigenesis and tumor aggressiveness. Members of the miR-29 family are currently thought to repress DNA methylation and suppress tumorigenesis by protecting against de novo methylation. Here, we report that members of the miR-29 family repress the activities of DNA methyltransferases and DNA demethylases, which have opposing roles in control of DNA methylation status. Members of the miR-29 family directly inhibited DNA methyltransferases and two major factors involved in DNA demethylation, namely tet methylcytosine dioxygenase 1 (TET1 and thymine DNA glycosylase (TDG. Overexpression of miR-29 upregulated the global DNA methylation level in some cancer cells and downregulated DNA methylation in other cancer cells, suggesting that miR-29 suppresses tumorigenesis by protecting against changes in the existing DNA methylation status rather than by preventing de novo methylation of DNA.

  2. Authoritarianism, control and vigilance: Jacob Gorender on the aim of the repression (1940-1980

    Directory of Open Access Journals (Sweden)

    Lucileide Costa Cardoso

    2013-12-01

    Full Text Available The purpose of the article is to demonstrate through analysis of documents of repressive nature, the elements highlighted by the Military Justice to establish the trace of persecution of the intellectuals among other social sectors which dared to challenge the Dictatorship. The complete mapping, involving the combat strategies against the “communism”, including the knowledge of the political parties and their military staff, was accumulated by police and military sectors along the 20th century. We intended to follow, through these records, the political trajectory of the intellectual Jacob Gorender. As a journalist, he got involved in the discussion about the Brazilian participation in the World War II, joined the FEB in 1943. Before that, however, Gorender became a communist, recruited by Mario Alves in 1942. In the early 60’s, he acted as a militant and coordinator of PCB, when he decided to join PCBR, founded in 1968. The historian, in the beginning of the 1964 Strike, with his life already devastated by the Information and Security Community, experienced marginalization, imprisonment, torture and censorship of his writings among other abuses that also reached his closest friends, political companions and family members. The crossing of this amount of information with the memorial documents helps to understand the political repression tricks and the different Revolutionary projects in course.

  3. The forkhead transcription factor FOXP1 represses human plasma cell differentiation.

    Science.gov (United States)

    van Keimpema, Martine; Grüneberg, Leonie J; Mokry, Michal; van Boxtel, Ruben; van Zelm, Menno C; Coffer, Paul; Pals, Steven T; Spaargaren, Marcel

    2015-10-29

    Expression of the forkhead transcription factor FOXP1 is essential for early B-cell development, whereas downregulation of FOXP1 at the germinal center (GC) stage is required for GC B-cell function. Aberrantly high FOXP1 expression is frequently observed in diffuse large B-cell lymphoma and mucosa-associated lymphoid tissue lymphoma, being associated with poor prognosis. Here, by gene expression analysis upon ectopic overexpression of FOXP1 in primary human memory B cells (MBCs) and B-cell lines, combined with chromatin immunoprecipitation and sequencing, we established that FOXP1 directly represses expression of PRDM1, IRF4, and XBP1, transcriptional master regulators of plasma cell (PC) differentiation. In accordance, FOXP1 is prominently expressed in primary human naive and MBCs, but expression strongly decreases during PC differentiation. Moreover, as compared with immunoglobulin (Ig) M(+) MBCs, IgG(+) MBCs combine lower expression of FOXP1 with an enhanced intrinsic PC differentiation propensity, and constitutive (over)expression of FOXP1 in B-cell lines and primary human MBCs represses their ability to differentiate into PCs. Taken together, our data indicate that proper control of FOXP1 expression plays a critical role in PC differentiation, whereas aberrant expression of FOXP1 might contribute to lymphomagenesis by blocking this terminal B-cell differentiation. PMID:26289642

  4. The Pax gene eyegone facilitates repression of eye development in Tribolium

    Directory of Open Access Journals (Sweden)

    ZarinKamar Nazanin

    2011-04-01

    Full Text Available Abstract Background The Pax transcription factor gene eyegone (eyg participates in many developmental processes in Drosophila, including the Notch signaling activated postembryonic growth of the eye primordium, global development of the adult head and the development of the antenna. In contrast to other Pax genes, the functional conservation of eyg in species other than Drosophila has not yet been explored. Results We investigated the role of eyg during the postembryonic development of the red flour beetle Tribolium castaneum. Our results indicate conserved roles in antennal but not in eye development. Besides segmentation defects in the antenna, Tribolium eyg knockdown animals were characterized by eye enlargement due to the formation of surplus ommatidia at the central anterior edge of the compound eye. This effect resulted from the failure of the developing gena to locally repress retinal differentiation, which underlies the formation of the characteristic anterior notch in the Tribolium eye. Neither varying the induction time point of eyg knockdown nor knocking down components of the Janus kinase/Signal Transducer and Activators of Transcription signaling pathway in combination with eyg reduced eye size like in Drosophila. Conclusions Taken together, expression and knockdown data suggest that Tribolium eyg serves as a competence factor that facilitates the repression of retinal differentiation in response to an unknown signal produced in the developing gena. At the comparative level, our findings reveal diverged roles of eyg associated with the evolution of different modes of postembryonic head development in endopterygote insects as well as diversified head morphologies in darkling beetles.

  5. SUMOylation regulates the transcriptional repression activity of FOG-2 and its association with GATA-4.

    Directory of Open Access Journals (Sweden)

    José Perdomo

    Full Text Available Friend of GATA 2 (FOG-2, a co-factor of several GATA transcription factors (GATA-4, -5 and 6, is a critical regulator of coronary vessel formation and heart morphogenesis. Here we demonstrate that FOG-2 is SUMOylated and that this modification modulates its transcriptional activity. FOG-2 SUMOylation occurs at four lysine residues (K324, 471, 915, 955 [corrected]. Three of these residues are part of the characteristic SUMO consensus site (ψKXE, while K955 is found in the less frequent TKXE motif. Absence of SUMOylation did not affect FOG-2's nuclear localization. However, mutation of the FOG-2 SUMOylation sites, or de-SUMOylation, with SENP-1 or SENP-8 resulted in stronger transcriptional repression activity in both heterologous cells and cardiomyocytes. Conversely, increased FOG-2 SUMOylation by overexpression of SUMO-1 or expression of a SUMO-1-FOG-2 fusion protein rendered FOG-2 incapable of repressing GATA-4-mediated activation of the B-type natriuretic peptide (BNP promoter. Moreover, we demonstrate both increased interaction between a FOG-2 SUMO mutant and GATA-4 and enhanced SUMOylation of wild-type FOG-2 by co-expression of GATA-4. These data suggest a new dynamics in which GATA-4 may alter the activity of FOG-2 by influencing its SUMOylation status.

  6. p53 represses human papillomavirus type 16 DNA replication via the viral E2 protein

    Directory of Open Access Journals (Sweden)

    Morgan Iain M

    2008-01-01

    Full Text Available Abstract Background Human papillomavirus (HPV DNA replication can be inhibited by the cellular tumour suppressor protein p53. However, the mechanism through which p53 inhibits viral replication and the role that this might play in the HPV life cycle are not known. The papillomavirus E2 protein is required for efficient HPV DNA replication and also regulates viral gene expression. E2 represses transcription of the HPV E6 and E7 oncogenes and can thereby modulate indirectly host cell proliferation and survival. In addition, the E2 protein from HPV 16 has been shown to bind p53 and to be capable of inducing apoptosis independently of E6 and E7. Results Here we use a panel of E2 mutants to confirm that mutations which block the induction of apoptosis via this E6/E7-independent pathway, have little or no effect on the induction of apoptosis by the E6/E7-dependent pathway. Although these mutations in E2 do not affect the ability of the protein to mediate HPV DNA replication, they do abrogate the repressive effects of p53 on the transcriptional activity of E2 and prevent the inhibition of E2-dependent HPV DNA replication by p53. Conclusion These data suggest that p53 down-regulates HPV 16 DNA replication via the E2 protein.

  7. Repression of protein translation and mTOR signaling by proteasome inhibitor in colon cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, William Ka Kei, E-mail: wukakei@cuhk.edu.hk [Institute of Digestive Diseases, Faculty of Medicine, The Chinese University of Hong Kong (Hong Kong); Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong (Hong Kong); Department of Pharmacology, Faculty of Medicine, The Chinese University of Hong Kong (Hong Kong); Volta, Viviana [Molecular Histology and Cellular Growth Unit, DiBiT-San Raffaele Scientific Institute (Italy); Dipartimento di Scienze dell' Ambiente e della Vita (DiSAV), University of Eastern Piedmont (Italy); Cho, Chi Hin, E-mail: chcho@cuhk.edu.hk [Institute of Digestive Diseases, Faculty of Medicine, The Chinese University of Hong Kong (Hong Kong); Department of Pharmacology, Faculty of Medicine, The Chinese University of Hong Kong (Hong Kong); Wu, Ya Chun; Li, Hai Tao [Department of Pharmacology, Faculty of Medicine, The Chinese University of Hong Kong (Hong Kong); Yu, Le [Institute of Digestive Diseases, Faculty of Medicine, The Chinese University of Hong Kong (Hong Kong); Department of Pharmacology, Faculty of Medicine, The Chinese University of Hong Kong (Hong Kong); Li, Zhi Jie [Department of Pharmacology, Faculty of Medicine, The Chinese University of Hong Kong (Hong Kong); Sung, Joseph Jao Yiu, E-mail: joesung@cuhk.edu.hk [Institute of Digestive Diseases, Faculty of Medicine, The Chinese University of Hong Kong (Hong Kong); Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong (Hong Kong)

    2009-09-04

    Protein homeostasis relies on a balance between protein synthesis and protein degradation. The ubiquitin-proteasome system is a major catabolic pathway for protein degradation. In this respect, proteasome inhibition has been used therapeutically for the treatment of cancer. Whether inhibition of protein degradation by proteasome inhibitor can repress protein translation via a negative feedback mechanism, however, is unknown. In this study, proteasome inhibitor MG-132 lowered the proliferation of colon cancer cells HT-29 and SW1116. In this connection, MG-132 reduced the phosphorylation of mammalian target of rapamycin (mTOR) at Ser2448 and Ser2481 and the phosphorylation of its downstream targets 4E-BP1 and p70/p85 S6 kinases. Further analysis revealed that MG-132 inhibited protein translation as evidenced by the reductions of {sup 35}S-methionine incorporation and polysomes/80S ratio. Knockdown of raptor, a structural component of mTOR complex 1, mimicked the anti-proliferative effect of MG-132. To conclude, we demonstrate that the inhibition of protein degradation by proteasome inhibitor represses mTOR signaling and protein translation in colon cancer cells.

  8. Identification of novel secreted fatty acids that regulate nitrogen catabolite repression in fission yeast.

    Science.gov (United States)

    Sun, Xiaoying; Hirai, Go; Ueki, Masashi; Hirota, Hiroshi; Wang, Qianqian; Hongo, Yayoi; Nakamura, Takemichi; Hitora, Yuki; Takahashi, Hidekazu; Sodeoka, Mikiko; Osada, Hiroyuki; Hamamoto, Makiko; Yoshida, Minoru; Yashiroda, Yoko

    2016-02-19

    Uptake of poor nitrogen sources such as branched-chain amino acids is repressed in the presence of high-quality nitrogen sources such as NH4(+) and glutamate (Glu), which is called nitrogen catabolite repression. Amino acid auxotrophic mutants of the fission yeast Schizosaccharomyces pombe were unable to grow on minimal medium containing NH4Cl or Glu even when adequate amounts of required amino acids were supplied. However, growth of these mutant cells was recovered in the vicinity of colonies of the prototrophic strain, suggesting that the prototrophic cells secrete some substances that can restore uptake of amino acids by an unknown mechanism. We identified the novel fatty acids, 10(R)-acetoxy-8(Z)-octadecenoic acid and 10(R)-hydroxy-8(Z)-octadecenoic acid, as secreted active substances, referred to as Nitrogen Signaling Factors (NSFs). Synthetic NSFs were also able to shift nitrogen source utilization from high-quality to poor nitrogen sources to allow adaptive growth of the fission yeast amino acid auxotrophic mutants in the presence of high-quality nitrogen sources. Finally, we demonstrated that the Agp3 amino acid transporter was involved in the adaptive growth. The data highlight a novel intra-species communication system for adaptation to environmental nutritional conditions in fission yeast.

  9. Epigenetic repression of ribosomal RNA transcription by ROCK-dependent aberrant cytoskeletal organization

    Science.gov (United States)

    Wu, Tse-Hsiang; Kuo, Yuan-Yeh; Lee, Hsiao-Hui; Kuo, Jean-Cheng; Ou, Meng-Hsin; Chang, Zee-Fen

    2016-01-01

    It is known that ribosomal RNA (rRNA) synthesis is regulated by cellular energy and proliferation status. In this study, we investigated rRNA gene transcription in response to cytoskeletal stress. Our data revealed that the cell shape constrained by isotropic but not elongated micropatterns in HeLa cells led to a significant reduction in rRNA transcription dependent on ROCK. Expression of a dominant-active form of ROCK also repressed rRNA transcription. Isotropic constraint and ROCK over-activation led to different types of aberrant F-actin organization, but their suppression effects on rRNA transcription were similarly reversed by inhibition of histone deacetylase (HDAC) or overexpression of a dominant negative form of Nesprin, which shields the signal transmitted from actin filament to the nuclear interior. We further showed that the binding of HDAC1 to the active fraction of rDNA genes is increased by ROCK over-activation, thus reducing H3K9/14 acetylation and suppressing transcription. Our results demonstrate an epigenetic control of active rDNA genes that represses rRNA transcription in response to the cytoskeletal stress. PMID:27350000

  10. Translational repression determines a neuronal potential in Drosophila asymmetric cell division.

    Science.gov (United States)

    Okabe, M; Imai, T; Kurusu, M; Hiromi, Y; Okano, H

    2001-05-01

    Asymmetric cell division is a fundamental strategy for generating cellular diversity during animal development. Daughter cells manifest asymmetry in their differential gene expression. Transcriptional regulation of this process has been the focus of many studies, whereas cell-type-specific 'translational' regulation has been considered to have a more minor role. During sensory organ development in Drosophila, Notch signalling directs the asymmetry between neuronal and non-neuronal lineages, and a zinc-finger transcriptional repressor Tramtrack69 (TTK69) acts downstream of Notch as a determinant of non-neuronal identity. Here we show that repression of TTK69 protein expression in the neuronal lineage occurs translationally rather than transcriptionally. This translational repression is achieved by a direct interaction between cis-acting sequences in the 3' untranslated region of ttk69 messenger RNA and its trans-acting repressor, the RNA-binding protein Musashi (MSI). Although msi can act downstream of Notch, Notch signalling does not affect MSI expression. Thus, Notch signalling is likely to regulate MSI activity rather than its expression. Our results define cell-type-specific translational control of ttk69 by MSI as a downstream event of Notch signalling in asymmetric cell division.

  11. Melanie Klein and Repression: an examination of some unpublished Notes of 1934.

    Science.gov (United States)

    Hinshelwood, R D

    2006-01-01

    Fifteen pages of unpublished Notes were found in the Melanie Klein Archives dating from early 1934, a crucial moment in Klein's development. She was at this time, 1934, moving away from child analysis, whilst also rethinking and revising her allegiance to Karl Abraham's theory of the phases of libidinal development. These Notes, entitled "Early Repression Mechanism," show Klein struggling to develop what became her characteristic theories of the depressive position and the paranoid-schizoid position. Although these Notes are precursors of the paper Klein gave later to the IPA Congress in 1934, they also show the origins of the emphasis she and her followers eventually gave to "splitting" rather than repression. The Notes give us an insight into the way that she worked clinically at the time. We see Klein's confidence develop as she diverged from the classical theories and technique. Her ideas were based on close attention to the detail of her clinical material, rather than attacking theoretical problems directly. The Notes show her method of struggling to her own conclusions, and they offer us a chance to grasp the roots of the subsequent controversy over Kleinian thought.

  12. Lysine-specific demethylase 1 promotes brown adipose tissue thermogenesis via repressing glucocorticoid activation.

    Science.gov (United States)

    Zeng, Xing; Jedrychowski, Mark P; Chen, Yi; Serag, Sara; Lavery, Gareth G; Gygi, Steve P; Spiegelman, Bruce M

    2016-08-15

    Brown adipocytes display phenotypic plasticity, as they can switch between the active states of fatty acid oxidation and energy dissipation versus a more dormant state. Cold exposure or β-adrenergic stimulation favors the active thermogenic state, whereas sympathetic denervation or glucocorticoid administration promotes more lipid accumulation. Our understanding of the molecular mechanisms underlying these switches is incomplete. Here we found that LSD1 (lysine-specific demethylase 1), a histone demethylase, regulates brown adipocyte metabolism in two ways. On the one hand, LSD1 associates with PRDM16 to repress expression of white fat-selective genes. On the other hand, LSD1 represses HSD11B1 (hydroxysteroid 11-β-dehydrogenase isozyme 1), a key glucocorticoid-activating enzyme, independently from PRDM16. Adipose-specific ablation of LSD1 impaired mitochondrial fatty acid oxidation capacity of the brown adipose tissue, reduced whole-body energy expenditure, and increased fat deposition, which can be significantly alleviated by simultaneously deleting HSD11B1. These findings establish a novel regulatory pathway connecting histone modification and hormone activation with mitochondrial oxidative capacity and whole-body energy homeostasis. PMID:27566776

  13. Gene induction and repression during terminal erythropoiesis are mediated by distinct epigenetic changes.

    Science.gov (United States)

    Wong, Piu; Hattangadi, Shilpa M; Cheng, Albert W; Frampton, Garrett M; Young, Richard A; Lodish, Harvey F

    2011-10-20

    It is unclear how epigenetic changes regulate the induction of erythroid-specific genes during terminal erythropoiesis. Here we use global mRNA sequencing (mRNA-seq) and chromatin immunoprecipitation coupled to high-throughput sequencing (CHIP-seq) to investigate the changes that occur in mRNA levels, RNA polymerase II (Pol II) occupancy, and multiple posttranslational histone modifications when erythroid progenitors differentiate into late erythroblasts. Among genes induced during this developmental transition, there was an increase in the occupancy of Pol II, the activation marks H3K4me2, H3K4me3, H3K9Ac, and H4K16Ac, and the elongation methylation mark H3K79me2. In contrast, genes that were repressed during differentiation showed relative decreases in H3K79me2 levels yet had levels of Pol II binding and active histone marks similar to those in erythroid progenitors. We also found that relative changes in histone modification levels, in particular, H3K79me2 and H4K16ac, were most predictive of gene expression patterns. Our results suggest that in terminal erythropoiesis both promoter and elongation-associated marks contribute to the induction of erythroid genes, whereas gene repression is marked by changes in histone modifications mediating Pol II elongation. Our data map the epigenetic landscape of terminal erythropoiesis and suggest that control of transcription elongation regulates gene expression during terminal erythroid differentiation.

  14. Repressive coping style: relationships with depression, pain, and pain coping strategies in lung cancer outpatients.

    Science.gov (United States)

    Prasertsri, Nusara; Holden, Janean; Keefe, Francis J; Wilkie, Diana J

    2011-02-01

    Researchers have shown that coping style is related to pain and adjustment in people with chronic illness. This study was the first to examine how coping style related to pain, pain coping strategies, and depression in lung cancer outpatients. We conducted a comparative, secondary data analysis of 107 lung cancer patients (73% male, mean age 61.4±10.43 years, 88% Caucasian). As in prior studies, we classified patients into four coping style groups based on Marlowe-Crowne Social Desirability Scale and trait anxiety scores. The coping style groups were low-anxious (n=25); high-anxious (n=31); defensive high-anxious (n=21); and repressive (n=30). Compared to other coping style groups, the repressive group reported statistically significant lower mean scores for pain quality, pain catastrophizing, and depression. Assessing coping style by measuring personal characteristics such as social desirability and trait anxiety may help clinicians to identify vulnerable individuals with lung cancer who may be candidates for early and timely intervention efforts to enhance adjustment to pain. PMID:20557973

  15. Chronic idiopathic urticaria, psychological co-morbidity and posttraumatic stress: the impact of alexithymia and repression.

    Science.gov (United States)

    Hunkin, Victoria; Chung, Man Cheung

    2012-12-01

    The objective of this study was to investigate the interrelationship between chronic idiopathic urticaria (CIU), psychological co-morbidity, posttraumatic stress, repression and alexithymia. 89 participants with CIU and 105 without CIU responded to an online questionnaire. Both groups completed the general health questionnaire-12, the perceived stress scale, the posttraumatic stress diagnostic scale and the Toronto alexithymia scale-20 and were categorised into four defence mechanism groups (repressive, defensive, high-anxious, low-anxious). CIU participants also completed the Skindex-17 and a self-report severity measure. CIU participants reported higher levels of alexithymia than the control group and their defence mechanism was most likely to be categorised as defensive, with conscious self-image management reported alongside high manifest anxiety. Partial least squares analysis revealed significant paths between posttraumatic stress and CIU severity and psychological co-morbidity. Posttraumatic stress was associated with alexithymia and type of defence mechanism. Only being in the high-anxious group partially mediated the relationship between posttraumatic stress and CIU severity. In conclusion, there is evidence for a relationship between CIU and trauma. The severity of posttraumatic symptoms varies depending upon alexithymic traits and defence mechanisms used. Disease severity and psychological co-morbidity are differentially influenced by the relationships between trauma, alexithymic traits and defence mechanisms. PMID:22362490

  16. Greves, sindicatos e repressão policial no Rio de Janeiro (1954-1964

    Directory of Open Access Journals (Sweden)

    Marcelo Badaró Mattos

    2004-01-01

    Full Text Available Este artigo apresenta parte dos resultados de uma pesquisa sobre as greves e a repressão aos sindicatos no Rio de Janeiro entre 1954 e 1964. Seu objetivo central é rediscutir a relação entre Estado, empresários e trabalhadores organizados no período em questão a partir da dimensão de conflito explicitada nos momentos de greve. Pretendeu-se também apresentar dados mais completos que os anteriormente disponíveis sobre o total e as características das greves, bem como explorar o potencial da documentação policial, aberta à consulta nos últimos anos.This article presents some conclusions on strikes and police repression to trade unions in Rio de Janeiro. The central question is the relation between State, capitalists and organized workers in that moment, with special attention to the conflict dimension expressed by strikes. The article tries to show more complete data about strike numbers and characteristics, as well as to explore the recently opened police documents.

  17. E2F-Rb Complexes Assemble and Inhibit cdc25A Transcription in Cervical Carcinoma Cells following Repression of Human Papillomavirus Oncogene Expression

    OpenAIRE

    Wu, Lingling; Goodwin, Edward C.; Naeger, Lisa Kay; Vigo, Elena; Galaktionov, Konstantin; Helin, Kristian; DiMaio, Daniel

    2000-01-01

    Expression of the bovine papillomavirus E2 protein in cervical carcinoma cells represses expression of integrated human papillomavirus (HPV) E6/E7 oncogenes, followed by repression of the cdc25A gene and other cellular genes required for cell cycle progression, resulting in dramatic growth arrest. To explore the mechanism of repression of cell cycle genes in cervical carcinoma cells following E6/E7 repression, we analyzed regulation of the cdc25A promoter, which contains two consensus E2F bin...

  18. Translational Repression of NhaR, a Novel Pathway for Multi-Tier Regulation of Biofilm Circuitry by CsrA

    OpenAIRE

    Pannuri, Archana; Yakhnin, Helen; Vakulskas, Christopher A.; Edwards, Adrianne N.; Babitzke, Paul; Romeo, Tony

    2012-01-01

    The RNA binding protein CsrA (RsmA) represses biofilm formation in several proteobacterial species. In Escherichia coli, it represses the production of the polysaccharide adhesin poly-β-1,6-N-acetyl-d-glucosamine (PGA) by binding to the pgaABCD mRNA leader, inhibiting pgaA translation, and destabilizing this transcript. In addition, CsrA represses genes responsible for the synthesis of cyclic di-GMP, an activator of PGA production. Here we determined that CsrA also represses NhaR, a LysR-type...

  19. The T-box transcription factor Midline regulates wing development by repressing wingless and hedgehog in Drosophila.

    Science.gov (United States)

    Fu, Chong-Lei; Wang, Xian-Feng; Cheng, Qian; Wang, Dan; Hirose, Susumu; Liu, Qing-Xin

    2016-01-01

    Wingless (Wg) and Hedgehog (Hh) signaling pathways are key players in animal development. However, regulation of the expression of wg and hh are not well understood. Here, we show that Midline (Mid), an evolutionarily conserved transcription factor, expresses in the wing disc of Drosophila and plays a vital role in wing development. Loss or knock down of mid in the wing disc induced hyper-expression of wingless (wg) and yielded cocked and non-flat wings. Over-expression of mid in the wing disc markedly repressed the expression of wg, DE-Cadherin (DE-Cad) and armadillo (arm), and resulted in a small and blistered wing. In addition, a reduction in the dose of mid enhanced phenotypes of a gain-of-function mutant of hedgehog (hh). We also observed repression of hh upon overexpression of mid in the wing disc. Taken together, we propose that Mid regulates wing development by repressing wg and hh in Drosophila. PMID:27301278

  20. Different mechanisms contribute to the E2-mediated transcriptional repression of human papillomavirus type 18 viral oncogenes.

    Science.gov (United States)

    Demeret, C; Desaintes, C; Yaniv, M; Thierry, F

    1997-12-01

    Transcription of the human papillomavirus type 18 (HPV18) E6 and E7 oncogenes is repressed by the viral E2 protein. In C33 cells, we have previously shown that of the four E2 binding sites (E2 BS) present in the HPV18 long control region (LCR), only the binding site adjacent to the TATA box (E2 BS 1) was involved in E2-mediated repression. In the present study, we sought to determine whether this phenomenon was conserved in other cell lines. We first showed that all three E2 BS proximal to the P105 promoter were required for full repression of its activity in HeLa and HaCaT cells. Repression by E2 at E2 BS 2 occurred through the displacement of Sp1. Second, a truncated E2 product, lacking the N-terminal transactivation domain, repressed transcription more efficiently than the full-length protein. Repression was abolished when the N-terminal domain of E2 was replaced by the activation domain of VP16. The VP16-E2 chimeric protein could activate transcription from an LCR mutated in its TATA box. DNA-protein binding studies showed that E2 associates with its four binding sites in the LCR with similar affinities. However, challenge of such complexes with excess binding sites demonstrated that interaction with E2 BS 4 was the most stable while interaction with E2 BS 1 was the least stable. Furthermore, complexes with the full-length E2 were less stable than those formed with the N-terminally truncated protein. PMID:9371593

  1. Estradiol repression of tumor necrosis factor-α transcription requires estrogen receptor activation function-2 and is enhanced by coactivators

    OpenAIRE

    An, Jinping; Ribeiro, Ralff C. J.; Webb, Paul; Gustafsson, Jan-Åke; Kushner, Peter J.; Baxter, John D.; Leitman, Dale C.

    1999-01-01

    The tumor necrosis factor-α (TNF-α) promoter was used to explore the molecular mechanisms of estradiol (E2)-dependent repression of gene transcription. E2 inhibited basal activity and abolished TNF-α activation of the TNF-α promoter. The E2-inhibitory element was mapped to the −125 to −82 region of the TNF-α promoter, known as the TNF-responsive element (TNF-RE). An AP-1-like site in the TNF-RE is essential for repression activity. Estrogen receptor (ER) β is more potent than ERα at repressin...

  2. Different mechanisms contribute to the E2-mediated transcriptional repression of human papillomavirus type 18 viral oncogenes.

    OpenAIRE

    Demeret, C; Desaintes, C.; Yaniv, M; Thierry, F

    1997-01-01

    Transcription of the human papillomavirus type 18 (HPV18) E6 and E7 oncogenes is repressed by the viral E2 protein. In C33 cells, we have previously shown that of the four E2 binding sites (E2 BS) present in the HPV18 long control region (LCR), only the binding site adjacent to the TATA box (E2 BS 1) was involved in E2-mediated repression. In the present study, we sought to determine whether this phenomenon was conserved in other cell lines. We first showed that all three E2 BS proximal to th...

  3. Study Progress in Perception and Transduction of the Abscisic Acid Signals%脱落酸信号感受和转导研究进展

    Institute of Scientific and Technical Information of China (English)

    王敏; 李宏; 王兴春

    2011-01-01

    脱落酸是五大类经典激素之一,它在植物的生长发育和抗逆等生理过程中起着极其重要的作用.近年来,随着脱落酸受体等相继发现,脱落酸信号转导再次成为人们关注的焦点.综述了脱落酸信号转导的最新研究进展,并展望了未来的研究方向.%Abscisic acid (ABA) is one of the five classical phytohormones that plays crucial roles in the plant growth and in stress and drought tolerance. With the discovery of the ABA receptors, the ABA signal transduction has attracted great attention once again. In this paper, the latest advances in ABA signal transduction were reviewed and the future developing prospects were also discussed.

  4. Role of Abscisic Acid in Plant Hardiness Physiology%脱落酸在植物抗性生理中的作用

    Institute of Scientific and Technical Information of China (English)

    张会

    2013-01-01

    脱落酸是植物五大激素之一,存在于全部维管植物中,在植物的各种抗逆性中起着至关重要的作用.该研究介绍了ABA在植物低温、高温、干旱、盐渍、水涝等逆境胁迫响应中的作用.%Abscisic acid (ABA) is one of five big plant hormones, exists in all vascular plants, and plays an important role in all kinds of plant resistance. The role of ABA in response to adversity stresses in plant was introduced, such as low temperature, high temperature, drought, salt and waterlogging.

  5. A maize calcium-dependent protein kinase gene, ZmCPK4, positively regulated abscisic acid signaling and enhanced drought stress tolerance in transgenic Arabidopsis.

    Science.gov (United States)

    Jiang, Shanshan; Zhang, Dan; Wang, Li; Pan, Jiaowen; Liu, Yang; Kong, Xiangpei; Zhou, Yan; Li, Dequan

    2013-10-01

    Calcium-dependent protein kinases (CDPKs) play essential roles in calcium-mediated signal transductions in plant response to abiotic stress. Several members have been identified to be regulators for plants response to abscisic acid (ABA) signaling. Here, we isolated a subgroup I CDPK gene, ZmCPK4, from maize. Quantitative real time PCR (qRT-PCR) analysis revealed that the ZmCPK4 transcripts were induced by various stresses and signal molecules. Transient and stable expression of the ZmCPK4-GFP fusion proteins revealed ZmCPK4 localized to the membrane. Moreover, overexpression of ZmCPK4 in the transgenic Arabidopsis enhanced ABA sensitivity in seed germination, seedling growth and stomatal movement. The transgenic plants also enhanced drought stress tolerance. Taken together, the results suggest that ZmCPK4 might be involved in ABA-mediated regulation of stomatal closure in response to drought stress. PMID:23911729

  6. Up-regulating the abscisic acid inactivation gene ZmABA8ox1b contributes to seed germination heterosis by promoting cell expansion.

    Science.gov (United States)

    Li, Yangyang; Wang, Cheng; Liu, Xinye; Song, Jian; Li, Hongjian; Sui, Zhipeng; Zhang, Ming; Fang, Shuang; Chu, Jinfang; Xin, Mingming; Xie, Chaojie; Zhang, Yirong; Sun, Qixin; Ni, Zhongfu

    2016-04-01

    Heterosis has been widely used in agriculture, but the underlying molecular principles are still largely unknown. During seed germination, we observed that maize (Zea mays) hybrid B73/Mo17 was less sensitive than its parental inbred lines to exogenous abscisic acid (ABA), and endogenous ABA content in hybrid embryos decreased more rapidly than in the parental inbred lines. ZmABA8ox1b, an ABA inactivation gene, was consistently more highly up-regulated in hybrid B73/Mo17 than in its parental inbred lines at early stages of seed germination. Moreover, ectopic expression of ZmABA8ox1b obviously promoted seed germination in Arabidopsis Remarkably, microscopic observation revealed that cell expansion played a major role in the ABA-mediated maize seed germination heterosis, which could be attributed to the altered expression of cell wall-related genes. PMID:27034328

  7. In vitro Transient Expression System of Latex C-serum was used for Analysis of Hevein Promoter in Response to Abscisic Acid in Hevea brasiliensis

    Institute of Scientific and Technical Information of China (English)

    Xiao-Wen Fei; Xiao-Dong Deng

    2008-01-01

    Hevein has been found to be an essential element in coagulation of rubber particles in latex of rubber trees. In a previous study, we cloned a 1 241-bp fragment of a 5' upstream region of the hevein gene by genome walking. This fragment was analyzed by a 5' end nested deletion method in the present study, fused with a uidA (gus) gene to produce a series of tested constructs, which were transferred into C-serum of latex and the Gus activities were detected. Results showed that the fragment from -749 to -292 was sufficient for expression of gus gene in latex, and the fragment from -292 to -168 was crucial in response to abscisic acid inducement. In a transient transgenic test of rubber leaf with particle bombardment, construct Hev749 conferred gus-specific expression in veins, in which the latex tubes mainly distributed. This implies that the fragment from -749 to -292 was laticiferous-specific.

  8. Hypomethylation of intragenic LINE-1 represses transcription in cancer cells through AGO2.

    Directory of Open Access Journals (Sweden)

    Chatchawit Aporntewan

    Full Text Available In human cancers, the methylation of long interspersed nuclear element -1 (LINE-1 or L1 retrotransposons is reduced. This occurs within the context of genome wide hypomethylation, and although it is common, its role is poorly understood. L1s are widely distributed both inside and outside of genes, intragenic and intergenic, respectively. Interestingly, the insertion of active full-length L1 sequences into host gene introns disrupts gene expression. Here, we evaluated if intragenic L1 hypomethylation influences their host gene expression in cancer. First, we extracted data from L1base (http://l1base.molgen.mpg.de, a database containing putatively active L1 insertions, and compared intragenic and intergenic L1 characters. We found that intragenic L1 sequences have been conserved across evolutionary time with respect to transcriptional activity and CpG dinucleotide sites for mammalian DNA methylation. Then, we compared regulated mRNA levels of cells from two different experiments available from Gene Expression Omnibus (GEO, a database repository of high throughput gene expression data, (http://www.ncbi.nlm.nih.gov/geo by chi-square. The odds ratio of down-regulated genes between demethylated normal bronchial epithelium and lung cancer was high (p<1E(-27; OR = 3.14; 95% CI = 2.54-3.88, suggesting cancer genome wide hypomethylation down-regulating gene expression. Comprehensive analysis between L1 locations and gene expression showed that expression of genes containing L1s had a significantly higher likelihood to be repressed in cancer and hypomethylated normal cells. In contrast, many mRNAs derived from genes containing L1s are elevated in Argonaute 2 (AGO2 or EIF2C2-depleted cells. Hypomethylated L1s increase L1 mRNA levels. Finally, we found that AGO2 targets intronic L1 pre-mRNA complexes and represses cancer genes. These findings represent one of the mechanisms of cancer genome wide hypomethylation altering gene expression

  9. Wild type p53 transcriptionally represses the SALL2 transcription factor under genotoxic stress.

    Directory of Open Access Journals (Sweden)

    Carlos Farkas

    Full Text Available SALL2- a member of the Spalt gene family- is a poorly characterized transcription factor found deregulated in various cancers, which suggests it plays a role in the disease. We previously identified SALL2 as a novel interacting protein of neurotrophin receptors and showed that it plays a role in neuronal function, which does not necessarily explain why or how SALL2 is deregulated in cancer. Previous evidences indicate that SALL2 gene is regulated by the WT1 and AP4 transcription factors. Here, we identified SALL2 as a novel downstream target of the p53 tumor suppressor protein. Bioinformatic analysis of the SALL2 gene revealed several putative p53 half sites along the promoter region. Either overexpression of wild-type p53 or induction of the endogenous p53 by the genotoxic agent doxorubicin repressed SALL2 promoter activity in various cell lines. However R175H, R249S, and R248W p53 mutants, frequently found in the tumors of cancer patients, were unable to repress SALL2 promoter activity, suggesting that p53 specific binding to DNA is important for the regulation of SALL2. Electrophoretic mobility shift assay demonstrated binding of p53 to one of the identified p53 half sites in the Sall2 promoter, and chromatin immunoprecipitation analysis confirmed in vivo interaction of p53 with the promoter region of Sall2 containing this half site. Importantly, by using a p53ER (TAM knockin model expressing a variant of p53 that is completely dependent on 4-hydroxy-tamoxifen for its activity, we show that p53 activation diminished SALL2 RNA and protein levels during genotoxic cellular stress in primary mouse embryo fibroblasts (MEFs and radiosensitive tissues in vivo. Thus, our finding indicates that p53 represses SALL2 expression in a context-specific manner, adding knowledge to the understanding of SALL2 gene regulation, and to a potential mechanism for its deregulation in cancer.

  10. ZEB1 limits adenoviral infectability by transcriptionally repressing the Coxsackie virus and Adenovirus Receptor

    Directory of Open Access Journals (Sweden)

    Lacher Markus D

    2011-07-01

    Full Text Available Abstract Background We have previously reported that RAS-MEK (Cancer Res. 2003 May 1;63(9:2088-95 and TGF-β (Cancer Res. 2006 Feb 1;66(3:1648-57 signaling negatively regulate coxsackie virus and adenovirus receptor (CAR cell-surface expression and adenovirus uptake. In the case of TGF-β, down-regulation of CAR occurred in context of epithelial-to-mesenchymal transition (EMT, a process associated with transcriptional repression of E-cadherin by, for instance, the E2 box-binding factors Snail, Slug, SIP1 or ZEB1. While EMT is crucial in embryonic development, it has been proposed to contribute to the formation of invasive and metastatic carcinomas by reducing cell-cell contacts and increasing cell migration. Results Here, we show that ZEB1 represses CAR expression in both PANC-1 (pancreatic and MDA-MB-231 (breast human cancer cells. We demonstrate that ZEB1 physically associates with at least one of two closely spaced and conserved E2 boxes within the minimal CAR promoter here defined as genomic region -291 to -1 relative to the translational start ATG. In agreement with ZEB1's established role as a negative regulator of the epithelial phenotype, silencing its expression in MDA-MB-231 cells induced a partial Mesenchymal-to-Epithelial Transition (MET characterized by increased levels of E-cadherin and CAR, and decreased expression of fibronectin. Conversely, knockdown of ZEB1 in PANC-1 cells antagonized both the TGF-β-induced down-regulation of E-cadherin and CAR and the reduction of adenovirus uptake. Interestingly, even though ZEB1 clearly contributes to the TGF-β-induced mesenchymal phenotype of PANC-1 cells, TGF-β did not seem to affect ZEB1's protein levels or subcellular localization. These findings suggest that TGF-β may inhibit CAR expression by regulating factor(s that cooperate with ZEB1 to repress the CAR promoter, rather than by regulating ZEB1 expression levels. In addition to the negative E2 box-mediated regulation the minimal

  11. The putative E3 ubiquitin ligase ECERIFERUM9 regulates abscisic acid biosynthesis and response during seed germination and postgermination growth in arabidopsis

    KAUST Repository

    Zhao, Huayan

    2014-05-08

    The ECERIFERUM9 (CER9) gene encodes a putative E3 ubiquitin ligase that functions in cuticle biosynthesis and the maintenance of plant water status. Here, we found that CER9 is also involved in abscisic acid (ABA) signaling in seeds and young seedlings of Arabidopsis (Arabidopsis thaliana). The germinated embryos of the mutants exhibited enhanced sensitivity to ABA during the transition from reversible dormancy to determinate seedling growth. Expression of the CER9 gene is closely related to ABA levels and displays a similar pattern to that of ABSCISIC ACID-INSENSITIVE5 (ABI5), which encodes a positive regulator of ABA responses in seeds. cer9 mutant seeds exhibited delayed germination that is independent of seed coat permeability. Quantitative proteomic analyses showed that cer9 seeds had a protein profile similar to that of the wild type treated with ABA. Transcriptomics analyses revealed that genes involved in ABA biosynthesis or signaling pathways were differentially regulated in cer9 seeds. Consistent with this, high levels of ABA were detected in dry seeds of cer9. Blocking ABA biosynthesis by fluridone treatment or by combining an ABA-deficient mutation with cer9 attenuated the phenotypes of cer9. Whereas introduction of the abi1-1, abi3-1, or abi4-103 mutation could completely eliminate the ABA hypersensitivity of cer9, introduction of abi5 resulted only in partial suppression. These results indicate that CER9 is a novel negative regulator of ABA biosynthesis and the ABA signaling pathway during seed germination. © 2014 American Society of Plant Biologists. All Rights Reserved.

  12. 脱落酸的发酵法生产及应用%Abscisic Acid Production by Fermentation and Its Application

    Institute of Scientific and Technical Information of China (English)

    陆丽珍; 劳兴珍; 郑珩

    2011-01-01

    脱落酸是重要的植物激素之一,可以增强作物对环境逆因子如干旱、寒冷等的抵抗能力,在抵抗农业自然灾害、植树造林、生态植被建设、城市园林绿化等领域有广阔的应用前景.施用脱落酸可减少化学农药的使用,保护自然环境.本文概述了脱落酸生产和应用方面的研究进展,包括产生菌的筛选、诱变、外施脱落酸在提高作物抗逆性上的应用,以及脱落酸抗肿瘤活性方面的研究.%Abscisic acid (ABA) is one of the important plant hormone. It can help crops enhance resistance to environmental stress factors, such as drought and cold, etc. , therefore it has broad application prospects in terms of fighting against agricultural natural disasters, afforestation, ecological vegetation, urban landscape and other fields.Application of abscisic acid can reduce the use of chemical pesticides to protect the natural environment. This article outlines the research progress of ABA both in production and application areas, including strain mutagenesis/screening and the application of exogenous ABA on improving crop resistance, as well as the activity study of ABA on anti - tumor.

  13. Seed response to strigolactone is controlled by abscisic acid-independent DNA methylation in the obligate root parasitic plant, Phelipanche ramosa L. Pomel.

    Science.gov (United States)

    Lechat, Marc-Marie; Brun, Guillaume; Montiel, Grégory; Véronési, Christophe; Simier, Philippe; Thoiron, Séverine; Pouvreau, Jean-Bernard; Delavault, Philippe

    2015-06-01

    Seed dormancy release of the obligate root parasitic plant, Phelipanche ramosa, requires a minimum 4-day conditioning period followed by stimulation by host-derived germination stimulants, such as strigolactones. Germination is then mediated by germination stimulant-dependent activation of PrCYP707A1, an abscisic acid catabolic gene. The molecular mechanisms occurring during the conditioning period that silence PrCYP707A1 expression and regulate germination stimulant response are almost unknown. Here, global DNA methylation quantification associated with pharmacological approaches and cytosine methylation analysis of the PrCYP707A1 promoter were used to investigate the modulation and possible role of DNA methylation during the conditioning period and in the PrCYP707A1 response to GR24, a synthetic strigolactone analogue. Active global DNA demethylation occurs during the conditioning period and is required for PrCYP707A1 activation by GR24 and for subsequent seed germination. Treatment with 5-azacytidine, a DNA-hypomethylating molecule, reduces the length of the conditioning period. Conversely, hydroxyurea, a hypermethylating agent, inhibits PrCYP707A1 expression and seed germination. Methylated DNA immunoprecipitation followed by PCR experiments and bisulfite sequencing revealed that DNA demethylation particularly impacts a 78-nucleotide sequence in the PrCYP707A1 promoter. The results here demonstrate that the DNA methylation status during the conditioning period plays a crucial role independently of abscisic acid in the regulation of P. ramosa seed germination by controlling the strigolactone-dependent expression of PrCYP707A1.

  14. An X11alpha/FSBP complex represses transcription of the GSK3beta gene promoter.

    LENUS (Irish Health Repository)

    Lau, Kwok-Fai

    2010-08-04

    X11alpha is a neuronal adaptor protein that interacts with the amyloid precursor protein (APP) through a centrally located phosphotyrosine binding domain to inhibit the production of Abeta peptide that is deposited in Alzheimer\\'s disease brains. X11alpha also contains two C-terminal postsynaptic density-95, large discs, zona occludens 1 (PDZ) domains, and we show here that through its PDZ domains, X11alpha interacts with a novel transcription factor, fibrinogen silencer binding protein. Moreover, we show that an X11alpha\\/fibrinogen silencer binding protein complex signals to the nucleus to repress glycogen synthase kinase-3beta promoter activity. Glycogen synthase kinase-3beta is a favoured candidate kinase for phosphorylating tau in Alzheimer\\'s disease. Our findings show a new function for X11alpha that may impact on Alzheimer\\'s disease pathogenesis.

  15. Using synthetic bacterial enhancers to reveal a looping-based mechanism for quenching-like repression

    Science.gov (United States)

    Brunwasser-Meirom, Michal; Pollak, Yaroslav; Goldberg, Sarah; Levy, Lior; Atar, Orna; Amit, Roee

    2016-02-01

    We explore a model for `quenching-like' repression by studying synthetic bacterial enhancers, each characterized by a different binding site architecture. To do so, we take a three-pronged approach: first, we compute the probability that a protein-bound dsDNA molecule will loop. Second, we use hundreds of synthetic enhancers to test the model's predictions in bacteria. Finally, we verify the mechanism bioinformatically in native genomes. Here we show that excluded volume effects generated by DNA-bound proteins can generate substantial quenching. Moreover, the type and extent of the regulatory effect depend strongly on the relative arrangement of the binding sites. The implications of these results are that enhancers should be insensitive to 10-11 bp insertions or deletions (INDELs) and sensitive to 5-6 bp INDELs. We test this prediction on 61 σ54-regulated qrr genes from the Vibrio genus and confirm the tolerance of these enhancers' sequences to the DNA's helical repeat.

  16. Long term consequences of suppression of intrusive anxious thoughts and repressive coping.

    Science.gov (United States)

    Geraerts, Elke; Merckelbach, Harald; Jelicic, Marko; Smeets, Elke

    2006-10-01

    The current experiment employed a thought suppression paradigm to investigate whether repressors (N=40) are more skilled in suppressing positive and anxious autobiographical thoughts than low anxious (N=40), high anxious (N=40), and defensive high anxious (N=40) individuals, both immediately and over a longer time period (i.e., 7 days). Regardless of suppression instructions, repressors reported during their lab visit fewer target thoughts for their most anxious events than participants in the other three groups. However, over a 7 days period, repressors showed the highest number of intrusive thoughts about their anxious autobiographical events. Thus, our results demonstrate that repressive coping might be adaptive in the short run, but counterproductive in the long run. PMID:16337604

  17. Response to Comment on "Multiple repressive mechanisms in the hippocampus during memory formation".

    Science.gov (United States)

    Cho, Jun; Yu, Nam-Kyung; Kim, V Narry; Kaang, Bong-Kiun

    2016-07-29

    Mathew et al. propose that many candidate genes identified in our study may reflect the events in the choroid plexus (ChP) potentially included in hippocampal samples. We reanalyze our data and find that the ChP inclusion is unlikely to affect our major conclusions regarding the basal suppression of translational machinery or the early translational repression (at 5 to 10 minutes). As Mathew et al. examined for a subset of genes at 4 hours, we agree that the late suppression may partly reflect the events in the ChP. Although the precise contribution of anatomical sources remains to be clarified, our behavioral analyses indicate that the late-phase suppression of these genes may contribute to memory formation. PMID:27482553

  18. Genome editing in butterflies reveals that spalt promotes and Distal-less represses eyespot colour patterns

    Science.gov (United States)

    Zhang, Linlin; Reed, Robert D.

    2016-01-01

    Butterfly eyespot colour patterns are a key example of how a novel trait can appear in association with the co-option of developmental patterning genes. Little is known, however, about how, or even whether, co-opted genes function in eyespot development. Here we use CRISPR/Cas9 genome editing to determine the roles of two co-opted transcription factors that are expressed during early eyespot determination. We found that deletions in a single gene, spalt, are sufficient to reduce or completely delete eyespot colour patterns, thus demonstrating a positive regulatory role for this gene in eyespot determination. Conversely, and contrary to previous predictions, deletions in Distal-less (Dll) result in an increase in the size and number of eyespots, illustrating a repressive role for this gene in eyespot development. Altogether our results show that the presence, absence and shape of butterfly eyespots can be controlled by the activity of two co-opted transcription factors. PMID:27302525

  19. A systems biology approach to study glucose repression in the yeast Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Westergaard, Steen Lund; Soberano de Oliveira, Ana Paula; Bro, Christoffer;

    2007-01-01

    repression of a wide range of genes involved to utilization of alternative carbon sources. In this work, we applied a systems biology approach to study the interaction between these two pathways. Through genome-wide transcription analysis of strains with disruption of HXK2, GRR1, MIG1, the combination of MIG......1 and MIG2, and the parentel strain, we identified 393 genes to have significantly changed expression levels. To identify co-regulation patterns in the different strains we applied principal component analysis. Disruption of either GRR1 or HXK2 were both found to have profound effects on...... reporter metabolites, and found that there is a high degree of consistency between the identified reporter metabolites and the physiological effects observed in the different mutants . Our systems biology approach points to close interaction between the two pathways, and our metabolism driven analysis of...

  20. Interactome of Two Diverse RNA Granules Links mRNA Localization to Translational Repression in Neurons

    Directory of Open Access Journals (Sweden)

    Renate Fritzsche

    2013-12-01

    Full Text Available Transport of RNAs to dendrites occurs in neuronal RNA granules, which allows local synthesis of specific proteins at active synapses on demand, thereby contributing to learning and memory. To gain insight into the machinery controlling dendritic mRNA localization and translation, we established a stringent protocol to biochemically purify RNA granules from rat brain. Here, we identified a specific set of interactors for two RNA-binding proteins that are known components of neuronal RNA granules, Barentsz and Staufen2. First, neuronal RNA granules are much more heterogeneous than previously anticipated, sharing only a third of the identified proteins. Second, dendritically localized mRNAs, e.g., Arc and CaMKIIα, associate selectively with distinct RNA granules. Third, our work identifies a series of factors with known roles in RNA localization, translational control, and RNA quality control that are likely to keep localized transcripts in a translationally repressed state, often in distinct types of RNPs.

  1. Repression versus sensitization in response to media violence as predictors of cognitive avoidance and vigilance.

    Science.gov (United States)

    Krahé, Barbara; Möller, Ingrid; Berger, Anja; Felber, Juliane

    2011-02-01

    Repression and sensitization as situational modes of coping with anxiety were examined as predictors of trait measures of cognitive avoidance and vigilance. In this study, 303 undergraduates saw a violent film clip to elicit anxiety. Increases in skin conductance level (SCL) and state anxiety (STA) from baseline were measured to identify repressors (high SCL, low STA) and contrast them with sensitizers (low SCL, high STA) and genuinely low anxious individuals (low SCL, low STA). State anger was also recorded. Trait measures of vigilance and cognitive avoidance were collected 2 weeks earlier. Significant SCL × STA interactions indicated that repressors scored higher on cognitive avoidance and lower on vigilance compared to sensitizers and low anxious participants. Repressors were less likely than sensitizers to report gaze avoidance during the clip. The anger by SCL interaction was nonsignificant, suggesting that repressors and sensitizers differ specifically in the processing of anxiety rather than negative affect in general. PMID:21223268

  2. Site-Specific Oligonucleotide Binding Represses Transcription of the Human c-myc Gene in vitro

    Science.gov (United States)

    Cooney, Michael; Czernuszewicz, Graznya; Postel, Edith H.; Flint, S. Jane; Hogan, Michael E.

    1988-07-01

    A 27-base-long DNA oligonucleotide was designed that binds to duplex DNA at a single site within the 5' end of the human c-myc gene, 115 base pairs upstream from the transcription origin P1. On the basis of the physical properties of its bound complex, it was concluded that the oligonucleotide forms a colinear triplex with the duplex binding site. By means of an in vitro assay system, it was possible to show a correlation between triplex formation at -115 base pairs and repression of c-myc transcription. The possibility is discussed that triplex formation (site-specific RNA binding to a DNA duplex) could serve as the basis for an alternative program of gene control in vivo.

  3. The Pasteur effect and catabolite repression in an oxidative yeast, Kluyveromyces lactis.

    Science.gov (United States)

    Royt, P W; MacQuillan, A M

    1979-01-01

    The presence of the Pasteur effect in Kluyveromyces lactis grown in glucose was shown by azide-stimulated glucose fermentation. Extracts from these cells contained ATP-sensitive phosphofructokinase activity. Cells grown on succinate oxidized glucose slowly at first without azide-stimulated rates of fermentation. Phosphofructokinase in these cells was ATP-insensitive. The activity of NAD+-isocitrate dehydrogenase in cell extracts did not require AMP activation. These results suggested the presence of a Pasteur effect in glucose-grown but not in succinate-grown K. lactis, mediated by (a) ATP inhibition of phosphofructokinase (b) possibly via feedback control of glucose transport, but not by AMP activation of isocitrate dehydrogenase. Azide inhibition of the Pasteur effect during growth of the cells did not lead to catabolite repression of respiratory activity. The results therefore suggest that the Pasteur effect does not inhibit the development of a Crabtree effect in oxidative yeasts.

  4. Mapping the transcription repressive domain in the highly conserved human gene hnulp1

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    HNULP1,a new member of the basic helixloop-helix transcription factors,contains a DUF654 domain in its C-terminus and is highly conserved from Drosophilae,yeast,zebrafish to mouse.The function of this motif,however,is currently unknown.In this research,we fused five deletion fragments of the DUF654 domain to the GAL4 DNA-binding domain and then co-transfected with plasmids L8G5-Luc and VP-16.The analysis of the GAL4 luciferase reporter gene indicated that fragments from 228 to 407 amino acids in the DUF654 domain had a strong transcription repression activity.Therefore,this study lays a solid foundation for research on the mechanism of hnulp1 transcriptional regulation and the function of the DUF654 domain.

  5. Repressive authenticity in the quest for legitimacy: surveillance and the contested illness lawsuit.

    Science.gov (United States)

    Phillips, Tarryn

    2012-11-01

    When seeking compensation for workplace injury, workers predictably face examination over the legitimacy of their condition from employers and medical and legal professionals. When the alleged injury is a contested environmental illness, the suspicion aroused and the scrutiny faced by workers is much more acute. In this paper, I analyse the medico-legal experiences of eight chemically sensitive claimants in Australia to reveal the nature and extent of the surveillance they are subjected to in their quest to prove the legitimacy of their disease. Four forms of surveillance are identified: medical scrutiny; legal surveillance, insurer investigation, and self-regulation. Advancing the Foucauldian concept of self-surveillance, I demonstrate that this latter form of regulation has the most deleterious impact on the claimants. The result of this scrutiny is a 'repressive authenticity' (Wolfe, 1999), where the chemically sensitive are expected to adhere to a particular normative ideal of sickness, which becomes therapeutically counterproductive. PMID:22901667

  6. Proto-oncogene FBI-1 Represses Transcription of p21CIP1 by Inhibition of Transcription Activation by p53 and Sp1*S⃞

    OpenAIRE

    Choi, Won-Il; Jeon, Bu-Nam; Yun, Chae-Ok; Kim, Pyung-Hwan; Kim, Sung-Eun; Choi, Kang-Yell; Kim, Se Hoon; Hur, Man-Wook

    2009-01-01

    Aberrant transcriptional repression through chromatin remodeling and histone deacetylation has been postulated as the driving force for tumorigenesis. FBI-1 (formerly called Pokemon) is a member of the POK family of transcriptional repressors. Recently, FBI-1 was characterized as a critical oncogenic factor that specifically represses transcription of the tumor suppressor gene ARF, potentially leading indirectly to p53 inactivation. Our investigations on transcriptiona...

  7. E2F-Rb complexes assemble and inhibit cdc25A transcription in cervical carcinoma cells following repression of human papillomavirus oncogene expression

    DEFF Research Database (Denmark)

    Wu, L; Goodwin, E C; Naeger, L K;

    2000-01-01

    . To explore the mechanism of repression of cell cycle genes in cervical carcinoma cells following E6/E7 repression, we analyzed regulation of the cdc25A promoter, which contains two consensus E2F binding sites and a consensus E2 binding site. The wild-type E2 protein inhibited expression of a luciferase gene...

  8. Repression of Salmonella enterica phoP expression by small molecules from physiological bile.

    Science.gov (United States)

    Antunes, L Caetano M; Wang, Melody; Andersen, Sarah K; Ferreira, Rosana B R; Kappelhoff, Reinhild; Han, Jun; Borchers, Christoph H; Finlay, B Brett

    2012-05-01

    Infection with Salmonella enterica serovar Typhi in humans causes the life-threatening disease typhoid fever. In the laboratory, typhoid fever can be modeled through the inoculation of susceptible mice with Salmonella enterica serovar Typhimurium. Using this murine model, we previously characterized the interactions between Salmonella Typhimurium and host cells in the gallbladder and showed that this pathogen can successfully invade gallbladder epithelial cells and proliferate. Additionally, we showed that Salmonella Typhimurium can use bile phospholipids to grow at high rates. These abilities are likely important for quick colonization of the gallbladder during typhoid fever and further pathogen dissemination through fecal shedding. To further characterize the interactions between Salmonella and the gallbladder environment, we compared the transcriptomes of Salmonella cultures grown in LB broth or physiological murine bile. Our data showed that many genes involved in bacterial central metabolism are affected by bile, with the citric acid cycle being repressed and alternative respiratory systems being activated. Additionally, our study revealed a new aspect of Salmonella interactions with bile through the identification of the global regulator phoP as a bile-responsive gene. Repression of phoP expression could also be achieved using physiological, but not commercial, bovine bile. The biological activity does not involve PhoPQ sensing of a bile component and is not caused by bile acids, the most abundant organic components of bile. Bioactivity-guided purification allowed the identification of a subset of small molecules from bile that can elicit full activity; however, a single compound with phoP inhibitory activity could not be isolated, suggesting that multiple molecules may act in synergy to achieve this effect. Due to the critical role of phoP in Salmonella virulence, further studies in this area will likely reveal aspects of the interaction between Salmonella

  9. Lysogeny with Shiga toxin 2-encoding bacteriophages represses type III secretion in enterohemorrhagic Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Xuefang Xu

    Full Text Available Lytic or lysogenic infections by bacteriophages drive the evolution of enteric bacteria. Enterohemorrhagic Escherichia coli (EHEC have recently emerged as a significant zoonotic infection of humans with the main serotypes carried by ruminants. Typical EHEC strains are defined by the expression of a type III secretion (T3S system, the production of Shiga toxins (Stx and association with specific clinical symptoms. The genes for Stx are present on lambdoid bacteriophages integrated into the E. coli genome. Phage type (PT 21/28 is the most prevalent strain type linked with human EHEC infections in the United Kingdom and is more likely to be associated with cattle shedding high levels of the organism than PT32 strains. In this study we have demonstrated that the majority (90% of PT 21/28 strains contain both Stx2 and Stx2c phages, irrespective of source. This is in contrast to PT 32 strains for which only a minority of strains contain both Stx2 and 2c phages (28%. PT21/28 strains had a lower median level of T3S compared to PT32 strains and so the relationship between Stx phage lysogeny and T3S was investigated. Deletion of Stx2 phages from EHEC strains increased the level of T3S whereas lysogeny decreased T3S. This regulation was confirmed in an E. coli K12 background transduced with a marked Stx2 phage followed by measurement of a T3S reporter controlled by induced levels of the LEE-encoded regulator (Ler. The presence of an integrated Stx2 phage was shown to repress Ler induction of LEE1 and this regulation involved the CII phage regulator. This repression could be relieved by ectopic expression of a cognate CI regulator. A model is proposed in which Stx2-encoding bacteriophages regulate T3S to co-ordinate epithelial cell colonisation that is promoted by Stx and secreted effector proteins.

  10. Lysogeny with Shiga toxin 2-encoding bacteriophages represses type III secretion in enterohemorrhagic Escherichia coli.

    Science.gov (United States)

    Xu, Xuefang; McAteer, Sean P; Tree, Jai J; Shaw, Darren J; Wolfson, Eliza B K; Beatson, Scott A; Roe, Andrew J; Allison, Lesley J; Chase-Topping, Margo E; Mahajan, Arvind; Tozzoli, Rosangela; Woolhouse, Mark E J; Morabito, Stefano; Gally, David L

    2012-01-01

    Lytic or lysogenic infections by bacteriophages drive the evolution of enteric bacteria. Enterohemorrhagic Escherichia coli (EHEC) have recently emerged as a significant zoonotic infection of humans with the main serotypes carried by ruminants. Typical EHEC strains are defined by the expression of a type III secretion (T3S) system, the production of Shiga toxins (Stx) and association with specific clinical symptoms. The genes for Stx are present on lambdoid bacteriophages integrated into the E. coli genome. Phage type (PT) 21/28 is the most prevalent strain type linked with human EHEC infections in the United Kingdom and is more likely to be associated with cattle shedding high levels of the organism than PT32 strains. In this study we have demonstrated that the majority (90%) of PT 21/28 strains contain both Stx2 and Stx2c phages, irrespective of source. This is in contrast to PT 32 strains for which only a minority of strains contain both Stx2 and 2c phages (28%). PT21/28 strains had a lower median level of T3S compared to PT32 strains and so the relationship between Stx phage lysogeny and T3S was investigated. Deletion of Stx2 phages from EHEC strains increased the level of T3S whereas lysogeny decreased T3S. This regulation was confirmed in an E. coli K12 background transduced with a marked Stx2 phage followed by measurement of a T3S reporter controlled by induced levels of the LEE-encoded regulator (Ler). The presence of an integrated Stx2 phage was shown to repress Ler induction of LEE1 and this regulation involved the CII phage regulator. This repression could be relieved by ectopic expression of a cognate CI regulator. A model is proposed in which Stx2-encoding bacteriophages regulate T3S to co-ordinate epithelial cell colonisation that is promoted by Stx and secreted effector proteins.

  11. Host and bacterial proteins that repress recruitment of LC3 to Shigella early during infection.

    Directory of Open Access Journals (Sweden)

    Leigh A Baxt

    Full Text Available Shigella spp. are intracytosolic gram-negative pathogens that cause disease by invasion and spread through the colonic mucosa, utilizing host cytoskeletal components to form propulsive actin tails. We have previously identified the host factor Toca-1 as being recruited to intracellular S. flexneri and being required for efficient bacterial actin tail formation. We show that at early times during infection (40 min., the type three-secreted effector protein IcsB recruits Toca-1 to intracellular bacteria and that recruitment of Toca-1 is associated with repression of recruitment of LC3, as well as with repression of recruitment of the autophagy marker NDP52, around these intracellular bacteria. LC3 is best characterized as a marker of autophagosomes, but also marks phagosomal membranes in the process LC3-associated phagocytosis. IcsB has previously been demonstrated to be required for S. flexneri evasion of autophagy at late times during infection (4-6 hr by inhibiting binding of the autophagy protein Atg5 to the Shigella surface protein IcsA (VirG. Our results suggest that IcsB and Toca-1 modulation of LC3 recruitment restricts LC3-associated phagocytosis and/or LC3 recruitment to vacuolar membrane remnants. Together with published results, our findings suggest that IcsB inhibits innate immune responses in two distinct ways, first, by inhibiting LC3-associated phagocytosis and/or LC3 recruitment to vacuolar membrane remnants early during infection, and second, by inhibiting autophagy late during infection.

  12. Repression of interferon-γexpression in T cells by prosperorelated Homeobox protein

    Institute of Scientific and Technical Information of China (English)

    Linfang Wang; Jianmei Zhu; Shifang Shan; Yi Qin; Yuying Kong; Jing Liu; Yuan Wang; Youhua Xie

    2008-01-01

    Interferon-gamma (IFN-γ) is a major proinflammatory effector and regulatory cytokine produced by activated T cells and NK cells. IFN-γ has been shown to play pivotal roles in fundamental immunological processes such as inflammatory reactions,cell-mediated immunity and autoimmunity. A variety of human disorders have now been linked to irregular IFN-γ expression. In order to achieve proper IFN-γ-mediated immunological effects,IFN-γ expression in T cells is subject to both positive and negative regulation. In this study,we report for the first time the negative regulation of IFN-γ expression by Prospero-related Homeobox (Prox1). In Jurkat T cells and primary human CD4+ T cells,Proxl expression decreases quickly upon T cell activation,concurrent with a dramatic increase in IFN-γ expression.Reporter analysis and chromatin immunoprecipitation (ChIP) revealed that Proxl associates with and inhibits the transcription activity of IFN-γ promoter in activated Jurkat T cells. Co-immunoprecipitation and GST pull-down assay demonstrated a direct binding between Proxl and the nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ),which is also an IFN-γ repressor in T cells. By introducing deletions and mutations into Proxl,we show that the repression of IFN-γ promoter by Prox1 is largely dependent upon the physical interaction between Prox1 and PPARγ. Furthermore,PPARγ antagonist treatment removes Prox1 from IFN-γ promoter and attenuates repression of IFN-γ expression by Prox1. These findings establish Prox1 as a new negative regulator of IFN-γ expression in T cells and will aid in the understanding of IFN-γ transcription regulation mechanisms.

  13. Sox2 is an androgen receptor-repressed gene that promotes castration-resistant prostate cancer.

    Directory of Open Access Journals (Sweden)

    Steven Kregel

    Full Text Available Despite advances in detection and therapy, castration-resistant prostate cancer continues to be a major clinical problem. The aberrant activity of stem cell pathways, and their regulation by the Androgen Receptor (AR, has the potential to provide insight into novel mechanisms and pathways to prevent and treat advanced, castrate-resistant prostate cancers. To this end, we investigated the role of the embryonic stem cell regulator Sox2 [SRY (sex determining region Y-box 2] in normal and malignant prostate epithelial cells. In the normal prostate, Sox2 is expressed in a portion of basal epithelial cells. Prostate tumors were either Sox2-positive or Sox2-negative, with the percentage of Sox2-positive tumors increasing with Gleason Score and metastases. In the castration-resistant prostate cancer cell line CWR-R1, endogenous expression of Sox2 was repressed by AR signaling, and AR chromatin-IP shows that AR binds the enhancer element within the Sox2 promoter. Likewise, in normal prostate epithelial cells and human embryonic stem cells, increased AR signaling also decreases Sox2 expression. Resistance to the anti-androgen MDV3100 results in a marked increase in Sox2 expression within three prostate cancer cell lines, and in the castration-sensitive LAPC-4 prostate cancer cell line ectopic expression of Sox2 was sufficient to promote castration-resistant tumor formation. Loss of Sox2 expression in the castration-resistant CWR-R1 prostate cancer cell line inhibited cell growth. Up-regulation of Sox2 was not associated with increased CD133 expression but was associated with increased FGF5 (Fibroblast Growth Factor 5 expression. These data propose a model of elevated Sox2 expression due to loss of AR-mediated repression during castration, and consequent castration-resistance via mechanisms not involving induction of canonical embryonic stem cell pathways.

  14. Expression of the MOZ-TIF2 oncoprotein in mice represses senescence

    Science.gov (United States)

    Largeot, Anne; Perez-Campo, Flor Maria; Marinopoulou, Elli; Lie-a-Ling, Michael; Kouskoff, Valerie; Lacaud, Georges

    2016-01-01

    The MOZ-TIF2 translocation, which fuses monocytic leukemia zinc finger protein (MOZ) histone acetyltransferase (HAT) with the nuclear co-activator TIF2, is associated with the development of acute myeloid leukemia. We recently found that in the absence of MOZ HAT activity, p16INK4a transcriptional levels are significantly increased, triggering an early entrance into replicative senescence. Because oncogenic fusion proteins must bypass cellular safeguard mechanisms, such as senescence and apoptosis, to induce leukemia, we hypothesized that this repressive activity of MOZ over p16INK4a transcription could be preserved, or even reinforced, in MOZ leukemogenic fusion proteins, such as MOZ-TIF2. We describe here that, indeed, MOZ-TIF2 silences expression of the CDKN2A locus (p16INK4a and p19ARF), inhibits the triggering of senescence and enhances proliferation, providing conditions favorable to the development of leukemia. Furthermore, we describe that abolishing the MOZ HAT activity of the fusion protein leads to a significant increase in expression of the CDKN2A locus and the number of hematopoietic progenitors undergoing senescence. Finally, we report that inhibition of senescence by MOZ-TIF2 is associated with increased apoptosis, suggesting a role for the fusion protein in p53 apoptosis-versus-senescence balance. Our results underscore the importance of the HAT activity of MOZ, preserved in the fusion protein, for repression of the CDKN2A locus transcription and the subsequent block of senescence, a necessary step for the survival of leukemic cells. PMID:26854485

  15. Expression of the MOZ-TIF2 oncoprotein in mice represses senescence.

    Science.gov (United States)

    Largeot, Anne; Perez-Campo, Flor Maria; Marinopoulou, Elli; Lie-a-Ling, Michael; Kouskoff, Valerie; Lacaud, Georges

    2016-04-01

    The MOZ-TIF2 translocation, which fuses monocytic leukemia zinc finger protein (MOZ) histone acetyltransferase (HAT) with the nuclear co-activator TIF2, is associated with the development of acute myeloid leukemia. We recently found that in the absence of MOZ HAT activity, p16(INK4a) transcriptional levels are significantly increased, triggering an early entrance into replicative senescence. Because oncogenic fusion proteins must bypass cellular safeguard mechanisms, such as senescence and apoptosis, to induce leukemia, we hypothesized that this repressive activity of MOZ over p16(INK4a) transcription could be preserved, or even reinforced, in MOZ leukemogenic fusion proteins, such as MOZ-TIF2. We describe here that, indeed, MOZ-TIF2 silences expression of the CDKN2A locus (p16(INK4a) and p19(ARF)), inhibits the triggering of senescence and enhances proliferation, providing conditions favorable to the development of leukemia. Furthermore, we describe that abolishing the MOZ HAT activity of the fusion protein leads to a significant increase in expression of the CDKN2A locus and the number of hematopoietic progenitors undergoing senescence. Finally, we report that inhibition of senescence by MOZ-TIF2 is associated with increased apoptosis, suggesting a role for the fusion protein in p53 apoptosis-versus-senescence balance. Our results underscore the importance of the HAT activity of MOZ, preserved in the fusion protein, for repression of the CDKN2A locus transcription and the subsequent block of senescence, a necessary step for the survival of leukemic cells. PMID:26854485

  16. Yeast genetic analysis reveals the involvement of chromatin reassembly factors in repressing HIV-1 basal transcription.

    Directory of Open Access Journals (Sweden)

    Manuela Vanti

    2009-01-01

    Full Text Available Rebound of HIV viremia after interruption of anti-retroviral therapy is due to the small population of CD4+ T cells that remain latently infected. HIV-1 transcription is the main process controlling post-integration latency. Regulation of HIV-1 transcription takes place at both initiation and elongation levels. Pausing of RNA polymerase II at the 5' end of HIV-1 transcribed region (5'HIV-TR, which is immediately downstream of the transcription start site, plays an important role in the regulation of viral expression. The activation of HIV-1 transcription correlates with the rearrangement of a positioned nucleosome located at this region. These two facts suggest that the 5'HIV-TR contributes to inhibit basal transcription of those HIV-1 proviruses that remain latently inactive. However, little is known about the cell elements mediating the repressive role of the 5'HIV-TR. We performed a genetic analysis of this phenomenon in Saccharomyces cerevisiae after reconstructing a minimal HIV-1 transcriptional system in this yeast. Unexpectedly, we found that the critical role played by the 5'HIV-TR in maintaining low levels of basal transcription in yeast is mediated by FACT, Spt6, and Chd1, proteins so far associated with chromatin assembly and disassembly during ongoing transcription. We confirmed that this group of factors plays a role in HIV-1 postintegration latency in human cells by depleting the corresponding human orthologs with shRNAs, both in HIV latently infected cell populations and in particular single-integration clones, including a latent clone with a provirus integrated in a highly transcribed gene. Our results indicate that chromatin reassembly factors participate in the establishment of the equilibrium between activation and repression of HIV-1 when it integrates into the human genome, and they open the possibility of considering these factors as therapeutic targets of HIV-1 latency.

  17. Churchill regulates cell movement and mesoderm specification by repressing Nodal signaling

    Directory of Open Access Journals (Sweden)

    Mentzer Laura

    2007-11-01

    Full Text Available Abstract Background Cell movements are essential to the determination of cell fates during development. The zinc-finger transcription factor, Churchill (ChCh has been proposed to regulate cell fate by regulating cell movements during gastrulation in the chick. However, the mechanism of action of ChCh is not understood. Results We demonstrate that ChCh acts to repress the response to Nodal-related signals in zebrafish. When ChCh function is abrogated the expression of mesodermal markers is enhanced while ectodermal markers are expressed at decreased levels. In cell transplant assays, we observed that ChCh-deficient cells are more motile than wild-type cells. When placed in wild-type hosts, ChCh-deficient cells often leave the epiblast, migrate to the germ ring and are later found in mesodermal structures. We demonstrate that both movement of ChCh-compromised cells to the germ ring and acquisition of mesodermal character depend on the ability of the donor cells to respond to Nodal signals. Blocking Nodal signaling in the donor cells at the levels of Oep, Alk receptors or Fast1 inhibited migration to the germ ring and mesodermal fate change in the donor cells. We also detect additional unusual movements of transplanted ChCh-deficient cells which suggests that movement and acquisition of mesodermal character can be uncoupled. Finally, we demonstrate that ChCh is required to limit the transcriptional response to Nodal. Conclusion These data establish a broad role for ChCh in regulating both cell movement and Nodal signaling during early zebrafish development. We show that chch is required to limit mesodermal gene expression, inhibit Nodal-dependant movement of presumptive ectodermal cells and repress the transcriptional response to Nodal signaling. These findings reveal a dynamic role for chch in regulating cell movement and fate during early development.

  18. Political repression, civil society and the politics of responding to AIDS in the BRICS nations.

    Science.gov (United States)

    Gómez, Eduardo J; Harris, Joseph

    2016-02-01

    The policy responses to human immunodeficiency virus/acquired immune deficiency syndrome (AIDS) in the Brazil, Russia, India, China and South Africa (BRICS) nations have played out amid radically different political environments that have shaped state-civil society relations in critical ways. In contrasting these different environments, this article offers the first comparison of the policy response to AIDS in the BRICS nations and seeks to understand the way in which political context matters for conditioning the response to a major epidemic. Using a comparative historical approach, we find that while collaborative state-civil society relations have produced an aggressive response and successful outcomes in Brazil, democratic openness and state-civil society engagement has not necessarily correlated with an aggressive response or better outcomes in the other cases. Response to the epidemic has been worst by far in democratic South Africa, followed by Russia, where in the former, denialism and antagonistic state-civil society relations fuelled a delayed response and proved extremely costly in terms of human lives. In Russia, a lack of civil societal opportunity for mobilization and non-governmental organization (NGO) growth, political centralization and the state's unwillingness to work with NGOs led to an ineffective government response. Top-down bureaucratic rule and a reluctance to fully engage civil society in democratic India substantially delayed the state's efforts to engage in a successful partnership with NGOs. Nevertheless, China has done surprisingly well, in spite of its repressive approach and narrow engagement with civil society. And in all cases, we find the relationship between state and civil society to be evolving over time in important ways. These findings suggest the need for more research on the links between democratic openness, political repression and policy responses to epidemics. PMID:25858965

  19. Political repression, civil society and the politics of responding to AIDS in the BRICS nations.

    Science.gov (United States)

    Gómez, Eduardo J; Harris, Joseph

    2016-02-01

    The policy responses to human immunodeficiency virus/acquired immune deficiency syndrome (AIDS) in the Brazil, Russia, India, China and South Africa (BRICS) nations have played out amid radically different political environments that have shaped state-civil society relations in critical ways. In contrasting these different environments, this article offers the first comparison of the policy response to AIDS in the BRICS nations and seeks to understand the way in which political context matters for conditioning the response to a major epidemic. Using a comparative historical approach, we find that while collaborative state-civil society relations have produced an aggressive response and successful outcomes in Brazil, democratic openness and state-civil society engagement has not necessarily correlated with an aggressive response or better outcomes in the other cases. Response to the epidemic has been worst by far in democratic South Africa, followed by Russia, where in the former, denialism and antagonistic state-civil society relations fuelled a delayed response and proved extremely costly in terms of human lives. In Russia, a lack of civil societal opportunity for mobilization and non-governmental organization (NGO) growth, political centralization and the state's unwillingness to work with NGOs led to an ineffective government response. Top-down bureaucratic rule and a reluctance to fully engage civil society in democratic India substantially delayed the state's efforts to engage in a successful partnership with NGOs. Nevertheless, China has done surprisingly well, in spite of its repressive approach and narrow engagement with civil society. And in all cases, we find the relationship between state and civil society to be evolving over time in important ways. These findings suggest the need for more research on the links between democratic openness, political repression and policy responses to epidemics.

  20. Bach2 represses effector programmes to stabilize Treg-mediated immune homeostasis

    Science.gov (United States)

    Roychoudhuri, Rahul; Hirahara, Kiyoshi; Mousavi, Kambiz; Clever, David; Klebanoff, Christopher A.; Bonelli, Michael; Sciume, Giuseppe; Zare, Hossein; Vahedi, Golnaz; Dema, Barbara; Yu, Zhiya; Liu, Hui; Takahashi, Hayato; Rao, Mahadev; Muranski, Pawel; Crompton, Joseph G.; Punkosdy, George; Bedognetti, Davide; Wang, Ena; Hoffmann, Victoria; Rivera, Juan; Marincola, Francesco M.; Nakamura, Atsushi; Sartorelli, Vittorio; Kanno, Yuka; Gattinoni, Luca; Muto, Akihiko; Igarashi, Kazuhiko; O’Shea, John J.; Restifo, Nicholas P.

    2013-01-01

    Through their functional diversification, distinct lineages of CD4+ T cells play key roles in either driving or constraining immune-mediated pathology. Transcription factors are critical in the generation of cellular diversity, and negative regulators antagonistic to alternate fates often act in conjunction with positive regulators to stabilize lineage commitment1. Genetic polymorphisms within a single locus encoding the transcription factor BACH2 are associated with numerous autoimmune and allergic diseases including asthma2, Crohn’s disease3–4, coeliac disease5, vitiligo6, multiple sclerosis7 and type 1 diabetes8. While these associations point to a shared mechanism underlying susceptibility to diverse immune-mediated diseases, a function for Bach2 in the maintenance of immune homeostasis has not been established. Here, we define Bach2 as a broad regulator of immune activation that stabilizes immunoregulatory capacity while repressing the differentiation programmes of multiple effector lineages in CD4+ T cells. Bach2 was required for efficient formation of regulatory (Treg) cells and consequently for suppression of lethal inflammation in a manner that was Treg cell dependent. Assessment of the genome-wide function of Bach2, however, revealed that it represses genes associated with effector cell differentiation. Consequently, its absence during Treg polarization resulted in inappropriate diversion to effector lineages. In addition, Bach2 constrained full effector differentiation within Th1, Th2 and Th17 cell lineages. These findings identify Bach2 as a key regulator of CD4+ T-cell differentiation that prevents inflammatory disease by controlling the balance between tolerance and immunity. PMID:23728300